sched.c 250.6 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
42
#include <linux/perf_counter.h>
L
Linus Torvalds 已提交
43 44 45
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
46
#include <linux/freezer.h>
47
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
48 49
#include <linux/blkdev.h>
#include <linux/delay.h>
50
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
51 52 53 54 55 56 57 58
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
59
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
60
#include <linux/seq_file.h>
61
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
62 63
#include <linux/syscalls.h>
#include <linux/times.h>
64
#include <linux/tsacct_kern.h>
65
#include <linux/kprobes.h>
66
#include <linux/delayacct.h>
67
#include <linux/reciprocal_div.h>
68
#include <linux/unistd.h>
J
Jens Axboe 已提交
69
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
70
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
71
#include <linux/tick.h>
72
#include <linux/bootmem.h>
P
Peter Zijlstra 已提交
73 74
#include <linux/debugfs.h>
#include <linux/ctype.h>
75
#include <linux/ftrace.h>
76
#include <trace/sched.h>
L
Linus Torvalds 已提交
77

78
#include <asm/tlb.h>
79
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
80

81 82
#include "sched_cpupri.h"

L
Linus Torvalds 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
102
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
103
 */
104
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
105

I
Ingo Molnar 已提交
106 107 108
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
109 110 111
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
112
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
113 114 115
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
116

117 118 119 120 121
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

122 123 124 125 126 127
DEFINE_TRACE(sched_wait_task);
DEFINE_TRACE(sched_wakeup);
DEFINE_TRACE(sched_wakeup_new);
DEFINE_TRACE(sched_switch);
DEFINE_TRACE(sched_migrate_task);

128
#ifdef CONFIG_SMP
129 130 131

static void double_rq_lock(struct rq *rq1, struct rq *rq2);

132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

152 153
static inline int rt_policy(int policy)
{
154
	if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
155 156 157 158 159 160 161 162 163
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
164
/*
I
Ingo Molnar 已提交
165
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
166
 */
I
Ingo Molnar 已提交
167 168 169 170 171
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

172
struct rt_bandwidth {
I
Ingo Molnar 已提交
173 174 175 176 177
	/* nests inside the rq lock: */
	spinlock_t		rt_runtime_lock;
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

P
Peter Zijlstra 已提交
211 212
	spin_lock_init(&rt_b->rt_runtime_lock);

213 214 215 216 217
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
}

218 219 220
static inline int rt_bandwidth_enabled(void)
{
	return sysctl_sched_rt_runtime >= 0;
221 222 223 224 225 226
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

227
	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
228 229 230 231 232 233 234
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

	spin_lock(&rt_b->rt_runtime_lock);
	for (;;) {
235 236 237
		unsigned long delta;
		ktime_t soft, hard;

238 239 240 241 242
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
243 244 245 246 247 248

		soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
		hard = hrtimer_get_expires(&rt_b->rt_period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
				HRTIMER_MODE_ABS, 0);
249 250 251 252 253 254 255 256 257 258 259
	}
	spin_unlock(&rt_b->rt_runtime_lock);
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

260 261 262 263 264 265
/*
 * sched_domains_mutex serializes calls to arch_init_sched_domains,
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

266
#ifdef CONFIG_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
267

268 269
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
270 271
struct cfs_rq;

P
Peter Zijlstra 已提交
272 273
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
274
/* task group related information */
275
struct task_group {
276
#ifdef CONFIG_CGROUP_SCHED
277 278
	struct cgroup_subsys_state css;
#endif
279

280 281 282 283
#ifdef CONFIG_USER_SCHED
	uid_t uid;
#endif

284
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
285 286 287 288 289
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
290 291 292 293 294 295
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

296
	struct rt_bandwidth rt_bandwidth;
297
#endif
298

299
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
300
	struct list_head list;
P
Peter Zijlstra 已提交
301 302 303 304

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
S
Srivatsa Vaddagiri 已提交
305 306
};

D
Dhaval Giani 已提交
307
#ifdef CONFIG_USER_SCHED
308

309 310 311 312 313 314
/* Helper function to pass uid information to create_sched_user() */
void set_tg_uid(struct user_struct *user)
{
	user->tg->uid = user->uid;
}

315 316 317 318 319 320 321
/*
 * Root task group.
 * 	Every UID task group (including init_task_group aka UID-0) will
 * 	be a child to this group.
 */
struct task_group root_task_group;

322
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
323 324 325 326
/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
327
#endif /* CONFIG_FAIR_GROUP_SCHED */
328 329 330 331

#ifdef CONFIG_RT_GROUP_SCHED
static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
332
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
333
#else /* !CONFIG_USER_SCHED */
334
#define root_task_group init_task_group
P
Peter Zijlstra 已提交
335
#endif /* CONFIG_USER_SCHED */
P
Peter Zijlstra 已提交
336

337
/* task_group_lock serializes add/remove of task groups and also changes to
338 339
 * a task group's cpu shares.
 */
340
static DEFINE_SPINLOCK(task_group_lock);
341

342 343 344 345 346 347 348
#ifdef CONFIG_SMP
static int root_task_group_empty(void)
{
	return list_empty(&root_task_group.children);
}
#endif

349 350 351
#ifdef CONFIG_FAIR_GROUP_SCHED
#ifdef CONFIG_USER_SCHED
# define INIT_TASK_GROUP_LOAD	(2*NICE_0_LOAD)
352
#else /* !CONFIG_USER_SCHED */
353
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD
354
#endif /* CONFIG_USER_SCHED */
355

356
/*
357 358 359 360
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
361 362 363
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
364
#define MIN_SHARES	2
365
#define MAX_SHARES	(1UL << 18)
366

367 368 369
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
370
/* Default task group.
I
Ingo Molnar 已提交
371
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
372
 */
373
struct task_group init_task_group;
S
Srivatsa Vaddagiri 已提交
374 375

/* return group to which a task belongs */
376
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
377
{
378
	struct task_group *tg;
379

380
#ifdef CONFIG_USER_SCHED
381 382 383
	rcu_read_lock();
	tg = __task_cred(p)->user->tg;
	rcu_read_unlock();
384
#elif defined(CONFIG_CGROUP_SCHED)
385 386
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
387
#else
I
Ingo Molnar 已提交
388
	tg = &init_task_group;
389
#endif
390
	return tg;
S
Srivatsa Vaddagiri 已提交
391 392 393
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
P
Peter Zijlstra 已提交
394
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
395
{
396
#ifdef CONFIG_FAIR_GROUP_SCHED
397 398
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
399
#endif
P
Peter Zijlstra 已提交
400

401
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
402 403
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
404
#endif
S
Srivatsa Vaddagiri 已提交
405 406 407 408
}

#else

409 410 411 412 413 414 415
#ifdef CONFIG_SMP
static int root_task_group_empty(void)
{
	return 1;
}
#endif

P
Peter Zijlstra 已提交
416
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
417 418 419 420
static inline struct task_group *task_group(struct task_struct *p)
{
	return NULL;
}
S
Srivatsa Vaddagiri 已提交
421

422
#endif	/* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
423

I
Ingo Molnar 已提交
424 425 426 427 428 429
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
430
	u64 min_vruntime;
I
Ingo Molnar 已提交
431 432 433

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
434 435 436 437 438 439

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
440 441
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
P
Peter Zijlstra 已提交
442
	struct sched_entity *curr, *next, *last;
P
Peter Zijlstra 已提交
443

P
Peter Zijlstra 已提交
444
	unsigned int nr_spread_over;
P
Peter Zijlstra 已提交
445

446
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
447 448
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
449 450
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
451 452 453 454 455 456
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
457 458
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
459 460 461

#ifdef CONFIG_SMP
	/*
462
	 * the part of load.weight contributed by tasks
463
	 */
464
	unsigned long task_weight;
465

466 467 468 469 470 471 472
	/*
	 *   h_load = weight * f(tg)
	 *
	 * Where f(tg) is the recursive weight fraction assigned to
	 * this group.
	 */
	unsigned long h_load;
473

474 475 476 477
	/*
	 * this cpu's part of tg->shares
	 */
	unsigned long shares;
478 479 480 481 482

	/*
	 * load.weight at the time we set shares
	 */
	unsigned long rq_weight;
483
#endif
I
Ingo Molnar 已提交
484 485
#endif
};
L
Linus Torvalds 已提交
486

I
Ingo Molnar 已提交
487 488 489
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
490
	unsigned long rt_nr_running;
491
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
492 493
	struct {
		int curr; /* highest queued rt task prio */
494
#ifdef CONFIG_SMP
495
		int next; /* next highest */
496
#endif
497
	} highest_prio;
P
Peter Zijlstra 已提交
498
#endif
P
Peter Zijlstra 已提交
499
#ifdef CONFIG_SMP
500
	unsigned long rt_nr_migratory;
G
Gregory Haskins 已提交
501
	int overloaded;
502
	struct plist_head pushable_tasks;
P
Peter Zijlstra 已提交
503
#endif
P
Peter Zijlstra 已提交
504
	int rt_throttled;
P
Peter Zijlstra 已提交
505
	u64 rt_time;
P
Peter Zijlstra 已提交
506
	u64 rt_runtime;
I
Ingo Molnar 已提交
507
	/* Nests inside the rq lock: */
P
Peter Zijlstra 已提交
508
	spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
509

510
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
511 512
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
513 514 515 516 517
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
	struct sched_rt_entity *rt_se;
#endif
I
Ingo Molnar 已提交
518 519
};

G
Gregory Haskins 已提交
520 521 522 523
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
524 525
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
526 527 528 529 530 531
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
532 533
	cpumask_var_t span;
	cpumask_var_t online;
534

I
Ingo Molnar 已提交
535
	/*
536 537 538
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
539
	cpumask_var_t rto_mask;
I
Ingo Molnar 已提交
540
	atomic_t rto_count;
541 542 543
#ifdef CONFIG_SMP
	struct cpupri cpupri;
#endif
544 545 546 547 548 549 550 551
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	/*
	 * Preferred wake up cpu nominated by sched_mc balance that will be
	 * used when most cpus are idle in the system indicating overall very
	 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
	 */
	unsigned int sched_mc_preferred_wakeup_cpu;
#endif
G
Gregory Haskins 已提交
552 553
};

554 555 556 557
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
558 559 560 561
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
562 563 564 565 566 567 568
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
569
struct rq {
570 571
	/* runqueue lock: */
	spinlock_t lock;
L
Linus Torvalds 已提交
572 573 574 575 576 577

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
578 579
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
580
#ifdef CONFIG_NO_HZ
581
	unsigned long last_tick_seen;
582 583
	unsigned char in_nohz_recently;
#endif
584 585
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
586 587
	unsigned long nr_load_updates;
	u64 nr_switches;
588
	u64 nr_migrations_in;
I
Ingo Molnar 已提交
589 590

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
591 592
	struct rt_rq rt;

I
Ingo Molnar 已提交
593
#ifdef CONFIG_FAIR_GROUP_SCHED
594 595
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
596 597
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
598
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
599 600 601 602 603 604 605 606 607 608
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

609
	struct task_struct *curr, *idle;
610
	unsigned long next_balance;
L
Linus Torvalds 已提交
611
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
612

613
	u64 clock;
I
Ingo Molnar 已提交
614

L
Linus Torvalds 已提交
615 616 617
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
618
	struct root_domain *rd;
L
Linus Torvalds 已提交
619 620
	struct sched_domain *sd;

621
	unsigned char idle_at_tick;
L
Linus Torvalds 已提交
622 623 624
	/* For active balancing */
	int active_balance;
	int push_cpu;
625 626
	/* cpu of this runqueue: */
	int cpu;
627
	int online;
L
Linus Torvalds 已提交
628

629
	unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
630

631
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
632 633 634
	struct list_head migration_queue;
#endif

P
Peter Zijlstra 已提交
635
#ifdef CONFIG_SCHED_HRTICK
636 637 638 639
#ifdef CONFIG_SMP
	int hrtick_csd_pending;
	struct call_single_data hrtick_csd;
#endif
P
Peter Zijlstra 已提交
640 641 642
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
643 644 645
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;
646 647
	unsigned long long rq_cpu_time;
	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
L
Linus Torvalds 已提交
648 649

	/* sys_sched_yield() stats */
650
	unsigned int yld_count;
L
Linus Torvalds 已提交
651 652

	/* schedule() stats */
653 654 655
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
656 657

	/* try_to_wake_up() stats */
658 659
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
660 661

	/* BKL stats */
662
	unsigned int bkl_count;
L
Linus Torvalds 已提交
663 664 665
#endif
};

666
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
667

668
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
I
Ingo Molnar 已提交
669
{
670
	rq->curr->sched_class->check_preempt_curr(rq, p, sync);
I
Ingo Molnar 已提交
671 672
}

673 674 675 676 677 678 679 680 681
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

N
Nick Piggin 已提交
682 683
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
684
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
685 686 687 688
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
689 690
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
691 692 693 694 695 696

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

I
Ingo Molnar 已提交
697
inline void update_rq_clock(struct rq *rq)
698 699 700 701
{
	rq->clock = sched_clock_cpu(cpu_of(rq));
}

I
Ingo Molnar 已提交
702 703 704 705 706 707 708 709 710
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

I
Ingo Molnar 已提交
711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
/**
 * runqueue_is_locked
 *
 * Returns true if the current cpu runqueue is locked.
 * This interface allows printk to be called with the runqueue lock
 * held and know whether or not it is OK to wake up the klogd.
 */
int runqueue_is_locked(void)
{
	int cpu = get_cpu();
	struct rq *rq = cpu_rq(cpu);
	int ret;

	ret = spin_is_locked(&rq->lock);
	put_cpu();
	return ret;
}

I
Ingo Molnar 已提交
729 730 731
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
732 733 734 735

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
736
enum {
P
Peter Zijlstra 已提交
737
#include "sched_features.h"
I
Ingo Molnar 已提交
738 739
};

P
Peter Zijlstra 已提交
740 741 742 743 744
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
745
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
746 747 748 749 750 751 752 753 754
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

755
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
756 757 758 759 760 761
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

L
Li Zefan 已提交
762
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
763 764 765 766
{
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
L
Li Zefan 已提交
767 768 769
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
770
	}
L
Li Zefan 已提交
771
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
772

L
Li Zefan 已提交
773
	return 0;
P
Peter Zijlstra 已提交
774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp = buf;
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;

I
Ingo Molnar 已提交
793
	if (strncmp(buf, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
		int len = strlen(sched_feat_names[i]);

		if (strncmp(cmp, sched_feat_names[i], len) == 0) {
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

	filp->f_pos += cnt;

	return cnt;
}

L
Li Zefan 已提交
818 819 820 821 822
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

P
Peter Zijlstra 已提交
823
static struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
824 825 826 827 828
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
829 830 831 832 833 834 835 836 837 838 839 840 841 842
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
843

844 845 846 847 848 849
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
850 851
/*
 * ratelimit for updating the group shares.
852
 * default: 0.25ms
P
Peter Zijlstra 已提交
853
 */
854
unsigned int sysctl_sched_shares_ratelimit = 250000;
P
Peter Zijlstra 已提交
855

856 857 858 859 860 861 862
/*
 * Inject some fuzzyness into changing the per-cpu group shares
 * this avoids remote rq-locks at the expense of fairness.
 * default: 4
 */
unsigned int sysctl_sched_shares_thresh = 4;

P
Peter Zijlstra 已提交
863
/*
P
Peter Zijlstra 已提交
864
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
865 866
 * default: 1s
 */
P
Peter Zijlstra 已提交
867
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
868

869 870
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
871 872 873 874 875
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
876

877 878 879 880 881 882 883
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
884
	if (sysctl_sched_rt_runtime < 0)
885 886 887 888
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
889

L
Linus Torvalds 已提交
890
#ifndef prepare_arch_switch
891 892 893 894 895 896
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

897 898 899 900 901
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

902
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
903
static inline int task_running(struct rq *rq, struct task_struct *p)
904
{
905
	return task_current(rq, p);
906 907
}

908
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
909 910 911
{
}

912
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
913
{
914 915 916 917
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
918 919 920 921 922 923 924
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

925 926 927 928
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
929
static inline int task_running(struct rq *rq, struct task_struct *p)
930 931 932 933
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
934
	return task_current(rq, p);
935 936 937
#endif
}

938
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

955
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
956 957 958 959 960 961 962 963 964 965 966 967
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
968
#endif
969 970
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
971

972 973 974 975
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
976
static inline struct rq *__task_rq_lock(struct task_struct *p)
977 978
	__acquires(rq->lock)
{
979 980 981 982 983
	for (;;) {
		struct rq *rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
984 985 986 987
		spin_unlock(&rq->lock);
	}
}

L
Linus Torvalds 已提交
988 989
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
990
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
991 992
 * explicitly disabling preemption.
 */
993
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
994 995
	__acquires(rq->lock)
{
996
	struct rq *rq;
L
Linus Torvalds 已提交
997

998 999 1000 1001 1002 1003
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
L
Linus Torvalds 已提交
1004 1005 1006 1007
		spin_unlock_irqrestore(&rq->lock, *flags);
	}
}

1008 1009 1010 1011 1012 1013 1014 1015
void task_rq_unlock_wait(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

	smp_mb(); /* spin-unlock-wait is not a full memory barrier */
	spin_unlock_wait(&rq->lock);
}

A
Alexey Dobriyan 已提交
1016
static void __task_rq_unlock(struct rq *rq)
1017 1018 1019 1020 1021
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

1022
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
1023 1024 1025 1026 1027 1028
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
1029
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
1030
 */
A
Alexey Dobriyan 已提交
1031
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
1032 1033
	__acquires(rq->lock)
{
1034
	struct rq *rq;
L
Linus Torvalds 已提交
1035 1036 1037 1038 1039 1040 1041 1042

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

P
Peter Zijlstra 已提交
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
1064
	if (!cpu_active(cpu_of(rq)))
1065
		return 0;
P
Peter Zijlstra 已提交
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock(&rq->lock);
1086
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1087 1088 1089 1090 1091 1092
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
	spin_unlock(&rq->lock);

	return HRTIMER_NORESTART;
}

1093
#ifdef CONFIG_SMP
1094 1095 1096 1097
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
1098
{
1099
	struct rq *rq = arg;
1100

1101 1102 1103 1104
	spin_lock(&rq->lock);
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
	spin_unlock(&rq->lock);
1105 1106
}

1107 1108 1109 1110 1111 1112
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
1113
{
1114 1115
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1116

1117
	hrtimer_set_expires(timer, time);
1118 1119 1120 1121

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
1122
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1123 1124
		rq->hrtick_csd_pending = 1;
	}
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
1139
		hrtick_clear(cpu_rq(cpu));
1140 1141 1142 1143 1144 1145
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

1146
static __init void init_hrtick(void)
1147 1148 1149
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
1150 1151 1152 1153 1154 1155 1156 1157
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
{
1158 1159
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
			HRTIMER_MODE_REL, 0);
1160
}
1161

A
Andrew Morton 已提交
1162
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
1163 1164
{
}
1165
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
1166

1167
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1168
{
1169 1170
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
1171

1172 1173 1174 1175
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
1176

1177 1178
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
1179
}
A
Andrew Morton 已提交
1180
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1181 1182 1183 1184 1185 1186 1187 1188
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

1189 1190 1191
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
1192
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1193

I
Ingo Molnar 已提交
1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

1207
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1208 1209 1210 1211 1212
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

1213
	if (test_tsk_need_resched(p))
I
Ingo Molnar 已提交
1214 1215
		return;

1216
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271

#ifdef CONFIG_NO_HZ
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
1272
	set_tsk_need_resched(rq->idle);
1273 1274 1275 1276 1277 1278

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
1279
#endif /* CONFIG_NO_HZ */
1280

1281
#else /* !CONFIG_SMP */
1282
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1283 1284
{
	assert_spin_locked(&task_rq(p)->lock);
1285
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1286
}
1287
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1288

1289 1290 1291 1292 1293 1294 1295 1296
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1297 1298 1299
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1300
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1301

1302 1303 1304
/*
 * delta *= weight / lw
 */
1305
static unsigned long
1306 1307 1308 1309 1310
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1311 1312 1313 1314 1315 1316 1317
	if (!lw->inv_weight) {
		if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
			lw->inv_weight = 1;
		else
			lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
				/ (lw->weight+1);
	}
1318 1319 1320 1321 1322

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1323
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1324
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1325 1326
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1327
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1328

1329
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1330 1331
}

1332
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1333 1334
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1335
	lw->inv_weight = 0;
1336 1337
}

1338
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1339 1340
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1341
	lw->inv_weight = 0;
1342 1343
}

1344 1345 1346 1347
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1348
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1349 1350 1351 1352
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

P
Peter Zijlstra 已提交
1353 1354
#define WEIGHT_IDLEPRIO                3
#define WMULT_IDLEPRIO         1431655765
I
Ingo Molnar 已提交
1355 1356 1357 1358 1359 1360 1361 1362 1363

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1364 1365 1366
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1367 1368
 */
static const int prio_to_weight[40] = {
1369 1370 1371 1372 1373 1374 1375 1376
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1377 1378
};

1379 1380 1381 1382 1383 1384 1385
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1386
static const u32 prio_to_wmult[40] = {
1387 1388 1389 1390 1391 1392 1393 1394
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1395
};
1396

I
Ingo Molnar 已提交
1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421
#ifdef CONFIG_SMP
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator);

static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator);
#endif
I
Ingo Molnar 已提交
1422

1423 1424 1425 1426 1427 1428 1429 1430
/* Time spent by the tasks of the cpu accounting group executing in ... */
enum cpuacct_stat_index {
	CPUACCT_STAT_USER,	/* ... user mode */
	CPUACCT_STAT_SYSTEM,	/* ... kernel mode */

	CPUACCT_STAT_NSTATS,
};

1431 1432
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1433 1434
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val);
1435 1436
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1437 1438
static inline void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val) {}
1439 1440
#endif

1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

I
Ingo Molnar 已提交
1451
#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
P
Peter Zijlstra 已提交
1452
typedef int (*tg_visitor)(struct task_group *, void *);
1453 1454 1455 1456 1457

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 */
P
Peter Zijlstra 已提交
1458
static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1459 1460
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
1461
	int ret;
1462 1463 1464 1465

	rcu_read_lock();
	parent = &root_task_group;
down:
P
Peter Zijlstra 已提交
1466 1467 1468
	ret = (*down)(parent, data);
	if (ret)
		goto out_unlock;
1469 1470 1471 1472 1473 1474 1475
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
1476 1477 1478
	ret = (*up)(parent, data);
	if (ret)
		goto out_unlock;
1479 1480 1481 1482 1483

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
P
Peter Zijlstra 已提交
1484
out_unlock:
1485
	rcu_read_unlock();
P
Peter Zijlstra 已提交
1486 1487

	return ret;
1488 1489
}

P
Peter Zijlstra 已提交
1490 1491 1492
static int tg_nop(struct task_group *tg, void *data)
{
	return 0;
1493
}
P
Peter Zijlstra 已提交
1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
#endif

#ifdef CONFIG_SMP
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
1504
	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
P
Peter Zijlstra 已提交
1505

1506 1507
	if (nr_running)
		rq->avg_load_per_task = rq->load.weight / nr_running;
1508 1509
	else
		rq->avg_load_per_task = 0;
P
Peter Zijlstra 已提交
1510 1511 1512 1513 1514

	return rq->avg_load_per_task;
}

#ifdef CONFIG_FAIR_GROUP_SCHED
1515 1516 1517 1518 1519 1520 1521

static void __set_se_shares(struct sched_entity *se, unsigned long shares);

/*
 * Calculate and set the cpu's group shares.
 */
static void
1522 1523
update_group_shares_cpu(struct task_group *tg, int cpu,
			unsigned long sd_shares, unsigned long sd_rq_weight)
1524
{
1525 1526 1527
	unsigned long shares;
	unsigned long rq_weight;

1528
	if (!tg->se[cpu])
1529 1530
		return;

1531
	rq_weight = tg->cfs_rq[cpu]->rq_weight;
1532

1533 1534 1535 1536 1537 1538
	/*
	 *           \Sum shares * rq_weight
	 * shares =  -----------------------
	 *               \Sum rq_weight
	 *
	 */
1539
	shares = (sd_shares * rq_weight) / sd_rq_weight;
1540
	shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1541

1542 1543 1544 1545
	if (abs(shares - tg->se[cpu]->load.weight) >
			sysctl_sched_shares_thresh) {
		struct rq *rq = cpu_rq(cpu);
		unsigned long flags;
1546

1547
		spin_lock_irqsave(&rq->lock, flags);
1548
		tg->cfs_rq[cpu]->shares = shares;
1549

1550 1551 1552
		__set_se_shares(tg->se[cpu], shares);
		spin_unlock_irqrestore(&rq->lock, flags);
	}
1553
}
1554 1555

/*
1556 1557 1558
 * Re-compute the task group their per cpu shares over the given domain.
 * This needs to be done in a bottom-up fashion because the rq weight of a
 * parent group depends on the shares of its child groups.
1559
 */
P
Peter Zijlstra 已提交
1560
static int tg_shares_up(struct task_group *tg, void *data)
1561
{
1562
	unsigned long weight, rq_weight = 0;
1563
	unsigned long shares = 0;
P
Peter Zijlstra 已提交
1564
	struct sched_domain *sd = data;
1565
	int i;
1566

1567
	for_each_cpu(i, sched_domain_span(sd)) {
1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
		/*
		 * If there are currently no tasks on the cpu pretend there
		 * is one of average load so that when a new task gets to
		 * run here it will not get delayed by group starvation.
		 */
		weight = tg->cfs_rq[i]->load.weight;
		if (!weight)
			weight = NICE_0_LOAD;

		tg->cfs_rq[i]->rq_weight = weight;
		rq_weight += weight;
1579
		shares += tg->cfs_rq[i]->shares;
1580 1581
	}

1582 1583 1584 1585 1586
	if ((!shares && rq_weight) || shares > tg->shares)
		shares = tg->shares;

	if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
		shares = tg->shares;
1587

1588
	for_each_cpu(i, sched_domain_span(sd))
1589
		update_group_shares_cpu(tg, i, shares, rq_weight);
P
Peter Zijlstra 已提交
1590 1591

	return 0;
1592 1593 1594
}

/*
1595 1596 1597
 * Compute the cpu's hierarchical load factor for each task group.
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
1598
 */
P
Peter Zijlstra 已提交
1599
static int tg_load_down(struct task_group *tg, void *data)
1600
{
1601
	unsigned long load;
P
Peter Zijlstra 已提交
1602
	long cpu = (long)data;
1603

1604 1605 1606 1607 1608 1609 1610
	if (!tg->parent) {
		load = cpu_rq(cpu)->load.weight;
	} else {
		load = tg->parent->cfs_rq[cpu]->h_load;
		load *= tg->cfs_rq[cpu]->shares;
		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
	}
1611

1612
	tg->cfs_rq[cpu]->h_load = load;
1613

P
Peter Zijlstra 已提交
1614
	return 0;
1615 1616
}

1617
static void update_shares(struct sched_domain *sd)
1618
{
P
Peter Zijlstra 已提交
1619 1620 1621 1622 1623
	u64 now = cpu_clock(raw_smp_processor_id());
	s64 elapsed = now - sd->last_update;

	if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
		sd->last_update = now;
P
Peter Zijlstra 已提交
1624
		walk_tg_tree(tg_nop, tg_shares_up, sd);
P
Peter Zijlstra 已提交
1625
	}
1626 1627
}

1628 1629 1630 1631 1632 1633 1634
static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
	spin_unlock(&rq->lock);
	update_shares(sd);
	spin_lock(&rq->lock);
}

P
Peter Zijlstra 已提交
1635
static void update_h_load(long cpu)
1636
{
P
Peter Zijlstra 已提交
1637
	walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1638 1639 1640 1641
}

#else

1642
static inline void update_shares(struct sched_domain *sd)
1643 1644 1645
{
}

1646 1647 1648 1649
static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
}

1650 1651
#endif

1652 1653
#ifdef CONFIG_PREEMPT

1654
/*
1655 1656 1657 1658 1659 1660
 * fair double_lock_balance: Safely acquires both rq->locks in a fair
 * way at the expense of forcing extra atomic operations in all
 * invocations.  This assures that the double_lock is acquired using the
 * same underlying policy as the spinlock_t on this architecture, which
 * reduces latency compared to the unfair variant below.  However, it
 * also adds more overhead and therefore may reduce throughput.
1661
 */
1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681
static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	spin_unlock(&this_rq->lock);
	double_rq_lock(this_rq, busiest);

	return 1;
}

#else
/*
 * Unfair double_lock_balance: Optimizes throughput at the expense of
 * latency by eliminating extra atomic operations when the locks are
 * already in proper order on entry.  This favors lower cpu-ids and will
 * grant the double lock to lower cpus over higher ids under contention,
 * regardless of entry order into the function.
 */
static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	int ret = 0;

	if (unlikely(!spin_trylock(&busiest->lock))) {
		if (busiest < this_rq) {
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
			ret = 1;
		} else
			spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
	}
	return ret;
}

1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715
#endif /* CONFIG_PREEMPT */

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
{
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}

	return _double_lock_balance(this_rq, busiest);
}

1716 1717 1718 1719 1720 1721
static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(busiest->lock)
{
	spin_unlock(&busiest->lock);
	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
}
1722 1723
#endif

V
Vegard Nossum 已提交
1724
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
1725 1726
static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
{
V
Vegard Nossum 已提交
1727
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1728 1729 1730
	cfs_rq->shares = shares;
#endif
}
V
Vegard Nossum 已提交
1731
#endif
1732

I
Ingo Molnar 已提交
1733 1734
#include "sched_stats.h"
#include "sched_idletask.c"
1735 1736
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
1737 1738 1739 1740 1741
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)
1742 1743
#define for_each_class(class) \
   for (class = sched_class_highest; class; class = class->next)
I
Ingo Molnar 已提交
1744

1745
static void inc_nr_running(struct rq *rq)
1746 1747 1748 1749
{
	rq->nr_running++;
}

1750
static void dec_nr_running(struct rq *rq)
1751 1752 1753 1754
{
	rq->nr_running--;
}

1755 1756 1757
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
1758 1759 1760 1761
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
1762

I
Ingo Molnar 已提交
1763 1764 1765 1766 1767 1768 1769 1770
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1771

I
Ingo Molnar 已提交
1772 1773
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1774 1775
}

1776 1777 1778 1779 1780 1781
static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}

1782
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1783
{
P
Peter Zijlstra 已提交
1784 1785 1786
	if (wakeup)
		p->se.start_runtime = p->se.sum_exec_runtime;

I
Ingo Molnar 已提交
1787
	sched_info_queued(p);
1788
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
1789
	p->se.on_rq = 1;
1790 1791
}

1792
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1793
{
P
Peter Zijlstra 已提交
1794 1795 1796 1797 1798 1799 1800 1801 1802
	if (sleep) {
		if (p->se.last_wakeup) {
			update_avg(&p->se.avg_overlap,
				p->se.sum_exec_runtime - p->se.last_wakeup);
			p->se.last_wakeup = 0;
		} else {
			update_avg(&p->se.avg_wakeup,
				sysctl_sched_wakeup_granularity);
		}
1803 1804
	}

1805
	sched_info_dequeued(p);
1806
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
1807
	p->se.on_rq = 0;
1808 1809
}

1810
/*
I
Ingo Molnar 已提交
1811
 * __normal_prio - return the priority that is based on the static prio
1812 1813 1814
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1815
	return p->static_prio;
1816 1817
}

1818 1819 1820 1821 1822 1823 1824
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1825
static inline int normal_prio(struct task_struct *p)
1826 1827 1828
{
	int prio;

1829
	if (task_has_rt_policy(p))
1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1843
static int effective_prio(struct task_struct *p)
1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1856
/*
I
Ingo Molnar 已提交
1857
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
1858
 */
I
Ingo Molnar 已提交
1859
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
1860
{
1861
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1862
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
1863

1864
	enqueue_task(rq, p, wakeup);
1865
	inc_nr_running(rq);
L
Linus Torvalds 已提交
1866 1867 1868 1869 1870
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1871
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
1872
{
1873
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1874 1875
		rq->nr_uninterruptible++;

1876
	dequeue_task(rq, p, sleep);
1877
	dec_nr_running(rq);
L
Linus Torvalds 已提交
1878 1879 1880 1881 1882 1883
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1884
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1885 1886 1887 1888
{
	return cpu_curr(task_cpu(p)) == p;
}

I
Ingo Molnar 已提交
1889 1890
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
P
Peter Zijlstra 已提交
1891
	set_task_rq(p, cpu);
I
Ingo Molnar 已提交
1892
#ifdef CONFIG_SMP
1893 1894 1895 1896 1897 1898
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
I
Ingo Molnar 已提交
1899 1900
	task_thread_info(p)->cpu = cpu;
#endif
1901 1902
}

1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

L
Linus Torvalds 已提交
1915
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1916

1917 1918 1919 1920 1921 1922
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

1923 1924 1925
/*
 * Is this task likely cache-hot:
 */
1926
static int
1927 1928 1929 1930
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

1931 1932 1933
	/*
	 * Buddy candidates are cache hot:
	 */
P
Peter Zijlstra 已提交
1934 1935 1936
	if (sched_feat(CACHE_HOT_BUDDY) &&
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
1937 1938
		return 1;

1939 1940 1941
	if (p->sched_class != &fair_sched_class)
		return 0;

1942 1943 1944 1945 1946
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

1947 1948 1949 1950 1951 1952
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}


I
Ingo Molnar 已提交
1953
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1954
{
I
Ingo Molnar 已提交
1955 1956
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1957 1958
	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1959
	u64 clock_offset;
I
Ingo Molnar 已提交
1960 1961

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
1962

1963 1964
	trace_sched_migrate_task(p, task_cpu(p), new_cpu);

I
Ingo Molnar 已提交
1965 1966 1967
#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
1968 1969 1970 1971
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
1972
#endif
1973
	if (old_cpu != new_cpu) {
1974
		p->se.nr_migrations++;
1975
		new_rq->nr_migrations_in++;
1976
#ifdef CONFIG_SCHEDSTATS
1977 1978
		if (task_hot(p, old_rq->clock, NULL))
			schedstat_inc(p, se.nr_forced2_migrations);
I
Ingo Molnar 已提交
1979
#endif
1980
	}
1981 1982
	p->se.vruntime -= old_cfsrq->min_vruntime -
					 new_cfsrq->min_vruntime;
I
Ingo Molnar 已提交
1983 1984

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1985 1986
}

1987
struct migration_req {
L
Linus Torvalds 已提交
1988 1989
	struct list_head list;

1990
	struct task_struct *task;
L
Linus Torvalds 已提交
1991 1992 1993
	int dest_cpu;

	struct completion done;
1994
};
L
Linus Torvalds 已提交
1995 1996 1997 1998 1999

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
2000
static int
2001
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
2002
{
2003
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
2004 2005 2006 2007 2008

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
2009
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
2010 2011 2012 2013 2014 2015 2016 2017
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
2018

L
Linus Torvalds 已提交
2019 2020 2021 2022 2023 2024
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
2025 2026 2027 2028 2029 2030 2031
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
2032 2033 2034 2035 2036 2037
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
2038
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
2039 2040
{
	unsigned long flags;
I
Ingo Molnar 已提交
2041
	int running, on_rq;
R
Roland McGrath 已提交
2042
	unsigned long ncsw;
2043
	struct rq *rq;
L
Linus Torvalds 已提交
2044

2045 2046 2047 2048 2049 2050 2051 2052
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
2053

2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
2065 2066 2067
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
2068
			cpu_relax();
R
Roland McGrath 已提交
2069
		}
2070

2071 2072 2073 2074 2075 2076
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
2077
		trace_sched_wait_task(rq, p);
2078 2079
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
R
Roland McGrath 已提交
2080
		ncsw = 0;
2081
		if (!match_state || p->state == match_state)
2082
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2083
		task_rq_unlock(rq, &flags);
2084

R
Roland McGrath 已提交
2085 2086 2087 2088 2089 2090
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

2091 2092 2093 2094 2095 2096 2097 2098 2099 2100
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
2101

2102 2103 2104 2105 2106
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
2107
		 * So if it was still runnable (but just not actively
2108 2109 2110 2111 2112 2113 2114
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
2115

2116 2117 2118 2119 2120 2121 2122
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
2123 2124

	return ncsw;
L
Linus Torvalds 已提交
2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
2140
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
2152 2153
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2154 2155 2156 2157
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
A
Alexey Dobriyan 已提交
2158
static unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
2159
{
2160
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2161
	unsigned long total = weighted_cpuload(cpu);
2162

2163
	if (type == 0 || !sched_feat(LB_BIAS))
I
Ingo Molnar 已提交
2164
		return total;
2165

I
Ingo Molnar 已提交
2166
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
2167 2168 2169
}

/*
2170 2171
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2172
 */
A
Alexey Dobriyan 已提交
2173
static unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
2174
{
2175
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2176
	unsigned long total = weighted_cpuload(cpu);
2177

2178
	if (type == 0 || !sched_feat(LB_BIAS))
I
Ingo Molnar 已提交
2179
		return total;
2180

I
Ingo Molnar 已提交
2181
	return max(rq->cpu_load[type-1], total);
2182 2183
}

N
Nick Piggin 已提交
2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

2201
		/* Skip over this group if it has no CPUs allowed */
2202 2203
		if (!cpumask_intersects(sched_group_cpus(group),
					&p->cpus_allowed))
2204
			continue;
2205

2206 2207
		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));
N
Nick Piggin 已提交
2208 2209 2210 2211

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

2212
		for_each_cpu(i, sched_group_cpus(group)) {
N
Nick Piggin 已提交
2213 2214 2215 2216 2217 2218 2219 2220 2221 2222
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
2223 2224
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
2225 2226 2227 2228 2229 2230 2231 2232

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
2233
	} while (group = group->next, group != sd->groups);
N
Nick Piggin 已提交
2234 2235 2236 2237 2238 2239 2240

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
2241
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
2242
 */
I
Ingo Molnar 已提交
2243
static int
2244
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
N
Nick Piggin 已提交
2245 2246 2247 2248 2249
{
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

2250
	/* Traverse only the allowed CPUs */
2251
	for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2252
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
2253 2254 2255 2256 2257 2258 2259 2260 2261 2262

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
2278

2279
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
2280 2281 2282
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
2283 2284
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
2285 2286
		if (tmp->flags & flag)
			sd = tmp;
2287
	}
N
Nick Piggin 已提交
2288

2289 2290 2291
	if (sd)
		update_shares(sd);

N
Nick Piggin 已提交
2292 2293
	while (sd) {
		struct sched_group *group;
2294 2295 2296 2297 2298 2299
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2300 2301

		group = find_idlest_group(sd, t, cpu);
2302 2303 2304 2305
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2306

2307
		new_cpu = find_idlest_cpu(group, t, cpu);
2308 2309 2310 2311 2312
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2313

2314
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
2315
		cpu = new_cpu;
2316
		weight = cpumask_weight(sched_domain_span(sd));
N
Nick Piggin 已提交
2317 2318
		sd = NULL;
		for_each_domain(cpu, tmp) {
2319
			if (weight <= cpumask_weight(sched_domain_span(tmp)))
N
Nick Piggin 已提交
2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2331

T
Thomas Gleixner 已提交
2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352
/**
 * task_oncpu_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 */
void task_oncpu_function_call(struct task_struct *p,
			      void (*func) (void *info), void *info)
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if (task_curr(p))
		smp_call_function_single(cpu, func, info, 1);
	preempt_enable();
}

L
Linus Torvalds 已提交
2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366
/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
2367
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
2368
{
2369
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
2370 2371
	unsigned long flags;
	long old_state;
2372
	struct rq *rq;
L
Linus Torvalds 已提交
2373

2374 2375 2376
	if (!sched_feat(SYNC_WAKEUPS))
		sync = 0;

P
Peter Zijlstra 已提交
2377
#ifdef CONFIG_SMP
2378
	if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) {
P
Peter Zijlstra 已提交
2379 2380 2381 2382 2383 2384
		struct sched_domain *sd;

		this_cpu = raw_smp_processor_id();
		cpu = task_cpu(p);

		for_each_domain(this_cpu, sd) {
2385
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
2386 2387 2388 2389 2390 2391 2392
				update_shares(sd);
				break;
			}
		}
	}
#endif

2393
	smp_wmb();
L
Linus Torvalds 已提交
2394
	rq = task_rq_lock(p, &flags);
2395
	update_rq_clock(rq);
L
Linus Torvalds 已提交
2396 2397 2398 2399
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
2400
	if (p->se.on_rq)
L
Linus Torvalds 已提交
2401 2402 2403
		goto out_running;

	cpu = task_cpu(p);
2404
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2405 2406 2407 2408 2409 2410
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

2411 2412 2413
	cpu = p->sched_class->select_task_rq(p, sync);
	if (cpu != orig_cpu) {
		set_task_cpu(p, cpu);
L
Linus Torvalds 已提交
2414 2415 2416 2417 2418 2419
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
2420
		if (p->se.on_rq)
L
Linus Torvalds 已提交
2421 2422 2423 2424 2425 2426
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

2427 2428 2429 2430 2431 2432 2433
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
2434
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2435 2436 2437 2438 2439
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
2440
#endif /* CONFIG_SCHEDSTATS */
2441

L
Linus Torvalds 已提交
2442 2443
out_activate:
#endif /* CONFIG_SMP */
2444 2445 2446 2447 2448 2449 2450 2451 2452
	schedstat_inc(p, se.nr_wakeups);
	if (sync)
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
2453
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
2454 2455
	success = 1;

P
Peter Zijlstra 已提交
2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471
	/*
	 * Only attribute actual wakeups done by this task.
	 */
	if (!in_interrupt()) {
		struct sched_entity *se = &current->se;
		u64 sample = se->sum_exec_runtime;

		if (se->last_wakeup)
			sample -= se->last_wakeup;
		else
			sample -= se->start_runtime;
		update_avg(&se->avg_wakeup, sample);

		se->last_wakeup = se->sum_exec_runtime;
	}

L
Linus Torvalds 已提交
2472
out_running:
2473
	trace_sched_wakeup(rq, p, success);
2474
	check_preempt_curr(rq, p, sync);
I
Ingo Molnar 已提交
2475

L
Linus Torvalds 已提交
2476
	p->state = TASK_RUNNING;
2477 2478 2479 2480
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
L
Linus Torvalds 已提交
2481 2482 2483 2484 2485 2486
out:
	task_rq_unlock(rq, &flags);

	return success;
}

2487
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2488
{
2489
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2490 2491 2492
}
EXPORT_SYMBOL(wake_up_process);

2493
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2494 2495 2496 2497 2498 2499 2500
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2501 2502 2503 2504 2505 2506 2507
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2508
	p->se.prev_sum_exec_runtime	= 0;
2509
	p->se.nr_migrations		= 0;
I
Ingo Molnar 已提交
2510 2511
	p->se.last_wakeup		= 0;
	p->se.avg_overlap		= 0;
P
Peter Zijlstra 已提交
2512 2513
	p->se.start_runtime		= 0;
	p->se.avg_wakeup		= sysctl_sched_wakeup_granularity;
I
Ingo Molnar 已提交
2514 2515 2516

#ifdef CONFIG_SCHEDSTATS
	p->se.wait_start		= 0;
I
Ingo Molnar 已提交
2517 2518 2519 2520 2521 2522
	p->se.sum_sleep_runtime		= 0;
	p->se.sleep_start		= 0;
	p->se.block_start		= 0;
	p->se.sleep_max			= 0;
	p->se.block_max			= 0;
	p->se.exec_max			= 0;
I
Ingo Molnar 已提交
2523
	p->se.slice_max			= 0;
I
Ingo Molnar 已提交
2524
	p->se.wait_max			= 0;
I
Ingo Molnar 已提交
2525
#endif
N
Nick Piggin 已提交
2526

P
Peter Zijlstra 已提交
2527
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2528
	p->se.on_rq = 0;
2529
	INIT_LIST_HEAD(&p->se.group_node);
N
Nick Piggin 已提交
2530

2531 2532 2533 2534
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
2535 2536 2537 2538 2539 2540 2541
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
I
Ingo Molnar 已提交
2556
	set_task_cpu(p, cpu);
2557 2558 2559 2560 2561

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;
H
Hiroshi Shimamoto 已提交
2562 2563
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2564

2565
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2566
	if (likely(sched_info_on()))
2567
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2568
#endif
2569
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2570 2571
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2572
#ifdef CONFIG_PREEMPT
2573
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2574
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2575
#endif
2576 2577
	plist_node_init(&p->pushable_tasks, MAX_PRIO);

N
Nick Piggin 已提交
2578
	put_cpu();
L
Linus Torvalds 已提交
2579 2580 2581 2582 2583 2584 2585 2586 2587
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2588
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2589 2590
{
	unsigned long flags;
I
Ingo Molnar 已提交
2591
	struct rq *rq;
L
Linus Torvalds 已提交
2592 2593

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
2594
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
2595
	update_rq_clock(rq);
L
Linus Torvalds 已提交
2596 2597 2598

	p->prio = effective_prio(p);

2599
	if (!p->sched_class->task_new || !current->se.on_rq) {
I
Ingo Molnar 已提交
2600
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
2601 2602
	} else {
		/*
I
Ingo Molnar 已提交
2603 2604
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
2605
		 */
2606
		p->sched_class->task_new(rq, p);
2607
		inc_nr_running(rq);
L
Linus Torvalds 已提交
2608
	}
2609
	trace_sched_wakeup_new(rq, p, 1);
2610
	check_preempt_curr(rq, p, 0);
2611 2612 2613 2614
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
I
Ingo Molnar 已提交
2615
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
2616 2617
}

2618 2619 2620
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
2621
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
2622
 * @notifier: notifier struct to register
2623 2624 2625 2626 2627 2628 2629 2630 2631
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2632
 * @notifier: notifier struct to unregister
2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

2662
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2674
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2675

2676 2677 2678
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2679
 * @prev: the current task that is being switched out
2680 2681 2682 2683 2684 2685 2686 2687 2688
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2689 2690 2691
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2692
{
2693
	fire_sched_out_preempt_notifiers(prev, next);
2694 2695 2696 2697
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2698 2699
/**
 * finish_task_switch - clean up after a task-switch
2700
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2701 2702
 * @prev: the thread we just switched away from.
 *
2703 2704 2705 2706
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2707 2708
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2709
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2710 2711 2712
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2713
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2714 2715 2716
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2717
	long prev_state;
2718 2719 2720 2721 2722 2723
#ifdef CONFIG_SMP
	int post_schedule = 0;

	if (current->sched_class->needs_post_schedule)
		post_schedule = current->sched_class->needs_post_schedule(rq);
#endif
L
Linus Torvalds 已提交
2724 2725 2726 2727 2728

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2729
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2730 2731
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2732
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2733 2734 2735 2736 2737
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2738
	prev_state = prev->state;
2739
	finish_arch_switch(prev);
T
Thomas Gleixner 已提交
2740
	perf_counter_task_sched_in(current, cpu_of(rq));
2741
	finish_lock_switch(rq, prev);
2742
#ifdef CONFIG_SMP
2743
	if (post_schedule)
2744 2745
		current->sched_class->post_schedule(rq);
#endif
S
Steven Rostedt 已提交
2746

2747
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2748 2749
	if (mm)
		mmdrop(mm);
2750
	if (unlikely(prev_state == TASK_DEAD)) {
2751 2752 2753
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2754
		 */
2755
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2756
		put_task_struct(prev);
2757
	}
L
Linus Torvalds 已提交
2758 2759 2760 2761 2762 2763
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2764
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2765 2766
	__releases(rq->lock)
{
2767 2768
	struct rq *rq = this_rq();

2769 2770 2771 2772 2773
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2774
	if (current->set_child_tid)
2775
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2776 2777 2778 2779 2780 2781
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2782
static inline void
2783
context_switch(struct rq *rq, struct task_struct *prev,
2784
	       struct task_struct *next)
L
Linus Torvalds 已提交
2785
{
I
Ingo Molnar 已提交
2786
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2787

2788
	prepare_task_switch(rq, prev, next);
2789
	trace_sched_switch(rq, prev, next);
I
Ingo Molnar 已提交
2790 2791
	mm = next->mm;
	oldmm = prev->active_mm;
2792 2793 2794 2795 2796 2797 2798
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

I
Ingo Molnar 已提交
2799
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
2800 2801 2802 2803 2804 2805
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
2806
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
2807 2808 2809
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2810 2811 2812 2813 2814 2815 2816
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2817
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2818
#endif
L
Linus Torvalds 已提交
2819 2820 2821 2822

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2823 2824 2825 2826 2827 2828 2829
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

2853
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
2868 2869
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
2870

2871
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2872 2873 2874 2875 2876 2877 2878 2879 2880
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

2881
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2882 2883 2884 2885 2886
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

2902 2903 2904 2905 2906 2907 2908 2909 2910
/*
 * Externally visible per-cpu scheduler statistics:
 * cpu_nr_migrations(cpu) - number of migrations into that cpu
 */
u64 cpu_nr_migrations(int cpu)
{
	return cpu_rq(cpu)->nr_migrations_in;
}

2911
/*
I
Ingo Molnar 已提交
2912 2913
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
2914
 */
I
Ingo Molnar 已提交
2915
static void update_cpu_load(struct rq *this_rq)
2916
{
2917
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
2930 2931 2932 2933 2934 2935 2936
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
2937 2938
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
2939 2940
}

I
Ingo Molnar 已提交
2941 2942
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
2943 2944 2945 2946 2947 2948
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
2949
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2950 2951 2952
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
2953
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
2954 2955 2956 2957
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
2958
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
2959
			spin_lock(&rq1->lock);
2960
			spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
2961 2962
		} else {
			spin_lock(&rq2->lock);
2963
			spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
2964 2965
		}
	}
2966 2967
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
2968 2969 2970 2971 2972 2973 2974 2975
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
2976
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
I
Ingo Molnar 已提交
2990
 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
L
Linus Torvalds 已提交
2991 2992
 * the cpu_allowed mask is restored.
 */
2993
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2994
{
2995
	struct migration_req req;
L
Linus Torvalds 已提交
2996
	unsigned long flags;
2997
	struct rq *rq;
L
Linus Torvalds 已提交
2998 2999

	rq = task_rq_lock(p, &flags);
3000
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
3001
	    || unlikely(!cpu_active(dest_cpu)))
L
Linus Torvalds 已提交
3002 3003 3004 3005 3006 3007
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
3008

L
Linus Torvalds 已提交
3009 3010 3011 3012 3013
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
3014

L
Linus Torvalds 已提交
3015 3016 3017 3018 3019 3020 3021
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
3022 3023
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
3024 3025 3026 3027
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
3028
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
3029
	put_cpu();
N
Nick Piggin 已提交
3030 3031
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
3032 3033 3034 3035 3036 3037
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
3038 3039
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
3040
{
3041
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
3042
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
3043
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
3044 3045 3046 3047
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
3048
	check_preempt_curr(this_rq, p, 0);
L
Linus Torvalds 已提交
3049 3050 3051 3052 3053
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
3054
static
3055
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
3056
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
3057
		     int *all_pinned)
L
Linus Torvalds 已提交
3058
{
3059
	int tsk_cache_hot = 0;
L
Linus Torvalds 已提交
3060 3061 3062 3063 3064 3065
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
3066
	if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
3067
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
3068
		return 0;
3069
	}
3070 3071
	*all_pinned = 0;

3072 3073
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
3074
		return 0;
3075
	}
L
Linus Torvalds 已提交
3076

3077 3078 3079 3080 3081 3082
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

3083 3084 3085
	tsk_cache_hot = task_hot(p, rq->clock, sd);
	if (!tsk_cache_hot ||
		sd->nr_balance_failed > sd->cache_nice_tries) {
3086
#ifdef CONFIG_SCHEDSTATS
3087
		if (tsk_cache_hot) {
3088
			schedstat_inc(sd, lb_hot_gained[idle]);
3089 3090
			schedstat_inc(p, se.nr_forced_migrations);
		}
3091 3092 3093 3094
#endif
		return 1;
	}

3095
	if (tsk_cache_hot) {
3096
		schedstat_inc(p, se.nr_failed_migrations_hot);
3097
		return 0;
3098
	}
L
Linus Torvalds 已提交
3099 3100 3101
	return 1;
}

3102 3103 3104 3105 3106
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
3107
{
3108
	int loops = 0, pulled = 0, pinned = 0;
I
Ingo Molnar 已提交
3109 3110
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
3111

3112
	if (max_load_move == 0)
L
Linus Torvalds 已提交
3113 3114
		goto out;

3115 3116
	pinned = 1;

L
Linus Torvalds 已提交
3117
	/*
I
Ingo Molnar 已提交
3118
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
3119
	 */
I
Ingo Molnar 已提交
3120 3121
	p = iterator->start(iterator->arg);
next:
3122
	if (!p || loops++ > sysctl_sched_nr_migrate)
L
Linus Torvalds 已提交
3123
		goto out;
3124 3125

	if ((p->se.load.weight >> 1) > rem_load_move ||
I
Ingo Molnar 已提交
3126 3127 3128
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
3129 3130
	}

I
Ingo Molnar 已提交
3131
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
3132
	pulled++;
I
Ingo Molnar 已提交
3133
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
3134

3135 3136 3137 3138 3139 3140 3141 3142 3143 3144
#ifdef CONFIG_PREEMPT
	/*
	 * NEWIDLE balancing is a source of latency, so preemptible kernels
	 * will stop after the first task is pulled to minimize the critical
	 * section.
	 */
	if (idle == CPU_NEWLY_IDLE)
		goto out;
#endif

3145
	/*
3146
	 * We only want to steal up to the prescribed amount of weighted load.
3147
	 */
3148
	if (rem_load_move > 0) {
3149 3150
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
3151 3152
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
3153 3154 3155
	}
out:
	/*
3156
	 * Right now, this is one of only two places pull_task() is called,
L
Linus Torvalds 已提交
3157 3158 3159 3160
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
3161 3162 3163

	if (all_pinned)
		*all_pinned = pinned;
3164 3165

	return max_load_move - rem_load_move;
L
Linus Torvalds 已提交
3166 3167
}

I
Ingo Molnar 已提交
3168
/*
P
Peter Williams 已提交
3169 3170 3171
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
3172 3173 3174 3175
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
3176
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
3177 3178 3179
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
3180
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
3181
	unsigned long total_load_moved = 0;
3182
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
3183 3184

	do {
P
Peter Williams 已提交
3185 3186
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
3187
				max_load_move - total_load_moved,
3188
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
3189
		class = class->next;
3190

3191 3192 3193 3194 3195 3196
#ifdef CONFIG_PREEMPT
		/*
		 * NEWIDLE balancing is a source of latency, so preemptible
		 * kernels will stop after the first task is pulled to minimize
		 * the critical section.
		 */
3197 3198
		if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
			break;
3199
#endif
P
Peter Williams 已提交
3200
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
3201

P
Peter Williams 已提交
3202 3203 3204
	return total_load_moved > 0;
}

3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230
static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator)
{
	struct task_struct *p = iterator->start(iterator->arg);
	int pinned = 0;

	while (p) {
		if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
			pull_task(busiest, p, this_rq, this_cpu);
			/*
			 * Right now, this is only the second place pull_task()
			 * is called, so we can safely collect pull_task()
			 * stats here rather than inside pull_task().
			 */
			schedstat_inc(sd, lb_gained[idle]);

			return 1;
		}
		p = iterator->next(iterator->arg);
	}

	return 0;
}

P
Peter Williams 已提交
3231 3232 3233 3234 3235 3236 3237 3238 3239 3240
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
3241
	const struct sched_class *class;
P
Peter Williams 已提交
3242 3243

	for (class = sched_class_highest; class; class = class->next)
3244
		if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
P
Peter Williams 已提交
3245 3246 3247
			return 1;

	return 0;
I
Ingo Molnar 已提交
3248
}
3249
/********** Helpers for find_busiest_group ************************/
L
Linus Torvalds 已提交
3250
/*
3251 3252
 * sd_lb_stats - Structure to store the statistics of a sched_domain
 * 		during load balancing.
L
Linus Torvalds 已提交
3253
 */
3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271
struct sd_lb_stats {
	struct sched_group *busiest; /* Busiest group in this sd */
	struct sched_group *this;  /* Local group in this sd */
	unsigned long total_load;  /* Total load of all groups in sd */
	unsigned long total_pwr;   /*	Total power of all groups in sd */
	unsigned long avg_load;	   /* Average load across all groups in sd */

	/** Statistics of this group */
	unsigned long this_load;
	unsigned long this_load_per_task;
	unsigned long this_nr_running;

	/* Statistics of the busiest group */
	unsigned long max_load;
	unsigned long busiest_load_per_task;
	unsigned long busiest_nr_running;

	int group_imb; /* Is there imbalance in this sd */
3272
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3273 3274 3275 3276 3277 3278
	int power_savings_balance; /* Is powersave balance needed for this sd */
	struct sched_group *group_min; /* Least loaded group in sd */
	struct sched_group *group_leader; /* Group which relieves group_min */
	unsigned long min_load_per_task; /* load_per_task in group_min */
	unsigned long leader_nr_running; /* Nr running of group_leader */
	unsigned long min_nr_running; /* Nr running of group_min */
3279
#endif
3280
};
L
Linus Torvalds 已提交
3281

3282
/*
3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293
 * sg_lb_stats - stats of a sched_group required for load_balancing
 */
struct sg_lb_stats {
	unsigned long avg_load; /*Avg load across the CPUs of the group */
	unsigned long group_load; /* Total load over the CPUs of the group */
	unsigned long sum_nr_running; /* Nr tasks running in the group */
	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
	unsigned long group_capacity;
	int group_imb; /* Is there an imbalance in the group ? */
};

3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311
/**
 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
 * @group: The group whose first cpu is to be returned.
 */
static inline unsigned int group_first_cpu(struct sched_group *group)
{
	return cpumask_first(sched_group_cpus(group));
}

/**
 * get_sd_load_idx - Obtain the load index for a given sched domain.
 * @sd: The sched_domain whose load_idx is to be obtained.
 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
 */
static inline int get_sd_load_idx(struct sched_domain *sd,
					enum cpu_idle_type idle)
{
	int load_idx;
3312

3313 3314
	switch (idle) {
	case CPU_NOT_IDLE:
N
Nick Piggin 已提交
3315
		load_idx = sd->busy_idx;
3316 3317 3318
		break;

	case CPU_NEWLY_IDLE:
N
Nick Piggin 已提交
3319
		load_idx = sd->newidle_idx;
3320 3321
		break;
	default:
N
Nick Piggin 已提交
3322
		load_idx = sd->idle_idx;
3323 3324
		break;
	}
L
Linus Torvalds 已提交
3325

3326 3327
	return load_idx;
}
L
Linus Torvalds 已提交
3328 3329


3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
/**
 * init_sd_power_savings_stats - Initialize power savings statistics for
 * the given sched_domain, during load balancing.
 *
 * @sd: Sched domain whose power-savings statistics are to be initialized.
 * @sds: Variable containing the statistics for sd.
 * @idle: Idle status of the CPU at which we're performing load-balancing.
 */
static inline void init_sd_power_savings_stats(struct sched_domain *sd,
	struct sd_lb_stats *sds, enum cpu_idle_type idle)
{
	/*
	 * Busy processors will not participate in power savings
	 * balance.
	 */
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
		sds->power_savings_balance = 0;
	else {
		sds->power_savings_balance = 1;
		sds->min_nr_running = ULONG_MAX;
		sds->leader_nr_running = 0;
	}
}
3354

3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367
/**
 * update_sd_power_savings_stats - Update the power saving stats for a
 * sched_domain while performing load balancing.
 *
 * @group: sched_group belonging to the sched_domain under consideration.
 * @sds: Variable containing the statistics of the sched_domain
 * @local_group: Does group contain the CPU for which we're performing
 * 		load balancing ?
 * @sgs: Variable containing the statistics of the group.
 */
static inline void update_sd_power_savings_stats(struct sched_group *group,
	struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
{
3368

3369 3370
	if (!sds->power_savings_balance)
		return;
L
Linus Torvalds 已提交
3371

3372 3373 3374 3375 3376 3377 3378
	/*
	 * If the local group is idle or completely loaded
	 * no need to do power savings balance at this domain
	 */
	if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
				!sds->this_nr_running))
		sds->power_savings_balance = 0;
3379

3380 3381 3382 3383 3384 3385 3386 3387
	/*
	 * If a group is already running at full capacity or idle,
	 * don't include that group in power savings calculations
	 */
	if (!sds->power_savings_balance ||
		sgs->sum_nr_running >= sgs->group_capacity ||
		!sgs->sum_nr_running)
		return;
N
Nick Piggin 已提交
3388

3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401
	/*
	 * Calculate the group which has the least non-idle load.
	 * This is the group from where we need to pick up the load
	 * for saving power
	 */
	if ((sgs->sum_nr_running < sds->min_nr_running) ||
	    (sgs->sum_nr_running == sds->min_nr_running &&
	     group_first_cpu(group) > group_first_cpu(sds->group_min))) {
		sds->group_min = group;
		sds->min_nr_running = sgs->sum_nr_running;
		sds->min_load_per_task = sgs->sum_weighted_load /
						sgs->sum_nr_running;
	}
3402

3403 3404 3405 3406 3407 3408 3409
	/*
	 * Calculate the group which is almost near its
	 * capacity but still has some space to pick up some load
	 * from other group and save more power
	 */
	if (sgs->sum_nr_running > sgs->group_capacity - 1)
		return;
L
Linus Torvalds 已提交
3410

3411 3412 3413 3414 3415 3416 3417
	if (sgs->sum_nr_running > sds->leader_nr_running ||
	    (sgs->sum_nr_running == sds->leader_nr_running &&
	     group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
		sds->group_leader = group;
		sds->leader_nr_running = sgs->sum_nr_running;
	}
}
3418

3419
/**
3420
 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3421 3422 3423 3424 3425
 * @sds: Variable containing the statistics of the sched_domain
 *	under consideration.
 * @this_cpu: Cpu at which we're currently performing load-balancing.
 * @imbalance: Variable to store the imbalance.
 *
3426 3427 3428 3429 3430
 * Description:
 * Check if we have potential to perform some power-savings balance.
 * If yes, set the busiest group to be the least loaded group in the
 * sched_domain, so that it's CPUs can be put to idle.
 *
3431 3432 3433 3434 3435 3436 3437 3438
 * Returns 1 if there is potential to perform power-savings balance.
 * Else returns 0.
 */
static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
					int this_cpu, unsigned long *imbalance)
{
	if (!sds->power_savings_balance)
		return 0;
L
Linus Torvalds 已提交
3439

3440 3441 3442
	if (sds->this != sds->group_leader ||
			sds->group_leader == sds->group_min)
		return 0;
3443

3444 3445
	*imbalance = sds->min_load_per_task;
	sds->busiest = sds->group_min;
L
Linus Torvalds 已提交
3446

3447 3448 3449 3450
	if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
		cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
			group_first_cpu(sds->group_leader);
	}
L
Linus Torvalds 已提交
3451

3452
	return 1;
3453

3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475
}
#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
static inline void init_sd_power_savings_stats(struct sched_domain *sd,
	struct sd_lb_stats *sds, enum cpu_idle_type idle)
{
	return;
}

static inline void update_sd_power_savings_stats(struct sched_group *group,
	struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
{
	return;
}

static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
					int this_cpu, unsigned long *imbalance)
{
	return 0;
}
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */


3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500
/**
 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
 * @group: sched_group whose statistics are to be updated.
 * @this_cpu: Cpu for which load balance is currently performed.
 * @idle: Idle status of this_cpu
 * @load_idx: Load index of sched_domain of this_cpu for load calc.
 * @sd_idle: Idle status of the sched_domain containing group.
 * @local_group: Does group contain this_cpu.
 * @cpus: Set of cpus considered for load balancing.
 * @balance: Should we balance.
 * @sgs: variable to hold the statistics for this group.
 */
static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu,
			enum cpu_idle_type idle, int load_idx, int *sd_idle,
			int local_group, const struct cpumask *cpus,
			int *balance, struct sg_lb_stats *sgs)
{
	unsigned long load, max_cpu_load, min_cpu_load;
	int i;
	unsigned int balance_cpu = -1, first_idle_cpu = 0;
	unsigned long sum_avg_load_per_task;
	unsigned long avg_load_per_task;

	if (local_group)
		balance_cpu = group_first_cpu(group);
3501

3502 3503 3504 3505
	/* Tally up the load of all CPUs in the group */
	sum_avg_load_per_task = avg_load_per_task = 0;
	max_cpu_load = 0;
	min_cpu_load = ~0UL;
3506

3507 3508
	for_each_cpu_and(i, sched_group_cpus(group), cpus) {
		struct rq *rq = cpu_rq(i);
3509

3510 3511 3512 3513
		if (*sd_idle && rq->nr_running)
			*sd_idle = 0;

		/* Bias balancing toward cpus of our domain */
L
Linus Torvalds 已提交
3514
		if (local_group) {
3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526
			if (idle_cpu(i) && !first_idle_cpu) {
				first_idle_cpu = 1;
				balance_cpu = i;
			}

			load = target_load(i, load_idx);
		} else {
			load = source_load(i, load_idx);
			if (load > max_cpu_load)
				max_cpu_load = load;
			if (min_cpu_load > load)
				min_cpu_load = load;
L
Linus Torvalds 已提交
3527
		}
3528

3529 3530 3531
		sgs->group_load += load;
		sgs->sum_nr_running += rq->nr_running;
		sgs->sum_weighted_load += weighted_cpuload(i);
3532

3533 3534
		sum_avg_load_per_task += cpu_avg_load_per_task(i);
	}
3535

3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546
	/*
	 * First idle cpu or the first cpu(busiest) in this sched group
	 * is eligible for doing load balancing at this and above
	 * domains. In the newly idle case, we will allow all the cpu's
	 * to do the newly idle load balance.
	 */
	if (idle != CPU_NEWLY_IDLE && local_group &&
	    balance_cpu != this_cpu && balance) {
		*balance = 0;
		return;
	}
3547

3548 3549 3550
	/* Adjust by relative CPU power of the group */
	sgs->avg_load = sg_div_cpu_power(group,
			sgs->group_load * SCHED_LOAD_SCALE);
3551

3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570

	/*
	 * Consider the group unbalanced when the imbalance is larger
	 * than the average weight of two tasks.
	 *
	 * APZ: with cgroup the avg task weight can vary wildly and
	 *      might not be a suitable number - should we keep a
	 *      normalized nr_running number somewhere that negates
	 *      the hierarchy?
	 */
	avg_load_per_task = sg_div_cpu_power(group,
			sum_avg_load_per_task * SCHED_LOAD_SCALE);

	if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
		sgs->group_imb = 1;

	sgs->group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;

}
I
Ingo Molnar 已提交
3571

3572 3573 3574 3575 3576 3577 3578 3579 3580
/**
 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
 * @sd: sched_domain whose statistics are to be updated.
 * @this_cpu: Cpu for which load balance is currently performed.
 * @idle: Idle status of this_cpu
 * @sd_idle: Idle status of the sched_domain containing group.
 * @cpus: Set of cpus considered for load balancing.
 * @balance: Should we balance.
 * @sds: variable to hold the statistics for this sched_domain.
L
Linus Torvalds 已提交
3581
 */
3582 3583 3584 3585
static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
			enum cpu_idle_type idle, int *sd_idle,
			const struct cpumask *cpus, int *balance,
			struct sd_lb_stats *sds)
L
Linus Torvalds 已提交
3586
{
3587
	struct sched_group *group = sd->groups;
3588
	struct sg_lb_stats sgs;
3589 3590
	int load_idx;

3591
	init_sd_power_savings_stats(sd, sds, idle);
3592
	load_idx = get_sd_load_idx(sd, idle);
L
Linus Torvalds 已提交
3593 3594 3595 3596

	do {
		int local_group;

3597 3598
		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));
3599
		memset(&sgs, 0, sizeof(sgs));
3600 3601
		update_sg_lb_stats(group, this_cpu, idle, load_idx, sd_idle,
				local_group, cpus, balance, &sgs);
L
Linus Torvalds 已提交
3602

3603 3604
		if (local_group && balance && !(*balance))
			return;
3605

3606 3607
		sds->total_load += sgs.group_load;
		sds->total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
3608 3609

		if (local_group) {
3610 3611 3612 3613 3614
			sds->this_load = sgs.avg_load;
			sds->this = group;
			sds->this_nr_running = sgs.sum_nr_running;
			sds->this_load_per_task = sgs.sum_weighted_load;
		} else if (sgs.avg_load > sds->max_load &&
3615 3616
			   (sgs.sum_nr_running > sgs.group_capacity ||
				sgs.group_imb)) {
3617 3618 3619 3620 3621
			sds->max_load = sgs.avg_load;
			sds->busiest = group;
			sds->busiest_nr_running = sgs.sum_nr_running;
			sds->busiest_load_per_task = sgs.sum_weighted_load;
			sds->group_imb = sgs.group_imb;
3622
		}
3623

3624
		update_sd_power_savings_stats(group, sds, local_group, &sgs);
L
Linus Torvalds 已提交
3625 3626 3627
		group = group->next;
	} while (group != sd->groups);

3628
}
L
Linus Torvalds 已提交
3629

3630 3631
/**
 * fix_small_imbalance - Calculate the minor imbalance that exists
3632 3633
 *			amongst the groups of a sched_domain, during
 *			load balancing.
3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651
 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
 * @imbalance: Variable to store the imbalance.
 */
static inline void fix_small_imbalance(struct sd_lb_stats *sds,
				int this_cpu, unsigned long *imbalance)
{
	unsigned long tmp, pwr_now = 0, pwr_move = 0;
	unsigned int imbn = 2;

	if (sds->this_nr_running) {
		sds->this_load_per_task /= sds->this_nr_running;
		if (sds->busiest_load_per_task >
				sds->this_load_per_task)
			imbn = 1;
	} else
		sds->this_load_per_task =
			cpu_avg_load_per_task(this_cpu);
L
Linus Torvalds 已提交
3652

3653 3654 3655 3656 3657
	if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
			sds->busiest_load_per_task * imbn) {
		*imbalance = sds->busiest_load_per_task;
		return;
	}
3658

L
Linus Torvalds 已提交
3659
	/*
3660 3661 3662
	 * OK, we don't have enough imbalance to justify moving tasks,
	 * however we may be able to increase total CPU power used by
	 * moving them.
L
Linus Torvalds 已提交
3663
	 */
3664

3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693
	pwr_now += sds->busiest->__cpu_power *
			min(sds->busiest_load_per_task, sds->max_load);
	pwr_now += sds->this->__cpu_power *
			min(sds->this_load_per_task, sds->this_load);
	pwr_now /= SCHED_LOAD_SCALE;

	/* Amount of load we'd subtract */
	tmp = sg_div_cpu_power(sds->busiest,
			sds->busiest_load_per_task * SCHED_LOAD_SCALE);
	if (sds->max_load > tmp)
		pwr_move += sds->busiest->__cpu_power *
			min(sds->busiest_load_per_task, sds->max_load - tmp);

	/* Amount of load we'd add */
	if (sds->max_load * sds->busiest->__cpu_power <
		sds->busiest_load_per_task * SCHED_LOAD_SCALE)
		tmp = sg_div_cpu_power(sds->this,
			sds->max_load * sds->busiest->__cpu_power);
	else
		tmp = sg_div_cpu_power(sds->this,
			sds->busiest_load_per_task * SCHED_LOAD_SCALE);
	pwr_move += sds->this->__cpu_power *
			min(sds->this_load_per_task, sds->this_load + tmp);
	pwr_move /= SCHED_LOAD_SCALE;

	/* Move if we gain throughput */
	if (pwr_move > pwr_now)
		*imbalance = sds->busiest_load_per_task;
}
3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705

/**
 * calculate_imbalance - Calculate the amount of imbalance present within the
 *			 groups of a given sched_domain during load balance.
 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
 * @this_cpu: Cpu for which currently load balance is being performed.
 * @imbalance: The variable to store the imbalance.
 */
static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
		unsigned long *imbalance)
{
	unsigned long max_pull;
3706 3707 3708 3709 3710
	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
3711
	if (sds->max_load < sds->avg_load) {
3712
		*imbalance = 0;
3713
		return fix_small_imbalance(sds, this_cpu, imbalance);
3714
	}
3715 3716

	/* Don't want to pull so many tasks that a group would go idle */
3717 3718
	max_pull = min(sds->max_load - sds->avg_load,
			sds->max_load - sds->busiest_load_per_task);
3719

L
Linus Torvalds 已提交
3720
	/* How much load to actually move to equalise the imbalance */
3721 3722
	*imbalance = min(max_pull * sds->busiest->__cpu_power,
		(sds->avg_load - sds->this_load) * sds->this->__cpu_power)
L
Linus Torvalds 已提交
3723 3724
			/ SCHED_LOAD_SCALE;

3725 3726 3727 3728 3729 3730
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
3731 3732
	if (*imbalance < sds->busiest_load_per_task)
		return fix_small_imbalance(sds, this_cpu, imbalance);
L
Linus Torvalds 已提交
3733

3734
}
3735
/******* find_busiest_group() helpers end here *********************/
L
Linus Torvalds 已提交
3736

3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760
/**
 * find_busiest_group - Returns the busiest group within the sched_domain
 * if there is an imbalance. If there isn't an imbalance, and
 * the user has opted for power-savings, it returns a group whose
 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
 * such a group exists.
 *
 * Also calculates the amount of weighted load which should be moved
 * to restore balance.
 *
 * @sd: The sched_domain whose busiest group is to be returned.
 * @this_cpu: The cpu for which load balancing is currently being performed.
 * @imbalance: Variable which stores amount of weighted load which should
 *		be moved to restore balance/put a group to idle.
 * @idle: The idle status of this_cpu.
 * @sd_idle: The idleness of sd
 * @cpus: The set of CPUs under consideration for load-balancing.
 * @balance: Pointer to a variable indicating if this_cpu
 *	is the appropriate cpu to perform load balancing at this_level.
 *
 * Returns:	- the busiest group if imbalance exists.
 *		- If no imbalance and user has opted for power-savings balance,
 *		   return the least loaded group whose CPUs can be
 *		   put to idle by rebalancing its tasks onto our group.
3761 3762 3763 3764 3765 3766 3767
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
		   unsigned long *imbalance, enum cpu_idle_type idle,
		   int *sd_idle, const struct cpumask *cpus, int *balance)
{
	struct sd_lb_stats sds;
L
Linus Torvalds 已提交
3768

3769
	memset(&sds, 0, sizeof(sds));
L
Linus Torvalds 已提交
3770

3771 3772 3773 3774 3775 3776 3777
	/*
	 * Compute the various statistics relavent for load balancing at
	 * this level.
	 */
	update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
					balance, &sds);

3778 3779 3780 3781 3782 3783 3784 3785 3786 3787
	/* Cases where imbalance does not exist from POV of this_cpu */
	/* 1) this_cpu is not the appropriate cpu to perform load balancing
	 *    at this level.
	 * 2) There is no busy sibling group to pull from.
	 * 3) This group is the busiest group.
	 * 4) This group is more busy than the avg busieness at this
	 *    sched_domain.
	 * 5) The imbalance is within the specified limit.
	 * 6) Any rebalance would lead to ping-pong
	 */
3788 3789
	if (balance && !(*balance))
		goto ret;
L
Linus Torvalds 已提交
3790

3791 3792
	if (!sds.busiest || sds.busiest_nr_running == 0)
		goto out_balanced;
L
Linus Torvalds 已提交
3793

3794
	if (sds.this_load >= sds.max_load)
L
Linus Torvalds 已提交
3795 3796
		goto out_balanced;

3797
	sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
L
Linus Torvalds 已提交
3798

3799 3800 3801 3802
	if (sds.this_load >= sds.avg_load)
		goto out_balanced;

	if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
L
Linus Torvalds 已提交
3803 3804
		goto out_balanced;

3805 3806 3807 3808
	sds.busiest_load_per_task /= sds.busiest_nr_running;
	if (sds.group_imb)
		sds.busiest_load_per_task =
			min(sds.busiest_load_per_task, sds.avg_load);
3809

L
Linus Torvalds 已提交
3810 3811 3812 3813 3814 3815 3816 3817
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
I
Ingo Molnar 已提交
3818
	 * by pulling tasks to us. Be careful of negative numbers as they'll
L
Linus Torvalds 已提交
3819 3820
	 * appear as very large values with unsigned longs.
	 */
3821
	if (sds.max_load <= sds.busiest_load_per_task)
3822 3823
		goto out_balanced;

3824 3825
	/* Looks like there is an imbalance. Compute it */
	calculate_imbalance(&sds, this_cpu, imbalance);
3826
	return sds.busiest;
L
Linus Torvalds 已提交
3827 3828

out_balanced:
3829 3830 3831 3832 3833 3834
	/*
	 * There is no obvious imbalance. But check if we can do some balancing
	 * to save power.
	 */
	if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
		return sds.busiest;
3835
ret:
L
Linus Torvalds 已提交
3836 3837 3838 3839 3840 3841 3842
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
3843
static struct rq *
I
Ingo Molnar 已提交
3844
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3845
		   unsigned long imbalance, const struct cpumask *cpus)
L
Linus Torvalds 已提交
3846
{
3847
	struct rq *busiest = NULL, *rq;
3848
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
3849 3850
	int i;

3851
	for_each_cpu(i, sched_group_cpus(group)) {
I
Ingo Molnar 已提交
3852
		unsigned long wl;
3853

3854
		if (!cpumask_test_cpu(i, cpus))
3855 3856
			continue;

3857
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
3858
		wl = weighted_cpuload(i);
3859

I
Ingo Molnar 已提交
3860
		if (rq->nr_running == 1 && wl > imbalance)
3861
			continue;
L
Linus Torvalds 已提交
3862

I
Ingo Molnar 已提交
3863 3864
		if (wl > max_load) {
			max_load = wl;
3865
			busiest = rq;
L
Linus Torvalds 已提交
3866 3867 3868 3869 3870 3871
		}
	}

	return busiest;
}

3872 3873 3874 3875 3876 3877
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

3878 3879 3880
/* Working cpumask for load_balance and load_balance_newidle. */
static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);

L
Linus Torvalds 已提交
3881 3882 3883 3884
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
3885
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
3886
			struct sched_domain *sd, enum cpu_idle_type idle,
3887
			int *balance)
L
Linus Torvalds 已提交
3888
{
P
Peter Williams 已提交
3889
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
3890 3891
	struct sched_group *group;
	unsigned long imbalance;
3892
	struct rq *busiest;
3893
	unsigned long flags;
3894
	struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
N
Nick Piggin 已提交
3895

3896
	cpumask_setall(cpus);
3897

3898 3899 3900
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
3901
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
3902
	 * portraying it as CPU_NOT_IDLE.
3903
	 */
I
Ingo Molnar 已提交
3904
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3905
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3906
		sd_idle = 1;
L
Linus Torvalds 已提交
3907

3908
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
3909

3910
redo:
3911
	update_shares(sd);
3912
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3913
				   cpus, balance);
3914

3915
	if (*balance == 0)
3916 3917
		goto out_balanced;

L
Linus Torvalds 已提交
3918 3919 3920 3921 3922
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

3923
	busiest = find_busiest_queue(group, idle, imbalance, cpus);
L
Linus Torvalds 已提交
3924 3925 3926 3927 3928
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
3929
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
3930 3931 3932

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
3933
	ld_moved = 0;
L
Linus Torvalds 已提交
3934 3935 3936 3937
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
3938
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
3939 3940
		 * correctly treated as an imbalance.
		 */
3941
		local_irq_save(flags);
N
Nick Piggin 已提交
3942
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
3943
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3944
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
3945
		double_rq_unlock(this_rq, busiest);
3946
		local_irq_restore(flags);
3947

3948 3949 3950
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
3951
		if (ld_moved && this_cpu != smp_processor_id())
3952 3953
			resched_cpu(this_cpu);

3954
		/* All tasks on this runqueue were pinned by CPU affinity */
3955
		if (unlikely(all_pinned)) {
3956 3957
			cpumask_clear_cpu(cpu_of(busiest), cpus);
			if (!cpumask_empty(cpus))
3958
				goto redo;
3959
			goto out_balanced;
3960
		}
L
Linus Torvalds 已提交
3961
	}
3962

P
Peter Williams 已提交
3963
	if (!ld_moved) {
L
Linus Torvalds 已提交
3964 3965 3966 3967 3968
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

3969
			spin_lock_irqsave(&busiest->lock, flags);
3970 3971 3972 3973

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
3974 3975
			if (!cpumask_test_cpu(this_cpu,
					      &busiest->curr->cpus_allowed)) {
3976
				spin_unlock_irqrestore(&busiest->lock, flags);
3977 3978 3979 3980
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
3981 3982 3983
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
3984
				active_balance = 1;
L
Linus Torvalds 已提交
3985
			}
3986
			spin_unlock_irqrestore(&busiest->lock, flags);
3987
			if (active_balance)
L
Linus Torvalds 已提交
3988 3989 3990 3991 3992 3993
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
3994
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
3995
		}
3996
	} else
L
Linus Torvalds 已提交
3997 3998
		sd->nr_balance_failed = 0;

3999
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
4000 4001
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
4002 4003 4004 4005 4006 4007 4008 4009 4010
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
4011 4012
	}

P
Peter Williams 已提交
4013
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4014
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4015 4016 4017
		ld_moved = -1;

	goto out;
L
Linus Torvalds 已提交
4018 4019 4020 4021

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

4022
	sd->nr_balance_failed = 0;
4023 4024

out_one_pinned:
L
Linus Torvalds 已提交
4025
	/* tune up the balancing interval */
4026 4027
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
4028 4029
		sd->balance_interval *= 2;

4030
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4031
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4032 4033 4034 4035
		ld_moved = -1;
	else
		ld_moved = 0;
out:
4036 4037
	if (ld_moved)
		update_shares(sd);
4038
	return ld_moved;
L
Linus Torvalds 已提交
4039 4040 4041 4042 4043 4044
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
4045
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
4046 4047
 * this_rq is locked.
 */
4048
static int
4049
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
L
Linus Torvalds 已提交
4050 4051
{
	struct sched_group *group;
4052
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
4053
	unsigned long imbalance;
P
Peter Williams 已提交
4054
	int ld_moved = 0;
N
Nick Piggin 已提交
4055
	int sd_idle = 0;
4056
	int all_pinned = 0;
4057
	struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4058

4059
	cpumask_setall(cpus);
N
Nick Piggin 已提交
4060

4061 4062 4063 4064
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
4065
	 * portraying it as CPU_NOT_IDLE.
4066 4067 4068
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4069
		sd_idle = 1;
L
Linus Torvalds 已提交
4070

4071
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
4072
redo:
4073
	update_shares_locked(this_rq, sd);
I
Ingo Molnar 已提交
4074
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
4075
				   &sd_idle, cpus, NULL);
L
Linus Torvalds 已提交
4076
	if (!group) {
I
Ingo Molnar 已提交
4077
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
4078
		goto out_balanced;
L
Linus Torvalds 已提交
4079 4080
	}

4081
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
N
Nick Piggin 已提交
4082
	if (!busiest) {
I
Ingo Molnar 已提交
4083
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
4084
		goto out_balanced;
L
Linus Torvalds 已提交
4085 4086
	}

N
Nick Piggin 已提交
4087 4088
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
4089
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
4090

P
Peter Williams 已提交
4091
	ld_moved = 0;
4092 4093 4094
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
4095 4096
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
4097
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
4098 4099
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
4100
		double_unlock_balance(this_rq, busiest);
4101

4102
		if (unlikely(all_pinned)) {
4103 4104
			cpumask_clear_cpu(cpu_of(busiest), cpus);
			if (!cpumask_empty(cpus))
4105 4106
				goto redo;
		}
4107 4108
	}

P
Peter Williams 已提交
4109
	if (!ld_moved) {
4110
		int active_balance = 0;
4111

I
Ingo Molnar 已提交
4112
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
4113 4114
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4115
			return -1;
4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151

		if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
			return -1;

		if (sd->nr_balance_failed++ < 2)
			return -1;

		/*
		 * The only task running in a non-idle cpu can be moved to this
		 * cpu in an attempt to completely freeup the other CPU
		 * package. The same method used to move task in load_balance()
		 * have been extended for load_balance_newidle() to speedup
		 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
		 *
		 * The package power saving logic comes from
		 * find_busiest_group().  If there are no imbalance, then
		 * f_b_g() will return NULL.  However when sched_mc={1,2} then
		 * f_b_g() will select a group from which a running task may be
		 * pulled to this cpu in order to make the other package idle.
		 * If there is no opportunity to make a package idle and if
		 * there are no imbalance, then f_b_g() will return NULL and no
		 * action will be taken in load_balance_newidle().
		 *
		 * Under normal task pull operation due to imbalance, there
		 * will be more than one task in the source run queue and
		 * move_tasks() will succeed.  ld_moved will be true and this
		 * active balance code will not be triggered.
		 */

		/* Lock busiest in correct order while this_rq is held */
		double_lock_balance(this_rq, busiest);

		/*
		 * don't kick the migration_thread, if the curr
		 * task on busiest cpu can't be moved to this_cpu
		 */
4152
		if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164
			double_unlock_balance(this_rq, busiest);
			all_pinned = 1;
			return ld_moved;
		}

		if (!busiest->active_balance) {
			busiest->active_balance = 1;
			busiest->push_cpu = this_cpu;
			active_balance = 1;
		}

		double_unlock_balance(this_rq, busiest);
4165 4166 4167 4168
		/*
		 * Should not call ttwu while holding a rq->lock
		 */
		spin_unlock(&this_rq->lock);
4169 4170
		if (active_balance)
			wake_up_process(busiest->migration_thread);
4171
		spin_lock(&this_rq->lock);
4172

N
Nick Piggin 已提交
4173
	} else
4174
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
4175

4176
	update_shares_locked(this_rq, sd);
P
Peter Williams 已提交
4177
	return ld_moved;
4178 4179

out_balanced:
I
Ingo Molnar 已提交
4180
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
4181
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4182
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4183
		return -1;
4184
	sd->nr_balance_failed = 0;
4185

4186
	return 0;
L
Linus Torvalds 已提交
4187 4188 4189 4190 4191 4192
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
4193
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
4194 4195
{
	struct sched_domain *sd;
4196
	int pulled_task = 0;
I
Ingo Molnar 已提交
4197
	unsigned long next_balance = jiffies + HZ;
L
Linus Torvalds 已提交
4198 4199

	for_each_domain(this_cpu, sd) {
4200 4201 4202 4203 4204 4205
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
4206
			/* If we've pulled tasks over stop searching: */
4207
			pulled_task = load_balance_newidle(this_cpu, this_rq,
4208
							   sd);
4209 4210 4211 4212 4213 4214

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
4215
	}
I
Ingo Molnar 已提交
4216
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4217 4218 4219 4220 4221
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
4222
	}
L
Linus Torvalds 已提交
4223 4224 4225 4226 4227 4228 4229 4230 4231 4232
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
4233
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
4234
{
4235
	int target_cpu = busiest_rq->push_cpu;
4236 4237
	struct sched_domain *sd;
	struct rq *target_rq;
4238

4239
	/* Is there any task to move? */
4240 4241 4242 4243
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
4244 4245

	/*
4246
	 * This condition is "impossible", if it occurs
I
Ingo Molnar 已提交
4247
	 * we need to fix it. Originally reported by
4248
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
4249
	 */
4250
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
4251

4252 4253
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
4254 4255
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
4256 4257

	/* Search for an sd spanning us and the target CPU. */
4258
	for_each_domain(target_cpu, sd) {
4259
		if ((sd->flags & SD_LOAD_BALANCE) &&
4260
		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4261
				break;
4262
	}
4263

4264
	if (likely(sd)) {
4265
		schedstat_inc(sd, alb_count);
4266

P
Peter Williams 已提交
4267 4268
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
4269 4270 4271 4272
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
4273
	double_unlock_balance(busiest_rq, target_rq);
L
Linus Torvalds 已提交
4274 4275
}

4276 4277 4278
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
4279
	cpumask_var_t cpu_mask;
4280 4281 4282 4283
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
};

4284
/*
4285 4286 4287 4288 4289 4290 4291 4292 4293 4294
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
4295
 *
4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_rq(cpu)->in_nohz_recently = 1;

4311 4312 4313 4314 4315 4316 4317 4318
		if (!cpu_active(cpu)) {
			if (atomic_read(&nohz.load_balancer) != cpu)
				return 0;

			/*
			 * If we are going offline and still the leader,
			 * give up!
			 */
4319 4320
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
4321

4322 4323 4324
			return 0;
		}

4325 4326
		cpumask_set_cpu(cpu, nohz.cpu_mask);

4327
		/* time for ilb owner also to sleep */
4328
		if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
4341
		if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
4342 4343
			return 0;

4344
		cpumask_clear_cpu(cpu, nohz.cpu_mask);
4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
4357 4358 4359 4360 4361
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
4362
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4363
{
4364 4365
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
4366 4367
	unsigned long interval;
	struct sched_domain *sd;
4368
	/* Earliest time when we have to do rebalance again */
4369
	unsigned long next_balance = jiffies + 60*HZ;
4370
	int update_next_balance = 0;
4371
	int need_serialize;
L
Linus Torvalds 已提交
4372

4373
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
4374 4375 4376 4377
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
4378
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
4379 4380 4381 4382 4383 4384
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
4385 4386 4387
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

4388
		need_serialize = sd->flags & SD_SERIALIZE;
L
Linus Torvalds 已提交
4389

4390
		if (need_serialize) {
4391 4392 4393 4394
			if (!spin_trylock(&balancing))
				goto out;
		}

4395
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
4396
			if (load_balance(cpu, rq, sd, idle, &balance)) {
4397 4398
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
4399 4400 4401
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
4402
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
4403
			}
4404
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
4405
		}
4406
		if (need_serialize)
4407 4408
			spin_unlock(&balancing);
out:
4409
		if (time_after(next_balance, sd->last_balance + interval)) {
4410
			next_balance = sd->last_balance + interval;
4411 4412
			update_next_balance = 1;
		}
4413 4414 4415 4416 4417 4418 4419 4420

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
4421
	}
4422 4423 4424 4425 4426 4427 4428 4429

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
4430 4431 4432 4433 4434 4435 4436 4437 4438
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
4439 4440 4441 4442
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
4443

I
Ingo Molnar 已提交
4444
	rebalance_domains(this_cpu, idle);
4445 4446 4447 4448 4449 4450 4451

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
4452 4453
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
4454 4455 4456
		struct rq *rq;
		int balance_cpu;

4457 4458 4459 4460
		for_each_cpu(balance_cpu, nohz.cpu_mask) {
			if (balance_cpu == this_cpu)
				continue;

4461 4462 4463 4464 4465 4466 4467 4468
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

4469
			rebalance_domains(balance_cpu, CPU_IDLE);
4470 4471

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
4472 4473
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
4474 4475 4476 4477 4478
		}
	}
#endif
}

4479 4480 4481 4482 4483
static inline int on_null_domain(int cpu)
{
	return !rcu_dereference(cpu_rq(cpu)->sd);
}

4484 4485 4486 4487 4488 4489 4490
/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
4491
static inline void trigger_load_balance(struct rq *rq, int cpu)
4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
4503
			cpumask_clear_cpu(cpu, nohz.cpu_mask);
4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
4516
			int ilb = cpumask_first(nohz.cpu_mask);
4517

4518
			if (ilb < nr_cpu_ids)
4519 4520 4521 4522 4523 4524 4525 4526 4527
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4528
	    cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4529 4530 4531 4532 4533 4534 4535 4536 4537
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4538
	    cpumask_test_cpu(cpu, nohz.cpu_mask))
4539 4540
		return;
#endif
4541 4542 4543
	/* Don't need to rebalance while attached to NULL domain */
	if (time_after_eq(jiffies, rq->next_balance) &&
	    likely(!on_null_domain(cpu)))
4544
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
4545
}
I
Ingo Molnar 已提交
4546 4547 4548

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
4549 4550 4551
/*
 * on UP we do not need to balance between CPUs:
 */
4552
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
4553 4554
{
}
I
Ingo Molnar 已提交
4555

L
Linus Torvalds 已提交
4556 4557 4558 4559 4560 4561 4562
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
4563
 * Return any ns on the sched_clock that have not yet been accounted in
4564
 * @p in case that task is currently running.
4565 4566
 *
 * Called with task_rq_lock() held on @rq.
L
Linus Torvalds 已提交
4567
 */
4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581
static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
{
	u64 ns = 0;

	if (task_current(rq, p)) {
		update_rq_clock(rq);
		ns = rq->clock - p->se.exec_start;
		if ((s64)ns < 0)
			ns = 0;
	}

	return ns;
}

4582
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
4583 4584
{
	unsigned long flags;
4585
	struct rq *rq;
4586
	u64 ns = 0;
4587

4588
	rq = task_rq_lock(p, &flags);
4589 4590
	ns = do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);
4591

4592 4593
	return ns;
}
4594

4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
	u64 ns = 0;

	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);

	return ns;
}
4612

4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627
/*
 * Return sum_exec_runtime for the thread group.
 * In case the task is currently running, return the sum plus current's
 * pending runtime that have not been accounted yet.
 *
 * Note that the thread group might have other running tasks as well,
 * so the return value not includes other pending runtime that other
 * running tasks might have.
 */
unsigned long long thread_group_sched_runtime(struct task_struct *p)
{
	struct task_cputime totals;
	unsigned long flags;
	struct rq *rq;
	u64 ns;
4628

4629 4630 4631
	rq = task_rq_lock(p, &flags);
	thread_group_cputime(p, &totals);
	ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
4632
	task_rq_unlock(rq, &flags);
4633

L
Linus Torvalds 已提交
4634 4635 4636 4637 4638 4639 4640
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
4641
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
4642
 */
4643 4644
void account_user_time(struct task_struct *p, cputime_t cputime,
		       cputime_t cputime_scaled)
L
Linus Torvalds 已提交
4645 4646 4647 4648
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

4649
	/* Add user time to process. */
L
Linus Torvalds 已提交
4650
	p->utime = cputime_add(p->utime, cputime);
4651
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4652
	account_group_user_time(p, cputime);
L
Linus Torvalds 已提交
4653 4654 4655 4656 4657 4658 4659

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
4660 4661

	cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
4662 4663
	/* Account for user time used */
	acct_update_integrals(p);
L
Linus Torvalds 已提交
4664 4665
}

4666 4667 4668 4669
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
4670
 * @cputime_scaled: cputime scaled by cpu frequency
4671
 */
4672 4673
static void account_guest_time(struct task_struct *p, cputime_t cputime,
			       cputime_t cputime_scaled)
4674 4675 4676 4677 4678 4679
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

4680
	/* Add guest time to process. */
4681
	p->utime = cputime_add(p->utime, cputime);
4682
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4683
	account_group_user_time(p, cputime);
4684 4685
	p->gtime = cputime_add(p->gtime, cputime);

4686
	/* Add guest time to cpustat. */
4687 4688 4689 4690
	cpustat->user = cputime64_add(cpustat->user, tmp);
	cpustat->guest = cputime64_add(cpustat->guest, tmp);
}

L
Linus Torvalds 已提交
4691 4692 4693 4694 4695
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
4696
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
4697 4698
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
4699
			 cputime_t cputime, cputime_t cputime_scaled)
L
Linus Torvalds 已提交
4700 4701 4702 4703
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

4704
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4705
		account_guest_time(p, cputime, cputime_scaled);
4706 4707
		return;
	}
4708

4709
	/* Add system time to process. */
L
Linus Torvalds 已提交
4710
	p->stime = cputime_add(p->stime, cputime);
4711
	p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
4712
	account_group_system_time(p, cputime);
L
Linus Torvalds 已提交
4713 4714 4715 4716 4717 4718 4719 4720

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
	else
4721 4722
		cpustat->system = cputime64_add(cpustat->system, tmp);

4723 4724
	cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);

L
Linus Torvalds 已提交
4725 4726 4727 4728
	/* Account for system time used */
	acct_update_integrals(p);
}

4729
/*
L
Linus Torvalds 已提交
4730 4731
 * Account for involuntary wait time.
 * @steal: the cpu time spent in involuntary wait
4732
 */
4733
void account_steal_time(cputime_t cputime)
4734
{
4735 4736 4737 4738
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t cputime64 = cputime_to_cputime64(cputime);

	cpustat->steal = cputime64_add(cpustat->steal, cputime64);
4739 4740
}

L
Linus Torvalds 已提交
4741
/*
4742 4743
 * Account for idle time.
 * @cputime: the cpu time spent in idle wait
L
Linus Torvalds 已提交
4744
 */
4745
void account_idle_time(cputime_t cputime)
L
Linus Torvalds 已提交
4746 4747
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4748
	cputime64_t cputime64 = cputime_to_cputime64(cputime);
4749
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
4750

4751 4752 4753 4754
	if (atomic_read(&rq->nr_iowait) > 0)
		cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
	else
		cpustat->idle = cputime64_add(cpustat->idle, cputime64);
L
Linus Torvalds 已提交
4755 4756
}

4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771
#ifndef CONFIG_VIRT_CPU_ACCOUNTING

/*
 * Account a single tick of cpu time.
 * @p: the process that the cpu time gets accounted to
 * @user_tick: indicates if the tick is a user or a system tick
 */
void account_process_tick(struct task_struct *p, int user_tick)
{
	cputime_t one_jiffy = jiffies_to_cputime(1);
	cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
	struct rq *rq = this_rq();

	if (user_tick)
		account_user_time(p, one_jiffy, one_jiffy_scaled);
4772
	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795
		account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
				    one_jiffy_scaled);
	else
		account_idle_time(one_jiffy);
}

/*
 * Account multiple ticks of steal time.
 * @p: the process from which the cpu time has been stolen
 * @ticks: number of stolen ticks
 */
void account_steal_ticks(unsigned long ticks)
{
	account_steal_time(jiffies_to_cputime(ticks));
}

/*
 * Account multiple ticks of idle time.
 * @ticks: number of stolen ticks
 */
void account_idle_ticks(unsigned long ticks)
{
	account_idle_time(jiffies_to_cputime(ticks));
L
Linus Torvalds 已提交
4796 4797
}

4798 4799
#endif

4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858
/*
 * Use precise platform statistics if available:
 */
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
cputime_t task_utime(struct task_struct *p)
{
	return p->utime;
}

cputime_t task_stime(struct task_struct *p)
{
	return p->stime;
}
#else
cputime_t task_utime(struct task_struct *p)
{
	clock_t utime = cputime_to_clock_t(p->utime),
		total = utime + cputime_to_clock_t(p->stime);
	u64 temp;

	/*
	 * Use CFS's precise accounting:
	 */
	temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);

	if (total) {
		temp *= utime;
		do_div(temp, total);
	}
	utime = (clock_t)temp;

	p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
	return p->prev_utime;
}

cputime_t task_stime(struct task_struct *p)
{
	clock_t stime;

	/*
	 * Use CFS's precise accounting. (we subtract utime from
	 * the total, to make sure the total observed by userspace
	 * grows monotonically - apps rely on that):
	 */
	stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
			cputime_to_clock_t(task_utime(p));

	if (stime >= 0)
		p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));

	return p->prev_stime;
}
#endif

inline cputime_t task_gtime(struct task_struct *p)
{
	return p->gtime;
}

4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
4870
	struct task_struct *curr = rq->curr;
4871 4872

	sched_clock_tick();
I
Ingo Molnar 已提交
4873 4874

	spin_lock(&rq->lock);
4875
	update_rq_clock(rq);
4876
	update_cpu_load(rq);
P
Peter Zijlstra 已提交
4877
	curr->sched_class->task_tick(rq, curr, 0);
I
Ingo Molnar 已提交
4878
	perf_counter_task_tick(curr, cpu);
I
Ingo Molnar 已提交
4879
	spin_unlock(&rq->lock);
4880

4881
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
4882 4883
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
4884
#endif
L
Linus Torvalds 已提交
4885 4886
}

4887
notrace unsigned long get_parent_ip(unsigned long addr)
4888 4889 4890 4891 4892 4893 4894 4895
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
4896

4897 4898 4899
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

4900
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
4901
{
4902
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4903 4904 4905
	/*
	 * Underflow?
	 */
4906 4907
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
4908
#endif
L
Linus Torvalds 已提交
4909
	preempt_count() += val;
4910
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4911 4912 4913
	/*
	 * Spinlock count overflowing soon?
	 */
4914 4915
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
4916 4917 4918
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
4919 4920 4921
}
EXPORT_SYMBOL(add_preempt_count);

4922
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
4923
{
4924
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4925 4926 4927
	/*
	 * Underflow?
	 */
4928
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4929
		return;
L
Linus Torvalds 已提交
4930 4931 4932
	/*
	 * Is the spinlock portion underflowing?
	 */
4933 4934 4935
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
4936
#endif
4937

4938 4939
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
4940 4941 4942 4943 4944 4945 4946
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
4947
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
4948
 */
I
Ingo Molnar 已提交
4949
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
4950
{
4951 4952 4953 4954 4955
	struct pt_regs *regs = get_irq_regs();

	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());

I
Ingo Molnar 已提交
4956
	debug_show_held_locks(prev);
4957
	print_modules();
I
Ingo Molnar 已提交
4958 4959
	if (irqs_disabled())
		print_irqtrace_events(prev);
4960 4961 4962 4963 4964

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
4965
}
L
Linus Torvalds 已提交
4966

I
Ingo Molnar 已提交
4967 4968 4969 4970 4971
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
4972
	/*
I
Ingo Molnar 已提交
4973
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
4974 4975 4976
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
4977
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
4978 4979
		__schedule_bug(prev);

L
Linus Torvalds 已提交
4980 4981
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

4982
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
4983 4984
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
4985 4986
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
4987 4988
	}
#endif
I
Ingo Molnar 已提交
4989 4990
}

M
Mike Galbraith 已提交
4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012
static void put_prev_task(struct rq *rq, struct task_struct *prev)
{
	if (prev->state == TASK_RUNNING) {
		u64 runtime = prev->se.sum_exec_runtime;

		runtime -= prev->se.prev_sum_exec_runtime;
		runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);

		/*
		 * In order to avoid avg_overlap growing stale when we are
		 * indeed overlapping and hence not getting put to sleep, grow
		 * the avg_overlap on preemption.
		 *
		 * We use the average preemption runtime because that
		 * correlates to the amount of cache footprint a task can
		 * build up.
		 */
		update_avg(&prev->se.avg_overlap, runtime);
	}
	prev->sched_class->put_prev_task(rq, prev);
}

I
Ingo Molnar 已提交
5013 5014 5015 5016
/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
5017
pick_next_task(struct rq *rq)
I
Ingo Molnar 已提交
5018
{
5019
	const struct sched_class *class;
I
Ingo Molnar 已提交
5020
	struct task_struct *p;
L
Linus Torvalds 已提交
5021 5022

	/*
I
Ingo Molnar 已提交
5023 5024
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
5025
	 */
I
Ingo Molnar 已提交
5026
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
5027
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
5028 5029
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
5030 5031
	}

I
Ingo Molnar 已提交
5032 5033
	class = sched_class_highest;
	for ( ; ; ) {
5034
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
5035 5036 5037 5038 5039 5040 5041 5042 5043
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
5044

I
Ingo Molnar 已提交
5045 5046 5047
/*
 * schedule() is the main scheduler function.
 */
P
Peter Zijlstra 已提交
5048
asmlinkage void __sched __schedule(void)
I
Ingo Molnar 已提交
5049 5050
{
	struct task_struct *prev, *next;
5051
	unsigned long *switch_count;
I
Ingo Molnar 已提交
5052
	struct rq *rq;
5053
	int cpu;
I
Ingo Molnar 已提交
5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064

	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
5065

5066
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
5067
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
5068

5069
	spin_lock_irq(&rq->lock);
5070
	update_rq_clock(rq);
5071
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
5072 5073

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
5074
		if (unlikely(signal_pending_state(prev->state, prev)))
L
Linus Torvalds 已提交
5075
			prev->state = TASK_RUNNING;
5076
		else
5077
			deactivate_task(rq, prev, 1);
I
Ingo Molnar 已提交
5078
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
5079 5080
	}

5081 5082 5083 5084
#ifdef CONFIG_SMP
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
#endif
5085

I
Ingo Molnar 已提交
5086
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
5087 5088
		idle_balance(cpu, rq);

M
Mike Galbraith 已提交
5089
	put_prev_task(rq, prev);
5090
	next = pick_next_task(rq);
L
Linus Torvalds 已提交
5091 5092

	if (likely(prev != next)) {
5093
		sched_info_switch(prev, next);
I
Ingo Molnar 已提交
5094
		perf_counter_task_sched_out(prev, cpu);
5095

L
Linus Torvalds 已提交
5096 5097 5098 5099
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
5100
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
5101 5102 5103 5104 5105 5106
		/*
		 * the context switch might have flipped the stack from under
		 * us, hence refresh the local variables.
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5107 5108 5109
	} else
		spin_unlock_irq(&rq->lock);

P
Peter Zijlstra 已提交
5110
	if (unlikely(reacquire_kernel_lock(current) < 0))
L
Linus Torvalds 已提交
5111
		goto need_resched_nonpreemptible;
P
Peter Zijlstra 已提交
5112
}
P
Peter Zijlstra 已提交
5113

P
Peter Zijlstra 已提交
5114 5115 5116 5117 5118
asmlinkage void __sched schedule(void)
{
need_resched:
	preempt_disable();
	__schedule();
L
Linus Torvalds 已提交
5119 5120 5121 5122 5123 5124
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185
#ifdef CONFIG_SMP
/*
 * Look out! "owner" is an entirely speculative pointer
 * access and not reliable.
 */
int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
{
	unsigned int cpu;
	struct rq *rq;

	if (!sched_feat(OWNER_SPIN))
		return 0;

#ifdef CONFIG_DEBUG_PAGEALLOC
	/*
	 * Need to access the cpu field knowing that
	 * DEBUG_PAGEALLOC could have unmapped it if
	 * the mutex owner just released it and exited.
	 */
	if (probe_kernel_address(&owner->cpu, cpu))
		goto out;
#else
	cpu = owner->cpu;
#endif

	/*
	 * Even if the access succeeded (likely case),
	 * the cpu field may no longer be valid.
	 */
	if (cpu >= nr_cpumask_bits)
		goto out;

	/*
	 * We need to validate that we can do a
	 * get_cpu() and that we have the percpu area.
	 */
	if (!cpu_online(cpu))
		goto out;

	rq = cpu_rq(cpu);

	for (;;) {
		/*
		 * Owner changed, break to re-assess state.
		 */
		if (lock->owner != owner)
			break;

		/*
		 * Is that owner really running on that cpu?
		 */
		if (task_thread_info(rq->curr) != owner || need_resched())
			return 0;

		cpu_relax();
	}
out:
	return 1;
}
#endif

L
Linus Torvalds 已提交
5186 5187
#ifdef CONFIG_PREEMPT
/*
5188
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
5189
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
5190 5191 5192 5193 5194
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
5195

L
Linus Torvalds 已提交
5196 5197
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
5198
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
5199
	 */
N
Nick Piggin 已提交
5200
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
5201 5202
		return;

5203 5204 5205 5206
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
5207

5208 5209 5210 5211 5212
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
5213
	} while (need_resched());
L
Linus Torvalds 已提交
5214 5215 5216 5217
}
EXPORT_SYMBOL(preempt_schedule);

/*
5218
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
5219 5220 5221 5222 5223 5224 5225
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
5226

5227
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
5228 5229
	BUG_ON(ti->preempt_count || !irqs_disabled());

5230 5231 5232 5233 5234 5235
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
		schedule();
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
5236

5237 5238 5239 5240 5241
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
5242
	} while (need_resched());
L
Linus Torvalds 已提交
5243 5244 5245 5246
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
5247 5248
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
5249
{
5250
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
5251 5252 5253 5254
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
5255 5256
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
5257 5258 5259
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
5260
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
5261 5262
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
5263 5264
void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, int sync, void *key)
L
Linus Torvalds 已提交
5265
{
5266
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
5267

5268
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
5269 5270
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
5271
		if (curr->func(curr, mode, sync, key) &&
5272
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
5273 5274 5275 5276 5277 5278 5279 5280 5281
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5282
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
5283
 */
5284
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
5285
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
5298
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
5299 5300 5301 5302
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

5303 5304 5305 5306 5307
void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
{
	__wake_up_common(q, mode, 1, 0, key);
}

L
Linus Torvalds 已提交
5308
/**
5309
 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
5310 5311 5312
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5313
 * @key: opaque value to be passed to wakeup targets
L
Linus Torvalds 已提交
5314 5315 5316 5317 5318 5319 5320 5321
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
5322 5323
void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
5335
	__wake_up_common(q, mode, nr_exclusive, sync, key);
L
Linus Torvalds 已提交
5336 5337
	spin_unlock_irqrestore(&q->lock, flags);
}
5338 5339 5340 5341 5342 5343 5344 5345 5346
EXPORT_SYMBOL_GPL(__wake_up_sync_key);

/*
 * __wake_up_sync - see __wake_up_sync_key()
 */
void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
{
	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
}
L
Linus Torvalds 已提交
5347 5348
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

5349 5350 5351 5352 5353 5354 5355 5356 5357
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
 */
5358
void complete(struct completion *x)
L
Linus Torvalds 已提交
5359 5360 5361 5362 5363
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
5364
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
5365 5366 5367 5368
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

5369 5370 5371 5372 5373 5374
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
 */
5375
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
5376 5377 5378 5379 5380
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
5381
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
5382 5383 5384 5385
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

5386 5387
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
5388 5389 5390 5391 5392 5393 5394
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
5395
			if (signal_pending_state(state, current)) {
5396 5397
				timeout = -ERESTARTSYS;
				break;
5398 5399
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
5400 5401 5402
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
5403
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
5404
		__remove_wait_queue(&x->wait, &wait);
5405 5406
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
5407 5408
	}
	x->done--;
5409
	return timeout ?: 1;
L
Linus Torvalds 已提交
5410 5411
}

5412 5413
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
5414 5415 5416 5417
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
5418
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
5419
	spin_unlock_irq(&x->wait.lock);
5420 5421
	return timeout;
}
L
Linus Torvalds 已提交
5422

5423 5424 5425 5426 5427 5428 5429 5430 5431 5432
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
5433
void __sched wait_for_completion(struct completion *x)
5434 5435
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
5436
}
5437
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
5438

5439 5440 5441 5442 5443 5444 5445 5446 5447
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
 */
5448
unsigned long __sched
5449
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
5450
{
5451
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
5452
}
5453
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
5454

5455 5456 5457 5458 5459 5460 5461
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
 */
5462
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
5463
{
5464 5465 5466 5467
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
5468
}
5469
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
5470

5471 5472 5473 5474 5475 5476 5477 5478
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
 */
5479
unsigned long __sched
5480 5481
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
5482
{
5483
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
5484
}
5485
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
5486

5487 5488 5489 5490 5491 5492 5493
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
 */
M
Matthew Wilcox 已提交
5494 5495 5496 5497 5498 5499 5500 5501 5502
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
	int ret = 1;

	spin_lock_irq(&x->wait.lock);
	if (!x->done)
		ret = 0;
	else
		x->done--;
	spin_unlock_irq(&x->wait.lock);
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
	int ret = 1;

	spin_lock_irq(&x->wait.lock);
	if (!x->done)
		ret = 0;
	spin_unlock_irq(&x->wait.lock);
	return ret;
}
EXPORT_SYMBOL(completion_done);

5549 5550
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
5551
{
I
Ingo Molnar 已提交
5552 5553 5554 5555
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
5556

5557
	__set_current_state(state);
L
Linus Torvalds 已提交
5558

5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
5573 5574 5575
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
5576
long __sched
I
Ingo Molnar 已提交
5577
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
5578
{
5579
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
5580 5581 5582
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
5583
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
5584
{
5585
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
5586 5587 5588
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
5589
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
5590
{
5591
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
5592 5593 5594
}
EXPORT_SYMBOL(sleep_on_timeout);

5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
5607
void rt_mutex_setprio(struct task_struct *p, int prio)
5608 5609
{
	unsigned long flags;
5610
	int oldprio, on_rq, running;
5611
	struct rq *rq;
5612
	const struct sched_class *prev_class = p->sched_class;
5613 5614 5615 5616

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5617
	update_rq_clock(rq);
5618

5619
	oldprio = p->prio;
I
Ingo Molnar 已提交
5620
	on_rq = p->se.on_rq;
5621
	running = task_current(rq, p);
5622
	if (on_rq)
5623
		dequeue_task(rq, p, 0);
5624 5625
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
5626 5627 5628 5629 5630 5631

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

5632 5633
	p->prio = prio;

5634 5635
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
5636
	if (on_rq) {
5637
		enqueue_task(rq, p, 0);
5638 5639

		check_class_changed(rq, p, prev_class, oldprio, running);
5640 5641 5642 5643 5644 5645
	}
	task_rq_unlock(rq, &flags);
}

#endif

5646
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
5647
{
I
Ingo Molnar 已提交
5648
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
5649
	unsigned long flags;
5650
	struct rq *rq;
L
Linus Torvalds 已提交
5651 5652 5653 5654 5655 5656 5657 5658

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5659
	update_rq_clock(rq);
L
Linus Torvalds 已提交
5660 5661 5662 5663
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
5664
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
5665
	 */
5666
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
5667 5668 5669
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
5670
	on_rq = p->se.on_rq;
5671
	if (on_rq)
5672
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
5673 5674

	p->static_prio = NICE_TO_PRIO(nice);
5675
	set_load_weight(p);
5676 5677 5678
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
5679

I
Ingo Molnar 已提交
5680
	if (on_rq) {
5681
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
5682
		/*
5683 5684
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
5685
		 */
5686
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
5687 5688 5689 5690 5691 5692 5693
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
5694 5695 5696 5697 5698
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
5699
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
5700
{
5701 5702
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
5703

M
Matt Mackall 已提交
5704 5705 5706 5707
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
5708 5709 5710 5711 5712 5713 5714 5715 5716
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
5717
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
5718
{
5719
	long nice, retval;
L
Linus Torvalds 已提交
5720 5721 5722 5723 5724 5725

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
5726 5727
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
5728 5729 5730
	if (increment > 40)
		increment = 40;

5731
	nice = TASK_NICE(current) + increment;
L
Linus Torvalds 已提交
5732 5733 5734 5735 5736
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
5737 5738 5739
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
5758
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
5759 5760 5761 5762 5763 5764 5765 5766
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
5767
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
5768 5769 5770
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
5771
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
5786
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
5787 5788 5789 5790 5791 5792 5793 5794
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
5795
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
5796
{
5797
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
5798 5799 5800
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
5801 5802
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
5803
{
I
Ingo Molnar 已提交
5804
	BUG_ON(p->se.on_rq);
5805

L
Linus Torvalds 已提交
5806
	p->policy = policy;
I
Ingo Molnar 已提交
5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
5819
	p->rt_priority = prio;
5820 5821 5822
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
5823
	set_load_weight(p);
L
Linus Torvalds 已提交
5824 5825
}

5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
	match = (cred->euid == pcred->euid ||
		 cred->euid == pcred->uid);
	rcu_read_unlock();
	return match;
}

5842 5843
static int __sched_setscheduler(struct task_struct *p, int policy,
				struct sched_param *param, bool user)
L
Linus Torvalds 已提交
5844
{
5845
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
5846
	unsigned long flags;
5847
	const struct sched_class *prev_class = p->sched_class;
5848
	struct rq *rq;
L
Linus Torvalds 已提交
5849

5850 5851
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
5852 5853 5854 5855 5856
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
I
Ingo Molnar 已提交
5857 5858
			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
			policy != SCHED_IDLE)
5859
		return -EINVAL;
L
Linus Torvalds 已提交
5860 5861
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
5862 5863
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
5864 5865
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
5866
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
5867
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
5868
		return -EINVAL;
5869
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
5870 5871
		return -EINVAL;

5872 5873 5874
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
5875
	if (user && !capable(CAP_SYS_NICE)) {
5876
		if (rt_policy(policy)) {
5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
5893 5894 5895 5896 5897 5898
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
5899

5900
		/* can't change other user's priorities */
5901
		if (!check_same_owner(p))
5902 5903
			return -EPERM;
	}
L
Linus Torvalds 已提交
5904

5905
	if (user) {
5906
#ifdef CONFIG_RT_GROUP_SCHED
5907 5908 5909 5910
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
P
Peter Zijlstra 已提交
5911 5912
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
				task_group(p)->rt_bandwidth.rt_runtime == 0)
5913
			return -EPERM;
5914 5915
#endif

5916 5917 5918 5919 5920
		retval = security_task_setscheduler(p, policy, param);
		if (retval)
			return retval;
	}

5921 5922 5923 5924 5925
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
5926 5927 5928 5929
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
5930
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
5931 5932 5933
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
5934 5935
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
5936 5937
		goto recheck;
	}
I
Ingo Molnar 已提交
5938
	update_rq_clock(rq);
I
Ingo Molnar 已提交
5939
	on_rq = p->se.on_rq;
5940
	running = task_current(rq, p);
5941
	if (on_rq)
5942
		deactivate_task(rq, p, 0);
5943 5944
	if (running)
		p->sched_class->put_prev_task(rq, p);
5945

L
Linus Torvalds 已提交
5946
	oldprio = p->prio;
I
Ingo Molnar 已提交
5947
	__setscheduler(rq, p, policy, param->sched_priority);
5948

5949 5950
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
5951 5952
	if (on_rq) {
		activate_task(rq, p, 0);
5953 5954

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
5955
	}
5956 5957 5958
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

5959 5960
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
5961 5962
	return 0;
}
5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
5977 5978
EXPORT_SYMBOL_GPL(sched_setscheduler);

5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
			       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
5996 5997
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
5998 5999 6000
{
	struct sched_param lparam;
	struct task_struct *p;
6001
	int retval;
L
Linus Torvalds 已提交
6002 6003 6004 6005 6006

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
6007 6008 6009

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
6010
	p = find_process_by_pid(pid);
6011 6012 6013
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
6014

L
Linus Torvalds 已提交
6015 6016 6017 6018 6019 6020 6021 6022 6023
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
6024 6025
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
6026
{
6027 6028 6029 6030
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
6031 6032 6033 6034 6035 6036 6037 6038
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
6039
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
6040 6041 6042 6043 6044 6045 6046 6047
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
6048
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
6049
{
6050
	struct task_struct *p;
6051
	int retval;
L
Linus Torvalds 已提交
6052 6053

	if (pid < 0)
6054
		return -EINVAL;
L
Linus Torvalds 已提交
6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
6073
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
6074 6075
{
	struct sched_param lp;
6076
	struct task_struct *p;
6077
	int retval;
L
Linus Torvalds 已提交
6078 6079

	if (!param || pid < 0)
6080
		return -EINVAL;
L
Linus Torvalds 已提交
6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

6107
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
6108
{
6109
	cpumask_var_t cpus_allowed, new_mask;
6110 6111
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
6112

6113
	get_online_cpus();
L
Linus Torvalds 已提交
6114 6115 6116 6117 6118
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
6119
		put_online_cpus();
L
Linus Torvalds 已提交
6120 6121 6122 6123 6124
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
I
Ingo Molnar 已提交
6125
	 * tasklist_lock held. We will bump the task_struct's
L
Linus Torvalds 已提交
6126 6127 6128 6129 6130
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

6131 6132 6133 6134 6135 6136 6137 6138
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
6139
	retval = -EPERM;
6140
	if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
L
Linus Torvalds 已提交
6141 6142
		goto out_unlock;

6143 6144 6145 6146
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

6147 6148
	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);
P
Paul Menage 已提交
6149
 again:
6150
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
6151

P
Paul Menage 已提交
6152
	if (!retval) {
6153 6154
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
6155 6156 6157 6158 6159
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
6160
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
6161 6162 6163
			goto again;
		}
	}
L
Linus Torvalds 已提交
6164
out_unlock:
6165 6166 6167 6168
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
6169
	put_task_struct(p);
6170
	put_online_cpus();
L
Linus Torvalds 已提交
6171 6172 6173 6174
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
6175
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
6176
{
6177 6178 6179 6180 6181
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
6182 6183 6184 6185 6186 6187 6188 6189 6190
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
6191 6192
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
6193
{
6194
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
6195 6196
	int retval;

6197 6198
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
6199

6200 6201 6202 6203 6204
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
6205 6206
}

6207
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
6208
{
6209
	struct task_struct *p;
L
Linus Torvalds 已提交
6210 6211
	int retval;

6212
	get_online_cpus();
L
Linus Torvalds 已提交
6213 6214 6215 6216 6217 6218 6219
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

6220 6221 6222 6223
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

6224
	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
L
Linus Torvalds 已提交
6225 6226 6227

out_unlock:
	read_unlock(&tasklist_lock);
6228
	put_online_cpus();
L
Linus Torvalds 已提交
6229

6230
	return retval;
L
Linus Torvalds 已提交
6231 6232 6233 6234 6235 6236 6237 6238
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
6239 6240
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
6241 6242
{
	int ret;
6243
	cpumask_var_t mask;
L
Linus Torvalds 已提交
6244

6245
	if (len < cpumask_size())
L
Linus Torvalds 已提交
6246 6247
		return -EINVAL;

6248 6249
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
6250

6251 6252 6253 6254 6255 6256 6257 6258
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
		if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
			ret = -EFAULT;
		else
			ret = cpumask_size();
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
6259

6260
	return ret;
L
Linus Torvalds 已提交
6261 6262 6263 6264 6265
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
6266 6267
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
6268
 */
6269
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
6270
{
6271
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
6272

6273
	schedstat_inc(rq, yld_count);
6274
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
6275 6276 6277 6278 6279 6280

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
6281
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
6282 6283 6284 6285 6286 6287 6288 6289
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
6290
static void __cond_resched(void)
L
Linus Torvalds 已提交
6291
{
6292 6293 6294
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
6295 6296 6297 6298 6299
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
6300 6301 6302 6303 6304 6305 6306
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

6307
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
6308
{
6309 6310
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
6311 6312 6313 6314 6315
		__cond_resched();
		return 1;
	}
	return 0;
}
6316
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
6317 6318 6319 6320 6321

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
6322
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
6323 6324 6325
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
6326
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
6327
{
N
Nick Piggin 已提交
6328
	int resched = need_resched() && system_state == SYSTEM_RUNNING;
J
Jan Kara 已提交
6329 6330
	int ret = 0;

N
Nick Piggin 已提交
6331
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
6332
		spin_unlock(lock);
N
Nick Piggin 已提交
6333 6334 6335 6336
		if (resched && need_resched())
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
6337
		ret = 1;
L
Linus Torvalds 已提交
6338 6339
		spin_lock(lock);
	}
J
Jan Kara 已提交
6340
	return ret;
L
Linus Torvalds 已提交
6341 6342 6343 6344 6345 6346 6347
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

6348
	if (need_resched() && system_state == SYSTEM_RUNNING) {
6349
		local_bh_enable();
L
Linus Torvalds 已提交
6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
6361
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
6362 6363 6364 6365 6366 6367 6368 6369 6370 6371
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
6372
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
6373 6374 6375 6376 6377 6378 6379
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
6380
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
6381

6382
	delayacct_blkio_start();
L
Linus Torvalds 已提交
6383 6384 6385
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
6386
	delayacct_blkio_end();
L
Linus Torvalds 已提交
6387 6388 6389 6390 6391
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
6392
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
6393 6394
	long ret;

6395
	delayacct_blkio_start();
L
Linus Torvalds 已提交
6396 6397 6398
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
6399
	delayacct_blkio_end();
L
Linus Torvalds 已提交
6400 6401 6402 6403 6404 6405 6406 6407 6408 6409
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
6410
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
6411 6412 6413 6414 6415 6416 6417 6418 6419
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
6420
	case SCHED_BATCH:
I
Ingo Molnar 已提交
6421
	case SCHED_IDLE:
L
Linus Torvalds 已提交
6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
6435
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
6436 6437 6438 6439 6440 6441 6442 6443 6444
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
6445
	case SCHED_BATCH:
I
Ingo Molnar 已提交
6446
	case SCHED_IDLE:
L
Linus Torvalds 已提交
6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
6460
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6461
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
6462
{
6463
	struct task_struct *p;
D
Dmitry Adamushko 已提交
6464
	unsigned int time_slice;
6465
	int retval;
L
Linus Torvalds 已提交
6466 6467 6468
	struct timespec t;

	if (pid < 0)
6469
		return -EINVAL;
L
Linus Torvalds 已提交
6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

6481 6482 6483 6484 6485 6486
	/*
	 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
	 * tasks that are on an otherwise idle runqueue:
	 */
	time_slice = 0;
	if (p->policy == SCHED_RR) {
D
Dmitry Adamushko 已提交
6487
		time_slice = DEF_TIMESLICE;
6488
	} else if (p->policy != SCHED_FIFO) {
D
Dmitry Adamushko 已提交
6489 6490 6491 6492 6493
		struct sched_entity *se = &p->se;
		unsigned long flags;
		struct rq *rq;

		rq = task_rq_lock(p, &flags);
6494 6495
		if (rq->cfs.load.weight)
			time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
D
Dmitry Adamushko 已提交
6496 6497
		task_rq_unlock(rq, &flags);
	}
L
Linus Torvalds 已提交
6498
	read_unlock(&tasklist_lock);
D
Dmitry Adamushko 已提交
6499
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
6500 6501
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
6502

L
Linus Torvalds 已提交
6503 6504 6505 6506 6507
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

6508
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
6509

6510
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
6511 6512
{
	unsigned long free = 0;
6513
	unsigned state;
L
Linus Torvalds 已提交
6514 6515

	state = p->state ? __ffs(p->state) + 1 : 0;
I
Ingo Molnar 已提交
6516
	printk(KERN_INFO "%-13.13s %c", p->comm,
6517
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
6518
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
6519
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
6520
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
6521
	else
I
Ingo Molnar 已提交
6522
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
6523 6524
#else
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
6525
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
6526
	else
I
Ingo Molnar 已提交
6527
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
6528 6529
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
6530
	free = stack_not_used(p);
L
Linus Torvalds 已提交
6531
#endif
6532
	printk(KERN_CONT "%5lu %5d %6d\n", free,
R
Roland McGrath 已提交
6533
		task_pid_nr(p), task_pid_nr(p->real_parent));
L
Linus Torvalds 已提交
6534

6535
	show_stack(p, NULL);
L
Linus Torvalds 已提交
6536 6537
}

I
Ingo Molnar 已提交
6538
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
6539
{
6540
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
6541

6542 6543 6544
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
6545
#else
6546 6547
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
6548 6549 6550 6551 6552 6553 6554 6555
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
6556
		if (!state_filter || (p->state & state_filter))
6557
			sched_show_task(p);
L
Linus Torvalds 已提交
6558 6559
	} while_each_thread(g, p);

6560 6561
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
6562 6563 6564
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
6565
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
6566 6567 6568 6569 6570
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
6571 6572
}

I
Ingo Molnar 已提交
6573 6574
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
6575
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
6576 6577
}

6578 6579 6580 6581 6582 6583 6584 6585
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
6586
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
6587
{
6588
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
6589 6590
	unsigned long flags;

6591 6592
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
6593 6594 6595
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

6596
	idle->prio = idle->normal_prio = MAX_PRIO;
6597
	cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
I
Ingo Molnar 已提交
6598
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
6599 6600

	rq->curr = rq->idle = idle;
6601 6602 6603
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
6604 6605 6606
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
6607 6608 6609
#if defined(CONFIG_PREEMPT)
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
#else
A
Al Viro 已提交
6610
	task_thread_info(idle)->preempt_count = 0;
6611
#endif
I
Ingo Molnar 已提交
6612 6613 6614 6615
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
6616
	ftrace_graph_init_task(idle);
L
Linus Torvalds 已提交
6617 6618 6619 6620 6621 6622 6623
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
6624
 * always be CPU_BITS_NONE.
L
Linus Torvalds 已提交
6625
 */
6626
cpumask_var_t nohz_cpu_mask;
L
Linus Torvalds 已提交
6627

I
Ingo Molnar 已提交
6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
	const unsigned long limit = 200000000;

	sysctl_sched_min_granularity *= factor;
	if (sysctl_sched_min_granularity > limit)
		sysctl_sched_min_granularity = limit;

	sysctl_sched_latency *= factor;
	if (sysctl_sched_latency > limit)
		sysctl_sched_latency = limit;

	sysctl_sched_wakeup_granularity *= factor;
6651 6652

	sysctl_sched_shares_ratelimit *= factor;
I
Ingo Molnar 已提交
6653 6654
}

L
Linus Torvalds 已提交
6655 6656 6657 6658
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
6659
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
6678
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
6679 6680
 * call is not atomic; no spinlocks may be held.
 */
6681
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
6682
{
6683
	struct migration_req req;
L
Linus Torvalds 已提交
6684
	unsigned long flags;
6685
	struct rq *rq;
6686
	int ret = 0;
L
Linus Torvalds 已提交
6687 6688

	rq = task_rq_lock(p, &flags);
6689
	if (!cpumask_intersects(new_mask, cpu_online_mask)) {
L
Linus Torvalds 已提交
6690 6691 6692 6693
		ret = -EINVAL;
		goto out;
	}

6694
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
6695
		     !cpumask_equal(&p->cpus_allowed, new_mask))) {
6696 6697 6698 6699
		ret = -EINVAL;
		goto out;
	}

6700
	if (p->sched_class->set_cpus_allowed)
6701
		p->sched_class->set_cpus_allowed(p, new_mask);
6702
	else {
6703 6704
		cpumask_copy(&p->cpus_allowed, new_mask);
		p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
6705 6706
	}

L
Linus Torvalds 已提交
6707
	/* Can the task run on the task's current CPU? If so, we're done */
6708
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
6709 6710
		goto out;

R
Rusty Russell 已提交
6711
	if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
L
Linus Torvalds 已提交
6712 6713 6714 6715 6716 6717 6718 6719 6720
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
6721

L
Linus Torvalds 已提交
6722 6723
	return ret;
}
6724
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
6725 6726

/*
I
Ingo Molnar 已提交
6727
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
6728 6729 6730 6731 6732 6733
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
6734 6735
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
6736
 */
6737
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
6738
{
6739
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
6740
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
6741

6742
	if (unlikely(!cpu_active(dest_cpu)))
6743
		return ret;
L
Linus Torvalds 已提交
6744 6745 6746 6747 6748 6749 6750

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
6751
		goto done;
L
Linus Torvalds 已提交
6752
	/* Affinity changed (again). */
6753
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
L
Linus Torvalds 已提交
6754
		goto fail;
L
Linus Torvalds 已提交
6755

I
Ingo Molnar 已提交
6756
	on_rq = p->se.on_rq;
6757
	if (on_rq)
6758
		deactivate_task(rq_src, p, 0);
6759

L
Linus Torvalds 已提交
6760
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
6761 6762
	if (on_rq) {
		activate_task(rq_dest, p, 0);
6763
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
6764
	}
L
Linus Torvalds 已提交
6765
done:
6766
	ret = 1;
L
Linus Torvalds 已提交
6767
fail:
L
Linus Torvalds 已提交
6768
	double_rq_unlock(rq_src, rq_dest);
6769
	return ret;
L
Linus Torvalds 已提交
6770 6771 6772 6773 6774 6775 6776
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
6777
static int migration_thread(void *data)
L
Linus Torvalds 已提交
6778 6779
{
	int cpu = (long)data;
6780
	struct rq *rq;
L
Linus Torvalds 已提交
6781 6782 6783 6784 6785 6786

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
6787
		struct migration_req *req;
L
Linus Torvalds 已提交
6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
6810
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
6811 6812
		list_del_init(head->next);

N
Nick Piggin 已提交
6813 6814 6815
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

6845
/*
6846
 * Figure out where task on dead CPU should go, use force if necessary.
6847
 */
6848
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
6849
{
6850
	int dest_cpu;
6851
	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
L
Linus Torvalds 已提交
6852

6853 6854 6855 6856 6857
again:
	/* Look for allowed, online CPU in same node. */
	for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
		if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
			goto move;
6858

6859 6860 6861 6862
	/* Any allowed, online CPU? */
	dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
	if (dest_cpu < nr_cpu_ids)
		goto move;
6863

6864 6865 6866 6867
	/* No more Mr. Nice Guy. */
	if (dest_cpu >= nr_cpu_ids) {
		cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
		dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
L
Linus Torvalds 已提交
6868

6869 6870 6871 6872 6873 6874 6875 6876 6877
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
			printk(KERN_INFO "process %d (%s) no "
			       "longer affine to cpu%d\n",
			       task_pid_nr(p), p->comm, dead_cpu);
6878
		}
6879 6880 6881 6882 6883 6884
	}

move:
	/* It can have affinity changed while we were choosing. */
	if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
		goto again;
L
Linus Torvalds 已提交
6885 6886 6887 6888 6889 6890 6891 6892 6893
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
6894
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
6895
{
R
Rusty Russell 已提交
6896
	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
L
Linus Torvalds 已提交
6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
6910
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
6911

6912
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
6913

6914 6915
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
6916 6917
			continue;

6918 6919 6920
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
6921

6922
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
6923 6924
}

I
Ingo Molnar 已提交
6925 6926
/*
 * Schedules idle task to be the next runnable task on current CPU.
6927 6928
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
6929 6930 6931
 */
void sched_idle_next(void)
{
6932
	int this_cpu = smp_processor_id();
6933
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
6934 6935 6936 6937
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
6938
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
6939

6940 6941 6942
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
6943 6944 6945
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
6946
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6947

6948 6949
	update_rq_clock(rq);
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
6950 6951 6952 6953

	spin_unlock_irqrestore(&rq->lock, flags);
}

6954 6955
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

6969
/* called under rq->lock with disabled interrupts */
6970
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
6971
{
6972
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
6973 6974

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
6975
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
6976 6977

	/* Cannot have done final schedule yet: would have vanished. */
6978
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
6979

6980
	get_task_struct(p);
L
Linus Torvalds 已提交
6981 6982 6983

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
6984
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
6985 6986
	 * fine.
	 */
6987
	spin_unlock_irq(&rq->lock);
6988
	move_task_off_dead_cpu(dead_cpu, p);
6989
	spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
6990

6991
	put_task_struct(p);
L
Linus Torvalds 已提交
6992 6993 6994 6995 6996
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
6997
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
6998
	struct task_struct *next;
6999

I
Ingo Molnar 已提交
7000 7001 7002
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
7003
		update_rq_clock(rq);
7004
		next = pick_next_task(rq);
I
Ingo Molnar 已提交
7005 7006
		if (!next)
			break;
D
Dmitry Adamushko 已提交
7007
		next->sched_class->put_prev_task(rq, next);
I
Ingo Molnar 已提交
7008
		migrate_dead(dead_cpu, next);
7009

L
Linus Torvalds 已提交
7010 7011 7012 7013
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

7014 7015 7016
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
7017 7018
	{
		.procname	= "sched_domain",
7019
		.mode		= 0555,
7020
	},
I
Ingo Molnar 已提交
7021
	{0, },
7022 7023 7024
};

static struct ctl_table sd_ctl_root[] = {
7025
	{
7026
		.ctl_name	= CTL_KERN,
7027
		.procname	= "kernel",
7028
		.mode		= 0555,
7029 7030
		.child		= sd_ctl_dir,
	},
I
Ingo Molnar 已提交
7031
	{0, },
7032 7033 7034 7035 7036
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
7037
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
7038 7039 7040 7041

	return entry;
}

7042 7043
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
7044
	struct ctl_table *entry;
7045

7046 7047 7048
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
7049
	 * will always be set. In the lowest directory the names are
7050 7051 7052
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
7053 7054
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
7055 7056 7057
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
7058 7059 7060 7061 7062

	kfree(*tablep);
	*tablep = NULL;
}

7063
static void
7064
set_table_entry(struct ctl_table *entry,
7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
7078
	struct ctl_table *table = sd_alloc_ctl_entry(13);
7079

7080 7081 7082
	if (table == NULL)
		return NULL;

7083
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
7084
		sizeof(long), 0644, proc_doulongvec_minmax);
7085
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
7086
		sizeof(long), 0644, proc_doulongvec_minmax);
7087
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
7088
		sizeof(int), 0644, proc_dointvec_minmax);
7089
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
7090
		sizeof(int), 0644, proc_dointvec_minmax);
7091
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
7092
		sizeof(int), 0644, proc_dointvec_minmax);
7093
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
7094
		sizeof(int), 0644, proc_dointvec_minmax);
7095
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
7096
		sizeof(int), 0644, proc_dointvec_minmax);
7097
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
7098
		sizeof(int), 0644, proc_dointvec_minmax);
7099
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
7100
		sizeof(int), 0644, proc_dointvec_minmax);
7101
	set_table_entry(&table[9], "cache_nice_tries",
7102 7103
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
7104
	set_table_entry(&table[10], "flags", &sd->flags,
7105
		sizeof(int), 0644, proc_dointvec_minmax);
7106 7107 7108
	set_table_entry(&table[11], "name", sd->name,
		CORENAME_MAX_SIZE, 0444, proc_dostring);
	/* &table[12] is terminator */
7109 7110 7111 7112

	return table;
}

7113
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
7114 7115 7116 7117 7118 7119 7120 7121 7122
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
7123 7124
	if (table == NULL)
		return NULL;
7125 7126 7127 7128 7129

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
7130
		entry->mode = 0555;
7131 7132 7133 7134 7135 7136 7137 7138
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
7139
static void register_sched_domain_sysctl(void)
7140 7141 7142 7143 7144
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

7145 7146 7147
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

7148 7149 7150
	if (entry == NULL)
		return;

7151
	for_each_online_cpu(i) {
7152 7153
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
7154
		entry->mode = 0555;
7155
		entry->child = sd_alloc_ctl_cpu_table(i);
7156
		entry++;
7157
	}
7158 7159

	WARN_ON(sd_sysctl_header);
7160 7161
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
7162

7163
/* may be called multiple times per register */
7164 7165
static void unregister_sched_domain_sysctl(void)
{
7166 7167
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
7168
	sd_sysctl_header = NULL;
7169 7170
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
7171
}
7172
#else
7173 7174 7175 7176
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
7177 7178 7179 7180
{
}
#endif

7181 7182 7183 7184 7185
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

7186
		cpumask_set_cpu(rq->cpu, rq->rd->online);
7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

7206
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
7207 7208 7209 7210
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
7211 7212 7213 7214
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
7215 7216
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
7217 7218
{
	struct task_struct *p;
7219
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
7220
	unsigned long flags;
7221
	struct rq *rq;
L
Linus Torvalds 已提交
7222 7223

	switch (action) {
7224

L
Linus Torvalds 已提交
7225
	case CPU_UP_PREPARE:
7226
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
7227
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
7228 7229 7230 7231 7232
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
7233
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
7234 7235 7236
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
7237

L
Linus Torvalds 已提交
7238
	case CPU_ONLINE:
7239
	case CPU_ONLINE_FROZEN:
7240
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
7241
		wake_up_process(cpu_rq(cpu)->migration_thread);
7242 7243 7244 7245 7246

		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
7247
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7248 7249

			set_rq_online(rq);
7250 7251
		}
		spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
7252
		break;
7253

L
Linus Torvalds 已提交
7254 7255
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
7256
	case CPU_UP_CANCELED_FROZEN:
7257 7258
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
7259
		/* Unbind it from offline cpu so it can run. Fall thru. */
7260
		kthread_bind(cpu_rq(cpu)->migration_thread,
R
Rusty Russell 已提交
7261
			     cpumask_any(cpu_online_mask));
L
Linus Torvalds 已提交
7262 7263 7264
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
7265

L
Linus Torvalds 已提交
7266
	case CPU_DEAD:
7267
	case CPU_DEAD_FROZEN:
7268
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
7269 7270 7271 7272 7273
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
7274
		spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
7275
		update_rq_clock(rq);
7276
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
7277
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
7278 7279
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
7280
		migrate_dead_tasks(cpu);
7281
		spin_unlock_irq(&rq->lock);
7282
		cpuset_unlock();
L
Linus Torvalds 已提交
7283 7284 7285
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

I
Ingo Molnar 已提交
7286 7287 7288 7289 7290
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
L
Linus Torvalds 已提交
7291 7292
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
7293 7294
			struct migration_req *req;

L
Linus Torvalds 已提交
7295
			req = list_entry(rq->migration_queue.next,
7296
					 struct migration_req, list);
L
Linus Torvalds 已提交
7297
			list_del_init(&req->list);
B
Brian King 已提交
7298
			spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
7299
			complete(&req->done);
B
Brian King 已提交
7300
			spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
7301 7302 7303
		}
		spin_unlock_irq(&rq->lock);
		break;
G
Gregory Haskins 已提交
7304

7305 7306
	case CPU_DYING:
	case CPU_DYING_FROZEN:
G
Gregory Haskins 已提交
7307 7308 7309 7310
		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
7311
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7312
			set_rq_offline(rq);
G
Gregory Haskins 已提交
7313 7314 7315
		}
		spin_unlock_irqrestore(&rq->lock, flags);
		break;
L
Linus Torvalds 已提交
7316 7317 7318 7319 7320 7321 7322 7323
#endif
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
7324
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
7325 7326 7327 7328
	.notifier_call = migration_call,
	.priority = 10
};

7329
static int __init migration_init(void)
L
Linus Torvalds 已提交
7330 7331
{
	void *cpu = (void *)(long)smp_processor_id();
7332
	int err;
7333 7334

	/* Start one for the boot CPU: */
7335 7336
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
7337 7338
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
7339 7340

	return err;
L
Linus Torvalds 已提交
7341
}
7342
early_initcall(migration_init);
L
Linus Torvalds 已提交
7343 7344 7345
#endif

#ifdef CONFIG_SMP
7346

7347
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
7348

7349
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
7350
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
7351
{
I
Ingo Molnar 已提交
7352
	struct sched_group *group = sd->groups;
7353
	char str[256];
L
Linus Torvalds 已提交
7354

R
Rusty Russell 已提交
7355
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
7356
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
7357 7358 7359 7360 7361 7362 7363 7364 7365

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
		printk("does not load-balance\n");
		if (sd->parent)
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
		return -1;
N
Nick Piggin 已提交
7366 7367
	}

7368
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
7369

7370
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
I
Ingo Molnar 已提交
7371 7372 7373
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
	}
7374
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
I
Ingo Molnar 已提交
7375 7376 7377
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
	}
L
Linus Torvalds 已提交
7378

I
Ingo Molnar 已提交
7379
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
7380
	do {
I
Ingo Molnar 已提交
7381 7382 7383
		if (!group) {
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
7384 7385 7386
			break;
		}

I
Ingo Molnar 已提交
7387 7388 7389 7390 7391 7392
		if (!group->__cpu_power) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
			break;
		}
L
Linus Torvalds 已提交
7393

7394
		if (!cpumask_weight(sched_group_cpus(group))) {
I
Ingo Molnar 已提交
7395 7396 7397 7398
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
			break;
		}
L
Linus Torvalds 已提交
7399

7400
		if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
I
Ingo Molnar 已提交
7401 7402 7403 7404
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
			break;
		}
L
Linus Torvalds 已提交
7405

7406
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
7407

R
Rusty Russell 已提交
7408
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
7409

I
Ingo Molnar 已提交
7410
		printk(KERN_CONT " %s", str);
7411 7412 7413 7414
		if (group->__cpu_power != SCHED_LOAD_SCALE) {
			printk(KERN_CONT " (__cpu_power = %d)",
				group->__cpu_power);
		}
L
Linus Torvalds 已提交
7415

I
Ingo Molnar 已提交
7416 7417 7418
		group = group->next;
	} while (group != sd->groups);
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
7419

7420
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
I
Ingo Molnar 已提交
7421
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
7422

7423 7424
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
I
Ingo Molnar 已提交
7425 7426 7427 7428
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
	return 0;
}
L
Linus Torvalds 已提交
7429

I
Ingo Molnar 已提交
7430 7431
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
7432
	cpumask_var_t groupmask;
I
Ingo Molnar 已提交
7433
	int level = 0;
L
Linus Torvalds 已提交
7434

I
Ingo Molnar 已提交
7435 7436 7437 7438
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
7439

I
Ingo Molnar 已提交
7440 7441
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

7442
	if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7443 7444 7445 7446
		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
		return;
	}

I
Ingo Molnar 已提交
7447
	for (;;) {
7448
		if (sched_domain_debug_one(sd, cpu, level, groupmask))
I
Ingo Molnar 已提交
7449
			break;
L
Linus Torvalds 已提交
7450 7451
		level++;
		sd = sd->parent;
7452
		if (!sd)
I
Ingo Molnar 已提交
7453 7454
			break;
	}
7455
	free_cpumask_var(groupmask);
L
Linus Torvalds 已提交
7456
}
7457
#else /* !CONFIG_SCHED_DEBUG */
7458
# define sched_domain_debug(sd, cpu) do { } while (0)
7459
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
7460

7461
static int sd_degenerate(struct sched_domain *sd)
7462
{
7463
	if (cpumask_weight(sched_domain_span(sd)) == 1)
7464 7465 7466 7467 7468 7469
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
7470 7471 7472
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

7486 7487
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
7488 7489 7490 7491 7492 7493
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

7494
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
7506 7507 7508
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
7509 7510
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
7511 7512 7513 7514 7515 7516 7517
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

7518 7519
static void free_rootdomain(struct root_domain *rd)
{
7520 7521
	cpupri_cleanup(&rd->cpupri);

7522 7523 7524 7525 7526 7527
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
7528 7529
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
7530
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
7531 7532 7533 7534 7535
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);

	if (rq->rd) {
I
Ingo Molnar 已提交
7536
		old_rd = rq->rd;
G
Gregory Haskins 已提交
7537

7538
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
7539
			set_rq_offline(rq);
G
Gregory Haskins 已提交
7540

7541
		cpumask_clear_cpu(rq->cpu, old_rd->span);
7542

I
Ingo Molnar 已提交
7543 7544 7545 7546 7547 7548 7549
		/*
		 * If we dont want to free the old_rt yet then
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
7550 7551 7552 7553 7554
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

7555 7556
	cpumask_set_cpu(rq->cpu, rd->span);
	if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
7557
		set_rq_online(rq);
G
Gregory Haskins 已提交
7558 7559

	spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
7560 7561 7562

	if (old_rd)
		free_rootdomain(old_rd);
G
Gregory Haskins 已提交
7563 7564
}

L
Li Zefan 已提交
7565
static int __init_refok init_rootdomain(struct root_domain *rd, bool bootmem)
G
Gregory Haskins 已提交
7566 7567 7568
{
	memset(rd, 0, sizeof(*rd));

7569 7570 7571 7572
	if (bootmem) {
		alloc_bootmem_cpumask_var(&def_root_domain.span);
		alloc_bootmem_cpumask_var(&def_root_domain.online);
		alloc_bootmem_cpumask_var(&def_root_domain.rto_mask);
7573
		cpupri_init(&rd->cpupri, true);
7574 7575 7576 7577
		return 0;
	}

	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
7578
		goto out;
7579 7580 7581 7582
	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
		goto free_span;
	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
		goto free_online;
7583

7584 7585
	if (cpupri_init(&rd->cpupri, false) != 0)
		goto free_rto_mask;
7586
	return 0;
7587

7588 7589
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
7590 7591 7592 7593
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
7594
out:
7595
	return -ENOMEM;
G
Gregory Haskins 已提交
7596 7597 7598 7599
}

static void init_defrootdomain(void)
{
7600 7601
	init_rootdomain(&def_root_domain, true);

G
Gregory Haskins 已提交
7602 7603 7604
	atomic_set(&def_root_domain.refcount, 1);
}

7605
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
7606 7607 7608 7609 7610 7611 7612
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

7613 7614 7615 7616
	if (init_rootdomain(rd, false) != 0) {
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
7617 7618 7619 7620

	return rd;
}

L
Linus Torvalds 已提交
7621
/*
I
Ingo Molnar 已提交
7622
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
7623 7624
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
7625 7626
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
7627
{
7628
	struct rq *rq = cpu_rq(cpu);
7629 7630 7631
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
7632
	for (tmp = sd; tmp; ) {
7633 7634 7635
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
7636

7637
		if (sd_parent_degenerate(tmp, parent)) {
7638
			tmp->parent = parent->parent;
7639 7640
			if (parent->parent)
				parent->parent->child = tmp;
7641 7642
		} else
			tmp = tmp->parent;
7643 7644
	}

7645
	if (sd && sd_degenerate(sd)) {
7646
		sd = sd->parent;
7647 7648 7649
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
7650 7651 7652

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
7653
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
7654
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
7655 7656 7657
}

/* cpus with isolated domains */
7658
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
7659 7660 7661 7662

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
7663
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
7664 7665 7666
	return 1;
}

I
Ingo Molnar 已提交
7667
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
7668 7669

/*
7670 7671
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
7672 7673
 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
 * (due to the fact that we keep track of groups covered with a struct cpumask).
L
Linus Torvalds 已提交
7674 7675 7676 7677 7678
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
7679
static void
7680 7681 7682
init_sched_build_groups(const struct cpumask *span,
			const struct cpumask *cpu_map,
			int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7683
					struct sched_group **sg,
7684 7685
					struct cpumask *tmpmask),
			struct cpumask *covered, struct cpumask *tmpmask)
L
Linus Torvalds 已提交
7686 7687 7688 7689
{
	struct sched_group *first = NULL, *last = NULL;
	int i;

7690
	cpumask_clear(covered);
7691

7692
	for_each_cpu(i, span) {
7693
		struct sched_group *sg;
7694
		int group = group_fn(i, cpu_map, &sg, tmpmask);
L
Linus Torvalds 已提交
7695 7696
		int j;

7697
		if (cpumask_test_cpu(i, covered))
L
Linus Torvalds 已提交
7698 7699
			continue;

7700
		cpumask_clear(sched_group_cpus(sg));
7701
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
7702

7703
		for_each_cpu(j, span) {
7704
			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
L
Linus Torvalds 已提交
7705 7706
				continue;

7707
			cpumask_set_cpu(j, covered);
7708
			cpumask_set_cpu(j, sched_group_cpus(sg));
L
Linus Torvalds 已提交
7709 7710 7711 7712 7713 7714 7715 7716 7717 7718
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

7719
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
7720

7721
#ifdef CONFIG_NUMA
7722

7723 7724 7725 7726 7727
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
7728
 * Find the next node to include in a given scheduling domain. Simply
7729 7730 7731 7732
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
7733
static int find_next_best_node(int node, nodemask_t *used_nodes)
7734 7735 7736 7737 7738
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

7739
	for (i = 0; i < nr_node_ids; i++) {
7740
		/* Start at @node */
7741
		n = (node + i) % nr_node_ids;
7742 7743 7744 7745 7746

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
7747
		if (node_isset(n, *used_nodes))
7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

7759
	node_set(best_node, *used_nodes);
7760 7761 7762 7763 7764 7765
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
7766
 * @span: resulting cpumask
7767
 *
I
Ingo Molnar 已提交
7768
 * Given a node, construct a good cpumask for its sched_domain to span. It
7769 7770 7771
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
7772
static void sched_domain_node_span(int node, struct cpumask *span)
7773
{
7774
	nodemask_t used_nodes;
7775
	int i;
7776

7777
	cpumask_clear(span);
7778
	nodes_clear(used_nodes);
7779

7780
	cpumask_or(span, span, cpumask_of_node(node));
7781
	node_set(node, used_nodes);
7782 7783

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
7784
		int next_node = find_next_best_node(node, &used_nodes);
7785

7786
		cpumask_or(span, span, cpumask_of_node(next_node));
7787 7788
	}
}
7789
#endif /* CONFIG_NUMA */
7790

7791
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
7792

7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807
/*
 * The cpus mask in sched_group and sched_domain hangs off the end.
 * FIXME: use cpumask_var_t or dynamic percpu alloc to avoid wasting space
 * for nr_cpu_ids < CONFIG_NR_CPUS.
 */
struct static_sched_group {
	struct sched_group sg;
	DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
};

struct static_sched_domain {
	struct sched_domain sd;
	DECLARE_BITMAP(span, CONFIG_NR_CPUS);
};

7808
/*
7809
 * SMT sched-domains:
7810
 */
L
Linus Torvalds 已提交
7811
#ifdef CONFIG_SCHED_SMT
7812 7813
static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
7814

I
Ingo Molnar 已提交
7815
static int
7816 7817
cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
		 struct sched_group **sg, struct cpumask *unused)
L
Linus Torvalds 已提交
7818
{
7819
	if (sg)
7820
		*sg = &per_cpu(sched_group_cpus, cpu).sg;
L
Linus Torvalds 已提交
7821 7822
	return cpu;
}
7823
#endif /* CONFIG_SCHED_SMT */
L
Linus Torvalds 已提交
7824

7825 7826 7827
/*
 * multi-core sched-domains:
 */
7828
#ifdef CONFIG_SCHED_MC
7829 7830
static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
7831
#endif /* CONFIG_SCHED_MC */
7832 7833

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
7834
static int
7835 7836
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
7837
{
7838
	int group;
7839

7840
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
7841
	group = cpumask_first(mask);
7842
	if (sg)
7843
		*sg = &per_cpu(sched_group_core, group).sg;
7844
	return group;
7845 7846
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
7847
static int
7848 7849
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *unused)
7850
{
7851
	if (sg)
7852
		*sg = &per_cpu(sched_group_core, cpu).sg;
7853 7854 7855 7856
	return cpu;
}
#endif

7857 7858
static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
7859

I
Ingo Molnar 已提交
7860
static int
7861 7862
cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
L
Linus Torvalds 已提交
7863
{
7864
	int group;
7865
#ifdef CONFIG_SCHED_MC
7866
	cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
7867
	group = cpumask_first(mask);
7868
#elif defined(CONFIG_SCHED_SMT)
7869
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
7870
	group = cpumask_first(mask);
L
Linus Torvalds 已提交
7871
#else
7872
	group = cpu;
L
Linus Torvalds 已提交
7873
#endif
7874
	if (sg)
7875
		*sg = &per_cpu(sched_group_phys, group).sg;
7876
	return group;
L
Linus Torvalds 已提交
7877 7878 7879 7880
}

#ifdef CONFIG_NUMA
/*
7881 7882 7883
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
7884
 */
7885
static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
7886
static struct sched_group ***sched_group_nodes_bycpu;
L
Linus Torvalds 已提交
7887

7888
static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
7889
static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
7890

7891 7892 7893
static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
				 struct sched_group **sg,
				 struct cpumask *nodemask)
7894
{
7895 7896
	int group;

7897
	cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
7898
	group = cpumask_first(nodemask);
7899 7900

	if (sg)
7901
		*sg = &per_cpu(sched_group_allnodes, group).sg;
7902
	return group;
L
Linus Torvalds 已提交
7903
}
7904

7905 7906 7907 7908 7909 7910 7911
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
7912
	do {
7913
		for_each_cpu(j, sched_group_cpus(sg)) {
7914
			struct sched_domain *sd;
7915

7916
			sd = &per_cpu(phys_domains, j).sd;
7917
			if (j != cpumask_first(sched_group_cpus(sd->groups))) {
7918 7919 7920 7921 7922 7923
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
7924

7925 7926 7927 7928
			sg_inc_cpu_power(sg, sd->groups->__cpu_power);
		}
		sg = sg->next;
	} while (sg != group_head);
7929
}
7930
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
7931

7932
#ifdef CONFIG_NUMA
7933
/* Free memory allocated for various sched_group structures */
7934 7935
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
7936
{
7937
	int cpu, i;
7938

7939
	for_each_cpu(cpu, cpu_map) {
7940 7941 7942 7943 7944 7945
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

7946
		for (i = 0; i < nr_node_ids; i++) {
7947 7948
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

7949
			cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
7950
			if (cpumask_empty(nodemask))
7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
7967
#else /* !CONFIG_NUMA */
7968 7969
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
7970 7971
{
}
7972
#endif /* CONFIG_NUMA */
7973

7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

7995
	if (cpu != cpumask_first(sched_group_cpus(sd->groups)))
7996 7997 7998 7999
		return;

	child = sd->child;

8000 8001
	sd->groups->__cpu_power = 0;

8002 8003 8004 8005 8006 8007 8008 8009 8010 8011
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
8012
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
8013 8014 8015 8016 8017 8018 8019 8020
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
8021
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
8022 8023 8024 8025
		group = group->next;
	} while (group != child->groups);
}

8026 8027 8028 8029 8030
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

8031 8032 8033 8034 8035 8036
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

8037
#define	SD_INIT(sd, type)	sd_init_##type(sd)
8038

8039 8040 8041 8042 8043
#define SD_INIT_FUNC(type)	\
static noinline void sd_init_##type(struct sched_domain *sd)	\
{								\
	memset(sd, 0, sizeof(*sd));				\
	*sd = SD_##type##_INIT;					\
8044
	sd->level = SD_LV_##type;				\
8045
	SD_INIT_NAME(sd, type);					\
8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif

8060 8061 8062 8063
static int default_relax_domain_level = -1;

static int __init setup_relax_domain_level(char *str)
{
8064 8065 8066 8067 8068 8069
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
	if (val < SD_LV_MAX)
		default_relax_domain_level = val;

8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
		sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
	} else {
		/* turn on idle balance on this domain */
		sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
	}
}

L
Linus Torvalds 已提交
8095
/*
8096 8097
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
8098
 */
8099
static int __build_sched_domains(const struct cpumask *cpu_map,
8100
				 struct sched_domain_attr *attr)
L
Linus Torvalds 已提交
8101
{
8102
	int i, err = -ENOMEM;
G
Gregory Haskins 已提交
8103
	struct root_domain *rd;
8104 8105
	cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
		tmpmask;
8106
#ifdef CONFIG_NUMA
8107
	cpumask_var_t domainspan, covered, notcovered;
8108
	struct sched_group **sched_group_nodes = NULL;
8109
	int sd_allnodes = 0;
8110

8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130
	if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
		goto out;
	if (!alloc_cpumask_var(&covered, GFP_KERNEL))
		goto free_domainspan;
	if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
		goto free_covered;
#endif

	if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
		goto free_notcovered;
	if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
		goto free_nodemask;
	if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
		goto free_this_sibling_map;
	if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
		goto free_this_core_map;
	if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
		goto free_send_covered;

#ifdef CONFIG_NUMA
8131 8132 8133
	/*
	 * Allocate the per-node list of sched groups
	 */
8134
	sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
I
Ingo Molnar 已提交
8135
				    GFP_KERNEL);
8136 8137
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
8138
		goto free_tmpmask;
8139 8140
	}
#endif
L
Linus Torvalds 已提交
8141

8142
	rd = alloc_rootdomain();
G
Gregory Haskins 已提交
8143 8144
	if (!rd) {
		printk(KERN_WARNING "Cannot alloc root domain\n");
8145
		goto free_sched_groups;
8146
	}
L
Li Zefan 已提交
8147

8148
#ifdef CONFIG_NUMA
8149
	sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
8150 8151
#endif

L
Linus Torvalds 已提交
8152
	/*
8153
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
8154
	 */
8155
	for_each_cpu(i, cpu_map) {
L
Linus Torvalds 已提交
8156 8157
		struct sched_domain *sd = NULL, *p;

8158
		cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
L
Linus Torvalds 已提交
8159 8160

#ifdef CONFIG_NUMA
8161 8162
		if (cpumask_weight(cpu_map) >
				SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
8163
			sd = &per_cpu(allnodes_domains, i).sd;
8164
			SD_INIT(sd, ALLNODES);
8165
			set_domain_attribute(sd, attr);
8166
			cpumask_copy(sched_domain_span(sd), cpu_map);
8167
			cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
8168
			p = sd;
8169
			sd_allnodes = 1;
8170 8171 8172
		} else
			p = NULL;

8173
		sd = &per_cpu(node_domains, i).sd;
8174
		SD_INIT(sd, NODE);
8175
		set_domain_attribute(sd, attr);
8176
		sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
8177
		sd->parent = p;
8178 8179
		if (p)
			p->child = sd;
8180 8181
		cpumask_and(sched_domain_span(sd),
			    sched_domain_span(sd), cpu_map);
L
Linus Torvalds 已提交
8182 8183 8184
#endif

		p = sd;
8185
		sd = &per_cpu(phys_domains, i).sd;
8186
		SD_INIT(sd, CPU);
8187
		set_domain_attribute(sd, attr);
8188
		cpumask_copy(sched_domain_span(sd), nodemask);
L
Linus Torvalds 已提交
8189
		sd->parent = p;
8190 8191
		if (p)
			p->child = sd;
8192
		cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
8193

8194 8195
#ifdef CONFIG_SCHED_MC
		p = sd;
8196
		sd = &per_cpu(core_domains, i).sd;
8197
		SD_INIT(sd, MC);
8198
		set_domain_attribute(sd, attr);
8199 8200
		cpumask_and(sched_domain_span(sd), cpu_map,
						   cpu_coregroup_mask(i));
8201
		sd->parent = p;
8202
		p->child = sd;
8203
		cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
8204 8205
#endif

L
Linus Torvalds 已提交
8206 8207
#ifdef CONFIG_SCHED_SMT
		p = sd;
8208
		sd = &per_cpu(cpu_domains, i).sd;
8209
		SD_INIT(sd, SIBLING);
8210
		set_domain_attribute(sd, attr);
8211
		cpumask_and(sched_domain_span(sd),
8212
			    topology_thread_cpumask(i), cpu_map);
L
Linus Torvalds 已提交
8213
		sd->parent = p;
8214
		p->child = sd;
8215
		cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
8216 8217 8218 8219 8220
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
8221
	for_each_cpu(i, cpu_map) {
8222
		cpumask_and(this_sibling_map,
8223
			    topology_thread_cpumask(i), cpu_map);
8224
		if (i != cpumask_first(this_sibling_map))
L
Linus Torvalds 已提交
8225 8226
			continue;

I
Ingo Molnar 已提交
8227
		init_sched_build_groups(this_sibling_map, cpu_map,
8228 8229
					&cpu_to_cpu_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
8230 8231 8232
	}
#endif

8233 8234
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
8235
	for_each_cpu(i, cpu_map) {
8236
		cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
8237
		if (i != cpumask_first(this_core_map))
8238
			continue;
8239

I
Ingo Molnar 已提交
8240
		init_sched_build_groups(this_core_map, cpu_map,
8241 8242
					&cpu_to_core_group,
					send_covered, tmpmask);
8243 8244 8245
	}
#endif

L
Linus Torvalds 已提交
8246
	/* Set up physical groups */
8247
	for (i = 0; i < nr_node_ids; i++) {
8248
		cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8249
		if (cpumask_empty(nodemask))
L
Linus Torvalds 已提交
8250 8251
			continue;

8252 8253 8254
		init_sched_build_groups(nodemask, cpu_map,
					&cpu_to_phys_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
8255 8256 8257 8258
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
8259 8260 8261 8262 8263
	if (sd_allnodes) {
		init_sched_build_groups(cpu_map, cpu_map,
					&cpu_to_allnodes_group,
					send_covered, tmpmask);
	}
8264

8265
	for (i = 0; i < nr_node_ids; i++) {
8266 8267 8268 8269
		/* Set up node groups */
		struct sched_group *sg, *prev;
		int j;

8270
		cpumask_clear(covered);
8271
		cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8272
		if (cpumask_empty(nodemask)) {
8273
			sched_group_nodes[i] = NULL;
8274
			continue;
8275
		}
8276

8277
		sched_domain_node_span(i, domainspan);
8278
		cpumask_and(domainspan, domainspan, cpu_map);
8279

8280 8281
		sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
				  GFP_KERNEL, i);
8282 8283 8284 8285 8286
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
8287
		sched_group_nodes[i] = sg;
8288
		for_each_cpu(j, nodemask) {
8289
			struct sched_domain *sd;
I
Ingo Molnar 已提交
8290

8291
			sd = &per_cpu(node_domains, j).sd;
8292 8293
			sd->groups = sg;
		}
8294
		sg->__cpu_power = 0;
8295
		cpumask_copy(sched_group_cpus(sg), nodemask);
8296
		sg->next = sg;
8297
		cpumask_or(covered, covered, nodemask);
8298 8299
		prev = sg;

8300 8301
		for (j = 0; j < nr_node_ids; j++) {
			int n = (i + j) % nr_node_ids;
8302

8303 8304 8305 8306
			cpumask_complement(notcovered, covered);
			cpumask_and(tmpmask, notcovered, cpu_map);
			cpumask_and(tmpmask, tmpmask, domainspan);
			if (cpumask_empty(tmpmask))
8307 8308
				break;

8309
			cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
8310
			if (cpumask_empty(tmpmask))
8311 8312
				continue;

8313 8314
			sg = kmalloc_node(sizeof(struct sched_group) +
					  cpumask_size(),
8315
					  GFP_KERNEL, i);
8316 8317 8318
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
8319
				goto error;
8320
			}
8321
			sg->__cpu_power = 0;
8322
			cpumask_copy(sched_group_cpus(sg), tmpmask);
8323
			sg->next = prev->next;
8324
			cpumask_or(covered, covered, tmpmask);
8325 8326 8327 8328
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
8329 8330 8331
#endif

	/* Calculate CPU power for physical packages and nodes */
8332
#ifdef CONFIG_SCHED_SMT
8333
	for_each_cpu(i, cpu_map) {
8334
		struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
I
Ingo Molnar 已提交
8335

8336
		init_sched_groups_power(i, sd);
8337
	}
L
Linus Torvalds 已提交
8338
#endif
8339
#ifdef CONFIG_SCHED_MC
8340
	for_each_cpu(i, cpu_map) {
8341
		struct sched_domain *sd = &per_cpu(core_domains, i).sd;
I
Ingo Molnar 已提交
8342

8343
		init_sched_groups_power(i, sd);
8344 8345
	}
#endif
8346

8347
	for_each_cpu(i, cpu_map) {
8348
		struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
I
Ingo Molnar 已提交
8349

8350
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
8351 8352
	}

8353
#ifdef CONFIG_NUMA
8354
	for (i = 0; i < nr_node_ids; i++)
8355
		init_numa_sched_groups_power(sched_group_nodes[i]);
8356

8357 8358
	if (sd_allnodes) {
		struct sched_group *sg;
8359

8360
		cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
8361
								tmpmask);
8362 8363
		init_numa_sched_groups_power(sg);
	}
8364 8365
#endif

L
Linus Torvalds 已提交
8366
	/* Attach the domains */
8367
	for_each_cpu(i, cpu_map) {
L
Linus Torvalds 已提交
8368 8369
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
8370
		sd = &per_cpu(cpu_domains, i).sd;
8371
#elif defined(CONFIG_SCHED_MC)
8372
		sd = &per_cpu(core_domains, i).sd;
L
Linus Torvalds 已提交
8373
#else
8374
		sd = &per_cpu(phys_domains, i).sd;
L
Linus Torvalds 已提交
8375
#endif
G
Gregory Haskins 已提交
8376
		cpu_attach_domain(sd, rd, i);
L
Linus Torvalds 已提交
8377
	}
8378

8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406
	err = 0;

free_tmpmask:
	free_cpumask_var(tmpmask);
free_send_covered:
	free_cpumask_var(send_covered);
free_this_core_map:
	free_cpumask_var(this_core_map);
free_this_sibling_map:
	free_cpumask_var(this_sibling_map);
free_nodemask:
	free_cpumask_var(nodemask);
free_notcovered:
#ifdef CONFIG_NUMA
	free_cpumask_var(notcovered);
free_covered:
	free_cpumask_var(covered);
free_domainspan:
	free_cpumask_var(domainspan);
out:
#endif
	return err;

free_sched_groups:
#ifdef CONFIG_NUMA
	kfree(sched_group_nodes);
#endif
	goto free_tmpmask;
8407

8408
#ifdef CONFIG_NUMA
8409
error:
8410
	free_sched_groups(cpu_map, tmpmask);
8411
	free_rootdomain(rd);
8412
	goto free_tmpmask;
8413
#endif
L
Linus Torvalds 已提交
8414
}
P
Paul Jackson 已提交
8415

8416
static int build_sched_domains(const struct cpumask *cpu_map)
8417 8418 8419 8420
{
	return __build_sched_domains(cpu_map, NULL);
}

8421
static struct cpumask *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
8422
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
8423 8424
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
8425 8426 8427

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
8428 8429
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
8430
 */
8431
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
8432

8433 8434 8435 8436 8437 8438
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
8439
{
8440
	return 0;
8441 8442
}

8443
/*
I
Ingo Molnar 已提交
8444
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
8445 8446
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
8447
 */
8448
static int arch_init_sched_domains(const struct cpumask *cpu_map)
8449
{
8450 8451
	int err;

8452
	arch_update_cpu_topology();
P
Paul Jackson 已提交
8453
	ndoms_cur = 1;
8454
	doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
P
Paul Jackson 已提交
8455
	if (!doms_cur)
8456
		doms_cur = fallback_doms;
8457
	cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
8458
	dattr_cur = NULL;
8459
	err = build_sched_domains(doms_cur);
8460
	register_sched_domain_sysctl();
8461 8462

	return err;
8463 8464
}

8465 8466
static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
				       struct cpumask *tmpmask)
L
Linus Torvalds 已提交
8467
{
8468
	free_sched_groups(cpu_map, tmpmask);
8469
}
L
Linus Torvalds 已提交
8470

8471 8472 8473 8474
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
8475
static void detach_destroy_domains(const struct cpumask *cpu_map)
8476
{
8477 8478
	/* Save because hotplug lock held. */
	static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
8479 8480
	int i;

8481
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
8482
		cpu_attach_domain(NULL, &def_root_domain, i);
8483
	synchronize_sched();
8484
	arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
8485 8486
}

8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
8503 8504
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
8505
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
8506 8507 8508
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
8509
 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
I
Ingo Molnar 已提交
8510 8511 8512
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
8513 8514 8515
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
I
Ingo Molnar 已提交
8516 8517
 * The passed in 'doms_new' should be kmalloc'd. This routine takes
 * ownership of it and will kfree it when done with it. If the caller
8518 8519 8520 8521
 * failed the kmalloc call, then it can pass in doms_new == NULL &&
 * ndoms_new == 1, and partition_sched_domains() will fallback to
 * the single partition 'fallback_doms', it also forces the domains
 * to be rebuilt.
P
Paul Jackson 已提交
8522
 *
8523
 * If doms_new == NULL it will be replaced with cpu_online_mask.
8524 8525
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
8526
 *
P
Paul Jackson 已提交
8527 8528
 * Call with hotplug lock held
 */
8529 8530
/* FIXME: Change to struct cpumask *doms_new[] */
void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
8531
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
8532
{
8533
	int i, j, n;
8534
	int new_topology;
P
Paul Jackson 已提交
8535

8536
	mutex_lock(&sched_domains_mutex);
8537

8538 8539 8540
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

8541 8542 8543
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

8544
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
8545 8546 8547

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
8548
		for (j = 0; j < n && !new_topology; j++) {
8549
			if (cpumask_equal(&doms_cur[i], &doms_new[j])
8550
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
8551 8552 8553 8554 8555 8556 8557 8558
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
		detach_destroy_domains(doms_cur + i);
match1:
		;
	}

8559 8560
	if (doms_new == NULL) {
		ndoms_cur = 0;
8561
		doms_new = fallback_doms;
8562
		cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
8563
		WARN_ON_ONCE(dattr_new);
8564 8565
	}

P
Paul Jackson 已提交
8566 8567
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
8568
		for (j = 0; j < ndoms_cur && !new_topology; j++) {
8569
			if (cpumask_equal(&doms_new[i], &doms_cur[j])
8570
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
8571 8572 8573
				goto match2;
		}
		/* no match - add a new doms_new */
8574 8575
		__build_sched_domains(doms_new + i,
					dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
8576 8577 8578 8579 8580
match2:
		;
	}

	/* Remember the new sched domains */
8581
	if (doms_cur != fallback_doms)
P
Paul Jackson 已提交
8582
		kfree(doms_cur);
8583
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
8584
	doms_cur = doms_new;
8585
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
8586
	ndoms_cur = ndoms_new;
8587 8588

	register_sched_domain_sysctl();
8589

8590
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
8591 8592
}

8593
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
8594
static void arch_reinit_sched_domains(void)
8595
{
8596
	get_online_cpus();
8597 8598 8599 8600

	/* Destroy domains first to force the rebuild */
	partition_sched_domains(0, NULL, NULL);

8601
	rebuild_sched_domains();
8602
	put_online_cpus();
8603 8604 8605 8606
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
8607
	unsigned int level = 0;
8608

8609 8610 8611 8612 8613 8614 8615 8616 8617
	if (sscanf(buf, "%u", &level) != 1)
		return -EINVAL;

	/*
	 * level is always be positive so don't check for
	 * level < POWERSAVINGS_BALANCE_NONE which is 0
	 * What happens on 0 or 1 byte write,
	 * need to check for count as well?
	 */
8618

8619
	if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
8620 8621 8622
		return -EINVAL;

	if (smt)
8623
		sched_smt_power_savings = level;
8624
	else
8625
		sched_mc_power_savings = level;
8626

8627
	arch_reinit_sched_domains();
8628

8629
	return count;
8630 8631 8632
}

#ifdef CONFIG_SCHED_MC
8633 8634
static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
					   char *page)
8635 8636 8637
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
8638
static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
8639
					    const char *buf, size_t count)
8640 8641 8642
{
	return sched_power_savings_store(buf, count, 0);
}
8643 8644 8645
static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
			 sched_mc_power_savings_show,
			 sched_mc_power_savings_store);
8646 8647 8648
#endif

#ifdef CONFIG_SCHED_SMT
8649 8650
static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
					    char *page)
8651 8652 8653
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
8654
static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
8655
					     const char *buf, size_t count)
8656 8657 8658
{
	return sched_power_savings_store(buf, count, 1);
}
8659 8660
static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
		   sched_smt_power_savings_show,
A
Adrian Bunk 已提交
8661 8662 8663
		   sched_smt_power_savings_store);
#endif

8664
int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
A
Adrian Bunk 已提交
8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
8680
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
8681

8682
#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
8683
/*
8684 8685
 * Add online and remove offline CPUs from the scheduler domains.
 * When cpusets are enabled they take over this function.
L
Linus Torvalds 已提交
8686 8687 8688
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
8689 8690 8691 8692 8693 8694
{
	switch (action) {
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
8695
		partition_sched_domains(1, NULL, NULL);
8696 8697 8698 8699 8700 8701 8702 8703 8704 8705
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
}
#endif

static int update_runtime(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
8706
{
P
Peter Zijlstra 已提交
8707 8708
	int cpu = (int)(long)hcpu;

L
Linus Torvalds 已提交
8709 8710
	switch (action) {
	case CPU_DOWN_PREPARE:
8711
	case CPU_DOWN_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
8712
		disable_runtime(cpu_rq(cpu));
L
Linus Torvalds 已提交
8713 8714 8715
		return NOTIFY_OK;

	case CPU_DOWN_FAILED:
8716
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
8717
	case CPU_ONLINE:
8718
	case CPU_ONLINE_FROZEN:
P
Peter Zijlstra 已提交
8719
		enable_runtime(cpu_rq(cpu));
8720 8721
		return NOTIFY_OK;

L
Linus Torvalds 已提交
8722 8723 8724 8725 8726 8727 8728
	default:
		return NOTIFY_DONE;
	}
}

void __init sched_init_smp(void)
{
8729 8730 8731
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
8732

8733 8734 8735 8736 8737
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
8738
	get_online_cpus();
8739
	mutex_lock(&sched_domains_mutex);
8740 8741 8742 8743
	arch_init_sched_domains(cpu_online_mask);
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
8744
	mutex_unlock(&sched_domains_mutex);
8745
	put_online_cpus();
8746 8747

#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
8748 8749
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
8750 8751 8752 8753 8754
#endif

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

8755
	init_hrtick();
8756 8757

	/* Move init over to a non-isolated CPU */
8758
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
8759
		BUG();
I
Ingo Molnar 已提交
8760
	sched_init_granularity();
8761
	free_cpumask_var(non_isolated_cpus);
8762 8763

	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
8764
	init_sched_rt_class();
L
Linus Torvalds 已提交
8765 8766 8767 8768
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
8769
	sched_init_granularity();
L
Linus Torvalds 已提交
8770 8771 8772 8773 8774 8775 8776 8777 8778 8779
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
8780
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
8781 8782
{
	cfs_rq->tasks_timeline = RB_ROOT;
8783
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
8784 8785 8786
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
8787
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
8788 8789
}

P
Peter Zijlstra 已提交
8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

8803
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
8804
	rt_rq->highest_prio.curr = MAX_RT_PRIO;
8805
#ifdef CONFIG_SMP
8806
	rt_rq->highest_prio.next = MAX_RT_PRIO;
P
Peter Zijlstra 已提交
8807 8808
#endif
#endif
P
Peter Zijlstra 已提交
8809 8810 8811
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
8812
	plist_head_init(&rq->rt.pushable_tasks, &rq->lock);
P
Peter Zijlstra 已提交
8813 8814 8815 8816
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
8817 8818
	rt_rq->rt_runtime = 0;
	spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8819

8820
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8821
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
8822 8823
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
8824 8825
}

P
Peter Zijlstra 已提交
8826
#ifdef CONFIG_FAIR_GROUP_SCHED
8827 8828 8829
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
				struct sched_entity *se, int cpu, int add,
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
8830
{
8831
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
8832 8833 8834 8835 8836 8837 8838
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
D
Dhaval Giani 已提交
8839 8840 8841 8842
	/* se could be NULL for init_task_group */
	if (!se)
		return;

8843 8844 8845 8846 8847
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
8848 8849
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
8850
	se->load.inv_weight = 0;
8851
	se->parent = parent;
P
Peter Zijlstra 已提交
8852
}
8853
#endif
P
Peter Zijlstra 已提交
8854

8855
#ifdef CONFIG_RT_GROUP_SCHED
8856 8857 8858
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu, int add,
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
8859
{
8860 8861
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
8862 8863 8864 8865
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
	rt_rq->rt_se = rt_se;
P
Peter Zijlstra 已提交
8866
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8867 8868 8869 8870
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
8871 8872 8873
	if (!rt_se)
		return;

8874 8875 8876 8877 8878
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
8879
	rt_se->my_q = rt_rq;
8880
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
8881 8882 8883 8884
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
8885 8886
void __init sched_init(void)
{
I
Ingo Molnar 已提交
8887
	int i, j;
8888 8889 8890 8891 8892 8893 8894
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8895 8896 8897
#endif
#ifdef CONFIG_USER_SCHED
	alloc_size *= 2;
8898 8899
#endif
#ifdef CONFIG_CPUMASK_OFFSTACK
8900
	alloc_size += num_possible_cpus() * cpumask_size();
8901 8902 8903 8904 8905 8906
#endif
	/*
	 * As sched_init() is called before page_alloc is setup,
	 * we use alloc_bootmem().
	 */
	if (alloc_size) {
8907
		ptr = (unsigned long)alloc_bootmem(alloc_size);
8908 8909 8910 8911 8912 8913 8914

#ifdef CONFIG_FAIR_GROUP_SCHED
		init_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
8915 8916 8917 8918 8919 8920 8921

#ifdef CONFIG_USER_SCHED
		root_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
8922 8923
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_FAIR_GROUP_SCHED */
8924 8925 8926 8927 8928
#ifdef CONFIG_RT_GROUP_SCHED
		init_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.rt_rq = (struct rt_rq **)ptr;
8929 8930 8931 8932 8933 8934 8935 8936
		ptr += nr_cpu_ids * sizeof(void **);

#ifdef CONFIG_USER_SCHED
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.rt_rq = (struct rt_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
8937 8938
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
8939 8940 8941 8942 8943 8944
#ifdef CONFIG_CPUMASK_OFFSTACK
		for_each_possible_cpu(i) {
			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
			ptr += cpumask_size();
		}
#endif /* CONFIG_CPUMASK_OFFSTACK */
8945
	}
I
Ingo Molnar 已提交
8946

G
Gregory Haskins 已提交
8947 8948 8949 8950
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

8951 8952 8953 8954 8955 8956
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
	init_rt_bandwidth(&init_task_group.rt_bandwidth,
			global_rt_period(), global_rt_runtime());
8957 8958 8959
#ifdef CONFIG_USER_SCHED
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
			global_rt_period(), RUNTIME_INF);
8960 8961
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
8962

8963
#ifdef CONFIG_GROUP_SCHED
P
Peter Zijlstra 已提交
8964
	list_add(&init_task_group.list, &task_groups);
P
Peter Zijlstra 已提交
8965 8966 8967 8968 8969 8970
	INIT_LIST_HEAD(&init_task_group.children);

#ifdef CONFIG_USER_SCHED
	INIT_LIST_HEAD(&root_task_group.children);
	init_task_group.parent = &root_task_group;
	list_add(&init_task_group.siblings, &root_task_group.children);
8971 8972
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_GROUP_SCHED */
P
Peter Zijlstra 已提交
8973

8974
	for_each_possible_cpu(i) {
8975
		struct rq *rq;
L
Linus Torvalds 已提交
8976 8977 8978

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
8979
		rq->nr_running = 0;
I
Ingo Molnar 已提交
8980
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
8981
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
8982
#ifdef CONFIG_FAIR_GROUP_SCHED
8983
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
8984
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999
#ifdef CONFIG_CGROUP_SCHED
		/*
		 * How much cpu bandwidth does init_task_group get?
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
		 * init_task_group and its child task-groups in a fair manner,
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
		 * In other words, if init_task_group has 10 tasks of weight
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
9000
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
9001 9002 9003 9004
		 *
		 * We achieve this by letting init_task_group's tasks sit
		 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
		 */
9005
		init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
9006
#elif defined CONFIG_USER_SCHED
9007 9008
		root_task_group.shares = NICE_0_LOAD;
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
D
Dhaval Giani 已提交
9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019
		/*
		 * In case of task-groups formed thr' the user id of tasks,
		 * init_task_group represents tasks belonging to root user.
		 * Hence it forms a sibling of all subsequent groups formed.
		 * In this case, init_task_group gets only a fraction of overall
		 * system cpu resource, based on the weight assigned to root
		 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
		 * by letting tasks of init_task_group sit in a separate cfs_rq
		 * (init_cfs_rq) and having one entity represent this group of
		 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
		 */
9020
		init_tg_cfs_entry(&init_task_group,
P
Peter Zijlstra 已提交
9021
				&per_cpu(init_cfs_rq, i),
9022 9023
				&per_cpu(init_sched_entity, i), i, 1,
				root_task_group.se[i]);
P
Peter Zijlstra 已提交
9024

9025
#endif
D
Dhaval Giani 已提交
9026 9027 9028
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9029
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9030
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
D
Dhaval Giani 已提交
9031
#ifdef CONFIG_CGROUP_SCHED
9032
		init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
9033
#elif defined CONFIG_USER_SCHED
9034
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
9035
		init_tg_rt_entry(&init_task_group,
P
Peter Zijlstra 已提交
9036
				&per_cpu(init_rt_rq, i),
9037 9038
				&per_cpu(init_sched_rt_entity, i), i, 1,
				root_task_group.rt_se[i]);
D
Dhaval Giani 已提交
9039
#endif
I
Ingo Molnar 已提交
9040
#endif
L
Linus Torvalds 已提交
9041

I
Ingo Molnar 已提交
9042 9043
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
9044
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
9045
		rq->sd = NULL;
G
Gregory Haskins 已提交
9046
		rq->rd = NULL;
L
Linus Torvalds 已提交
9047
		rq->active_balance = 0;
I
Ingo Molnar 已提交
9048
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
9049
		rq->push_cpu = 0;
9050
		rq->cpu = i;
9051
		rq->online = 0;
L
Linus Torvalds 已提交
9052 9053
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
9054
		rq_attach_root(rq, &def_root_domain);
L
Linus Torvalds 已提交
9055
#endif
P
Peter Zijlstra 已提交
9056
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
9057 9058 9059
		atomic_set(&rq->nr_iowait, 0);
	}

9060
	set_load_weight(&init_task);
9061

9062 9063 9064 9065
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

9066
#ifdef CONFIG_SMP
9067
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9068 9069
#endif

9070 9071 9072 9073
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
I
Ingo Molnar 已提交
9087 9088 9089 9090
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
9091

9092 9093
	/* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
	alloc_bootmem_cpumask_var(&nohz_cpu_mask);
9094
#ifdef CONFIG_SMP
9095 9096 9097
#ifdef CONFIG_NO_HZ
	alloc_bootmem_cpumask_var(&nohz.cpu_mask);
#endif
9098
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
9099
#endif /* SMP */
9100

9101 9102
	perf_counter_init();

9103
	scheduler_running = 1;
L
Linus Torvalds 已提交
9104 9105 9106 9107 9108
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
9109
#ifdef in_atomic
L
Linus Torvalds 已提交
9110 9111
	static unsigned long prev_jiffy;	/* ratelimiting */

I
Ingo Molnar 已提交
9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130
	if ((!in_atomic() && !irqs_disabled()) ||
		    system_state != SYSTEM_RUNNING || oops_in_progress)
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
9131 9132 9133 9134 9135 9136
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
9137 9138 9139
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
9140

9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
9152 9153
void normalize_rt_tasks(void)
{
9154
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
9155
	unsigned long flags;
9156
	struct rq *rq;
L
Linus Torvalds 已提交
9157

9158
	read_lock_irqsave(&tasklist_lock, flags);
9159
	do_each_thread(g, p) {
9160 9161 9162 9163 9164 9165
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
9166 9167
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
9168 9169 9170
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
9171
#endif
I
Ingo Molnar 已提交
9172 9173 9174 9175 9176 9177 9178 9179

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
9180
			continue;
I
Ingo Molnar 已提交
9181
		}
L
Linus Torvalds 已提交
9182

9183
		spin_lock(&p->pi_lock);
9184
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
9185

9186
		normalize_task(rq, p);
9187

9188
		__task_rq_unlock(rq);
9189
		spin_unlock(&p->pi_lock);
9190 9191
	} while_each_thread(g, p);

9192
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
9193 9194 9195
}

#endif /* CONFIG_MAGIC_SYSRQ */
9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
9214
struct task_struct *curr_task(int cpu)
9215 9216 9217 9218 9219 9220 9221 9222 9223 9224
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
9225 9226
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
9227 9228 9229 9230 9231 9232 9233
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
9234
void set_curr_task(int cpu, struct task_struct *p)
9235 9236 9237 9238 9239
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
9240

9241 9242
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

9257 9258
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
9259 9260
{
	struct cfs_rq *cfs_rq;
9261
	struct sched_entity *se;
9262
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
9263 9264
	int i;

9265
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
9266 9267
	if (!tg->cfs_rq)
		goto err;
9268
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
9269 9270
	if (!tg->se)
		goto err;
9271 9272

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
9273 9274

	for_each_possible_cpu(i) {
9275
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
9276

9277 9278
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
9279 9280 9281
		if (!cfs_rq)
			goto err;

9282 9283
		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
9284 9285 9286
		if (!se)
			goto err;

9287
		init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305
	}

	return 1;

 err:
	return 0;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
			&cpu_rq(cpu)->leaf_cfs_rq_list);
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
}
9306
#else /* !CONFG_FAIR_GROUP_SCHED */
9307 9308 9309 9310
static inline void free_fair_sched_group(struct task_group *tg)
{
}

9311 9312
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323
{
	return 1;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
9324
#endif /* CONFIG_FAIR_GROUP_SCHED */
9325 9326

#ifdef CONFIG_RT_GROUP_SCHED
9327 9328 9329 9330
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

9331 9332
	destroy_rt_bandwidth(&tg->rt_bandwidth);

9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

9344 9345
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9346 9347
{
	struct rt_rq *rt_rq;
9348
	struct sched_rt_entity *rt_se;
9349 9350 9351
	struct rq *rq;
	int i;

9352
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
9353 9354
	if (!tg->rt_rq)
		goto err;
9355
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
9356 9357 9358
	if (!tg->rt_se)
		goto err;

9359 9360
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
9361 9362 9363 9364

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

9365 9366
		rt_rq = kzalloc_node(sizeof(struct rt_rq),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
9367 9368
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
9369

9370 9371
		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
9372 9373
		if (!rt_se)
			goto err;
S
Srivatsa Vaddagiri 已提交
9374

9375
		init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
S
Srivatsa Vaddagiri 已提交
9376 9377
	}

9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393
	return 1;

 err:
	return 0;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
			&cpu_rq(cpu)->leaf_rt_rq_list);
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
}
9394
#else /* !CONFIG_RT_GROUP_SCHED */
9395 9396 9397 9398
static inline void free_rt_sched_group(struct task_group *tg)
{
}

9399 9400
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411
{
	return 1;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
}
9412
#endif /* CONFIG_RT_GROUP_SCHED */
9413

9414
#ifdef CONFIG_GROUP_SCHED
9415 9416 9417 9418 9419 9420 9421 9422
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
9423
struct task_group *sched_create_group(struct task_group *parent)
9424 9425 9426 9427 9428 9429 9430 9431 9432
{
	struct task_group *tg;
	unsigned long flags;
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

9433
	if (!alloc_fair_sched_group(tg, parent))
9434 9435
		goto err;

9436
	if (!alloc_rt_sched_group(tg, parent))
9437 9438
		goto err;

9439
	spin_lock_irqsave(&task_group_lock, flags);
9440
	for_each_possible_cpu(i) {
9441 9442
		register_fair_sched_group(tg, i);
		register_rt_sched_group(tg, i);
9443
	}
P
Peter Zijlstra 已提交
9444
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
9445 9446 9447 9448 9449

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
9450
	list_add_rcu(&tg->siblings, &parent->children);
9451
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
9452

9453
	return tg;
S
Srivatsa Vaddagiri 已提交
9454 9455

err:
P
Peter Zijlstra 已提交
9456
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
9457 9458 9459
	return ERR_PTR(-ENOMEM);
}

9460
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
9461
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
9462 9463
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
9464
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
9465 9466
}

9467
/* Destroy runqueue etc associated with a task group */
9468
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
9469
{
9470
	unsigned long flags;
9471
	int i;
S
Srivatsa Vaddagiri 已提交
9472

9473
	spin_lock_irqsave(&task_group_lock, flags);
9474
	for_each_possible_cpu(i) {
9475 9476
		unregister_fair_sched_group(tg, i);
		unregister_rt_sched_group(tg, i);
9477
	}
P
Peter Zijlstra 已提交
9478
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
9479
	list_del_rcu(&tg->siblings);
9480
	spin_unlock_irqrestore(&task_group_lock, flags);
9481 9482

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
9483
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
9484 9485
}

9486
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
9487 9488 9489
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
9490 9491
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
9492 9493 9494 9495 9496 9497 9498 9499 9500
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

	update_rq_clock(rq);

9501
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
9502 9503
	on_rq = tsk->se.on_rq;

9504
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
9505
		dequeue_task(rq, tsk, 0);
9506 9507
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
9508

P
Peter Zijlstra 已提交
9509
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
9510

P
Peter Zijlstra 已提交
9511 9512 9513 9514 9515
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (tsk->sched_class->moved_group)
		tsk->sched_class->moved_group(tsk);
#endif

9516 9517 9518
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
9519
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
9520 9521 9522

	task_rq_unlock(rq, &flags);
}
9523
#endif /* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
9524

9525
#ifdef CONFIG_FAIR_GROUP_SCHED
9526
static void __set_se_shares(struct sched_entity *se, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
9527 9528 9529 9530 9531
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	int on_rq;

	on_rq = se->on_rq;
9532
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
9533 9534 9535
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
9536
	se->load.inv_weight = 0;
S
Srivatsa Vaddagiri 已提交
9537

9538
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
9539
		enqueue_entity(cfs_rq, se, 0);
9540
}
9541

9542 9543 9544 9545 9546 9547 9548 9549 9550
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__set_se_shares(se, shares);
	spin_unlock_irqrestore(&rq->lock, flags);
S
Srivatsa Vaddagiri 已提交
9551 9552
}

9553 9554
static DEFINE_MUTEX(shares_mutex);

9555
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
9556 9557
{
	int i;
9558
	unsigned long flags;
9559

9560 9561 9562 9563 9564 9565
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

9566 9567
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
9568 9569
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
9570

9571
	mutex_lock(&shares_mutex);
9572
	if (tg->shares == shares)
9573
		goto done;
S
Srivatsa Vaddagiri 已提交
9574

9575
	spin_lock_irqsave(&task_group_lock, flags);
9576 9577
	for_each_possible_cpu(i)
		unregister_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
9578
	list_del_rcu(&tg->siblings);
9579
	spin_unlock_irqrestore(&task_group_lock, flags);
9580 9581 9582 9583 9584 9585 9586 9587

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
9588
	tg->shares = shares;
9589 9590 9591 9592 9593
	for_each_possible_cpu(i) {
		/*
		 * force a rebalance
		 */
		cfs_rq_set_shares(tg->cfs_rq[i], 0);
9594
		set_se_shares(tg->se[i], shares);
9595
	}
S
Srivatsa Vaddagiri 已提交
9596

9597 9598 9599 9600
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
9601
	spin_lock_irqsave(&task_group_lock, flags);
9602 9603
	for_each_possible_cpu(i)
		register_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
9604
	list_add_rcu(&tg->siblings, &tg->parent->children);
9605
	spin_unlock_irqrestore(&task_group_lock, flags);
9606
done:
9607
	mutex_unlock(&shares_mutex);
9608
	return 0;
S
Srivatsa Vaddagiri 已提交
9609 9610
}

9611 9612 9613 9614
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
9615
#endif
9616

9617
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9618
/*
P
Peter Zijlstra 已提交
9619
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
9620
 */
P
Peter Zijlstra 已提交
9621 9622 9623 9624 9625
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
9626
		return 1ULL << 20;
P
Peter Zijlstra 已提交
9627

P
Peter Zijlstra 已提交
9628
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
9629 9630
}

P
Peter Zijlstra 已提交
9631 9632
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
9633
{
P
Peter Zijlstra 已提交
9634
	struct task_struct *g, *p;
9635

P
Peter Zijlstra 已提交
9636 9637 9638 9639
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
9640

P
Peter Zijlstra 已提交
9641 9642
	return 0;
}
9643

P
Peter Zijlstra 已提交
9644 9645 9646 9647 9648
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
9649

P
Peter Zijlstra 已提交
9650 9651 9652 9653 9654 9655
static int tg_schedulable(struct task_group *tg, void *data)
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
9656

P
Peter Zijlstra 已提交
9657 9658
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
9659

P
Peter Zijlstra 已提交
9660 9661 9662
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
9663 9664
	}

9665 9666 9667 9668 9669 9670 9671
#ifdef CONFIG_USER_SCHED
	if (tg == &root_task_group) {
		period = global_rt_period();
		runtime = global_rt_runtime();
	}
#endif

9672 9673 9674 9675 9676
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
9677

9678 9679 9680
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
9681 9682
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
9683

P
Peter Zijlstra 已提交
9684
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
9685

9686 9687 9688 9689 9690
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
9691

9692 9693 9694
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
9695 9696 9697
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
9698

P
Peter Zijlstra 已提交
9699 9700 9701 9702
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
9703

P
Peter Zijlstra 已提交
9704
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
9705
	}
P
Peter Zijlstra 已提交
9706

P
Peter Zijlstra 已提交
9707 9708 9709 9710
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
9711 9712
}

P
Peter Zijlstra 已提交
9713
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
9714
{
P
Peter Zijlstra 已提交
9715 9716 9717 9718 9719 9720 9721
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

	return walk_tg_tree(tg_schedulable, tg_nop, &data);
9722 9723
}

9724 9725
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
9726
{
P
Peter Zijlstra 已提交
9727
	int i, err = 0;
P
Peter Zijlstra 已提交
9728 9729

	mutex_lock(&rt_constraints_mutex);
9730
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
9731 9732
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
9733
		goto unlock;
P
Peter Zijlstra 已提交
9734 9735

	spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9736 9737
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
9738 9739 9740 9741 9742 9743 9744 9745 9746

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = rt_runtime;
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
9747
 unlock:
9748
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
9749 9750 9751
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
9752 9753
}

9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
9766 9767 9768 9769
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

9770
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
9771 9772
		return -1;

9773
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
9774 9775 9776
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
9777 9778 9779 9780 9781 9782 9783 9784

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

9785 9786 9787
	if (rt_period == 0)
		return -EINVAL;

9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801
	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
9802
	u64 runtime, period;
9803 9804
	int ret = 0;

9805 9806 9807
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

9808 9809 9810 9811 9812 9813 9814 9815
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
9816

9817
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
9818
	read_lock(&tasklist_lock);
9819
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
9820
	read_unlock(&tasklist_lock);
9821 9822 9823 9824
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
9825 9826 9827 9828 9829 9830 9831 9832 9833 9834

int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

9835
#else /* !CONFIG_RT_GROUP_SCHED */
9836 9837
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
9838 9839 9840
	unsigned long flags;
	int i;

9841 9842 9843
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

P
Peter Zijlstra 已提交
9844 9845 9846 9847 9848 9849 9850 9851 9852 9853
	spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = global_rt_runtime();
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);

9854 9855
	return 0;
}
9856
#endif /* CONFIG_RT_GROUP_SCHED */
9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886

int sched_rt_handler(struct ctl_table *table, int write,
		struct file *filp, void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

	ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
9887

9888
#ifdef CONFIG_CGROUP_SCHED
9889 9890

/* return corresponding task_group object of a cgroup */
9891
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
9892
{
9893 9894
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
9895 9896 9897
}

static struct cgroup_subsys_state *
9898
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
9899
{
9900
	struct task_group *tg, *parent;
9901

9902
	if (!cgrp->parent) {
9903 9904 9905 9906
		/* This is early initialization for the top cgroup */
		return &init_task_group.css;
	}

9907 9908
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
9909 9910 9911 9912 9913 9914
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

I
Ingo Molnar 已提交
9915 9916
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9917
{
9918
	struct task_group *tg = cgroup_tg(cgrp);
9919 9920 9921 9922

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
9923 9924 9925
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk)
9926
{
9927
#ifdef CONFIG_RT_GROUP_SCHED
9928
	if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
9929 9930
		return -EINVAL;
#else
9931 9932 9933
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
9934
#endif
9935 9936 9937 9938 9939

	return 0;
}

static void
9940
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9941 9942 9943 9944 9945
			struct cgroup *old_cont, struct task_struct *tsk)
{
	sched_move_task(tsk);
}

9946
#ifdef CONFIG_FAIR_GROUP_SCHED
9947
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9948
				u64 shareval)
9949
{
9950
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
9951 9952
}

9953
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
9954
{
9955
	struct task_group *tg = cgroup_tg(cgrp);
9956 9957 9958

	return (u64) tg->shares;
}
9959
#endif /* CONFIG_FAIR_GROUP_SCHED */
9960

9961
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
9962
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9963
				s64 val)
P
Peter Zijlstra 已提交
9964
{
9965
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
9966 9967
}

9968
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
9969
{
9970
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
9971
}
9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
9983
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
9984

9985
static struct cftype cpu_files[] = {
9986
#ifdef CONFIG_FAIR_GROUP_SCHED
9987 9988
	{
		.name = "shares",
9989 9990
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
9991
	},
9992 9993
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9994
	{
P
Peter Zijlstra 已提交
9995
		.name = "rt_runtime_us",
9996 9997
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
9998
	},
9999 10000
	{
		.name = "rt_period_us",
10001 10002
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
10003
	},
10004
#endif
10005 10006 10007 10008
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
10009
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
10010 10011 10012
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
10013 10014 10015 10016 10017 10018 10019
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
10020 10021 10022
	.early_init	= 1,
};

10023
#endif	/* CONFIG_CGROUP_SCHED */
10024 10025 10026 10027 10028 10029 10030 10031 10032 10033

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

10034
/* track cpu usage of a group of tasks and its child groups */
10035 10036 10037 10038
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
	u64 *cpuusage;
10039
	struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
10040
	struct cpuacct *parent;
10041 10042 10043 10044 10045
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
10046
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
10047
{
10048
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
10061
	struct cgroup_subsys *ss, struct cgroup *cgrp)
10062 10063
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
10064
	int i;
10065 10066

	if (!ca)
10067
		goto out;
10068 10069

	ca->cpuusage = alloc_percpu(u64);
10070 10071 10072 10073 10074 10075
	if (!ca->cpuusage)
		goto out_free_ca;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		if (percpu_counter_init(&ca->cpustat[i], 0))
			goto out_free_counters;
10076

10077 10078 10079
	if (cgrp->parent)
		ca->parent = cgroup_ca(cgrp->parent);

10080
	return &ca->css;
10081 10082 10083 10084 10085 10086 10087 10088 10089

out_free_counters:
	while (--i >= 0)
		percpu_counter_destroy(&ca->cpustat[i]);
	free_percpu(ca->cpuusage);
out_free_ca:
	kfree(ca);
out:
	return ERR_PTR(-ENOMEM);
10090 10091 10092
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
10093
static void
10094
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10095
{
10096
	struct cpuacct *ca = cgroup_ca(cgrp);
10097
	int i;
10098

10099 10100
	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		percpu_counter_destroy(&ca->cpustat[i]);
10101 10102 10103 10104
	free_percpu(ca->cpuusage);
	kfree(ca);
}

10105 10106
static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
{
10107
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125
	u64 data;

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
	 */
	spin_lock_irq(&cpu_rq(cpu)->lock);
	data = *cpuusage;
	spin_unlock_irq(&cpu_rq(cpu)->lock);
#else
	data = *cpuusage;
#endif

	return data;
}

static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
{
10126
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
	 */
	spin_lock_irq(&cpu_rq(cpu)->lock);
	*cpuusage = val;
	spin_unlock_irq(&cpu_rq(cpu)->lock);
#else
	*cpuusage = val;
#endif
}

10140
/* return total cpu usage (in nanoseconds) of a group */
10141
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
10142
{
10143
	struct cpuacct *ca = cgroup_ca(cgrp);
10144 10145 10146
	u64 totalcpuusage = 0;
	int i;

10147 10148
	for_each_present_cpu(i)
		totalcpuusage += cpuacct_cpuusage_read(ca, i);
10149 10150 10151 10152

	return totalcpuusage;
}

10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

10165 10166
	for_each_present_cpu(i)
		cpuacct_cpuusage_write(ca, i, 0);
10167 10168 10169 10170 10171

out:
	return err;
}

10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186
static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
				   struct seq_file *m)
{
	struct cpuacct *ca = cgroup_ca(cgroup);
	u64 percpu;
	int i;

	for_each_present_cpu(i) {
		percpu = cpuacct_cpuusage_read(ca, i);
		seq_printf(m, "%llu ", (unsigned long long) percpu);
	}
	seq_printf(m, "\n");
	return 0;
}

10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205
static const char *cpuacct_stat_desc[] = {
	[CPUACCT_STAT_USER] = "user",
	[CPUACCT_STAT_SYSTEM] = "system",
};

static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
		struct cgroup_map_cb *cb)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int i;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
		s64 val = percpu_counter_read(&ca->cpustat[i]);
		val = cputime64_to_clock_t(val);
		cb->fill(cb, cpuacct_stat_desc[i], val);
	}
	return 0;
}

10206 10207 10208
static struct cftype files[] = {
	{
		.name = "usage",
10209 10210
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
10211
	},
10212 10213 10214 10215
	{
		.name = "usage_percpu",
		.read_seq_string = cpuacct_percpu_seq_read,
	},
10216 10217 10218 10219
	{
		.name = "stat",
		.read_map = cpuacct_stats_show,
	},
10220 10221
};

10222
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
10223
{
10224
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
10225 10226 10227 10228 10229 10230 10231 10232 10233 10234
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;
10235
	int cpu;
10236

L
Li Zefan 已提交
10237
	if (unlikely(!cpuacct_subsys.active))
10238 10239
		return;

10240
	cpu = task_cpu(tsk);
10241 10242 10243

	rcu_read_lock();

10244 10245
	ca = task_ca(tsk);

10246
	for (; ca; ca = ca->parent) {
10247
		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10248 10249
		*cpuusage += cputime;
	}
10250 10251

	rcu_read_unlock();
10252 10253
}

10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272
/*
 * Charge the system/user time to the task's accounting group.
 */
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val)
{
	struct cpuacct *ca;

	if (unlikely(!cpuacct_subsys.active))
		return;

	rcu_read_lock();
	ca = task_ca(tsk);

	do {
		percpu_counter_add(&ca->cpustat[idx], val);
		ca = ca->parent;
	} while (ca);
	rcu_read_unlock();
10273 10274 10275 10276 10277 10278 10279 10280 10281 10282
}

struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */