sched.c 180.2 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
L
Linus Torvalds 已提交
25 26 27 28 29 30
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
31
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
32 33 34 35
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
36
#include <linux/capability.h>
L
Linus Torvalds 已提交
37 38
#include <linux/completion.h>
#include <linux/kernel_stat.h>
39
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
40 41 42
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
43
#include <linux/freezer.h>
44
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
45 46
#include <linux/blkdev.h>
#include <linux/delay.h>
47
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
48 49 50 51 52 53 54 55 56
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
#include <linux/seq_file.h>
57
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
58 59
#include <linux/syscalls.h>
#include <linux/times.h>
60
#include <linux/tsacct_kern.h>
61
#include <linux/kprobes.h>
62
#include <linux/delayacct.h>
63
#include <linux/reciprocal_div.h>
64
#include <linux/unistd.h>
J
Jens Axboe 已提交
65
#include <linux/pagemap.h>
L
Linus Torvalds 已提交
66

67
#include <asm/tlb.h>
68
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
69

70 71 72 73 74 75 76
/*
 * Scheduler clock - returns current time in nanosec units.
 * This is default implementation.
 * Architectures and sub-architectures can override this.
 */
unsigned long long __attribute__((weak)) sched_clock(void)
{
77
	return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
78 79
}

L
Linus Torvalds 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
 * Some helpers for converting nanosecond timing to jiffy resolution
 */
101 102
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
#define JIFFIES_TO_NS(TIME)	((TIME) * (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
103

I
Ingo Molnar 已提交
104 105 106
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
107 108 109
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
110
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
111 112 113
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
114

115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
#ifdef CONFIG_SMP
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

136 137 138 139 140 141 142 143 144 145 146 147
static inline int rt_policy(int policy)
{
	if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
148
/*
I
Ingo Molnar 已提交
149
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
150
 */
I
Ingo Molnar 已提交
151 152 153 154 155
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

S
Srivatsa Vaddagiri 已提交
156 157
#ifdef CONFIG_FAIR_GROUP_SCHED

158 159
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
160 161 162
struct cfs_rq;

/* task group related information */
163
struct task_group {
164 165 166
#ifdef CONFIG_FAIR_CGROUP_SCHED
	struct cgroup_subsys_state css;
#endif
S
Srivatsa Vaddagiri 已提交
167 168 169 170 171
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
172 173
	/* spinlock to serialize modification to shares */
	spinlock_t lock;
174
	struct rcu_head rcu;
S
Srivatsa Vaddagiri 已提交
175 176 177 178 179 180 181
};

/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;

182 183
static struct sched_entity *init_sched_entity_p[NR_CPUS];
static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
S
Srivatsa Vaddagiri 已提交
184 185

/* Default task group.
I
Ingo Molnar 已提交
186
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
187
 */
188
struct task_group init_task_group = {
I
Ingo Molnar 已提交
189 190 191
	.se     = init_sched_entity_p,
	.cfs_rq = init_cfs_rq_p,
};
192

193
#ifdef CONFIG_FAIR_USER_SCHED
I
Ingo Molnar 已提交
194
# define INIT_TASK_GRP_LOAD	2*NICE_0_LOAD
195
#else
I
Ingo Molnar 已提交
196
# define INIT_TASK_GRP_LOAD	NICE_0_LOAD
197 198
#endif

199
static int init_task_group_load = INIT_TASK_GRP_LOAD;
S
Srivatsa Vaddagiri 已提交
200 201

/* return group to which a task belongs */
202
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
203
{
204
	struct task_group *tg;
205

206 207
#ifdef CONFIG_FAIR_USER_SCHED
	tg = p->user->tg;
208 209 210
#elif defined(CONFIG_FAIR_CGROUP_SCHED)
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
211
#else
212
	tg  = &init_task_group;
213
#endif
214 215

	return tg;
S
Srivatsa Vaddagiri 已提交
216 217 218
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
219
static inline void set_task_cfs_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
220
{
221 222
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
S
Srivatsa Vaddagiri 已提交
223 224 225 226
}

#else

227
static inline void set_task_cfs_rq(struct task_struct *p, unsigned int cpu) { }
S
Srivatsa Vaddagiri 已提交
228 229 230

#endif	/* CONFIG_FAIR_GROUP_SCHED */

I
Ingo Molnar 已提交
231 232 233 234 235 236
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
237
	u64 min_vruntime;
I
Ingo Molnar 已提交
238 239 240 241 242 243 244 245

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
	struct rb_node *rb_load_balance_curr;
	/* 'curr' points to currently running entity on this cfs_rq.
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
	struct sched_entity *curr;
P
Peter Zijlstra 已提交
246 247 248

	unsigned long nr_spread_over;

249
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
250 251 252 253 254 255 256 257 258 259
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

	/* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
	struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
260
	struct task_group *tg;    /* group that "owns" this runqueue */
I
Ingo Molnar 已提交
261 262
#endif
};
L
Linus Torvalds 已提交
263

I
Ingo Molnar 已提交
264 265 266 267 268 269 270
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
	int rt_load_balance_idx;
	struct list_head *rt_load_balance_head, *rt_load_balance_curr;
};

L
Linus Torvalds 已提交
271 272 273 274 275 276 277
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
278
struct rq {
279 280
	/* runqueue lock: */
	spinlock_t lock;
L
Linus Torvalds 已提交
281 282 283 284 285 286

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
287 288
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
289
	unsigned char idle_at_tick;
290 291 292
#ifdef CONFIG_NO_HZ
	unsigned char in_nohz_recently;
#endif
293 294
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
295 296 297 298 299
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
#ifdef CONFIG_FAIR_GROUP_SCHED
300 301
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
L
Linus Torvalds 已提交
302
#endif
I
Ingo Molnar 已提交
303
	struct rt_rq  rt;
L
Linus Torvalds 已提交
304 305 306 307 308 309 310 311 312

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

313
	struct task_struct *curr, *idle;
314
	unsigned long next_balance;
L
Linus Torvalds 已提交
315
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
316 317 318 319 320

	u64 clock, prev_clock_raw;
	s64 clock_max_delta;

	unsigned int clock_warps, clock_overflows;
321 322
	u64 idle_clock;
	unsigned int clock_deep_idle_events;
323
	u64 tick_timestamp;
I
Ingo Molnar 已提交
324

L
Linus Torvalds 已提交
325 326 327 328 329 330 331 332
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
	struct sched_domain *sd;

	/* For active balancing */
	int active_balance;
	int push_cpu;
333 334
	/* cpu of this runqueue: */
	int cpu;
L
Linus Torvalds 已提交
335

336
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
337 338 339 340 341 342 343 344
	struct list_head migration_queue;
#endif

#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;

	/* sys_sched_yield() stats */
345 346 347 348
	unsigned int yld_exp_empty;
	unsigned int yld_act_empty;
	unsigned int yld_both_empty;
	unsigned int yld_count;
L
Linus Torvalds 已提交
349 350

	/* schedule() stats */
351 352 353
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
354 355

	/* try_to_wake_up() stats */
356 357
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
358 359

	/* BKL stats */
360
	unsigned int bkl_count;
L
Linus Torvalds 已提交
361
#endif
362
	struct lock_class_key rq_lock_key;
L
Linus Torvalds 已提交
363 364
};

365
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
366
static DEFINE_MUTEX(sched_hotcpu_mutex);
L
Linus Torvalds 已提交
367

I
Ingo Molnar 已提交
368 369 370 371 372
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
{
	rq->curr->sched_class->check_preempt_curr(rq, p);
}

373 374 375 376 377 378 379 380 381
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

I
Ingo Molnar 已提交
382
/*
I
Ingo Molnar 已提交
383 384
 * Update the per-runqueue clock, as finegrained as the platform can give
 * us, but without assuming monotonicity, etc.:
I
Ingo Molnar 已提交
385
 */
I
Ingo Molnar 已提交
386
static void __update_rq_clock(struct rq *rq)
I
Ingo Molnar 已提交
387 388 389 390 391 392
{
	u64 prev_raw = rq->prev_clock_raw;
	u64 now = sched_clock();
	s64 delta = now - prev_raw;
	u64 clock = rq->clock;

I
Ingo Molnar 已提交
393 394 395
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
#endif
I
Ingo Molnar 已提交
396 397 398 399 400 401 402 403 404 405
	/*
	 * Protect against sched_clock() occasionally going backwards:
	 */
	if (unlikely(delta < 0)) {
		clock++;
		rq->clock_warps++;
	} else {
		/*
		 * Catch too large forward jumps too:
		 */
406 407 408 409 410
		if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
			if (clock < rq->tick_timestamp + TICK_NSEC)
				clock = rq->tick_timestamp + TICK_NSEC;
			else
				clock++;
I
Ingo Molnar 已提交
411 412 413 414 415 416 417 418 419 420
			rq->clock_overflows++;
		} else {
			if (unlikely(delta > rq->clock_max_delta))
				rq->clock_max_delta = delta;
			clock += delta;
		}
	}

	rq->prev_clock_raw = now;
	rq->clock = clock;
I
Ingo Molnar 已提交
421
}
I
Ingo Molnar 已提交
422

I
Ingo Molnar 已提交
423 424 425 426
static void update_rq_clock(struct rq *rq)
{
	if (likely(smp_processor_id() == cpu_of(rq)))
		__update_rq_clock(rq);
I
Ingo Molnar 已提交
427 428
}

N
Nick Piggin 已提交
429 430
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
431
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
432 433 434 435
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
436 437
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
438 439 440 441 442 443

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

I
Ingo Molnar 已提交
444 445 446 447 448 449 450 451 452 453 454 455 456
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

/*
 * Debugging: various feature bits
 */
enum {
457
	SCHED_FEAT_NEW_FAIR_SLEEPERS	= 1,
I
Ingo Molnar 已提交
458 459 460 461
	SCHED_FEAT_WAKEUP_PREEMPT	= 2,
	SCHED_FEAT_START_DEBIT		= 4,
	SCHED_FEAT_TREE_AVG             = 8,
	SCHED_FEAT_APPROX_AVG           = 16,
I
Ingo Molnar 已提交
462 463 464
};

const_debug unsigned int sysctl_sched_features =
I
Ingo Molnar 已提交
465
		SCHED_FEAT_NEW_FAIR_SLEEPERS	* 1 |
I
Ingo Molnar 已提交
466
		SCHED_FEAT_WAKEUP_PREEMPT	* 1 |
I
Ingo Molnar 已提交
467 468
		SCHED_FEAT_START_DEBIT		* 1 |
		SCHED_FEAT_TREE_AVG		* 0 |
I
Ingo Molnar 已提交
469
		SCHED_FEAT_APPROX_AVG		* 0;
I
Ingo Molnar 已提交
470 471 472

#define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)

473 474 475 476 477 478
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

479 480 481 482 483 484 485 486
/*
 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
 * clock constructed from sched_clock():
 */
unsigned long long cpu_clock(int cpu)
{
	unsigned long long now;
	unsigned long flags;
I
Ingo Molnar 已提交
487
	struct rq *rq;
488

489
	local_irq_save(flags);
I
Ingo Molnar 已提交
490 491 492
	rq = cpu_rq(cpu);
	update_rq_clock(rq);
	now = rq->clock;
493
	local_irq_restore(flags);
494 495 496

	return now;
}
P
Paul E. McKenney 已提交
497
EXPORT_SYMBOL_GPL(cpu_clock);
498

L
Linus Torvalds 已提交
499
#ifndef prepare_arch_switch
500 501 502 503 504 505 506
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

#ifndef __ARCH_WANT_UNLOCKED_CTXSW
507
static inline int task_running(struct rq *rq, struct task_struct *p)
508 509 510 511
{
	return rq->curr == p;
}

512
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
513 514 515
{
}

516
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
517
{
518 519 520 521
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
522 523 524 525 526 527 528
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

529 530 531 532
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
533
static inline int task_running(struct rq *rq, struct task_struct *p)
534 535 536 537 538 539 540 541
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
	return rq->curr == p;
#endif
}

542
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

559
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
560 561 562 563 564 565 566 567 568 569 570 571
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
572
#endif
573 574
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
575

576 577 578 579
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
580
static inline struct rq *__task_rq_lock(struct task_struct *p)
581 582
	__acquires(rq->lock)
{
583 584 585 586 587
	for (;;) {
		struct rq *rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
588 589 590 591
		spin_unlock(&rq->lock);
	}
}

L
Linus Torvalds 已提交
592 593 594 595 596
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
 * interrupts.  Note the ordering: we can safely lookup the task_rq without
 * explicitly disabling preemption.
 */
597
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
598 599
	__acquires(rq->lock)
{
600
	struct rq *rq;
L
Linus Torvalds 已提交
601

602 603 604 605 606 607
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
L
Linus Torvalds 已提交
608 609 610 611
		spin_unlock_irqrestore(&rq->lock, *flags);
	}
}

A
Alexey Dobriyan 已提交
612
static void __task_rq_unlock(struct rq *rq)
613 614 615 616 617
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

618
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
619 620 621 622 623 624
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
625
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
626
 */
A
Alexey Dobriyan 已提交
627
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
628 629
	__acquires(rq->lock)
{
630
	struct rq *rq;
L
Linus Torvalds 已提交
631 632 633 634 635 636 637 638

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

639
/*
640
 * We are going deep-idle (irqs are disabled):
641
 */
642
void sched_clock_idle_sleep_event(void)
643
{
644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
	struct rq *rq = cpu_rq(smp_processor_id());

	spin_lock(&rq->lock);
	__update_rq_clock(rq);
	spin_unlock(&rq->lock);
	rq->clock_deep_idle_events++;
}
EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);

/*
 * We just idled delta nanoseconds (called with irqs disabled):
 */
void sched_clock_idle_wakeup_event(u64 delta_ns)
{
	struct rq *rq = cpu_rq(smp_processor_id());
	u64 now = sched_clock();
660

661 662 663 664 665 666 667 668 669 670 671
	rq->idle_clock += delta_ns;
	/*
	 * Override the previous timestamp and ignore all
	 * sched_clock() deltas that occured while we idled,
	 * and use the PM-provided delta_ns to advance the
	 * rq clock:
	 */
	spin_lock(&rq->lock);
	rq->prev_clock_raw = now;
	rq->clock += delta_ns;
	spin_unlock(&rq->lock);
672
}
673
EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
674

I
Ingo Molnar 已提交
675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

static void resched_task(struct task_struct *p)
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

	if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
		return;

	set_tsk_thread_flag(p, TIF_NEED_RESCHED);

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
#else
static inline void resched_task(struct task_struct *p)
{
	assert_spin_locked(&task_rq(p)->lock);
	set_tsk_need_resched(p);
}
#endif

727 728 729 730 731 732 733 734
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
735 736 737
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
738
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
739

740
static unsigned long
741 742 743 744 745 746
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

	if (unlikely(!lw->inv_weight))
I
Ingo Molnar 已提交
747
		lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
748 749 750 751 752

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
753
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
754
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
755 756
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
757
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
758

759
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
760 761 762 763 764 765 766 767
}

static inline unsigned long
calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
{
	return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
}

768
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
769 770 771 772
{
	lw->weight += inc;
}

773
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
774 775 776 777
{
	lw->weight -= dec;
}

778 779 780 781 782 783 784 785 786
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
 * scheduling class and "nice" value.  For SCHED_NORMAL tasks this is just a
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

I
Ingo Molnar 已提交
787 788 789 790 791 792 793 794 795 796 797
#define WEIGHT_IDLEPRIO		2
#define WMULT_IDLEPRIO		(1 << 31)

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
798 799 800
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
801 802
 */
static const int prio_to_weight[40] = {
803 804 805 806 807 808 809 810
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
811 812
};

813 814 815 816 817 818 819
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
820
static const u32 prio_to_wmult[40] = {
821 822 823 824 825 826 827 828
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
829
};
830

I
Ingo Molnar 已提交
831 832 833 834 835 836 837 838 839 840 841 842 843
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

844 845 846 847 848 849 850 851 852 853 854 855
#ifdef CONFIG_SMP
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator);

static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator);
#endif
I
Ingo Molnar 已提交
856

857 858 859 860 861 862
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
#endif

I
Ingo Molnar 已提交
863 864
#include "sched_stats.h"
#include "sched_idletask.c"
865 866
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
867 868 869 870 871 872
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)

873 874 875 876
/*
 * Update delta_exec, delta_fair fields for rq.
 *
 * delta_fair clock advances at a rate inversely proportional to
877
 * total load (rq->load.weight) on the runqueue, while
878 879 880 881 882 883 884
 * delta_exec advances at the same rate as wall-clock (provided
 * cpu is not idle).
 *
 * delta_exec / delta_fair is a measure of the (smoothened) load on this
 * runqueue over any given interval. This (smoothened) load is used
 * during load balance.
 *
885
 * This function is called /before/ updating rq->load
886 887
 * and when switching tasks.
 */
888
static inline void inc_load(struct rq *rq, const struct task_struct *p)
889
{
890
	update_load_add(&rq->load, p->se.load.weight);
891 892
}

893
static inline void dec_load(struct rq *rq, const struct task_struct *p)
894
{
895
	update_load_sub(&rq->load, p->se.load.weight);
896 897
}

898
static void inc_nr_running(struct task_struct *p, struct rq *rq)
899 900
{
	rq->nr_running++;
901
	inc_load(rq, p);
902 903
}

904
static void dec_nr_running(struct task_struct *p, struct rq *rq)
905 906
{
	rq->nr_running--;
907
	dec_load(rq, p);
908 909
}

910 911 912
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
913 914 915 916
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
917

I
Ingo Molnar 已提交
918 919 920 921 922 923 924 925
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
926

I
Ingo Molnar 已提交
927 928
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
929 930
}

931
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
932
{
I
Ingo Molnar 已提交
933
	sched_info_queued(p);
934
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
935
	p->se.on_rq = 1;
936 937
}

938
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
939
{
940
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
941
	p->se.on_rq = 0;
942 943
}

944
/*
I
Ingo Molnar 已提交
945
 * __normal_prio - return the priority that is based on the static prio
946 947 948
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
949
	return p->static_prio;
950 951
}

952 953 954 955 956 957 958
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
959
static inline int normal_prio(struct task_struct *p)
960 961 962
{
	int prio;

963
	if (task_has_rt_policy(p))
964 965 966 967 968 969 970 971 972 973 974 975 976
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
977
static int effective_prio(struct task_struct *p)
978 979 980 981 982 983 984 985 986 987 988 989
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
990
/*
I
Ingo Molnar 已提交
991
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
992
 */
I
Ingo Molnar 已提交
993
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
994
{
I
Ingo Molnar 已提交
995 996
	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
997

998
	enqueue_task(rq, p, wakeup);
999
	inc_nr_running(p, rq);
L
Linus Torvalds 已提交
1000 1001 1002 1003 1004
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1005
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
1006
{
I
Ingo Molnar 已提交
1007 1008 1009
	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible++;

1010
	dequeue_task(rq, p, sleep);
1011
	dec_nr_running(p, rq);
L
Linus Torvalds 已提交
1012 1013 1014 1015 1016 1017
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1018
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1019 1020 1021 1022
{
	return cpu_curr(task_cpu(p)) == p;
}

1023 1024 1025
/* Used instead of source_load when we know the type == 0 */
unsigned long weighted_cpuload(const int cpu)
{
1026
	return cpu_rq(cpu)->load.weight;
I
Ingo Molnar 已提交
1027 1028 1029 1030
}

static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
1031
	set_task_cfs_rq(p, cpu);
I
Ingo Molnar 已提交
1032
#ifdef CONFIG_SMP
1033 1034 1035 1036 1037 1038
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
I
Ingo Molnar 已提交
1039 1040
	task_thread_info(p)->cpu = cpu;
#endif
1041 1042
}

L
Linus Torvalds 已提交
1043
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1044

1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
/*
 * Is this task likely cache-hot:
 */
static inline int
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

	if (p->sched_class != &fair_sched_class)
		return 0;

1056 1057 1058 1059 1060
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

1061 1062 1063 1064 1065 1066
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}


I
Ingo Molnar 已提交
1067
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1068
{
I
Ingo Molnar 已提交
1069 1070
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1071 1072
	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1073
	u64 clock_offset;
I
Ingo Molnar 已提交
1074 1075

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
1076 1077 1078 1079

#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
1080 1081 1082 1083
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
1084 1085 1086 1087 1088
	if (old_cpu != new_cpu) {
		schedstat_inc(p, se.nr_migrations);
		if (task_hot(p, old_rq->clock, NULL))
			schedstat_inc(p, se.nr_forced2_migrations);
	}
I
Ingo Molnar 已提交
1089
#endif
1090 1091
	p->se.vruntime -= old_cfsrq->min_vruntime -
					 new_cfsrq->min_vruntime;
I
Ingo Molnar 已提交
1092 1093

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1094 1095
}

1096
struct migration_req {
L
Linus Torvalds 已提交
1097 1098
	struct list_head list;

1099
	struct task_struct *task;
L
Linus Torvalds 已提交
1100 1101 1102
	int dest_cpu;

	struct completion done;
1103
};
L
Linus Torvalds 已提交
1104 1105 1106 1107 1108

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
1109
static int
1110
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
1111
{
1112
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
1113 1114 1115 1116 1117

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
1118
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
1119 1120 1121 1122 1123 1124 1125 1126
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
1127

L
Linus Torvalds 已提交
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
1140
void wait_task_inactive(struct task_struct *p)
L
Linus Torvalds 已提交
1141 1142
{
	unsigned long flags;
I
Ingo Molnar 已提交
1143
	int running, on_rq;
1144
	struct rq *rq;
L
Linus Torvalds 已提交
1145

1146 1147 1148 1149 1150 1151 1152 1153
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1154

1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
		while (task_running(rq, p))
			cpu_relax();
1168

1169 1170 1171 1172 1173 1174 1175 1176 1177
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
		task_rq_unlock(rq, &flags);
1178

1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1189

1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
		 * So if it wa still runnable (but just not actively
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
1203

1204 1205 1206 1207 1208 1209 1210
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
L
Linus Torvalds 已提交
1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1226
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
1238 1239
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1240 1241 1242 1243
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
A
Alexey Dobriyan 已提交
1244
static unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
1245
{
1246
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1247
	unsigned long total = weighted_cpuload(cpu);
1248

1249
	if (type == 0)
I
Ingo Molnar 已提交
1250
		return total;
1251

I
Ingo Molnar 已提交
1252
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
1253 1254 1255
}

/*
1256 1257
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1258
 */
A
Alexey Dobriyan 已提交
1259
static unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
1260
{
1261
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1262
	unsigned long total = weighted_cpuload(cpu);
1263

N
Nick Piggin 已提交
1264
	if (type == 0)
I
Ingo Molnar 已提交
1265
		return total;
1266

I
Ingo Molnar 已提交
1267
	return max(rq->cpu_load[type-1], total);
1268 1269 1270 1271 1272 1273 1274
}

/*
 * Return the average load per task on the cpu's run queue
 */
static inline unsigned long cpu_avg_load_per_task(int cpu)
{
1275
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1276
	unsigned long total = weighted_cpuload(cpu);
1277 1278
	unsigned long n = rq->nr_running;

I
Ingo Molnar 已提交
1279
	return n ? total / n : SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
1280 1281
}

N
Nick Piggin 已提交
1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

1299 1300
		/* Skip over this group if it has no CPUs allowed */
		if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1301
			continue;
1302

N
Nick Piggin 已提交
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
		local_group = cpu_isset(this_cpu, group->cpumask);

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu_mask(i, group->cpumask) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
1319 1320
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
1321 1322 1323 1324 1325 1326 1327 1328

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
1329
	} while (group = group->next, group != sd->groups);
N
Nick Piggin 已提交
1330 1331 1332 1333 1334 1335 1336

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
1337
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
1338
 */
I
Ingo Molnar 已提交
1339 1340
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
N
Nick Piggin 已提交
1341
{
1342
	cpumask_t tmp;
N
Nick Piggin 已提交
1343 1344 1345 1346
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

1347 1348 1349 1350
	/* Traverse only the allowed CPUs */
	cpus_and(tmp, group->cpumask, p->cpus_allowed);

	for_each_cpu_mask(i, tmp) {
1351
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
1352 1353 1354 1355 1356 1357 1358 1359 1360 1361

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
1377

1378
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
1379 1380 1381
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
1382 1383
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
1384 1385
		if (tmp->flags & flag)
			sd = tmp;
1386
	}
N
Nick Piggin 已提交
1387 1388 1389 1390

	while (sd) {
		cpumask_t span;
		struct sched_group *group;
1391 1392 1393 1394 1395 1396
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1397 1398 1399

		span = sd->span;
		group = find_idlest_group(sd, t, cpu);
1400 1401 1402 1403
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1404

1405
		new_cpu = find_idlest_cpu(group, t, cpu);
1406 1407 1408 1409 1410
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1411

1412
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
		cpu = new_cpu;
		sd = NULL;
		weight = cpus_weight(span);
		for_each_domain(cpu, tmp) {
			if (weight <= cpus_weight(tmp->span))
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
1429 1430 1431 1432 1433 1434 1435 1436 1437 1438

/*
 * wake_idle() will wake a task on an idle cpu if task->cpu is
 * not idle and an idle cpu is available.  The span of cpus to
 * search starts with cpus closest then further out as needed,
 * so we always favor a closer, idle cpu.
 *
 * Returns the CPU we should wake onto.
 */
#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1439
static int wake_idle(int cpu, struct task_struct *p)
L
Linus Torvalds 已提交
1440 1441 1442 1443 1444
{
	cpumask_t tmp;
	struct sched_domain *sd;
	int i;

1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
	/*
	 * If it is idle, then it is the best cpu to run this task.
	 *
	 * This cpu is also the best, if it has more than one task already.
	 * Siblings must be also busy(in most cases) as they didn't already
	 * pickup the extra load from this cpu and hence we need not check
	 * sibling runqueue info. This will avoid the checks and cache miss
	 * penalities associated with that.
	 */
	if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
L
Linus Torvalds 已提交
1455 1456 1457 1458
		return cpu;

	for_each_domain(cpu, sd) {
		if (sd->flags & SD_WAKE_IDLE) {
N
Nick Piggin 已提交
1459
			cpus_and(tmp, sd->span, p->cpus_allowed);
L
Linus Torvalds 已提交
1460
			for_each_cpu_mask(i, tmp) {
1461 1462 1463 1464 1465
				if (idle_cpu(i)) {
					if (i != task_cpu(p)) {
						schedstat_inc(p,
							se.nr_wakeups_idle);
					}
L
Linus Torvalds 已提交
1466
					return i;
1467
				}
L
Linus Torvalds 已提交
1468
			}
I
Ingo Molnar 已提交
1469
		} else {
N
Nick Piggin 已提交
1470
			break;
I
Ingo Molnar 已提交
1471
		}
L
Linus Torvalds 已提交
1472 1473 1474 1475
	}
	return cpu;
}
#else
1476
static inline int wake_idle(int cpu, struct task_struct *p)
L
Linus Torvalds 已提交
1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495
{
	return cpu;
}
#endif

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
1496
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
1497
{
1498
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
1499 1500
	unsigned long flags;
	long old_state;
1501
	struct rq *rq;
L
Linus Torvalds 已提交
1502
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
1503
	struct sched_domain *sd, *this_sd = NULL;
1504
	unsigned long load, this_load;
L
Linus Torvalds 已提交
1505 1506 1507 1508 1509 1510 1511 1512
	int new_cpu;
#endif

	rq = task_rq_lock(p, &flags);
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
1513
	if (p->se.on_rq)
L
Linus Torvalds 已提交
1514 1515 1516
		goto out_running;

	cpu = task_cpu(p);
1517
	orig_cpu = cpu;
L
Linus Torvalds 已提交
1518 1519 1520 1521 1522 1523
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

N
Nick Piggin 已提交
1524 1525
	new_cpu = cpu;

1526
	schedstat_inc(rq, ttwu_count);
L
Linus Torvalds 已提交
1527 1528
	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
N
Nick Piggin 已提交
1529 1530 1531 1532 1533 1534 1535 1536
		goto out_set_cpu;
	}

	for_each_domain(this_cpu, sd) {
		if (cpu_isset(cpu, sd->span)) {
			schedstat_inc(sd, ttwu_wake_remote);
			this_sd = sd;
			break;
L
Linus Torvalds 已提交
1537 1538 1539
		}
	}

N
Nick Piggin 已提交
1540
	if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
L
Linus Torvalds 已提交
1541 1542 1543
		goto out_set_cpu;

	/*
N
Nick Piggin 已提交
1544
	 * Check for affine wakeup and passive balancing possibilities.
L
Linus Torvalds 已提交
1545
	 */
N
Nick Piggin 已提交
1546 1547 1548
	if (this_sd) {
		int idx = this_sd->wake_idx;
		unsigned int imbalance;
L
Linus Torvalds 已提交
1549

1550 1551
		imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;

N
Nick Piggin 已提交
1552 1553
		load = source_load(cpu, idx);
		this_load = target_load(this_cpu, idx);
L
Linus Torvalds 已提交
1554

N
Nick Piggin 已提交
1555 1556
		new_cpu = this_cpu; /* Wake to this CPU if we can */

1557 1558
		if (this_sd->flags & SD_WAKE_AFFINE) {
			unsigned long tl = this_load;
1559 1560
			unsigned long tl_per_task;

I
Ingo Molnar 已提交
1561 1562 1563 1564 1565 1566
			/*
			 * Attract cache-cold tasks on sync wakeups:
			 */
			if (sync && !task_hot(p, rq->clock, this_sd))
				goto out_set_cpu;

1567
			schedstat_inc(p, se.nr_wakeups_affine_attempts);
1568
			tl_per_task = cpu_avg_load_per_task(this_cpu);
1569

L
Linus Torvalds 已提交
1570
			/*
1571 1572 1573
			 * If sync wakeup then subtract the (maximum possible)
			 * effect of the currently running task from the load
			 * of the current CPU:
L
Linus Torvalds 已提交
1574
			 */
1575
			if (sync)
I
Ingo Molnar 已提交
1576
				tl -= current->se.load.weight;
1577 1578

			if ((tl <= load &&
1579
				tl + target_load(cpu, idx) <= tl_per_task) ||
I
Ingo Molnar 已提交
1580
			       100*(tl + p->se.load.weight) <= imbalance*load) {
1581 1582 1583 1584 1585 1586
				/*
				 * This domain has SD_WAKE_AFFINE and
				 * p is cache cold in this domain, and
				 * there is no bad imbalance.
				 */
				schedstat_inc(this_sd, ttwu_move_affine);
1587
				schedstat_inc(p, se.nr_wakeups_affine);
1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
				goto out_set_cpu;
			}
		}

		/*
		 * Start passive balancing when half the imbalance_pct
		 * limit is reached.
		 */
		if (this_sd->flags & SD_WAKE_BALANCE) {
			if (imbalance*this_load <= 100*load) {
				schedstat_inc(this_sd, ttwu_move_balance);
1599
				schedstat_inc(p, se.nr_wakeups_passive);
1600 1601
				goto out_set_cpu;
			}
L
Linus Torvalds 已提交
1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
		}
	}

	new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
out_set_cpu:
	new_cpu = wake_idle(new_cpu, p);
	if (new_cpu != cpu) {
		set_task_cpu(p, new_cpu);
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
1616
		if (p->se.on_rq)
L
Linus Torvalds 已提交
1617 1618 1619 1620 1621 1622 1623 1624
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

out_activate:
#endif /* CONFIG_SMP */
1625 1626 1627 1628 1629 1630 1631 1632 1633
	schedstat_inc(p, se.nr_wakeups);
	if (sync)
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
1634
	update_rq_clock(rq);
I
Ingo Molnar 已提交
1635
	activate_task(rq, p, 1);
I
Ingo Molnar 已提交
1636
	check_preempt_curr(rq, p);
L
Linus Torvalds 已提交
1637 1638 1639 1640 1641 1642 1643 1644 1645 1646
	success = 1;

out_running:
	p->state = TASK_RUNNING;
out:
	task_rq_unlock(rq, &flags);

	return success;
}

1647
int fastcall wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
1648 1649 1650 1651 1652 1653
{
	return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
				 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
}
EXPORT_SYMBOL(wake_up_process);

1654
int fastcall wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
1655 1656 1657 1658 1659 1660 1661
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
1662 1663 1664 1665 1666 1667 1668
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
1669
	p->se.prev_sum_exec_runtime	= 0;
I
Ingo Molnar 已提交
1670 1671 1672

#ifdef CONFIG_SCHEDSTATS
	p->se.wait_start		= 0;
I
Ingo Molnar 已提交
1673 1674 1675 1676 1677 1678
	p->se.sum_sleep_runtime		= 0;
	p->se.sleep_start		= 0;
	p->se.block_start		= 0;
	p->se.sleep_max			= 0;
	p->se.block_max			= 0;
	p->se.exec_max			= 0;
I
Ingo Molnar 已提交
1679
	p->se.slice_max			= 0;
I
Ingo Molnar 已提交
1680
	p->se.wait_max			= 0;
I
Ingo Molnar 已提交
1681
#endif
N
Nick Piggin 已提交
1682

I
Ingo Molnar 已提交
1683 1684
	INIT_LIST_HEAD(&p->run_list);
	p->se.on_rq = 0;
N
Nick Piggin 已提交
1685

1686 1687 1688 1689
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
1690 1691 1692 1693 1694 1695 1696
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
I
Ingo Molnar 已提交
1711
	set_task_cpu(p, cpu);
1712 1713 1714 1715 1716

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;
H
Hiroshi Shimamoto 已提交
1717 1718
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
1719

1720
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
1721
	if (likely(sched_info_on()))
1722
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
1723
#endif
1724
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1725 1726
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
1727
#ifdef CONFIG_PREEMPT
1728
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
1729
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
1730
#endif
N
Nick Piggin 已提交
1731
	put_cpu();
L
Linus Torvalds 已提交
1732 1733 1734 1735 1736 1737 1738 1739 1740
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
1741
void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
1742 1743
{
	unsigned long flags;
I
Ingo Molnar 已提交
1744
	struct rq *rq;
L
Linus Torvalds 已提交
1745 1746

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
1747
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
1748
	update_rq_clock(rq);
L
Linus Torvalds 已提交
1749 1750 1751

	p->prio = effective_prio(p);

1752
	if (!p->sched_class->task_new || !current->se.on_rq) {
I
Ingo Molnar 已提交
1753
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
1754 1755
	} else {
		/*
I
Ingo Molnar 已提交
1756 1757
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
1758
		 */
1759
		p->sched_class->task_new(rq, p);
1760
		inc_nr_running(p, rq);
L
Linus Torvalds 已提交
1761
	}
I
Ingo Molnar 已提交
1762 1763
	check_preempt_curr(rq, p);
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
1764 1765
}

1766 1767 1768
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
R
Randy Dunlap 已提交
1769 1770
 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
 * @notifier: notifier struct to register
1771 1772 1773 1774 1775 1776 1777 1778 1779
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
1780
 * @notifier: notifier struct to unregister
1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

#else

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

#endif

1824 1825 1826
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
1827
 * @prev: the current task that is being switched out
1828 1829 1830 1831 1832 1833 1834 1835 1836
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
1837 1838 1839
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
1840
{
1841
	fire_sched_out_preempt_notifiers(prev, next);
1842 1843 1844 1845
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
1846 1847
/**
 * finish_task_switch - clean up after a task-switch
1848
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
1849 1850
 * @prev: the thread we just switched away from.
 *
1851 1852 1853 1854
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
1855 1856 1857 1858 1859 1860
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
 * so, we finish that here outside of the runqueue lock.  (Doing it
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
1861
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
1862 1863 1864
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
1865
	long prev_state;
L
Linus Torvalds 已提交
1866 1867 1868 1869 1870

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
1871
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
1872 1873
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
1874
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
1875 1876 1877 1878 1879
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
1880
	prev_state = prev->state;
1881 1882
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
1883
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
1884 1885
	if (mm)
		mmdrop(mm);
1886
	if (unlikely(prev_state == TASK_DEAD)) {
1887 1888 1889
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
1890
		 */
1891
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
1892
		put_task_struct(prev);
1893
	}
L
Linus Torvalds 已提交
1894 1895 1896 1897 1898 1899
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
1900
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
1901 1902
	__releases(rq->lock)
{
1903 1904
	struct rq *rq = this_rq();

1905 1906 1907 1908 1909
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
1910
	if (current->set_child_tid)
1911
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
1912 1913 1914 1915 1916 1917
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
1918
static inline void
1919
context_switch(struct rq *rq, struct task_struct *prev,
1920
	       struct task_struct *next)
L
Linus Torvalds 已提交
1921
{
I
Ingo Molnar 已提交
1922
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
1923

1924
	prepare_task_switch(rq, prev, next);
I
Ingo Molnar 已提交
1925 1926
	mm = next->mm;
	oldmm = prev->active_mm;
1927 1928 1929 1930 1931 1932 1933
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

I
Ingo Molnar 已提交
1934
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
1935 1936 1937 1938 1939 1940
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
1941
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
1942 1943 1944
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
1945 1946 1947 1948 1949 1950 1951
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
1952
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1953
#endif
L
Linus Torvalds 已提交
1954 1955 1956 1957

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
1958 1959 1960 1961 1962 1963 1964
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

1988
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
2003 2004
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
2005

2006
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2007 2008 2009 2010 2011 2012 2013 2014 2015
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

2016
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2017 2018 2019 2020 2021
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

2037
/*
I
Ingo Molnar 已提交
2038 2039
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
2040
 */
I
Ingo Molnar 已提交
2041
static void update_cpu_load(struct rq *this_rq)
2042
{
2043
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
2056 2057 2058 2059 2060 2061 2062
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
2063 2064
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
2065 2066
}

I
Ingo Molnar 已提交
2067 2068
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
2069 2070 2071 2072 2073 2074
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
2075
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2076 2077 2078
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
2079
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
2080 2081 2082 2083
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
2084
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
2085 2086 2087 2088 2089 2090 2091
			spin_lock(&rq1->lock);
			spin_lock(&rq2->lock);
		} else {
			spin_lock(&rq2->lock);
			spin_lock(&rq1->lock);
		}
	}
2092 2093
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
2094 2095 2096 2097 2098 2099 2100 2101
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
2102
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
2116
static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
L
Linus Torvalds 已提交
2117 2118 2119 2120
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
2121 2122 2123 2124 2125
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}
L
Linus Torvalds 已提交
2126
	if (unlikely(!spin_trylock(&busiest->lock))) {
2127
		if (busiest < this_rq) {
L
Linus Torvalds 已提交
2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock(&this_rq->lock);
		} else
			spin_lock(&busiest->lock);
	}
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
 * allow dest_cpu, which will force the cpu onto dest_cpu.  Then
 * the cpu_allowed mask is restored.
 */
2142
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2143
{
2144
	struct migration_req req;
L
Linus Torvalds 已提交
2145
	unsigned long flags;
2146
	struct rq *rq;
L
Linus Torvalds 已提交
2147 2148 2149 2150 2151 2152 2153 2154 2155 2156

	rq = task_rq_lock(p, &flags);
	if (!cpu_isset(dest_cpu, p->cpus_allowed)
	    || unlikely(cpu_is_offline(dest_cpu)))
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
2157

L
Linus Torvalds 已提交
2158 2159 2160 2161 2162
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
2163

L
Linus Torvalds 已提交
2164 2165 2166 2167 2168 2169 2170
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
2171 2172
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
2173 2174 2175 2176
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
2177
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
2178
	put_cpu();
N
Nick Piggin 已提交
2179 2180
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
2181 2182 2183 2184 2185 2186
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
2187 2188
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
2189
{
2190
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
2191
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
2192
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
2193 2194 2195 2196
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
I
Ingo Molnar 已提交
2197
	check_preempt_curr(this_rq, p);
L
Linus Torvalds 已提交
2198 2199 2200 2201 2202
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
2203
static
2204
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
2205
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2206
		     int *all_pinned)
L
Linus Torvalds 已提交
2207 2208 2209 2210 2211 2212 2213
{
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
2214 2215
	if (!cpu_isset(this_cpu, p->cpus_allowed)) {
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
2216
		return 0;
2217
	}
2218 2219
	*all_pinned = 0;

2220 2221
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
2222
		return 0;
2223
	}
L
Linus Torvalds 已提交
2224

2225 2226 2227 2228 2229 2230
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

2231 2232
	if (!task_hot(p, rq->clock, sd) ||
			sd->nr_balance_failed > sd->cache_nice_tries) {
2233
#ifdef CONFIG_SCHEDSTATS
2234
		if (task_hot(p, rq->clock, sd)) {
2235
			schedstat_inc(sd, lb_hot_gained[idle]);
2236 2237
			schedstat_inc(p, se.nr_forced_migrations);
		}
2238 2239 2240 2241
#endif
		return 1;
	}

2242 2243
	if (task_hot(p, rq->clock, sd)) {
		schedstat_inc(p, se.nr_failed_migrations_hot);
2244
		return 0;
2245
	}
L
Linus Torvalds 已提交
2246 2247 2248
	return 1;
}

2249 2250 2251 2252 2253
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
2254
{
2255
	int loops = 0, pulled = 0, pinned = 0, skip_for_load;
I
Ingo Molnar 已提交
2256 2257
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
2258

2259
	if (max_load_move == 0)
L
Linus Torvalds 已提交
2260 2261
		goto out;

2262 2263
	pinned = 1;

L
Linus Torvalds 已提交
2264
	/*
I
Ingo Molnar 已提交
2265
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
2266
	 */
I
Ingo Molnar 已提交
2267 2268
	p = iterator->start(iterator->arg);
next:
2269
	if (!p || loops++ > sysctl_sched_nr_migrate)
L
Linus Torvalds 已提交
2270
		goto out;
2271
	/*
2272
	 * To help distribute high priority tasks across CPUs we don't
2273 2274 2275
	 * skip a task if it will be the highest priority task (i.e. smallest
	 * prio value) on its new queue regardless of its load weight
	 */
I
Ingo Molnar 已提交
2276 2277
	skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
							 SCHED_LOAD_SCALE_FUZZ;
2278
	if ((skip_for_load && p->prio >= *this_best_prio) ||
I
Ingo Molnar 已提交
2279 2280 2281
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2282 2283
	}

I
Ingo Molnar 已提交
2284
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
2285
	pulled++;
I
Ingo Molnar 已提交
2286
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
2287

2288
	/*
2289
	 * We only want to steal up to the prescribed amount of weighted load.
2290
	 */
2291
	if (rem_load_move > 0) {
2292 2293
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
2294 2295
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2296 2297 2298
	}
out:
	/*
2299
	 * Right now, this is one of only two places pull_task() is called,
L
Linus Torvalds 已提交
2300 2301 2302 2303
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
2304 2305 2306

	if (all_pinned)
		*all_pinned = pinned;
2307 2308

	return max_load_move - rem_load_move;
L
Linus Torvalds 已提交
2309 2310
}

I
Ingo Molnar 已提交
2311
/*
P
Peter Williams 已提交
2312 2313 2314
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
2315 2316 2317 2318
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
2319
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
2320 2321 2322
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
2323
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
2324
	unsigned long total_load_moved = 0;
2325
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
2326 2327

	do {
P
Peter Williams 已提交
2328 2329
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
2330
				max_load_move - total_load_moved,
2331
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
2332
		class = class->next;
P
Peter Williams 已提交
2333
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
2334

P
Peter Williams 已提交
2335 2336 2337
	return total_load_moved > 0;
}

2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363
static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator)
{
	struct task_struct *p = iterator->start(iterator->arg);
	int pinned = 0;

	while (p) {
		if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
			pull_task(busiest, p, this_rq, this_cpu);
			/*
			 * Right now, this is only the second place pull_task()
			 * is called, so we can safely collect pull_task()
			 * stats here rather than inside pull_task().
			 */
			schedstat_inc(sd, lb_gained[idle]);

			return 1;
		}
		p = iterator->next(iterator->arg);
	}

	return 0;
}

P
Peter Williams 已提交
2364 2365 2366 2367 2368 2369 2370 2371 2372 2373
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
2374
	const struct sched_class *class;
P
Peter Williams 已提交
2375 2376

	for (class = sched_class_highest; class; class = class->next)
2377
		if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
P
Peter Williams 已提交
2378 2379 2380
			return 1;

	return 0;
I
Ingo Molnar 已提交
2381 2382
}

L
Linus Torvalds 已提交
2383 2384
/*
 * find_busiest_group finds and returns the busiest CPU group within the
2385 2386
 * domain. It calculates and returns the amount of weighted load which
 * should be moved to restore balance via the imbalance parameter.
L
Linus Torvalds 已提交
2387 2388 2389
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
I
Ingo Molnar 已提交
2390 2391
		   unsigned long *imbalance, enum cpu_idle_type idle,
		   int *sd_idle, cpumask_t *cpus, int *balance)
L
Linus Torvalds 已提交
2392 2393 2394
{
	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2395
	unsigned long max_pull;
2396 2397
	unsigned long busiest_load_per_task, busiest_nr_running;
	unsigned long this_load_per_task, this_nr_running;
2398
	int load_idx, group_imb = 0;
2399 2400 2401 2402 2403 2404
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance = 1;
	unsigned long leader_nr_running = 0, min_load_per_task = 0;
	unsigned long min_nr_running = ULONG_MAX;
	struct sched_group *group_min = NULL, *group_leader = NULL;
#endif
L
Linus Torvalds 已提交
2405 2406

	max_load = this_load = total_load = total_pwr = 0;
2407 2408
	busiest_load_per_task = busiest_nr_running = 0;
	this_load_per_task = this_nr_running = 0;
I
Ingo Molnar 已提交
2409
	if (idle == CPU_NOT_IDLE)
N
Nick Piggin 已提交
2410
		load_idx = sd->busy_idx;
I
Ingo Molnar 已提交
2411
	else if (idle == CPU_NEWLY_IDLE)
N
Nick Piggin 已提交
2412 2413 2414
		load_idx = sd->newidle_idx;
	else
		load_idx = sd->idle_idx;
L
Linus Torvalds 已提交
2415 2416

	do {
2417
		unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
L
Linus Torvalds 已提交
2418 2419
		int local_group;
		int i;
2420
		int __group_imb = 0;
2421
		unsigned int balance_cpu = -1, first_idle_cpu = 0;
2422
		unsigned long sum_nr_running, sum_weighted_load;
L
Linus Torvalds 已提交
2423 2424 2425

		local_group = cpu_isset(this_cpu, group->cpumask);

2426 2427 2428
		if (local_group)
			balance_cpu = first_cpu(group->cpumask);

L
Linus Torvalds 已提交
2429
		/* Tally up the load of all CPUs in the group */
2430
		sum_weighted_load = sum_nr_running = avg_load = 0;
2431 2432
		max_cpu_load = 0;
		min_cpu_load = ~0UL;
L
Linus Torvalds 已提交
2433 2434

		for_each_cpu_mask(i, group->cpumask) {
2435 2436 2437 2438 2439 2440
			struct rq *rq;

			if (!cpu_isset(i, *cpus))
				continue;

			rq = cpu_rq(i);
2441

2442
			if (*sd_idle && rq->nr_running)
N
Nick Piggin 已提交
2443 2444
				*sd_idle = 0;

L
Linus Torvalds 已提交
2445
			/* Bias balancing toward cpus of our domain */
2446 2447 2448 2449 2450 2451
			if (local_group) {
				if (idle_cpu(i) && !first_idle_cpu) {
					first_idle_cpu = 1;
					balance_cpu = i;
				}

N
Nick Piggin 已提交
2452
				load = target_load(i, load_idx);
2453
			} else {
N
Nick Piggin 已提交
2454
				load = source_load(i, load_idx);
2455 2456 2457 2458 2459
				if (load > max_cpu_load)
					max_cpu_load = load;
				if (min_cpu_load > load)
					min_cpu_load = load;
			}
L
Linus Torvalds 已提交
2460 2461

			avg_load += load;
2462
			sum_nr_running += rq->nr_running;
I
Ingo Molnar 已提交
2463
			sum_weighted_load += weighted_cpuload(i);
L
Linus Torvalds 已提交
2464 2465
		}

2466 2467 2468
		/*
		 * First idle cpu or the first cpu(busiest) in this sched group
		 * is eligible for doing load balancing at this and above
2469 2470
		 * domains. In the newly idle case, we will allow all the cpu's
		 * to do the newly idle load balance.
2471
		 */
2472 2473
		if (idle != CPU_NEWLY_IDLE && local_group &&
		    balance_cpu != this_cpu && balance) {
2474 2475 2476 2477
			*balance = 0;
			goto ret;
		}

L
Linus Torvalds 已提交
2478
		total_load += avg_load;
2479
		total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
2480 2481

		/* Adjust by relative CPU power of the group */
2482 2483
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2484

2485 2486 2487
		if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
			__group_imb = 1;

2488
		group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2489

L
Linus Torvalds 已提交
2490 2491 2492
		if (local_group) {
			this_load = avg_load;
			this = group;
2493 2494 2495
			this_nr_running = sum_nr_running;
			this_load_per_task = sum_weighted_load;
		} else if (avg_load > max_load &&
2496
			   (sum_nr_running > group_capacity || __group_imb)) {
L
Linus Torvalds 已提交
2497 2498
			max_load = avg_load;
			busiest = group;
2499 2500
			busiest_nr_running = sum_nr_running;
			busiest_load_per_task = sum_weighted_load;
2501
			group_imb = __group_imb;
L
Linus Torvalds 已提交
2502
		}
2503 2504 2505 2506 2507 2508

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
		/*
		 * Busy processors will not participate in power savings
		 * balance.
		 */
I
Ingo Molnar 已提交
2509 2510 2511
		if (idle == CPU_NOT_IDLE ||
				!(sd->flags & SD_POWERSAVINGS_BALANCE))
			goto group_next;
2512 2513 2514 2515 2516 2517 2518 2519 2520

		/*
		 * If the local group is idle or completely loaded
		 * no need to do power savings balance at this domain
		 */
		if (local_group && (this_nr_running >= group_capacity ||
				    !this_nr_running))
			power_savings_balance = 0;

I
Ingo Molnar 已提交
2521
		/*
2522 2523
		 * If a group is already running at full capacity or idle,
		 * don't include that group in power savings calculations
I
Ingo Molnar 已提交
2524 2525
		 */
		if (!power_savings_balance || sum_nr_running >= group_capacity
2526
		    || !sum_nr_running)
I
Ingo Molnar 已提交
2527
			goto group_next;
2528

I
Ingo Molnar 已提交
2529
		/*
2530
		 * Calculate the group which has the least non-idle load.
I
Ingo Molnar 已提交
2531 2532 2533 2534 2535
		 * This is the group from where we need to pick up the load
		 * for saving power
		 */
		if ((sum_nr_running < min_nr_running) ||
		    (sum_nr_running == min_nr_running &&
2536 2537
		     first_cpu(group->cpumask) <
		     first_cpu(group_min->cpumask))) {
I
Ingo Molnar 已提交
2538 2539
			group_min = group;
			min_nr_running = sum_nr_running;
2540 2541
			min_load_per_task = sum_weighted_load /
						sum_nr_running;
I
Ingo Molnar 已提交
2542
		}
2543

I
Ingo Molnar 已提交
2544
		/*
2545
		 * Calculate the group which is almost near its
I
Ingo Molnar 已提交
2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556
		 * capacity but still has some space to pick up some load
		 * from other group and save more power
		 */
		if (sum_nr_running <= group_capacity - 1) {
			if (sum_nr_running > leader_nr_running ||
			    (sum_nr_running == leader_nr_running &&
			     first_cpu(group->cpumask) >
			      first_cpu(group_leader->cpumask))) {
				group_leader = group;
				leader_nr_running = sum_nr_running;
			}
2557
		}
2558 2559
group_next:
#endif
L
Linus Torvalds 已提交
2560 2561 2562
		group = group->next;
	} while (group != sd->groups);

2563
	if (!busiest || this_load >= max_load || busiest_nr_running == 0)
L
Linus Torvalds 已提交
2564 2565 2566 2567 2568 2569 2570 2571
		goto out_balanced;

	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;

	if (this_load >= avg_load ||
			100*max_load <= sd->imbalance_pct*this_load)
		goto out_balanced;

2572
	busiest_load_per_task /= busiest_nr_running;
2573 2574 2575
	if (group_imb)
		busiest_load_per_task = min(busiest_load_per_task, avg_load);

L
Linus Torvalds 已提交
2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
	 * by pulling tasks to us.  Be careful of negative numbers as they'll
	 * appear as very large values with unsigned longs.
	 */
2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598
	if (max_load <= busiest_load_per_task)
		goto out_balanced;

	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (max_load < avg_load) {
		*imbalance = 0;
		goto small_imbalance;
	}
2599 2600

	/* Don't want to pull so many tasks that a group would go idle */
2601
	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2602

L
Linus Torvalds 已提交
2603
	/* How much load to actually move to equalise the imbalance */
2604 2605
	*imbalance = min(max_pull * busiest->__cpu_power,
				(avg_load - this_load) * this->__cpu_power)
L
Linus Torvalds 已提交
2606 2607
			/ SCHED_LOAD_SCALE;

2608 2609 2610 2611 2612 2613
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
2614
	if (*imbalance < busiest_load_per_task) {
2615
		unsigned long tmp, pwr_now, pwr_move;
2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626
		unsigned int imbn;

small_imbalance:
		pwr_move = pwr_now = 0;
		imbn = 2;
		if (this_nr_running) {
			this_load_per_task /= this_nr_running;
			if (busiest_load_per_task > this_load_per_task)
				imbn = 1;
		} else
			this_load_per_task = SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
2627

I
Ingo Molnar 已提交
2628 2629
		if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
					busiest_load_per_task * imbn) {
2630
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2631 2632 2633 2634 2635 2636 2637 2638 2639
			return busiest;
		}

		/*
		 * OK, we don't have enough imbalance to justify moving tasks,
		 * however we may be able to increase total CPU power used by
		 * moving them.
		 */

2640 2641 2642 2643
		pwr_now += busiest->__cpu_power *
				min(busiest_load_per_task, max_load);
		pwr_now += this->__cpu_power *
				min(this_load_per_task, this_load);
L
Linus Torvalds 已提交
2644 2645 2646
		pwr_now /= SCHED_LOAD_SCALE;

		/* Amount of load we'd subtract */
2647 2648
		tmp = sg_div_cpu_power(busiest,
				busiest_load_per_task * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2649
		if (max_load > tmp)
2650
			pwr_move += busiest->__cpu_power *
2651
				min(busiest_load_per_task, max_load - tmp);
L
Linus Torvalds 已提交
2652 2653

		/* Amount of load we'd add */
2654
		if (max_load * busiest->__cpu_power <
2655
				busiest_load_per_task * SCHED_LOAD_SCALE)
2656 2657
			tmp = sg_div_cpu_power(this,
					max_load * busiest->__cpu_power);
L
Linus Torvalds 已提交
2658
		else
2659 2660 2661 2662
			tmp = sg_div_cpu_power(this,
				busiest_load_per_task * SCHED_LOAD_SCALE);
		pwr_move += this->__cpu_power *
				min(this_load_per_task, this_load + tmp);
L
Linus Torvalds 已提交
2663 2664 2665
		pwr_move /= SCHED_LOAD_SCALE;

		/* Move if we gain throughput */
2666 2667
		if (pwr_move > pwr_now)
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2668 2669 2670 2671 2672
	}

	return busiest;

out_balanced:
2673
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
2674
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2675
		goto ret;
L
Linus Torvalds 已提交
2676

2677 2678 2679 2680 2681
	if (this == group_leader && group_leader != group_min) {
		*imbalance = min_load_per_task;
		return group_min;
	}
#endif
2682
ret:
L
Linus Torvalds 已提交
2683 2684 2685 2686 2687 2688 2689
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
2690
static struct rq *
I
Ingo Molnar 已提交
2691
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2692
		   unsigned long imbalance, cpumask_t *cpus)
L
Linus Torvalds 已提交
2693
{
2694
	struct rq *busiest = NULL, *rq;
2695
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
2696 2697 2698
	int i;

	for_each_cpu_mask(i, group->cpumask) {
I
Ingo Molnar 已提交
2699
		unsigned long wl;
2700 2701 2702 2703

		if (!cpu_isset(i, *cpus))
			continue;

2704
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
2705
		wl = weighted_cpuload(i);
2706

I
Ingo Molnar 已提交
2707
		if (rq->nr_running == 1 && wl > imbalance)
2708
			continue;
L
Linus Torvalds 已提交
2709

I
Ingo Molnar 已提交
2710 2711
		if (wl > max_load) {
			max_load = wl;
2712
			busiest = rq;
L
Linus Torvalds 已提交
2713 2714 2715 2716 2717 2718
		}
	}

	return busiest;
}

2719 2720 2721 2722 2723 2724
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

L
Linus Torvalds 已提交
2725 2726 2727 2728
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
2729
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
2730
			struct sched_domain *sd, enum cpu_idle_type idle,
2731
			int *balance)
L
Linus Torvalds 已提交
2732
{
P
Peter Williams 已提交
2733
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
2734 2735
	struct sched_group *group;
	unsigned long imbalance;
2736
	struct rq *busiest;
2737
	cpumask_t cpus = CPU_MASK_ALL;
2738
	unsigned long flags;
N
Nick Piggin 已提交
2739

2740 2741 2742
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
2743
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
2744
	 * portraying it as CPU_NOT_IDLE.
2745
	 */
I
Ingo Molnar 已提交
2746
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2747
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2748
		sd_idle = 1;
L
Linus Torvalds 已提交
2749

2750
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
2751

2752 2753
redo:
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2754 2755
				   &cpus, balance);

2756
	if (*balance == 0)
2757 2758
		goto out_balanced;

L
Linus Torvalds 已提交
2759 2760 2761 2762 2763
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

2764
	busiest = find_busiest_queue(group, idle, imbalance, &cpus);
L
Linus Torvalds 已提交
2765 2766 2767 2768 2769
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
2770
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
2771 2772 2773

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
2774
	ld_moved = 0;
L
Linus Torvalds 已提交
2775 2776 2777 2778
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
2779
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
2780 2781
		 * correctly treated as an imbalance.
		 */
2782
		local_irq_save(flags);
N
Nick Piggin 已提交
2783
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
2784
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
2785
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
2786
		double_rq_unlock(this_rq, busiest);
2787
		local_irq_restore(flags);
2788

2789 2790 2791
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
2792
		if (ld_moved && this_cpu != smp_processor_id())
2793 2794
			resched_cpu(this_cpu);

2795
		/* All tasks on this runqueue were pinned by CPU affinity */
2796 2797 2798 2799
		if (unlikely(all_pinned)) {
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
2800
			goto out_balanced;
2801
		}
L
Linus Torvalds 已提交
2802
	}
2803

P
Peter Williams 已提交
2804
	if (!ld_moved) {
L
Linus Torvalds 已提交
2805 2806 2807 2808 2809
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

2810
			spin_lock_irqsave(&busiest->lock, flags);
2811 2812 2813 2814 2815

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
			if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2816
				spin_unlock_irqrestore(&busiest->lock, flags);
2817 2818 2819 2820
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
2821 2822 2823
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
2824
				active_balance = 1;
L
Linus Torvalds 已提交
2825
			}
2826
			spin_unlock_irqrestore(&busiest->lock, flags);
2827
			if (active_balance)
L
Linus Torvalds 已提交
2828 2829 2830 2831 2832 2833
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
2834
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
2835
		}
2836
	} else
L
Linus Torvalds 已提交
2837 2838
		sd->nr_balance_failed = 0;

2839
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
2840 2841
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
2842 2843 2844 2845 2846 2847 2848 2849 2850
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
2851 2852
	}

P
Peter Williams 已提交
2853
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2854
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2855
		return -1;
P
Peter Williams 已提交
2856
	return ld_moved;
L
Linus Torvalds 已提交
2857 2858 2859 2860

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

2861
	sd->nr_balance_failed = 0;
2862 2863

out_one_pinned:
L
Linus Torvalds 已提交
2864
	/* tune up the balancing interval */
2865 2866
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
2867 2868
		sd->balance_interval *= 2;

2869
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2870
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2871
		return -1;
L
Linus Torvalds 已提交
2872 2873 2874 2875 2876 2877 2878
	return 0;
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
2879
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
2880 2881
 * this_rq is locked.
 */
2882
static int
2883
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
L
Linus Torvalds 已提交
2884 2885
{
	struct sched_group *group;
2886
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
2887
	unsigned long imbalance;
P
Peter Williams 已提交
2888
	int ld_moved = 0;
N
Nick Piggin 已提交
2889
	int sd_idle = 0;
2890
	int all_pinned = 0;
2891
	cpumask_t cpus = CPU_MASK_ALL;
N
Nick Piggin 已提交
2892

2893 2894 2895 2896
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
2897
	 * portraying it as CPU_NOT_IDLE.
2898 2899 2900
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2901
		sd_idle = 1;
L
Linus Torvalds 已提交
2902

2903
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
2904
redo:
I
Ingo Molnar 已提交
2905
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
2906
				   &sd_idle, &cpus, NULL);
L
Linus Torvalds 已提交
2907
	if (!group) {
I
Ingo Molnar 已提交
2908
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
2909
		goto out_balanced;
L
Linus Torvalds 已提交
2910 2911
	}

I
Ingo Molnar 已提交
2912
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
2913
				&cpus);
N
Nick Piggin 已提交
2914
	if (!busiest) {
I
Ingo Molnar 已提交
2915
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
2916
		goto out_balanced;
L
Linus Torvalds 已提交
2917 2918
	}

N
Nick Piggin 已提交
2919 2920
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
2921
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
2922

P
Peter Williams 已提交
2923
	ld_moved = 0;
2924 2925 2926
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
2927 2928
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
2929
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
2930 2931
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
2932
		spin_unlock(&busiest->lock);
2933

2934
		if (unlikely(all_pinned)) {
2935 2936 2937 2938
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
		}
2939 2940
	}

P
Peter Williams 已提交
2941
	if (!ld_moved) {
I
Ingo Molnar 已提交
2942
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
2943 2944
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2945 2946
			return -1;
	} else
2947
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
2948

P
Peter Williams 已提交
2949
	return ld_moved;
2950 2951

out_balanced:
I
Ingo Molnar 已提交
2952
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
2953
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2954
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2955
		return -1;
2956
	sd->nr_balance_failed = 0;
2957

2958
	return 0;
L
Linus Torvalds 已提交
2959 2960 2961 2962 2963 2964
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
2965
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
2966 2967
{
	struct sched_domain *sd;
I
Ingo Molnar 已提交
2968 2969
	int pulled_task = -1;
	unsigned long next_balance = jiffies + HZ;
L
Linus Torvalds 已提交
2970 2971

	for_each_domain(this_cpu, sd) {
2972 2973 2974 2975 2976 2977
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
2978
			/* If we've pulled tasks over stop searching: */
2979
			pulled_task = load_balance_newidle(this_cpu,
2980 2981 2982 2983 2984 2985 2986
								this_rq, sd);

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
2987
	}
I
Ingo Molnar 已提交
2988
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
2989 2990 2991 2992 2993
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
2994
	}
L
Linus Torvalds 已提交
2995 2996 2997 2998 2999 3000 3001 3002 3003 3004
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
3005
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
3006
{
3007
	int target_cpu = busiest_rq->push_cpu;
3008 3009
	struct sched_domain *sd;
	struct rq *target_rq;
3010

3011
	/* Is there any task to move? */
3012 3013 3014 3015
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
3016 3017

	/*
3018 3019 3020
	 * This condition is "impossible", if it occurs
	 * we need to fix it.  Originally reported by
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
3021
	 */
3022
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
3023

3024 3025
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
3026 3027
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
3028 3029

	/* Search for an sd spanning us and the target CPU. */
3030
	for_each_domain(target_cpu, sd) {
3031
		if ((sd->flags & SD_LOAD_BALANCE) &&
3032
		    cpu_isset(busiest_cpu, sd->span))
3033
				break;
3034
	}
3035

3036
	if (likely(sd)) {
3037
		schedstat_inc(sd, alb_count);
3038

P
Peter Williams 已提交
3039 3040
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
3041 3042 3043 3044
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
3045
	spin_unlock(&target_rq->lock);
L
Linus Torvalds 已提交
3046 3047
}

3048 3049 3050 3051 3052 3053 3054 3055 3056
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
	cpumask_t  cpu_mask;
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
	.cpu_mask = CPU_MASK_NONE,
};

3057
/*
3058 3059 3060 3061 3062 3063 3064 3065 3066 3067
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
3068
 *
3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_set(cpu, nohz.cpu_mask);
		cpu_rq(cpu)->in_nohz_recently = 1;

		/*
		 * If we are going offline and still the leader, give up!
		 */
		if (cpu_is_offline(cpu) &&
		    atomic_read(&nohz.load_balancer) == cpu) {
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
			return 0;
		}

		/* time for ilb owner also to sleep */
		if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
		if (!cpu_isset(cpu, nohz.cpu_mask))
			return 0;

		cpu_clear(cpu, nohz.cpu_mask);

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
3125 3126 3127 3128 3129
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
3130
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3131
{
3132 3133
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
3134 3135
	unsigned long interval;
	struct sched_domain *sd;
3136
	/* Earliest time when we have to do rebalance again */
3137
	unsigned long next_balance = jiffies + 60*HZ;
3138
	int update_next_balance = 0;
L
Linus Torvalds 已提交
3139

3140
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
3141 3142 3143 3144
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
3145
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
3146 3147 3148 3149 3150 3151
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
3152 3153 3154
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

L
Linus Torvalds 已提交
3155

3156 3157 3158 3159 3160
		if (sd->flags & SD_SERIALIZE) {
			if (!spin_trylock(&balancing))
				goto out;
		}

3161
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
3162
			if (load_balance(cpu, rq, sd, idle, &balance)) {
3163 3164
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
3165 3166 3167
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
3168
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
3169
			}
3170
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
3171
		}
3172 3173 3174
		if (sd->flags & SD_SERIALIZE)
			spin_unlock(&balancing);
out:
3175
		if (time_after(next_balance, sd->last_balance + interval)) {
3176
			next_balance = sd->last_balance + interval;
3177 3178
			update_next_balance = 1;
		}
3179 3180 3181 3182 3183 3184 3185 3186

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
3187
	}
3188 3189 3190 3191 3192 3193 3194 3195

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
3196 3197 3198 3199 3200 3201 3202 3203 3204
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
3205 3206 3207 3208
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
3209

I
Ingo Molnar 已提交
3210
	rebalance_domains(this_cpu, idle);
3211 3212 3213 3214 3215 3216 3217

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
3218 3219
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
3220 3221 3222 3223
		cpumask_t cpus = nohz.cpu_mask;
		struct rq *rq;
		int balance_cpu;

I
Ingo Molnar 已提交
3224
		cpu_clear(this_cpu, cpus);
3225 3226 3227 3228 3229 3230 3231 3232 3233
		for_each_cpu_mask(balance_cpu, cpus) {
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

3234
			rebalance_domains(balance_cpu, CPU_IDLE);
3235 3236

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
3237 3238
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250
		}
	}
#endif
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
3251
static inline void trigger_load_balance(struct rq *rq, int cpu)
3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
			cpu_clear(cpu, nohz.cpu_mask);
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
			int ilb = first_cpu(nohz.cpu_mask);

			if (ilb != NR_CPUS)
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
	    cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
	    cpu_isset(cpu, nohz.cpu_mask))
		return;
#endif
	if (time_after_eq(jiffies, rq->next_balance))
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
3303
}
I
Ingo Molnar 已提交
3304 3305 3306

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
3307 3308 3309
/*
 * on UP we do not need to balance between CPUs:
 */
3310
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
3311 3312
{
}
I
Ingo Molnar 已提交
3313

L
Linus Torvalds 已提交
3314 3315 3316 3317 3318 3319 3320
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
3321 3322
 * Return p->sum_exec_runtime plus any more ns on the sched_clock
 * that have not yet been banked in case the task is currently running.
L
Linus Torvalds 已提交
3323
 */
3324
unsigned long long task_sched_runtime(struct task_struct *p)
L
Linus Torvalds 已提交
3325 3326
{
	unsigned long flags;
3327 3328
	u64 ns, delta_exec;
	struct rq *rq;
3329

3330 3331 3332
	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime;
	if (rq->curr == p) {
I
Ingo Molnar 已提交
3333 3334
		update_rq_clock(rq);
		delta_exec = rq->clock - p->se.exec_start;
3335 3336 3337 3338
		if ((s64)delta_exec > 0)
			ns += delta_exec;
	}
	task_rq_unlock(rq, &flags);
3339

L
Linus Torvalds 已提交
3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time(struct task_struct *p, cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

	p->utime = cputime_add(p->utime, cputime);

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
}

3363 3364 3365 3366 3367
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
 */
3368
static void account_guest_time(struct task_struct *p, cputime_t cputime)
3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

	p->utime = cputime_add(p->utime, cputime);
	p->gtime = cputime_add(p->gtime, cputime);

	cpustat->user = cputime64_add(cpustat->user, tmp);
	cpustat->guest = cputime64_add(cpustat->guest, tmp);
}

3382 3383 3384 3385 3386 3387 3388 3389 3390 3391
/*
 * Account scaled user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->utimescaled = cputime_add(p->utimescaled, cputime);
}

L
Linus Torvalds 已提交
3392 3393 3394 3395 3396 3397 3398 3399 3400 3401
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
			 cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3402
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3403 3404
	cputime64_t tmp;

3405 3406
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0))
		return account_guest_time(p, cputime);
3407

L
Linus Torvalds 已提交
3408 3409 3410 3411 3412 3413 3414 3415
	p->stime = cputime_add(p->stime, cputime);

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3416
	else if (p != rq->idle)
L
Linus Torvalds 已提交
3417
		cpustat->system = cputime64_add(cpustat->system, tmp);
3418
	else if (atomic_read(&rq->nr_iowait) > 0)
L
Linus Torvalds 已提交
3419 3420 3421 3422 3423 3424 3425
		cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
	else
		cpustat->idle = cputime64_add(cpustat->idle, tmp);
	/* Account for system time used */
	acct_update_integrals(p);
}

3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436
/*
 * Account scaled system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->stimescaled = cputime_add(p->stimescaled, cputime);
}

L
Linus Torvalds 已提交
3437 3438 3439 3440 3441 3442 3443 3444 3445
/*
 * Account for involuntary wait time.
 * @p: the process from which the cpu time has been stolen
 * @steal: the cpu time spent in involuntary wait
 */
void account_steal_time(struct task_struct *p, cputime_t steal)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp = cputime_to_cputime64(steal);
3446
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3447 3448 3449 3450 3451 3452 3453

	if (p == rq->idle) {
		p->stime = cputime_add(p->stime, steal);
		if (atomic_read(&rq->nr_iowait) > 0)
			cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
		else
			cpustat->idle = cputime64_add(cpustat->idle, tmp);
3454
	} else
L
Linus Torvalds 已提交
3455 3456 3457
		cpustat->steal = cputime64_add(cpustat->steal, tmp);
}

3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
3469
	struct task_struct *curr = rq->curr;
3470
	u64 next_tick = rq->tick_timestamp + TICK_NSEC;
I
Ingo Molnar 已提交
3471 3472

	spin_lock(&rq->lock);
3473
	__update_rq_clock(rq);
3474 3475 3476 3477 3478 3479
	/*
	 * Let rq->clock advance by at least TICK_NSEC:
	 */
	if (unlikely(rq->clock < next_tick))
		rq->clock = next_tick;
	rq->tick_timestamp = rq->clock;
3480
	update_cpu_load(rq);
I
Ingo Molnar 已提交
3481 3482 3483
	if (curr != rq->idle) /* FIXME: needed? */
		curr->sched_class->task_tick(rq, curr);
	spin_unlock(&rq->lock);
3484

3485
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
3486 3487
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
3488
#endif
L
Linus Torvalds 已提交
3489 3490 3491 3492 3493 3494 3495 3496 3497
}

#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)

void fastcall add_preempt_count(int val)
{
	/*
	 * Underflow?
	 */
3498 3499
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
L
Linus Torvalds 已提交
3500 3501 3502 3503
	preempt_count() += val;
	/*
	 * Spinlock count overflowing soon?
	 */
3504 3505
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
L
Linus Torvalds 已提交
3506 3507 3508 3509 3510 3511 3512 3513
}
EXPORT_SYMBOL(add_preempt_count);

void fastcall sub_preempt_count(int val)
{
	/*
	 * Underflow?
	 */
3514 3515
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
		return;
L
Linus Torvalds 已提交
3516 3517 3518
	/*
	 * Is the spinlock portion underflowing?
	 */
3519 3520 3521 3522
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;

L
Linus Torvalds 已提交
3523 3524 3525 3526 3527 3528 3529
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
3530
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3531
 */
I
Ingo Molnar 已提交
3532
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3533
{
3534 3535 3536 3537 3538
	struct pt_regs *regs = get_irq_regs();

	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());

I
Ingo Molnar 已提交
3539 3540 3541
	debug_show_held_locks(prev);
	if (irqs_disabled())
		print_irqtrace_events(prev);
3542 3543 3544 3545 3546

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
3547
}
L
Linus Torvalds 已提交
3548

I
Ingo Molnar 已提交
3549 3550 3551 3552 3553
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
3554 3555 3556 3557 3558
	/*
	 * Test if we are atomic.  Since do_exit() needs to call into
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
I
Ingo Molnar 已提交
3559 3560 3561
	if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
		__schedule_bug(prev);

L
Linus Torvalds 已提交
3562 3563
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

3564
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
3565 3566
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
3567 3568
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
3569 3570
	}
#endif
I
Ingo Molnar 已提交
3571 3572 3573 3574 3575 3576
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
3577
pick_next_task(struct rq *rq, struct task_struct *prev)
I
Ingo Molnar 已提交
3578
{
3579
	const struct sched_class *class;
I
Ingo Molnar 已提交
3580
	struct task_struct *p;
L
Linus Torvalds 已提交
3581 3582

	/*
I
Ingo Molnar 已提交
3583 3584
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
3585
	 */
I
Ingo Molnar 已提交
3586
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
3587
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
3588 3589
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
3590 3591
	}

I
Ingo Molnar 已提交
3592 3593
	class = sched_class_highest;
	for ( ; ; ) {
3594
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
3595 3596 3597 3598 3599 3600 3601 3602 3603
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
3604

I
Ingo Molnar 已提交
3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626
/*
 * schedule() is the main scheduler function.
 */
asmlinkage void __sched schedule(void)
{
	struct task_struct *prev, *next;
	long *switch_count;
	struct rq *rq;
	int cpu;

need_resched:
	preempt_disable();
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
3627

3628 3629 3630 3631
	/*
	 * Do the rq-clock update outside the rq lock:
	 */
	local_irq_disable();
I
Ingo Molnar 已提交
3632
	__update_rq_clock(rq);
3633 3634
	spin_lock(&rq->lock);
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
3635 3636 3637

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
		if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
I
Ingo Molnar 已提交
3638
				unlikely(signal_pending(prev)))) {
L
Linus Torvalds 已提交
3639
			prev->state = TASK_RUNNING;
I
Ingo Molnar 已提交
3640
		} else {
3641
			deactivate_task(rq, prev, 1);
L
Linus Torvalds 已提交
3642
		}
I
Ingo Molnar 已提交
3643
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
3644 3645
	}

I
Ingo Molnar 已提交
3646
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
3647 3648
		idle_balance(cpu, rq);

3649
	prev->sched_class->put_prev_task(rq, prev);
3650
	next = pick_next_task(rq, prev);
L
Linus Torvalds 已提交
3651 3652

	sched_info_switch(prev, next);
I
Ingo Molnar 已提交
3653

L
Linus Torvalds 已提交
3654 3655 3656 3657 3658
	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
3659
		context_switch(rq, prev, next); /* unlocks the rq */
L
Linus Torvalds 已提交
3660 3661 3662
	} else
		spin_unlock_irq(&rq->lock);

I
Ingo Molnar 已提交
3663 3664 3665
	if (unlikely(reacquire_kernel_lock(current) < 0)) {
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
3666
		goto need_resched_nonpreemptible;
I
Ingo Molnar 已提交
3667
	}
L
Linus Torvalds 已提交
3668 3669 3670 3671 3672 3673 3674 3675
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

#ifdef CONFIG_PREEMPT
/*
3676
 * this is the entry point to schedule() from in-kernel preemption
L
Linus Torvalds 已提交
3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690
 * off of preempt_enable.  Kernel preemptions off return from interrupt
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
#ifdef CONFIG_PREEMPT_BKL
	struct task_struct *task = current;
	int saved_lock_depth;
#endif
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
	 * we do not want to preempt the current task.  Just return..
	 */
N
Nick Piggin 已提交
3691
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
3692 3693
		return;

3694 3695 3696 3697 3698 3699 3700 3701
	do {
		add_preempt_count(PREEMPT_ACTIVE);

		/*
		 * We keep the big kernel semaphore locked, but we
		 * clear ->lock_depth so that schedule() doesnt
		 * auto-release the semaphore:
		 */
L
Linus Torvalds 已提交
3702
#ifdef CONFIG_PREEMPT_BKL
3703 3704
		saved_lock_depth = task->lock_depth;
		task->lock_depth = -1;
L
Linus Torvalds 已提交
3705
#endif
3706
		schedule();
L
Linus Torvalds 已提交
3707
#ifdef CONFIG_PREEMPT_BKL
3708
		task->lock_depth = saved_lock_depth;
L
Linus Torvalds 已提交
3709
#endif
3710
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3711

3712 3713 3714 3715 3716 3717
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
3718 3719 3720 3721
}
EXPORT_SYMBOL(preempt_schedule);

/*
3722
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
#ifdef CONFIG_PREEMPT_BKL
	struct task_struct *task = current;
	int saved_lock_depth;
#endif
3734
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
3735 3736
	BUG_ON(ti->preempt_count || !irqs_disabled());

3737 3738 3739 3740 3741 3742 3743 3744
	do {
		add_preempt_count(PREEMPT_ACTIVE);

		/*
		 * We keep the big kernel semaphore locked, but we
		 * clear ->lock_depth so that schedule() doesnt
		 * auto-release the semaphore:
		 */
L
Linus Torvalds 已提交
3745
#ifdef CONFIG_PREEMPT_BKL
3746 3747
		saved_lock_depth = task->lock_depth;
		task->lock_depth = -1;
L
Linus Torvalds 已提交
3748
#endif
3749 3750 3751
		local_irq_enable();
		schedule();
		local_irq_disable();
L
Linus Torvalds 已提交
3752
#ifdef CONFIG_PREEMPT_BKL
3753
		task->lock_depth = saved_lock_depth;
L
Linus Torvalds 已提交
3754
#endif
3755
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3756

3757 3758 3759 3760 3761 3762
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
3763 3764 3765 3766
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
3767 3768
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
3769
{
3770
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785
}
EXPORT_SYMBOL(default_wake_function);

/*
 * The core wakeup function.  Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up.  If it's an exclusive wakeup (nr_exclusive == small +ve
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
 * started to run but is not in state TASK_RUNNING.  try_to_wake_up() returns
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			     int nr_exclusive, int sync, void *key)
{
3786
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
3787

3788
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3789 3790
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
3791
		if (curr->func(curr, mode, sync, key) &&
3792
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
3793 3794 3795 3796 3797 3798 3799 3800 3801
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3802
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
3803 3804
 */
void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
3805
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

/**
3824
 * __wake_up_sync - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
I
Ingo Molnar 已提交
3836 3837
void fastcall
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
L
Linus Torvalds 已提交
3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

3854
void complete(struct completion *x)
L
Linus Torvalds 已提交
3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
			 1, 0, NULL);
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

3866
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
			 0, 0, NULL);
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

3878 3879
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
3880 3881 3882 3883 3884 3885 3886
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
3887 3888 3889 3890 3891 3892
			if (state == TASK_INTERRUPTIBLE &&
			    signal_pending(current)) {
				__remove_wait_queue(&x->wait, &wait);
				return -ERESTARTSYS;
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
3893 3894 3895 3896 3897
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
			if (!timeout) {
				__remove_wait_queue(&x->wait, &wait);
3898
				return timeout;
L
Linus Torvalds 已提交
3899 3900 3901 3902 3903 3904 3905 3906
			}
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
	return timeout;
}

3907 3908
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
3909 3910 3911 3912
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
3913
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
3914
	spin_unlock_irq(&x->wait.lock);
3915 3916
	return timeout;
}
L
Linus Torvalds 已提交
3917

3918
void __sched wait_for_completion(struct completion *x)
3919 3920
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
3921
}
3922
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
3923

3924
unsigned long __sched
3925
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
3926
{
3927
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
3928
}
3929
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
3930

3931
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
3932
{
3933 3934 3935 3936
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
3937
}
3938
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
3939

3940
unsigned long __sched
3941 3942
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
3943
{
3944
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
3945
}
3946
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
3947

3948 3949
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
3950
{
I
Ingo Molnar 已提交
3951 3952 3953 3954
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3955

3956
	__set_current_state(state);
L
Linus Torvalds 已提交
3957

3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
3972 3973 3974
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
3975
long __sched
I
Ingo Molnar 已提交
3976
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3977
{
3978
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
3979 3980 3981
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
3982
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
3983
{
3984
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
3985 3986 3987
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
3988
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3989
{
3990
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
3991 3992 3993
}
EXPORT_SYMBOL(sleep_on_timeout);

3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
4006
void rt_mutex_setprio(struct task_struct *p, int prio)
4007 4008
{
	unsigned long flags;
4009
	int oldprio, on_rq, running;
4010
	struct rq *rq;
4011 4012 4013 4014

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4015
	update_rq_clock(rq);
4016

4017
	oldprio = p->prio;
I
Ingo Molnar 已提交
4018
	on_rq = p->se.on_rq;
4019 4020
	running = task_running(rq, p);
	if (on_rq) {
4021
		dequeue_task(rq, p, 0);
4022 4023 4024
		if (running)
			p->sched_class->put_prev_task(rq, p);
	}
I
Ingo Molnar 已提交
4025 4026 4027 4028 4029 4030

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

4031 4032
	p->prio = prio;

I
Ingo Molnar 已提交
4033
	if (on_rq) {
4034 4035
		if (running)
			p->sched_class->set_curr_task(rq);
4036
		enqueue_task(rq, p, 0);
4037 4038
		/*
		 * Reschedule if we are currently running on this runqueue and
4039 4040
		 * our priority decreased, or if we are not currently running on
		 * this runqueue and our priority is higher than the current's
4041
		 */
4042
		if (running) {
4043 4044
			if (p->prio > oldprio)
				resched_task(rq->curr);
I
Ingo Molnar 已提交
4045 4046 4047
		} else {
			check_preempt_curr(rq, p);
		}
4048 4049 4050 4051 4052 4053
	}
	task_rq_unlock(rq, &flags);
}

#endif

4054
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
4055
{
I
Ingo Molnar 已提交
4056
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
4057
	unsigned long flags;
4058
	struct rq *rq;
L
Linus Torvalds 已提交
4059 4060 4061 4062 4063 4064 4065 4066

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4067
	update_rq_clock(rq);
L
Linus Torvalds 已提交
4068 4069 4070 4071
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
4072
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
4073
	 */
4074
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
4075 4076 4077
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
4078 4079
	on_rq = p->se.on_rq;
	if (on_rq) {
4080
		dequeue_task(rq, p, 0);
4081
		dec_load(rq, p);
4082
	}
L
Linus Torvalds 已提交
4083 4084

	p->static_prio = NICE_TO_PRIO(nice);
4085
	set_load_weight(p);
4086 4087 4088
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
4089

I
Ingo Molnar 已提交
4090
	if (on_rq) {
4091
		enqueue_task(rq, p, 0);
4092
		inc_load(rq, p);
L
Linus Torvalds 已提交
4093
		/*
4094 4095
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
4096
		 */
4097
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
4098 4099 4100 4101 4102 4103 4104
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
4105 4106 4107 4108 4109
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
4110
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
4111
{
4112 4113
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
4114

M
Matt Mackall 已提交
4115 4116 4117 4118
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
asmlinkage long sys_nice(int increment)
{
4130
	long nice, retval;
L
Linus Torvalds 已提交
4131 4132 4133 4134 4135 4136

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
4137 4138
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
4139 4140 4141 4142 4143 4144 4145 4146 4147
	if (increment > 40)
		increment = 40;

	nice = PRIO_TO_NICE(current->static_prio) + increment;
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
4148 4149 4150
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4169
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4170 4171 4172 4173 4174 4175 4176 4177
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4178
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196
{
	return TASK_NICE(p);
}
EXPORT_SYMBOL_GPL(task_nice);

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4197
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4198 4199 4200 4201 4202 4203 4204 4205
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
4206
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4207
{
4208
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
4209 4210 4211
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
4212 4213
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
4214
{
I
Ingo Molnar 已提交
4215
	BUG_ON(p->se.on_rq);
4216

L
Linus Torvalds 已提交
4217
	p->policy = policy;
I
Ingo Molnar 已提交
4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
4230
	p->rt_priority = prio;
4231 4232 4233
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
4234
	set_load_weight(p);
L
Linus Torvalds 已提交
4235 4236 4237
}

/**
4238
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
L
Linus Torvalds 已提交
4239 4240 4241
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
4242
 *
4243
 * NOTE that the task may be already dead.
L
Linus Torvalds 已提交
4244
 */
I
Ingo Molnar 已提交
4245 4246
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
L
Linus Torvalds 已提交
4247
{
4248
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
4249
	unsigned long flags;
4250
	struct rq *rq;
L
Linus Torvalds 已提交
4251

4252 4253
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4254 4255 4256 4257 4258
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
I
Ingo Molnar 已提交
4259 4260
			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
			policy != SCHED_IDLE)
4261
		return -EINVAL;
L
Linus Torvalds 已提交
4262 4263
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4264 4265
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4266 4267
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4268
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4269
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4270
		return -EINVAL;
4271
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4272 4273
		return -EINVAL;

4274 4275 4276 4277
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
	if (!capable(CAP_SYS_NICE)) {
4278
		if (rt_policy(policy)) {
4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
4295 4296 4297 4298 4299 4300
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
4301

4302 4303 4304 4305 4306
		/* can't change other user's priorities */
		if ((current->euid != p->euid) &&
		    (current->euid != p->uid))
			return -EPERM;
	}
L
Linus Torvalds 已提交
4307 4308 4309 4310

	retval = security_task_setscheduler(p, policy, param);
	if (retval)
		return retval;
4311 4312 4313 4314 4315
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4316 4317 4318 4319
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
4320
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
4321 4322 4323
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4324 4325
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4326 4327
		goto recheck;
	}
I
Ingo Molnar 已提交
4328
	update_rq_clock(rq);
I
Ingo Molnar 已提交
4329
	on_rq = p->se.on_rq;
4330 4331
	running = task_running(rq, p);
	if (on_rq) {
4332
		deactivate_task(rq, p, 0);
4333 4334 4335
		if (running)
			p->sched_class->put_prev_task(rq, p);
	}
4336

L
Linus Torvalds 已提交
4337
	oldprio = p->prio;
I
Ingo Molnar 已提交
4338
	__setscheduler(rq, p, policy, param->sched_priority);
4339

I
Ingo Molnar 已提交
4340
	if (on_rq) {
4341 4342
		if (running)
			p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4343
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
4344 4345
		/*
		 * Reschedule if we are currently running on this runqueue and
4346 4347
		 * our priority decreased, or if we are not currently running on
		 * this runqueue and our priority is higher than the current's
L
Linus Torvalds 已提交
4348
		 */
4349
		if (running) {
4350 4351
			if (p->prio > oldprio)
				resched_task(rq->curr);
I
Ingo Molnar 已提交
4352 4353 4354
		} else {
			check_preempt_curr(rq, p);
		}
L
Linus Torvalds 已提交
4355
	}
4356 4357 4358
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

4359 4360
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
4361 4362 4363 4364
	return 0;
}
EXPORT_SYMBOL_GPL(sched_setscheduler);

I
Ingo Molnar 已提交
4365 4366
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4367 4368 4369
{
	struct sched_param lparam;
	struct task_struct *p;
4370
	int retval;
L
Linus Torvalds 已提交
4371 4372 4373 4374 4375

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4376 4377 4378

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4379
	p = find_process_by_pid(pid);
4380 4381 4382
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4383

L
Linus Torvalds 已提交
4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
				       struct sched_param __user *param)
{
4396 4397 4398 4399
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
asmlinkage long sys_sched_getscheduler(pid_t pid)
{
4419
	struct task_struct *p;
4420
	int retval;
L
Linus Torvalds 已提交
4421 4422

	if (pid < 0)
4423
		return -EINVAL;
L
Linus Torvalds 已提交
4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
{
	struct sched_param lp;
4445
	struct task_struct *p;
4446
	int retval;
L
Linus Torvalds 已提交
4447 4448

	if (!param || pid < 0)
4449
		return -EINVAL;
L
Linus Torvalds 已提交
4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

long sched_setaffinity(pid_t pid, cpumask_t new_mask)
{
	cpumask_t cpus_allowed;
4479 4480
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4481

4482
	mutex_lock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4483 4484 4485 4486 4487
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
4488
		mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
	 * tasklist_lock held.  We will bump the task_struct's
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

	retval = -EPERM;
	if ((current->euid != p->euid) && (current->euid != p->uid) &&
			!capable(CAP_SYS_NICE))
		goto out_unlock;

4505 4506 4507 4508
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

L
Linus Torvalds 已提交
4509 4510
	cpus_allowed = cpuset_cpus_allowed(p);
	cpus_and(new_mask, new_mask, cpus_allowed);
P
Paul Menage 已提交
4511
 again:
L
Linus Torvalds 已提交
4512 4513
	retval = set_cpus_allowed(p, new_mask);

P
Paul Menage 已提交
4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525
	if (!retval) {
		cpus_allowed = cpuset_cpus_allowed(p);
		if (!cpus_subset(new_mask, cpus_allowed)) {
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
			new_mask = cpus_allowed;
			goto again;
		}
	}
L
Linus Torvalds 已提交
4526 4527
out_unlock:
	put_task_struct(p);
4528
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
			     cpumask_t *new_mask)
{
	if (len < sizeof(cpumask_t)) {
		memset(new_mask, 0, sizeof(cpumask_t));
	} else if (len > sizeof(cpumask_t)) {
		len = sizeof(cpumask_t);
	}
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	cpumask_t new_mask;
	int retval;

	retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
	if (retval)
		return retval;

	return sched_setaffinity(pid, new_mask);
}

/*
 * Represents all cpu's present in the system
 * In systems capable of hotplug, this map could dynamically grow
 * as new cpu's are detected in the system via any platform specific
 * method, such as ACPI for e.g.
 */

4569
cpumask_t cpu_present_map __read_mostly;
L
Linus Torvalds 已提交
4570 4571 4572
EXPORT_SYMBOL(cpu_present_map);

#ifndef CONFIG_SMP
4573
cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4574 4575
EXPORT_SYMBOL(cpu_online_map);

4576
cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4577
EXPORT_SYMBOL(cpu_possible_map);
L
Linus Torvalds 已提交
4578 4579 4580 4581
#endif

long sched_getaffinity(pid_t pid, cpumask_t *mask)
{
4582
	struct task_struct *p;
L
Linus Torvalds 已提交
4583 4584
	int retval;

4585
	mutex_lock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4586 4587 4588 4589 4590 4591 4592
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4593 4594 4595 4596
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4597
	cpus_and(*mask, p->cpus_allowed, cpu_online_map);
L
Linus Torvalds 已提交
4598 4599 4600

out_unlock:
	read_unlock(&tasklist_lock);
4601
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4602

4603
	return retval;
L
Linus Torvalds 已提交
4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	int ret;
	cpumask_t mask;

	if (len < sizeof(cpumask_t))
		return -EINVAL;

	ret = sched_getaffinity(pid, &mask);
	if (ret < 0)
		return ret;

	if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
		return -EFAULT;

	return sizeof(cpumask_t);
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4634 4635
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
4636 4637 4638
 */
asmlinkage long sys_sched_yield(void)
{
4639
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4640

4641
	schedstat_inc(rq, yld_count);
4642
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4643 4644 4645 4646 4647 4648

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4649
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
4650 4651 4652 4653 4654 4655 4656 4657
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
4658
static void __cond_resched(void)
L
Linus Torvalds 已提交
4659
{
4660 4661 4662
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
4663 4664 4665 4666 4667
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
4668 4669 4670 4671 4672 4673 4674 4675 4676
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

int __sched cond_resched(void)
{
4677 4678
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693
		__cond_resched();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched);

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
 * This works OK both with and without CONFIG_PREEMPT.  We do strange low-level
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
4694
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4695
{
J
Jan Kara 已提交
4696 4697
	int ret = 0;

L
Linus Torvalds 已提交
4698 4699 4700
	if (need_lockbreak(lock)) {
		spin_unlock(lock);
		cpu_relax();
J
Jan Kara 已提交
4701
		ret = 1;
L
Linus Torvalds 已提交
4702 4703
		spin_lock(lock);
	}
4704
	if (need_resched() && system_state == SYSTEM_RUNNING) {
4705
		spin_release(&lock->dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
4706 4707 4708
		_raw_spin_unlock(lock);
		preempt_enable_no_resched();
		__cond_resched();
J
Jan Kara 已提交
4709
		ret = 1;
L
Linus Torvalds 已提交
4710 4711
		spin_lock(lock);
	}
J
Jan Kara 已提交
4712
	return ret;
L
Linus Torvalds 已提交
4713 4714 4715 4716 4717 4718 4719
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

4720
	if (need_resched() && system_state == SYSTEM_RUNNING) {
4721
		local_bh_enable();
L
Linus Torvalds 已提交
4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
4733
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
 * This task is about to go to sleep on IO.  Increment rq->nr_iowait so
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
4752
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
4753

4754
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4755 4756 4757
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
4758
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4759 4760 4761 4762 4763
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
4764
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
4765 4766
	long ret;

4767
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4768 4769 4770
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
4771
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_max(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
4792
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4793
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_min(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
4817
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4818
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
asmlinkage
long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
{
4835
	struct task_struct *p;
D
Dmitry Adamushko 已提交
4836
	unsigned int time_slice;
4837
	int retval;
L
Linus Torvalds 已提交
4838 4839 4840
	struct timespec t;

	if (pid < 0)
4841
		return -EINVAL;
L
Linus Torvalds 已提交
4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

D
Dmitry Adamushko 已提交
4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865
	if (p->policy == SCHED_FIFO)
		time_slice = 0;
	else if (p->policy == SCHED_RR)
		time_slice = DEF_TIMESLICE;
	else {
		struct sched_entity *se = &p->se;
		unsigned long flags;
		struct rq *rq;

		rq = task_rq_lock(p, &flags);
		time_slice = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
		task_rq_unlock(rq, &flags);
	}
L
Linus Torvalds 已提交
4866
	read_unlock(&tasklist_lock);
D
Dmitry Adamushko 已提交
4867
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
4868 4869
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
4870

L
Linus Torvalds 已提交
4871 4872 4873 4874 4875
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

4876
static const char stat_nam[] = "RSDTtZX";
4877 4878

static void show_task(struct task_struct *p)
L
Linus Torvalds 已提交
4879 4880
{
	unsigned long free = 0;
4881
	unsigned state;
L
Linus Torvalds 已提交
4882 4883

	state = p->state ? __ffs(p->state) + 1 : 0;
I
Ingo Molnar 已提交
4884
	printk(KERN_INFO "%-13.13s %c", p->comm,
4885
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4886
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
4887
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
4888
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
4889
	else
I
Ingo Molnar 已提交
4890
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4891 4892
#else
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
4893
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
4894
	else
I
Ingo Molnar 已提交
4895
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4896 4897 4898
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
	{
4899
		unsigned long *n = end_of_stack(p);
L
Linus Torvalds 已提交
4900 4901
		while (!*n)
			n++;
4902
		free = (unsigned long)n - (unsigned long)end_of_stack(p);
L
Linus Torvalds 已提交
4903 4904
	}
#endif
4905 4906
	printk(KERN_CONT "%5lu %5d %6d\n", free,
		task_pid_nr(p), task_pid_nr(p->parent));
L
Linus Torvalds 已提交
4907 4908 4909 4910 4911

	if (state != TASK_RUNNING)
		show_stack(p, NULL);
}

I
Ingo Molnar 已提交
4912
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
4913
{
4914
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
4915

4916 4917 4918
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
4919
#else
4920 4921
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
4922 4923 4924 4925 4926 4927 4928 4929
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
4930
		if (!state_filter || (p->state & state_filter))
I
Ingo Molnar 已提交
4931
			show_task(p);
L
Linus Torvalds 已提交
4932 4933
	} while_each_thread(g, p);

4934 4935
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
4936 4937 4938
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
4939
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
4940 4941 4942 4943 4944
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
4945 4946
}

I
Ingo Molnar 已提交
4947 4948
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
4949
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
4950 4951
}

4952 4953 4954 4955 4956 4957 4958 4959
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
4960
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
4961
{
4962
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4963 4964
	unsigned long flags;

I
Ingo Molnar 已提交
4965 4966 4967
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

4968
	idle->prio = idle->normal_prio = MAX_PRIO;
L
Linus Torvalds 已提交
4969
	idle->cpus_allowed = cpumask_of_cpu(cpu);
I
Ingo Molnar 已提交
4970
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
4971 4972 4973

	spin_lock_irqsave(&rq->lock, flags);
	rq->curr = rq->idle = idle;
4974 4975 4976
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
4977 4978 4979 4980
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
A
Al Viro 已提交
4981
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
L
Linus Torvalds 已提交
4982
#else
A
Al Viro 已提交
4983
	task_thread_info(idle)->preempt_count = 0;
L
Linus Torvalds 已提交
4984
#endif
I
Ingo Molnar 已提交
4985 4986 4987 4988
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
 * always be CPU_MASK_NONE.
 */
cpumask_t nohz_cpu_mask = CPU_MASK_NONE;

I
Ingo Molnar 已提交
5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
	const unsigned long limit = 200000000;

	sysctl_sched_min_granularity *= factor;
	if (sysctl_sched_min_granularity > limit)
		sysctl_sched_min_granularity = limit;

	sysctl_sched_latency *= factor;
	if (sysctl_sched_latency > limit)
		sysctl_sched_latency = limit;

	sysctl_sched_wakeup_granularity *= factor;
	sysctl_sched_batch_wakeup_granularity *= factor;
}

L
Linus Torvalds 已提交
5026 5027 5028 5029
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
5030
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
 * task must not exit() & deallocate itself prematurely.  The
 * call is not atomic; no spinlocks may be held.
 */
5052
int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
L
Linus Torvalds 已提交
5053
{
5054
	struct migration_req req;
L
Linus Torvalds 已提交
5055
	unsigned long flags;
5056
	struct rq *rq;
5057
	int ret = 0;
L
Linus Torvalds 已提交
5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079

	rq = task_rq_lock(p, &flags);
	if (!cpus_intersects(new_mask, cpu_online_map)) {
		ret = -EINVAL;
		goto out;
	}

	p->cpus_allowed = new_mask;
	/* Can the task run on the task's current CPU? If so, we're done */
	if (cpu_isset(task_cpu(p), new_mask))
		goto out;

	if (migrate_task(p, any_online_cpu(new_mask), &req)) {
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
5080

L
Linus Torvalds 已提交
5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092
	return ret;
}
EXPORT_SYMBOL_GPL(set_cpus_allowed);

/*
 * Move (not current) task off this cpu, onto dest cpu.  We're doing
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
5093 5094
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
5095
 */
5096
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
5097
{
5098
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
5099
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
5100 5101

	if (unlikely(cpu_is_offline(dest_cpu)))
5102
		return ret;
L
Linus Torvalds 已提交
5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
		goto out;
	/* Affinity changed (again). */
	if (!cpu_isset(dest_cpu, p->cpus_allowed))
		goto out;

I
Ingo Molnar 已提交
5115
	on_rq = p->se.on_rq;
5116
	if (on_rq)
5117
		deactivate_task(rq_src, p, 0);
5118

L
Linus Torvalds 已提交
5119
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
5120 5121 5122
	if (on_rq) {
		activate_task(rq_dest, p, 0);
		check_preempt_curr(rq_dest, p);
L
Linus Torvalds 已提交
5123
	}
5124
	ret = 1;
L
Linus Torvalds 已提交
5125 5126
out:
	double_rq_unlock(rq_src, rq_dest);
5127
	return ret;
L
Linus Torvalds 已提交
5128 5129 5130 5131 5132 5133 5134
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
5135
static int migration_thread(void *data)
L
Linus Torvalds 已提交
5136 5137
{
	int cpu = (long)data;
5138
	struct rq *rq;
L
Linus Torvalds 已提交
5139 5140 5141 5142 5143 5144

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
5145
		struct migration_req *req;
L
Linus Torvalds 已提交
5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
5168
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
5169 5170
		list_del_init(head->next);

N
Nick Piggin 已提交
5171 5172 5173
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

5203
/*
5204
 * Figure out where task on dead CPU should go, use force if necessary.
5205 5206
 * NOTE: interrupts should be disabled by the caller
 */
5207
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5208
{
5209
	unsigned long flags;
L
Linus Torvalds 已提交
5210
	cpumask_t mask;
5211 5212
	struct rq *rq;
	int dest_cpu;
L
Linus Torvalds 已提交
5213

5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225
	do {
		/* On same node? */
		mask = node_to_cpumask(cpu_to_node(dead_cpu));
		cpus_and(mask, mask, p->cpus_allowed);
		dest_cpu = any_online_cpu(mask);

		/* On any allowed CPU? */
		if (dest_cpu == NR_CPUS)
			dest_cpu = any_online_cpu(p->cpus_allowed);

		/* No more Mr. Nice Guy. */
		if (dest_cpu == NR_CPUS) {
5226 5227 5228 5229 5230 5231 5232 5233
			cpumask_t cpus_allowed = cpuset_cpus_allowed_locked(p);
			/*
			 * Try to stay on the same cpuset, where the
			 * current cpuset may be a subset of all cpus.
			 * The cpuset_cpus_allowed_locked() variant of
			 * cpuset_cpus_allowed() will not block.  It must be
			 * called within calls to cpuset_lock/cpuset_unlock.
			 */
5234
			rq = task_rq_lock(p, &flags);
5235
			p->cpus_allowed = cpus_allowed;
5236 5237
			dest_cpu = any_online_cpu(p->cpus_allowed);
			task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
5238

5239 5240 5241 5242 5243 5244 5245 5246
			/*
			 * Don't tell them about moving exiting tasks or
			 * kernel threads (both mm NULL), since they never
			 * leave kernel.
			 */
			if (p->mm && printk_ratelimit())
				printk(KERN_INFO "process %d (%s) no "
				       "longer affine to cpu%d\n",
5247
			       task_pid_nr(p), p->comm, dead_cpu);
5248
		}
5249
	} while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
L
Linus Torvalds 已提交
5250 5251 5252 5253 5254 5255 5256 5257 5258
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
5259
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
5260
{
5261
	struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
L
Linus Torvalds 已提交
5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
5275
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
5276

5277
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
5278

5279 5280
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
5281 5282
			continue;

5283 5284 5285
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
5286

5287
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
5288 5289
}

I
Ingo Molnar 已提交
5290 5291
/*
 * Schedules idle task to be the next runnable task on current CPU.
5292 5293
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
5294 5295 5296
 */
void sched_idle_next(void)
{
5297
	int this_cpu = smp_processor_id();
5298
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
5299 5300 5301 5302
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
5303
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
5304

5305 5306 5307
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
5308 5309 5310
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
5311
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5312

5313 5314
	update_rq_clock(rq);
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
5315 5316 5317 5318

	spin_unlock_irqrestore(&rq->lock, flags);
}

5319 5320
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

5334
/* called under rq->lock with disabled interrupts */
5335
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5336
{
5337
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
5338 5339

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
5340
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
5341 5342

	/* Cannot have done final schedule yet: would have vanished. */
5343
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
5344

5345
	get_task_struct(p);
L
Linus Torvalds 已提交
5346 5347 5348 5349 5350 5351

	/*
	 * Drop lock around migration; if someone else moves it,
	 * that's OK.  No task can be added to this CPU, so iteration is
	 * fine.
	 */
5352
	spin_unlock_irq(&rq->lock);
5353
	move_task_off_dead_cpu(dead_cpu, p);
5354
	spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
5355

5356
	put_task_struct(p);
L
Linus Torvalds 已提交
5357 5358 5359 5360 5361
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
5362
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
5363
	struct task_struct *next;
5364

I
Ingo Molnar 已提交
5365 5366 5367
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
5368
		update_rq_clock(rq);
5369
		next = pick_next_task(rq, rq->curr);
I
Ingo Molnar 已提交
5370 5371 5372
		if (!next)
			break;
		migrate_dead(dead_cpu, next);
5373

L
Linus Torvalds 已提交
5374 5375 5376 5377
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

5378 5379 5380
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
5381 5382
	{
		.procname	= "sched_domain",
5383
		.mode		= 0555,
5384
	},
I
Ingo Molnar 已提交
5385
	{0, },
5386 5387 5388
};

static struct ctl_table sd_ctl_root[] = {
5389
	{
5390
		.ctl_name	= CTL_KERN,
5391
		.procname	= "kernel",
5392
		.mode		= 0555,
5393 5394
		.child		= sd_ctl_dir,
	},
I
Ingo Molnar 已提交
5395
	{0, },
5396 5397 5398 5399 5400
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
5401
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5402 5403 5404 5405

	return entry;
}

5406 5407
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
5408
	struct ctl_table *entry;
5409

5410 5411 5412 5413 5414 5415 5416
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
	 * will always be set.  In the lowest directory the names are
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
5417 5418
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
5419 5420 5421
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
5422 5423 5424 5425 5426

	kfree(*tablep);
	*tablep = NULL;
}

5427
static void
5428
set_table_entry(struct ctl_table *entry,
5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
5442
	struct ctl_table *table = sd_alloc_ctl_entry(12);
5443

5444 5445 5446
	if (table == NULL)
		return NULL;

5447
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5448
		sizeof(long), 0644, proc_doulongvec_minmax);
5449
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5450
		sizeof(long), 0644, proc_doulongvec_minmax);
5451
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5452
		sizeof(int), 0644, proc_dointvec_minmax);
5453
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5454
		sizeof(int), 0644, proc_dointvec_minmax);
5455
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5456
		sizeof(int), 0644, proc_dointvec_minmax);
5457
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5458
		sizeof(int), 0644, proc_dointvec_minmax);
5459
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5460
		sizeof(int), 0644, proc_dointvec_minmax);
5461
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5462
		sizeof(int), 0644, proc_dointvec_minmax);
5463
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5464
		sizeof(int), 0644, proc_dointvec_minmax);
5465
	set_table_entry(&table[9], "cache_nice_tries",
5466 5467
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
5468
	set_table_entry(&table[10], "flags", &sd->flags,
5469
		sizeof(int), 0644, proc_dointvec_minmax);
5470
	/* &table[11] is terminator */
5471 5472 5473 5474

	return table;
}

5475
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5476 5477 5478 5479 5480 5481 5482 5483 5484
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5485 5486
	if (table == NULL)
		return NULL;
5487 5488 5489 5490 5491

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5492
		entry->mode = 0555;
5493 5494 5495 5496 5497 5498 5499 5500
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
5501
static void register_sched_domain_sysctl(void)
5502 5503 5504 5505 5506
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

5507 5508 5509
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

5510 5511 5512
	if (entry == NULL)
		return;

5513
	for_each_online_cpu(i) {
5514 5515
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5516
		entry->mode = 0555;
5517
		entry->child = sd_alloc_ctl_cpu_table(i);
5518
		entry++;
5519
	}
5520 5521

	WARN_ON(sd_sysctl_header);
5522 5523
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
5524

5525
/* may be called multiple times per register */
5526 5527
static void unregister_sched_domain_sysctl(void)
{
5528 5529
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
5530
	sd_sysctl_header = NULL;
5531 5532
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5533
}
5534
#else
5535 5536 5537 5538
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
5539 5540 5541 5542
{
}
#endif

L
Linus Torvalds 已提交
5543 5544 5545 5546
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5547 5548
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5549 5550
{
	struct task_struct *p;
5551
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5552
	unsigned long flags;
5553
	struct rq *rq;
L
Linus Torvalds 已提交
5554 5555

	switch (action) {
5556 5557 5558 5559
	case CPU_LOCK_ACQUIRE:
		mutex_lock(&sched_hotcpu_mutex);
		break;

L
Linus Torvalds 已提交
5560
	case CPU_UP_PREPARE:
5561
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
5562
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
5563 5564 5565 5566 5567
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5568
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
5569 5570 5571
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
5572

L
Linus Torvalds 已提交
5573
	case CPU_ONLINE:
5574
	case CPU_ONLINE_FROZEN:
5575
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
5576 5577
		wake_up_process(cpu_rq(cpu)->migration_thread);
		break;
5578

L
Linus Torvalds 已提交
5579 5580
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
5581
	case CPU_UP_CANCELED_FROZEN:
5582 5583
		if (!cpu_rq(cpu)->migration_thread)
			break;
L
Linus Torvalds 已提交
5584
		/* Unbind it from offline cpu so it can run.  Fall thru. */
5585 5586
		kthread_bind(cpu_rq(cpu)->migration_thread,
			     any_online_cpu(cpu_online_map));
L
Linus Torvalds 已提交
5587 5588 5589
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
5590

L
Linus Torvalds 已提交
5591
	case CPU_DEAD:
5592
	case CPU_DEAD_FROZEN:
5593
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
5594 5595 5596 5597 5598
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
5599
		spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
5600
		update_rq_clock(rq);
5601
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
5602
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
5603 5604
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5605
		migrate_dead_tasks(cpu);
5606
		spin_unlock_irq(&rq->lock);
5607
		cpuset_unlock();
L
Linus Torvalds 已提交
5608 5609 5610 5611
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

		/* No need to migrate the tasks: it was best-effort if
5612
		 * they didn't take sched_hotcpu_mutex.  Just wake up
L
Linus Torvalds 已提交
5613 5614 5615
		 * the requestors. */
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
5616 5617
			struct migration_req *req;

L
Linus Torvalds 已提交
5618
			req = list_entry(rq->migration_queue.next,
5619
					 struct migration_req, list);
L
Linus Torvalds 已提交
5620 5621 5622 5623 5624 5625
			list_del_init(&req->list);
			complete(&req->done);
		}
		spin_unlock_irq(&rq->lock);
		break;
#endif
5626 5627 5628
	case CPU_LOCK_RELEASE:
		mutex_unlock(&sched_hotcpu_mutex);
		break;
L
Linus Torvalds 已提交
5629 5630 5631 5632 5633 5634 5635
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
5636
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
5637 5638 5639 5640
	.notifier_call = migration_call,
	.priority = 10
};

5641
void __init migration_init(void)
L
Linus Torvalds 已提交
5642 5643
{
	void *cpu = (void *)(long)smp_processor_id();
5644
	int err;
5645 5646

	/* Start one for the boot CPU: */
5647 5648
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5649 5650 5651 5652 5653 5654
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
}
#endif

#ifdef CONFIG_SMP
5655 5656 5657 5658 5659

/* Number of possible processor ids */
int nr_cpu_ids __read_mostly = NR_CPUS;
EXPORT_SYMBOL(nr_cpu_ids);

5660
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
5661 5662

static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level)
L
Linus Torvalds 已提交
5663
{
I
Ingo Molnar 已提交
5664 5665 5666
	struct sched_group *group = sd->groups;
	cpumask_t groupmask;
	char str[NR_CPUS];
L
Linus Torvalds 已提交
5667

I
Ingo Molnar 已提交
5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678
	cpumask_scnprintf(str, NR_CPUS, sd->span);
	cpus_clear(groupmask);

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
		printk("does not load-balance\n");
		if (sd->parent)
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
		return -1;
N
Nick Piggin 已提交
5679 5680
	}

I
Ingo Molnar 已提交
5681 5682 5683 5684 5685 5686 5687 5688 5689 5690
	printk(KERN_CONT "span %s\n", str);

	if (!cpu_isset(cpu, sd->span)) {
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
	}
	if (!cpu_isset(cpu, group->cpumask)) {
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
	}
L
Linus Torvalds 已提交
5691

I
Ingo Molnar 已提交
5692
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
5693
	do {
I
Ingo Molnar 已提交
5694 5695 5696
		if (!group) {
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
5697 5698 5699
			break;
		}

I
Ingo Molnar 已提交
5700 5701 5702 5703 5704 5705
		if (!group->__cpu_power) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
			break;
		}
L
Linus Torvalds 已提交
5706

I
Ingo Molnar 已提交
5707 5708 5709 5710 5711
		if (!cpus_weight(group->cpumask)) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
			break;
		}
L
Linus Torvalds 已提交
5712

I
Ingo Molnar 已提交
5713 5714 5715 5716 5717
		if (cpus_intersects(groupmask, group->cpumask)) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
			break;
		}
L
Linus Torvalds 已提交
5718

I
Ingo Molnar 已提交
5719
		cpus_or(groupmask, groupmask, group->cpumask);
L
Linus Torvalds 已提交
5720

I
Ingo Molnar 已提交
5721 5722
		cpumask_scnprintf(str, NR_CPUS, group->cpumask);
		printk(KERN_CONT " %s", str);
L
Linus Torvalds 已提交
5723

I
Ingo Molnar 已提交
5724 5725 5726
		group = group->next;
	} while (group != sd->groups);
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
5727

I
Ingo Molnar 已提交
5728 5729
	if (!cpus_equal(sd->span, groupmask))
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
5730

I
Ingo Molnar 已提交
5731 5732 5733 5734 5735
	if (sd->parent && !cpus_subset(groupmask, sd->parent->span))
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
	return 0;
}
L
Linus Torvalds 已提交
5736

I
Ingo Molnar 已提交
5737 5738 5739
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;
L
Linus Torvalds 已提交
5740

I
Ingo Molnar 已提交
5741 5742 5743 5744
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
5745

I
Ingo Molnar 已提交
5746 5747 5748 5749 5750
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	for (;;) {
		if (sched_domain_debug_one(sd, cpu, level))
			break;
L
Linus Torvalds 已提交
5751 5752
		level++;
		sd = sd->parent;
5753
		if (!sd)
I
Ingo Molnar 已提交
5754 5755
			break;
	}
L
Linus Torvalds 已提交
5756 5757
}
#else
5758
# define sched_domain_debug(sd, cpu) do { } while (0)
L
Linus Torvalds 已提交
5759 5760
#endif

5761
static int sd_degenerate(struct sched_domain *sd)
5762 5763 5764 5765 5766 5767 5768 5769
{
	if (cpus_weight(sd->span) == 1)
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5770 5771 5772
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

5786 5787
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

	if (!cpus_equal(sd->span, parent->span))
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
5806 5807 5808
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
5809 5810 5811 5812 5813 5814 5815
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

L
Linus Torvalds 已提交
5816 5817 5818 5819
/*
 * Attach the domain 'sd' to 'cpu' as its base domain.  Callers must
 * hold the hotplug lock.
 */
5820
static void cpu_attach_domain(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
5821
{
5822
	struct rq *rq = cpu_rq(cpu);
5823 5824 5825 5826 5827 5828 5829
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
	for (tmp = sd; tmp; tmp = tmp->parent) {
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
5830
		if (sd_parent_degenerate(tmp, parent)) {
5831
			tmp->parent = parent->parent;
5832 5833 5834
			if (parent->parent)
				parent->parent->child = tmp;
		}
5835 5836
	}

5837
	if (sd && sd_degenerate(sd)) {
5838
		sd = sd->parent;
5839 5840 5841
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
5842 5843 5844

	sched_domain_debug(sd, cpu);

N
Nick Piggin 已提交
5845
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
5846 5847 5848
}

/* cpus with isolated domains */
5849
static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
L
Linus Torvalds 已提交
5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
	int ints[NR_CPUS], i;

	str = get_options(str, ARRAY_SIZE(ints), ints);
	cpus_clear(cpu_isolated_map);
	for (i = 1; i <= ints[0]; i++)
		if (ints[i] < NR_CPUS)
			cpu_set(ints[i], cpu_isolated_map);
	return 1;
}

I
Ingo Molnar 已提交
5864
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
5865 5866

/*
5867 5868 5869 5870
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
 * (due to the fact that we keep track of groups covered with a cpumask_t).
L
Linus Torvalds 已提交
5871 5872 5873 5874 5875
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
5876
static void
5877 5878 5879
init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
			int (*group_fn)(int cpu, const cpumask_t *cpu_map,
					struct sched_group **sg))
L
Linus Torvalds 已提交
5880 5881 5882 5883 5884 5885
{
	struct sched_group *first = NULL, *last = NULL;
	cpumask_t covered = CPU_MASK_NONE;
	int i;

	for_each_cpu_mask(i, span) {
5886 5887
		struct sched_group *sg;
		int group = group_fn(i, cpu_map, &sg);
L
Linus Torvalds 已提交
5888 5889 5890 5891 5892 5893
		int j;

		if (cpu_isset(i, covered))
			continue;

		sg->cpumask = CPU_MASK_NONE;
5894
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
5895 5896

		for_each_cpu_mask(j, span) {
5897
			if (group_fn(j, cpu_map, NULL) != group)
L
Linus Torvalds 已提交
5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911
				continue;

			cpu_set(j, covered);
			cpu_set(j, sg->cpumask);
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

5912
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
5913

5914
#ifdef CONFIG_NUMA
5915

5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
 * Find the next node to include in a given scheduling domain.  Simply
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
static int find_next_best_node(int node, unsigned long *used_nodes)
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Start at @node */
		n = (node + i) % MAX_NUMNODES;

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
		if (test_bit(n, used_nodes))
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

	set_bit(best_node, used_nodes);
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
 * @size: number of nodes to include in this span
 *
 * Given a node, construct a good cpumask for its sched_domain to span.  It
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
static cpumask_t sched_domain_node_span(int node)
{
	DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5968 5969
	cpumask_t span, nodemask;
	int i;
5970 5971 5972 5973 5974 5975 5976 5977 5978 5979

	cpus_clear(span);
	bitmap_zero(used_nodes, MAX_NUMNODES);

	nodemask = node_to_cpumask(node);
	cpus_or(span, span, nodemask);
	set_bit(node, used_nodes);

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
		int next_node = find_next_best_node(node, used_nodes);
5980

5981 5982 5983 5984 5985 5986 5987 5988
		nodemask = node_to_cpumask(next_node);
		cpus_or(span, span, nodemask);
	}

	return span;
}
#endif

5989
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5990

5991
/*
5992
 * SMT sched-domains:
5993
 */
L
Linus Torvalds 已提交
5994 5995
#ifdef CONFIG_SCHED_SMT
static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5996
static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
5997

5998 5999
static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
			    struct sched_group **sg)
L
Linus Torvalds 已提交
6000
{
6001 6002
	if (sg)
		*sg = &per_cpu(sched_group_cpus, cpu);
L
Linus Torvalds 已提交
6003 6004 6005 6006
	return cpu;
}
#endif

6007 6008 6009
/*
 * multi-core sched-domains:
 */
6010 6011
#ifdef CONFIG_SCHED_MC
static DEFINE_PER_CPU(struct sched_domain, core_domains);
6012
static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6013 6014 6015
#endif

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6016 6017
static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
6018
{
6019
	int group;
6020
	cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
6021
	cpus_and(mask, mask, *cpu_map);
6022 6023 6024 6025
	group = first_cpu(mask);
	if (sg)
		*sg = &per_cpu(sched_group_core, group);
	return group;
6026 6027
}
#elif defined(CONFIG_SCHED_MC)
6028 6029
static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
6030
{
6031 6032
	if (sg)
		*sg = &per_cpu(sched_group_core, cpu);
6033 6034 6035 6036
	return cpu;
}
#endif

L
Linus Torvalds 已提交
6037
static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6038
static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
6039

6040 6041
static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
L
Linus Torvalds 已提交
6042
{
6043
	int group;
6044
#ifdef CONFIG_SCHED_MC
6045
	cpumask_t mask = cpu_coregroup_map(cpu);
6046
	cpus_and(mask, mask, *cpu_map);
6047
	group = first_cpu(mask);
6048
#elif defined(CONFIG_SCHED_SMT)
6049
	cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
6050
	cpus_and(mask, mask, *cpu_map);
6051
	group = first_cpu(mask);
L
Linus Torvalds 已提交
6052
#else
6053
	group = cpu;
L
Linus Torvalds 已提交
6054
#endif
6055 6056 6057
	if (sg)
		*sg = &per_cpu(sched_group_phys, group);
	return group;
L
Linus Torvalds 已提交
6058 6059 6060 6061
}

#ifdef CONFIG_NUMA
/*
6062 6063 6064
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
6065
 */
6066
static DEFINE_PER_CPU(struct sched_domain, node_domains);
6067
static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
L
Linus Torvalds 已提交
6068

6069
static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6070
static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
6071

6072 6073
static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
				 struct sched_group **sg)
6074
{
6075 6076 6077 6078 6079 6080 6081 6082 6083
	cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
	int group;

	cpus_and(nodemask, nodemask, *cpu_map);
	group = first_cpu(nodemask);

	if (sg)
		*sg = &per_cpu(sched_group_allnodes, group);
	return group;
L
Linus Torvalds 已提交
6084
}
6085

6086 6087 6088 6089 6090 6091 6092
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
6093 6094 6095
	do {
		for_each_cpu_mask(j, sg->cpumask) {
			struct sched_domain *sd;
6096

6097 6098 6099 6100 6101 6102 6103 6104
			sd = &per_cpu(phys_domains, j);
			if (j != first_cpu(sd->groups->cpumask)) {
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
6105

6106 6107 6108 6109
			sg_inc_cpu_power(sg, sd->groups->__cpu_power);
		}
		sg = sg->next;
	} while (sg != group_head);
6110
}
L
Linus Torvalds 已提交
6111 6112
#endif

6113
#ifdef CONFIG_NUMA
6114 6115 6116
/* Free memory allocated for various sched_group structures */
static void free_sched_groups(const cpumask_t *cpu_map)
{
6117
	int cpu, i;
6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147

	for_each_cpu_mask(cpu, *cpu_map) {
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

		for (i = 0; i < MAX_NUMNODES; i++) {
			cpumask_t nodemask = node_to_cpumask(i);
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

			cpus_and(nodemask, nodemask, *cpu_map);
			if (cpus_empty(nodemask))
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
6148 6149 6150 6151 6152
#else
static void free_sched_groups(const cpumask_t *cpu_map)
{
}
#endif
6153

6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

	if (cpu != first_cpu(sd->groups->cpumask))
		return;

	child = sd->child;

6180 6181
	sd->groups->__cpu_power = 0;

6182 6183 6184 6185 6186 6187 6188 6189 6190 6191
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6192
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6193 6194 6195 6196 6197 6198 6199 6200
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
6201
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
6202 6203 6204 6205
		group = group->next;
	} while (group != child->groups);
}

L
Linus Torvalds 已提交
6206
/*
6207 6208
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
6209
 */
6210
static int build_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
6211 6212
{
	int i;
6213 6214
#ifdef CONFIG_NUMA
	struct sched_group **sched_group_nodes = NULL;
6215
	int sd_allnodes = 0;
6216 6217 6218 6219

	/*
	 * Allocate the per-node list of sched groups
	 */
6220
	sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
6221
					   GFP_KERNEL);
6222 6223
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
6224
		return -ENOMEM;
6225 6226 6227
	}
	sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
#endif
L
Linus Torvalds 已提交
6228 6229

	/*
6230
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
6231
	 */
6232
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6233 6234 6235
		struct sched_domain *sd = NULL, *p;
		cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));

6236
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
6237 6238

#ifdef CONFIG_NUMA
I
Ingo Molnar 已提交
6239 6240
		if (cpus_weight(*cpu_map) >
				SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6241 6242 6243
			sd = &per_cpu(allnodes_domains, i);
			*sd = SD_ALLNODES_INIT;
			sd->span = *cpu_map;
6244
			cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6245
			p = sd;
6246
			sd_allnodes = 1;
6247 6248 6249
		} else
			p = NULL;

L
Linus Torvalds 已提交
6250 6251
		sd = &per_cpu(node_domains, i);
		*sd = SD_NODE_INIT;
6252 6253
		sd->span = sched_domain_node_span(cpu_to_node(i));
		sd->parent = p;
6254 6255
		if (p)
			p->child = sd;
6256
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
6257 6258 6259 6260 6261 6262 6263
#endif

		p = sd;
		sd = &per_cpu(phys_domains, i);
		*sd = SD_CPU_INIT;
		sd->span = nodemask;
		sd->parent = p;
6264 6265
		if (p)
			p->child = sd;
6266
		cpu_to_phys_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
6267

6268 6269 6270 6271 6272 6273 6274
#ifdef CONFIG_SCHED_MC
		p = sd;
		sd = &per_cpu(core_domains, i);
		*sd = SD_MC_INIT;
		sd->span = cpu_coregroup_map(i);
		cpus_and(sd->span, sd->span, *cpu_map);
		sd->parent = p;
6275
		p->child = sd;
6276
		cpu_to_core_group(i, cpu_map, &sd->groups);
6277 6278
#endif

L
Linus Torvalds 已提交
6279 6280 6281 6282
#ifdef CONFIG_SCHED_SMT
		p = sd;
		sd = &per_cpu(cpu_domains, i);
		*sd = SD_SIBLING_INIT;
6283
		sd->span = per_cpu(cpu_sibling_map, i);
6284
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
6285
		sd->parent = p;
6286
		p->child = sd;
6287
		cpu_to_cpu_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
6288 6289 6290 6291 6292
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
6293
	for_each_cpu_mask(i, *cpu_map) {
6294
		cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
6295
		cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
L
Linus Torvalds 已提交
6296 6297 6298
		if (i != first_cpu(this_sibling_map))
			continue;

I
Ingo Molnar 已提交
6299 6300
		init_sched_build_groups(this_sibling_map, cpu_map,
					&cpu_to_cpu_group);
L
Linus Torvalds 已提交
6301 6302 6303
	}
#endif

6304 6305 6306 6307 6308 6309 6310
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
	for_each_cpu_mask(i, *cpu_map) {
		cpumask_t this_core_map = cpu_coregroup_map(i);
		cpus_and(this_core_map, this_core_map, *cpu_map);
		if (i != first_cpu(this_core_map))
			continue;
I
Ingo Molnar 已提交
6311 6312
		init_sched_build_groups(this_core_map, cpu_map,
					&cpu_to_core_group);
6313 6314 6315
	}
#endif

L
Linus Torvalds 已提交
6316 6317 6318 6319
	/* Set up physical groups */
	for (i = 0; i < MAX_NUMNODES; i++) {
		cpumask_t nodemask = node_to_cpumask(i);

6320
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
6321 6322 6323
		if (cpus_empty(nodemask))
			continue;

6324
		init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
L
Linus Torvalds 已提交
6325 6326 6327 6328
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
6329
	if (sd_allnodes)
I
Ingo Molnar 已提交
6330 6331
		init_sched_build_groups(*cpu_map, cpu_map,
					&cpu_to_allnodes_group);
6332 6333 6334 6335 6336 6337 6338 6339 6340 6341

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Set up node groups */
		struct sched_group *sg, *prev;
		cpumask_t nodemask = node_to_cpumask(i);
		cpumask_t domainspan;
		cpumask_t covered = CPU_MASK_NONE;
		int j;

		cpus_and(nodemask, nodemask, *cpu_map);
6342 6343
		if (cpus_empty(nodemask)) {
			sched_group_nodes[i] = NULL;
6344
			continue;
6345
		}
6346 6347 6348 6349

		domainspan = sched_domain_node_span(i);
		cpus_and(domainspan, domainspan, *cpu_map);

6350
		sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6351 6352 6353 6354 6355
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
6356 6357 6358
		sched_group_nodes[i] = sg;
		for_each_cpu_mask(j, nodemask) {
			struct sched_domain *sd;
I
Ingo Molnar 已提交
6359

6360 6361 6362
			sd = &per_cpu(node_domains, j);
			sd->groups = sg;
		}
6363
		sg->__cpu_power = 0;
6364
		sg->cpumask = nodemask;
6365
		sg->next = sg;
6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383
		cpus_or(covered, covered, nodemask);
		prev = sg;

		for (j = 0; j < MAX_NUMNODES; j++) {
			cpumask_t tmp, notcovered;
			int n = (i + j) % MAX_NUMNODES;

			cpus_complement(notcovered, covered);
			cpus_and(tmp, notcovered, *cpu_map);
			cpus_and(tmp, tmp, domainspan);
			if (cpus_empty(tmp))
				break;

			nodemask = node_to_cpumask(n);
			cpus_and(tmp, tmp, nodemask);
			if (cpus_empty(tmp))
				continue;

6384 6385
			sg = kmalloc_node(sizeof(struct sched_group),
					  GFP_KERNEL, i);
6386 6387 6388
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
6389
				goto error;
6390
			}
6391
			sg->__cpu_power = 0;
6392
			sg->cpumask = tmp;
6393
			sg->next = prev->next;
6394 6395 6396 6397 6398
			cpus_or(covered, covered, tmp);
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
6399 6400 6401
#endif

	/* Calculate CPU power for physical packages and nodes */
6402
#ifdef CONFIG_SCHED_SMT
6403
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6404 6405
		struct sched_domain *sd = &per_cpu(cpu_domains, i);

6406
		init_sched_groups_power(i, sd);
6407
	}
L
Linus Torvalds 已提交
6408
#endif
6409
#ifdef CONFIG_SCHED_MC
6410
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6411 6412
		struct sched_domain *sd = &per_cpu(core_domains, i);

6413
		init_sched_groups_power(i, sd);
6414 6415
	}
#endif
6416

6417
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6418 6419
		struct sched_domain *sd = &per_cpu(phys_domains, i);

6420
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
6421 6422
	}

6423
#ifdef CONFIG_NUMA
6424 6425
	for (i = 0; i < MAX_NUMNODES; i++)
		init_numa_sched_groups_power(sched_group_nodes[i]);
6426

6427 6428
	if (sd_allnodes) {
		struct sched_group *sg;
6429

6430
		cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6431 6432
		init_numa_sched_groups_power(sg);
	}
6433 6434
#endif

L
Linus Torvalds 已提交
6435
	/* Attach the domains */
6436
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6437 6438 6439
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
		sd = &per_cpu(cpu_domains, i);
6440 6441
#elif defined(CONFIG_SCHED_MC)
		sd = &per_cpu(core_domains, i);
L
Linus Torvalds 已提交
6442 6443 6444 6445 6446
#else
		sd = &per_cpu(phys_domains, i);
#endif
		cpu_attach_domain(sd, i);
	}
6447 6448 6449

	return 0;

6450
#ifdef CONFIG_NUMA
6451 6452 6453
error:
	free_sched_groups(cpu_map);
	return -ENOMEM;
6454
#endif
L
Linus Torvalds 已提交
6455
}
P
Paul Jackson 已提交
6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466

static cpumask_t *doms_cur;	/* current sched domains */
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
 * cpumask_t) fails, then fallback to a single sched domain,
 * as determined by the single cpumask_t fallback_doms.
 */
static cpumask_t fallback_doms;

6467 6468
/*
 * Set up scheduler domains and groups.  Callers must hold the hotplug lock.
P
Paul Jackson 已提交
6469 6470
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
6471
 */
6472
static int arch_init_sched_domains(const cpumask_t *cpu_map)
6473
{
6474 6475
	int err;

P
Paul Jackson 已提交
6476 6477 6478 6479 6480
	ndoms_cur = 1;
	doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
	if (!doms_cur)
		doms_cur = &fallback_doms;
	cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
6481
	err = build_sched_domains(doms_cur);
6482
	register_sched_domain_sysctl();
6483 6484

	return err;
6485 6486 6487
}

static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
6488
{
6489
	free_sched_groups(cpu_map);
6490
}
L
Linus Torvalds 已提交
6491

6492 6493 6494 6495
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
6496
static void detach_destroy_domains(const cpumask_t *cpu_map)
6497 6498 6499
{
	int i;

6500 6501
	unregister_sched_domain_sysctl();

6502 6503 6504 6505 6506 6507
	for_each_cpu_mask(i, *cpu_map)
		cpu_attach_domain(NULL, i);
	synchronize_sched();
	arch_destroy_sched_domains(cpu_map);
}

P
Paul Jackson 已提交
6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532
/*
 * Partition sched domains as specified by the 'ndoms_new'
 * cpumasks in the array doms_new[] of cpumasks.  This compares
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
 * The masks don't intersect (don't overlap.)  We should setup one
 * sched domain for each mask.  CPUs not in any of the cpumasks will
 * not be load balanced.  If the same cpumask appears both in the
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
 * The passed in 'doms_new' should be kmalloc'd.  This routine takes
 * ownership of it and will kfree it when done with it.  If the caller
 * failed the kmalloc call, then it can pass in doms_new == NULL,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms'.
 *
 * Call with hotplug lock held
 */
void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
{
	int i, j;

6533 6534 6535
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

P
Paul Jackson 已提交
6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570
	if (doms_new == NULL) {
		ndoms_new = 1;
		doms_new = &fallback_doms;
		cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
	}

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
		for (j = 0; j < ndoms_new; j++) {
			if (cpus_equal(doms_cur[i], doms_new[j]))
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
		detach_destroy_domains(doms_cur + i);
match1:
		;
	}

	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
		for (j = 0; j < ndoms_cur; j++) {
			if (cpus_equal(doms_new[i], doms_cur[j]))
				goto match2;
		}
		/* no match - add a new doms_new */
		build_sched_domains(doms_new + i);
match2:
		;
	}

	/* Remember the new sched domains */
	if (doms_cur != &fallback_doms)
		kfree(doms_cur);
	doms_cur = doms_new;
	ndoms_cur = ndoms_new;
6571 6572

	register_sched_domain_sysctl();
P
Paul Jackson 已提交
6573 6574
}

6575
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
A
Adrian Bunk 已提交
6576
static int arch_reinit_sched_domains(void)
6577 6578 6579
{
	int err;

6580
	mutex_lock(&sched_hotcpu_mutex);
6581 6582
	detach_destroy_domains(&cpu_online_map);
	err = arch_init_sched_domains(&cpu_online_map);
6583
	mutex_unlock(&sched_hotcpu_mutex);
6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609

	return err;
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
	int ret;

	if (buf[0] != '0' && buf[0] != '1')
		return -EINVAL;

	if (smt)
		sched_smt_power_savings = (buf[0] == '1');
	else
		sched_mc_power_savings = (buf[0] == '1');

	ret = arch_reinit_sched_domains();

	return ret ? ret : count;
}

#ifdef CONFIG_SCHED_MC
static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
6610 6611
static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
					    const char *buf, size_t count)
6612 6613 6614
{
	return sched_power_savings_store(buf, count, 0);
}
A
Adrian Bunk 已提交
6615 6616
static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
		   sched_mc_power_savings_store);
6617 6618 6619 6620 6621 6622 6623
#endif

#ifdef CONFIG_SCHED_SMT
static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
6624 6625
static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
					     const char *buf, size_t count)
6626 6627 6628
{
	return sched_power_savings_store(buf, count, 1);
}
A
Adrian Bunk 已提交
6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648
static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
		   sched_smt_power_savings_store);
#endif

int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
6649 6650
#endif

L
Linus Torvalds 已提交
6651 6652 6653
/*
 * Force a reinitialization of the sched domains hierarchy.  The domains
 * and groups cannot be updated in place without racing with the balancing
N
Nick Piggin 已提交
6654
 * code, so we temporarily attach all running cpus to the NULL domain
L
Linus Torvalds 已提交
6655 6656 6657 6658 6659 6660 6661
 * which will prevent rebalancing while the sched domains are recalculated.
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
{
	switch (action) {
	case CPU_UP_PREPARE:
6662
	case CPU_UP_PREPARE_FROZEN:
L
Linus Torvalds 已提交
6663
	case CPU_DOWN_PREPARE:
6664
	case CPU_DOWN_PREPARE_FROZEN:
6665
		detach_destroy_domains(&cpu_online_map);
L
Linus Torvalds 已提交
6666 6667 6668
		return NOTIFY_OK;

	case CPU_UP_CANCELED:
6669
	case CPU_UP_CANCELED_FROZEN:
L
Linus Torvalds 已提交
6670
	case CPU_DOWN_FAILED:
6671
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
6672
	case CPU_ONLINE:
6673
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
6674
	case CPU_DEAD:
6675
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
6676 6677 6678 6679 6680 6681 6682 6683 6684
		/*
		 * Fall through and re-initialise the domains.
		 */
		break;
	default:
		return NOTIFY_DONE;
	}

	/* The hotplug lock is already held by cpu_up/cpu_down */
6685
	arch_init_sched_domains(&cpu_online_map);
L
Linus Torvalds 已提交
6686 6687 6688 6689 6690 6691

	return NOTIFY_OK;
}

void __init sched_init_smp(void)
{
6692 6693
	cpumask_t non_isolated_cpus;

6694
	mutex_lock(&sched_hotcpu_mutex);
6695
	arch_init_sched_domains(&cpu_online_map);
6696
	cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
6697 6698
	if (cpus_empty(non_isolated_cpus))
		cpu_set(smp_processor_id(), non_isolated_cpus);
6699
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
6700 6701
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
6702 6703 6704 6705

	/* Move init over to a non-isolated CPU */
	if (set_cpus_allowed(current, non_isolated_cpus) < 0)
		BUG();
I
Ingo Molnar 已提交
6706
	sched_init_granularity();
L
Linus Torvalds 已提交
6707 6708 6709 6710
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
6711
	sched_init_granularity();
L
Linus Torvalds 已提交
6712 6713 6714 6715 6716 6717 6718 6719 6720 6721
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
6722
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
6723 6724 6725 6726 6727
{
	cfs_rq->tasks_timeline = RB_ROOT;
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
6728
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
6729 6730
}

L
Linus Torvalds 已提交
6731 6732
void __init sched_init(void)
{
6733
	int highest_cpu = 0;
I
Ingo Molnar 已提交
6734 6735
	int i, j;

6736
	for_each_possible_cpu(i) {
I
Ingo Molnar 已提交
6737
		struct rt_prio_array *array;
6738
		struct rq *rq;
L
Linus Torvalds 已提交
6739 6740 6741

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
6742
		lockdep_set_class(&rq->lock, &rq->rq_lock_key);
N
Nick Piggin 已提交
6743
		rq->nr_running = 0;
I
Ingo Molnar 已提交
6744 6745 6746 6747
		rq->clock = 1;
		init_cfs_rq(&rq->cfs, rq);
#ifdef CONFIG_FAIR_GROUP_SCHED
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
I
Ingo Molnar 已提交
6748 6749 6750 6751 6752 6753 6754
		{
			struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i);
			struct sched_entity *se =
					 &per_cpu(init_sched_entity, i);

			init_cfs_rq_p[i] = cfs_rq;
			init_cfs_rq(cfs_rq, rq);
6755
			cfs_rq->tg = &init_task_group;
I
Ingo Molnar 已提交
6756
			list_add(&cfs_rq->leaf_cfs_rq_list,
S
Srivatsa Vaddagiri 已提交
6757 6758
							 &rq->leaf_cfs_rq_list);

I
Ingo Molnar 已提交
6759 6760 6761
			init_sched_entity_p[i] = se;
			se->cfs_rq = &rq->cfs;
			se->my_q = cfs_rq;
6762
			se->load.weight = init_task_group_load;
6763
			se->load.inv_weight =
6764
				 div64_64(1ULL<<32, init_task_group_load);
I
Ingo Molnar 已提交
6765 6766
			se->parent = NULL;
		}
6767
		init_task_group.shares = init_task_group_load;
6768
		spin_lock_init(&init_task_group.lock);
I
Ingo Molnar 已提交
6769
#endif
L
Linus Torvalds 已提交
6770

I
Ingo Molnar 已提交
6771 6772
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
6773
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
6774
		rq->sd = NULL;
L
Linus Torvalds 已提交
6775
		rq->active_balance = 0;
I
Ingo Molnar 已提交
6776
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
6777
		rq->push_cpu = 0;
6778
		rq->cpu = i;
L
Linus Torvalds 已提交
6779 6780 6781 6782 6783
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
#endif
		atomic_set(&rq->nr_iowait, 0);

I
Ingo Molnar 已提交
6784 6785 6786 6787
		array = &rq->rt.active;
		for (j = 0; j < MAX_RT_PRIO; j++) {
			INIT_LIST_HEAD(array->queue + j);
			__clear_bit(j, array->bitmap);
L
Linus Torvalds 已提交
6788
		}
6789
		highest_cpu = i;
I
Ingo Molnar 已提交
6790 6791
		/* delimiter for bitsearch: */
		__set_bit(MAX_RT_PRIO, array->bitmap);
L
Linus Torvalds 已提交
6792 6793
	}

6794
	set_load_weight(&init_task);
6795

6796 6797 6798 6799
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

6800
#ifdef CONFIG_SMP
6801
	nr_cpu_ids = highest_cpu + 1;
6802 6803 6804
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
#endif

6805 6806 6807 6808
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
I
Ingo Molnar 已提交
6822 6823 6824 6825
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
L
Linus Torvalds 已提交
6826 6827 6828 6829 6830
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
6831
#ifdef in_atomic
L
Linus Torvalds 已提交
6832 6833 6834 6835 6836 6837 6838
	static unsigned long prev_jiffy;	/* ratelimiting */

	if ((in_atomic() || irqs_disabled()) &&
	    system_state == SYSTEM_RUNNING && !oops_in_progress) {
		if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
			return;
		prev_jiffy = jiffies;
6839
		printk(KERN_ERR "BUG: sleeping function called from invalid"
L
Linus Torvalds 已提交
6840 6841 6842
				" context at %s:%d\n", file, line);
		printk("in_atomic():%d, irqs_disabled():%d\n",
			in_atomic(), irqs_disabled());
6843
		debug_show_held_locks(current);
6844 6845
		if (irqs_disabled())
			print_irqtrace_events(current);
L
Linus Torvalds 已提交
6846 6847 6848 6849 6850 6851 6852 6853
		dump_stack();
	}
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
6868 6869
void normalize_rt_tasks(void)
{
6870
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
6871
	unsigned long flags;
6872
	struct rq *rq;
L
Linus Torvalds 已提交
6873 6874

	read_lock_irq(&tasklist_lock);
6875
	do_each_thread(g, p) {
6876 6877 6878 6879 6880 6881
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
6882 6883
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
6884 6885 6886
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
6887
#endif
I
Ingo Molnar 已提交
6888 6889 6890 6891 6892 6893 6894 6895 6896
		task_rq(p)->clock		= 0;

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
6897
			continue;
I
Ingo Molnar 已提交
6898
		}
L
Linus Torvalds 已提交
6899

6900 6901
		spin_lock_irqsave(&p->pi_lock, flags);
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
6902

6903
		normalize_task(rq, p);
6904

6905 6906
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
6907 6908
	} while_each_thread(g, p);

L
Linus Torvalds 已提交
6909 6910 6911 6912
	read_unlock_irq(&tasklist_lock);
}

#endif /* CONFIG_MAGIC_SYSRQ */
6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
6931
struct task_struct *curr_task(int cpu)
6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
 * are serviced on a separate stack.  It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner.  This function
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
6951
void set_curr_task(int cpu, struct task_struct *p)
6952 6953 6954 6955 6956
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
6957 6958 6959 6960

#ifdef CONFIG_FAIR_GROUP_SCHED

/* allocate runqueue etc for a new task group */
6961
struct task_group *sched_create_group(void)
S
Srivatsa Vaddagiri 已提交
6962
{
6963
	struct task_group *tg;
S
Srivatsa Vaddagiri 已提交
6964 6965
	struct cfs_rq *cfs_rq;
	struct sched_entity *se;
6966
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
6967 6968 6969 6970 6971 6972
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

6973
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
6974 6975
	if (!tg->cfs_rq)
		goto err;
6976
	tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
6977 6978 6979 6980
	if (!tg->se)
		goto err;

	for_each_possible_cpu(i) {
6981
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007

		cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL,
							 cpu_to_node(i));
		if (!cfs_rq)
			goto err;

		se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
							cpu_to_node(i));
		if (!se)
			goto err;

		memset(cfs_rq, 0, sizeof(struct cfs_rq));
		memset(se, 0, sizeof(struct sched_entity));

		tg->cfs_rq[i] = cfs_rq;
		init_cfs_rq(cfs_rq, rq);
		cfs_rq->tg = tg;

		tg->se[i] = se;
		se->cfs_rq = &rq->cfs;
		se->my_q = cfs_rq;
		se->load.weight = NICE_0_LOAD;
		se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
		se->parent = NULL;
	}

7008 7009 7010 7011 7012
	for_each_possible_cpu(i) {
		rq = cpu_rq(i);
		cfs_rq = tg->cfs_rq[i];
		list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
	}
S
Srivatsa Vaddagiri 已提交
7013

7014
	tg->shares = NICE_0_LOAD;
7015
	spin_lock_init(&tg->lock);
S
Srivatsa Vaddagiri 已提交
7016

7017
	return tg;
S
Srivatsa Vaddagiri 已提交
7018 7019 7020

err:
	for_each_possible_cpu(i) {
I
Ingo Molnar 已提交
7021
		if (tg->cfs_rq)
S
Srivatsa Vaddagiri 已提交
7022
			kfree(tg->cfs_rq[i]);
I
Ingo Molnar 已提交
7023
		if (tg->se)
S
Srivatsa Vaddagiri 已提交
7024 7025
			kfree(tg->se[i]);
	}
I
Ingo Molnar 已提交
7026 7027 7028
	kfree(tg->cfs_rq);
	kfree(tg->se);
	kfree(tg);
S
Srivatsa Vaddagiri 已提交
7029 7030 7031 7032

	return ERR_PTR(-ENOMEM);
}

7033 7034
/* rcu callback to free various structures associated with a task group */
static void free_sched_group(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
7035
{
7036 7037
	struct task_group *tg = container_of(rhp, struct task_group, rcu);
	struct cfs_rq *cfs_rq;
S
Srivatsa Vaddagiri 已提交
7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054
	struct sched_entity *se;
	int i;

	/* now it should be safe to free those cfs_rqs */
	for_each_possible_cpu(i) {
		cfs_rq = tg->cfs_rq[i];
		kfree(cfs_rq);

		se = tg->se[i];
		kfree(se);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
	kfree(tg);
}

7055
/* Destroy runqueue etc associated with a task group */
7056
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
7057
{
7058
	struct cfs_rq *cfs_rq = NULL;
7059
	int i;
S
Srivatsa Vaddagiri 已提交
7060

7061 7062 7063 7064 7065
	for_each_possible_cpu(i) {
		cfs_rq = tg->cfs_rq[i];
		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
	}

7066
	BUG_ON(!cfs_rq);
7067 7068

	/* wait for possible concurrent references to cfs_rqs complete */
7069
	call_rcu(&tg->rcu, free_sched_group);
S
Srivatsa Vaddagiri 已提交
7070 7071
}

7072
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
7073 7074 7075
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
7076 7077
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
7078 7079 7080 7081 7082 7083 7084
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

7085
	if (tsk->sched_class != &fair_sched_class) {
7086
		set_task_cfs_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
7087
		goto done;
7088
	}
S
Srivatsa Vaddagiri 已提交
7089 7090 7091 7092 7093 7094

	update_rq_clock(rq);

	running = task_running(rq, tsk);
	on_rq = tsk->se.on_rq;

7095
	if (on_rq) {
S
Srivatsa Vaddagiri 已提交
7096
		dequeue_task(rq, tsk, 0);
7097 7098 7099
		if (unlikely(running))
			tsk->sched_class->put_prev_task(rq, tsk);
	}
S
Srivatsa Vaddagiri 已提交
7100

7101
	set_task_cfs_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
7102

7103 7104 7105
	if (on_rq) {
		if (unlikely(running))
			tsk->sched_class->set_curr_task(rq);
7106
		enqueue_task(rq, tsk, 0);
7107
	}
S
Srivatsa Vaddagiri 已提交
7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133

done:
	task_rq_unlock(rq, &flags);
}

static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	int on_rq;

	spin_lock_irq(&rq->lock);

	on_rq = se->on_rq;
	if (on_rq)
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
	se->load.inv_weight = div64_64((1ULL<<32), shares);

	if (on_rq)
		enqueue_entity(cfs_rq, se, 0);

	spin_unlock_irq(&rq->lock);
}

7134
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
7135 7136 7137
{
	int i;

7138
	spin_lock(&tg->lock);
7139
	if (tg->shares == shares)
7140
		goto done;
S
Srivatsa Vaddagiri 已提交
7141

7142
	tg->shares = shares;
S
Srivatsa Vaddagiri 已提交
7143
	for_each_possible_cpu(i)
7144
		set_se_shares(tg->se[i], shares);
S
Srivatsa Vaddagiri 已提交
7145

7146 7147
done:
	spin_unlock(&tg->lock);
7148
	return 0;
S
Srivatsa Vaddagiri 已提交
7149 7150
}

7151 7152 7153 7154 7155
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}

I
Ingo Molnar 已提交
7156
#endif	/* CONFIG_FAIR_GROUP_SCHED */
7157 7158 7159 7160

#ifdef CONFIG_FAIR_CGROUP_SCHED

/* return corresponding task_group object of a cgroup */
7161
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7162
{
7163 7164
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
7165 7166 7167
}

static struct cgroup_subsys_state *
7168
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
7169 7170 7171
{
	struct task_group *tg;

7172
	if (!cgrp->parent) {
7173
		/* This is early initialization for the top cgroup */
7174
		init_task_group.css.cgroup = cgrp;
7175 7176 7177 7178
		return &init_task_group.css;
	}

	/* we support only 1-level deep hierarchical scheduler atm */
7179
	if (cgrp->parent->parent)
7180 7181 7182 7183 7184 7185 7186
		return ERR_PTR(-EINVAL);

	tg = sched_create_group();
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	/* Bind the cgroup to task_group object we just created */
7187
	tg->css.cgroup = cgrp;
7188 7189 7190 7191 7192

	return &tg->css;
}

static void cpu_cgroup_destroy(struct cgroup_subsys *ss,
7193
			       struct cgroup *cgrp)
7194
{
7195
	struct task_group *tg = cgroup_tg(cgrp);
7196 7197 7198 7199 7200

	sched_destroy_group(tg);
}

static int cpu_cgroup_can_attach(struct cgroup_subsys *ss,
7201
			     struct cgroup *cgrp, struct task_struct *tsk)
7202 7203 7204 7205 7206 7207 7208 7209 7210
{
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;

	return 0;
}

static void
7211
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7212 7213 7214 7215 7216
			struct cgroup *old_cont, struct task_struct *tsk)
{
	sched_move_task(tsk);
}

7217 7218
static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
				u64 shareval)
7219
{
7220
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
7221 7222
}

7223
static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
7224
{
7225
	struct task_group *tg = cgroup_tg(cgrp);
7226 7227 7228 7229

	return (u64) tg->shares;
}

7230 7231 7232 7233 7234 7235
static struct cftype cpu_files[] = {
	{
		.name = "shares",
		.read_uint = cpu_shares_read_uint,
		.write_uint = cpu_shares_write_uint,
	},
7236 7237 7238 7239
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
7240
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
7241 7242 7243
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
7244 7245 7246 7247 7248 7249 7250
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
7251 7252 7253 7254
	.early_init	= 1,
};

#endif	/* CONFIG_FAIR_CGROUP_SCHED */
7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

/* track cpu usage of a group of tasks */
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
	u64 *cpuusage;
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
static inline struct cpuacct *cgroup_ca(struct cgroup *cont)
{
	return container_of(cgroup_subsys_state(cont, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
	struct cgroup_subsys *ss, struct cgroup *cont)
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);

	if (!ca)
		return ERR_PTR(-ENOMEM);

	ca->cpuusage = alloc_percpu(u64);
	if (!ca->cpuusage) {
		kfree(ca);
		return ERR_PTR(-ENOMEM);
	}

	return &ca->css;
}

/* destroy an existing cpu accounting group */
static void cpuacct_destroy(struct cgroup_subsys *ss,
			    struct cgroup *cont)
{
	struct cpuacct *ca = cgroup_ca(cont);

	free_percpu(ca->cpuusage);
	kfree(ca);
}

/* return total cpu usage (in nanoseconds) of a group */
static u64 cpuusage_read(struct cgroup *cont, struct cftype *cft)
{
	struct cpuacct *ca = cgroup_ca(cont);
	u64 totalcpuusage = 0;
	int i;

	for_each_possible_cpu(i) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, i);

		/*
		 * Take rq->lock to make 64-bit addition safe on 32-bit
		 * platforms.
		 */
		spin_lock_irq(&cpu_rq(i)->lock);
		totalcpuusage += *cpuusage;
		spin_unlock_irq(&cpu_rq(i)->lock);
	}

	return totalcpuusage;
}

static struct cftype files[] = {
	{
		.name = "usage",
		.read_uint = cpuusage_read,
	},
};

static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
	return cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;

	if (!cpuacct_subsys.active)
		return;

	ca = task_ca(tsk);
	if (ca) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));

		*cpuusage += cputime;
	}
}

struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */