framework.py 250.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
H
huzhiqiang 已提交
19
from collections.abc import Iterable
Q
qiaolongfei 已提交
20
import contextlib
21
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26
import copy
27
from types import MethodType, FunctionType
28

Y
Yu Yang 已提交
29
import numpy as np
30
import subprocess
S
sneaxiy 已提交
31
import multiprocessing
32
import sys
33
import logging
M
minqiyang 已提交
34
from .. import compat as cpt
35
from .proto import framework_pb2
36 37

from . import core
38
from . import unique_name
39 40
import paddle.version as fluid_version
import warnings
41
import functools
42
from .variable_index import _getitem_impl_, _setitem_impl_
Y
Yu Yang 已提交
43

44
__all__ = [
45 46 47 48
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
49
    'name_scope',
J
jianghaicheng 已提交
50
    'ipu_shard_guard',
S
sneaxiy 已提交
51 52
    'cuda_places',
    'cpu_places',
53
    'xpu_places',
54
    'mlu_places',
S
sneaxiy 已提交
55
    'cuda_pinned_places',
J
Jiabin Yang 已提交
56
    '_non_static_mode',
L
lujun 已提交
57
    'in_dygraph_mode',
58
    'is_compiled_with_cinn',
C
chengduo 已提交
59
    'is_compiled_with_cuda',
60
    'is_compiled_with_rocm',
61
    'is_compiled_with_xpu',
62
    'is_compiled_with_npu',
63
    'Variable',
64
    'require_version',
65
    'device_guard',
G
guofei 已提交
66 67
    'set_flags',
    'get_flags',
68
]
Y
Yu Yang 已提交
69

Q
qiaolongfei 已提交
70 71 72 73
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
74 75
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

L
lujun 已提交
76
_dygraph_tracer_ = None
77
_in_eager_mode_ = (os.environ.get('FLAGS_enable_eager_mode') == '1')
78
_global_expected_place_ = None
79
_current_device = None
80
global_prog_seed = 0
81
_current_pipeline_stage = None
82
_already_patch_eager_tensor = False
J
Jiabin Yang 已提交
83
_already_patch_varbase = False
84
_current_cuda_graph_mode = None
85
_global_flags_ = core.globals()
J
Jiabin Yang 已提交
86 87

# Some explanation of our execution system 2022.03
88
# For now we have 3 kinds of execution system, since we refactored dygraph mode to
J
Jiabin Yang 已提交
89
# build a fast execution system for dynamic mode. But we can't just remove all legacy
90
# code once we present the new system for some historical reason. That's why we have
J
Jiabin Yang 已提交
91
# these flags.
92
#
J
Jiabin Yang 已提交
93
# 1. _non_static_mode():
94
# _non_static_mode means  we are now running in legacy dygraph mode or dygraph mode.
J
Jiabin Yang 已提交
95 96 97 98
# 2. dygraph_mode():
# This flags inidicates we are now running in dygraph mode which called eager mode before.
# 3. _in_legacy_dygraph():
# This flags inidicates we are now running in legacy dygraph mode
99
#
J
Jiabin Yang 已提交
100
# They have a relation ship as below:
101
# Both dygraph_mode and _in_legacy_dygraph are _non_static_mode, but if you are running in
J
Jiabin Yang 已提交
102
# dygraph mode means you are not in _in_legacy_dygraph.
103
#
J
Jiabin Yang 已提交
104 105 106 107 108 109
# Why we have to make different of _in_legacy_dygraph and dygraph_mode?
# In some performance issue, we find that python if statement cause server performance problem
# and we need our new dygraph mode becomes as fast as it could be. That's why we make these flags
# to make sure in most case, we find new dygraph mode first with only one if statement.


110 111 112 113 114 115 116 117 118
def _update_monkey_methods(is_eager):
    """
    Update monkey methods of VarBase or eager.Tensor while
    switching eager mode and legacy mode.
    """
    from paddle import _C_ops
    from .dygraph.varbase_patch_methods import monkey_patch_varbase
    from .dygraph import monkey_patch_math_varbase

119 120 121
    global _already_patch_eager_tensor
    global _already_patch_varbase

122
    assert isinstance(is_eager, bool)
123
    # switch into eager mode
124 125
    if is_eager:
        _C_ops.switch_to_eager_ops()
126 127 128 129 130 131
        if not _already_patch_eager_tensor:
            monkey_patch_varbase()
            monkey_patch_math_varbase()

            _already_patch_eager_tensor = True
    # switch back into legacy mode
132 133
    else:
        _C_ops.switch_to_core_ops()
134 135 136 137 138
        if not _already_patch_varbase:
            monkey_patch_varbase()
            monkey_patch_math_varbase()

            _already_patch_varbase = True
139

140 141 142 143 144 145 146 147 148 149 150
    # switch Paddle.Tensor bind type
    _switch_tensor_bind_type(is_eager)


def _switch_tensor_bind_type(is_eager):
    import paddle
    if is_eager:
        paddle.Tensor = core.eager.Tensor
    else:
        paddle.Tensor = core.VarBase
    paddle.Tensor.__qualname__ = 'Tensor'
151 152


J
Jiabin Yang 已提交
153 154 155
def _enable_legacy_dygraph():
    global _in_eager_mode_
    _in_eager_mode_ = False
156
    _update_monkey_methods(is_eager=False)
J
Jiabin Yang 已提交
157 158 159 160 161


def _disable_legacy_dygraph():
    global _in_eager_mode_
    _in_eager_mode_ = True
162
    _update_monkey_methods(is_eager=True)
J
Jiabin Yang 已提交
163 164 165 166 167 168 169


def _in_eager_without_dygraph_check():
    global _in_eager_mode_
    return _in_eager_mode_


170 171 172 173 174 175 176 177 178 179 180
# FIXME(dev): We haven't fully verified eager mode on XPU/NPU et.al but
# only GPU/CPU. Remove this after we improve this feature.
_is_first_import_ = True


def _fallback_legacy_dygraph():
    global _in_eager_mode_
    global _is_first_import_
    need_fallback = False
    # Only enable eager on CPU/GPU
    is_not_support = core.is_compiled_with_xpu() or core.is_compiled_with_npu(
J
Jiabin Yang 已提交
181
    ) or core.is_compiled_with_ipu() or core.is_compiled_with_mlu()
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202

    if _in_eager_mode_ and is_not_support:
        # switch into legacy dygraph mode
        warnings.warn(
            "We will fallback into legacy dygraph on NPU/XPU/MLU/IPU/ROCM devices. Because we only support new eager dygraph mode on CPU/GPU currently. "
        )
        _in_eager_mode_ = False
        if not _is_first_import_:
            _enable_legacy_dygraph()
        need_fallback = True

    need_fallback = False
    _is_first_import_ = False

    return need_fallback


# switch into legacy mode if need while import paddle
_fallback_legacy_dygraph()


J
Jiabin Yang 已提交
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
def in_dygraph_mode():
    """

    .. note::
        Dynamic graph mode is turn ON by default since paddle 2.0.0

    This API checks whether paddle runs in dynamic graph mode.

    You can turn ON static graph mode by `enable_static <../dygraph/base/disable_dygraph_en.html>`_ ,
    and turn OFF static graph mode by `disable_static <../dygraph/base/enable_dygraph_en.html>`_  .

    Returns:
        bool: Whether paddle runs in dynamic graph mode.

    Examples:
        .. code-block:: python

            import paddle
            print(paddle.in_dynamic_mode())  # True, dynamic mode is turn ON by default since paddle 2.0.0

            paddle.enable_static()
            print(paddle.in_dynamic_mode())  # False, Now we are in static mode

            paddle.disable_static()
            print(paddle.in_dynamic_mode())  # True, Now we are in dynamic mode

    """
    return (_dygraph_tracer_ is not None) and _in_eager_mode_


def _in_legacy_dygraph():
    return (not _in_eager_mode_) and (_dygraph_tracer_ is not None)


def _non_static_mode():
    return _dygraph_tracer_ is not None
239 240 241


@signature_safe_contextmanager
J
Jiabin Yang 已提交
242
def _test_eager_guard(place=None):
243 244 245 246 247
    # FIXME(dev): We haven't fully verified eager mode on XPU/NPU et.al but
    # only GPU/CPU. Remove this after we improve this feature.
    already_fallback = _fallback_legacy_dygraph()
    if not already_fallback:
        _disable_legacy_dygraph()
248
    try:
J
Jiabin Yang 已提交
249
        yield
250
    finally:
251 252
        if not already_fallback:
            _enable_legacy_dygraph()
253 254


J
jianghaicheng 已提交
255 256 257 258 259 260 261 262 263 264 265 266
global_ipu_index = None
global_ipu_stage = None
ipu_index_attr_name = 'ipu_index'
ipu_stage_attr_name = 'ipu_stage'


@signature_safe_contextmanager
def ipu_shard_guard(index=None, stage=None):
    """
    Used to shard the graph on IPUs. Set each Op run on which IPU in the sharding and which stage in the pipelining.

    Args:
W
Weilong Wu 已提交
267
        index(int, optional): Specify which ipu the Tensor is computed on, (such as '0, 1, 2, 3').
J
jianghaicheng 已提交
268
            The default value is None, which means the Op only run on IPU 0.
W
Weilong Wu 已提交
269
        stage(int, optional): Specify the computation order of the sharded model(such as '0, 1, 2, 3').
J
jianghaicheng 已提交
270 271 272 273
            The sharded model will be computed from small to large. The default value is None, 
            which means no pipelining computation order and run Ops in terms of graph.
    
    **Note**:
W
Weilong Wu 已提交
274
    Only if the enable_manual_shard=True, the 'index' is able to be set not None. Please refer 
J
jianghaicheng 已提交
275
    to :code:`paddle.static.IpuStrategy` . 
W
Weilong Wu 已提交
276
    Only if the enable_pipelining=True, the 'stage' is able to be set not None. Please refer 
J
jianghaicheng 已提交
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
    to :code:`paddle.static.IpuStrategy` .
    A index is allowed to match none stage or a stage. A stage is only allowed to match a new or 
    duplicated index.

    Examples:
        .. code-block:: python

            # required: ipu

            import paddle
            paddle.enable_static()
            a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
            with paddle.static.ipu_shard_guard(index=0, stage=0):
                b = a + 1
            with paddle.static.ipu_shard_guard(index=1, stage=1):
                c = b + 1
            with paddle.static.ipu_shard_guard(index=0, stage=2):
                d = c + 1
    """
    if not core.is_compiled_with_ipu():
        raise ValueError(
            "Can not use this function since PaddlePaddle is not compiled with IPU"
        )

    global global_ipu_index
    global global_ipu_stage
    prev_ipu_index = global_ipu_index
    prev_ipu_stage = global_ipu_stage
    global_ipu_index = index
    global_ipu_stage = stage
    try:
        yield
    finally:
        global_ipu_index = prev_ipu_index
        global_ipu_stage = prev_ipu_stage


314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
def require_version(min_version, max_version=None):
    """
        Check if the installed version of PaddlePaddle is in [min_version, max_version],
        if the installed version is lower than ``min_version`` or higher than ``max_version``,
        an exception will be thrown, NO returns if the installed version is satisfied.

        Args:
            min_version (str): the minimum version required (like '1.4.0').
            max_version (str, optional): the max version required (like '1.6.0'), default is None,
                meaning any version equal or higher than ``min_version`` is acceptable.

        Returns:
            None.

        Raises:
            TypeError: if the type of ``min_version`` is not str.
            TypeError: if the type of ``max_version`` is not str or type(None).
            ValueError: if the value of ``min_version`` is not in version format.
            ValueError: if the value of ``max_version`` is not in version format or None.
            Exception: if the installed version is lower than ``min_version`` or higher than ``max_version``.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                # any version >= 0.1.0 is acceptable.
                fluid.require_version('0.1.0')

                # if 0.1.0 <= version <= 10.0.0, it is acceptable.
                fluid.require_version(min_version='0.1.0', max_version='10.0.0')
        """
    if not isinstance(min_version, str):
        raise TypeError(
            "The type of 'min_version' in require_version must be str, but received %s."
            % (type(min_version)))

    if not isinstance(max_version, (str, type(None))):
        raise TypeError(
            "The type of 'max_version' in require_version must be str or type(None), but received %s."
            % (type(max_version)))

    check_format = re.match(r'\d+(\.\d+){0,3}', min_version)
    if check_format is None or check_format.group() != min_version:
        raise ValueError(
            "The value of 'min_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
            "like '1.5.2.0', but received %s" % min_version)

    if max_version is not None:
        check_format = re.match(r'\d+(\.\d+){0,3}', max_version)
        if check_format is None or check_format.group() != max_version:
            raise ValueError(
                "The value of 'max_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
                "like '1.5.2.0', but received %s" % max_version)

    version_installed = [
        fluid_version.major, fluid_version.minor, fluid_version.patch,
        fluid_version.rc
    ]
    zero_version = ['0', '0', '0', '0']

    def version_cmp(ver_a, ver_b):
        for i in six.moves.range(len(ver_a)):
            if int(ver_a[i]) > int(ver_b[i]):
                return 1
            elif int(ver_a[i]) < int(ver_b[i]):
                return -1
        return 0

    if version_cmp(version_installed, zero_version) == 0:
        if max_version is not None:
            warnings.warn(
                "PaddlePaddle version in [%s, %s] required, but %s installed. "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, max_version, fluid_version.full_version))
        else:
            warnings.warn(
                "PaddlePaddle version %s or higher is required, but %s installed, "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, fluid_version.full_version))
        return

    min_version_split = min_version.split('.')
399 400
    min_version_to_check = min_version_split + zero_version[
        len(min_version_split):]
401 402 403

    if max_version is not None:
        max_version_split = max_version.split('.')
404 405
        max_version_to_check = max_version_split + zero_version[
            len(max_version_split):]
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420

        if version_cmp(version_installed,
                       max_version_to_check) > 0 or version_cmp(
                           version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version in [%s, %s] required, but %s installed."
                % (min_version, max_version, fluid_version.full_version))
    else:
        if version_cmp(version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version %s or higher is required, but %s installed, "
                "please upgrade your PaddlePaddle to %s or other higher version."
                % (min_version, fluid_version.full_version, min_version))


421
def _dygraph_not_support_(func):
422

423
    def __impl__(*args, **kwargs):
J
Jiabin Yang 已提交
424 425
        assert not _non_static_mode(
        ), "We don't support %s in dynamic graph mode" % func.__name__
426 427 428 429 430 431
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
432

433
    def __impl__(*args, **kwargs):
J
Jiabin Yang 已提交
434
        assert _non_static_mode(
435 436 437 438 439 440 441
        ), "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode." % func.__name__
        return func(*args, **kwargs)

    return __impl__


def _static_only_(func):
442

443
    def __impl__(*args, **kwargs):
J
Jiabin Yang 已提交
444
        assert not _non_static_mode(
445
        ), "In PaddlePaddle 2.x, we turn on dynamic graph mode by default, and '%s()' is only supported in static graph mode. So if you want to use this api, please call 'paddle.enable_static()' before this api to enter static graph mode." % func.__name__
446 447 448 449 450
        return func(*args, **kwargs)

    return __impl__


451 452 453 454 455
def _set_pipeline_stage(stage):
    global _current_pipeline_stage
    _current_pipeline_stage = stage


456 457 458 459 460 461
# NOTE(zhiqiu): This decorator is used for the APIs of Variable which is only
# used to make Variable and VarBase has same interfaces, like numpy. Since VarBase is not exposed in our
# official docments, logically, we want to keep VarBase and logically consistent. While, actually,
# in our implementation, there some APIs not supported, like numpy, because Variable contains the desc.
# So, those APIs are listed under class Variable to generate docs only.
# TODO(zhiqiu): We should make VarBase consistent with Variable in future, for example, by inheritting
T
tangwei12 已提交
462
# same base class.
463
def _fake_interface_only_(func):
464

465 466
    def __impl__(*args, **kwargs):
        raise AssertionError(
467 468 469 470 471
            "'%s' only can be called by `paddle.Tensor` in dynamic graph mode. Suggestions:\n"
            "  1. If you are in static graph mode, you can switch to dynamic graph mode by turning off `paddle.enable_static()` or calling `paddle.disable_static()`.\n"
            "  2. If you are using `@paddle.jit.to_static`, you can turn off ProgramTranslator by calling `paddle.jit.ProgramTranslator().enable(False)`. "
            "If you have to translate dynamic graph to static graph, please use other API to replace '%s'."
            % (func.__name__, func.__name__))
472 473 474 475

    return __impl__


T
tangwei12 已提交
476 477
# NOTE(chenweihang): There is argument name typo (stat_dict, correct name is state_dict)
# in fluid api Layer.set_dict, Optimizer.load, in order to correct the argument without
478 479 480 481
# introducing compatibility issues, add this decorator
# NOTE(chenweihang): not using `wrap_decorator` here is because `wrap_decorator` will
# move kwargs to args, which doesn't work in this decorate case
def deprecate_stat_dict(func):
482

483 484 485 486 487 488 489 490 491 492 493 494 495
    @functools.wraps(func)
    def wrapper(*args, **kwargs):
        if 'stat_dict' in kwargs:
            warnings.warn(
                "The argument `stat_dict` has deprecated, please change it to `state_dict`.",
                DeprecationWarning)
            kwargs['state_dict'] = kwargs['stat_dict']
            kwargs.pop('stat_dict')
        return func(*args, **kwargs)

    return wrapper


496 497
dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)
498
static_only = wrap_decorator(_static_only_)
499
fake_interface_only = wrap_decorator(_fake_interface_only_)
500 501


L
lujun 已提交
502 503
def _dygraph_tracer():
    return _dygraph_tracer_
504

W
Wu Yi 已提交
505

506 507 508 509
def _global_flags():
    return _global_flags_


M
minqiyang 已提交
510
def _current_expected_place():
511 512 513
    global _global_expected_place_
    if _global_expected_place_ is None:
        if core.is_compiled_with_cuda():
514 515 516 517 518 519 520 521 522 523 524
            try:
                device_count = core.get_cuda_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
                _global_expected_place_ = core.CUDAPlace(0)
            else:
                warnings.warn(
                    "You are using GPU version Paddle, but your CUDA device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
525 526 527 528 529 530 531 532 533 534 535 536
        elif core.is_compiled_with_xpu():
            try:
                device_count = core.get_xpu_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
                _global_expected_place_ = core.XPUPlace(0)
            else:
                warnings.warn(
                    "You are using XPU version Paddle, but your XPU device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
537 538 539 540 541 542 543 544 545 546 547 548
        elif core.is_compiled_with_mlu():
            try:
                device_count = core.get_mlu_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
                _global_expected_place_ = core.MLUPlace(0)
            else:
                warnings.warn(
                    "You are using MLU version Paddle, but your MLU device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
        else:
            _global_expected_place_ = core.CPUPlace()

    return _global_expected_place_


def _set_dygraph_tracer_expected_place(place):
    global _dygraph_tracer_
    if _dygraph_tracer_ is not None:
        _dygraph_tracer_._expected_place = place


def _set_expected_place(place):
    global _global_expected_place_
    _global_expected_place_ = place
J
Jiabin Yang 已提交
564
    _set_dygraph_tracer_expected_place(place)
M
minqiyang 已提交
565 566


L
Leo Chen 已提交
567 568 569 570
# TODO(zhiqiu): remove this function.
def _var_base_to_np(var_base):
    """	
    convert VarBase tp numpy	
T
tangwei12 已提交
571

L
Leo Chen 已提交
572 573 574 575 576 577 578 579 580 581 582 583
    Args:	
        var_base(VarBase) : the VarBase to convert	
    Returns (np.ndarray): the np.ndarray contain the value of VarBase	
    """

    warnings.warn(
        "paddle.fluid.framework._var_base_to_np is deprecated, please use var_base.numpy() instead of _var_base_to_np(var_base)."
    )

    return var_base.numpy()


S
sneaxiy 已提交
584
def _cpu_num():
585
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
586 587 588 589 590 591 592 593
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()))
C
chengduo 已提交
594
        os.environ['CPU_NUM'] = str(1)
595
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
596 597 598 599 600 601 602 603 604 605
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_cuda_device_count())
    return device_ids
S
sneaxiy 已提交
606 607


608 609 610 611 612 613 614 615 616
def _xpu_ids():
    xpus_env = os.getenv("FLAGS_selected_xpus")
    if xpus_env:
        device_ids = [int(s) for s in xpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_xpu_device_count())
    return device_ids


617 618 619 620 621 622 623 624 625
def _npu_ids():
    npus_env = os.getenv("FLAGS_selected_npus")
    if npus_env:
        device_ids = [int(s) for s in npus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_npu_device_count())
    return device_ids


626 627 628 629 630 631 632 633 634
def _mlu_ids():
    mlus_env = os.getenv("FLAGS_selected_mlus")
    if mlus_env:
        device_ids = [int(s) for s in mlus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_mlu_device_count())
    return device_ids


635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
def is_compiled_with_xpu():
    """
    Whether this whl package can be used to run the model on XPU.

    Returns (bool): support xpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_xpu = fluid.is_compiled_with_xpu()
    """
    return core.is_compiled_with_xpu()


650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
def is_compiled_with_npu():
    """
    Whether this whl package can be used to run the model on NPU.

    Returns (bool): support npu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_npu = fluid.is_compiled_with_npu()
    """
    return core.is_compiled_with_npu()


665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
def disable_signal_handler():
    """
    Reset signal handler registered by Paddle.

    Paddle installs signal handlers at C++ level to log debug information upon failing.
    However, conflicts can happen if another python module is making use of such signal.
    Such being the case, one may disblae paddle signal handler via this interface.
    
    Known frameworks that require disabling signal handler includes:
    1. TVM
    2. ADLIK

    Make sure you called paddle.disable_signal_handler() before using above mentioned frameworks.

    Returns: None 

    Examples:
        .. code-block:: python

            import paddle
            paddle.disable_signal_handler()
    """
    core.disable_signal_handler()


690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
def is_compiled_with_cinn():
    """
    Whether this whl package can be used to run the model on CINN.

    Returns (bool): `True` if CINN is currently available, otherwise `False`.

    Examples:
        .. code-block:: python

            import paddle
            support_cinn = paddle.device.is_compiled_with_cinn()
    """
    return core.is_compiled_with_cinn()


C
chengduo 已提交
705 706 707 708
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

709
    Returns (bool): `True` if CUDA is currently available, otherwise `False`.
C
chengduo 已提交
710 711 712 713

    Examples:
        .. code-block:: python

714
            import paddle
715
            support_gpu = paddle.device.is_compiled_with_cuda()
C
chengduo 已提交
716 717 718 719
    """
    return core.is_compiled_with_cuda()


720 721 722 723 724 725 726 727 728 729
def is_compiled_with_rocm():
    """
    Whether this whl package can be used to run the model on AMD or Hygon GPU(ROCm).

    Returns (bool): `True` if ROCm is currently available, otherwise `False`.

    Examples:
        .. code-block:: python

            import paddle
730
            support_gpu = paddle.device.is_compiled_with_rocm()
731 732 733 734
    """
    return core.is_compiled_with_rocm()


S
sneaxiy 已提交
735
def cuda_places(device_ids=None):
L
lujun 已提交
736
    """
737
    Note:
738 739 740
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

C
Chen Weihang 已提交
741
    This function creates a list of :code:`paddle.CUDAPlace` objects.
S
add doc  
sneaxiy 已提交
742 743

    If :code:`device_ids` is None, environment variable of
744
    :code:`FLAGS_selected_gpus` would be checked first. For example, if
S
add doc  
sneaxiy 已提交
745
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
C
Chen Weihang 已提交
746
    be [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
S
add doc  
sneaxiy 已提交
747
    If :code:`FLAGS_selected_gpus` is not set, all visible
748
    gpu places would be returned according to the :code:`CUDA_VISIBLE_DEVICES` environment variable.
S
add doc  
sneaxiy 已提交
749 750

    If :code:`device_ids` is not None, it should be the device
751
    ids of GPUs. For example, if :code:`device_ids=[0,1,2]`,
S
add doc  
sneaxiy 已提交
752
    the returned list would be 
C
Chen Weihang 已提交
753
    [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
T
tangwei12 已提交
754

755
    Parameters:
756
        device_ids (list|tuple, optional): A list/tuple of int of GPU device ids.
S
add doc  
sneaxiy 已提交
757 758

    Returns:
C
Chen Weihang 已提交
759
        list of paddle.CUDAPlace: Created GPU place list.
L
lujun 已提交
760 761

    Examples:
762
    
L
lujun 已提交
763 764
        .. code-block:: python

C
Chen Weihang 已提交
765 766
            import paddle
            import paddle.static as static
T
tangwei12 已提交
767

768 769
            # required: gpu
            
C
Chen Weihang 已提交
770 771 772
            paddle.enable_static()

            cuda_places = static.cuda_places()
L
lujun 已提交
773 774

    """
S
sneaxiy 已提交
775 776 777
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_ids is None:
C
chengduo 已提交
778
        device_ids = _cuda_ids()
S
sneaxiy 已提交
779 780 781 782 783
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


784 785 786 787
def xpu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_xpus` environment variable to set the visible XPU device.
S
sunzhongkai588 已提交
788 789 790 791 792 793 794 795 796 797 798
        This function creates a list of :code:`paddle.XPUPlace` objects.
        If :code:`device_ids` is None, environment variable of
        :code:`FLAGS_selected_xpus` would be checked first. For example, if
        :code:`FLAGS_selected_xpus=0,1,2`, the returned list would
        be [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
        If :code:`FLAGS_selected_xpus` is not set, all visible
        xpu places would be returned.
        If :code:`device_ids` is not None, it should be the device
        ids of XPUs. For example, if :code:`device_ids=[0,1,2]`,
        the returned list would be 
        [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
799 800 801 802 803 804 805
    
    Parameters:
        device_ids (list or tuple of int, optional): list of XPU device ids.
    Returns:
        list of paddle.XPUPlace: Created XPU place list.
    Examples:
        .. code-block:: python
S
sunzhongkai588 已提交
806

807 808
            # required: xpu

809 810 811 812 813 814 815 816 817 818 819 820 821 822 823
            import paddle
            import paddle.static as static
            
            paddle.enable_static()
            xpu_places = static.xpu_places()
    """
    assert core.is_compiled_with_xpu(), \
        "Not compiled with XPU"
    if device_ids is None:
        device_ids = _xpu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.XPUPlace(dev_id) for dev_id in device_ids]


824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
def npu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_npus` environment variable to set the visible NPU device.
    
    This function creates a list of :code:`paddle.NPUPlace` objects.
    If :code:`device_ids` is None, environment variable of
    :code:`FLAGS_selected_npus` would be checked first. For example, if
    :code:`FLAGS_selected_npus=0,1,2`, the returned list would
    be [paddle.NPUPlace(0), paddle.NPUPlace(1), paddle.NPUPlace(2)].
    If :code:`FLAGS_selected_npus` is not set, all visible
    npu places would be returned.
    If :code:`device_ids` is not None, it should be the device
    ids of NPUs. For example, if :code:`device_ids=[0,1,2]`,
    the returned list would be 
    [paddle.NPUPlace(0), paddle.NPUPlace(1), paddle.NPUPlace(2)].
    
    Parameters:
        device_ids (list or tuple of int, optional): list of NPU device ids.
    Returns:
        list of paddle.NPUPlace: Created NPU place list.
    Examples:
        .. code-block:: python

            # required: npu

            import paddle
            import paddle.static as static
            
            paddle.enable_static()
            npu_places = static.npu_places()
    """
    assert core.is_compiled_with_npu(), \
        "Not compiled with NPU"
    if device_ids is None:
        device_ids = _npu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.NPUPlace(dev_id) for dev_id in device_ids]


S
sneaxiy 已提交
865
def cpu_places(device_count=None):
L
lujun 已提交
866
    """
C
Chen Weihang 已提交
867
    This function creates a list of :code:`paddle.CPUPlace` objects, and returns the created list.
T
tangwei12 已提交
868

S
add doc  
sneaxiy 已提交
869 870
    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
C
chengduo 已提交
871 872
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
873 874
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
875

876 877
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
878 879

    Returns:
C
Chen Weihang 已提交
880
        list of paddle.CPUPlace: Created list of CPU places.
L
lujun 已提交
881 882

    Examples:
883
    
L
lujun 已提交
884 885
        .. code-block:: python

C
Chen Weihang 已提交
886 887
            import paddle
            import paddle.static as static
T
tangwei12 已提交
888

C
Chen Weihang 已提交
889 890 891
            paddle.enable_static()

            cpu_places = static.cpu_places()
L
lujun 已提交
892 893
    """

S
sneaxiy 已提交
894 895 896 897 898 899
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
900
    """
901
    This function creates a list of :code:`fluid.CUDAPinnedPlace` objects.
S
add doc  
sneaxiy 已提交
902 903 904

    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
905 906 907 908
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
909

910 911
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
912 913

    Returns:
914
        list of fluid.CUDAPinnedPlace: Created list of CUDA pinned places.
L
lujun 已提交
915 916 917 918

    Examples:
        .. code-block:: python

919
            import paddle.fluid as fluid
L
lujun 已提交
920 921 922 923 924
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
S
sneaxiy 已提交
925 926 927
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_count is None:
928 929
        device_count = len(_cuda_ids())
    return [core.CUDAPinnedPlace()] * device_count
S
sneaxiy 已提交
930 931


932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973
def mlu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_mlus` environment variable to set the visible MLU device.
        This function creates a list of :code:`paddle.device.MLUPlace` objects.
        If :code:`device_ids` is None, environment variable of
        :code:`FLAGS_selected_mlus` would be checked first. For example, if
        :code:`FLAGS_selected_mlus=0,1,2`, the returned list would
        be [paddle.device.MLUPlace(0), paddle.device.MLUPlace(1), paddle.device.MLUPlace(2)].
        If :code:`FLAGS_selected_mlus` is not set, all visible
        mlu places would be returned.
        If :code:`device_ids` is not None, it should be the device
        ids of MLUs. For example, if :code:`device_ids=[0,1,2]`,
        the returned list would be
        [paddle.device.MLUPlace(0), paddle.device.MLUPlace(1), paddle.device.MLUPlace(2)].

    Parameters:
        device_ids (list or tuple of int, optional): list of MLU device ids.

    Returns:
        list of paddle.device.MLUPlace: Created MLU place list.

    Examples:
        .. code-block:: python

            # required: mlu

            import paddle
            import paddle.static as static

            paddle.enable_static()
            mlu_places = static.mlu_places()
    """
    assert core.is_compiled_with_mlu(), \
        "Not compiled with MLU"
    if device_ids is None:
        device_ids = _mlu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.MLUPlace(dev_id) for dev_id in device_ids]


974
class NameScope(object):
975

976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
1001
@signature_safe_contextmanager
1002 1003
def name_scope(prefix=None):
    """
1004

1005
    Generate hierarchical name prefix for the operators in Static Graph.
1006

T
Tao Luo 已提交
1007 1008 1009
    Note: 
        This should only used for debugging and visualization purpose.
        Don't use it for serious analysis such as graph/program transformations.
1010
        Don't use it in dygraph, since it will cause memory leak.
1011 1012

    Args:
T
Tao Luo 已提交
1013
        prefix(str, optional): prefix. Default is none.
1014 1015

    Examples:
1016
    
1017
        .. code-block:: python
T
Tink_Y 已提交
1018

1019 1020 1021
          import paddle
          paddle.enable_static()
          with paddle.static.name_scope("s1"):
1022
             a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
T
Tao Luo 已提交
1023
             b = a + 1
1024
             with paddle.static.name_scope("s2"):
T
Tao Luo 已提交
1025
                c = b * 1
1026
             with paddle.static.name_scope("s3"):
T
Tao Luo 已提交
1027
                d = c / 1
1028 1029 1030
          with paddle.static.name_scope("s1"):
                f = paddle.tensor.pow(d, 2.0)
          with paddle.static.name_scope("s4"):
T
Tao Luo 已提交
1031 1032 1033
                g = f - 1

          # Op are created in the default main program.  
1034
          for op in paddle.static.default_main_program().block(0).ops:
T
Tao Luo 已提交
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
              # elementwise_add is created in /s1/
              if op.type == 'elementwise_add':
                  assert op.desc.attr("op_namescope") == '/s1/'
              # elementwise_mul is created in '/s1/s2'
              elif op.type == 'elementwise_mul':
                  assert op.desc.attr("op_namescope") == '/s1/s2/'
              # elementwise_div is created in '/s1/s3'
              elif op.type == 'elementwise_div':
                  assert op.desc.attr("op_namescope") == '/s1/s3/'
              # elementwise_sum is created in '/s4'
              elif op.type == 'elementwise_sub':
                  assert op.desc.attr("op_namescope") == '/s4/'
              # pow is created in /s1_1/
              elif op.type == 'pow':
                  assert op.desc.attr("op_namescope") == '/s1_1/'
1050 1051
    """
    # TODO(panyx0718): Only [0-9a-z].
1052
    # in dygraph we don't need namescope since it will cause mem leak
J
Jiabin Yang 已提交
1053
    if _non_static_mode():
L
Leo Chen 已提交
1054 1055
        yield
    else:
T
tianshuo78520a 已提交
1056
        assert prefix, "namescope prefix can not be empty."
1057 1058
        global _name_scope
        _name_scope = _name_scope.child(prefix)
1059 1060 1061 1062
        try:
            yield
        finally:
            _name_scope = _name_scope.parent()
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
1075 1076 1077
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
1078 1079 1080 1081


def grad_var_name(var_name):
    """
1082 1083
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
1084 1085 1086
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
1087

1088
def convert_np_dtype_to_dtype_(np_dtype):
1089 1090
    """
    Convert the data type in numpy to the data type in Paddle
1091

1092
    Args:
1093
        np_dtype(np.dtype): the data type in numpy.
1094

1095 1096
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
1097 1098

    """
1099 1100
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
1101
        return core.VarDesc.VarType.FP32
1102
    elif dtype == np.float64:
1103
        return core.VarDesc.VarType.FP64
1104
    elif dtype == np.float16:
1105
        return core.VarDesc.VarType.FP16
1106
    elif dtype == np.int32:
1107
        return core.VarDesc.VarType.INT32
1108
    elif dtype == np.int16:
1109
        return core.VarDesc.VarType.INT16
1110
    elif dtype == np.int64:
1111
        return core.VarDesc.VarType.INT64
1112
    elif dtype == np.bool:
1113
        return core.VarDesc.VarType.BOOL
1114
    elif dtype == np.uint16:
1115 1116 1117
        # since there is still no support for bfloat16 in NumPy,
        # uint16 is used for casting bfloat16
        return core.VarDesc.VarType.BF16
1118 1119
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
1120 1121
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
1122 1123 1124 1125
    elif dtype == np.complex64:
        return core.VarDesc.VarType.COMPLEX64
    elif dtype == np.complex128:
        return core.VarDesc.VarType.COMPLEX128
1126
    else:
M
minqiyang 已提交
1127
        raise ValueError("Not supported numpy dtype %s" % dtype)
1128 1129 1130


def dtype_is_floating(dtype):
1131 1132 1133
    """
    Check the data type is floating or not.
    Args:
1134
        dtype(np.dtype|core.VarDesc.VarType): data type.
1135 1136 1137 1138 1139
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
1140
    if not isinstance(dtype, core.VarDesc.VarType):
1141 1142
        dtype = convert_np_dtype_to_dtype_(dtype)

1143 1144 1145 1146
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
1147 1148


Y
Yang Yang(Tony) 已提交
1149
def _debug_string_(proto, throw_on_error=True):
1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
1161
    error_fields = list()
Y
Yang Yang(Tony) 已提交
1162
    if not proto.IsInitialized(error_fields) and throw_on_error:
1163 1164 1165
        raise ValueError(
            "{0} are not initialized.\nThe message is {1}:\n".format(
                error_fields, proto))
Y
Yu Yang 已提交
1166 1167 1168
    return proto.__str__()


1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
def _varbase_creator(type=core.VarDesc.VarType.LOD_TENSOR,
                     name=None,
                     shape=None,
                     dtype=None,
                     persistable=None,
                     **kwargs):
    if dtype is not None:
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

J
Jiabin Yang 已提交
1179
    if _in_eager_mode_:
1180
        eager_tensor = core.eager.Tensor(
1181
            dtype if dtype else core.VarDesc.VarType.FP32,
1182 1183 1184
            list(shape) if shape else [], name,
            type if type else core.VarDesc.VarType.LOD_TENSOR,
            True if persistable else False)
1185 1186
        eager_tensor.retain_grads()
        return eager_tensor
J
Jiabin Yang 已提交
1187 1188
    else:
        return core.VarBase(dtype if dtype else core.VarDesc.VarType.FP32,
1189 1190 1191
                            list(shape) if shape else [], name,
                            type if type else core.VarDesc.VarType.LOD_TENSOR,
                            True if persistable else False)
1192 1193 1194


class VariableMetaClass(type):
1195

1196 1197 1198 1199
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1200
            return issubclass(t, core.eager.Tensor)
1201
        else:
J
Jiabin Yang 已提交
1202 1203
            if _in_legacy_dygraph():
                return issubclass(t, core.VarBase)
1204 1205 1206 1207
            return issubclass(t, Variable)


class ParameterMetaClass(VariableMetaClass):
1208

1209 1210 1211 1212
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1213
            return issubclass(t, EagerParamBase)
1214
        else:
J
Jiabin Yang 已提交
1215 1216
            if _in_legacy_dygraph():
                return issubclass(t, ParamBase)
1217 1218 1219 1220
            return issubclass(t, Parameter)


@six.add_metaclass(VariableMetaClass)
X
Xin Pan 已提交
1221
class Variable(object):
1222
    """
J
Jiabin Yang 已提交
1223
    **Notes**:
1224
        **The constructor of Variable should not be invoked directly.**
J
Jiabin Yang 已提交
1225

1226 1227
        **In Static Graph Mode: Please use** `Block.create_var` **to create a Static variable which has no data until being feed.**

J
Jiabin Yang 已提交
1228 1229 1230
        **In Dygraph Mode: Please use** :ref:`api_fluid_dygraph_to_variable` **to create a dygraph variable with real data**

    In Fluid, every input and output of an OP is a variable. In most
1231
    cases, variables are used for holding different kinds of data or training
J
Jiabin Yang 已提交
1232 1233
    labels. A variable belongs to a :ref:`api_guide_Block_en` . All variable has its own name and
    two variables in different :ref:`api_guide_Block_en` could have the same name.
1234

1235
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
1236
    and usages. Please refer to the `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_ for details.
1237

T
tianshuo78520a 已提交
1238
    Most of a Variable's member variables can be set to be None. It mean
1239
    it is not available or will be specified later.
1240

1241
    Examples:
1242 1243
        In Static Graph Mode:

1244 1245
        .. code-block:: python

1246
            import paddle.fluid as fluid
1247
            cur_program = fluid.Program()
1248 1249 1250 1251
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
S
sunzhongkai588 已提交
1252

J
Jiabin Yang 已提交
1253
        In `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_  Mode:
1254 1255 1256 1257 1258 1259 1260 1261 1262

        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                new_variable = fluid.dygraph.to_variable(np.arange(10))

1263 1264
    """

Y
Yu Yang 已提交
1265 1266
    def __init__(self,
                 block,
Y
Yu Yang 已提交
1267
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
1268 1269 1270 1271
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
1272
                 capacity=None,
Q
QI JUN 已提交
1273
                 persistable=None,
F
fengjiayi 已提交
1274
                 error_clip=None,
Y
Yu Yang 已提交
1275
                 stop_gradient=False,
F
fengjiayi 已提交
1276
                 is_data=False,
H
Huihuang Zheng 已提交
1277
                 need_check_feed=False,
H
hong 已提交
1278
                 belong_to_optimizer=False,
Y
Yu Yang 已提交
1279
                 **kwargs):
Y
Yu Yang 已提交
1280 1281
        self.block = block
        if name is None:
Y
Yu Yang 已提交
1282
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
1283

Y
Yu Yang 已提交
1284
        if dtype is not None:
1285
            if not isinstance(dtype, core.VarDesc.VarType):
1286
                dtype = convert_np_dtype_to_dtype_(dtype)
1287

S
Steffy-zxf 已提交
1288 1289 1290 1291
        if dtype == core.VarDesc.VarType.STRINGS:
            type = core.VarDesc.VarType.STRINGS
            lod_level = None

H
hong 已提交
1292 1293
        self.belong_to_optimizer = belong_to_optimizer

1294 1295 1296 1297 1298
        self.error_clip = error_clip

        is_new_var = False
        name = cpt.to_text(name)
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
1299

1300 1301 1302
        if self.desc is None:
            self.desc = self.block.desc.var(cpt.to_bytes(name))
            is_new_var = True
1303

1304 1305 1306
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
L
Leo Chen 已提交
1307 1308
            raise ValueError("Variable '{0}' has been created before. The "
                             "previous type is {1}, the new type is {2}. They"
1309 1310
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))
1311

1312
        if shape is not None:
1313
            if is_new_var:
1314 1315 1316 1317 1318 1319
                self.desc.set_shape(shape)
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
L
Leo Chen 已提交
1320 1321
                        "Variable '{0}' has been created before. The previous "
                        "shape is {1}, the new shape is {2}. They are not "
1322 1323 1324 1325 1326 1327 1328
                        "matched.".format(self.name, old_shape, shape))
        if dtype is not None:
            if is_new_var:
                self.desc.set_dtype(dtype)
            else:
                old_dtype = self.dtype
                if dtype != old_dtype:
L
Leo Chen 已提交
1329 1330
                    raise ValueError("Variable '{0}' has been created before. "
                                     "The previous data type is {1}, the new "
1331 1332 1333 1334 1335 1336 1337 1338 1339
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))

        if lod_level is not None:
            if is_new_var:
                self.desc.set_lod_level(lod_level)
            else:
                if lod_level != self.lod_level:
L
Leo Chen 已提交
1340 1341
                    raise ValueError("Variable '{0}' has been created before. "
                                     "The previous lod_level is {1}, the new "
1342 1343 1344 1345 1346 1347 1348 1349 1350
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
L
Leo Chen 已提交
1351 1352
                        "Variable '{0}' has been created before."
                        "The previous persistable is {1}, the new "
1353 1354
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))
1355

1356 1357
        if need_check_feed and is_new_var:
            self.desc.set_need_check_feed(need_check_feed)
H
Huihuang Zheng 已提交
1358

1359 1360 1361 1362 1363 1364 1365
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass
1366

1367 1368
        self.block.vars[name] = self
        self.op = None
1369
        self.stop_gradient = stop_gradient
1370
        self.is_data = is_data
Y
Yu Yang 已提交
1371

1372 1373 1374
    def detach(self):
        """
        Returns a new Variable, detached from the current graph.
1375 1376
        It will share data with origin Variable and without tensor copy.
        In addition, the detached Variable doesn't provide gradient propagation.
1377

1378
        Returns:
J
Jiabin Yang 已提交
1379
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable): The detached Variable.
1380 1381 1382 1383

        Examples:
            .. code-block:: python

1384
                import paddle
1385

1386 1387 1388 1389
                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
1390

1391 1392
                # create a detached Variable
                y = x.detach()
1393
        """
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405

        assert self.type == core.VarDesc.VarType.SELECTED_ROWS or \
            self.type == core.VarDesc.VarType.LOD_TENSOR, \
            "only support a variable with SELECTED_ROWS or LOD_TENSOR to be detached"

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key("detach_" + self.name),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
            stop_gradient=True)

1406 1407 1408
        self.block.append_op(type='share_data',
                             inputs={'X': [self]},
                             outputs={'Out': [output]})
1409
        return output
1410

1411
    @fake_interface_only
1412
    def numpy(self):
1413
        """
J
Jiabin Yang 已提交
1414
        **Notes**:
T
tianshuo78520a 已提交
1415
            **This API is ONLY available in Dygraph mode**
1416

J
Jiabin Yang 已提交
1417
        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`
1418 1419 1420 1421 1422

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
J
Jiabin Yang 已提交
1423
            ndarray: dtype is same as current Variable
1424 1425 1426 1427 1428 1429

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1430
                from paddle.fluid.dygraph import Linear
1431 1432 1433 1434
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1435
                    linear = Linear(32, 64)
1436
                    data = to_variable(data)
1437
                    x = linear(data)
1438 1439 1440
                    print(x.numpy())

        """
1441
        pass
1442

1443
    @fake_interface_only
1444
    def backward(self, retain_graph=False):
1445
        """
J
Jiabin Yang 已提交
1446
        **Notes**:
T
tianshuo78520a 已提交
1447
            **This API is ONLY available in Dygraph mode**
1448

1449
        Run backward of current Graph which starts from current Tensor.
1450

J
Jiabin Yang 已提交
1451
        Args:
1452 1453 1454 1455
            retain_graph(bool, optional): If False, the graph used to compute grads will be freed. If you would
                like to add more ops to the built graph after calling this method( :code:`backward` ), set the parameter
                :code:`retain_graph` to True, then the grads will be retained. Thus, seting it to False is much more memory-efficient.
                Defaults to False.
1456

J
Jiabin Yang 已提交
1457 1458
        Returns:
            NoneType: None
1459 1460 1461 1462 1463

        Examples:
            .. code-block:: python

                import numpy as np
1464 1465
                import paddle
                paddle.disable_static()
1466 1467

                x = np.ones([2, 2], np.float32)
1468 1469 1470 1471 1472 1473 1474
                inputs = []
                for _ in range(10):
                    tmp = paddle.to_tensor(x)
                    # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
                    # there is no one need gradient on it.
                    tmp.stop_gradient=False
                    inputs.append(tmp)
1475 1476
                ret = paddle.add_n(inputs)
                loss = paddle.sum(ret)
1477
                loss.backward()
1478 1479

        """
1480
        pass
1481

1482
    @fake_interface_only
1483
    def gradient(self):
1484
        """
J
Jiabin Yang 已提交
1485
        **Notes**:
T
tianshuo78520a 已提交
1486
            **This API is ONLY available in Dygraph mode**
1487 1488 1489

        Get the Gradient of Current Variable

J
Jiabin Yang 已提交
1490
        Returns:
1491
            ndarray or tuple of ndarray: if Variable's type is LoDTensor, return numpy value of the gradient of current Variable, if Variable's type is SelectedRows, return tuple of ndarray, first element of tuple is numpy value of the gradient of current Variable, second element of tuple is numpy value of the rows of current Variable.
1492 1493 1494 1495 1496 1497 1498

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

1499
                # example1: return ndarray
1500 1501 1502 1503 1504 1505 1506 1507 1508
                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1509
                    loss2.backward()
1510 1511
                    print(loss2.gradient())

1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
                # example2: return tuple of ndarray
                with fluid.dygraph.guard():
                    embedding = fluid.dygraph.Embedding(
                        size=[20, 32],
                        param_attr='emb.w',
                        is_sparse=True)
                    x_data = np.arange(12).reshape(4, 3).astype('int64')
                    x_data = x_data.reshape((-1, 3, 1))
                    x = fluid.dygraph.base.to_variable(x_data)
                    out = embedding(x)
                    out.backward()
                    print(embedding.weight.gradient())

1525
        """
1526
        pass
1527

1528
    @fake_interface_only
1529
    def clear_gradient(self):
1530
        """
J
Jiabin Yang 已提交
1531
        **Notes**:
T
tianshuo78520a 已提交
1532
            **1. This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1533 1534

            **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**
1535

J
Jiabin Yang 已提交
1536
        Clear  (set to ``0`` ) the Gradient of Current Variable
1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554

        Returns:  None

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1555
                    loss2.backward()
1556 1557 1558 1559 1560
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
1561
        pass
X
Xin Pan 已提交
1562

1563 1564 1565 1566
    @fake_interface_only
    def register_hook(self, hook):
        pass

1567
    def __str__(self):
1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
        return self._to_readable_code()

    def _to_readable_code(self):
        """
        Get readable debug string of Variable.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Returns:
            string: The formatted Variable string.

        Examples:
            .. code-block:: python

1584 1585
                import paddle
                import paddle.static as static
1586

1587 1588 1589
                paddle.enable_static()

                cur_program = static.Program()
1590 1591 1592 1593 1594 1595
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
                print(new_variable._to_readable_code())
        """
1596 1597
        # VarType.LOD_TENSOR -> LOD_TENSOR
        type_str = str(self.type).split('.')[1]
1598
        if self.type == core.VarDesc.VarType.SELECTED_ROWS or self.type == core.VarDesc.VarType.LOD_TENSOR:
1599 1600
            dtype_str = str(self.dtype).split('.')[1]
            var_str = "{name} : {type}.shape{shape}.dtype({dtype}).stop_gradient({stop_gradient})".\
T
tangwei12 已提交
1601 1602
                format(name=self.name, type=type_str, shape=self.shape,
                       dtype=dtype_str, stop_gradient=self.stop_gradient)
1603
        else:
1604 1605
            var_str = "{name} : {type})".\
                format(name=self.name, type=type_str)
1606

1607
        if self.is_parameter:
1608 1609 1610 1611 1612 1613 1614 1615 1616 1617
            if self.trainable:
                var_str = "trainable param " + var_str
            else:
                var_str = "param " + var_str
        else:
            var_str = "var " + var_str

        if self.persistable:
            var_str = "persist " + var_str

1618
        from paddle.distributed.auto_parallel.dist_context import get_default_distributed_context
1619
        dist_context = get_default_distributed_context()
1620 1621
        dist_tensor = dist_context.get_dist_tensor_for_program(self)
        if dist_tensor is not None:
1622 1623
            var_str += ", {name} = {value}".format(name="dist_attr",
                                                   value=dist_tensor)
1624

1625
        return var_str
Y
Yang Yang(Tony) 已提交
1626

F
update  
fengjiayi 已提交
1627
    def to_string(self, throw_on_error, with_details=False):
1628 1629 1630
        """
        Get debug string.

J
Jiabin Yang 已提交
1631 1632 1633 1634 1635
        Args:

            throw_on_error (bool): True if raise an exception when self is not initialized.

            with_details (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default value is False;
1636

1637 1638
        Returns:
            str: The debug string.
1639 1640 1641 1642 1643

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
1644
                import paddle
1645

1646
                paddle.enable_static()
1647 1648 1649 1650 1651
                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
1652
                print(new_variable.to_string(True))
J
Jiabin Yang 已提交
1653
                print("=============with detail===============")
1654
                print(new_variable.to_string(True, True))
1655
        """
1656 1657
        assert isinstance(throw_on_error, bool) and isinstance(
            with_details, bool)
1658
        protostr = self.desc.serialize_to_string()
1659
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
1660 1661
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
1662
            additional_attr = ("error_clip", )
F
update  
fengjiayi 已提交
1663
            for attr_name in additional_attr:
1664 1665 1666
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))

F
update  
fengjiayi 已提交
1667
        return res_str
1668 1669 1670

    __repr__ = __str__

1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697
    def element_size(self):
        """
        Returns the size in bytes of an element in the Tensor.
        
        Examples:
          .. code-block:: python

            import paddle
            paddle.enable_static()

            x = paddle.static.data(name='x1', shape=[3, 2], dtype='bool')
            x.element_size() # 1

            x = paddle.static.data(name='x2', shape=[3, 2], dtype='int16')
            x.element_size() # 2

            x = paddle.static.data(name='x3', shape=[3, 2], dtype='float16')
            x.element_size() # 2

            x = paddle.static.data(name='x4', shape=[3, 2], dtype='float32')
            x.element_size() # 4

            x = paddle.static.data(name='x5', shape=[3, 2], dtype='float64')
            x.element_size() # 8
        """
        return self.desc.element_size()

1698
    @property
1699
    def stop_gradient(self):
J
Jiabin Yang 已提交
1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714
        """
        Indicating if we stop gradient from current Variable

        **Notes: This Property has default value as** ``True`` **in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, while Parameter's default value is False. However, in Static Graph Mode all Variable's default stop_gradient value is** ``False``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                value1 = np.arange(6).reshape(2, 3).astype("float32")
                value2 = np.arange(10).reshape(2, 5).astype("float32")
1715 1716
                linear = fluid.Linear(13, 5, dtype="float32")
                linear2 = fluid.Linear(3, 3, dtype="float32")
J
Jiabin Yang 已提交
1717 1718 1719
                a = fluid.dygraph.to_variable(value0)
                b = fluid.dygraph.to_variable(value1)
                c = fluid.dygraph.to_variable(value2)
1720 1721
                out1 = linear(a)
                out2 = linear2(b)
J
Jiabin Yang 已提交
1722 1723 1724 1725
                out1.stop_gradient = True
                out = fluid.layers.concat(input=[out1, out2, c], axis=1)
                out.backward()

1726
                assert linear.weight.gradient() is None
J
Jiabin Yang 已提交
1727 1728
                assert (out1.gradient() == 0).all()
        """
1729
        return self.desc.stop_gradient()
1730

1731 1732
    @stop_gradient.setter
    def stop_gradient(self, s):
1733
        self.desc.set_stop_gradient(s)
1734

1735 1736
    @property
    def persistable(self):
J
Jiabin Yang 已提交
1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757
        """
        Indicating if we current Variable should be long-term alive


        **Notes: This Property will be deprecated and this API is just to help user understand concept**

            **1. All Variable's persistable is** ``False`` **except Parameters.**

            **2. In** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, this property should not be changed**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("persistable of current Var is: {}".format(new_variable.persistable))
        """
1758
        return self.desc.persistable()
1759

Y
Yu Yang 已提交
1760 1761
    @persistable.setter
    def persistable(self, p):
1762
        self.desc.set_persistable(p)
Y
Yu Yang 已提交
1763

1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788
    @property
    def is_parameter(self):
        """
        Indicating if current Variable is a Parameter

        Examples:
          .. code-block:: python

            import paddle
            new_parameter = paddle.static.create_parameter(name="X",
                                                shape=[10, 23, 48],
                                                dtype='float32')
            if new_parameter.is_parameter:
                print("Current var is a Parameter")
            else:
                print("Current var is not a Parameter")

            # Current var is a Parameter
        """
        return self.desc.is_parameter()

    @is_parameter.setter
    def is_parameter(self, p):
        self.desc.set_is_parameter(p)

Y
Yu Yang 已提交
1789 1790
    @property
    def name(self):
J
Jiabin Yang 已提交
1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806
        """
        Indicating name of current Variable

        **Notes: If it has two or more Varaible share the same name in the same** :ref:`api_guide_Block_en` **, it means these Variable will share content in no-** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode. This is how we achieve Parameter sharing**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("name of current Var is: {}".format(new_variable.name))
        """
1807
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
1808

1809 1810 1811 1812 1813 1814
    @property
    def grad_name(self):
        """
        Indicating name of the gradient Variable of current Variable.

        **Notes: This is a read-only property. It simply returns name of
S
sunzhongkai588 已提交
1815 1816
        gradient Variable from a naming convention but doesn't guarantee
        the gradient exists.**
T
tangwei12 已提交
1817

1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828
        Examples:
          .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.data(name="x", shape=[-1, 23, 48], dtype='float32')
          print(x.grad_name) # output is "x@GRAD"

        """
        return self.name + "@GRAD"

T
typhoonzero 已提交
1829 1830
    @name.setter
    def name(self, new_name):
1831
        self.desc.set_name(new_name)
T
typhoonzero 已提交
1832

Y
Yu Yang 已提交
1833 1834
    @property
    def shape(self):
J
Jiabin Yang 已提交
1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851
        """
        Indicating shape of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("shape of current Var is: {}".format(new_variable.shape))

        """
Y
Yu Yang 已提交
1852
        # convert to tuple, make it as same as numpy API.
1853
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
1854 1855

    @property
F
fengjiayi 已提交
1856
    def dtype(self):
J
Jiabin Yang 已提交
1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872
        """
        Indicating data type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Dtype of current Var is: {}".format(new_variable.dtype))
        """
1873
        return self.desc.dtype()
Y
Yu Yang 已提交
1874 1875 1876

    @property
    def lod_level(self):
J
Jiabin Yang 已提交
1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889
        """
        Indicating ``LoD`` info of current Variable, please refer to  :ref:`api_fluid_LoDTensor_en` to check the meaning
        of ``LoD``

        **Notes**:

            **1. This is a read-only property**

            **2. Don't support this property in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, it's value should be** ``0(int)``

        Examples:
          .. code-block:: python

1890
            import paddle
J
Jiabin Yang 已提交
1891
            import paddle.fluid as fluid
1892 1893

            paddle.enable_static()
J
Jiabin Yang 已提交
1894 1895 1896 1897 1898 1899 1900
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("LoD Level of current Var is: {}".format(new_variable.lod_level))
        """
1901 1902
        if self.type == core.VarDesc.VarType.SELECTED_ROWS:
            raise Exception("SelectedRows DO NOT supprt lod")
1903 1904
        if self.type == core.VarDesc.VarType.STRINGS:
            return None
1905
        return self.desc.lod_level()
Y
Yu Yang 已提交
1906

Y
Yu Yang 已提交
1907 1908
    @property
    def type(self):
J
Jiabin Yang 已提交
1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924
        """
        Indicating Type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Type of current Var is: {}".format(new_variable.type))
        """
1925
        return self.desc.type()
Y
Yu Yang 已提交
1926

1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
    @property
    def T(self):
        """
        Permute current Variable with its dimensions reversed.

        If `n` is the dimensions of `x` , `x.T` is equivalent to `x.transpose([n-1, n-2, ..., 0])`.

        Examples:

            .. code-block:: python

                import paddle
                paddle.enable_static()

                x = paddle.ones(shape=[2, 3, 5])
                x_T = x.T

                exe = paddle.static.Executor()
                x_T_np = exe.run(paddle.static.default_main_program(), fetch_list=[x_T])[0]
                print(x_T_np.shape)
                # (5, 3, 2)
        """
        if len(self.shape) == 1:
            return self
        perm = []
        for i in range(len(self.shape)):
            perm.insert(0, i)

        out = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=self.type,
            persistable=False,
            stop_gradient=False)
        input_shape = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=False,
            stop_gradient=False)

1968 1969 1970 1971 1972 1973 1974
        self.block.append_op(type='transpose2',
                             inputs={'X': [self]},
                             outputs={
                                 'Out': [out],
                                 'XShape': [input_shape]
                             },
                             attrs={'axis': perm})
1975 1976
        return out

1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
    def clone(self):
        """
        Returns a new static Variable, which is the clone of the original static
        Variable. It remains in the current graph, that is, the cloned Variable 
        provides gradient propagation. Calling ``out = tensor.clone()`` is same
        as ``out = assign(tensor)`` .

        Returns:
            Variable: The cloned Variable.

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
                # create a cloned Variable
                y = x.clone()

        """
        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_clone"),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
            stop_gradient=self.stop_gradient)

2007 2008 2009
        self.block.append_op(type='assign',
                             inputs={'X': [self]},
                             outputs={'Out': [output]})
2010 2011
        return output

W
Wu Yi 已提交
2012
    def _set_error_clip(self, error_clip):
2013 2014 2015 2016 2017 2018 2019 2020 2021
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
2022 2023
        self.error_clip = error_clip

2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052
    def _set_info(self, key, value):
        """
        Set key-value information for this variable.

        Args:
            key(str): Key for this information.
            value(object): The value associated to the key.

        Returns: 
            None
        """
        if not hasattr(self, "_info"):
            self._info = {}
        self._info[key] = value

    def _get_info(self, key):
        """
        Get the information of this variable corresponding to key.

        Args:
            key(str): Key for this information.

        Returns: 
            object
        """
        if hasattr(self, "_info") and key in self._info:
            return self._info[key]
        return None

2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
    def _slice_indices(self, slice, length):
        """
        Reference implementation for the slice.indices method.
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
T
tianshuo78520a 已提交
2064
            raise ValueError("slice step can not be zero")
2065 2066 2067 2068 2069 2070 2071 2072 2073 2074

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
2075 2076
            start = max(start +
                        length, lower) if start < 0 else min(start, upper)
2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
                if (index > 0 and index >= self.shape[index]) \
                        or (index < 0 and (index + self.shape[index]) < 0):
                    raise IndexError("invalid index")
                start = max(start + self.shape[index], 0) if start < 0 else min(
                    start, self.shape[index])
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
2140
    def _cloneVar(self, copy=False):
2141 2142
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
2143 2144
                name=unique_name.generate_with_ignorable_key(self.name),
                dtype=self.dtype)
2145 2146 2147 2148
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
2149
        new_var = self._cloneVar()
2150 2151 2152 2153 2154 2155 2156 2157
        self.block.append_op(type="slice",
                             inputs={'Input': [self]},
                             outputs={'Out': [new_var]},
                             attrs={
                                 'axes': axes,
                                 'starts': starts,
                                 'ends': ends
                             })
2158 2159 2160
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
2161
        new_var = self._cloneVar()
2162 2163 2164 2165 2166 2167
        self.block.append_op(type="concat",
                             inputs={'X': inputs},
                             outputs={'Out': [new_var]},
                             attrs={
                                 'axis': axis,
                             })
2168 2169 2170 2171 2172
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
2173
                return self._cloneVar(True)
2174 2175 2176 2177 2178 2179 2180
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
2181 2182
                        vars.append(self._sliceVar([axis], [start],
                                                   [start + 1]))
2183 2184 2185
                        start += step
                else:
                    while start > stop:
2186 2187
                        vars.append(self._sliceVar([axis], [start],
                                                   [start + 1]))
2188 2189 2190 2191
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
2192
                return self._cloneVar(True)
2193
            index = int(item)
2194
            if (index > 0 and index >= self.shape[axis]) \
2195 2196 2197 2198 2199 2200 2201
                    or (index < 0 and (index + self.shape[axis]) < 0):
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
2202
        return _getitem_impl_(self, item)
2203

2204
    def __setitem__(self, item, value):
2205
        return _setitem_impl_(self, item, value)
2206

2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247
    def get_value(self, scope=None):
        """
        Get the value of variable in given scope. 

        Args:
            scope(Scope, optional) : If `scope` is None, it will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            Tensor: the value in given scope.

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static 
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        """
2248 2249
        # The 'framework' is a low-level module, and 'executor'
        # can not be imported at the begainning of this file.
2250 2251 2252 2253
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
2254 2255
                "`scope` should be None or `paddle.static.Scope` type, but received {}."
                .format(type(scope)))
2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309

        if scope is None:
            scope = global_scope()
        var_temp = scope.find_var(self.name)
        if var_temp is None:
            raise ValueError("Can not find Variable '{}' in the Scope.".format(
                self.name))
        t = var_temp.get_tensor()
        return t

    def set_value(self, value, scope=None):
        '''
        Set the value to the tensor in given scope. 

        Args:
            value(Tensor/ndarray) : The value to be set.
            scope(Scope, optional) : If `scope` is None, it will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            None
        
        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static 
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        '''

        # The 'framework' is a low-level module, and 'executor'
2310
        # can not be imported at the begainning of this file.
2311 2312 2313 2314 2315
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope

        if not (isinstance(value, np.ndarray) or hasattr(value, '__array__')):
            raise TypeError(
2316 2317
                "`value` should be `numpy.ndarray` or `LoDTensor`, but received {}."
                .format(type(value)))
2318 2319 2320

        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
2321 2322
                "`scope` should be None or `paddle.static.Scope` type, but received {}."
                .format(type(scope)))
2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352

        if scope is None:
            scope = global_scope()

        var_temp = scope.find_var(self.name)
        if var_temp is None:
            raise ValueError("Can not find Variable '{}' in the Scope.".format(
                self.name))

        t = var_temp.get_tensor()

        if hasattr(value, 'shape'):
            if isinstance(value.shape, (MethodType, FunctionType)):
                value_shape = value.shape()
            else:
                value_shape = value.shape
            if list(t.shape()) != list(value_shape):
                raise ValueError(
                    "{} expected a shape {}, but the received shape is {}.".
                    format(self.name, list(t.shape()), list(value_shape)))

        p = t._place()
        if p.is_cpu_place():
            place = core.CPUPlace()
        elif p.is_cuda_pinned_place():
            place = core.CUDAPinnedPlace()
        elif p.is_xpu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.XPUPlace(p.xpu_device_id())
2353 2354 2355 2356
        elif p.is_npu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.NPUPlace(p.npu_device_id())
2357 2358 2359 2360
        elif p.is_mlu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.MLUPlace(p.mlu_device_id())
2361 2362 2363 2364 2365 2366 2367
        else:
            p = core.Place()
            p.set_place(t._place())
            place = core.CUDAPlace(p.gpu_device_id())

        t.set(value, place)

2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392
    def size(self):
        """
        Returns the number of elements for current Variable, which is a int64 Variable with shape [1]

        Returns:
            Variable: the number of elements for current Variable

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])

                # get the number of elements of the Variable
                y = x.size()
        """

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_size"),
            dtype=core.VarDesc.VarType.INT64)

2393 2394 2395
        self.block.append_op(type='size',
                             inputs={'Input': [self]},
                             outputs={'Out': [output]})
2396 2397
        return output

2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477
    def _set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _has_attr(self, name):
        """
        Whether this Variable has the attribute with the name `name` or not.

        Args:
            name(str): the attribute name.

        Returns:
            bool: True if has this attribute.
        """
        return self.desc.has_attr(name)

    def _remove_attr(self, name):
        self.desc.remove_attr(name)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
        """
        self.desc._set_attr(name, val)

    @property
    def attr_names(self):
        """Get the names of all attributes defined."""
        return self.desc.attr_names()

    def _get_attr(self, name):
        """
        Get the attribute by name.

        Args:
            name(str): the attribute name.

        Returns:
            int|str|list: The attribute value. The return value
            can be any valid attribute type.
        """
        return self.desc.attr(name)

    @property
    def process_mesh(self):
        """
        Get the process mesh belonging to this Variable.
        """
        from paddle.distributed.auto_parallel.interface import _g_process_mesh_map
        from paddle.distributed.auto_parallel.interface import ProcessMesh
        mesh_attr_name = 'mesh_id' + core.kAutoParallelSuffix()
        mesh_id = self.desc.attr(mesh_attr_name)
        return _g_process_mesh_map[mesh_id]

    @property
    def shard_mask(self):
        """
        Get shard_mask belonging to this Variable.
        """
        mask_attr_name = 'mask' + core.kAutoParallelSuffix()
        return self.desc.attr(mask_attr_name)

    @property
    def offload_device(self):
        """
        Get the offload device of this Variable.
        """
        offload_attr_name = 'offload_device' + core.kAutoParallelSuffix()
        return self.desc.attr(offload_attr_name)

Y
Yu Yang 已提交
2478

F
fengjiayi 已提交
2479 2480 2481
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
2482

2483 2484
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
2485 2486 2487 2488
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
2489
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
2490 2491 2492 2493 2494
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
2495 2496 2497 2498
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
2499 2500 2501 2502 2503 2504 2505 2506 2507
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
2508
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
2509 2510 2511 2512 2513 2514
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
2515 2516 2517 2518 2519 2520 2521 2522
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
2523 2524
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
2525 2526
        return self.op_proto_map[type]

2527 2528
    def update_op_proto(self):
        op_protos = get_all_op_protos()
2529
        custom_op_names = []
2530 2531 2532
        for proto in op_protos:
            if proto.type not in self.op_proto_map:
                self.op_proto_map[proto.type] = proto
2533 2534 2535
                custom_op_names.append(proto.type)

        return custom_op_names
2536

2537 2538 2539 2540
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
2541
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
2542
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
2543 2544
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName(),
            core.op_proto_and_checker_maker.kOpDeviceAttrName()
2545 2546
        }

F
fengjiayi 已提交
2547

X
Xin Pan 已提交
2548
class Operator(object):
2549
    """
2550 2551 2552 2553 2554 2555 2556
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
2557
        type(str): The type of operator. Default None.
2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
2578
        Block.append_op or Block._prepend_op instead.
2579 2580 2581 2582

    Examples:
        .. code-block:: python

2583
            import paddle.fluid as fluid
2584
            cur_program = fluid.Program()
2585 2586 2587 2588 2589
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
2590
    """
2591
    OP_WITHOUT_KERNEL_SET = {
2592 2593
        'feed', 'fetch', 'recurrent', 'go', 'rnn_memory_helper_grad',
        'conditional_block', 'while', 'send', 'recv', 'listen_and_serv',
2594
        'fl_listen_and_serv', 'ncclInit', 'select', 'checkpoint_notify',
2595 2596
        'gen_bkcl_id', 'c_gen_bkcl_id', 'gen_nccl_id', 'c_gen_nccl_id',
        'c_comm_init', 'c_sync_calc_stream', 'c_sync_comm_stream',
W
WangXi 已提交
2597
        'queue_generator', 'dequeue', 'enqueue', 'heter_listen_and_serv',
B
Baibaifan 已提交
2598
        'c_wait_comm', 'c_wait_compute', 'c_gen_hccl_id', 'c_comm_init_hccl',
2599
        'copy_cross_scope', 'c_gen_cncl_id'
2600
    }
2601

Y
Yu Yang 已提交
2602 2603
    def __init__(self,
                 block,
Y
Yu Yang 已提交
2604
                 desc,
Y
Yu Yang 已提交
2605 2606 2607
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
2608
                 attrs=None):
J
Jiabin Yang 已提交
2609
        if _non_static_mode():
2610 2611
            if type is None:
                raise ValueError(
2612
                    "`type` to initialized an Operator can not be None.")
J
Jiabin Yang 已提交
2613
            self._type = type
M
minqiyang 已提交
2614
            self.attrs = attrs if attrs else {}
2615 2616 2617 2618 2619 2620 2621 2622 2623 2624
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

2625 2626 2627
            # attr for static mode cuda graph
            self._cuda_graph_attr = _current_cuda_graph_mode

2628 2629 2630
            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
2631 2632
                op_attrs[
                    op_maker.kOpRoleAttrName()] = self.block.program._op_role
2633 2634

            role_var_name = op_maker.kOpRoleVarAttrName()
2635 2636
            if len(self.block.program._op_role_var
                   ) != 0 and role_var_name not in op_attrs:
2637
                op_attrs[role_var_name] = self.block.program._op_role_var
2638 2639 2640 2641 2642

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
2643 2644 2645 2646 2647
                # NOTE(Aurelius84): prog.clone() will lead that var.op is always None,
                # we add this to fix the problem.
                for arg in self.desc.output_arg_names():
                    if block.has_var(arg) and block.var(arg).op is None:
                        block.var(arg).op = self
2648 2649 2650
                return
            if type is None:
                raise ValueError(
2651
                    "`type` to initialized an Operator can not be None.")
2652 2653
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
2654 2655 2656
                op_attrs[callstack_var_name] = []
                for frame in traceback.extract_stack():
                    op_attrs[callstack_var_name].append(
2657 2658 2659 2660
                        '  File "{}", line {}, in {}'.format(
                            frame[0], frame[1], frame[2]))
                    op_attrs[callstack_var_name].append('    {}'.format(
                        frame[3]))
2661 2662 2663 2664 2665 2666 2667

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678
            # set device for op with kernels, give warning for op without kernels
            # when force_cpu and device_guard are used at the same time, a warning will be given.
            # TODO(zhangting2020): when force_cpu is removed, clear warning below.
            if _current_device is not None:
                if self._has_kernel(type):
                    op_device = op_maker.kOpDeviceAttrName()
                    op_attrs[op_device] = _current_device
                else:
                    warnings.warn("The Op(%s) is not support to set device." %
                                  type)
                if 'force_cpu' in op_attrs:
2679
                    if (type == 'less_than' and op_attrs['force_cpu'] != None
2680 2681 2682 2683 2684
                        ) or op_attrs['force_cpu'] != False:
                        warnings.warn(
                            "The Attr(force_cpu) of Op(%s) will be deprecated in the future, "
                            "please use 'device_guard' instead. 'device_guard' has higher priority when they are "
                            "used at the same time." % type)
2685 2686 2687 2688 2689
            if _current_pipeline_stage is not None:
                pipeline_attr_name = 'pipeline_stage' + core.kAutoParallelSuffix(
                )
                self._update_desc_attr(pipeline_attr_name,
                                       _current_pipeline_stage)
2690

2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703
            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
                    assert found or in_proto.dispensable, "Input {} not found".format(
                        in_proto.name)
                    if found:
                        in_args = inputs[in_proto.name]
2704
                        if not isinstance(in_args, (list, tuple)):
2705 2706 2707 2708 2709 2710
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
                                % (in_proto.name, len(in_args)))
                        in_arg_names = []
2711
                        for index, arg in enumerate(in_args):
2712 2713 2714 2715
                            if isinstance(arg, six.string_types):
                                in_arg_names.append(arg)
                            elif isinstance(arg, six.binary_type):
                                in_arg_names.append(arg.decode())
2716
                            elif isinstance(arg, (Variable, core.VarBase)):
2717
                                in_arg_names.append(cpt.to_text(arg.name))
2718
                            else:
2719 2720 2721 2722
                                raise TypeError(
                                    "The type of '%s' in operator %s should be "
                                    "one of [basestring(), str, Varibale] in python2, "
                                    "or one of [str, bytes, Variable] in python3."
2723 2724
                                    "but received : %s" %
                                    (in_proto.name, type, arg))
2725 2726 2727 2728 2729 2730 2731 2732 2733
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
2734 2735 2736 2737
                        raise ValueError(
                            ("Incorrect setting for output(s) of "
                             "operator \"%s\", should set: [%s].") %
                            (type, m.name))
2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
                            % (out_proto.name, len(out_args)))
                    out_arg_names = []
                    for arg in out_args:
2750 2751 2752 2753
                        if isinstance(arg, six.string_types):
                            out_arg_names.append(arg)
                        else:
                            out_arg_names.append(cpt.to_text(arg.name))
2754
                        # TODO(minqiyang): could we remove variable's op in static mode?
J
Jiabin Yang 已提交
2755
                        if not _non_static_mode():
2756 2757 2758 2759
                            if isinstance(arg, six.string_types):
                                block.var(arg).op = self
                            else:
                                arg.op = self
2760 2761 2762 2763 2764 2765 2766
                    self.desc.set_output(out_proto.name, out_arg_names)

            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
2767 2768
                    if (attr_name
                            not in op_attrs) or (op_attrs[attr_name] is None):
2769 2770 2771 2772
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)

J
jianghaicheng 已提交
2773 2774 2775 2776 2777 2778 2779 2780 2781
            # proto.attrs doesn't include ipu_index
            if core.is_compiled_with_ipu():
                if global_ipu_index is not None:
                    self._update_desc_attr(ipu_index_attr_name,
                                           global_ipu_index)
                if global_ipu_stage is not None:
                    self._update_desc_attr(ipu_stage_attr_name,
                                           global_ipu_stage)

2782 2783 2784 2785 2786
            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
2787
    def _has_kernel(self, op_type):
2788 2789
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
2790
    def to_string(self, throw_on_error):
2791
        """
2792 2793
        Get debug string.

2794
        Args:
2795 2796
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
2797

2798 2799
        Returns:
            str: The debug string.
2800 2801

        """
2802
        protostr = self.desc.serialize_to_string()
2803
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
2804 2805
        return _debug_string_(proto, throw_on_error)

2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837
    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Operator.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Operator string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
            print(new_op._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
2838
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884
            type(skip_op_callstack))
        outputs_str = "{"
        for i in range(0, len(self.output_names)):
            outputs_str += "{name}=".format(name=self.output_names[i])
            o = self.output(self.output_names[i])
            outputs_str += "{value}".format(value=o)
            if i != len(self.output_names) - 1:
                outputs_str += ", "
        outputs_str += "}"

        inputs_str = "{"
        for i in range(0, len(self.input_names)):
            inputs_str += "{name}=".format(name=self.input_names[i])
            o = self.input(self.input_names[i])
            inputs_str += "{value}".format(value=o)

            if i != len(self.input_names) - 1:
                inputs_str += ", "
        inputs_str += "}"

        attr_names = sorted(self.attr_names)
        attrs_str = ""
        for i in range(0, len(attr_names)):
            name = attr_names[i]
            if skip_op_callstack and name == "op_callstack":
                continue

            attr_type = self.desc.attr_type(name)
            if attr_type == core.AttrType.BLOCK:
                a = "{name} = block[{value}]".format(
                    name=name, type=attr_type, value=self._block_attr_id(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.BLOCKS:
                a = "{name} = blocks{value}".format(
                    name=name,
                    type=attr_type,
                    value=self._blocks_attr_ids(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

2885
            # it is bytes of serialized protobuf
2886 2887 2888 2889
            if is_compiled_with_cinn(
            ) and self.type == 'cinn_launch' and name == 'compilation_key':
                key = self.desc.attr(name)
                v = core.get_serialize_comile_key(key)
2890 2891 2892 2893 2894 2895 2896 2897 2898
                prog = Program()
                prog = prog.parse_from_string(v)
                s = prog._to_readable_code()
                lines = s.split('\n')
                value = '\n'.join(['      ' + line for line in lines])
                value = '\n' + value
            else:
                value = self.desc.attr(name)

2899 2900 2901
            a = "{name} = {value}".format(name=name,
                                          type=attr_type,
                                          value=value)
2902

2903 2904 2905 2906
            attrs_str += a
            if i != len(attr_names) - 1:
                attrs_str += ", "

2907
        from paddle.distributed.auto_parallel.dist_context import get_default_distributed_context
2908
        dist_context = get_default_distributed_context()
2909 2910
        dist_op = dist_context.get_dist_op_for_program(self)
        if dist_op is not None:
2911 2912
            attrs_str += ", {name} = {value}".format(name="dist_attr",
                                                     value=dist_op)
2913

2914 2915
        if outputs_str != "{}":
            op_str = "{outputs} = {op_type}(inputs={inputs}, {attrs})".\
T
tangwei12 已提交
2916 2917
                format(outputs=outputs_str, op_type=self.type,
                       inputs=inputs_str, attrs=attrs_str)
2918 2919 2920 2921 2922
        else:
            op_str = "{op_type}(inputs={inputs}, {attrs})".\
                format(op_type=self.type, inputs=inputs_str, attrs=attrs_str)
        return op_str

Y
Yang Yang(Tony) 已提交
2923
    def __str__(self):
2924
        return self._to_readable_code()
2925 2926 2927

    __repr__ = __str__

F
fengjiayi 已提交
2928 2929
    @property
    def type(self):
2930
        return self.desc.type()
F
fengjiayi 已提交
2931 2932

    def input(self, name):
2933
        r"""
2934
        Get the input arguments according to the input parameter name.
2935

2936 2937
        Args:
            name(str): The input parameter name.
2938

2939 2940 2941
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
2942
        """
F
fengjiayi 已提交
2943 2944
        return self.desc.input(name)

W
Wu Yi 已提交
2945
    def _rename_input(self, old_name, new_name):
2946 2947 2948 2949 2950 2951 2952 2953 2954 2955
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
2956
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
2957

W
Wu Yi 已提交
2958
    def _rename_output(self, old_name, new_name):
2959 2960 2961 2962 2963 2964 2965 2966 2967 2968
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
2969
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
2970

F
fengjiayi 已提交
2971 2972 2973 2974
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
2975 2976 2977 2978 2979 2980 2981 2982
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
2983
    def output(self, name):
2984
        r"""
2985
        Get output arguments by the output parameter name.
2986

2987 2988
        Args:
            name(str): The output parameter name.
2989

2990 2991 2992
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
2993
        """
F
fengjiayi 已提交
2994 2995 2996 2997 2998 2999
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

3000 3001 3002 3003 3004 3005 3006 3007
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
3008
    def has_attr(self, name):
3009
        """
3010 3011
        Whether this Operator has the attribute with name or not.

3012
        Args:
3013
            name(str): the attribute name.
3014

3015 3016
        Returns:
            bool: True if has this attribute.
3017 3018

        """
F
fengjiayi 已提交
3019 3020 3021
        return self.desc.has_attr(name)

    def attr_type(self, name):
3022
        """
3023
        Get the type of attribute by attribute's name.
3024

3025 3026
        Args:
            name(str): the attribute name.
3027

3028 3029
        Returns:
            core.AttrType: the attribute type.
3030
        """
F
fengjiayi 已提交
3031 3032
        return self.desc.attr_type(name)

W
Wu Yi 已提交
3033
    def _set_attr(self, name, val):
3034 3035 3036 3037 3038 3039 3040 3041 3042 3043
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
3044 3045
        self._update_desc_attr(name, val)

3046 3047 3048
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
3060 3061
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
3062 3063
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
3064
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
3065 3066 3067 3068
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
3069
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
3070

F
fengjiayi 已提交
3071 3072 3073 3074 3075
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
3076
        """
3077 3078
        Get the attribute by name.

3079
        Args:
3080
            name(str): the attribute name.
3081

3082 3083
        Returns:
            bool|int|str|float|list: The attribute value. The return value
3084 3085
            can be any valid attribute type.
        """
F
fengjiayi 已提交
3086
        return self.desc.attr(name)
Y
Yu Yang 已提交
3087

W
Wu Yi 已提交
3088
    def _block_attr_id(self, name):
3089
        """
G
gongweibao 已提交
3090
        Get the block attribute's id by name.
3091

3092 3093
        Args:
            name(str): the attribute name.
3094

3095 3096
        Returns:
            int: the block index.
3097
        """
W
Wu Yi 已提交
3098
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
3099

W
Wu Yi 已提交
3100
    def _block_attr(self, name):
G
gongweibao 已提交
3101 3102 3103 3104 3105 3106 3107 3108 3109 3110
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
3111
        id = self._block_attr_id(name)
G
gongweibao 已提交
3112 3113 3114
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
3115
    def _blocks_attr(self, name):
G
gongweibao 已提交
3116 3117 3118 3119 3120 3121 3122 3123 3124 3125
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
3126
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
3127 3128 3129 3130 3131
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
3132
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
3133 3134 3135 3136 3137 3138 3139 3140 3141 3142
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
3143
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
3144

J
JiayiFeng 已提交
3145
    def all_attrs(self):
F
fengjiayi 已提交
3146
        """
3147 3148 3149
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
3150
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
3151 3152 3153 3154
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
3155 3156
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
3157
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
3158 3159 3160
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
3161
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
3162 3163 3164 3165
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
3166 3167
        return attr_map

3168 3169 3170
    def _is_optimize_op(self):
        op_maker = core.op_proto_and_checker_maker
        OPTIMIZE = core.op_proto_and_checker_maker.OpRole.Optimize
3171 3172 3173 3174

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
            return False

3175 3176 3177
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(OPTIMIZE):
            return True
3178 3179 3180 3181 3182 3183 3184 3185

        return False

    def _is_backward_op(self):
        op_maker = core.op_proto_and_checker_maker
        BACKWARD = core.op_proto_and_checker_maker.OpRole.Backward

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
3186 3187
            return False

3188 3189 3190 3191 3192 3193
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(BACKWARD):
            return True

        return False

3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218
    @property
    def process_mesh(self):
        """
        Get the process mesh belonging to this Operator.
        """
        from paddle.distributed.auto_parallel.interface import _g_process_mesh_map
        mesh_attr_name = 'mesh_id' + core.kAutoParallelSuffix()
        mesh_id = self.attr(mesh_attr_name)
        return _g_process_mesh_map[mesh_id]

    def dims_mapping(self, name):
        """
        Get the dims_mapping for the op's var named `name`.
        """
        dims_mapping_attr_name = name + core.kAutoParallelSuffix()
        return self.attr(dims_mapping_attr_name)

    @property
    def pipeline_stage(self):
        """
        Get pipeline stage of the Operator.
        """
        pipeline_stage_attr_name = 'pipeline_stage' + core.kAutoParallelSuffix()
        return self.desc.attr(pipeline_stage_attr_name)

Y
Yu Yang 已提交
3219

Y
Yu Yang 已提交
3220
class Block(object):
3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
3235
        use `Program._create_block()` to create a block.
3236 3237 3238 3239

    Examples:
        .. code-block:: python

3240 3241 3242
            import paddle.fluid as fluid

            cur_program = fluid.Program()
3243 3244 3245 3246 3247 3248 3249 3250 3251
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
3252
    def __init__(self, program, idx):
Y
Yu Yang 已提交
3253
        self.desc = program.desc.block(idx)
3254
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
3255
        self.ops = list()  # operator list
Y
Yu Yang 已提交
3256
        self.program = program
3257
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
3258

3259
    def __str__(self):
3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Block.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Block string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_block._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
3294
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305
            type(skip_op_callstack))
        block_str = "{ // block "
        block_str += "{}\n".format(self.idx)
        for var in list(self.vars.values()):
            block_str += "    {}\n".format(var._to_readable_code())
        block_str += "\n"
        for op in self.ops:
            block_str += "    {}\n".format(
                op._to_readable_code(skip_op_callstack))
        block_str += "}"
        return block_str
Y
Yang Yang(Tony) 已提交
3306

F
fengjiayi 已提交
3307 3308
    def to_string(self, throw_on_error, with_details=False):
        """
3309 3310
        Get debug string.

F
fengjiayi 已提交
3311 3312
        Args:
            throw_on_error(bool): raise exception when self is not initialized
3313
                when throw_on_error is True.
F
update  
fengjiayi 已提交
3314
            with_details(bool): more details about variables and parameters
3315 3316
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
3317

3318 3319
        Returns:
            str: The debug string.
F
fengjiayi 已提交
3320
        """
3321 3322
        assert isinstance(throw_on_error, bool) and isinstance(
            with_details, bool)
F
fengjiayi 已提交
3323
        if with_details:
F
fengjiayi 已提交
3324
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
3325 3326
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
3327
            for var in list(self.vars.values()):
F
fengjiayi 已提交
3328
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
3329
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
3330
            for op in self.ops:
F
fengjiayi 已提交
3331 3332
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
3333 3334 3335
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
3336 3337
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
3338 3339
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
3340 3341 3342

    __repr__ = __str__

Y
Yu Yang 已提交
3343 3344
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
3345
        return self.desc.parent
Y
Yu Yang 已提交
3346

Y
Yu Yang 已提交
3347 3348 3349 3350
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
3351
    def _set_forward_block_idx(self, idx):
3352 3353 3354 3355 3356 3357 3358 3359 3360
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
3361
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
3362

3363 3364 3365 3366 3367 3368 3369 3370
    @property
    def backward_block_idx(self):
        cur_block_idx = self.idx
        for block in self.program.blocks:
            if block.forward_block_idx == cur_block_idx:
                return block.idx
        return -1

Y
Yu Yang 已提交
3371 3372
    @property
    def idx(self):
Y
Yu Yang 已提交
3373
        return self.desc.id
Y
Yu Yang 已提交
3374

Q
Qiao Longfei 已提交
3375
    def var(self, name):
3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
3389
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
3390 3391 3392
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
3393 3394
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
3395
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
3396
        return v
Q
Qiao Longfei 已提交
3397

X
Xin Pan 已提交
3398
    def _find_var_recursive(self, name):
3399 3400 3401 3402 3403 3404 3405
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
3406
            Variable: the Variable with the giving name. Or None if not found.
3407
        """
Y
Yu Yang 已提交
3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
3432
        return None
Y
Yu Yang 已提交
3433

X
Xin Pan 已提交
3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
3453

Q
Qiao Longfei 已提交
3454
    def all_parameters(self):
3455
        return list(self.iter_parameters())
3456

3457
    def iter_parameters(self):
M
minqiyang 已提交
3458
        return (item[1] for item in six.iteritems(self.vars)
3459
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
3460

Y
Yu Yang 已提交
3461
    def create_var(self, *args, **kwargs):
J
Jiabin Yang 已提交
3462
        if _non_static_mode():
L
Leo Chen 已提交
3463 3464
            var = _varbase_creator(*args, **kwargs)
        else:
3465 3466 3467
            var = Variable(block=self, *args, **kwargs)
            if 'initializer' in kwargs:
                kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
3468
        return var
Y
Yu Yang 已提交
3469

Q
Qiao Longfei 已提交
3470 3471 3472
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
3473
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
3474 3475
        """
        Rename variable in vars and ops' inputs and outputs
3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
3488
        """
M
minqiyang 已提交
3489 3490
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
3491

T
typhoonzero 已提交
3492
        if not self.has_var(name):
3493
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
3494 3495
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
3496
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
3497 3498 3499 3500 3501 3502
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
3503
            var_type = "Variable"
T
wip  
typhoonzero 已提交
3504 3505 3506 3507
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
3508
        orig_var_type = v.type
M
minqiyang 已提交
3509
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
3510
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
3511
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
3512
        if var_type == "Parameter":
L
Leo Chen 已提交
3513
            if in_dygraph_mode():
3514 3515 3516 3517 3518 3519 3520 3521 3522
                var = EagerParamBase(d.shape(),
                                     d.dtype(),
                                     type=orig_var_type,
                                     name=new_name,
                                     stop_gradient=stop_gradient,
                                     trainable=trainable,
                                     optimize_attr=optimize_attr,
                                     regularizer=regularizer,
                                     error_clip=error_clip)
3523
            else:
J
Jiabin Yang 已提交
3524
                if _in_legacy_dygraph():
3525 3526 3527 3528 3529 3530 3531 3532 3533
                    var = ParamBase(d.shape(),
                                    d.dtype(),
                                    type=orig_var_type,
                                    name=new_name,
                                    stop_gradient=stop_gradient,
                                    trainable=trainable,
                                    optimize_attr=optimize_attr,
                                    regularizer=regularizer,
                                    error_clip=error_clip)
J
Jiabin Yang 已提交
3534
                else:
3535 3536 3537 3538 3539 3540 3541 3542 3543 3544
                    var = Parameter(self,
                                    d.shape(),
                                    d.dtype(),
                                    type=orig_var_type,
                                    name=new_name,
                                    stop_gradient=stop_gradient,
                                    trainable=trainable,
                                    optimize_attr=optimize_attr,
                                    regularizer=regularizer,
                                    error_clip=error_clip)
T
typhoonzero 已提交
3545
        elif var_type == "Variable":
3546 3547 3548 3549 3550
            var = Variable(self,
                           type=orig_var_type,
                           name=new_name,
                           error_clip=error_clip,
                           stop_gradient=stop_gradient)
T
wip  
typhoonzero 已提交
3551

W
Wu Yi 已提交
3552
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
3553 3554 3555
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
3556
        self._sync_with_cpp()
3557
        return var
T
typhoonzero 已提交
3558

3559 3560 3561
    def _remove_var(self, name, sync=True):
        if sync == True:
            self._sync_with_cpp()
M
minqiyang 已提交
3562
        self.desc._remove_var(cpt.to_bytes(name))
3563 3564
        del self.vars[name]

Y
Yu Yang 已提交
3565 3566
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
3567
        param = None
L
Leo Chen 已提交
3568
        if in_dygraph_mode():
J
Jiabin Yang 已提交
3569
            param = EagerParamBase(*args, **kwargs)
L
Leo Chen 已提交
3570
        else:
J
Jiabin Yang 已提交
3571 3572 3573 3574
            if _in_legacy_dygraph():
                param = ParamBase(*args, **kwargs)
            else:
                param = Parameter(global_block, *args, **kwargs)
3575

3576
        if 'initializer' in kwargs:
3577 3578 3579 3580 3581

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
3582
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
T
tangwei12 已提交
3583
                        # are treated as initialization ops that cause error.
3584
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
3585 3586 3587 3588 3589
                        # NOTE: "coalesce_tensor" is a special case for rnn with cudnn support
                        if op.type in [
                                "c_broadcast", "c_sync_comm_stream",
                                "coalesce_tensor"
                        ]:
3590
                            continue
3591 3592 3593 3594 3595 3596 3597 3598
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
3599 3600
                                   " is inited by multiple init ops " +
                                   str(init_ops))
3601
            elif init_ops_len == 1:
3602
                # TODO already inited, do nothing, should log a warning
3603 3604 3605
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
3606
        return param
Y
Yu Yang 已提交
3607

Y
Yu Yang 已提交
3608
    def append_op(self, *args, **kwargs):
3609 3610 3611 3612 3613 3614
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
J
Jiabin Yang 已提交
3615
        if _non_static_mode():
3616
            attrs = kwargs.get("attrs", {})
Z
zyfncg 已提交
3617
            inplace_map = kwargs.get("inplace_map", None)
J
Jiabin Yang 已提交
3618
            type = kwargs.get("type", None)
3619 3620 3621 3622
            warnings.warn(
                "Op `%s` is executed through `append_op` under the dynamic mode, "
                "the corresponding API implementation needs to be upgraded to "
                "using `_C_ops` method." % type, DeprecationWarning)
3623 3624 3625 3626 3627 3628
            op = Operator(block=self,
                          desc=None,
                          type=type,
                          inputs=None,
                          outputs=None,
                          attrs=attrs)
3629

M
minqiyang 已提交
3630 3631 3632
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
L
lujun 已提交
3633
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
3634

3635 3636 3637
            _dygraph_tracer().trace_op(type, kwargs.get("inputs", {}),
                                       kwargs.get("outputs",
                                                  {}), attrs if attrs else {},
Z
zyfncg 已提交
3638 3639
                                       kwargs.get("stop_gradient", False),
                                       inplace_map)
M
minqiyang 已提交
3640
        else:
3641 3642
            from paddle.fluid.dygraph.base import param_guard

3643
            op_desc = self.desc.append_op()
3644 3645 3646 3647 3648 3649
            # NOTE(Aurelius84): In case of @to_static, all VarBase(s) should
            # be converted into Variable(s) with same name and block location.
            # This is ONE and ONLY logic of type transformation of dy2static.
            inputs = kwargs.get("inputs", None)
            outputs = kwargs.get("outputs", None)
            with param_guard(inputs), param_guard(outputs):
3650 3651 3652 3653 3654 3655
                op = Operator(block=self,
                              desc=op_desc,
                              type=kwargs.get("type", None),
                              inputs=inputs,
                              outputs=outputs,
                              attrs=kwargs.get("attrs", None))
3656

M
minqiyang 已提交
3657
            self.ops.append(op)
M
minqiyang 已提交
3658

3659 3660
        return op

W
Wu Yi 已提交
3661
    def _insert_op(self, index, *args, **kwargs):
3662 3663 3664 3665 3666 3667 3668 3669 3670
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
3671
        self._sync_with_cpp()
F
fangshuixun007 已提交
3672
        return self._insert_op_without_sync(index, *args, **kwargs)
Q
qiaolongfei 已提交
3673

3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690
    def _insert_op_without_sync(self, index, *args, **kwargs):
        """
        Insert an Operator according to the giving arguments, 
        without sync_with_cpp to meke the compilation faster.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
        op_desc = self.desc._insert_op(index)
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

    def _remove_op(self, index, sync=True):
3691 3692 3693 3694 3695 3696 3697 3698 3699
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
3700 3701
        if sync == True:
            self._sync_with_cpp()
W
Wu Yi 已提交
3702
        self.desc._remove_op(index, index + 1)
3703 3704
        del self.ops[index]

W
Wu Yi 已提交
3705
    def _slice_ops(self, start, end):
3706 3707 3708 3709 3710 3711 3712 3713 3714 3715
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
3716
        return self.ops[start:end]
Y
Yancey1989 已提交
3717

W
Wu Yi 已提交
3718
    def _prepend_op(self, *args, **kwargs):
J
Jiabin Yang 已提交
3719
        if _non_static_mode():
J
Jiabin Yang 已提交
3720 3721
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
3722 3723 3724 3725 3726 3727 3728 3729 3730 3731
            op = Operator(self,
                          None,
                          type=type,
                          inputs=None,
                          outputs=None,
                          attrs=attrs)

            _dygraph_tracer().trace_op(type, kwargs.get("inputs", {}),
                                       kwargs.get("outputs", {}),
                                       attrs if attrs else {},
M
minqiyang 已提交
3732
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
3733
        else:
3734
            op_desc = self.desc._prepend_op()
3735 3736 3737 3738 3739 3740
            op = Operator(self,
                          op_desc,
                          type=kwargs.get("type", None),
                          inputs=kwargs.get("inputs", None),
                          outputs=kwargs.get("outputs", None),
                          attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
3741
            self.ops.insert(0, op)
3742

Y
Yu Yang 已提交
3743 3744
        return op

W
Wu Yi 已提交
3745
    def _sync_with_cpp(self):
3746
        """
3747 3748
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
3749
        """
Q
Qiao Longfei 已提交
3750 3751 3752
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
3753 3754 3755 3756
                is_stop_gradient = False
                if var.has_stop_gradient():
                    is_stop_gradient = var.stop_gradient()
                if var.has_is_parameter() and var.is_parameter():
3757 3758 3759 3760 3761 3762
                    self.create_parameter(name=var.name(),
                                          desc=var,
                                          type=var.type(),
                                          shape=var.shape(),
                                          dtype=var.dtype(),
                                          stop_gradient=is_stop_gradient)
3763
                else:
3764 3765 3766 3767
                    self.create_var(name=var.name(),
                                    desc=var,
                                    type=var.type(),
                                    stop_gradient=is_stop_gradient)
Q
Qiao Longfei 已提交
3768

3769
        # sync variables removed from c++ end
3770
        for var in list(self.vars.keys()):
M
minqiyang 已提交
3771
            if not self.desc.find_var(cpt.to_bytes(var)):
3772 3773
                self.vars.pop(var)

Q
Qiao Longfei 已提交
3774
        # sync operators from cpp
3775 3776 3777 3778
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
3795 3796 3797 3798 3799

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
3800
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
3801 3802 3803 3804 3805 3806 3807

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
3821 3822 3823 3824
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
3825
    def _copy_param_info_from(self, other):
3826
        """
3827 3828
        Copy the information of parameters from the other block.

3829
        Args:
3830 3831 3832 3833 3834
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
3835 3836 3837 3838 3839

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
3840 3841
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
3842
        for p in other.iter_parameters():
3843 3844 3845
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
3846 3847
                # if the Parameter is pruned, v may be None
                continue
3848
            assert isinstance(v, Variable)
3849
            new_p = None
L
Leo Chen 已提交
3850
            if in_dygraph_mode():
3851 3852 3853 3854 3855 3856 3857 3858 3859 3860
                new_p = EagerParamBase(shape=v.shape,
                                       dtype=v.dtype,
                                       type=v.type,
                                       lod_level=v.lod_level,
                                       stop_gradient=p.stop_gradient,
                                       trainable=p.trainable,
                                       optimize_attr=p.optimize_attr,
                                       regularizer=p.regularizer,
                                       error_clip=p.error_clip,
                                       name=v.name)
3861
            else:
J
Jiabin Yang 已提交
3862
                if _in_legacy_dygraph():
3863 3864 3865 3866 3867 3868 3869 3870 3871 3872
                    new_p = ParamBase(shape=v.shape,
                                      dtype=v.dtype,
                                      type=v.type,
                                      lod_level=v.lod_level,
                                      stop_gradient=p.stop_gradient,
                                      trainable=p.trainable,
                                      optimize_attr=p.optimize_attr,
                                      regularizer=p.regularizer,
                                      error_clip=p.error_clip,
                                      name=v.name)
J
Jiabin Yang 已提交
3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886
                else:
                    new_p = Parameter(
                        block=self,
                        shape=v.shape,
                        dtype=v.dtype,
                        type=v.type,
                        lod_level=v.lod_level
                        if v.type == core.VarDesc.VarType.LOD_TENSOR else None,
                        stop_gradient=p.stop_gradient,
                        trainable=p.trainable,
                        optimize_attr=p.optimize_attr,
                        regularizer=p.regularizer,
                        error_clip=p.error_clip,
                        name=v.name)
3887 3888
            self.vars[new_p.name] = new_p

3889
    def _clone_variable(self, var, force_persistable=True):
3890 3891
        """
        Clone a variable into current block.
3892

3893 3894
        Args:
            var: the variable to be cloned.
3895 3896 3897
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
3898 3899

        Returns:
3900
            Variable: the new  variable cloned from 'var' in current block.
3901 3902
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
3903 3904 3905
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
3906 3907 3908
            ret_var = self.create_var(name=var.name,
                                      persistable=var.persistable,
                                      type=var.type)
T
tangwei12 已提交
3909
        elif var.type == core.VarDesc.VarType.RAW:
3910 3911 3912
            ret_var = self.create_var(name=var.name,
                                      persistable=var.persistable,
                                      type=var.type)
T
typhoonzero 已提交
3913 3914 3915 3916 3917 3918
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
3919
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
3920 3921
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
3922 3923 3924 3925 3926 3927 3928
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
3929
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
3930 3931
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
3932
        return ret_var
3933

Y
Yu Yang 已提交
3934

3935 3936 3937 3938
# NOTE(zjl): you should be careful that after you call this method,
# some Python Variable and all Python Operators should not be used
# again. Because all Python Variables and all Python Operators are
# re-constructed inside this method. The underlying VarDesc(OpDesc)
3939
# of some old Python Variables(all old Python Operators) may have
3940
# been destructed.
3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956
def _apply_pass(main_program,
                startup_program,
                pass_name,
                pass_attrs={},
                pass_attr_types={}):
    assert isinstance(pass_attrs, dict), "pass_attrs must be dict"
    assert isinstance(pass_attr_types, dict), "pass_attr_types must be dict"
    tmp_main_program = core.ProgramDesc(main_program.desc)
    tmp_startup_program = core.ProgramDesc(startup_program.desc)
    attrs = core.apply_pass(tmp_main_program, tmp_startup_program, pass_name,
                            pass_attrs, pass_attr_types)
    main_program._rebuild_from_desc(tmp_main_program)
    startup_program._rebuild_from_desc(tmp_startup_program)
    return attrs


3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node,
                          core.Node), 'node must be the instance of core.Node.'
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

4052
    def remove_input_by_id(self, node_id):
4053 4054 4055 4056 4057 4058
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
4059
        self.node.remove_input(node_id)
4060

4061
    def remove_input(self, node):
4062 4063 4064 4065
        """
        Remove a node from inputs.

        Args:
4066
            node(IrNode): the node being removed.
4067
        """
4068
        self.node.remove_input(node.node)
4069

4070
    def append_input(self, node):
4071 4072 4073 4074
        """
        Append a node in inputs.

        Args:
4075
            node(IrNode): the node being appended.
4076
        """
4077
        self.node.append_input(node.node)
4078 4079 4080 4081 4082 4083 4084 4085

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

4086
    def remove_output_by_id(self, node_id):
4087 4088 4089 4090 4091 4092
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
4093
        self.node.remove_output(node_id)
4094

4095
    def remove_output(self, node):
4096 4097 4098 4099
        """
        Remove a node from outputs.

        Args:
4100
            node(IrNode): the node being removed.
4101
        """
4102
        self.node.remove_output(node.node)
4103

4104
    def append_output(self, node):
4105 4106 4107 4108
        """
        Append a node in outputs.

        Args:
4109
            node(IrNode): the node being appended.
4110
        """
4111
        self.node.append_output(node.node)
4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_var(), \
            'node must be the instance of core.Node and it must be a variable node.'
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
4159
            "The node variable description can not be None."
4160 4161 4162 4163 4164 4165 4166 4167 4168 4169
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
4170
            "The node variable description can not be None."
4171 4172
        return self.node.var().persistable()

4173 4174 4175 4176 4177 4178 4179 4180
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
4181
            "The node variable description can not be None."
4182 4183 4184 4185 4186 4187 4188 4189 4190 4191
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
4192
            "The node variable description can not be None."
4193 4194 4195 4196 4197 4198 4199 4200 4201 4202
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
4203
            "The node variable description can not be None."
4204 4205
        return self.node.var().shape()

4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_op(), \
            'node must be the instance of core.Node and it must be a operator node.'
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4253
            "The node operator description can not be None."
4254 4255
        self.node.op()._rename_input(old_input_name, new_input_name)

4256 4257 4258 4259 4260 4261 4262 4263 4264
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4265
            "The node operator description can not be None."
4266 4267
        self.node.op()._rename_output(old_output_name, new_output_name)

4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4279
            "The node operator description can not be None."
4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4293
            "The node operator description can not be None."
4294 4295 4296 4297 4298 4299 4300 4301 4302 4303
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4304
            "The node operator description can not be None."
4305 4306
        return self.node.op().set_type(new_type)

4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4322
            "The node operator description can not be None."
4323 4324 4325 4326
        desc = self.node.op()
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and \
4327
                all(isinstance(v, Block) for v in val):
4328 4329
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
4330
                isinstance(val, core.ProgramDesc):
4331 4332 4333 4334
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

4335 4336 4337 4338 4339 4340 4341 4342
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4343
            "The node operator description can not be None."
4344 4345 4346 4347 4348 4349 4350 4351 4352 4353
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4354
            "The node operator description can not be None."
4355 4356
        return self.node.op().output_arg_names()

4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


4378 4379
class IrGraph(object):
    """
4380
    Python IrGraph. Beneath it is a core.Graph, which is used for
4381
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
4382 4383
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
4384 4385 4386 4387
    """

    def __init__(self, graph, for_test=False):
        """
4388 4389
        Construct an IrGraph using core.Graph.

4390 4391 4392 4393 4394 4395 4396 4397 4398
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

4399 4400 4401 4402
    def clone(self):
        """
        Create a new and duplicated IrGraph.

4403 4404 4405
        Warns:
            The method only clones the graph structure, not its attributes.

4406 4407 4408
        Returns:
            IrGraph: A new and duplicated graph.
        """
4409
        g = self.graph.clone()
4410 4411
        return IrGraph(g, self._for_test)

4412
    def is_test(self):
4413 4414 4415
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
4416 4417
        return self._for_test

W
WangZhen 已提交
4418
    def all_nodes(self):
4419 4420 4421
        """
        Return all nodes included in the graph as a set.
        """
4422
        return {IrNode(node) for node in self.graph.nodes()}
4423

4424
    def all_var_nodes(self):
4425 4426 4427
        """
        Return all variable nodes included in the graph as a set.
        """
4428
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
4429

4430
    def all_persistable_nodes(self):
4431 4432 4433
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
4434 4435 4436 4437 4438
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
4439
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
4440

4441
    def all_op_nodes(self):
4442 4443 4444
        """
        Return all operator nodes included in the graph as a set.
        """
4445
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
4446

4447 4448 4449 4450 4451 4452
    def all_sub_graphs(self, for_test=False):
        """
        Return all sub_graphs included in the main graph as a set.
        """

        return [
4453
            IrGraph(self.graph.get_sub_graph(i), for_test=for_test)
4454 4455 4456 4457 4458 4459 4460 4461 4462
            for i in range(self.graph.sub_graph_size())
        ]

    def get_sub_graph(self, i, for_test=False):
        """
        Return i-th sub_graph in the main graph.
        """
        return IrGraph(self.graph.get_sub_graph(i), for_test=for_test)

4463
    def create_persistable_node(self, name, var_type, shape, var_dtype):
4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
4475
            IrVarNode: the created persistable variable node.
4476
        """
4477 4478 4479 4480 4481
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
4482
        return IrVarNode(self.graph.create_var_node(var_desc))
4483 4484

    def create_var_node(self, name, var_type, shape, var_dtype):
4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
4496
            IrVarNode: the created variable node.
4497 4498
        """

4499 4500 4501 4502
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
4503
        return IrVarNode(self.graph.create_var_node(var_desc))
4504

4505 4506 4507 4508 4509 4510
    def create_control_dep_var(self):
        """
        create a control var
        """
        return IrVarNode(self.graph.create_control_dep_var())

4511
    def create_var_node_from_desc(self, var_desc):
4512 4513 4514 4515 4516 4517 4518 4519
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
4520
            IrVarNode: the created variable node.
4521
        """
4522
        return IrVarNode(self.graph.create_var_node(var_desc))
4523 4524

    def create_op_node(self, op_type, attrs, inputs, outputs):
4525 4526 4527 4528 4529 4530 4531
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
T
tianshuo78520a 已提交
4532
            outputs(dict): the outputs of the operator node.
4533 4534

        Returns:
4535
            IrOpNode: the created operator node.
4536
        """
4537 4538
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
4539
        for attr, value in six.iteritems(attrs):
4540
            self._update_desc_attr(op_desc, attr, value)
4541
        for input_name, var_nodes in six.iteritems(inputs):
4542 4543 4544 4545
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
4546
        for output_name, var_nodes in six.iteritems(outputs):
4547 4548 4549 4550
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
4551
        return IrOpNode(self.graph.create_op_node(op_desc))
4552 4553

    def create_op_node_from_desc(self, op_desc):
4554 4555 4556 4557 4558 4559 4560
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
4561
            IrOpNode: the created operator node.
4562
        """
4563
        return IrOpNode(self.graph.create_op_node(op_desc))
4564 4565

    def update_input_link(self, old_input_node, new_input_node, op_node):
4566 4567 4568 4569
        """
        Update the input's link of a operator node.

        Args:
4570 4571 4572
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
4573
        """
4574
        assert old_input_node.node in self.graph.nodes() and new_input_node.node in \
T
tangwei12 已提交
4575
            self.graph.nodes() and op_node.node in self.graph.nodes(), \
4576
            'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
4577 4578 4579 4580
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
4581
        op_node.rename_input(old_input_node.name(), new_input_node.name())
4582

4583 4584 4585 4586 4587 4588 4589 4590 4591 4592
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
        assert old_output_node.node in self.graph.nodes() and new_output_node.node in \
T
tangwei12 已提交
4593
            self.graph.nodes() and op_node.node in self.graph.nodes(), \
4594
            'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
4595 4596 4597 4598 4599 4600
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

4601
    def link_to(self, node_in, node_out):
4602 4603 4604 4605
        """
        Connect two nodes.

        Args:
4606 4607
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
4608
        """
4609 4610 4611 4612
        assert node_in.node in self.graph.nodes(), (
            'node_in(%s) must be in the graph nodes.' % node_in.node.name())
        assert node_out.node in self.graph.nodes(), (
            'node_out(%s) must be in the graph nodes.' % node_out.node.name())
4613 4614
        node_in.append_output(node_out)
        node_out.append_input(node_in)
4615 4616

    def safe_remove_nodes(self, remove_nodes):
4617 4618 4619 4620 4621 4622 4623
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
4624
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
4625 4626 4627 4628
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
4629 4630
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
4631

Z
Zhen Wang 已提交
4632 4633 4634 4635 4636 4637 4638 4639
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
4640
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
4641 4642 4643 4644
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
4645
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
4646 4647 4648
                        ]
                    else:
                        var_nodes[each_var_name].append(
4649 4650
                            self._find_node_by_name(node.outputs,
                                                    each_var_name))
Z
Zhen Wang 已提交
4651 4652
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
4653
    def has_circle(self):
4654 4655 4656 4657 4658 4659
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
4660 4661 4662
        return core.has_circle(self.graph)

    def graph_num(self):
4663 4664 4665 4666 4667 4668
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
4669 4670 4671
        return core.graph_num(self.graph)

    def topology_sort(self):
4672 4673 4674
        """
        Perform the topology sort operation on the graph.

T
tianshuo78520a 已提交
4675
        Notes: the `graph` can not contain a circle.
4676 4677

        Returns:
Z
Zhen Wang 已提交
4678
            list(IrNode): nodes in topology order.
4679
        """
4680
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
4681
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
4682 4683

    def build_adjacency_list(self):
4684 4685 4686 4687
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
4688
            dict{IrNode: set(IrNode)}: the adjacency list.
4689
        """
4690 4691 4692 4693 4694
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
4695

4696 4697 4698 4699 4700 4701 4702 4703
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
4704
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
4705 4706 4707 4708 4709
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

4710 4711
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
4712 4713 4714
            exited_code = subprocess.call('dot -Tpdf ' + dot_file_path +
                                          ' -o ' + pdf_save_path,
                                          shell=True)
4715 4716 4717 4718 4719
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

4720
        remove_ctr_vars = set()
4721
        if remove_ctr_var:
4722
            for node in self.all_var_nodes():
4723 4724 4725
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
4726 4727
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

4728 4729
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
4730 4731 4732 4733 4734 4735
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
4736 4737 4738 4739
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
4740 4741
        if not os.path.exists(save_path):
            os.makedirs(save_path)
4742 4743 4744 4745 4746 4747 4748
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
4749 4750 4751
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
4752
        WARN: When the graph includes backward operator nodes, the
4753 4754 4755 4756 4757 4758
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
4759
        convert_pass = core.get_pass('graph_to_program_pass')
4760 4761
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
4762 4763 4764 4765
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

4766 4767 4768 4769 4770 4771 4772 4773
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
4774 4775
        assert target_node is not None, (
            "Cannot find the target node (%s)in the giving set." % node_name)
4776 4777
        return target_node

4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
4794
class Program(object):
D
dzhwinter 已提交
4795
    """
4796
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
4797
    control flow op like conditional_block, while :ref:`api_paddle_fluid_layers_While` is included,
J
Jiabin Yang 已提交
4798
    it will contain nested block.
4799

J
Jiabin Yang 已提交
4800 4801 4802
    Please reference the
    `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_
    for details.
D
dzhwinter 已提交
4803

J
Jiabin Yang 已提交
4804
    A set of Program usually contains startup program and main program.
J
Jiabin Yang 已提交
4805
    A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main
J
Jiabin Yang 已提交
4806 4807 4808 4809 4810 4811 4812
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

J
Jiabin Yang 已提交
4813
    **Notes**:
4814 4815 4816
        **we have** :ref:`api_paddle_fluid_framework_default_startup_program` **and** :ref:`api_paddle_fluid_framework_default_main_program`
        **by default, a pair of them will shared the parameters. The** :ref:`api_paddle_fluid_framework_default_startup_program` **only run once to initialize parameters,**
        :ref:`api_paddle_fluid_framework_default_main_program` **run in every mini batch and adjust the weights.**
D
dzhwinter 已提交
4817 4818

    Returns:
J
Jiabin Yang 已提交
4819
        Program: An empty Program.
D
dzhwinter 已提交
4820 4821

    Examples:
4822 4823
        .. code-block:: python

4824 4825 4826 4827
            import paddle
            import paddle.static as static

            paddle.enable_static()
4828

4829 4830 4831 4832 4833
            main_program = static.Program()
            startup_program = static.Program()
            with static.program_guard(main_program=main_program, startup_program=startup_program):
                x = static.data(name="x", shape=[-1, 784], dtype='float32')
                y = static.data(name="y", shape=[-1, 1], dtype='int32')
4834
                z = static.nn.fc(name="fc", x=x, size=10, activation="relu")
4835 4836 4837

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
4838 4839 4840

    """

4841 4842
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
4843 4844
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
4845 4846
        global global_prog_seed
        self._seed = global_prog_seed
Y
yuyang18 已提交
4847
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
4848
        self.__op_role_var = []
T
tangwei12 已提交
4849

4850 4851
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
4852
        self._is_distributed = False
4853
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
4854
        self._is_chief = False
4855 4856 4857
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
4858
        self._endpoints = []
4859 4860 4861
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
4862
        self._trainers_endpoints = []
4863
        # the distributed lookup table names
T
tangwei12 已提交
4864
        self._distributed_lookup_table = None
4865 4866 4867

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
4868 4869
        self._use_lamb = False

4870 4871 4872
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
4873

4874 4875 4876
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
4877
        self._program_config = None
4878

H
hutuxian 已提交
4879 4880 4881
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

4882 4883 4884
        # assigned if this program has been parsed by a heter pipeline parameter server optimizer
        self._heter_pipeline_opt = None

4885 4886 4887
        # appending gradients times
        self._appending_grad_times = 0

4888 4889 4890 4891
        # identifier for auto checkpoint
        self._auto_checkpoint_name = unique_name.generate(
            "__auto_checkpoint_program__")

4892 4893
        # compiled program, i.e. Graph
        self._graph = None
4894 4895
        # to tag whether is startup_program
        self._is_start_up_program_ = False
4896

4897
    def _find_var_class_kwargs(self, new_desc):
4898 4899 4900 4901 4902 4903 4904 4905
        # NOTE: not all variables support shape/dtype/lod_level methods.
        # For example: RAW, STEP_SCOPES, etc.
        def get_var_desc_attr_or_none(var_desc, attr_name, allowed_types):
            if var_desc.type() in allowed_types:
                return getattr(var_desc, attr_name)()
            else:
                return None

4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919
        old_desc = self.desc
        all_new_vars = []
        block_num = new_desc.num_blocks()
        for idx in range(block_num):
            new_block_desc = new_desc.block(idx)
            all_new_vars.append([])
            block_new_vars = all_new_vars[-1]
            for new_var_desc in new_block_desc.all_vars():
                if self.blocks[idx].has_var(new_var_desc.name()):
                    old_var = self.blocks[idx].var(new_var_desc.name())
                else:
                    old_var = None

                kwargs = {
4920 4921 4922 4923 4924 4925
                    'type':
                    new_var_desc.type(),
                    'name':
                    new_var_desc.name(),
                    'shape':
                    get_var_desc_attr_or_none(new_var_desc, "shape", [
4926 4927 4928 4929
                        core.VarDesc.VarType.LOD_TENSOR,
                        core.VarDesc.VarType.SELECTED_ROWS,
                        core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                    ]),
4930 4931
                    'dtype':
                    get_var_desc_attr_or_none(new_var_desc, "dtype", [
4932 4933 4934 4935 4936 4937 4938 4939 4940
                        core.VarDesc.VarType.LOD_TENSOR,
                        core.VarDesc.VarType.SELECTED_ROWS,
                        core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                    ]),
                    'lod_level':
                    get_var_desc_attr_or_none(new_var_desc, "lod_level", [
                        core.VarDesc.VarType.LOD_TENSOR,
                        core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                    ]),
4941 4942 4943 4944 4945 4946 4947 4948 4949 4950
                    'error_clip':
                    old_var.error_clip if old_var is not None else None,
                    'stop_gradient':
                    old_var.stop_gradient if old_var is not None else False,
                    'is_data':
                    old_var.is_data if old_var is not None else False,
                    'need_check_feed':
                    new_var_desc.need_check_feed(),
                    'belong_to_optimizer':
                    old_var.belong_to_optimizer
4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980
                    if old_var is not None else False,
                }

                if isinstance(old_var, Parameter):
                    kwargs.update({
                        'trainable': old_var.trainable,
                        'optimize_attr': old_var.optimize_attr,
                        'regularizer': old_var.regularizer,
                        'do_model_average': old_var.do_model_average,
                        'need_clip': old_var.need_clip,
                        'is_distributed': old_var.is_distributed,
                        'is_parameter': old_var.is_parameter,
                    })
                    block_new_vars.append({
                        'class': Parameter,
                        'kwargs': copy.deepcopy(kwargs),
                    })
                else:
                    kwargs['persistable'] = new_var_desc.persistable()
                    block_new_vars.append({
                        'class': Variable,
                        'kwargs': copy.deepcopy(kwargs),
                    })

        return all_new_vars

    def _rebuild_from_desc(self, desc):
        all_new_vars = self._find_var_class_kwargs(desc)
        block_num = desc.num_blocks()
        assert block_num == len(all_new_vars)
4981
        assert block_num == self.desc.num_blocks()
4982 4983

        # clear old blocks and desc
4984 4985 4986 4987 4988 4989 4990 4991 4992
        for idx in range(block_num):
            block = self.blocks[idx]
            block.vars.clear()
            block.ops.clear()

        for idx in range(block_num):
            block_desc = self.blocks[idx].desc
            new_block_desc = desc.block(idx)
            block_desc._move_from(new_block_desc)
4993

4994
        del desc
4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013

        # add new vars first
        for idx in range(block_num):
            block = self.blocks[idx]
            for new_var in all_new_vars[idx]:
                clazz = new_var['class']
                kwargs = new_var['kwargs']
                kwargs['block'] = block
                clazz(**kwargs)

        # then append op
        for idx in range(block_num):
            block = self.blocks[idx]
            block_desc = self.desc.block(idx)
            for op_idx in range(block_desc.op_size()):
                op_desc = block_desc.op(op_idx)
                op = Operator(block=block, desc=op_desc)
                block.ops.append(op)

5014 5015 5016 5017 5018 5019 5020 5021 5022 5023
    def global_seed(self, seed=0):
        """
        Set global seed for Program

        Returns:
            None.

        Examples:
            .. code-block:: python

5024 5025
                import paddle
                import paddle.static as static
5026

5027 5028 5029
                paddle.enable_static()

                prog = static.default_main_program()
5030 5031 5032 5033 5034
                print(prog.random_seed)
                ## 0
                ## the default random seed is 0

                prog.global_seed(102)
5035
                prog1 = static.default_main_program()
5036 5037 5038 5039 5040 5041 5042 5043
                print(prog1.random_seed)
                ## 102
                ## the random seed is 102
        """
        global global_prog_seed
        global_prog_seed = seed
        self._seed = global_prog_seed

Y
yuyang18 已提交
5044
    @property
5045
    def _op_role(self):
Y
yuyang18 已提交
5046 5047 5048 5049 5050 5051 5052 5053
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
5054
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
5055 5056 5057 5058
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
5059 5060
        return self._current_role

5061 5062
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
5063 5064 5065
        self._current_role = role

    @property
5066
    def _op_role_var(self):
Y
yuyang18 已提交
5067
        """
5068
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
5069

5070
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
5071 5072 5073

        Notes: This is a very low-level API. Users should not use it directly.
        """
5074
        return self.__op_role_var
Y
yuyang18 已提交
5075

5076
    @signature_safe_contextmanager
5077 5078 5079 5080 5081
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
5082 5083 5084 5085
        try:
            yield
        finally:
            self._current_role = tmp_role
5086

S
rename  
sneaxiy 已提交
5087
    @signature_safe_contextmanager
W
Wu Yi 已提交
5088
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
5089 5090 5091 5092 5093 5094 5095
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
5096
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
5097 5098 5099

        Examples:

5100
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
5101
            >>> p, g = backward(...)
W
Wu Yi 已提交
5102
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
5103 5104
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
5105
        tmp_role = self._current_role
5106
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
5107

Y
yuyang18 已提交
5108 5109
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
5110
        self.__op_role_var = [
5111 5112 5113
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
5114 5115 5116 5117 5118
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
Y
Yu Yang 已提交
5119

S
rename  
sneaxiy 已提交
5120
    @signature_safe_contextmanager
X
Xin Pan 已提交
5121
    def _lr_schedule_guard(self, is_with_opt=False):
5122 5123 5124 5125 5126 5127 5128
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
5129 5130 5131 5132
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
5133 5134 5135

        Examples:

5136
            >>> import paddle.fluid as fluid
5137 5138 5139 5140
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
5141 5142

        tmp_role = self._current_role
5143
        tmp_var = self.__op_role_var
5144

5145 5146
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
5147 5148
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
5149
        # TODO(typhoonzero): how to set target learning rate var
5150
        self.__op_role_var = []
5151 5152 5153 5154 5155
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
5156

5157
    def __str__(self):
Y
yuyang18 已提交
5158 5159 5160 5161 5162 5163 5164 5165 5166
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Program.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Program string.

        Examples:
            .. code-block:: python

5187 5188
            import paddle
            import paddle.static as static
5189

5190 5191 5192
            paddle.enable_static()

            cur_program = static.Program()
5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_program._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
5204
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
5205 5206 5207 5208
            type(skip_op_callstack))
        program_str = ""
        for block in self.blocks:
            program_str += block._to_readable_code(skip_op_callstack)
5209
            program_str += '\n'
5210
        return program_str
Y
Yang Yang(Tony) 已提交
5211

F
fengjiayi 已提交
5212 5213 5214
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
5215

J
Jiabin Yang 已提交
5216 5217 5218
        Args:

            throw_on_error (bool): raise Value error when any of required fields is not set.
F
fengjiayi 已提交
5219

J
Jiabin Yang 已提交
5220
            with_details (bool): True if more details about variables and parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need to print.
Y
yuyang18 已提交
5221

H
haowang101779990 已提交
5222
        Returns:
J
Jiabin Yang 已提交
5223
            str: The debug string describe current Program.
Y
yuyang18 已提交
5224 5225

        Raises:
J
Jiabin Yang 已提交
5226
            ValueError: If any of required fields is not set and throw_on_error is True.
F
fengjiayi 已提交
5227

5228 5229 5230
        Examples:
            .. code-block:: python

5231 5232 5233 5234
                import paddle
                import paddle.static as static

                paddle.enable_static()
5235

5236 5237 5238
                prog = static.default_main_program()
                x = static.data(name="X", shape=[2,3], dtype="float32")
                pred = static.nn.fc(x, size=3)
5239
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
5240
                prog_string_with_details = prog.to_string(throw_on_error=False, with_details=True)
T
tianshuo78520a 已提交
5241
                print("program string without detail: {}".format(prog_string))
5242
                print("program string with detail: {}".format(prog_string_with_details))
F
fengjiayi 已提交
5243
        """
5244 5245 5246 5247 5248 5249 5250 5251 5252
        assert isinstance(
            throw_on_error, bool
        ), "The type of throw_on_error parameter is wrong, expected bool, but received {}.".format(
            type(throw_on_error))
        assert isinstance(
            with_details, bool
        ), "The type of with_details parameter is wrong, expected bool, but received {}.".format(
            type(with_details))

F
fengjiayi 已提交
5253 5254 5255 5256 5257 5258
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
5259 5260
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
5261 5262
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
5263

W
Wu Yi 已提交
5264
    def _get_desc(self):
Y
yuyang18 已提交
5265 5266 5267 5268 5269 5270 5271
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
5272 5273
        return self.desc

X
version  
Xin Pan 已提交
5274 5275 5276
    def _version(self):
        return self.desc._version()

5277
    def clone(self, for_test=False):
Y
yuyang18 已提交
5278
        """
5279 5280 5281 5282
        .. note:::
            1. :code:`Program.clone()` method DOES NOT clone :ref:`api_paddle_io_DataLoader` . 
            2. Recommend you to use :code:`clone` before using :code:`Opimizer.minimize` . 
            3. This API has no effect in Dygraph Mode.
Y
yuyang18 已提交
5283

5284
        Create a new Program with forward content of original one when ``for_test=True``.
5285
        Create a new Program as same as the original one when ``for_test=False``.
5286

5287
        Some operators, e.g., :ref:`api_paddle_fluid_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
5288 5289 5290
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
5291

5292 5293
        * Set for_test to False when you want to clone the program for training.
        * Set for_test to True when you want to clone the program for testing.
5294 5295
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
J
Jiabin Yang 已提交
5296
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`.
Y
yuyang18 已提交
5297

J
Jiabin Yang 已提交
5298
        For Example:
5299
          ::
L
Luo Tao 已提交
5300

5301 5302 5303 5304 5305 5306
            import paddle
            import paddle.static as static

            paddle.enable_static()

            img = static.data(name='image', shape=[None, 784])
5307
            pred = static.nn.fc(x=img, size=10, actvation='relu')
5308
            loss = paddle.mean(pred)
5309
            # Here we use clone before Momentum
5310 5311
            test_program = static.default_main_program().clone(for_test=True)
            optimizer = paddle.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
5312
            optimizer.minimize(loss)
5313

J
Jiabin Yang 已提交
5314
        Args:
5315

5316 5317
            for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True`
                and prune the backward and optimize part of the program. The default value is :code:`False` .
5318

J
Jiabin Yang 已提交
5319
        Returns:
5320
            Program: A new Program with forward content of original one when ``for_test=True``.  A new Program as same as the original one when ``for_test=False``
5321

Y
yuyang18 已提交
5322 5323 5324

        Examples:

5325 5326 5327 5328 5329 5330 5331
            .. note::
                The Program's order maybe different after :code:`clone` and
                this will not affect your training or testing progress. In the following
                example we give you an simple method :code:`print_prog(program)` to
                print Program Descs inorder to make sure you have same print result
                after :code:`clone`:

5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347
            .. code-block:: python

                import six

                def print_prog(prog):
                    for name, value in sorted(six.iteritems(prog.block(0).vars)):
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
                        for key, value in sorted(six.iteritems(op.all_attrs())):
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


5348
            1. To clone a test program, the sample code is:
5349 5350 5351
                .. code-block:: python

                    import six
5352 5353 5354 5355 5356 5357
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

5370 5371
                    train_program = static.Program()
                    startup_program = static.Program()
J
Jiabin Yang 已提交
5372 5373 5374

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
5375 5376 5377
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            img = static.data(name='image', shape=[None, 784])
5378
                            hidden = static.nn.fc(x=img, size=200, activation='relu')
5379 5380
                            hidden = F.dropout(hidden, p=0.5)
                            loss = F.cross_entropy(
5381
                                input=static.nn.fc(x=hidden, size=10, activation='softmax'),
5382 5383
                                label=static.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = paddle.mean(loss)
5384
                            test_program = train_program.clone(for_test=True)
5385
                    print_prog(test_program)
J
Jiabin Yang 已提交
5386 5387 5388 5389

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

5390
                    # In Paddle we will share weights by using the same Tensor name. In train and test program
J
Jiabin Yang 已提交
5391 5392 5393 5394
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

5395 5396 5397
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
5398 5399 5400
                            sgd.minimize(avg_loss)


5401
            2. The clone method can be avoid if you create program for training and program for testing individually.
5402 5403 5404
                .. code-block:: python

                    import six
5405 5406 5407 5408 5409 5410
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
5422

5423
                    def network():
5424
                        img = static.data(name='image', shape=[None, 784])
5425
                        hidden = static.nn.fc(x=img, size=200, activation='relu')
5426 5427
                        hidden = F.dropout(hidden, p=0.5)
                        loss = F.cross_entropy(
5428
                            input=static.nn.fc(x=hidden, size=10, activation='softmax'),
5429 5430
                            label=static.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = paddle.mean(loss)
5431 5432
                        return avg_loss

5433 5434 5435 5436 5437
                    train_program_2 = static.Program()
                    startup_program_2 = static.Program()
                    test_program_2 = static.Program()
                    with static.program_guard(train_program_2, startup_program_2):
                        with utils.unique_name.guard():
5438
                            avg_loss = network()
5439
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
5440
                            sgd.minimize(avg_loss)
5441
                    # the test startup program is not used.
5442 5443
                    with static.program_guard(test_program_2, startup_program_2):
                        with utils.unique_name.guard():
5444 5445
                            avg_loss = network()
                    print_prog(test_program_2)
5446

5447
            The two code snippets above will generate and print same programs.
5448
        """
5449

T
tangwei12 已提交
5450
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
5451 5452 5453
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

5454
        pruned_origin_block_id_map = None
5455
        if for_test:
5456 5457 5458 5459 5460 5461 5462 5463 5464
            forward_prog = Program()
            forward_prog.desc, pruned_origin_block_id_map = core.prune_backward(
                self.desc)
            forward_prog.blocks = [
                Block(forward_prog, i)
                for i in six.moves.range(forward_prog.desc.num_blocks())
            ]
            forward_prog._sync_with_cpp()
            p = forward_prog._inference_optimize(prune_read_op=False)
5465
        else:
5466
            p = Program()
G
gongweibao 已提交
5467 5468
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
5469
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
5470 5471 5472
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
5473 5474

            p._current_role = self._current_role
5475
            p.__op_role_var = self.__op_role_var
5476
            p._appending_grad_times = self._appending_grad_times
5477 5478
            if hasattr(self, 'lr_sheduler'):
                p.lr_sheduler = self.lr_sheduler
G
gongweibao 已提交
5479

T
tangwei12 已提交
5480
            # NOTE(zhiqiu): we sync the cloned program, to update its program by
5481
            # its desc.
W
Wu Yi 已提交
5482
            p._sync_with_cpp()
5483

W
Wu Yi 已提交
5484
        p._copy_param_info_from(self)
5485
        p._copy_data_info_from(self, pruned_origin_block_id_map)
5486
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
5487
        return p
5488

5489
    def _prune(self, targets):
Y
yuyang18 已提交
5490 5491 5492 5493 5494 5495 5496 5497
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
5498
            targets(list|Variable|Operator): A list of variables, operators, or variable names
Y
yuyang18 已提交
5499 5500 5501 5502
                need to be pruned

        Returns:
            Program:  A new, pruned program.
5503
        """
5504
        return self._prune_with_input([], targets)
5505 5506

    def _prune_with_input(self, feeded_var_names, targets):
Y
yuyang18 已提交
5507
        """
5508 5509 5510 5511 5512 5513 5514 5515 5516 5517
        Prune operators and variables which are not needed to generate
        :code:`targets`. Prune operators and variables which are needed 
        to generate feeded_var 

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            feeded_var_names(list|str): A list of variable names from where
                pruning start. If it is set as [], this API works just like _prune()
5518
            targets(list|Variable|Operator): A list of variables, operators, or variable names
5519 5520 5521 5522 5523 5524
                need to be pruned

        Returns:
            Program:  A new, pruned program.
        """

T
tangwei12 已提交
5525
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
5526 5527 5528
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

5529 5530
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
5531 5532
        if not isinstance(targets, list):
            targets = [targets]
5533 5534 5535

        for var in feeded_var_names:
            if not isinstance(var, six.string_types):
5536 5537 5538
                raise ValueError(
                    "All feeded_var_names of Program._prune_with_input() can only be "
                    "str, but received %s." % type(var))
5539

5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555
        # find out all variables that can be generated or updated with given feed
        generatable_vars = set()

        for idx, op in enumerate(self.global_block().ops):
            runnable_op = True
            for name in op.input_arg_names:
                if not self.global_block().has_var(name):
                    continue
                if self.global_block().var(name).persistable:
                    continue
                if name not in generatable_vars.union(feeded_var_names):
                    runnable_op = False
                    break
            if runnable_op:
                generatable_vars = generatable_vars.union(op.output_arg_names)

5556 5557 5558 5559
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
5560 5561 5562
                    name = t.name
                elif isinstance(t, six.string_types):
                    name = str(t)
5563
                else:
5564 5565 5566
                    raise ValueError(
                        "All targets of Program._prune_with_input() can only be "
                        "Variable or Operator, but received %s." % type(t))
5567 5568 5569 5570 5571 5572

                # NOTEZ(zhiqiu): For variable to be fed in fetch_list, there two cases:
                # (1) the variable is leaf, it has no op that generates it;
                # (2) the variable is not leaf, and we need to prune the op that generates it.
                # In both cases, wo can just skip target_op of that it.
                if name in feeded_var_names:
5573 5574 5575
                    # however if the var is also updated by a runnable op, will shall keep it
                    if name not in generatable_vars:
                        continue
5576

5577 5578 5579 5580 5581 5582 5583 5584 5585
                # After transpiler processing, the op that output this
                # variable maybe has been changed, so t.op is not reliable
                # and we need to find the current op that generate this
                # variable here.
                target_op = None
                global_block = self.global_block()
                for idx, op in enumerate(global_block.ops):
                    if name in op.output_arg_names:
                        # NOTE(zhiqiu): Find op that generate target name.
T
tangwei12 已提交
5586
                        # Skip optimize op except for optimize op in targets,
5587 5588 5589 5590 5591
                        # since optimize op generates parameters.
                        if op._is_optimize_op() and op not in targets:
                            continue
                        else:
                            target_op = op
5592

5593
                if target_op is not None:
5594 5595 5596
                    targets_idx.append([target_op.block.idx, target_op.idx])
            else:
                targets_idx.append([t.block.idx, t.idx])
5597

5598
        res = Program()
5599 5600
        res.desc, pruned_origin_block_id_map = core.prune(
            self.desc, set(feeded_var_names), targets_idx)
M
minqiyang 已提交
5601 5602 5603
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
5604
        res._sync_with_cpp()
5605 5606 5607 5608 5609

        res._copy_param_info_from(self)
        res._copy_data_info_from(self, pruned_origin_block_id_map)
        res._copy_dist_param_info_from(self)

5610 5611
        return res

X
Xin Pan 已提交
5612
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
5613
        """
F
fengjiayi 已提交
5614 5615 5616 5617 5618
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

5619
        3. change the :code:`is_test`
Y
yuyang18 已提交
5620 5621 5622
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

5623
        Args:
X
Xin Pan 已提交
5624 5625
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
5626

Y
yuyang18 已提交
5627 5628 5629 5630 5631 5632
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
5633
        res = Program()
5634
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
5635 5636 5637 5638

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
5639
        if prune_read_op:
5640 5641 5642 5643 5644 5645 5646 5647 5648
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
5649
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
5650 5651

        # change all `is_test` attributes to True
M
minqiyang 已提交
5652
        for i in six.moves.range(res.desc.num_blocks()):
5653
            block = res.desc.block(i)
M
minqiyang 已提交
5654
            for j in six.moves.range(block.op_size()):
5655 5656
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
5657
                    op._set_attr('is_test', True)
5658 5659 5660
                if op.type() == "batch_norm":
                    # Remove the output ReserveSpace of batch_norm if exists.
                    op.remove_output("ReserveSpace")
M
minqiyang 已提交
5661 5662 5663
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
5664
        res._sync_with_cpp()
5665 5666
        return res

5667
    def _remove_training_info(self, clip_extra=True):
5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691
        """
        This method will create a new program and do following adjustments on it:
        1. Remove all variable's `is_parameter` attribute if exist.

        2. Remove all variable's `stop_gradient` attribute if exist.

        Notes: This API is a very low level API.

        Returns:
            Program: The new program.
        """
        res = Program()
        res.desc = core.ProgramDesc(self.desc)

        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
        res._sync_with_cpp()

        for i in six.moves.range(res.desc.num_blocks()):
            block = res.desc.block(i)
            for var in block.all_vars():
                var.clear_is_parameter()
                var.clear_stop_gradient()
5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756
            if not clip_extra:
                continue
            for op_idx in range(0, block.op_size()):
                op = block.op(op_idx)
                if op.type() not in OpProtoHolder.instance().op_proto_map:
                    continue
                proto = OpProtoHolder.instance().get_op_proto(op.type())
                remove_input_list = []
                for name in op.input_names():
                    find = False
                    for input_proto in proto.inputs:
                        if input_proto.name != name:
                            continue
                        if input_proto.extra:
                            remove_input_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_input_list.append(name)
                for name in remove_input_list:
                    op.remove_input(name)

                remove_output_list = []
                for name in op.output_names():
                    find = False
                    for output_proto in proto.outputs:
                        if output_proto.name != name:
                            continue
                        if output_proto.extra:
                            remove_output_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_output_list.append(name)
                for name in remove_output_list:
                    op.remove_output(name)

                remove_attr_list = []
                op_quant_name = core.op_proto_and_checker_maker.kOpWithQuantAttrName(
                )
                quant = bool(op.attr(op_quant_name)
                             ) if op_quant_name in op.attr_names() else False
                quant_attrs = [
                    op_quant_name, "quantization_type", "skip_quant",
                    "activation_bits", "bit_length", "quantize_weight_bits",
                    "weight_quant_scale"
                ]
                for name in op.attr_names():
                    if quant:
                        if name in quant_attrs:
                            continue
                        if name.endswith("_threshold"):
                            continue
                    find = False
                    for attr_proto in proto.attrs:
                        if attr_proto.name != name:
                            continue
                        if attr_proto.extra:
                            remove_attr_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_attr_list.append(name)
                for name in remove_attr_list:
                    op.remove_attr(name)
5757 5758
        return res

5759 5760
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
5761
        """
5762 5763 5764
        .. note::
            1. All information about parameters will be lost after serialization; 
            2. This API has no effect in Dygraph mode.
Y
yuyang18 已提交
5765

5766 5767
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
5768

J
Jiabin Yang 已提交
5769
        Args:
Y
yuyang18 已提交
5770

J
Jiabin Yang 已提交
5771
            binary_str_type (str): the binary prootbuf string.
5772

J
Jiabin Yang 已提交
5773 5774
        Returns:
            Program: A deserialized Program.
5775 5776 5777 5778

        Examples:
            .. code-block:: python

5779 5780 5781 5782
                import paddle
                import paddle.static as static

                paddle.enable_static()
5783

5784 5785 5786 5787
                startup_prog = static.Program()
                main_prog = static.Program()
                with static.program_guard(startup_prog, main_prog):
                    x = static.data(name='X', shape=[1000, 784], dtype='float32')
5788

5789
                    y = static.data(name='Y', shape=[784, 100], dtype='float32')
5790

5791
                    z = paddle.matmul(x=x, y=y)
5792

5793 5794
                    binary_str = static.default_main_program().desc.serialize_to_string()
                    prog_restored = static.default_main_program().parse_from_string(binary_str)
5795

5796
                    print(static.default_main_program())
5797
                    print(prog_restored)
Y
yuyang18 已提交
5798
        """
5799 5800
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
5801
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
5802
        p._sync_with_cpp()
5803
        return p
Y
Yu Yang 已提交
5804

5805
    @staticmethod
5806
    def _construct_from_desc(desc):
5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
5822 5823
    @property
    def random_seed(self):
Y
yuyang18 已提交
5824
        """
J
Jiabin Yang 已提交
5825
        The default random seed for random operators in Program. ``0`` means get
Y
yuyang18 已提交
5826 5827
        the random seed from random device.

5828 5829
        .. note:: 
            It must be set before the operators have been added.
J
Jiabin Yang 已提交
5830 5831 5832

        Returns:
            int64: Random seed in current Program
5833

5834 5835 5836 5837

        Examples:
            .. code-block:: python

5838 5839 5840
                import paddle
                import paddle.static as static
                import paddle.nn.functional as F
5841

5842 5843 5844
                paddle.enable_static()

                prog = static.default_main_program()
5845
                random_seed = prog.random_seed
5846
                x_var = static.data(name="X", shape=[3,3], dtype="float32")
5847 5848 5849
                print(random_seed)
                ## 0
                ## the default random seed is 0
5850

5851
                # Here we need to set random seed before we use paddle.nn.functional.dropout
5852
                prog.random_seed = 1
5853
                z_var = F.dropout(x_var, 0.7)
5854

5855
                print(prog.random_seed)
5856 5857
                ## 1
                ## the random seed is change to 1
Y
yuyang18 已提交
5858
        """
D
dzhwinter 已提交
5859 5860
        return self._seed

Q
qiaolongfei 已提交
5861 5862
    @property
    def num_blocks(self):
Y
yuyang18 已提交
5863
        """
5864 5865
        The number of :ref:`api_guide_Block_en`  in this Program.

5866 5867
        .. note:: 
            This API has no effect in Dygraph mode.
J
Jiabin Yang 已提交
5868 5869 5870

        Returns:
            int(Platform-dependent size): num of :ref:`api_guide_Block_en`  in current Program
5871

5872 5873 5874 5875

        Examples:
            .. code-block:: python

5876 5877 5878 5879
                import paddle
                import paddle.static as static

                paddle.enable_static()
5880

5881
                prog = static.default_main_program()
5882 5883
                num_blocks = prog.num_blocks
                print(num_blocks)
5884

5885 5886
                # print result:
                # 1
Y
yuyang18 已提交
5887
        """
Q
qiaolongfei 已提交
5888 5889
        return self.desc.num_blocks()

D
dzhwinter 已提交
5890 5891 5892
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
5893 5894 5895
            raise ValueError(
                "Program.random_seed's input seed must be an integer, but received %s."
                % type(seed))
D
dzhwinter 已提交
5896 5897
        self._seed = seed

Y
Yu Yang 已提交
5898
    def __repr__(self):
5899
        return self.__str__()
5900

Y
Yu Yang 已提交
5901
    def global_block(self):
Y
yuyang18 已提交
5902
        """
5903 5904
        .. note::
            This API has no effect in Dygraph mode.
5905 5906 5907

        Get the first :ref:`api_guide_Block_en` of this Program.

J
Jiabin Yang 已提交
5908 5909
        Returns:
            :ref:`api_guide_Block_en`: The first :ref:`api_guide_Block_en`  of this Program.
5910

5911 5912 5913 5914

        Examples:
            .. code-block:: python

5915 5916 5917 5918
                import paddle
                import paddle.static as static

                paddle.enable_static()
5919

5920
                prog = static.default_main_program()
5921 5922
                gb_block = prog.global_block()
                print(gb_block)
5923

Y
yuyang18 已提交
5924
        """
Y
Yu Yang 已提交
5925 5926
        return self.blocks[0]

Q
Qiao Longfei 已提交
5927
    def block(self, index):
Y
yuyang18 已提交
5928
        """
5929 5930
        .. note::
            This API has no effect in Dygraph mode.
Y
yuyang18 已提交
5931

5932 5933
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

J
Jiabin Yang 已提交
5934 5935
        Args:
            index (int) - The index of  :ref:`api_guide_Block_en`  to get
5936

J
Jiabin Yang 已提交
5937 5938
        Returns:
            :ref:`api_guide_Block_en`: The :code:`index` block
5939 5940 5941 5942

        Examples:
            .. code-block:: python

5943 5944 5945 5946
                import paddle
                import paddle.static as static

                paddle.enable_static()
5947

5948
                prog = static.default_main_program()
5949 5950
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
5951
        """
Q
Qiao Longfei 已提交
5952 5953
        return self.blocks[index]

Y
Yu Yang 已提交
5954
    def current_block(self):
Y
yuyang18 已提交
5955
        """
5956 5957
        .. note::
            This API has no effect in Dygraph mode.
5958

J
Jiabin Yang 已提交
5959 5960
        Get the current  :ref:`api_guide_Block_en` . The :code:`current`  :ref:`api_guide_Block_en`
        is the  :ref:`api_guide_Block_en`  to append operators.
5961

J
Jiabin Yang 已提交
5962 5963
        Returns:
             :ref:`api_guide_Block_en`: The :code:`index`  :ref:`api_guide_Block_en`
5964

5965 5966 5967
        Examples:
            .. code-block:: python

5968 5969 5970 5971
                import paddle
                import paddle.static as static

                paddle.enable_static()
5972

5973
                prog = static.default_main_program()
5974 5975
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
5976
        """
Y
Yu Yang 已提交
5977 5978
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
5979
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
5980 5981 5982 5983 5984
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
J
Jiabin Yang 已提交
5985

Y
yuyang18 已提交
5986 5987 5988 5989 5990
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
5991
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
5992 5993 5994
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
5995 5996 5997 5998
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
5999
    def _rollback(self):
Y
yuyang18 已提交
6000 6001 6002 6003 6004
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
6005 6006
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
6007
    def _sync_with_cpp(self):
Y
yuyang18 已提交
6008 6009 6010 6011 6012 6013 6014 6015 6016 6017
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
6018 6019 6020
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
6021
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
6022

W
Wu Yi 已提交
6023
    def _copy_param_info_from(self, other):
6024
        """
6025
        Copy the information of parameters from other program.
D
dzhwinter 已提交
6026

Y
yuyang18 已提交
6027 6028 6029
        Notes: This is a very low level API. Users should not invoke it
        directly.

6030 6031 6032 6033 6034 6035 6036
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
6037 6038 6039
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
6040

W
Wu Yi 已提交
6041
        self.global_block()._copy_param_info_from(other.global_block())
6042

6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
6054 6055 6056
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
6057 6058
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
6059
        self._parameters_on_pservers = other._parameters_on_pservers
6060
        self._endpoints = other._endpoints
6061
        self._ps_endpoint = other._ps_endpoint
6062 6063
        self._distributed_lookup_table = other._distributed_lookup_table

6064
    def _copy_data_info_from(self, other, pruned_origin_block_id_map=None):
F
fengjiayi 已提交
6065 6066
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
6067

Y
yuyang18 已提交
6068 6069 6070
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
6071 6072
        Args:
            other(Program): Other program
6073 6074 6075 6076
            pruned_origin_block_id_map(dict{int:int}): A dict which maps the block id in program
            self to the block id in program other. For example, {0:0, 1:1, 2:3} means block 0 in self is 
            cloned from block 0 in other, etc. Default is None, which means default mapped, 
            {0:0, 1:1,..., n:n}.
F
fengjiayi 已提交
6077 6078 6079 6080 6081

        Returns:
            None
        """
        if not isinstance(other, Program):
6082 6083 6084
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
F
fengjiayi 已提交
6085

6086 6087 6088 6089 6090
        if not pruned_origin_block_id_map:
            pruned_origin_block_id_map = {
                i: i
                for i in six.moves.range(self.desc.num_blocks())
            }
6091 6092 6093

        # NOTE(zhiqiu): All vars in cloned program exist in original program.
        # The reverse is not true, due to backward pruning.
6094 6095
        for i, block in enumerate(self.blocks):
            other_block = other.blocks[pruned_origin_block_id_map[i]]
6096
            for var in list(block.vars.values()):
6097 6098 6099 6100 6101 6102 6103
                other_var = other_block.var(var.name)
                if other_var.is_data:
                    var.is_data = True
                if other_var.desc.need_check_feed():
                    var.desc.set_need_check_feed(True)
                if other_var.stop_gradient:
                    var.stop_gradient = True
F
fengjiayi 已提交
6104

6105
    def list_vars(self):
Y
yuyang18 已提交
6106
        """
6107
        Get all Tensors from this Program. A iterable object is returned.
Y
yuyang18 已提交
6108

J
Jiabin Yang 已提交
6109
        Returns:
6110
            iterable Tensors: The Generator will yield every Tensor in this program.
6111 6112 6113 6114

        Examples:
            .. code-block:: python

6115 6116
                import paddle
                import paddle.static as static
6117

6118 6119 6120 6121 6122
                paddle.enable_static()

                prog = static.default_main_program()
                img = static.data(name='img', shape=[None, 1,28,28], dtype='float32')
                label = static.data(name='label', shape=[None,1], dtype='int64')
6123 6124
                for var in prog.list_vars():
                    print(var)
T
tangwei12 已提交
6125

6126 6127
                # var img : LOD_TENSOR.shape(-1, 1, 28, 28).dtype(float32).stop_gradient(True)
                # var label : LOD_TENSOR.shape(-1, 1).dtype(int64).stop_gradient(True)
Y
yuyang18 已提交
6128
        """
6129
        for each_block in self.blocks:
6130
            for each_var in list(each_block.vars.values()):
6131 6132
                yield each_var

6133 6134 6135 6136 6137 6138 6139 6140 6141 6142
    def all_parameters(self):
        """
        Get all :ref:`api_guide_parameter_en` from this Program. A list object is returned.

        Returns:
            list[ :ref:`api_guide_parameter_en` ]: The list contians all parameters in this program.

        Examples:
            .. code-block:: python

6143 6144 6145 6146
                import paddle
                import paddle.static as static

                paddle.enable_static()
6147

6148 6149
                program = static.default_main_program()
                data = static.data(name='x', shape=[None, 13], dtype='float32')
6150
                hidden = static.nn.fc(x=data, size=10)
6151 6152
                loss = paddle.mean(hidden)
                paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
6153 6154 6155 6156 6157 6158 6159

                for param in program.all_parameters():
                    print(param)

                # Here will print all parameters in current program, in this example,
                # the result is like:
                #
6160 6161
                # persist trainable param fc_0.w_0 : LOD_TENSOR.shape(13, 10).dtype(float32).stop_gradient(False)
                # persist trainable param fc_0.b_0 : LOD_TENSOR.shape(10,).dtype(float32).stop_gradient(False)
6162 6163 6164 6165 6166 6167 6168 6169 6170 6171
                #
                # Here print(param) will print out all the properties of a parameter,
                # including name, type and persistable, you can access to specific
                # property of a parameter, such as param.name, param.type
        """
        parameters = []
        for each_block in self.blocks:
            parameters.extend(each_block.all_parameters())
        return parameters

6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213
    def state_dict(self, mode='all', scope=None):
        """
        Get parameters and persistable buffers of program as a dict. The key is the name of the parameter or the name of the buffer.
        The value is the tensor of this variable in the given scope.

        .. note::
            This function MUST called after run start_up_program

        Args:
            mode(str, optional): Source of the obtained parameters and buffers. 
                    'opt' :  The return value only contains the variable in the optimizer. 
                    'param' : The return value only contains the variable in the network, not the variable in the optimizer.  
                    'all' : The return value contains the variable in the network and optimizer.
                    Default: 'all'
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None

        Retruns:
            dict: a dict contains the parameters and persistable buffers.

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
        """
        # The 'framework' is a low-level module, and 'executor'
6214
        # can not be imported at the begainning of this file.
6215 6216 6217 6218
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
6219 6220
                "`scope` should be None or `paddle.static.Scope'` type, but received {}."
                .format(type(scope)))
6221 6222 6223 6224 6225

        if scope is None:
            scope = global_scope()

        if not isinstance(mode, str):
6226 6227 6228
            raise TypeError(
                "Type of `mode` should be string, but received {}.".format(
                    type(mode)))
6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254

        def is_parameter(var):
            return isinstance(var, Parameter)

        def is_persistable(var):
            if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
                var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
                var.desc.type() == core.VarDesc.VarType.READER:
                return False
            return var.persistable

        def is_belong_to_optimizer(var):
            if not (isinstance(var, Parameter) or var.desc.need_check_feed()):
                return is_persistable(var)
            return False

        def condition(var):

            if mode == 'param':
                return is_parameter(var)
            elif mode == 'opt':
                return is_belong_to_optimizer(var)
            elif mode == 'all':
                return is_parameter(var) or is_belong_to_optimizer(var)
            else:
                raise ValueError(
6255 6256
                    "`mode` string should be 'param', 'opt' or 'all', but received {}."
                    .format(mode))
6257 6258 6259 6260 6261 6262 6263 6264

        var_list = filter(condition, self.list_vars())

        state_dict = dict()
        for var in var_list:
            var_temp = scope.find_var(var.name)
            if var_temp is None:
                raise ValueError(
6265 6266
                    "Can not find Variable '{}' in the scope. Make sure it is initialized"
                    .format(var.name))
6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335
            state_dict[var.name] = var_temp.get_tensor()

        return state_dict

    def set_state_dict(self, state_dict, scope=None):
        """
        Set parameters and persistable buffers in state_dict to program. 
        An exception will throw if shape or dtype of the parameters is not match.
        
        .. note::
            This function MUST called after run start_up_program

        Args:
            state_dict(dict): the dict store parameters and persistable buffers. 
                The key is the name of the parameter or the name of the buffer.
                The value is the tensor of this variable in the given scope.
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None
        
        Returns:
            None

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
                state_dict_load = paddle.load(path)
                prog.set_state_dict(state_dict_load)
        """

        if not isinstance(state_dict, dict):
            raise TypeError(
                "Type of `state_dict` should be dict, but received {}.".format(
                    type(state_dict)))

        vars_dict = {var.name: var for var in self.list_vars()}
        condition = True if 'StructuredToParameterName@@' in state_dict else False
        for name, value in state_dict.items():
            if condition:
                if name == "StructuredToParameterName@@":
                    continue
                if name in state_dict['StructuredToParameterName@@']:
                    name = state_dict['StructuredToParameterName@@'][name]
            if name in vars_dict:
                try:
                    vars_dict[name].set_value(value, scope)
                except ValueError as err:
                    warnings.warn(
                        ("Skip loading for '{}'. ".format(name) + str(err)))
                except TypeError as err:
                    warnings.warn(
                        ("Skip loading for '{}'. ".format(name) + str(err)))
            else:
6336 6337 6338
                warnings.warn(
                    ("Skip loading for '{0}'. Because '{0}' not in the program."
                     .format(name)))
6339

Y
Yu Yang 已提交
6340

6341
@six.add_metaclass(ParameterMetaClass)
Y
Yu Yang 已提交
6342
class Parameter(Variable):
6343
    """
6344
    Parameter is derived from Variable. A parameter is a persistable
6345
    Variable, and will be updated by optimizers after each iteration.
6346
    The training of a neural network is essentially the updating of
6347 6348
    its parameters.

6349
    Relative to a general Variable, a Parameter has several its own
6350 6351
    member variables:

6352 6353 6354 6355 6356 6357 6358 6359 6360 6361
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
6362 6363
        need_clip (bool): Whether the parameter gradient need to be cliped 
            in optimizer. Default is True.
6364 6365
    """

6366 6367 6368 6369 6370 6371
    def __init__(self,
                 block,
                 shape,
                 dtype,
                 type=core.VarDesc.VarType.LOD_TENSOR,
                 **kwargs):
6372 6373 6374 6375 6376
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

Y
Yu Yang 已提交
6377
        if len(shape) == 0:
6378 6379
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")
Y
Yu Yang 已提交
6380 6381 6382

        for each in shape:
            if each < 0:
6383 6384 6385
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))
6386

6387 6388 6389 6390 6391 6392 6393
        Variable.__init__(self,
                          block,
                          persistable=True,
                          shape=shape,
                          dtype=dtype,
                          type=type,
                          **kwargs)
Y
Yu Yang 已提交
6394 6395 6396 6397
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

6398 6399
        self.regularizer = kwargs.get('regularizer', None)

W
wanghaoshuang 已提交
6400
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
6401

6402 6403
        self.need_clip = kwargs.get('need_clip', True)

6404 6405
        self.is_distributed = False

6406 6407
        self.is_parameter = True

F
fengjiayi 已提交
6408
    def __str__(self):
6409
        return self._to_readable_code()
F
fengjiayi 已提交
6410

F
update  
fengjiayi 已提交
6411 6412 6413
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
6414

F
update  
fengjiayi 已提交
6415 6416 6417 6418 6419 6420 6421 6422
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

6423 6424 6425 6426 6427 6428 6429 6430 6431
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
6432
        """
6433 6434
        assert isinstance(throw_on_error, bool) and isinstance(
            with_details, bool)
F
update  
fengjiayi 已提交
6435 6436 6437
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
6438
                               "do_model_average", "need_clip")
F
update  
fengjiayi 已提交
6439
            for attr_name in additional_attr:
6440 6441
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
6442 6443
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
6444 6445 6446 6447
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
6448

6449 6450
class ParamBase(core.VarBase):
    """
6451 6452 6453
    ParamBase is derived from Tensor( Which is the concept in Dygraph Mode). 
    A ParamBase is a persistable Tensor, and will be updated by optimizers 
    after each iteration.
6454 6455 6456
    The training of a neural network is essentially the updating of
    its ParamBase.

6457
    Relative to a general Tensor, a ParamBase has several its own
6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469
    member variables:

    Args:
        trainable(bool): True if the ParamBase need to be updated after
            iterations.
        optimize_attr(map): ParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the ParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this ParamBase.
6470 6471
        need_clip (bool): Whether the parameter gradient need to be cliped 
            in optimizer. Default is True.
6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        if len(shape) == 0:
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_param_base'))

6497 6498 6499 6500
        super(ParamBase,
              self).__init__(dtype if dtype else core.VarDesc.VarType.FP32,
                             list(shape) if shape else [], name,
                             core.VarDesc.VarType.LOD_TENSOR, True)
6501

6502 6503
        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable
6504 6505 6506 6507 6508 6509 6510

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

6511 6512
        self.need_clip = kwargs.get('need_clip', True)

6513
        self.is_distributed = kwargs.get('is_distributed', False)
6514
        # self.block = default_main_program().global_block()
6515

6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528
    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
                type(trainable))

6529
    def __str__(self):
6530
        """
6531
        Convert a ParamBase object to a readable string.
6532

6533
        Returns(str): A readable string.
6534 6535 6536 6537

        Examples:
            .. code-block:: python

6538
                import paddle
6539 6540 6541 6542 6543 6544 6545
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
6546
        """
6547 6548
        return "Parameter containing:\n{tensor}".format(
            tensor=super(ParamBase, self).__str__())
6549

6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560
    def __deepcopy__(self, memo):
        """
        Deep copy parameter, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                linear = paddle.nn.Linear(1, 3)
                linear_copy = copy.deepcopy(linear)
T
tangwei12 已提交
6561

6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

                print(linear_copy.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

        """
        state = copy.deepcopy(self.__dict__, memo)
        state["name"] = self.name + unique_name.generate("_deepcopy")
        new_param = ParamBase(self.shape, self.dtype, **state)
        memo[id(self)] = new_param
        new_param.copy_(self, True)
        return new_param

6580 6581 6582 6583
    def _copy_to(self, device, blocking):
        state = copy.deepcopy(self.__dict__)
        new_param = ParamBase(self.shape, self.dtype, **state)
        core.varbase_copy(self, new_param, device, blocking)
6584 6585 6586 6587 6588 6589
        return new_param

    __repr__ = __str__


if hasattr(core, "eager"):
6590
    _core_eager_eagertensor = core.eager.Tensor
6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642
else:
    _core_eager_eagertensor = object


class EagerParamBase(_core_eager_eagertensor):
    """
    EagerParamBase is derived from Tensor( Which is the concept in Eager-Dygraph Mode). 
    A EagerParamBase is a persistable Tensor, and will be updated by optimizers 
    after each iteration.
    The training of a neural network is essentially the updating of
    its EagerParamBase.

    Relative to a general Tensor, a EagerParamBase has several its own
    member variables:

    Args:
        trainable(bool): True if the EagerParamBase need to be updated after
            iterations.
        optimize_attr(map): EagerParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the EagerParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this EagerParamBase.
        need_clip (bool): Whether the parameter gradient need to be cliped 
            in optimizer. Default is True.
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        if len(shape) == 0:
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_eager_param_base'))

6643 6644 6645
        if isinstance(shape, core.eager.Tensor):
            shape = shape.numpy()

6646 6647 6648 6649
        super(EagerParamBase,
              self).__init__(dtype if dtype else core.VarDesc.VarType.FP32,
                             list(shape) if shape else [], name,
                             core.VarDesc.VarType.LOD_TENSOR, True)
6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733
        self.retain_grads()

        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

        self.need_clip = kwargs.get('need_clip', True)

        self.is_distributed = kwargs.get('is_distributed', False)
        # self.block = default_main_program().global_block()

    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
                type(trainable))

    def __str__(self):
        """
        Convert a EagerParamBase object to a readable string.

        Returns(str): A readable string.

        Examples:
            .. code-block:: python

                import paddle
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
        """
        return "Parameter containing:\n{tensor}".format(
            tensor=super(EagerParamBase, self).__str__())

    def __deepcopy__(self, memo):
        """
        Deep copy parameter, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                linear = paddle.nn.Linear(1, 3)
                linear_copy = copy.deepcopy(linear)

                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

                print(linear_copy.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

        """
        state = copy.deepcopy(self.__dict__, memo)
        state["name"] = self.name + unique_name.generate("_deepcopy")
        new_param = EagerParamBase(self.shape, self.dtype, **state)
        memo[id(self)] = new_param
        new_param.copy_(self, True)
        return new_param

    def _copy_to(self, device, blocking):
        state = copy.deepcopy(self.__dict__)
        new_param = EagerParamBase(self.shape, self.dtype, **state)
        core.eager.tensor_copy(self, new_param, device, blocking)
6734 6735
        return new_param

6736 6737 6738
    __repr__ = __str__


Y
Yu Yang 已提交
6739
# program is a global instance.
Y
Yu Yang 已提交
6740 6741
_main_program_ = Program()
_startup_program_ = Program()
6742
_startup_program_._is_start_up_program_ = True
6743

6744

6745
def default_startup_program():
Y
Yu Yang 已提交
6746
    """
Y
yuyang18 已提交
6747 6748
    Get default/global startup program.

6749 6750
    The :code:`paddle.nn` function will append the initialization operators into startup program.
    The :code:`startup_program` will initialize the parameters by the OPs. 
T
tangwei12 已提交
6751

6752 6753
    This method will return the default or the current startup program. Users can use
    :ref:`api_paddle_fluid_framework_program_guard`  to switch :ref:`api_paddle_fluid_framework_Program` .
Y
yuyang18 已提交
6754

6755 6756
    Returns:
        Program: current default startup program.
6757

6758
    Returns type: 
6759 6760 6761 6762

    Examples:
        .. code-block:: python

6763
            import paddle
6764

6765
            paddle.enable_static()
6766 6767 6768 6769
            x = paddle.static.data(name="x", shape=[-1, 784], dtype='float32')
            out = paddle.static.nn.fc(name="fc", x=x, size=10, activation="relu")
            print("main program is: {}".format(paddle.static.default_main_program()))
            print("start up program is: {}".format(paddle.static.default_startup_program()))
Y
Yu Yang 已提交
6770
    """
Y
Yu Yang 已提交
6771
    return _startup_program_
6772

6773

6774
def default_main_program():
Y
Yu Yang 已提交
6775
    """
6776
    This API can be used to get ``default main program`` which store the 
6777
    descriptions of Ops and tensors.
T
tangwei12 已提交
6778

6779
    For example ``z = paddle.add(x, y)`` will create a new ``add`` 
6780
    Op and a new ``z`` tensor, and they will be recorded in ``default main program`` . 
Y
yuyang18 已提交
6781

6782 6783
    The ``default main program`` is the default value for ``Program`` parameter in 
    a lot of APIs. For example, the :code:`Executor.run()` will execute the
Y
yuyang18 已提交
6784
    :code:`default_main_program` when the program is not specified.
6785

6786
    If you want to switch the ``default main program``, you can use :ref:`api_paddle_fluid_framework_program_guard` .
T
tangwei12 已提交
6787

Y
Yu Yang 已提交
6788
    Returns:
6789
        Program: A ``Program`` which holding the descriptions of OPs and tensors in the network.
6790 6791 6792 6793

    Examples:
        ..  code-block:: python

6794
            import paddle
6795

6796
            paddle.enable_static()
6797
            # Sample Network:
6798 6799 6800
            x = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            y = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            out = paddle.add(x, y)
6801

6802 6803 6804
            #print the number of blocks in the program, 1 in this case
            print(paddle.static.default_main_program().num_blocks) # 1
            #print the default_main_program
6805
            print(paddle.static.default_main_program())
Y
Yu Yang 已提交
6806
    """
Y
Yu Yang 已提交
6807
    return _main_program_
Y
Yu Yang 已提交
6808 6809 6810 6811 6812


def switch_main_program(program):
    """
    Switch the main program to a new program.
6813

Y
Yu Yang 已提交
6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
6828
    Switch the startup program to a new program
Y
Yu Yang 已提交
6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
6841
@signature_safe_contextmanager
Y
Yu Yang 已提交
6842 6843
def program_guard(main_program, startup_program=None):
    """
6844 6845
    :api_attr: Static Graph

6846 6847 6848
    Change the global main program and startup program with ``with`` statement.
    Layer functions in the Python ``with`` block will append operators and
    Tensors to the new main programs.
6849

G
guofei 已提交
6850
    Args:
6851 6852
        main_program(Program): New main program inside ``with`` statement.
        startup_program(Program, optional): New startup program inside ``with`` 
G
guofei 已提交
6853 6854 6855 6856
            statement. :code:`None` means not changing startup program, 
            default_startup_program is still used.
            Default: None.

Y
Yu Yang 已提交
6857
    Examples:
6858
       .. code-block:: python
T
tangwei12 已提交
6859

6860
          import paddle
Y
yuyang18 已提交
6861

6862 6863 6864 6865 6866
          paddle.enable_static()
          main_program = paddle.static.Program()
          startup_program = paddle.static.Program()
          with paddle.static.program_guard(main_program, startup_program):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
6867
              hidden = paddle.static.nn.fc(x=data, size=10, activation='relu')
Y
yuyang18 已提交
6868 6869 6870

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
6871

Y
Yu Yang 已提交
6872
    Examples:
6873
       .. code-block:: python
Y
yuyang18 已提交
6874

6875
          import paddle
6876

6877 6878 6879 6880 6881
          paddle.enable_static()
          main_program = paddle.static.Program()
          # does not care about startup program. Just pass a temporary value.
          with paddle.static.program_guard(main_program, paddle.static.Program()):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
T
tangwei12 已提交
6882

Y
Yu Yang 已提交
6883
    """
6884
    from .data_feeder import check_type
6885 6886
    check_type(main_program, 'main_program', Program,
               'paddle.static.program_guard')
Y
Yu Yang 已提交
6887 6888
    main_program = switch_main_program(main_program)
    if startup_program is not None:
6889
        check_type(startup_program, 'startup_program', Program,
6890
                   'paddle.static.program_guard')
6891 6892
        # Tag the program __is_start_up as True
        startup_program._is_start_up_program_ = True
Y
Yu Yang 已提交
6893
        startup_program = switch_startup_program(startup_program)
6894 6895 6896 6897 6898 6899
    try:
        yield
    finally:
        switch_main_program(main_program)
        if startup_program is not None:
            switch_startup_program(startup_program)
X
xuwei06 已提交
6900 6901


W
Wu Yi 已提交
6902
def _get_var(name, program=None):
X
xuwei06 已提交
6903
    """
Y
yuyang18 已提交
6904
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
6905

X
xuwei06 已提交
6906 6907 6908
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
6909
        If None, default_global_program() will be used.
X
xuwei06 已提交
6910 6911 6912 6913 6914 6915 6916

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
6917
    assert isinstance(program, Program)
X
xuwei06 已提交
6918 6919

    return program.global_block().var(name)
6920 6921


S
rename  
sneaxiy 已提交
6922
@signature_safe_contextmanager
L
lujun 已提交
6923 6924
def _dygraph_guard(tracer):
    global _dygraph_tracer_
6925
    tmp_tracer = _dygraph_tracer_
L
lujun 已提交
6926
    _dygraph_tracer_ = tracer
6927
    core._switch_tracer(tracer)
M
minqiyang 已提交
6928

6929 6930 6931
    try:
        yield
    finally:
6932 6933
        core._switch_tracer(tmp_tracer)
        _dygraph_tracer_ = tmp_tracer
P
Paddle CI 已提交
6934 6935


S
rename  
sneaxiy 已提交
6936
@signature_safe_contextmanager
L
lujun 已提交
6937
def _dygraph_place_guard(place):
6938 6939 6940
    global _global_expected_place_
    tmp_place = _global_expected_place_
    _global_expected_place_ = place
6941 6942
    _set_dygraph_tracer_expected_place(place)

6943 6944 6945
    try:
        yield
    finally:
6946
        _global_expected_place_ = tmp_place
J
Jiabin Yang 已提交
6947
        _set_dygraph_tracer_expected_place(_global_expected_place_)
6948 6949


6950 6951 6952 6953 6954 6955 6956 6957 6958 6959
def switch_device(device):
    global _current_device
    pre_device = _current_device
    _current_device = device
    return pre_device


@signature_safe_contextmanager
def device_guard(device=None):
    """
6960 6961 6962
    
    Note:
        The API only supports static mode.
6963 6964 6965 6966

    A context manager that specifies the device on which the OP will be placed.

    Args:
6967 6968
        device(str|None): Specify the device to use in the context. It should be ``cpu``,
            ``gpu`` or ``gpu:x``, where ``x`` is the index of the GPUs. 
6969 6970 6971 6972 6973 6974 6975
            When it is set to 'cpu' or 'gpu', all OPs created in the context will be
            placed on CPUPlace or CUDAPlace. When 'gpu' is set and the program runs on
            single-card, the device index will be the same as the device on which the
            executor runs. Default: None, OPs in this context will be automatically
            assigned devices.

    Examples:
6976
    
6977
        .. code-block:: python
6978 6979
            
            # required: gpu
Z
Zhang Ting 已提交
6980
            import paddle
6981

Z
Zhang Ting 已提交
6982 6983 6984
            paddle.enable_static()
            support_gpu = paddle.is_compiled_with_cuda()
            place = paddle.CPUPlace()
6985
            if support_gpu:
Z
Zhang Ting 已提交
6986
                place = paddle.CUDAPlace(0)
6987 6988

            # if GPU is supported, the three OPs below will be automatically assigned to CUDAPlace(0)
Z
Zhang Ting 已提交
6989 6990 6991
            data1 = paddle.full(shape=[1, 3, 8, 8], fill_value=0.5, dtype='float32')
            data2 = paddle.full(shape=[1, 3, 64], fill_value=0.5, dtype='float32')
            shape = paddle.shape(data2)
6992

Z
Zhang Ting 已提交
6993
            with paddle.static.device_guard("cpu"):
6994
                # Ops created here will be placed on CPUPlace
Z
Zhang Ting 已提交
6995 6996
                shape = paddle.slice(shape, axes=[0], starts=[0], ends=[4])
            with paddle.static.device_guard('gpu'):
6997
                # if GPU is supported, OPs created here will be placed on CUDAPlace(0), otherwise on CPUPlace
Z
Zhang Ting 已提交
6998
                out = paddle.reshape(data1, shape=shape)
6999

Z
Zhang Ting 已提交
7000 7001
            exe = paddle.static.Executor(place)
            exe.run(paddle.static.default_startup_program())
7002 7003 7004
            result = exe.run(fetch_list=[out])
    """

7005 7006 7007 7008 7009
    index = None
    if device and ':' in device:
        device, index = device.split(':')
        if device == 'cpu':
            raise ValueError("Should not set device id for cpu.")
7010
    if device not in ['cpu', 'gpu', 'npu', '', None]:
7011
        raise ValueError(
7012
            "The Attr(device) should be 'cpu' 'npu' or 'gpu', and it can also be empty string or None "
7013
            "when there is no need to specify device. But received %s" % device)
7014 7015
    if index:
        device = ":".join([device, index])
7016
    pre_device = switch_device(device)
7017 7018 7019 7020
    try:
        yield
    finally:
        switch_device(pre_device)
G
guofei 已提交
7021 7022


7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053
def _switch_cuda_graph_mode(cuda_graph_attr):
    global _current_cuda_graph_mode
    pre_mode = _current_cuda_graph_mode
    _current_cuda_graph_mode = cuda_graph_attr
    return pre_mode


@signature_safe_contextmanager
def _cuda_graph_guard(cuda_graph_attr=None):
    """

    Note:
        The API only supports static mode.

    A context manager that specifies the cuda_graph_mode which indicating the cuda graph capture under static mode.

    Args:
        cuda_graph_attr(str|None): The cuda graph attr with the format of:
                                   cuda_graph_capture_mode;memory_pool_id;cuda_graph_id
    """
    assert not _non_static_mode(
    ), "cuda_graph_guard only works under static mode"
    assert core.is_compiled_with_cuda(
    ), "cuda_graph_guard context can be only used when Paddle is compiled with cuda"
    pre_mode = _switch_cuda_graph_mode(cuda_graph_attr)
    try:
        yield
    finally:
        _switch_cuda_graph_mode(pre_mode)


G
guofei 已提交
7054 7055 7056
def set_flags(flags):
    """
    This function sets the GFlags value in Paddle.
7057
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
7058 7059 7060 7061 7062 7063 7064

    Args:
        flags (dict): A dict contains flags and its value.

    Examples:
            .. code-block:: python

7065 7066
                import paddle
                paddle.set_flags({'FLAGS_eager_delete_tensor_gb': 1.0})
G
guofei 已提交
7067 7068 7069 7070
    """
    if not isinstance(flags, dict):
        raise TypeError('flags in set_flags should be a dict')
    for key, value in flags.items():
7071 7072
        if _global_flags().is_public(key):
            _global_flags()[key] = value
G
guofei 已提交
7073 7074 7075 7076 7077 7078 7079 7080
        else:
            raise ValueError(
                "Flag %s cannot set its value through this function." % (key))


def get_flags(flags):
    """
    This function gets the GFlags value in Paddle.
7081
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
7082 7083 7084 7085 7086 7087 7088 7089 7090 7091

    Args:
        flags(list|tuple|str): A list/tuple of string or a string which is the flag's name.

    Returns:
        flag's value in Paddle.

    Examples:
        .. code-block:: python

7092
            import paddle
G
guofei 已提交
7093 7094

            flags = ['FLAGS_eager_delete_tensor_gb', 'FLAGS_check_nan_inf']
7095
            res = paddle.get_flags(flags)
G
guofei 已提交
7096 7097 7098 7099 7100 7101
            print(res)
            # {'FLAGS_eager_delete_tensor_gb': 0.0, 'FLAGS_check_nan_inf': False}
    """
    flags_value = {}
    if isinstance(flags, (list, tuple)):
        for key in flags:
7102 7103
            if (_global_flags().is_public(key)):
                value = _global_flags()[key]
G
guofei 已提交
7104 7105 7106 7107 7108 7109 7110
                temp = {key: value}
                flags_value.update(temp)
            else:
                raise ValueError(
                    'Flag %s cannot get its value through this function.' %
                    (key))
    elif isinstance(flags, str):
7111 7112
        if (_global_flags().is_public(flags)):
            value = _global_flags()[flags]
G
guofei 已提交
7113 7114 7115 7116 7117 7118 7119 7120
            temp = {flags: value}
            flags_value.update(temp)
        else:
            raise ValueError(
                'Flag %s cannot get its value through this function.' % (flags))
    else:
        raise TypeError('Flags in get_flags should be a list, tuple or string.')
    return flags_value
7121 7122 7123 7124 7125 7126 7127


def _get_paddle_place(place):
    "convert the string to paddle Place"
    if place is None:
        return place
    if isinstance(place, (core.Place, core.XPUPlace, core.CPUPlace,
7128
                          core.CUDAPinnedPlace, core.CUDAPlace, core.NPUPlace,
7129
                          core.IPUPlace, core.MLUPlace, core.CustomPlace)):
7130 7131 7132 7133 7134 7135 7136 7137 7138
        return place

    if not isinstance(place, str):
        raise ValueError(
            "place only support string which is 'Place' and so on.")

    place = place.lower()
    if (place == "cpu"):
        return core.CPUPlace()
7139

7140 7141 7142
    if (place == "device"):
        return core.Place()

7143
    # GPU
7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158
    avaliable_gpu_place = re.match(r'gpu:\d+', place)
    if place == "gpu_pinned" or place == "gpu" or avaliable_gpu_place:
        if not core.is_compiled_with_cuda():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with CUDA".format(avaliable_gpu_place))
        if place == "gpu_pinned":
            return core.CUDAPinnedPlace()
        elif place == "gpu":
            return core.CUDAPlace(0)
        else:
            place_info_list = place.split(':', 1)
            device_id = place_info_list[1]
            device_id = int(device_id)
            return core.CUDAPlace(device_id)
7159 7160

    # XPU
7161 7162 7163 7164 7165 7166 7167 7168 7169 7170
    avaliable_xpu_place = re.match(r'xpu:\d+', place)
    if avaliable_xpu_place:
        if not core.is_compiled_with_xpu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with XPU".format(avaliable_xpu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.XPUPlace(device_id)
7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183

    # NPU
    avaliable_npu_place = re.match(r'npu:\d+', place)
    if avaliable_npu_place:
        if not core.is_compiled_with_npu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with NPU".format(avaliable_npu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.NPUPlace(device_id)

J
jianghaicheng 已提交
7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195
    # IPU
    avaliable_ipu_place = re.match(r'ipu:\d+', place)
    if avaliable_ipu_place:
        if not core.is_compiled_with_ipu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with IPU".format(avaliable_ipu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.IPUPlace(device_id)

7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207
    # MLU
    avaliable_mlu_place = re.match(r'mlu:\d+', place)
    if avaliable_mlu_place:
        if not core.is_compiled_with_mlu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with MLU".format(avaliable_mlu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.MLUPlace(device_id)

7208
    raise ValueError(
7209 7210
        "Paddle supports CPUPlace, CUDAPlace,CUDAPinnedPlace, XPUPlace, IPUPlace, MLUPlace and NPUPlace, but received {}."
        .format(place))
7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223


def _get_paddle_place_list(places):

    if not isinstance(places, (list, tuple)):
        raise TypeError("places must to be List or Tuple")

    ret = []
    for p in places:
        p = _get_paddle_place(p)
        ret.append(p)

    return ret