framework.py 248.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
H
huzhiqiang 已提交
19
from collections.abc import Iterable
Q
qiaolongfei 已提交
20
import contextlib
21
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26
import copy
27
from types import MethodType, FunctionType
28

Y
Yu Yang 已提交
29
import numpy as np
30
import subprocess
S
sneaxiy 已提交
31
import multiprocessing
32
import sys
33
import logging
M
minqiyang 已提交
34
from .. import compat as cpt
35
from .proto import framework_pb2
36 37

from . import core
38
from . import unique_name
39 40
import paddle.version as fluid_version
import warnings
41
import functools
42
from .variable_index import _getitem_impl_, _setitem_impl_
Y
Yu Yang 已提交
43

44
__all__ = [
45 46 47 48
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
49
    'name_scope',
J
jianghaicheng 已提交
50
    'ipu_shard_guard',
S
sneaxiy 已提交
51 52
    'cuda_places',
    'cpu_places',
53
    'xpu_places',
54
    'mlu_places',
S
sneaxiy 已提交
55
    'cuda_pinned_places',
J
Jiabin Yang 已提交
56
    '_non_static_mode',
L
lujun 已提交
57
    'in_dygraph_mode',
58
    'is_compiled_with_cinn',
C
chengduo 已提交
59
    'is_compiled_with_cuda',
60
    'is_compiled_with_rocm',
61
    'is_compiled_with_xpu',
62
    'is_compiled_with_npu',
63
    'Variable',
64
    'require_version',
65
    'device_guard',
G
guofei 已提交
66 67
    'set_flags',
    'get_flags',
68
]
Y
Yu Yang 已提交
69

Q
qiaolongfei 已提交
70 71 72 73
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
74 75
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

L
lujun 已提交
76
_dygraph_tracer_ = None
77
_in_eager_mode_ = (os.environ.get('FLAGS_enable_eager_mode') == '1')
78
_global_expected_place_ = None
79
_current_device = None
80
global_prog_seed = 0
81
_current_pipeline_stage = None
82
_already_patch_eager_tensor = False
J
Jiabin Yang 已提交
83
_already_patch_varbase = False
84
_global_flags_ = core.globals()
J
Jiabin Yang 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108

# Some explanation of our execution system 2022.03
# For now we have 3 kinds of execution system, since we refactored dygraph mode to 
# build a fast execution system for dynamic mode. But we can't just remove all legacy
# code once we present the new system for some historical reason. That's why we have 
# these flags.
# 
# 1. _non_static_mode():
# _non_static_mode means  we are now running in legacy dygraph mode or dygraph mode. 
# 2. dygraph_mode():
# This flags inidicates we are now running in dygraph mode which called eager mode before.
# 3. _in_legacy_dygraph():
# This flags inidicates we are now running in legacy dygraph mode
# 
# They have a relation ship as below:
# Both dygraph_mode and _in_legacy_dygraph are _non_static_mode, but if you are running in 
# dygraph mode means you are not in _in_legacy_dygraph.
# 
# Why we have to make different of _in_legacy_dygraph and dygraph_mode?
# In some performance issue, we find that python if statement cause server performance problem
# and we need our new dygraph mode becomes as fast as it could be. That's why we make these flags
# to make sure in most case, we find new dygraph mode first with only one if statement.


109 110 111 112 113 114 115 116 117
def _update_monkey_methods(is_eager):
    """
    Update monkey methods of VarBase or eager.Tensor while
    switching eager mode and legacy mode.
    """
    from paddle import _C_ops
    from .dygraph.varbase_patch_methods import monkey_patch_varbase
    from .dygraph import monkey_patch_math_varbase

118 119 120
    global _already_patch_eager_tensor
    global _already_patch_varbase

121
    assert isinstance(is_eager, bool)
122
    # switch into eager mode
123 124
    if is_eager:
        _C_ops.switch_to_eager_ops()
125 126 127 128 129 130
        if not _already_patch_eager_tensor:
            monkey_patch_varbase()
            monkey_patch_math_varbase()

            _already_patch_eager_tensor = True
    # switch back into legacy mode
131 132
    else:
        _C_ops.switch_to_core_ops()
133 134 135 136 137
        if not _already_patch_varbase:
            monkey_patch_varbase()
            monkey_patch_math_varbase()

            _already_patch_varbase = True
138

139 140 141 142 143 144 145 146 147 148 149
    # switch Paddle.Tensor bind type
    _switch_tensor_bind_type(is_eager)


def _switch_tensor_bind_type(is_eager):
    import paddle
    if is_eager:
        paddle.Tensor = core.eager.Tensor
    else:
        paddle.Tensor = core.VarBase
    paddle.Tensor.__qualname__ = 'Tensor'
150 151


J
Jiabin Yang 已提交
152 153 154
def _enable_legacy_dygraph():
    global _in_eager_mode_
    _in_eager_mode_ = False
155
    _update_monkey_methods(is_eager=False)
J
Jiabin Yang 已提交
156 157 158 159 160


def _disable_legacy_dygraph():
    global _in_eager_mode_
    _in_eager_mode_ = True
161
    _update_monkey_methods(is_eager=True)
J
Jiabin Yang 已提交
162 163 164 165 166 167 168


def _in_eager_without_dygraph_check():
    global _in_eager_mode_
    return _in_eager_mode_


169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
# FIXME(dev): We haven't fully verified eager mode on XPU/NPU et.al but
# only GPU/CPU. Remove this after we improve this feature.
_is_first_import_ = True


def _fallback_legacy_dygraph():
    global _in_eager_mode_
    global _is_first_import_
    need_fallback = False
    # Only enable eager on CPU/GPU
    is_not_support = core.is_compiled_with_xpu() or core.is_compiled_with_npu(
    ) or core.is_compiled_with_ipu() or core.is_compiled_with_mlu(
    ) or core.is_compiled_with_rocm()

    if _in_eager_mode_ and is_not_support:
        # switch into legacy dygraph mode
        warnings.warn(
            "We will fallback into legacy dygraph on NPU/XPU/MLU/IPU/ROCM devices. Because we only support new eager dygraph mode on CPU/GPU currently. "
        )
        _in_eager_mode_ = False
        if not _is_first_import_:
            _enable_legacy_dygraph()
        need_fallback = True

    need_fallback = False
    _is_first_import_ = False

    return need_fallback


# switch into legacy mode if need while import paddle
_fallback_legacy_dygraph()


J
Jiabin Yang 已提交
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
def in_dygraph_mode():
    """

    .. note::
        Dynamic graph mode is turn ON by default since paddle 2.0.0

    This API checks whether paddle runs in dynamic graph mode.

    You can turn ON static graph mode by `enable_static <../dygraph/base/disable_dygraph_en.html>`_ ,
    and turn OFF static graph mode by `disable_static <../dygraph/base/enable_dygraph_en.html>`_  .

    Returns:
        bool: Whether paddle runs in dynamic graph mode.

    Examples:
        .. code-block:: python

            import paddle
            print(paddle.in_dynamic_mode())  # True, dynamic mode is turn ON by default since paddle 2.0.0

            paddle.enable_static()
            print(paddle.in_dynamic_mode())  # False, Now we are in static mode

            paddle.disable_static()
            print(paddle.in_dynamic_mode())  # True, Now we are in dynamic mode

    """
    return (_dygraph_tracer_ is not None) and _in_eager_mode_


def _in_legacy_dygraph():
    return (not _in_eager_mode_) and (_dygraph_tracer_ is not None)


def _non_static_mode():
    return _dygraph_tracer_ is not None
239 240 241


@signature_safe_contextmanager
J
Jiabin Yang 已提交
242
def _test_eager_guard(place=None):
243 244 245 246 247
    # FIXME(dev): We haven't fully verified eager mode on XPU/NPU et.al but
    # only GPU/CPU. Remove this after we improve this feature.
    already_fallback = _fallback_legacy_dygraph()
    if not already_fallback:
        _disable_legacy_dygraph()
248
    try:
J
Jiabin Yang 已提交
249
        yield
250
    finally:
251 252
        if not already_fallback:
            _enable_legacy_dygraph()
253 254


J
jianghaicheng 已提交
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
global_ipu_index = None
global_ipu_stage = None
ipu_index_attr_name = 'ipu_index'
ipu_stage_attr_name = 'ipu_stage'


@signature_safe_contextmanager
def ipu_shard_guard(index=None, stage=None):
    """
    Used to shard the graph on IPUs. Set each Op run on which IPU in the sharding and which stage in the pipelining.

    Args:
        index(int, optional): Specify which ipu the Tensor is computed on, (such as ‘0, 1, 2, 3’).
            The default value is None, which means the Op only run on IPU 0.
        stage(int, optional): Specify the computation order of the sharded model(such as ‘0, 1, 2, 3’).
            The sharded model will be computed from small to large. The default value is None, 
            which means no pipelining computation order and run Ops in terms of graph.
    
    **Note**:
    Only if the enable_manual_shard=True, the ‘index’ is able to be set not None. Please refer 
    to :code:`paddle.static.IpuStrategy` . 
    Only if the enable_pipelining=True, the ‘stage’ is able to be set not None. Please refer 
    to :code:`paddle.static.IpuStrategy` .
    A index is allowed to match none stage or a stage. A stage is only allowed to match a new or 
    duplicated index.

    Examples:
        .. code-block:: python

            # required: ipu

            import paddle
            paddle.enable_static()
            a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
            with paddle.static.ipu_shard_guard(index=0, stage=0):
                b = a + 1
            with paddle.static.ipu_shard_guard(index=1, stage=1):
                c = b + 1
            with paddle.static.ipu_shard_guard(index=0, stage=2):
                d = c + 1
    """
    if not core.is_compiled_with_ipu():
        raise ValueError(
            "Can not use this function since PaddlePaddle is not compiled with IPU"
        )

    global global_ipu_index
    global global_ipu_stage
    prev_ipu_index = global_ipu_index
    prev_ipu_stage = global_ipu_stage
    global_ipu_index = index
    global_ipu_stage = stage
    try:
        yield
    finally:
        global_ipu_index = prev_ipu_index
        global_ipu_stage = prev_ipu_stage


314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
def require_version(min_version, max_version=None):
    """
        Check if the installed version of PaddlePaddle is in [min_version, max_version],
        if the installed version is lower than ``min_version`` or higher than ``max_version``,
        an exception will be thrown, NO returns if the installed version is satisfied.

        Args:
            min_version (str): the minimum version required (like '1.4.0').
            max_version (str, optional): the max version required (like '1.6.0'), default is None,
                meaning any version equal or higher than ``min_version`` is acceptable.

        Returns:
            None.

        Raises:
            TypeError: if the type of ``min_version`` is not str.
            TypeError: if the type of ``max_version`` is not str or type(None).
            ValueError: if the value of ``min_version`` is not in version format.
            ValueError: if the value of ``max_version`` is not in version format or None.
            Exception: if the installed version is lower than ``min_version`` or higher than ``max_version``.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                # any version >= 0.1.0 is acceptable.
                fluid.require_version('0.1.0')

                # if 0.1.0 <= version <= 10.0.0, it is acceptable.
                fluid.require_version(min_version='0.1.0', max_version='10.0.0')
        """
    if not isinstance(min_version, str):
        raise TypeError(
            "The type of 'min_version' in require_version must be str, but received %s."
            % (type(min_version)))

    if not isinstance(max_version, (str, type(None))):
        raise TypeError(
            "The type of 'max_version' in require_version must be str or type(None), but received %s."
            % (type(max_version)))

    check_format = re.match(r'\d+(\.\d+){0,3}', min_version)
    if check_format is None or check_format.group() != min_version:
        raise ValueError(
            "The value of 'min_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
            "like '1.5.2.0', but received %s" % min_version)

    if max_version is not None:
        check_format = re.match(r'\d+(\.\d+){0,3}', max_version)
        if check_format is None or check_format.group() != max_version:
            raise ValueError(
                "The value of 'max_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
                "like '1.5.2.0', but received %s" % max_version)

    version_installed = [
        fluid_version.major, fluid_version.minor, fluid_version.patch,
        fluid_version.rc
    ]
    zero_version = ['0', '0', '0', '0']

    def version_cmp(ver_a, ver_b):
        for i in six.moves.range(len(ver_a)):
            if int(ver_a[i]) > int(ver_b[i]):
                return 1
            elif int(ver_a[i]) < int(ver_b[i]):
                return -1
        return 0

    if version_cmp(version_installed, zero_version) == 0:
        if max_version is not None:
            warnings.warn(
                "PaddlePaddle version in [%s, %s] required, but %s installed. "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, max_version, fluid_version.full_version))
        else:
            warnings.warn(
                "PaddlePaddle version %s or higher is required, but %s installed, "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, fluid_version.full_version))
        return

    min_version_split = min_version.split('.')
    min_version_to_check = min_version_split + zero_version[len(
        min_version_split):]

    if max_version is not None:
        max_version_split = max_version.split('.')
        max_version_to_check = max_version_split + zero_version[len(
            max_version_split):]

        if version_cmp(version_installed,
                       max_version_to_check) > 0 or version_cmp(
                           version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version in [%s, %s] required, but %s installed."
                % (min_version, max_version, fluid_version.full_version))
    else:
        if version_cmp(version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version %s or higher is required, but %s installed, "
                "please upgrade your PaddlePaddle to %s or other higher version."
                % (min_version, fluid_version.full_version, min_version))


421 422
def _dygraph_not_support_(func):
    def __impl__(*args, **kwargs):
J
Jiabin Yang 已提交
423 424
        assert not _non_static_mode(
        ), "We don't support %s in dynamic graph mode" % func.__name__
425 426 427 428 429 430 431
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
    def __impl__(*args, **kwargs):
J
Jiabin Yang 已提交
432
        assert _non_static_mode(
433 434 435 436 437 438 439 440
        ), "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode." % func.__name__
        return func(*args, **kwargs)

    return __impl__


def _static_only_(func):
    def __impl__(*args, **kwargs):
J
Jiabin Yang 已提交
441
        assert not _non_static_mode(
442
        ), "In PaddlePaddle 2.x, we turn on dynamic graph mode by default, and '%s()' is only supported in static graph mode. So if you want to use this api, please call 'paddle.enable_static()' before this api to enter static graph mode." % func.__name__
443 444 445 446 447
        return func(*args, **kwargs)

    return __impl__


448 449 450 451 452
def _set_pipeline_stage(stage):
    global _current_pipeline_stage
    _current_pipeline_stage = stage


453 454 455 456 457 458
# NOTE(zhiqiu): This decorator is used for the APIs of Variable which is only
# used to make Variable and VarBase has same interfaces, like numpy. Since VarBase is not exposed in our
# official docments, logically, we want to keep VarBase and logically consistent. While, actually,
# in our implementation, there some APIs not supported, like numpy, because Variable contains the desc.
# So, those APIs are listed under class Variable to generate docs only.
# TODO(zhiqiu): We should make VarBase consistent with Variable in future, for example, by inheritting
T
tangwei12 已提交
459
# same base class.
460 461 462
def _fake_interface_only_(func):
    def __impl__(*args, **kwargs):
        raise AssertionError(
463 464 465 466 467
            "'%s' only can be called by `paddle.Tensor` in dynamic graph mode. Suggestions:\n"
            "  1. If you are in static graph mode, you can switch to dynamic graph mode by turning off `paddle.enable_static()` or calling `paddle.disable_static()`.\n"
            "  2. If you are using `@paddle.jit.to_static`, you can turn off ProgramTranslator by calling `paddle.jit.ProgramTranslator().enable(False)`. "
            "If you have to translate dynamic graph to static graph, please use other API to replace '%s'."
            % (func.__name__, func.__name__))
468 469 470 471

    return __impl__


T
tangwei12 已提交
472 473
# NOTE(chenweihang): There is argument name typo (stat_dict, correct name is state_dict)
# in fluid api Layer.set_dict, Optimizer.load, in order to correct the argument without
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
# introducing compatibility issues, add this decorator
# NOTE(chenweihang): not using `wrap_decorator` here is because `wrap_decorator` will
# move kwargs to args, which doesn't work in this decorate case
def deprecate_stat_dict(func):
    @functools.wraps(func)
    def wrapper(*args, **kwargs):
        if 'stat_dict' in kwargs:
            warnings.warn(
                "The argument `stat_dict` has deprecated, please change it to `state_dict`.",
                DeprecationWarning)
            kwargs['state_dict'] = kwargs['stat_dict']
            kwargs.pop('stat_dict')
        return func(*args, **kwargs)

    return wrapper


491 492
dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)
493
static_only = wrap_decorator(_static_only_)
494
fake_interface_only = wrap_decorator(_fake_interface_only_)
495 496


L
lujun 已提交
497 498
def _dygraph_tracer():
    return _dygraph_tracer_
499

W
Wu Yi 已提交
500

501 502 503 504
def _global_flags():
    return _global_flags_


M
minqiyang 已提交
505
def _current_expected_place():
506 507 508
    global _global_expected_place_
    if _global_expected_place_ is None:
        if core.is_compiled_with_cuda():
509 510 511 512 513 514 515 516 517 518 519
            try:
                device_count = core.get_cuda_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
                _global_expected_place_ = core.CUDAPlace(0)
            else:
                warnings.warn(
                    "You are using GPU version Paddle, but your CUDA device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
520 521 522 523 524 525 526 527 528 529 530 531
        elif core.is_compiled_with_xpu():
            try:
                device_count = core.get_xpu_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
                _global_expected_place_ = core.XPUPlace(0)
            else:
                warnings.warn(
                    "You are using XPU version Paddle, but your XPU device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
532 533 534 535 536 537 538 539 540 541 542 543
        elif core.is_compiled_with_mlu():
            try:
                device_count = core.get_mlu_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
                _global_expected_place_ = core.MLUPlace(0)
            else:
                warnings.warn(
                    "You are using MLU version Paddle, but your MLU device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
        else:
            _global_expected_place_ = core.CPUPlace()

    return _global_expected_place_


def _set_dygraph_tracer_expected_place(place):
    global _dygraph_tracer_
    if _dygraph_tracer_ is not None:
        _dygraph_tracer_._expected_place = place


def _set_expected_place(place):
    global _global_expected_place_
    _global_expected_place_ = place
J
Jiabin Yang 已提交
559
    _set_dygraph_tracer_expected_place(place)
M
minqiyang 已提交
560 561


L
Leo Chen 已提交
562 563 564 565
# TODO(zhiqiu): remove this function.
def _var_base_to_np(var_base):
    """	
    convert VarBase tp numpy	
T
tangwei12 已提交
566

L
Leo Chen 已提交
567 568 569 570 571 572 573 574 575 576 577 578
    Args:	
        var_base(VarBase) : the VarBase to convert	
    Returns (np.ndarray): the np.ndarray contain the value of VarBase	
    """

    warnings.warn(
        "paddle.fluid.framework._var_base_to_np is deprecated, please use var_base.numpy() instead of _var_base_to_np(var_base)."
    )

    return var_base.numpy()


S
sneaxiy 已提交
579
def _cpu_num():
580
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
581 582 583 584 585 586 587 588
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()))
C
chengduo 已提交
589
        os.environ['CPU_NUM'] = str(1)
590
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
591 592 593 594 595 596 597 598 599 600
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_cuda_device_count())
    return device_ids
S
sneaxiy 已提交
601 602


603 604 605 606 607 608 609 610 611
def _xpu_ids():
    xpus_env = os.getenv("FLAGS_selected_xpus")
    if xpus_env:
        device_ids = [int(s) for s in xpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_xpu_device_count())
    return device_ids


612 613 614 615 616 617 618 619 620
def _npu_ids():
    npus_env = os.getenv("FLAGS_selected_npus")
    if npus_env:
        device_ids = [int(s) for s in npus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_npu_device_count())
    return device_ids


621 622 623 624 625 626 627 628 629
def _mlu_ids():
    mlus_env = os.getenv("FLAGS_selected_mlus")
    if mlus_env:
        device_ids = [int(s) for s in mlus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_mlu_device_count())
    return device_ids


630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
def is_compiled_with_xpu():
    """
    Whether this whl package can be used to run the model on XPU.

    Returns (bool): support xpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_xpu = fluid.is_compiled_with_xpu()
    """
    return core.is_compiled_with_xpu()


645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
def is_compiled_with_npu():
    """
    Whether this whl package can be used to run the model on NPU.

    Returns (bool): support npu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_npu = fluid.is_compiled_with_npu()
    """
    return core.is_compiled_with_npu()


660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684
def disable_signal_handler():
    """
    Reset signal handler registered by Paddle.

    Paddle installs signal handlers at C++ level to log debug information upon failing.
    However, conflicts can happen if another python module is making use of such signal.
    Such being the case, one may disblae paddle signal handler via this interface.
    
    Known frameworks that require disabling signal handler includes:
    1. TVM
    2. ADLIK

    Make sure you called paddle.disable_signal_handler() before using above mentioned frameworks.

    Returns: None 

    Examples:
        .. code-block:: python

            import paddle
            paddle.disable_signal_handler()
    """
    core.disable_signal_handler()


685 686 687 688 689 690 691 692 693 694 695 696 697 698 699
def is_compiled_with_cinn():
    """
    Whether this whl package can be used to run the model on CINN.

    Returns (bool): `True` if CINN is currently available, otherwise `False`.

    Examples:
        .. code-block:: python

            import paddle
            support_cinn = paddle.device.is_compiled_with_cinn()
    """
    return core.is_compiled_with_cinn()


C
chengduo 已提交
700 701 702 703
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

704
    Returns (bool): `True` if CUDA is currently available, otherwise `False`.
C
chengduo 已提交
705 706 707 708

    Examples:
        .. code-block:: python

709
            import paddle
710
            support_gpu = paddle.device.is_compiled_with_cuda()
C
chengduo 已提交
711 712 713 714
    """
    return core.is_compiled_with_cuda()


715 716 717 718 719 720 721 722 723 724
def is_compiled_with_rocm():
    """
    Whether this whl package can be used to run the model on AMD or Hygon GPU(ROCm).

    Returns (bool): `True` if ROCm is currently available, otherwise `False`.

    Examples:
        .. code-block:: python

            import paddle
725
            support_gpu = paddle.device.is_compiled_with_rocm()
726 727 728 729
    """
    return core.is_compiled_with_rocm()


S
sneaxiy 已提交
730
def cuda_places(device_ids=None):
L
lujun 已提交
731
    """
732
    Note:
733 734 735
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

C
Chen Weihang 已提交
736
    This function creates a list of :code:`paddle.CUDAPlace` objects.
S
add doc  
sneaxiy 已提交
737 738

    If :code:`device_ids` is None, environment variable of
739
    :code:`FLAGS_selected_gpus` would be checked first. For example, if
S
add doc  
sneaxiy 已提交
740
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
C
Chen Weihang 已提交
741
    be [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
S
add doc  
sneaxiy 已提交
742
    If :code:`FLAGS_selected_gpus` is not set, all visible
743
    gpu places would be returned according to the :code:`CUDA_VISIBLE_DEVICES` environment variable.
S
add doc  
sneaxiy 已提交
744 745

    If :code:`device_ids` is not None, it should be the device
746
    ids of GPUs. For example, if :code:`device_ids=[0,1,2]`,
S
add doc  
sneaxiy 已提交
747
    the returned list would be 
C
Chen Weihang 已提交
748
    [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
T
tangwei12 已提交
749

750
    Parameters:
751
        device_ids (list|tuple, optional): A list/tuple of int of GPU device ids.
S
add doc  
sneaxiy 已提交
752 753

    Returns:
C
Chen Weihang 已提交
754
        list of paddle.CUDAPlace: Created GPU place list.
L
lujun 已提交
755 756

    Examples:
757
    
L
lujun 已提交
758 759
        .. code-block:: python

C
Chen Weihang 已提交
760 761
            import paddle
            import paddle.static as static
T
tangwei12 已提交
762

763 764
            # required: gpu
            
C
Chen Weihang 已提交
765 766 767
            paddle.enable_static()

            cuda_places = static.cuda_places()
L
lujun 已提交
768 769

    """
S
sneaxiy 已提交
770 771 772
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_ids is None:
C
chengduo 已提交
773
        device_ids = _cuda_ids()
S
sneaxiy 已提交
774 775 776 777 778
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


779 780 781 782
def xpu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_xpus` environment variable to set the visible XPU device.
S
sunzhongkai588 已提交
783 784 785 786 787 788 789 790 791 792 793
        This function creates a list of :code:`paddle.XPUPlace` objects.
        If :code:`device_ids` is None, environment variable of
        :code:`FLAGS_selected_xpus` would be checked first. For example, if
        :code:`FLAGS_selected_xpus=0,1,2`, the returned list would
        be [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
        If :code:`FLAGS_selected_xpus` is not set, all visible
        xpu places would be returned.
        If :code:`device_ids` is not None, it should be the device
        ids of XPUs. For example, if :code:`device_ids=[0,1,2]`,
        the returned list would be 
        [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
794 795 796 797 798 799 800
    
    Parameters:
        device_ids (list or tuple of int, optional): list of XPU device ids.
    Returns:
        list of paddle.XPUPlace: Created XPU place list.
    Examples:
        .. code-block:: python
S
sunzhongkai588 已提交
801

802 803
            # required: xpu

804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
            import paddle
            import paddle.static as static
            
            paddle.enable_static()
            xpu_places = static.xpu_places()
    """
    assert core.is_compiled_with_xpu(), \
        "Not compiled with XPU"
    if device_ids is None:
        device_ids = _xpu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.XPUPlace(dev_id) for dev_id in device_ids]


819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859
def npu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_npus` environment variable to set the visible NPU device.
    
    This function creates a list of :code:`paddle.NPUPlace` objects.
    If :code:`device_ids` is None, environment variable of
    :code:`FLAGS_selected_npus` would be checked first. For example, if
    :code:`FLAGS_selected_npus=0,1,2`, the returned list would
    be [paddle.NPUPlace(0), paddle.NPUPlace(1), paddle.NPUPlace(2)].
    If :code:`FLAGS_selected_npus` is not set, all visible
    npu places would be returned.
    If :code:`device_ids` is not None, it should be the device
    ids of NPUs. For example, if :code:`device_ids=[0,1,2]`,
    the returned list would be 
    [paddle.NPUPlace(0), paddle.NPUPlace(1), paddle.NPUPlace(2)].
    
    Parameters:
        device_ids (list or tuple of int, optional): list of NPU device ids.
    Returns:
        list of paddle.NPUPlace: Created NPU place list.
    Examples:
        .. code-block:: python

            # required: npu

            import paddle
            import paddle.static as static
            
            paddle.enable_static()
            npu_places = static.npu_places()
    """
    assert core.is_compiled_with_npu(), \
        "Not compiled with NPU"
    if device_ids is None:
        device_ids = _npu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.NPUPlace(dev_id) for dev_id in device_ids]


S
sneaxiy 已提交
860
def cpu_places(device_count=None):
L
lujun 已提交
861
    """
C
Chen Weihang 已提交
862
    This function creates a list of :code:`paddle.CPUPlace` objects, and returns the created list.
T
tangwei12 已提交
863

S
add doc  
sneaxiy 已提交
864 865
    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
C
chengduo 已提交
866 867
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
868 869
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
870

871 872
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
873 874

    Returns:
C
Chen Weihang 已提交
875
        list of paddle.CPUPlace: Created list of CPU places.
L
lujun 已提交
876 877

    Examples:
878
    
L
lujun 已提交
879 880
        .. code-block:: python

C
Chen Weihang 已提交
881 882
            import paddle
            import paddle.static as static
T
tangwei12 已提交
883

C
Chen Weihang 已提交
884 885 886
            paddle.enable_static()

            cpu_places = static.cpu_places()
L
lujun 已提交
887 888
    """

S
sneaxiy 已提交
889 890 891 892 893 894
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
895
    """
896
    This function creates a list of :code:`fluid.CUDAPinnedPlace` objects.
S
add doc  
sneaxiy 已提交
897 898 899

    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
900 901 902 903
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
904

905 906
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
907 908

    Returns:
909
        list of fluid.CUDAPinnedPlace: Created list of CUDA pinned places.
L
lujun 已提交
910 911 912 913

    Examples:
        .. code-block:: python

914
            import paddle.fluid as fluid
L
lujun 已提交
915 916 917 918 919
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
S
sneaxiy 已提交
920 921 922
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_count is None:
923 924
        device_count = len(_cuda_ids())
    return [core.CUDAPinnedPlace()] * device_count
S
sneaxiy 已提交
925 926


927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968
def mlu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_mlus` environment variable to set the visible MLU device.
        This function creates a list of :code:`paddle.device.MLUPlace` objects.
        If :code:`device_ids` is None, environment variable of
        :code:`FLAGS_selected_mlus` would be checked first. For example, if
        :code:`FLAGS_selected_mlus=0,1,2`, the returned list would
        be [paddle.device.MLUPlace(0), paddle.device.MLUPlace(1), paddle.device.MLUPlace(2)].
        If :code:`FLAGS_selected_mlus` is not set, all visible
        mlu places would be returned.
        If :code:`device_ids` is not None, it should be the device
        ids of MLUs. For example, if :code:`device_ids=[0,1,2]`,
        the returned list would be
        [paddle.device.MLUPlace(0), paddle.device.MLUPlace(1), paddle.device.MLUPlace(2)].

    Parameters:
        device_ids (list or tuple of int, optional): list of MLU device ids.

    Returns:
        list of paddle.device.MLUPlace: Created MLU place list.

    Examples:
        .. code-block:: python

            # required: mlu

            import paddle
            import paddle.static as static

            paddle.enable_static()
            mlu_places = static.mlu_places()
    """
    assert core.is_compiled_with_mlu(), \
        "Not compiled with MLU"
    if device_ids is None:
        device_ids = _mlu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.MLUPlace(dev_id) for dev_id in device_ids]


969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
995
@signature_safe_contextmanager
996 997
def name_scope(prefix=None):
    """
998

999
    Generate hierarchical name prefix for the operators in Static Graph.
1000

T
Tao Luo 已提交
1001 1002 1003
    Note: 
        This should only used for debugging and visualization purpose.
        Don't use it for serious analysis such as graph/program transformations.
1004
        Don't use it in dygraph, since it will cause memory leak.
1005 1006

    Args:
T
Tao Luo 已提交
1007
        prefix(str, optional): prefix. Default is none.
1008 1009

    Examples:
1010
    
1011
        .. code-block:: python
T
Tink_Y 已提交
1012

1013 1014 1015
          import paddle
          paddle.enable_static()
          with paddle.static.name_scope("s1"):
1016
             a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
T
Tao Luo 已提交
1017
             b = a + 1
1018
             with paddle.static.name_scope("s2"):
T
Tao Luo 已提交
1019
                c = b * 1
1020
             with paddle.static.name_scope("s3"):
T
Tao Luo 已提交
1021
                d = c / 1
1022 1023 1024
          with paddle.static.name_scope("s1"):
                f = paddle.tensor.pow(d, 2.0)
          with paddle.static.name_scope("s4"):
T
Tao Luo 已提交
1025 1026 1027
                g = f - 1

          # Op are created in the default main program.  
1028
          for op in paddle.static.default_main_program().block(0).ops:
T
Tao Luo 已提交
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
              # elementwise_add is created in /s1/
              if op.type == 'elementwise_add':
                  assert op.desc.attr("op_namescope") == '/s1/'
              # elementwise_mul is created in '/s1/s2'
              elif op.type == 'elementwise_mul':
                  assert op.desc.attr("op_namescope") == '/s1/s2/'
              # elementwise_div is created in '/s1/s3'
              elif op.type == 'elementwise_div':
                  assert op.desc.attr("op_namescope") == '/s1/s3/'
              # elementwise_sum is created in '/s4'
              elif op.type == 'elementwise_sub':
                  assert op.desc.attr("op_namescope") == '/s4/'
              # pow is created in /s1_1/
              elif op.type == 'pow':
                  assert op.desc.attr("op_namescope") == '/s1_1/'
1044 1045
    """
    # TODO(panyx0718): Only [0-9a-z].
1046
    # in dygraph we don't need namescope since it will cause mem leak
J
Jiabin Yang 已提交
1047
    if _non_static_mode():
L
Leo Chen 已提交
1048 1049
        yield
    else:
T
tianshuo78520a 已提交
1050
        assert prefix, "namescope prefix can not be empty."
1051 1052
        global _name_scope
        _name_scope = _name_scope.child(prefix)
1053 1054 1055 1056
        try:
            yield
        finally:
            _name_scope = _name_scope.parent()
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
1069 1070 1071
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
1072 1073 1074 1075


def grad_var_name(var_name):
    """
1076 1077
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
1078 1079 1080
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
1081

1082
def convert_np_dtype_to_dtype_(np_dtype):
1083 1084
    """
    Convert the data type in numpy to the data type in Paddle
1085

1086
    Args:
1087
        np_dtype(np.dtype): the data type in numpy.
1088

1089 1090
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
1091 1092

    """
1093 1094
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
1095
        return core.VarDesc.VarType.FP32
1096
    elif dtype == np.float64:
1097
        return core.VarDesc.VarType.FP64
1098
    elif dtype == np.float16:
1099
        return core.VarDesc.VarType.FP16
1100
    elif dtype == np.int32:
1101
        return core.VarDesc.VarType.INT32
1102
    elif dtype == np.int16:
1103
        return core.VarDesc.VarType.INT16
1104
    elif dtype == np.int64:
1105
        return core.VarDesc.VarType.INT64
1106
    elif dtype == np.bool:
1107
        return core.VarDesc.VarType.BOOL
1108
    elif dtype == np.uint16:
1109 1110 1111
        # since there is still no support for bfloat16 in NumPy,
        # uint16 is used for casting bfloat16
        return core.VarDesc.VarType.BF16
1112 1113
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
1114 1115
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
1116 1117 1118 1119
    elif dtype == np.complex64:
        return core.VarDesc.VarType.COMPLEX64
    elif dtype == np.complex128:
        return core.VarDesc.VarType.COMPLEX128
1120
    else:
M
minqiyang 已提交
1121
        raise ValueError("Not supported numpy dtype %s" % dtype)
1122 1123 1124


def dtype_is_floating(dtype):
1125 1126 1127
    """
    Check the data type is floating or not.
    Args:
1128
        dtype(np.dtype|core.VarDesc.VarType): data type.
1129 1130 1131 1132 1133
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
1134
    if not isinstance(dtype, core.VarDesc.VarType):
1135 1136
        dtype = convert_np_dtype_to_dtype_(dtype)

1137 1138 1139 1140
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
1141 1142


Y
Yang Yang(Tony) 已提交
1143
def _debug_string_(proto, throw_on_error=True):
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
1155
    error_fields = list()
Y
Yang Yang(Tony) 已提交
1156
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
1157 1158
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
1159 1160 1161
    return proto.__str__()


1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
def _varbase_creator(type=core.VarDesc.VarType.LOD_TENSOR,
                     name=None,
                     shape=None,
                     dtype=None,
                     persistable=None,
                     **kwargs):
    if dtype is not None:
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

J
Jiabin Yang 已提交
1172
    if _in_eager_mode_:
1173
        eager_tensor = core.eager.Tensor(
1174 1175 1176 1177 1178 1179
            dtype if dtype else core.VarDesc.VarType.FP32,
            list(shape) if shape else [], name, type
            if type else core.VarDesc.VarType.LOD_TENSOR, True
            if persistable else False)
        eager_tensor.retain_grads()
        return eager_tensor
J
Jiabin Yang 已提交
1180 1181 1182 1183 1184
    else:
        return core.VarBase(dtype if dtype else core.VarDesc.VarType.FP32,
                            list(shape) if shape else [], name, type
                            if type else core.VarDesc.VarType.LOD_TENSOR, True
                            if persistable else False)
1185 1186 1187 1188 1189 1190 1191


class VariableMetaClass(type):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1192
            return issubclass(t, core.eager.Tensor)
1193
        else:
J
Jiabin Yang 已提交
1194 1195
            if _in_legacy_dygraph():
                return issubclass(t, core.VarBase)
1196 1197 1198 1199 1200 1201 1202 1203
            return issubclass(t, Variable)


class ParameterMetaClass(VariableMetaClass):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1204
            return issubclass(t, EagerParamBase)
1205
        else:
J
Jiabin Yang 已提交
1206 1207
            if _in_legacy_dygraph():
                return issubclass(t, ParamBase)
1208 1209 1210 1211
            return issubclass(t, Parameter)


@six.add_metaclass(VariableMetaClass)
X
Xin Pan 已提交
1212
class Variable(object):
1213
    """
J
Jiabin Yang 已提交
1214
    **Notes**:
1215
        **The constructor of Variable should not be invoked directly.**
J
Jiabin Yang 已提交
1216

1217 1218
        **In Static Graph Mode: Please use** `Block.create_var` **to create a Static variable which has no data until being feed.**

J
Jiabin Yang 已提交
1219 1220 1221
        **In Dygraph Mode: Please use** :ref:`api_fluid_dygraph_to_variable` **to create a dygraph variable with real data**

    In Fluid, every input and output of an OP is a variable. In most
1222
    cases, variables are used for holding different kinds of data or training
J
Jiabin Yang 已提交
1223 1224
    labels. A variable belongs to a :ref:`api_guide_Block_en` . All variable has its own name and
    two variables in different :ref:`api_guide_Block_en` could have the same name.
1225

1226
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
1227
    and usages. Please refer to the `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_ for details.
1228

T
tianshuo78520a 已提交
1229
    Most of a Variable's member variables can be set to be None. It mean
1230
    it is not available or will be specified later.
1231

1232
    Examples:
1233 1234
        In Static Graph Mode:

1235 1236
        .. code-block:: python

1237
            import paddle.fluid as fluid
1238
            cur_program = fluid.Program()
1239 1240 1241 1242
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
S
sunzhongkai588 已提交
1243

J
Jiabin Yang 已提交
1244
        In `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_  Mode:
1245 1246 1247 1248 1249 1250 1251 1252 1253

        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                new_variable = fluid.dygraph.to_variable(np.arange(10))

1254 1255
    """

Y
Yu Yang 已提交
1256 1257
    def __init__(self,
                 block,
Y
Yu Yang 已提交
1258
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
1259 1260 1261 1262
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
1263
                 capacity=None,
Q
QI JUN 已提交
1264
                 persistable=None,
F
fengjiayi 已提交
1265
                 error_clip=None,
Y
Yu Yang 已提交
1266
                 stop_gradient=False,
F
fengjiayi 已提交
1267
                 is_data=False,
H
Huihuang Zheng 已提交
1268
                 need_check_feed=False,
H
hong 已提交
1269
                 belong_to_optimizer=False,
Y
Yu Yang 已提交
1270
                 **kwargs):
Y
Yu Yang 已提交
1271 1272
        self.block = block
        if name is None:
Y
Yu Yang 已提交
1273
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
1274

Y
Yu Yang 已提交
1275
        if dtype is not None:
1276
            if not isinstance(dtype, core.VarDesc.VarType):
1277
                dtype = convert_np_dtype_to_dtype_(dtype)
1278

S
Steffy-zxf 已提交
1279 1280 1281 1282
        if dtype == core.VarDesc.VarType.STRINGS:
            type = core.VarDesc.VarType.STRINGS
            lod_level = None

H
hong 已提交
1283 1284
        self.belong_to_optimizer = belong_to_optimizer

1285 1286 1287 1288 1289
        self.error_clip = error_clip

        is_new_var = False
        name = cpt.to_text(name)
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
1290

1291 1292 1293
        if self.desc is None:
            self.desc = self.block.desc.var(cpt.to_bytes(name))
            is_new_var = True
1294

1295 1296 1297
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
L
Leo Chen 已提交
1298 1299
            raise ValueError("Variable '{0}' has been created before. The "
                             "previous type is {1}, the new type is {2}. They"
1300 1301
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))
1302

1303
        if shape is not None:
1304
            if is_new_var:
1305 1306 1307 1308 1309 1310
                self.desc.set_shape(shape)
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
L
Leo Chen 已提交
1311 1312
                        "Variable '{0}' has been created before. The previous "
                        "shape is {1}, the new shape is {2}. They are not "
1313 1314 1315 1316 1317 1318 1319
                        "matched.".format(self.name, old_shape, shape))
        if dtype is not None:
            if is_new_var:
                self.desc.set_dtype(dtype)
            else:
                old_dtype = self.dtype
                if dtype != old_dtype:
L
Leo Chen 已提交
1320 1321
                    raise ValueError("Variable '{0}' has been created before. "
                                     "The previous data type is {1}, the new "
1322 1323 1324 1325 1326 1327 1328 1329 1330
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))

        if lod_level is not None:
            if is_new_var:
                self.desc.set_lod_level(lod_level)
            else:
                if lod_level != self.lod_level:
L
Leo Chen 已提交
1331 1332
                    raise ValueError("Variable '{0}' has been created before. "
                                     "The previous lod_level is {1}, the new "
1333 1334 1335 1336 1337 1338 1339 1340 1341
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
L
Leo Chen 已提交
1342 1343
                        "Variable '{0}' has been created before."
                        "The previous persistable is {1}, the new "
1344 1345
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))
1346

1347 1348
        if need_check_feed and is_new_var:
            self.desc.set_need_check_feed(need_check_feed)
H
Huihuang Zheng 已提交
1349

1350 1351 1352 1353 1354 1355 1356
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass
1357

1358 1359
        self.block.vars[name] = self
        self.op = None
1360
        self.stop_gradient = stop_gradient
1361
        self.is_data = is_data
Y
Yu Yang 已提交
1362

1363 1364 1365
    def detach(self):
        """
        Returns a new Variable, detached from the current graph.
1366 1367
        It will share data with origin Variable and without tensor copy.
        In addition, the detached Variable doesn't provide gradient propagation.
1368

1369
        Returns:
J
Jiabin Yang 已提交
1370
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable): The detached Variable.
1371 1372 1373 1374

        Examples:
            .. code-block:: python

1375
                import paddle
1376

1377 1378 1379 1380
                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
1381

1382 1383
                # create a detached Variable
                y = x.detach()
1384
        """
1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399

        assert self.type == core.VarDesc.VarType.SELECTED_ROWS or \
            self.type == core.VarDesc.VarType.LOD_TENSOR, \
            "only support a variable with SELECTED_ROWS or LOD_TENSOR to be detached"

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key("detach_" + self.name),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
            stop_gradient=True)

        self.block.append_op(
            type='share_data', inputs={'X': [self]}, outputs={'Out': [output]})
        return output
1400

1401
    @fake_interface_only
1402
    def numpy(self):
1403
        """
J
Jiabin Yang 已提交
1404
        **Notes**:
T
tianshuo78520a 已提交
1405
            **This API is ONLY available in Dygraph mode**
1406

J
Jiabin Yang 已提交
1407
        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`
1408 1409 1410 1411 1412

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
J
Jiabin Yang 已提交
1413
            ndarray: dtype is same as current Variable
1414 1415 1416 1417 1418 1419

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1420
                from paddle.fluid.dygraph import Linear
1421 1422 1423 1424
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1425
                    linear = Linear(32, 64)
1426
                    data = to_variable(data)
1427
                    x = linear(data)
1428 1429 1430
                    print(x.numpy())

        """
1431
        pass
1432

1433
    @fake_interface_only
1434
    def backward(self, retain_graph=False):
1435
        """
J
Jiabin Yang 已提交
1436
        **Notes**:
T
tianshuo78520a 已提交
1437
            **This API is ONLY available in Dygraph mode**
1438

1439
        Run backward of current Graph which starts from current Tensor.
1440

J
Jiabin Yang 已提交
1441
        Args:
1442 1443 1444 1445
            retain_graph(bool, optional): If False, the graph used to compute grads will be freed. If you would
                like to add more ops to the built graph after calling this method( :code:`backward` ), set the parameter
                :code:`retain_graph` to True, then the grads will be retained. Thus, seting it to False is much more memory-efficient.
                Defaults to False.
1446

J
Jiabin Yang 已提交
1447 1448
        Returns:
            NoneType: None
1449 1450 1451 1452 1453

        Examples:
            .. code-block:: python

                import numpy as np
1454 1455
                import paddle
                paddle.disable_static()
1456 1457

                x = np.ones([2, 2], np.float32)
1458 1459 1460 1461 1462 1463 1464
                inputs = []
                for _ in range(10):
                    tmp = paddle.to_tensor(x)
                    # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
                    # there is no one need gradient on it.
                    tmp.stop_gradient=False
                    inputs.append(tmp)
1465 1466
                ret = paddle.add_n(inputs)
                loss = paddle.sum(ret)
1467
                loss.backward()
1468 1469

        """
1470
        pass
1471

1472
    @fake_interface_only
1473
    def gradient(self):
1474
        """
J
Jiabin Yang 已提交
1475
        **Notes**:
T
tianshuo78520a 已提交
1476
            **This API is ONLY available in Dygraph mode**
1477 1478 1479

        Get the Gradient of Current Variable

J
Jiabin Yang 已提交
1480
        Returns:
1481
            ndarray or tuple of ndarray: if Variable's type is LoDTensor, return numpy value of the gradient of current Variable, if Variable's type is SelectedRows, return tuple of ndarray, first element of tuple is numpy value of the gradient of current Variable, second element of tuple is numpy value of the rows of current Variable.
1482 1483 1484 1485 1486 1487 1488

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

1489
                # example1: return ndarray
1490 1491 1492 1493 1494 1495 1496 1497 1498
                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1499
                    loss2.backward()
1500 1501
                    print(loss2.gradient())

1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514
                # example2: return tuple of ndarray
                with fluid.dygraph.guard():
                    embedding = fluid.dygraph.Embedding(
                        size=[20, 32],
                        param_attr='emb.w',
                        is_sparse=True)
                    x_data = np.arange(12).reshape(4, 3).astype('int64')
                    x_data = x_data.reshape((-1, 3, 1))
                    x = fluid.dygraph.base.to_variable(x_data)
                    out = embedding(x)
                    out.backward()
                    print(embedding.weight.gradient())

1515
        """
1516
        pass
1517

1518
    @fake_interface_only
1519
    def clear_gradient(self):
1520
        """
J
Jiabin Yang 已提交
1521
        **Notes**:
T
tianshuo78520a 已提交
1522
            **1. This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1523 1524

            **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**
1525

J
Jiabin Yang 已提交
1526
        Clear  (set to ``0`` ) the Gradient of Current Variable
1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544

        Returns:  None

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1545
                    loss2.backward()
1546 1547 1548 1549 1550
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
1551
        pass
X
Xin Pan 已提交
1552

1553 1554 1555 1556
    @fake_interface_only
    def register_hook(self, hook):
        pass

1557
    def __str__(self):
1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
        return self._to_readable_code()

    def _to_readable_code(self):
        """
        Get readable debug string of Variable.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Returns:
            string: The formatted Variable string.

        Examples:
            .. code-block:: python

1574 1575
                import paddle
                import paddle.static as static
1576

1577 1578 1579
                paddle.enable_static()

                cur_program = static.Program()
1580 1581 1582 1583 1584 1585
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
                print(new_variable._to_readable_code())
        """
1586 1587
        # VarType.LOD_TENSOR -> LOD_TENSOR
        type_str = str(self.type).split('.')[1]
1588
        if self.type == core.VarDesc.VarType.SELECTED_ROWS or self.type == core.VarDesc.VarType.LOD_TENSOR:
1589 1590
            dtype_str = str(self.dtype).split('.')[1]
            var_str = "{name} : {type}.shape{shape}.dtype({dtype}).stop_gradient({stop_gradient})".\
T
tangwei12 已提交
1591 1592
                format(name=self.name, type=type_str, shape=self.shape,
                       dtype=dtype_str, stop_gradient=self.stop_gradient)
1593
        else:
1594 1595
            var_str = "{name} : {type})".\
                format(name=self.name, type=type_str)
1596

1597
        if self.is_parameter:
1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
            if self.trainable:
                var_str = "trainable param " + var_str
            else:
                var_str = "param " + var_str
        else:
            var_str = "var " + var_str

        if self.persistable:
            var_str = "persist " + var_str

1608
        from paddle.distributed.auto_parallel.dist_context import get_default_distributed_context
1609
        dist_context = get_default_distributed_context()
1610 1611
        dist_tensor = dist_context.get_dist_tensor_for_program(self)
        if dist_tensor is not None:
1612
            var_str += ", {name} = {value}".format(
1613
                name="dist_attr", value=dist_tensor)
1614

1615
        return var_str
Y
Yang Yang(Tony) 已提交
1616

F
update  
fengjiayi 已提交
1617
    def to_string(self, throw_on_error, with_details=False):
1618 1619 1620
        """
        Get debug string.

J
Jiabin Yang 已提交
1621 1622 1623 1624 1625
        Args:

            throw_on_error (bool): True if raise an exception when self is not initialized.

            with_details (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default value is False;
1626

1627 1628
        Returns:
            str: The debug string.
1629 1630 1631 1632 1633

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
1634
                import paddle
1635

1636
                paddle.enable_static()
1637 1638 1639 1640 1641
                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
1642
                print(new_variable.to_string(True))
J
Jiabin Yang 已提交
1643
                print("=============with detail===============")
1644
                print(new_variable.to_string(True, True))
1645
        """
F
update  
fengjiayi 已提交
1646 1647
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
1648
        protostr = self.desc.serialize_to_string()
1649
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
1650 1651
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
1652
            additional_attr = ("error_clip", )
F
update  
fengjiayi 已提交
1653
            for attr_name in additional_attr:
1654 1655 1656
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))

F
update  
fengjiayi 已提交
1657
        return res_str
1658 1659 1660

    __repr__ = __str__

1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
    def element_size(self):
        """
        Returns the size in bytes of an element in the Tensor.
        
        Examples:
          .. code-block:: python

            import paddle
            paddle.enable_static()

            x = paddle.static.data(name='x1', shape=[3, 2], dtype='bool')
            x.element_size() # 1

            x = paddle.static.data(name='x2', shape=[3, 2], dtype='int16')
            x.element_size() # 2

            x = paddle.static.data(name='x3', shape=[3, 2], dtype='float16')
            x.element_size() # 2

            x = paddle.static.data(name='x4', shape=[3, 2], dtype='float32')
            x.element_size() # 4

            x = paddle.static.data(name='x5', shape=[3, 2], dtype='float64')
            x.element_size() # 8
        """
        return self.desc.element_size()

1688
    @property
1689
    def stop_gradient(self):
J
Jiabin Yang 已提交
1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
        """
        Indicating if we stop gradient from current Variable

        **Notes: This Property has default value as** ``True`` **in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, while Parameter's default value is False. However, in Static Graph Mode all Variable's default stop_gradient value is** ``False``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                value1 = np.arange(6).reshape(2, 3).astype("float32")
                value2 = np.arange(10).reshape(2, 5).astype("float32")
1705 1706
                linear = fluid.Linear(13, 5, dtype="float32")
                linear2 = fluid.Linear(3, 3, dtype="float32")
J
Jiabin Yang 已提交
1707 1708 1709
                a = fluid.dygraph.to_variable(value0)
                b = fluid.dygraph.to_variable(value1)
                c = fluid.dygraph.to_variable(value2)
1710 1711
                out1 = linear(a)
                out2 = linear2(b)
J
Jiabin Yang 已提交
1712 1713 1714 1715
                out1.stop_gradient = True
                out = fluid.layers.concat(input=[out1, out2, c], axis=1)
                out.backward()

1716
                assert linear.weight.gradient() is None
J
Jiabin Yang 已提交
1717 1718
                assert (out1.gradient() == 0).all()
        """
1719
        return self.desc.stop_gradient()
1720

1721 1722
    @stop_gradient.setter
    def stop_gradient(self, s):
1723
        self.desc.set_stop_gradient(s)
1724

1725 1726
    @property
    def persistable(self):
J
Jiabin Yang 已提交
1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747
        """
        Indicating if we current Variable should be long-term alive


        **Notes: This Property will be deprecated and this API is just to help user understand concept**

            **1. All Variable's persistable is** ``False`` **except Parameters.**

            **2. In** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, this property should not be changed**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("persistable of current Var is: {}".format(new_variable.persistable))
        """
1748
        return self.desc.persistable()
1749

Y
Yu Yang 已提交
1750 1751
    @persistable.setter
    def persistable(self, p):
1752
        self.desc.set_persistable(p)
Y
Yu Yang 已提交
1753

1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778
    @property
    def is_parameter(self):
        """
        Indicating if current Variable is a Parameter

        Examples:
          .. code-block:: python

            import paddle
            new_parameter = paddle.static.create_parameter(name="X",
                                                shape=[10, 23, 48],
                                                dtype='float32')
            if new_parameter.is_parameter:
                print("Current var is a Parameter")
            else:
                print("Current var is not a Parameter")

            # Current var is a Parameter
        """
        return self.desc.is_parameter()

    @is_parameter.setter
    def is_parameter(self, p):
        self.desc.set_is_parameter(p)

Y
Yu Yang 已提交
1779 1780
    @property
    def name(self):
J
Jiabin Yang 已提交
1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796
        """
        Indicating name of current Variable

        **Notes: If it has two or more Varaible share the same name in the same** :ref:`api_guide_Block_en` **, it means these Variable will share content in no-** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode. This is how we achieve Parameter sharing**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("name of current Var is: {}".format(new_variable.name))
        """
1797
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
1798

1799 1800 1801 1802 1803 1804
    @property
    def grad_name(self):
        """
        Indicating name of the gradient Variable of current Variable.

        **Notes: This is a read-only property. It simply returns name of
S
sunzhongkai588 已提交
1805 1806
        gradient Variable from a naming convention but doesn't guarantee
        the gradient exists.**
T
tangwei12 已提交
1807

1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818
        Examples:
          .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.data(name="x", shape=[-1, 23, 48], dtype='float32')
          print(x.grad_name) # output is "x@GRAD"

        """
        return self.name + "@GRAD"

T
typhoonzero 已提交
1819 1820
    @name.setter
    def name(self, new_name):
1821
        self.desc.set_name(new_name)
T
typhoonzero 已提交
1822

Y
Yu Yang 已提交
1823 1824
    @property
    def shape(self):
J
Jiabin Yang 已提交
1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841
        """
        Indicating shape of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("shape of current Var is: {}".format(new_variable.shape))

        """
Y
Yu Yang 已提交
1842
        # convert to tuple, make it as same as numpy API.
1843
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
1844 1845

    @property
F
fengjiayi 已提交
1846
    def dtype(self):
J
Jiabin Yang 已提交
1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862
        """
        Indicating data type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Dtype of current Var is: {}".format(new_variable.dtype))
        """
1863
        return self.desc.dtype()
Y
Yu Yang 已提交
1864 1865 1866

    @property
    def lod_level(self):
J
Jiabin Yang 已提交
1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879
        """
        Indicating ``LoD`` info of current Variable, please refer to  :ref:`api_fluid_LoDTensor_en` to check the meaning
        of ``LoD``

        **Notes**:

            **1. This is a read-only property**

            **2. Don't support this property in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, it's value should be** ``0(int)``

        Examples:
          .. code-block:: python

1880
            import paddle
J
Jiabin Yang 已提交
1881
            import paddle.fluid as fluid
1882 1883

            paddle.enable_static()
J
Jiabin Yang 已提交
1884 1885 1886 1887 1888 1889 1890
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("LoD Level of current Var is: {}".format(new_variable.lod_level))
        """
1891 1892
        if self.type == core.VarDesc.VarType.SELECTED_ROWS:
            raise Exception("SelectedRows DO NOT supprt lod")
1893 1894
        if self.type == core.VarDesc.VarType.STRINGS:
            return None
1895
        return self.desc.lod_level()
Y
Yu Yang 已提交
1896

Y
Yu Yang 已提交
1897 1898
    @property
    def type(self):
J
Jiabin Yang 已提交
1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914
        """
        Indicating Type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Type of current Var is: {}".format(new_variable.type))
        """
1915
        return self.desc.type()
Y
Yu Yang 已提交
1916

1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965
    @property
    def T(self):
        """
        Permute current Variable with its dimensions reversed.

        If `n` is the dimensions of `x` , `x.T` is equivalent to `x.transpose([n-1, n-2, ..., 0])`.

        Examples:

            .. code-block:: python

                import paddle
                paddle.enable_static()

                x = paddle.ones(shape=[2, 3, 5])
                x_T = x.T

                exe = paddle.static.Executor()
                x_T_np = exe.run(paddle.static.default_main_program(), fetch_list=[x_T])[0]
                print(x_T_np.shape)
                # (5, 3, 2)
        """
        if len(self.shape) == 1:
            return self
        perm = []
        for i in range(len(self.shape)):
            perm.insert(0, i)

        out = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=self.type,
            persistable=False,
            stop_gradient=False)
        input_shape = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=False,
            stop_gradient=False)

        self.block.append_op(
            type='transpose2',
            inputs={'X': [self]},
            outputs={'Out': [out],
                     'XShape': [input_shape]},
            attrs={'axis': perm})
        return out

1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
    def clone(self):
        """
        Returns a new static Variable, which is the clone of the original static
        Variable. It remains in the current graph, that is, the cloned Variable 
        provides gradient propagation. Calling ``out = tensor.clone()`` is same
        as ``out = assign(tensor)`` .

        Returns:
            Variable: The cloned Variable.

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
                # create a cloned Variable
                y = x.clone()

        """
        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_clone"),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
            stop_gradient=self.stop_gradient)

        self.block.append_op(
            type='assign', inputs={'X': [self]}, outputs={'Out': [output]})
        return output

W
Wu Yi 已提交
2000
    def _set_error_clip(self, error_clip):
2001 2002 2003 2004 2005 2006 2007 2008 2009
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
2010 2011
        self.error_clip = error_clip

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040
    def _set_info(self, key, value):
        """
        Set key-value information for this variable.

        Args:
            key(str): Key for this information.
            value(object): The value associated to the key.

        Returns: 
            None
        """
        if not hasattr(self, "_info"):
            self._info = {}
        self._info[key] = value

    def _get_info(self, key):
        """
        Get the information of this variable corresponding to key.

        Args:
            key(str): Key for this information.

        Returns: 
            object
        """
        if hasattr(self, "_info") and key in self._info:
            return self._info[key]
        return None

2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051
    def _slice_indices(self, slice, length):
        """
        Reference implementation for the slice.indices method.
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
T
tianshuo78520a 已提交
2052
            raise ValueError("slice step can not be zero")
2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
            start = max(start + length, lower) if start < 0 else min(start,
                                                                     upper)

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
                if (index > 0 and index >= self.shape[index]) \
                        or (index < 0 and (index + self.shape[index]) < 0):
                    raise IndexError("invalid index")
                start = max(start + self.shape[index], 0) if start < 0 else min(
                    start, self.shape[index])
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
2128
    def _cloneVar(self, copy=False):
2129 2130
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
2131 2132
                name=unique_name.generate_with_ignorable_key(self.name),
                dtype=self.dtype)
2133 2134 2135 2136
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
2137
        new_var = self._cloneVar()
2138 2139 2140 2141 2142 2143 2144 2145 2146 2147
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes,
                   'starts': starts,
                   'ends': ends})
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
2148
        new_var = self._cloneVar()
2149 2150 2151 2152 2153 2154 2155 2156 2157 2158
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={'axis': axis, })
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
2159
                return self._cloneVar(True)
2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                else:
                    while start > stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
2178
                return self._cloneVar(True)
2179
            index = int(item)
2180
            if (index > 0 and index >= self.shape[axis]) \
2181 2182 2183 2184 2185 2186 2187
                    or (index < 0 and (index + self.shape[axis]) < 0):
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
2188
        return _getitem_impl_(self, item)
2189

2190
    def __setitem__(self, item, value):
2191
        return _setitem_impl_(self, item, value)
2192

2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338
    def get_value(self, scope=None):
        """
        Get the value of variable in given scope. 

        Args:
            scope(Scope, optional) : If `scope` is None, it will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            Tensor: the value in given scope.

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static 
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        """
        # The 'framework' is a low-level module, and 'executor' 
        # can not be imported at the begainning of this file. 
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".
                format(type(scope)))

        if scope is None:
            scope = global_scope()
        var_temp = scope.find_var(self.name)
        if var_temp is None:
            raise ValueError("Can not find Variable '{}' in the Scope.".format(
                self.name))
        t = var_temp.get_tensor()
        return t

    def set_value(self, value, scope=None):
        '''
        Set the value to the tensor in given scope. 

        Args:
            value(Tensor/ndarray) : The value to be set.
            scope(Scope, optional) : If `scope` is None, it will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            None
        
        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static 
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        '''

        # The 'framework' is a low-level module, and 'executor'
        # can not be imported at the begainning of this file. 
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope

        if not (isinstance(value, np.ndarray) or hasattr(value, '__array__')):
            raise TypeError(
                "`value` should be `numpy.ndarray` or `LoDTensor`, but received {}.".
                format(type(value)))

        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".
                format(type(scope)))

        if scope is None:
            scope = global_scope()

        var_temp = scope.find_var(self.name)
        if var_temp is None:
            raise ValueError("Can not find Variable '{}' in the Scope.".format(
                self.name))

        t = var_temp.get_tensor()

        if hasattr(value, 'shape'):
            if isinstance(value.shape, (MethodType, FunctionType)):
                value_shape = value.shape()
            else:
                value_shape = value.shape
            if list(t.shape()) != list(value_shape):
                raise ValueError(
                    "{} expected a shape {}, but the received shape is {}.".
                    format(self.name, list(t.shape()), list(value_shape)))

        p = t._place()
        if p.is_cpu_place():
            place = core.CPUPlace()
        elif p.is_cuda_pinned_place():
            place = core.CUDAPinnedPlace()
        elif p.is_xpu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.XPUPlace(p.xpu_device_id())
2339 2340 2341 2342
        elif p.is_npu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.NPUPlace(p.npu_device_id())
2343 2344 2345 2346
        elif p.is_mlu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.MLUPlace(p.mlu_device_id())
2347 2348 2349 2350 2351 2352 2353
        else:
            p = core.Place()
            p.set_place(t._place())
            place = core.CUDAPlace(p.gpu_device_id())

        t.set(value, place)

2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382
    def size(self):
        """
        Returns the number of elements for current Variable, which is a int64 Variable with shape [1]

        Returns:
            Variable: the number of elements for current Variable

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])

                # get the number of elements of the Variable
                y = x.size()
        """

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_size"),
            dtype=core.VarDesc.VarType.INT64)

        self.block.append_op(
            type='size', inputs={'Input': [self]}, outputs={'Out': [output]})
        return output

2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462
    def _set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _has_attr(self, name):
        """
        Whether this Variable has the attribute with the name `name` or not.

        Args:
            name(str): the attribute name.

        Returns:
            bool: True if has this attribute.
        """
        return self.desc.has_attr(name)

    def _remove_attr(self, name):
        self.desc.remove_attr(name)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
        """
        self.desc._set_attr(name, val)

    @property
    def attr_names(self):
        """Get the names of all attributes defined."""
        return self.desc.attr_names()

    def _get_attr(self, name):
        """
        Get the attribute by name.

        Args:
            name(str): the attribute name.

        Returns:
            int|str|list: The attribute value. The return value
            can be any valid attribute type.
        """
        return self.desc.attr(name)

    @property
    def process_mesh(self):
        """
        Get the process mesh belonging to this Variable.
        """
        from paddle.distributed.auto_parallel.interface import _g_process_mesh_map
        from paddle.distributed.auto_parallel.interface import ProcessMesh
        mesh_attr_name = 'mesh_id' + core.kAutoParallelSuffix()
        mesh_id = self.desc.attr(mesh_attr_name)
        return _g_process_mesh_map[mesh_id]

    @property
    def shard_mask(self):
        """
        Get shard_mask belonging to this Variable.
        """
        mask_attr_name = 'mask' + core.kAutoParallelSuffix()
        return self.desc.attr(mask_attr_name)

    @property
    def offload_device(self):
        """
        Get the offload device of this Variable.
        """
        offload_attr_name = 'offload_device' + core.kAutoParallelSuffix()
        return self.desc.attr(offload_attr_name)

Y
Yu Yang 已提交
2463

F
fengjiayi 已提交
2464 2465 2466
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
2467

2468 2469
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
2470 2471 2472 2473
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
2474
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
2475 2476 2477 2478 2479
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
2480 2481 2482 2483
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
2484 2485 2486 2487 2488 2489 2490 2491 2492
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
2493
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
2494 2495 2496 2497 2498 2499
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
2500 2501 2502 2503 2504 2505 2506 2507
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
2508 2509
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
2510 2511
        return self.op_proto_map[type]

2512 2513
    def update_op_proto(self):
        op_protos = get_all_op_protos()
2514
        custom_op_names = []
2515 2516 2517
        for proto in op_protos:
            if proto.type not in self.op_proto_map:
                self.op_proto_map[proto.type] = proto
2518 2519 2520
                custom_op_names.append(proto.type)

        return custom_op_names
2521

2522 2523 2524 2525
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
2526
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
2527
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
2528 2529
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName(),
            core.op_proto_and_checker_maker.kOpDeviceAttrName()
2530 2531
        }

F
fengjiayi 已提交
2532

X
Xin Pan 已提交
2533
class Operator(object):
2534
    """
2535 2536 2537 2538 2539 2540 2541
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
2542
        type(str): The type of operator. Default None.
2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
2563
        Block.append_op or Block._prepend_op instead.
2564 2565 2566 2567

    Examples:
        .. code-block:: python

2568
            import paddle.fluid as fluid
2569
            cur_program = fluid.Program()
2570 2571 2572 2573 2574
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
2575
    """
2576
    OP_WITHOUT_KERNEL_SET = {
2577 2578
        'feed', 'fetch', 'recurrent', 'go', 'rnn_memory_helper_grad',
        'conditional_block', 'while', 'send', 'recv', 'listen_and_serv',
2579
        'fl_listen_and_serv', 'ncclInit', 'select', 'checkpoint_notify',
2580 2581
        'gen_bkcl_id', 'c_gen_bkcl_id', 'gen_nccl_id', 'c_gen_nccl_id',
        'c_comm_init', 'c_sync_calc_stream', 'c_sync_comm_stream',
W
WangXi 已提交
2582
        'queue_generator', 'dequeue', 'enqueue', 'heter_listen_and_serv',
B
Baibaifan 已提交
2583
        'c_wait_comm', 'c_wait_compute', 'c_gen_hccl_id', 'c_comm_init_hccl',
2584
        'copy_cross_scope', 'c_gen_cncl_id'
2585
    }
2586

Y
Yu Yang 已提交
2587 2588
    def __init__(self,
                 block,
Y
Yu Yang 已提交
2589
                 desc,
Y
Yu Yang 已提交
2590 2591 2592
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
2593
                 attrs=None):
J
Jiabin Yang 已提交
2594
        if _non_static_mode():
2595 2596
            if type is None:
                raise ValueError(
2597
                    "`type` to initialized an Operator can not be None.")
J
Jiabin Yang 已提交
2598
            self._type = type
M
minqiyang 已提交
2599
            self.attrs = attrs if attrs else {}
2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
                op_attrs[op_maker.kOpRoleAttrName(
2614
                )] = self.block.program._op_role
2615 2616 2617

            role_var_name = op_maker.kOpRoleVarAttrName()
            if len(self.block.program.
2618 2619
                   _op_role_var) != 0 and role_var_name not in op_attrs:
                op_attrs[role_var_name] = self.block.program._op_role_var
2620 2621 2622 2623 2624

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
2625 2626 2627 2628 2629
                # NOTE(Aurelius84): prog.clone() will lead that var.op is always None,
                # we add this to fix the problem.
                for arg in self.desc.output_arg_names():
                    if block.has_var(arg) and block.var(arg).op is None:
                        block.var(arg).op = self
2630 2631 2632
                return
            if type is None:
                raise ValueError(
2633
                    "`type` to initialized an Operator can not be None.")
2634 2635
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
2636 2637 2638 2639 2640 2641 2642
                op_attrs[callstack_var_name] = []
                for frame in traceback.extract_stack():
                    op_attrs[callstack_var_name].append(
                        '  File "{}", line {}, in {}'.format(frame[0], frame[1],
                                                             frame[2]))
                    op_attrs[callstack_var_name].append('    {}'.format(frame[
                        3]))
2643 2644 2645 2646 2647 2648 2649

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660
            # set device for op with kernels, give warning for op without kernels
            # when force_cpu and device_guard are used at the same time, a warning will be given.
            # TODO(zhangting2020): when force_cpu is removed, clear warning below.
            if _current_device is not None:
                if self._has_kernel(type):
                    op_device = op_maker.kOpDeviceAttrName()
                    op_attrs[op_device] = _current_device
                else:
                    warnings.warn("The Op(%s) is not support to set device." %
                                  type)
                if 'force_cpu' in op_attrs:
2661
                    if (type == 'less_than' and op_attrs['force_cpu'] != None
2662 2663 2664 2665 2666
                        ) or op_attrs['force_cpu'] != False:
                        warnings.warn(
                            "The Attr(force_cpu) of Op(%s) will be deprecated in the future, "
                            "please use 'device_guard' instead. 'device_guard' has higher priority when they are "
                            "used at the same time." % type)
2667 2668 2669 2670 2671
            if _current_pipeline_stage is not None:
                pipeline_attr_name = 'pipeline_stage' + core.kAutoParallelSuffix(
                )
                self._update_desc_attr(pipeline_attr_name,
                                       _current_pipeline_stage)
2672

2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685
            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
                    assert found or in_proto.dispensable, "Input {} not found".format(
                        in_proto.name)
                    if found:
                        in_args = inputs[in_proto.name]
2686
                        if not isinstance(in_args, (list, tuple)):
2687 2688 2689 2690 2691 2692
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
                                % (in_proto.name, len(in_args)))
                        in_arg_names = []
2693
                        for index, arg in enumerate(in_args):
2694 2695 2696 2697
                            if isinstance(arg, six.string_types):
                                in_arg_names.append(arg)
                            elif isinstance(arg, six.binary_type):
                                in_arg_names.append(arg.decode())
2698
                            elif isinstance(arg, (Variable, core.VarBase)):
2699
                                in_arg_names.append(cpt.to_text(arg.name))
2700
                            else:
2701 2702 2703 2704
                                raise TypeError(
                                    "The type of '%s' in operator %s should be "
                                    "one of [basestring(), str, Varibale] in python2, "
                                    "or one of [str, bytes, Variable] in python3."
2705 2706
                                    "but received : %s" %
                                    (in_proto.name, type, arg))
2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
                        raise ValueError(("Incorrect setting for output(s) of "
                                          "operator \"%s\", should set: [%s].")
                                         % (type, m.name))
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
                            % (out_proto.name, len(out_args)))
                    out_arg_names = []
                    for arg in out_args:
2731 2732 2733 2734
                        if isinstance(arg, six.string_types):
                            out_arg_names.append(arg)
                        else:
                            out_arg_names.append(cpt.to_text(arg.name))
2735
                        # TODO(minqiyang): could we remove variable's op in static mode?
J
Jiabin Yang 已提交
2736
                        if not _non_static_mode():
2737 2738 2739 2740
                            if isinstance(arg, six.string_types):
                                block.var(arg).op = self
                            else:
                                arg.op = self
2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753
                    self.desc.set_output(out_proto.name, out_arg_names)

            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
                    if (attr_name not in op_attrs) or (
                            op_attrs[attr_name] is None):
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)

J
jianghaicheng 已提交
2754 2755 2756 2757 2758 2759 2760 2761 2762
            # proto.attrs doesn't include ipu_index
            if core.is_compiled_with_ipu():
                if global_ipu_index is not None:
                    self._update_desc_attr(ipu_index_attr_name,
                                           global_ipu_index)
                if global_ipu_stage is not None:
                    self._update_desc_attr(ipu_stage_attr_name,
                                           global_ipu_stage)

2763 2764 2765 2766 2767
            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
2768
    def _has_kernel(self, op_type):
2769 2770
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
2771
    def to_string(self, throw_on_error):
2772
        """
2773 2774
        Get debug string.

2775
        Args:
2776 2777
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
2778

2779 2780
        Returns:
            str: The debug string.
2781 2782

        """
2783
        protostr = self.desc.serialize_to_string()
2784
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
2785 2786
        return _debug_string_(proto, throw_on_error)

2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818
    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Operator.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Operator string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
            print(new_op._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
2819
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865
            type(skip_op_callstack))
        outputs_str = "{"
        for i in range(0, len(self.output_names)):
            outputs_str += "{name}=".format(name=self.output_names[i])
            o = self.output(self.output_names[i])
            outputs_str += "{value}".format(value=o)
            if i != len(self.output_names) - 1:
                outputs_str += ", "
        outputs_str += "}"

        inputs_str = "{"
        for i in range(0, len(self.input_names)):
            inputs_str += "{name}=".format(name=self.input_names[i])
            o = self.input(self.input_names[i])
            inputs_str += "{value}".format(value=o)

            if i != len(self.input_names) - 1:
                inputs_str += ", "
        inputs_str += "}"

        attr_names = sorted(self.attr_names)
        attrs_str = ""
        for i in range(0, len(attr_names)):
            name = attr_names[i]
            if skip_op_callstack and name == "op_callstack":
                continue

            attr_type = self.desc.attr_type(name)
            if attr_type == core.AttrType.BLOCK:
                a = "{name} = block[{value}]".format(
                    name=name, type=attr_type, value=self._block_attr_id(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.BLOCKS:
                a = "{name} = blocks{value}".format(
                    name=name,
                    type=attr_type,
                    value=self._blocks_attr_ids(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

2866
            # it is bytes of serialized protobuf 
2867 2868 2869 2870
            if is_compiled_with_cinn(
            ) and self.type == 'cinn_launch' and name == 'compilation_key':
                key = self.desc.attr(name)
                v = core.get_serialize_comile_key(key)
2871 2872 2873 2874 2875 2876 2877 2878 2879
                prog = Program()
                prog = prog.parse_from_string(v)
                s = prog._to_readable_code()
                lines = s.split('\n')
                value = '\n'.join(['      ' + line for line in lines])
                value = '\n' + value
            else:
                value = self.desc.attr(name)

2880
            a = "{name} = {value}".format(
2881 2882
                name=name, type=attr_type, value=value)

2883 2884 2885 2886
            attrs_str += a
            if i != len(attr_names) - 1:
                attrs_str += ", "

2887
        from paddle.distributed.auto_parallel.dist_context import get_default_distributed_context
2888
        dist_context = get_default_distributed_context()
2889 2890
        dist_op = dist_context.get_dist_op_for_program(self)
        if dist_op is not None:
2891
            attrs_str += ", {name} = {value}".format(
2892
                name="dist_attr", value=dist_op)
2893

2894 2895
        if outputs_str != "{}":
            op_str = "{outputs} = {op_type}(inputs={inputs}, {attrs})".\
T
tangwei12 已提交
2896 2897
                format(outputs=outputs_str, op_type=self.type,
                       inputs=inputs_str, attrs=attrs_str)
2898 2899 2900 2901 2902
        else:
            op_str = "{op_type}(inputs={inputs}, {attrs})".\
                format(op_type=self.type, inputs=inputs_str, attrs=attrs_str)
        return op_str

Y
Yang Yang(Tony) 已提交
2903
    def __str__(self):
2904
        return self._to_readable_code()
2905 2906 2907

    __repr__ = __str__

F
fengjiayi 已提交
2908 2909
    @property
    def type(self):
2910
        return self.desc.type()
F
fengjiayi 已提交
2911 2912

    def input(self, name):
2913
        r"""
2914
        Get the input arguments according to the input parameter name.
2915

2916 2917
        Args:
            name(str): The input parameter name.
2918

2919 2920 2921
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
2922
        """
F
fengjiayi 已提交
2923 2924
        return self.desc.input(name)

W
Wu Yi 已提交
2925
    def _rename_input(self, old_name, new_name):
2926 2927 2928 2929 2930 2931 2932 2933 2934 2935
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
2936
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
2937

W
Wu Yi 已提交
2938
    def _rename_output(self, old_name, new_name):
2939 2940 2941 2942 2943 2944 2945 2946 2947 2948
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
2949
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
2950

F
fengjiayi 已提交
2951 2952 2953 2954
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
2955 2956 2957 2958 2959 2960 2961 2962
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
2963
    def output(self, name):
2964
        r"""
2965
        Get output arguments by the output parameter name.
2966

2967 2968
        Args:
            name(str): The output parameter name.
2969

2970 2971 2972
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
2973
        """
F
fengjiayi 已提交
2974 2975 2976 2977 2978 2979
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

2980 2981 2982 2983 2984 2985 2986 2987
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
2988
    def has_attr(self, name):
2989
        """
2990 2991
        Whether this Operator has the attribute with name or not.

2992
        Args:
2993
            name(str): the attribute name.
2994

2995 2996
        Returns:
            bool: True if has this attribute.
2997 2998

        """
F
fengjiayi 已提交
2999 3000 3001
        return self.desc.has_attr(name)

    def attr_type(self, name):
3002
        """
3003
        Get the type of attribute by attribute's name.
3004

3005 3006
        Args:
            name(str): the attribute name.
3007

3008 3009
        Returns:
            core.AttrType: the attribute type.
3010
        """
F
fengjiayi 已提交
3011 3012
        return self.desc.attr_type(name)

W
Wu Yi 已提交
3013
    def _set_attr(self, name, val):
3014 3015 3016 3017 3018 3019 3020 3021 3022 3023
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
3024 3025
        self._update_desc_attr(name, val)

3026 3027 3028
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
3040 3041
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
3042 3043
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
3044
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
3045 3046 3047 3048
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
3049
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
3050

F
fengjiayi 已提交
3051 3052 3053 3054 3055
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
3056
        """
3057 3058
        Get the attribute by name.

3059
        Args:
3060
            name(str): the attribute name.
3061

3062 3063
        Returns:
            bool|int|str|float|list: The attribute value. The return value
3064 3065
            can be any valid attribute type.
        """
F
fengjiayi 已提交
3066
        return self.desc.attr(name)
Y
Yu Yang 已提交
3067

W
Wu Yi 已提交
3068
    def _block_attr_id(self, name):
3069
        """
G
gongweibao 已提交
3070
        Get the block attribute's id by name.
3071

3072 3073
        Args:
            name(str): the attribute name.
3074

3075 3076
        Returns:
            int: the block index.
3077
        """
W
Wu Yi 已提交
3078
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
3079

W
Wu Yi 已提交
3080
    def _block_attr(self, name):
G
gongweibao 已提交
3081 3082 3083 3084 3085 3086 3087 3088 3089 3090
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
3091
        id = self._block_attr_id(name)
G
gongweibao 已提交
3092 3093 3094
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
3095
    def _blocks_attr(self, name):
G
gongweibao 已提交
3096 3097 3098 3099 3100 3101 3102 3103 3104 3105
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
3106
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
3107 3108 3109 3110 3111
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
3112
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
3113 3114 3115 3116 3117 3118 3119 3120 3121 3122
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
3123
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
3124

J
JiayiFeng 已提交
3125
    def all_attrs(self):
F
fengjiayi 已提交
3126
        """
3127 3128 3129
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
3130
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
3131 3132 3133 3134
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
3135 3136
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
3137
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
3138 3139 3140
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
3141
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
3142 3143 3144 3145
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
3146 3147
        return attr_map

3148 3149 3150
    def _is_optimize_op(self):
        op_maker = core.op_proto_and_checker_maker
        OPTIMIZE = core.op_proto_and_checker_maker.OpRole.Optimize
3151 3152 3153 3154

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
            return False

3155 3156 3157
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(OPTIMIZE):
            return True
3158 3159 3160 3161 3162 3163 3164 3165

        return False

    def _is_backward_op(self):
        op_maker = core.op_proto_and_checker_maker
        BACKWARD = core.op_proto_and_checker_maker.OpRole.Backward

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
3166 3167
            return False

3168 3169 3170 3171 3172 3173
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(BACKWARD):
            return True

        return False

3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198
    @property
    def process_mesh(self):
        """
        Get the process mesh belonging to this Operator.
        """
        from paddle.distributed.auto_parallel.interface import _g_process_mesh_map
        mesh_attr_name = 'mesh_id' + core.kAutoParallelSuffix()
        mesh_id = self.attr(mesh_attr_name)
        return _g_process_mesh_map[mesh_id]

    def dims_mapping(self, name):
        """
        Get the dims_mapping for the op's var named `name`.
        """
        dims_mapping_attr_name = name + core.kAutoParallelSuffix()
        return self.attr(dims_mapping_attr_name)

    @property
    def pipeline_stage(self):
        """
        Get pipeline stage of the Operator.
        """
        pipeline_stage_attr_name = 'pipeline_stage' + core.kAutoParallelSuffix()
        return self.desc.attr(pipeline_stage_attr_name)

Y
Yu Yang 已提交
3199

Y
Yu Yang 已提交
3200
class Block(object):
3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
3215
        use `Program._create_block()` to create a block.
3216 3217 3218 3219

    Examples:
        .. code-block:: python

3220 3221 3222
            import paddle.fluid as fluid

            cur_program = fluid.Program()
3223 3224 3225 3226 3227 3228 3229 3230 3231
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
3232
    def __init__(self, program, idx):
Y
Yu Yang 已提交
3233
        self.desc = program.desc.block(idx)
3234
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
3235
        self.ops = list()  # operator list
Y
Yu Yang 已提交
3236
        self.program = program
3237
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
3238

3239
    def __str__(self):
3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Block.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Block string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_block._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
3274
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285
            type(skip_op_callstack))
        block_str = "{ // block "
        block_str += "{}\n".format(self.idx)
        for var in list(self.vars.values()):
            block_str += "    {}\n".format(var._to_readable_code())
        block_str += "\n"
        for op in self.ops:
            block_str += "    {}\n".format(
                op._to_readable_code(skip_op_callstack))
        block_str += "}"
        return block_str
Y
Yang Yang(Tony) 已提交
3286

F
fengjiayi 已提交
3287 3288
    def to_string(self, throw_on_error, with_details=False):
        """
3289 3290
        Get debug string.

F
fengjiayi 已提交
3291 3292
        Args:
            throw_on_error(bool): raise exception when self is not initialized
3293
                when throw_on_error is True.
F
update  
fengjiayi 已提交
3294
            with_details(bool): more details about variables and parameters
3295 3296
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
3297

3298 3299
        Returns:
            str: The debug string.
F
fengjiayi 已提交
3300 3301 3302 3303
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
3304
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
3305 3306
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
3307
            for var in list(self.vars.values()):
F
fengjiayi 已提交
3308
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
3309
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
3310
            for op in self.ops:
F
fengjiayi 已提交
3311 3312
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
3313 3314 3315
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
3316 3317
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
3318 3319
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
3320 3321 3322

    __repr__ = __str__

Y
Yu Yang 已提交
3323 3324
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
3325
        return self.desc.parent
Y
Yu Yang 已提交
3326

Y
Yu Yang 已提交
3327 3328 3329 3330
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
3331
    def _set_forward_block_idx(self, idx):
3332 3333 3334 3335 3336 3337 3338 3339 3340
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
3341
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
3342

3343 3344 3345 3346 3347 3348 3349 3350
    @property
    def backward_block_idx(self):
        cur_block_idx = self.idx
        for block in self.program.blocks:
            if block.forward_block_idx == cur_block_idx:
                return block.idx
        return -1

Y
Yu Yang 已提交
3351 3352
    @property
    def idx(self):
Y
Yu Yang 已提交
3353
        return self.desc.id
Y
Yu Yang 已提交
3354

Q
Qiao Longfei 已提交
3355
    def var(self, name):
3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
3369
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
3370 3371 3372
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
3373 3374
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
3375
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
3376
        return v
Q
Qiao Longfei 已提交
3377

X
Xin Pan 已提交
3378
    def _find_var_recursive(self, name):
3379 3380 3381 3382 3383 3384 3385
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
3386
            Variable: the Variable with the giving name. Or None if not found.
3387
        """
Y
Yu Yang 已提交
3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
3412
        return None
Y
Yu Yang 已提交
3413

X
Xin Pan 已提交
3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
3433

Q
Qiao Longfei 已提交
3434
    def all_parameters(self):
3435
        return list(self.iter_parameters())
3436

3437
    def iter_parameters(self):
M
minqiyang 已提交
3438
        return (item[1] for item in six.iteritems(self.vars)
3439
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
3440

Y
Yu Yang 已提交
3441
    def create_var(self, *args, **kwargs):
J
Jiabin Yang 已提交
3442
        if _non_static_mode():
L
Leo Chen 已提交
3443 3444
            var = _varbase_creator(*args, **kwargs)
        else:
3445 3446 3447
            var = Variable(block=self, *args, **kwargs)
            if 'initializer' in kwargs:
                kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
3448
        return var
Y
Yu Yang 已提交
3449

Q
Qiao Longfei 已提交
3450 3451 3452
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
3453
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
3454 3455
        """
        Rename variable in vars and ops' inputs and outputs
3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
3468
        """
M
minqiyang 已提交
3469 3470
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
3471

T
typhoonzero 已提交
3472
        if not self.has_var(name):
3473
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
3474 3475
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
3476
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
3477 3478 3479 3480 3481 3482
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
3483
            var_type = "Variable"
T
wip  
typhoonzero 已提交
3484 3485 3486 3487
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
3488
        orig_var_type = v.type
M
minqiyang 已提交
3489
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
3490
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
3491
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
3492
        if var_type == "Parameter":
L
Leo Chen 已提交
3493
            if in_dygraph_mode():
J
Jiabin Yang 已提交
3494
                var = EagerParamBase(
3495 3496 3497 3498 3499 3500 3501 3502 3503 3504
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip)
            else:
J
Jiabin Yang 已提交
3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527
                if _in_legacy_dygraph():
                    var = ParamBase(
                        d.shape(),
                        d.dtype(),
                        type=orig_var_type,
                        name=new_name,
                        stop_gradient=stop_gradient,
                        trainable=trainable,
                        optimize_attr=optimize_attr,
                        regularizer=regularizer,
                        error_clip=error_clip)
                else:
                    var = Parameter(
                        self,
                        d.shape(),
                        d.dtype(),
                        type=orig_var_type,
                        name=new_name,
                        stop_gradient=stop_gradient,
                        trainable=trainable,
                        optimize_attr=optimize_attr,
                        regularizer=regularizer,
                        error_clip=error_clip)
T
typhoonzero 已提交
3528
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
3529 3530
            var = Variable(
                self,
T
typhoonzero 已提交
3531
                type=orig_var_type,
T
wip  
typhoonzero 已提交
3532 3533 3534 3535
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
3536
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
3537 3538 3539
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
3540
        self._sync_with_cpp()
3541
        return var
T
typhoonzero 已提交
3542

3543 3544 3545
    def _remove_var(self, name, sync=True):
        if sync == True:
            self._sync_with_cpp()
M
minqiyang 已提交
3546
        self.desc._remove_var(cpt.to_bytes(name))
3547 3548
        del self.vars[name]

Y
Yu Yang 已提交
3549 3550
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
3551
        param = None
L
Leo Chen 已提交
3552
        if in_dygraph_mode():
J
Jiabin Yang 已提交
3553
            param = EagerParamBase(*args, **kwargs)
L
Leo Chen 已提交
3554
        else:
J
Jiabin Yang 已提交
3555 3556 3557 3558
            if _in_legacy_dygraph():
                param = ParamBase(*args, **kwargs)
            else:
                param = Parameter(global_block, *args, **kwargs)
3559

3560
        if 'initializer' in kwargs:
3561 3562 3563 3564 3565

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
3566
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
T
tangwei12 已提交
3567
                        # are treated as initialization ops that cause error.
3568
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
3569 3570 3571 3572 3573
                        # NOTE: "coalesce_tensor" is a special case for rnn with cudnn support
                        if op.type in [
                                "c_broadcast", "c_sync_comm_stream",
                                "coalesce_tensor"
                        ]:
3574
                            continue
3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
3586
                # TODO already inited, do nothing, should log a warning
3587 3588 3589
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
3590
        return param
Y
Yu Yang 已提交
3591

Y
Yu Yang 已提交
3592
    def append_op(self, *args, **kwargs):
3593 3594 3595 3596 3597 3598
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
J
Jiabin Yang 已提交
3599
        if _non_static_mode():
3600
            attrs = kwargs.get("attrs", {})
Z
zyfncg 已提交
3601
            inplace_map = kwargs.get("inplace_map", None)
J
Jiabin Yang 已提交
3602
            type = kwargs.get("type", None)
3603 3604 3605 3606
            warnings.warn(
                "Op `%s` is executed through `append_op` under the dynamic mode, "
                "the corresponding API implementation needs to be upgraded to "
                "using `_C_ops` method." % type, DeprecationWarning)
3607 3608 3609
            op = Operator(
                block=self,
                desc=None,
J
Jiabin Yang 已提交
3610
                type=type,
M
minqiyang 已提交
3611 3612
                inputs=None,
                outputs=None,
3613
                attrs=attrs)
3614

M
minqiyang 已提交
3615 3616 3617
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
L
lujun 已提交
3618
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
3619 3620

            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
3621
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
3622 3623
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
Z
zyfncg 已提交
3624 3625
                                       kwargs.get("stop_gradient", False),
                                       inplace_map)
M
minqiyang 已提交
3626
        else:
3627 3628
            from paddle.fluid.dygraph.base import param_guard

3629
            op_desc = self.desc.append_op()
3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642
            # NOTE(Aurelius84): In case of @to_static, all VarBase(s) should
            # be converted into Variable(s) with same name and block location.
            # This is ONE and ONLY logic of type transformation of dy2static.
            inputs = kwargs.get("inputs", None)
            outputs = kwargs.get("outputs", None)
            with param_guard(inputs), param_guard(outputs):
                op = Operator(
                    block=self,
                    desc=op_desc,
                    type=kwargs.get("type", None),
                    inputs=inputs,
                    outputs=outputs,
                    attrs=kwargs.get("attrs", None))
3643

M
minqiyang 已提交
3644
            self.ops.append(op)
M
minqiyang 已提交
3645

3646 3647
        return op

W
Wu Yi 已提交
3648
    def _insert_op(self, index, *args, **kwargs):
3649 3650 3651 3652 3653 3654 3655 3656 3657
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
3658
        self._sync_with_cpp()
F
fangshuixun007 已提交
3659
        return self._insert_op_without_sync(index, *args, **kwargs)
Q
qiaolongfei 已提交
3660

3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677
    def _insert_op_without_sync(self, index, *args, **kwargs):
        """
        Insert an Operator according to the giving arguments, 
        without sync_with_cpp to meke the compilation faster.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
        op_desc = self.desc._insert_op(index)
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

    def _remove_op(self, index, sync=True):
3678 3679 3680 3681 3682 3683 3684 3685 3686
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
3687 3688
        if sync == True:
            self._sync_with_cpp()
W
Wu Yi 已提交
3689
        self.desc._remove_op(index, index + 1)
3690 3691
        del self.ops[index]

W
Wu Yi 已提交
3692
    def _slice_ops(self, start, end):
3693 3694 3695 3696 3697 3698 3699 3700 3701 3702
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
3703
        return self.ops[start:end]
Y
Yancey1989 已提交
3704

W
Wu Yi 已提交
3705
    def _prepend_op(self, *args, **kwargs):
J
Jiabin Yang 已提交
3706
        if _non_static_mode():
J
Jiabin Yang 已提交
3707 3708
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
3709
            op = Operator(
J
Jiabin Yang 已提交
3710
                self, None, type=type, inputs=None, outputs=None, attrs=attrs)
M
minqiyang 已提交
3711

J
Jiabin Yang 已提交
3712
            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
3713
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
3714 3715
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
3716
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
3717
        else:
3718 3719 3720 3721 3722 3723 3724 3725
            op_desc = self.desc._prepend_op()
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
3726
            self.ops.insert(0, op)
3727

Y
Yu Yang 已提交
3728 3729
        return op

W
Wu Yi 已提交
3730
    def _sync_with_cpp(self):
3731
        """
3732 3733
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
3734
        """
Q
Qiao Longfei 已提交
3735 3736 3737
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754
                is_stop_gradient = False
                if var.has_stop_gradient():
                    is_stop_gradient = var.stop_gradient()
                if var.has_is_parameter() and var.is_parameter():
                    self.create_parameter(
                        name=var.name(),
                        desc=var,
                        type=var.type(),
                        shape=var.shape(),
                        dtype=var.dtype(),
                        stop_gradient=is_stop_gradient)
                else:
                    self.create_var(
                        name=var.name(),
                        desc=var,
                        type=var.type(),
                        stop_gradient=is_stop_gradient)
Q
Qiao Longfei 已提交
3755

3756
        # sync variables removed from c++ end
3757
        for var in list(self.vars.keys()):
M
minqiyang 已提交
3758
            if not self.desc.find_var(cpt.to_bytes(var)):
3759 3760
                self.vars.pop(var)

Q
Qiao Longfei 已提交
3761
        # sync operators from cpp
3762 3763 3764 3765
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
3782 3783 3784 3785 3786

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
3787
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
3788 3789 3790 3791 3792 3793 3794

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
3808 3809 3810 3811
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
3812
    def _copy_param_info_from(self, other):
3813
        """
3814 3815
        Copy the information of parameters from the other block.

3816
        Args:
3817 3818 3819 3820 3821
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
3822 3823 3824 3825 3826

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
3827 3828
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
3829
        for p in other.iter_parameters():
3830 3831 3832
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
3833 3834
                # if the Parameter is pruned, v may be None
                continue
3835
            assert isinstance(v, Variable)
3836
            new_p = None
L
Leo Chen 已提交
3837
            if in_dygraph_mode():
J
Jiabin Yang 已提交
3838
                new_p = EagerParamBase(
3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name)
            else:
J
Jiabin Yang 已提交
3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875
                if _in_legacy_dygraph():
                    new_p = ParamBase(
                        shape=v.shape,
                        dtype=v.dtype,
                        type=v.type,
                        lod_level=v.lod_level,
                        stop_gradient=p.stop_gradient,
                        trainable=p.trainable,
                        optimize_attr=p.optimize_attr,
                        regularizer=p.regularizer,
                        error_clip=p.error_clip,
                        name=v.name)
                else:
                    new_p = Parameter(
                        block=self,
                        shape=v.shape,
                        dtype=v.dtype,
                        type=v.type,
                        lod_level=v.lod_level
                        if v.type == core.VarDesc.VarType.LOD_TENSOR else None,
                        stop_gradient=p.stop_gradient,
                        trainable=p.trainable,
                        optimize_attr=p.optimize_attr,
                        regularizer=p.regularizer,
                        error_clip=p.error_clip,
                        name=v.name)
3876 3877
            self.vars[new_p.name] = new_p

3878
    def _clone_variable(self, var, force_persistable=True):
3879 3880
        """
        Clone a variable into current block.
3881

3882 3883
        Args:
            var: the variable to be cloned.
3884 3885 3886
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
3887 3888

        Returns:
3889
            Variable: the new  variable cloned from 'var' in current block.
3890 3891
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
3892 3893 3894 3895 3896
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
3897 3898
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
3899
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
3900 3901 3902 3903 3904 3905
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
3906
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
3907 3908
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
3909 3910 3911 3912 3913 3914 3915
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
3916
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
3917 3918
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
3919
        return ret_var
3920

Y
Yu Yang 已提交
3921

3922 3923 3924 3925 3926 3927
# NOTE(zjl): you should be careful that after you call this method,
# some Python Variable and all Python Operators should not be used
# again. Because all Python Variables and all Python Operators are
# re-constructed inside this method. The underlying VarDesc(OpDesc)
# of some old Python Variables(all old Python Operators) may have 
# been destructed.
3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943
def _apply_pass(main_program,
                startup_program,
                pass_name,
                pass_attrs={},
                pass_attr_types={}):
    assert isinstance(pass_attrs, dict), "pass_attrs must be dict"
    assert isinstance(pass_attr_types, dict), "pass_attr_types must be dict"
    tmp_main_program = core.ProgramDesc(main_program.desc)
    tmp_startup_program = core.ProgramDesc(startup_program.desc)
    attrs = core.apply_pass(tmp_main_program, tmp_startup_program, pass_name,
                            pass_attrs, pass_attr_types)
    main_program._rebuild_from_desc(tmp_main_program)
    startup_program._rebuild_from_desc(tmp_startup_program)
    return attrs


3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node,
                          core.Node), 'node must be the instance of core.Node.'
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

4039
    def remove_input_by_id(self, node_id):
4040 4041 4042 4043 4044 4045
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
4046
        self.node.remove_input(node_id)
4047

4048
    def remove_input(self, node):
4049 4050 4051 4052
        """
        Remove a node from inputs.

        Args:
4053
            node(IrNode): the node being removed.
4054
        """
4055
        self.node.remove_input(node.node)
4056

4057
    def append_input(self, node):
4058 4059 4060 4061
        """
        Append a node in inputs.

        Args:
4062
            node(IrNode): the node being appended.
4063
        """
4064
        self.node.append_input(node.node)
4065 4066 4067 4068 4069 4070 4071 4072

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

4073
    def remove_output_by_id(self, node_id):
4074 4075 4076 4077 4078 4079
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
4080
        self.node.remove_output(node_id)
4081

4082
    def remove_output(self, node):
4083 4084 4085 4086
        """
        Remove a node from outputs.

        Args:
4087
            node(IrNode): the node being removed.
4088
        """
4089
        self.node.remove_output(node.node)
4090

4091
    def append_output(self, node):
4092 4093 4094 4095
        """
        Append a node in outputs.

        Args:
4096
            node(IrNode): the node being appended.
4097
        """
4098
        self.node.append_output(node.node)
4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_var(), \
            'node must be the instance of core.Node and it must be a variable node.'
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
4146
            "The node variable description can not be None."
4147 4148 4149 4150 4151 4152 4153 4154 4155 4156
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
4157
            "The node variable description can not be None."
4158 4159
        return self.node.var().persistable()

4160 4161 4162 4163 4164 4165 4166 4167
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
4168
            "The node variable description can not be None."
4169 4170 4171 4172 4173 4174 4175 4176 4177 4178
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
4179
            "The node variable description can not be None."
4180 4181 4182 4183 4184 4185 4186 4187 4188 4189
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
4190
            "The node variable description can not be None."
4191 4192
        return self.node.var().shape()

4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_op(), \
            'node must be the instance of core.Node and it must be a operator node.'
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4240
            "The node operator description can not be None."
4241 4242
        self.node.op()._rename_input(old_input_name, new_input_name)

4243 4244 4245 4246 4247 4248 4249 4250 4251
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4252
            "The node operator description can not be None."
4253 4254
        self.node.op()._rename_output(old_output_name, new_output_name)

4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4266
            "The node operator description can not be None."
4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4280
            "The node operator description can not be None."
4281 4282 4283 4284 4285 4286 4287 4288 4289 4290
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4291
            "The node operator description can not be None."
4292 4293
        return self.node.op().set_type(new_type)

4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4309
            "The node operator description can not be None."
4310 4311 4312 4313
        desc = self.node.op()
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and \
4314
                all(isinstance(v, Block) for v in val):
4315 4316
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
4317
                isinstance(val, core.ProgramDesc):
4318 4319 4320 4321
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

4322 4323 4324 4325 4326 4327 4328 4329
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4330
            "The node operator description can not be None."
4331 4332 4333 4334 4335 4336 4337 4338 4339 4340
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4341
            "The node operator description can not be None."
4342 4343
        return self.node.op().output_arg_names()

4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


4365 4366
class IrGraph(object):
    """
4367
    Python IrGraph. Beneath it is a core.Graph, which is used for
4368
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
4369 4370
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
4371 4372 4373 4374
    """

    def __init__(self, graph, for_test=False):
        """
4375 4376
        Construct an IrGraph using core.Graph.

4377 4378 4379 4380 4381 4382 4383 4384 4385
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

4386 4387 4388 4389
    def clone(self):
        """
        Create a new and duplicated IrGraph.

4390 4391 4392
        Warns:
            The method only clones the graph structure, not its attributes.

4393 4394 4395
        Returns:
            IrGraph: A new and duplicated graph.
        """
4396
        g = self.graph.clone()
4397 4398
        return IrGraph(g, self._for_test)

4399
    def is_test(self):
4400 4401 4402
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
4403 4404
        return self._for_test

W
WangZhen 已提交
4405
    def all_nodes(self):
4406 4407 4408
        """
        Return all nodes included in the graph as a set.
        """
4409
        return {IrNode(node) for node in self.graph.nodes()}
4410

4411
    def all_var_nodes(self):
4412 4413 4414
        """
        Return all variable nodes included in the graph as a set.
        """
4415
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
4416

4417
    def all_persistable_nodes(self):
4418 4419 4420
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
4421 4422 4423 4424 4425
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
4426
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
4427

4428
    def all_op_nodes(self):
4429 4430 4431
        """
        Return all operator nodes included in the graph as a set.
        """
4432
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
4433

4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450
    def all_sub_graphs(self, for_test=False):
        """
        Return all sub_graphs included in the main graph as a set.
        """

        return [
            IrGraph(
                self.graph.get_sub_graph(i), for_test=for_test)
            for i in range(self.graph.sub_graph_size())
        ]

    def get_sub_graph(self, i, for_test=False):
        """
        Return i-th sub_graph in the main graph.
        """
        return IrGraph(self.graph.get_sub_graph(i), for_test=for_test)

4451
    def create_persistable_node(self, name, var_type, shape, var_dtype):
4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
4463
            IrVarNode: the created persistable variable node.
4464
        """
4465 4466 4467 4468 4469
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
4470
        return IrVarNode(self.graph.create_var_node(var_desc))
4471 4472

    def create_var_node(self, name, var_type, shape, var_dtype):
4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
4484
            IrVarNode: the created variable node.
4485 4486
        """

4487 4488 4489 4490
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
4491
        return IrVarNode(self.graph.create_var_node(var_desc))
4492

4493 4494 4495 4496 4497 4498
    def create_control_dep_var(self):
        """
        create a control var
        """
        return IrVarNode(self.graph.create_control_dep_var())

4499
    def create_var_node_from_desc(self, var_desc):
4500 4501 4502 4503 4504 4505 4506 4507
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
4508
            IrVarNode: the created variable node.
4509
        """
4510
        return IrVarNode(self.graph.create_var_node(var_desc))
4511 4512

    def create_op_node(self, op_type, attrs, inputs, outputs):
4513 4514 4515 4516 4517 4518 4519
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
T
tianshuo78520a 已提交
4520
            outputs(dict): the outputs of the operator node.
4521 4522

        Returns:
4523
            IrOpNode: the created operator node.
4524
        """
4525 4526
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
4527
        for attr, value in six.iteritems(attrs):
4528
            self._update_desc_attr(op_desc, attr, value)
4529
        for input_name, var_nodes in six.iteritems(inputs):
4530 4531 4532 4533
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
4534
        for output_name, var_nodes in six.iteritems(outputs):
4535 4536 4537 4538
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
4539
        return IrOpNode(self.graph.create_op_node(op_desc))
4540 4541

    def create_op_node_from_desc(self, op_desc):
4542 4543 4544 4545 4546 4547 4548
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
4549
            IrOpNode: the created operator node.
4550
        """
4551
        return IrOpNode(self.graph.create_op_node(op_desc))
4552 4553

    def update_input_link(self, old_input_node, new_input_node, op_node):
4554 4555 4556 4557
        """
        Update the input's link of a operator node.

        Args:
4558 4559 4560
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
4561
        """
4562
        assert old_input_node.node in self.graph.nodes() and new_input_node.node in \
T
tangwei12 已提交
4563
            self.graph.nodes() and op_node.node in self.graph.nodes(), \
4564
            'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
4565 4566 4567 4568
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
4569
        op_node.rename_input(old_input_node.name(), new_input_node.name())
4570

4571 4572 4573 4574 4575 4576 4577 4578 4579 4580
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
        assert old_output_node.node in self.graph.nodes() and new_output_node.node in \
T
tangwei12 已提交
4581
            self.graph.nodes() and op_node.node in self.graph.nodes(), \
4582
            'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
4583 4584 4585 4586 4587 4588
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

4589
    def link_to(self, node_in, node_out):
4590 4591 4592 4593
        """
        Connect two nodes.

        Args:
4594 4595
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
4596
        """
4597 4598 4599 4600
        assert node_in.node in self.graph.nodes(), (
            'node_in(%s) must be in the graph nodes.' % node_in.node.name())
        assert node_out.node in self.graph.nodes(), (
            'node_out(%s) must be in the graph nodes.' % node_out.node.name())
4601 4602
        node_in.append_output(node_out)
        node_out.append_input(node_in)
4603 4604

    def safe_remove_nodes(self, remove_nodes):
4605 4606 4607 4608 4609 4610 4611
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
4612
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
4613 4614 4615 4616
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
4617 4618
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
4619

Z
Zhen Wang 已提交
4620 4621 4622 4623 4624 4625 4626 4627
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
4628
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
4629 4630 4631 4632
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
4633
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
4634 4635 4636
                        ]
                    else:
                        var_nodes[each_var_name].append(
4637 4638
                            self._find_node_by_name(node.outputs,
                                                    each_var_name))
Z
Zhen Wang 已提交
4639 4640
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
4641
    def has_circle(self):
4642 4643 4644 4645 4646 4647
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
4648 4649 4650
        return core.has_circle(self.graph)

    def graph_num(self):
4651 4652 4653 4654 4655 4656
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
4657 4658 4659
        return core.graph_num(self.graph)

    def topology_sort(self):
4660 4661 4662
        """
        Perform the topology sort operation on the graph.

T
tianshuo78520a 已提交
4663
        Notes: the `graph` can not contain a circle.
4664 4665

        Returns:
Z
Zhen Wang 已提交
4666
            list(IrNode): nodes in topology order.
4667
        """
4668
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
4669
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
4670 4671

    def build_adjacency_list(self):
4672 4673 4674 4675
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
4676
            dict{IrNode: set(IrNode)}: the adjacency list.
4677
        """
4678 4679 4680 4681 4682
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
4683

4684 4685 4686 4687 4688 4689 4690 4691
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
4692
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
4693 4694 4695 4696 4697
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

4698 4699
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
T
tangwei12 已提交
4700 4701 4702
            exited_code = subprocess.call(
                'dot -Tpdf ' + dot_file_path + ' -o ' + pdf_save_path,
                shell=True)
4703 4704 4705 4706 4707
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

4708
        remove_ctr_vars = set()
4709
        if remove_ctr_var:
4710
            for node in self.all_var_nodes():
4711 4712 4713
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
4714 4715
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

4716 4717
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
4718 4719 4720 4721 4722 4723
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
4724 4725 4726 4727
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
4728 4729
        if not os.path.exists(save_path):
            os.makedirs(save_path)
4730 4731 4732 4733 4734 4735 4736
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
4737 4738 4739
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
4740
        WARN: When the graph includes backward operator nodes, the
4741 4742 4743 4744 4745 4746
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
4747
        convert_pass = core.get_pass('graph_to_program_pass')
4748 4749
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
4750 4751 4752 4753
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

4754 4755 4756 4757 4758 4759 4760 4761
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
4762 4763
        assert target_node is not None, (
            "Cannot find the target node (%s)in the giving set." % node_name)
4764 4765
        return target_node

4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
4782
class Program(object):
D
dzhwinter 已提交
4783
    """
4784
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
4785
    control flow op like conditional_block, while :ref:`api_paddle_fluid_layers_While` is included,
J
Jiabin Yang 已提交
4786
    it will contain nested block.
4787

J
Jiabin Yang 已提交
4788 4789 4790
    Please reference the
    `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_
    for details.
D
dzhwinter 已提交
4791

J
Jiabin Yang 已提交
4792
    A set of Program usually contains startup program and main program.
J
Jiabin Yang 已提交
4793
    A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main
J
Jiabin Yang 已提交
4794 4795 4796 4797 4798 4799 4800
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

J
Jiabin Yang 已提交
4801
    **Notes**:
4802 4803 4804
        **we have** :ref:`api_paddle_fluid_framework_default_startup_program` **and** :ref:`api_paddle_fluid_framework_default_main_program`
        **by default, a pair of them will shared the parameters. The** :ref:`api_paddle_fluid_framework_default_startup_program` **only run once to initialize parameters,**
        :ref:`api_paddle_fluid_framework_default_main_program` **run in every mini batch and adjust the weights.**
D
dzhwinter 已提交
4805 4806

    Returns:
J
Jiabin Yang 已提交
4807
        Program: An empty Program.
D
dzhwinter 已提交
4808 4809

    Examples:
4810 4811
        .. code-block:: python

4812 4813 4814 4815
            import paddle
            import paddle.static as static

            paddle.enable_static()
4816

4817 4818 4819 4820 4821
            main_program = static.Program()
            startup_program = static.Program()
            with static.program_guard(main_program=main_program, startup_program=startup_program):
                x = static.data(name="x", shape=[-1, 784], dtype='float32')
                y = static.data(name="y", shape=[-1, 1], dtype='int32')
4822
                z = static.nn.fc(name="fc", x=x, size=10, activation="relu")
4823 4824 4825

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
4826 4827 4828

    """

4829 4830
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
4831 4832
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
4833 4834
        global global_prog_seed
        self._seed = global_prog_seed
Y
yuyang18 已提交
4835
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
4836
        self.__op_role_var = []
T
tangwei12 已提交
4837

4838 4839
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
4840
        self._is_distributed = False
4841
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
4842
        self._is_chief = False
4843 4844 4845
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
4846
        self._endpoints = []
4847 4848 4849
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
4850
        self._trainers_endpoints = []
4851
        # the distributed lookup table names
T
tangwei12 已提交
4852
        self._distributed_lookup_table = None
4853 4854 4855

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
4856 4857
        self._use_lamb = False

4858 4859 4860
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
4861

4862 4863 4864
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
4865
        self._program_config = None
4866

H
hutuxian 已提交
4867 4868 4869
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

4870 4871 4872
        # assigned if this program has been parsed by a heter pipeline parameter server optimizer
        self._heter_pipeline_opt = None

4873 4874 4875
        # appending gradients times
        self._appending_grad_times = 0

4876 4877 4878 4879
        # identifier for auto checkpoint
        self._auto_checkpoint_name = unique_name.generate(
            "__auto_checkpoint_program__")

4880 4881
        # compiled program, i.e. Graph
        self._graph = None
4882 4883
        # to tag whether is startup_program
        self._is_start_up_program_ = False
4884

4885
    def _find_var_class_kwargs(self, new_desc):
4886 4887 4888 4889 4890 4891 4892 4893
        # NOTE: not all variables support shape/dtype/lod_level methods.
        # For example: RAW, STEP_SCOPES, etc.
        def get_var_desc_attr_or_none(var_desc, attr_name, allowed_types):
            if var_desc.type() in allowed_types:
                return getattr(var_desc, attr_name)()
            else:
                return None

4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909
        old_desc = self.desc
        all_new_vars = []
        block_num = new_desc.num_blocks()
        for idx in range(block_num):
            new_block_desc = new_desc.block(idx)
            all_new_vars.append([])
            block_new_vars = all_new_vars[-1]
            for new_var_desc in new_block_desc.all_vars():
                if self.blocks[idx].has_var(new_var_desc.name()):
                    old_var = self.blocks[idx].var(new_var_desc.name())
                else:
                    old_var = None

                kwargs = {
                    'type': new_var_desc.type(),
                    'name': new_var_desc.name(),
4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924
                    'shape': get_var_desc_attr_or_none(new_var_desc, "shape", [
                        core.VarDesc.VarType.LOD_TENSOR,
                        core.VarDesc.VarType.SELECTED_ROWS,
                        core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                    ]),
                    'dtype': get_var_desc_attr_or_none(new_var_desc, "dtype", [
                        core.VarDesc.VarType.LOD_TENSOR,
                        core.VarDesc.VarType.SELECTED_ROWS,
                        core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                    ]),
                    'lod_level':
                    get_var_desc_attr_or_none(new_var_desc, "lod_level", [
                        core.VarDesc.VarType.LOD_TENSOR,
                        core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                    ]),
4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962
                    'error_clip': old_var.error_clip
                    if old_var is not None else None,
                    'stop_gradient': old_var.stop_gradient
                    if old_var is not None else False,
                    'is_data': old_var.is_data
                    if old_var is not None else False,
                    'need_check_feed': new_var_desc.need_check_feed(),
                    'belong_to_optimizer': old_var.belong_to_optimizer
                    if old_var is not None else False,
                }

                if isinstance(old_var, Parameter):
                    kwargs.update({
                        'trainable': old_var.trainable,
                        'optimize_attr': old_var.optimize_attr,
                        'regularizer': old_var.regularizer,
                        'do_model_average': old_var.do_model_average,
                        'need_clip': old_var.need_clip,
                        'is_distributed': old_var.is_distributed,
                        'is_parameter': old_var.is_parameter,
                    })
                    block_new_vars.append({
                        'class': Parameter,
                        'kwargs': copy.deepcopy(kwargs),
                    })
                else:
                    kwargs['persistable'] = new_var_desc.persistable()
                    block_new_vars.append({
                        'class': Variable,
                        'kwargs': copy.deepcopy(kwargs),
                    })

        return all_new_vars

    def _rebuild_from_desc(self, desc):
        all_new_vars = self._find_var_class_kwargs(desc)
        block_num = desc.num_blocks()
        assert block_num == len(all_new_vars)
4963
        assert block_num == self.desc.num_blocks()
4964 4965

        # clear old blocks and desc
4966 4967 4968 4969 4970 4971 4972 4973 4974
        for idx in range(block_num):
            block = self.blocks[idx]
            block.vars.clear()
            block.ops.clear()

        for idx in range(block_num):
            block_desc = self.blocks[idx].desc
            new_block_desc = desc.block(idx)
            block_desc._move_from(new_block_desc)
4975

4976
        del desc
4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995

        # add new vars first
        for idx in range(block_num):
            block = self.blocks[idx]
            for new_var in all_new_vars[idx]:
                clazz = new_var['class']
                kwargs = new_var['kwargs']
                kwargs['block'] = block
                clazz(**kwargs)

        # then append op
        for idx in range(block_num):
            block = self.blocks[idx]
            block_desc = self.desc.block(idx)
            for op_idx in range(block_desc.op_size()):
                op_desc = block_desc.op(op_idx)
                op = Operator(block=block, desc=op_desc)
                block.ops.append(op)

4996 4997 4998 4999 5000 5001 5002 5003 5004 5005
    def global_seed(self, seed=0):
        """
        Set global seed for Program

        Returns:
            None.

        Examples:
            .. code-block:: python

5006 5007
                import paddle
                import paddle.static as static
5008

5009 5010 5011
                paddle.enable_static()

                prog = static.default_main_program()
5012 5013 5014 5015 5016
                print(prog.random_seed)
                ## 0
                ## the default random seed is 0

                prog.global_seed(102)
5017
                prog1 = static.default_main_program()
5018 5019 5020 5021 5022 5023 5024 5025
                print(prog1.random_seed)
                ## 102
                ## the random seed is 102
        """
        global global_prog_seed
        global_prog_seed = seed
        self._seed = global_prog_seed

Y
yuyang18 已提交
5026
    @property
5027
    def _op_role(self):
Y
yuyang18 已提交
5028 5029 5030 5031 5032 5033 5034 5035
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
5036
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
5037 5038 5039 5040
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
5041 5042
        return self._current_role

5043 5044
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
5045 5046 5047
        self._current_role = role

    @property
5048
    def _op_role_var(self):
Y
yuyang18 已提交
5049
        """
5050
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
5051

5052
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
5053 5054 5055

        Notes: This is a very low-level API. Users should not use it directly.
        """
5056
        return self.__op_role_var
Y
yuyang18 已提交
5057

5058
    @signature_safe_contextmanager
5059 5060 5061 5062 5063
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
5064 5065 5066 5067
        try:
            yield
        finally:
            self._current_role = tmp_role
5068

S
rename  
sneaxiy 已提交
5069
    @signature_safe_contextmanager
W
Wu Yi 已提交
5070
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
5071 5072 5073 5074 5075 5076 5077
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
5078
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
5079 5080 5081

        Examples:

5082
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
5083
            >>> p, g = backward(...)
W
Wu Yi 已提交
5084
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
5085 5086
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
5087
        tmp_role = self._current_role
5088
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
5089

Y
yuyang18 已提交
5090 5091
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
5092
        self.__op_role_var = [
5093 5094 5095
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
5096 5097 5098 5099 5100
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
Y
Yu Yang 已提交
5101

S
rename  
sneaxiy 已提交
5102
    @signature_safe_contextmanager
X
Xin Pan 已提交
5103
    def _lr_schedule_guard(self, is_with_opt=False):
5104 5105 5106 5107 5108 5109 5110
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
5111 5112 5113 5114
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
5115 5116 5117

        Examples:

5118
            >>> import paddle.fluid as fluid
5119 5120 5121 5122
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
5123 5124

        tmp_role = self._current_role
5125
        tmp_var = self.__op_role_var
5126

5127 5128
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
5129 5130
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
5131
        # TODO(typhoonzero): how to set target learning rate var
5132
        self.__op_role_var = []
5133 5134 5135 5136 5137
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
5138

5139
    def __str__(self):
Y
yuyang18 已提交
5140 5141 5142 5143 5144 5145 5146 5147 5148
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Program.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Program string.

        Examples:
            .. code-block:: python

5169 5170
            import paddle
            import paddle.static as static
5171

5172 5173 5174
            paddle.enable_static()

            cur_program = static.Program()
5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_program._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
5186
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
5187 5188 5189 5190
            type(skip_op_callstack))
        program_str = ""
        for block in self.blocks:
            program_str += block._to_readable_code(skip_op_callstack)
5191
            program_str += '\n'
5192
        return program_str
Y
Yang Yang(Tony) 已提交
5193

F
fengjiayi 已提交
5194 5195 5196
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
5197

J
Jiabin Yang 已提交
5198 5199 5200
        Args:

            throw_on_error (bool): raise Value error when any of required fields is not set.
F
fengjiayi 已提交
5201

J
Jiabin Yang 已提交
5202
            with_details (bool): True if more details about variables and parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need to print.
Y
yuyang18 已提交
5203

H
haowang101779990 已提交
5204
        Returns:
J
Jiabin Yang 已提交
5205
            str: The debug string describe current Program.
Y
yuyang18 已提交
5206 5207

        Raises:
J
Jiabin Yang 已提交
5208
            ValueError: If any of required fields is not set and throw_on_error is True.
F
fengjiayi 已提交
5209

5210 5211 5212
        Examples:
            .. code-block:: python

5213 5214 5215 5216
                import paddle
                import paddle.static as static

                paddle.enable_static()
5217

5218 5219 5220
                prog = static.default_main_program()
                x = static.data(name="X", shape=[2,3], dtype="float32")
                pred = static.nn.fc(x, size=3)
5221
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
5222
                prog_string_with_details = prog.to_string(throw_on_error=False, with_details=True)
T
tianshuo78520a 已提交
5223
                print("program string without detail: {}".format(prog_string))
5224
                print("program string with detail: {}".format(prog_string_with_details))
F
fengjiayi 已提交
5225
        """
5226 5227 5228 5229 5230 5231 5232 5233 5234
        assert isinstance(
            throw_on_error, bool
        ), "The type of throw_on_error parameter is wrong, expected bool, but received {}.".format(
            type(throw_on_error))
        assert isinstance(
            with_details, bool
        ), "The type of with_details parameter is wrong, expected bool, but received {}.".format(
            type(with_details))

F
fengjiayi 已提交
5235 5236 5237 5238 5239 5240
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
5241 5242
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
5243 5244
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
5245

W
Wu Yi 已提交
5246
    def _get_desc(self):
Y
yuyang18 已提交
5247 5248 5249 5250 5251 5252 5253
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
5254 5255
        return self.desc

X
version  
Xin Pan 已提交
5256 5257 5258
    def _version(self):
        return self.desc._version()

5259
    def clone(self, for_test=False):
Y
yuyang18 已提交
5260
        """
5261 5262 5263 5264
        .. note:::
            1. :code:`Program.clone()` method DOES NOT clone :ref:`api_paddle_io_DataLoader` . 
            2. Recommend you to use :code:`clone` before using :code:`Opimizer.minimize` . 
            3. This API has no effect in Dygraph Mode.
Y
yuyang18 已提交
5265

5266
        Create a new Program with forward content of original one when ``for_test=True``.
5267
        Create a new Program as same as the original one when ``for_test=False``.
5268

5269
        Some operators, e.g., :ref:`api_paddle_fluid_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
5270 5271 5272
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
5273

5274 5275
        * Set for_test to False when you want to clone the program for training.
        * Set for_test to True when you want to clone the program for testing.
5276 5277
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
J
Jiabin Yang 已提交
5278
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`.
Y
yuyang18 已提交
5279

J
Jiabin Yang 已提交
5280
        For Example:
5281
          ::
L
Luo Tao 已提交
5282

5283 5284 5285 5286 5287 5288
            import paddle
            import paddle.static as static

            paddle.enable_static()

            img = static.data(name='image', shape=[None, 784])
5289
            pred = static.nn.fc(x=img, size=10, actvation='relu')
5290
            loss = paddle.mean(pred)
5291
            # Here we use clone before Momentum
5292 5293
            test_program = static.default_main_program().clone(for_test=True)
            optimizer = paddle.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
5294
            optimizer.minimize(loss)
5295

J
Jiabin Yang 已提交
5296
        Args:
5297

5298 5299
            for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True`
                and prune the backward and optimize part of the program. The default value is :code:`False` .
5300

J
Jiabin Yang 已提交
5301
        Returns:
5302
            Program: A new Program with forward content of original one when ``for_test=True``.  A new Program as same as the original one when ``for_test=False``
5303

Y
yuyang18 已提交
5304 5305 5306

        Examples:

5307 5308 5309 5310 5311 5312 5313
            .. note::
                The Program's order maybe different after :code:`clone` and
                this will not affect your training or testing progress. In the following
                example we give you an simple method :code:`print_prog(program)` to
                print Program Descs inorder to make sure you have same print result
                after :code:`clone`:

5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329
            .. code-block:: python

                import six

                def print_prog(prog):
                    for name, value in sorted(six.iteritems(prog.block(0).vars)):
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
                        for key, value in sorted(six.iteritems(op.all_attrs())):
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


5330
            1. To clone a test program, the sample code is:
5331 5332 5333
                .. code-block:: python

                    import six
5334 5335 5336 5337 5338 5339
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

5352 5353
                    train_program = static.Program()
                    startup_program = static.Program()
J
Jiabin Yang 已提交
5354 5355 5356

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
5357 5358 5359
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            img = static.data(name='image', shape=[None, 784])
5360
                            hidden = static.nn.fc(x=img, size=200, activation='relu')
5361 5362
                            hidden = F.dropout(hidden, p=0.5)
                            loss = F.cross_entropy(
5363
                                input=static.nn.fc(x=hidden, size=10, activation='softmax'),
5364 5365
                                label=static.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = paddle.mean(loss)
5366
                            test_program = train_program.clone(for_test=True)
5367
                    print_prog(test_program)
J
Jiabin Yang 已提交
5368 5369 5370 5371

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

5372
                    # In Paddle we will share weights by using the same Tensor name. In train and test program
J
Jiabin Yang 已提交
5373 5374 5375 5376
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

5377 5378 5379
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
5380 5381 5382
                            sgd.minimize(avg_loss)


5383
            2. The clone method can be avoid if you create program for training and program for testing individually.
5384 5385 5386
                .. code-block:: python

                    import six
5387 5388 5389 5390 5391 5392
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
5404

5405
                    def network():
5406
                        img = static.data(name='image', shape=[None, 784])
5407
                        hidden = static.nn.fc(x=img, size=200, activation='relu')
5408 5409
                        hidden = F.dropout(hidden, p=0.5)
                        loss = F.cross_entropy(
5410
                            input=static.nn.fc(x=hidden, size=10, activation='softmax'),
5411 5412
                            label=static.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = paddle.mean(loss)
5413 5414
                        return avg_loss

5415 5416 5417 5418 5419
                    train_program_2 = static.Program()
                    startup_program_2 = static.Program()
                    test_program_2 = static.Program()
                    with static.program_guard(train_program_2, startup_program_2):
                        with utils.unique_name.guard():
5420
                            avg_loss = network()
5421
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
5422
                            sgd.minimize(avg_loss)
5423
                    # the test startup program is not used.
5424 5425
                    with static.program_guard(test_program_2, startup_program_2):
                        with utils.unique_name.guard():
5426 5427
                            avg_loss = network()
                    print_prog(test_program_2)
5428

5429
            The two code snippets above will generate and print same programs.
5430
        """
5431

T
tangwei12 已提交
5432
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
5433 5434 5435
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

5436
        pruned_origin_block_id_map = None
5437
        if for_test:
5438 5439 5440 5441 5442 5443 5444 5445 5446
            forward_prog = Program()
            forward_prog.desc, pruned_origin_block_id_map = core.prune_backward(
                self.desc)
            forward_prog.blocks = [
                Block(forward_prog, i)
                for i in six.moves.range(forward_prog.desc.num_blocks())
            ]
            forward_prog._sync_with_cpp()
            p = forward_prog._inference_optimize(prune_read_op=False)
5447
        else:
5448
            p = Program()
G
gongweibao 已提交
5449 5450
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
5451
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
5452 5453 5454
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
5455 5456

            p._current_role = self._current_role
5457
            p.__op_role_var = self.__op_role_var
5458
            p._appending_grad_times = self._appending_grad_times
5459 5460
            if hasattr(self, 'lr_sheduler'):
                p.lr_sheduler = self.lr_sheduler
G
gongweibao 已提交
5461

T
tangwei12 已提交
5462
            # NOTE(zhiqiu): we sync the cloned program, to update its program by
5463
            # its desc.
W
Wu Yi 已提交
5464
            p._sync_with_cpp()
5465

W
Wu Yi 已提交
5466
        p._copy_param_info_from(self)
5467
        p._copy_data_info_from(self, pruned_origin_block_id_map)
5468
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
5469
        return p
5470

5471
    def _prune(self, targets):
Y
yuyang18 已提交
5472 5473 5474 5475 5476 5477 5478 5479
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
5480
            targets(list|Variable|Operator): A list of variables, operators, or variable names
Y
yuyang18 已提交
5481 5482 5483 5484
                need to be pruned

        Returns:
            Program:  A new, pruned program.
5485
        """
5486
        return self._prune_with_input([], targets)
5487 5488

    def _prune_with_input(self, feeded_var_names, targets):
Y
yuyang18 已提交
5489
        """
5490 5491 5492 5493 5494 5495 5496 5497 5498 5499
        Prune operators and variables which are not needed to generate
        :code:`targets`. Prune operators and variables which are needed 
        to generate feeded_var 

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            feeded_var_names(list|str): A list of variable names from where
                pruning start. If it is set as [], this API works just like _prune()
5500
            targets(list|Variable|Operator): A list of variables, operators, or variable names
5501 5502 5503 5504 5505 5506
                need to be pruned

        Returns:
            Program:  A new, pruned program.
        """

T
tangwei12 已提交
5507
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
5508 5509 5510
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

5511 5512
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
5513 5514
        if not isinstance(targets, list):
            targets = [targets]
5515 5516 5517

        for var in feeded_var_names:
            if not isinstance(var, six.string_types):
5518 5519 5520
                raise ValueError(
                    "All feeded_var_names of Program._prune_with_input() can only be "
                    "str, but received %s." % type(var))
5521

5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537
        # find out all variables that can be generated or updated with given feed
        generatable_vars = set()

        for idx, op in enumerate(self.global_block().ops):
            runnable_op = True
            for name in op.input_arg_names:
                if not self.global_block().has_var(name):
                    continue
                if self.global_block().var(name).persistable:
                    continue
                if name not in generatable_vars.union(feeded_var_names):
                    runnable_op = False
                    break
            if runnable_op:
                generatable_vars = generatable_vars.union(op.output_arg_names)

5538 5539 5540 5541
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
5542 5543 5544
                    name = t.name
                elif isinstance(t, six.string_types):
                    name = str(t)
5545
                else:
5546 5547 5548
                    raise ValueError(
                        "All targets of Program._prune_with_input() can only be "
                        "Variable or Operator, but received %s." % type(t))
5549 5550 5551 5552 5553 5554

                # NOTEZ(zhiqiu): For variable to be fed in fetch_list, there two cases:
                # (1) the variable is leaf, it has no op that generates it;
                # (2) the variable is not leaf, and we need to prune the op that generates it.
                # In both cases, wo can just skip target_op of that it.
                if name in feeded_var_names:
5555 5556 5557
                    # however if the var is also updated by a runnable op, will shall keep it
                    if name not in generatable_vars:
                        continue
5558

5559 5560 5561 5562 5563 5564 5565 5566 5567
                # After transpiler processing, the op that output this
                # variable maybe has been changed, so t.op is not reliable
                # and we need to find the current op that generate this
                # variable here.
                target_op = None
                global_block = self.global_block()
                for idx, op in enumerate(global_block.ops):
                    if name in op.output_arg_names:
                        # NOTE(zhiqiu): Find op that generate target name.
T
tangwei12 已提交
5568
                        # Skip optimize op except for optimize op in targets,
5569 5570 5571 5572 5573
                        # since optimize op generates parameters.
                        if op._is_optimize_op() and op not in targets:
                            continue
                        else:
                            target_op = op
5574

5575
                if target_op is not None:
5576 5577 5578
                    targets_idx.append([target_op.block.idx, target_op.idx])
            else:
                targets_idx.append([t.block.idx, t.idx])
5579

5580
        res = Program()
5581 5582 5583
        res.desc, pruned_origin_block_id_map = core.prune(self.desc,
                                                          set(feeded_var_names),
                                                          targets_idx)
M
minqiyang 已提交
5584 5585 5586
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
5587
        res._sync_with_cpp()
5588 5589 5590 5591 5592

        res._copy_param_info_from(self)
        res._copy_data_info_from(self, pruned_origin_block_id_map)
        res._copy_dist_param_info_from(self)

5593 5594
        return res

X
Xin Pan 已提交
5595
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
5596
        """
F
fengjiayi 已提交
5597 5598 5599 5600 5601
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

5602
        3. change the :code:`is_test`
Y
yuyang18 已提交
5603 5604 5605
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

5606
        Args:
X
Xin Pan 已提交
5607 5608
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
5609

Y
yuyang18 已提交
5610 5611 5612 5613 5614 5615
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
5616
        res = Program()
5617
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
5618 5619 5620 5621

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
5622
        if prune_read_op:
5623 5624 5625 5626 5627 5628 5629 5630 5631
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
5632
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
5633 5634

        # change all `is_test` attributes to True
M
minqiyang 已提交
5635
        for i in six.moves.range(res.desc.num_blocks()):
5636
            block = res.desc.block(i)
M
minqiyang 已提交
5637
            for j in six.moves.range(block.op_size()):
5638 5639
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
5640
                    op._set_attr('is_test', True)
5641 5642 5643
                if op.type() == "batch_norm":
                    # Remove the output ReserveSpace of batch_norm if exists.
                    op.remove_output("ReserveSpace")
M
minqiyang 已提交
5644 5645 5646
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
5647
        res._sync_with_cpp()
5648 5649
        return res

5650
    def _remove_training_info(self, clip_extra=True):
5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674
        """
        This method will create a new program and do following adjustments on it:
        1. Remove all variable's `is_parameter` attribute if exist.

        2. Remove all variable's `stop_gradient` attribute if exist.

        Notes: This API is a very low level API.

        Returns:
            Program: The new program.
        """
        res = Program()
        res.desc = core.ProgramDesc(self.desc)

        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
        res._sync_with_cpp()

        for i in six.moves.range(res.desc.num_blocks()):
            block = res.desc.block(i)
            for var in block.all_vars():
                var.clear_is_parameter()
                var.clear_stop_gradient()
5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739
            if not clip_extra:
                continue
            for op_idx in range(0, block.op_size()):
                op = block.op(op_idx)
                if op.type() not in OpProtoHolder.instance().op_proto_map:
                    continue
                proto = OpProtoHolder.instance().get_op_proto(op.type())
                remove_input_list = []
                for name in op.input_names():
                    find = False
                    for input_proto in proto.inputs:
                        if input_proto.name != name:
                            continue
                        if input_proto.extra:
                            remove_input_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_input_list.append(name)
                for name in remove_input_list:
                    op.remove_input(name)

                remove_output_list = []
                for name in op.output_names():
                    find = False
                    for output_proto in proto.outputs:
                        if output_proto.name != name:
                            continue
                        if output_proto.extra:
                            remove_output_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_output_list.append(name)
                for name in remove_output_list:
                    op.remove_output(name)

                remove_attr_list = []
                op_quant_name = core.op_proto_and_checker_maker.kOpWithQuantAttrName(
                )
                quant = bool(op.attr(op_quant_name)
                             ) if op_quant_name in op.attr_names() else False
                quant_attrs = [
                    op_quant_name, "quantization_type", "skip_quant",
                    "activation_bits", "bit_length", "quantize_weight_bits",
                    "weight_quant_scale"
                ]
                for name in op.attr_names():
                    if quant:
                        if name in quant_attrs:
                            continue
                        if name.endswith("_threshold"):
                            continue
                    find = False
                    for attr_proto in proto.attrs:
                        if attr_proto.name != name:
                            continue
                        if attr_proto.extra:
                            remove_attr_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_attr_list.append(name)
                for name in remove_attr_list:
                    op.remove_attr(name)
5740 5741
        return res

5742 5743
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
5744
        """
5745 5746 5747
        .. note::
            1. All information about parameters will be lost after serialization; 
            2. This API has no effect in Dygraph mode.
Y
yuyang18 已提交
5748

5749 5750
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
5751

J
Jiabin Yang 已提交
5752
        Args:
Y
yuyang18 已提交
5753

J
Jiabin Yang 已提交
5754
            binary_str_type (str): the binary prootbuf string.
5755

J
Jiabin Yang 已提交
5756 5757
        Returns:
            Program: A deserialized Program.
5758 5759 5760 5761

        Examples:
            .. code-block:: python

5762 5763 5764 5765
                import paddle
                import paddle.static as static

                paddle.enable_static()
5766

5767 5768 5769 5770
                startup_prog = static.Program()
                main_prog = static.Program()
                with static.program_guard(startup_prog, main_prog):
                    x = static.data(name='X', shape=[1000, 784], dtype='float32')
5771

5772
                    y = static.data(name='Y', shape=[784, 100], dtype='float32')
5773

5774
                    z = paddle.matmul(x=x, y=y)
5775

5776 5777
                    binary_str = static.default_main_program().desc.serialize_to_string()
                    prog_restored = static.default_main_program().parse_from_string(binary_str)
5778

5779
                    print(static.default_main_program())
5780
                    print(prog_restored)
Y
yuyang18 已提交
5781
        """
5782 5783
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
5784
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
5785
        p._sync_with_cpp()
5786
        return p
Y
Yu Yang 已提交
5787

5788
    @staticmethod
5789
    def _construct_from_desc(desc):
5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
5805 5806
    @property
    def random_seed(self):
Y
yuyang18 已提交
5807
        """
J
Jiabin Yang 已提交
5808
        The default random seed for random operators in Program. ``0`` means get
Y
yuyang18 已提交
5809 5810
        the random seed from random device.

5811 5812
        .. note:: 
            It must be set before the operators have been added.
J
Jiabin Yang 已提交
5813 5814 5815

        Returns:
            int64: Random seed in current Program
5816

5817 5818 5819 5820

        Examples:
            .. code-block:: python

5821 5822 5823
                import paddle
                import paddle.static as static
                import paddle.nn.functional as F
5824

5825 5826 5827
                paddle.enable_static()

                prog = static.default_main_program()
5828
                random_seed = prog.random_seed
5829
                x_var = static.data(name="X", shape=[3,3], dtype="float32")
5830 5831 5832
                print(random_seed)
                ## 0
                ## the default random seed is 0
5833

5834
                # Here we need to set random seed before we use paddle.nn.functional.dropout
5835
                prog.random_seed = 1
5836
                z_var = F.dropout(x_var, 0.7)
5837

5838
                print(prog.random_seed)
5839 5840
                ## 1
                ## the random seed is change to 1
Y
yuyang18 已提交
5841
        """
D
dzhwinter 已提交
5842 5843
        return self._seed

Q
qiaolongfei 已提交
5844 5845
    @property
    def num_blocks(self):
Y
yuyang18 已提交
5846
        """
5847 5848
        The number of :ref:`api_guide_Block_en`  in this Program.

5849 5850
        .. note:: 
            This API has no effect in Dygraph mode.
J
Jiabin Yang 已提交
5851 5852 5853

        Returns:
            int(Platform-dependent size): num of :ref:`api_guide_Block_en`  in current Program
5854

5855 5856 5857 5858

        Examples:
            .. code-block:: python

5859 5860 5861 5862
                import paddle
                import paddle.static as static

                paddle.enable_static()
5863

5864
                prog = static.default_main_program()
5865 5866
                num_blocks = prog.num_blocks
                print(num_blocks)
5867

5868 5869
                # print result:
                # 1
Y
yuyang18 已提交
5870
        """
Q
qiaolongfei 已提交
5871 5872
        return self.desc.num_blocks()

D
dzhwinter 已提交
5873 5874 5875
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
5876 5877 5878
            raise ValueError(
                "Program.random_seed's input seed must be an integer, but received %s."
                % type(seed))
D
dzhwinter 已提交
5879 5880
        self._seed = seed

Y
Yu Yang 已提交
5881
    def __repr__(self):
5882
        return self.__str__()
5883

Y
Yu Yang 已提交
5884
    def global_block(self):
Y
yuyang18 已提交
5885
        """
5886 5887
        .. note::
            This API has no effect in Dygraph mode.
5888 5889 5890

        Get the first :ref:`api_guide_Block_en` of this Program.

J
Jiabin Yang 已提交
5891 5892
        Returns:
            :ref:`api_guide_Block_en`: The first :ref:`api_guide_Block_en`  of this Program.
5893

5894 5895 5896 5897

        Examples:
            .. code-block:: python

5898 5899 5900 5901
                import paddle
                import paddle.static as static

                paddle.enable_static()
5902

5903
                prog = static.default_main_program()
5904 5905
                gb_block = prog.global_block()
                print(gb_block)
5906

Y
yuyang18 已提交
5907
        """
Y
Yu Yang 已提交
5908 5909
        return self.blocks[0]

Q
Qiao Longfei 已提交
5910
    def block(self, index):
Y
yuyang18 已提交
5911
        """
5912 5913
        .. note::
            This API has no effect in Dygraph mode.
Y
yuyang18 已提交
5914

5915 5916
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

J
Jiabin Yang 已提交
5917 5918
        Args:
            index (int) - The index of  :ref:`api_guide_Block_en`  to get
5919

J
Jiabin Yang 已提交
5920 5921
        Returns:
            :ref:`api_guide_Block_en`: The :code:`index` block
5922 5923 5924 5925

        Examples:
            .. code-block:: python

5926 5927 5928 5929
                import paddle
                import paddle.static as static

                paddle.enable_static()
5930

5931
                prog = static.default_main_program()
5932 5933
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
5934
        """
Q
Qiao Longfei 已提交
5935 5936
        return self.blocks[index]

Y
Yu Yang 已提交
5937
    def current_block(self):
Y
yuyang18 已提交
5938
        """
5939 5940
        .. note::
            This API has no effect in Dygraph mode.
5941

J
Jiabin Yang 已提交
5942 5943
        Get the current  :ref:`api_guide_Block_en` . The :code:`current`  :ref:`api_guide_Block_en`
        is the  :ref:`api_guide_Block_en`  to append operators.
5944

J
Jiabin Yang 已提交
5945 5946
        Returns:
             :ref:`api_guide_Block_en`: The :code:`index`  :ref:`api_guide_Block_en`
5947

5948 5949 5950
        Examples:
            .. code-block:: python

5951 5952 5953 5954
                import paddle
                import paddle.static as static

                paddle.enable_static()
5955

5956
                prog = static.default_main_program()
5957 5958
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
5959
        """
Y
Yu Yang 已提交
5960 5961
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
5962
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
5963 5964 5965 5966 5967
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
J
Jiabin Yang 已提交
5968

Y
yuyang18 已提交
5969 5970 5971 5972 5973
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
5974
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
5975 5976 5977
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
5978 5979 5980 5981
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
5982
    def _rollback(self):
Y
yuyang18 已提交
5983 5984 5985 5986 5987
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
5988 5989
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
5990
    def _sync_with_cpp(self):
Y
yuyang18 已提交
5991 5992 5993 5994 5995 5996 5997 5998 5999 6000
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
6001 6002 6003
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
6004
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
6005

W
Wu Yi 已提交
6006
    def _copy_param_info_from(self, other):
6007
        """
6008
        Copy the information of parameters from other program.
D
dzhwinter 已提交
6009

Y
yuyang18 已提交
6010 6011 6012
        Notes: This is a very low level API. Users should not invoke it
        directly.

6013 6014 6015 6016 6017 6018 6019
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
6020 6021 6022
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
6023

W
Wu Yi 已提交
6024
        self.global_block()._copy_param_info_from(other.global_block())
6025

6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
6037 6038 6039
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
6040 6041
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
6042
        self._parameters_on_pservers = other._parameters_on_pservers
6043
        self._endpoints = other._endpoints
6044
        self._ps_endpoint = other._ps_endpoint
6045 6046
        self._distributed_lookup_table = other._distributed_lookup_table

6047
    def _copy_data_info_from(self, other, pruned_origin_block_id_map=None):
F
fengjiayi 已提交
6048 6049
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
6050

Y
yuyang18 已提交
6051 6052 6053
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
6054 6055
        Args:
            other(Program): Other program
6056 6057 6058 6059
            pruned_origin_block_id_map(dict{int:int}): A dict which maps the block id in program
            self to the block id in program other. For example, {0:0, 1:1, 2:3} means block 0 in self is 
            cloned from block 0 in other, etc. Default is None, which means default mapped, 
            {0:0, 1:1,..., n:n}.
F
fengjiayi 已提交
6060 6061 6062 6063 6064

        Returns:
            None
        """
        if not isinstance(other, Program):
6065 6066 6067
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
F
fengjiayi 已提交
6068

6069 6070 6071 6072 6073
        if not pruned_origin_block_id_map:
            pruned_origin_block_id_map = {
                i: i
                for i in six.moves.range(self.desc.num_blocks())
            }
6074 6075 6076

        # NOTE(zhiqiu): All vars in cloned program exist in original program.
        # The reverse is not true, due to backward pruning.
6077 6078
        for i, block in enumerate(self.blocks):
            other_block = other.blocks[pruned_origin_block_id_map[i]]
6079
            for var in list(block.vars.values()):
6080 6081 6082 6083 6084 6085 6086
                other_var = other_block.var(var.name)
                if other_var.is_data:
                    var.is_data = True
                if other_var.desc.need_check_feed():
                    var.desc.set_need_check_feed(True)
                if other_var.stop_gradient:
                    var.stop_gradient = True
F
fengjiayi 已提交
6087

6088
    def list_vars(self):
Y
yuyang18 已提交
6089
        """
6090
        Get all Tensors from this Program. A iterable object is returned.
Y
yuyang18 已提交
6091

J
Jiabin Yang 已提交
6092
        Returns:
6093
            iterable Tensors: The Generator will yield every Tensor in this program.
6094 6095 6096 6097

        Examples:
            .. code-block:: python

6098 6099
                import paddle
                import paddle.static as static
6100

6101 6102 6103 6104 6105
                paddle.enable_static()

                prog = static.default_main_program()
                img = static.data(name='img', shape=[None, 1,28,28], dtype='float32')
                label = static.data(name='label', shape=[None,1], dtype='int64')
6106 6107
                for var in prog.list_vars():
                    print(var)
T
tangwei12 已提交
6108

6109 6110
                # var img : LOD_TENSOR.shape(-1, 1, 28, 28).dtype(float32).stop_gradient(True)
                # var label : LOD_TENSOR.shape(-1, 1).dtype(int64).stop_gradient(True)
Y
yuyang18 已提交
6111
        """
6112
        for each_block in self.blocks:
6113
            for each_var in list(each_block.vars.values()):
6114 6115
                yield each_var

6116 6117 6118 6119 6120 6121 6122 6123 6124 6125
    def all_parameters(self):
        """
        Get all :ref:`api_guide_parameter_en` from this Program. A list object is returned.

        Returns:
            list[ :ref:`api_guide_parameter_en` ]: The list contians all parameters in this program.

        Examples:
            .. code-block:: python

6126 6127 6128 6129
                import paddle
                import paddle.static as static

                paddle.enable_static()
6130

6131 6132
                program = static.default_main_program()
                data = static.data(name='x', shape=[None, 13], dtype='float32')
6133
                hidden = static.nn.fc(x=data, size=10)
6134 6135
                loss = paddle.mean(hidden)
                paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
6136 6137 6138 6139 6140 6141 6142

                for param in program.all_parameters():
                    print(param)

                # Here will print all parameters in current program, in this example,
                # the result is like:
                #
6143 6144
                # persist trainable param fc_0.w_0 : LOD_TENSOR.shape(13, 10).dtype(float32).stop_gradient(False)
                # persist trainable param fc_0.b_0 : LOD_TENSOR.shape(10,).dtype(float32).stop_gradient(False)
6145 6146 6147 6148 6149 6150 6151 6152 6153 6154
                #
                # Here print(param) will print out all the properties of a parameter,
                # including name, type and persistable, you can access to specific
                # property of a parameter, such as param.name, param.type
        """
        parameters = []
        for each_block in self.blocks:
            parameters.extend(each_block.all_parameters())
        return parameters

6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321
    def state_dict(self, mode='all', scope=None):
        """
        Get parameters and persistable buffers of program as a dict. The key is the name of the parameter or the name of the buffer.
        The value is the tensor of this variable in the given scope.

        .. note::
            This function MUST called after run start_up_program

        Args:
            mode(str, optional): Source of the obtained parameters and buffers. 
                    'opt' :  The return value only contains the variable in the optimizer. 
                    'param' : The return value only contains the variable in the network, not the variable in the optimizer.  
                    'all' : The return value contains the variable in the network and optimizer.
                    Default: 'all'
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None

        Retruns:
            dict: a dict contains the parameters and persistable buffers.

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
        """
        # The 'framework' is a low-level module, and 'executor'
        # can not be imported at the begainning of this file. 
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
                "`scope` should be None or `paddle.static.Scope'` type, but received {}.".
                format(type(scope)))

        if scope is None:
            scope = global_scope()

        if not isinstance(mode, str):
            raise TypeError("Type of `mode` should be string, but received {}.".
                            format(type(mode)))

        def is_parameter(var):
            return isinstance(var, Parameter)

        def is_persistable(var):
            if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
                var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
                var.desc.type() == core.VarDesc.VarType.READER:
                return False
            return var.persistable

        def is_belong_to_optimizer(var):
            if not (isinstance(var, Parameter) or var.desc.need_check_feed()):
                return is_persistable(var)
            return False

        def condition(var):

            if mode == 'param':
                return is_parameter(var)
            elif mode == 'opt':
                return is_belong_to_optimizer(var)
            elif mode == 'all':
                return is_parameter(var) or is_belong_to_optimizer(var)
            else:
                raise ValueError(
                    "`mode` string should be 'param', 'opt' or 'all', but received {}.".
                    format(mode))

        var_list = filter(condition, self.list_vars())

        state_dict = dict()
        for var in var_list:
            var_temp = scope.find_var(var.name)
            if var_temp is None:
                raise ValueError(
                    "Can not find Variable '{}' in the scope. Make sure it is initialized".
                    format(var.name))
            state_dict[var.name] = var_temp.get_tensor()

        return state_dict

    def set_state_dict(self, state_dict, scope=None):
        """
        Set parameters and persistable buffers in state_dict to program. 
        An exception will throw if shape or dtype of the parameters is not match.
        
        .. note::
            This function MUST called after run start_up_program

        Args:
            state_dict(dict): the dict store parameters and persistable buffers. 
                The key is the name of the parameter or the name of the buffer.
                The value is the tensor of this variable in the given scope.
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None
        
        Returns:
            None

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
                state_dict_load = paddle.load(path)
                prog.set_state_dict(state_dict_load)
        """

        if not isinstance(state_dict, dict):
            raise TypeError(
                "Type of `state_dict` should be dict, but received {}.".format(
                    type(state_dict)))

        vars_dict = {var.name: var for var in self.list_vars()}
        condition = True if 'StructuredToParameterName@@' in state_dict else False
        for name, value in state_dict.items():
            if condition:
                if name == "StructuredToParameterName@@":
                    continue
                if name in state_dict['StructuredToParameterName@@']:
                    name = state_dict['StructuredToParameterName@@'][name]
            if name in vars_dict:
                try:
                    vars_dict[name].set_value(value, scope)
                except ValueError as err:
                    warnings.warn(
                        ("Skip loading for '{}'. ".format(name) + str(err)))
                except TypeError as err:
                    warnings.warn(
                        ("Skip loading for '{}'. ".format(name) + str(err)))
            else:
                warnings.warn((
                    "Skip loading for '{0}'. Because '{0}' not in the program.".
                    format(name)))

Y
Yu Yang 已提交
6322

6323
@six.add_metaclass(ParameterMetaClass)
Y
Yu Yang 已提交
6324
class Parameter(Variable):
6325
    """
6326
    Parameter is derived from Variable. A parameter is a persistable
6327
    Variable, and will be updated by optimizers after each iteration.
6328
    The training of a neural network is essentially the updating of
6329 6330
    its parameters.

6331
    Relative to a general Variable, a Parameter has several its own
6332 6333
    member variables:

6334 6335 6336 6337 6338 6339 6340 6341 6342 6343
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
6344 6345
        need_clip (bool): Whether the parameter gradient need to be cliped 
            in optimizer. Default is True.
6346 6347
    """

6348 6349 6350 6351 6352 6353
    def __init__(self,
                 block,
                 shape,
                 dtype,
                 type=core.VarDesc.VarType.LOD_TENSOR,
                 **kwargs):
6354 6355 6356 6357 6358
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

Y
Yu Yang 已提交
6359
        if len(shape) == 0:
6360 6361
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")
Y
Yu Yang 已提交
6362 6363 6364

        for each in shape:
            if each < 0:
6365 6366 6367
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))
6368 6369

        Variable.__init__(
6370 6371 6372 6373 6374 6375 6376
            self,
            block,
            persistable=True,
            shape=shape,
            dtype=dtype,
            type=type,
            **kwargs)
Y
Yu Yang 已提交
6377 6378 6379 6380
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

6381 6382
        self.regularizer = kwargs.get('regularizer', None)

W
wanghaoshuang 已提交
6383
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
6384

6385 6386
        self.need_clip = kwargs.get('need_clip', True)

6387 6388
        self.is_distributed = False

6389 6390
        self.is_parameter = True

F
fengjiayi 已提交
6391
    def __str__(self):
6392
        return self._to_readable_code()
F
fengjiayi 已提交
6393

F
update  
fengjiayi 已提交
6394 6395 6396
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
6397

F
update  
fengjiayi 已提交
6398 6399 6400 6401 6402 6403 6404 6405
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

6406 6407 6408 6409 6410 6411 6412 6413 6414
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
6415 6416 6417 6418 6419 6420
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
6421
                               "do_model_average", "need_clip")
F
update  
fengjiayi 已提交
6422
            for attr_name in additional_attr:
6423 6424
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
6425 6426
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
6427 6428 6429 6430
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
6431

6432 6433
class ParamBase(core.VarBase):
    """
6434 6435 6436
    ParamBase is derived from Tensor( Which is the concept in Dygraph Mode). 
    A ParamBase is a persistable Tensor, and will be updated by optimizers 
    after each iteration.
6437 6438 6439
    The training of a neural network is essentially the updating of
    its ParamBase.

6440
    Relative to a general Tensor, a ParamBase has several its own
6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452
    member variables:

    Args:
        trainable(bool): True if the ParamBase need to be updated after
            iterations.
        optimize_attr(map): ParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the ParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this ParamBase.
6453 6454
        need_clip (bool): Whether the parameter gradient need to be cliped 
            in optimizer. Default is True.
6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        if len(shape) == 0:
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_param_base'))

        super(ParamBase, self).__init__(dtype
                                        if dtype else core.VarDesc.VarType.FP32,
                                        list(shape) if shape else [], name,
                                        core.VarDesc.VarType.LOD_TENSOR, True)

6485 6486
        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable
6487 6488 6489 6490 6491 6492 6493

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

6494 6495
        self.need_clip = kwargs.get('need_clip', True)

6496
        self.is_distributed = kwargs.get('is_distributed', False)
6497
        # self.block = default_main_program().global_block()
6498

6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511
    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
                type(trainable))

6512
    def __str__(self):
6513
        """
6514
        Convert a ParamBase object to a readable string.
6515

6516
        Returns(str): A readable string.
6517 6518 6519 6520

        Examples:
            .. code-block:: python

6521
                import paddle
6522 6523 6524 6525 6526 6527 6528
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
6529
        """
6530 6531
        return "Parameter containing:\n{tensor}".format(
            tensor=super(ParamBase, self).__str__())
6532

6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543
    def __deepcopy__(self, memo):
        """
        Deep copy parameter, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                linear = paddle.nn.Linear(1, 3)
                linear_copy = copy.deepcopy(linear)
T
tangwei12 已提交
6544

6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

                print(linear_copy.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

        """
        state = copy.deepcopy(self.__dict__, memo)
        state["name"] = self.name + unique_name.generate("_deepcopy")
        new_param = ParamBase(self.shape, self.dtype, **state)
        memo[id(self)] = new_param
        new_param.copy_(self, True)
        return new_param

6563 6564 6565 6566
    def _copy_to(self, device, blocking):
        state = copy.deepcopy(self.__dict__)
        new_param = ParamBase(self.shape, self.dtype, **state)
        core.varbase_copy(self, new_param, device, blocking)
6567 6568 6569 6570 6571 6572
        return new_param

    __repr__ = __str__


if hasattr(core, "eager"):
6573
    _core_eager_eagertensor = core.eager.Tensor
6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625
else:
    _core_eager_eagertensor = object


class EagerParamBase(_core_eager_eagertensor):
    """
    EagerParamBase is derived from Tensor( Which is the concept in Eager-Dygraph Mode). 
    A EagerParamBase is a persistable Tensor, and will be updated by optimizers 
    after each iteration.
    The training of a neural network is essentially the updating of
    its EagerParamBase.

    Relative to a general Tensor, a EagerParamBase has several its own
    member variables:

    Args:
        trainable(bool): True if the EagerParamBase need to be updated after
            iterations.
        optimize_attr(map): EagerParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the EagerParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this EagerParamBase.
        need_clip (bool): Whether the parameter gradient need to be cliped 
            in optimizer. Default is True.
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        if len(shape) == 0:
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_eager_param_base'))

6626 6627 6628
        if isinstance(shape, core.eager.Tensor):
            shape = shape.numpy()

6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716
        super(EagerParamBase, self).__init__(
            dtype if dtype else core.VarDesc.VarType.FP32,
            list(shape)
            if shape else [], name, core.VarDesc.VarType.LOD_TENSOR, True)
        self.retain_grads()

        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

        self.need_clip = kwargs.get('need_clip', True)

        self.is_distributed = kwargs.get('is_distributed', False)
        # self.block = default_main_program().global_block()

    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
                type(trainable))

    def __str__(self):
        """
        Convert a EagerParamBase object to a readable string.

        Returns(str): A readable string.

        Examples:
            .. code-block:: python

                import paddle
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
        """
        return "Parameter containing:\n{tensor}".format(
            tensor=super(EagerParamBase, self).__str__())

    def __deepcopy__(self, memo):
        """
        Deep copy parameter, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                linear = paddle.nn.Linear(1, 3)
                linear_copy = copy.deepcopy(linear)

                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

                print(linear_copy.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

        """
        state = copy.deepcopy(self.__dict__, memo)
        state["name"] = self.name + unique_name.generate("_deepcopy")
        new_param = EagerParamBase(self.shape, self.dtype, **state)
        memo[id(self)] = new_param
        new_param.copy_(self, True)
        return new_param

    def _copy_to(self, device, blocking):
        state = copy.deepcopy(self.__dict__)
        new_param = EagerParamBase(self.shape, self.dtype, **state)
        core.eager.tensor_copy(self, new_param, device, blocking)
6717 6718
        return new_param

6719 6720 6721
    __repr__ = __str__


Y
Yu Yang 已提交
6722
# program is a global instance.
Y
Yu Yang 已提交
6723 6724
_main_program_ = Program()
_startup_program_ = Program()
6725
_startup_program_._is_start_up_program_ = True
6726

6727

6728
def default_startup_program():
Y
Yu Yang 已提交
6729
    """
Y
yuyang18 已提交
6730 6731
    Get default/global startup program.

6732 6733
    The :code:`paddle.nn` function will append the initialization operators into startup program.
    The :code:`startup_program` will initialize the parameters by the OPs. 
T
tangwei12 已提交
6734

6735 6736
    This method will return the default or the current startup program. Users can use
    :ref:`api_paddle_fluid_framework_program_guard`  to switch :ref:`api_paddle_fluid_framework_Program` .
Y
yuyang18 已提交
6737

6738 6739
    Returns:
        Program: current default startup program.
6740

6741
    Returns type: 
6742 6743 6744 6745

    Examples:
        .. code-block:: python

6746
            import paddle
6747

6748
            paddle.enable_static()
6749 6750 6751 6752
            x = paddle.static.data(name="x", shape=[-1, 784], dtype='float32')
            out = paddle.static.nn.fc(name="fc", x=x, size=10, activation="relu")
            print("main program is: {}".format(paddle.static.default_main_program()))
            print("start up program is: {}".format(paddle.static.default_startup_program()))
Y
Yu Yang 已提交
6753
    """
Y
Yu Yang 已提交
6754
    return _startup_program_
6755

6756

6757
def default_main_program():
Y
Yu Yang 已提交
6758
    """
6759
    This API can be used to get ``default main program`` which store the 
6760
    descriptions of Ops and tensors.
T
tangwei12 已提交
6761

6762
    For example ``z = paddle.add(x, y)`` will create a new ``add`` 
6763
    Op and a new ``z`` tensor, and they will be recorded in ``default main program`` . 
Y
yuyang18 已提交
6764

6765 6766
    The ``default main program`` is the default value for ``Program`` parameter in 
    a lot of APIs. For example, the :code:`Executor.run()` will execute the
Y
yuyang18 已提交
6767
    :code:`default_main_program` when the program is not specified.
6768

6769
    If you want to switch the ``default main program``, you can use :ref:`api_paddle_fluid_framework_program_guard` .
T
tangwei12 已提交
6770

Y
Yu Yang 已提交
6771
    Returns:
6772
        Program: A ``Program`` which holding the descriptions of OPs and tensors in the network.
6773 6774 6775 6776

    Examples:
        ..  code-block:: python

6777
            import paddle
6778

6779
            paddle.enable_static()
6780
            # Sample Network:
6781 6782 6783
            x = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            y = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            out = paddle.add(x, y)
6784

6785 6786 6787
            #print the number of blocks in the program, 1 in this case
            print(paddle.static.default_main_program().num_blocks) # 1
            #print the default_main_program
6788
            print(paddle.static.default_main_program())
Y
Yu Yang 已提交
6789
    """
Y
Yu Yang 已提交
6790
    return _main_program_
Y
Yu Yang 已提交
6791 6792 6793 6794 6795


def switch_main_program(program):
    """
    Switch the main program to a new program.
6796

Y
Yu Yang 已提交
6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
6811
    Switch the startup program to a new program
Y
Yu Yang 已提交
6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
6824
@signature_safe_contextmanager
Y
Yu Yang 已提交
6825 6826
def program_guard(main_program, startup_program=None):
    """
6827 6828
    :api_attr: Static Graph

6829 6830 6831
    Change the global main program and startup program with ``with`` statement.
    Layer functions in the Python ``with`` block will append operators and
    Tensors to the new main programs.
6832

G
guofei 已提交
6833
    Args:
6834 6835
        main_program(Program): New main program inside ``with`` statement.
        startup_program(Program, optional): New startup program inside ``with`` 
G
guofei 已提交
6836 6837 6838 6839
            statement. :code:`None` means not changing startup program, 
            default_startup_program is still used.
            Default: None.

Y
Yu Yang 已提交
6840
    Examples:
6841
       .. code-block:: python
T
tangwei12 已提交
6842

6843
          import paddle
Y
yuyang18 已提交
6844

6845 6846 6847 6848 6849
          paddle.enable_static()
          main_program = paddle.static.Program()
          startup_program = paddle.static.Program()
          with paddle.static.program_guard(main_program, startup_program):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
6850
              hidden = paddle.static.nn.fc(x=data, size=10, activation='relu')
Y
yuyang18 已提交
6851 6852 6853

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
6854

Y
Yu Yang 已提交
6855
    Examples:
6856
       .. code-block:: python
Y
yuyang18 已提交
6857

6858
          import paddle
6859

6860 6861 6862 6863 6864
          paddle.enable_static()
          main_program = paddle.static.Program()
          # does not care about startup program. Just pass a temporary value.
          with paddle.static.program_guard(main_program, paddle.static.Program()):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
T
tangwei12 已提交
6865

Y
Yu Yang 已提交
6866
    """
6867
    from .data_feeder import check_type
6868 6869
    check_type(main_program, 'main_program', Program,
               'paddle.static.program_guard')
Y
Yu Yang 已提交
6870 6871
    main_program = switch_main_program(main_program)
    if startup_program is not None:
6872
        check_type(startup_program, 'startup_program', Program,
6873
                   'paddle.static.program_guard')
6874 6875
        # Tag the program __is_start_up as True
        startup_program._is_start_up_program_ = True
Y
Yu Yang 已提交
6876
        startup_program = switch_startup_program(startup_program)
6877 6878 6879 6880 6881 6882
    try:
        yield
    finally:
        switch_main_program(main_program)
        if startup_program is not None:
            switch_startup_program(startup_program)
X
xuwei06 已提交
6883 6884


W
Wu Yi 已提交
6885
def _get_var(name, program=None):
X
xuwei06 已提交
6886
    """
Y
yuyang18 已提交
6887
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
6888

X
xuwei06 已提交
6889 6890 6891
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
6892
        If None, default_global_program() will be used.
X
xuwei06 已提交
6893 6894 6895 6896 6897 6898 6899

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
6900
    assert isinstance(program, Program)
X
xuwei06 已提交
6901 6902

    return program.global_block().var(name)
6903 6904


S
rename  
sneaxiy 已提交
6905
@signature_safe_contextmanager
L
lujun 已提交
6906 6907
def _dygraph_guard(tracer):
    global _dygraph_tracer_
6908
    tmp_tracer = _dygraph_tracer_
L
lujun 已提交
6909
    _dygraph_tracer_ = tracer
6910
    core._switch_tracer(tracer)
M
minqiyang 已提交
6911

6912 6913 6914
    try:
        yield
    finally:
6915 6916
        core._switch_tracer(tmp_tracer)
        _dygraph_tracer_ = tmp_tracer
P
Paddle CI 已提交
6917 6918


S
rename  
sneaxiy 已提交
6919
@signature_safe_contextmanager
L
lujun 已提交
6920
def _dygraph_place_guard(place):
6921 6922 6923
    global _global_expected_place_
    tmp_place = _global_expected_place_
    _global_expected_place_ = place
6924 6925
    _set_dygraph_tracer_expected_place(place)

6926 6927 6928
    try:
        yield
    finally:
6929
        _global_expected_place_ = tmp_place
J
Jiabin Yang 已提交
6930
        _set_dygraph_tracer_expected_place(_global_expected_place_)
6931 6932


6933 6934 6935 6936 6937 6938 6939 6940 6941 6942
def switch_device(device):
    global _current_device
    pre_device = _current_device
    _current_device = device
    return pre_device


@signature_safe_contextmanager
def device_guard(device=None):
    """
6943 6944 6945
    
    Note:
        The API only supports static mode.
6946 6947 6948 6949

    A context manager that specifies the device on which the OP will be placed.

    Args:
6950 6951
        device(str|None): Specify the device to use in the context. It should be ``cpu``,
            ``gpu`` or ``gpu:x``, where ``x`` is the index of the GPUs. 
6952 6953 6954 6955 6956 6957 6958
            When it is set to 'cpu' or 'gpu', all OPs created in the context will be
            placed on CPUPlace or CUDAPlace. When 'gpu' is set and the program runs on
            single-card, the device index will be the same as the device on which the
            executor runs. Default: None, OPs in this context will be automatically
            assigned devices.

    Examples:
6959
    
6960
        .. code-block:: python
6961 6962
            
            # required: gpu
Z
Zhang Ting 已提交
6963
            import paddle
6964

Z
Zhang Ting 已提交
6965 6966 6967
            paddle.enable_static()
            support_gpu = paddle.is_compiled_with_cuda()
            place = paddle.CPUPlace()
6968
            if support_gpu:
Z
Zhang Ting 已提交
6969
                place = paddle.CUDAPlace(0)
6970 6971

            # if GPU is supported, the three OPs below will be automatically assigned to CUDAPlace(0)
Z
Zhang Ting 已提交
6972 6973 6974
            data1 = paddle.full(shape=[1, 3, 8, 8], fill_value=0.5, dtype='float32')
            data2 = paddle.full(shape=[1, 3, 64], fill_value=0.5, dtype='float32')
            shape = paddle.shape(data2)
6975

Z
Zhang Ting 已提交
6976
            with paddle.static.device_guard("cpu"):
6977
                # Ops created here will be placed on CPUPlace
Z
Zhang Ting 已提交
6978 6979
                shape = paddle.slice(shape, axes=[0], starts=[0], ends=[4])
            with paddle.static.device_guard('gpu'):
6980
                # if GPU is supported, OPs created here will be placed on CUDAPlace(0), otherwise on CPUPlace
Z
Zhang Ting 已提交
6981
                out = paddle.reshape(data1, shape=shape)
6982

Z
Zhang Ting 已提交
6983 6984
            exe = paddle.static.Executor(place)
            exe.run(paddle.static.default_startup_program())
6985 6986 6987
            result = exe.run(fetch_list=[out])
    """

6988 6989 6990 6991 6992
    index = None
    if device and ':' in device:
        device, index = device.split(':')
        if device == 'cpu':
            raise ValueError("Should not set device id for cpu.")
6993
    if device not in ['cpu', 'gpu', 'npu', '', None]:
6994
        raise ValueError(
6995
            "The Attr(device) should be 'cpu' 'npu' or 'gpu', and it can also be empty string or None "
6996
            "when there is no need to specify device. But received %s" % device)
6997 6998
    if index:
        device = ":".join([device, index])
6999
    pre_device = switch_device(device)
7000 7001 7002 7003
    try:
        yield
    finally:
        switch_device(pre_device)
G
guofei 已提交
7004 7005 7006 7007 7008


def set_flags(flags):
    """
    This function sets the GFlags value in Paddle.
7009
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
7010 7011 7012 7013 7014 7015 7016

    Args:
        flags (dict): A dict contains flags and its value.

    Examples:
            .. code-block:: python

7017 7018
                import paddle
                paddle.set_flags({'FLAGS_eager_delete_tensor_gb': 1.0})
G
guofei 已提交
7019 7020 7021 7022
    """
    if not isinstance(flags, dict):
        raise TypeError('flags in set_flags should be a dict')
    for key, value in flags.items():
7023 7024
        if _global_flags().is_public(key):
            _global_flags()[key] = value
G
guofei 已提交
7025 7026 7027 7028 7029 7030 7031 7032
        else:
            raise ValueError(
                "Flag %s cannot set its value through this function." % (key))


def get_flags(flags):
    """
    This function gets the GFlags value in Paddle.
7033
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
7034 7035 7036 7037 7038 7039 7040 7041 7042 7043

    Args:
        flags(list|tuple|str): A list/tuple of string or a string which is the flag's name.

    Returns:
        flag's value in Paddle.

    Examples:
        .. code-block:: python

7044
            import paddle
G
guofei 已提交
7045 7046

            flags = ['FLAGS_eager_delete_tensor_gb', 'FLAGS_check_nan_inf']
7047
            res = paddle.get_flags(flags)
G
guofei 已提交
7048 7049 7050 7051 7052 7053
            print(res)
            # {'FLAGS_eager_delete_tensor_gb': 0.0, 'FLAGS_check_nan_inf': False}
    """
    flags_value = {}
    if isinstance(flags, (list, tuple)):
        for key in flags:
7054 7055
            if (_global_flags().is_public(key)):
                value = _global_flags()[key]
G
guofei 已提交
7056 7057 7058 7059 7060 7061 7062
                temp = {key: value}
                flags_value.update(temp)
            else:
                raise ValueError(
                    'Flag %s cannot get its value through this function.' %
                    (key))
    elif isinstance(flags, str):
7063 7064
        if (_global_flags().is_public(flags)):
            value = _global_flags()[flags]
G
guofei 已提交
7065 7066 7067 7068 7069 7070 7071 7072
            temp = {flags: value}
            flags_value.update(temp)
        else:
            raise ValueError(
                'Flag %s cannot get its value through this function.' % (flags))
    else:
        raise TypeError('Flags in get_flags should be a list, tuple or string.')
    return flags_value
7073 7074 7075 7076 7077 7078 7079


def _get_paddle_place(place):
    "convert the string to paddle Place"
    if place is None:
        return place
    if isinstance(place, (core.Place, core.XPUPlace, core.CPUPlace,
7080
                          core.CUDAPinnedPlace, core.CUDAPlace, core.NPUPlace,
7081
                          core.IPUPlace, core.MLUPlace, core.CustomPlace)):
7082 7083 7084 7085 7086 7087 7088 7089 7090
        return place

    if not isinstance(place, str):
        raise ValueError(
            "place only support string which is 'Place' and so on.")

    place = place.lower()
    if (place == "cpu"):
        return core.CPUPlace()
7091

7092 7093 7094
    if (place == "device"):
        return core.Place()

7095
    # GPU
7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110
    avaliable_gpu_place = re.match(r'gpu:\d+', place)
    if place == "gpu_pinned" or place == "gpu" or avaliable_gpu_place:
        if not core.is_compiled_with_cuda():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with CUDA".format(avaliable_gpu_place))
        if place == "gpu_pinned":
            return core.CUDAPinnedPlace()
        elif place == "gpu":
            return core.CUDAPlace(0)
        else:
            place_info_list = place.split(':', 1)
            device_id = place_info_list[1]
            device_id = int(device_id)
            return core.CUDAPlace(device_id)
7111 7112

    # XPU
7113 7114 7115 7116 7117 7118 7119 7120 7121 7122
    avaliable_xpu_place = re.match(r'xpu:\d+', place)
    if avaliable_xpu_place:
        if not core.is_compiled_with_xpu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with XPU".format(avaliable_xpu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.XPUPlace(device_id)
7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135

    # NPU
    avaliable_npu_place = re.match(r'npu:\d+', place)
    if avaliable_npu_place:
        if not core.is_compiled_with_npu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with NPU".format(avaliable_npu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.NPUPlace(device_id)

J
jianghaicheng 已提交
7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147
    # IPU
    avaliable_ipu_place = re.match(r'ipu:\d+', place)
    if avaliable_ipu_place:
        if not core.is_compiled_with_ipu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with IPU".format(avaliable_ipu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.IPUPlace(device_id)

7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159
    # MLU
    avaliable_mlu_place = re.match(r'mlu:\d+', place)
    if avaliable_mlu_place:
        if not core.is_compiled_with_mlu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with MLU".format(avaliable_mlu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.MLUPlace(device_id)

7160
    raise ValueError(
J
jianghaicheng 已提交
7161
        "Paddle supports CPUPlace, CUDAPlace,CUDAPinnedPlace, XPUPlace, IPUPlace, MLUPlace and NPUPlace, but received {}.".
7162
        format(place))
7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175


def _get_paddle_place_list(places):

    if not isinstance(places, (list, tuple)):
        raise TypeError("places must to be List or Tuple")

    ret = []
    for p in places:
        p = _get_paddle_place(p)
        ret.append(p)

    return ret