framework.py 242.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
H
huzhiqiang 已提交
19
from collections.abc import Iterable
Q
qiaolongfei 已提交
20
import contextlib
21
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26
import copy
27
from types import MethodType, FunctionType
28

Y
Yu Yang 已提交
29
import numpy as np
30
import subprocess
S
sneaxiy 已提交
31
import multiprocessing
32
import sys
33
import logging
M
minqiyang 已提交
34
from .. import compat as cpt
35
from .proto import framework_pb2
36 37

from . import core
38
from . import unique_name
39 40
import paddle.version as fluid_version
import warnings
41
import functools
42
from .variable_index import _getitem_impl_, _setitem_impl_
43
from paddle import _C_ops
Y
Yu Yang 已提交
44

45
__all__ = [
46 47 48 49
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
50
    'name_scope',
J
jianghaicheng 已提交
51
    'ipu_shard_guard',
S
sneaxiy 已提交
52 53
    'cuda_places',
    'cpu_places',
54
    'xpu_places',
55
    'mlu_places',
S
sneaxiy 已提交
56
    'cuda_pinned_places',
L
lujun 已提交
57
    'in_dygraph_mode',
58
    'is_compiled_with_cinn',
C
chengduo 已提交
59
    'is_compiled_with_cuda',
60
    'is_compiled_with_rocm',
61
    'is_compiled_with_xpu',
62
    'is_compiled_with_npu',
63
    'Variable',
64
    'require_version',
65
    'device_guard',
G
guofei 已提交
66 67
    'set_flags',
    'get_flags',
68
]
Y
Yu Yang 已提交
69

Q
qiaolongfei 已提交
70 71 72 73
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
74 75
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

L
lujun 已提交
76
_dygraph_tracer_ = None
77
_global_expected_place_ = None
78
_current_device = None
79
global_prog_seed = 0
80
_current_pipeline_stage = None
81
_already_patch_eager_tensor = False
82
_global_flags_ = core.globals()
J
Jiabin Yang 已提交
83
core._disable_eager_mode()
84 85 86


@signature_safe_contextmanager
87
def _test_eager_guard(tracer=None):
J
Jiabin Yang 已提交
88
    core._enable_eager_mode()
89
    _C_ops.switch_to_eager_ops()
90 91 92 93
    global _already_patch_eager_tensor
    if not _already_patch_eager_tensor:
        from .dygraph.varbase_patch_methods import monkey_patch_varbase
        monkey_patch_varbase()
94 95
        from .dygraph import monkey_patch_math_varbase
        monkey_patch_math_varbase()
96
        _already_patch_eager_tensor = True
97 98 99 100
    if tracer is None:
        core._set_eager_tracer(_dygraph_tracer_)
    else:
        core._set_eager_tracer(tracer)
101
    try:
J
Jiabin Yang 已提交
102
        yield
103
    finally:
J
Jiabin Yang 已提交
104
        core._disable_eager_mode()
105
        _C_ops.switch_to_core_ops()
106 107


J
jianghaicheng 已提交
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
global_ipu_index = None
global_ipu_stage = None
ipu_index_attr_name = 'ipu_index'
ipu_stage_attr_name = 'ipu_stage'


@signature_safe_contextmanager
def ipu_shard_guard(index=None, stage=None):
    """
    Used to shard the graph on IPUs. Set each Op run on which IPU in the sharding and which stage in the pipelining.

    Args:
        index(int, optional): Specify which ipu the Tensor is computed on, (such as ‘0, 1, 2, 3’).
            The default value is None, which means the Op only run on IPU 0.
        stage(int, optional): Specify the computation order of the sharded model(such as ‘0, 1, 2, 3’).
            The sharded model will be computed from small to large. The default value is None, 
            which means no pipelining computation order and run Ops in terms of graph.
    
    **Note**:
    Only if the enable_manual_shard=True, the ‘index’ is able to be set not None. Please refer 
    to :code:`paddle.static.IpuStrategy` . 
    Only if the enable_pipelining=True, the ‘stage’ is able to be set not None. Please refer 
    to :code:`paddle.static.IpuStrategy` .
    A index is allowed to match none stage or a stage. A stage is only allowed to match a new or 
    duplicated index.

    Examples:
        .. code-block:: python

            # required: ipu

            import paddle
            paddle.enable_static()
            a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
            with paddle.static.ipu_shard_guard(index=0, stage=0):
                b = a + 1
            with paddle.static.ipu_shard_guard(index=1, stage=1):
                c = b + 1
            with paddle.static.ipu_shard_guard(index=0, stage=2):
                d = c + 1
    """
    if not core.is_compiled_with_ipu():
        raise ValueError(
            "Can not use this function since PaddlePaddle is not compiled with IPU"
        )

    global global_ipu_index
    global global_ipu_stage
    prev_ipu_index = global_ipu_index
    prev_ipu_stage = global_ipu_stage
    global_ipu_index = index
    global_ipu_stage = stage
    try:
        yield
    finally:
        global_ipu_index = prev_ipu_index
        global_ipu_stage = prev_ipu_stage


167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
def require_version(min_version, max_version=None):
    """
        Check if the installed version of PaddlePaddle is in [min_version, max_version],
        if the installed version is lower than ``min_version`` or higher than ``max_version``,
        an exception will be thrown, NO returns if the installed version is satisfied.

        Args:
            min_version (str): the minimum version required (like '1.4.0').
            max_version (str, optional): the max version required (like '1.6.0'), default is None,
                meaning any version equal or higher than ``min_version`` is acceptable.

        Returns:
            None.

        Raises:
            TypeError: if the type of ``min_version`` is not str.
            TypeError: if the type of ``max_version`` is not str or type(None).
            ValueError: if the value of ``min_version`` is not in version format.
            ValueError: if the value of ``max_version`` is not in version format or None.
            Exception: if the installed version is lower than ``min_version`` or higher than ``max_version``.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                # any version >= 0.1.0 is acceptable.
                fluid.require_version('0.1.0')

                # if 0.1.0 <= version <= 10.0.0, it is acceptable.
                fluid.require_version(min_version='0.1.0', max_version='10.0.0')
        """
    if not isinstance(min_version, str):
        raise TypeError(
            "The type of 'min_version' in require_version must be str, but received %s."
            % (type(min_version)))

    if not isinstance(max_version, (str, type(None))):
        raise TypeError(
            "The type of 'max_version' in require_version must be str or type(None), but received %s."
            % (type(max_version)))

    check_format = re.match(r'\d+(\.\d+){0,3}', min_version)
    if check_format is None or check_format.group() != min_version:
        raise ValueError(
            "The value of 'min_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
            "like '1.5.2.0', but received %s" % min_version)

    if max_version is not None:
        check_format = re.match(r'\d+(\.\d+){0,3}', max_version)
        if check_format is None or check_format.group() != max_version:
            raise ValueError(
                "The value of 'max_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
                "like '1.5.2.0', but received %s" % max_version)

    version_installed = [
        fluid_version.major, fluid_version.minor, fluid_version.patch,
        fluid_version.rc
    ]
    zero_version = ['0', '0', '0', '0']

    def version_cmp(ver_a, ver_b):
        for i in six.moves.range(len(ver_a)):
            if int(ver_a[i]) > int(ver_b[i]):
                return 1
            elif int(ver_a[i]) < int(ver_b[i]):
                return -1
        return 0

    if version_cmp(version_installed, zero_version) == 0:
        if max_version is not None:
            warnings.warn(
                "PaddlePaddle version in [%s, %s] required, but %s installed. "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, max_version, fluid_version.full_version))
        else:
            warnings.warn(
                "PaddlePaddle version %s or higher is required, but %s installed, "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, fluid_version.full_version))
        return

    min_version_split = min_version.split('.')
    min_version_to_check = min_version_split + zero_version[len(
        min_version_split):]

    if max_version is not None:
        max_version_split = max_version.split('.')
        max_version_to_check = max_version_split + zero_version[len(
            max_version_split):]

        if version_cmp(version_installed,
                       max_version_to_check) > 0 or version_cmp(
                           version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version in [%s, %s] required, but %s installed."
                % (min_version, max_version, fluid_version.full_version))
    else:
        if version_cmp(version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version %s or higher is required, but %s installed, "
                "please upgrade your PaddlePaddle to %s or other higher version."
                % (min_version, fluid_version.full_version, min_version))


L
lujun 已提交
274
def in_dygraph_mode():
L
lujun 已提交
275
    """
276

277 278 279 280 281 282 283
    .. note::
        Dynamic graph mode is turn ON by default since paddle 2.0.0

    This API checks whether paddle runs in dynamic graph mode.

    You can turn ON static graph mode by `enable_static <../dygraph/base/disable_dygraph_en.html>`_ ,
    and turn OFF static graph mode by `disable_static <../dygraph/base/enable_dygraph_en.html>`_  .
L
lujun 已提交
284 285

    Returns:
286
        bool: Whether paddle runs in dynamic graph mode.
L
lujun 已提交
287 288 289 290

    Examples:
        .. code-block:: python

291 292 293 294 295 296 297 298
            import paddle
            print(paddle.in_dynamic_mode())  # True, dynamic mode is turn ON by default since paddle 2.0.0

            paddle.enable_static()
            print(paddle.in_dynamic_mode())  # False, Now we are in static mode

            paddle.disable_static()
            print(paddle.in_dynamic_mode())  # True, Now we are in dynamic mode
L
lujun 已提交
299 300

    """
L
lujun 已提交
301
    return _dygraph_tracer_ is not None
302 303


J
Jiabin Yang 已提交
304 305 306 307
def _in_eager_mode():
    return core._in_eager_mode() and in_dygraph_mode()


308 309 310
def _dygraph_not_support_(func):
    def __impl__(*args, **kwargs):
        assert not in_dygraph_mode(
311
        ), "We don't support %s in imperative mode" % func.__name__
312 313 314 315 316 317 318
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
    def __impl__(*args, **kwargs):
H
hong 已提交
319 320
        assert (
            in_dygraph_mode() or _in_eager_mode()
321 322 323 324 325 326 327 328 329
        ), "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode." % func.__name__
        return func(*args, **kwargs)

    return __impl__


def _static_only_(func):
    def __impl__(*args, **kwargs):
        assert not in_dygraph_mode(
330
        ), "In PaddlePaddle 2.x, we turn on dynamic graph mode by default, and '%s()' is only supported in static graph mode. So if you want to use this api, please call 'paddle.enable_static()' before this api to enter static graph mode." % func.__name__
331 332 333 334 335
        return func(*args, **kwargs)

    return __impl__


336 337 338 339 340
def _set_pipeline_stage(stage):
    global _current_pipeline_stage
    _current_pipeline_stage = stage


341 342 343 344 345 346
# NOTE(zhiqiu): This decorator is used for the APIs of Variable which is only
# used to make Variable and VarBase has same interfaces, like numpy. Since VarBase is not exposed in our
# official docments, logically, we want to keep VarBase and logically consistent. While, actually,
# in our implementation, there some APIs not supported, like numpy, because Variable contains the desc.
# So, those APIs are listed under class Variable to generate docs only.
# TODO(zhiqiu): We should make VarBase consistent with Variable in future, for example, by inheritting
T
tangwei12 已提交
347
# same base class.
348 349 350
def _fake_interface_only_(func):
    def __impl__(*args, **kwargs):
        raise AssertionError(
351 352 353 354 355
            "'%s' only can be called by `paddle.Tensor` in dynamic graph mode. Suggestions:\n"
            "  1. If you are in static graph mode, you can switch to dynamic graph mode by turning off `paddle.enable_static()` or calling `paddle.disable_static()`.\n"
            "  2. If you are using `@paddle.jit.to_static`, you can turn off ProgramTranslator by calling `paddle.jit.ProgramTranslator().enable(False)`. "
            "If you have to translate dynamic graph to static graph, please use other API to replace '%s'."
            % (func.__name__, func.__name__))
356 357 358 359

    return __impl__


T
tangwei12 已提交
360 361
# NOTE(chenweihang): There is argument name typo (stat_dict, correct name is state_dict)
# in fluid api Layer.set_dict, Optimizer.load, in order to correct the argument without
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
# introducing compatibility issues, add this decorator
# NOTE(chenweihang): not using `wrap_decorator` here is because `wrap_decorator` will
# move kwargs to args, which doesn't work in this decorate case
def deprecate_stat_dict(func):
    @functools.wraps(func)
    def wrapper(*args, **kwargs):
        if 'stat_dict' in kwargs:
            warnings.warn(
                "The argument `stat_dict` has deprecated, please change it to `state_dict`.",
                DeprecationWarning)
            kwargs['state_dict'] = kwargs['stat_dict']
            kwargs.pop('stat_dict')
        return func(*args, **kwargs)

    return wrapper


379 380
dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)
381
static_only = wrap_decorator(_static_only_)
382
fake_interface_only = wrap_decorator(_fake_interface_only_)
383 384


L
lujun 已提交
385 386
def _dygraph_tracer():
    return _dygraph_tracer_
387

W
Wu Yi 已提交
388

389 390 391 392
def _global_flags():
    return _global_flags_


M
minqiyang 已提交
393
def _current_expected_place():
394 395 396
    global _global_expected_place_
    if _global_expected_place_ is None:
        if core.is_compiled_with_cuda():
397 398 399 400 401 402 403 404 405 406 407
            try:
                device_count = core.get_cuda_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
                _global_expected_place_ = core.CUDAPlace(0)
            else:
                warnings.warn(
                    "You are using GPU version Paddle, but your CUDA device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
408 409 410 411 412 413 414 415 416 417 418 419
        elif core.is_compiled_with_xpu():
            try:
                device_count = core.get_xpu_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
                _global_expected_place_ = core.XPUPlace(0)
            else:
                warnings.warn(
                    "You are using XPU version Paddle, but your XPU device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
420 421 422 423 424 425 426 427 428 429 430 431
        elif core.is_compiled_with_mlu():
            try:
                device_count = core.get_mlu_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
                _global_expected_place_ = core.MLUPlace(0)
            else:
                warnings.warn(
                    "You are using MLU version Paddle, but your MLU device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
        else:
            _global_expected_place_ = core.CPUPlace()

    return _global_expected_place_


def _set_dygraph_tracer_expected_place(place):
    global _dygraph_tracer_
    if _dygraph_tracer_ is not None:
        _dygraph_tracer_._expected_place = place


def _set_expected_place(place):
    global _global_expected_place_
    _global_expected_place_ = place
J
Jiabin Yang 已提交
447
    if _in_eager_mode():
448
        return core.eager._set_expected_place(place)
J
Jiabin Yang 已提交
449
    _set_dygraph_tracer_expected_place(place)
M
minqiyang 已提交
450 451


L
Leo Chen 已提交
452 453 454 455
# TODO(zhiqiu): remove this function.
def _var_base_to_np(var_base):
    """	
    convert VarBase tp numpy	
T
tangwei12 已提交
456

L
Leo Chen 已提交
457 458 459 460 461 462 463 464 465 466 467 468
    Args:	
        var_base(VarBase) : the VarBase to convert	
    Returns (np.ndarray): the np.ndarray contain the value of VarBase	
    """

    warnings.warn(
        "paddle.fluid.framework._var_base_to_np is deprecated, please use var_base.numpy() instead of _var_base_to_np(var_base)."
    )

    return var_base.numpy()


S
sneaxiy 已提交
469
def _cpu_num():
470
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
471 472 473 474 475 476 477 478
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()))
C
chengduo 已提交
479
        os.environ['CPU_NUM'] = str(1)
480
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
481 482 483 484 485 486 487 488 489 490
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_cuda_device_count())
    return device_ids
S
sneaxiy 已提交
491 492


493 494 495 496 497 498 499 500 501
def _xpu_ids():
    xpus_env = os.getenv("FLAGS_selected_xpus")
    if xpus_env:
        device_ids = [int(s) for s in xpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_xpu_device_count())
    return device_ids


502 503 504 505 506 507 508 509 510
def _npu_ids():
    npus_env = os.getenv("FLAGS_selected_npus")
    if npus_env:
        device_ids = [int(s) for s in npus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_npu_device_count())
    return device_ids


511 512 513 514 515 516 517 518 519
def _mlu_ids():
    mlus_env = os.getenv("FLAGS_selected_mlus")
    if mlus_env:
        device_ids = [int(s) for s in mlus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_mlu_device_count())
    return device_ids


520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
def is_compiled_with_xpu():
    """
    Whether this whl package can be used to run the model on XPU.

    Returns (bool): support xpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_xpu = fluid.is_compiled_with_xpu()
    """
    return core.is_compiled_with_xpu()


535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
def is_compiled_with_npu():
    """
    Whether this whl package can be used to run the model on NPU.

    Returns (bool): support npu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_npu = fluid.is_compiled_with_npu()
    """
    return core.is_compiled_with_npu()


550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
def disable_signal_handler():
    """
    Reset signal handler registered by Paddle.

    Paddle installs signal handlers at C++ level to log debug information upon failing.
    However, conflicts can happen if another python module is making use of such signal.
    Such being the case, one may disblae paddle signal handler via this interface.
    
    Known frameworks that require disabling signal handler includes:
    1. TVM
    2. ADLIK

    Make sure you called paddle.disable_signal_handler() before using above mentioned frameworks.

    Returns: None 

    Examples:
        .. code-block:: python

            import paddle
            paddle.disable_signal_handler()
    """
    core.disable_signal_handler()


575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
def is_compiled_with_cinn():
    """
    Whether this whl package can be used to run the model on CINN.

    Returns (bool): `True` if CINN is currently available, otherwise `False`.

    Examples:
        .. code-block:: python

            import paddle
            support_cinn = paddle.device.is_compiled_with_cinn()
    """
    return core.is_compiled_with_cinn()


C
chengduo 已提交
590 591 592 593
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

594
    Returns (bool): `True` if CUDA is currently available, otherwise `False`.
C
chengduo 已提交
595 596 597 598

    Examples:
        .. code-block:: python

599
            import paddle
600
            support_gpu = paddle.device.is_compiled_with_cuda()
C
chengduo 已提交
601 602 603 604
    """
    return core.is_compiled_with_cuda()


605 606 607 608 609 610 611 612 613 614
def is_compiled_with_rocm():
    """
    Whether this whl package can be used to run the model on AMD or Hygon GPU(ROCm).

    Returns (bool): `True` if ROCm is currently available, otherwise `False`.

    Examples:
        .. code-block:: python

            import paddle
615
            support_gpu = paddle.device.is_compiled_with_rocm()
616 617 618 619
    """
    return core.is_compiled_with_rocm()


S
sneaxiy 已提交
620
def cuda_places(device_ids=None):
L
lujun 已提交
621
    """
622 623 624 625
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

C
Chen Weihang 已提交
626
    This function creates a list of :code:`paddle.CUDAPlace` objects.
S
add doc  
sneaxiy 已提交
627 628

    If :code:`device_ids` is None, environment variable of
629
    :code:`FLAGS_selected_gpus` would be checked first. For example, if
S
add doc  
sneaxiy 已提交
630
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
C
Chen Weihang 已提交
631
    be [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
S
add doc  
sneaxiy 已提交
632
    If :code:`FLAGS_selected_gpus` is not set, all visible
633
    gpu places would be returned according to the :code:`CUDA_VISIBLE_DEVICES` environment variable.
S
add doc  
sneaxiy 已提交
634 635

    If :code:`device_ids` is not None, it should be the device
636
    ids of GPUs. For example, if :code:`device_ids=[0,1,2]`,
S
add doc  
sneaxiy 已提交
637
    the returned list would be 
C
Chen Weihang 已提交
638
    [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
T
tangwei12 已提交
639

640
    Parameters:
641
        device_ids (list|tuple, optional): A list/tuple of int of GPU device ids.
S
add doc  
sneaxiy 已提交
642 643

    Returns:
C
Chen Weihang 已提交
644
        list of paddle.CUDAPlace: Created GPU place list.
L
lujun 已提交
645 646 647 648

    Examples:
        .. code-block:: python

C
Chen Weihang 已提交
649 650
            import paddle
            import paddle.static as static
T
tangwei12 已提交
651

652 653
            # required: gpu
            
C
Chen Weihang 已提交
654 655 656
            paddle.enable_static()

            cuda_places = static.cuda_places()
L
lujun 已提交
657 658

    """
S
sneaxiy 已提交
659 660 661
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_ids is None:
C
chengduo 已提交
662
        device_ids = _cuda_ids()
S
sneaxiy 已提交
663 664 665 666 667
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


668 669 670 671
def xpu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_xpus` environment variable to set the visible XPU device.
S
sunzhongkai588 已提交
672 673 674 675 676 677 678 679 680 681 682
        This function creates a list of :code:`paddle.XPUPlace` objects.
        If :code:`device_ids` is None, environment variable of
        :code:`FLAGS_selected_xpus` would be checked first. For example, if
        :code:`FLAGS_selected_xpus=0,1,2`, the returned list would
        be [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
        If :code:`FLAGS_selected_xpus` is not set, all visible
        xpu places would be returned.
        If :code:`device_ids` is not None, it should be the device
        ids of XPUs. For example, if :code:`device_ids=[0,1,2]`,
        the returned list would be 
        [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
683 684 685 686 687 688 689
    
    Parameters:
        device_ids (list or tuple of int, optional): list of XPU device ids.
    Returns:
        list of paddle.XPUPlace: Created XPU place list.
    Examples:
        .. code-block:: python
S
sunzhongkai588 已提交
690

691 692
            # required: xpu

693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
            import paddle
            import paddle.static as static
            
            paddle.enable_static()
            xpu_places = static.xpu_places()
    """
    assert core.is_compiled_with_xpu(), \
        "Not compiled with XPU"
    if device_ids is None:
        device_ids = _xpu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.XPUPlace(dev_id) for dev_id in device_ids]


708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
def npu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_npus` environment variable to set the visible NPU device.
    
    This function creates a list of :code:`paddle.NPUPlace` objects.
    If :code:`device_ids` is None, environment variable of
    :code:`FLAGS_selected_npus` would be checked first. For example, if
    :code:`FLAGS_selected_npus=0,1,2`, the returned list would
    be [paddle.NPUPlace(0), paddle.NPUPlace(1), paddle.NPUPlace(2)].
    If :code:`FLAGS_selected_npus` is not set, all visible
    npu places would be returned.
    If :code:`device_ids` is not None, it should be the device
    ids of NPUs. For example, if :code:`device_ids=[0,1,2]`,
    the returned list would be 
    [paddle.NPUPlace(0), paddle.NPUPlace(1), paddle.NPUPlace(2)].
    
    Parameters:
        device_ids (list or tuple of int, optional): list of NPU device ids.
    Returns:
        list of paddle.NPUPlace: Created NPU place list.
    Examples:
        .. code-block:: python

            # required: npu

            import paddle
            import paddle.static as static
            
            paddle.enable_static()
            npu_places = static.npu_places()
    """
    assert core.is_compiled_with_npu(), \
        "Not compiled with NPU"
    if device_ids is None:
        device_ids = _npu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.NPUPlace(dev_id) for dev_id in device_ids]


S
sneaxiy 已提交
749
def cpu_places(device_count=None):
L
lujun 已提交
750
    """
C
Chen Weihang 已提交
751
    This function creates a list of :code:`paddle.CPUPlace` objects, and returns the created list.
T
tangwei12 已提交
752

S
add doc  
sneaxiy 已提交
753 754
    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
C
chengduo 已提交
755 756
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
757 758
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
759

760 761
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
762 763

    Returns:
C
Chen Weihang 已提交
764
        list of paddle.CPUPlace: Created list of CPU places.
L
lujun 已提交
765 766 767 768

    Examples:
        .. code-block:: python

C
Chen Weihang 已提交
769 770
            import paddle
            import paddle.static as static
T
tangwei12 已提交
771

C
Chen Weihang 已提交
772 773 774
            paddle.enable_static()

            cpu_places = static.cpu_places()
L
lujun 已提交
775 776
    """

S
sneaxiy 已提交
777 778 779 780 781 782
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
783
    """
784
    This function creates a list of :code:`fluid.CUDAPinnedPlace` objects.
S
add doc  
sneaxiy 已提交
785 786 787

    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
788 789 790 791
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
792

793 794
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
795 796

    Returns:
797
        list of fluid.CUDAPinnedPlace: Created list of CUDA pinned places.
L
lujun 已提交
798 799 800 801

    Examples:
        .. code-block:: python

802
            import paddle.fluid as fluid
L
lujun 已提交
803 804 805 806 807
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
S
sneaxiy 已提交
808 809 810
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_count is None:
811 812
        device_count = len(_cuda_ids())
    return [core.CUDAPinnedPlace()] * device_count
S
sneaxiy 已提交
813 814


815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
def mlu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_mlus` environment variable to set the visible MLU device.
        This function creates a list of :code:`paddle.device.MLUPlace` objects.
        If :code:`device_ids` is None, environment variable of
        :code:`FLAGS_selected_mlus` would be checked first. For example, if
        :code:`FLAGS_selected_mlus=0,1,2`, the returned list would
        be [paddle.device.MLUPlace(0), paddle.device.MLUPlace(1), paddle.device.MLUPlace(2)].
        If :code:`FLAGS_selected_mlus` is not set, all visible
        mlu places would be returned.
        If :code:`device_ids` is not None, it should be the device
        ids of MLUs. For example, if :code:`device_ids=[0,1,2]`,
        the returned list would be
        [paddle.device.MLUPlace(0), paddle.device.MLUPlace(1), paddle.device.MLUPlace(2)].

    Parameters:
        device_ids (list or tuple of int, optional): list of MLU device ids.

    Returns:
        list of paddle.device.MLUPlace: Created MLU place list.

    Examples:
        .. code-block:: python

            # required: mlu

            import paddle
            import paddle.static as static

            paddle.enable_static()
            mlu_places = static.mlu_places()
    """
    assert core.is_compiled_with_mlu(), \
        "Not compiled with MLU"
    if device_ids is None:
        device_ids = _mlu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.MLUPlace(dev_id) for dev_id in device_ids]


857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
883
@signature_safe_contextmanager
884 885
def name_scope(prefix=None):
    """
886 887
    :api_attr: Static Graph

888
    Generate hierarchical name prefix for the operators in Static Graph.
889

T
Tao Luo 已提交
890 891 892
    Note: 
        This should only used for debugging and visualization purpose.
        Don't use it for serious analysis such as graph/program transformations.
893
        Don't use it in dygraph, since it will cause memory leak.
894 895

    Args:
T
Tao Luo 已提交
896
        prefix(str, optional): prefix. Default is none.
897 898 899

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
900

901 902 903
          import paddle
          paddle.enable_static()
          with paddle.static.name_scope("s1"):
904
             a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
T
Tao Luo 已提交
905
             b = a + 1
906
             with paddle.static.name_scope("s2"):
T
Tao Luo 已提交
907
                c = b * 1
908
             with paddle.static.name_scope("s3"):
T
Tao Luo 已提交
909
                d = c / 1
910 911 912
          with paddle.static.name_scope("s1"):
                f = paddle.tensor.pow(d, 2.0)
          with paddle.static.name_scope("s4"):
T
Tao Luo 已提交
913 914 915
                g = f - 1

          # Op are created in the default main program.  
916
          for op in paddle.static.default_main_program().block(0).ops:
T
Tao Luo 已提交
917 918 919 920 921 922 923 924 925 926 927 928 929 930 931
              # elementwise_add is created in /s1/
              if op.type == 'elementwise_add':
                  assert op.desc.attr("op_namescope") == '/s1/'
              # elementwise_mul is created in '/s1/s2'
              elif op.type == 'elementwise_mul':
                  assert op.desc.attr("op_namescope") == '/s1/s2/'
              # elementwise_div is created in '/s1/s3'
              elif op.type == 'elementwise_div':
                  assert op.desc.attr("op_namescope") == '/s1/s3/'
              # elementwise_sum is created in '/s4'
              elif op.type == 'elementwise_sub':
                  assert op.desc.attr("op_namescope") == '/s4/'
              # pow is created in /s1_1/
              elif op.type == 'pow':
                  assert op.desc.attr("op_namescope") == '/s1_1/'
932 933
    """
    # TODO(panyx0718): Only [0-9a-z].
934
    # in dygraph we don't need namescope since it will cause mem leak
L
Leo Chen 已提交
935 936 937
    if in_dygraph_mode():
        yield
    else:
T
tianshuo78520a 已提交
938
        assert prefix, "namescope prefix can not be empty."
939 940
        global _name_scope
        _name_scope = _name_scope.child(prefix)
941 942 943 944
        try:
            yield
        finally:
            _name_scope = _name_scope.parent()
945 946 947 948 949 950 951 952 953 954 955 956


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
957 958 959
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
960 961 962 963


def grad_var_name(var_name):
    """
964 965
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
966 967 968
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
969

970
def convert_np_dtype_to_dtype_(np_dtype):
971 972
    """
    Convert the data type in numpy to the data type in Paddle
973

974
    Args:
975
        np_dtype(np.dtype): the data type in numpy.
976

977 978
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
979 980

    """
981 982
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
983
        return core.VarDesc.VarType.FP32
984
    elif dtype == np.float64:
985
        return core.VarDesc.VarType.FP64
986
    elif dtype == np.float16:
987
        return core.VarDesc.VarType.FP16
988
    elif dtype == np.int32:
989
        return core.VarDesc.VarType.INT32
990
    elif dtype == np.int16:
991
        return core.VarDesc.VarType.INT16
992
    elif dtype == np.int64:
993
        return core.VarDesc.VarType.INT64
994
    elif dtype == np.bool:
995
        return core.VarDesc.VarType.BOOL
996
    elif dtype == np.uint16:
997 998 999
        # since there is still no support for bfloat16 in NumPy,
        # uint16 is used for casting bfloat16
        return core.VarDesc.VarType.BF16
1000 1001
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
1002 1003
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
1004 1005 1006 1007
    elif dtype == np.complex64:
        return core.VarDesc.VarType.COMPLEX64
    elif dtype == np.complex128:
        return core.VarDesc.VarType.COMPLEX128
1008
    else:
M
minqiyang 已提交
1009
        raise ValueError("Not supported numpy dtype %s" % dtype)
1010 1011 1012


def dtype_is_floating(dtype):
1013 1014 1015
    """
    Check the data type is floating or not.
    Args:
1016
        dtype(np.dtype|core.VarDesc.VarType): data type.
1017 1018 1019 1020 1021
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
1022
    if not isinstance(dtype, core.VarDesc.VarType):
1023 1024
        dtype = convert_np_dtype_to_dtype_(dtype)

1025 1026 1027 1028
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
1029 1030


Y
Yang Yang(Tony) 已提交
1031
def _debug_string_(proto, throw_on_error=True):
1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
1043
    error_fields = list()
Y
Yang Yang(Tony) 已提交
1044
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
1045 1046
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
1047 1048 1049
    return proto.__str__()


1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
def _varbase_creator(type=core.VarDesc.VarType.LOD_TENSOR,
                     name=None,
                     shape=None,
                     dtype=None,
                     persistable=None,
                     **kwargs):
    if dtype is not None:
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

1060
    if _in_eager_mode():
1061
        eager_tensor = core.eager.Tensor(
1062 1063 1064 1065 1066 1067
            dtype if dtype else core.VarDesc.VarType.FP32,
            list(shape) if shape else [], name, type
            if type else core.VarDesc.VarType.LOD_TENSOR, True
            if persistable else False)
        eager_tensor.retain_grads()
        return eager_tensor
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
    return core.VarBase(dtype if dtype else core.VarDesc.VarType.FP32,
                        list(shape) if shape else [], name, type
                        if type else core.VarDesc.VarType.LOD_TENSOR, True
                        if persistable else False)


class VariableMetaClass(type):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
1079
            if _in_eager_mode():
1080
                return issubclass(t, core.eager.Tensor)
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
            return issubclass(t, core.VarBase)
        else:
            return issubclass(t, Variable)


class ParameterMetaClass(VariableMetaClass):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
1091 1092
            if _in_eager_mode():
                return issubclass(t, EagerParamBase)
1093 1094 1095 1096 1097 1098
            return issubclass(t, ParamBase)
        else:
            return issubclass(t, Parameter)


@six.add_metaclass(VariableMetaClass)
X
Xin Pan 已提交
1099
class Variable(object):
1100
    """
J
Jiabin Yang 已提交
1101
    **Notes**:
1102
        **The constructor of Variable should not be invoked directly.**
J
Jiabin Yang 已提交
1103

1104 1105
        **In Static Graph Mode: Please use** `Block.create_var` **to create a Static variable which has no data until being feed.**

J
Jiabin Yang 已提交
1106 1107 1108
        **In Dygraph Mode: Please use** :ref:`api_fluid_dygraph_to_variable` **to create a dygraph variable with real data**

    In Fluid, every input and output of an OP is a variable. In most
1109
    cases, variables are used for holding different kinds of data or training
J
Jiabin Yang 已提交
1110 1111
    labels. A variable belongs to a :ref:`api_guide_Block_en` . All variable has its own name and
    two variables in different :ref:`api_guide_Block_en` could have the same name.
1112

1113
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
1114
    and usages. Please refer to the `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_ for details.
1115

T
tianshuo78520a 已提交
1116
    Most of a Variable's member variables can be set to be None. It mean
1117
    it is not available or will be specified later.
1118

1119
    Examples:
1120 1121
        In Static Graph Mode:

1122 1123
        .. code-block:: python

1124
            import paddle.fluid as fluid
1125
            cur_program = fluid.Program()
1126 1127 1128 1129
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
S
sunzhongkai588 已提交
1130

J
Jiabin Yang 已提交
1131
        In `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_  Mode:
1132 1133 1134 1135 1136 1137 1138 1139 1140

        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                new_variable = fluid.dygraph.to_variable(np.arange(10))

1141 1142
    """

Y
Yu Yang 已提交
1143 1144
    def __init__(self,
                 block,
Y
Yu Yang 已提交
1145
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
1146 1147 1148 1149
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
1150
                 capacity=None,
Q
QI JUN 已提交
1151
                 persistable=None,
F
fengjiayi 已提交
1152
                 error_clip=None,
Y
Yu Yang 已提交
1153
                 stop_gradient=False,
F
fengjiayi 已提交
1154
                 is_data=False,
H
Huihuang Zheng 已提交
1155
                 need_check_feed=False,
H
hong 已提交
1156
                 belong_to_optimizer=False,
Y
Yu Yang 已提交
1157
                 **kwargs):
Y
Yu Yang 已提交
1158 1159
        self.block = block
        if name is None:
Y
Yu Yang 已提交
1160
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
1161

Y
Yu Yang 已提交
1162
        if dtype is not None:
1163
            if not isinstance(dtype, core.VarDesc.VarType):
1164
                dtype = convert_np_dtype_to_dtype_(dtype)
1165

S
Steffy-zxf 已提交
1166 1167 1168 1169
        if dtype == core.VarDesc.VarType.STRINGS:
            type = core.VarDesc.VarType.STRINGS
            lod_level = None

H
hong 已提交
1170 1171
        self.belong_to_optimizer = belong_to_optimizer

1172 1173 1174 1175 1176
        self.error_clip = error_clip

        is_new_var = False
        name = cpt.to_text(name)
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
1177

1178 1179 1180
        if self.desc is None:
            self.desc = self.block.desc.var(cpt.to_bytes(name))
            is_new_var = True
1181

1182 1183 1184
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
L
Leo Chen 已提交
1185 1186
            raise ValueError("Variable '{0}' has been created before. The "
                             "previous type is {1}, the new type is {2}. They"
1187 1188
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))
1189

1190
        if shape is not None:
1191
            if is_new_var:
1192 1193 1194 1195 1196 1197
                self.desc.set_shape(shape)
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
L
Leo Chen 已提交
1198 1199
                        "Variable '{0}' has been created before. The previous "
                        "shape is {1}, the new shape is {2}. They are not "
1200 1201 1202 1203 1204 1205 1206
                        "matched.".format(self.name, old_shape, shape))
        if dtype is not None:
            if is_new_var:
                self.desc.set_dtype(dtype)
            else:
                old_dtype = self.dtype
                if dtype != old_dtype:
L
Leo Chen 已提交
1207 1208
                    raise ValueError("Variable '{0}' has been created before. "
                                     "The previous data type is {1}, the new "
1209 1210 1211 1212 1213 1214 1215 1216 1217
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))

        if lod_level is not None:
            if is_new_var:
                self.desc.set_lod_level(lod_level)
            else:
                if lod_level != self.lod_level:
L
Leo Chen 已提交
1218 1219
                    raise ValueError("Variable '{0}' has been created before. "
                                     "The previous lod_level is {1}, the new "
1220 1221 1222 1223 1224 1225 1226 1227 1228
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
L
Leo Chen 已提交
1229 1230
                        "Variable '{0}' has been created before."
                        "The previous persistable is {1}, the new "
1231 1232
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))
1233

1234 1235
        if need_check_feed and is_new_var:
            self.desc.set_need_check_feed(need_check_feed)
H
Huihuang Zheng 已提交
1236

1237 1238 1239 1240 1241 1242 1243
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass
1244

1245 1246
        self.block.vars[name] = self
        self.op = None
1247
        self.stop_gradient = stop_gradient
1248
        self.is_data = is_data
Y
Yu Yang 已提交
1249

1250 1251 1252
    def detach(self):
        """
        Returns a new Variable, detached from the current graph.
1253 1254
        It will share data with origin Variable and without tensor copy.
        In addition, the detached Variable doesn't provide gradient propagation.
1255

1256
        Returns:
J
Jiabin Yang 已提交
1257
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable): The detached Variable.
1258 1259 1260 1261

        Examples:
            .. code-block:: python

1262
                import paddle
1263

1264 1265 1266 1267
                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
1268

1269 1270
                # create a detached Variable
                y = x.detach()
1271
        """
1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286

        assert self.type == core.VarDesc.VarType.SELECTED_ROWS or \
            self.type == core.VarDesc.VarType.LOD_TENSOR, \
            "only support a variable with SELECTED_ROWS or LOD_TENSOR to be detached"

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key("detach_" + self.name),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
            stop_gradient=True)

        self.block.append_op(
            type='share_data', inputs={'X': [self]}, outputs={'Out': [output]})
        return output
1287

1288
    @fake_interface_only
1289
    def numpy(self):
1290
        """
J
Jiabin Yang 已提交
1291
        **Notes**:
T
tianshuo78520a 已提交
1292
            **This API is ONLY available in Dygraph mode**
1293

J
Jiabin Yang 已提交
1294
        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`
1295 1296 1297 1298 1299

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
J
Jiabin Yang 已提交
1300
            ndarray: dtype is same as current Variable
1301 1302 1303 1304 1305 1306

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1307
                from paddle.fluid.dygraph import Linear
1308 1309 1310 1311
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1312
                    linear = Linear(32, 64)
1313
                    data = to_variable(data)
1314
                    x = linear(data)
1315 1316 1317
                    print(x.numpy())

        """
1318
        pass
1319

1320
    @fake_interface_only
1321
    def backward(self, retain_graph=False):
1322
        """
J
Jiabin Yang 已提交
1323
        **Notes**:
T
tianshuo78520a 已提交
1324
            **This API is ONLY available in Dygraph mode**
1325

1326
        Run backward of current Graph which starts from current Tensor.
1327

J
Jiabin Yang 已提交
1328
        Args:
1329 1330 1331 1332
            retain_graph(bool, optional): If False, the graph used to compute grads will be freed. If you would
                like to add more ops to the built graph after calling this method( :code:`backward` ), set the parameter
                :code:`retain_graph` to True, then the grads will be retained. Thus, seting it to False is much more memory-efficient.
                Defaults to False.
1333

J
Jiabin Yang 已提交
1334 1335
        Returns:
            NoneType: None
1336 1337 1338 1339 1340

        Examples:
            .. code-block:: python

                import numpy as np
1341 1342
                import paddle
                paddle.disable_static()
1343 1344

                x = np.ones([2, 2], np.float32)
1345 1346 1347 1348 1349 1350 1351
                inputs = []
                for _ in range(10):
                    tmp = paddle.to_tensor(x)
                    # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
                    # there is no one need gradient on it.
                    tmp.stop_gradient=False
                    inputs.append(tmp)
1352 1353
                ret = paddle.add_n(inputs)
                loss = paddle.sum(ret)
1354
                loss.backward()
1355 1356

        """
1357
        pass
1358

1359
    @fake_interface_only
1360
    def gradient(self):
1361
        """
J
Jiabin Yang 已提交
1362
        **Notes**:
T
tianshuo78520a 已提交
1363
            **This API is ONLY available in Dygraph mode**
1364 1365 1366

        Get the Gradient of Current Variable

J
Jiabin Yang 已提交
1367
        Returns:
1368
            ndarray or tuple of ndarray: if Variable's type is LoDTensor, return numpy value of the gradient of current Variable, if Variable's type is SelectedRows, return tuple of ndarray, first element of tuple is numpy value of the gradient of current Variable, second element of tuple is numpy value of the rows of current Variable.
1369 1370 1371 1372 1373 1374 1375

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

1376
                # example1: return ndarray
1377 1378 1379 1380 1381 1382 1383 1384 1385
                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1386
                    loss2.backward()
1387 1388
                    print(loss2.gradient())

1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
                # example2: return tuple of ndarray
                with fluid.dygraph.guard():
                    embedding = fluid.dygraph.Embedding(
                        size=[20, 32],
                        param_attr='emb.w',
                        is_sparse=True)
                    x_data = np.arange(12).reshape(4, 3).astype('int64')
                    x_data = x_data.reshape((-1, 3, 1))
                    x = fluid.dygraph.base.to_variable(x_data)
                    out = embedding(x)
                    out.backward()
                    print(embedding.weight.gradient())

1402
        """
1403
        pass
1404

1405
    @fake_interface_only
1406
    def clear_gradient(self):
1407
        """
J
Jiabin Yang 已提交
1408
        **Notes**:
T
tianshuo78520a 已提交
1409
            **1. This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1410 1411

            **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**
1412

J
Jiabin Yang 已提交
1413
        Clear  (set to ``0`` ) the Gradient of Current Variable
1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431

        Returns:  None

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1432
                    loss2.backward()
1433 1434 1435 1436 1437
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
1438
        pass
X
Xin Pan 已提交
1439

1440 1441 1442 1443
    @fake_interface_only
    def register_hook(self, hook):
        pass

1444
    def __str__(self):
1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460
        return self._to_readable_code()

    def _to_readable_code(self):
        """
        Get readable debug string of Variable.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Returns:
            string: The formatted Variable string.

        Examples:
            .. code-block:: python

1461 1462
                import paddle
                import paddle.static as static
1463

1464 1465 1466
                paddle.enable_static()

                cur_program = static.Program()
1467 1468 1469 1470 1471 1472
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
                print(new_variable._to_readable_code())
        """
1473 1474
        # VarType.LOD_TENSOR -> LOD_TENSOR
        type_str = str(self.type).split('.')[1]
1475
        if self.type == core.VarDesc.VarType.SELECTED_ROWS or self.type == core.VarDesc.VarType.LOD_TENSOR:
1476 1477
            dtype_str = str(self.dtype).split('.')[1]
            var_str = "{name} : {type}.shape{shape}.dtype({dtype}).stop_gradient({stop_gradient})".\
T
tangwei12 已提交
1478 1479
                format(name=self.name, type=type_str, shape=self.shape,
                       dtype=dtype_str, stop_gradient=self.stop_gradient)
1480
        else:
1481 1482
            var_str = "{name} : {type})".\
                format(name=self.name, type=type_str)
1483

1484
        if self.is_parameter:
1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
            if self.trainable:
                var_str = "trainable param " + var_str
            else:
                var_str = "param " + var_str
        else:
            var_str = "var " + var_str

        if self.persistable:
            var_str = "persist " + var_str

1495
        from paddle.distributed.auto_parallel.dist_context import get_default_distributed_context
1496
        dist_context = get_default_distributed_context()
1497 1498
        dist_tensor = dist_context.get_dist_tensor_for_program(self)
        if dist_tensor is not None:
1499
            var_str += ", {name} = {value}".format(
1500
                name="dist_attr", value=dist_tensor)
1501

1502
        return var_str
Y
Yang Yang(Tony) 已提交
1503

F
update  
fengjiayi 已提交
1504
    def to_string(self, throw_on_error, with_details=False):
1505 1506 1507
        """
        Get debug string.

J
Jiabin Yang 已提交
1508 1509 1510 1511 1512
        Args:

            throw_on_error (bool): True if raise an exception when self is not initialized.

            with_details (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default value is False;
1513

1514 1515
        Returns:
            str: The debug string.
1516 1517 1518 1519 1520

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
1521
                import paddle
1522

1523
                paddle.enable_static()
1524 1525 1526 1527 1528
                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
1529
                print(new_variable.to_string(True))
J
Jiabin Yang 已提交
1530
                print("=============with detail===============")
1531
                print(new_variable.to_string(True, True))
1532
        """
F
update  
fengjiayi 已提交
1533 1534
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
1535
        protostr = self.desc.serialize_to_string()
1536
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
1537 1538
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
1539
            additional_attr = ("error_clip", )
F
update  
fengjiayi 已提交
1540
            for attr_name in additional_attr:
1541 1542 1543
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))

F
update  
fengjiayi 已提交
1544
        return res_str
1545 1546 1547

    __repr__ = __str__

1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574
    def element_size(self):
        """
        Returns the size in bytes of an element in the Tensor.
        
        Examples:
          .. code-block:: python

            import paddle
            paddle.enable_static()

            x = paddle.static.data(name='x1', shape=[3, 2], dtype='bool')
            x.element_size() # 1

            x = paddle.static.data(name='x2', shape=[3, 2], dtype='int16')
            x.element_size() # 2

            x = paddle.static.data(name='x3', shape=[3, 2], dtype='float16')
            x.element_size() # 2

            x = paddle.static.data(name='x4', shape=[3, 2], dtype='float32')
            x.element_size() # 4

            x = paddle.static.data(name='x5', shape=[3, 2], dtype='float64')
            x.element_size() # 8
        """
        return self.desc.element_size()

1575
    @property
1576
    def stop_gradient(self):
J
Jiabin Yang 已提交
1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591
        """
        Indicating if we stop gradient from current Variable

        **Notes: This Property has default value as** ``True`` **in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, while Parameter's default value is False. However, in Static Graph Mode all Variable's default stop_gradient value is** ``False``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                value1 = np.arange(6).reshape(2, 3).astype("float32")
                value2 = np.arange(10).reshape(2, 5).astype("float32")
1592 1593
                linear = fluid.Linear(13, 5, dtype="float32")
                linear2 = fluid.Linear(3, 3, dtype="float32")
J
Jiabin Yang 已提交
1594 1595 1596
                a = fluid.dygraph.to_variable(value0)
                b = fluid.dygraph.to_variable(value1)
                c = fluid.dygraph.to_variable(value2)
1597 1598
                out1 = linear(a)
                out2 = linear2(b)
J
Jiabin Yang 已提交
1599 1600 1601 1602
                out1.stop_gradient = True
                out = fluid.layers.concat(input=[out1, out2, c], axis=1)
                out.backward()

1603
                assert linear.weight.gradient() is None
J
Jiabin Yang 已提交
1604 1605
                assert (out1.gradient() == 0).all()
        """
1606
        return self.desc.stop_gradient()
1607

1608 1609
    @stop_gradient.setter
    def stop_gradient(self, s):
1610
        self.desc.set_stop_gradient(s)
1611

1612 1613
    @property
    def persistable(self):
J
Jiabin Yang 已提交
1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
        """
        Indicating if we current Variable should be long-term alive


        **Notes: This Property will be deprecated and this API is just to help user understand concept**

            **1. All Variable's persistable is** ``False`` **except Parameters.**

            **2. In** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, this property should not be changed**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("persistable of current Var is: {}".format(new_variable.persistable))
        """
1635
        return self.desc.persistable()
1636

Y
Yu Yang 已提交
1637 1638
    @persistable.setter
    def persistable(self, p):
1639
        self.desc.set_persistable(p)
Y
Yu Yang 已提交
1640

1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665
    @property
    def is_parameter(self):
        """
        Indicating if current Variable is a Parameter

        Examples:
          .. code-block:: python

            import paddle
            new_parameter = paddle.static.create_parameter(name="X",
                                                shape=[10, 23, 48],
                                                dtype='float32')
            if new_parameter.is_parameter:
                print("Current var is a Parameter")
            else:
                print("Current var is not a Parameter")

            # Current var is a Parameter
        """
        return self.desc.is_parameter()

    @is_parameter.setter
    def is_parameter(self, p):
        self.desc.set_is_parameter(p)

Y
Yu Yang 已提交
1666 1667
    @property
    def name(self):
J
Jiabin Yang 已提交
1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683
        """
        Indicating name of current Variable

        **Notes: If it has two or more Varaible share the same name in the same** :ref:`api_guide_Block_en` **, it means these Variable will share content in no-** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode. This is how we achieve Parameter sharing**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("name of current Var is: {}".format(new_variable.name))
        """
1684
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
1685

1686 1687 1688 1689 1690 1691
    @property
    def grad_name(self):
        """
        Indicating name of the gradient Variable of current Variable.

        **Notes: This is a read-only property. It simply returns name of
S
sunzhongkai588 已提交
1692 1693
        gradient Variable from a naming convention but doesn't guarantee
        the gradient exists.**
T
tangwei12 已提交
1694

1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
        Examples:
          .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.data(name="x", shape=[-1, 23, 48], dtype='float32')
          print(x.grad_name) # output is "x@GRAD"

        """
        return self.name + "@GRAD"

T
typhoonzero 已提交
1706 1707
    @name.setter
    def name(self, new_name):
1708
        self.desc.set_name(new_name)
T
typhoonzero 已提交
1709

Y
Yu Yang 已提交
1710 1711
    @property
    def shape(self):
J
Jiabin Yang 已提交
1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728
        """
        Indicating shape of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("shape of current Var is: {}".format(new_variable.shape))

        """
Y
Yu Yang 已提交
1729
        # convert to tuple, make it as same as numpy API.
1730
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
1731 1732

    @property
F
fengjiayi 已提交
1733
    def dtype(self):
J
Jiabin Yang 已提交
1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749
        """
        Indicating data type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Dtype of current Var is: {}".format(new_variable.dtype))
        """
1750
        return self.desc.dtype()
Y
Yu Yang 已提交
1751 1752 1753

    @property
    def lod_level(self):
J
Jiabin Yang 已提交
1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766
        """
        Indicating ``LoD`` info of current Variable, please refer to  :ref:`api_fluid_LoDTensor_en` to check the meaning
        of ``LoD``

        **Notes**:

            **1. This is a read-only property**

            **2. Don't support this property in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, it's value should be** ``0(int)``

        Examples:
          .. code-block:: python

1767
            import paddle
J
Jiabin Yang 已提交
1768
            import paddle.fluid as fluid
1769 1770

            paddle.enable_static()
J
Jiabin Yang 已提交
1771 1772 1773 1774 1775 1776 1777
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("LoD Level of current Var is: {}".format(new_variable.lod_level))
        """
1778 1779
        if self.type == core.VarDesc.VarType.SELECTED_ROWS:
            raise Exception("SelectedRows DO NOT supprt lod")
1780 1781
        if self.type == core.VarDesc.VarType.STRINGS:
            return None
1782
        return self.desc.lod_level()
Y
Yu Yang 已提交
1783

Y
Yu Yang 已提交
1784 1785
    @property
    def type(self):
J
Jiabin Yang 已提交
1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
        """
        Indicating Type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Type of current Var is: {}".format(new_variable.type))
        """
1802
        return self.desc.type()
Y
Yu Yang 已提交
1803

1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852
    @property
    def T(self):
        """
        Permute current Variable with its dimensions reversed.

        If `n` is the dimensions of `x` , `x.T` is equivalent to `x.transpose([n-1, n-2, ..., 0])`.

        Examples:

            .. code-block:: python

                import paddle
                paddle.enable_static()

                x = paddle.ones(shape=[2, 3, 5])
                x_T = x.T

                exe = paddle.static.Executor()
                x_T_np = exe.run(paddle.static.default_main_program(), fetch_list=[x_T])[0]
                print(x_T_np.shape)
                # (5, 3, 2)
        """
        if len(self.shape) == 1:
            return self
        perm = []
        for i in range(len(self.shape)):
            perm.insert(0, i)

        out = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=self.type,
            persistable=False,
            stop_gradient=False)
        input_shape = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=False,
            stop_gradient=False)

        self.block.append_op(
            type='transpose2',
            inputs={'X': [self]},
            outputs={'Out': [out],
                     'XShape': [input_shape]},
            attrs={'axis': perm})
        return out

1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886
    def clone(self):
        """
        Returns a new static Variable, which is the clone of the original static
        Variable. It remains in the current graph, that is, the cloned Variable 
        provides gradient propagation. Calling ``out = tensor.clone()`` is same
        as ``out = assign(tensor)`` .

        Returns:
            Variable: The cloned Variable.

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
                # create a cloned Variable
                y = x.clone()

        """
        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_clone"),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
            stop_gradient=self.stop_gradient)

        self.block.append_op(
            type='assign', inputs={'X': [self]}, outputs={'Out': [output]})
        return output

W
Wu Yi 已提交
1887
    def _set_error_clip(self, error_clip):
1888 1889 1890 1891 1892 1893 1894 1895 1896
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
1897 1898
        self.error_clip = error_clip

1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927
    def _set_info(self, key, value):
        """
        Set key-value information for this variable.

        Args:
            key(str): Key for this information.
            value(object): The value associated to the key.

        Returns: 
            None
        """
        if not hasattr(self, "_info"):
            self._info = {}
        self._info[key] = value

    def _get_info(self, key):
        """
        Get the information of this variable corresponding to key.

        Args:
            key(str): Key for this information.

        Returns: 
            object
        """
        if hasattr(self, "_info") and key in self._info:
            return self._info[key]
        return None

1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938
    def _slice_indices(self, slice, length):
        """
        Reference implementation for the slice.indices method.
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
T
tianshuo78520a 已提交
1939
            raise ValueError("slice step can not be zero")
1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
            start = max(start + length, lower) if start < 0 else min(start,
                                                                     upper)

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
                if (index > 0 and index >= self.shape[index]) \
                        or (index < 0 and (index + self.shape[index]) < 0):
                    raise IndexError("invalid index")
                start = max(start + self.shape[index], 0) if start < 0 else min(
                    start, self.shape[index])
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
2015
    def _cloneVar(self, copy=False):
2016 2017
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
2018 2019
                name=unique_name.generate_with_ignorable_key(self.name),
                dtype=self.dtype)
2020 2021 2022 2023
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
2024
        new_var = self._cloneVar()
2025 2026 2027 2028 2029 2030 2031 2032 2033 2034
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes,
                   'starts': starts,
                   'ends': ends})
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
2035
        new_var = self._cloneVar()
2036 2037 2038 2039 2040 2041 2042 2043 2044 2045
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={'axis': axis, })
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
2046
                return self._cloneVar(True)
2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                else:
                    while start > stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
2065
                return self._cloneVar(True)
2066
            index = int(item)
2067
            if (index > 0 and index >= self.shape[axis]) \
2068 2069 2070 2071 2072 2073 2074
                    or (index < 0 and (index + self.shape[axis]) < 0):
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
2075
        return _getitem_impl_(self, item)
2076

2077
    def __setitem__(self, item, value):
2078
        return _setitem_impl_(self, item, value)
2079

2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225
    def get_value(self, scope=None):
        """
        Get the value of variable in given scope. 

        Args:
            scope(Scope, optional) : If `scope` is None, it will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            Tensor: the value in given scope.

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static 
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        """
        # The 'framework' is a low-level module, and 'executor' 
        # can not be imported at the begainning of this file. 
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".
                format(type(scope)))

        if scope is None:
            scope = global_scope()
        var_temp = scope.find_var(self.name)
        if var_temp is None:
            raise ValueError("Can not find Variable '{}' in the Scope.".format(
                self.name))
        t = var_temp.get_tensor()
        return t

    def set_value(self, value, scope=None):
        '''
        Set the value to the tensor in given scope. 

        Args:
            value(Tensor/ndarray) : The value to be set.
            scope(Scope, optional) : If `scope` is None, it will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            None
        
        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static 
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        '''

        # The 'framework' is a low-level module, and 'executor'
        # can not be imported at the begainning of this file. 
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope

        if not (isinstance(value, np.ndarray) or hasattr(value, '__array__')):
            raise TypeError(
                "`value` should be `numpy.ndarray` or `LoDTensor`, but received {}.".
                format(type(value)))

        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".
                format(type(scope)))

        if scope is None:
            scope = global_scope()

        var_temp = scope.find_var(self.name)
        if var_temp is None:
            raise ValueError("Can not find Variable '{}' in the Scope.".format(
                self.name))

        t = var_temp.get_tensor()

        if hasattr(value, 'shape'):
            if isinstance(value.shape, (MethodType, FunctionType)):
                value_shape = value.shape()
            else:
                value_shape = value.shape
            if list(t.shape()) != list(value_shape):
                raise ValueError(
                    "{} expected a shape {}, but the received shape is {}.".
                    format(self.name, list(t.shape()), list(value_shape)))

        p = t._place()
        if p.is_cpu_place():
            place = core.CPUPlace()
        elif p.is_cuda_pinned_place():
            place = core.CUDAPinnedPlace()
        elif p.is_xpu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.XPUPlace(p.xpu_device_id())
2226 2227 2228 2229
        elif p.is_npu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.NPUPlace(p.npu_device_id())
2230 2231 2232 2233
        elif p.is_mlu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.MLUPlace(p.mlu_device_id())
2234 2235 2236 2237 2238 2239 2240
        else:
            p = core.Place()
            p.set_place(t._place())
            place = core.CUDAPlace(p.gpu_device_id())

        t.set(value, place)

2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269
    def size(self):
        """
        Returns the number of elements for current Variable, which is a int64 Variable with shape [1]

        Returns:
            Variable: the number of elements for current Variable

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])

                # get the number of elements of the Variable
                y = x.size()
        """

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_size"),
            dtype=core.VarDesc.VarType.INT64)

        self.block.append_op(
            type='size', inputs={'Input': [self]}, outputs={'Out': [output]})
        return output

2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349
    def _set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _has_attr(self, name):
        """
        Whether this Variable has the attribute with the name `name` or not.

        Args:
            name(str): the attribute name.

        Returns:
            bool: True if has this attribute.
        """
        return self.desc.has_attr(name)

    def _remove_attr(self, name):
        self.desc.remove_attr(name)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
        """
        self.desc._set_attr(name, val)

    @property
    def attr_names(self):
        """Get the names of all attributes defined."""
        return self.desc.attr_names()

    def _get_attr(self, name):
        """
        Get the attribute by name.

        Args:
            name(str): the attribute name.

        Returns:
            int|str|list: The attribute value. The return value
            can be any valid attribute type.
        """
        return self.desc.attr(name)

    @property
    def process_mesh(self):
        """
        Get the process mesh belonging to this Variable.
        """
        from paddle.distributed.auto_parallel.interface import _g_process_mesh_map
        from paddle.distributed.auto_parallel.interface import ProcessMesh
        mesh_attr_name = 'mesh_id' + core.kAutoParallelSuffix()
        mesh_id = self.desc.attr(mesh_attr_name)
        return _g_process_mesh_map[mesh_id]

    @property
    def shard_mask(self):
        """
        Get shard_mask belonging to this Variable.
        """
        mask_attr_name = 'mask' + core.kAutoParallelSuffix()
        return self.desc.attr(mask_attr_name)

    @property
    def offload_device(self):
        """
        Get the offload device of this Variable.
        """
        offload_attr_name = 'offload_device' + core.kAutoParallelSuffix()
        return self.desc.attr(offload_attr_name)

Y
Yu Yang 已提交
2350

F
fengjiayi 已提交
2351 2352 2353
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
2354

2355 2356
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
2357 2358 2359 2360
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
2361
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
2362 2363 2364 2365 2366
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
2367 2368 2369 2370
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
2371 2372 2373 2374 2375 2376 2377 2378 2379
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
2380
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
2381 2382 2383 2384 2385 2386
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
2387 2388 2389 2390 2391 2392 2393 2394
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
2395 2396
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
2397 2398
        return self.op_proto_map[type]

2399 2400
    def update_op_proto(self):
        op_protos = get_all_op_protos()
2401
        custom_op_names = []
2402 2403 2404
        for proto in op_protos:
            if proto.type not in self.op_proto_map:
                self.op_proto_map[proto.type] = proto
2405 2406 2407
                custom_op_names.append(proto.type)

        return custom_op_names
2408

2409 2410 2411 2412
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
2413
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
2414
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
2415 2416
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName(),
            core.op_proto_and_checker_maker.kOpDeviceAttrName()
2417 2418
        }

F
fengjiayi 已提交
2419

X
Xin Pan 已提交
2420
class Operator(object):
2421
    """
2422 2423 2424 2425 2426 2427 2428
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
2429
        type(str): The type of operator. Default None.
2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
2450
        Block.append_op or Block._prepend_op instead.
2451 2452 2453 2454

    Examples:
        .. code-block:: python

2455
            import paddle.fluid as fluid
2456
            cur_program = fluid.Program()
2457 2458 2459 2460 2461
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
2462
    """
2463
    OP_WITHOUT_KERNEL_SET = {
2464 2465
        'feed', 'fetch', 'recurrent', 'go', 'rnn_memory_helper_grad',
        'conditional_block', 'while', 'send', 'recv', 'listen_and_serv',
2466
        'fl_listen_and_serv', 'ncclInit', 'select', 'checkpoint_notify',
2467 2468
        'gen_bkcl_id', 'c_gen_bkcl_id', 'gen_nccl_id', 'c_gen_nccl_id',
        'c_comm_init', 'c_sync_calc_stream', 'c_sync_comm_stream',
W
WangXi 已提交
2469
        'queue_generator', 'dequeue', 'enqueue', 'heter_listen_and_serv',
B
Baibaifan 已提交
2470
        'c_wait_comm', 'c_wait_compute', 'c_gen_hccl_id', 'c_comm_init_hccl',
2471
        'copy_cross_scope', 'c_gen_cncl_id'
2472
    }
2473

Y
Yu Yang 已提交
2474 2475
    def __init__(self,
                 block,
Y
Yu Yang 已提交
2476
                 desc,
Y
Yu Yang 已提交
2477 2478 2479
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
2480
                 attrs=None):
L
lujun 已提交
2481
        if in_dygraph_mode():
2482 2483
            if type is None:
                raise ValueError(
2484
                    "`type` to initialized an Operator can not be None.")
J
Jiabin Yang 已提交
2485
            self._type = type
M
minqiyang 已提交
2486
            self.attrs = attrs if attrs else {}
2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
                op_attrs[op_maker.kOpRoleAttrName(
2501
                )] = self.block.program._op_role
2502 2503 2504

            role_var_name = op_maker.kOpRoleVarAttrName()
            if len(self.block.program.
2505 2506
                   _op_role_var) != 0 and role_var_name not in op_attrs:
                op_attrs[role_var_name] = self.block.program._op_role_var
2507 2508 2509 2510 2511

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
2512 2513 2514 2515 2516
                # NOTE(Aurelius84): prog.clone() will lead that var.op is always None,
                # we add this to fix the problem.
                for arg in self.desc.output_arg_names():
                    if block.has_var(arg) and block.var(arg).op is None:
                        block.var(arg).op = self
2517 2518 2519
                return
            if type is None:
                raise ValueError(
2520
                    "`type` to initialized an Operator can not be None.")
2521 2522
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
2523 2524 2525 2526 2527 2528 2529
                op_attrs[callstack_var_name] = []
                for frame in traceback.extract_stack():
                    op_attrs[callstack_var_name].append(
                        '  File "{}", line {}, in {}'.format(frame[0], frame[1],
                                                             frame[2]))
                    op_attrs[callstack_var_name].append('    {}'.format(frame[
                        3]))
2530 2531 2532 2533 2534 2535 2536

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547
            # set device for op with kernels, give warning for op without kernels
            # when force_cpu and device_guard are used at the same time, a warning will be given.
            # TODO(zhangting2020): when force_cpu is removed, clear warning below.
            if _current_device is not None:
                if self._has_kernel(type):
                    op_device = op_maker.kOpDeviceAttrName()
                    op_attrs[op_device] = _current_device
                else:
                    warnings.warn("The Op(%s) is not support to set device." %
                                  type)
                if 'force_cpu' in op_attrs:
2548
                    if (type == 'less_than' and op_attrs['force_cpu'] != None
2549 2550 2551 2552 2553
                        ) or op_attrs['force_cpu'] != False:
                        warnings.warn(
                            "The Attr(force_cpu) of Op(%s) will be deprecated in the future, "
                            "please use 'device_guard' instead. 'device_guard' has higher priority when they are "
                            "used at the same time." % type)
2554 2555 2556 2557 2558
            if _current_pipeline_stage is not None:
                pipeline_attr_name = 'pipeline_stage' + core.kAutoParallelSuffix(
                )
                self._update_desc_attr(pipeline_attr_name,
                                       _current_pipeline_stage)
2559

2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572
            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
                    assert found or in_proto.dispensable, "Input {} not found".format(
                        in_proto.name)
                    if found:
                        in_args = inputs[in_proto.name]
2573
                        if not isinstance(in_args, (list, tuple)):
2574 2575 2576 2577 2578 2579
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
                                % (in_proto.name, len(in_args)))
                        in_arg_names = []
2580
                        for index, arg in enumerate(in_args):
2581 2582 2583 2584
                            if isinstance(arg, six.string_types):
                                in_arg_names.append(arg)
                            elif isinstance(arg, six.binary_type):
                                in_arg_names.append(arg.decode())
2585
                            elif isinstance(arg, (Variable, core.VarBase)):
2586
                                in_arg_names.append(cpt.to_text(arg.name))
2587
                            else:
2588 2589 2590 2591
                                raise TypeError(
                                    "The type of '%s' in operator %s should be "
                                    "one of [basestring(), str, Varibale] in python2, "
                                    "or one of [str, bytes, Variable] in python3."
2592 2593
                                    "but received : %s" %
                                    (in_proto.name, type, arg))
2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
                        raise ValueError(("Incorrect setting for output(s) of "
                                          "operator \"%s\", should set: [%s].")
                                         % (type, m.name))
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
                            % (out_proto.name, len(out_args)))
                    out_arg_names = []
                    for arg in out_args:
2618 2619 2620 2621
                        if isinstance(arg, six.string_types):
                            out_arg_names.append(arg)
                        else:
                            out_arg_names.append(cpt.to_text(arg.name))
2622
                        # TODO(minqiyang): could we remove variable's op in static mode?
L
lujun 已提交
2623
                        if not in_dygraph_mode():
2624 2625 2626 2627
                            if isinstance(arg, six.string_types):
                                block.var(arg).op = self
                            else:
                                arg.op = self
2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640
                    self.desc.set_output(out_proto.name, out_arg_names)

            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
                    if (attr_name not in op_attrs) or (
                            op_attrs[attr_name] is None):
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)

J
jianghaicheng 已提交
2641 2642 2643 2644 2645 2646 2647 2648 2649
            # proto.attrs doesn't include ipu_index
            if core.is_compiled_with_ipu():
                if global_ipu_index is not None:
                    self._update_desc_attr(ipu_index_attr_name,
                                           global_ipu_index)
                if global_ipu_stage is not None:
                    self._update_desc_attr(ipu_stage_attr_name,
                                           global_ipu_stage)

2650 2651 2652 2653 2654
            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
2655
    def _has_kernel(self, op_type):
2656 2657
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
2658
    def to_string(self, throw_on_error):
2659
        """
2660 2661
        Get debug string.

2662
        Args:
2663 2664
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
2665

2666 2667
        Returns:
            str: The debug string.
2668 2669

        """
2670
        protostr = self.desc.serialize_to_string()
2671
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
2672 2673
        return _debug_string_(proto, throw_on_error)

2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705
    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Operator.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Operator string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
            print(new_op._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
2706
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758
            type(skip_op_callstack))
        outputs_str = "{"
        for i in range(0, len(self.output_names)):
            outputs_str += "{name}=".format(name=self.output_names[i])
            o = self.output(self.output_names[i])
            outputs_str += "{value}".format(value=o)
            if i != len(self.output_names) - 1:
                outputs_str += ", "
        outputs_str += "}"

        inputs_str = "{"
        for i in range(0, len(self.input_names)):
            inputs_str += "{name}=".format(name=self.input_names[i])
            o = self.input(self.input_names[i])
            inputs_str += "{value}".format(value=o)

            if i != len(self.input_names) - 1:
                inputs_str += ", "
        inputs_str += "}"

        attr_names = sorted(self.attr_names)
        attrs_str = ""
        for i in range(0, len(attr_names)):
            name = attr_names[i]
            if skip_op_callstack and name == "op_callstack":
                continue

            attr_type = self.desc.attr_type(name)
            if attr_type == core.AttrType.BLOCK:
                a = "{name} = block[{value}]".format(
                    name=name, type=attr_type, value=self._block_attr_id(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.BLOCKS:
                a = "{name} = blocks{value}".format(
                    name=name,
                    type=attr_type,
                    value=self._blocks_attr_ids(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            a = "{name} = {value}".format(
                name=name, type=attr_type, value=self.desc.attr(name))
            attrs_str += a
            if i != len(attr_names) - 1:
                attrs_str += ", "

2759
        from paddle.distributed.auto_parallel.dist_context import get_default_distributed_context
2760
        dist_context = get_default_distributed_context()
2761 2762
        dist_op = dist_context.get_dist_op_for_program(self)
        if dist_op is not None:
2763
            attrs_str += ", {name} = {value}".format(
2764
                name="dist_attr", value=dist_op)
2765

2766 2767
        if outputs_str != "{}":
            op_str = "{outputs} = {op_type}(inputs={inputs}, {attrs})".\
T
tangwei12 已提交
2768 2769
                format(outputs=outputs_str, op_type=self.type,
                       inputs=inputs_str, attrs=attrs_str)
2770 2771 2772 2773 2774
        else:
            op_str = "{op_type}(inputs={inputs}, {attrs})".\
                format(op_type=self.type, inputs=inputs_str, attrs=attrs_str)
        return op_str

Y
Yang Yang(Tony) 已提交
2775
    def __str__(self):
2776
        return self._to_readable_code()
2777 2778 2779

    __repr__ = __str__

F
fengjiayi 已提交
2780 2781
    @property
    def type(self):
2782
        return self.desc.type()
F
fengjiayi 已提交
2783 2784

    def input(self, name):
2785
        r"""
2786
        Get the input arguments according to the input parameter name.
2787

2788 2789
        Args:
            name(str): The input parameter name.
2790

2791 2792 2793
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
2794
        """
F
fengjiayi 已提交
2795 2796
        return self.desc.input(name)

W
Wu Yi 已提交
2797
    def _rename_input(self, old_name, new_name):
2798 2799 2800 2801 2802 2803 2804 2805 2806 2807
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
2808
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
2809

W
Wu Yi 已提交
2810
    def _rename_output(self, old_name, new_name):
2811 2812 2813 2814 2815 2816 2817 2818 2819 2820
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
2821
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
2822

F
fengjiayi 已提交
2823 2824 2825 2826
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
2827 2828 2829 2830 2831 2832 2833 2834
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
2835
    def output(self, name):
2836
        r"""
2837
        Get output arguments by the output parameter name.
2838

2839 2840
        Args:
            name(str): The output parameter name.
2841

2842 2843 2844
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
2845
        """
F
fengjiayi 已提交
2846 2847 2848 2849 2850 2851
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

2852 2853 2854 2855 2856 2857 2858 2859
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
2860
    def has_attr(self, name):
2861
        """
2862 2863
        Whether this Operator has the attribute with name or not.

2864
        Args:
2865
            name(str): the attribute name.
2866

2867 2868
        Returns:
            bool: True if has this attribute.
2869 2870

        """
F
fengjiayi 已提交
2871 2872 2873
        return self.desc.has_attr(name)

    def attr_type(self, name):
2874
        """
2875
        Get the type of attribute by attribute's name.
2876

2877 2878
        Args:
            name(str): the attribute name.
2879

2880 2881
        Returns:
            core.AttrType: the attribute type.
2882
        """
F
fengjiayi 已提交
2883 2884
        return self.desc.attr_type(name)

W
Wu Yi 已提交
2885
    def _set_attr(self, name, val):
2886 2887 2888 2889 2890 2891 2892 2893 2894 2895
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
2896 2897
        self._update_desc_attr(name, val)

2898 2899 2900
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
2912 2913
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
2914 2915
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
2916
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
2917 2918 2919 2920
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
2921
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
2922

F
fengjiayi 已提交
2923 2924 2925 2926 2927
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
2928
        """
2929 2930
        Get the attribute by name.

2931
        Args:
2932
            name(str): the attribute name.
2933

2934 2935
        Returns:
            bool|int|str|float|list: The attribute value. The return value
2936 2937
            can be any valid attribute type.
        """
F
fengjiayi 已提交
2938
        return self.desc.attr(name)
Y
Yu Yang 已提交
2939

W
Wu Yi 已提交
2940
    def _block_attr_id(self, name):
2941
        """
G
gongweibao 已提交
2942
        Get the block attribute's id by name.
2943

2944 2945
        Args:
            name(str): the attribute name.
2946

2947 2948
        Returns:
            int: the block index.
2949
        """
W
Wu Yi 已提交
2950
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
2951

W
Wu Yi 已提交
2952
    def _block_attr(self, name):
G
gongweibao 已提交
2953 2954 2955 2956 2957 2958 2959 2960 2961 2962
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
2963
        id = self._block_attr_id(name)
G
gongweibao 已提交
2964 2965 2966
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
2967
    def _blocks_attr(self, name):
G
gongweibao 已提交
2968 2969 2970 2971 2972 2973 2974 2975 2976 2977
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
2978
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
2979 2980 2981 2982 2983
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
2984
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
2985 2986 2987 2988 2989 2990 2991 2992 2993 2994
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
2995
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
2996

J
JiayiFeng 已提交
2997
    def all_attrs(self):
F
fengjiayi 已提交
2998
        """
2999 3000 3001
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
3002
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
3003 3004 3005 3006
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
3007 3008
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
3009
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
3010 3011 3012
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
3013
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
3014 3015 3016 3017
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
3018 3019
        return attr_map

3020 3021 3022
    def _is_optimize_op(self):
        op_maker = core.op_proto_and_checker_maker
        OPTIMIZE = core.op_proto_and_checker_maker.OpRole.Optimize
3023 3024 3025 3026

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
            return False

3027 3028 3029
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(OPTIMIZE):
            return True
3030 3031 3032 3033 3034 3035 3036 3037

        return False

    def _is_backward_op(self):
        op_maker = core.op_proto_and_checker_maker
        BACKWARD = core.op_proto_and_checker_maker.OpRole.Backward

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
3038 3039
            return False

3040 3041 3042 3043 3044 3045
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(BACKWARD):
            return True

        return False

3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070
    @property
    def process_mesh(self):
        """
        Get the process mesh belonging to this Operator.
        """
        from paddle.distributed.auto_parallel.interface import _g_process_mesh_map
        mesh_attr_name = 'mesh_id' + core.kAutoParallelSuffix()
        mesh_id = self.attr(mesh_attr_name)
        return _g_process_mesh_map[mesh_id]

    def dims_mapping(self, name):
        """
        Get the dims_mapping for the op's var named `name`.
        """
        dims_mapping_attr_name = name + core.kAutoParallelSuffix()
        return self.attr(dims_mapping_attr_name)

    @property
    def pipeline_stage(self):
        """
        Get pipeline stage of the Operator.
        """
        pipeline_stage_attr_name = 'pipeline_stage' + core.kAutoParallelSuffix()
        return self.desc.attr(pipeline_stage_attr_name)

Y
Yu Yang 已提交
3071

Y
Yu Yang 已提交
3072
class Block(object):
3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
3087
        use `Program._create_block()` to create a block.
3088 3089 3090 3091

    Examples:
        .. code-block:: python

3092 3093 3094
            import paddle.fluid as fluid

            cur_program = fluid.Program()
3095 3096 3097 3098 3099 3100 3101 3102 3103
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
3104
    def __init__(self, program, idx):
Y
Yu Yang 已提交
3105
        self.desc = program.desc.block(idx)
3106
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
3107
        self.ops = list()  # operator list
Y
Yu Yang 已提交
3108
        self.program = program
3109
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
3110

3111
    def __str__(self):
3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Block.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Block string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_block._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
3146
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157
            type(skip_op_callstack))
        block_str = "{ // block "
        block_str += "{}\n".format(self.idx)
        for var in list(self.vars.values()):
            block_str += "    {}\n".format(var._to_readable_code())
        block_str += "\n"
        for op in self.ops:
            block_str += "    {}\n".format(
                op._to_readable_code(skip_op_callstack))
        block_str += "}"
        return block_str
Y
Yang Yang(Tony) 已提交
3158

F
fengjiayi 已提交
3159 3160
    def to_string(self, throw_on_error, with_details=False):
        """
3161 3162
        Get debug string.

F
fengjiayi 已提交
3163 3164
        Args:
            throw_on_error(bool): raise exception when self is not initialized
3165
                when throw_on_error is True.
F
update  
fengjiayi 已提交
3166
            with_details(bool): more details about variables and parameters
3167 3168
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
3169

3170 3171
        Returns:
            str: The debug string.
F
fengjiayi 已提交
3172 3173 3174 3175
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
3176
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
3177 3178
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
3179
            for var in list(self.vars.values()):
F
fengjiayi 已提交
3180
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
3181
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
3182
            for op in self.ops:
F
fengjiayi 已提交
3183 3184
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
3185 3186 3187
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
3188 3189
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
3190 3191
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
3192 3193 3194

    __repr__ = __str__

Y
Yu Yang 已提交
3195 3196
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
3197
        return self.desc.parent
Y
Yu Yang 已提交
3198

Y
Yu Yang 已提交
3199 3200 3201 3202
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
3203
    def _set_forward_block_idx(self, idx):
3204 3205 3206 3207 3208 3209 3210 3211 3212
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
3213
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
3214

3215 3216 3217 3218 3219 3220 3221 3222
    @property
    def backward_block_idx(self):
        cur_block_idx = self.idx
        for block in self.program.blocks:
            if block.forward_block_idx == cur_block_idx:
                return block.idx
        return -1

Y
Yu Yang 已提交
3223 3224
    @property
    def idx(self):
Y
Yu Yang 已提交
3225
        return self.desc.id
Y
Yu Yang 已提交
3226

Q
Qiao Longfei 已提交
3227
    def var(self, name):
3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
3241
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
3242 3243 3244
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
3245 3246
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
3247
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
3248
        return v
Q
Qiao Longfei 已提交
3249

X
Xin Pan 已提交
3250
    def _find_var_recursive(self, name):
3251 3252 3253 3254 3255 3256 3257
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
3258
            Variable: the Variable with the giving name. Or None if not found.
3259
        """
Y
Yu Yang 已提交
3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
3284
        return None
Y
Yu Yang 已提交
3285

X
Xin Pan 已提交
3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
3305

Q
Qiao Longfei 已提交
3306
    def all_parameters(self):
3307
        return list(self.iter_parameters())
3308

3309
    def iter_parameters(self):
M
minqiyang 已提交
3310
        return (item[1] for item in six.iteritems(self.vars)
3311
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
3312

Y
Yu Yang 已提交
3313
    def create_var(self, *args, **kwargs):
L
Leo Chen 已提交
3314 3315 3316
        if in_dygraph_mode():
            var = _varbase_creator(*args, **kwargs)
        else:
3317 3318 3319
            var = Variable(block=self, *args, **kwargs)
            if 'initializer' in kwargs:
                kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
3320
        return var
Y
Yu Yang 已提交
3321

Q
Qiao Longfei 已提交
3322 3323 3324
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
3325
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
3326 3327
        """
        Rename variable in vars and ops' inputs and outputs
3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
3340
        """
M
minqiyang 已提交
3341 3342
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
3343

T
typhoonzero 已提交
3344
        if not self.has_var(name):
3345
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
3346 3347
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
3348
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
3349 3350 3351 3352 3353 3354
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
3355
            var_type = "Variable"
T
wip  
typhoonzero 已提交
3356 3357 3358 3359
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
3360
        orig_var_type = v.type
M
minqiyang 已提交
3361
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
3362
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
3363
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
3364
        if var_type == "Parameter":
L
Leo Chen 已提交
3365 3366
            if in_dygraph_mode():
                var = ParamBase(
3367 3368 3369 3370 3371 3372 3373 3374 3375 3376
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip)
            else:
L
Leo Chen 已提交
3377 3378
                var = Parameter(
                    self,
3379 3380 3381 3382 3383 3384 3385 3386 3387
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip)
T
typhoonzero 已提交
3388
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
3389 3390
            var = Variable(
                self,
T
typhoonzero 已提交
3391
                type=orig_var_type,
T
wip  
typhoonzero 已提交
3392 3393 3394 3395
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
3396
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
3397 3398 3399
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
3400
        self._sync_with_cpp()
3401
        return var
T
typhoonzero 已提交
3402

3403 3404 3405
    def _remove_var(self, name, sync=True):
        if sync == True:
            self._sync_with_cpp()
M
minqiyang 已提交
3406
        self.desc._remove_var(cpt.to_bytes(name))
3407 3408
        del self.vars[name]

Y
Yu Yang 已提交
3409 3410
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
3411
        param = None
L
Leo Chen 已提交
3412
        if in_dygraph_mode():
3413 3414 3415 3416
            if _in_eager_mode():
                param = EagerParamBase(*args, **kwargs)
            else:
                param = ParamBase(*args, **kwargs)
L
Leo Chen 已提交
3417 3418
        else:
            param = Parameter(global_block, *args, **kwargs)
3419

3420
        if 'initializer' in kwargs:
3421 3422 3423 3424 3425

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
3426
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
T
tangwei12 已提交
3427
                        # are treated as initialization ops that cause error.
3428
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
3429 3430 3431 3432 3433
                        # NOTE: "coalesce_tensor" is a special case for rnn with cudnn support
                        if op.type in [
                                "c_broadcast", "c_sync_comm_stream",
                                "coalesce_tensor"
                        ]:
3434
                            continue
3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
3446
                # TODO already inited, do nothing, should log a warning
3447 3448 3449
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
3450
        return param
Y
Yu Yang 已提交
3451

Y
Yu Yang 已提交
3452
    def append_op(self, *args, **kwargs):
3453 3454 3455 3456 3457 3458
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
L
lujun 已提交
3459
        if in_dygraph_mode():
3460
            attrs = kwargs.get("attrs", {})
Z
zyfncg 已提交
3461
            inplace_map = kwargs.get("inplace_map", None)
J
Jiabin Yang 已提交
3462
            type = kwargs.get("type", None)
3463 3464 3465
            op = Operator(
                block=self,
                desc=None,
J
Jiabin Yang 已提交
3466
                type=type,
M
minqiyang 已提交
3467 3468
                inputs=None,
                outputs=None,
3469
                attrs=attrs)
3470

M
minqiyang 已提交
3471 3472 3473
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
L
lujun 已提交
3474
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
3475 3476

            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
3477
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
3478 3479
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
Z
zyfncg 已提交
3480 3481
                                       kwargs.get("stop_gradient", False),
                                       inplace_map)
M
minqiyang 已提交
3482
        else:
3483 3484
            from paddle.fluid.dygraph.base import param_guard

3485
            op_desc = self.desc.append_op()
3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498
            # NOTE(Aurelius84): In case of @to_static, all VarBase(s) should
            # be converted into Variable(s) with same name and block location.
            # This is ONE and ONLY logic of type transformation of dy2static.
            inputs = kwargs.get("inputs", None)
            outputs = kwargs.get("outputs", None)
            with param_guard(inputs), param_guard(outputs):
                op = Operator(
                    block=self,
                    desc=op_desc,
                    type=kwargs.get("type", None),
                    inputs=inputs,
                    outputs=outputs,
                    attrs=kwargs.get("attrs", None))
3499

M
minqiyang 已提交
3500
            self.ops.append(op)
M
minqiyang 已提交
3501

3502 3503
        return op

W
Wu Yi 已提交
3504
    def _insert_op(self, index, *args, **kwargs):
3505 3506 3507 3508 3509 3510 3511 3512 3513
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
3514
        self._sync_with_cpp()
F
fangshuixun007 已提交
3515
        return self._insert_op_without_sync(index, *args, **kwargs)
Q
qiaolongfei 已提交
3516

3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533
    def _insert_op_without_sync(self, index, *args, **kwargs):
        """
        Insert an Operator according to the giving arguments, 
        without sync_with_cpp to meke the compilation faster.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
        op_desc = self.desc._insert_op(index)
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

    def _remove_op(self, index, sync=True):
3534 3535 3536 3537 3538 3539 3540 3541 3542
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
3543 3544
        if sync == True:
            self._sync_with_cpp()
W
Wu Yi 已提交
3545
        self.desc._remove_op(index, index + 1)
3546 3547
        del self.ops[index]

W
Wu Yi 已提交
3548
    def _slice_ops(self, start, end):
3549 3550 3551 3552 3553 3554 3555 3556 3557 3558
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
3559
        return self.ops[start:end]
Y
Yancey1989 已提交
3560

W
Wu Yi 已提交
3561
    def _prepend_op(self, *args, **kwargs):
L
lujun 已提交
3562
        if in_dygraph_mode():
J
Jiabin Yang 已提交
3563 3564
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
3565
            op = Operator(
J
Jiabin Yang 已提交
3566
                self, None, type=type, inputs=None, outputs=None, attrs=attrs)
M
minqiyang 已提交
3567

J
Jiabin Yang 已提交
3568
            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
3569
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
3570 3571
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
3572
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
3573
        else:
3574 3575 3576 3577 3578 3579 3580 3581
            op_desc = self.desc._prepend_op()
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
3582
            self.ops.insert(0, op)
3583

Y
Yu Yang 已提交
3584 3585
        return op

W
Wu Yi 已提交
3586
    def _sync_with_cpp(self):
3587
        """
3588 3589
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
3590
        """
Q
Qiao Longfei 已提交
3591 3592 3593
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610
                is_stop_gradient = False
                if var.has_stop_gradient():
                    is_stop_gradient = var.stop_gradient()
                if var.has_is_parameter() and var.is_parameter():
                    self.create_parameter(
                        name=var.name(),
                        desc=var,
                        type=var.type(),
                        shape=var.shape(),
                        dtype=var.dtype(),
                        stop_gradient=is_stop_gradient)
                else:
                    self.create_var(
                        name=var.name(),
                        desc=var,
                        type=var.type(),
                        stop_gradient=is_stop_gradient)
Q
Qiao Longfei 已提交
3611

3612
        # sync variables removed from c++ end
3613
        for var in list(self.vars.keys()):
M
minqiyang 已提交
3614
            if not self.desc.find_var(cpt.to_bytes(var)):
3615 3616
                self.vars.pop(var)

Q
Qiao Longfei 已提交
3617
        # sync operators from cpp
3618 3619 3620 3621
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
3638 3639 3640 3641 3642

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
3643
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
3644 3645 3646 3647 3648 3649 3650

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
3664 3665 3666 3667
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
3668
    def _copy_param_info_from(self, other):
3669
        """
3670 3671
        Copy the information of parameters from the other block.

3672
        Args:
3673 3674 3675 3676 3677
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
3678 3679 3680 3681 3682

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
3683 3684
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
3685
        for p in other.iter_parameters():
3686 3687 3688
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
3689 3690
                # if the Parameter is pruned, v may be None
                continue
3691
            assert isinstance(v, Variable)
3692
            new_p = None
L
Leo Chen 已提交
3693 3694
            if in_dygraph_mode():
                new_p = ParamBase(
3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name)
            else:
L
Leo Chen 已提交
3706 3707
                new_p = Parameter(
                    block=self,
3708 3709 3710
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
3711 3712
                    lod_level=v.lod_level
                    if v.type == core.VarDesc.VarType.LOD_TENSOR else None,
3713 3714 3715 3716 3717 3718
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name)
3719 3720
            self.vars[new_p.name] = new_p

3721
    def _clone_variable(self, var, force_persistable=True):
3722 3723
        """
        Clone a variable into current block.
3724

3725 3726
        Args:
            var: the variable to be cloned.
3727 3728 3729
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
3730 3731

        Returns:
3732
            Variable: the new  variable cloned from 'var' in current block.
3733 3734
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
3735 3736 3737 3738 3739
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
3740 3741
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
3742
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
3743 3744 3745 3746 3747 3748
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
3749
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
3750 3751
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
3752 3753 3754 3755 3756 3757 3758
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
3759
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
3760 3761
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
3762
        return ret_var
3763

Y
Yu Yang 已提交
3764

3765 3766 3767 3768 3769 3770
# NOTE(zjl): you should be careful that after you call this method,
# some Python Variable and all Python Operators should not be used
# again. Because all Python Variables and all Python Operators are
# re-constructed inside this method. The underlying VarDesc(OpDesc)
# of some old Python Variables(all old Python Operators) may have 
# been destructed.
3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786
def _apply_pass(main_program,
                startup_program,
                pass_name,
                pass_attrs={},
                pass_attr_types={}):
    assert isinstance(pass_attrs, dict), "pass_attrs must be dict"
    assert isinstance(pass_attr_types, dict), "pass_attr_types must be dict"
    tmp_main_program = core.ProgramDesc(main_program.desc)
    tmp_startup_program = core.ProgramDesc(startup_program.desc)
    attrs = core.apply_pass(tmp_main_program, tmp_startup_program, pass_name,
                            pass_attrs, pass_attr_types)
    main_program._rebuild_from_desc(tmp_main_program)
    startup_program._rebuild_from_desc(tmp_startup_program)
    return attrs


3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node,
                          core.Node), 'node must be the instance of core.Node.'
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

3882
    def remove_input_by_id(self, node_id):
3883 3884 3885 3886 3887 3888
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
3889
        self.node.remove_input(node_id)
3890

3891
    def remove_input(self, node):
3892 3893 3894 3895
        """
        Remove a node from inputs.

        Args:
3896
            node(IrNode): the node being removed.
3897
        """
3898
        self.node.remove_input(node.node)
3899

3900
    def append_input(self, node):
3901 3902 3903 3904
        """
        Append a node in inputs.

        Args:
3905
            node(IrNode): the node being appended.
3906
        """
3907
        self.node.append_input(node.node)
3908 3909 3910 3911 3912 3913 3914 3915

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

3916
    def remove_output_by_id(self, node_id):
3917 3918 3919 3920 3921 3922
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
3923
        self.node.remove_output(node_id)
3924

3925
    def remove_output(self, node):
3926 3927 3928 3929
        """
        Remove a node from outputs.

        Args:
3930
            node(IrNode): the node being removed.
3931
        """
3932
        self.node.remove_output(node.node)
3933

3934
    def append_output(self, node):
3935 3936 3937 3938
        """
        Append a node in outputs.

        Args:
3939
            node(IrNode): the node being appended.
3940
        """
3941
        self.node.append_output(node.node)
3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_var(), \
            'node must be the instance of core.Node and it must be a variable node.'
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3989
            "The node variable description can not be None."
3990 3991 3992 3993 3994 3995 3996 3997 3998 3999
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
4000
            "The node variable description can not be None."
4001 4002
        return self.node.var().persistable()

4003 4004 4005 4006 4007 4008 4009 4010
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
4011
            "The node variable description can not be None."
4012 4013 4014 4015 4016 4017 4018 4019 4020 4021
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
4022
            "The node variable description can not be None."
4023 4024 4025 4026 4027 4028 4029 4030 4031 4032
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
4033
            "The node variable description can not be None."
4034 4035
        return self.node.var().shape()

4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_op(), \
            'node must be the instance of core.Node and it must be a operator node.'
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4083
            "The node operator description can not be None."
4084 4085
        self.node.op()._rename_input(old_input_name, new_input_name)

4086 4087 4088 4089 4090 4091 4092 4093 4094
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4095
            "The node operator description can not be None."
4096 4097
        self.node.op()._rename_output(old_output_name, new_output_name)

4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4109
            "The node operator description can not be None."
4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4123
            "The node operator description can not be None."
4124 4125 4126 4127 4128 4129 4130 4131 4132 4133
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4134
            "The node operator description can not be None."
4135 4136
        return self.node.op().set_type(new_type)

4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4152
            "The node operator description can not be None."
4153 4154 4155 4156
        desc = self.node.op()
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and \
4157
                all(isinstance(v, Block) for v in val):
4158 4159
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
4160
                isinstance(val, core.ProgramDesc):
4161 4162 4163 4164
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

4165 4166 4167 4168 4169 4170 4171 4172
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4173
            "The node operator description can not be None."
4174 4175 4176 4177 4178 4179 4180 4181 4182 4183
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4184
            "The node operator description can not be None."
4185 4186
        return self.node.op().output_arg_names()

4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


4208 4209
class IrGraph(object):
    """
4210
    Python IrGraph. Beneath it is a core.Graph, which is used for
4211
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
4212 4213
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
4214 4215 4216 4217
    """

    def __init__(self, graph, for_test=False):
        """
4218 4219
        Construct an IrGraph using core.Graph.

4220 4221 4222 4223 4224 4225 4226 4227 4228
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

4229 4230 4231 4232
    def clone(self):
        """
        Create a new and duplicated IrGraph.

4233 4234 4235
        Warns:
            The method only clones the graph structure, not its attributes.

4236 4237 4238
        Returns:
            IrGraph: A new and duplicated graph.
        """
4239
        g = self.graph.clone()
4240 4241
        return IrGraph(g, self._for_test)

4242
    def is_test(self):
4243 4244 4245
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
4246 4247
        return self._for_test

W
WangZhen 已提交
4248
    def all_nodes(self):
4249 4250 4251
        """
        Return all nodes included in the graph as a set.
        """
4252
        return {IrNode(node) for node in self.graph.nodes()}
4253

4254
    def all_var_nodes(self):
4255 4256 4257
        """
        Return all variable nodes included in the graph as a set.
        """
4258
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
4259

4260
    def all_persistable_nodes(self):
4261 4262 4263
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
4264 4265 4266 4267 4268
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
4269
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
4270

4271
    def all_op_nodes(self):
4272 4273 4274
        """
        Return all operator nodes included in the graph as a set.
        """
4275
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
4276

4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293
    def all_sub_graphs(self, for_test=False):
        """
        Return all sub_graphs included in the main graph as a set.
        """

        return [
            IrGraph(
                self.graph.get_sub_graph(i), for_test=for_test)
            for i in range(self.graph.sub_graph_size())
        ]

    def get_sub_graph(self, i, for_test=False):
        """
        Return i-th sub_graph in the main graph.
        """
        return IrGraph(self.graph.get_sub_graph(i), for_test=for_test)

4294
    def create_persistable_node(self, name, var_type, shape, var_dtype):
4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
4306
            IrVarNode: the created persistable variable node.
4307
        """
4308 4309 4310 4311 4312
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
4313
        return IrVarNode(self.graph.create_var_node(var_desc))
4314 4315

    def create_var_node(self, name, var_type, shape, var_dtype):
4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
4327
            IrVarNode: the created variable node.
4328 4329
        """

4330 4331 4332 4333
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
4334
        return IrVarNode(self.graph.create_var_node(var_desc))
4335

4336 4337 4338 4339 4340 4341
    def create_control_dep_var(self):
        """
        create a control var
        """
        return IrVarNode(self.graph.create_control_dep_var())

4342
    def create_var_node_from_desc(self, var_desc):
4343 4344 4345 4346 4347 4348 4349 4350
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
4351
            IrVarNode: the created variable node.
4352
        """
4353
        return IrVarNode(self.graph.create_var_node(var_desc))
4354 4355

    def create_op_node(self, op_type, attrs, inputs, outputs):
4356 4357 4358 4359 4360 4361 4362
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
T
tianshuo78520a 已提交
4363
            outputs(dict): the outputs of the operator node.
4364 4365

        Returns:
4366
            IrOpNode: the created operator node.
4367
        """
4368 4369
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
4370
        for attr, value in six.iteritems(attrs):
4371
            self._update_desc_attr(op_desc, attr, value)
4372
        for input_name, var_nodes in six.iteritems(inputs):
4373 4374 4375 4376
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
4377
        for output_name, var_nodes in six.iteritems(outputs):
4378 4379 4380 4381
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
4382
        return IrOpNode(self.graph.create_op_node(op_desc))
4383 4384

    def create_op_node_from_desc(self, op_desc):
4385 4386 4387 4388 4389 4390 4391
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
4392
            IrOpNode: the created operator node.
4393
        """
4394
        return IrOpNode(self.graph.create_op_node(op_desc))
4395 4396

    def update_input_link(self, old_input_node, new_input_node, op_node):
4397 4398 4399 4400
        """
        Update the input's link of a operator node.

        Args:
4401 4402 4403
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
4404
        """
4405
        assert old_input_node.node in self.graph.nodes() and new_input_node.node in \
T
tangwei12 已提交
4406
            self.graph.nodes() and op_node.node in self.graph.nodes(), \
4407
            'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
4408 4409 4410 4411
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
4412
        op_node.rename_input(old_input_node.name(), new_input_node.name())
4413

4414 4415 4416 4417 4418 4419 4420 4421 4422 4423
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
        assert old_output_node.node in self.graph.nodes() and new_output_node.node in \
T
tangwei12 已提交
4424
            self.graph.nodes() and op_node.node in self.graph.nodes(), \
4425
            'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
4426 4427 4428 4429 4430 4431
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

4432
    def link_to(self, node_in, node_out):
4433 4434 4435 4436
        """
        Connect two nodes.

        Args:
4437 4438
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
4439
        """
4440 4441 4442 4443
        assert node_in.node in self.graph.nodes(), (
            'node_in(%s) must be in the graph nodes.' % node_in.node.name())
        assert node_out.node in self.graph.nodes(), (
            'node_out(%s) must be in the graph nodes.' % node_out.node.name())
4444 4445
        node_in.append_output(node_out)
        node_out.append_input(node_in)
4446 4447

    def safe_remove_nodes(self, remove_nodes):
4448 4449 4450 4451 4452 4453 4454
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
4455
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
4456 4457 4458 4459
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
4460 4461
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
4462

Z
Zhen Wang 已提交
4463 4464 4465 4466 4467 4468 4469 4470
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
4471
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
4472 4473 4474 4475
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
4476
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
4477 4478 4479
                        ]
                    else:
                        var_nodes[each_var_name].append(
4480 4481
                            self._find_node_by_name(node.outputs,
                                                    each_var_name))
Z
Zhen Wang 已提交
4482 4483
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
4484
    def has_circle(self):
4485 4486 4487 4488 4489 4490
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
4491 4492 4493
        return core.has_circle(self.graph)

    def graph_num(self):
4494 4495 4496 4497 4498 4499
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
4500 4501 4502
        return core.graph_num(self.graph)

    def topology_sort(self):
4503 4504 4505
        """
        Perform the topology sort operation on the graph.

T
tianshuo78520a 已提交
4506
        Notes: the `graph` can not contain a circle.
4507 4508

        Returns:
Z
Zhen Wang 已提交
4509
            list(IrNode): nodes in topology order.
4510
        """
4511
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
4512
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
4513 4514

    def build_adjacency_list(self):
4515 4516 4517 4518
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
4519
            dict{IrNode: set(IrNode)}: the adjacency list.
4520
        """
4521 4522 4523 4524 4525
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
4526

4527 4528 4529 4530 4531 4532 4533 4534
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
4535
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
4536 4537 4538 4539 4540
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

4541 4542
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
T
tangwei12 已提交
4543 4544 4545
            exited_code = subprocess.call(
                'dot -Tpdf ' + dot_file_path + ' -o ' + pdf_save_path,
                shell=True)
4546 4547 4548 4549 4550
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

4551
        remove_ctr_vars = set()
4552
        if remove_ctr_var:
4553
            for node in self.all_var_nodes():
4554 4555 4556
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
4557 4558
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

4559 4560
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
4561 4562 4563 4564 4565 4566
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
4567 4568 4569 4570
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
4571 4572
        if not os.path.exists(save_path):
            os.makedirs(save_path)
4573 4574 4575 4576 4577 4578 4579
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
4580 4581 4582
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
4583
        WARN: When the graph includes backward operator nodes, the
4584 4585 4586 4587 4588 4589
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
4590
        convert_pass = core.get_pass('graph_to_program_pass')
4591 4592
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
4593 4594 4595 4596
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

4597 4598 4599 4600 4601 4602 4603 4604
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
4605 4606
        assert target_node is not None, (
            "Cannot find the target node (%s)in the giving set." % node_name)
4607 4608
        return target_node

4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
4625
class Program(object):
D
dzhwinter 已提交
4626
    """
4627
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
4628
    control flow op like conditional_block, while :ref:`api_paddle_fluid_layers_While` is included,
J
Jiabin Yang 已提交
4629
    it will contain nested block.
4630

J
Jiabin Yang 已提交
4631 4632 4633
    Please reference the
    `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_
    for details.
D
dzhwinter 已提交
4634

J
Jiabin Yang 已提交
4635
    A set of Program usually contains startup program and main program.
J
Jiabin Yang 已提交
4636
    A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main
J
Jiabin Yang 已提交
4637 4638 4639 4640 4641 4642 4643
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

J
Jiabin Yang 已提交
4644
    **Notes**:
4645 4646 4647
        **we have** :ref:`api_paddle_fluid_framework_default_startup_program` **and** :ref:`api_paddle_fluid_framework_default_main_program`
        **by default, a pair of them will shared the parameters. The** :ref:`api_paddle_fluid_framework_default_startup_program` **only run once to initialize parameters,**
        :ref:`api_paddle_fluid_framework_default_main_program` **run in every mini batch and adjust the weights.**
D
dzhwinter 已提交
4648 4649

    Returns:
J
Jiabin Yang 已提交
4650
        Program: An empty Program.
D
dzhwinter 已提交
4651 4652

    Examples:
4653 4654
        .. code-block:: python

4655 4656 4657 4658
            import paddle
            import paddle.static as static

            paddle.enable_static()
4659

4660 4661 4662 4663 4664
            main_program = static.Program()
            startup_program = static.Program()
            with static.program_guard(main_program=main_program, startup_program=startup_program):
                x = static.data(name="x", shape=[-1, 784], dtype='float32')
                y = static.data(name="y", shape=[-1, 1], dtype='int32')
4665
                z = static.nn.fc(name="fc", x=x, size=10, activation="relu")
4666 4667 4668

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
4669 4670 4671

    """

4672 4673
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
4674 4675
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
4676 4677
        global global_prog_seed
        self._seed = global_prog_seed
Y
yuyang18 已提交
4678
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
4679
        self.__op_role_var = []
T
tangwei12 已提交
4680

4681 4682
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
4683
        self._is_distributed = False
4684
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
4685
        self._is_chief = False
4686 4687 4688
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
4689
        self._endpoints = []
4690 4691 4692
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
4693
        self._trainers_endpoints = []
4694
        # the distributed lookup table names
T
tangwei12 已提交
4695
        self._distributed_lookup_table = None
4696 4697 4698

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
4699 4700
        self._use_lamb = False

4701 4702 4703
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
4704

4705 4706 4707
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
4708
        self._program_config = None
4709

H
hutuxian 已提交
4710 4711 4712
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

4713 4714 4715
        # assigned if this program has been parsed by a heter pipeline parameter server optimizer
        self._heter_pipeline_opt = None

4716 4717 4718
        # appending gradients times
        self._appending_grad_times = 0

4719 4720 4721 4722
        # identifier for auto checkpoint
        self._auto_checkpoint_name = unique_name.generate(
            "__auto_checkpoint_program__")

4723 4724
        # compiled program, i.e. Graph
        self._graph = None
4725 4726
        # to tag whether is startup_program
        self._is_start_up_program_ = False
4727

4728
    def _find_var_class_kwargs(self, new_desc):
4729 4730 4731 4732 4733 4734 4735 4736
        # NOTE: not all variables support shape/dtype/lod_level methods.
        # For example: RAW, STEP_SCOPES, etc.
        def get_var_desc_attr_or_none(var_desc, attr_name, allowed_types):
            if var_desc.type() in allowed_types:
                return getattr(var_desc, attr_name)()
            else:
                return None

4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752
        old_desc = self.desc
        all_new_vars = []
        block_num = new_desc.num_blocks()
        for idx in range(block_num):
            new_block_desc = new_desc.block(idx)
            all_new_vars.append([])
            block_new_vars = all_new_vars[-1]
            for new_var_desc in new_block_desc.all_vars():
                if self.blocks[idx].has_var(new_var_desc.name()):
                    old_var = self.blocks[idx].var(new_var_desc.name())
                else:
                    old_var = None

                kwargs = {
                    'type': new_var_desc.type(),
                    'name': new_var_desc.name(),
4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767
                    'shape': get_var_desc_attr_or_none(new_var_desc, "shape", [
                        core.VarDesc.VarType.LOD_TENSOR,
                        core.VarDesc.VarType.SELECTED_ROWS,
                        core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                    ]),
                    'dtype': get_var_desc_attr_or_none(new_var_desc, "dtype", [
                        core.VarDesc.VarType.LOD_TENSOR,
                        core.VarDesc.VarType.SELECTED_ROWS,
                        core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                    ]),
                    'lod_level':
                    get_var_desc_attr_or_none(new_var_desc, "lod_level", [
                        core.VarDesc.VarType.LOD_TENSOR,
                        core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                    ]),
4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805
                    'error_clip': old_var.error_clip
                    if old_var is not None else None,
                    'stop_gradient': old_var.stop_gradient
                    if old_var is not None else False,
                    'is_data': old_var.is_data
                    if old_var is not None else False,
                    'need_check_feed': new_var_desc.need_check_feed(),
                    'belong_to_optimizer': old_var.belong_to_optimizer
                    if old_var is not None else False,
                }

                if isinstance(old_var, Parameter):
                    kwargs.update({
                        'trainable': old_var.trainable,
                        'optimize_attr': old_var.optimize_attr,
                        'regularizer': old_var.regularizer,
                        'do_model_average': old_var.do_model_average,
                        'need_clip': old_var.need_clip,
                        'is_distributed': old_var.is_distributed,
                        'is_parameter': old_var.is_parameter,
                    })
                    block_new_vars.append({
                        'class': Parameter,
                        'kwargs': copy.deepcopy(kwargs),
                    })
                else:
                    kwargs['persistable'] = new_var_desc.persistable()
                    block_new_vars.append({
                        'class': Variable,
                        'kwargs': copy.deepcopy(kwargs),
                    })

        return all_new_vars

    def _rebuild_from_desc(self, desc):
        all_new_vars = self._find_var_class_kwargs(desc)
        block_num = desc.num_blocks()
        assert block_num == len(all_new_vars)
4806
        assert block_num == self.desc.num_blocks()
4807 4808

        # clear old blocks and desc
4809 4810 4811 4812 4813 4814 4815 4816 4817
        for idx in range(block_num):
            block = self.blocks[idx]
            block.vars.clear()
            block.ops.clear()

        for idx in range(block_num):
            block_desc = self.blocks[idx].desc
            new_block_desc = desc.block(idx)
            block_desc._move_from(new_block_desc)
4818

4819
        del desc
4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838

        # add new vars first
        for idx in range(block_num):
            block = self.blocks[idx]
            for new_var in all_new_vars[idx]:
                clazz = new_var['class']
                kwargs = new_var['kwargs']
                kwargs['block'] = block
                clazz(**kwargs)

        # then append op
        for idx in range(block_num):
            block = self.blocks[idx]
            block_desc = self.desc.block(idx)
            for op_idx in range(block_desc.op_size()):
                op_desc = block_desc.op(op_idx)
                op = Operator(block=block, desc=op_desc)
                block.ops.append(op)

4839 4840 4841 4842 4843 4844 4845 4846 4847 4848
    def global_seed(self, seed=0):
        """
        Set global seed for Program

        Returns:
            None.

        Examples:
            .. code-block:: python

4849 4850
                import paddle
                import paddle.static as static
4851

4852 4853 4854
                paddle.enable_static()

                prog = static.default_main_program()
4855 4856 4857 4858 4859
                print(prog.random_seed)
                ## 0
                ## the default random seed is 0

                prog.global_seed(102)
4860
                prog1 = static.default_main_program()
4861 4862 4863 4864 4865 4866 4867 4868
                print(prog1.random_seed)
                ## 102
                ## the random seed is 102
        """
        global global_prog_seed
        global_prog_seed = seed
        self._seed = global_prog_seed

Y
yuyang18 已提交
4869
    @property
4870
    def _op_role(self):
Y
yuyang18 已提交
4871 4872 4873 4874 4875 4876 4877 4878
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
4879
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
4880 4881 4882 4883
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
4884 4885
        return self._current_role

4886 4887
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
4888 4889 4890
        self._current_role = role

    @property
4891
    def _op_role_var(self):
Y
yuyang18 已提交
4892
        """
4893
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
4894

4895
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
4896 4897 4898

        Notes: This is a very low-level API. Users should not use it directly.
        """
4899
        return self.__op_role_var
Y
yuyang18 已提交
4900

4901
    @signature_safe_contextmanager
4902 4903 4904 4905 4906
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
4907 4908 4909 4910
        try:
            yield
        finally:
            self._current_role = tmp_role
4911

S
rename  
sneaxiy 已提交
4912
    @signature_safe_contextmanager
W
Wu Yi 已提交
4913
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
4914 4915 4916 4917 4918 4919 4920
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
4921
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
4922 4923 4924

        Examples:

4925
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
4926
            >>> p, g = backward(...)
W
Wu Yi 已提交
4927
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
4928 4929
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
4930
        tmp_role = self._current_role
4931
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
4932

Y
yuyang18 已提交
4933 4934
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
4935
        self.__op_role_var = [
4936 4937 4938
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
4939 4940 4941 4942 4943
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
Y
Yu Yang 已提交
4944

S
rename  
sneaxiy 已提交
4945
    @signature_safe_contextmanager
X
Xin Pan 已提交
4946
    def _lr_schedule_guard(self, is_with_opt=False):
4947 4948 4949 4950 4951 4952 4953
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
4954 4955 4956 4957
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
4958 4959 4960

        Examples:

4961
            >>> import paddle.fluid as fluid
4962 4963 4964 4965
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
4966 4967

        tmp_role = self._current_role
4968
        tmp_var = self.__op_role_var
4969

4970 4971
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
4972 4973
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
4974
        # TODO(typhoonzero): how to set target learning rate var
4975
        self.__op_role_var = []
4976 4977 4978 4979 4980
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
4981

4982
    def __str__(self):
Y
yuyang18 已提交
4983 4984 4985 4986 4987 4988 4989 4990 4991
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Program.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Program string.

        Examples:
            .. code-block:: python

5012 5013
            import paddle
            import paddle.static as static
5014

5015 5016 5017
            paddle.enable_static()

            cur_program = static.Program()
5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_program._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
5029
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
5030 5031 5032 5033
            type(skip_op_callstack))
        program_str = ""
        for block in self.blocks:
            program_str += block._to_readable_code(skip_op_callstack)
5034
            program_str += '\n'
5035
        return program_str
Y
Yang Yang(Tony) 已提交
5036

F
fengjiayi 已提交
5037 5038 5039
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
5040

J
Jiabin Yang 已提交
5041 5042 5043
        Args:

            throw_on_error (bool): raise Value error when any of required fields is not set.
F
fengjiayi 已提交
5044

J
Jiabin Yang 已提交
5045
            with_details (bool): True if more details about variables and parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need to print.
Y
yuyang18 已提交
5046

H
haowang101779990 已提交
5047
        Returns:
J
Jiabin Yang 已提交
5048
            str: The debug string describe current Program.
Y
yuyang18 已提交
5049 5050

        Raises:
J
Jiabin Yang 已提交
5051
            ValueError: If any of required fields is not set and throw_on_error is True.
F
fengjiayi 已提交
5052

5053 5054 5055
        Examples:
            .. code-block:: python

5056 5057 5058 5059
                import paddle
                import paddle.static as static

                paddle.enable_static()
5060

5061 5062 5063
                prog = static.default_main_program()
                x = static.data(name="X", shape=[2,3], dtype="float32")
                pred = static.nn.fc(x, size=3)
5064
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
5065
                prog_string_with_details = prog.to_string(throw_on_error=False, with_details=True)
T
tianshuo78520a 已提交
5066
                print("program string without detail: {}".format(prog_string))
5067
                print("program string with detail: {}".format(prog_string_with_details))
F
fengjiayi 已提交
5068
        """
5069 5070 5071 5072 5073 5074 5075 5076 5077
        assert isinstance(
            throw_on_error, bool
        ), "The type of throw_on_error parameter is wrong, expected bool, but received {}.".format(
            type(throw_on_error))
        assert isinstance(
            with_details, bool
        ), "The type of with_details parameter is wrong, expected bool, but received {}.".format(
            type(with_details))

F
fengjiayi 已提交
5078 5079 5080 5081 5082 5083
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
5084 5085
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
5086 5087
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
5088

W
Wu Yi 已提交
5089
    def _get_desc(self):
Y
yuyang18 已提交
5090 5091 5092 5093 5094 5095 5096
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
5097 5098
        return self.desc

X
version  
Xin Pan 已提交
5099 5100 5101
    def _version(self):
        return self.desc._version()

5102
    def clone(self, for_test=False):
Y
yuyang18 已提交
5103
        """
5104 5105 5106 5107
        .. note:::
            1. :code:`Program.clone()` method DOES NOT clone :ref:`api_paddle_io_DataLoader` . 
            2. Recommend you to use :code:`clone` before using :code:`Opimizer.minimize` . 
            3. This API has no effect in Dygraph Mode.
Y
yuyang18 已提交
5108

5109
        Create a new Program with forward content of original one when ``for_test=True``.
5110
        Create a new Program as same as the original one when ``for_test=False``.
5111

5112
        Some operators, e.g., :ref:`api_paddle_fluid_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
5113 5114 5115
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
5116

5117 5118
        * Set for_test to False when you want to clone the program for training.
        * Set for_test to True when you want to clone the program for testing.
5119 5120
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
J
Jiabin Yang 已提交
5121
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`.
Y
yuyang18 已提交
5122

J
Jiabin Yang 已提交
5123
        For Example:
5124
          ::
L
Luo Tao 已提交
5125

5126 5127 5128 5129 5130 5131
            import paddle
            import paddle.static as static

            paddle.enable_static()

            img = static.data(name='image', shape=[None, 784])
5132
            pred = static.nn.fc(x=img, size=10, actvation='relu')
5133
            loss = paddle.mean(pred)
5134
            # Here we use clone before Momentum
5135 5136
            test_program = static.default_main_program().clone(for_test=True)
            optimizer = paddle.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
5137
            optimizer.minimize(loss)
5138

J
Jiabin Yang 已提交
5139
        Args:
5140

5141 5142
            for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True`
                and prune the backward and optimize part of the program. The default value is :code:`False` .
5143

J
Jiabin Yang 已提交
5144
        Returns:
5145
            Program: A new Program with forward content of original one when ``for_test=True``.  A new Program as same as the original one when ``for_test=False``
5146

Y
yuyang18 已提交
5147 5148 5149

        Examples:

5150 5151 5152 5153 5154 5155 5156
            .. note::
                The Program's order maybe different after :code:`clone` and
                this will not affect your training or testing progress. In the following
                example we give you an simple method :code:`print_prog(program)` to
                print Program Descs inorder to make sure you have same print result
                after :code:`clone`:

5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172
            .. code-block:: python

                import six

                def print_prog(prog):
                    for name, value in sorted(six.iteritems(prog.block(0).vars)):
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
                        for key, value in sorted(six.iteritems(op.all_attrs())):
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


5173
            1. To clone a test program, the sample code is:
5174 5175 5176
                .. code-block:: python

                    import six
5177 5178 5179 5180 5181 5182
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

5195 5196
                    train_program = static.Program()
                    startup_program = static.Program()
J
Jiabin Yang 已提交
5197 5198 5199

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
5200 5201 5202
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            img = static.data(name='image', shape=[None, 784])
5203
                            hidden = static.nn.fc(x=img, size=200, activation='relu')
5204 5205
                            hidden = F.dropout(hidden, p=0.5)
                            loss = F.cross_entropy(
5206
                                input=static.nn.fc(x=hidden, size=10, activation='softmax'),
5207 5208
                                label=static.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = paddle.mean(loss)
5209
                            test_program = train_program.clone(for_test=True)
5210
                    print_prog(test_program)
J
Jiabin Yang 已提交
5211 5212 5213 5214

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

5215
                    # In Paddle we will share weights by using the same Tensor name. In train and test program
J
Jiabin Yang 已提交
5216 5217 5218 5219
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

5220 5221 5222
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
5223 5224 5225
                            sgd.minimize(avg_loss)


5226
            2. The clone method can be avoid if you create program for training and program for testing individually.
5227 5228 5229
                .. code-block:: python

                    import six
5230 5231 5232 5233 5234 5235
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
5247

5248
                    def network():
5249
                        img = static.data(name='image', shape=[None, 784])
5250
                        hidden = static.nn.fc(x=img, size=200, activation='relu')
5251 5252
                        hidden = F.dropout(hidden, p=0.5)
                        loss = F.cross_entropy(
5253
                            input=static.nn.fc(x=hidden, size=10, activation='softmax'),
5254 5255
                            label=static.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = paddle.mean(loss)
5256 5257
                        return avg_loss

5258 5259 5260 5261 5262
                    train_program_2 = static.Program()
                    startup_program_2 = static.Program()
                    test_program_2 = static.Program()
                    with static.program_guard(train_program_2, startup_program_2):
                        with utils.unique_name.guard():
5263
                            avg_loss = network()
5264
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
5265
                            sgd.minimize(avg_loss)
5266
                    # the test startup program is not used.
5267 5268
                    with static.program_guard(test_program_2, startup_program_2):
                        with utils.unique_name.guard():
5269 5270
                            avg_loss = network()
                    print_prog(test_program_2)
5271

5272
            The two code snippets above will generate and print same programs.
5273
        """
5274

T
tangwei12 已提交
5275
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
5276 5277 5278
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

5279
        pruned_origin_block_id_map = None
5280
        if for_test:
5281 5282 5283 5284 5285 5286 5287 5288 5289
            forward_prog = Program()
            forward_prog.desc, pruned_origin_block_id_map = core.prune_backward(
                self.desc)
            forward_prog.blocks = [
                Block(forward_prog, i)
                for i in six.moves.range(forward_prog.desc.num_blocks())
            ]
            forward_prog._sync_with_cpp()
            p = forward_prog._inference_optimize(prune_read_op=False)
5290
        else:
5291
            p = Program()
G
gongweibao 已提交
5292 5293
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
5294
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
5295 5296 5297
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
5298 5299

            p._current_role = self._current_role
5300
            p.__op_role_var = self.__op_role_var
5301
            p._appending_grad_times = self._appending_grad_times
5302 5303
            if hasattr(self, 'lr_sheduler'):
                p.lr_sheduler = self.lr_sheduler
G
gongweibao 已提交
5304

T
tangwei12 已提交
5305
            # NOTE(zhiqiu): we sync the cloned program, to update its program by
5306
            # its desc.
W
Wu Yi 已提交
5307
            p._sync_with_cpp()
5308

W
Wu Yi 已提交
5309
        p._copy_param_info_from(self)
5310
        p._copy_data_info_from(self, pruned_origin_block_id_map)
5311
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
5312
        return p
5313

5314
    def _prune(self, targets):
Y
yuyang18 已提交
5315 5316 5317 5318 5319 5320 5321 5322
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
5323
            targets(list|Variable|Operator): A list of variables, operators, or variable names
Y
yuyang18 已提交
5324 5325 5326 5327
                need to be pruned

        Returns:
            Program:  A new, pruned program.
5328
        """
5329
        return self._prune_with_input([], targets)
5330 5331

    def _prune_with_input(self, feeded_var_names, targets):
Y
yuyang18 已提交
5332
        """
5333 5334 5335 5336 5337 5338 5339 5340 5341 5342
        Prune operators and variables which are not needed to generate
        :code:`targets`. Prune operators and variables which are needed 
        to generate feeded_var 

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            feeded_var_names(list|str): A list of variable names from where
                pruning start. If it is set as [], this API works just like _prune()
5343
            targets(list|Variable|Operator): A list of variables, operators, or variable names
5344 5345 5346 5347 5348 5349
                need to be pruned

        Returns:
            Program:  A new, pruned program.
        """

T
tangwei12 已提交
5350
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
5351 5352 5353
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

5354 5355
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
5356 5357
        if not isinstance(targets, list):
            targets = [targets]
5358 5359 5360

        for var in feeded_var_names:
            if not isinstance(var, six.string_types):
5361 5362 5363
                raise ValueError(
                    "All feeded_var_names of Program._prune_with_input() can only be "
                    "str, but received %s." % type(var))
5364

5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380
        # find out all variables that can be generated or updated with given feed
        generatable_vars = set()

        for idx, op in enumerate(self.global_block().ops):
            runnable_op = True
            for name in op.input_arg_names:
                if not self.global_block().has_var(name):
                    continue
                if self.global_block().var(name).persistable:
                    continue
                if name not in generatable_vars.union(feeded_var_names):
                    runnable_op = False
                    break
            if runnable_op:
                generatable_vars = generatable_vars.union(op.output_arg_names)

5381 5382 5383 5384
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
5385 5386 5387
                    name = t.name
                elif isinstance(t, six.string_types):
                    name = str(t)
5388
                else:
5389 5390 5391
                    raise ValueError(
                        "All targets of Program._prune_with_input() can only be "
                        "Variable or Operator, but received %s." % type(t))
5392 5393 5394 5395 5396 5397

                # NOTEZ(zhiqiu): For variable to be fed in fetch_list, there two cases:
                # (1) the variable is leaf, it has no op that generates it;
                # (2) the variable is not leaf, and we need to prune the op that generates it.
                # In both cases, wo can just skip target_op of that it.
                if name in feeded_var_names:
5398 5399 5400
                    # however if the var is also updated by a runnable op, will shall keep it
                    if name not in generatable_vars:
                        continue
5401

5402 5403 5404 5405 5406 5407 5408 5409 5410
                # After transpiler processing, the op that output this
                # variable maybe has been changed, so t.op is not reliable
                # and we need to find the current op that generate this
                # variable here.
                target_op = None
                global_block = self.global_block()
                for idx, op in enumerate(global_block.ops):
                    if name in op.output_arg_names:
                        # NOTE(zhiqiu): Find op that generate target name.
T
tangwei12 已提交
5411
                        # Skip optimize op except for optimize op in targets,
5412 5413 5414 5415 5416
                        # since optimize op generates parameters.
                        if op._is_optimize_op() and op not in targets:
                            continue
                        else:
                            target_op = op
5417

5418
                if target_op is not None:
5419 5420 5421
                    targets_idx.append([target_op.block.idx, target_op.idx])
            else:
                targets_idx.append([t.block.idx, t.idx])
5422

5423
        res = Program()
5424 5425 5426
        res.desc, pruned_origin_block_id_map = core.prune(self.desc,
                                                          set(feeded_var_names),
                                                          targets_idx)
M
minqiyang 已提交
5427 5428 5429
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
5430
        res._sync_with_cpp()
5431 5432 5433 5434 5435

        res._copy_param_info_from(self)
        res._copy_data_info_from(self, pruned_origin_block_id_map)
        res._copy_dist_param_info_from(self)

5436 5437
        return res

X
Xin Pan 已提交
5438
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
5439
        """
F
fengjiayi 已提交
5440 5441 5442 5443 5444
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

5445
        3. change the :code:`is_test`
Y
yuyang18 已提交
5446 5447 5448
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

5449
        Args:
X
Xin Pan 已提交
5450 5451
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
5452

Y
yuyang18 已提交
5453 5454 5455 5456 5457 5458
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
5459
        res = Program()
5460
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
5461 5462 5463 5464

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
5465
        if prune_read_op:
5466 5467 5468 5469 5470 5471 5472 5473 5474
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
5475
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
5476 5477

        # change all `is_test` attributes to True
M
minqiyang 已提交
5478
        for i in six.moves.range(res.desc.num_blocks()):
5479
            block = res.desc.block(i)
M
minqiyang 已提交
5480
            for j in six.moves.range(block.op_size()):
5481 5482
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
5483
                    op._set_attr('is_test', True)
5484 5485 5486
                if op.type() == "batch_norm":
                    # Remove the output ReserveSpace of batch_norm if exists.
                    op.remove_output("ReserveSpace")
M
minqiyang 已提交
5487 5488 5489
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
5490
        res._sync_with_cpp()
5491 5492
        return res

5493
    def _remove_training_info(self, clip_extra=True):
5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517
        """
        This method will create a new program and do following adjustments on it:
        1. Remove all variable's `is_parameter` attribute if exist.

        2. Remove all variable's `stop_gradient` attribute if exist.

        Notes: This API is a very low level API.

        Returns:
            Program: The new program.
        """
        res = Program()
        res.desc = core.ProgramDesc(self.desc)

        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
        res._sync_with_cpp()

        for i in six.moves.range(res.desc.num_blocks()):
            block = res.desc.block(i)
            for var in block.all_vars():
                var.clear_is_parameter()
                var.clear_stop_gradient()
5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582
            if not clip_extra:
                continue
            for op_idx in range(0, block.op_size()):
                op = block.op(op_idx)
                if op.type() not in OpProtoHolder.instance().op_proto_map:
                    continue
                proto = OpProtoHolder.instance().get_op_proto(op.type())
                remove_input_list = []
                for name in op.input_names():
                    find = False
                    for input_proto in proto.inputs:
                        if input_proto.name != name:
                            continue
                        if input_proto.extra:
                            remove_input_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_input_list.append(name)
                for name in remove_input_list:
                    op.remove_input(name)

                remove_output_list = []
                for name in op.output_names():
                    find = False
                    for output_proto in proto.outputs:
                        if output_proto.name != name:
                            continue
                        if output_proto.extra:
                            remove_output_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_output_list.append(name)
                for name in remove_output_list:
                    op.remove_output(name)

                remove_attr_list = []
                op_quant_name = core.op_proto_and_checker_maker.kOpWithQuantAttrName(
                )
                quant = bool(op.attr(op_quant_name)
                             ) if op_quant_name in op.attr_names() else False
                quant_attrs = [
                    op_quant_name, "quantization_type", "skip_quant",
                    "activation_bits", "bit_length", "quantize_weight_bits",
                    "weight_quant_scale"
                ]
                for name in op.attr_names():
                    if quant:
                        if name in quant_attrs:
                            continue
                        if name.endswith("_threshold"):
                            continue
                    find = False
                    for attr_proto in proto.attrs:
                        if attr_proto.name != name:
                            continue
                        if attr_proto.extra:
                            remove_attr_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_attr_list.append(name)
                for name in remove_attr_list:
                    op.remove_attr(name)
5583 5584
        return res

5585 5586
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
5587
        """
5588 5589 5590
        .. note::
            1. All information about parameters will be lost after serialization; 
            2. This API has no effect in Dygraph mode.
Y
yuyang18 已提交
5591

5592 5593
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
5594

J
Jiabin Yang 已提交
5595
        Args:
Y
yuyang18 已提交
5596

J
Jiabin Yang 已提交
5597
            binary_str_type (str): the binary prootbuf string.
5598

J
Jiabin Yang 已提交
5599 5600
        Returns:
            Program: A deserialized Program.
5601 5602 5603 5604

        Examples:
            .. code-block:: python

5605 5606 5607 5608
                import paddle
                import paddle.static as static

                paddle.enable_static()
5609

5610 5611 5612 5613
                startup_prog = static.Program()
                main_prog = static.Program()
                with static.program_guard(startup_prog, main_prog):
                    x = static.data(name='X', shape=[1000, 784], dtype='float32')
5614

5615
                    y = static.data(name='Y', shape=[784, 100], dtype='float32')
5616

5617
                    z = paddle.matmul(x=x, y=y)
5618

5619 5620
                    binary_str = static.default_main_program().desc.serialize_to_string()
                    prog_restored = static.default_main_program().parse_from_string(binary_str)
5621

5622
                    print(static.default_main_program())
5623
                    print(prog_restored)
Y
yuyang18 已提交
5624
        """
5625 5626
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
5627
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
5628
        p._sync_with_cpp()
5629
        return p
Y
Yu Yang 已提交
5630

5631
    @staticmethod
5632
    def _construct_from_desc(desc):
5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
5648 5649
    @property
    def random_seed(self):
Y
yuyang18 已提交
5650
        """
J
Jiabin Yang 已提交
5651
        The default random seed for random operators in Program. ``0`` means get
Y
yuyang18 已提交
5652 5653
        the random seed from random device.

5654 5655
        .. note:: 
            It must be set before the operators have been added.
J
Jiabin Yang 已提交
5656 5657 5658

        Returns:
            int64: Random seed in current Program
5659

5660 5661 5662 5663

        Examples:
            .. code-block:: python

5664 5665 5666
                import paddle
                import paddle.static as static
                import paddle.nn.functional as F
5667

5668 5669 5670
                paddle.enable_static()

                prog = static.default_main_program()
5671
                random_seed = prog.random_seed
5672
                x_var = static.data(name="X", shape=[3,3], dtype="float32")
5673 5674 5675
                print(random_seed)
                ## 0
                ## the default random seed is 0
5676

5677
                # Here we need to set random seed before we use paddle.nn.functional.dropout
5678
                prog.random_seed = 1
5679
                z_var = F.dropout(x_var, 0.7)
5680

5681
                print(prog.random_seed)
5682 5683
                ## 1
                ## the random seed is change to 1
Y
yuyang18 已提交
5684
        """
D
dzhwinter 已提交
5685 5686
        return self._seed

Q
qiaolongfei 已提交
5687 5688
    @property
    def num_blocks(self):
Y
yuyang18 已提交
5689
        """
5690 5691
        The number of :ref:`api_guide_Block_en`  in this Program.

5692 5693
        .. note:: 
            This API has no effect in Dygraph mode.
J
Jiabin Yang 已提交
5694 5695 5696

        Returns:
            int(Platform-dependent size): num of :ref:`api_guide_Block_en`  in current Program
5697

5698 5699 5700 5701

        Examples:
            .. code-block:: python

5702 5703 5704 5705
                import paddle
                import paddle.static as static

                paddle.enable_static()
5706

5707
                prog = static.default_main_program()
5708 5709
                num_blocks = prog.num_blocks
                print(num_blocks)
5710

5711 5712
                # print result:
                # 1
Y
yuyang18 已提交
5713
        """
Q
qiaolongfei 已提交
5714 5715
        return self.desc.num_blocks()

D
dzhwinter 已提交
5716 5717 5718
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
5719 5720 5721
            raise ValueError(
                "Program.random_seed's input seed must be an integer, but received %s."
                % type(seed))
D
dzhwinter 已提交
5722 5723
        self._seed = seed

Y
Yu Yang 已提交
5724
    def __repr__(self):
5725
        return self.__str__()
5726

Y
Yu Yang 已提交
5727
    def global_block(self):
Y
yuyang18 已提交
5728
        """
5729 5730
        .. note::
            This API has no effect in Dygraph mode.
5731 5732 5733

        Get the first :ref:`api_guide_Block_en` of this Program.

J
Jiabin Yang 已提交
5734 5735
        Returns:
            :ref:`api_guide_Block_en`: The first :ref:`api_guide_Block_en`  of this Program.
5736

5737 5738 5739 5740

        Examples:
            .. code-block:: python

5741 5742 5743 5744
                import paddle
                import paddle.static as static

                paddle.enable_static()
5745

5746
                prog = static.default_main_program()
5747 5748
                gb_block = prog.global_block()
                print(gb_block)
5749

Y
yuyang18 已提交
5750
        """
Y
Yu Yang 已提交
5751 5752
        return self.blocks[0]

Q
Qiao Longfei 已提交
5753
    def block(self, index):
Y
yuyang18 已提交
5754
        """
5755 5756
        .. note::
            This API has no effect in Dygraph mode.
Y
yuyang18 已提交
5757

5758 5759
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

J
Jiabin Yang 已提交
5760 5761
        Args:
            index (int) - The index of  :ref:`api_guide_Block_en`  to get
5762

J
Jiabin Yang 已提交
5763 5764
        Returns:
            :ref:`api_guide_Block_en`: The :code:`index` block
5765 5766 5767 5768

        Examples:
            .. code-block:: python

5769 5770 5771 5772
                import paddle
                import paddle.static as static

                paddle.enable_static()
5773

5774
                prog = static.default_main_program()
5775 5776
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
5777
        """
Q
Qiao Longfei 已提交
5778 5779
        return self.blocks[index]

Y
Yu Yang 已提交
5780
    def current_block(self):
Y
yuyang18 已提交
5781
        """
5782 5783
        .. note::
            This API has no effect in Dygraph mode.
5784

J
Jiabin Yang 已提交
5785 5786
        Get the current  :ref:`api_guide_Block_en` . The :code:`current`  :ref:`api_guide_Block_en`
        is the  :ref:`api_guide_Block_en`  to append operators.
5787

J
Jiabin Yang 已提交
5788 5789
        Returns:
             :ref:`api_guide_Block_en`: The :code:`index`  :ref:`api_guide_Block_en`
5790

5791 5792 5793
        Examples:
            .. code-block:: python

5794 5795 5796 5797
                import paddle
                import paddle.static as static

                paddle.enable_static()
5798

5799
                prog = static.default_main_program()
5800 5801
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
5802
        """
Y
Yu Yang 已提交
5803 5804
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
5805
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
5806 5807 5808 5809 5810
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
J
Jiabin Yang 已提交
5811

Y
yuyang18 已提交
5812 5813 5814 5815 5816
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
5817
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
5818 5819 5820
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
5821 5822 5823 5824
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
5825
    def _rollback(self):
Y
yuyang18 已提交
5826 5827 5828 5829 5830
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
5831 5832
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
5833
    def _sync_with_cpp(self):
Y
yuyang18 已提交
5834 5835 5836 5837 5838 5839 5840 5841 5842 5843
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
5844 5845 5846
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
5847
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
5848

W
Wu Yi 已提交
5849
    def _copy_param_info_from(self, other):
5850
        """
5851
        Copy the information of parameters from other program.
D
dzhwinter 已提交
5852

Y
yuyang18 已提交
5853 5854 5855
        Notes: This is a very low level API. Users should not invoke it
        directly.

5856 5857 5858 5859 5860 5861 5862
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
5863 5864 5865
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
5866

W
Wu Yi 已提交
5867
        self.global_block()._copy_param_info_from(other.global_block())
5868

5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
5880 5881 5882
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
5883 5884
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
5885
        self._parameters_on_pservers = other._parameters_on_pservers
5886
        self._endpoints = other._endpoints
5887
        self._ps_endpoint = other._ps_endpoint
5888 5889
        self._distributed_lookup_table = other._distributed_lookup_table

5890
    def _copy_data_info_from(self, other, pruned_origin_block_id_map=None):
F
fengjiayi 已提交
5891 5892
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
5893

Y
yuyang18 已提交
5894 5895 5896
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
5897 5898
        Args:
            other(Program): Other program
5899 5900 5901 5902
            pruned_origin_block_id_map(dict{int:int}): A dict which maps the block id in program
            self to the block id in program other. For example, {0:0, 1:1, 2:3} means block 0 in self is 
            cloned from block 0 in other, etc. Default is None, which means default mapped, 
            {0:0, 1:1,..., n:n}.
F
fengjiayi 已提交
5903 5904 5905 5906 5907

        Returns:
            None
        """
        if not isinstance(other, Program):
5908 5909 5910
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
F
fengjiayi 已提交
5911

5912 5913 5914 5915 5916
        if not pruned_origin_block_id_map:
            pruned_origin_block_id_map = {
                i: i
                for i in six.moves.range(self.desc.num_blocks())
            }
5917 5918 5919

        # NOTE(zhiqiu): All vars in cloned program exist in original program.
        # The reverse is not true, due to backward pruning.
5920 5921
        for i, block in enumerate(self.blocks):
            other_block = other.blocks[pruned_origin_block_id_map[i]]
5922
            for var in list(block.vars.values()):
5923 5924 5925 5926 5927 5928 5929
                other_var = other_block.var(var.name)
                if other_var.is_data:
                    var.is_data = True
                if other_var.desc.need_check_feed():
                    var.desc.set_need_check_feed(True)
                if other_var.stop_gradient:
                    var.stop_gradient = True
F
fengjiayi 已提交
5930

5931
    def list_vars(self):
Y
yuyang18 已提交
5932
        """
5933
        Get all Tensors from this Program. A iterable object is returned.
Y
yuyang18 已提交
5934

J
Jiabin Yang 已提交
5935
        Returns:
5936
            iterable Tensors: The Generator will yield every Tensor in this program.
5937 5938 5939 5940

        Examples:
            .. code-block:: python

5941 5942
                import paddle
                import paddle.static as static
5943

5944 5945 5946 5947 5948
                paddle.enable_static()

                prog = static.default_main_program()
                img = static.data(name='img', shape=[None, 1,28,28], dtype='float32')
                label = static.data(name='label', shape=[None,1], dtype='int64')
5949 5950
                for var in prog.list_vars():
                    print(var)
T
tangwei12 已提交
5951

5952 5953
                # var img : paddle.VarType.LOD_TENSOR.shape(-1, 1, 28, 28).astype(VarType.FP32)
                # var label : paddle.VarType.LOD_TENSOR.shape(-1, 1).astype(VarType.INT64)
Y
yuyang18 已提交
5954
        """
5955
        for each_block in self.blocks:
5956
            for each_var in list(each_block.vars.values()):
5957 5958
                yield each_var

5959 5960 5961 5962 5963 5964 5965 5966 5967 5968
    def all_parameters(self):
        """
        Get all :ref:`api_guide_parameter_en` from this Program. A list object is returned.

        Returns:
            list[ :ref:`api_guide_parameter_en` ]: The list contians all parameters in this program.

        Examples:
            .. code-block:: python

5969 5970 5971 5972
                import paddle
                import paddle.static as static

                paddle.enable_static()
5973

5974 5975
                program = static.default_main_program()
                data = static.data(name='x', shape=[None, 13], dtype='float32')
5976
                hidden = static.nn.fc(x=data, size=10)
5977 5978
                loss = paddle.mean(hidden)
                paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
5979 5980 5981 5982 5983 5984 5985

                for param in program.all_parameters():
                    print(param)

                # Here will print all parameters in current program, in this example,
                # the result is like:
                #
5986 5987
                # persist trainable param fc_0.w_0 : paddle.VarType.LOD_TENSOR.shape(13, 10).astype(VarType.FP32)
                # persist trainable param fc_0.b_0 : paddle.VarType.LOD_TENSOR.shape(10,).astype(VarType.FP32)
5988 5989 5990 5991 5992 5993 5994 5995 5996 5997
                #
                # Here print(param) will print out all the properties of a parameter,
                # including name, type and persistable, you can access to specific
                # property of a parameter, such as param.name, param.type
        """
        parameters = []
        for each_block in self.blocks:
            parameters.extend(each_block.all_parameters())
        return parameters

5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164
    def state_dict(self, mode='all', scope=None):
        """
        Get parameters and persistable buffers of program as a dict. The key is the name of the parameter or the name of the buffer.
        The value is the tensor of this variable in the given scope.

        .. note::
            This function MUST called after run start_up_program

        Args:
            mode(str, optional): Source of the obtained parameters and buffers. 
                    'opt' :  The return value only contains the variable in the optimizer. 
                    'param' : The return value only contains the variable in the network, not the variable in the optimizer.  
                    'all' : The return value contains the variable in the network and optimizer.
                    Default: 'all'
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None

        Retruns:
            dict: a dict contains the parameters and persistable buffers.

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
        """
        # The 'framework' is a low-level module, and 'executor'
        # can not be imported at the begainning of this file. 
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
                "`scope` should be None or `paddle.static.Scope'` type, but received {}.".
                format(type(scope)))

        if scope is None:
            scope = global_scope()

        if not isinstance(mode, str):
            raise TypeError("Type of `mode` should be string, but received {}.".
                            format(type(mode)))

        def is_parameter(var):
            return isinstance(var, Parameter)

        def is_persistable(var):
            if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
                var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
                var.desc.type() == core.VarDesc.VarType.READER:
                return False
            return var.persistable

        def is_belong_to_optimizer(var):
            if not (isinstance(var, Parameter) or var.desc.need_check_feed()):
                return is_persistable(var)
            return False

        def condition(var):

            if mode == 'param':
                return is_parameter(var)
            elif mode == 'opt':
                return is_belong_to_optimizer(var)
            elif mode == 'all':
                return is_parameter(var) or is_belong_to_optimizer(var)
            else:
                raise ValueError(
                    "`mode` string should be 'param', 'opt' or 'all', but received {}.".
                    format(mode))

        var_list = filter(condition, self.list_vars())

        state_dict = dict()
        for var in var_list:
            var_temp = scope.find_var(var.name)
            if var_temp is None:
                raise ValueError(
                    "Can not find Variable '{}' in the scope. Make sure it is initialized".
                    format(var.name))
            state_dict[var.name] = var_temp.get_tensor()

        return state_dict

    def set_state_dict(self, state_dict, scope=None):
        """
        Set parameters and persistable buffers in state_dict to program. 
        An exception will throw if shape or dtype of the parameters is not match.
        
        .. note::
            This function MUST called after run start_up_program

        Args:
            state_dict(dict): the dict store parameters and persistable buffers. 
                The key is the name of the parameter or the name of the buffer.
                The value is the tensor of this variable in the given scope.
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None
        
        Returns:
            None

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
                state_dict_load = paddle.load(path)
                prog.set_state_dict(state_dict_load)
        """

        if not isinstance(state_dict, dict):
            raise TypeError(
                "Type of `state_dict` should be dict, but received {}.".format(
                    type(state_dict)))

        vars_dict = {var.name: var for var in self.list_vars()}
        condition = True if 'StructuredToParameterName@@' in state_dict else False
        for name, value in state_dict.items():
            if condition:
                if name == "StructuredToParameterName@@":
                    continue
                if name in state_dict['StructuredToParameterName@@']:
                    name = state_dict['StructuredToParameterName@@'][name]
            if name in vars_dict:
                try:
                    vars_dict[name].set_value(value, scope)
                except ValueError as err:
                    warnings.warn(
                        ("Skip loading for '{}'. ".format(name) + str(err)))
                except TypeError as err:
                    warnings.warn(
                        ("Skip loading for '{}'. ".format(name) + str(err)))
            else:
                warnings.warn((
                    "Skip loading for '{0}'. Because '{0}' not in the program.".
                    format(name)))

Y
Yu Yang 已提交
6165

6166
@six.add_metaclass(ParameterMetaClass)
Y
Yu Yang 已提交
6167
class Parameter(Variable):
6168
    """
6169
    Parameter is derived from Variable. A parameter is a persistable
6170
    Variable, and will be updated by optimizers after each iteration.
6171
    The training of a neural network is essentially the updating of
6172 6173
    its parameters.

6174
    Relative to a general Variable, a Parameter has several its own
6175 6176
    member variables:

6177 6178 6179 6180 6181 6182 6183 6184 6185 6186
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
6187 6188
        need_clip (bool): Whether the parameter gradient need to be cliped 
            in optimizer. Default is True.
6189 6190
    """

6191 6192 6193 6194 6195 6196
    def __init__(self,
                 block,
                 shape,
                 dtype,
                 type=core.VarDesc.VarType.LOD_TENSOR,
                 **kwargs):
6197 6198 6199 6200 6201
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

Y
Yu Yang 已提交
6202
        if len(shape) == 0:
6203 6204
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")
Y
Yu Yang 已提交
6205 6206 6207

        for each in shape:
            if each < 0:
6208 6209 6210
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))
6211 6212

        Variable.__init__(
6213 6214 6215 6216 6217 6218 6219
            self,
            block,
            persistable=True,
            shape=shape,
            dtype=dtype,
            type=type,
            **kwargs)
Y
Yu Yang 已提交
6220 6221 6222 6223
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

6224 6225
        self.regularizer = kwargs.get('regularizer', None)

W
wanghaoshuang 已提交
6226
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
6227

6228 6229
        self.need_clip = kwargs.get('need_clip', True)

6230 6231
        self.is_distributed = False

6232 6233
        self.is_parameter = True

F
fengjiayi 已提交
6234
    def __str__(self):
6235
        return self._to_readable_code()
F
fengjiayi 已提交
6236

F
update  
fengjiayi 已提交
6237 6238 6239
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
6240

F
update  
fengjiayi 已提交
6241 6242 6243 6244 6245 6246 6247 6248
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

6249 6250 6251 6252 6253 6254 6255 6256 6257
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
6258 6259 6260 6261 6262 6263
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
6264
                               "do_model_average", "need_clip")
F
update  
fengjiayi 已提交
6265
            for attr_name in additional_attr:
6266 6267
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
6268 6269
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
6270 6271 6272 6273
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
6274

6275 6276
class ParamBase(core.VarBase):
    """
6277 6278 6279
    ParamBase is derived from Tensor( Which is the concept in Dygraph Mode). 
    A ParamBase is a persistable Tensor, and will be updated by optimizers 
    after each iteration.
6280 6281 6282
    The training of a neural network is essentially the updating of
    its ParamBase.

6283
    Relative to a general Tensor, a ParamBase has several its own
6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295
    member variables:

    Args:
        trainable(bool): True if the ParamBase need to be updated after
            iterations.
        optimize_attr(map): ParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the ParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this ParamBase.
6296 6297
        need_clip (bool): Whether the parameter gradient need to be cliped 
            in optimizer. Default is True.
6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        if len(shape) == 0:
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_param_base'))

        super(ParamBase, self).__init__(dtype
                                        if dtype else core.VarDesc.VarType.FP32,
                                        list(shape) if shape else [], name,
                                        core.VarDesc.VarType.LOD_TENSOR, True)

6328 6329
        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable
6330 6331 6332 6333 6334 6335 6336

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

6337 6338
        self.need_clip = kwargs.get('need_clip', True)

6339
        self.is_distributed = kwargs.get('is_distributed', False)
6340
        # self.block = default_main_program().global_block()
6341

6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354
    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
                type(trainable))

6355
    def __str__(self):
6356
        """
6357
        Convert a ParamBase object to a readable string.
6358

6359
        Returns(str): A readable string.
6360 6361 6362 6363

        Examples:
            .. code-block:: python

6364
                import paddle
6365 6366 6367 6368 6369 6370 6371
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
6372
        """
6373 6374
        return "Parameter containing:\n{tensor}".format(
            tensor=super(ParamBase, self).__str__())
6375

6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386
    def __deepcopy__(self, memo):
        """
        Deep copy parameter, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                linear = paddle.nn.Linear(1, 3)
                linear_copy = copy.deepcopy(linear)
T
tangwei12 已提交
6387

6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

                print(linear_copy.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

        """
        state = copy.deepcopy(self.__dict__, memo)
        state["name"] = self.name + unique_name.generate("_deepcopy")
        new_param = ParamBase(self.shape, self.dtype, **state)
        memo[id(self)] = new_param
        new_param.copy_(self, True)
        return new_param

6406 6407 6408 6409
    def _copy_to(self, device, blocking):
        state = copy.deepcopy(self.__dict__)
        new_param = ParamBase(self.shape, self.dtype, **state)
        core.varbase_copy(self, new_param, device, blocking)
6410 6411 6412 6413 6414 6415
        return new_param

    __repr__ = __str__


if hasattr(core, "eager"):
6416
    _core_eager_eagertensor = core.eager.Tensor
6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556
else:
    _core_eager_eagertensor = object


class EagerParamBase(_core_eager_eagertensor):
    """
    EagerParamBase is derived from Tensor( Which is the concept in Eager-Dygraph Mode). 
    A EagerParamBase is a persistable Tensor, and will be updated by optimizers 
    after each iteration.
    The training of a neural network is essentially the updating of
    its EagerParamBase.

    Relative to a general Tensor, a EagerParamBase has several its own
    member variables:

    Args:
        trainable(bool): True if the EagerParamBase need to be updated after
            iterations.
        optimize_attr(map): EagerParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the EagerParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this EagerParamBase.
        need_clip (bool): Whether the parameter gradient need to be cliped 
            in optimizer. Default is True.
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        if len(shape) == 0:
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_eager_param_base'))

        super(EagerParamBase, self).__init__(
            dtype if dtype else core.VarDesc.VarType.FP32,
            list(shape)
            if shape else [], name, core.VarDesc.VarType.LOD_TENSOR, True)
        self.retain_grads()

        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

        self.need_clip = kwargs.get('need_clip', True)

        self.is_distributed = kwargs.get('is_distributed', False)
        # self.block = default_main_program().global_block()

    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
                type(trainable))

    def __str__(self):
        """
        Convert a EagerParamBase object to a readable string.

        Returns(str): A readable string.

        Examples:
            .. code-block:: python

                import paddle
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
        """
        return "Parameter containing:\n{tensor}".format(
            tensor=super(EagerParamBase, self).__str__())

    def __deepcopy__(self, memo):
        """
        Deep copy parameter, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                linear = paddle.nn.Linear(1, 3)
                linear_copy = copy.deepcopy(linear)

                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

                print(linear_copy.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

        """
        state = copy.deepcopy(self.__dict__, memo)
        state["name"] = self.name + unique_name.generate("_deepcopy")
        new_param = EagerParamBase(self.shape, self.dtype, **state)
        memo[id(self)] = new_param
        new_param.copy_(self, True)
        return new_param

    def _copy_to(self, device, blocking):
        state = copy.deepcopy(self.__dict__)
        new_param = EagerParamBase(self.shape, self.dtype, **state)
        core.eager.tensor_copy(self, new_param, device, blocking)
6557 6558
        return new_param

6559 6560 6561
    __repr__ = __str__


Y
Yu Yang 已提交
6562
# program is a global instance.
Y
Yu Yang 已提交
6563 6564
_main_program_ = Program()
_startup_program_ = Program()
6565
_startup_program_._is_start_up_program_ = True
6566

6567

6568
def default_startup_program():
Y
Yu Yang 已提交
6569
    """
Y
yuyang18 已提交
6570 6571
    Get default/global startup program.

6572 6573
    The :code:`paddle.nn` function will append the initialization operators into startup program.
    The :code:`startup_program` will initialize the parameters by the OPs. 
T
tangwei12 已提交
6574

6575 6576
    This method will return the default or the current startup program. Users can use
    :ref:`api_paddle_fluid_framework_program_guard`  to switch :ref:`api_paddle_fluid_framework_Program` .
Y
yuyang18 已提交
6577

6578 6579
    Returns:
        Program: current default startup program.
6580

6581
    Returns type: 
6582 6583 6584 6585

    Examples:
        .. code-block:: python

6586
            import paddle
6587

6588
            paddle.enable_static()
6589 6590 6591 6592
            x = paddle.static.data(name="x", shape=[-1, 784], dtype='float32')
            out = paddle.static.nn.fc(name="fc", x=x, size=10, activation="relu")
            print("main program is: {}".format(paddle.static.default_main_program()))
            print("start up program is: {}".format(paddle.static.default_startup_program()))
Y
Yu Yang 已提交
6593
    """
Y
Yu Yang 已提交
6594
    return _startup_program_
6595

6596

6597
def default_main_program():
Y
Yu Yang 已提交
6598
    """
6599
    This API can be used to get ``default main program`` which store the 
6600
    descriptions of Ops and tensors.
T
tangwei12 已提交
6601

6602
    For example ``z = paddle.add(x, y)`` will create a new ``add`` 
6603
    Op and a new ``z`` tensor, and they will be recorded in ``default main program`` . 
Y
yuyang18 已提交
6604

6605 6606
    The ``default main program`` is the default value for ``Program`` parameter in 
    a lot of APIs. For example, the :code:`Executor.run()` will execute the
Y
yuyang18 已提交
6607
    :code:`default_main_program` when the program is not specified.
6608

6609
    If you want to switch the ``default main program``, you can use :ref:`api_paddle_fluid_framework_program_guard` .
T
tangwei12 已提交
6610

Y
Yu Yang 已提交
6611
    Returns:
6612
        Program: A ``Program`` which holding the descriptions of OPs and tensors in the network.
6613 6614 6615 6616

    Examples:
        ..  code-block:: python

6617
            import paddle
6618

6619
            paddle.enable_static()
6620
            # Sample Network:
6621 6622 6623
            x = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            y = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            out = paddle.add(x, y)
6624

6625 6626 6627
            #print the number of blocks in the program, 1 in this case
            print(paddle.static.default_main_program().num_blocks) # 1
            #print the default_main_program
6628
            print(paddle.static.default_main_program())
Y
Yu Yang 已提交
6629
    """
Y
Yu Yang 已提交
6630
    return _main_program_
Y
Yu Yang 已提交
6631 6632 6633 6634 6635


def switch_main_program(program):
    """
    Switch the main program to a new program.
6636

Y
Yu Yang 已提交
6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
6651
    Switch the startup program to a new program
Y
Yu Yang 已提交
6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
6664
@signature_safe_contextmanager
Y
Yu Yang 已提交
6665 6666
def program_guard(main_program, startup_program=None):
    """
6667 6668
    :api_attr: Static Graph

6669 6670 6671
    Change the global main program and startup program with ``with`` statement.
    Layer functions in the Python ``with`` block will append operators and
    Tensors to the new main programs.
6672

G
guofei 已提交
6673
    Args:
6674 6675
        main_program(Program): New main program inside ``with`` statement.
        startup_program(Program, optional): New startup program inside ``with`` 
G
guofei 已提交
6676 6677 6678 6679
            statement. :code:`None` means not changing startup program, 
            default_startup_program is still used.
            Default: None.

Y
Yu Yang 已提交
6680
    Examples:
6681
       .. code-block:: python
T
tangwei12 已提交
6682

6683
          import paddle
Y
yuyang18 已提交
6684

6685 6686 6687 6688 6689
          paddle.enable_static()
          main_program = paddle.static.Program()
          startup_program = paddle.static.Program()
          with paddle.static.program_guard(main_program, startup_program):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
6690
              hidden = paddle.static.nn.fc(x=data, size=10, activation='relu')
Y
yuyang18 已提交
6691 6692 6693

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
6694

Y
Yu Yang 已提交
6695
    Examples:
6696
       .. code-block:: python
Y
yuyang18 已提交
6697

6698
          import paddle
6699

6700 6701 6702 6703 6704
          paddle.enable_static()
          main_program = paddle.static.Program()
          # does not care about startup program. Just pass a temporary value.
          with paddle.static.program_guard(main_program, paddle.static.Program()):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
T
tangwei12 已提交
6705

Y
Yu Yang 已提交
6706
    """
6707
    from .data_feeder import check_type
6708 6709
    check_type(main_program, 'main_program', Program,
               'paddle.static.program_guard')
Y
Yu Yang 已提交
6710 6711
    main_program = switch_main_program(main_program)
    if startup_program is not None:
6712
        check_type(startup_program, 'startup_program', Program,
6713
                   'paddle.static.program_guard')
6714 6715
        # Tag the program __is_start_up as True
        startup_program._is_start_up_program_ = True
Y
Yu Yang 已提交
6716
        startup_program = switch_startup_program(startup_program)
6717 6718 6719 6720 6721 6722
    try:
        yield
    finally:
        switch_main_program(main_program)
        if startup_program is not None:
            switch_startup_program(startup_program)
X
xuwei06 已提交
6723 6724


W
Wu Yi 已提交
6725
def _get_var(name, program=None):
X
xuwei06 已提交
6726
    """
Y
yuyang18 已提交
6727
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
6728

X
xuwei06 已提交
6729 6730 6731
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
6732
        If None, default_global_program() will be used.
X
xuwei06 已提交
6733 6734 6735 6736 6737 6738 6739

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
6740
    assert isinstance(program, Program)
X
xuwei06 已提交
6741 6742

    return program.global_block().var(name)
6743 6744


S
rename  
sneaxiy 已提交
6745
@signature_safe_contextmanager
L
lujun 已提交
6746 6747
def _dygraph_guard(tracer):
    global _dygraph_tracer_
6748
    tmp_tracer = _dygraph_tracer_
L
lujun 已提交
6749
    _dygraph_tracer_ = tracer
6750
    core._switch_tracer(tracer)
M
minqiyang 已提交
6751

6752 6753 6754
    try:
        yield
    finally:
6755 6756
        core._switch_tracer(tmp_tracer)
        _dygraph_tracer_ = tmp_tracer
P
Paddle CI 已提交
6757 6758


S
rename  
sneaxiy 已提交
6759
@signature_safe_contextmanager
L
lujun 已提交
6760
def _dygraph_place_guard(place):
6761 6762 6763
    global _global_expected_place_
    tmp_place = _global_expected_place_
    _global_expected_place_ = place
J
Jiabin Yang 已提交
6764 6765
    if _in_eager_mode():
        core.eager._set_expected_place(place)
6766 6767
    _set_dygraph_tracer_expected_place(place)

6768 6769 6770
    try:
        yield
    finally:
6771
        _global_expected_place_ = tmp_place
J
Jiabin Yang 已提交
6772 6773 6774
        if _in_eager_mode():
            core.eager._set_expected_place(_global_expected_place_)
        _set_dygraph_tracer_expected_place(_global_expected_place_)
6775 6776


6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792
def switch_device(device):
    global _current_device
    pre_device = _current_device
    _current_device = device
    return pre_device


@signature_safe_contextmanager
def device_guard(device=None):
    """
    **Notes**:
        **The API only supports static mode.**

    A context manager that specifies the device on which the OP will be placed.

    Args:
6793 6794
        device(str|None): Specify the device to use in the context. It should be ``cpu``,
            ``gpu`` or ``gpu:x``, where ``x`` is the index of the GPUs. 
6795 6796 6797 6798 6799 6800 6801 6802 6803
            When it is set to 'cpu' or 'gpu', all OPs created in the context will be
            placed on CPUPlace or CUDAPlace. When 'gpu' is set and the program runs on
            single-card, the device index will be the same as the device on which the
            executor runs. Default: None, OPs in this context will be automatically
            assigned devices.

    Examples:
        .. code-block:: python

Z
Zhang Ting 已提交
6804
            import paddle
6805

Z
Zhang Ting 已提交
6806 6807 6808
            paddle.enable_static()
            support_gpu = paddle.is_compiled_with_cuda()
            place = paddle.CPUPlace()
6809
            if support_gpu:
Z
Zhang Ting 已提交
6810
                place = paddle.CUDAPlace(0)
6811 6812

            # if GPU is supported, the three OPs below will be automatically assigned to CUDAPlace(0)
Z
Zhang Ting 已提交
6813 6814 6815
            data1 = paddle.full(shape=[1, 3, 8, 8], fill_value=0.5, dtype='float32')
            data2 = paddle.full(shape=[1, 3, 64], fill_value=0.5, dtype='float32')
            shape = paddle.shape(data2)
6816

Z
Zhang Ting 已提交
6817
            with paddle.static.device_guard("cpu"):
6818
                # Ops created here will be placed on CPUPlace
Z
Zhang Ting 已提交
6819 6820
                shape = paddle.slice(shape, axes=[0], starts=[0], ends=[4])
            with paddle.static.device_guard('gpu'):
6821
                # if GPU is supported, OPs created here will be placed on CUDAPlace(0), otherwise on CPUPlace
Z
Zhang Ting 已提交
6822
                out = paddle.reshape(data1, shape=shape)
6823

Z
Zhang Ting 已提交
6824 6825
            exe = paddle.static.Executor(place)
            exe.run(paddle.static.default_startup_program())
6826 6827 6828
            result = exe.run(fetch_list=[out])
    """

6829 6830 6831 6832 6833
    index = None
    if device and ':' in device:
        device, index = device.split(':')
        if device == 'cpu':
            raise ValueError("Should not set device id for cpu.")
6834
    if device not in ['cpu', 'gpu', 'npu', '', None]:
6835
        raise ValueError(
6836
            "The Attr(device) should be 'cpu' 'npu' or 'gpu', and it can also be empty string or None "
6837
            "when there is no need to specify device. But received %s" % device)
6838 6839
    if index:
        device = ":".join([device, index])
6840
    pre_device = switch_device(device)
6841 6842 6843 6844
    try:
        yield
    finally:
        switch_device(pre_device)
G
guofei 已提交
6845 6846 6847 6848 6849


def set_flags(flags):
    """
    This function sets the GFlags value in Paddle.
6850
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
6851 6852 6853 6854 6855 6856 6857

    Args:
        flags (dict): A dict contains flags and its value.

    Examples:
            .. code-block:: python

6858 6859
                import paddle
                paddle.set_flags({'FLAGS_eager_delete_tensor_gb': 1.0})
G
guofei 已提交
6860 6861 6862 6863
    """
    if not isinstance(flags, dict):
        raise TypeError('flags in set_flags should be a dict')
    for key, value in flags.items():
6864 6865
        if _global_flags().is_public(key):
            _global_flags()[key] = value
G
guofei 已提交
6866 6867 6868 6869 6870 6871 6872 6873
        else:
            raise ValueError(
                "Flag %s cannot set its value through this function." % (key))


def get_flags(flags):
    """
    This function gets the GFlags value in Paddle.
6874
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
6875 6876 6877 6878 6879 6880 6881 6882 6883 6884

    Args:
        flags(list|tuple|str): A list/tuple of string or a string which is the flag's name.

    Returns:
        flag's value in Paddle.

    Examples:
        .. code-block:: python

6885
            import paddle
G
guofei 已提交
6886 6887

            flags = ['FLAGS_eager_delete_tensor_gb', 'FLAGS_check_nan_inf']
6888
            res = paddle.get_flags(flags)
G
guofei 已提交
6889 6890 6891 6892 6893 6894
            print(res)
            # {'FLAGS_eager_delete_tensor_gb': 0.0, 'FLAGS_check_nan_inf': False}
    """
    flags_value = {}
    if isinstance(flags, (list, tuple)):
        for key in flags:
6895 6896
            if (_global_flags().is_public(key)):
                value = _global_flags()[key]
G
guofei 已提交
6897 6898 6899 6900 6901 6902 6903
                temp = {key: value}
                flags_value.update(temp)
            else:
                raise ValueError(
                    'Flag %s cannot get its value through this function.' %
                    (key))
    elif isinstance(flags, str):
6904 6905
        if (_global_flags().is_public(flags)):
            value = _global_flags()[flags]
G
guofei 已提交
6906 6907 6908 6909 6910 6911 6912 6913
            temp = {flags: value}
            flags_value.update(temp)
        else:
            raise ValueError(
                'Flag %s cannot get its value through this function.' % (flags))
    else:
        raise TypeError('Flags in get_flags should be a list, tuple or string.')
    return flags_value
6914 6915 6916 6917 6918 6919 6920


def _get_paddle_place(place):
    "convert the string to paddle Place"
    if place is None:
        return place
    if isinstance(place, (core.Place, core.XPUPlace, core.CPUPlace,
6921
                          core.CUDAPinnedPlace, core.CUDAPlace, core.NPUPlace,
6922
                          core.IPUPlace, core.MLUPlace, core.CustomPlace)):
6923 6924 6925 6926 6927 6928 6929 6930 6931
        return place

    if not isinstance(place, str):
        raise ValueError(
            "place only support string which is 'Place' and so on.")

    place = place.lower()
    if (place == "cpu"):
        return core.CPUPlace()
6932

6933 6934 6935
    if (place == "device"):
        return core.Place()

6936
    # GPU
6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951
    avaliable_gpu_place = re.match(r'gpu:\d+', place)
    if place == "gpu_pinned" or place == "gpu" or avaliable_gpu_place:
        if not core.is_compiled_with_cuda():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with CUDA".format(avaliable_gpu_place))
        if place == "gpu_pinned":
            return core.CUDAPinnedPlace()
        elif place == "gpu":
            return core.CUDAPlace(0)
        else:
            place_info_list = place.split(':', 1)
            device_id = place_info_list[1]
            device_id = int(device_id)
            return core.CUDAPlace(device_id)
6952 6953

    # XPU
6954 6955 6956 6957 6958 6959 6960 6961 6962 6963
    avaliable_xpu_place = re.match(r'xpu:\d+', place)
    if avaliable_xpu_place:
        if not core.is_compiled_with_xpu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with XPU".format(avaliable_xpu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.XPUPlace(device_id)
6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976

    # NPU
    avaliable_npu_place = re.match(r'npu:\d+', place)
    if avaliable_npu_place:
        if not core.is_compiled_with_npu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with NPU".format(avaliable_npu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.NPUPlace(device_id)

J
jianghaicheng 已提交
6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988
    # IPU
    avaliable_ipu_place = re.match(r'ipu:\d+', place)
    if avaliable_ipu_place:
        if not core.is_compiled_with_ipu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with IPU".format(avaliable_ipu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.IPUPlace(device_id)

6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000
    # MLU
    avaliable_mlu_place = re.match(r'mlu:\d+', place)
    if avaliable_mlu_place:
        if not core.is_compiled_with_mlu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with MLU".format(avaliable_mlu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.MLUPlace(device_id)

7001
    raise ValueError(
J
jianghaicheng 已提交
7002
        "Paddle supports CPUPlace, CUDAPlace,CUDAPinnedPlace, XPUPlace, IPUPlace, MLUPlace and NPUPlace, but received {}.".
7003
        format(place))
7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016


def _get_paddle_place_list(places):

    if not isinstance(places, (list, tuple)):
        raise TypeError("places must to be List or Tuple")

    ret = []
    for p in places:
        p = _get_paddle_place(p)
        ret.append(p)

    return ret