framework.py 258.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
H
huzhiqiang 已提交
19
from collections.abc import Iterable
Q
qiaolongfei 已提交
20
import contextlib
21
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26
import copy
27
from types import MethodType, FunctionType
28

Y
Yu Yang 已提交
29
import numpy as np
30
import subprocess
S
sneaxiy 已提交
31
import multiprocessing
32
import sys
33
import logging
M
minqiyang 已提交
34
from .. import compat as cpt
35
from .proto import framework_pb2
36 37

from . import core
38
from . import unique_name
39 40
import paddle.version as fluid_version
import warnings
41
import functools
42
from .variable_index import _getitem_impl_, _setitem_impl_
Y
Yu Yang 已提交
43

44
__all__ = [
45 46 47 48
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
49
    'name_scope',
J
jianghaicheng 已提交
50
    'ipu_shard_guard',
51
    'set_ipu_shard',
S
sneaxiy 已提交
52 53
    'cuda_places',
    'cpu_places',
54
    'xpu_places',
55
    'mlu_places',
S
sneaxiy 已提交
56
    'cuda_pinned_places',
J
Jiabin Yang 已提交
57
    '_non_static_mode',
L
lujun 已提交
58
    'in_dygraph_mode',
59
    'is_compiled_with_cinn',
C
chengduo 已提交
60
    'is_compiled_with_cuda',
61
    'is_compiled_with_rocm',
62
    'is_compiled_with_xpu',
63
    'is_compiled_with_npu',
64
    'Variable',
65
    'require_version',
66
    'device_guard',
G
guofei 已提交
67 68
    'set_flags',
    'get_flags',
69
]
Y
Yu Yang 已提交
70

Q
qiaolongfei 已提交
71 72 73 74
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
75 76
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

L
lujun 已提交
77
_dygraph_tracer_ = None
78
_in_eager_mode_ = (os.environ.get('FLAGS_enable_eager_mode', '1') == '1')
79
_global_expected_place_ = None
80
_current_device = None
81
global_prog_seed = 0
82
_current_pipeline_stage = None
83
_already_patch_eager_tensor = False
J
Jiabin Yang 已提交
84
_already_patch_varbase = False
85
_current_cuda_graph_mode = None
86
_global_flags_ = core.globals()
L
Leo Chen 已提交
87 88
_enable_standalone_executor_ = (os.environ.get('FLAGS_USE_STANDALONE_EXECUTOR',
                                               None))
89
_dy2st_enable_standalone_executor_ = (os.environ.get(
90
    'FLAGS_DY2ST_USE_STANDALONE_EXECUTOR', 0))
J
Jiabin Yang 已提交
91 92

# Some explanation of our execution system 2022.03
93
# For now we have 3 kinds of execution system, since we refactored dygraph mode to
J
Jiabin Yang 已提交
94
# build a fast execution system for dynamic mode. But we can't just remove all legacy
95
# code once we present the new system for some historical reason. That's why we have
J
Jiabin Yang 已提交
96
# these flags.
97
#
J
Jiabin Yang 已提交
98
# 1. _non_static_mode():
99
# _non_static_mode means  we are now running in legacy dygraph mode or dygraph mode.
J
Jiabin Yang 已提交
100 101 102 103
# 2. dygraph_mode():
# This flags inidicates we are now running in dygraph mode which called eager mode before.
# 3. _in_legacy_dygraph():
# This flags inidicates we are now running in legacy dygraph mode
104
#
J
Jiabin Yang 已提交
105
# They have a relation ship as below:
106
# Both dygraph_mode and _in_legacy_dygraph are _non_static_mode, but if you are running in
J
Jiabin Yang 已提交
107
# dygraph mode means you are not in _in_legacy_dygraph.
108
#
J
Jiabin Yang 已提交
109 110 111 112 113 114
# Why we have to make different of _in_legacy_dygraph and dygraph_mode?
# In some performance issue, we find that python if statement cause server performance problem
# and we need our new dygraph mode becomes as fast as it could be. That's why we make these flags
# to make sure in most case, we find new dygraph mode first with only one if statement.


115 116 117 118 119
def _update_monkey_methods(is_eager):
    """
    Update monkey methods of VarBase or eager.Tensor while
    switching eager mode and legacy mode.
    """
120
    from paddle import _C_ops, _legacy_C_ops
121 122 123
    from .dygraph.varbase_patch_methods import monkey_patch_varbase
    from .dygraph import monkey_patch_math_varbase

124 125 126
    global _already_patch_eager_tensor
    global _already_patch_varbase

127
    assert isinstance(is_eager, bool)
128
    # switch into eager mode
129
    if is_eager:
130
        _legacy_C_ops.switch_to_eager_ops()
131 132 133 134 135 136
        if not _already_patch_eager_tensor:
            monkey_patch_varbase()
            monkey_patch_math_varbase()

            _already_patch_eager_tensor = True
    # switch back into legacy mode
137
    else:
138
        _legacy_C_ops.switch_to_core_ops()
139 140 141 142 143
        if not _already_patch_varbase:
            monkey_patch_varbase()
            monkey_patch_math_varbase()

            _already_patch_varbase = True
144

145 146 147 148 149 150 151 152 153 154 155
    # switch Paddle.Tensor bind type
    _switch_tensor_bind_type(is_eager)


def _switch_tensor_bind_type(is_eager):
    import paddle
    if is_eager:
        paddle.Tensor = core.eager.Tensor
    else:
        paddle.Tensor = core.VarBase
    paddle.Tensor.__qualname__ = 'Tensor'
156 157


J
Jiabin Yang 已提交
158 159 160
def _enable_legacy_dygraph():
    global _in_eager_mode_
    _in_eager_mode_ = False
161
    _update_monkey_methods(is_eager=False)
J
Jiabin Yang 已提交
162 163 164 165 166


def _disable_legacy_dygraph():
    global _in_eager_mode_
    _in_eager_mode_ = True
167
    _update_monkey_methods(is_eager=True)
J
Jiabin Yang 已提交
168 169 170 171 172 173 174


def _in_eager_without_dygraph_check():
    global _in_eager_mode_
    return _in_eager_mode_


175 176 177 178 179 180 181 182 183 184 185
# FIXME(dev): We haven't fully verified eager mode on XPU/NPU et.al but
# only GPU/CPU. Remove this after we improve this feature.
_is_first_import_ = True


def _fallback_legacy_dygraph():
    global _in_eager_mode_
    global _is_first_import_
    need_fallback = False
    # Only enable eager on CPU/GPU
    is_not_support = core.is_compiled_with_xpu() or core.is_compiled_with_npu(
J
Jiabin Yang 已提交
186
    ) or core.is_compiled_with_ipu() or core.is_compiled_with_mlu()
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207

    if _in_eager_mode_ and is_not_support:
        # switch into legacy dygraph mode
        warnings.warn(
            "We will fallback into legacy dygraph on NPU/XPU/MLU/IPU/ROCM devices. Because we only support new eager dygraph mode on CPU/GPU currently. "
        )
        _in_eager_mode_ = False
        if not _is_first_import_:
            _enable_legacy_dygraph()
        need_fallback = True

    need_fallback = False
    _is_first_import_ = False

    return need_fallback


# switch into legacy mode if need while import paddle
_fallback_legacy_dygraph()


J
Jiabin Yang 已提交
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
def in_dygraph_mode():
    """

    .. note::
        Dynamic graph mode is turn ON by default since paddle 2.0.0

    This API checks whether paddle runs in dynamic graph mode.

    You can turn ON static graph mode by `enable_static <../dygraph/base/disable_dygraph_en.html>`_ ,
    and turn OFF static graph mode by `disable_static <../dygraph/base/enable_dygraph_en.html>`_  .

    Returns:
        bool: Whether paddle runs in dynamic graph mode.

    Examples:
        .. code-block:: python

            import paddle
            print(paddle.in_dynamic_mode())  # True, dynamic mode is turn ON by default since paddle 2.0.0

            paddle.enable_static()
            print(paddle.in_dynamic_mode())  # False, Now we are in static mode

            paddle.disable_static()
            print(paddle.in_dynamic_mode())  # True, Now we are in dynamic mode

    """
    return (_dygraph_tracer_ is not None) and _in_eager_mode_


def _in_legacy_dygraph():
    return (not _in_eager_mode_) and (_dygraph_tracer_ is not None)


def _non_static_mode():
    return _dygraph_tracer_ is not None
244 245 246


@signature_safe_contextmanager
J
Jiabin Yang 已提交
247
def _test_eager_guard(place=None):
248 249 250 251 252
    # FIXME(dev): We haven't fully verified eager mode on XPU/NPU et.al but
    # only GPU/CPU. Remove this after we improve this feature.
    already_fallback = _fallback_legacy_dygraph()
    if not already_fallback:
        _disable_legacy_dygraph()
253
    try:
J
Jiabin Yang 已提交
254
        yield
255
    finally:
256 257
        if not already_fallback:
            _enable_legacy_dygraph()
258 259


260 261
global_ipu_index = -1
global_ipu_stage = -1
J
jianghaicheng 已提交
262 263 264 265
ipu_index_attr_name = 'ipu_index'
ipu_stage_attr_name = 'ipu_stage'


L
Leo Chen 已提交
266 267 268 269 270 271 272 273 274 275 276
@signature_safe_contextmanager
def _enable_standalone_executor(enable=True):
    global _enable_standalone_executor_
    original_ = _enable_standalone_executor_
    _enable_standalone_executor_ = enable
    try:
        yield
    finally:
        _enable_standalone_executor_ = original_


J
jianghaicheng 已提交
277
@signature_safe_contextmanager
278
def ipu_shard_guard(index=-1, stage=-1):
J
jianghaicheng 已提交
279 280 281 282
    """
    Used to shard the graph on IPUs. Set each Op run on which IPU in the sharding and which stage in the pipelining.

    Args:
W
Weilong Wu 已提交
283
        index(int, optional): Specify which ipu the Tensor is computed on, (such as '0, 1, 2, 3').
284
            The default value is -1, which means the Op only run on IPU 0.
W
Weilong Wu 已提交
285
        stage(int, optional): Specify the computation order of the sharded model(such as '0, 1, 2, 3').
286
            The sharded model will be computed from small to large. The default value is -1,
J
jianghaicheng 已提交
287
            which means no pipelining computation order and run Ops in terms of graph.
288

J
jianghaicheng 已提交
289
    **Note**:
290 291 292
    Only if the enable_manual_shard=True, the 'index' is able to be set not -1. Please refer
    to :code:`paddle.static.IpuStrategy` .
    Only if the enable_pipelining=True, the 'stage' is able to be set not -1. Please refer
J
jianghaicheng 已提交
293
    to :code:`paddle.static.IpuStrategy` .
294
    A index is allowed to match none stage or a stage. A stage is only allowed to match a new or
J
jianghaicheng 已提交
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
    duplicated index.

    Examples:
        .. code-block:: python

            # required: ipu

            import paddle
            paddle.enable_static()
            a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
            with paddle.static.ipu_shard_guard(index=0, stage=0):
                b = a + 1
            with paddle.static.ipu_shard_guard(index=1, stage=1):
                c = b + 1
            with paddle.static.ipu_shard_guard(index=0, stage=2):
                d = c + 1
    """
    if not core.is_compiled_with_ipu():
        raise ValueError(
            "Can not use this function since PaddlePaddle is not compiled with IPU"
        )

    global global_ipu_index
    global global_ipu_stage
    prev_ipu_index = global_ipu_index
    prev_ipu_stage = global_ipu_stage
    global_ipu_index = index
    global_ipu_stage = stage
    try:
        yield
    finally:
        global_ipu_index = prev_ipu_index
        global_ipu_stage = prev_ipu_stage


330 331 332 333 334 335 336 337 338
def set_ipu_shard(call_func, index=-1, stage=-1):
    """
    Shard the ipu with the given call function. Set every ops in call function to the given ipu sharding.

    Args:
        call_func(Layer|function): Specify the call function to be wrapped.
        index(int, optional): Specify which ipu the Tensor is computed on, (such as ‘0, 1, 2, 3’).
            The default value is -1, which means the Op only run on IPU 0.
        stage(int, optional): Specify the computation order of the sharded model(such as ‘0, 1, 2, 3’).
339
            The sharded model will be computed from small to large. The default value is -1,
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
            which means no pipelining computation order and run Ops in terms of graph.

    Returns:
        The wrapped call function.


    Examples:
        .. code-block:: python

            # required: ipu

            import paddle
            paddle.enable_static()
            a = paddle.static.data(name='data', shape=[None, 1], dtype='float32')
            relu = paddle.nn.ReLU()
            relu = paddle.static.set_ipu_shard(relu, index=1, stage=1)
            relu(a)
    """

    def decorate(func):

        def wrapper(*args, **kwargs):
            with ipu_shard_guard(index=index, stage=stage):
                return func(*args, **kwargs)

        return wrapper

    from .dygraph.layers import Layer
    if not isinstance(call_func, Layer):
        if callable(call_func):
            return decorate(call_func)
        else:
            raise TypeError(
                "Unsupported type. Only accept paddle.nn.Layer or function.")

    # patch paddle.nn.Layer
    class BlockFn(type(call_func)):

        def __call__(self, *args, **kwargs):
            with ipu_shard_guard(index=index, stage=stage):
                return super().__call__(*args, **kwargs)

    BlockFn.__name__ = type(call_func).__name__
    call_func.__class__ = BlockFn
    return call_func


387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
def require_version(min_version, max_version=None):
    """
        Check if the installed version of PaddlePaddle is in [min_version, max_version],
        if the installed version is lower than ``min_version`` or higher than ``max_version``,
        an exception will be thrown, NO returns if the installed version is satisfied.

        Args:
            min_version (str): the minimum version required (like '1.4.0').
            max_version (str, optional): the max version required (like '1.6.0'), default is None,
                meaning any version equal or higher than ``min_version`` is acceptable.

        Returns:
            None.

        Raises:
            TypeError: if the type of ``min_version`` is not str.
            TypeError: if the type of ``max_version`` is not str or type(None).
            ValueError: if the value of ``min_version`` is not in version format.
            ValueError: if the value of ``max_version`` is not in version format or None.
            Exception: if the installed version is lower than ``min_version`` or higher than ``max_version``.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                # any version >= 0.1.0 is acceptable.
                fluid.require_version('0.1.0')

                # if 0.1.0 <= version <= 10.0.0, it is acceptable.
                fluid.require_version(min_version='0.1.0', max_version='10.0.0')
        """
    if not isinstance(min_version, str):
        raise TypeError(
            "The type of 'min_version' in require_version must be str, but received %s."
            % (type(min_version)))

    if not isinstance(max_version, (str, type(None))):
        raise TypeError(
            "The type of 'max_version' in require_version must be str or type(None), but received %s."
            % (type(max_version)))

    check_format = re.match(r'\d+(\.\d+){0,3}', min_version)
    if check_format is None or check_format.group() != min_version:
        raise ValueError(
            "The value of 'min_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
            "like '1.5.2.0', but received %s" % min_version)

    if max_version is not None:
        check_format = re.match(r'\d+(\.\d+){0,3}', max_version)
        if check_format is None or check_format.group() != max_version:
            raise ValueError(
                "The value of 'max_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
                "like '1.5.2.0', but received %s" % max_version)

    version_installed = [
        fluid_version.major, fluid_version.minor, fluid_version.patch,
        fluid_version.rc
    ]
    zero_version = ['0', '0', '0', '0']

    def version_cmp(ver_a, ver_b):
        for i in six.moves.range(len(ver_a)):
            if int(ver_a[i]) > int(ver_b[i]):
                return 1
            elif int(ver_a[i]) < int(ver_b[i]):
                return -1
        return 0

    if version_cmp(version_installed, zero_version) == 0:
        if max_version is not None:
            warnings.warn(
                "PaddlePaddle version in [%s, %s] required, but %s installed. "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, max_version, fluid_version.full_version))
        else:
            warnings.warn(
                "PaddlePaddle version %s or higher is required, but %s installed, "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, fluid_version.full_version))
        return

    min_version_split = min_version.split('.')
472 473
    min_version_to_check = min_version_split + zero_version[
        len(min_version_split):]
474 475 476

    if max_version is not None:
        max_version_split = max_version.split('.')
477 478
        max_version_to_check = max_version_split + zero_version[
            len(max_version_split):]
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493

        if version_cmp(version_installed,
                       max_version_to_check) > 0 or version_cmp(
                           version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version in [%s, %s] required, but %s installed."
                % (min_version, max_version, fluid_version.full_version))
    else:
        if version_cmp(version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version %s or higher is required, but %s installed, "
                "please upgrade your PaddlePaddle to %s or other higher version."
                % (min_version, fluid_version.full_version, min_version))


494
def _dygraph_not_support_(func):
495

496
    def __impl__(*args, **kwargs):
J
Jiabin Yang 已提交
497 498
        assert not _non_static_mode(
        ), "We don't support %s in dynamic graph mode" % func.__name__
499 500 501 502 503 504
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
505

506
    def __impl__(*args, **kwargs):
J
Jiabin Yang 已提交
507
        assert _non_static_mode(
508 509 510 511 512 513 514
        ), "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode." % func.__name__
        return func(*args, **kwargs)

    return __impl__


def _static_only_(func):
515

516
    def __impl__(*args, **kwargs):
J
Jiabin Yang 已提交
517
        assert not _non_static_mode(
518
        ), "In PaddlePaddle 2.x, we turn on dynamic graph mode by default, and '%s()' is only supported in static graph mode. So if you want to use this api, please call 'paddle.enable_static()' before this api to enter static graph mode." % func.__name__
519 520 521 522 523
        return func(*args, **kwargs)

    return __impl__


524 525 526 527 528
def _set_pipeline_stage(stage):
    global _current_pipeline_stage
    _current_pipeline_stage = stage


529 530 531 532 533 534
# NOTE(zhiqiu): This decorator is used for the APIs of Variable which is only
# used to make Variable and VarBase has same interfaces, like numpy. Since VarBase is not exposed in our
# official docments, logically, we want to keep VarBase and logically consistent. While, actually,
# in our implementation, there some APIs not supported, like numpy, because Variable contains the desc.
# So, those APIs are listed under class Variable to generate docs only.
# TODO(zhiqiu): We should make VarBase consistent with Variable in future, for example, by inheritting
T
tangwei12 已提交
535
# same base class.
536
def _fake_interface_only_(func):
537

538 539
    def __impl__(*args, **kwargs):
        raise AssertionError(
540 541 542 543 544
            "'%s' only can be called by `paddle.Tensor` in dynamic graph mode. Suggestions:\n"
            "  1. If you are in static graph mode, you can switch to dynamic graph mode by turning off `paddle.enable_static()` or calling `paddle.disable_static()`.\n"
            "  2. If you are using `@paddle.jit.to_static`, you can turn off ProgramTranslator by calling `paddle.jit.ProgramTranslator().enable(False)`. "
            "If you have to translate dynamic graph to static graph, please use other API to replace '%s'."
            % (func.__name__, func.__name__))
545 546 547 548

    return __impl__


T
tangwei12 已提交
549 550
# NOTE(chenweihang): There is argument name typo (stat_dict, correct name is state_dict)
# in fluid api Layer.set_dict, Optimizer.load, in order to correct the argument without
551 552 553 554
# introducing compatibility issues, add this decorator
# NOTE(chenweihang): not using `wrap_decorator` here is because `wrap_decorator` will
# move kwargs to args, which doesn't work in this decorate case
def deprecate_stat_dict(func):
555

556 557 558 559 560 561 562 563 564 565 566 567 568
    @functools.wraps(func)
    def wrapper(*args, **kwargs):
        if 'stat_dict' in kwargs:
            warnings.warn(
                "The argument `stat_dict` has deprecated, please change it to `state_dict`.",
                DeprecationWarning)
            kwargs['state_dict'] = kwargs['stat_dict']
            kwargs.pop('stat_dict')
        return func(*args, **kwargs)

    return wrapper


569 570
dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)
571
static_only = wrap_decorator(_static_only_)
572
fake_interface_only = wrap_decorator(_fake_interface_only_)
573 574


L
lujun 已提交
575 576
def _dygraph_tracer():
    return _dygraph_tracer_
577

W
Wu Yi 已提交
578

579 580 581 582
def _global_flags():
    return _global_flags_


M
minqiyang 已提交
583
def _current_expected_place():
584 585 586
    global _global_expected_place_
    if _global_expected_place_ is None:
        if core.is_compiled_with_cuda():
587 588 589 590 591
            try:
                device_count = core.get_cuda_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
592
                _global_expected_place_ = core.CUDAPlace(_cuda_ids()[0])
593 594 595 596 597
            else:
                warnings.warn(
                    "You are using GPU version Paddle, but your CUDA device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
598 599 600 601 602 603
        elif core.is_compiled_with_xpu():
            try:
                device_count = core.get_xpu_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
604
                _global_expected_place_ = core.XPUPlace(_xpu_ids()[0])
605 606 607 608 609
            else:
                warnings.warn(
                    "You are using XPU version Paddle, but your XPU device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
610 611 612 613 614 615
        elif core.is_compiled_with_mlu():
            try:
                device_count = core.get_mlu_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
616
                _global_expected_place_ = core.MLUPlace(_mlu_ids()[0])
617 618 619 620 621
            else:
                warnings.warn(
                    "You are using MLU version Paddle, but your MLU device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
        else:
            _global_expected_place_ = core.CPUPlace()

    return _global_expected_place_


def _set_dygraph_tracer_expected_place(place):
    global _dygraph_tracer_
    if _dygraph_tracer_ is not None:
        _dygraph_tracer_._expected_place = place


def _set_expected_place(place):
    global _global_expected_place_
    _global_expected_place_ = place
J
Jiabin Yang 已提交
637
    _set_dygraph_tracer_expected_place(place)
M
minqiyang 已提交
638 639


L
Leo Chen 已提交
640 641
# TODO(zhiqiu): remove this function.
def _var_base_to_np(var_base):
642 643
    """
    convert VarBase tp numpy
T
tangwei12 已提交
644

645 646 647
    Args:
        var_base(VarBase) : the VarBase to convert
    Returns (np.ndarray): the np.ndarray contain the value of VarBase
L
Leo Chen 已提交
648 649 650 651 652 653 654 655 656
    """

    warnings.warn(
        "paddle.fluid.framework._var_base_to_np is deprecated, please use var_base.numpy() instead of _var_base_to_np(var_base)."
    )

    return var_base.numpy()


S
sneaxiy 已提交
657
def _cpu_num():
658
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
659 660 661 662 663 664 665 666
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()))
C
chengduo 已提交
667
        os.environ['CPU_NUM'] = str(1)
668
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
669 670 671 672 673 674 675 676 677 678
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_cuda_device_count())
    return device_ids
S
sneaxiy 已提交
679 680


681 682 683 684 685 686 687 688 689
def _xpu_ids():
    xpus_env = os.getenv("FLAGS_selected_xpus")
    if xpus_env:
        device_ids = [int(s) for s in xpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_xpu_device_count())
    return device_ids


690 691 692 693 694 695 696 697 698
def _npu_ids():
    npus_env = os.getenv("FLAGS_selected_npus")
    if npus_env:
        device_ids = [int(s) for s in npus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_npu_device_count())
    return device_ids


699 700 701 702 703 704 705 706 707
def _mlu_ids():
    mlus_env = os.getenv("FLAGS_selected_mlus")
    if mlus_env:
        device_ids = [int(s) for s in mlus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_mlu_device_count())
    return device_ids


708 709 710 711 712 713 714 715 716 717 718 719 720 721 722
def is_compiled_with_xpu():
    """
    Whether this whl package can be used to run the model on XPU.

    Returns (bool): support xpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_xpu = fluid.is_compiled_with_xpu()
    """
    return core.is_compiled_with_xpu()


723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
def is_compiled_with_npu():
    """
    Whether this whl package can be used to run the model on NPU.

    Returns (bool): support npu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_npu = fluid.is_compiled_with_npu()
    """
    return core.is_compiled_with_npu()


738 739 740 741 742 743 744
def disable_signal_handler():
    """
    Reset signal handler registered by Paddle.

    Paddle installs signal handlers at C++ level to log debug information upon failing.
    However, conflicts can happen if another python module is making use of such signal.
    Such being the case, one may disblae paddle signal handler via this interface.
745

746 747 748 749 750 751
    Known frameworks that require disabling signal handler includes:
    1. TVM
    2. ADLIK

    Make sure you called paddle.disable_signal_handler() before using above mentioned frameworks.

752
    Returns: None
753 754 755 756 757 758 759 760 761 762

    Examples:
        .. code-block:: python

            import paddle
            paddle.disable_signal_handler()
    """
    core.disable_signal_handler()


763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
def is_compiled_with_cinn():
    """
    Whether this whl package can be used to run the model on CINN.

    Returns (bool): `True` if CINN is currently available, otherwise `False`.

    Examples:
        .. code-block:: python

            import paddle
            support_cinn = paddle.device.is_compiled_with_cinn()
    """
    return core.is_compiled_with_cinn()


C
chengduo 已提交
778 779 780 781
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

782
    Returns (bool): `True` if CUDA is currently available, otherwise `False`.
C
chengduo 已提交
783 784 785 786

    Examples:
        .. code-block:: python

787
            import paddle
788
            support_gpu = paddle.device.is_compiled_with_cuda()
C
chengduo 已提交
789 790 791 792
    """
    return core.is_compiled_with_cuda()


793 794 795 796 797 798 799 800 801 802
def is_compiled_with_rocm():
    """
    Whether this whl package can be used to run the model on AMD or Hygon GPU(ROCm).

    Returns (bool): `True` if ROCm is currently available, otherwise `False`.

    Examples:
        .. code-block:: python

            import paddle
803
            support_gpu = paddle.device.is_compiled_with_rocm()
804 805 806 807
    """
    return core.is_compiled_with_rocm()


S
sneaxiy 已提交
808
def cuda_places(device_ids=None):
L
lujun 已提交
809
    """
810
    Note:
811 812 813
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

C
Chen Weihang 已提交
814
    This function creates a list of :code:`paddle.CUDAPlace` objects.
S
add doc  
sneaxiy 已提交
815 816

    If :code:`device_ids` is None, environment variable of
817
    :code:`FLAGS_selected_gpus` would be checked first. For example, if
S
add doc  
sneaxiy 已提交
818
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
C
Chen Weihang 已提交
819
    be [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
S
add doc  
sneaxiy 已提交
820
    If :code:`FLAGS_selected_gpus` is not set, all visible
821
    gpu places would be returned according to the :code:`CUDA_VISIBLE_DEVICES` environment variable.
S
add doc  
sneaxiy 已提交
822 823

    If :code:`device_ids` is not None, it should be the device
824
    ids of GPUs. For example, if :code:`device_ids=[0,1,2]`,
825
    the returned list would be
C
Chen Weihang 已提交
826
    [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
T
tangwei12 已提交
827

828
    Parameters:
829
        device_ids (list|tuple, optional): A list/tuple of int of GPU device ids.
S
add doc  
sneaxiy 已提交
830 831

    Returns:
C
Chen Weihang 已提交
832
        list of paddle.CUDAPlace: Created GPU place list.
L
lujun 已提交
833 834

    Examples:
835

L
lujun 已提交
836 837
        .. code-block:: python

C
Chen Weihang 已提交
838 839
            import paddle
            import paddle.static as static
T
tangwei12 已提交
840

841
            # required: gpu
842

C
Chen Weihang 已提交
843 844 845
            paddle.enable_static()

            cuda_places = static.cuda_places()
L
lujun 已提交
846 847

    """
S
sneaxiy 已提交
848 849 850
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_ids is None:
C
chengduo 已提交
851
        device_ids = _cuda_ids()
S
sneaxiy 已提交
852 853 854 855 856
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


857 858 859 860
def xpu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_xpus` environment variable to set the visible XPU device.
S
sunzhongkai588 已提交
861 862 863 864 865 866 867 868 869
        This function creates a list of :code:`paddle.XPUPlace` objects.
        If :code:`device_ids` is None, environment variable of
        :code:`FLAGS_selected_xpus` would be checked first. For example, if
        :code:`FLAGS_selected_xpus=0,1,2`, the returned list would
        be [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
        If :code:`FLAGS_selected_xpus` is not set, all visible
        xpu places would be returned.
        If :code:`device_ids` is not None, it should be the device
        ids of XPUs. For example, if :code:`device_ids=[0,1,2]`,
870
        the returned list would be
S
sunzhongkai588 已提交
871
        [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
872

873 874 875 876 877 878
    Parameters:
        device_ids (list or tuple of int, optional): list of XPU device ids.
    Returns:
        list of paddle.XPUPlace: Created XPU place list.
    Examples:
        .. code-block:: python
S
sunzhongkai588 已提交
879

880 881
            # required: xpu

882 883
            import paddle
            import paddle.static as static
884

885 886 887 888 889 890 891 892 893 894 895 896
            paddle.enable_static()
            xpu_places = static.xpu_places()
    """
    assert core.is_compiled_with_xpu(), \
        "Not compiled with XPU"
    if device_ids is None:
        device_ids = _xpu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.XPUPlace(dev_id) for dev_id in device_ids]


897 898 899 900
def npu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_npus` environment variable to set the visible NPU device.
901

902 903 904 905 906 907 908 909 910
    This function creates a list of :code:`paddle.NPUPlace` objects.
    If :code:`device_ids` is None, environment variable of
    :code:`FLAGS_selected_npus` would be checked first. For example, if
    :code:`FLAGS_selected_npus=0,1,2`, the returned list would
    be [paddle.NPUPlace(0), paddle.NPUPlace(1), paddle.NPUPlace(2)].
    If :code:`FLAGS_selected_npus` is not set, all visible
    npu places would be returned.
    If :code:`device_ids` is not None, it should be the device
    ids of NPUs. For example, if :code:`device_ids=[0,1,2]`,
911
    the returned list would be
912
    [paddle.NPUPlace(0), paddle.NPUPlace(1), paddle.NPUPlace(2)].
913

914 915 916 917 918 919 920 921 922 923 924
    Parameters:
        device_ids (list or tuple of int, optional): list of NPU device ids.
    Returns:
        list of paddle.NPUPlace: Created NPU place list.
    Examples:
        .. code-block:: python

            # required: npu

            import paddle
            import paddle.static as static
925

926 927 928 929 930 931 932 933 934 935 936 937
            paddle.enable_static()
            npu_places = static.npu_places()
    """
    assert core.is_compiled_with_npu(), \
        "Not compiled with NPU"
    if device_ids is None:
        device_ids = _npu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.NPUPlace(dev_id) for dev_id in device_ids]


S
sneaxiy 已提交
938
def cpu_places(device_count=None):
L
lujun 已提交
939
    """
C
Chen Weihang 已提交
940
    This function creates a list of :code:`paddle.CPUPlace` objects, and returns the created list.
T
tangwei12 已提交
941

S
add doc  
sneaxiy 已提交
942
    If :code:`device_count` is None, the device count would
943
    be determined by environment variable :code:`CPU_NUM`.
C
chengduo 已提交
944 945
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
946 947
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
948

949 950
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
951 952

    Returns:
C
Chen Weihang 已提交
953
        list of paddle.CPUPlace: Created list of CPU places.
L
lujun 已提交
954 955

    Examples:
956

L
lujun 已提交
957 958
        .. code-block:: python

C
Chen Weihang 已提交
959 960
            import paddle
            import paddle.static as static
T
tangwei12 已提交
961

C
Chen Weihang 已提交
962 963 964
            paddle.enable_static()

            cpu_places = static.cpu_places()
L
lujun 已提交
965 966
    """

S
sneaxiy 已提交
967 968 969 970 971 972
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
973
    """
974
    This function creates a list of :code:`fluid.CUDAPinnedPlace` objects.
S
add doc  
sneaxiy 已提交
975 976

    If :code:`device_count` is None, the device count would
977
    be determined by environment variable :code:`CPU_NUM`.
978 979 980 981
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
982

983 984
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
985 986

    Returns:
987
        list of fluid.CUDAPinnedPlace: Created list of CUDA pinned places.
L
lujun 已提交
988 989 990 991

    Examples:
        .. code-block:: python

992
            import paddle.fluid as fluid
L
lujun 已提交
993 994 995 996 997
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
S
sneaxiy 已提交
998 999 1000
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_count is None:
1001 1002
        device_count = len(_cuda_ids())
    return [core.CUDAPinnedPlace()] * device_count
S
sneaxiy 已提交
1003 1004


1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
def mlu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_mlus` environment variable to set the visible MLU device.
        This function creates a list of :code:`paddle.device.MLUPlace` objects.
        If :code:`device_ids` is None, environment variable of
        :code:`FLAGS_selected_mlus` would be checked first. For example, if
        :code:`FLAGS_selected_mlus=0,1,2`, the returned list would
        be [paddle.device.MLUPlace(0), paddle.device.MLUPlace(1), paddle.device.MLUPlace(2)].
        If :code:`FLAGS_selected_mlus` is not set, all visible
        mlu places would be returned.
        If :code:`device_ids` is not None, it should be the device
        ids of MLUs. For example, if :code:`device_ids=[0,1,2]`,
        the returned list would be
        [paddle.device.MLUPlace(0), paddle.device.MLUPlace(1), paddle.device.MLUPlace(2)].

    Parameters:
        device_ids (list or tuple of int, optional): list of MLU device ids.

    Returns:
        list of paddle.device.MLUPlace: Created MLU place list.

    Examples:
        .. code-block:: python

            # required: mlu

            import paddle
            import paddle.static as static

            paddle.enable_static()
            mlu_places = static.mlu_places()
    """
    assert core.is_compiled_with_mlu(), \
        "Not compiled with MLU"
    if device_ids is None:
        device_ids = _mlu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.MLUPlace(dev_id) for dev_id in device_ids]


1047
class NameScope(object):
1048

1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
1074
@signature_safe_contextmanager
1075 1076
def name_scope(prefix=None):
    """
1077

1078
    Generate hierarchical name prefix for the operators in Static Graph.
1079

1080
    Note:
T
Tao Luo 已提交
1081 1082
        This should only used for debugging and visualization purpose.
        Don't use it for serious analysis such as graph/program transformations.
1083
        Don't use it in dygraph, since it will cause memory leak.
1084 1085

    Args:
T
Tao Luo 已提交
1086
        prefix(str, optional): prefix. Default is none.
1087 1088

    Examples:
1089

1090
        .. code-block:: python
T
Tink_Y 已提交
1091

1092 1093 1094
          import paddle
          paddle.enable_static()
          with paddle.static.name_scope("s1"):
1095
             a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
T
Tao Luo 已提交
1096
             b = a + 1
1097
             with paddle.static.name_scope("s2"):
T
Tao Luo 已提交
1098
                c = b * 1
1099
             with paddle.static.name_scope("s3"):
T
Tao Luo 已提交
1100
                d = c / 1
1101 1102 1103
          with paddle.static.name_scope("s1"):
                f = paddle.tensor.pow(d, 2.0)
          with paddle.static.name_scope("s4"):
T
Tao Luo 已提交
1104 1105
                g = f - 1

1106
          # Op are created in the default main program.
1107
          for op in paddle.static.default_main_program().block(0).ops:
T
Tao Luo 已提交
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
              # elementwise_add is created in /s1/
              if op.type == 'elementwise_add':
                  assert op.desc.attr("op_namescope") == '/s1/'
              # elementwise_mul is created in '/s1/s2'
              elif op.type == 'elementwise_mul':
                  assert op.desc.attr("op_namescope") == '/s1/s2/'
              # elementwise_div is created in '/s1/s3'
              elif op.type == 'elementwise_div':
                  assert op.desc.attr("op_namescope") == '/s1/s3/'
              # elementwise_sum is created in '/s4'
              elif op.type == 'elementwise_sub':
                  assert op.desc.attr("op_namescope") == '/s4/'
              # pow is created in /s1_1/
              elif op.type == 'pow':
                  assert op.desc.attr("op_namescope") == '/s1_1/'
1123 1124
    """
    # TODO(panyx0718): Only [0-9a-z].
1125
    # in dygraph we don't need namescope since it will cause mem leak
J
Jiabin Yang 已提交
1126
    if _non_static_mode():
L
Leo Chen 已提交
1127 1128
        yield
    else:
T
tianshuo78520a 已提交
1129
        assert prefix, "namescope prefix can not be empty."
1130 1131
        global _name_scope
        _name_scope = _name_scope.child(prefix)
1132 1133 1134 1135
        try:
            yield
        finally:
            _name_scope = _name_scope.parent()
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
1148 1149 1150
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
1151 1152 1153 1154


def grad_var_name(var_name):
    """
1155 1156
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
1157 1158 1159
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
1160

1161
def convert_np_dtype_to_dtype_(np_dtype):
1162
    """
1163
    Convert the data type in numpy to the data type in Paddle.
1164

1165
    Args:
1166 1167
        np_dtype (np.dtype|str): The data type in numpy or valid data type
            string.
1168

1169
    Returns:
1170
        core.VarDesc.VarType: The data type in Paddle.
1171 1172

    """
1173 1174
    # Convert the data type string to numpy data type.
    if isinstance(np_dtype, str) and np_dtype == "bfloat16":
1175 1176 1177
        dtype = np.uint16
    else:
        dtype = np.dtype(np_dtype)
1178

1179
    if dtype == np.float32:
1180
        return core.VarDesc.VarType.FP32
1181
    elif dtype == np.float64:
1182
        return core.VarDesc.VarType.FP64
1183
    elif dtype == np.float16:
1184
        return core.VarDesc.VarType.FP16
1185
    elif dtype == np.int32:
1186
        return core.VarDesc.VarType.INT32
1187
    elif dtype == np.int16:
1188
        return core.VarDesc.VarType.INT16
1189
    elif dtype == np.int64:
1190
        return core.VarDesc.VarType.INT64
1191
    elif dtype == np.bool_:
1192
        return core.VarDesc.VarType.BOOL
1193
    elif dtype == np.uint16:
1194 1195 1196
        # since there is still no support for bfloat16 in NumPy,
        # uint16 is used for casting bfloat16
        return core.VarDesc.VarType.BF16
1197 1198
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
1199 1200
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
1201 1202 1203 1204
    elif dtype == np.complex64:
        return core.VarDesc.VarType.COMPLEX64
    elif dtype == np.complex128:
        return core.VarDesc.VarType.COMPLEX128
1205
    else:
M
minqiyang 已提交
1206
        raise ValueError("Not supported numpy dtype %s" % dtype)
1207 1208 1209


def dtype_is_floating(dtype):
1210 1211 1212
    """
    Check the data type is floating or not.
    Args:
1213
        dtype(np.dtype|core.VarDesc.VarType): data type.
1214 1215 1216 1217 1218
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
1219
    if not isinstance(dtype, core.VarDesc.VarType):
1220 1221
        dtype = convert_np_dtype_to_dtype_(dtype)

1222 1223 1224 1225
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
1226 1227


Y
Yang Yang(Tony) 已提交
1228
def _debug_string_(proto, throw_on_error=True):
1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
1240
    error_fields = list()
Y
Yang Yang(Tony) 已提交
1241
    if not proto.IsInitialized(error_fields) and throw_on_error:
1242 1243 1244
        raise ValueError(
            "{0} are not initialized.\nThe message is {1}:\n".format(
                error_fields, proto))
Y
Yu Yang 已提交
1245 1246 1247
    return proto.__str__()


1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
def _varbase_creator(type=core.VarDesc.VarType.LOD_TENSOR,
                     name=None,
                     shape=None,
                     dtype=None,
                     persistable=None,
                     **kwargs):
    if dtype is not None:
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

J
Jiabin Yang 已提交
1258
    if _in_eager_mode_:
1259
        eager_tensor = core.eager.Tensor(
1260
            dtype if dtype else core.VarDesc.VarType.FP32,
1261 1262 1263
            list(shape) if shape else [], name,
            type if type else core.VarDesc.VarType.LOD_TENSOR,
            True if persistable else False)
1264 1265
        eager_tensor.retain_grads()
        return eager_tensor
J
Jiabin Yang 已提交
1266 1267
    else:
        return core.VarBase(dtype if dtype else core.VarDesc.VarType.FP32,
1268 1269 1270
                            list(shape) if shape else [], name,
                            type if type else core.VarDesc.VarType.LOD_TENSOR,
                            True if persistable else False)
1271 1272


1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
def _all_is_type(vals, expected_type):
    """
    Return True if type of each element is expected_type.

    NOTE: BuiltIn all() will always return True if vals is empty.
    """
    assert isinstance(vals, (list, tuple))
    if not vals: return False
    return all(isinstance(v, expected_type) for v in vals)


1284
class VariableMetaClass(type):
1285

1286 1287 1288 1289
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1290
            return issubclass(t, core.eager.Tensor)
1291
        else:
J
Jiabin Yang 已提交
1292 1293
            if _in_legacy_dygraph():
                return issubclass(t, core.VarBase)
1294 1295 1296 1297
            return issubclass(t, Variable)


class ParameterMetaClass(VariableMetaClass):
1298

1299 1300 1301 1302
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1303
            return issubclass(t, EagerParamBase)
1304
        else:
J
Jiabin Yang 已提交
1305 1306
            if _in_legacy_dygraph():
                return issubclass(t, ParamBase)
1307 1308 1309 1310
            return issubclass(t, Parameter)


@six.add_metaclass(VariableMetaClass)
X
Xin Pan 已提交
1311
class Variable(object):
1312
    """
J
Jiabin Yang 已提交
1313
    **Notes**:
1314
        **The constructor of Variable should not be invoked directly.**
J
Jiabin Yang 已提交
1315

1316 1317
        **In Static Graph Mode: Please use** `Block.create_var` **to create a Static variable which has no data until being feed.**

J
Jiabin Yang 已提交
1318 1319 1320
        **In Dygraph Mode: Please use** :ref:`api_fluid_dygraph_to_variable` **to create a dygraph variable with real data**

    In Fluid, every input and output of an OP is a variable. In most
1321
    cases, variables are used for holding different kinds of data or training
J
Jiabin Yang 已提交
1322 1323
    labels. A variable belongs to a :ref:`api_guide_Block_en` . All variable has its own name and
    two variables in different :ref:`api_guide_Block_en` could have the same name.
1324

1325
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
1326
    and usages. Please refer to the `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_ for details.
1327

T
tianshuo78520a 已提交
1328
    Most of a Variable's member variables can be set to be None. It mean
1329
    it is not available or will be specified later.
1330

1331
    Examples:
1332 1333
        In Static Graph Mode:

1334 1335
        .. code-block:: python

1336
            import paddle.fluid as fluid
1337
            cur_program = fluid.Program()
1338 1339 1340 1341
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
S
sunzhongkai588 已提交
1342

J
Jiabin Yang 已提交
1343
        In `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_  Mode:
1344 1345 1346 1347 1348 1349 1350 1351 1352

        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                new_variable = fluid.dygraph.to_variable(np.arange(10))

1353 1354
    """

Y
Yu Yang 已提交
1355 1356
    def __init__(self,
                 block,
Y
Yu Yang 已提交
1357
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
1358 1359 1360 1361
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
1362
                 capacity=None,
Q
QI JUN 已提交
1363
                 persistable=None,
F
fengjiayi 已提交
1364
                 error_clip=None,
Y
Yu Yang 已提交
1365
                 stop_gradient=False,
F
fengjiayi 已提交
1366
                 is_data=False,
H
Huihuang Zheng 已提交
1367
                 need_check_feed=False,
H
hong 已提交
1368
                 belong_to_optimizer=False,
Y
Yu Yang 已提交
1369
                 **kwargs):
Y
Yu Yang 已提交
1370 1371
        self.block = block
        if name is None:
Y
Yu Yang 已提交
1372
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
1373

Y
Yu Yang 已提交
1374
        if dtype is not None:
1375
            if not isinstance(dtype, core.VarDesc.VarType):
1376
                dtype = convert_np_dtype_to_dtype_(dtype)
1377

S
Steffy-zxf 已提交
1378 1379 1380 1381
        if dtype == core.VarDesc.VarType.STRINGS:
            type = core.VarDesc.VarType.STRINGS
            lod_level = None

H
hong 已提交
1382 1383
        self.belong_to_optimizer = belong_to_optimizer

1384 1385 1386 1387 1388
        self.error_clip = error_clip

        is_new_var = False
        name = cpt.to_text(name)
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
1389

1390 1391 1392
        if self.desc is None:
            self.desc = self.block.desc.var(cpt.to_bytes(name))
            is_new_var = True
1393

1394 1395 1396
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
L
Leo Chen 已提交
1397 1398
            raise ValueError("Variable '{0}' has been created before. The "
                             "previous type is {1}, the new type is {2}. They"
1399 1400
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))
1401

1402
        if shape is not None:
1403
            if is_new_var:
1404 1405 1406 1407 1408 1409
                self.desc.set_shape(shape)
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
L
Leo Chen 已提交
1410 1411
                        "Variable '{0}' has been created before. The previous "
                        "shape is {1}, the new shape is {2}. They are not "
1412 1413 1414 1415 1416 1417 1418
                        "matched.".format(self.name, old_shape, shape))
        if dtype is not None:
            if is_new_var:
                self.desc.set_dtype(dtype)
            else:
                old_dtype = self.dtype
                if dtype != old_dtype:
L
Leo Chen 已提交
1419 1420
                    raise ValueError("Variable '{0}' has been created before. "
                                     "The previous data type is {1}, the new "
1421 1422 1423 1424 1425 1426 1427 1428 1429
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))

        if lod_level is not None:
            if is_new_var:
                self.desc.set_lod_level(lod_level)
            else:
                if lod_level != self.lod_level:
L
Leo Chen 已提交
1430 1431
                    raise ValueError("Variable '{0}' has been created before. "
                                     "The previous lod_level is {1}, the new "
1432 1433 1434 1435 1436 1437 1438 1439 1440
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
L
Leo Chen 已提交
1441 1442
                        "Variable '{0}' has been created before."
                        "The previous persistable is {1}, the new "
1443 1444
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))
1445

1446 1447
        if need_check_feed and is_new_var:
            self.desc.set_need_check_feed(need_check_feed)
H
Huihuang Zheng 已提交
1448

1449 1450 1451 1452 1453 1454 1455
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass
1456

1457 1458
        self.block.vars[name] = self
        self.op = None
1459
        self.stop_gradient = stop_gradient
1460
        self.is_data = is_data
Y
Yu Yang 已提交
1461

1462 1463 1464
    def detach(self):
        """
        Returns a new Variable, detached from the current graph.
1465 1466
        It will share data with origin Variable and without tensor copy.
        In addition, the detached Variable doesn't provide gradient propagation.
1467

1468
        Returns:
J
Jiabin Yang 已提交
1469
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable): The detached Variable.
1470 1471 1472 1473

        Examples:
            .. code-block:: python

1474
                import paddle
1475

1476 1477 1478 1479
                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
1480

1481 1482
                # create a detached Variable
                y = x.detach()
1483
        """
1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495

        assert self.type == core.VarDesc.VarType.SELECTED_ROWS or \
            self.type == core.VarDesc.VarType.LOD_TENSOR, \
            "only support a variable with SELECTED_ROWS or LOD_TENSOR to be detached"

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key("detach_" + self.name),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
            stop_gradient=True)

1496 1497 1498
        self.block.append_op(type='share_data',
                             inputs={'X': [self]},
                             outputs={'Out': [output]})
1499
        return output
1500

1501
    @fake_interface_only
1502
    def numpy(self):
1503
        """
J
Jiabin Yang 已提交
1504
        **Notes**:
T
tianshuo78520a 已提交
1505
            **This API is ONLY available in Dygraph mode**
1506

J
Jiabin Yang 已提交
1507
        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`
1508 1509 1510 1511 1512

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
J
Jiabin Yang 已提交
1513
            ndarray: dtype is same as current Variable
1514 1515 1516 1517 1518 1519

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1520
                from paddle.fluid.dygraph import Linear
1521 1522 1523 1524
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1525
                    linear = Linear(32, 64)
1526
                    data = to_variable(data)
1527
                    x = linear(data)
1528 1529 1530
                    print(x.numpy())

        """
1531
        pass
1532

1533
    @fake_interface_only
1534
    def backward(self, retain_graph=False):
1535
        """
J
Jiabin Yang 已提交
1536
        **Notes**:
T
tianshuo78520a 已提交
1537
            **This API is ONLY available in Dygraph mode**
1538

1539
        Run backward of current Graph which starts from current Tensor.
1540

J
Jiabin Yang 已提交
1541
        Args:
1542 1543 1544 1545
            retain_graph(bool, optional): If False, the graph used to compute grads will be freed. If you would
                like to add more ops to the built graph after calling this method( :code:`backward` ), set the parameter
                :code:`retain_graph` to True, then the grads will be retained. Thus, seting it to False is much more memory-efficient.
                Defaults to False.
1546

J
Jiabin Yang 已提交
1547 1548
        Returns:
            NoneType: None
1549 1550 1551 1552 1553

        Examples:
            .. code-block:: python

                import numpy as np
1554 1555
                import paddle
                paddle.disable_static()
1556 1557

                x = np.ones([2, 2], np.float32)
1558 1559 1560 1561 1562 1563 1564
                inputs = []
                for _ in range(10):
                    tmp = paddle.to_tensor(x)
                    # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
                    # there is no one need gradient on it.
                    tmp.stop_gradient=False
                    inputs.append(tmp)
1565 1566
                ret = paddle.add_n(inputs)
                loss = paddle.sum(ret)
1567
                loss.backward()
1568 1569

        """
1570
        pass
1571

1572
    @fake_interface_only
1573
    def gradient(self):
1574
        """
J
Jiabin Yang 已提交
1575
        **Notes**:
T
tianshuo78520a 已提交
1576
            **This API is ONLY available in Dygraph mode**
1577 1578 1579

        Get the Gradient of Current Variable

J
Jiabin Yang 已提交
1580
        Returns:
1581
            ndarray or tuple of ndarray: if Variable's type is LoDTensor, return numpy value of the gradient of current Variable, if Variable's type is SelectedRows, return tuple of ndarray, first element of tuple is numpy value of the gradient of current Variable, second element of tuple is numpy value of the rows of current Variable.
1582 1583 1584 1585 1586 1587 1588

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

1589
                # example1: return ndarray
1590 1591 1592 1593 1594 1595 1596 1597 1598
                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1599
                    loss2.backward()
1600 1601
                    print(loss2.gradient())

1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
                # example2: return tuple of ndarray
                with fluid.dygraph.guard():
                    embedding = fluid.dygraph.Embedding(
                        size=[20, 32],
                        param_attr='emb.w',
                        is_sparse=True)
                    x_data = np.arange(12).reshape(4, 3).astype('int64')
                    x_data = x_data.reshape((-1, 3, 1))
                    x = fluid.dygraph.base.to_variable(x_data)
                    out = embedding(x)
                    out.backward()
                    print(embedding.weight.gradient())

1615
        """
1616
        pass
1617

1618
    @fake_interface_only
1619
    def clear_gradient(self):
1620
        """
J
Jiabin Yang 已提交
1621
        **Notes**:
T
tianshuo78520a 已提交
1622
            **1. This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1623 1624

            **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**
1625

J
Jiabin Yang 已提交
1626
        Clear  (set to ``0`` ) the Gradient of Current Variable
1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644

        Returns:  None

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1645
                    loss2.backward()
1646 1647 1648 1649 1650
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
1651
        pass
X
Xin Pan 已提交
1652

1653 1654 1655 1656
    @fake_interface_only
    def register_hook(self, hook):
        pass

1657
    def __str__(self):
1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673
        return self._to_readable_code()

    def _to_readable_code(self):
        """
        Get readable debug string of Variable.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Returns:
            string: The formatted Variable string.

        Examples:
            .. code-block:: python

1674 1675
                import paddle
                import paddle.static as static
1676

1677 1678 1679
                paddle.enable_static()

                cur_program = static.Program()
1680 1681 1682 1683 1684 1685
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
                print(new_variable._to_readable_code())
        """
1686 1687
        # VarType.LOD_TENSOR -> LOD_TENSOR
        type_str = str(self.type).split('.')[1]
1688
        if self.type == core.VarDesc.VarType.SELECTED_ROWS or self.type == core.VarDesc.VarType.LOD_TENSOR:
1689 1690
            dtype_str = str(self.dtype).split('.')[1]
            var_str = "{name} : {type}.shape{shape}.dtype({dtype}).stop_gradient({stop_gradient})".\
T
tangwei12 已提交
1691 1692
                format(name=self.name, type=type_str, shape=self.shape,
                       dtype=dtype_str, stop_gradient=self.stop_gradient)
1693
        else:
1694 1695
            var_str = "{name} : {type})".\
                format(name=self.name, type=type_str)
1696

1697
        if self.is_parameter:
1698 1699 1700 1701 1702 1703 1704 1705 1706 1707
            if self.trainable:
                var_str = "trainable param " + var_str
            else:
                var_str = "param " + var_str
        else:
            var_str = "var " + var_str

        if self.persistable:
            var_str = "persist " + var_str

1708
        from paddle.distributed.auto_parallel.dist_context import get_default_distributed_context
1709
        dist_context = get_default_distributed_context()
1710 1711
        dist_tensor = dist_context.get_dist_tensor_for_program(self)
        if dist_tensor is not None:
1712 1713
            var_str += ", {name} = {value}".format(name="dist_attr",
                                                   value=dist_tensor)
1714

1715
        return var_str
Y
Yang Yang(Tony) 已提交
1716

F
update  
fengjiayi 已提交
1717
    def to_string(self, throw_on_error, with_details=False):
1718 1719 1720
        """
        Get debug string.

J
Jiabin Yang 已提交
1721 1722 1723 1724 1725
        Args:

            throw_on_error (bool): True if raise an exception when self is not initialized.

            with_details (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default value is False;
1726

1727 1728
        Returns:
            str: The debug string.
1729 1730 1731 1732 1733

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
1734
                import paddle
1735

1736
                paddle.enable_static()
1737 1738 1739 1740 1741
                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
1742
                print(new_variable.to_string(True))
J
Jiabin Yang 已提交
1743
                print("=============with detail===============")
1744
                print(new_variable.to_string(True, True))
1745
        """
1746 1747
        assert isinstance(throw_on_error, bool) and isinstance(
            with_details, bool)
1748
        protostr = self.desc.serialize_to_string()
1749
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
1750 1751
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
1752
            additional_attr = ("error_clip", )
F
update  
fengjiayi 已提交
1753
            for attr_name in additional_attr:
1754 1755 1756
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))

F
update  
fengjiayi 已提交
1757
        return res_str
1758 1759 1760

    __repr__ = __str__

1761 1762 1763
    def element_size(self):
        """
        Returns the size in bytes of an element in the Tensor.
1764

1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787
        Examples:
          .. code-block:: python

            import paddle
            paddle.enable_static()

            x = paddle.static.data(name='x1', shape=[3, 2], dtype='bool')
            x.element_size() # 1

            x = paddle.static.data(name='x2', shape=[3, 2], dtype='int16')
            x.element_size() # 2

            x = paddle.static.data(name='x3', shape=[3, 2], dtype='float16')
            x.element_size() # 2

            x = paddle.static.data(name='x4', shape=[3, 2], dtype='float32')
            x.element_size() # 4

            x = paddle.static.data(name='x5', shape=[3, 2], dtype='float64')
            x.element_size() # 8
        """
        return self.desc.element_size()

1788
    @property
1789
    def stop_gradient(self):
J
Jiabin Yang 已提交
1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804
        """
        Indicating if we stop gradient from current Variable

        **Notes: This Property has default value as** ``True`` **in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, while Parameter's default value is False. However, in Static Graph Mode all Variable's default stop_gradient value is** ``False``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                value1 = np.arange(6).reshape(2, 3).astype("float32")
                value2 = np.arange(10).reshape(2, 5).astype("float32")
1805 1806
                linear = fluid.Linear(13, 5, dtype="float32")
                linear2 = fluid.Linear(3, 3, dtype="float32")
J
Jiabin Yang 已提交
1807 1808 1809
                a = fluid.dygraph.to_variable(value0)
                b = fluid.dygraph.to_variable(value1)
                c = fluid.dygraph.to_variable(value2)
1810 1811
                out1 = linear(a)
                out2 = linear2(b)
J
Jiabin Yang 已提交
1812 1813 1814 1815
                out1.stop_gradient = True
                out = fluid.layers.concat(input=[out1, out2, c], axis=1)
                out.backward()

1816
                assert linear.weight.gradient() is None
J
Jiabin Yang 已提交
1817 1818
                assert (out1.gradient() == 0).all()
        """
1819
        return self.desc.stop_gradient()
1820

1821 1822
    @stop_gradient.setter
    def stop_gradient(self, s):
1823
        self.desc.set_stop_gradient(s)
1824

1825 1826
    @property
    def persistable(self):
J
Jiabin Yang 已提交
1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847
        """
        Indicating if we current Variable should be long-term alive


        **Notes: This Property will be deprecated and this API is just to help user understand concept**

            **1. All Variable's persistable is** ``False`` **except Parameters.**

            **2. In** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, this property should not be changed**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("persistable of current Var is: {}".format(new_variable.persistable))
        """
1848
        return self.desc.persistable()
1849

Y
Yu Yang 已提交
1850 1851
    @persistable.setter
    def persistable(self, p):
1852
        self.desc.set_persistable(p)
Y
Yu Yang 已提交
1853

1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878
    @property
    def is_parameter(self):
        """
        Indicating if current Variable is a Parameter

        Examples:
          .. code-block:: python

            import paddle
            new_parameter = paddle.static.create_parameter(name="X",
                                                shape=[10, 23, 48],
                                                dtype='float32')
            if new_parameter.is_parameter:
                print("Current var is a Parameter")
            else:
                print("Current var is not a Parameter")

            # Current var is a Parameter
        """
        return self.desc.is_parameter()

    @is_parameter.setter
    def is_parameter(self, p):
        self.desc.set_is_parameter(p)

Y
Yu Yang 已提交
1879 1880
    @property
    def name(self):
J
Jiabin Yang 已提交
1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896
        """
        Indicating name of current Variable

        **Notes: If it has two or more Varaible share the same name in the same** :ref:`api_guide_Block_en` **, it means these Variable will share content in no-** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode. This is how we achieve Parameter sharing**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("name of current Var is: {}".format(new_variable.name))
        """
1897
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
1898

1899 1900 1901 1902 1903 1904
    @property
    def grad_name(self):
        """
        Indicating name of the gradient Variable of current Variable.

        **Notes: This is a read-only property. It simply returns name of
S
sunzhongkai588 已提交
1905 1906
        gradient Variable from a naming convention but doesn't guarantee
        the gradient exists.**
T
tangwei12 已提交
1907

1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918
        Examples:
          .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.data(name="x", shape=[-1, 23, 48], dtype='float32')
          print(x.grad_name) # output is "x@GRAD"

        """
        return self.name + "@GRAD"

T
typhoonzero 已提交
1919 1920
    @name.setter
    def name(self, new_name):
1921
        self.desc.set_name(new_name)
T
typhoonzero 已提交
1922

Y
Yu Yang 已提交
1923 1924
    @property
    def shape(self):
J
Jiabin Yang 已提交
1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941
        """
        Indicating shape of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("shape of current Var is: {}".format(new_variable.shape))

        """
Y
Yu Yang 已提交
1942
        # convert to tuple, make it as same as numpy API.
1943
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
1944 1945

    @property
F
fengjiayi 已提交
1946
    def dtype(self):
J
Jiabin Yang 已提交
1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962
        """
        Indicating data type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Dtype of current Var is: {}".format(new_variable.dtype))
        """
1963
        return self.desc.dtype()
Y
Yu Yang 已提交
1964 1965 1966

    @property
    def lod_level(self):
J
Jiabin Yang 已提交
1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979
        """
        Indicating ``LoD`` info of current Variable, please refer to  :ref:`api_fluid_LoDTensor_en` to check the meaning
        of ``LoD``

        **Notes**:

            **1. This is a read-only property**

            **2. Don't support this property in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, it's value should be** ``0(int)``

        Examples:
          .. code-block:: python

1980
            import paddle
J
Jiabin Yang 已提交
1981
            import paddle.fluid as fluid
1982 1983

            paddle.enable_static()
J
Jiabin Yang 已提交
1984 1985 1986 1987 1988 1989 1990
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("LoD Level of current Var is: {}".format(new_variable.lod_level))
        """
1991 1992
        if self.type == core.VarDesc.VarType.SELECTED_ROWS:
            raise Exception("SelectedRows DO NOT supprt lod")
1993 1994
        if self.type == core.VarDesc.VarType.STRINGS:
            return None
1995
        return self.desc.lod_level()
Y
Yu Yang 已提交
1996

Y
Yu Yang 已提交
1997 1998
    @property
    def type(self):
J
Jiabin Yang 已提交
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
        """
        Indicating Type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Type of current Var is: {}".format(new_variable.type))
        """
2015
        return self.desc.type()
Y
Yu Yang 已提交
2016

2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057
    @property
    def T(self):
        """
        Permute current Variable with its dimensions reversed.

        If `n` is the dimensions of `x` , `x.T` is equivalent to `x.transpose([n-1, n-2, ..., 0])`.

        Examples:

            .. code-block:: python

                import paddle
                paddle.enable_static()

                x = paddle.ones(shape=[2, 3, 5])
                x_T = x.T

                exe = paddle.static.Executor()
                x_T_np = exe.run(paddle.static.default_main_program(), fetch_list=[x_T])[0]
                print(x_T_np.shape)
                # (5, 3, 2)
        """
        if len(self.shape) == 1:
            return self
        perm = []
        for i in range(len(self.shape)):
            perm.insert(0, i)

        out = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=self.type,
            persistable=False,
            stop_gradient=False)
        input_shape = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=False,
            stop_gradient=False)

2058 2059 2060 2061 2062 2063 2064
        self.block.append_op(type='transpose2',
                             inputs={'X': [self]},
                             outputs={
                                 'Out': [out],
                                 'XShape': [input_shape]
                             },
                             attrs={'axis': perm})
2065 2066
        return out

2067 2068 2069
    def clone(self):
        """
        Returns a new static Variable, which is the clone of the original static
2070
        Variable. It remains in the current graph, that is, the cloned Variable
2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096
        provides gradient propagation. Calling ``out = tensor.clone()`` is same
        as ``out = assign(tensor)`` .

        Returns:
            Variable: The cloned Variable.

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
                # create a cloned Variable
                y = x.clone()

        """
        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_clone"),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
            stop_gradient=self.stop_gradient)

2097 2098 2099
        self.block.append_op(type='assign',
                             inputs={'X': [self]},
                             outputs={'Out': [output]})
2100 2101
        return output

W
Wu Yi 已提交
2102
    def _set_error_clip(self, error_clip):
2103 2104 2105 2106 2107 2108 2109 2110 2111
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
2112 2113
        self.error_clip = error_clip

2114 2115 2116 2117 2118 2119 2120 2121
    def _set_info(self, key, value):
        """
        Set key-value information for this variable.

        Args:
            key(str): Key for this information.
            value(object): The value associated to the key.

2122
        Returns:
2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135
            None
        """
        if not hasattr(self, "_info"):
            self._info = {}
        self._info[key] = value

    def _get_info(self, key):
        """
        Get the information of this variable corresponding to key.

        Args:
            key(str): Key for this information.

2136
        Returns:
2137 2138 2139 2140 2141 2142
            object
        """
        if hasattr(self, "_info") and key in self._info:
            return self._info[key]
        return None

2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153
    def _slice_indices(self, slice, length):
        """
        Reference implementation for the slice.indices method.
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
T
tianshuo78520a 已提交
2154
            raise ValueError("slice step can not be zero")
2155 2156 2157 2158 2159 2160 2161 2162 2163 2164

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
2165 2166
            start = max(start +
                        length, lower) if start < 0 else min(start, upper)
2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
                if (index > 0 and index >= self.shape[index]) \
                        or (index < 0 and (index + self.shape[index]) < 0):
                    raise IndexError("invalid index")
                start = max(start + self.shape[index], 0) if start < 0 else min(
                    start, self.shape[index])
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
2230
    def _cloneVar(self, copy=False):
2231 2232
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
2233 2234
                name=unique_name.generate_with_ignorable_key(self.name),
                dtype=self.dtype)
2235 2236 2237 2238
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
2239
        new_var = self._cloneVar()
2240 2241 2242 2243 2244 2245 2246 2247
        self.block.append_op(type="slice",
                             inputs={'Input': [self]},
                             outputs={'Out': [new_var]},
                             attrs={
                                 'axes': axes,
                                 'starts': starts,
                                 'ends': ends
                             })
2248 2249 2250
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
2251
        new_var = self._cloneVar()
2252 2253 2254 2255 2256 2257
        self.block.append_op(type="concat",
                             inputs={'X': inputs},
                             outputs={'Out': [new_var]},
                             attrs={
                                 'axis': axis,
                             })
2258 2259 2260 2261 2262
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
2263
                return self._cloneVar(True)
2264 2265 2266 2267 2268 2269 2270
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
2271 2272
                        vars.append(self._sliceVar([axis], [start],
                                                   [start + 1]))
2273 2274 2275
                        start += step
                else:
                    while start > stop:
2276 2277
                        vars.append(self._sliceVar([axis], [start],
                                                   [start + 1]))
2278 2279 2280 2281
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
2282
                return self._cloneVar(True)
2283
            index = int(item)
2284
            if (index > 0 and index >= self.shape[axis]) \
2285 2286 2287 2288 2289 2290 2291
                    or (index < 0 and (index + self.shape[axis]) < 0):
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
2292
        return _getitem_impl_(self, item)
2293

2294
    def __setitem__(self, item, value):
2295
        return _setitem_impl_(self, item, value)
2296

2297 2298
    def get_value(self, scope=None):
        """
2299
        Get the value of variable in given scope.
2300 2301

        Args:
2302
            scope(Scope, optional) : If `scope` is None, it will be set to global scope
2303 2304 2305 2306 2307 2308 2309 2310 2311 2312
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            Tensor: the value in given scope.

        Examples:
            .. code-block:: python

                import paddle
2313
                import paddle.static as static
2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        """
2338 2339
        # The 'framework' is a low-level module, and 'executor'
        # can not be imported at the begainning of this file.
2340 2341 2342 2343
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
2344 2345
                "`scope` should be None or `paddle.static.Scope` type, but received {}."
                .format(type(scope)))
2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357

        if scope is None:
            scope = global_scope()
        var_temp = scope.find_var(self.name)
        if var_temp is None:
            raise ValueError("Can not find Variable '{}' in the Scope.".format(
                self.name))
        t = var_temp.get_tensor()
        return t

    def set_value(self, value, scope=None):
        '''
2358
        Set the value to the tensor in given scope.
2359 2360 2361

        Args:
            value(Tensor/ndarray) : The value to be set.
2362
            scope(Scope, optional) : If `scope` is None, it will be set to global scope
2363 2364 2365 2366 2367
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            None
2368

2369 2370 2371 2372
        Examples:
            .. code-block:: python

                import paddle
2373
                import paddle.static as static
2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        '''

        # The 'framework' is a low-level module, and 'executor'
2400
        # can not be imported at the begainning of this file.
2401 2402 2403 2404 2405
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope

        if not (isinstance(value, np.ndarray) or hasattr(value, '__array__')):
            raise TypeError(
2406 2407
                "`value` should be `numpy.ndarray` or `LoDTensor`, but received {}."
                .format(type(value)))
2408 2409 2410

        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
2411 2412
                "`scope` should be None or `paddle.static.Scope` type, but received {}."
                .format(type(scope)))
2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442

        if scope is None:
            scope = global_scope()

        var_temp = scope.find_var(self.name)
        if var_temp is None:
            raise ValueError("Can not find Variable '{}' in the Scope.".format(
                self.name))

        t = var_temp.get_tensor()

        if hasattr(value, 'shape'):
            if isinstance(value.shape, (MethodType, FunctionType)):
                value_shape = value.shape()
            else:
                value_shape = value.shape
            if list(t.shape()) != list(value_shape):
                raise ValueError(
                    "{} expected a shape {}, but the received shape is {}.".
                    format(self.name, list(t.shape()), list(value_shape)))

        p = t._place()
        if p.is_cpu_place():
            place = core.CPUPlace()
        elif p.is_cuda_pinned_place():
            place = core.CUDAPinnedPlace()
        elif p.is_xpu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.XPUPlace(p.xpu_device_id())
2443 2444 2445 2446
        elif p.is_npu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.NPUPlace(p.npu_device_id())
2447 2448 2449 2450
        elif p.is_mlu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.MLUPlace(p.mlu_device_id())
2451 2452 2453 2454 2455 2456 2457
        else:
            p = core.Place()
            p.set_place(t._place())
            place = core.CUDAPlace(p.gpu_device_id())

        t.set(value, place)

2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482
    def size(self):
        """
        Returns the number of elements for current Variable, which is a int64 Variable with shape [1]

        Returns:
            Variable: the number of elements for current Variable

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])

                # get the number of elements of the Variable
                y = x.size()
        """

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_size"),
            dtype=core.VarDesc.VarType.INT64)

2483 2484 2485
        self.block.append_op(type='size',
                             inputs={'Input': [self]},
                             outputs={'Out': [output]})
2486 2487
        return output

2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541
    def _set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _has_attr(self, name):
        """
        Whether this Variable has the attribute with the name `name` or not.

        Args:
            name(str): the attribute name.

        Returns:
            bool: True if has this attribute.
        """
        return self.desc.has_attr(name)

    def _remove_attr(self, name):
        self.desc.remove_attr(name)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
        """
        self.desc._set_attr(name, val)

    @property
    def attr_names(self):
        """Get the names of all attributes defined."""
        return self.desc.attr_names()

    def _get_attr(self, name):
        """
        Get the attribute by name.

        Args:
            name(str): the attribute name.

        Returns:
            int|str|list: The attribute value. The return value
            can be any valid attribute type.
        """
        return self.desc.attr(name)

    @property
2542
    def dist_attr(self):
2543
        """
2544
        Get distributed attribute of this Variable.
2545
        """
2546
        return self.desc.dist_attr
2547

2548 2549
    @dist_attr.setter
    def dist_attr(self, dist_attr):
2550
        """
2551
        Set distributed attribute of this Variable.
2552
        """
2553
        self.desc.dist_attr = dist_attr
2554

Y
Yu Yang 已提交
2555

F
fengjiayi 已提交
2556 2557 2558
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
2559

2560 2561
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
2562 2563 2564 2565
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
2566
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
2567 2568 2569 2570 2571
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
2572 2573 2574 2575
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
2576 2577 2578 2579 2580 2581 2582 2583 2584
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
2585
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
2586 2587 2588 2589 2590 2591
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
2592 2593 2594 2595 2596 2597 2598 2599
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
2600 2601
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
2602 2603
        return self.op_proto_map[type]

2604 2605
    def update_op_proto(self):
        op_protos = get_all_op_protos()
2606
        custom_op_names = []
2607 2608 2609
        for proto in op_protos:
            if proto.type not in self.op_proto_map:
                self.op_proto_map[proto.type] = proto
2610 2611 2612
                custom_op_names.append(proto.type)

        return custom_op_names
2613

2614 2615 2616 2617
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
2618
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
2619
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
2620 2621
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName(),
            core.op_proto_and_checker_maker.kOpDeviceAttrName()
2622 2623
        }

F
fengjiayi 已提交
2624

X
Xin Pan 已提交
2625
class Operator(object):
2626
    """
2627 2628 2629 2630 2631 2632 2633
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
2634
        type(str): The type of operator. Default None.
2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
2655
        Block.append_op or Block._prepend_op instead.
2656 2657 2658 2659

    Examples:
        .. code-block:: python

2660
            import paddle.fluid as fluid
2661
            cur_program = fluid.Program()
2662 2663 2664 2665 2666
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
2667
    """
2668
    OP_WITHOUT_KERNEL_SET = {
2669 2670
        'feed', 'fetch', 'recurrent', 'go', 'rnn_memory_helper_grad',
        'conditional_block', 'while', 'send', 'recv', 'listen_and_serv',
2671
        'fl_listen_and_serv', 'ncclInit', 'select', 'checkpoint_notify',
2672 2673
        'gen_bkcl_id', 'c_gen_bkcl_id', 'gen_nccl_id', 'c_gen_nccl_id',
        'c_comm_init', 'c_sync_calc_stream', 'c_sync_comm_stream',
W
WangXi 已提交
2674
        'queue_generator', 'dequeue', 'enqueue', 'heter_listen_and_serv',
B
Baibaifan 已提交
2675
        'c_wait_comm', 'c_wait_compute', 'c_gen_hccl_id', 'c_comm_init_hccl',
2676
        'copy_cross_scope', 'c_gen_cncl_id'
2677
    }
2678

Y
Yu Yang 已提交
2679 2680
    def __init__(self,
                 block,
Y
Yu Yang 已提交
2681
                 desc,
Y
Yu Yang 已提交
2682 2683 2684
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
2685
                 attrs=None):
2686 2687 2688 2689 2690 2691 2692 2693 2694 2695
        # read attr type index from op proto to avoid unexpected type
        # conversions, e.g. narrowing conversion like double to float
        try:
            proto = OpProtoHolder.instance().get_op_proto(type)
            self._attr_types = {}
            for attr in proto.attrs:
                self._attr_types[attr.name] = attr.type
        except ValueError:
            pass

J
Jiabin Yang 已提交
2696
        if _non_static_mode():
2697 2698
            if type is None:
                raise ValueError(
2699
                    "`type` to initialized an Operator can not be None.")
J
Jiabin Yang 已提交
2700
            self._type = type
M
minqiyang 已提交
2701
            self.attrs = attrs if attrs else {}
2702 2703 2704 2705 2706 2707 2708 2709 2710 2711
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

2712 2713 2714
            # attr for static mode cuda graph
            self._cuda_graph_attr = _current_cuda_graph_mode

2715 2716 2717
            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
2718 2719
                op_attrs[
                    op_maker.kOpRoleAttrName()] = self.block.program._op_role
2720 2721

            role_var_name = op_maker.kOpRoleVarAttrName()
2722 2723
            if len(self.block.program._op_role_var
                   ) != 0 and role_var_name not in op_attrs:
2724
                op_attrs[role_var_name] = self.block.program._op_role_var
2725 2726 2727 2728 2729

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
2730 2731 2732 2733 2734
                # NOTE(Aurelius84): prog.clone() will lead that var.op is always None,
                # we add this to fix the problem.
                for arg in self.desc.output_arg_names():
                    if block.has_var(arg) and block.var(arg).op is None:
                        block.var(arg).op = self
2735 2736 2737
                return
            if type is None:
                raise ValueError(
2738
                    "`type` to initialized an Operator can not be None.")
2739 2740
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
2741 2742 2743
                op_attrs[callstack_var_name] = []
                for frame in traceback.extract_stack():
                    op_attrs[callstack_var_name].append(
2744 2745 2746 2747
                        '  File "{}", line {}, in {}'.format(
                            frame[0], frame[1], frame[2]))
                    op_attrs[callstack_var_name].append('    {}'.format(
                        frame[3]))
2748 2749 2750 2751 2752 2753 2754

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765
            # set device for op with kernels, give warning for op without kernels
            # when force_cpu and device_guard are used at the same time, a warning will be given.
            # TODO(zhangting2020): when force_cpu is removed, clear warning below.
            if _current_device is not None:
                if self._has_kernel(type):
                    op_device = op_maker.kOpDeviceAttrName()
                    op_attrs[op_device] = _current_device
                else:
                    warnings.warn("The Op(%s) is not support to set device." %
                                  type)
                if 'force_cpu' in op_attrs:
2766
                    if (type == 'less_than' and op_attrs['force_cpu'] != None
2767 2768 2769 2770 2771
                        ) or op_attrs['force_cpu'] != False:
                        warnings.warn(
                            "The Attr(force_cpu) of Op(%s) will be deprecated in the future, "
                            "please use 'device_guard' instead. 'device_guard' has higher priority when they are "
                            "used at the same time." % type)
2772 2773 2774 2775 2776
            if _current_pipeline_stage is not None:
                pipeline_attr_name = 'pipeline_stage' + core.kAutoParallelSuffix(
                )
                self._update_desc_attr(pipeline_attr_name,
                                       _current_pipeline_stage)
2777

2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790
            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
                    assert found or in_proto.dispensable, "Input {} not found".format(
                        in_proto.name)
                    if found:
                        in_args = inputs[in_proto.name]
2791
                        if not isinstance(in_args, (list, tuple)):
2792 2793 2794 2795 2796 2797
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
                                % (in_proto.name, len(in_args)))
                        in_arg_names = []
2798
                        for index, arg in enumerate(in_args):
2799 2800 2801 2802
                            if isinstance(arg, six.string_types):
                                in_arg_names.append(arg)
                            elif isinstance(arg, six.binary_type):
                                in_arg_names.append(arg.decode())
2803
                            elif isinstance(arg, (Variable, core.VarBase)):
2804
                                in_arg_names.append(cpt.to_text(arg.name))
2805
                            else:
2806 2807 2808 2809
                                raise TypeError(
                                    "The type of '%s' in operator %s should be "
                                    "one of [basestring(), str, Varibale] in python2, "
                                    "or one of [str, bytes, Variable] in python3."
2810 2811
                                    "but received : %s" %
                                    (in_proto.name, type, arg))
2812 2813 2814 2815 2816 2817 2818 2819 2820
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
2821 2822 2823 2824
                        raise ValueError(
                            ("Incorrect setting for output(s) of "
                             "operator \"%s\", should set: [%s].") %
                            (type, m.name))
2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
                            % (out_proto.name, len(out_args)))
                    out_arg_names = []
                    for arg in out_args:
2837 2838 2839 2840
                        if isinstance(arg, six.string_types):
                            out_arg_names.append(arg)
                        else:
                            out_arg_names.append(cpt.to_text(arg.name))
2841
                        # TODO(minqiyang): could we remove variable's op in static mode?
J
Jiabin Yang 已提交
2842
                        if not _non_static_mode():
2843 2844 2845 2846
                            if isinstance(arg, six.string_types):
                                block.var(arg).op = self
                            else:
                                arg.op = self
2847 2848
                    self.desc.set_output(out_proto.name, out_arg_names)

2849
            extra_attrs_map = core.get_op_extra_attrs(type)
2850 2851 2852 2853 2854
            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
2855 2856
                    if (attr_name
                            not in op_attrs) or (op_attrs[attr_name] is None):
2857 2858 2859
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)
2860 2861 2862 2863 2864 2865 2866
                for attr_name in extra_attrs_map.keys():
                    if (attr_name
                            not in op_attrs) or (op_attrs[attr_name] is None):
                        self._update_desc_attr(attr_name,
                                               extra_attrs_map[attr_name])
                    else:
                        self._update_desc_attr(attr_name, op_attrs[attr_name])
2867

J
jianghaicheng 已提交
2868 2869
            # proto.attrs doesn't include ipu_index
            if core.is_compiled_with_ipu():
2870
                if global_ipu_index >= 0:
J
jianghaicheng 已提交
2871 2872
                    self._update_desc_attr(ipu_index_attr_name,
                                           global_ipu_index)
2873
                if global_ipu_stage >= 0:
J
jianghaicheng 已提交
2874 2875 2876
                    self._update_desc_attr(ipu_stage_attr_name,
                                           global_ipu_stage)

2877 2878 2879 2880 2881
            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
2882
    def _has_kernel(self, op_type):
2883 2884
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
2885
    def to_string(self, throw_on_error):
2886
        """
2887 2888
        Get debug string.

2889
        Args:
2890 2891
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
2892

2893 2894
        Returns:
            str: The debug string.
2895 2896

        """
2897
        protostr = self.desc.serialize_to_string()
2898
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
2899 2900
        return _debug_string_(proto, throw_on_error)

2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932
    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Operator.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Operator string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
            print(new_op._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
2933
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960
            type(skip_op_callstack))
        outputs_str = "{"
        for i in range(0, len(self.output_names)):
            outputs_str += "{name}=".format(name=self.output_names[i])
            o = self.output(self.output_names[i])
            outputs_str += "{value}".format(value=o)
            if i != len(self.output_names) - 1:
                outputs_str += ", "
        outputs_str += "}"

        inputs_str = "{"
        for i in range(0, len(self.input_names)):
            inputs_str += "{name}=".format(name=self.input_names[i])
            o = self.input(self.input_names[i])
            inputs_str += "{value}".format(value=o)

            if i != len(self.input_names) - 1:
                inputs_str += ", "
        inputs_str += "}"

        attr_names = sorted(self.attr_names)
        attrs_str = ""
        for i in range(0, len(attr_names)):
            name = attr_names[i]
            if skip_op_callstack and name == "op_callstack":
                continue

2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982
            attr_type = self.desc.attr_type(name, True)
            if attr_type == core.AttrType.VAR:
                attr_var_name = self.desc.attr(name, True).name()
                a = "{name} = Var['{value}']".format(name=name,
                                                     type=attr_type,
                                                     value=attr_var_name)
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.VARS:
                attr_var_names = [
                    "'%s'" % var.name() for var in self.desc.attr(name, True)
                ]
                a = "{name} = Vars[{value}]".format(
                    name=name, type=attr_type, value=','.join(attr_var_names))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000
            if attr_type == core.AttrType.BLOCK:
                a = "{name} = block[{value}]".format(
                    name=name, type=attr_type, value=self._block_attr_id(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.BLOCKS:
                a = "{name} = blocks{value}".format(
                    name=name,
                    type=attr_type,
                    value=self._blocks_attr_ids(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

3001
            # it is bytes of serialized protobuf
3002 3003 3004 3005
            if is_compiled_with_cinn(
            ) and self.type == 'cinn_launch' and name == 'compilation_key':
                key = self.desc.attr(name)
                v = core.get_serialize_comile_key(key)
3006 3007 3008 3009 3010 3011 3012 3013 3014
                prog = Program()
                prog = prog.parse_from_string(v)
                s = prog._to_readable_code()
                lines = s.split('\n')
                value = '\n'.join(['      ' + line for line in lines])
                value = '\n' + value
            else:
                value = self.desc.attr(name)

3015 3016 3017
            a = "{name} = {value}".format(name=name,
                                          type=attr_type,
                                          value=value)
3018

3019 3020 3021 3022
            attrs_str += a
            if i != len(attr_names) - 1:
                attrs_str += ", "

3023
        from paddle.distributed.auto_parallel.dist_context import get_default_distributed_context
3024
        dist_context = get_default_distributed_context()
3025 3026
        dist_op = dist_context.get_dist_op_for_program(self)
        if dist_op is not None:
3027 3028
            attrs_str += ", {name} = {value}".format(name="dist_attr",
                                                     value=dist_op)
3029

3030 3031
        if outputs_str != "{}":
            op_str = "{outputs} = {op_type}(inputs={inputs}, {attrs})".\
T
tangwei12 已提交
3032 3033
                format(outputs=outputs_str, op_type=self.type,
                       inputs=inputs_str, attrs=attrs_str)
3034 3035 3036 3037 3038
        else:
            op_str = "{op_type}(inputs={inputs}, {attrs})".\
                format(op_type=self.type, inputs=inputs_str, attrs=attrs_str)
        return op_str

Y
Yang Yang(Tony) 已提交
3039
    def __str__(self):
3040
        return self._to_readable_code()
3041 3042 3043

    __repr__ = __str__

F
fengjiayi 已提交
3044 3045
    @property
    def type(self):
3046
        return self.desc.type()
F
fengjiayi 已提交
3047 3048

    def input(self, name):
3049
        r"""
3050
        Get the input arguments according to the input parameter name.
3051

3052 3053
        Args:
            name(str): The input parameter name.
3054

3055 3056 3057
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
3058
        """
F
fengjiayi 已提交
3059 3060
        return self.desc.input(name)

W
Wu Yi 已提交
3061
    def _rename_input(self, old_name, new_name):
3062 3063 3064 3065 3066 3067 3068 3069 3070 3071
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
3072
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
3073

W
Wu Yi 已提交
3074
    def _rename_output(self, old_name, new_name):
3075 3076 3077 3078 3079 3080 3081 3082 3083 3084
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
3085
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
3086

F
fengjiayi 已提交
3087 3088 3089 3090
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
3091 3092 3093 3094 3095 3096 3097 3098
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
3099
    def output(self, name):
3100
        r"""
3101
        Get output arguments by the output parameter name.
3102

3103 3104
        Args:
            name(str): The output parameter name.
3105

3106 3107 3108
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
3109
        """
F
fengjiayi 已提交
3110 3111 3112 3113 3114 3115
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

3116 3117 3118 3119 3120 3121 3122 3123
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
3124
    def has_attr(self, name):
3125
        """
3126 3127
        Whether this Operator has the attribute with name or not.

3128
        Args:
3129
            name(str): the attribute name.
3130

3131 3132
        Returns:
            bool: True if has this attribute.
3133 3134

        """
F
fengjiayi 已提交
3135 3136 3137
        return self.desc.has_attr(name)

    def attr_type(self, name):
3138
        """
3139
        Get the type of attribute by attribute's name.
3140

3141 3142
        Args:
            name(str): the attribute name.
3143

3144 3145
        Returns:
            core.AttrType: the attribute type.
3146
        """
3147
        return self.desc.attr_type(name, True)
F
fengjiayi 已提交
3148

W
Wu Yi 已提交
3149
    def _set_attr(self, name, val):
3150 3151 3152 3153 3154 3155 3156 3157 3158 3159
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
3160 3161
        self._update_desc_attr(name, val)

3162 3163 3164
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
3176 3177 3178 3179 3180
        if isinstance(val, Variable):
            self.desc.set_var_attr(name, val.desc)
        elif isinstance(val, list) and _all_is_type(val, Variable):
            self.desc.set_vars_attr(name, [v.desc for v in val])
        elif isinstance(val, Block):
Q
Qiyang Min 已提交
3181
            self.desc.set_block_attr(name, val.desc)
3182
        elif isinstance(val, list) and val and _all_is_type(val, Block):
3183
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
3184 3185 3186 3187
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223
            self._update_desc_plain_attr(name, val)

    def _update_desc_plain_attr(self, name, val):
        desc = self.desc
        if not hasattr(self, "_attr_types") or (name not in self._attr_types):
            desc._set_attr(name, val)
            return

        type_index = self._attr_types[name]
        if type_index == core.AttrType.BOOL:
            desc._set_bool_attr(name, val)
        elif type_index == core.AttrType.INT:
            desc._set_int32_attr(name, val)
        elif type_index == core.AttrType.LONG:
            desc._set_int64_attr(name, val)
        elif type_index == core.AttrType.FLOAT:
            desc._set_float32_attr(name, val)
        # elif type_index == core.AttrType.FLOAT64:
        #     desc._set_float64_attr(name, val)
        elif type_index == core.AttrType.STRING:
            desc._set_str_attr(name, val)
        elif type_index == core.AttrType.BOOLS:
            desc._set_bools_attr(name, val)
        elif type_index == core.AttrType.INTS:
            desc._set_int32s_attr(name, val)
        elif type_index == core.AttrType.LONGS:
            desc._set_int64s_attr(name, val)
        elif type_index == core.AttrType.FLOATS:
            desc._set_float32s_attr(name, val)
        elif type_index == core.AttrType.FLOAT64S:
            desc._set_float64s_attr(name, val)
        elif type_index == core.AttrType.STRINGS:
            desc._set_strs_attr(name, val)
        else:
            # defaults to old methods
            desc._set_attr(name, val)
Y
yuyang18 已提交
3224

F
fengjiayi 已提交
3225 3226
    @property
    def attr_names(self):
3227
        return self.desc.attr_names(True)
F
fengjiayi 已提交
3228 3229

    def attr(self, name):
3230
        """
3231 3232
        Get the attribute by name.

3233
        Args:
3234
            name(str): the attribute name.
3235

3236 3237
        Returns:
            bool|int|str|float|list: The attribute value. The return value
3238 3239
            can be any valid attribute type.
        """
F
fengjiayi 已提交
3240
        return self.desc.attr(name)
Y
Yu Yang 已提交
3241

W
Wu Yi 已提交
3242
    def _block_attr_id(self, name):
3243
        """
G
gongweibao 已提交
3244
        Get the block attribute's id by name.
3245

3246 3247
        Args:
            name(str): the attribute name.
3248

3249 3250
        Returns:
            int: the block index.
3251
        """
W
Wu Yi 已提交
3252
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
3253

W
Wu Yi 已提交
3254
    def _block_attr(self, name):
G
gongweibao 已提交
3255 3256 3257 3258 3259 3260 3261 3262 3263 3264
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
3265
        id = self._block_attr_id(name)
G
gongweibao 已提交
3266 3267 3268
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
3269
    def _blocks_attr(self, name):
G
gongweibao 已提交
3270 3271 3272 3273 3274 3275 3276 3277 3278 3279
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
3280
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
3281 3282 3283 3284 3285
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
3286
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
3287 3288 3289 3290 3291 3292 3293 3294 3295 3296
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
3297
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
3298

3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333
    def _var_attr(self, name):
        """
        Get the Variable attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            Variable: the Variable attribute.
        """
        attr_type = self.desc.attr_type(name, True)
        assert attr_type == core.AttrType.VAR, "Required type attr({}) is Variable, but received {}".format(
            name, attr_type)
        attr_var_name = self.desc.attr(name, True).name()
        return self.block._var_recursive(attr_var_name)

    def _vars_attr(self, name):
        """
        Get the Variables attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            Variables: the Variables attribute.
        """
        attr_type = self.desc.attr_type(name, True)
        assert attr_type == core.AttrType.VARS, "Required type attr({}) is list[Variable], but received {}".format(
            name, attr_type)
        attr_vars = [
            self.block._var_recursive(var.name())
            for var in self.desc.attr(name, True)
        ]
        return attr_vars

J
JiayiFeng 已提交
3334
    def all_attrs(self):
F
fengjiayi 已提交
3335
        """
3336 3337 3338
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
3339
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
3340 3341 3342 3343
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
3344
            attr_type = self.desc.attr_type(n, True)
G
gongweibao 已提交
3345
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
3346
                attr_map[n] = self._block_attr(n)
3347
            elif attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
3348
                attr_map[n] = self._blocks_attr(n)
3349 3350 3351 3352 3353 3354
            elif attr_type == core.AttrType.VAR:
                attr_map[n] = self._var_attr(n)
            elif attr_type == core.AttrType.VARS:
                attr_map[n] = self._vars_attr(n)
            else:
                attr_map[n] = self.attr(n)
G
gongweibao 已提交
3355

F
fengjiayi 已提交
3356 3357
        return attr_map

3358 3359 3360
    def _is_optimize_op(self):
        op_maker = core.op_proto_and_checker_maker
        OPTIMIZE = core.op_proto_and_checker_maker.OpRole.Optimize
3361 3362 3363 3364

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
            return False

3365 3366 3367
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(OPTIMIZE):
            return True
3368 3369 3370 3371 3372 3373 3374 3375

        return False

    def _is_backward_op(self):
        op_maker = core.op_proto_and_checker_maker
        BACKWARD = core.op_proto_and_checker_maker.OpRole.Backward

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
3376 3377
            return False

3378 3379 3380 3381 3382 3383
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(BACKWARD):
            return True

        return False

3384
    @property
3385
    def dist_attr(self):
3386
        """
3387
        Get distributed attribute of this Variable.
3388
        """
3389
        return self.desc.dist_attr
3390

3391 3392
    @dist_attr.setter
    def dist_attr(self, dist_attr):
3393
        """
3394
        Set distributed attribute of this Variable.
3395
        """
3396
        self.desc.dist_attr = dist_attr
3397

Y
Yu Yang 已提交
3398

Y
Yu Yang 已提交
3399
class Block(object):
3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
3414
        use `Program._create_block()` to create a block.
3415 3416 3417 3418

    Examples:
        .. code-block:: python

3419 3420 3421
            import paddle.fluid as fluid

            cur_program = fluid.Program()
3422 3423 3424 3425 3426 3427 3428 3429 3430
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
3431
    def __init__(self, program, idx):
Y
Yu Yang 已提交
3432
        self.desc = program.desc.block(idx)
3433
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
3434
        self.ops = list()  # operator list
Y
Yu Yang 已提交
3435
        self.program = program
3436
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
3437

3438
    def __str__(self):
3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Block.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Block string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_block._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
3473
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484
            type(skip_op_callstack))
        block_str = "{ // block "
        block_str += "{}\n".format(self.idx)
        for var in list(self.vars.values()):
            block_str += "    {}\n".format(var._to_readable_code())
        block_str += "\n"
        for op in self.ops:
            block_str += "    {}\n".format(
                op._to_readable_code(skip_op_callstack))
        block_str += "}"
        return block_str
Y
Yang Yang(Tony) 已提交
3485

F
fengjiayi 已提交
3486 3487
    def to_string(self, throw_on_error, with_details=False):
        """
3488 3489
        Get debug string.

F
fengjiayi 已提交
3490 3491
        Args:
            throw_on_error(bool): raise exception when self is not initialized
3492
                when throw_on_error is True.
F
update  
fengjiayi 已提交
3493
            with_details(bool): more details about variables and parameters
3494 3495
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
3496

3497 3498
        Returns:
            str: The debug string.
F
fengjiayi 已提交
3499
        """
3500 3501
        assert isinstance(throw_on_error, bool) and isinstance(
            with_details, bool)
F
fengjiayi 已提交
3502
        if with_details:
F
fengjiayi 已提交
3503
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
3504 3505
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
3506
            for var in list(self.vars.values()):
F
fengjiayi 已提交
3507
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
3508
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
3509
            for op in self.ops:
F
fengjiayi 已提交
3510 3511
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
3512 3513 3514
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
3515 3516
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
3517 3518
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
3519 3520 3521

    __repr__ = __str__

Y
Yu Yang 已提交
3522 3523
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
3524
        return self.desc.parent
Y
Yu Yang 已提交
3525

Y
Yu Yang 已提交
3526 3527 3528 3529
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
3530
    def _set_forward_block_idx(self, idx):
3531 3532 3533 3534 3535 3536 3537 3538 3539
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
3540
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
3541

3542 3543 3544 3545 3546 3547 3548 3549
    @property
    def backward_block_idx(self):
        cur_block_idx = self.idx
        for block in self.program.blocks:
            if block.forward_block_idx == cur_block_idx:
                return block.idx
        return -1

Y
Yu Yang 已提交
3550 3551
    @property
    def idx(self):
Y
Yu Yang 已提交
3552
        return self.desc.id
Y
Yu Yang 已提交
3553

Q
Qiao Longfei 已提交
3554
    def var(self, name):
3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
3568
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
3569 3570 3571
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
3572 3573
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
3574
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
3575
        return v
Q
Qiao Longfei 已提交
3576

X
Xin Pan 已提交
3577
    def _find_var_recursive(self, name):
3578 3579 3580 3581 3582 3583 3584
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
3585
            Variable: the Variable with the giving name. Or None if not found.
3586
        """
Y
Yu Yang 已提交
3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
3611
        return None
Y
Yu Yang 已提交
3612

X
Xin Pan 已提交
3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
3632

Q
Qiao Longfei 已提交
3633
    def all_parameters(self):
3634
        return list(self.iter_parameters())
3635

3636
    def iter_parameters(self):
M
minqiyang 已提交
3637
        return (item[1] for item in six.iteritems(self.vars)
3638
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
3639

Y
Yu Yang 已提交
3640
    def create_var(self, *args, **kwargs):
J
Jiabin Yang 已提交
3641
        if _non_static_mode():
L
Leo Chen 已提交
3642 3643
            var = _varbase_creator(*args, **kwargs)
        else:
3644 3645 3646
            var = Variable(block=self, *args, **kwargs)
            if 'initializer' in kwargs:
                kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
3647
        return var
Y
Yu Yang 已提交
3648

Q
Qiao Longfei 已提交
3649 3650 3651
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
3652
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
3653 3654
        """
        Rename variable in vars and ops' inputs and outputs
3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
3667
        """
M
minqiyang 已提交
3668 3669
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
3670

T
typhoonzero 已提交
3671
        if not self.has_var(name):
3672
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
3673 3674
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
3675
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
3676 3677 3678 3679 3680 3681
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
3682
            var_type = "Variable"
T
wip  
typhoonzero 已提交
3683 3684 3685 3686
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
3687
        orig_var_type = v.type
M
minqiyang 已提交
3688
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
3689
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
3690
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
3691
        if var_type == "Parameter":
L
Leo Chen 已提交
3692
            if in_dygraph_mode():
3693 3694 3695 3696 3697 3698 3699 3700 3701
                var = EagerParamBase(d.shape(),
                                     d.dtype(),
                                     type=orig_var_type,
                                     name=new_name,
                                     stop_gradient=stop_gradient,
                                     trainable=trainable,
                                     optimize_attr=optimize_attr,
                                     regularizer=regularizer,
                                     error_clip=error_clip)
3702
            else:
J
Jiabin Yang 已提交
3703
                if _in_legacy_dygraph():
3704 3705 3706 3707 3708 3709 3710 3711 3712
                    var = ParamBase(d.shape(),
                                    d.dtype(),
                                    type=orig_var_type,
                                    name=new_name,
                                    stop_gradient=stop_gradient,
                                    trainable=trainable,
                                    optimize_attr=optimize_attr,
                                    regularizer=regularizer,
                                    error_clip=error_clip)
J
Jiabin Yang 已提交
3713
                else:
3714 3715 3716 3717 3718 3719 3720 3721 3722 3723
                    var = Parameter(self,
                                    d.shape(),
                                    d.dtype(),
                                    type=orig_var_type,
                                    name=new_name,
                                    stop_gradient=stop_gradient,
                                    trainable=trainable,
                                    optimize_attr=optimize_attr,
                                    regularizer=regularizer,
                                    error_clip=error_clip)
T
typhoonzero 已提交
3724
        elif var_type == "Variable":
3725 3726 3727 3728 3729
            var = Variable(self,
                           type=orig_var_type,
                           name=new_name,
                           error_clip=error_clip,
                           stop_gradient=stop_gradient)
T
wip  
typhoonzero 已提交
3730

W
Wu Yi 已提交
3731
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
3732 3733 3734
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
3735
        self._sync_with_cpp()
3736
        return var
T
typhoonzero 已提交
3737

3738 3739 3740
    def _remove_var(self, name, sync=True):
        if sync == True:
            self._sync_with_cpp()
M
minqiyang 已提交
3741
        self.desc._remove_var(cpt.to_bytes(name))
3742 3743
        del self.vars[name]

Y
Yu Yang 已提交
3744 3745
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
3746
        param = None
L
Leo Chen 已提交
3747
        if in_dygraph_mode():
J
Jiabin Yang 已提交
3748
            param = EagerParamBase(*args, **kwargs)
L
Leo Chen 已提交
3749
        else:
J
Jiabin Yang 已提交
3750 3751 3752 3753
            if _in_legacy_dygraph():
                param = ParamBase(*args, **kwargs)
            else:
                param = Parameter(global_block, *args, **kwargs)
3754

3755
        if 'initializer' in kwargs:
3756 3757 3758 3759 3760

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
3761
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
T
tangwei12 已提交
3762
                        # are treated as initialization ops that cause error.
3763
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
3764 3765 3766 3767 3768
                        # NOTE: "coalesce_tensor" is a special case for rnn with cudnn support
                        if op.type in [
                                "c_broadcast", "c_sync_comm_stream",
                                "coalesce_tensor"
                        ]:
3769
                            continue
3770 3771 3772 3773 3774 3775 3776 3777
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
3778 3779
                                   " is inited by multiple init ops " +
                                   str(init_ops))
3780
            elif init_ops_len == 1:
3781
                # TODO already inited, do nothing, should log a warning
3782 3783 3784
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
3785
        return param
Y
Yu Yang 已提交
3786

Y
Yu Yang 已提交
3787
    def append_op(self, *args, **kwargs):
3788 3789 3790 3791 3792 3793
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
J
Jiabin Yang 已提交
3794
        if _non_static_mode():
3795
            attrs = kwargs.get("attrs", {})
Z
zyfncg 已提交
3796
            inplace_map = kwargs.get("inplace_map", None)
J
Jiabin Yang 已提交
3797
            type = kwargs.get("type", None)
3798 3799 3800 3801
            warnings.warn(
                "Op `%s` is executed through `append_op` under the dynamic mode, "
                "the corresponding API implementation needs to be upgraded to "
                "using `_C_ops` method." % type, DeprecationWarning)
3802 3803 3804 3805 3806 3807
            op = Operator(block=self,
                          desc=None,
                          type=type,
                          inputs=None,
                          outputs=None,
                          attrs=attrs)
3808

M
minqiyang 已提交
3809 3810 3811
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
L
lujun 已提交
3812
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
3813

3814 3815 3816
            _dygraph_tracer().trace_op(type, kwargs.get("inputs", {}),
                                       kwargs.get("outputs",
                                                  {}), attrs if attrs else {},
Z
zyfncg 已提交
3817 3818
                                       kwargs.get("stop_gradient", False),
                                       inplace_map)
M
minqiyang 已提交
3819
        else:
3820 3821
            from paddle.fluid.dygraph.base import param_guard

3822
            op_desc = self.desc.append_op()
3823 3824 3825 3826 3827 3828
            # NOTE(Aurelius84): In case of @to_static, all VarBase(s) should
            # be converted into Variable(s) with same name and block location.
            # This is ONE and ONLY logic of type transformation of dy2static.
            inputs = kwargs.get("inputs", None)
            outputs = kwargs.get("outputs", None)
            with param_guard(inputs), param_guard(outputs):
3829 3830 3831 3832 3833 3834
                op = Operator(block=self,
                              desc=op_desc,
                              type=kwargs.get("type", None),
                              inputs=inputs,
                              outputs=outputs,
                              attrs=kwargs.get("attrs", None))
3835

M
minqiyang 已提交
3836
            self.ops.append(op)
M
minqiyang 已提交
3837

3838 3839
        return op

W
Wu Yi 已提交
3840
    def _insert_op(self, index, *args, **kwargs):
3841 3842 3843 3844 3845 3846 3847 3848 3849
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
3850
        self._sync_with_cpp()
F
fangshuixun007 已提交
3851
        return self._insert_op_without_sync(index, *args, **kwargs)
Q
qiaolongfei 已提交
3852

3853 3854
    def _insert_op_without_sync(self, index, *args, **kwargs):
        """
3855
        Insert an Operator according to the giving arguments,
3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869
        without sync_with_cpp to meke the compilation faster.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
        op_desc = self.desc._insert_op(index)
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

    def _remove_op(self, index, sync=True):
3870 3871 3872 3873 3874 3875 3876 3877 3878
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
3879 3880
        if sync == True:
            self._sync_with_cpp()
W
Wu Yi 已提交
3881
        self.desc._remove_op(index, index + 1)
3882 3883
        del self.ops[index]

W
Wu Yi 已提交
3884
    def _slice_ops(self, start, end):
3885 3886 3887 3888 3889 3890 3891 3892 3893 3894
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
3895
        return self.ops[start:end]
Y
Yancey1989 已提交
3896

W
Wu Yi 已提交
3897
    def _prepend_op(self, *args, **kwargs):
J
Jiabin Yang 已提交
3898
        if _non_static_mode():
J
Jiabin Yang 已提交
3899 3900
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
3901 3902 3903 3904 3905 3906 3907 3908 3909 3910
            op = Operator(self,
                          None,
                          type=type,
                          inputs=None,
                          outputs=None,
                          attrs=attrs)

            _dygraph_tracer().trace_op(type, kwargs.get("inputs", {}),
                                       kwargs.get("outputs", {}),
                                       attrs if attrs else {},
M
minqiyang 已提交
3911
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
3912
        else:
3913
            op_desc = self.desc._prepend_op()
3914 3915 3916 3917 3918 3919
            op = Operator(self,
                          op_desc,
                          type=kwargs.get("type", None),
                          inputs=kwargs.get("inputs", None),
                          outputs=kwargs.get("outputs", None),
                          attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
3920
            self.ops.insert(0, op)
3921

Y
Yu Yang 已提交
3922 3923
        return op

W
Wu Yi 已提交
3924
    def _sync_with_cpp(self):
3925
        """
3926 3927
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
3928
        """
Q
Qiao Longfei 已提交
3929 3930 3931
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
3932 3933 3934 3935
                is_stop_gradient = False
                if var.has_stop_gradient():
                    is_stop_gradient = var.stop_gradient()
                if var.has_is_parameter() and var.is_parameter():
3936 3937 3938 3939 3940 3941
                    self.create_parameter(name=var.name(),
                                          desc=var,
                                          type=var.type(),
                                          shape=var.shape(),
                                          dtype=var.dtype(),
                                          stop_gradient=is_stop_gradient)
3942
                else:
3943 3944 3945 3946
                    self.create_var(name=var.name(),
                                    desc=var,
                                    type=var.type(),
                                    stop_gradient=is_stop_gradient)
Q
Qiao Longfei 已提交
3947

3948
        # sync variables removed from c++ end
3949
        for var in list(self.vars.keys()):
M
minqiyang 已提交
3950
            if not self.desc.find_var(cpt.to_bytes(var)):
3951 3952
                self.vars.pop(var)

Q
Qiao Longfei 已提交
3953
        # sync operators from cpp
3954 3955 3956 3957
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
3974 3975 3976 3977 3978

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
3979
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
3980 3981 3982 3983 3984 3985 3986

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
4000 4001 4002 4003
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
4004
    def _copy_param_info_from(self, other):
4005
        """
4006 4007
        Copy the information of parameters from the other block.

4008
        Args:
4009 4010 4011 4012 4013
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
4014 4015 4016 4017 4018

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
4019 4020
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
4021
        for p in other.iter_parameters():
4022 4023 4024
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
4025 4026
                # if the Parameter is pruned, v may be None
                continue
4027
            assert isinstance(v, Variable)
4028
            new_p = None
L
Leo Chen 已提交
4029
            if in_dygraph_mode():
4030 4031 4032 4033 4034 4035 4036 4037 4038 4039
                new_p = EagerParamBase(shape=v.shape,
                                       dtype=v.dtype,
                                       type=v.type,
                                       lod_level=v.lod_level,
                                       stop_gradient=p.stop_gradient,
                                       trainable=p.trainable,
                                       optimize_attr=p.optimize_attr,
                                       regularizer=p.regularizer,
                                       error_clip=p.error_clip,
                                       name=v.name)
4040
            else:
J
Jiabin Yang 已提交
4041
                if _in_legacy_dygraph():
4042 4043 4044 4045 4046 4047 4048 4049 4050 4051
                    new_p = ParamBase(shape=v.shape,
                                      dtype=v.dtype,
                                      type=v.type,
                                      lod_level=v.lod_level,
                                      stop_gradient=p.stop_gradient,
                                      trainable=p.trainable,
                                      optimize_attr=p.optimize_attr,
                                      regularizer=p.regularizer,
                                      error_clip=p.error_clip,
                                      name=v.name)
J
Jiabin Yang 已提交
4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065
                else:
                    new_p = Parameter(
                        block=self,
                        shape=v.shape,
                        dtype=v.dtype,
                        type=v.type,
                        lod_level=v.lod_level
                        if v.type == core.VarDesc.VarType.LOD_TENSOR else None,
                        stop_gradient=p.stop_gradient,
                        trainable=p.trainable,
                        optimize_attr=p.optimize_attr,
                        regularizer=p.regularizer,
                        error_clip=p.error_clip,
                        name=v.name)
4066 4067
            self.vars[new_p.name] = new_p

4068
    def _clone_variable(self, var, force_persistable=True):
4069 4070
        """
        Clone a variable into current block.
4071

4072 4073
        Args:
            var: the variable to be cloned.
4074 4075 4076
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
4077 4078

        Returns:
4079
            Variable: the new  variable cloned from 'var' in current block.
4080 4081
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
4082 4083 4084
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
4085 4086 4087
            ret_var = self.create_var(name=var.name,
                                      persistable=var.persistable,
                                      type=var.type)
T
tangwei12 已提交
4088
        elif var.type == core.VarDesc.VarType.RAW:
4089 4090 4091
            ret_var = self.create_var(name=var.name,
                                      persistable=var.persistable,
                                      type=var.type)
T
typhoonzero 已提交
4092 4093 4094 4095 4096 4097
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
4098
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
4099 4100
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
4101 4102 4103 4104 4105 4106 4107
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
4108
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
4109 4110
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
4111
        return ret_var
4112

Y
Yu Yang 已提交
4113

4114 4115 4116 4117
# NOTE(zjl): you should be careful that after you call this method,
# some Python Variable and all Python Operators should not be used
# again. Because all Python Variables and all Python Operators are
# re-constructed inside this method. The underlying VarDesc(OpDesc)
4118
# of some old Python Variables(all old Python Operators) may have
4119
# been destructed.
4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135
def _apply_pass(main_program,
                startup_program,
                pass_name,
                pass_attrs={},
                pass_attr_types={}):
    assert isinstance(pass_attrs, dict), "pass_attrs must be dict"
    assert isinstance(pass_attr_types, dict), "pass_attr_types must be dict"
    tmp_main_program = core.ProgramDesc(main_program.desc)
    tmp_startup_program = core.ProgramDesc(startup_program.desc)
    attrs = core.apply_pass(tmp_main_program, tmp_startup_program, pass_name,
                            pass_attrs, pass_attr_types)
    main_program._rebuild_from_desc(tmp_main_program)
    startup_program._rebuild_from_desc(tmp_startup_program)
    return attrs


4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node,
                          core.Node), 'node must be the instance of core.Node.'
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

4231
    def remove_input_by_id(self, node_id):
4232 4233 4234 4235 4236 4237
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
4238
        self.node.remove_input(node_id)
4239

4240
    def remove_input(self, node):
4241 4242 4243 4244
        """
        Remove a node from inputs.

        Args:
4245
            node(IrNode): the node being removed.
4246
        """
4247
        self.node.remove_input(node.node)
4248

4249
    def append_input(self, node):
4250 4251 4252 4253
        """
        Append a node in inputs.

        Args:
4254
            node(IrNode): the node being appended.
4255
        """
4256
        self.node.append_input(node.node)
4257 4258 4259 4260 4261 4262 4263 4264

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

4265
    def remove_output_by_id(self, node_id):
4266 4267 4268 4269 4270 4271
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
4272
        self.node.remove_output(node_id)
4273

4274
    def remove_output(self, node):
4275 4276 4277 4278
        """
        Remove a node from outputs.

        Args:
4279
            node(IrNode): the node being removed.
4280
        """
4281
        self.node.remove_output(node.node)
4282

4283
    def append_output(self, node):
4284 4285 4286 4287
        """
        Append a node in outputs.

        Args:
4288
            node(IrNode): the node being appended.
4289
        """
4290
        self.node.append_output(node.node)
4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_var(), \
            'node must be the instance of core.Node and it must be a variable node.'
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
4338
            "The node variable description can not be None."
4339 4340 4341 4342 4343 4344 4345 4346 4347 4348
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
4349
            "The node variable description can not be None."
4350 4351
        return self.node.var().persistable()

4352 4353 4354 4355 4356 4357 4358 4359
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
4360
            "The node variable description can not be None."
4361 4362 4363 4364 4365 4366 4367 4368 4369 4370
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
4371
            "The node variable description can not be None."
4372 4373 4374 4375 4376 4377 4378 4379 4380 4381
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
4382
            "The node variable description can not be None."
4383 4384
        return self.node.var().shape()

4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_op(), \
            'node must be the instance of core.Node and it must be a operator node.'
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4432
            "The node operator description can not be None."
4433 4434
        self.node.op()._rename_input(old_input_name, new_input_name)

4435 4436 4437 4438 4439 4440 4441 4442 4443
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4444
            "The node operator description can not be None."
4445 4446
        self.node.op()._rename_output(old_output_name, new_output_name)

4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4458
            "The node operator description can not be None."
4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4472
            "The node operator description can not be None."
4473 4474 4475 4476 4477 4478 4479 4480 4481 4482
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4483
            "The node operator description can not be None."
4484 4485
        return self.node.op().set_type(new_type)

4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4501
            "The node operator description can not be None."
4502
        desc = self.node.op()
4503 4504 4505 4506 4507
        if isinstance(val, Variable):
            desc.set_var_attr(name, val.desc)
        elif isinstance(val, list) and _all_is_type(val, Variable):
            desc.set_vars_attr(name, [v.desc for v in val])
        elif isinstance(val, Block):
4508
            desc.set_block_attr(name, val.desc)
4509
        elif isinstance(val, list) and val and _all_is_type(val, Block):
4510 4511
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
4512
                isinstance(val, core.ProgramDesc):
4513 4514 4515 4516
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

4517 4518 4519 4520 4521 4522 4523 4524
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4525
            "The node operator description can not be None."
4526 4527 4528 4529 4530 4531 4532 4533 4534 4535
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4536
            "The node operator description can not be None."
4537 4538
        return self.node.op().output_arg_names()

4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


4560 4561
class IrGraph(object):
    """
4562
    Python IrGraph. Beneath it is a core.Graph, which is used for
4563
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
4564 4565
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
4566 4567 4568 4569
    """

    def __init__(self, graph, for_test=False):
        """
4570 4571
        Construct an IrGraph using core.Graph.

4572 4573 4574 4575 4576 4577 4578 4579 4580
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

4581 4582 4583 4584
    def clone(self):
        """
        Create a new and duplicated IrGraph.

4585 4586 4587
        Warns:
            The method only clones the graph structure, not its attributes.

4588 4589 4590
        Returns:
            IrGraph: A new and duplicated graph.
        """
4591
        g = self.graph.clone()
4592 4593
        return IrGraph(g, self._for_test)

4594
    def is_test(self):
4595 4596 4597
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
4598 4599
        return self._for_test

W
WangZhen 已提交
4600
    def all_nodes(self):
4601 4602 4603
        """
        Return all nodes included in the graph as a set.
        """
4604
        return {IrNode(node) for node in self.graph.nodes()}
4605

4606
    def all_var_nodes(self):
4607 4608 4609
        """
        Return all variable nodes included in the graph as a set.
        """
4610
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
4611

4612
    def all_persistable_nodes(self):
4613 4614 4615
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
4616 4617 4618 4619 4620
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
4621
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
4622

4623
    def all_op_nodes(self):
4624 4625 4626
        """
        Return all operator nodes included in the graph as a set.
        """
4627
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
4628

4629 4630 4631 4632 4633 4634
    def all_sub_graphs(self, for_test=False):
        """
        Return all sub_graphs included in the main graph as a set.
        """

        return [
4635
            IrGraph(self.graph.get_sub_graph(i), for_test=for_test)
4636 4637 4638 4639 4640 4641 4642 4643 4644
            for i in range(self.graph.sub_graph_size())
        ]

    def get_sub_graph(self, i, for_test=False):
        """
        Return i-th sub_graph in the main graph.
        """
        return IrGraph(self.graph.get_sub_graph(i), for_test=for_test)

4645
    def create_persistable_node(self, name, var_type, shape, var_dtype):
4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
4657
            IrVarNode: the created persistable variable node.
4658
        """
4659 4660 4661 4662 4663
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
4664
        return IrVarNode(self.graph.create_var_node(var_desc))
4665 4666

    def create_var_node(self, name, var_type, shape, var_dtype):
4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
4678
            IrVarNode: the created variable node.
4679 4680
        """

4681 4682 4683 4684
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
4685
        return IrVarNode(self.graph.create_var_node(var_desc))
4686

4687 4688 4689 4690 4691 4692
    def create_control_dep_var(self):
        """
        create a control var
        """
        return IrVarNode(self.graph.create_control_dep_var())

4693
    def create_var_node_from_desc(self, var_desc):
4694 4695 4696 4697 4698 4699 4700 4701
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
4702
            IrVarNode: the created variable node.
4703
        """
4704
        return IrVarNode(self.graph.create_var_node(var_desc))
4705 4706

    def create_op_node(self, op_type, attrs, inputs, outputs):
4707 4708 4709 4710 4711 4712 4713
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
T
tianshuo78520a 已提交
4714
            outputs(dict): the outputs of the operator node.
4715 4716

        Returns:
4717
            IrOpNode: the created operator node.
4718
        """
4719 4720
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
4721
        for attr, value in six.iteritems(attrs):
4722
            self._update_desc_attr(op_desc, attr, value)
4723
        for input_name, var_nodes in six.iteritems(inputs):
4724 4725 4726 4727
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
4728
        for output_name, var_nodes in six.iteritems(outputs):
4729 4730 4731 4732
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
4733
        return IrOpNode(self.graph.create_op_node(op_desc))
4734 4735

    def create_op_node_from_desc(self, op_desc):
4736 4737 4738 4739 4740 4741 4742
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
4743
            IrOpNode: the created operator node.
4744
        """
4745
        return IrOpNode(self.graph.create_op_node(op_desc))
4746 4747

    def update_input_link(self, old_input_node, new_input_node, op_node):
4748 4749 4750 4751
        """
        Update the input's link of a operator node.

        Args:
4752 4753 4754
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
4755
        """
4756
        assert old_input_node.node in self.graph.nodes() and new_input_node.node in \
T
tangwei12 已提交
4757
            self.graph.nodes() and op_node.node in self.graph.nodes(), \
4758
            'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
4759 4760 4761 4762
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
4763
        op_node.rename_input(old_input_node.name(), new_input_node.name())
4764

4765 4766 4767 4768 4769 4770 4771 4772 4773 4774
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
        assert old_output_node.node in self.graph.nodes() and new_output_node.node in \
T
tangwei12 已提交
4775
            self.graph.nodes() and op_node.node in self.graph.nodes(), \
4776
            'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
4777 4778 4779 4780 4781 4782
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

4783
    def link_to(self, node_in, node_out):
4784 4785 4786 4787
        """
        Connect two nodes.

        Args:
4788 4789
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
4790
        """
4791 4792 4793 4794
        assert node_in.node in self.graph.nodes(), (
            'node_in(%s) must be in the graph nodes.' % node_in.node.name())
        assert node_out.node in self.graph.nodes(), (
            'node_out(%s) must be in the graph nodes.' % node_out.node.name())
4795 4796
        node_in.append_output(node_out)
        node_out.append_input(node_in)
4797 4798

    def safe_remove_nodes(self, remove_nodes):
4799 4800 4801 4802 4803 4804 4805
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
4806
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
4807 4808 4809 4810
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
4811 4812
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
4813

Z
Zhen Wang 已提交
4814 4815 4816 4817 4818 4819 4820 4821
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
4822
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
4823 4824 4825 4826
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
4827
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
4828 4829 4830
                        ]
                    else:
                        var_nodes[each_var_name].append(
4831 4832
                            self._find_node_by_name(node.outputs,
                                                    each_var_name))
Z
Zhen Wang 已提交
4833 4834
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
4835
    def has_circle(self):
4836 4837 4838 4839 4840 4841
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
4842 4843 4844
        return core.has_circle(self.graph)

    def graph_num(self):
4845 4846 4847 4848 4849 4850
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
4851 4852 4853
        return core.graph_num(self.graph)

    def topology_sort(self):
4854 4855 4856
        """
        Perform the topology sort operation on the graph.

T
tianshuo78520a 已提交
4857
        Notes: the `graph` can not contain a circle.
4858 4859

        Returns:
Z
Zhen Wang 已提交
4860
            list(IrNode): nodes in topology order.
4861
        """
4862
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
4863
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
4864 4865

    def build_adjacency_list(self):
4866 4867 4868 4869
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
4870
            dict{IrNode: set(IrNode)}: the adjacency list.
4871
        """
4872 4873 4874 4875 4876
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
4877

4878 4879 4880 4881 4882 4883 4884 4885
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
4886
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
4887 4888 4889 4890 4891
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

4892 4893
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
4894 4895 4896
            exited_code = subprocess.call('dot -Tpdf ' + dot_file_path +
                                          ' -o ' + pdf_save_path,
                                          shell=True)
4897 4898 4899 4900 4901
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

4902
        remove_ctr_vars = set()
4903
        if remove_ctr_var:
4904
            for node in self.all_var_nodes():
4905 4906 4907
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
4908 4909
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

4910 4911
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
4912 4913 4914 4915 4916 4917
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
4918 4919 4920 4921
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
4922 4923
        if not os.path.exists(save_path):
            os.makedirs(save_path)
4924 4925 4926 4927 4928 4929 4930
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
4931 4932 4933
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
4934
        WARN: When the graph includes backward operator nodes, the
4935 4936 4937 4938 4939 4940
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
4941
        convert_pass = core.get_pass('graph_to_program_pass')
4942 4943
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
4944 4945 4946 4947
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

4948 4949 4950 4951 4952 4953 4954 4955
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
4956 4957
        assert target_node is not None, (
            "Cannot find the target node (%s)in the giving set." % node_name)
4958 4959
        return target_node

4960 4961 4962 4963
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
4964 4965 4966 4967 4968
        if isinstance(val, Variable):
            desc.set_var_attr(name, val.desc)
        elif isinstance(val, list) and _all_is_type(val, Variable):
            desc.set_vars_attr(name, [v.desc for v in val])
        elif isinstance(val, Block):
4969
            desc.set_block_attr(name, val.desc)
4970
        elif isinstance(val, list) and val and _all_is_type(val, Block):
4971 4972 4973 4974 4975 4976 4977 4978
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
4979
class Program(object):
D
dzhwinter 已提交
4980
    """
4981
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
4982
    control flow op like conditional_block, while :ref:`api_paddle_fluid_layers_While` is included,
J
Jiabin Yang 已提交
4983
    it will contain nested block.
4984

J
Jiabin Yang 已提交
4985 4986 4987
    Please reference the
    `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_
    for details.
D
dzhwinter 已提交
4988

J
Jiabin Yang 已提交
4989
    A set of Program usually contains startup program and main program.
J
Jiabin Yang 已提交
4990
    A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main
J
Jiabin Yang 已提交
4991 4992 4993 4994 4995 4996 4997
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

J
Jiabin Yang 已提交
4998
    **Notes**:
4999 5000 5001
        **we have** :ref:`api_paddle_fluid_framework_default_startup_program` **and** :ref:`api_paddle_fluid_framework_default_main_program`
        **by default, a pair of them will shared the parameters. The** :ref:`api_paddle_fluid_framework_default_startup_program` **only run once to initialize parameters,**
        :ref:`api_paddle_fluid_framework_default_main_program` **run in every mini batch and adjust the weights.**
D
dzhwinter 已提交
5002 5003

    Returns:
J
Jiabin Yang 已提交
5004
        Program: An empty Program.
D
dzhwinter 已提交
5005 5006

    Examples:
5007 5008
        .. code-block:: python

5009 5010 5011 5012
            import paddle
            import paddle.static as static

            paddle.enable_static()
5013

5014 5015 5016 5017 5018
            main_program = static.Program()
            startup_program = static.Program()
            with static.program_guard(main_program=main_program, startup_program=startup_program):
                x = static.data(name="x", shape=[-1, 784], dtype='float32')
                y = static.data(name="y", shape=[-1, 1], dtype='int32')
5019
                z = static.nn.fc(name="fc", x=x, size=10, activation="relu")
5020 5021 5022

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
5023 5024 5025

    """

5026 5027
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
5028 5029
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
5030 5031
        global global_prog_seed
        self._seed = global_prog_seed
Y
yuyang18 已提交
5032
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
5033
        self.__op_role_var = []
T
tangwei12 已提交
5034

5035 5036
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
5037
        self._is_distributed = False
5038
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
5039
        self._is_chief = False
5040 5041 5042
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
5043
        self._endpoints = []
5044 5045 5046
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
5047
        self._trainers_endpoints = []
5048
        # the distributed lookup table names
T
tangwei12 已提交
5049
        self._distributed_lookup_table = None
5050 5051 5052

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
5053 5054
        self._use_lamb = False

5055 5056 5057
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
5058

5059 5060 5061
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
5062
        self._program_config = None
5063

H
hutuxian 已提交
5064 5065 5066
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

5067 5068 5069
        # assigned if this program has been parsed by a heter pipeline parameter server optimizer
        self._heter_pipeline_opt = None

5070 5071 5072
        # appending gradients times
        self._appending_grad_times = 0

5073 5074 5075 5076
        # identifier for auto checkpoint
        self._auto_checkpoint_name = unique_name.generate(
            "__auto_checkpoint_program__")

5077 5078
        # compiled program, i.e. Graph
        self._graph = None
5079 5080
        # to tag whether is startup_program
        self._is_start_up_program_ = False
5081

5082
    def _find_var_class_kwargs(self, new_desc):
5083 5084 5085 5086 5087 5088 5089 5090
        # NOTE: not all variables support shape/dtype/lod_level methods.
        # For example: RAW, STEP_SCOPES, etc.
        def get_var_desc_attr_or_none(var_desc, attr_name, allowed_types):
            if var_desc.type() in allowed_types:
                return getattr(var_desc, attr_name)()
            else:
                return None

5091 5092 5093 5094
        old_desc = self.desc
        all_new_vars = []
        block_num = new_desc.num_blocks()
        for idx in range(block_num):
5095 5096
            if (idx > (len(self.blocks) - 1)):
                self._create_block()
5097 5098 5099 5100 5101 5102 5103 5104 5105 5106
            new_block_desc = new_desc.block(idx)
            all_new_vars.append([])
            block_new_vars = all_new_vars[-1]
            for new_var_desc in new_block_desc.all_vars():
                if self.blocks[idx].has_var(new_var_desc.name()):
                    old_var = self.blocks[idx].var(new_var_desc.name())
                else:
                    old_var = None

                kwargs = {
5107 5108 5109 5110 5111 5112
                    'type':
                    new_var_desc.type(),
                    'name':
                    new_var_desc.name(),
                    'shape':
                    get_var_desc_attr_or_none(new_var_desc, "shape", [
5113 5114 5115 5116
                        core.VarDesc.VarType.LOD_TENSOR,
                        core.VarDesc.VarType.SELECTED_ROWS,
                        core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                    ]),
5117 5118
                    'dtype':
                    get_var_desc_attr_or_none(new_var_desc, "dtype", [
5119 5120 5121 5122 5123 5124 5125 5126 5127
                        core.VarDesc.VarType.LOD_TENSOR,
                        core.VarDesc.VarType.SELECTED_ROWS,
                        core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                    ]),
                    'lod_level':
                    get_var_desc_attr_or_none(new_var_desc, "lod_level", [
                        core.VarDesc.VarType.LOD_TENSOR,
                        core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                    ]),
5128 5129 5130 5131 5132 5133 5134 5135 5136 5137
                    'error_clip':
                    old_var.error_clip if old_var is not None else None,
                    'stop_gradient':
                    old_var.stop_gradient if old_var is not None else False,
                    'is_data':
                    old_var.is_data if old_var is not None else False,
                    'need_check_feed':
                    new_var_desc.need_check_feed(),
                    'belong_to_optimizer':
                    old_var.belong_to_optimizer
5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167
                    if old_var is not None else False,
                }

                if isinstance(old_var, Parameter):
                    kwargs.update({
                        'trainable': old_var.trainable,
                        'optimize_attr': old_var.optimize_attr,
                        'regularizer': old_var.regularizer,
                        'do_model_average': old_var.do_model_average,
                        'need_clip': old_var.need_clip,
                        'is_distributed': old_var.is_distributed,
                        'is_parameter': old_var.is_parameter,
                    })
                    block_new_vars.append({
                        'class': Parameter,
                        'kwargs': copy.deepcopy(kwargs),
                    })
                else:
                    kwargs['persistable'] = new_var_desc.persistable()
                    block_new_vars.append({
                        'class': Variable,
                        'kwargs': copy.deepcopy(kwargs),
                    })

        return all_new_vars

    def _rebuild_from_desc(self, desc):
        all_new_vars = self._find_var_class_kwargs(desc)
        block_num = desc.num_blocks()
        assert block_num == len(all_new_vars)
5168
        assert block_num == self.desc.num_blocks()
5169 5170

        # clear old blocks and desc
5171 5172 5173 5174 5175 5176 5177 5178 5179
        for idx in range(block_num):
            block = self.blocks[idx]
            block.vars.clear()
            block.ops.clear()

        for idx in range(block_num):
            block_desc = self.blocks[idx].desc
            new_block_desc = desc.block(idx)
            block_desc._move_from(new_block_desc)
5180

5181
        del desc
5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200

        # add new vars first
        for idx in range(block_num):
            block = self.blocks[idx]
            for new_var in all_new_vars[idx]:
                clazz = new_var['class']
                kwargs = new_var['kwargs']
                kwargs['block'] = block
                clazz(**kwargs)

        # then append op
        for idx in range(block_num):
            block = self.blocks[idx]
            block_desc = self.desc.block(idx)
            for op_idx in range(block_desc.op_size()):
                op_desc = block_desc.op(op_idx)
                op = Operator(block=block, desc=op_desc)
                block.ops.append(op)

5201 5202 5203 5204 5205 5206 5207 5208 5209 5210
    def global_seed(self, seed=0):
        """
        Set global seed for Program

        Returns:
            None.

        Examples:
            .. code-block:: python

5211 5212
                import paddle
                import paddle.static as static
5213

5214 5215 5216
                paddle.enable_static()

                prog = static.default_main_program()
5217 5218 5219 5220 5221
                print(prog.random_seed)
                ## 0
                ## the default random seed is 0

                prog.global_seed(102)
5222
                prog1 = static.default_main_program()
5223 5224 5225 5226 5227 5228 5229 5230
                print(prog1.random_seed)
                ## 102
                ## the random seed is 102
        """
        global global_prog_seed
        global_prog_seed = seed
        self._seed = global_prog_seed

Y
yuyang18 已提交
5231
    @property
5232
    def _op_role(self):
Y
yuyang18 已提交
5233 5234 5235 5236 5237 5238 5239 5240
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
5241
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
5242 5243 5244 5245
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
5246 5247
        return self._current_role

5248 5249
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
5250 5251 5252
        self._current_role = role

    @property
5253
    def _op_role_var(self):
Y
yuyang18 已提交
5254
        """
5255
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
5256

5257
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
5258 5259 5260

        Notes: This is a very low-level API. Users should not use it directly.
        """
5261
        return self.__op_role_var
Y
yuyang18 已提交
5262

5263
    @signature_safe_contextmanager
5264 5265 5266 5267 5268
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
5269 5270 5271 5272
        try:
            yield
        finally:
            self._current_role = tmp_role
5273

S
rename  
sneaxiy 已提交
5274
    @signature_safe_contextmanager
W
Wu Yi 已提交
5275
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
5276 5277 5278 5279 5280 5281 5282
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
5283
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
5284 5285 5286

        Examples:

5287
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
5288
            >>> p, g = backward(...)
W
Wu Yi 已提交
5289
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
5290 5291
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
5292
        tmp_role = self._current_role
5293
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
5294

Y
yuyang18 已提交
5295 5296
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
5297
        self.__op_role_var = [
5298 5299 5300
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
5301 5302 5303 5304 5305
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
Y
Yu Yang 已提交
5306

S
rename  
sneaxiy 已提交
5307
    @signature_safe_contextmanager
X
Xin Pan 已提交
5308
    def _lr_schedule_guard(self, is_with_opt=False):
5309 5310 5311 5312 5313 5314 5315
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
5316 5317 5318 5319
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
5320 5321 5322

        Examples:

5323
            >>> import paddle.fluid as fluid
5324 5325 5326 5327
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
5328 5329

        tmp_role = self._current_role
5330
        tmp_var = self.__op_role_var
5331

5332 5333
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
5334 5335
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
5336
        # TODO(typhoonzero): how to set target learning rate var
5337
        self.__op_role_var = []
5338 5339 5340 5341 5342
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
5343

5344
    def __str__(self):
Y
yuyang18 已提交
5345 5346 5347 5348 5349 5350 5351 5352 5353
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Program.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Program string.

        Examples:
            .. code-block:: python

5374 5375
            import paddle
            import paddle.static as static
5376

5377 5378 5379
            paddle.enable_static()

            cur_program = static.Program()
5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_program._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
5391
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
5392 5393 5394 5395
            type(skip_op_callstack))
        program_str = ""
        for block in self.blocks:
            program_str += block._to_readable_code(skip_op_callstack)
5396
            program_str += '\n'
5397
        return program_str
Y
Yang Yang(Tony) 已提交
5398

F
fengjiayi 已提交
5399 5400 5401
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
5402

J
Jiabin Yang 已提交
5403 5404 5405
        Args:

            throw_on_error (bool): raise Value error when any of required fields is not set.
F
fengjiayi 已提交
5406

J
Jiabin Yang 已提交
5407
            with_details (bool): True if more details about variables and parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need to print.
Y
yuyang18 已提交
5408

H
haowang101779990 已提交
5409
        Returns:
J
Jiabin Yang 已提交
5410
            str: The debug string describe current Program.
Y
yuyang18 已提交
5411 5412

        Raises:
J
Jiabin Yang 已提交
5413
            ValueError: If any of required fields is not set and throw_on_error is True.
F
fengjiayi 已提交
5414

5415 5416 5417
        Examples:
            .. code-block:: python

5418 5419 5420 5421
                import paddle
                import paddle.static as static

                paddle.enable_static()
5422

5423 5424 5425
                prog = static.default_main_program()
                x = static.data(name="X", shape=[2,3], dtype="float32")
                pred = static.nn.fc(x, size=3)
5426
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
5427
                prog_string_with_details = prog.to_string(throw_on_error=False, with_details=True)
T
tianshuo78520a 已提交
5428
                print("program string without detail: {}".format(prog_string))
5429
                print("program string with detail: {}".format(prog_string_with_details))
F
fengjiayi 已提交
5430
        """
5431 5432 5433 5434 5435 5436 5437 5438 5439
        assert isinstance(
            throw_on_error, bool
        ), "The type of throw_on_error parameter is wrong, expected bool, but received {}.".format(
            type(throw_on_error))
        assert isinstance(
            with_details, bool
        ), "The type of with_details parameter is wrong, expected bool, but received {}.".format(
            type(with_details))

F
fengjiayi 已提交
5440 5441 5442 5443 5444 5445
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
5446 5447
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
5448 5449
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
5450

W
Wu Yi 已提交
5451
    def _get_desc(self):
Y
yuyang18 已提交
5452 5453 5454 5455 5456 5457 5458
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
5459 5460
        return self.desc

X
version  
Xin Pan 已提交
5461 5462 5463
    def _version(self):
        return self.desc._version()

5464
    def clone(self, for_test=False):
Y
yuyang18 已提交
5465
        """
5466
        .. note:::
5467 5468
            1. :code:`Program.clone()` method DOES NOT clone :ref:`api_paddle_io_DataLoader` .
            2. Recommend you to use :code:`clone` before using :code:`Opimizer.minimize` .
5469
            3. This API has no effect in Dygraph Mode.
Y
yuyang18 已提交
5470

5471
        Create a new Program with forward content of original one when ``for_test=True``.
5472
        Create a new Program as same as the original one when ``for_test=False``.
5473

5474
        Some operators, e.g., :ref:`api_paddle_fluid_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
5475 5476 5477
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
5478

5479 5480
        * Set for_test to False when you want to clone the program for training.
        * Set for_test to True when you want to clone the program for testing.
5481 5482
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
J
Jiabin Yang 已提交
5483
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`.
Y
yuyang18 已提交
5484

J
Jiabin Yang 已提交
5485
        For Example:
5486
          ::
L
Luo Tao 已提交
5487

5488 5489 5490 5491 5492 5493
            import paddle
            import paddle.static as static

            paddle.enable_static()

            img = static.data(name='image', shape=[None, 784])
5494
            pred = static.nn.fc(x=img, size=10, actvation='relu')
5495
            loss = paddle.mean(pred)
5496
            # Here we use clone before Momentum
5497 5498
            test_program = static.default_main_program().clone(for_test=True)
            optimizer = paddle.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
5499
            optimizer.minimize(loss)
5500

J
Jiabin Yang 已提交
5501
        Args:
5502

5503 5504
            for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True`
                and prune the backward and optimize part of the program. The default value is :code:`False` .
5505

J
Jiabin Yang 已提交
5506
        Returns:
5507
            Program: A new Program with forward content of original one when ``for_test=True``.  A new Program as same as the original one when ``for_test=False``
5508

Y
yuyang18 已提交
5509 5510 5511

        Examples:

5512 5513 5514 5515 5516 5517 5518
            .. note::
                The Program's order maybe different after :code:`clone` and
                this will not affect your training or testing progress. In the following
                example we give you an simple method :code:`print_prog(program)` to
                print Program Descs inorder to make sure you have same print result
                after :code:`clone`:

5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534
            .. code-block:: python

                import six

                def print_prog(prog):
                    for name, value in sorted(six.iteritems(prog.block(0).vars)):
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
                        for key, value in sorted(six.iteritems(op.all_attrs())):
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


5535
            1. To clone a test program, the sample code is:
5536 5537 5538
                .. code-block:: python

                    import six
5539 5540 5541 5542 5543 5544
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

5557 5558
                    train_program = static.Program()
                    startup_program = static.Program()
J
Jiabin Yang 已提交
5559 5560 5561

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
5562 5563 5564
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            img = static.data(name='image', shape=[None, 784])
5565
                            hidden = static.nn.fc(x=img, size=200, activation='relu')
5566 5567
                            hidden = F.dropout(hidden, p=0.5)
                            loss = F.cross_entropy(
5568
                                input=static.nn.fc(x=hidden, size=10, activation='softmax'),
5569 5570
                                label=static.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = paddle.mean(loss)
5571
                            test_program = train_program.clone(for_test=True)
5572
                    print_prog(test_program)
J
Jiabin Yang 已提交
5573 5574 5575 5576

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

5577
                    # In Paddle we will share weights by using the same Tensor name. In train and test program
J
Jiabin Yang 已提交
5578 5579 5580 5581
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

5582 5583 5584
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
5585 5586 5587
                            sgd.minimize(avg_loss)


5588
            2. The clone method can be avoid if you create program for training and program for testing individually.
5589 5590 5591
                .. code-block:: python

                    import six
5592 5593 5594 5595 5596 5597
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
5609

5610
                    def network():
5611
                        img = static.data(name='image', shape=[None, 784])
5612
                        hidden = static.nn.fc(x=img, size=200, activation='relu')
5613 5614
                        hidden = F.dropout(hidden, p=0.5)
                        loss = F.cross_entropy(
5615
                            input=static.nn.fc(x=hidden, size=10, activation='softmax'),
5616 5617
                            label=static.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = paddle.mean(loss)
5618 5619
                        return avg_loss

5620 5621 5622 5623 5624
                    train_program_2 = static.Program()
                    startup_program_2 = static.Program()
                    test_program_2 = static.Program()
                    with static.program_guard(train_program_2, startup_program_2):
                        with utils.unique_name.guard():
5625
                            avg_loss = network()
5626
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
5627
                            sgd.minimize(avg_loss)
5628
                    # the test startup program is not used.
5629 5630
                    with static.program_guard(test_program_2, startup_program_2):
                        with utils.unique_name.guard():
5631 5632
                            avg_loss = network()
                    print_prog(test_program_2)
5633

5634
            The two code snippets above will generate and print same programs.
5635
        """
5636

T
tangwei12 已提交
5637
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
5638 5639 5640
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

5641
        pruned_origin_block_id_map = None
5642
        if for_test:
5643 5644 5645 5646 5647 5648 5649 5650 5651
            forward_prog = Program()
            forward_prog.desc, pruned_origin_block_id_map = core.prune_backward(
                self.desc)
            forward_prog.blocks = [
                Block(forward_prog, i)
                for i in six.moves.range(forward_prog.desc.num_blocks())
            ]
            forward_prog._sync_with_cpp()
            p = forward_prog._inference_optimize(prune_read_op=False)
5652
        else:
5653
            p = Program()
G
gongweibao 已提交
5654 5655
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
5656
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
5657 5658 5659
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
5660 5661

            p._current_role = self._current_role
5662
            p.__op_role_var = self.__op_role_var
5663
            p._appending_grad_times = self._appending_grad_times
5664 5665
            if hasattr(self, 'lr_sheduler'):
                p.lr_sheduler = self.lr_sheduler
G
gongweibao 已提交
5666

T
tangwei12 已提交
5667
            # NOTE(zhiqiu): we sync the cloned program, to update its program by
5668
            # its desc.
W
Wu Yi 已提交
5669
            p._sync_with_cpp()
5670

W
Wu Yi 已提交
5671
        p._copy_param_info_from(self)
5672
        p._copy_data_info_from(self, pruned_origin_block_id_map)
5673
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
5674
        return p
5675

5676
    def _prune(self, targets):
Y
yuyang18 已提交
5677 5678 5679 5680 5681 5682 5683 5684
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
5685
            targets(list|Variable|Operator): A list of variables, operators, or variable names
Y
yuyang18 已提交
5686 5687 5688 5689
                need to be pruned

        Returns:
            Program:  A new, pruned program.
5690
        """
5691
        return self._prune_with_input([], targets)
5692 5693

    def _prune_with_input(self, feeded_var_names, targets):
Y
yuyang18 已提交
5694
        """
5695
        Prune operators and variables which are not needed to generate
5696 5697
        :code:`targets`. Prune operators and variables which are needed
        to generate feeded_var
5698 5699 5700 5701 5702 5703 5704

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            feeded_var_names(list|str): A list of variable names from where
                pruning start. If it is set as [], this API works just like _prune()
5705
            targets(list|Variable|Operator): A list of variables, operators, or variable names
5706 5707 5708 5709 5710 5711
                need to be pruned

        Returns:
            Program:  A new, pruned program.
        """

T
tangwei12 已提交
5712
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
5713 5714 5715
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

5716 5717
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
5718 5719
        if not isinstance(targets, list):
            targets = [targets]
5720 5721 5722

        for var in feeded_var_names:
            if not isinstance(var, six.string_types):
5723 5724 5725
                raise ValueError(
                    "All feeded_var_names of Program._prune_with_input() can only be "
                    "str, but received %s." % type(var))
5726

5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742
        # find out all variables that can be generated or updated with given feed
        generatable_vars = set()

        for idx, op in enumerate(self.global_block().ops):
            runnable_op = True
            for name in op.input_arg_names:
                if not self.global_block().has_var(name):
                    continue
                if self.global_block().var(name).persistable:
                    continue
                if name not in generatable_vars.union(feeded_var_names):
                    runnable_op = False
                    break
            if runnable_op:
                generatable_vars = generatable_vars.union(op.output_arg_names)

5743 5744 5745 5746
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
5747 5748 5749
                    name = t.name
                elif isinstance(t, six.string_types):
                    name = str(t)
5750
                else:
5751 5752 5753
                    raise ValueError(
                        "All targets of Program._prune_with_input() can only be "
                        "Variable or Operator, but received %s." % type(t))
5754 5755 5756 5757 5758 5759

                # NOTEZ(zhiqiu): For variable to be fed in fetch_list, there two cases:
                # (1) the variable is leaf, it has no op that generates it;
                # (2) the variable is not leaf, and we need to prune the op that generates it.
                # In both cases, wo can just skip target_op of that it.
                if name in feeded_var_names:
5760 5761 5762
                    # however if the var is also updated by a runnable op, will shall keep it
                    if name not in generatable_vars:
                        continue
5763

5764 5765 5766 5767 5768 5769 5770 5771 5772
                # After transpiler processing, the op that output this
                # variable maybe has been changed, so t.op is not reliable
                # and we need to find the current op that generate this
                # variable here.
                target_op = None
                global_block = self.global_block()
                for idx, op in enumerate(global_block.ops):
                    if name in op.output_arg_names:
                        # NOTE(zhiqiu): Find op that generate target name.
T
tangwei12 已提交
5773
                        # Skip optimize op except for optimize op in targets,
5774 5775 5776 5777 5778
                        # since optimize op generates parameters.
                        if op._is_optimize_op() and op not in targets:
                            continue
                        else:
                            target_op = op
5779

5780
                if target_op is not None:
5781 5782 5783
                    targets_idx.append([target_op.block.idx, target_op.idx])
            else:
                targets_idx.append([t.block.idx, t.idx])
5784

5785
        res = Program()
5786 5787
        res.desc, pruned_origin_block_id_map = core.prune(
            self.desc, set(feeded_var_names), targets_idx)
M
minqiyang 已提交
5788 5789 5790
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
5791
        res._sync_with_cpp()
5792 5793 5794 5795 5796

        res._copy_param_info_from(self)
        res._copy_data_info_from(self, pruned_origin_block_id_map)
        res._copy_dist_param_info_from(self)

5797 5798
        return res

X
Xin Pan 已提交
5799
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
5800
        """
F
fengjiayi 已提交
5801 5802 5803 5804 5805
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

5806
        3. change the :code:`is_test`
Y
yuyang18 已提交
5807 5808 5809
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

5810
        Args:
X
Xin Pan 已提交
5811 5812
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
5813

Y
yuyang18 已提交
5814 5815 5816 5817 5818 5819
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
5820
        res = Program()
5821
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
5822 5823 5824 5825

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
5826
        if prune_read_op:
5827 5828 5829 5830 5831 5832 5833 5834 5835
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
5836
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
5837 5838

        # change all `is_test` attributes to True
M
minqiyang 已提交
5839
        for i in six.moves.range(res.desc.num_blocks()):
5840
            block = res.desc.block(i)
M
minqiyang 已提交
5841
            for j in six.moves.range(block.op_size()):
5842 5843
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
5844
                    op._set_attr('is_test', True)
5845 5846 5847
                if op.type() == "batch_norm":
                    # Remove the output ReserveSpace of batch_norm if exists.
                    op.remove_output("ReserveSpace")
M
minqiyang 已提交
5848 5849 5850
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
5851
        res._sync_with_cpp()
5852 5853
        return res

5854
    def _remove_training_info(self, clip_extra=True):
5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873
        """
        This method will create a new program and do following adjustments on it:
        1. Remove all variable's `is_parameter` attribute if exist.

        2. Remove all variable's `stop_gradient` attribute if exist.

        Notes: This API is a very low level API.

        Returns:
            Program: The new program.
        """
        res = Program()
        res.desc = core.ProgramDesc(self.desc)

        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
        res._sync_with_cpp()

5874 5875
        # Note: The op_role and op_role_var cann't be deleted currently,
        # and we will try to remove them in the future.
5876 5877 5878
        common_clipped_attrs_list = [
            'op_namescope', 'op_callstack', 'op_device', 'with_quant_attr'
        ]
5879

5880 5881 5882 5883 5884
        for i in six.moves.range(res.desc.num_blocks()):
            block = res.desc.block(i)
            for var in block.all_vars():
                var.clear_is_parameter()
                var.clear_stop_gradient()
5885 5886
            if not clip_extra:
                continue
5887 5888 5889 5890
            for op_idx in range(0, block.op_size()):
                op = block.op(op_idx)
                if op.type() not in OpProtoHolder.instance().op_proto_map:
                    continue
5891 5892 5893

                extra_attrs_map = core.get_op_extra_attrs(op.type())

5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906
                proto = OpProtoHolder.instance().get_op_proto(op.type())
                remove_input_list = []
                for name in op.input_names():
                    find = False
                    for input_proto in proto.inputs:
                        if input_proto.name != name:
                            continue
                        if input_proto.extra:
                            remove_input_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_input_list.append(name)
5907 5908
                for name in remove_input_list:
                    op.remove_input(name)
5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921

                remove_output_list = []
                for name in op.output_names():
                    find = False
                    for output_proto in proto.outputs:
                        if output_proto.name != name:
                            continue
                        if output_proto.extra:
                            remove_output_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_output_list.append(name)
5922 5923
                for name in remove_output_list:
                    op.remove_output(name)
5924

5925
                remove_attr_list = []
5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940
                op_quant_name = core.op_proto_and_checker_maker.kOpWithQuantAttrName(
                )
                quant = bool(op.attr(op_quant_name)
                             ) if op_quant_name in op.attr_names() else False
                quant_attrs = [
                    op_quant_name, "quantization_type", "skip_quant",
                    "activation_bits", "bit_length", "quantize_weight_bits",
                    "weight_quant_scale"
                ]
                for name in op.attr_names():
                    if quant:
                        if name in quant_attrs:
                            continue
                        if name.endswith("_threshold"):
                            continue
5941 5942 5943
                    if len(extra_attrs_map) > 0:
                        if name in extra_attrs_map or name in common_clipped_attrs_list:
                            op.remove_attr(name)
5944
                        continue
5945 5946 5947 5948
                    find = False
                    for attr_proto in proto.attrs:
                        if attr_proto.name != name:
                            continue
5949 5950
                        if attr_proto.extra:
                            remove_attr_list.append(name)
5951 5952 5953 5954 5955 5956
                        find = True
                        break
                    if not find:
                        remove_attr_list.append(name)
                for name in remove_attr_list:
                    op.remove_attr(name)
5957 5958
        return res

5959 5960
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
5961
        """
5962
        .. note::
5963
            1. All information about parameters will be lost after serialization;
5964
            2. This API has no effect in Dygraph mode.
Y
yuyang18 已提交
5965

5966 5967
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
5968

J
Jiabin Yang 已提交
5969
        Args:
Y
yuyang18 已提交
5970

J
Jiabin Yang 已提交
5971
            binary_str_type (str): the binary prootbuf string.
5972

J
Jiabin Yang 已提交
5973 5974
        Returns:
            Program: A deserialized Program.
5975 5976 5977 5978

        Examples:
            .. code-block:: python

5979 5980 5981 5982
                import paddle
                import paddle.static as static

                paddle.enable_static()
5983

5984 5985 5986 5987
                startup_prog = static.Program()
                main_prog = static.Program()
                with static.program_guard(startup_prog, main_prog):
                    x = static.data(name='X', shape=[1000, 784], dtype='float32')
5988

5989
                    y = static.data(name='Y', shape=[784, 100], dtype='float32')
5990

5991
                    z = paddle.matmul(x=x, y=y)
5992

5993 5994
                    binary_str = static.default_main_program().desc.serialize_to_string()
                    prog_restored = static.default_main_program().parse_from_string(binary_str)
5995

5996
                    print(static.default_main_program())
5997
                    print(prog_restored)
Y
yuyang18 已提交
5998
        """
5999 6000
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
6001
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
6002
        p._sync_with_cpp()
6003
        return p
Y
Yu Yang 已提交
6004

6005
    @staticmethod
6006
    def _construct_from_desc(desc):
6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
6022 6023
    @property
    def random_seed(self):
Y
yuyang18 已提交
6024
        """
J
Jiabin Yang 已提交
6025
        The default random seed for random operators in Program. ``0`` means get
Y
yuyang18 已提交
6026 6027
        the random seed from random device.

6028
        .. note::
6029
            It must be set before the operators have been added.
J
Jiabin Yang 已提交
6030 6031 6032

        Returns:
            int64: Random seed in current Program
6033

6034 6035 6036 6037

        Examples:
            .. code-block:: python

6038 6039 6040
                import paddle
                import paddle.static as static
                import paddle.nn.functional as F
6041

6042 6043 6044
                paddle.enable_static()

                prog = static.default_main_program()
6045
                random_seed = prog.random_seed
6046
                x_var = static.data(name="X", shape=[3,3], dtype="float32")
6047 6048 6049
                print(random_seed)
                ## 0
                ## the default random seed is 0
6050

6051
                # Here we need to set random seed before we use paddle.nn.functional.dropout
6052
                prog.random_seed = 1
6053
                z_var = F.dropout(x_var, 0.7)
6054

6055
                print(prog.random_seed)
6056 6057
                ## 1
                ## the random seed is change to 1
Y
yuyang18 已提交
6058
        """
D
dzhwinter 已提交
6059 6060
        return self._seed

Q
qiaolongfei 已提交
6061 6062
    @property
    def num_blocks(self):
Y
yuyang18 已提交
6063
        """
6064 6065
        The number of :ref:`api_guide_Block_en`  in this Program.

6066
        .. note::
6067
            This API has no effect in Dygraph mode.
J
Jiabin Yang 已提交
6068 6069 6070

        Returns:
            int(Platform-dependent size): num of :ref:`api_guide_Block_en`  in current Program
6071

6072 6073 6074 6075

        Examples:
            .. code-block:: python

6076 6077 6078 6079
                import paddle
                import paddle.static as static

                paddle.enable_static()
6080

6081
                prog = static.default_main_program()
6082 6083
                num_blocks = prog.num_blocks
                print(num_blocks)
6084

6085 6086
                # print result:
                # 1
Y
yuyang18 已提交
6087
        """
Q
qiaolongfei 已提交
6088 6089
        return self.desc.num_blocks()

D
dzhwinter 已提交
6090 6091 6092
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
6093 6094 6095
            raise ValueError(
                "Program.random_seed's input seed must be an integer, but received %s."
                % type(seed))
D
dzhwinter 已提交
6096 6097
        self._seed = seed

Y
Yu Yang 已提交
6098
    def __repr__(self):
6099
        return self.__str__()
6100

Y
Yu Yang 已提交
6101
    def global_block(self):
Y
yuyang18 已提交
6102
        """
6103 6104
        .. note::
            This API has no effect in Dygraph mode.
6105 6106 6107

        Get the first :ref:`api_guide_Block_en` of this Program.

J
Jiabin Yang 已提交
6108 6109
        Returns:
            :ref:`api_guide_Block_en`: The first :ref:`api_guide_Block_en`  of this Program.
6110

6111 6112 6113 6114

        Examples:
            .. code-block:: python

6115 6116 6117 6118
                import paddle
                import paddle.static as static

                paddle.enable_static()
6119

6120
                prog = static.default_main_program()
6121 6122
                gb_block = prog.global_block()
                print(gb_block)
6123

Y
yuyang18 已提交
6124
        """
Y
Yu Yang 已提交
6125 6126
        return self.blocks[0]

Q
Qiao Longfei 已提交
6127
    def block(self, index):
Y
yuyang18 已提交
6128
        """
6129 6130
        .. note::
            This API has no effect in Dygraph mode.
Y
yuyang18 已提交
6131

6132 6133
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

J
Jiabin Yang 已提交
6134 6135
        Args:
            index (int) - The index of  :ref:`api_guide_Block_en`  to get
6136

J
Jiabin Yang 已提交
6137 6138
        Returns:
            :ref:`api_guide_Block_en`: The :code:`index` block
6139 6140 6141 6142

        Examples:
            .. code-block:: python

6143 6144 6145 6146
                import paddle
                import paddle.static as static

                paddle.enable_static()
6147

6148
                prog = static.default_main_program()
6149 6150
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
6151
        """
Q
Qiao Longfei 已提交
6152 6153
        return self.blocks[index]

Y
Yu Yang 已提交
6154
    def current_block(self):
Y
yuyang18 已提交
6155
        """
6156 6157
        .. note::
            This API has no effect in Dygraph mode.
6158

J
Jiabin Yang 已提交
6159 6160
        Get the current  :ref:`api_guide_Block_en` . The :code:`current`  :ref:`api_guide_Block_en`
        is the  :ref:`api_guide_Block_en`  to append operators.
6161

J
Jiabin Yang 已提交
6162 6163
        Returns:
             :ref:`api_guide_Block_en`: The :code:`index`  :ref:`api_guide_Block_en`
6164

6165 6166 6167
        Examples:
            .. code-block:: python

6168 6169 6170 6171
                import paddle
                import paddle.static as static

                paddle.enable_static()
6172

6173
                prog = static.default_main_program()
6174 6175
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
6176
        """
Y
Yu Yang 已提交
6177 6178
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
6179
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
6180 6181 6182 6183 6184
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
J
Jiabin Yang 已提交
6185

Y
yuyang18 已提交
6186 6187 6188 6189 6190
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
6191
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
6192 6193 6194
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
6195 6196 6197 6198
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
6199
    def _rollback(self):
Y
yuyang18 已提交
6200 6201 6202 6203 6204
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
6205 6206
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
6207
    def _sync_with_cpp(self):
Y
yuyang18 已提交
6208 6209 6210 6211 6212 6213 6214 6215 6216 6217
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
6218 6219 6220
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
6221
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
6222

W
Wu Yi 已提交
6223
    def _copy_param_info_from(self, other):
6224
        """
6225
        Copy the information of parameters from other program.
D
dzhwinter 已提交
6226

Y
yuyang18 已提交
6227 6228 6229
        Notes: This is a very low level API. Users should not invoke it
        directly.

6230 6231 6232 6233 6234 6235 6236
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
6237 6238 6239
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
6240

W
Wu Yi 已提交
6241
        self.global_block()._copy_param_info_from(other.global_block())
6242

6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
6254 6255 6256
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
6257 6258
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
6259
        self._parameters_on_pservers = other._parameters_on_pservers
6260
        self._endpoints = other._endpoints
6261
        self._ps_endpoint = other._ps_endpoint
6262 6263
        self._distributed_lookup_table = other._distributed_lookup_table

6264
    def _copy_data_info_from(self, other, pruned_origin_block_id_map=None):
F
fengjiayi 已提交
6265 6266
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
6267

Y
yuyang18 已提交
6268 6269 6270
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
6271 6272
        Args:
            other(Program): Other program
6273
            pruned_origin_block_id_map(dict{int:int}): A dict which maps the block id in program
6274 6275
            self to the block id in program other. For example, {0:0, 1:1, 2:3} means block 0 in self is
            cloned from block 0 in other, etc. Default is None, which means default mapped,
6276
            {0:0, 1:1,..., n:n}.
F
fengjiayi 已提交
6277 6278 6279 6280 6281

        Returns:
            None
        """
        if not isinstance(other, Program):
6282 6283 6284
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
F
fengjiayi 已提交
6285

6286 6287 6288 6289 6290
        if not pruned_origin_block_id_map:
            pruned_origin_block_id_map = {
                i: i
                for i in six.moves.range(self.desc.num_blocks())
            }
6291 6292 6293

        # NOTE(zhiqiu): All vars in cloned program exist in original program.
        # The reverse is not true, due to backward pruning.
6294 6295
        for i, block in enumerate(self.blocks):
            other_block = other.blocks[pruned_origin_block_id_map[i]]
6296
            for var in list(block.vars.values()):
6297 6298 6299 6300 6301 6302 6303
                other_var = other_block.var(var.name)
                if other_var.is_data:
                    var.is_data = True
                if other_var.desc.need_check_feed():
                    var.desc.set_need_check_feed(True)
                if other_var.stop_gradient:
                    var.stop_gradient = True
F
fengjiayi 已提交
6304

6305
    def list_vars(self):
Y
yuyang18 已提交
6306
        """
6307
        Get all Tensors from this Program. A iterable object is returned.
Y
yuyang18 已提交
6308

J
Jiabin Yang 已提交
6309
        Returns:
6310
            iterable Tensors: The Generator will yield every Tensor in this program.
6311 6312 6313 6314

        Examples:
            .. code-block:: python

6315 6316
                import paddle
                import paddle.static as static
6317

6318 6319 6320 6321 6322
                paddle.enable_static()

                prog = static.default_main_program()
                img = static.data(name='img', shape=[None, 1,28,28], dtype='float32')
                label = static.data(name='label', shape=[None,1], dtype='int64')
6323 6324
                for var in prog.list_vars():
                    print(var)
T
tangwei12 已提交
6325

6326 6327
                # var img : LOD_TENSOR.shape(-1, 1, 28, 28).dtype(float32).stop_gradient(True)
                # var label : LOD_TENSOR.shape(-1, 1).dtype(int64).stop_gradient(True)
Y
yuyang18 已提交
6328
        """
6329
        for each_block in self.blocks:
6330
            for each_var in list(each_block.vars.values()):
6331 6332
                yield each_var

6333 6334 6335 6336 6337 6338 6339 6340 6341 6342
    def all_parameters(self):
        """
        Get all :ref:`api_guide_parameter_en` from this Program. A list object is returned.

        Returns:
            list[ :ref:`api_guide_parameter_en` ]: The list contians all parameters in this program.

        Examples:
            .. code-block:: python

6343 6344 6345 6346
                import paddle
                import paddle.static as static

                paddle.enable_static()
6347

6348 6349
                program = static.default_main_program()
                data = static.data(name='x', shape=[None, 13], dtype='float32')
6350
                hidden = static.nn.fc(x=data, size=10)
6351 6352
                loss = paddle.mean(hidden)
                paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
6353 6354 6355 6356 6357 6358 6359

                for param in program.all_parameters():
                    print(param)

                # Here will print all parameters in current program, in this example,
                # the result is like:
                #
6360 6361
                # persist trainable param fc_0.w_0 : LOD_TENSOR.shape(13, 10).dtype(float32).stop_gradient(False)
                # persist trainable param fc_0.b_0 : LOD_TENSOR.shape(10,).dtype(float32).stop_gradient(False)
6362 6363 6364 6365 6366 6367 6368 6369 6370 6371
                #
                # Here print(param) will print out all the properties of a parameter,
                # including name, type and persistable, you can access to specific
                # property of a parameter, such as param.name, param.type
        """
        parameters = []
        for each_block in self.blocks:
            parameters.extend(each_block.all_parameters())
        return parameters

6372 6373 6374 6375 6376 6377 6378 6379 6380
    def state_dict(self, mode='all', scope=None):
        """
        Get parameters and persistable buffers of program as a dict. The key is the name of the parameter or the name of the buffer.
        The value is the tensor of this variable in the given scope.

        .. note::
            This function MUST called after run start_up_program

        Args:
6381 6382 6383
            mode(str, optional): Source of the obtained parameters and buffers.
                    'opt' :  The return value only contains the variable in the optimizer.
                    'param' : The return value only contains the variable in the network, not the variable in the optimizer.
6384 6385
                    'all' : The return value contains the variable in the network and optimizer.
                    Default: 'all'
6386
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope
6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None

        Retruns:
            dict: a dict contains the parameters and persistable buffers.

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
        """
        # The 'framework' is a low-level module, and 'executor'
6414
        # can not be imported at the begainning of this file.
6415 6416 6417 6418
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
6419 6420
                "`scope` should be None or `paddle.static.Scope'` type, but received {}."
                .format(type(scope)))
6421 6422 6423 6424 6425

        if scope is None:
            scope = global_scope()

        if not isinstance(mode, str):
6426 6427 6428
            raise TypeError(
                "Type of `mode` should be string, but received {}.".format(
                    type(mode)))
6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454

        def is_parameter(var):
            return isinstance(var, Parameter)

        def is_persistable(var):
            if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
                var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
                var.desc.type() == core.VarDesc.VarType.READER:
                return False
            return var.persistable

        def is_belong_to_optimizer(var):
            if not (isinstance(var, Parameter) or var.desc.need_check_feed()):
                return is_persistable(var)
            return False

        def condition(var):

            if mode == 'param':
                return is_parameter(var)
            elif mode == 'opt':
                return is_belong_to_optimizer(var)
            elif mode == 'all':
                return is_parameter(var) or is_belong_to_optimizer(var)
            else:
                raise ValueError(
6455 6456
                    "`mode` string should be 'param', 'opt' or 'all', but received {}."
                    .format(mode))
6457 6458 6459 6460 6461 6462 6463 6464

        var_list = filter(condition, self.list_vars())

        state_dict = dict()
        for var in var_list:
            var_temp = scope.find_var(var.name)
            if var_temp is None:
                raise ValueError(
6465 6466
                    "Can not find Variable '{}' in the scope. Make sure it is initialized"
                    .format(var.name))
6467 6468 6469 6470 6471 6472
            state_dict[var.name] = var_temp.get_tensor()

        return state_dict

    def set_state_dict(self, state_dict, scope=None):
        """
6473
        Set parameters and persistable buffers in state_dict to program.
6474
        An exception will throw if shape or dtype of the parameters is not match.
6475

6476 6477 6478 6479
        .. note::
            This function MUST called after run start_up_program

        Args:
6480
            state_dict(dict): the dict store parameters and persistable buffers.
6481 6482
                The key is the name of the parameter or the name of the buffer.
                The value is the tensor of this variable in the given scope.
6483
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope
6484 6485
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None
6486

6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535
        Returns:
            None

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
                state_dict_load = paddle.load(path)
                prog.set_state_dict(state_dict_load)
        """

        if not isinstance(state_dict, dict):
            raise TypeError(
                "Type of `state_dict` should be dict, but received {}.".format(
                    type(state_dict)))

        vars_dict = {var.name: var for var in self.list_vars()}
        condition = True if 'StructuredToParameterName@@' in state_dict else False
        for name, value in state_dict.items():
            if condition:
                if name == "StructuredToParameterName@@":
                    continue
                if name in state_dict['StructuredToParameterName@@']:
                    name = state_dict['StructuredToParameterName@@'][name]
            if name in vars_dict:
                try:
                    vars_dict[name].set_value(value, scope)
                except ValueError as err:
                    warnings.warn(
                        ("Skip loading for '{}'. ".format(name) + str(err)))
                except TypeError as err:
                    warnings.warn(
                        ("Skip loading for '{}'. ".format(name) + str(err)))
            else:
6536 6537 6538
                warnings.warn(
                    ("Skip loading for '{0}'. Because '{0}' not in the program."
                     .format(name)))
6539

Y
Yu Yang 已提交
6540

6541
@six.add_metaclass(ParameterMetaClass)
Y
Yu Yang 已提交
6542
class Parameter(Variable):
6543
    """
6544
    Parameter is derived from Variable. A parameter is a persistable
6545
    Variable, and will be updated by optimizers after each iteration.
6546
    The training of a neural network is essentially the updating of
6547 6548
    its parameters.

6549
    Relative to a general Variable, a Parameter has several its own
6550 6551
    member variables:

6552 6553 6554 6555 6556 6557 6558 6559 6560 6561
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
6562
        need_clip (bool): Whether the parameter gradient need to be cliped
6563
            in optimizer. Default is True.
6564 6565
    """

6566 6567 6568 6569 6570 6571
    def __init__(self,
                 block,
                 shape,
                 dtype,
                 type=core.VarDesc.VarType.LOD_TENSOR,
                 **kwargs):
6572 6573 6574 6575 6576
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

Y
Yu Yang 已提交
6577
        if len(shape) == 0:
6578 6579
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")
Y
Yu Yang 已提交
6580 6581 6582

        for each in shape:
            if each < 0:
6583 6584 6585
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))
6586

6587 6588 6589 6590 6591 6592 6593
        Variable.__init__(self,
                          block,
                          persistable=True,
                          shape=shape,
                          dtype=dtype,
                          type=type,
                          **kwargs)
Y
Yu Yang 已提交
6594 6595 6596 6597
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

6598 6599
        self.regularizer = kwargs.get('regularizer', None)

W
wanghaoshuang 已提交
6600
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
6601

6602 6603
        self.need_clip = kwargs.get('need_clip', True)

6604 6605
        self.is_distributed = False

6606 6607
        self.is_parameter = True

F
fengjiayi 已提交
6608
    def __str__(self):
6609
        return self._to_readable_code()
F
fengjiayi 已提交
6610

F
update  
fengjiayi 已提交
6611 6612 6613
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
6614

F
update  
fengjiayi 已提交
6615 6616 6617 6618 6619 6620 6621 6622
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

6623 6624 6625 6626 6627 6628 6629 6630 6631
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
6632
        """
6633 6634
        assert isinstance(throw_on_error, bool) and isinstance(
            with_details, bool)
F
update  
fengjiayi 已提交
6635 6636 6637
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
6638
                               "do_model_average", "need_clip")
F
update  
fengjiayi 已提交
6639
            for attr_name in additional_attr:
6640 6641
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
6642 6643
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
6644 6645 6646 6647
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
6648

6649 6650
class ParamBase(core.VarBase):
    """
6651 6652
    ParamBase is derived from Tensor( Which is the concept in Dygraph Mode).
    A ParamBase is a persistable Tensor, and will be updated by optimizers
6653
    after each iteration.
6654 6655 6656
    The training of a neural network is essentially the updating of
    its ParamBase.

6657
    Relative to a general Tensor, a ParamBase has several its own
6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669
    member variables:

    Args:
        trainable(bool): True if the ParamBase need to be updated after
            iterations.
        optimize_attr(map): ParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the ParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this ParamBase.
6670
        need_clip (bool): Whether the parameter gradient need to be cliped
6671
            in optimizer. Default is True.
6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        if len(shape) == 0:
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_param_base'))

6697 6698 6699 6700
        super(ParamBase,
              self).__init__(dtype if dtype else core.VarDesc.VarType.FP32,
                             list(shape) if shape else [], name,
                             core.VarDesc.VarType.LOD_TENSOR, True)
6701

6702 6703
        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable
6704 6705 6706 6707 6708 6709 6710

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

6711 6712
        self.need_clip = kwargs.get('need_clip', True)

6713
        self.is_distributed = kwargs.get('is_distributed', False)
6714
        # self.block = default_main_program().global_block()
6715

6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728
    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
                type(trainable))

6729
    def __str__(self):
6730
        """
6731
        Convert a ParamBase object to a readable string.
6732

6733
        Returns(str): A readable string.
6734 6735 6736 6737

        Examples:
            .. code-block:: python

6738
                import paddle
6739 6740 6741 6742 6743 6744 6745
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
6746
        """
6747 6748
        return "Parameter containing:\n{tensor}".format(
            tensor=super(ParamBase, self).__str__())
6749

6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760
    def __deepcopy__(self, memo):
        """
        Deep copy parameter, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                linear = paddle.nn.Linear(1, 3)
                linear_copy = copy.deepcopy(linear)
T
tangwei12 已提交
6761

6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

                print(linear_copy.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

        """
        state = copy.deepcopy(self.__dict__, memo)
        state["name"] = self.name + unique_name.generate("_deepcopy")
        new_param = ParamBase(self.shape, self.dtype, **state)
        memo[id(self)] = new_param
        new_param.copy_(self, True)
        return new_param

6780 6781 6782 6783
    def _copy_to(self, device, blocking):
        state = copy.deepcopy(self.__dict__)
        new_param = ParamBase(self.shape, self.dtype, **state)
        core.varbase_copy(self, new_param, device, blocking)
6784 6785 6786 6787 6788 6789
        return new_param

    __repr__ = __str__


if hasattr(core, "eager"):
6790
    _core_eager_eagertensor = core.eager.Tensor
6791 6792 6793 6794 6795 6796
else:
    _core_eager_eagertensor = object


class EagerParamBase(_core_eager_eagertensor):
    """
6797 6798
    EagerParamBase is derived from Tensor( Which is the concept in Eager-Dygraph Mode).
    A EagerParamBase is a persistable Tensor, and will be updated by optimizers
6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815
    after each iteration.
    The training of a neural network is essentially the updating of
    its EagerParamBase.

    Relative to a general Tensor, a EagerParamBase has several its own
    member variables:

    Args:
        trainable(bool): True if the EagerParamBase need to be updated after
            iterations.
        optimize_attr(map): EagerParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the EagerParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this EagerParamBase.
6816
        need_clip (bool): Whether the parameter gradient need to be cliped
6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842
            in optimizer. Default is True.
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        if len(shape) == 0:
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_eager_param_base'))

6843 6844 6845
        if isinstance(shape, core.eager.Tensor):
            shape = shape.numpy()

6846 6847 6848 6849
        super(EagerParamBase,
              self).__init__(dtype if dtype else core.VarDesc.VarType.FP32,
                             list(shape) if shape else [], name,
                             core.VarDesc.VarType.LOD_TENSOR, True)
6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863
        self.retain_grads()

        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

        self.need_clip = kwargs.get('need_clip', True)

        self.is_distributed = kwargs.get('is_distributed', False)
6864 6865 6866
        # hook functions for lazy initialization
        self._init_func = None
        self._init_op_creator = None
6867 6868

    def set_init_func(self, obj):
6869
        self._init_func = obj
6870 6871 6872

    @dygraph_only
    def initialize(self):
6873 6874
        assert self._init_func is not None, "Required self._init_func is not None, but received None."
        self._init_func()
6875
        # clear function handle to release resource
6876
        self._init_func = None
6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890

    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
                type(trainable))

6891 6892 6893 6894 6895 6896 6897
    def _create_init_op(self, block):
        """
        Call init_op_creator function to create initializer operation in block.
        """
        assert self._init_op_creator is not None, "Required self._init_op_creator is not None, but received None."
        self._init_op_creator(block)

6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952
    def __str__(self):
        """
        Convert a EagerParamBase object to a readable string.

        Returns(str): A readable string.

        Examples:
            .. code-block:: python

                import paddle
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
        """
        return "Parameter containing:\n{tensor}".format(
            tensor=super(EagerParamBase, self).__str__())

    def __deepcopy__(self, memo):
        """
        Deep copy parameter, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                linear = paddle.nn.Linear(1, 3)
                linear_copy = copy.deepcopy(linear)

                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

                print(linear_copy.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

        """
        state = copy.deepcopy(self.__dict__, memo)
        state["name"] = self.name + unique_name.generate("_deepcopy")
        new_param = EagerParamBase(self.shape, self.dtype, **state)
        memo[id(self)] = new_param
        new_param.copy_(self, True)
        return new_param

    def _copy_to(self, device, blocking):
        state = copy.deepcopy(self.__dict__)
        new_param = EagerParamBase(self.shape, self.dtype, **state)
        core.eager.tensor_copy(self, new_param, device, blocking)
6953 6954
        return new_param

6955 6956 6957
    __repr__ = __str__


Y
Yu Yang 已提交
6958
# program is a global instance.
Y
Yu Yang 已提交
6959 6960
_main_program_ = Program()
_startup_program_ = Program()
6961
_startup_program_._is_start_up_program_ = True
6962

6963

6964
def default_startup_program():
Y
Yu Yang 已提交
6965
    """
Y
yuyang18 已提交
6966 6967
    Get default/global startup program.

6968
    The :code:`paddle.nn` function will append the initialization operators into startup program.
6969
    The :code:`startup_program` will initialize the parameters by the OPs.
T
tangwei12 已提交
6970

6971 6972
    This method will return the default or the current startup program. Users can use
    :ref:`api_paddle_fluid_framework_program_guard`  to switch :ref:`api_paddle_fluid_framework_Program` .
Y
yuyang18 已提交
6973

6974 6975
    Returns:
        Program: current default startup program.
6976

6977
    Returns type:
6978 6979 6980 6981

    Examples:
        .. code-block:: python

6982
            import paddle
6983

6984
            paddle.enable_static()
6985 6986 6987 6988
            x = paddle.static.data(name="x", shape=[-1, 784], dtype='float32')
            out = paddle.static.nn.fc(name="fc", x=x, size=10, activation="relu")
            print("main program is: {}".format(paddle.static.default_main_program()))
            print("start up program is: {}".format(paddle.static.default_startup_program()))
Y
Yu Yang 已提交
6989
    """
Y
Yu Yang 已提交
6990
    return _startup_program_
6991

6992

6993
def default_main_program():
Y
Yu Yang 已提交
6994
    """
6995
    This API can be used to get ``default main program`` which store the
6996
    descriptions of Ops and tensors.
T
tangwei12 已提交
6997

6998 6999
    For example ``z = paddle.add(x, y)`` will create a new ``add``
    Op and a new ``z`` tensor, and they will be recorded in ``default main program`` .
Y
yuyang18 已提交
7000

7001
    The ``default main program`` is the default value for ``Program`` parameter in
7002
    a lot of APIs. For example, the :code:`Executor.run()` will execute the
Y
yuyang18 已提交
7003
    :code:`default_main_program` when the program is not specified.
7004

7005
    If you want to switch the ``default main program``, you can use :ref:`api_paddle_fluid_framework_program_guard` .
T
tangwei12 已提交
7006

Y
Yu Yang 已提交
7007
    Returns:
7008
        Program: A ``Program`` which holding the descriptions of OPs and tensors in the network.
7009 7010 7011 7012

    Examples:
        ..  code-block:: python

7013
            import paddle
7014

7015
            paddle.enable_static()
7016
            # Sample Network:
7017 7018 7019
            x = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            y = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            out = paddle.add(x, y)
7020

7021 7022 7023
            #print the number of blocks in the program, 1 in this case
            print(paddle.static.default_main_program().num_blocks) # 1
            #print the default_main_program
7024
            print(paddle.static.default_main_program())
Y
Yu Yang 已提交
7025
    """
Y
Yu Yang 已提交
7026
    return _main_program_
Y
Yu Yang 已提交
7027 7028 7029 7030 7031


def switch_main_program(program):
    """
    Switch the main program to a new program.
7032

Y
Yu Yang 已提交
7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
7047
    Switch the startup program to a new program
Y
Yu Yang 已提交
7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
7060
@signature_safe_contextmanager
Y
Yu Yang 已提交
7061 7062
def program_guard(main_program, startup_program=None):
    """
7063 7064
    :api_attr: Static Graph

7065 7066 7067
    Change the global main program and startup program with ``with`` statement.
    Layer functions in the Python ``with`` block will append operators and
    Tensors to the new main programs.
7068

G
guofei 已提交
7069
    Args:
7070
        main_program(Program): New main program inside ``with`` statement.
7071 7072
        startup_program(Program, optional): New startup program inside ``with``
            statement. :code:`None` means not changing startup program,
G
guofei 已提交
7073 7074 7075
            default_startup_program is still used.
            Default: None.

Y
Yu Yang 已提交
7076
    Examples:
7077
       .. code-block:: python
T
tangwei12 已提交
7078

7079
          import paddle
Y
yuyang18 已提交
7080

7081 7082 7083 7084 7085
          paddle.enable_static()
          main_program = paddle.static.Program()
          startup_program = paddle.static.Program()
          with paddle.static.program_guard(main_program, startup_program):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
7086
              hidden = paddle.static.nn.fc(x=data, size=10, activation='relu')
Y
yuyang18 已提交
7087 7088 7089

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
7090

Y
Yu Yang 已提交
7091
    Examples:
7092
       .. code-block:: python
Y
yuyang18 已提交
7093

7094
          import paddle
7095

7096 7097 7098 7099 7100
          paddle.enable_static()
          main_program = paddle.static.Program()
          # does not care about startup program. Just pass a temporary value.
          with paddle.static.program_guard(main_program, paddle.static.Program()):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
T
tangwei12 已提交
7101

Y
Yu Yang 已提交
7102
    """
7103
    from .data_feeder import check_type
7104 7105
    check_type(main_program, 'main_program', Program,
               'paddle.static.program_guard')
Y
Yu Yang 已提交
7106 7107
    main_program = switch_main_program(main_program)
    if startup_program is not None:
7108
        check_type(startup_program, 'startup_program', Program,
7109
                   'paddle.static.program_guard')
7110 7111
        # Tag the program __is_start_up as True
        startup_program._is_start_up_program_ = True
Y
Yu Yang 已提交
7112
        startup_program = switch_startup_program(startup_program)
7113 7114 7115 7116 7117 7118
    try:
        yield
    finally:
        switch_main_program(main_program)
        if startup_program is not None:
            switch_startup_program(startup_program)
X
xuwei06 已提交
7119 7120


W
Wu Yi 已提交
7121
def _get_var(name, program=None):
X
xuwei06 已提交
7122
    """
Y
yuyang18 已提交
7123
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
7124

X
xuwei06 已提交
7125 7126 7127
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
7128
        If None, default_global_program() will be used.
X
xuwei06 已提交
7129 7130 7131 7132 7133 7134 7135

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
7136
    assert isinstance(program, Program)
X
xuwei06 已提交
7137 7138

    return program.global_block().var(name)
7139 7140


S
rename  
sneaxiy 已提交
7141
@signature_safe_contextmanager
L
lujun 已提交
7142 7143
def _dygraph_guard(tracer):
    global _dygraph_tracer_
7144
    tmp_tracer = _dygraph_tracer_
L
lujun 已提交
7145
    _dygraph_tracer_ = tracer
7146
    core._switch_tracer(tracer)
M
minqiyang 已提交
7147

7148 7149 7150
    try:
        yield
    finally:
7151 7152
        core._switch_tracer(tmp_tracer)
        _dygraph_tracer_ = tmp_tracer
P
Paddle CI 已提交
7153 7154


S
rename  
sneaxiy 已提交
7155
@signature_safe_contextmanager
L
lujun 已提交
7156
def _dygraph_place_guard(place):
7157 7158 7159
    global _global_expected_place_
    tmp_place = _global_expected_place_
    _global_expected_place_ = place
7160 7161
    _set_dygraph_tracer_expected_place(place)

7162 7163 7164
    try:
        yield
    finally:
7165
        _global_expected_place_ = tmp_place
J
Jiabin Yang 已提交
7166
        _set_dygraph_tracer_expected_place(_global_expected_place_)
7167 7168


7169 7170 7171 7172 7173 7174 7175 7176 7177 7178
def switch_device(device):
    global _current_device
    pre_device = _current_device
    _current_device = device
    return pre_device


@signature_safe_contextmanager
def device_guard(device=None):
    """
7179

7180 7181
    Note:
        The API only supports static mode.
7182 7183 7184 7185

    A context manager that specifies the device on which the OP will be placed.

    Args:
7186
        device(str|None): Specify the device to use in the context. It should be ``cpu``,
7187
            ``gpu`` or ``gpu:x``, where ``x`` is the index of the GPUs.
7188 7189 7190 7191 7192 7193 7194
            When it is set to 'cpu' or 'gpu', all OPs created in the context will be
            placed on CPUPlace or CUDAPlace. When 'gpu' is set and the program runs on
            single-card, the device index will be the same as the device on which the
            executor runs. Default: None, OPs in this context will be automatically
            assigned devices.

    Examples:
7195

7196
        .. code-block:: python
7197

7198
            # required: gpu
Z
Zhang Ting 已提交
7199
            import paddle
7200

Z
Zhang Ting 已提交
7201 7202 7203
            paddle.enable_static()
            support_gpu = paddle.is_compiled_with_cuda()
            place = paddle.CPUPlace()
7204
            if support_gpu:
Z
Zhang Ting 已提交
7205
                place = paddle.CUDAPlace(0)
7206 7207

            # if GPU is supported, the three OPs below will be automatically assigned to CUDAPlace(0)
Z
Zhang Ting 已提交
7208 7209 7210
            data1 = paddle.full(shape=[1, 3, 8, 8], fill_value=0.5, dtype='float32')
            data2 = paddle.full(shape=[1, 3, 64], fill_value=0.5, dtype='float32')
            shape = paddle.shape(data2)
7211

Z
Zhang Ting 已提交
7212
            with paddle.static.device_guard("cpu"):
7213
                # Ops created here will be placed on CPUPlace
Z
Zhang Ting 已提交
7214 7215
                shape = paddle.slice(shape, axes=[0], starts=[0], ends=[4])
            with paddle.static.device_guard('gpu'):
7216
                # if GPU is supported, OPs created here will be placed on CUDAPlace(0), otherwise on CPUPlace
Z
Zhang Ting 已提交
7217
                out = paddle.reshape(data1, shape=shape)
7218

Z
Zhang Ting 已提交
7219 7220
            exe = paddle.static.Executor(place)
            exe.run(paddle.static.default_startup_program())
7221 7222 7223
            result = exe.run(fetch_list=[out])
    """

7224 7225 7226 7227 7228
    index = None
    if device and ':' in device:
        device, index = device.split(':')
        if device == 'cpu':
            raise ValueError("Should not set device id for cpu.")
7229
    if device not in ['cpu', 'gpu', 'npu', 'xpu', 'mlu', '', None]:
7230
        raise ValueError(
7231
            "The Attr(device) should be 'cpu' 'npu' 'xpu' 'mlu' or 'gpu', and it can also be empty string or None "
7232
            "when there is no need to specify device. But received %s" % device)
7233 7234
    if index:
        device = ":".join([device, index])
7235
    pre_device = switch_device(device)
7236 7237 7238 7239
    try:
        yield
    finally:
        switch_device(pre_device)
G
guofei 已提交
7240 7241


7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272
def _switch_cuda_graph_mode(cuda_graph_attr):
    global _current_cuda_graph_mode
    pre_mode = _current_cuda_graph_mode
    _current_cuda_graph_mode = cuda_graph_attr
    return pre_mode


@signature_safe_contextmanager
def _cuda_graph_guard(cuda_graph_attr=None):
    """

    Note:
        The API only supports static mode.

    A context manager that specifies the cuda_graph_mode which indicating the cuda graph capture under static mode.

    Args:
        cuda_graph_attr(str|None): The cuda graph attr with the format of:
                                   cuda_graph_capture_mode;memory_pool_id;cuda_graph_id
    """
    assert not _non_static_mode(
    ), "cuda_graph_guard only works under static mode"
    assert core.is_compiled_with_cuda(
    ), "cuda_graph_guard context can be only used when Paddle is compiled with cuda"
    pre_mode = _switch_cuda_graph_mode(cuda_graph_attr)
    try:
        yield
    finally:
        _switch_cuda_graph_mode(pre_mode)


G
guofei 已提交
7273 7274 7275
def set_flags(flags):
    """
    This function sets the GFlags value in Paddle.
7276
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
7277 7278 7279 7280 7281 7282 7283

    Args:
        flags (dict): A dict contains flags and its value.

    Examples:
            .. code-block:: python

7284 7285
                import paddle
                paddle.set_flags({'FLAGS_eager_delete_tensor_gb': 1.0})
G
guofei 已提交
7286 7287 7288 7289
    """
    if not isinstance(flags, dict):
        raise TypeError('flags in set_flags should be a dict')
    for key, value in flags.items():
7290 7291
        if _global_flags().is_public(key):
            _global_flags()[key] = value
G
guofei 已提交
7292 7293 7294 7295 7296 7297 7298 7299
        else:
            raise ValueError(
                "Flag %s cannot set its value through this function." % (key))


def get_flags(flags):
    """
    This function gets the GFlags value in Paddle.
7300
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
7301 7302 7303 7304 7305 7306 7307 7308 7309 7310

    Args:
        flags(list|tuple|str): A list/tuple of string or a string which is the flag's name.

    Returns:
        flag's value in Paddle.

    Examples:
        .. code-block:: python

7311
            import paddle
G
guofei 已提交
7312 7313

            flags = ['FLAGS_eager_delete_tensor_gb', 'FLAGS_check_nan_inf']
7314
            res = paddle.get_flags(flags)
G
guofei 已提交
7315 7316 7317 7318 7319 7320
            print(res)
            # {'FLAGS_eager_delete_tensor_gb': 0.0, 'FLAGS_check_nan_inf': False}
    """
    flags_value = {}
    if isinstance(flags, (list, tuple)):
        for key in flags:
7321 7322
            if (_global_flags().is_public(key)):
                value = _global_flags()[key]
G
guofei 已提交
7323 7324 7325 7326 7327 7328 7329
                temp = {key: value}
                flags_value.update(temp)
            else:
                raise ValueError(
                    'Flag %s cannot get its value through this function.' %
                    (key))
    elif isinstance(flags, str):
7330 7331
        if (_global_flags().is_public(flags)):
            value = _global_flags()[flags]
G
guofei 已提交
7332 7333 7334 7335 7336 7337 7338 7339
            temp = {flags: value}
            flags_value.update(temp)
        else:
            raise ValueError(
                'Flag %s cannot get its value through this function.' % (flags))
    else:
        raise TypeError('Flags in get_flags should be a list, tuple or string.')
    return flags_value
7340 7341 7342 7343 7344 7345 7346


def _get_paddle_place(place):
    "convert the string to paddle Place"
    if place is None:
        return place
    if isinstance(place, (core.Place, core.XPUPlace, core.CPUPlace,
7347
                          core.CUDAPinnedPlace, core.CUDAPlace, core.NPUPlace,
7348
                          core.IPUPlace, core.MLUPlace, core.CustomPlace)):
7349 7350 7351 7352 7353 7354 7355 7356 7357
        return place

    if not isinstance(place, str):
        raise ValueError(
            "place only support string which is 'Place' and so on.")

    place = place.lower()
    if (place == "cpu"):
        return core.CPUPlace()
7358

7359 7360 7361
    if (place == "device"):
        return core.Place()

7362
    # GPU
7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377
    avaliable_gpu_place = re.match(r'gpu:\d+', place)
    if place == "gpu_pinned" or place == "gpu" or avaliable_gpu_place:
        if not core.is_compiled_with_cuda():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with CUDA".format(avaliable_gpu_place))
        if place == "gpu_pinned":
            return core.CUDAPinnedPlace()
        elif place == "gpu":
            return core.CUDAPlace(0)
        else:
            place_info_list = place.split(':', 1)
            device_id = place_info_list[1]
            device_id = int(device_id)
            return core.CUDAPlace(device_id)
7378 7379

    # XPU
7380 7381 7382 7383 7384 7385 7386 7387 7388 7389
    avaliable_xpu_place = re.match(r'xpu:\d+', place)
    if avaliable_xpu_place:
        if not core.is_compiled_with_xpu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with XPU".format(avaliable_xpu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.XPUPlace(device_id)
7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402

    # NPU
    avaliable_npu_place = re.match(r'npu:\d+', place)
    if avaliable_npu_place:
        if not core.is_compiled_with_npu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with NPU".format(avaliable_npu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.NPUPlace(device_id)

J
jianghaicheng 已提交
7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414
    # IPU
    avaliable_ipu_place = re.match(r'ipu:\d+', place)
    if avaliable_ipu_place:
        if not core.is_compiled_with_ipu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with IPU".format(avaliable_ipu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.IPUPlace(device_id)

7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426
    # MLU
    avaliable_mlu_place = re.match(r'mlu:\d+', place)
    if avaliable_mlu_place:
        if not core.is_compiled_with_mlu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with MLU".format(avaliable_mlu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.MLUPlace(device_id)

7427
    raise ValueError(
7428 7429
        "Paddle supports CPUPlace, CUDAPlace,CUDAPinnedPlace, XPUPlace, IPUPlace, MLUPlace and NPUPlace, but received {}."
        .format(place))
7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442


def _get_paddle_place_list(places):

    if not isinstance(places, (list, tuple)):
        raise TypeError("places must to be List or Tuple")

    ret = []
    for p in places:
        p = _get_paddle_place(p)
        ret.append(p)

    return ret