framework.py 258.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
H
huzhiqiang 已提交
19
from collections.abc import Iterable
Q
qiaolongfei 已提交
20
import contextlib
21
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26
import copy
27
from types import MethodType, FunctionType
28

Y
Yu Yang 已提交
29
import numpy as np
30
import subprocess
S
sneaxiy 已提交
31
import multiprocessing
32
import sys
33
import logging
M
minqiyang 已提交
34
from .. import compat as cpt
35
from .proto import framework_pb2
36 37

from . import core
38
from . import unique_name
39 40
import paddle.version as fluid_version
import warnings
41
import functools
42
from .variable_index import _getitem_impl_, _setitem_impl_
Y
Yu Yang 已提交
43

44
__all__ = [
45 46 47 48
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
49
    'name_scope',
J
jianghaicheng 已提交
50
    'ipu_shard_guard',
51
    'set_ipu_shard',
S
sneaxiy 已提交
52 53
    'cuda_places',
    'cpu_places',
54
    'xpu_places',
55
    'mlu_places',
S
sneaxiy 已提交
56
    'cuda_pinned_places',
J
Jiabin Yang 已提交
57
    '_non_static_mode',
L
lujun 已提交
58
    'in_dygraph_mode',
59
    'is_compiled_with_cinn',
C
chengduo 已提交
60
    'is_compiled_with_cuda',
61
    'is_compiled_with_rocm',
62
    'is_compiled_with_xpu',
63
    'is_compiled_with_npu',
64
    'Variable',
65
    'require_version',
66
    'device_guard',
G
guofei 已提交
67 68
    'set_flags',
    'get_flags',
69
]
Y
Yu Yang 已提交
70

Q
qiaolongfei 已提交
71 72 73 74
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
75 76
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

L
lujun 已提交
77
_dygraph_tracer_ = None
78
_in_eager_mode_ = (os.environ.get('FLAGS_enable_eager_mode', '1') == '1')
79
_global_expected_place_ = None
80
_current_device = None
81
global_prog_seed = 0
82
_current_pipeline_stage = None
83
_already_patch_eager_tensor = False
J
Jiabin Yang 已提交
84
_already_patch_varbase = False
85
_current_cuda_graph_mode = None
86
_global_flags_ = core.globals()
L
Leo Chen 已提交
87 88
_enable_standalone_executor_ = (os.environ.get('FLAGS_USE_STANDALONE_EXECUTOR',
                                               None))
89
_dy2st_enable_standalone_executor_ = (os.environ.get(
90
    'FLAGS_DY2ST_USE_STANDALONE_EXECUTOR', 0))
J
Jiabin Yang 已提交
91 92

# Some explanation of our execution system 2022.03
93
# For now we have 3 kinds of execution system, since we refactored dygraph mode to
J
Jiabin Yang 已提交
94
# build a fast execution system for dynamic mode. But we can't just remove all legacy
95
# code once we present the new system for some historical reason. That's why we have
J
Jiabin Yang 已提交
96
# these flags.
97
#
J
Jiabin Yang 已提交
98
# 1. _non_static_mode():
99
# _non_static_mode means  we are now running in legacy dygraph mode or dygraph mode.
J
Jiabin Yang 已提交
100 101 102 103
# 2. dygraph_mode():
# This flags inidicates we are now running in dygraph mode which called eager mode before.
# 3. _in_legacy_dygraph():
# This flags inidicates we are now running in legacy dygraph mode
104
#
J
Jiabin Yang 已提交
105
# They have a relation ship as below:
106
# Both dygraph_mode and _in_legacy_dygraph are _non_static_mode, but if you are running in
J
Jiabin Yang 已提交
107
# dygraph mode means you are not in _in_legacy_dygraph.
108
#
J
Jiabin Yang 已提交
109 110 111 112 113 114
# Why we have to make different of _in_legacy_dygraph and dygraph_mode?
# In some performance issue, we find that python if statement cause server performance problem
# and we need our new dygraph mode becomes as fast as it could be. That's why we make these flags
# to make sure in most case, we find new dygraph mode first with only one if statement.


115 116 117 118 119
def _update_monkey_methods(is_eager):
    """
    Update monkey methods of VarBase or eager.Tensor while
    switching eager mode and legacy mode.
    """
120
    from paddle import _C_ops, _legacy_C_ops
121 122 123
    from .dygraph.varbase_patch_methods import monkey_patch_varbase
    from .dygraph import monkey_patch_math_varbase

124 125 126
    global _already_patch_eager_tensor
    global _already_patch_varbase

127
    assert isinstance(is_eager, bool)
128
    # switch into eager mode
129
    if is_eager:
130
        _legacy_C_ops.switch_to_eager_ops()
131 132 133 134 135 136
        if not _already_patch_eager_tensor:
            monkey_patch_varbase()
            monkey_patch_math_varbase()

            _already_patch_eager_tensor = True
    # switch back into legacy mode
137
    else:
138
        _legacy_C_ops.switch_to_core_ops()
139 140 141 142 143
        if not _already_patch_varbase:
            monkey_patch_varbase()
            monkey_patch_math_varbase()

            _already_patch_varbase = True
144

145 146 147 148 149 150 151 152 153 154 155
    # switch Paddle.Tensor bind type
    _switch_tensor_bind_type(is_eager)


def _switch_tensor_bind_type(is_eager):
    import paddle
    if is_eager:
        paddle.Tensor = core.eager.Tensor
    else:
        paddle.Tensor = core.VarBase
    paddle.Tensor.__qualname__ = 'Tensor'
156 157


J
Jiabin Yang 已提交
158 159 160
def _enable_legacy_dygraph():
    global _in_eager_mode_
    _in_eager_mode_ = False
161
    _update_monkey_methods(is_eager=False)
J
Jiabin Yang 已提交
162 163 164 165 166


def _disable_legacy_dygraph():
    global _in_eager_mode_
    _in_eager_mode_ = True
167
    _update_monkey_methods(is_eager=True)
J
Jiabin Yang 已提交
168 169 170 171 172 173 174


def _in_eager_without_dygraph_check():
    global _in_eager_mode_
    return _in_eager_mode_


175 176 177 178 179 180 181 182 183 184 185
# FIXME(dev): We haven't fully verified eager mode on XPU/NPU et.al but
# only GPU/CPU. Remove this after we improve this feature.
_is_first_import_ = True


def _fallback_legacy_dygraph():
    global _in_eager_mode_
    global _is_first_import_
    need_fallback = False
    # Only enable eager on CPU/GPU
    is_not_support = core.is_compiled_with_xpu() or core.is_compiled_with_npu(
J
Jiabin Yang 已提交
186
    ) or core.is_compiled_with_ipu() or core.is_compiled_with_mlu()
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207

    if _in_eager_mode_ and is_not_support:
        # switch into legacy dygraph mode
        warnings.warn(
            "We will fallback into legacy dygraph on NPU/XPU/MLU/IPU/ROCM devices. Because we only support new eager dygraph mode on CPU/GPU currently. "
        )
        _in_eager_mode_ = False
        if not _is_first_import_:
            _enable_legacy_dygraph()
        need_fallback = True

    need_fallback = False
    _is_first_import_ = False

    return need_fallback


# switch into legacy mode if need while import paddle
_fallback_legacy_dygraph()


J
Jiabin Yang 已提交
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
def in_dygraph_mode():
    """

    .. note::
        Dynamic graph mode is turn ON by default since paddle 2.0.0

    This API checks whether paddle runs in dynamic graph mode.

    You can turn ON static graph mode by `enable_static <../dygraph/base/disable_dygraph_en.html>`_ ,
    and turn OFF static graph mode by `disable_static <../dygraph/base/enable_dygraph_en.html>`_  .

    Returns:
        bool: Whether paddle runs in dynamic graph mode.

    Examples:
        .. code-block:: python

            import paddle
            print(paddle.in_dynamic_mode())  # True, dynamic mode is turn ON by default since paddle 2.0.0

            paddle.enable_static()
            print(paddle.in_dynamic_mode())  # False, Now we are in static mode

            paddle.disable_static()
            print(paddle.in_dynamic_mode())  # True, Now we are in dynamic mode

    """
    return (_dygraph_tracer_ is not None) and _in_eager_mode_


def _in_legacy_dygraph():
    return (not _in_eager_mode_) and (_dygraph_tracer_ is not None)


def _non_static_mode():
    return _dygraph_tracer_ is not None
244 245 246


@signature_safe_contextmanager
J
Jiabin Yang 已提交
247
def _test_eager_guard(place=None):
248 249 250 251 252
    # FIXME(dev): We haven't fully verified eager mode on XPU/NPU et.al but
    # only GPU/CPU. Remove this after we improve this feature.
    already_fallback = _fallback_legacy_dygraph()
    if not already_fallback:
        _disable_legacy_dygraph()
253
    try:
J
Jiabin Yang 已提交
254
        yield
255
    finally:
256 257
        if not already_fallback:
            _enable_legacy_dygraph()
258 259


260 261
global_ipu_index = -1
global_ipu_stage = -1
J
jianghaicheng 已提交
262 263 264 265
ipu_index_attr_name = 'ipu_index'
ipu_stage_attr_name = 'ipu_stage'


L
Leo Chen 已提交
266 267 268 269 270 271 272 273 274 275 276
@signature_safe_contextmanager
def _enable_standalone_executor(enable=True):
    global _enable_standalone_executor_
    original_ = _enable_standalone_executor_
    _enable_standalone_executor_ = enable
    try:
        yield
    finally:
        _enable_standalone_executor_ = original_


J
jianghaicheng 已提交
277
@signature_safe_contextmanager
278
def ipu_shard_guard(index=-1, stage=-1):
J
jianghaicheng 已提交
279 280 281 282
    """
    Used to shard the graph on IPUs. Set each Op run on which IPU in the sharding and which stage in the pipelining.

    Args:
W
Weilong Wu 已提交
283
        index(int, optional): Specify which ipu the Tensor is computed on, (such as '0, 1, 2, 3').
284
            The default value is -1, which means the Op only run on IPU 0.
W
Weilong Wu 已提交
285
        stage(int, optional): Specify the computation order of the sharded model(such as '0, 1, 2, 3').
286
            The sharded model will be computed from small to large. The default value is -1, 
J
jianghaicheng 已提交
287 288 289
            which means no pipelining computation order and run Ops in terms of graph.
    
    **Note**:
290
    Only if the enable_manual_shard=True, the 'index' is able to be set not -1. Please refer 
J
jianghaicheng 已提交
291
    to :code:`paddle.static.IpuStrategy` . 
292
    Only if the enable_pipelining=True, the 'stage' is able to be set not -1. Please refer 
J
jianghaicheng 已提交
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
    to :code:`paddle.static.IpuStrategy` .
    A index is allowed to match none stage or a stage. A stage is only allowed to match a new or 
    duplicated index.

    Examples:
        .. code-block:: python

            # required: ipu

            import paddle
            paddle.enable_static()
            a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
            with paddle.static.ipu_shard_guard(index=0, stage=0):
                b = a + 1
            with paddle.static.ipu_shard_guard(index=1, stage=1):
                c = b + 1
            with paddle.static.ipu_shard_guard(index=0, stage=2):
                d = c + 1
    """
    if not core.is_compiled_with_ipu():
        raise ValueError(
            "Can not use this function since PaddlePaddle is not compiled with IPU"
        )

    global global_ipu_index
    global global_ipu_stage
    prev_ipu_index = global_ipu_index
    prev_ipu_stage = global_ipu_stage
    global_ipu_index = index
    global_ipu_stage = stage
    try:
        yield
    finally:
        global_ipu_index = prev_ipu_index
        global_ipu_stage = prev_ipu_stage


330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
def set_ipu_shard(call_func, index=-1, stage=-1):
    """
    Shard the ipu with the given call function. Set every ops in call function to the given ipu sharding.

    Args:
        call_func(Layer|function): Specify the call function to be wrapped.
        index(int, optional): Specify which ipu the Tensor is computed on, (such as ‘0, 1, 2, 3’).
            The default value is -1, which means the Op only run on IPU 0.
        stage(int, optional): Specify the computation order of the sharded model(such as ‘0, 1, 2, 3’).
            The sharded model will be computed from small to large. The default value is -1, 
            which means no pipelining computation order and run Ops in terms of graph.

    Returns:
        The wrapped call function.


    Examples:
        .. code-block:: python

            # required: ipu

            import paddle
            paddle.enable_static()
            a = paddle.static.data(name='data', shape=[None, 1], dtype='float32')
            relu = paddle.nn.ReLU()
            relu = paddle.static.set_ipu_shard(relu, index=1, stage=1)
            relu(a)
    """

    def decorate(func):

        def wrapper(*args, **kwargs):
            with ipu_shard_guard(index=index, stage=stage):
                return func(*args, **kwargs)

        return wrapper

    from .dygraph.layers import Layer
    if not isinstance(call_func, Layer):
        if callable(call_func):
            return decorate(call_func)
        else:
            raise TypeError(
                "Unsupported type. Only accept paddle.nn.Layer or function.")

    # patch paddle.nn.Layer
    class BlockFn(type(call_func)):

        def __call__(self, *args, **kwargs):
            with ipu_shard_guard(index=index, stage=stage):
                return super().__call__(*args, **kwargs)

    BlockFn.__name__ = type(call_func).__name__
    call_func.__class__ = BlockFn
    return call_func


387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
def require_version(min_version, max_version=None):
    """
        Check if the installed version of PaddlePaddle is in [min_version, max_version],
        if the installed version is lower than ``min_version`` or higher than ``max_version``,
        an exception will be thrown, NO returns if the installed version is satisfied.

        Args:
            min_version (str): the minimum version required (like '1.4.0').
            max_version (str, optional): the max version required (like '1.6.0'), default is None,
                meaning any version equal or higher than ``min_version`` is acceptable.

        Returns:
            None.

        Raises:
            TypeError: if the type of ``min_version`` is not str.
            TypeError: if the type of ``max_version`` is not str or type(None).
            ValueError: if the value of ``min_version`` is not in version format.
            ValueError: if the value of ``max_version`` is not in version format or None.
            Exception: if the installed version is lower than ``min_version`` or higher than ``max_version``.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                # any version >= 0.1.0 is acceptable.
                fluid.require_version('0.1.0')

                # if 0.1.0 <= version <= 10.0.0, it is acceptable.
                fluid.require_version(min_version='0.1.0', max_version='10.0.0')
        """
    if not isinstance(min_version, str):
        raise TypeError(
            "The type of 'min_version' in require_version must be str, but received %s."
            % (type(min_version)))

    if not isinstance(max_version, (str, type(None))):
        raise TypeError(
            "The type of 'max_version' in require_version must be str or type(None), but received %s."
            % (type(max_version)))

    check_format = re.match(r'\d+(\.\d+){0,3}', min_version)
    if check_format is None or check_format.group() != min_version:
        raise ValueError(
            "The value of 'min_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
            "like '1.5.2.0', but received %s" % min_version)

    if max_version is not None:
        check_format = re.match(r'\d+(\.\d+){0,3}', max_version)
        if check_format is None or check_format.group() != max_version:
            raise ValueError(
                "The value of 'max_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
                "like '1.5.2.0', but received %s" % max_version)

    version_installed = [
        fluid_version.major, fluid_version.minor, fluid_version.patch,
        fluid_version.rc
    ]
    zero_version = ['0', '0', '0', '0']

    def version_cmp(ver_a, ver_b):
        for i in six.moves.range(len(ver_a)):
            if int(ver_a[i]) > int(ver_b[i]):
                return 1
            elif int(ver_a[i]) < int(ver_b[i]):
                return -1
        return 0

    if version_cmp(version_installed, zero_version) == 0:
        if max_version is not None:
            warnings.warn(
                "PaddlePaddle version in [%s, %s] required, but %s installed. "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, max_version, fluid_version.full_version))
        else:
            warnings.warn(
                "PaddlePaddle version %s or higher is required, but %s installed, "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, fluid_version.full_version))
        return

    min_version_split = min_version.split('.')
472 473
    min_version_to_check = min_version_split + zero_version[
        len(min_version_split):]
474 475 476

    if max_version is not None:
        max_version_split = max_version.split('.')
477 478
        max_version_to_check = max_version_split + zero_version[
            len(max_version_split):]
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493

        if version_cmp(version_installed,
                       max_version_to_check) > 0 or version_cmp(
                           version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version in [%s, %s] required, but %s installed."
                % (min_version, max_version, fluid_version.full_version))
    else:
        if version_cmp(version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version %s or higher is required, but %s installed, "
                "please upgrade your PaddlePaddle to %s or other higher version."
                % (min_version, fluid_version.full_version, min_version))


494
def _dygraph_not_support_(func):
495

496
    def __impl__(*args, **kwargs):
J
Jiabin Yang 已提交
497 498
        assert not _non_static_mode(
        ), "We don't support %s in dynamic graph mode" % func.__name__
499 500 501 502 503 504
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
505

506
    def __impl__(*args, **kwargs):
J
Jiabin Yang 已提交
507
        assert _non_static_mode(
508 509 510 511 512 513 514
        ), "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode." % func.__name__
        return func(*args, **kwargs)

    return __impl__


def _static_only_(func):
515

516
    def __impl__(*args, **kwargs):
J
Jiabin Yang 已提交
517
        assert not _non_static_mode(
518
        ), "In PaddlePaddle 2.x, we turn on dynamic graph mode by default, and '%s()' is only supported in static graph mode. So if you want to use this api, please call 'paddle.enable_static()' before this api to enter static graph mode." % func.__name__
519 520 521 522 523
        return func(*args, **kwargs)

    return __impl__


524 525 526 527 528
def _set_pipeline_stage(stage):
    global _current_pipeline_stage
    _current_pipeline_stage = stage


529 530 531 532 533 534
# NOTE(zhiqiu): This decorator is used for the APIs of Variable which is only
# used to make Variable and VarBase has same interfaces, like numpy. Since VarBase is not exposed in our
# official docments, logically, we want to keep VarBase and logically consistent. While, actually,
# in our implementation, there some APIs not supported, like numpy, because Variable contains the desc.
# So, those APIs are listed under class Variable to generate docs only.
# TODO(zhiqiu): We should make VarBase consistent with Variable in future, for example, by inheritting
T
tangwei12 已提交
535
# same base class.
536
def _fake_interface_only_(func):
537

538 539
    def __impl__(*args, **kwargs):
        raise AssertionError(
540 541 542 543 544
            "'%s' only can be called by `paddle.Tensor` in dynamic graph mode. Suggestions:\n"
            "  1. If you are in static graph mode, you can switch to dynamic graph mode by turning off `paddle.enable_static()` or calling `paddle.disable_static()`.\n"
            "  2. If you are using `@paddle.jit.to_static`, you can turn off ProgramTranslator by calling `paddle.jit.ProgramTranslator().enable(False)`. "
            "If you have to translate dynamic graph to static graph, please use other API to replace '%s'."
            % (func.__name__, func.__name__))
545 546 547 548

    return __impl__


T
tangwei12 已提交
549 550
# NOTE(chenweihang): There is argument name typo (stat_dict, correct name is state_dict)
# in fluid api Layer.set_dict, Optimizer.load, in order to correct the argument without
551 552 553 554
# introducing compatibility issues, add this decorator
# NOTE(chenweihang): not using `wrap_decorator` here is because `wrap_decorator` will
# move kwargs to args, which doesn't work in this decorate case
def deprecate_stat_dict(func):
555

556 557 558 559 560 561 562 563 564 565 566 567 568
    @functools.wraps(func)
    def wrapper(*args, **kwargs):
        if 'stat_dict' in kwargs:
            warnings.warn(
                "The argument `stat_dict` has deprecated, please change it to `state_dict`.",
                DeprecationWarning)
            kwargs['state_dict'] = kwargs['stat_dict']
            kwargs.pop('stat_dict')
        return func(*args, **kwargs)

    return wrapper


569 570
dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)
571
static_only = wrap_decorator(_static_only_)
572
fake_interface_only = wrap_decorator(_fake_interface_only_)
573 574


L
lujun 已提交
575 576
def _dygraph_tracer():
    return _dygraph_tracer_
577

W
Wu Yi 已提交
578

579 580 581 582
def _global_flags():
    return _global_flags_


M
minqiyang 已提交
583
def _current_expected_place():
584 585 586
    global _global_expected_place_
    if _global_expected_place_ is None:
        if core.is_compiled_with_cuda():
587 588 589 590 591
            try:
                device_count = core.get_cuda_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
592
                _global_expected_place_ = core.CUDAPlace(_cuda_ids()[0])
593 594 595 596 597
            else:
                warnings.warn(
                    "You are using GPU version Paddle, but your CUDA device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
598 599 600 601 602 603
        elif core.is_compiled_with_xpu():
            try:
                device_count = core.get_xpu_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
604
                _global_expected_place_ = core.XPUPlace(_xpu_ids()[0])
605 606 607 608 609
            else:
                warnings.warn(
                    "You are using XPU version Paddle, but your XPU device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
610 611 612 613 614 615
        elif core.is_compiled_with_mlu():
            try:
                device_count = core.get_mlu_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
616
                _global_expected_place_ = core.MLUPlace(_mlu_ids()[0])
617 618 619 620 621
            else:
                warnings.warn(
                    "You are using MLU version Paddle, but your MLU device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
        else:
            _global_expected_place_ = core.CPUPlace()

    return _global_expected_place_


def _set_dygraph_tracer_expected_place(place):
    global _dygraph_tracer_
    if _dygraph_tracer_ is not None:
        _dygraph_tracer_._expected_place = place


def _set_expected_place(place):
    global _global_expected_place_
    _global_expected_place_ = place
J
Jiabin Yang 已提交
637
    _set_dygraph_tracer_expected_place(place)
M
minqiyang 已提交
638 639


L
Leo Chen 已提交
640 641 642 643
# TODO(zhiqiu): remove this function.
def _var_base_to_np(var_base):
    """	
    convert VarBase tp numpy	
T
tangwei12 已提交
644

L
Leo Chen 已提交
645 646 647 648 649 650 651 652 653 654 655 656
    Args:	
        var_base(VarBase) : the VarBase to convert	
    Returns (np.ndarray): the np.ndarray contain the value of VarBase	
    """

    warnings.warn(
        "paddle.fluid.framework._var_base_to_np is deprecated, please use var_base.numpy() instead of _var_base_to_np(var_base)."
    )

    return var_base.numpy()


S
sneaxiy 已提交
657
def _cpu_num():
658
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
659 660 661 662 663 664 665 666
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()))
C
chengduo 已提交
667
        os.environ['CPU_NUM'] = str(1)
668
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
669 670 671 672 673 674 675 676 677 678
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_cuda_device_count())
    return device_ids
S
sneaxiy 已提交
679 680


681 682 683 684 685 686 687 688 689
def _xpu_ids():
    xpus_env = os.getenv("FLAGS_selected_xpus")
    if xpus_env:
        device_ids = [int(s) for s in xpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_xpu_device_count())
    return device_ids


690 691 692 693 694 695 696 697 698
def _npu_ids():
    npus_env = os.getenv("FLAGS_selected_npus")
    if npus_env:
        device_ids = [int(s) for s in npus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_npu_device_count())
    return device_ids


699 700 701 702 703 704 705 706 707
def _mlu_ids():
    mlus_env = os.getenv("FLAGS_selected_mlus")
    if mlus_env:
        device_ids = [int(s) for s in mlus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_mlu_device_count())
    return device_ids


708 709 710 711 712 713 714 715 716 717 718 719 720 721 722
def is_compiled_with_xpu():
    """
    Whether this whl package can be used to run the model on XPU.

    Returns (bool): support xpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_xpu = fluid.is_compiled_with_xpu()
    """
    return core.is_compiled_with_xpu()


723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
def is_compiled_with_npu():
    """
    Whether this whl package can be used to run the model on NPU.

    Returns (bool): support npu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_npu = fluid.is_compiled_with_npu()
    """
    return core.is_compiled_with_npu()


738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762
def disable_signal_handler():
    """
    Reset signal handler registered by Paddle.

    Paddle installs signal handlers at C++ level to log debug information upon failing.
    However, conflicts can happen if another python module is making use of such signal.
    Such being the case, one may disblae paddle signal handler via this interface.
    
    Known frameworks that require disabling signal handler includes:
    1. TVM
    2. ADLIK

    Make sure you called paddle.disable_signal_handler() before using above mentioned frameworks.

    Returns: None 

    Examples:
        .. code-block:: python

            import paddle
            paddle.disable_signal_handler()
    """
    core.disable_signal_handler()


763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
def is_compiled_with_cinn():
    """
    Whether this whl package can be used to run the model on CINN.

    Returns (bool): `True` if CINN is currently available, otherwise `False`.

    Examples:
        .. code-block:: python

            import paddle
            support_cinn = paddle.device.is_compiled_with_cinn()
    """
    return core.is_compiled_with_cinn()


C
chengduo 已提交
778 779 780 781
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

782
    Returns (bool): `True` if CUDA is currently available, otherwise `False`.
C
chengduo 已提交
783 784 785 786

    Examples:
        .. code-block:: python

787
            import paddle
788
            support_gpu = paddle.device.is_compiled_with_cuda()
C
chengduo 已提交
789 790 791 792
    """
    return core.is_compiled_with_cuda()


793 794 795 796 797 798 799 800 801 802
def is_compiled_with_rocm():
    """
    Whether this whl package can be used to run the model on AMD or Hygon GPU(ROCm).

    Returns (bool): `True` if ROCm is currently available, otherwise `False`.

    Examples:
        .. code-block:: python

            import paddle
803
            support_gpu = paddle.device.is_compiled_with_rocm()
804 805 806 807
    """
    return core.is_compiled_with_rocm()


S
sneaxiy 已提交
808
def cuda_places(device_ids=None):
L
lujun 已提交
809
    """
810
    Note:
811 812 813
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

C
Chen Weihang 已提交
814
    This function creates a list of :code:`paddle.CUDAPlace` objects.
S
add doc  
sneaxiy 已提交
815 816

    If :code:`device_ids` is None, environment variable of
817
    :code:`FLAGS_selected_gpus` would be checked first. For example, if
S
add doc  
sneaxiy 已提交
818
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
C
Chen Weihang 已提交
819
    be [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
S
add doc  
sneaxiy 已提交
820
    If :code:`FLAGS_selected_gpus` is not set, all visible
821
    gpu places would be returned according to the :code:`CUDA_VISIBLE_DEVICES` environment variable.
S
add doc  
sneaxiy 已提交
822 823

    If :code:`device_ids` is not None, it should be the device
824
    ids of GPUs. For example, if :code:`device_ids=[0,1,2]`,
S
add doc  
sneaxiy 已提交
825
    the returned list would be 
C
Chen Weihang 已提交
826
    [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
T
tangwei12 已提交
827

828
    Parameters:
829
        device_ids (list|tuple, optional): A list/tuple of int of GPU device ids.
S
add doc  
sneaxiy 已提交
830 831

    Returns:
C
Chen Weihang 已提交
832
        list of paddle.CUDAPlace: Created GPU place list.
L
lujun 已提交
833 834

    Examples:
835
    
L
lujun 已提交
836 837
        .. code-block:: python

C
Chen Weihang 已提交
838 839
            import paddle
            import paddle.static as static
T
tangwei12 已提交
840

841 842
            # required: gpu
            
C
Chen Weihang 已提交
843 844 845
            paddle.enable_static()

            cuda_places = static.cuda_places()
L
lujun 已提交
846 847

    """
S
sneaxiy 已提交
848 849 850
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_ids is None:
C
chengduo 已提交
851
        device_ids = _cuda_ids()
S
sneaxiy 已提交
852 853 854 855 856
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


857 858 859 860
def xpu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_xpus` environment variable to set the visible XPU device.
S
sunzhongkai588 已提交
861 862 863 864 865 866 867 868 869 870 871
        This function creates a list of :code:`paddle.XPUPlace` objects.
        If :code:`device_ids` is None, environment variable of
        :code:`FLAGS_selected_xpus` would be checked first. For example, if
        :code:`FLAGS_selected_xpus=0,1,2`, the returned list would
        be [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
        If :code:`FLAGS_selected_xpus` is not set, all visible
        xpu places would be returned.
        If :code:`device_ids` is not None, it should be the device
        ids of XPUs. For example, if :code:`device_ids=[0,1,2]`,
        the returned list would be 
        [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
872 873 874 875 876 877 878
    
    Parameters:
        device_ids (list or tuple of int, optional): list of XPU device ids.
    Returns:
        list of paddle.XPUPlace: Created XPU place list.
    Examples:
        .. code-block:: python
S
sunzhongkai588 已提交
879

880 881
            # required: xpu

882 883 884 885 886 887 888 889 890 891 892 893 894 895 896
            import paddle
            import paddle.static as static
            
            paddle.enable_static()
            xpu_places = static.xpu_places()
    """
    assert core.is_compiled_with_xpu(), \
        "Not compiled with XPU"
    if device_ids is None:
        device_ids = _xpu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.XPUPlace(dev_id) for dev_id in device_ids]


897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937
def npu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_npus` environment variable to set the visible NPU device.
    
    This function creates a list of :code:`paddle.NPUPlace` objects.
    If :code:`device_ids` is None, environment variable of
    :code:`FLAGS_selected_npus` would be checked first. For example, if
    :code:`FLAGS_selected_npus=0,1,2`, the returned list would
    be [paddle.NPUPlace(0), paddle.NPUPlace(1), paddle.NPUPlace(2)].
    If :code:`FLAGS_selected_npus` is not set, all visible
    npu places would be returned.
    If :code:`device_ids` is not None, it should be the device
    ids of NPUs. For example, if :code:`device_ids=[0,1,2]`,
    the returned list would be 
    [paddle.NPUPlace(0), paddle.NPUPlace(1), paddle.NPUPlace(2)].
    
    Parameters:
        device_ids (list or tuple of int, optional): list of NPU device ids.
    Returns:
        list of paddle.NPUPlace: Created NPU place list.
    Examples:
        .. code-block:: python

            # required: npu

            import paddle
            import paddle.static as static
            
            paddle.enable_static()
            npu_places = static.npu_places()
    """
    assert core.is_compiled_with_npu(), \
        "Not compiled with NPU"
    if device_ids is None:
        device_ids = _npu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.NPUPlace(dev_id) for dev_id in device_ids]


S
sneaxiy 已提交
938
def cpu_places(device_count=None):
L
lujun 已提交
939
    """
C
Chen Weihang 已提交
940
    This function creates a list of :code:`paddle.CPUPlace` objects, and returns the created list.
T
tangwei12 已提交
941

S
add doc  
sneaxiy 已提交
942 943
    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
C
chengduo 已提交
944 945
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
946 947
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
948

949 950
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
951 952

    Returns:
C
Chen Weihang 已提交
953
        list of paddle.CPUPlace: Created list of CPU places.
L
lujun 已提交
954 955

    Examples:
956
    
L
lujun 已提交
957 958
        .. code-block:: python

C
Chen Weihang 已提交
959 960
            import paddle
            import paddle.static as static
T
tangwei12 已提交
961

C
Chen Weihang 已提交
962 963 964
            paddle.enable_static()

            cpu_places = static.cpu_places()
L
lujun 已提交
965 966
    """

S
sneaxiy 已提交
967 968 969 970 971 972
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
973
    """
974
    This function creates a list of :code:`fluid.CUDAPinnedPlace` objects.
S
add doc  
sneaxiy 已提交
975 976 977

    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
978 979 980 981
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
982

983 984
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
985 986

    Returns:
987
        list of fluid.CUDAPinnedPlace: Created list of CUDA pinned places.
L
lujun 已提交
988 989 990 991

    Examples:
        .. code-block:: python

992
            import paddle.fluid as fluid
L
lujun 已提交
993 994 995 996 997
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
S
sneaxiy 已提交
998 999 1000
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_count is None:
1001 1002
        device_count = len(_cuda_ids())
    return [core.CUDAPinnedPlace()] * device_count
S
sneaxiy 已提交
1003 1004


1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
def mlu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_mlus` environment variable to set the visible MLU device.
        This function creates a list of :code:`paddle.device.MLUPlace` objects.
        If :code:`device_ids` is None, environment variable of
        :code:`FLAGS_selected_mlus` would be checked first. For example, if
        :code:`FLAGS_selected_mlus=0,1,2`, the returned list would
        be [paddle.device.MLUPlace(0), paddle.device.MLUPlace(1), paddle.device.MLUPlace(2)].
        If :code:`FLAGS_selected_mlus` is not set, all visible
        mlu places would be returned.
        If :code:`device_ids` is not None, it should be the device
        ids of MLUs. For example, if :code:`device_ids=[0,1,2]`,
        the returned list would be
        [paddle.device.MLUPlace(0), paddle.device.MLUPlace(1), paddle.device.MLUPlace(2)].

    Parameters:
        device_ids (list or tuple of int, optional): list of MLU device ids.

    Returns:
        list of paddle.device.MLUPlace: Created MLU place list.

    Examples:
        .. code-block:: python

            # required: mlu

            import paddle
            import paddle.static as static

            paddle.enable_static()
            mlu_places = static.mlu_places()
    """
    assert core.is_compiled_with_mlu(), \
        "Not compiled with MLU"
    if device_ids is None:
        device_ids = _mlu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.MLUPlace(dev_id) for dev_id in device_ids]


1047
class NameScope(object):
1048

1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
1074
@signature_safe_contextmanager
1075 1076
def name_scope(prefix=None):
    """
1077

1078
    Generate hierarchical name prefix for the operators in Static Graph.
1079

T
Tao Luo 已提交
1080 1081 1082
    Note: 
        This should only used for debugging and visualization purpose.
        Don't use it for serious analysis such as graph/program transformations.
1083
        Don't use it in dygraph, since it will cause memory leak.
1084 1085

    Args:
T
Tao Luo 已提交
1086
        prefix(str, optional): prefix. Default is none.
1087 1088

    Examples:
1089
    
1090
        .. code-block:: python
T
Tink_Y 已提交
1091

1092 1093 1094
          import paddle
          paddle.enable_static()
          with paddle.static.name_scope("s1"):
1095
             a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
T
Tao Luo 已提交
1096
             b = a + 1
1097
             with paddle.static.name_scope("s2"):
T
Tao Luo 已提交
1098
                c = b * 1
1099
             with paddle.static.name_scope("s3"):
T
Tao Luo 已提交
1100
                d = c / 1
1101 1102 1103
          with paddle.static.name_scope("s1"):
                f = paddle.tensor.pow(d, 2.0)
          with paddle.static.name_scope("s4"):
T
Tao Luo 已提交
1104 1105 1106
                g = f - 1

          # Op are created in the default main program.  
1107
          for op in paddle.static.default_main_program().block(0).ops:
T
Tao Luo 已提交
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
              # elementwise_add is created in /s1/
              if op.type == 'elementwise_add':
                  assert op.desc.attr("op_namescope") == '/s1/'
              # elementwise_mul is created in '/s1/s2'
              elif op.type == 'elementwise_mul':
                  assert op.desc.attr("op_namescope") == '/s1/s2/'
              # elementwise_div is created in '/s1/s3'
              elif op.type == 'elementwise_div':
                  assert op.desc.attr("op_namescope") == '/s1/s3/'
              # elementwise_sum is created in '/s4'
              elif op.type == 'elementwise_sub':
                  assert op.desc.attr("op_namescope") == '/s4/'
              # pow is created in /s1_1/
              elif op.type == 'pow':
                  assert op.desc.attr("op_namescope") == '/s1_1/'
1123 1124
    """
    # TODO(panyx0718): Only [0-9a-z].
1125
    # in dygraph we don't need namescope since it will cause mem leak
J
Jiabin Yang 已提交
1126
    if _non_static_mode():
L
Leo Chen 已提交
1127 1128
        yield
    else:
T
tianshuo78520a 已提交
1129
        assert prefix, "namescope prefix can not be empty."
1130 1131
        global _name_scope
        _name_scope = _name_scope.child(prefix)
1132 1133 1134 1135
        try:
            yield
        finally:
            _name_scope = _name_scope.parent()
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
1148 1149 1150
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
1151 1152 1153 1154


def grad_var_name(var_name):
    """
1155 1156
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
1157 1158 1159
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
1160

1161
def convert_np_dtype_to_dtype_(np_dtype):
1162 1163
    """
    Convert the data type in numpy to the data type in Paddle
1164

1165
    Args:
1166
        np_dtype(np.dtype): the data type in numpy.
1167

1168 1169
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
1170 1171

    """
1172 1173
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
1174
        return core.VarDesc.VarType.FP32
1175
    elif dtype == np.float64:
1176
        return core.VarDesc.VarType.FP64
1177
    elif dtype == np.float16:
1178
        return core.VarDesc.VarType.FP16
1179
    elif dtype == np.int32:
1180
        return core.VarDesc.VarType.INT32
1181
    elif dtype == np.int16:
1182
        return core.VarDesc.VarType.INT16
1183
    elif dtype == np.int64:
1184
        return core.VarDesc.VarType.INT64
1185
    elif dtype == np.bool_:
1186
        return core.VarDesc.VarType.BOOL
1187
    elif dtype == np.uint16:
1188 1189 1190
        # since there is still no support for bfloat16 in NumPy,
        # uint16 is used for casting bfloat16
        return core.VarDesc.VarType.BF16
1191 1192
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
1193 1194
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
1195 1196 1197 1198
    elif dtype == np.complex64:
        return core.VarDesc.VarType.COMPLEX64
    elif dtype == np.complex128:
        return core.VarDesc.VarType.COMPLEX128
1199
    else:
M
minqiyang 已提交
1200
        raise ValueError("Not supported numpy dtype %s" % dtype)
1201 1202 1203


def dtype_is_floating(dtype):
1204 1205 1206
    """
    Check the data type is floating or not.
    Args:
1207
        dtype(np.dtype|core.VarDesc.VarType): data type.
1208 1209 1210 1211 1212
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
1213
    if not isinstance(dtype, core.VarDesc.VarType):
1214 1215
        dtype = convert_np_dtype_to_dtype_(dtype)

1216 1217 1218 1219
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
1220 1221


Y
Yang Yang(Tony) 已提交
1222
def _debug_string_(proto, throw_on_error=True):
1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
1234
    error_fields = list()
Y
Yang Yang(Tony) 已提交
1235
    if not proto.IsInitialized(error_fields) and throw_on_error:
1236 1237 1238
        raise ValueError(
            "{0} are not initialized.\nThe message is {1}:\n".format(
                error_fields, proto))
Y
Yu Yang 已提交
1239 1240 1241
    return proto.__str__()


1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
def _varbase_creator(type=core.VarDesc.VarType.LOD_TENSOR,
                     name=None,
                     shape=None,
                     dtype=None,
                     persistable=None,
                     **kwargs):
    if dtype is not None:
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

J
Jiabin Yang 已提交
1252
    if _in_eager_mode_:
1253
        eager_tensor = core.eager.Tensor(
1254
            dtype if dtype else core.VarDesc.VarType.FP32,
1255 1256 1257
            list(shape) if shape else [], name,
            type if type else core.VarDesc.VarType.LOD_TENSOR,
            True if persistable else False)
1258 1259
        eager_tensor.retain_grads()
        return eager_tensor
J
Jiabin Yang 已提交
1260 1261
    else:
        return core.VarBase(dtype if dtype else core.VarDesc.VarType.FP32,
1262 1263 1264
                            list(shape) if shape else [], name,
                            type if type else core.VarDesc.VarType.LOD_TENSOR,
                            True if persistable else False)
1265 1266


1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
def _all_is_type(vals, expected_type):
    """
    Return True if type of each element is expected_type.

    NOTE: BuiltIn all() will always return True if vals is empty.
    """
    assert isinstance(vals, (list, tuple))
    if not vals: return False
    return all(isinstance(v, expected_type) for v in vals)


1278
class VariableMetaClass(type):
1279

1280 1281 1282 1283
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1284
            return issubclass(t, core.eager.Tensor)
1285
        else:
J
Jiabin Yang 已提交
1286 1287
            if _in_legacy_dygraph():
                return issubclass(t, core.VarBase)
1288 1289 1290 1291
            return issubclass(t, Variable)


class ParameterMetaClass(VariableMetaClass):
1292

1293 1294 1295 1296
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1297
            return issubclass(t, EagerParamBase)
1298
        else:
J
Jiabin Yang 已提交
1299 1300
            if _in_legacy_dygraph():
                return issubclass(t, ParamBase)
1301 1302 1303 1304
            return issubclass(t, Parameter)


@six.add_metaclass(VariableMetaClass)
X
Xin Pan 已提交
1305
class Variable(object):
1306
    """
J
Jiabin Yang 已提交
1307
    **Notes**:
1308
        **The constructor of Variable should not be invoked directly.**
J
Jiabin Yang 已提交
1309

1310 1311
        **In Static Graph Mode: Please use** `Block.create_var` **to create a Static variable which has no data until being feed.**

J
Jiabin Yang 已提交
1312 1313 1314
        **In Dygraph Mode: Please use** :ref:`api_fluid_dygraph_to_variable` **to create a dygraph variable with real data**

    In Fluid, every input and output of an OP is a variable. In most
1315
    cases, variables are used for holding different kinds of data or training
J
Jiabin Yang 已提交
1316 1317
    labels. A variable belongs to a :ref:`api_guide_Block_en` . All variable has its own name and
    two variables in different :ref:`api_guide_Block_en` could have the same name.
1318

1319
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
1320
    and usages. Please refer to the `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_ for details.
1321

T
tianshuo78520a 已提交
1322
    Most of a Variable's member variables can be set to be None. It mean
1323
    it is not available or will be specified later.
1324

1325
    Examples:
1326 1327
        In Static Graph Mode:

1328 1329
        .. code-block:: python

1330
            import paddle.fluid as fluid
1331
            cur_program = fluid.Program()
1332 1333 1334 1335
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
S
sunzhongkai588 已提交
1336

J
Jiabin Yang 已提交
1337
        In `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_  Mode:
1338 1339 1340 1341 1342 1343 1344 1345 1346

        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                new_variable = fluid.dygraph.to_variable(np.arange(10))

1347 1348
    """

Y
Yu Yang 已提交
1349 1350
    def __init__(self,
                 block,
Y
Yu Yang 已提交
1351
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
1352 1353 1354 1355
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
1356
                 capacity=None,
Q
QI JUN 已提交
1357
                 persistable=None,
F
fengjiayi 已提交
1358
                 error_clip=None,
Y
Yu Yang 已提交
1359
                 stop_gradient=False,
F
fengjiayi 已提交
1360
                 is_data=False,
H
Huihuang Zheng 已提交
1361
                 need_check_feed=False,
H
hong 已提交
1362
                 belong_to_optimizer=False,
Y
Yu Yang 已提交
1363
                 **kwargs):
Y
Yu Yang 已提交
1364 1365
        self.block = block
        if name is None:
Y
Yu Yang 已提交
1366
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
1367

Y
Yu Yang 已提交
1368
        if dtype is not None:
1369
            if not isinstance(dtype, core.VarDesc.VarType):
1370
                dtype = convert_np_dtype_to_dtype_(dtype)
1371

S
Steffy-zxf 已提交
1372 1373 1374 1375
        if dtype == core.VarDesc.VarType.STRINGS:
            type = core.VarDesc.VarType.STRINGS
            lod_level = None

H
hong 已提交
1376 1377
        self.belong_to_optimizer = belong_to_optimizer

1378 1379 1380 1381 1382
        self.error_clip = error_clip

        is_new_var = False
        name = cpt.to_text(name)
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
1383

1384 1385 1386
        if self.desc is None:
            self.desc = self.block.desc.var(cpt.to_bytes(name))
            is_new_var = True
1387

1388 1389 1390
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
L
Leo Chen 已提交
1391 1392
            raise ValueError("Variable '{0}' has been created before. The "
                             "previous type is {1}, the new type is {2}. They"
1393 1394
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))
1395

1396
        if shape is not None:
1397
            if is_new_var:
1398 1399 1400 1401 1402 1403
                self.desc.set_shape(shape)
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
L
Leo Chen 已提交
1404 1405
                        "Variable '{0}' has been created before. The previous "
                        "shape is {1}, the new shape is {2}. They are not "
1406 1407 1408 1409 1410 1411 1412
                        "matched.".format(self.name, old_shape, shape))
        if dtype is not None:
            if is_new_var:
                self.desc.set_dtype(dtype)
            else:
                old_dtype = self.dtype
                if dtype != old_dtype:
L
Leo Chen 已提交
1413 1414
                    raise ValueError("Variable '{0}' has been created before. "
                                     "The previous data type is {1}, the new "
1415 1416 1417 1418 1419 1420 1421 1422 1423
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))

        if lod_level is not None:
            if is_new_var:
                self.desc.set_lod_level(lod_level)
            else:
                if lod_level != self.lod_level:
L
Leo Chen 已提交
1424 1425
                    raise ValueError("Variable '{0}' has been created before. "
                                     "The previous lod_level is {1}, the new "
1426 1427 1428 1429 1430 1431 1432 1433 1434
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
L
Leo Chen 已提交
1435 1436
                        "Variable '{0}' has been created before."
                        "The previous persistable is {1}, the new "
1437 1438
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))
1439

1440 1441
        if need_check_feed and is_new_var:
            self.desc.set_need_check_feed(need_check_feed)
H
Huihuang Zheng 已提交
1442

1443 1444 1445 1446 1447 1448 1449
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass
1450

1451 1452
        self.block.vars[name] = self
        self.op = None
1453
        self.stop_gradient = stop_gradient
1454
        self.is_data = is_data
Y
Yu Yang 已提交
1455

1456 1457 1458
    def detach(self):
        """
        Returns a new Variable, detached from the current graph.
1459 1460
        It will share data with origin Variable and without tensor copy.
        In addition, the detached Variable doesn't provide gradient propagation.
1461

1462
        Returns:
J
Jiabin Yang 已提交
1463
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable): The detached Variable.
1464 1465 1466 1467

        Examples:
            .. code-block:: python

1468
                import paddle
1469

1470 1471 1472 1473
                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
1474

1475 1476
                # create a detached Variable
                y = x.detach()
1477
        """
1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489

        assert self.type == core.VarDesc.VarType.SELECTED_ROWS or \
            self.type == core.VarDesc.VarType.LOD_TENSOR, \
            "only support a variable with SELECTED_ROWS or LOD_TENSOR to be detached"

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key("detach_" + self.name),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
            stop_gradient=True)

1490 1491 1492
        self.block.append_op(type='share_data',
                             inputs={'X': [self]},
                             outputs={'Out': [output]})
1493
        return output
1494

1495
    @fake_interface_only
1496
    def numpy(self):
1497
        """
J
Jiabin Yang 已提交
1498
        **Notes**:
T
tianshuo78520a 已提交
1499
            **This API is ONLY available in Dygraph mode**
1500

J
Jiabin Yang 已提交
1501
        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`
1502 1503 1504 1505 1506

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
J
Jiabin Yang 已提交
1507
            ndarray: dtype is same as current Variable
1508 1509 1510 1511 1512 1513

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1514
                from paddle.fluid.dygraph import Linear
1515 1516 1517 1518
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1519
                    linear = Linear(32, 64)
1520
                    data = to_variable(data)
1521
                    x = linear(data)
1522 1523 1524
                    print(x.numpy())

        """
1525
        pass
1526

1527
    @fake_interface_only
1528
    def backward(self, retain_graph=False):
1529
        """
J
Jiabin Yang 已提交
1530
        **Notes**:
T
tianshuo78520a 已提交
1531
            **This API is ONLY available in Dygraph mode**
1532

1533
        Run backward of current Graph which starts from current Tensor.
1534

J
Jiabin Yang 已提交
1535
        Args:
1536 1537 1538 1539
            retain_graph(bool, optional): If False, the graph used to compute grads will be freed. If you would
                like to add more ops to the built graph after calling this method( :code:`backward` ), set the parameter
                :code:`retain_graph` to True, then the grads will be retained. Thus, seting it to False is much more memory-efficient.
                Defaults to False.
1540

J
Jiabin Yang 已提交
1541 1542
        Returns:
            NoneType: None
1543 1544 1545 1546 1547

        Examples:
            .. code-block:: python

                import numpy as np
1548 1549
                import paddle
                paddle.disable_static()
1550 1551

                x = np.ones([2, 2], np.float32)
1552 1553 1554 1555 1556 1557 1558
                inputs = []
                for _ in range(10):
                    tmp = paddle.to_tensor(x)
                    # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
                    # there is no one need gradient on it.
                    tmp.stop_gradient=False
                    inputs.append(tmp)
1559 1560
                ret = paddle.add_n(inputs)
                loss = paddle.sum(ret)
1561
                loss.backward()
1562 1563

        """
1564
        pass
1565

1566
    @fake_interface_only
1567
    def gradient(self):
1568
        """
J
Jiabin Yang 已提交
1569
        **Notes**:
T
tianshuo78520a 已提交
1570
            **This API is ONLY available in Dygraph mode**
1571 1572 1573

        Get the Gradient of Current Variable

J
Jiabin Yang 已提交
1574
        Returns:
1575
            ndarray or tuple of ndarray: if Variable's type is LoDTensor, return numpy value of the gradient of current Variable, if Variable's type is SelectedRows, return tuple of ndarray, first element of tuple is numpy value of the gradient of current Variable, second element of tuple is numpy value of the rows of current Variable.
1576 1577 1578 1579 1580 1581 1582

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

1583
                # example1: return ndarray
1584 1585 1586 1587 1588 1589 1590 1591 1592
                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1593
                    loss2.backward()
1594 1595
                    print(loss2.gradient())

1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
                # example2: return tuple of ndarray
                with fluid.dygraph.guard():
                    embedding = fluid.dygraph.Embedding(
                        size=[20, 32],
                        param_attr='emb.w',
                        is_sparse=True)
                    x_data = np.arange(12).reshape(4, 3).astype('int64')
                    x_data = x_data.reshape((-1, 3, 1))
                    x = fluid.dygraph.base.to_variable(x_data)
                    out = embedding(x)
                    out.backward()
                    print(embedding.weight.gradient())

1609
        """
1610
        pass
1611

1612
    @fake_interface_only
1613
    def clear_gradient(self):
1614
        """
J
Jiabin Yang 已提交
1615
        **Notes**:
T
tianshuo78520a 已提交
1616
            **1. This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1617 1618

            **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**
1619

J
Jiabin Yang 已提交
1620
        Clear  (set to ``0`` ) the Gradient of Current Variable
1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638

        Returns:  None

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1639
                    loss2.backward()
1640 1641 1642 1643 1644
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
1645
        pass
X
Xin Pan 已提交
1646

1647 1648 1649 1650
    @fake_interface_only
    def register_hook(self, hook):
        pass

1651
    def __str__(self):
1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
        return self._to_readable_code()

    def _to_readable_code(self):
        """
        Get readable debug string of Variable.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Returns:
            string: The formatted Variable string.

        Examples:
            .. code-block:: python

1668 1669
                import paddle
                import paddle.static as static
1670

1671 1672 1673
                paddle.enable_static()

                cur_program = static.Program()
1674 1675 1676 1677 1678 1679
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
                print(new_variable._to_readable_code())
        """
1680 1681
        # VarType.LOD_TENSOR -> LOD_TENSOR
        type_str = str(self.type).split('.')[1]
1682
        if self.type == core.VarDesc.VarType.SELECTED_ROWS or self.type == core.VarDesc.VarType.LOD_TENSOR:
1683 1684
            dtype_str = str(self.dtype).split('.')[1]
            var_str = "{name} : {type}.shape{shape}.dtype({dtype}).stop_gradient({stop_gradient})".\
T
tangwei12 已提交
1685 1686
                format(name=self.name, type=type_str, shape=self.shape,
                       dtype=dtype_str, stop_gradient=self.stop_gradient)
1687
        else:
1688 1689
            var_str = "{name} : {type})".\
                format(name=self.name, type=type_str)
1690

1691
        if self.is_parameter:
1692 1693 1694 1695 1696 1697 1698 1699 1700 1701
            if self.trainable:
                var_str = "trainable param " + var_str
            else:
                var_str = "param " + var_str
        else:
            var_str = "var " + var_str

        if self.persistable:
            var_str = "persist " + var_str

1702
        from paddle.distributed.auto_parallel.dist_context import get_default_distributed_context
1703
        dist_context = get_default_distributed_context()
1704 1705
        dist_tensor = dist_context.get_dist_tensor_for_program(self)
        if dist_tensor is not None:
1706 1707
            var_str += ", {name} = {value}".format(name="dist_attr",
                                                   value=dist_tensor)
1708

1709
        return var_str
Y
Yang Yang(Tony) 已提交
1710

F
update  
fengjiayi 已提交
1711
    def to_string(self, throw_on_error, with_details=False):
1712 1713 1714
        """
        Get debug string.

J
Jiabin Yang 已提交
1715 1716 1717 1718 1719
        Args:

            throw_on_error (bool): True if raise an exception when self is not initialized.

            with_details (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default value is False;
1720

1721 1722
        Returns:
            str: The debug string.
1723 1724 1725 1726 1727

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
1728
                import paddle
1729

1730
                paddle.enable_static()
1731 1732 1733 1734 1735
                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
1736
                print(new_variable.to_string(True))
J
Jiabin Yang 已提交
1737
                print("=============with detail===============")
1738
                print(new_variable.to_string(True, True))
1739
        """
1740 1741
        assert isinstance(throw_on_error, bool) and isinstance(
            with_details, bool)
1742
        protostr = self.desc.serialize_to_string()
1743
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
1744 1745
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
1746
            additional_attr = ("error_clip", )
F
update  
fengjiayi 已提交
1747
            for attr_name in additional_attr:
1748 1749 1750
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))

F
update  
fengjiayi 已提交
1751
        return res_str
1752 1753 1754

    __repr__ = __str__

1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781
    def element_size(self):
        """
        Returns the size in bytes of an element in the Tensor.
        
        Examples:
          .. code-block:: python

            import paddle
            paddle.enable_static()

            x = paddle.static.data(name='x1', shape=[3, 2], dtype='bool')
            x.element_size() # 1

            x = paddle.static.data(name='x2', shape=[3, 2], dtype='int16')
            x.element_size() # 2

            x = paddle.static.data(name='x3', shape=[3, 2], dtype='float16')
            x.element_size() # 2

            x = paddle.static.data(name='x4', shape=[3, 2], dtype='float32')
            x.element_size() # 4

            x = paddle.static.data(name='x5', shape=[3, 2], dtype='float64')
            x.element_size() # 8
        """
        return self.desc.element_size()

1782
    @property
1783
    def stop_gradient(self):
J
Jiabin Yang 已提交
1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798
        """
        Indicating if we stop gradient from current Variable

        **Notes: This Property has default value as** ``True`` **in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, while Parameter's default value is False. However, in Static Graph Mode all Variable's default stop_gradient value is** ``False``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                value1 = np.arange(6).reshape(2, 3).astype("float32")
                value2 = np.arange(10).reshape(2, 5).astype("float32")
1799 1800
                linear = fluid.Linear(13, 5, dtype="float32")
                linear2 = fluid.Linear(3, 3, dtype="float32")
J
Jiabin Yang 已提交
1801 1802 1803
                a = fluid.dygraph.to_variable(value0)
                b = fluid.dygraph.to_variable(value1)
                c = fluid.dygraph.to_variable(value2)
1804 1805
                out1 = linear(a)
                out2 = linear2(b)
J
Jiabin Yang 已提交
1806 1807 1808 1809
                out1.stop_gradient = True
                out = fluid.layers.concat(input=[out1, out2, c], axis=1)
                out.backward()

1810
                assert linear.weight.gradient() is None
J
Jiabin Yang 已提交
1811 1812
                assert (out1.gradient() == 0).all()
        """
1813
        return self.desc.stop_gradient()
1814

1815 1816
    @stop_gradient.setter
    def stop_gradient(self, s):
1817
        self.desc.set_stop_gradient(s)
1818

1819 1820
    @property
    def persistable(self):
J
Jiabin Yang 已提交
1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841
        """
        Indicating if we current Variable should be long-term alive


        **Notes: This Property will be deprecated and this API is just to help user understand concept**

            **1. All Variable's persistable is** ``False`` **except Parameters.**

            **2. In** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, this property should not be changed**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("persistable of current Var is: {}".format(new_variable.persistable))
        """
1842
        return self.desc.persistable()
1843

Y
Yu Yang 已提交
1844 1845
    @persistable.setter
    def persistable(self, p):
1846
        self.desc.set_persistable(p)
Y
Yu Yang 已提交
1847

1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872
    @property
    def is_parameter(self):
        """
        Indicating if current Variable is a Parameter

        Examples:
          .. code-block:: python

            import paddle
            new_parameter = paddle.static.create_parameter(name="X",
                                                shape=[10, 23, 48],
                                                dtype='float32')
            if new_parameter.is_parameter:
                print("Current var is a Parameter")
            else:
                print("Current var is not a Parameter")

            # Current var is a Parameter
        """
        return self.desc.is_parameter()

    @is_parameter.setter
    def is_parameter(self, p):
        self.desc.set_is_parameter(p)

Y
Yu Yang 已提交
1873 1874
    @property
    def name(self):
J
Jiabin Yang 已提交
1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890
        """
        Indicating name of current Variable

        **Notes: If it has two or more Varaible share the same name in the same** :ref:`api_guide_Block_en` **, it means these Variable will share content in no-** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode. This is how we achieve Parameter sharing**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("name of current Var is: {}".format(new_variable.name))
        """
1891
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
1892

1893 1894 1895 1896 1897 1898
    @property
    def grad_name(self):
        """
        Indicating name of the gradient Variable of current Variable.

        **Notes: This is a read-only property. It simply returns name of
S
sunzhongkai588 已提交
1899 1900
        gradient Variable from a naming convention but doesn't guarantee
        the gradient exists.**
T
tangwei12 已提交
1901

1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912
        Examples:
          .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.data(name="x", shape=[-1, 23, 48], dtype='float32')
          print(x.grad_name) # output is "x@GRAD"

        """
        return self.name + "@GRAD"

T
typhoonzero 已提交
1913 1914
    @name.setter
    def name(self, new_name):
1915
        self.desc.set_name(new_name)
T
typhoonzero 已提交
1916

Y
Yu Yang 已提交
1917 1918
    @property
    def shape(self):
J
Jiabin Yang 已提交
1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
        """
        Indicating shape of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("shape of current Var is: {}".format(new_variable.shape))

        """
Y
Yu Yang 已提交
1936
        # convert to tuple, make it as same as numpy API.
1937
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
1938 1939

    @property
F
fengjiayi 已提交
1940
    def dtype(self):
J
Jiabin Yang 已提交
1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956
        """
        Indicating data type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Dtype of current Var is: {}".format(new_variable.dtype))
        """
1957
        return self.desc.dtype()
Y
Yu Yang 已提交
1958 1959 1960

    @property
    def lod_level(self):
J
Jiabin Yang 已提交
1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973
        """
        Indicating ``LoD`` info of current Variable, please refer to  :ref:`api_fluid_LoDTensor_en` to check the meaning
        of ``LoD``

        **Notes**:

            **1. This is a read-only property**

            **2. Don't support this property in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, it's value should be** ``0(int)``

        Examples:
          .. code-block:: python

1974
            import paddle
J
Jiabin Yang 已提交
1975
            import paddle.fluid as fluid
1976 1977

            paddle.enable_static()
J
Jiabin Yang 已提交
1978 1979 1980 1981 1982 1983 1984
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("LoD Level of current Var is: {}".format(new_variable.lod_level))
        """
1985 1986
        if self.type == core.VarDesc.VarType.SELECTED_ROWS:
            raise Exception("SelectedRows DO NOT supprt lod")
1987 1988
        if self.type == core.VarDesc.VarType.STRINGS:
            return None
1989
        return self.desc.lod_level()
Y
Yu Yang 已提交
1990

Y
Yu Yang 已提交
1991 1992
    @property
    def type(self):
J
Jiabin Yang 已提交
1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
        """
        Indicating Type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Type of current Var is: {}".format(new_variable.type))
        """
2009
        return self.desc.type()
Y
Yu Yang 已提交
2010

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051
    @property
    def T(self):
        """
        Permute current Variable with its dimensions reversed.

        If `n` is the dimensions of `x` , `x.T` is equivalent to `x.transpose([n-1, n-2, ..., 0])`.

        Examples:

            .. code-block:: python

                import paddle
                paddle.enable_static()

                x = paddle.ones(shape=[2, 3, 5])
                x_T = x.T

                exe = paddle.static.Executor()
                x_T_np = exe.run(paddle.static.default_main_program(), fetch_list=[x_T])[0]
                print(x_T_np.shape)
                # (5, 3, 2)
        """
        if len(self.shape) == 1:
            return self
        perm = []
        for i in range(len(self.shape)):
            perm.insert(0, i)

        out = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=self.type,
            persistable=False,
            stop_gradient=False)
        input_shape = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=False,
            stop_gradient=False)

2052 2053 2054 2055 2056 2057 2058
        self.block.append_op(type='transpose2',
                             inputs={'X': [self]},
                             outputs={
                                 'Out': [out],
                                 'XShape': [input_shape]
                             },
                             attrs={'axis': perm})
2059 2060
        return out

2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090
    def clone(self):
        """
        Returns a new static Variable, which is the clone of the original static
        Variable. It remains in the current graph, that is, the cloned Variable 
        provides gradient propagation. Calling ``out = tensor.clone()`` is same
        as ``out = assign(tensor)`` .

        Returns:
            Variable: The cloned Variable.

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
                # create a cloned Variable
                y = x.clone()

        """
        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_clone"),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
            stop_gradient=self.stop_gradient)

2091 2092 2093
        self.block.append_op(type='assign',
                             inputs={'X': [self]},
                             outputs={'Out': [output]})
2094 2095
        return output

W
Wu Yi 已提交
2096
    def _set_error_clip(self, error_clip):
2097 2098 2099 2100 2101 2102 2103 2104 2105
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
2106 2107
        self.error_clip = error_clip

2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136
    def _set_info(self, key, value):
        """
        Set key-value information for this variable.

        Args:
            key(str): Key for this information.
            value(object): The value associated to the key.

        Returns: 
            None
        """
        if not hasattr(self, "_info"):
            self._info = {}
        self._info[key] = value

    def _get_info(self, key):
        """
        Get the information of this variable corresponding to key.

        Args:
            key(str): Key for this information.

        Returns: 
            object
        """
        if hasattr(self, "_info") and key in self._info:
            return self._info[key]
        return None

2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147
    def _slice_indices(self, slice, length):
        """
        Reference implementation for the slice.indices method.
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
T
tianshuo78520a 已提交
2148
            raise ValueError("slice step can not be zero")
2149 2150 2151 2152 2153 2154 2155 2156 2157 2158

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
2159 2160
            start = max(start +
                        length, lower) if start < 0 else min(start, upper)
2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
                if (index > 0 and index >= self.shape[index]) \
                        or (index < 0 and (index + self.shape[index]) < 0):
                    raise IndexError("invalid index")
                start = max(start + self.shape[index], 0) if start < 0 else min(
                    start, self.shape[index])
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
2224
    def _cloneVar(self, copy=False):
2225 2226
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
2227 2228
                name=unique_name.generate_with_ignorable_key(self.name),
                dtype=self.dtype)
2229 2230 2231 2232
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
2233
        new_var = self._cloneVar()
2234 2235 2236 2237 2238 2239 2240 2241
        self.block.append_op(type="slice",
                             inputs={'Input': [self]},
                             outputs={'Out': [new_var]},
                             attrs={
                                 'axes': axes,
                                 'starts': starts,
                                 'ends': ends
                             })
2242 2243 2244
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
2245
        new_var = self._cloneVar()
2246 2247 2248 2249 2250 2251
        self.block.append_op(type="concat",
                             inputs={'X': inputs},
                             outputs={'Out': [new_var]},
                             attrs={
                                 'axis': axis,
                             })
2252 2253 2254 2255 2256
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
2257
                return self._cloneVar(True)
2258 2259 2260 2261 2262 2263 2264
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
2265 2266
                        vars.append(self._sliceVar([axis], [start],
                                                   [start + 1]))
2267 2268 2269
                        start += step
                else:
                    while start > stop:
2270 2271
                        vars.append(self._sliceVar([axis], [start],
                                                   [start + 1]))
2272 2273 2274 2275
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
2276
                return self._cloneVar(True)
2277
            index = int(item)
2278
            if (index > 0 and index >= self.shape[axis]) \
2279 2280 2281 2282 2283 2284 2285
                    or (index < 0 and (index + self.shape[axis]) < 0):
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
2286
        return _getitem_impl_(self, item)
2287

2288
    def __setitem__(self, item, value):
2289
        return _setitem_impl_(self, item, value)
2290

2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331
    def get_value(self, scope=None):
        """
        Get the value of variable in given scope. 

        Args:
            scope(Scope, optional) : If `scope` is None, it will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            Tensor: the value in given scope.

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static 
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        """
2332 2333
        # The 'framework' is a low-level module, and 'executor'
        # can not be imported at the begainning of this file.
2334 2335 2336 2337
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
2338 2339
                "`scope` should be None or `paddle.static.Scope` type, but received {}."
                .format(type(scope)))
2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393

        if scope is None:
            scope = global_scope()
        var_temp = scope.find_var(self.name)
        if var_temp is None:
            raise ValueError("Can not find Variable '{}' in the Scope.".format(
                self.name))
        t = var_temp.get_tensor()
        return t

    def set_value(self, value, scope=None):
        '''
        Set the value to the tensor in given scope. 

        Args:
            value(Tensor/ndarray) : The value to be set.
            scope(Scope, optional) : If `scope` is None, it will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            None
        
        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static 
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        '''

        # The 'framework' is a low-level module, and 'executor'
2394
        # can not be imported at the begainning of this file.
2395 2396 2397 2398 2399
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope

        if not (isinstance(value, np.ndarray) or hasattr(value, '__array__')):
            raise TypeError(
2400 2401
                "`value` should be `numpy.ndarray` or `LoDTensor`, but received {}."
                .format(type(value)))
2402 2403 2404

        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
2405 2406
                "`scope` should be None or `paddle.static.Scope` type, but received {}."
                .format(type(scope)))
2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436

        if scope is None:
            scope = global_scope()

        var_temp = scope.find_var(self.name)
        if var_temp is None:
            raise ValueError("Can not find Variable '{}' in the Scope.".format(
                self.name))

        t = var_temp.get_tensor()

        if hasattr(value, 'shape'):
            if isinstance(value.shape, (MethodType, FunctionType)):
                value_shape = value.shape()
            else:
                value_shape = value.shape
            if list(t.shape()) != list(value_shape):
                raise ValueError(
                    "{} expected a shape {}, but the received shape is {}.".
                    format(self.name, list(t.shape()), list(value_shape)))

        p = t._place()
        if p.is_cpu_place():
            place = core.CPUPlace()
        elif p.is_cuda_pinned_place():
            place = core.CUDAPinnedPlace()
        elif p.is_xpu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.XPUPlace(p.xpu_device_id())
2437 2438 2439 2440
        elif p.is_npu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.NPUPlace(p.npu_device_id())
2441 2442 2443 2444
        elif p.is_mlu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.MLUPlace(p.mlu_device_id())
2445 2446 2447 2448 2449 2450 2451
        else:
            p = core.Place()
            p.set_place(t._place())
            place = core.CUDAPlace(p.gpu_device_id())

        t.set(value, place)

2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476
    def size(self):
        """
        Returns the number of elements for current Variable, which is a int64 Variable with shape [1]

        Returns:
            Variable: the number of elements for current Variable

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])

                # get the number of elements of the Variable
                y = x.size()
        """

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_size"),
            dtype=core.VarDesc.VarType.INT64)

2477 2478 2479
        self.block.append_op(type='size',
                             inputs={'Input': [self]},
                             outputs={'Out': [output]})
2480 2481
        return output

2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535
    def _set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _has_attr(self, name):
        """
        Whether this Variable has the attribute with the name `name` or not.

        Args:
            name(str): the attribute name.

        Returns:
            bool: True if has this attribute.
        """
        return self.desc.has_attr(name)

    def _remove_attr(self, name):
        self.desc.remove_attr(name)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
        """
        self.desc._set_attr(name, val)

    @property
    def attr_names(self):
        """Get the names of all attributes defined."""
        return self.desc.attr_names()

    def _get_attr(self, name):
        """
        Get the attribute by name.

        Args:
            name(str): the attribute name.

        Returns:
            int|str|list: The attribute value. The return value
            can be any valid attribute type.
        """
        return self.desc.attr(name)

    @property
2536
    def dist_attr(self):
2537
        """
2538
        Get distributed attribute of this Variable.
2539
        """
2540
        return self.desc.dist_attr
2541

2542 2543
    @dist_attr.setter
    def dist_attr(self, dist_attr):
2544
        """
2545
        Set distributed attribute of this Variable.
2546
        """
2547
        self.desc.dist_attr = dist_attr
2548

Y
Yu Yang 已提交
2549

F
fengjiayi 已提交
2550 2551 2552
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
2553

2554 2555
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
2556 2557 2558 2559
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
2560
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
2561 2562 2563 2564 2565
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
2566 2567 2568 2569
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
2570 2571 2572 2573 2574 2575 2576 2577 2578
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
2579
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
2580 2581 2582 2583 2584 2585
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
2586 2587 2588 2589 2590 2591 2592 2593
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
2594 2595
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
2596 2597
        return self.op_proto_map[type]

2598 2599
    def update_op_proto(self):
        op_protos = get_all_op_protos()
2600
        custom_op_names = []
2601 2602 2603
        for proto in op_protos:
            if proto.type not in self.op_proto_map:
                self.op_proto_map[proto.type] = proto
2604 2605 2606
                custom_op_names.append(proto.type)

        return custom_op_names
2607

2608 2609 2610 2611
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
2612
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
2613
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
2614 2615
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName(),
            core.op_proto_and_checker_maker.kOpDeviceAttrName()
2616 2617
        }

F
fengjiayi 已提交
2618

X
Xin Pan 已提交
2619
class Operator(object):
2620
    """
2621 2622 2623 2624 2625 2626 2627
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
2628
        type(str): The type of operator. Default None.
2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
2649
        Block.append_op or Block._prepend_op instead.
2650 2651 2652 2653

    Examples:
        .. code-block:: python

2654
            import paddle.fluid as fluid
2655
            cur_program = fluid.Program()
2656 2657 2658 2659 2660
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
2661
    """
2662
    OP_WITHOUT_KERNEL_SET = {
2663 2664
        'feed', 'fetch', 'recurrent', 'go', 'rnn_memory_helper_grad',
        'conditional_block', 'while', 'send', 'recv', 'listen_and_serv',
2665
        'fl_listen_and_serv', 'ncclInit', 'select', 'checkpoint_notify',
2666 2667
        'gen_bkcl_id', 'c_gen_bkcl_id', 'gen_nccl_id', 'c_gen_nccl_id',
        'c_comm_init', 'c_sync_calc_stream', 'c_sync_comm_stream',
W
WangXi 已提交
2668
        'queue_generator', 'dequeue', 'enqueue', 'heter_listen_and_serv',
B
Baibaifan 已提交
2669
        'c_wait_comm', 'c_wait_compute', 'c_gen_hccl_id', 'c_comm_init_hccl',
2670
        'copy_cross_scope', 'c_gen_cncl_id'
2671
    }
2672

Y
Yu Yang 已提交
2673 2674
    def __init__(self,
                 block,
Y
Yu Yang 已提交
2675
                 desc,
Y
Yu Yang 已提交
2676 2677 2678
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
2679
                 attrs=None):
2680 2681 2682 2683 2684 2685 2686 2687 2688 2689
        # read attr type index from op proto to avoid unexpected type
        # conversions, e.g. narrowing conversion like double to float
        try:
            proto = OpProtoHolder.instance().get_op_proto(type)
            self._attr_types = {}
            for attr in proto.attrs:
                self._attr_types[attr.name] = attr.type
        except ValueError:
            pass

J
Jiabin Yang 已提交
2690
        if _non_static_mode():
2691 2692
            if type is None:
                raise ValueError(
2693
                    "`type` to initialized an Operator can not be None.")
J
Jiabin Yang 已提交
2694
            self._type = type
M
minqiyang 已提交
2695
            self.attrs = attrs if attrs else {}
2696 2697 2698 2699 2700 2701 2702 2703 2704 2705
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

2706 2707 2708
            # attr for static mode cuda graph
            self._cuda_graph_attr = _current_cuda_graph_mode

2709 2710 2711
            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
2712 2713
                op_attrs[
                    op_maker.kOpRoleAttrName()] = self.block.program._op_role
2714 2715

            role_var_name = op_maker.kOpRoleVarAttrName()
2716 2717
            if len(self.block.program._op_role_var
                   ) != 0 and role_var_name not in op_attrs:
2718
                op_attrs[role_var_name] = self.block.program._op_role_var
2719 2720 2721 2722 2723

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
2724 2725 2726 2727 2728
                # NOTE(Aurelius84): prog.clone() will lead that var.op is always None,
                # we add this to fix the problem.
                for arg in self.desc.output_arg_names():
                    if block.has_var(arg) and block.var(arg).op is None:
                        block.var(arg).op = self
2729 2730 2731
                return
            if type is None:
                raise ValueError(
2732
                    "`type` to initialized an Operator can not be None.")
2733 2734
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
2735 2736 2737
                op_attrs[callstack_var_name] = []
                for frame in traceback.extract_stack():
                    op_attrs[callstack_var_name].append(
2738 2739 2740 2741
                        '  File "{}", line {}, in {}'.format(
                            frame[0], frame[1], frame[2]))
                    op_attrs[callstack_var_name].append('    {}'.format(
                        frame[3]))
2742 2743 2744 2745 2746 2747 2748

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759
            # set device for op with kernels, give warning for op without kernels
            # when force_cpu and device_guard are used at the same time, a warning will be given.
            # TODO(zhangting2020): when force_cpu is removed, clear warning below.
            if _current_device is not None:
                if self._has_kernel(type):
                    op_device = op_maker.kOpDeviceAttrName()
                    op_attrs[op_device] = _current_device
                else:
                    warnings.warn("The Op(%s) is not support to set device." %
                                  type)
                if 'force_cpu' in op_attrs:
2760
                    if (type == 'less_than' and op_attrs['force_cpu'] != None
2761 2762 2763 2764 2765
                        ) or op_attrs['force_cpu'] != False:
                        warnings.warn(
                            "The Attr(force_cpu) of Op(%s) will be deprecated in the future, "
                            "please use 'device_guard' instead. 'device_guard' has higher priority when they are "
                            "used at the same time." % type)
2766 2767 2768 2769 2770
            if _current_pipeline_stage is not None:
                pipeline_attr_name = 'pipeline_stage' + core.kAutoParallelSuffix(
                )
                self._update_desc_attr(pipeline_attr_name,
                                       _current_pipeline_stage)
2771

2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784
            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
                    assert found or in_proto.dispensable, "Input {} not found".format(
                        in_proto.name)
                    if found:
                        in_args = inputs[in_proto.name]
2785
                        if not isinstance(in_args, (list, tuple)):
2786 2787 2788 2789 2790 2791
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
                                % (in_proto.name, len(in_args)))
                        in_arg_names = []
2792
                        for index, arg in enumerate(in_args):
2793 2794 2795 2796
                            if isinstance(arg, six.string_types):
                                in_arg_names.append(arg)
                            elif isinstance(arg, six.binary_type):
                                in_arg_names.append(arg.decode())
2797
                            elif isinstance(arg, (Variable, core.VarBase)):
2798
                                in_arg_names.append(cpt.to_text(arg.name))
2799
                            else:
2800 2801 2802 2803
                                raise TypeError(
                                    "The type of '%s' in operator %s should be "
                                    "one of [basestring(), str, Varibale] in python2, "
                                    "or one of [str, bytes, Variable] in python3."
2804 2805
                                    "but received : %s" %
                                    (in_proto.name, type, arg))
2806 2807 2808 2809 2810 2811 2812 2813 2814
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
2815 2816 2817 2818
                        raise ValueError(
                            ("Incorrect setting for output(s) of "
                             "operator \"%s\", should set: [%s].") %
                            (type, m.name))
2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
                            % (out_proto.name, len(out_args)))
                    out_arg_names = []
                    for arg in out_args:
2831 2832 2833 2834
                        if isinstance(arg, six.string_types):
                            out_arg_names.append(arg)
                        else:
                            out_arg_names.append(cpt.to_text(arg.name))
2835
                        # TODO(minqiyang): could we remove variable's op in static mode?
J
Jiabin Yang 已提交
2836
                        if not _non_static_mode():
2837 2838 2839 2840
                            if isinstance(arg, six.string_types):
                                block.var(arg).op = self
                            else:
                                arg.op = self
2841 2842
                    self.desc.set_output(out_proto.name, out_arg_names)

2843
            extra_attrs_map = core.get_op_extra_attrs(type)
2844 2845 2846 2847 2848
            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
2849 2850
                    if (attr_name
                            not in op_attrs) or (op_attrs[attr_name] is None):
2851 2852 2853
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)
2854 2855 2856 2857 2858 2859 2860
                for attr_name in extra_attrs_map.keys():
                    if (attr_name
                            not in op_attrs) or (op_attrs[attr_name] is None):
                        self._update_desc_attr(attr_name,
                                               extra_attrs_map[attr_name])
                    else:
                        self._update_desc_attr(attr_name, op_attrs[attr_name])
2861

J
jianghaicheng 已提交
2862 2863
            # proto.attrs doesn't include ipu_index
            if core.is_compiled_with_ipu():
2864
                if global_ipu_index >= 0:
J
jianghaicheng 已提交
2865 2866
                    self._update_desc_attr(ipu_index_attr_name,
                                           global_ipu_index)
2867
                if global_ipu_stage >= 0:
J
jianghaicheng 已提交
2868 2869 2870
                    self._update_desc_attr(ipu_stage_attr_name,
                                           global_ipu_stage)

2871 2872 2873 2874 2875
            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
2876
    def _has_kernel(self, op_type):
2877 2878
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
2879
    def to_string(self, throw_on_error):
2880
        """
2881 2882
        Get debug string.

2883
        Args:
2884 2885
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
2886

2887 2888
        Returns:
            str: The debug string.
2889 2890

        """
2891
        protostr = self.desc.serialize_to_string()
2892
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
2893 2894
        return _debug_string_(proto, throw_on_error)

2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926
    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Operator.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Operator string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
            print(new_op._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
2927
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954
            type(skip_op_callstack))
        outputs_str = "{"
        for i in range(0, len(self.output_names)):
            outputs_str += "{name}=".format(name=self.output_names[i])
            o = self.output(self.output_names[i])
            outputs_str += "{value}".format(value=o)
            if i != len(self.output_names) - 1:
                outputs_str += ", "
        outputs_str += "}"

        inputs_str = "{"
        for i in range(0, len(self.input_names)):
            inputs_str += "{name}=".format(name=self.input_names[i])
            o = self.input(self.input_names[i])
            inputs_str += "{value}".format(value=o)

            if i != len(self.input_names) - 1:
                inputs_str += ", "
        inputs_str += "}"

        attr_names = sorted(self.attr_names)
        attrs_str = ""
        for i in range(0, len(attr_names)):
            name = attr_names[i]
            if skip_op_callstack and name == "op_callstack":
                continue

2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976
            attr_type = self.desc.attr_type(name, True)
            if attr_type == core.AttrType.VAR:
                attr_var_name = self.desc.attr(name, True).name()
                a = "{name} = Var['{value}']".format(name=name,
                                                     type=attr_type,
                                                     value=attr_var_name)
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.VARS:
                attr_var_names = [
                    "'%s'" % var.name() for var in self.desc.attr(name, True)
                ]
                a = "{name} = Vars[{value}]".format(
                    name=name, type=attr_type, value=','.join(attr_var_names))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994
            if attr_type == core.AttrType.BLOCK:
                a = "{name} = block[{value}]".format(
                    name=name, type=attr_type, value=self._block_attr_id(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.BLOCKS:
                a = "{name} = blocks{value}".format(
                    name=name,
                    type=attr_type,
                    value=self._blocks_attr_ids(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

2995
            # it is bytes of serialized protobuf
2996 2997 2998 2999
            if is_compiled_with_cinn(
            ) and self.type == 'cinn_launch' and name == 'compilation_key':
                key = self.desc.attr(name)
                v = core.get_serialize_comile_key(key)
3000 3001 3002 3003 3004 3005 3006 3007 3008
                prog = Program()
                prog = prog.parse_from_string(v)
                s = prog._to_readable_code()
                lines = s.split('\n')
                value = '\n'.join(['      ' + line for line in lines])
                value = '\n' + value
            else:
                value = self.desc.attr(name)

3009 3010 3011
            a = "{name} = {value}".format(name=name,
                                          type=attr_type,
                                          value=value)
3012

3013 3014 3015 3016
            attrs_str += a
            if i != len(attr_names) - 1:
                attrs_str += ", "

3017
        from paddle.distributed.auto_parallel.dist_context import get_default_distributed_context
3018
        dist_context = get_default_distributed_context()
3019 3020
        dist_op = dist_context.get_dist_op_for_program(self)
        if dist_op is not None:
3021 3022
            attrs_str += ", {name} = {value}".format(name="dist_attr",
                                                     value=dist_op)
3023

3024 3025
        if outputs_str != "{}":
            op_str = "{outputs} = {op_type}(inputs={inputs}, {attrs})".\
T
tangwei12 已提交
3026 3027
                format(outputs=outputs_str, op_type=self.type,
                       inputs=inputs_str, attrs=attrs_str)
3028 3029 3030 3031 3032
        else:
            op_str = "{op_type}(inputs={inputs}, {attrs})".\
                format(op_type=self.type, inputs=inputs_str, attrs=attrs_str)
        return op_str

Y
Yang Yang(Tony) 已提交
3033
    def __str__(self):
3034
        return self._to_readable_code()
3035 3036 3037

    __repr__ = __str__

F
fengjiayi 已提交
3038 3039
    @property
    def type(self):
3040
        return self.desc.type()
F
fengjiayi 已提交
3041 3042

    def input(self, name):
3043
        r"""
3044
        Get the input arguments according to the input parameter name.
3045

3046 3047
        Args:
            name(str): The input parameter name.
3048

3049 3050 3051
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
3052
        """
F
fengjiayi 已提交
3053 3054
        return self.desc.input(name)

W
Wu Yi 已提交
3055
    def _rename_input(self, old_name, new_name):
3056 3057 3058 3059 3060 3061 3062 3063 3064 3065
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
3066
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
3067

W
Wu Yi 已提交
3068
    def _rename_output(self, old_name, new_name):
3069 3070 3071 3072 3073 3074 3075 3076 3077 3078
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
3079
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
3080

F
fengjiayi 已提交
3081 3082 3083 3084
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
3085 3086 3087 3088 3089 3090 3091 3092
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
3093
    def output(self, name):
3094
        r"""
3095
        Get output arguments by the output parameter name.
3096

3097 3098
        Args:
            name(str): The output parameter name.
3099

3100 3101 3102
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
3103
        """
F
fengjiayi 已提交
3104 3105 3106 3107 3108 3109
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

3110 3111 3112 3113 3114 3115 3116 3117
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
3118
    def has_attr(self, name):
3119
        """
3120 3121
        Whether this Operator has the attribute with name or not.

3122
        Args:
3123
            name(str): the attribute name.
3124

3125 3126
        Returns:
            bool: True if has this attribute.
3127 3128

        """
F
fengjiayi 已提交
3129 3130 3131
        return self.desc.has_attr(name)

    def attr_type(self, name):
3132
        """
3133
        Get the type of attribute by attribute's name.
3134

3135 3136
        Args:
            name(str): the attribute name.
3137

3138 3139
        Returns:
            core.AttrType: the attribute type.
3140
        """
3141
        return self.desc.attr_type(name, True)
F
fengjiayi 已提交
3142

W
Wu Yi 已提交
3143
    def _set_attr(self, name, val):
3144 3145 3146 3147 3148 3149 3150 3151 3152 3153
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
3154 3155
        self._update_desc_attr(name, val)

3156 3157 3158
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
3170 3171 3172 3173 3174
        if isinstance(val, Variable):
            self.desc.set_var_attr(name, val.desc)
        elif isinstance(val, list) and _all_is_type(val, Variable):
            self.desc.set_vars_attr(name, [v.desc for v in val])
        elif isinstance(val, Block):
Q
Qiyang Min 已提交
3175
            self.desc.set_block_attr(name, val.desc)
3176
        elif isinstance(val, list) and val and _all_is_type(val, Block):
3177
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
3178 3179 3180 3181
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217
            self._update_desc_plain_attr(name, val)

    def _update_desc_plain_attr(self, name, val):
        desc = self.desc
        if not hasattr(self, "_attr_types") or (name not in self._attr_types):
            desc._set_attr(name, val)
            return

        type_index = self._attr_types[name]
        if type_index == core.AttrType.BOOL:
            desc._set_bool_attr(name, val)
        elif type_index == core.AttrType.INT:
            desc._set_int32_attr(name, val)
        elif type_index == core.AttrType.LONG:
            desc._set_int64_attr(name, val)
        elif type_index == core.AttrType.FLOAT:
            desc._set_float32_attr(name, val)
        # elif type_index == core.AttrType.FLOAT64:
        #     desc._set_float64_attr(name, val)
        elif type_index == core.AttrType.STRING:
            desc._set_str_attr(name, val)
        elif type_index == core.AttrType.BOOLS:
            desc._set_bools_attr(name, val)
        elif type_index == core.AttrType.INTS:
            desc._set_int32s_attr(name, val)
        elif type_index == core.AttrType.LONGS:
            desc._set_int64s_attr(name, val)
        elif type_index == core.AttrType.FLOATS:
            desc._set_float32s_attr(name, val)
        elif type_index == core.AttrType.FLOAT64S:
            desc._set_float64s_attr(name, val)
        elif type_index == core.AttrType.STRINGS:
            desc._set_strs_attr(name, val)
        else:
            # defaults to old methods
            desc._set_attr(name, val)
Y
yuyang18 已提交
3218

F
fengjiayi 已提交
3219 3220
    @property
    def attr_names(self):
3221
        return self.desc.attr_names(True)
F
fengjiayi 已提交
3222 3223

    def attr(self, name):
3224
        """
3225 3226
        Get the attribute by name.

3227
        Args:
3228
            name(str): the attribute name.
3229

3230 3231
        Returns:
            bool|int|str|float|list: The attribute value. The return value
3232 3233
            can be any valid attribute type.
        """
F
fengjiayi 已提交
3234
        return self.desc.attr(name)
Y
Yu Yang 已提交
3235

W
Wu Yi 已提交
3236
    def _block_attr_id(self, name):
3237
        """
G
gongweibao 已提交
3238
        Get the block attribute's id by name.
3239

3240 3241
        Args:
            name(str): the attribute name.
3242

3243 3244
        Returns:
            int: the block index.
3245
        """
W
Wu Yi 已提交
3246
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
3247

W
Wu Yi 已提交
3248
    def _block_attr(self, name):
G
gongweibao 已提交
3249 3250 3251 3252 3253 3254 3255 3256 3257 3258
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
3259
        id = self._block_attr_id(name)
G
gongweibao 已提交
3260 3261 3262
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
3263
    def _blocks_attr(self, name):
G
gongweibao 已提交
3264 3265 3266 3267 3268 3269 3270 3271 3272 3273
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
3274
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
3275 3276 3277 3278 3279
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
3280
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
3281 3282 3283 3284 3285 3286 3287 3288 3289 3290
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
3291
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
3292

3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327
    def _var_attr(self, name):
        """
        Get the Variable attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            Variable: the Variable attribute.
        """
        attr_type = self.desc.attr_type(name, True)
        assert attr_type == core.AttrType.VAR, "Required type attr({}) is Variable, but received {}".format(
            name, attr_type)
        attr_var_name = self.desc.attr(name, True).name()
        return self.block._var_recursive(attr_var_name)

    def _vars_attr(self, name):
        """
        Get the Variables attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            Variables: the Variables attribute.
        """
        attr_type = self.desc.attr_type(name, True)
        assert attr_type == core.AttrType.VARS, "Required type attr({}) is list[Variable], but received {}".format(
            name, attr_type)
        attr_vars = [
            self.block._var_recursive(var.name())
            for var in self.desc.attr(name, True)
        ]
        return attr_vars

J
JiayiFeng 已提交
3328
    def all_attrs(self):
F
fengjiayi 已提交
3329
        """
3330 3331 3332
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
3333
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
3334 3335 3336 3337
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
3338
            attr_type = self.desc.attr_type(n, True)
G
gongweibao 已提交
3339
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
3340
                attr_map[n] = self._block_attr(n)
3341
            elif attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
3342
                attr_map[n] = self._blocks_attr(n)
3343 3344 3345 3346 3347 3348
            elif attr_type == core.AttrType.VAR:
                attr_map[n] = self._var_attr(n)
            elif attr_type == core.AttrType.VARS:
                attr_map[n] = self._vars_attr(n)
            else:
                attr_map[n] = self.attr(n)
G
gongweibao 已提交
3349

F
fengjiayi 已提交
3350 3351
        return attr_map

3352 3353 3354
    def _is_optimize_op(self):
        op_maker = core.op_proto_and_checker_maker
        OPTIMIZE = core.op_proto_and_checker_maker.OpRole.Optimize
3355 3356 3357 3358

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
            return False

3359 3360 3361
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(OPTIMIZE):
            return True
3362 3363 3364 3365 3366 3367 3368 3369

        return False

    def _is_backward_op(self):
        op_maker = core.op_proto_and_checker_maker
        BACKWARD = core.op_proto_and_checker_maker.OpRole.Backward

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
3370 3371
            return False

3372 3373 3374 3375 3376 3377
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(BACKWARD):
            return True

        return False

3378
    @property
3379
    def dist_attr(self):
3380
        """
3381
        Get distributed attribute of this Variable.
3382
        """
3383
        return self.desc.dist_attr
3384

3385 3386
    @dist_attr.setter
    def dist_attr(self, dist_attr):
3387
        """
3388
        Set distributed attribute of this Variable.
3389
        """
3390
        self.desc.dist_attr = dist_attr
3391

Y
Yu Yang 已提交
3392

Y
Yu Yang 已提交
3393
class Block(object):
3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
3408
        use `Program._create_block()` to create a block.
3409 3410 3411 3412

    Examples:
        .. code-block:: python

3413 3414 3415
            import paddle.fluid as fluid

            cur_program = fluid.Program()
3416 3417 3418 3419 3420 3421 3422 3423 3424
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
3425
    def __init__(self, program, idx):
Y
Yu Yang 已提交
3426
        self.desc = program.desc.block(idx)
3427
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
3428
        self.ops = list()  # operator list
Y
Yu Yang 已提交
3429
        self.program = program
3430
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
3431

3432
    def __str__(self):
3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Block.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Block string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_block._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
3467
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478
            type(skip_op_callstack))
        block_str = "{ // block "
        block_str += "{}\n".format(self.idx)
        for var in list(self.vars.values()):
            block_str += "    {}\n".format(var._to_readable_code())
        block_str += "\n"
        for op in self.ops:
            block_str += "    {}\n".format(
                op._to_readable_code(skip_op_callstack))
        block_str += "}"
        return block_str
Y
Yang Yang(Tony) 已提交
3479

F
fengjiayi 已提交
3480 3481
    def to_string(self, throw_on_error, with_details=False):
        """
3482 3483
        Get debug string.

F
fengjiayi 已提交
3484 3485
        Args:
            throw_on_error(bool): raise exception when self is not initialized
3486
                when throw_on_error is True.
F
update  
fengjiayi 已提交
3487
            with_details(bool): more details about variables and parameters
3488 3489
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
3490

3491 3492
        Returns:
            str: The debug string.
F
fengjiayi 已提交
3493
        """
3494 3495
        assert isinstance(throw_on_error, bool) and isinstance(
            with_details, bool)
F
fengjiayi 已提交
3496
        if with_details:
F
fengjiayi 已提交
3497
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
3498 3499
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
3500
            for var in list(self.vars.values()):
F
fengjiayi 已提交
3501
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
3502
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
3503
            for op in self.ops:
F
fengjiayi 已提交
3504 3505
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
3506 3507 3508
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
3509 3510
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
3511 3512
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
3513 3514 3515

    __repr__ = __str__

Y
Yu Yang 已提交
3516 3517
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
3518
        return self.desc.parent
Y
Yu Yang 已提交
3519

Y
Yu Yang 已提交
3520 3521 3522 3523
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
3524
    def _set_forward_block_idx(self, idx):
3525 3526 3527 3528 3529 3530 3531 3532 3533
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
3534
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
3535

3536 3537 3538 3539 3540 3541 3542 3543
    @property
    def backward_block_idx(self):
        cur_block_idx = self.idx
        for block in self.program.blocks:
            if block.forward_block_idx == cur_block_idx:
                return block.idx
        return -1

Y
Yu Yang 已提交
3544 3545
    @property
    def idx(self):
Y
Yu Yang 已提交
3546
        return self.desc.id
Y
Yu Yang 已提交
3547

Q
Qiao Longfei 已提交
3548
    def var(self, name):
3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
3562
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
3563 3564 3565
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
3566 3567
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
3568
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
3569
        return v
Q
Qiao Longfei 已提交
3570

X
Xin Pan 已提交
3571
    def _find_var_recursive(self, name):
3572 3573 3574 3575 3576 3577 3578
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
3579
            Variable: the Variable with the giving name. Or None if not found.
3580
        """
Y
Yu Yang 已提交
3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
3605
        return None
Y
Yu Yang 已提交
3606

X
Xin Pan 已提交
3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
3626

Q
Qiao Longfei 已提交
3627
    def all_parameters(self):
3628
        return list(self.iter_parameters())
3629

3630
    def iter_parameters(self):
M
minqiyang 已提交
3631
        return (item[1] for item in six.iteritems(self.vars)
3632
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
3633

Y
Yu Yang 已提交
3634
    def create_var(self, *args, **kwargs):
J
Jiabin Yang 已提交
3635
        if _non_static_mode():
L
Leo Chen 已提交
3636 3637
            var = _varbase_creator(*args, **kwargs)
        else:
3638 3639 3640
            var = Variable(block=self, *args, **kwargs)
            if 'initializer' in kwargs:
                kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
3641
        return var
Y
Yu Yang 已提交
3642

Q
Qiao Longfei 已提交
3643 3644 3645
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
3646
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
3647 3648
        """
        Rename variable in vars and ops' inputs and outputs
3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
3661
        """
M
minqiyang 已提交
3662 3663
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
3664

T
typhoonzero 已提交
3665
        if not self.has_var(name):
3666
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
3667 3668
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
3669
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
3670 3671 3672 3673 3674 3675
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
3676
            var_type = "Variable"
T
wip  
typhoonzero 已提交
3677 3678 3679 3680
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
3681
        orig_var_type = v.type
M
minqiyang 已提交
3682
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
3683
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
3684
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
3685
        if var_type == "Parameter":
L
Leo Chen 已提交
3686
            if in_dygraph_mode():
3687 3688 3689 3690 3691 3692 3693 3694 3695
                var = EagerParamBase(d.shape(),
                                     d.dtype(),
                                     type=orig_var_type,
                                     name=new_name,
                                     stop_gradient=stop_gradient,
                                     trainable=trainable,
                                     optimize_attr=optimize_attr,
                                     regularizer=regularizer,
                                     error_clip=error_clip)
3696
            else:
J
Jiabin Yang 已提交
3697
                if _in_legacy_dygraph():
3698 3699 3700 3701 3702 3703 3704 3705 3706
                    var = ParamBase(d.shape(),
                                    d.dtype(),
                                    type=orig_var_type,
                                    name=new_name,
                                    stop_gradient=stop_gradient,
                                    trainable=trainable,
                                    optimize_attr=optimize_attr,
                                    regularizer=regularizer,
                                    error_clip=error_clip)
J
Jiabin Yang 已提交
3707
                else:
3708 3709 3710 3711 3712 3713 3714 3715 3716 3717
                    var = Parameter(self,
                                    d.shape(),
                                    d.dtype(),
                                    type=orig_var_type,
                                    name=new_name,
                                    stop_gradient=stop_gradient,
                                    trainable=trainable,
                                    optimize_attr=optimize_attr,
                                    regularizer=regularizer,
                                    error_clip=error_clip)
T
typhoonzero 已提交
3718
        elif var_type == "Variable":
3719 3720 3721 3722 3723
            var = Variable(self,
                           type=orig_var_type,
                           name=new_name,
                           error_clip=error_clip,
                           stop_gradient=stop_gradient)
T
wip  
typhoonzero 已提交
3724

W
Wu Yi 已提交
3725
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
3726 3727 3728
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
3729
        self._sync_with_cpp()
3730
        return var
T
typhoonzero 已提交
3731

3732 3733 3734
    def _remove_var(self, name, sync=True):
        if sync == True:
            self._sync_with_cpp()
M
minqiyang 已提交
3735
        self.desc._remove_var(cpt.to_bytes(name))
3736 3737
        del self.vars[name]

Y
Yu Yang 已提交
3738 3739
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
3740
        param = None
L
Leo Chen 已提交
3741
        if in_dygraph_mode():
J
Jiabin Yang 已提交
3742
            param = EagerParamBase(*args, **kwargs)
L
Leo Chen 已提交
3743
        else:
J
Jiabin Yang 已提交
3744 3745 3746 3747
            if _in_legacy_dygraph():
                param = ParamBase(*args, **kwargs)
            else:
                param = Parameter(global_block, *args, **kwargs)
3748

3749
        if 'initializer' in kwargs:
3750 3751 3752 3753 3754

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
3755
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
T
tangwei12 已提交
3756
                        # are treated as initialization ops that cause error.
3757
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
3758 3759 3760 3761 3762
                        # NOTE: "coalesce_tensor" is a special case for rnn with cudnn support
                        if op.type in [
                                "c_broadcast", "c_sync_comm_stream",
                                "coalesce_tensor"
                        ]:
3763
                            continue
3764 3765 3766 3767 3768 3769 3770 3771
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
3772 3773
                                   " is inited by multiple init ops " +
                                   str(init_ops))
3774
            elif init_ops_len == 1:
3775
                # TODO already inited, do nothing, should log a warning
3776 3777 3778
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
3779
        return param
Y
Yu Yang 已提交
3780

Y
Yu Yang 已提交
3781
    def append_op(self, *args, **kwargs):
3782 3783 3784 3785 3786 3787
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
J
Jiabin Yang 已提交
3788
        if _non_static_mode():
3789
            attrs = kwargs.get("attrs", {})
Z
zyfncg 已提交
3790
            inplace_map = kwargs.get("inplace_map", None)
J
Jiabin Yang 已提交
3791
            type = kwargs.get("type", None)
3792 3793 3794 3795
            warnings.warn(
                "Op `%s` is executed through `append_op` under the dynamic mode, "
                "the corresponding API implementation needs to be upgraded to "
                "using `_C_ops` method." % type, DeprecationWarning)
3796 3797 3798 3799 3800 3801
            op = Operator(block=self,
                          desc=None,
                          type=type,
                          inputs=None,
                          outputs=None,
                          attrs=attrs)
3802

M
minqiyang 已提交
3803 3804 3805
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
L
lujun 已提交
3806
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
3807

3808 3809 3810
            _dygraph_tracer().trace_op(type, kwargs.get("inputs", {}),
                                       kwargs.get("outputs",
                                                  {}), attrs if attrs else {},
Z
zyfncg 已提交
3811 3812
                                       kwargs.get("stop_gradient", False),
                                       inplace_map)
M
minqiyang 已提交
3813
        else:
3814 3815
            from paddle.fluid.dygraph.base import param_guard

3816
            op_desc = self.desc.append_op()
3817 3818 3819 3820 3821 3822
            # NOTE(Aurelius84): In case of @to_static, all VarBase(s) should
            # be converted into Variable(s) with same name and block location.
            # This is ONE and ONLY logic of type transformation of dy2static.
            inputs = kwargs.get("inputs", None)
            outputs = kwargs.get("outputs", None)
            with param_guard(inputs), param_guard(outputs):
3823 3824 3825 3826 3827 3828
                op = Operator(block=self,
                              desc=op_desc,
                              type=kwargs.get("type", None),
                              inputs=inputs,
                              outputs=outputs,
                              attrs=kwargs.get("attrs", None))
3829

M
minqiyang 已提交
3830
            self.ops.append(op)
M
minqiyang 已提交
3831

3832 3833
        return op

W
Wu Yi 已提交
3834
    def _insert_op(self, index, *args, **kwargs):
3835 3836 3837 3838 3839 3840 3841 3842 3843
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
3844
        self._sync_with_cpp()
F
fangshuixun007 已提交
3845
        return self._insert_op_without_sync(index, *args, **kwargs)
Q
qiaolongfei 已提交
3846

3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863
    def _insert_op_without_sync(self, index, *args, **kwargs):
        """
        Insert an Operator according to the giving arguments, 
        without sync_with_cpp to meke the compilation faster.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
        op_desc = self.desc._insert_op(index)
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

    def _remove_op(self, index, sync=True):
3864 3865 3866 3867 3868 3869 3870 3871 3872
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
3873 3874
        if sync == True:
            self._sync_with_cpp()
W
Wu Yi 已提交
3875
        self.desc._remove_op(index, index + 1)
3876 3877
        del self.ops[index]

W
Wu Yi 已提交
3878
    def _slice_ops(self, start, end):
3879 3880 3881 3882 3883 3884 3885 3886 3887 3888
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
3889
        return self.ops[start:end]
Y
Yancey1989 已提交
3890

W
Wu Yi 已提交
3891
    def _prepend_op(self, *args, **kwargs):
J
Jiabin Yang 已提交
3892
        if _non_static_mode():
J
Jiabin Yang 已提交
3893 3894
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
3895 3896 3897 3898 3899 3900 3901 3902 3903 3904
            op = Operator(self,
                          None,
                          type=type,
                          inputs=None,
                          outputs=None,
                          attrs=attrs)

            _dygraph_tracer().trace_op(type, kwargs.get("inputs", {}),
                                       kwargs.get("outputs", {}),
                                       attrs if attrs else {},
M
minqiyang 已提交
3905
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
3906
        else:
3907
            op_desc = self.desc._prepend_op()
3908 3909 3910 3911 3912 3913
            op = Operator(self,
                          op_desc,
                          type=kwargs.get("type", None),
                          inputs=kwargs.get("inputs", None),
                          outputs=kwargs.get("outputs", None),
                          attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
3914
            self.ops.insert(0, op)
3915

Y
Yu Yang 已提交
3916 3917
        return op

W
Wu Yi 已提交
3918
    def _sync_with_cpp(self):
3919
        """
3920 3921
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
3922
        """
Q
Qiao Longfei 已提交
3923 3924 3925
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
3926 3927 3928 3929
                is_stop_gradient = False
                if var.has_stop_gradient():
                    is_stop_gradient = var.stop_gradient()
                if var.has_is_parameter() and var.is_parameter():
3930 3931 3932 3933 3934 3935
                    self.create_parameter(name=var.name(),
                                          desc=var,
                                          type=var.type(),
                                          shape=var.shape(),
                                          dtype=var.dtype(),
                                          stop_gradient=is_stop_gradient)
3936
                else:
3937 3938 3939 3940
                    self.create_var(name=var.name(),
                                    desc=var,
                                    type=var.type(),
                                    stop_gradient=is_stop_gradient)
Q
Qiao Longfei 已提交
3941

3942
        # sync variables removed from c++ end
3943
        for var in list(self.vars.keys()):
M
minqiyang 已提交
3944
            if not self.desc.find_var(cpt.to_bytes(var)):
3945 3946
                self.vars.pop(var)

Q
Qiao Longfei 已提交
3947
        # sync operators from cpp
3948 3949 3950 3951
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
3968 3969 3970 3971 3972

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
3973
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
3974 3975 3976 3977 3978 3979 3980

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
3994 3995 3996 3997
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
3998
    def _copy_param_info_from(self, other):
3999
        """
4000 4001
        Copy the information of parameters from the other block.

4002
        Args:
4003 4004 4005 4006 4007
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
4008 4009 4010 4011 4012

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
4013 4014
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
4015
        for p in other.iter_parameters():
4016 4017 4018
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
4019 4020
                # if the Parameter is pruned, v may be None
                continue
4021
            assert isinstance(v, Variable)
4022
            new_p = None
L
Leo Chen 已提交
4023
            if in_dygraph_mode():
4024 4025 4026 4027 4028 4029 4030 4031 4032 4033
                new_p = EagerParamBase(shape=v.shape,
                                       dtype=v.dtype,
                                       type=v.type,
                                       lod_level=v.lod_level,
                                       stop_gradient=p.stop_gradient,
                                       trainable=p.trainable,
                                       optimize_attr=p.optimize_attr,
                                       regularizer=p.regularizer,
                                       error_clip=p.error_clip,
                                       name=v.name)
4034
            else:
J
Jiabin Yang 已提交
4035
                if _in_legacy_dygraph():
4036 4037 4038 4039 4040 4041 4042 4043 4044 4045
                    new_p = ParamBase(shape=v.shape,
                                      dtype=v.dtype,
                                      type=v.type,
                                      lod_level=v.lod_level,
                                      stop_gradient=p.stop_gradient,
                                      trainable=p.trainable,
                                      optimize_attr=p.optimize_attr,
                                      regularizer=p.regularizer,
                                      error_clip=p.error_clip,
                                      name=v.name)
J
Jiabin Yang 已提交
4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059
                else:
                    new_p = Parameter(
                        block=self,
                        shape=v.shape,
                        dtype=v.dtype,
                        type=v.type,
                        lod_level=v.lod_level
                        if v.type == core.VarDesc.VarType.LOD_TENSOR else None,
                        stop_gradient=p.stop_gradient,
                        trainable=p.trainable,
                        optimize_attr=p.optimize_attr,
                        regularizer=p.regularizer,
                        error_clip=p.error_clip,
                        name=v.name)
4060 4061
            self.vars[new_p.name] = new_p

4062
    def _clone_variable(self, var, force_persistable=True):
4063 4064
        """
        Clone a variable into current block.
4065

4066 4067
        Args:
            var: the variable to be cloned.
4068 4069 4070
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
4071 4072

        Returns:
4073
            Variable: the new  variable cloned from 'var' in current block.
4074 4075
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
4076 4077 4078
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
4079 4080 4081
            ret_var = self.create_var(name=var.name,
                                      persistable=var.persistable,
                                      type=var.type)
T
tangwei12 已提交
4082
        elif var.type == core.VarDesc.VarType.RAW:
4083 4084 4085
            ret_var = self.create_var(name=var.name,
                                      persistable=var.persistable,
                                      type=var.type)
T
typhoonzero 已提交
4086 4087 4088 4089 4090 4091
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
4092
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
4093 4094
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
4095 4096 4097 4098 4099 4100 4101
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
4102
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
4103 4104
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
4105
        return ret_var
4106

Y
Yu Yang 已提交
4107

4108 4109 4110 4111
# NOTE(zjl): you should be careful that after you call this method,
# some Python Variable and all Python Operators should not be used
# again. Because all Python Variables and all Python Operators are
# re-constructed inside this method. The underlying VarDesc(OpDesc)
4112
# of some old Python Variables(all old Python Operators) may have
4113
# been destructed.
4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129
def _apply_pass(main_program,
                startup_program,
                pass_name,
                pass_attrs={},
                pass_attr_types={}):
    assert isinstance(pass_attrs, dict), "pass_attrs must be dict"
    assert isinstance(pass_attr_types, dict), "pass_attr_types must be dict"
    tmp_main_program = core.ProgramDesc(main_program.desc)
    tmp_startup_program = core.ProgramDesc(startup_program.desc)
    attrs = core.apply_pass(tmp_main_program, tmp_startup_program, pass_name,
                            pass_attrs, pass_attr_types)
    main_program._rebuild_from_desc(tmp_main_program)
    startup_program._rebuild_from_desc(tmp_startup_program)
    return attrs


4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node,
                          core.Node), 'node must be the instance of core.Node.'
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

4225
    def remove_input_by_id(self, node_id):
4226 4227 4228 4229 4230 4231
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
4232
        self.node.remove_input(node_id)
4233

4234
    def remove_input(self, node):
4235 4236 4237 4238
        """
        Remove a node from inputs.

        Args:
4239
            node(IrNode): the node being removed.
4240
        """
4241
        self.node.remove_input(node.node)
4242

4243
    def append_input(self, node):
4244 4245 4246 4247
        """
        Append a node in inputs.

        Args:
4248
            node(IrNode): the node being appended.
4249
        """
4250
        self.node.append_input(node.node)
4251 4252 4253 4254 4255 4256 4257 4258

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

4259
    def remove_output_by_id(self, node_id):
4260 4261 4262 4263 4264 4265
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
4266
        self.node.remove_output(node_id)
4267

4268
    def remove_output(self, node):
4269 4270 4271 4272
        """
        Remove a node from outputs.

        Args:
4273
            node(IrNode): the node being removed.
4274
        """
4275
        self.node.remove_output(node.node)
4276

4277
    def append_output(self, node):
4278 4279 4280 4281
        """
        Append a node in outputs.

        Args:
4282
            node(IrNode): the node being appended.
4283
        """
4284
        self.node.append_output(node.node)
4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_var(), \
            'node must be the instance of core.Node and it must be a variable node.'
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
4332
            "The node variable description can not be None."
4333 4334 4335 4336 4337 4338 4339 4340 4341 4342
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
4343
            "The node variable description can not be None."
4344 4345
        return self.node.var().persistable()

4346 4347 4348 4349 4350 4351 4352 4353
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
4354
            "The node variable description can not be None."
4355 4356 4357 4358 4359 4360 4361 4362 4363 4364
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
4365
            "The node variable description can not be None."
4366 4367 4368 4369 4370 4371 4372 4373 4374 4375
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
4376
            "The node variable description can not be None."
4377 4378
        return self.node.var().shape()

4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_op(), \
            'node must be the instance of core.Node and it must be a operator node.'
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4426
            "The node operator description can not be None."
4427 4428
        self.node.op()._rename_input(old_input_name, new_input_name)

4429 4430 4431 4432 4433 4434 4435 4436 4437
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4438
            "The node operator description can not be None."
4439 4440
        self.node.op()._rename_output(old_output_name, new_output_name)

4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4452
            "The node operator description can not be None."
4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4466
            "The node operator description can not be None."
4467 4468 4469 4470 4471 4472 4473 4474 4475 4476
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4477
            "The node operator description can not be None."
4478 4479
        return self.node.op().set_type(new_type)

4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4495
            "The node operator description can not be None."
4496
        desc = self.node.op()
4497 4498 4499 4500 4501
        if isinstance(val, Variable):
            desc.set_var_attr(name, val.desc)
        elif isinstance(val, list) and _all_is_type(val, Variable):
            desc.set_vars_attr(name, [v.desc for v in val])
        elif isinstance(val, Block):
4502
            desc.set_block_attr(name, val.desc)
4503
        elif isinstance(val, list) and val and _all_is_type(val, Block):
4504 4505
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
4506
                isinstance(val, core.ProgramDesc):
4507 4508 4509 4510
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

4511 4512 4513 4514 4515 4516 4517 4518
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4519
            "The node operator description can not be None."
4520 4521 4522 4523 4524 4525 4526 4527 4528 4529
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4530
            "The node operator description can not be None."
4531 4532
        return self.node.op().output_arg_names()

4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


4554 4555
class IrGraph(object):
    """
4556
    Python IrGraph. Beneath it is a core.Graph, which is used for
4557
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
4558 4559
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
4560 4561 4562 4563
    """

    def __init__(self, graph, for_test=False):
        """
4564 4565
        Construct an IrGraph using core.Graph.

4566 4567 4568 4569 4570 4571 4572 4573 4574
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

4575 4576 4577 4578
    def clone(self):
        """
        Create a new and duplicated IrGraph.

4579 4580 4581
        Warns:
            The method only clones the graph structure, not its attributes.

4582 4583 4584
        Returns:
            IrGraph: A new and duplicated graph.
        """
4585
        g = self.graph.clone()
4586 4587
        return IrGraph(g, self._for_test)

4588
    def is_test(self):
4589 4590 4591
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
4592 4593
        return self._for_test

W
WangZhen 已提交
4594
    def all_nodes(self):
4595 4596 4597
        """
        Return all nodes included in the graph as a set.
        """
4598
        return {IrNode(node) for node in self.graph.nodes()}
4599

4600
    def all_var_nodes(self):
4601 4602 4603
        """
        Return all variable nodes included in the graph as a set.
        """
4604
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
4605

4606
    def all_persistable_nodes(self):
4607 4608 4609
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
4610 4611 4612 4613 4614
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
4615
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
4616

4617
    def all_op_nodes(self):
4618 4619 4620
        """
        Return all operator nodes included in the graph as a set.
        """
4621
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
4622

4623 4624 4625 4626 4627 4628
    def all_sub_graphs(self, for_test=False):
        """
        Return all sub_graphs included in the main graph as a set.
        """

        return [
4629
            IrGraph(self.graph.get_sub_graph(i), for_test=for_test)
4630 4631 4632 4633 4634 4635 4636 4637 4638
            for i in range(self.graph.sub_graph_size())
        ]

    def get_sub_graph(self, i, for_test=False):
        """
        Return i-th sub_graph in the main graph.
        """
        return IrGraph(self.graph.get_sub_graph(i), for_test=for_test)

4639
    def create_persistable_node(self, name, var_type, shape, var_dtype):
4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
4651
            IrVarNode: the created persistable variable node.
4652
        """
4653 4654 4655 4656 4657
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
4658
        return IrVarNode(self.graph.create_var_node(var_desc))
4659 4660

    def create_var_node(self, name, var_type, shape, var_dtype):
4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
4672
            IrVarNode: the created variable node.
4673 4674
        """

4675 4676 4677 4678
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
4679
        return IrVarNode(self.graph.create_var_node(var_desc))
4680

4681 4682 4683 4684 4685 4686
    def create_control_dep_var(self):
        """
        create a control var
        """
        return IrVarNode(self.graph.create_control_dep_var())

4687
    def create_var_node_from_desc(self, var_desc):
4688 4689 4690 4691 4692 4693 4694 4695
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
4696
            IrVarNode: the created variable node.
4697
        """
4698
        return IrVarNode(self.graph.create_var_node(var_desc))
4699 4700

    def create_op_node(self, op_type, attrs, inputs, outputs):
4701 4702 4703 4704 4705 4706 4707
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
T
tianshuo78520a 已提交
4708
            outputs(dict): the outputs of the operator node.
4709 4710

        Returns:
4711
            IrOpNode: the created operator node.
4712
        """
4713 4714
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
4715
        for attr, value in six.iteritems(attrs):
4716
            self._update_desc_attr(op_desc, attr, value)
4717
        for input_name, var_nodes in six.iteritems(inputs):
4718 4719 4720 4721
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
4722
        for output_name, var_nodes in six.iteritems(outputs):
4723 4724 4725 4726
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
4727
        return IrOpNode(self.graph.create_op_node(op_desc))
4728 4729

    def create_op_node_from_desc(self, op_desc):
4730 4731 4732 4733 4734 4735 4736
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
4737
            IrOpNode: the created operator node.
4738
        """
4739
        return IrOpNode(self.graph.create_op_node(op_desc))
4740 4741

    def update_input_link(self, old_input_node, new_input_node, op_node):
4742 4743 4744 4745
        """
        Update the input's link of a operator node.

        Args:
4746 4747 4748
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
4749
        """
4750
        assert old_input_node.node in self.graph.nodes() and new_input_node.node in \
T
tangwei12 已提交
4751
            self.graph.nodes() and op_node.node in self.graph.nodes(), \
4752
            'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
4753 4754 4755 4756
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
4757
        op_node.rename_input(old_input_node.name(), new_input_node.name())
4758

4759 4760 4761 4762 4763 4764 4765 4766 4767 4768
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
        assert old_output_node.node in self.graph.nodes() and new_output_node.node in \
T
tangwei12 已提交
4769
            self.graph.nodes() and op_node.node in self.graph.nodes(), \
4770
            'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
4771 4772 4773 4774 4775 4776
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

4777
    def link_to(self, node_in, node_out):
4778 4779 4780 4781
        """
        Connect two nodes.

        Args:
4782 4783
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
4784
        """
4785 4786 4787 4788
        assert node_in.node in self.graph.nodes(), (
            'node_in(%s) must be in the graph nodes.' % node_in.node.name())
        assert node_out.node in self.graph.nodes(), (
            'node_out(%s) must be in the graph nodes.' % node_out.node.name())
4789 4790
        node_in.append_output(node_out)
        node_out.append_input(node_in)
4791 4792

    def safe_remove_nodes(self, remove_nodes):
4793 4794 4795 4796 4797 4798 4799
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
4800
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
4801 4802 4803 4804
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
4805 4806
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
4807

Z
Zhen Wang 已提交
4808 4809 4810 4811 4812 4813 4814 4815
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
4816
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
4817 4818 4819 4820
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
4821
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
4822 4823 4824
                        ]
                    else:
                        var_nodes[each_var_name].append(
4825 4826
                            self._find_node_by_name(node.outputs,
                                                    each_var_name))
Z
Zhen Wang 已提交
4827 4828
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
4829
    def has_circle(self):
4830 4831 4832 4833 4834 4835
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
4836 4837 4838
        return core.has_circle(self.graph)

    def graph_num(self):
4839 4840 4841 4842 4843 4844
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
4845 4846 4847
        return core.graph_num(self.graph)

    def topology_sort(self):
4848 4849 4850
        """
        Perform the topology sort operation on the graph.

T
tianshuo78520a 已提交
4851
        Notes: the `graph` can not contain a circle.
4852 4853

        Returns:
Z
Zhen Wang 已提交
4854
            list(IrNode): nodes in topology order.
4855
        """
4856
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
4857
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
4858 4859

    def build_adjacency_list(self):
4860 4861 4862 4863
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
4864
            dict{IrNode: set(IrNode)}: the adjacency list.
4865
        """
4866 4867 4868 4869 4870
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
4871

4872 4873 4874 4875 4876 4877 4878 4879
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
4880
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
4881 4882 4883 4884 4885
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

4886 4887
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
4888 4889 4890
            exited_code = subprocess.call('dot -Tpdf ' + dot_file_path +
                                          ' -o ' + pdf_save_path,
                                          shell=True)
4891 4892 4893 4894 4895
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

4896
        remove_ctr_vars = set()
4897
        if remove_ctr_var:
4898
            for node in self.all_var_nodes():
4899 4900 4901
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
4902 4903
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

4904 4905
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
4906 4907 4908 4909 4910 4911
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
4912 4913 4914 4915
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
4916 4917
        if not os.path.exists(save_path):
            os.makedirs(save_path)
4918 4919 4920 4921 4922 4923 4924
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
4925 4926 4927
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
4928
        WARN: When the graph includes backward operator nodes, the
4929 4930 4931 4932 4933 4934
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
4935
        convert_pass = core.get_pass('graph_to_program_pass')
4936 4937
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
4938 4939 4940 4941
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

4942 4943 4944 4945 4946 4947 4948 4949
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
4950 4951
        assert target_node is not None, (
            "Cannot find the target node (%s)in the giving set." % node_name)
4952 4953
        return target_node

4954 4955 4956 4957
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
4958 4959 4960 4961 4962
        if isinstance(val, Variable):
            desc.set_var_attr(name, val.desc)
        elif isinstance(val, list) and _all_is_type(val, Variable):
            desc.set_vars_attr(name, [v.desc for v in val])
        elif isinstance(val, Block):
4963
            desc.set_block_attr(name, val.desc)
4964
        elif isinstance(val, list) and val and _all_is_type(val, Block):
4965 4966 4967 4968 4969 4970 4971 4972
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
4973
class Program(object):
D
dzhwinter 已提交
4974
    """
4975
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
4976
    control flow op like conditional_block, while :ref:`api_paddle_fluid_layers_While` is included,
J
Jiabin Yang 已提交
4977
    it will contain nested block.
4978

J
Jiabin Yang 已提交
4979 4980 4981
    Please reference the
    `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_
    for details.
D
dzhwinter 已提交
4982

J
Jiabin Yang 已提交
4983
    A set of Program usually contains startup program and main program.
J
Jiabin Yang 已提交
4984
    A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main
J
Jiabin Yang 已提交
4985 4986 4987 4988 4989 4990 4991
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

J
Jiabin Yang 已提交
4992
    **Notes**:
4993 4994 4995
        **we have** :ref:`api_paddle_fluid_framework_default_startup_program` **and** :ref:`api_paddle_fluid_framework_default_main_program`
        **by default, a pair of them will shared the parameters. The** :ref:`api_paddle_fluid_framework_default_startup_program` **only run once to initialize parameters,**
        :ref:`api_paddle_fluid_framework_default_main_program` **run in every mini batch and adjust the weights.**
D
dzhwinter 已提交
4996 4997

    Returns:
J
Jiabin Yang 已提交
4998
        Program: An empty Program.
D
dzhwinter 已提交
4999 5000

    Examples:
5001 5002
        .. code-block:: python

5003 5004 5005 5006
            import paddle
            import paddle.static as static

            paddle.enable_static()
5007

5008 5009 5010 5011 5012
            main_program = static.Program()
            startup_program = static.Program()
            with static.program_guard(main_program=main_program, startup_program=startup_program):
                x = static.data(name="x", shape=[-1, 784], dtype='float32')
                y = static.data(name="y", shape=[-1, 1], dtype='int32')
5013
                z = static.nn.fc(name="fc", x=x, size=10, activation="relu")
5014 5015 5016

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
5017 5018 5019

    """

5020 5021
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
5022 5023
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
5024 5025
        global global_prog_seed
        self._seed = global_prog_seed
Y
yuyang18 已提交
5026
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
5027
        self.__op_role_var = []
T
tangwei12 已提交
5028

5029 5030
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
5031
        self._is_distributed = False
5032
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
5033
        self._is_chief = False
5034 5035 5036
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
5037
        self._endpoints = []
5038 5039 5040
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
5041
        self._trainers_endpoints = []
5042
        # the distributed lookup table names
T
tangwei12 已提交
5043
        self._distributed_lookup_table = None
5044 5045 5046

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
5047 5048
        self._use_lamb = False

5049 5050 5051
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
5052

5053 5054 5055
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
5056
        self._program_config = None
5057

H
hutuxian 已提交
5058 5059 5060
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

5061 5062 5063
        # assigned if this program has been parsed by a heter pipeline parameter server optimizer
        self._heter_pipeline_opt = None

5064 5065 5066
        # appending gradients times
        self._appending_grad_times = 0

5067 5068 5069 5070
        # identifier for auto checkpoint
        self._auto_checkpoint_name = unique_name.generate(
            "__auto_checkpoint_program__")

5071 5072
        # compiled program, i.e. Graph
        self._graph = None
5073 5074
        # to tag whether is startup_program
        self._is_start_up_program_ = False
5075

5076
    def _find_var_class_kwargs(self, new_desc):
5077 5078 5079 5080 5081 5082 5083 5084
        # NOTE: not all variables support shape/dtype/lod_level methods.
        # For example: RAW, STEP_SCOPES, etc.
        def get_var_desc_attr_or_none(var_desc, attr_name, allowed_types):
            if var_desc.type() in allowed_types:
                return getattr(var_desc, attr_name)()
            else:
                return None

5085 5086 5087 5088
        old_desc = self.desc
        all_new_vars = []
        block_num = new_desc.num_blocks()
        for idx in range(block_num):
5089 5090
            if (idx > (len(self.blocks) - 1)):
                self._create_block()
5091 5092 5093 5094 5095 5096 5097 5098 5099 5100
            new_block_desc = new_desc.block(idx)
            all_new_vars.append([])
            block_new_vars = all_new_vars[-1]
            for new_var_desc in new_block_desc.all_vars():
                if self.blocks[idx].has_var(new_var_desc.name()):
                    old_var = self.blocks[idx].var(new_var_desc.name())
                else:
                    old_var = None

                kwargs = {
5101 5102 5103 5104 5105 5106
                    'type':
                    new_var_desc.type(),
                    'name':
                    new_var_desc.name(),
                    'shape':
                    get_var_desc_attr_or_none(new_var_desc, "shape", [
5107 5108 5109 5110
                        core.VarDesc.VarType.LOD_TENSOR,
                        core.VarDesc.VarType.SELECTED_ROWS,
                        core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                    ]),
5111 5112
                    'dtype':
                    get_var_desc_attr_or_none(new_var_desc, "dtype", [
5113 5114 5115 5116 5117 5118 5119 5120 5121
                        core.VarDesc.VarType.LOD_TENSOR,
                        core.VarDesc.VarType.SELECTED_ROWS,
                        core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                    ]),
                    'lod_level':
                    get_var_desc_attr_or_none(new_var_desc, "lod_level", [
                        core.VarDesc.VarType.LOD_TENSOR,
                        core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                    ]),
5122 5123 5124 5125 5126 5127 5128 5129 5130 5131
                    'error_clip':
                    old_var.error_clip if old_var is not None else None,
                    'stop_gradient':
                    old_var.stop_gradient if old_var is not None else False,
                    'is_data':
                    old_var.is_data if old_var is not None else False,
                    'need_check_feed':
                    new_var_desc.need_check_feed(),
                    'belong_to_optimizer':
                    old_var.belong_to_optimizer
5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161
                    if old_var is not None else False,
                }

                if isinstance(old_var, Parameter):
                    kwargs.update({
                        'trainable': old_var.trainable,
                        'optimize_attr': old_var.optimize_attr,
                        'regularizer': old_var.regularizer,
                        'do_model_average': old_var.do_model_average,
                        'need_clip': old_var.need_clip,
                        'is_distributed': old_var.is_distributed,
                        'is_parameter': old_var.is_parameter,
                    })
                    block_new_vars.append({
                        'class': Parameter,
                        'kwargs': copy.deepcopy(kwargs),
                    })
                else:
                    kwargs['persistable'] = new_var_desc.persistable()
                    block_new_vars.append({
                        'class': Variable,
                        'kwargs': copy.deepcopy(kwargs),
                    })

        return all_new_vars

    def _rebuild_from_desc(self, desc):
        all_new_vars = self._find_var_class_kwargs(desc)
        block_num = desc.num_blocks()
        assert block_num == len(all_new_vars)
5162
        assert block_num == self.desc.num_blocks()
5163 5164

        # clear old blocks and desc
5165 5166 5167 5168 5169 5170 5171 5172 5173
        for idx in range(block_num):
            block = self.blocks[idx]
            block.vars.clear()
            block.ops.clear()

        for idx in range(block_num):
            block_desc = self.blocks[idx].desc
            new_block_desc = desc.block(idx)
            block_desc._move_from(new_block_desc)
5174

5175
        del desc
5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194

        # add new vars first
        for idx in range(block_num):
            block = self.blocks[idx]
            for new_var in all_new_vars[idx]:
                clazz = new_var['class']
                kwargs = new_var['kwargs']
                kwargs['block'] = block
                clazz(**kwargs)

        # then append op
        for idx in range(block_num):
            block = self.blocks[idx]
            block_desc = self.desc.block(idx)
            for op_idx in range(block_desc.op_size()):
                op_desc = block_desc.op(op_idx)
                op = Operator(block=block, desc=op_desc)
                block.ops.append(op)

5195 5196 5197 5198 5199 5200 5201 5202 5203 5204
    def global_seed(self, seed=0):
        """
        Set global seed for Program

        Returns:
            None.

        Examples:
            .. code-block:: python

5205 5206
                import paddle
                import paddle.static as static
5207

5208 5209 5210
                paddle.enable_static()

                prog = static.default_main_program()
5211 5212 5213 5214 5215
                print(prog.random_seed)
                ## 0
                ## the default random seed is 0

                prog.global_seed(102)
5216
                prog1 = static.default_main_program()
5217 5218 5219 5220 5221 5222 5223 5224
                print(prog1.random_seed)
                ## 102
                ## the random seed is 102
        """
        global global_prog_seed
        global_prog_seed = seed
        self._seed = global_prog_seed

Y
yuyang18 已提交
5225
    @property
5226
    def _op_role(self):
Y
yuyang18 已提交
5227 5228 5229 5230 5231 5232 5233 5234
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
5235
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
5236 5237 5238 5239
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
5240 5241
        return self._current_role

5242 5243
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
5244 5245 5246
        self._current_role = role

    @property
5247
    def _op_role_var(self):
Y
yuyang18 已提交
5248
        """
5249
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
5250

5251
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
5252 5253 5254

        Notes: This is a very low-level API. Users should not use it directly.
        """
5255
        return self.__op_role_var
Y
yuyang18 已提交
5256

5257
    @signature_safe_contextmanager
5258 5259 5260 5261 5262
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
5263 5264 5265 5266
        try:
            yield
        finally:
            self._current_role = tmp_role
5267

S
rename  
sneaxiy 已提交
5268
    @signature_safe_contextmanager
W
Wu Yi 已提交
5269
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
5270 5271 5272 5273 5274 5275 5276
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
5277
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
5278 5279 5280

        Examples:

5281
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
5282
            >>> p, g = backward(...)
W
Wu Yi 已提交
5283
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
5284 5285
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
5286
        tmp_role = self._current_role
5287
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
5288

Y
yuyang18 已提交
5289 5290
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
5291
        self.__op_role_var = [
5292 5293 5294
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
5295 5296 5297 5298 5299
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
Y
Yu Yang 已提交
5300

S
rename  
sneaxiy 已提交
5301
    @signature_safe_contextmanager
X
Xin Pan 已提交
5302
    def _lr_schedule_guard(self, is_with_opt=False):
5303 5304 5305 5306 5307 5308 5309
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
5310 5311 5312 5313
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
5314 5315 5316

        Examples:

5317
            >>> import paddle.fluid as fluid
5318 5319 5320 5321
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
5322 5323

        tmp_role = self._current_role
5324
        tmp_var = self.__op_role_var
5325

5326 5327
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
5328 5329
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
5330
        # TODO(typhoonzero): how to set target learning rate var
5331
        self.__op_role_var = []
5332 5333 5334 5335 5336
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
5337

5338
    def __str__(self):
Y
yuyang18 已提交
5339 5340 5341 5342 5343 5344 5345 5346 5347
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Program.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Program string.

        Examples:
            .. code-block:: python

5368 5369
            import paddle
            import paddle.static as static
5370

5371 5372 5373
            paddle.enable_static()

            cur_program = static.Program()
5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_program._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
5385
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
5386 5387 5388 5389
            type(skip_op_callstack))
        program_str = ""
        for block in self.blocks:
            program_str += block._to_readable_code(skip_op_callstack)
5390
            program_str += '\n'
5391
        return program_str
Y
Yang Yang(Tony) 已提交
5392

F
fengjiayi 已提交
5393 5394 5395
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
5396

J
Jiabin Yang 已提交
5397 5398 5399
        Args:

            throw_on_error (bool): raise Value error when any of required fields is not set.
F
fengjiayi 已提交
5400

J
Jiabin Yang 已提交
5401
            with_details (bool): True if more details about variables and parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need to print.
Y
yuyang18 已提交
5402

H
haowang101779990 已提交
5403
        Returns:
J
Jiabin Yang 已提交
5404
            str: The debug string describe current Program.
Y
yuyang18 已提交
5405 5406

        Raises:
J
Jiabin Yang 已提交
5407
            ValueError: If any of required fields is not set and throw_on_error is True.
F
fengjiayi 已提交
5408

5409 5410 5411
        Examples:
            .. code-block:: python

5412 5413 5414 5415
                import paddle
                import paddle.static as static

                paddle.enable_static()
5416

5417 5418 5419
                prog = static.default_main_program()
                x = static.data(name="X", shape=[2,3], dtype="float32")
                pred = static.nn.fc(x, size=3)
5420
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
5421
                prog_string_with_details = prog.to_string(throw_on_error=False, with_details=True)
T
tianshuo78520a 已提交
5422
                print("program string without detail: {}".format(prog_string))
5423
                print("program string with detail: {}".format(prog_string_with_details))
F
fengjiayi 已提交
5424
        """
5425 5426 5427 5428 5429 5430 5431 5432 5433
        assert isinstance(
            throw_on_error, bool
        ), "The type of throw_on_error parameter is wrong, expected bool, but received {}.".format(
            type(throw_on_error))
        assert isinstance(
            with_details, bool
        ), "The type of with_details parameter is wrong, expected bool, but received {}.".format(
            type(with_details))

F
fengjiayi 已提交
5434 5435 5436 5437 5438 5439
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
5440 5441
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
5442 5443
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
5444

W
Wu Yi 已提交
5445
    def _get_desc(self):
Y
yuyang18 已提交
5446 5447 5448 5449 5450 5451 5452
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
5453 5454
        return self.desc

X
version  
Xin Pan 已提交
5455 5456 5457
    def _version(self):
        return self.desc._version()

5458
    def clone(self, for_test=False):
Y
yuyang18 已提交
5459
        """
5460 5461 5462 5463
        .. note:::
            1. :code:`Program.clone()` method DOES NOT clone :ref:`api_paddle_io_DataLoader` . 
            2. Recommend you to use :code:`clone` before using :code:`Opimizer.minimize` . 
            3. This API has no effect in Dygraph Mode.
Y
yuyang18 已提交
5464

5465
        Create a new Program with forward content of original one when ``for_test=True``.
5466
        Create a new Program as same as the original one when ``for_test=False``.
5467

5468
        Some operators, e.g., :ref:`api_paddle_fluid_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
5469 5470 5471
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
5472

5473 5474
        * Set for_test to False when you want to clone the program for training.
        * Set for_test to True when you want to clone the program for testing.
5475 5476
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
J
Jiabin Yang 已提交
5477
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`.
Y
yuyang18 已提交
5478

J
Jiabin Yang 已提交
5479
        For Example:
5480
          ::
L
Luo Tao 已提交
5481

5482 5483 5484 5485 5486 5487
            import paddle
            import paddle.static as static

            paddle.enable_static()

            img = static.data(name='image', shape=[None, 784])
5488
            pred = static.nn.fc(x=img, size=10, actvation='relu')
5489
            loss = paddle.mean(pred)
5490
            # Here we use clone before Momentum
5491 5492
            test_program = static.default_main_program().clone(for_test=True)
            optimizer = paddle.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
5493
            optimizer.minimize(loss)
5494

J
Jiabin Yang 已提交
5495
        Args:
5496

5497 5498
            for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True`
                and prune the backward and optimize part of the program. The default value is :code:`False` .
5499

J
Jiabin Yang 已提交
5500
        Returns:
5501
            Program: A new Program with forward content of original one when ``for_test=True``.  A new Program as same as the original one when ``for_test=False``
5502

Y
yuyang18 已提交
5503 5504 5505

        Examples:

5506 5507 5508 5509 5510 5511 5512
            .. note::
                The Program's order maybe different after :code:`clone` and
                this will not affect your training or testing progress. In the following
                example we give you an simple method :code:`print_prog(program)` to
                print Program Descs inorder to make sure you have same print result
                after :code:`clone`:

5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528
            .. code-block:: python

                import six

                def print_prog(prog):
                    for name, value in sorted(six.iteritems(prog.block(0).vars)):
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
                        for key, value in sorted(six.iteritems(op.all_attrs())):
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


5529
            1. To clone a test program, the sample code is:
5530 5531 5532
                .. code-block:: python

                    import six
5533 5534 5535 5536 5537 5538
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

5551 5552
                    train_program = static.Program()
                    startup_program = static.Program()
J
Jiabin Yang 已提交
5553 5554 5555

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
5556 5557 5558
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            img = static.data(name='image', shape=[None, 784])
5559
                            hidden = static.nn.fc(x=img, size=200, activation='relu')
5560 5561
                            hidden = F.dropout(hidden, p=0.5)
                            loss = F.cross_entropy(
5562
                                input=static.nn.fc(x=hidden, size=10, activation='softmax'),
5563 5564
                                label=static.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = paddle.mean(loss)
5565
                            test_program = train_program.clone(for_test=True)
5566
                    print_prog(test_program)
J
Jiabin Yang 已提交
5567 5568 5569 5570

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

5571
                    # In Paddle we will share weights by using the same Tensor name. In train and test program
J
Jiabin Yang 已提交
5572 5573 5574 5575
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

5576 5577 5578
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
5579 5580 5581
                            sgd.minimize(avg_loss)


5582
            2. The clone method can be avoid if you create program for training and program for testing individually.
5583 5584 5585
                .. code-block:: python

                    import six
5586 5587 5588 5589 5590 5591
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
5603

5604
                    def network():
5605
                        img = static.data(name='image', shape=[None, 784])
5606
                        hidden = static.nn.fc(x=img, size=200, activation='relu')
5607 5608
                        hidden = F.dropout(hidden, p=0.5)
                        loss = F.cross_entropy(
5609
                            input=static.nn.fc(x=hidden, size=10, activation='softmax'),
5610 5611
                            label=static.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = paddle.mean(loss)
5612 5613
                        return avg_loss

5614 5615 5616 5617 5618
                    train_program_2 = static.Program()
                    startup_program_2 = static.Program()
                    test_program_2 = static.Program()
                    with static.program_guard(train_program_2, startup_program_2):
                        with utils.unique_name.guard():
5619
                            avg_loss = network()
5620
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
5621
                            sgd.minimize(avg_loss)
5622
                    # the test startup program is not used.
5623 5624
                    with static.program_guard(test_program_2, startup_program_2):
                        with utils.unique_name.guard():
5625 5626
                            avg_loss = network()
                    print_prog(test_program_2)
5627

5628
            The two code snippets above will generate and print same programs.
5629
        """
5630

T
tangwei12 已提交
5631
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
5632 5633 5634
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

5635
        pruned_origin_block_id_map = None
5636
        if for_test:
5637 5638 5639 5640 5641 5642 5643 5644 5645
            forward_prog = Program()
            forward_prog.desc, pruned_origin_block_id_map = core.prune_backward(
                self.desc)
            forward_prog.blocks = [
                Block(forward_prog, i)
                for i in six.moves.range(forward_prog.desc.num_blocks())
            ]
            forward_prog._sync_with_cpp()
            p = forward_prog._inference_optimize(prune_read_op=False)
5646
        else:
5647
            p = Program()
G
gongweibao 已提交
5648 5649
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
5650
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
5651 5652 5653
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
5654 5655

            p._current_role = self._current_role
5656
            p.__op_role_var = self.__op_role_var
5657
            p._appending_grad_times = self._appending_grad_times
5658 5659
            if hasattr(self, 'lr_sheduler'):
                p.lr_sheduler = self.lr_sheduler
G
gongweibao 已提交
5660

T
tangwei12 已提交
5661
            # NOTE(zhiqiu): we sync the cloned program, to update its program by
5662
            # its desc.
W
Wu Yi 已提交
5663
            p._sync_with_cpp()
5664

W
Wu Yi 已提交
5665
        p._copy_param_info_from(self)
5666
        p._copy_data_info_from(self, pruned_origin_block_id_map)
5667
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
5668
        return p
5669

5670
    def _prune(self, targets):
Y
yuyang18 已提交
5671 5672 5673 5674 5675 5676 5677 5678
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
5679
            targets(list|Variable|Operator): A list of variables, operators, or variable names
Y
yuyang18 已提交
5680 5681 5682 5683
                need to be pruned

        Returns:
            Program:  A new, pruned program.
5684
        """
5685
        return self._prune_with_input([], targets)
5686 5687

    def _prune_with_input(self, feeded_var_names, targets):
Y
yuyang18 已提交
5688
        """
5689 5690 5691 5692 5693 5694 5695 5696 5697 5698
        Prune operators and variables which are not needed to generate
        :code:`targets`. Prune operators and variables which are needed 
        to generate feeded_var 

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            feeded_var_names(list|str): A list of variable names from where
                pruning start. If it is set as [], this API works just like _prune()
5699
            targets(list|Variable|Operator): A list of variables, operators, or variable names
5700 5701 5702 5703 5704 5705
                need to be pruned

        Returns:
            Program:  A new, pruned program.
        """

T
tangwei12 已提交
5706
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
5707 5708 5709
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

5710 5711
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
5712 5713
        if not isinstance(targets, list):
            targets = [targets]
5714 5715 5716

        for var in feeded_var_names:
            if not isinstance(var, six.string_types):
5717 5718 5719
                raise ValueError(
                    "All feeded_var_names of Program._prune_with_input() can only be "
                    "str, but received %s." % type(var))
5720

5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736
        # find out all variables that can be generated or updated with given feed
        generatable_vars = set()

        for idx, op in enumerate(self.global_block().ops):
            runnable_op = True
            for name in op.input_arg_names:
                if not self.global_block().has_var(name):
                    continue
                if self.global_block().var(name).persistable:
                    continue
                if name not in generatable_vars.union(feeded_var_names):
                    runnable_op = False
                    break
            if runnable_op:
                generatable_vars = generatable_vars.union(op.output_arg_names)

5737 5738 5739 5740
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
5741 5742 5743
                    name = t.name
                elif isinstance(t, six.string_types):
                    name = str(t)
5744
                else:
5745 5746 5747
                    raise ValueError(
                        "All targets of Program._prune_with_input() can only be "
                        "Variable or Operator, but received %s." % type(t))
5748 5749 5750 5751 5752 5753

                # NOTEZ(zhiqiu): For variable to be fed in fetch_list, there two cases:
                # (1) the variable is leaf, it has no op that generates it;
                # (2) the variable is not leaf, and we need to prune the op that generates it.
                # In both cases, wo can just skip target_op of that it.
                if name in feeded_var_names:
5754 5755 5756
                    # however if the var is also updated by a runnable op, will shall keep it
                    if name not in generatable_vars:
                        continue
5757

5758 5759 5760 5761 5762 5763 5764 5765 5766
                # After transpiler processing, the op that output this
                # variable maybe has been changed, so t.op is not reliable
                # and we need to find the current op that generate this
                # variable here.
                target_op = None
                global_block = self.global_block()
                for idx, op in enumerate(global_block.ops):
                    if name in op.output_arg_names:
                        # NOTE(zhiqiu): Find op that generate target name.
T
tangwei12 已提交
5767
                        # Skip optimize op except for optimize op in targets,
5768 5769 5770 5771 5772
                        # since optimize op generates parameters.
                        if op._is_optimize_op() and op not in targets:
                            continue
                        else:
                            target_op = op
5773

5774
                if target_op is not None:
5775 5776 5777
                    targets_idx.append([target_op.block.idx, target_op.idx])
            else:
                targets_idx.append([t.block.idx, t.idx])
5778

5779
        res = Program()
5780 5781
        res.desc, pruned_origin_block_id_map = core.prune(
            self.desc, set(feeded_var_names), targets_idx)
M
minqiyang 已提交
5782 5783 5784
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
5785
        res._sync_with_cpp()
5786 5787 5788 5789 5790

        res._copy_param_info_from(self)
        res._copy_data_info_from(self, pruned_origin_block_id_map)
        res._copy_dist_param_info_from(self)

5791 5792
        return res

X
Xin Pan 已提交
5793
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
5794
        """
F
fengjiayi 已提交
5795 5796 5797 5798 5799
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

5800
        3. change the :code:`is_test`
Y
yuyang18 已提交
5801 5802 5803
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

5804
        Args:
X
Xin Pan 已提交
5805 5806
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
5807

Y
yuyang18 已提交
5808 5809 5810 5811 5812 5813
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
5814
        res = Program()
5815
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
5816 5817 5818 5819

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
5820
        if prune_read_op:
5821 5822 5823 5824 5825 5826 5827 5828 5829
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
5830
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
5831 5832

        # change all `is_test` attributes to True
M
minqiyang 已提交
5833
        for i in six.moves.range(res.desc.num_blocks()):
5834
            block = res.desc.block(i)
M
minqiyang 已提交
5835
            for j in six.moves.range(block.op_size()):
5836 5837
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
5838
                    op._set_attr('is_test', True)
5839 5840 5841
                if op.type() == "batch_norm":
                    # Remove the output ReserveSpace of batch_norm if exists.
                    op.remove_output("ReserveSpace")
M
minqiyang 已提交
5842 5843 5844
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
5845
        res._sync_with_cpp()
5846 5847
        return res

5848
    def _remove_training_info(self, clip_extra=True):
5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867
        """
        This method will create a new program and do following adjustments on it:
        1. Remove all variable's `is_parameter` attribute if exist.

        2. Remove all variable's `stop_gradient` attribute if exist.

        Notes: This API is a very low level API.

        Returns:
            Program: The new program.
        """
        res = Program()
        res.desc = core.ProgramDesc(self.desc)

        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
        res._sync_with_cpp()

5868 5869 5870 5871
        # Note: The op_role and op_role_var cann't be deleted currently,
        # and we will try to remove them in the future.
        common_clipped_attrs_list = ['op_namescope', 'op_callstack']

5872 5873 5874 5875 5876
        for i in six.moves.range(res.desc.num_blocks()):
            block = res.desc.block(i)
            for var in block.all_vars():
                var.clear_is_parameter()
                var.clear_stop_gradient()
5877 5878 5879 5880
            for op_idx in range(0, block.op_size()):
                op = block.op(op_idx)
                if op.type() not in OpProtoHolder.instance().op_proto_map:
                    continue
5881 5882 5883 5884 5885 5886 5887 5888 5889 5890

                if not clip_extra:
                    continue

                extra_attrs_map = core.get_op_extra_attrs(op.type())
                for name in op.attr_names():
                    if name in extra_attrs_map:
                        op.remove_attr(name)
                        continue

5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903
                proto = OpProtoHolder.instance().get_op_proto(op.type())
                remove_input_list = []
                for name in op.input_names():
                    find = False
                    for input_proto in proto.inputs:
                        if input_proto.name != name:
                            continue
                        if input_proto.extra:
                            remove_input_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_input_list.append(name)
5904 5905 5906
                # The extra input of op will be removed in the future
                # for name in remove_input_list:
                #     op.remove_input(name)
5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919

                remove_output_list = []
                for name in op.output_names():
                    find = False
                    for output_proto in proto.outputs:
                        if output_proto.name != name:
                            continue
                        if output_proto.extra:
                            remove_output_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_output_list.append(name)
5920 5921 5922
                # The extra input of op will be removed in the future
                # for name in remove_output_list:
                #     op.remove_output(name)
5923 5924 5925 5926 5927 5928 5929 5930 5931 5932

                op_quant_name = core.op_proto_and_checker_maker.kOpWithQuantAttrName(
                )
                quant = bool(op.attr(op_quant_name)
                             ) if op_quant_name in op.attr_names() else False
                quant_attrs = [
                    op_quant_name, "quantization_type", "skip_quant",
                    "activation_bits", "bit_length", "quantize_weight_bits",
                    "weight_quant_scale"
                ]
5933
                remove_attr_list = []
5934 5935 5936 5937 5938 5939
                for name in op.attr_names():
                    if quant:
                        if name in quant_attrs:
                            continue
                        if name.endswith("_threshold"):
                            continue
5940 5941 5942 5943
                    if name in common_clipped_attrs_list:
                        remove_attr_list.append(name)
                        continue

5944 5945 5946 5947 5948 5949 5950 5951 5952 5953
                    find = False
                    for attr_proto in proto.attrs:
                        if attr_proto.name != name:
                            continue
                        find = True
                        break
                    if not find:
                        remove_attr_list.append(name)
                for name in remove_attr_list:
                    op.remove_attr(name)
5954 5955
        return res

5956 5957
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
5958
        """
5959 5960 5961
        .. note::
            1. All information about parameters will be lost after serialization; 
            2. This API has no effect in Dygraph mode.
Y
yuyang18 已提交
5962

5963 5964
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
5965

J
Jiabin Yang 已提交
5966
        Args:
Y
yuyang18 已提交
5967

J
Jiabin Yang 已提交
5968
            binary_str_type (str): the binary prootbuf string.
5969

J
Jiabin Yang 已提交
5970 5971
        Returns:
            Program: A deserialized Program.
5972 5973 5974 5975

        Examples:
            .. code-block:: python

5976 5977 5978 5979
                import paddle
                import paddle.static as static

                paddle.enable_static()
5980

5981 5982 5983 5984
                startup_prog = static.Program()
                main_prog = static.Program()
                with static.program_guard(startup_prog, main_prog):
                    x = static.data(name='X', shape=[1000, 784], dtype='float32')
5985

5986
                    y = static.data(name='Y', shape=[784, 100], dtype='float32')
5987

5988
                    z = paddle.matmul(x=x, y=y)
5989

5990 5991
                    binary_str = static.default_main_program().desc.serialize_to_string()
                    prog_restored = static.default_main_program().parse_from_string(binary_str)
5992

5993
                    print(static.default_main_program())
5994
                    print(prog_restored)
Y
yuyang18 已提交
5995
        """
5996 5997
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
5998
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
5999
        p._sync_with_cpp()
6000
        return p
Y
Yu Yang 已提交
6001

6002
    @staticmethod
6003
    def _construct_from_desc(desc):
6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
6019 6020
    @property
    def random_seed(self):
Y
yuyang18 已提交
6021
        """
J
Jiabin Yang 已提交
6022
        The default random seed for random operators in Program. ``0`` means get
Y
yuyang18 已提交
6023 6024
        the random seed from random device.

6025 6026
        .. note:: 
            It must be set before the operators have been added.
J
Jiabin Yang 已提交
6027 6028 6029

        Returns:
            int64: Random seed in current Program
6030

6031 6032 6033 6034

        Examples:
            .. code-block:: python

6035 6036 6037
                import paddle
                import paddle.static as static
                import paddle.nn.functional as F
6038

6039 6040 6041
                paddle.enable_static()

                prog = static.default_main_program()
6042
                random_seed = prog.random_seed
6043
                x_var = static.data(name="X", shape=[3,3], dtype="float32")
6044 6045 6046
                print(random_seed)
                ## 0
                ## the default random seed is 0
6047

6048
                # Here we need to set random seed before we use paddle.nn.functional.dropout
6049
                prog.random_seed = 1
6050
                z_var = F.dropout(x_var, 0.7)
6051

6052
                print(prog.random_seed)
6053 6054
                ## 1
                ## the random seed is change to 1
Y
yuyang18 已提交
6055
        """
D
dzhwinter 已提交
6056 6057
        return self._seed

Q
qiaolongfei 已提交
6058 6059
    @property
    def num_blocks(self):
Y
yuyang18 已提交
6060
        """
6061 6062
        The number of :ref:`api_guide_Block_en`  in this Program.

6063 6064
        .. note:: 
            This API has no effect in Dygraph mode.
J
Jiabin Yang 已提交
6065 6066 6067

        Returns:
            int(Platform-dependent size): num of :ref:`api_guide_Block_en`  in current Program
6068

6069 6070 6071 6072

        Examples:
            .. code-block:: python

6073 6074 6075 6076
                import paddle
                import paddle.static as static

                paddle.enable_static()
6077

6078
                prog = static.default_main_program()
6079 6080
                num_blocks = prog.num_blocks
                print(num_blocks)
6081

6082 6083
                # print result:
                # 1
Y
yuyang18 已提交
6084
        """
Q
qiaolongfei 已提交
6085 6086
        return self.desc.num_blocks()

D
dzhwinter 已提交
6087 6088 6089
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
6090 6091 6092
            raise ValueError(
                "Program.random_seed's input seed must be an integer, but received %s."
                % type(seed))
D
dzhwinter 已提交
6093 6094
        self._seed = seed

Y
Yu Yang 已提交
6095
    def __repr__(self):
6096
        return self.__str__()
6097

Y
Yu Yang 已提交
6098
    def global_block(self):
Y
yuyang18 已提交
6099
        """
6100 6101
        .. note::
            This API has no effect in Dygraph mode.
6102 6103 6104

        Get the first :ref:`api_guide_Block_en` of this Program.

J
Jiabin Yang 已提交
6105 6106
        Returns:
            :ref:`api_guide_Block_en`: The first :ref:`api_guide_Block_en`  of this Program.
6107

6108 6109 6110 6111

        Examples:
            .. code-block:: python

6112 6113 6114 6115
                import paddle
                import paddle.static as static

                paddle.enable_static()
6116

6117
                prog = static.default_main_program()
6118 6119
                gb_block = prog.global_block()
                print(gb_block)
6120

Y
yuyang18 已提交
6121
        """
Y
Yu Yang 已提交
6122 6123
        return self.blocks[0]

Q
Qiao Longfei 已提交
6124
    def block(self, index):
Y
yuyang18 已提交
6125
        """
6126 6127
        .. note::
            This API has no effect in Dygraph mode.
Y
yuyang18 已提交
6128

6129 6130
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

J
Jiabin Yang 已提交
6131 6132
        Args:
            index (int) - The index of  :ref:`api_guide_Block_en`  to get
6133

J
Jiabin Yang 已提交
6134 6135
        Returns:
            :ref:`api_guide_Block_en`: The :code:`index` block
6136 6137 6138 6139

        Examples:
            .. code-block:: python

6140 6141 6142 6143
                import paddle
                import paddle.static as static

                paddle.enable_static()
6144

6145
                prog = static.default_main_program()
6146 6147
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
6148
        """
Q
Qiao Longfei 已提交
6149 6150
        return self.blocks[index]

Y
Yu Yang 已提交
6151
    def current_block(self):
Y
yuyang18 已提交
6152
        """
6153 6154
        .. note::
            This API has no effect in Dygraph mode.
6155

J
Jiabin Yang 已提交
6156 6157
        Get the current  :ref:`api_guide_Block_en` . The :code:`current`  :ref:`api_guide_Block_en`
        is the  :ref:`api_guide_Block_en`  to append operators.
6158

J
Jiabin Yang 已提交
6159 6160
        Returns:
             :ref:`api_guide_Block_en`: The :code:`index`  :ref:`api_guide_Block_en`
6161

6162 6163 6164
        Examples:
            .. code-block:: python

6165 6166 6167 6168
                import paddle
                import paddle.static as static

                paddle.enable_static()
6169

6170
                prog = static.default_main_program()
6171 6172
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
6173
        """
Y
Yu Yang 已提交
6174 6175
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
6176
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
6177 6178 6179 6180 6181
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
J
Jiabin Yang 已提交
6182

Y
yuyang18 已提交
6183 6184 6185 6186 6187
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
6188
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
6189 6190 6191
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
6192 6193 6194 6195
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
6196
    def _rollback(self):
Y
yuyang18 已提交
6197 6198 6199 6200 6201
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
6202 6203
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
6204
    def _sync_with_cpp(self):
Y
yuyang18 已提交
6205 6206 6207 6208 6209 6210 6211 6212 6213 6214
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
6215 6216 6217
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
6218
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
6219

W
Wu Yi 已提交
6220
    def _copy_param_info_from(self, other):
6221
        """
6222
        Copy the information of parameters from other program.
D
dzhwinter 已提交
6223

Y
yuyang18 已提交
6224 6225 6226
        Notes: This is a very low level API. Users should not invoke it
        directly.

6227 6228 6229 6230 6231 6232 6233
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
6234 6235 6236
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
6237

W
Wu Yi 已提交
6238
        self.global_block()._copy_param_info_from(other.global_block())
6239

6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
6251 6252 6253
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
6254 6255
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
6256
        self._parameters_on_pservers = other._parameters_on_pservers
6257
        self._endpoints = other._endpoints
6258
        self._ps_endpoint = other._ps_endpoint
6259 6260
        self._distributed_lookup_table = other._distributed_lookup_table

6261
    def _copy_data_info_from(self, other, pruned_origin_block_id_map=None):
F
fengjiayi 已提交
6262 6263
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
6264

Y
yuyang18 已提交
6265 6266 6267
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
6268 6269
        Args:
            other(Program): Other program
6270 6271 6272 6273
            pruned_origin_block_id_map(dict{int:int}): A dict which maps the block id in program
            self to the block id in program other. For example, {0:0, 1:1, 2:3} means block 0 in self is 
            cloned from block 0 in other, etc. Default is None, which means default mapped, 
            {0:0, 1:1,..., n:n}.
F
fengjiayi 已提交
6274 6275 6276 6277 6278

        Returns:
            None
        """
        if not isinstance(other, Program):
6279 6280 6281
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
F
fengjiayi 已提交
6282

6283 6284 6285 6286 6287
        if not pruned_origin_block_id_map:
            pruned_origin_block_id_map = {
                i: i
                for i in six.moves.range(self.desc.num_blocks())
            }
6288 6289 6290

        # NOTE(zhiqiu): All vars in cloned program exist in original program.
        # The reverse is not true, due to backward pruning.
6291 6292
        for i, block in enumerate(self.blocks):
            other_block = other.blocks[pruned_origin_block_id_map[i]]
6293
            for var in list(block.vars.values()):
6294 6295 6296 6297 6298 6299 6300
                other_var = other_block.var(var.name)
                if other_var.is_data:
                    var.is_data = True
                if other_var.desc.need_check_feed():
                    var.desc.set_need_check_feed(True)
                if other_var.stop_gradient:
                    var.stop_gradient = True
F
fengjiayi 已提交
6301

6302
    def list_vars(self):
Y
yuyang18 已提交
6303
        """
6304
        Get all Tensors from this Program. A iterable object is returned.
Y
yuyang18 已提交
6305

J
Jiabin Yang 已提交
6306
        Returns:
6307
            iterable Tensors: The Generator will yield every Tensor in this program.
6308 6309 6310 6311

        Examples:
            .. code-block:: python

6312 6313
                import paddle
                import paddle.static as static
6314

6315 6316 6317 6318 6319
                paddle.enable_static()

                prog = static.default_main_program()
                img = static.data(name='img', shape=[None, 1,28,28], dtype='float32')
                label = static.data(name='label', shape=[None,1], dtype='int64')
6320 6321
                for var in prog.list_vars():
                    print(var)
T
tangwei12 已提交
6322

6323 6324
                # var img : LOD_TENSOR.shape(-1, 1, 28, 28).dtype(float32).stop_gradient(True)
                # var label : LOD_TENSOR.shape(-1, 1).dtype(int64).stop_gradient(True)
Y
yuyang18 已提交
6325
        """
6326
        for each_block in self.blocks:
6327
            for each_var in list(each_block.vars.values()):
6328 6329
                yield each_var

6330 6331 6332 6333 6334 6335 6336 6337 6338 6339
    def all_parameters(self):
        """
        Get all :ref:`api_guide_parameter_en` from this Program. A list object is returned.

        Returns:
            list[ :ref:`api_guide_parameter_en` ]: The list contians all parameters in this program.

        Examples:
            .. code-block:: python

6340 6341 6342 6343
                import paddle
                import paddle.static as static

                paddle.enable_static()
6344

6345 6346
                program = static.default_main_program()
                data = static.data(name='x', shape=[None, 13], dtype='float32')
6347
                hidden = static.nn.fc(x=data, size=10)
6348 6349
                loss = paddle.mean(hidden)
                paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
6350 6351 6352 6353 6354 6355 6356

                for param in program.all_parameters():
                    print(param)

                # Here will print all parameters in current program, in this example,
                # the result is like:
                #
6357 6358
                # persist trainable param fc_0.w_0 : LOD_TENSOR.shape(13, 10).dtype(float32).stop_gradient(False)
                # persist trainable param fc_0.b_0 : LOD_TENSOR.shape(10,).dtype(float32).stop_gradient(False)
6359 6360 6361 6362 6363 6364 6365 6366 6367 6368
                #
                # Here print(param) will print out all the properties of a parameter,
                # including name, type and persistable, you can access to specific
                # property of a parameter, such as param.name, param.type
        """
        parameters = []
        for each_block in self.blocks:
            parameters.extend(each_block.all_parameters())
        return parameters

6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410
    def state_dict(self, mode='all', scope=None):
        """
        Get parameters and persistable buffers of program as a dict. The key is the name of the parameter or the name of the buffer.
        The value is the tensor of this variable in the given scope.

        .. note::
            This function MUST called after run start_up_program

        Args:
            mode(str, optional): Source of the obtained parameters and buffers. 
                    'opt' :  The return value only contains the variable in the optimizer. 
                    'param' : The return value only contains the variable in the network, not the variable in the optimizer.  
                    'all' : The return value contains the variable in the network and optimizer.
                    Default: 'all'
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None

        Retruns:
            dict: a dict contains the parameters and persistable buffers.

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
        """
        # The 'framework' is a low-level module, and 'executor'
6411
        # can not be imported at the begainning of this file.
6412 6413 6414 6415
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
6416 6417
                "`scope` should be None or `paddle.static.Scope'` type, but received {}."
                .format(type(scope)))
6418 6419 6420 6421 6422

        if scope is None:
            scope = global_scope()

        if not isinstance(mode, str):
6423 6424 6425
            raise TypeError(
                "Type of `mode` should be string, but received {}.".format(
                    type(mode)))
6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451

        def is_parameter(var):
            return isinstance(var, Parameter)

        def is_persistable(var):
            if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
                var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
                var.desc.type() == core.VarDesc.VarType.READER:
                return False
            return var.persistable

        def is_belong_to_optimizer(var):
            if not (isinstance(var, Parameter) or var.desc.need_check_feed()):
                return is_persistable(var)
            return False

        def condition(var):

            if mode == 'param':
                return is_parameter(var)
            elif mode == 'opt':
                return is_belong_to_optimizer(var)
            elif mode == 'all':
                return is_parameter(var) or is_belong_to_optimizer(var)
            else:
                raise ValueError(
6452 6453
                    "`mode` string should be 'param', 'opt' or 'all', but received {}."
                    .format(mode))
6454 6455 6456 6457 6458 6459 6460 6461

        var_list = filter(condition, self.list_vars())

        state_dict = dict()
        for var in var_list:
            var_temp = scope.find_var(var.name)
            if var_temp is None:
                raise ValueError(
6462 6463
                    "Can not find Variable '{}' in the scope. Make sure it is initialized"
                    .format(var.name))
6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532
            state_dict[var.name] = var_temp.get_tensor()

        return state_dict

    def set_state_dict(self, state_dict, scope=None):
        """
        Set parameters and persistable buffers in state_dict to program. 
        An exception will throw if shape or dtype of the parameters is not match.
        
        .. note::
            This function MUST called after run start_up_program

        Args:
            state_dict(dict): the dict store parameters and persistable buffers. 
                The key is the name of the parameter or the name of the buffer.
                The value is the tensor of this variable in the given scope.
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None
        
        Returns:
            None

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
                state_dict_load = paddle.load(path)
                prog.set_state_dict(state_dict_load)
        """

        if not isinstance(state_dict, dict):
            raise TypeError(
                "Type of `state_dict` should be dict, but received {}.".format(
                    type(state_dict)))

        vars_dict = {var.name: var for var in self.list_vars()}
        condition = True if 'StructuredToParameterName@@' in state_dict else False
        for name, value in state_dict.items():
            if condition:
                if name == "StructuredToParameterName@@":
                    continue
                if name in state_dict['StructuredToParameterName@@']:
                    name = state_dict['StructuredToParameterName@@'][name]
            if name in vars_dict:
                try:
                    vars_dict[name].set_value(value, scope)
                except ValueError as err:
                    warnings.warn(
                        ("Skip loading for '{}'. ".format(name) + str(err)))
                except TypeError as err:
                    warnings.warn(
                        ("Skip loading for '{}'. ".format(name) + str(err)))
            else:
6533 6534 6535
                warnings.warn(
                    ("Skip loading for '{0}'. Because '{0}' not in the program."
                     .format(name)))
6536

Y
Yu Yang 已提交
6537

6538
@six.add_metaclass(ParameterMetaClass)
Y
Yu Yang 已提交
6539
class Parameter(Variable):
6540
    """
6541
    Parameter is derived from Variable. A parameter is a persistable
6542
    Variable, and will be updated by optimizers after each iteration.
6543
    The training of a neural network is essentially the updating of
6544 6545
    its parameters.

6546
    Relative to a general Variable, a Parameter has several its own
6547 6548
    member variables:

6549 6550 6551 6552 6553 6554 6555 6556 6557 6558
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
6559 6560
        need_clip (bool): Whether the parameter gradient need to be cliped 
            in optimizer. Default is True.
6561 6562
    """

6563 6564 6565 6566 6567 6568
    def __init__(self,
                 block,
                 shape,
                 dtype,
                 type=core.VarDesc.VarType.LOD_TENSOR,
                 **kwargs):
6569 6570 6571 6572 6573
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

Y
Yu Yang 已提交
6574
        if len(shape) == 0:
6575 6576
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")
Y
Yu Yang 已提交
6577 6578 6579

        for each in shape:
            if each < 0:
6580 6581 6582
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))
6583

6584 6585 6586 6587 6588 6589 6590
        Variable.__init__(self,
                          block,
                          persistable=True,
                          shape=shape,
                          dtype=dtype,
                          type=type,
                          **kwargs)
Y
Yu Yang 已提交
6591 6592 6593 6594
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

6595 6596
        self.regularizer = kwargs.get('regularizer', None)

W
wanghaoshuang 已提交
6597
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
6598

6599 6600
        self.need_clip = kwargs.get('need_clip', True)

6601 6602
        self.is_distributed = False

6603 6604
        self.is_parameter = True

F
fengjiayi 已提交
6605
    def __str__(self):
6606
        return self._to_readable_code()
F
fengjiayi 已提交
6607

F
update  
fengjiayi 已提交
6608 6609 6610
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
6611

F
update  
fengjiayi 已提交
6612 6613 6614 6615 6616 6617 6618 6619
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

6620 6621 6622 6623 6624 6625 6626 6627 6628
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
6629
        """
6630 6631
        assert isinstance(throw_on_error, bool) and isinstance(
            with_details, bool)
F
update  
fengjiayi 已提交
6632 6633 6634
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
6635
                               "do_model_average", "need_clip")
F
update  
fengjiayi 已提交
6636
            for attr_name in additional_attr:
6637 6638
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
6639 6640
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
6641 6642 6643 6644
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
6645

6646 6647
class ParamBase(core.VarBase):
    """
6648 6649 6650
    ParamBase is derived from Tensor( Which is the concept in Dygraph Mode). 
    A ParamBase is a persistable Tensor, and will be updated by optimizers 
    after each iteration.
6651 6652 6653
    The training of a neural network is essentially the updating of
    its ParamBase.

6654
    Relative to a general Tensor, a ParamBase has several its own
6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666
    member variables:

    Args:
        trainable(bool): True if the ParamBase need to be updated after
            iterations.
        optimize_attr(map): ParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the ParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this ParamBase.
6667 6668
        need_clip (bool): Whether the parameter gradient need to be cliped 
            in optimizer. Default is True.
6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        if len(shape) == 0:
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_param_base'))

6694 6695 6696 6697
        super(ParamBase,
              self).__init__(dtype if dtype else core.VarDesc.VarType.FP32,
                             list(shape) if shape else [], name,
                             core.VarDesc.VarType.LOD_TENSOR, True)
6698

6699 6700
        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable
6701 6702 6703 6704 6705 6706 6707

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

6708 6709
        self.need_clip = kwargs.get('need_clip', True)

6710
        self.is_distributed = kwargs.get('is_distributed', False)
6711
        # self.block = default_main_program().global_block()
6712

6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725
    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
                type(trainable))

6726
    def __str__(self):
6727
        """
6728
        Convert a ParamBase object to a readable string.
6729

6730
        Returns(str): A readable string.
6731 6732 6733 6734

        Examples:
            .. code-block:: python

6735
                import paddle
6736 6737 6738 6739 6740 6741 6742
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
6743
        """
6744 6745
        return "Parameter containing:\n{tensor}".format(
            tensor=super(ParamBase, self).__str__())
6746

6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757
    def __deepcopy__(self, memo):
        """
        Deep copy parameter, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                linear = paddle.nn.Linear(1, 3)
                linear_copy = copy.deepcopy(linear)
T
tangwei12 已提交
6758

6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

                print(linear_copy.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

        """
        state = copy.deepcopy(self.__dict__, memo)
        state["name"] = self.name + unique_name.generate("_deepcopy")
        new_param = ParamBase(self.shape, self.dtype, **state)
        memo[id(self)] = new_param
        new_param.copy_(self, True)
        return new_param

6777 6778 6779 6780
    def _copy_to(self, device, blocking):
        state = copy.deepcopy(self.__dict__)
        new_param = ParamBase(self.shape, self.dtype, **state)
        core.varbase_copy(self, new_param, device, blocking)
6781 6782 6783 6784 6785 6786
        return new_param

    __repr__ = __str__


if hasattr(core, "eager"):
6787
    _core_eager_eagertensor = core.eager.Tensor
6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839
else:
    _core_eager_eagertensor = object


class EagerParamBase(_core_eager_eagertensor):
    """
    EagerParamBase is derived from Tensor( Which is the concept in Eager-Dygraph Mode). 
    A EagerParamBase is a persistable Tensor, and will be updated by optimizers 
    after each iteration.
    The training of a neural network is essentially the updating of
    its EagerParamBase.

    Relative to a general Tensor, a EagerParamBase has several its own
    member variables:

    Args:
        trainable(bool): True if the EagerParamBase need to be updated after
            iterations.
        optimize_attr(map): EagerParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the EagerParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this EagerParamBase.
        need_clip (bool): Whether the parameter gradient need to be cliped 
            in optimizer. Default is True.
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        if len(shape) == 0:
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_eager_param_base'))

6840 6841 6842
        if isinstance(shape, core.eager.Tensor):
            shape = shape.numpy()

6843 6844 6845 6846
        super(EagerParamBase,
              self).__init__(dtype if dtype else core.VarDesc.VarType.FP32,
                             list(shape) if shape else [], name,
                             core.VarDesc.VarType.LOD_TENSOR, True)
6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860
        self.retain_grads()

        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

        self.need_clip = kwargs.get('need_clip', True)

        self.is_distributed = kwargs.get('is_distributed', False)
6861 6862 6863
        # hook functions for lazy initialization
        self._init_func = None
        self._init_op_creator = None
6864 6865

    def set_init_func(self, obj):
6866
        self._init_func = obj
6867 6868 6869

    @dygraph_only
    def initialize(self):
6870 6871
        assert self._init_func is not None, "Required self._init_func is not None, but received None."
        self._init_func()
6872
        # clear function handle to release resource
6873
        self._init_func = None
6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887

    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
                type(trainable))

6888 6889 6890 6891 6892 6893 6894
    def _create_init_op(self, block):
        """
        Call init_op_creator function to create initializer operation in block.
        """
        assert self._init_op_creator is not None, "Required self._init_op_creator is not None, but received None."
        self._init_op_creator(block)

6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949
    def __str__(self):
        """
        Convert a EagerParamBase object to a readable string.

        Returns(str): A readable string.

        Examples:
            .. code-block:: python

                import paddle
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
        """
        return "Parameter containing:\n{tensor}".format(
            tensor=super(EagerParamBase, self).__str__())

    def __deepcopy__(self, memo):
        """
        Deep copy parameter, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                linear = paddle.nn.Linear(1, 3)
                linear_copy = copy.deepcopy(linear)

                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

                print(linear_copy.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

        """
        state = copy.deepcopy(self.__dict__, memo)
        state["name"] = self.name + unique_name.generate("_deepcopy")
        new_param = EagerParamBase(self.shape, self.dtype, **state)
        memo[id(self)] = new_param
        new_param.copy_(self, True)
        return new_param

    def _copy_to(self, device, blocking):
        state = copy.deepcopy(self.__dict__)
        new_param = EagerParamBase(self.shape, self.dtype, **state)
        core.eager.tensor_copy(self, new_param, device, blocking)
6950 6951
        return new_param

6952 6953 6954
    __repr__ = __str__


Y
Yu Yang 已提交
6955
# program is a global instance.
Y
Yu Yang 已提交
6956 6957
_main_program_ = Program()
_startup_program_ = Program()
6958
_startup_program_._is_start_up_program_ = True
6959

6960

6961
def default_startup_program():
Y
Yu Yang 已提交
6962
    """
Y
yuyang18 已提交
6963 6964
    Get default/global startup program.

6965 6966
    The :code:`paddle.nn` function will append the initialization operators into startup program.
    The :code:`startup_program` will initialize the parameters by the OPs. 
T
tangwei12 已提交
6967

6968 6969
    This method will return the default or the current startup program. Users can use
    :ref:`api_paddle_fluid_framework_program_guard`  to switch :ref:`api_paddle_fluid_framework_Program` .
Y
yuyang18 已提交
6970

6971 6972
    Returns:
        Program: current default startup program.
6973

6974
    Returns type: 
6975 6976 6977 6978

    Examples:
        .. code-block:: python

6979
            import paddle
6980

6981
            paddle.enable_static()
6982 6983 6984 6985
            x = paddle.static.data(name="x", shape=[-1, 784], dtype='float32')
            out = paddle.static.nn.fc(name="fc", x=x, size=10, activation="relu")
            print("main program is: {}".format(paddle.static.default_main_program()))
            print("start up program is: {}".format(paddle.static.default_startup_program()))
Y
Yu Yang 已提交
6986
    """
Y
Yu Yang 已提交
6987
    return _startup_program_
6988

6989

6990
def default_main_program():
Y
Yu Yang 已提交
6991
    """
6992
    This API can be used to get ``default main program`` which store the 
6993
    descriptions of Ops and tensors.
T
tangwei12 已提交
6994

6995
    For example ``z = paddle.add(x, y)`` will create a new ``add`` 
6996
    Op and a new ``z`` tensor, and they will be recorded in ``default main program`` . 
Y
yuyang18 已提交
6997

6998 6999
    The ``default main program`` is the default value for ``Program`` parameter in 
    a lot of APIs. For example, the :code:`Executor.run()` will execute the
Y
yuyang18 已提交
7000
    :code:`default_main_program` when the program is not specified.
7001

7002
    If you want to switch the ``default main program``, you can use :ref:`api_paddle_fluid_framework_program_guard` .
T
tangwei12 已提交
7003

Y
Yu Yang 已提交
7004
    Returns:
7005
        Program: A ``Program`` which holding the descriptions of OPs and tensors in the network.
7006 7007 7008 7009

    Examples:
        ..  code-block:: python

7010
            import paddle
7011

7012
            paddle.enable_static()
7013
            # Sample Network:
7014 7015 7016
            x = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            y = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            out = paddle.add(x, y)
7017

7018 7019 7020
            #print the number of blocks in the program, 1 in this case
            print(paddle.static.default_main_program().num_blocks) # 1
            #print the default_main_program
7021
            print(paddle.static.default_main_program())
Y
Yu Yang 已提交
7022
    """
Y
Yu Yang 已提交
7023
    return _main_program_
Y
Yu Yang 已提交
7024 7025 7026 7027 7028


def switch_main_program(program):
    """
    Switch the main program to a new program.
7029

Y
Yu Yang 已提交
7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
7044
    Switch the startup program to a new program
Y
Yu Yang 已提交
7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
7057
@signature_safe_contextmanager
Y
Yu Yang 已提交
7058 7059
def program_guard(main_program, startup_program=None):
    """
7060 7061
    :api_attr: Static Graph

7062 7063 7064
    Change the global main program and startup program with ``with`` statement.
    Layer functions in the Python ``with`` block will append operators and
    Tensors to the new main programs.
7065

G
guofei 已提交
7066
    Args:
7067 7068
        main_program(Program): New main program inside ``with`` statement.
        startup_program(Program, optional): New startup program inside ``with`` 
G
guofei 已提交
7069 7070 7071 7072
            statement. :code:`None` means not changing startup program, 
            default_startup_program is still used.
            Default: None.

Y
Yu Yang 已提交
7073
    Examples:
7074
       .. code-block:: python
T
tangwei12 已提交
7075

7076
          import paddle
Y
yuyang18 已提交
7077

7078 7079 7080 7081 7082
          paddle.enable_static()
          main_program = paddle.static.Program()
          startup_program = paddle.static.Program()
          with paddle.static.program_guard(main_program, startup_program):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
7083
              hidden = paddle.static.nn.fc(x=data, size=10, activation='relu')
Y
yuyang18 已提交
7084 7085 7086

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
7087

Y
Yu Yang 已提交
7088
    Examples:
7089
       .. code-block:: python
Y
yuyang18 已提交
7090

7091
          import paddle
7092

7093 7094 7095 7096 7097
          paddle.enable_static()
          main_program = paddle.static.Program()
          # does not care about startup program. Just pass a temporary value.
          with paddle.static.program_guard(main_program, paddle.static.Program()):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
T
tangwei12 已提交
7098

Y
Yu Yang 已提交
7099
    """
7100
    from .data_feeder import check_type
7101 7102
    check_type(main_program, 'main_program', Program,
               'paddle.static.program_guard')
Y
Yu Yang 已提交
7103 7104
    main_program = switch_main_program(main_program)
    if startup_program is not None:
7105
        check_type(startup_program, 'startup_program', Program,
7106
                   'paddle.static.program_guard')
7107 7108
        # Tag the program __is_start_up as True
        startup_program._is_start_up_program_ = True
Y
Yu Yang 已提交
7109
        startup_program = switch_startup_program(startup_program)
7110 7111 7112 7113 7114 7115
    try:
        yield
    finally:
        switch_main_program(main_program)
        if startup_program is not None:
            switch_startup_program(startup_program)
X
xuwei06 已提交
7116 7117


W
Wu Yi 已提交
7118
def _get_var(name, program=None):
X
xuwei06 已提交
7119
    """
Y
yuyang18 已提交
7120
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
7121

X
xuwei06 已提交
7122 7123 7124
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
7125
        If None, default_global_program() will be used.
X
xuwei06 已提交
7126 7127 7128 7129 7130 7131 7132

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
7133
    assert isinstance(program, Program)
X
xuwei06 已提交
7134 7135

    return program.global_block().var(name)
7136 7137


S
rename  
sneaxiy 已提交
7138
@signature_safe_contextmanager
L
lujun 已提交
7139 7140
def _dygraph_guard(tracer):
    global _dygraph_tracer_
7141
    tmp_tracer = _dygraph_tracer_
L
lujun 已提交
7142
    _dygraph_tracer_ = tracer
7143
    core._switch_tracer(tracer)
M
minqiyang 已提交
7144

7145 7146 7147
    try:
        yield
    finally:
7148 7149
        core._switch_tracer(tmp_tracer)
        _dygraph_tracer_ = tmp_tracer
P
Paddle CI 已提交
7150 7151


S
rename  
sneaxiy 已提交
7152
@signature_safe_contextmanager
L
lujun 已提交
7153
def _dygraph_place_guard(place):
7154 7155 7156
    global _global_expected_place_
    tmp_place = _global_expected_place_
    _global_expected_place_ = place
7157 7158
    _set_dygraph_tracer_expected_place(place)

7159 7160 7161
    try:
        yield
    finally:
7162
        _global_expected_place_ = tmp_place
J
Jiabin Yang 已提交
7163
        _set_dygraph_tracer_expected_place(_global_expected_place_)
7164 7165


7166 7167 7168 7169 7170 7171 7172 7173 7174 7175
def switch_device(device):
    global _current_device
    pre_device = _current_device
    _current_device = device
    return pre_device


@signature_safe_contextmanager
def device_guard(device=None):
    """
7176 7177 7178
    
    Note:
        The API only supports static mode.
7179 7180 7181 7182

    A context manager that specifies the device on which the OP will be placed.

    Args:
7183 7184
        device(str|None): Specify the device to use in the context. It should be ``cpu``,
            ``gpu`` or ``gpu:x``, where ``x`` is the index of the GPUs. 
7185 7186 7187 7188 7189 7190 7191
            When it is set to 'cpu' or 'gpu', all OPs created in the context will be
            placed on CPUPlace or CUDAPlace. When 'gpu' is set and the program runs on
            single-card, the device index will be the same as the device on which the
            executor runs. Default: None, OPs in this context will be automatically
            assigned devices.

    Examples:
7192
    
7193
        .. code-block:: python
7194 7195
            
            # required: gpu
Z
Zhang Ting 已提交
7196
            import paddle
7197

Z
Zhang Ting 已提交
7198 7199 7200
            paddle.enable_static()
            support_gpu = paddle.is_compiled_with_cuda()
            place = paddle.CPUPlace()
7201
            if support_gpu:
Z
Zhang Ting 已提交
7202
                place = paddle.CUDAPlace(0)
7203 7204

            # if GPU is supported, the three OPs below will be automatically assigned to CUDAPlace(0)
Z
Zhang Ting 已提交
7205 7206 7207
            data1 = paddle.full(shape=[1, 3, 8, 8], fill_value=0.5, dtype='float32')
            data2 = paddle.full(shape=[1, 3, 64], fill_value=0.5, dtype='float32')
            shape = paddle.shape(data2)
7208

Z
Zhang Ting 已提交
7209
            with paddle.static.device_guard("cpu"):
7210
                # Ops created here will be placed on CPUPlace
Z
Zhang Ting 已提交
7211 7212
                shape = paddle.slice(shape, axes=[0], starts=[0], ends=[4])
            with paddle.static.device_guard('gpu'):
7213
                # if GPU is supported, OPs created here will be placed on CUDAPlace(0), otherwise on CPUPlace
Z
Zhang Ting 已提交
7214
                out = paddle.reshape(data1, shape=shape)
7215

Z
Zhang Ting 已提交
7216 7217
            exe = paddle.static.Executor(place)
            exe.run(paddle.static.default_startup_program())
7218 7219 7220
            result = exe.run(fetch_list=[out])
    """

7221 7222 7223 7224 7225
    index = None
    if device and ':' in device:
        device, index = device.split(':')
        if device == 'cpu':
            raise ValueError("Should not set device id for cpu.")
7226
    if device not in ['cpu', 'gpu', 'npu', 'xpu', '', None]:
7227
        raise ValueError(
7228
            "The Attr(device) should be 'cpu' 'npu' 'xpu' or 'gpu', and it can also be empty string or None "
7229
            "when there is no need to specify device. But received %s" % device)
7230 7231
    if index:
        device = ":".join([device, index])
7232
    pre_device = switch_device(device)
7233 7234 7235 7236
    try:
        yield
    finally:
        switch_device(pre_device)
G
guofei 已提交
7237 7238


7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269
def _switch_cuda_graph_mode(cuda_graph_attr):
    global _current_cuda_graph_mode
    pre_mode = _current_cuda_graph_mode
    _current_cuda_graph_mode = cuda_graph_attr
    return pre_mode


@signature_safe_contextmanager
def _cuda_graph_guard(cuda_graph_attr=None):
    """

    Note:
        The API only supports static mode.

    A context manager that specifies the cuda_graph_mode which indicating the cuda graph capture under static mode.

    Args:
        cuda_graph_attr(str|None): The cuda graph attr with the format of:
                                   cuda_graph_capture_mode;memory_pool_id;cuda_graph_id
    """
    assert not _non_static_mode(
    ), "cuda_graph_guard only works under static mode"
    assert core.is_compiled_with_cuda(
    ), "cuda_graph_guard context can be only used when Paddle is compiled with cuda"
    pre_mode = _switch_cuda_graph_mode(cuda_graph_attr)
    try:
        yield
    finally:
        _switch_cuda_graph_mode(pre_mode)


G
guofei 已提交
7270 7271 7272
def set_flags(flags):
    """
    This function sets the GFlags value in Paddle.
7273
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
7274 7275 7276 7277 7278 7279 7280

    Args:
        flags (dict): A dict contains flags and its value.

    Examples:
            .. code-block:: python

7281 7282
                import paddle
                paddle.set_flags({'FLAGS_eager_delete_tensor_gb': 1.0})
G
guofei 已提交
7283 7284 7285 7286
    """
    if not isinstance(flags, dict):
        raise TypeError('flags in set_flags should be a dict')
    for key, value in flags.items():
7287 7288
        if _global_flags().is_public(key):
            _global_flags()[key] = value
G
guofei 已提交
7289 7290 7291 7292 7293 7294 7295 7296
        else:
            raise ValueError(
                "Flag %s cannot set its value through this function." % (key))


def get_flags(flags):
    """
    This function gets the GFlags value in Paddle.
7297
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
7298 7299 7300 7301 7302 7303 7304 7305 7306 7307

    Args:
        flags(list|tuple|str): A list/tuple of string or a string which is the flag's name.

    Returns:
        flag's value in Paddle.

    Examples:
        .. code-block:: python

7308
            import paddle
G
guofei 已提交
7309 7310

            flags = ['FLAGS_eager_delete_tensor_gb', 'FLAGS_check_nan_inf']
7311
            res = paddle.get_flags(flags)
G
guofei 已提交
7312 7313 7314 7315 7316 7317
            print(res)
            # {'FLAGS_eager_delete_tensor_gb': 0.0, 'FLAGS_check_nan_inf': False}
    """
    flags_value = {}
    if isinstance(flags, (list, tuple)):
        for key in flags:
7318 7319
            if (_global_flags().is_public(key)):
                value = _global_flags()[key]
G
guofei 已提交
7320 7321 7322 7323 7324 7325 7326
                temp = {key: value}
                flags_value.update(temp)
            else:
                raise ValueError(
                    'Flag %s cannot get its value through this function.' %
                    (key))
    elif isinstance(flags, str):
7327 7328
        if (_global_flags().is_public(flags)):
            value = _global_flags()[flags]
G
guofei 已提交
7329 7330 7331 7332 7333 7334 7335 7336
            temp = {flags: value}
            flags_value.update(temp)
        else:
            raise ValueError(
                'Flag %s cannot get its value through this function.' % (flags))
    else:
        raise TypeError('Flags in get_flags should be a list, tuple or string.')
    return flags_value
7337 7338 7339 7340 7341 7342 7343


def _get_paddle_place(place):
    "convert the string to paddle Place"
    if place is None:
        return place
    if isinstance(place, (core.Place, core.XPUPlace, core.CPUPlace,
7344
                          core.CUDAPinnedPlace, core.CUDAPlace, core.NPUPlace,
7345
                          core.IPUPlace, core.MLUPlace, core.CustomPlace)):
7346 7347 7348 7349 7350 7351 7352 7353 7354
        return place

    if not isinstance(place, str):
        raise ValueError(
            "place only support string which is 'Place' and so on.")

    place = place.lower()
    if (place == "cpu"):
        return core.CPUPlace()
7355

7356 7357 7358
    if (place == "device"):
        return core.Place()

7359
    # GPU
7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374
    avaliable_gpu_place = re.match(r'gpu:\d+', place)
    if place == "gpu_pinned" or place == "gpu" or avaliable_gpu_place:
        if not core.is_compiled_with_cuda():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with CUDA".format(avaliable_gpu_place))
        if place == "gpu_pinned":
            return core.CUDAPinnedPlace()
        elif place == "gpu":
            return core.CUDAPlace(0)
        else:
            place_info_list = place.split(':', 1)
            device_id = place_info_list[1]
            device_id = int(device_id)
            return core.CUDAPlace(device_id)
7375 7376

    # XPU
7377 7378 7379 7380 7381 7382 7383 7384 7385 7386
    avaliable_xpu_place = re.match(r'xpu:\d+', place)
    if avaliable_xpu_place:
        if not core.is_compiled_with_xpu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with XPU".format(avaliable_xpu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.XPUPlace(device_id)
7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399

    # NPU
    avaliable_npu_place = re.match(r'npu:\d+', place)
    if avaliable_npu_place:
        if not core.is_compiled_with_npu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with NPU".format(avaliable_npu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.NPUPlace(device_id)

J
jianghaicheng 已提交
7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411
    # IPU
    avaliable_ipu_place = re.match(r'ipu:\d+', place)
    if avaliable_ipu_place:
        if not core.is_compiled_with_ipu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with IPU".format(avaliable_ipu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.IPUPlace(device_id)

7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423
    # MLU
    avaliable_mlu_place = re.match(r'mlu:\d+', place)
    if avaliable_mlu_place:
        if not core.is_compiled_with_mlu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with MLU".format(avaliable_mlu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.MLUPlace(device_id)

7424
    raise ValueError(
7425 7426
        "Paddle supports CPUPlace, CUDAPlace,CUDAPinnedPlace, XPUPlace, IPUPlace, MLUPlace and NPUPlace, but received {}."
        .format(place))
7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439


def _get_paddle_place_list(places):

    if not isinstance(places, (list, tuple)):
        raise TypeError("places must to be List or Tuple")

    ret = []
    for p in places:
        p = _get_paddle_place(p)
        ret.append(p)

    return ret