nn.py 451.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
21
import warnings
S
sneaxiy 已提交
22
import six
P
peizhilin 已提交
23
import os
S
sneaxiy 已提交
24
import inspect
Y
Yu Yang 已提交
25
from ..layer_helper import LayerHelper
26
from ..initializer import Normal, Constant, NumpyArrayInitializer
L
lujun 已提交
27
from ..framework import Variable, OpProtoHolder, in_dygraph_mode
L
lujun 已提交
28
from ..dygraph import base
Y
yangyaming 已提交
29
from ..param_attr import ParamAttr
S
sneaxiy 已提交
30
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
31
from .tensor import concat, assign, fill_constant
32
from . import utils
F
fengjiayi 已提交
33
from .. import unique_name
34
from functools import reduce
35
from .. import core
L
lujun 已提交
36
from ..dygraph import layers
Y
Yu Yang 已提交
37 38

__all__ = [
X
Xin Pan 已提交
39 40 41 42 43 44 45 46 47 48
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
49
    'bpr_loss',
X
Xin Pan 已提交
50 51 52 53 54 55 56 57 58 59
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
60 61
    'adaptive_pool2d',
    'adaptive_pool3d',
X
Xin Pan 已提交
62
    'batch_norm',
H
heqiaozhi 已提交
63
    'data_norm',
X
Xin Pan 已提交
64 65 66 67 68 69
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
70
    'sequence_unpad',
X
Xin Pan 已提交
71 72 73 74 75 76
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
Z
zhoukunsheng 已提交
77 78
    'reduce_all',
    'reduce_any',
X
Xin Pan 已提交
79 80
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
81
    'sequence_slice',
X
Xin Pan 已提交
82 83 84 85 86 87 88 89 90 91 92 93
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
94
    'sampled_softmax_with_cross_entropy',
X
Xin Pan 已提交
95 96 97 98 99
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
D
Dun 已提交
100
    'group_norm',
D
dengkaipeng 已提交
101
    'spectral_norm',
X
Xin Pan 已提交
102 103 104 105 106 107 108 109 110 111 112 113 114
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
115
    'roi_align',
X
Xin Pan 已提交
116 117 118 119
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
120
    'resize_nearest',
X
Xin Pan 已提交
121 122 123 124 125 126
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
C
chengduo 已提交
127
    'selu',
X
Xin Pan 已提交
128 129 130
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
131
    'margin_rank_loss',
X
Xin Pan 已提交
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
Z
zhoukunsheng 已提交
158 159
    'elementwise_mod',
    'elementwise_floordiv',
X
Xin Pan 已提交
160 161 162 163 164 165 166
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
Z
zhoukunsheng 已提交
167
    'rank',
Z
zhoukunsheng 已提交
168
    'size',
X
Xin Pan 已提交
169 170 171 172 173 174 175 176 177 178
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
J
JiabinYang 已提交
179
    'space_to_depth',
W
whs 已提交
180
    'affine_grid',
S
sneaxiy 已提交
181
    'sequence_reverse',
182
    'affine_channel',
B
barrierye 已提交
183
    'similarity_focus',
M
minqiyang 已提交
184
    'hash',
D
dengkaipeng 已提交
185
    'grid_sampler',
G
gmcather 已提交
186 187
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
188
    'bilinear_tensor_product',
C
chengduo 已提交
189 190
    'merge_selected_rows',
    'get_tensor_from_selected_rows',
P
phlrain 已提交
191
    'lstm',
S
shippingwang 已提交
192
    'shuffle_channel',
193
    'temporal_shift',
S
sneaxiy 已提交
194
    'py_func',
195
    'psroi_pool',
H
heqiaozhi 已提交
196
    'teacher_student_sigmoid_loss',
M
minqiyang 已提交
197
    'huber_loss',
D
dengkaipeng 已提交
198
    'kldiv_loss',
Z
zhaozhehao 已提交
199
    'tree_conv',
C
ceci3 已提交
200
    'npair_loss',
R
ruri 已提交
201
    'pixel_shuffle',
202
    'fsp_matrix',
H
heqiaozhi 已提交
203
    'continuous_value_model',
Z
zhoukunsheng 已提交
204
    'where',
Z
zhoukunsheng 已提交
205
    'sign',
206
    'deformable_conv',
207
    'unfold',
C
cjt222 已提交
208
    'deformable_roi_pooling',
Y
Yu Yang 已提交
209 210
]

J
jerrywgz 已提交
211 212
kIgnoreIndex = -100

Y
Yu Yang 已提交
213 214 215 216 217 218 219

def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
220
       is_test=False,
221
       name=None):
Y
Yu Yang 已提交
222
    """
223
    **Fully Connected Layer**
Y
Yu Yang 已提交
224

225
    This function creates a fully connected layer in the network. It can take
226
    one or multiple tensors as its inputs(input can be a list of Variable, see
A
Aurelius84 已提交
227
    Args in detail). It creates a variable called weights for each input tensor,
228 229 230 231
    which represents a fully connected weight matrix from each input unit to
    each output unit. The fully connected layer multiplies each input tensor
    with its corresponding weight to produce an output Tensor with shape [M, `size`],
    where M is batch size. If multiple input tensors are given, the results of
A
Aurelius84 已提交
232
    multiple output tensors with shape [M, `size`] will be summed up. If bias_attr
233 234
    is not None, a bias variable will be created and added to the output.
    Finally, if activation is not None, it will be applied to the output as well.
C
caoying03 已提交
235

236
    When the input is single tensor:
C
caoying03 已提交
237

238 239 240 241 242
    .. math::

        Out = Act({XW + b})

    When the input are multiple tensors:
243 244 245

    .. math::

246
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
247 248 249

    In the above equation:

250 251 252
    * :math:`N`: Number of the input. N equals to len(input) if input is list of Variable.
    * :math:`X_i`: The i-th input tensor.
    * :math:`W_i`: The i-th weights matrix corresponding i-th input tensor.
C
caoying03 已提交
253
    * :math:`b`: The bias parameter created by this layer (if needed).
254
    * :math:`Act`: The activation function.
C
caoying03 已提交
255
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
256

257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
    See below for an example.

    .. code-block:: text

        Given:
            data_1.data = [[[0.1, 0.2],
                           [0.3, 0.4]]]
            data_1.shape = (1, 2, 2) # 1 is batch_size

            data_2 = [[[0.1, 0.2, 0.3]]]
            data_2.shape = (1, 1, 3)

            out = fluid.layers.fc(input=[data_1, data_2], size=2)

        Then:
            out.data = [[0.18669507, 0.1893476]]
            out.shape = (1, 2)

Y
Yu Yang 已提交
275
    Args:
R
ranqiu 已提交
276 277 278 279 280 281 282 283 284 285
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
H
haowang101779990 已提交
286
            `X` is a 5-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
R
ranqiu 已提交
287 288 289 290
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
291 292
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
293
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
294
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
295
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
296

297
    Returns:
F
fengjiayi 已提交
298
        Variable: The transformation result.
299 300

    Raises:
C
caoying03 已提交
301
        ValueError: If rank of the input tensor is less than 2.
302 303 304 305

    Examples:
        .. code-block:: python

306
          import paddle.fluid as fluid
307
          # when input is single tensor
F
fengjiayi 已提交
308
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
309
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
310 311 312 313 314

          # when input are multiple tensors
          data_1 = fluid.layers.data(name="data_1", shape=[32, 32], dtype="float32")
          data_2 = fluid.layers.data(name="data_2", shape=[24, 36], dtype="float32")
          fc = fluid.layers.fc(input=[data_1, data_2], size=1000, act="tanh")
Y
Yu Yang 已提交
315
    """
C
caoying03 已提交
316
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
317 318 319 320

    dtype = helper.input_dtype()

    mul_results = []
321 322
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
323 324 325
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
326

Y
Yu Yang 已提交
327
        w = helper.create_parameter(
328
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
329
        tmp = helper.create_variable_for_type_inference(dtype)
330
        helper.append_op(
331 332 333
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
334
            outputs={"Out": tmp},
M
mozga-intel 已提交
335 336
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
337 338 339 340
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
341
    else:
X
Xin Pan 已提交
342
        pre_bias = helper.create_variable_for_type_inference(dtype)
343
        helper.append_op(
344 345 346
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
347
            attrs={"use_mkldnn": False})
348 349 350 351
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
352 353


354 355 356
def embedding(input,
              size,
              is_sparse=False,
357
              is_distributed=False,
358 359 360
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
361
    """
362 363
    **Embedding Layer**

364
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
365 366
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
367 368 369

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
370 371

    Args:
372 373 374 375 376
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
377
        is_distributed(bool): Whether to run lookup table from remote parameter server.
378 379
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
380
            with zeros whenever lookup encounters it in :attr:`input`. If
381
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
382 383
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
384
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
385

386 387 388
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
389

390 391
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
392

B
bdzhuxiaoning 已提交
393 394 395
          import paddle.fluid as fluid
          data = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
          emb = fluid.layers.embedding(input=data, size=[128, 64])    
Y
Yu Yang 已提交
396 397 398
    """

    helper = LayerHelper('embedding', **locals())
399
    remote_prefetch = is_sparse and (not is_distributed)
Q
Qiao Longfei 已提交
400 401
    if remote_prefetch:
        assert is_sparse is True and is_distributed is False
Y
Yu Yang 已提交
402 403
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
404
    tmp = helper.create_variable_for_type_inference(dtype)
405 406
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
407 408 409 410 411
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
412 413 414
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
Q
Qiao Longfei 已提交
415
            'remote_prefetch': remote_prefetch,
416 417
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
418 419 420
    return tmp


W
wopeizl 已提交
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
@templatedoc(op_type="lstm")
def dynamic_lstm(input,
                 size,
                 h_0=None,
                 c_0=None,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
                 dtype='float32',
                 name=None):
    """
    ${comment}
Y
Yibing Liu 已提交
437

W
wopeizl 已提交
438 439 440 441 442 443 444 445 446 447 448
    Args:
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
Y
Yu Yang 已提交
449

W
wopeizl 已提交
450 451 452 453
                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
Yu Yang 已提交
454

W
wopeizl 已提交
455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
                              2. `use_peepholes = True`
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
                                 - The shape is (1 x 7D).

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.

    Returns:
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.

    Examples:
        .. code-block:: python
491
            
492
            import paddle.fluid as fluid
493 494
            emb_dim = 256
            vocab_size = 10000
W
wopeizl 已提交
495
            hidden_dim = 512
496 497 498 499 500 501
            
            data = fluid.layers.data(name='x', shape=[1],
                         dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[vocab_size, emb_dim], is_sparse=True)

            forward_proj = fluid.layers.fc(input=emb, size=hidden_dim * 4,
W
wopeizl 已提交
502
                                           bias_attr=False)
503

W
wopeizl 已提交
504 505 506
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
    """
L
lujun 已提交
507
    assert in_dygraph_mode(
508
    ) is not True, "please use lstm instead of dynamic_lstm in dygraph mode!"
W
wopeizl 已提交
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
    helper = LayerHelper('lstm', **locals())
    size = size // 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0

    helper.append_op(
        type='lstm',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell
Y
Yu Yang 已提交
552 553


P
phlrain 已提交
554 555 556 557 558 559
def lstm(input,
         init_h,
         init_c,
         max_len,
         hidden_size,
         num_layers,
P
phlrain 已提交
560
         dropout_prob=0.0,
P
phlrain 已提交
561 562 563 564 565
         is_bidirec=False,
         is_test=False,
         name=None,
         default_initializer=None,
         seed=-1):
L
liuhongyu 已提交
566
    """
P
phlrain 已提交
567
    If Device is GPU, This op will use cudnn LSTM implementation
L
liuhongyu 已提交
568 569

    A four-gate Long Short-Term Memory network with no peephole connections.
M
minqiyang 已提交
570
    In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1,
L
liuhongyu 已提交
571 572
    the cell input ct-1 and the previous layer input xt given matrices W, R and biases bW, bR from the following equations:

H
haowang101779990 已提交
573
    .. math::
M
minqiyang 已提交
574 575 576 577 578 579 580

       i_t &= \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i)

       f_t &= \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + bx_f + bh_f)

       o_t &= \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + bx_o + bh_o)

H
haowang101779990 已提交
581
       \\tilde{c_t} &= tanh(W_{cx}x_t + W_{ch}h_{t-1} + bx_c + bh_c)
M
minqiyang 已提交
582 583 584 585

       c_t &= f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}

       h_t &= o_t \odot tanh(c_t)
H
haowang101779990 已提交
586 587

    - $W$ terms denote weight matrices (e.g. $W_{ix}$ is the matrix
P
phlrain 已提交
588 589 590 591 592 593
      of weights from the input gate to the input)
    - The b terms denote bias vectors ($bx_i$ and $bh_i$ are the input gate bias vector).
    - sigmoid is the logistic sigmoid function.
    - $i, f, o$ and $c$ are the input gate, forget gate, output gate,
      and cell activation vectors, respectively, all of which have the same size as
      the cell output activation vector $h$.
H
haowang101779990 已提交
594 595 596
    - The :math:`\odot` is the element-wise product of the vectors.
    - :math:`tanh` is the activation functions.
    - :math:`\\tilde{c_t}` is also called candidate hidden state,
P
phlrain 已提交
597
      which is computed based on the current input and the previous hidden state.
L
liuhongyu 已提交
598

M
minqiyang 已提交
599
    Where sigmoid is the sigmoid operator: :math:`sigmoid(x) = 1 / (1 + e^{-x})` , * represents a point-wise multiplication,
L
liuhongyu 已提交
600 601 602 603 604
    X represensts a matrix multiplication


    Args:
        input (Variable): LSTM input tensor, shape MUST be ( seq_len x batch_size x input_size )
M
minqiyang 已提交
605
        init_h(Variable): The initial hidden state of the LSTM
L
liuhongyu 已提交
606 607 608 609 610
                       This is a tensor with shape ( num_layers x batch_size x hidden_size)
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        init_c(Variable): The initial cell state of the LSTM.
                       This is a tensor with shape ( num_layers x batch_size x hidden_size )
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
M
minqiyang 已提交
611
        max_len (int): max length of LSTM. the first dim of input tensor CAN NOT greater than max_len
L
liuhongyu 已提交
612 613
        hidden_size (int): hidden size of the LSTM
        num_layers (int): total layers number of the LSTM
P
phlrain 已提交
614 615
        dropout_prob(float|0.0): dropout prob, dropout ONLY work between rnn layers, NOT between time steps
                             There is NO dropout work on rnn output of the last RNN layers
L
liuhongyu 已提交
616 617 618 619 620 621
        is_bidirec (bool): If it is bidirectional
        is_test (bool): If it is in test phrase
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
        default_initializer(Initialize|None): Where use initializer to initialize the Weight
                         If set None, defaule initializer will be used
P
phlrain 已提交
622
        seed(int): Seed for dropout in LSTM, If it's -1, dropout will use random seed
P
phlrain 已提交
623

L
liuhongyu 已提交
624 625

    Returns:
M
minqiyang 已提交
626 627
        rnn_out(Tensor),last_h(Tensor),last_c(Tensor):

H
haowang101779990 已提交
628
                        Three tensors, rnn_out, last_h, last_c:
M
minqiyang 已提交
629

H
haowang101779990 已提交
630 631 632 633
                        - rnn_out is result of LSTM hidden, shape is (seq_len x batch_size x hidden_size) \
                          if is_bidirec set to True, shape will be ( seq_len x batch_sze x hidden_size*2)
                        - last_h is the hidden state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
634
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
H
haowang101779990 已提交
635 636
                        - last_c(Tensor): the cell state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
637
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
L
liuhongyu 已提交
638 639 640 641


    Examples:
        .. code-block:: python
642
            
643 644 645
            import paddle.fluid as fluid
            import paddle.fluid.layers as layers

646 647 648 649 650
            emb_dim = 256
            vocab_size = 10000
            data = fluid.layers.data(name='x', shape=[-1, 100, 1],
                         dtype='int32')
            emb = fluid.layers.embedding(input=data, size=[vocab_size, emb_dim], is_sparse=True)
L
liuhongyu 已提交
651 652 653 654 655 656
            batch_size = 20
            max_len = 100
            dropout_prob = 0.2
            input_size = 100
            hidden_size = 150
            num_layers = 1
657 658 659 660 661
            init_h = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0 )
            init_c = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0 )
            rnn_out, last_h, last_c = layers.lstm( emb, init_h, init_c, \
                    max_len, hidden_size, num_layers, \
                    dropout_prob=dropout_prob)
L
liuhongyu 已提交
662 663 664 665
    """

    helper = LayerHelper('cudnn_lstm', **locals())

P
phlrain 已提交
666 667 668
    dtype = input.dtype
    input_shape = list(input.shape)
    input_size = input_shape[-1]
L
liuhongyu 已提交
669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
    weight_size = 0
    for i in range(num_layers):
        if i == 0:
            input_weight_size = (input_size * hidden_size) * 4
        else:
            if is_bidirec:
                input_weight_size = (hidden_size * 2 * hidden_size) * 4
            else:
                input_weight_size = (hidden_size * hidden_size) * 4

        hidden_weight_size = (hidden_size * hidden_size) * 4

        if is_bidirec:
            weight_size += (input_weight_size + hidden_weight_size) * 2
            weight_size += hidden_size * 8 * 2
        else:
            weight_size += input_weight_size + hidden_weight_size
            weight_size += hidden_size * 8

    weight = helper.create_parameter(
        attr=helper.param_attr,
        shape=[weight_size],
        dtype=dtype,
        default_initializer=default_initializer)

    out = helper.create_variable_for_type_inference(dtype)
    last_h = helper.create_variable_for_type_inference(dtype)
    last_c = helper.create_variable_for_type_inference(dtype)

    cache = helper.create_variable(
        persistable=True, type=core.VarDesc.VarType.RAW, stop_gradient=True)

    helper.append_op(
        type='cudnn_lstm',
        inputs={
            'Input': input,
            'InitH': init_h,
            'InitC': init_c,
            'W': weight,
            'Cache': cache,
        },
        outputs={
            'Out': out,
            'last_h': last_h,
            'last_c': last_c,
        },
        attrs={
            'max_len': max_len,
            'is_bidirec': is_bidirec,
            'input_size': input_size,
            'hidden_size': hidden_size,
            'num_layers': num_layers,
            'is_test': is_test,
            'dropout_prob': dropout_prob,
            'seed': seed,
        })
    return out, last_h, last_c


Y
Yibing Liu 已提交
728 729 730 731 732 733 734 735 736 737
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
X
xuezhong 已提交
738
                  proj_activation='tanh',
739
                  dtype='float32',
X
xuezhong 已提交
740 741 742 743 744
                  name=None,
                  h_0=None,
                  c_0=None,
                  cell_clip=None,
                  proj_clip=None):
Y
Yibing Liu 已提交
745 746 747
    """
    **Dynamic LSTMP Layer**

748 749 750 751 752 753
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
754 755 756 757 758

    The formula is as follows:

    .. math::

759
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
760

761
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
762

763
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
764

765
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
766

767
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
768

769
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
770

771
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
772

Y
Yibing Liu 已提交
773 774 775 776 777 778
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
翟飞跃 已提交
779
          we use vectors to represent these diagonal weight matrices.
Y
Yibing Liu 已提交
780
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
781
          bias vector).
Y
Yibing Liu 已提交
782 783 784
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
785
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
786
    * :math:`h`: The hidden state.
787
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
788 789
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
790
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
791
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
792
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
793 794
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
795 796 797 798

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
799

Y
Yibing Liu 已提交
800 801 802 803 804 805 806 807 808 809 810 811
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
812
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
813 814
                               hidden-hidden weight and projection weight.

815 816
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
817 818
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
819 820
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
821
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
822 823 824 825 826

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
827
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
828 829 830 831 832 833
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
834
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
835 836 837
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
838
                                - The shape is (1 x 7D).
C
chengduo 已提交
839 840 841 842 843

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
844 845 846 847 848 849 850 851 852
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
853
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
854 855
                              default "tanh".
        proj_activation(str): The activation for projection output.
856
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
X
xuezhong 已提交
857
                              default "tanh".
Y
Yibing Liu 已提交
858
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
859 860
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
X
xuezhong 已提交
861 862 863 864 865 866 867 868 869 870 871
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the projection size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        cell_clip(float): If provided the cell state is clipped
                             by this value prior to the cell output activation.
        proj_clip(float): If `num_proj > 0` and `proj_clip` is
                            provided, then the projected values are clipped elementwise to within
                            `[-proj_clip, proj_clip]`.
Y
Yibing Liu 已提交
872 873

    Returns:
874 875 876 877
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
878 879

    Examples:
880

Y
Yibing Liu 已提交
881 882
        .. code-block:: python

883
            import paddle.fluid as fluid
884 885 886 887
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
888
            hidden_dim, proj_dim = 512, 256
889
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
890
                                     act=None, bias_attr=None)
891 892 893
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
894 895 896 897
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
898
    """
899

L
lujun 已提交
900
    assert in_dygraph_mode(
901 902
    ) is not True, "please use lstm instead of dynamic_lstmp in dygraph mode!"

C
chengduo 已提交
903
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
904
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
905
    size = size // 4
Y
Yibing Liu 已提交
906 907 908 909 910 911 912 913 914 915
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
916 917 918 919 920 921
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
922 923 924 925 926 927 928 929 930 931 932 933 934 935 936
    inputs = {
        'Input': input,
        'Weight': weight,
        'ProjWeight': proj_weight,
        'Bias': bias
    }
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, proj_size), \
            'The shape of h0 should be (batch_size, %d)' % proj_size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yibing Liu 已提交
937

X
xuezhong 已提交
938 939 940 941 942
    if cell_clip:
        assert cell_clip >= 0, "cell_clip should not be negtive."
    if proj_clip:
        assert proj_clip >= 0, "proj_clip should not be negtive."

Y
Yibing Liu 已提交
943 944
    helper.append_op(
        type='lstmp',
945
        inputs=inputs,
Y
Yibing Liu 已提交
946 947 948 949 950 951 952 953 954
        outputs={
            'Projection': projection,
            'Cell': cell,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
955 956
            'cell_clip': cell_clip,
            'proj_clip': proj_clip,
Y
Yibing Liu 已提交
957 958 959 960 961 962 963 964 965
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
966 967 968 969 970 971 972
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
973 974
                h_0=None,
                origin_mode=False):
G
guosheng 已提交
975
    """
976
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
977

978 979 980
    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_ .
981

G
guosheng 已提交
982 983 984 985 986 987 988 989 990
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
991

G
guosheng 已提交
992
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
993

Q
Qiao Longfei 已提交
994 995 996

    if origin_mode is True then the equation is from paper
    Learning Phrase Representations using RNN Encoder-Decoder for Statistical
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)

        h_t & = u_t \odot h_{t-1} + (1-u_t) \odot \\tilde{h_t}

G
guosheng 已提交
1009
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
1010 1011
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
1012 1013 1014 1015
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
1016
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
1017 1018

    Args:
1019 1020
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
1021
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
1022
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
1023 1024
            is the hidden size.
        size(int): The dimension of the gru cell.
1025
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
1026 1027
            hidden-hidden weight matrix. Note:

1028
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
1029
              :math:`D` is the hidden size.
1030
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
1031
              The first part are weights of the update gate and reset gate with
1032
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
1033
              candidate hidden state with shape :math:`(D \\times D)`.
1034 1035 1036 1037 1038

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1039
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
1040
            the bias in the update gate, reset gate and candidate calculations.
1041 1042 1043
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, dynamic_gru will create ParamAttr as
1044 1045
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1046
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
1047 1048 1049
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
1050
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
1051
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
1052 1053 1054 1055
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
1056 1057

    Returns:
G
guosheng 已提交
1058
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
1059
            and sequence length is the same with the input.
1060

G
guosheng 已提交
1061
    Examples:
1062

G
guosheng 已提交
1063 1064
        .. code-block:: python

1065 1066
            import paddle.fluid as fluid

1067 1068 1069 1070
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
1071
            hidden_dim = 512
1072
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
T
Tink_Y 已提交
1073
            hidden = fluid.layers.dynamic_gru(input=x, size=hidden_dim)
G
guosheng 已提交
1074 1075
    """

L
lujun 已提交
1076
    assert in_dygraph_mode(
1077 1078
    ) is not True, "please use gru instead of dynamic_gru in dygraph mode!"

G
guosheng 已提交
1079 1080 1081 1082 1083 1084 1085
    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
1086
    batch_size = input.shape[0]
G
guosheng 已提交
1087
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
1088
    if h_0:
G
guosheng 已提交
1089
        assert h_0.shape == (
Y
Yancey 已提交
1090 1091 1092
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
1093

X
Xin Pan 已提交
1094 1095 1096 1097
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
1111 1112
            'activation': candidate_activation,
            'origin_mode': origin_mode
G
guosheng 已提交
1113 1114 1115 1116
        })
    return hidden


Y
Yu Yang 已提交
1117 1118 1119
def gru_unit(input,
             hidden,
             size,
1120 1121
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
1122
             activation='tanh',
Q
Qiao Longfei 已提交
1123 1124
             gate_activation='sigmoid',
             origin_mode=False):
Y
Yu Yang 已提交
1125
    """
1126 1127 1128
    **GRU unit layer**

    if origin_mode is True, then the equation of a gru step is from paper
Q
Qiao Longfei 已提交
1129
    `Learning Phrase Representations using RNN Encoder-Decoder for Statistical
1130
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_
Y
Yu Yang 已提交
1131

1132 1133
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
1134

1135
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
1136

1137
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
1138

1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
            h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t)

    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot((1-u_t), h_{t-1}) + dot(u_t, m_t)

1154 1155

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
1156 1157 1158
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
1159 1160
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

1161 1162
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
1163 1164 1165
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
1166 1167 1168

    Args:
        input (Variable): The fc transformed input value of current step.
1169
        hidden (Variable): The hidden value of gru unit from previous step.
1170
        size (integer): The input dimension value.
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1185
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
1186
            the bias in the update gate, reset gate and candidate calculations.
1187 1188 1189
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
1190 1191
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1192 1193 1194 1195
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
1196

1197 1198 1199 1200 1201 1202
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
1203

1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
            import paddle.fluid as fluid

            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='step_data', shape=[1], dtype='int32')
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
            hidden_dim = 512
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
            pre_hidden = fluid.layers.data(
                name='pre_hidden', shape=[hidden_dim], dtype='float32')
            hidden = fluid.layers.gru_unit(
                input=x, hidden=pre_hidden, size=hidden_dim * 3)
Y
Yu Yang 已提交
1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
1227
    size = size // 3
Y
Yu Yang 已提交
1228 1229

    # create weight
1230 1231
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
1232

X
Xin Pan 已提交
1233 1234 1235
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
1236
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
1237
    # create bias
1238
    if helper.bias_attr:
Y
Yu Yang 已提交
1239 1240 1241
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
1242
        inputs['Bias'] = bias
Y
Yu Yang 已提交
1243 1244 1245

    helper.append_op(
        type='gru_unit',
1246
        inputs=inputs,
Y
Yu Yang 已提交
1247 1248 1249 1250 1251 1252
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
1253 1254
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
1255 1256 1257 1258 1259
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
1260
@templatedoc()
1261
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
1262 1263 1264 1265 1266 1267 1268
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
1269
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
1270 1271 1272 1273
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
1274 1275 1276
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
1277

J
JesseyXujin 已提交
1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
    Examples:
        .. code-block:: python

             import paddle.fluid as fluid
             emission = fluid.layers.data(name='emission', shape=[1000], dtype='float32')
             target = fluid.layers.data(name='target', shape=[1], dtype='int32')
             crf_cost = fluid.layers.linear_chain_crf(
                 input=emission,
                 label=target,
                 param_attr=fluid.ParamAttr(
                     name='crfw',
                     learning_rate=0.2))

Y
yuyang18 已提交
1291
    """
Y
Yu Yang 已提交
1292 1293 1294 1295 1296 1297
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
1298 1299 1300 1301 1302 1303 1304 1305
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


W
wopeizl 已提交
1321 1322 1323 1324
@templatedoc()
def crf_decoding(input, param_attr, label=None):
    """
    ${comment}
Y
yi.wu 已提交
1325

W
wopeizl 已提交
1326 1327
    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
1328

W
wopeizl 已提交
1329
        param_attr(ParamAttr): The parameter attribute for training.
Y
yuyang18 已提交
1330

W
wopeizl 已提交
1331
        label(${label_type}): ${label_comment}
1332

W
wopeizl 已提交
1333 1334
    Returns:
        Variable: ${viterbi_path_comment}
Y
yi.wu 已提交
1335

W
wopeizl 已提交
1336 1337
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
1338

1339
           import paddle.fluid as fluid
Y
Yibing Liu 已提交
1340 1341 1342 1343 1344 1345 1346
           images = fluid.layers.data(name='pixel', shape=[784], dtype='float32')
           label = fluid.layers.data(name='label', shape=[1], dtype='int32')
           hidden = fluid.layers.fc(input=images, size=2)
           crf = fluid.layers.linear_chain_crf(input=hidden, label=label, 
                     param_attr=fluid.ParamAttr(name="crfw"))
           crf_decode = fluid.layers.crf_decoding(input=hidden, 
                     param_attr=fluid.ParamAttr(name="crfw"))
W
wopeizl 已提交
1347 1348 1349 1350 1351 1352 1353 1354
    """
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
Y
Yu Yang 已提交
1355
                "Transition": transition,
W
wopeizl 已提交
1356 1357
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
1358

W
wopeizl 已提交
1359
    return viterbi_path
Y
Yu Yang 已提交
1360 1361


Y
yi.wu 已提交
1362
@templatedoc()
F
fengjiayi 已提交
1363
def cos_sim(X, Y):
Y
Yu Yang 已提交
1364
    """
Y
yi.wu 已提交
1365 1366 1367
    ${comment}

    Args:
1368 1369
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
1370

Y
yi.wu 已提交
1371
    Returns:
1372
        Variable: the output of cosine(X, Y).
L
lvmengsi 已提交
1373 1374 1375 1376

    Examples:
        .. code-block:: python

1377
            import paddle.fluid as fluid
L
lvmengsi 已提交
1378 1379 1380
            x = fluid.layers.data(name='x', shape=[3, 7], dtype='float32', append_batch_size=False)
            y = fluid.layers.data(name='y', shape=[1, 7], dtype='float32', append_batch_size=False)
            out = fluid.layers.cos_sim(x, y)
Y
Yu Yang 已提交
1381
    """
F
fengjiayi 已提交
1382
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1383 1384 1385
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
1396 1397 1398 1399 1400
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
1401
            dropout_implementation="downgrade_in_infer"):
1402 1403 1404 1405 1406
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1407
    training. The dropout operator randomly sets (according to the given dropout
1408 1409 1410
    probability) the outputs of some units to zero, while others are remain
    unchanged.

H
haowang101779990 已提交
1411 1412
    dropout op can be removed from the program to make the program more efficient.

1413
    Args:
1414 1415
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1416 1417 1418 1419 1420 1421 1422
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
H
haowang101779990 已提交
1423 1424
        dropout_implementation(string): ['downgrade_in_infer'(default)|'upscale_in_train']

P
phlrain 已提交
1425
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
H
haowang101779990 已提交
1426 1427

                                           - train: out = input * mask
C
ceci3 已提交
1428
                                           - inference: out = input * (1.0 - dropout_prob)
H
haowang101779990 已提交
1429 1430 1431

                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
P
phlrain 已提交
1432
                                        2. upscale_in_train, upscale the outcome at training time
1433

H
haowang101779990 已提交
1434 1435
                                           - train: out = input * mask / ( 1.0 - dropout_prob )
                                           - inference: out = input
P
phlrain 已提交
1436

H
haowang101779990 已提交
1437 1438
                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
1439

M
minqiyang 已提交
1440

1441
    Returns:
1442
        Variable: A tensor variable is the shape with `x`.
1443 1444

    Examples:
1445

1446 1447
        .. code-block:: python

1448
            import paddle.fluid as fluid
1449 1450
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1451 1452
    """

F
fengjiayi 已提交
1453
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1454 1455
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
Z
Zeng Jinle 已提交
1456
        dtype=core.VarDesc.VarType.UINT8, stop_gradient=True)
C
chengduo 已提交
1457 1458 1459 1460

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1461 1462 1463 1464 1465
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1466 1467 1468 1469
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
P
phlrain 已提交
1470 1471
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
1472
        })
1473 1474 1475
    return out


J
jerrywgz 已提交
1476
def cross_entropy(input, label, soft_label=False, ignore_index=kIgnoreIndex):
Y
Yu Yang 已提交
1477
    """
Y
Yibing Liu 已提交
1478 1479
    **Cross Entropy Layer**

1480 1481 1482
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1483 1484

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1485
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1486

Y
Yibing Liu 已提交
1487
        .. math::
Y
yangyaming 已提交
1488

Y
Yibing Liu 已提交
1489 1490 1491
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1492 1493
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1494 1495 1496 1497 1498

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1499
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1500 1501 1502
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1503 1504
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1505
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1506

Y
Yibing Liu 已提交
1507
    Args:
Y
yangyaming 已提交
1508
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1509 1510 1511 1512
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1513
        label (Variable|list): the ground truth which is a 2-D tensor. When
1514 1515 1516 1517
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1518
        soft_label (bool): a flag indicating whether to
1519
                                           interpretate the given labels as soft
1520
                                           labels. Default: `False`.
M
minqiyang 已提交
1521 1522
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
1523
                            if soft_label is set to False. Default: kIgnoreIndex
Y
Yibing Liu 已提交
1524 1525 1526 1527 1528

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
H
haowang101779990 已提交
1529 1530 1531
         ValueError:

                      1. the 1st dimension of ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1532

H
haowang101779990 已提交
1533 1534
                      2. when ``soft_label == True``, and the 2nd dimension of
                         ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1535

H
haowang101779990 已提交
1536 1537
                      3. when ``soft_label == False``, and the 2nd dimension of
                         ``label`` is not 1.
Y
Yibing Liu 已提交
1538 1539 1540 1541

    Examples:
        .. code-block:: python

1542
          import paddle.fluid as fluid
L
lvmengsi 已提交
1543 1544 1545 1546
          classdim = 7
          x = fluid.layers.data(name='x', shape=[3, 7], dtype='float32', append_batch_size=False)
          label = fluid.layers.data(name='label', shape=[3, 1], dtype='float32', append_batch_size=False)
          predict = fluid.layers.fc(input=x, size=classdim, act='softmax')
Y
Yibing Liu 已提交
1547
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1548
    """
S
sneaxiy 已提交
1549 1550
    if not soft_label:
        return cross_entropy2(input, label, ignore_index)
F
fengjiayi 已提交
1551
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1552
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1553 1554 1555 1556 1557
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1558 1559
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1560 1561 1562
    return out


S
sneaxiy 已提交
1563 1564 1565 1566
def cross_entropy2(input, label, ignore_index=kIgnoreIndex):
    helper = LayerHelper('cross_entropy2', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    xshape = helper.create_variable_for_type_inference(dtype=input.dtype)
S
sneaxiy 已提交
1567
    match_x = helper.create_variable_for_type_inference(dtype=input.dtype)
S
sneaxiy 已提交
1568 1569 1570 1571 1572
    helper.append_op(
        type='cross_entropy2',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out],
S
sneaxiy 已提交
1573
                 'MatchX': [match_x],
S
sneaxiy 已提交
1574 1575 1576 1577 1578
                 'XShape': [xshape]},
        attrs={'ignore_index': ignore_index})
    return out


F
frankwhzhang 已提交
1579
def bpr_loss(input, label, name=None):
F
frankwhzhang 已提交
1580
    """
1581
    **Bayesian Personalized Ranking Loss Operator**
F
frankwhzhang 已提交
1582

1583
    This operator belongs to pairwise ranking loss. Label is the desired item.
F
frankwhzhang 已提交
1584
    The loss at a given point in one session is defined as:
1585 1586 1587

    .. math::
        Y[i] = 1/(N[i] - 1) * \sum_j{\log(\sigma(X[i, Label[i]]-X[i, j]))}
F
frankwhzhang 已提交
1588 1589

    Learn more details by reading paper <session-based recommendations with recurrent
1590
    neural networks>.
F
frankwhzhang 已提交
1591

1592 1593 1594 1595 1596 1597
    Args:
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
                                batch size and D is the number of classes.
                                This input is not probability but logits.
        label (Variable|list):  the ground truth which is a 2-D tensor.  `label`
                                is a tensor<int64> with shape [N x 1].
F
frankwhzhang 已提交
1598 1599
        name (str|None):        A name for this layer(optional). If set None, the
                                layer will be named automatically. Default: None.
1600 1601 1602
    Returns:
        A 2-D tensor with shape [N x 1], the bpr loss.

F
frankwhzhang 已提交
1603 1604 1605
    Examples:
        .. code-block:: python

1606 1607 1608 1609 1610 1611 1612
          import paddle.fluid as fluid

          neg_size = 10
          label = fluid.layers.data(
                    name="label", shape=[1], dtype="int64")
          predict = fluid.layers.data(
                    name="predict", shape=[neg_size + 1], dtype="float32")
1613
          cost = fluid.layers.bpr_loss(input=predict, label=label)
F
frankwhzhang 已提交
1614
    """
1615 1616 1617 1618 1619
    helper = LayerHelper('bpr_loss', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type='bpr_loss',
        inputs={'X': [input],
1620
                'Label': [label]},
1621 1622 1623 1624
        outputs={'Y': [out]})
    return out


F
fengjiayi 已提交
1625
def square_error_cost(input, label):
Y
Yu Yang 已提交
1626
    """
1627 1628
    **Square error cost layer**

1629 1630
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1631

1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1645 1646
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1647 1648

    Returns:
G
guosheng 已提交
1649
        Variable: The tensor variable storing the element-wise squared error \
1650
                  difference of input and label.
1651 1652 1653 1654

    Examples:
        .. code-block:: python

1655
          import paddle.fluid as fluid
R
ruri 已提交
1656 1657 1658
          y = fluid.layers.data(name='y', shape=[1], dtype='float32')
          y_predict = fluid.layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = fluid.layers.square_error_cost(input=y_predict, label=y)
1659

Y
Yu Yang 已提交
1660
    """
F
fengjiayi 已提交
1661
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1662
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1663 1664 1665 1666 1667 1668
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1669
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1670
    helper.append_op(
F
fengjiayi 已提交
1671 1672
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1673 1674 1675
    return square_out


Y
yi.wu 已提交
1676
@templatedoc()
Y
Yu Yang 已提交
1677 1678 1679 1680
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1681
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1682
    """
Y
yi.wu 已提交
1683
    **Chunk Evaluator**
Y
yi.wu 已提交
1684

Y
yangyaming 已提交
1685
    This function computes and outputs the precision, recall and
1686
    F1-score of chunk detection.
Y
yi.wu 已提交
1687

M
minqiyang 已提交
1688
    For some basics of chunking, please refer to
H
haowang101779990 已提交
1689
    `Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>`_ .
Y
yi.wu 已提交
1690 1691 1692 1693 1694 1695

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1696

Y
yi.wu 已提交
1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1722

Y
yi.wu 已提交
1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1747
    Args:
1748 1749 1750 1751 1752
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1753

Y
yi.wu 已提交
1754
    Returns:
Y
update  
yi.wu 已提交
1755 1756 1757
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1758

Y
yi.wu 已提交
1759 1760 1761
    Examples:
        .. code-block:: python

1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772
            import paddle.fluid as fluid

            dict_size = 10000
            label_dict_len = 7
            sequence = fluid.layers.data(
                name='id', shape=[1], lod_level=1, dtype='int64')
            embedding = fluid.layers.embedding(
                input=sequence, size=[dict_size, 512])
            hidden = fluid.layers.fc(input=embedding, size=512)
            label = fluid.layers.data(
                name='label', shape=[1], lod_level=1, dtype='int32')
Y
yi.wu 已提交
1773
            crf = fluid.layers.linear_chain_crf(
1774
                input=hidden, label=label, param_attr=fluid.ParamAttr(name="crfw"))
Y
yi.wu 已提交
1775
            crf_decode = fluid.layers.crf_decoding(
1776
                input=hidden, param_attr=fluid.ParamAttr(name="crfw"))
Y
yi.wu 已提交
1777 1778 1779 1780 1781
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1782
    """
F
fengjiayi 已提交
1783
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1784 1785

    # prepare output
X
Xin Pan 已提交
1786 1787 1788 1789 1790 1791 1792
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1793 1794 1795 1796 1797 1798 1799 1800

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1801 1802 1803 1804
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1805 1806 1807
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1808 1809
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1810
        })
1811 1812
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1813 1814


1815
@templatedoc()
Y
Yu Yang 已提交
1816 1817 1818 1819 1820 1821 1822
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1823 1824
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1825 1826 1827 1828
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1829 1830 1831 1832 1833 1834 1835

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1849

1850 1851
    Returns:
        Variable: output of sequence_conv
B
bdzhuxiaoning 已提交
1852 1853 1854 1855 1856 1857 1858

    Examples:
        .. code-block:: python

             import paddle.fluid as fluid
             x = fluid.layers.data(name='x', shape=[10,10], append_batch_size=False, dtype='float32')
             x_conved = fluid.layers.sequence_conv(x,2)
Y
Yu Yang 已提交
1859 1860
    """

L
lujun 已提交
1861
    assert not in_dygraph_mode(), (
1862
        "sequence layer is not supported in dygraph mode yet.")
Y
Yu Yang 已提交
1863 1864 1865 1866 1867
    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1868
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1869 1870 1871 1872 1873 1874 1875 1876 1877 1878

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1879
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1880 1881 1882 1883 1884 1885
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1886
def sequence_softmax(input, use_cudnn=False, name=None):
1887 1888 1889
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1890
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1907 1908 1909
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1910

1911 1912 1913 1914 1915 1916 1917
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

1918
             import paddle.fluid as fluid
1919 1920 1921 1922
             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
L
lujun 已提交
1923
    assert not in_dygraph_mode(), (
1924
        "sequence layer is not supported in dygraph mode yet.")
1925 1926
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1927
    softmax_out = helper.create_variable_for_type_inference(dtype)
1928 1929 1930 1931 1932 1933 1934 1935
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


D
dengkaipeng 已提交
1936
def softmax(input, use_cudnn=False, name=None, axis=-1):
Q
qiaolongfei 已提交
1937
    """
1938
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1939
    has the same shape as the input.
Q
qiaolongfei 已提交
1940

D
dengkaipeng 已提交
1941
    The dimension :attr:`axis` of the input tensor will be permuted to the last.
D
dengkaipeng 已提交
1942
    Then the input tensor will be logically flattened to a 2-D matrix. The matrix's
D
dengkaipeng 已提交
1943
    second dimension(row length) is the same as the dimension :attr:`axis` of the input
1944 1945 1946
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
D
dengkaipeng 已提交
1947
    of the input tensor's dimension :attr:`axis`) vector of arbitrary real values to a
F
fengjiayi 已提交
1948
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1949 1950 1951 1952 1953 1954 1955

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1956
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1957 1958 1959 1960 1961 1962 1963 1964

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
J
jerrywgz 已提交
1965 1966
            library is installed. To improve numerical stablity, set use_cudnn to \
            False by default. Default: False
C
chengduo 已提交
1967 1968
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
D
dengkaipeng 已提交
1969 1970 1971
        axis (int): The index of dimension to perform softmax calculations, it should
            be in range :math:`[-1, rank - 1]`, while :math:`rank` is the rank of
            input variable. Default: -1.
Q
qiaolongfei 已提交
1972 1973 1974 1975 1976 1977 1978 1979

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

J
JesseyXujin 已提交
1980 1981
             import paddle.fluid as fluid
             x = fluid.layers.data(name='x', shape=[2], dtype='float32')
Q
qiaolongfei 已提交
1982
             fc = fluid.layers.fc(input=x, size=10)
D
dengkaipeng 已提交
1983
             # perform softmax in the second dimension
D
dengkaipeng 已提交
1984
             softmax = fluid.layers.softmax(input=fc, axis=1)
D
dengkaipeng 已提交
1985 1986
             # perform softmax in the last dimension
             softmax = fluid.layers.softmax(input=fc, axis=-1)
Q
qiaolongfei 已提交
1987 1988

    """
1989 1990
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1991
    softmax_out = helper.create_variable_for_type_inference(dtype)
1992 1993 1994 1995
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
D
dengkaipeng 已提交
1996 1997
        attrs={"axis": axis,
               "use_cudnn": use_cudnn})
1998 1999 2000
    return softmax_out


Y
Yu Yang 已提交
2001 2002 2003
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
2004 2005
           stride=1,
           padding=0,
2006
           dilation=1,
Y
Yu Yang 已提交
2007 2008 2009
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
2010
           use_cudnn=True,
2011 2012
           act=None,
           name=None):
Y
Yu Yang 已提交
2013
    """
C
chengduoZH 已提交
2014
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
2015 2016
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
2017
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
2018 2019 2020 2021 2022 2023 2024
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
2025 2026 2027
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
2028

2029
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
2030

C
chengduoZH 已提交
2031 2032
    .. math::

C
refine  
chengduoZH 已提交
2033
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
2034

T
tensor-tang 已提交
2035
    Where:
C
chengduoZH 已提交
2036

2037 2038 2039 2040 2041
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
2042
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
2043 2044 2045

    Example:

2046 2047
        - Input:

W
weixing02 已提交
2048
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
2049

W
weixing02 已提交
2050
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
2051

2052
        - Output:
T
tensor-tang 已提交
2053

W
weixing02 已提交
2054
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
2055

C
chengduoZH 已提交
2056
        Where
2057 2058

        .. math::
C
chengduoZH 已提交
2059

W
weixing02 已提交
2060 2061
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
2062 2063

    Args:
2064
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
2065
        num_filters(int): The number of filter. It is as same as the output
2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
2083 2084 2085 2086 2087
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
H
haowang101779990 已提交
2088
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
C
chengduo 已提交
2089 2090 2091 2092 2093
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2094 2095
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2096 2097
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
2098
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2099
            will be named automatically. Default: None
C
chengduoZH 已提交
2100 2101

    Returns:
G
guosheng 已提交
2102
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
2103 2104
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
2105
    Raises:
2106 2107
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
2108

C
chengduoZH 已提交
2109 2110 2111
    Examples:
        .. code-block:: python

2112
          import paddle.fluid as fluid
2113 2114
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
2115 2116 2117
    """

    num_channels = input.shape[1]
C
chengduo 已提交
2118
    assert param_attr is not False, "param_attr should not be False here."
2119
    l_type = 'conv2d'
X
xzl 已提交
2120 2121
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
2122
        l_type = 'depthwise_conv2d'
2123 2124 2125 2126

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
2127 2128 2129 2130 2131
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2132
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
2133

C
chengduoZH 已提交
2134 2135 2136
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
2137
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
2138

C
chengduoZH 已提交
2139 2140
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2141 2142

    input_shape = input.shape
M
minqiyang 已提交
2143
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
2144 2145

    def _get_default_param_initializer():
C
chengduo 已提交
2146 2147
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
2148 2149 2150 2151 2152 2153 2154 2155
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2156
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2157

2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171
    if use_cudnn:
        helper.create_variable(
            name="kCUDNNFwdAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdDataAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdFilterAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)

Y
Yu Yang 已提交
2172
    helper.append_op(
2173
        type=l_type,
Y
Yu Yang 已提交
2174 2175 2176 2177 2178
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
2179 2180 2181
        attrs={
            'strides': stride,
            'paddings': padding,
2182
            'dilations': dilation,
C
chengduoZH 已提交
2183
            'groups': groups,
2184
            'use_cudnn': use_cudnn,
2185
            'use_mkldnn': False,
2186
            'fuse_relu_before_depthwise_conv': False
C
chengduoZH 已提交
2187
        })
Y
Yu Yang 已提交
2188 2189 2190 2191 2192 2193

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
2211 2212 2213 2214 2215 2216
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
2217 2218 2219 2220 2221 2222 2223 2224 2225

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

2226 2227
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
2228 2229 2230
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
2231
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
2254
        num_filters(int): The number of filter. It is as same as the output
C
chengduoZH 已提交
2255 2256
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
2257
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
2258 2259
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
2260
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
2261 2262
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
2263
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
2264 2265
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
2266
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
2267 2268 2269 2270 2271 2272
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
2273 2274 2275 2276 2277 2278 2279 2280 2281 2282
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
2283 2284
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2285 2286
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
2287
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2288
            will be named automatically. Default: None.
C
chengduoZH 已提交
2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

2301
          import paddle.fluid as fluid
2302 2303
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
2304 2305 2306
    """

    l_type = 'conv3d'
C
chengduo 已提交
2307
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
2308 2309 2310 2311 2312 2313 2314 2315 2316 2317
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2318
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
2332 2333 2334
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
2335 2336 2337 2338 2339 2340 2341 2342
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2343
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
2358
            'use_mkldnn': False
C
chengduoZH 已提交
2359 2360
        })

2361
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
2362 2363 2364 2365

    return helper.append_activation(pre_act)


2366
def sequence_pool(input, pool_type, is_test=False, pad_value=0.0):
Y
Yu Yang 已提交
2367
    """
Y
yangyaming 已提交
2368 2369 2370
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
2371 2372 2373 2374 2375 2376 2377 2378 2379 2380

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

2381 2382
       x is a 1-level LoDTensor and **pad_value** = 0.0:
         x.lod = [[2, 3, 2, 0]]
L
Luo Tao 已提交
2383 2384 2385 2386
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
2387
         out.dim = [4, 1]
2388
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2389 2390

       for different pool_type:
2391 2392 2393
         average: out.data = [2, 4, 3, 0.0], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6, 0.0], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24, 0.0], where 2.82=(1+3)/sqrt(2),
L
Luo Tao 已提交
2394
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
2395 2396 2397 2398 2399
         max    : out.data = [3, 6, 5, 0.0], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
         last   : out.data = [3, 6, 1, 0.0], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5, 0.0], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)

         and all above 0.0 = **pad_value**.
F
fengjiayi 已提交
2400

L
Luo Tao 已提交
2401
    Args:
2402
        input (variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2403
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
2404
            It supports average, sum, sqrt and max.
2405 2406
        is_test (bool): Used to distinguish training from scoring mode. Default False.
        pad_value (float): Used to pad the pooling result for empty input sequence.
L
Luo Tao 已提交
2407 2408 2409 2410 2411 2412 2413

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2414

2415 2416
             import paddle.fluid as fluid

Y
yangyaming 已提交
2417
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2418 2419 2420 2421 2422
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
2423 2424
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
2425
    """
L
lujun 已提交
2426
    assert not in_dygraph_mode(), (
2427
        "sequence layer is not supported in dygraph mode yet.")
F
fengjiayi 已提交
2428
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
2429
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2430 2431
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2432 2433 2434 2435 2436 2437

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
2438 2439 2440 2441 2442
        attrs={
            "pooltype": pool_type.upper(),
            "is_test": is_test,
            "pad_value": pad_value
        })
Y
Yu Yang 已提交
2443

Y
yangyaming 已提交
2444 2445 2446 2447 2448
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
2449 2450 2451
    return pool_out


C
add doc  
chengduoZH 已提交
2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

B
bdzhuxiaoning 已提交
2468 2469 2470 2471
           import paddle.fluid as fluid
           x = fluid.layers.data(name='x', shape=[10], dtype='float32')
           y = fluid.layers.data(name='y', shape=[10], dtype='float32')
           out = fluid.layers.sequence_concat(input=[x, y])
C
add doc  
chengduoZH 已提交
2472
    """
L
lujun 已提交
2473
    assert not in_dygraph_mode(), (
2474
        "sequence layer is not supported in dygraph mode yet.")
C
add doc  
chengduoZH 已提交
2475
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
2476
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
2477 2478 2479 2480 2481
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
2482
def sequence_first_step(input):
L
Luo Tao 已提交
2483
    """
L
Luo Tao 已提交
2484
    This function gets the first step of sequence.
L
Luo Tao 已提交
2485 2486 2487 2488

    .. code-block:: text

       x is a 1-level LoDTensor:
2489
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2490 2491 2492 2493 2494
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2495
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2496
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2497

L
Luo Tao 已提交
2498 2499 2500 2501 2502 2503 2504 2505 2506
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2507

2508
             import paddle.fluid as fluid
Y
yangyaming 已提交
2509
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2510 2511 2512
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
2513 2514 2515
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
2516
def sequence_last_step(input):
L
Luo Tao 已提交
2517
    """
L
Luo Tao 已提交
2518
    This function gets the last step of sequence.
L
Luo Tao 已提交
2519 2520 2521 2522

    .. code-block:: text

       x is a 1-level LoDTensor:
2523
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2524 2525 2526 2527 2528
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2529
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2530
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2531

L
Luo Tao 已提交
2532 2533 2534 2535 2536 2537 2538 2539 2540
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2541

2542
             import paddle.fluid as fluid
Y
yangyaming 已提交
2543
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2544 2545 2546
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2547 2548 2549
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
2550 2551 2552 2553
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2554
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2555 2556 2557 2558 2559
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2560

H
haowang101779990 已提交
2561
              - Case:
Y
Yibing Liu 已提交
2562

2563
            Given the input Variable **input**:
2564

2565 2566 2567
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2568

2569
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2570

2571
            the output Variable will be
2572

2573 2574 2575
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2576

M
minqiyang 已提交
2577
    Note:
H
haowang101779990 已提交
2578
          The first dimension size of **input**, **offset** and **length**
2579
          should be equal. The **offset** should start from 0.
2580

Y
Yibing Liu 已提交
2581
    Args:
2582
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2583
                         sequences.
Y
Yibing Liu 已提交
2584 2585 2586 2587 2588 2589
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2590
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2591 2592 2593 2594 2595

    Examples:

        .. code-block:: python

2596
             import paddle.fluid as fluid
Y
Yibing Liu 已提交
2597 2598 2599 2600 2601
             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2602
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2603 2604
                                                   length=length)
    """
L
lujun 已提交
2605
    assert not in_dygraph_mode(), (
2606
        "sequence layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
2607 2608
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2609
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2624
@templatedoc()
Y
Yu Yang 已提交
2625
def pool2d(input,
C
chengduoZH 已提交
2626 2627
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2628 2629
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2630
           global_pooling=False,
C
chengduoZH 已提交
2631
           use_cudnn=True,
2632
           ceil_mode=False,
2633 2634
           name=None,
           exclusive=True):
Y
Yu Yang 已提交
2635
    """
F
fengjiayi 已提交
2636
    ${comment}
2637 2638

    Args:
2639 2640 2641
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2642
                          feature, and W is the width of the feature.
J
JiabinYang 已提交
2643
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
2644 2645
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
2646
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
2647 2648 2649 2650 2651 2652
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
        pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple,
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
            Otherwise, the pool padding size will be a square of an int.
2653 2654 2655
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
2656
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2657
                        layer will be named automatically.
2658
        exclusive (bool): Whether to exclude padding points in average pooling
2659
                          mode, default is true
F
fengjiayi 已提交
2660

2661
    Returns:
F
fengjiayi 已提交
2662
        Variable: The pooling result.
F
fengjiayi 已提交
2663 2664 2665 2666 2667 2668 2669 2670 2671 2672

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

2673
          import paddle.fluid as fluid
F
fengjiayi 已提交
2674 2675
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2676
          pool2d = fluid.layers.pool2d(
2677 2678 2679 2680
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2681
                            global_pooling=False)
Y
Yu Yang 已提交
2682 2683 2684 2685 2686
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2687

C
chengduoZH 已提交
2688 2689 2690 2691 2692
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2693 2694 2695 2696
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2697 2698
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2699

C
Add doc  
chengduoZH 已提交
2700
    l_type = 'pool2d'
2701 2702

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2703
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2704
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2705 2706

    helper.append_op(
2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2718 2719
            "use_mkldnn": False,
            "exclusive": exclusive,
2720 2721 2722 2723 2724
        })

    return pool_out


D
dengkaipeng 已提交
2725
@templatedoc()
2726 2727 2728 2729 2730 2731 2732 2733
def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2734 2735
           name=None,
           exclusive=True):
2736
    """
2737
    ${comment}
2738 2739

    Args:
D
dengkaipeng 已提交
2740 2741 2742 2743 2744
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCDHW, where N is batch size, C is
                          the number of channels, D is the depth of the feature,
                          H is the height of the feature, and W is the width
                          of the feature.
D
dengkaipeng 已提交
2745 2746 2747 2748 2749
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size 
            is a tuple or list, it must contain three integers, 
            (pool_size_Depth, pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be the cube of an int.
        pool_type (string): ${pooling_type_comment}
2750 2751 2752 2753 2754 2755 2756
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2757
        exclusive (bool): Whether to exclude padding points in average pooling
2758
                          mode, default is true
2759

2760
    Returns:
2761
        Variable: output of pool3d layer.
D
dengkaipeng 已提交
2762 2763 2764 2765 2766

    Examples:

        .. code-block:: python

2767
          import paddle.fluid as fluid
D
dengkaipeng 已提交
2768 2769 2770 2771 2772 2773 2774 2775
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32, 32], dtype='float32')
          pool3d = fluid.layers.pool3d(
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
                            global_pooling=False)
Y
Yu Yang 已提交
2776 2777 2778 2779 2780
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2781

C
chengduoZH 已提交
2782 2783 2784 2785 2786
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2787 2788 2789
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2790

C
chengduoZH 已提交
2791 2792
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2793

2794 2795
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2796
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2797
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2798 2799

    helper.append_op(
2800
        type=l_type,
Y
Yu Yang 已提交
2801 2802 2803 2804 2805 2806 2807
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2808
            "paddings": pool_padding,
2809
            "use_cudnn": use_cudnn,
2810
            "ceil_mode": ceil_mode,
2811 2812
            "use_mkldnn": False,
            "exclusive": exclusive,
Y
Yu Yang 已提交
2813 2814 2815 2816 2817
        })

    return pool_out


2818 2819 2820 2821 2822 2823 2824
@templatedoc(op_type="pool2d")
def adaptive_pool2d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
D
dengkaipeng 已提交
2825 2826 2827 2828 2829 2830 2831
    **Adaptive Pool2d Operator**
    The adaptive_pool2d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCHW format, where N is batch
    size, C is the number of channels, H is the height of the feature, and W is
    the width of the feature. Parameters(pool_size) should contain two elements which
    represent height and width, respectively. Also the H and W dimensions of output(Out)
    is same as Parameter(pool_size).
2832

2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845
    For average adaptive pool2d:

    ..  math::

       hstart &= floor(i * H_{in} / H_{out})

       hend &= ceil((i + 1) * H_{in} / H_{out})

       wstart &= floor(j * W_{in} / W_{out})

       wend &= ceil((j + 1) * W_{in} / W_{out})

       Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}
2846 2847 2848 2849 2850 2851 2852 2853 2854

    Args:
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
                          feature, and W is the width of the feature.
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (pool_size_Height, pool_size_Width).
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
2855 2856
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

M
minqiyang 已提交
2871
          # suppose input data in shape of [N, C, H, W], `pool_size` is [m, n],
2872
          # output shape is [N, C, m, n], adaptive pool divide H and W dimentions
M
minqiyang 已提交
2873
          # of input data into m * n grids averagely and performs poolings in each
2874 2875
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2876
          #
2877 2878 2879 2880 2881 2882 2883 2884
          #     for i in range(m):
          #         for j in range(n):
          #             hstart = floor(i * H / m)
          #             hend = ceil((i + 1) * H / m)
          #             wstart = floor(i * W / n)
          #             wend = ceil((i + 1) * W / n)
          #             output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
          #
2885
          import paddle.fluid as fluid
2886 2887
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2888
          pool_out = fluid.layers.adaptive_pool2d(
2889 2890
                            input=data,
                            pool_size=[3, 3],
2891
                            pool_type='avg')
2892 2893 2894 2895 2896 2897 2898 2899 2900 2901
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2902
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927

    if pool_type == "max":
        l_type = 'max_pool2d_with_index'
    else:
        l_type = "pool2d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2928
    return (pool_out, mask) if require_index else pool_out
2929 2930 2931 2932 2933 2934 2935 2936 2937


@templatedoc(op_type="pool3d")
def adaptive_pool3d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
D
dengkaipeng 已提交
2938 2939 2940 2941 2942 2943 2944
    **Adaptive Pool3d Operator**
    The adaptive_pool3d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCDHW format, where N is batch
    size, C is the number of channels, D is the depth of the feature, H is the height of
    the feature, and W is the width of the feature. Parameters(pool_size) should contain
    three elements which represent height and width, respectively. Also the D, H and W
    dimensions of output(Out) is same as Parameter(pool_size).
2945

2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962
    For average adaptive pool3d:

    ..  math::

      dstart &= floor(i * D_{in} / D_{out})

      dend &= ceil((i + 1) * D_{in} / D_{out})

      hstart &= floor(j * H_{in} / H_{out})

      hend &= ceil((j + 1) * H_{in} / H_{out})

      wstart &= floor(k * W_{in} / W_{out})

      wend &= ceil((k + 1) * W_{in} / W_{out})

      Output(i ,j, k) &= \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{(dend - dstart) * (hend - hstart) * (wend - wstart)}
2963 2964 2965

    Args:
        input (Variable): The input tensor of pooling operator. The format of
D
dengkaipeng 已提交
2966 2967 2968
                          input tensor is NCDHW, where N is batch size, C is
                          the number of channels, D is the depth of the feature,
                          H is the height of the feature, and W is the width of the feature.
2969
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
D
dengkaipeng 已提交
2970
            it must contain three integers, (Depth, Height, Width).
2971
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
2972 2973
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

2988 2989
          # suppose input data in shape of [N, C, D, H, W], `pool_size` is [l, m, n],
          # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimentions
M
minqiyang 已提交
2990
          # of input data into l * m * n grids averagely and performs poolings in each
2991 2992
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2993
          #
2994 2995 2996 2997 2998 2999 3000 3001 3002
          #     for i in range(l):
          #         for j in range(m):
          #             for k in range(n):
          #                 dstart = floor(i * D / l)
          #                 dend = ceil((i + 1) * D / l)
          #                 hstart = floor(j * H / m)
          #                 hend = ceil((j + 1) * H / m)
          #                 wstart = floor(k * W / n)
          #                 wend = ceil((k + 1) * W / n)
M
minqiyang 已提交
3003
          #                 output[:, :, i, j, k] =
3004 3005
          #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
          #
K
Kaipeng Deng 已提交
3006 3007 3008

          import paddle.fluid as fluid

3009
          data = fluid.layers.data(
K
Kaipeng Deng 已提交
3010 3011
              name='data', shape=[3, 32, 32, 32], dtype='float32')
          pool_out = fluid.layers.adaptive_pool3d(
3012
                            input=data,
D
dengkaipeng 已提交
3013
                            pool_size=[3, 3, 3],
3014
                            pool_type='avg')
3015 3016 3017 3018 3019 3020 3021 3022 3023 3024
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

3025
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050

    if pool_type == "max":
        l_type = 'max_pool3d_with_index'
    else:
        l_type = "pool3d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
3051
    return (pool_out, mask) if require_index else pool_out
3052 3053


Y
Yu Yang 已提交
3054 3055 3056 3057 3058 3059 3060
def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
3061
               data_layout='NCHW',
Y
Yang Yang 已提交
3062
               in_place=False,
3063 3064
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
3065
               moving_variance_name=None,
3066
               do_model_average_for_mean_and_var=False,
3067 3068
               fuse_with_relu=False,
               use_global_stats=False):
Y
Yu Yang 已提交
3069
    """
Q
qiaolongfei 已提交
3070 3071 3072 3073
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
3074

Q
qiaolongfei 已提交
3075
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
3076

Q
qiaolongfei 已提交
3077 3078
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
3079 3080 3081
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
3094

3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global (or running) statistics. (It usually got from the
    pre-trained model.)
    The training and testing (or inference) have the same behavior:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}}  \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta

3108
    Args:
Q
qingqing01 已提交
3109
        input(variable): The rank of input variable can be 2, 3, 4, 5.
Q
qiaolongfei 已提交
3110
        act(string, Default None): Activation type, linear|relu|prelu|...
Q
qingqing01 已提交
3111 3112 3113 3114 3115 3116 3117 3118 3119
        is_test (bool, Default False): A flag indicating whether it is in
            test phrase or not.
        momentum(float, Default 0.9): The value used for the moving_mean and
            moving_var computation. The updated formula is:
            :math:`moving\_mean = moving\_mean * momentum + new\_mean * (1. - momentum)`
            :math:`moving\_var = moving\_var * momentum + new\_var * (1. - momentum)`
            Default is 0.9.
        epsilon(float, Default 1e-05): A value added to the denominator for
            numerical stability. Default is 1e-5.
C
chengduo 已提交
3120 3121
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
3122 3123 3124
	     will create ParamAttr as param_attr, the name of scale can be set in ParamAttr.
	     If the Initializer of the param_attr is not set, the parameter is initialized 
	     with Xavier. Default: None.
C
chengduo 已提交
3125 3126
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
3127 3128 3129
	     will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr. 
	     If the Initializer of the bias_attr is not set, the bias is initialized zero. 
	     Default: None.
Q
qiaolongfei 已提交
3130
        data_layout(string, default NCHW): NCHW|NHWC
3131
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
3132 3133
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
3134 3135 3136
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean. If it 
            is set to None, batch_norm will save global mean with a random name, otherwise, batch_norm 
            will save global mean with the string.
Q
qiaolongfei 已提交
3137
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
3138 3139
            If it is set to None, batch_norm will save global variance with a random name, otherwise, batch_norm 
            will save global variance with the string.
Q
qiaolongfei 已提交
3140
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
3141
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
3142 3143 3144 3145 3146
        use_global_stats(bool, Default False): Whether to use global mean and
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
            and variance are also used during train period.
3147 3148

    Returns:
Q
qiaolongfei 已提交
3149
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
3150 3151 3152 3153 3154

    Examples:

        .. code-block:: python

3155
            import paddle.fluid as fluid
L
lvmengsi 已提交
3156
            x = fluid.layers.data(name='x', shape=[3, 7, 3, 7], dtype='float32', append_batch_size=False)
Q
qiaolongfei 已提交
3157 3158
            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
3159
    """
C
chengduo 已提交
3160
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
3161 3162 3163
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

W
Wu Yi 已提交
3164 3165 3166 3167
    # use fp32 for bn parameter
    if dtype == core.VarDesc.VarType.FP16:
        dtype = core.VarDesc.VarType.FP32

Y
Yu Yang 已提交
3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185
    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
    bias = helper.create_parameter(
3186
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
3187

3188 3189
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
3190 3191 3192
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
3193
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
3194
        shape=param_shape,
W
Wu Yi 已提交
3195
        dtype=dtype)
3196 3197 3198 3199 3200 3201
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
3202
            trainable=False,
W
wanghaoshuang 已提交
3203
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
3204
        shape=param_shape,
W
Wu Yi 已提交
3205
        dtype=dtype)
3206
    variance.stop_gradient = True
Y
Yu Yang 已提交
3207 3208 3209 3210 3211 3212

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
3213 3214 3215 3216
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
3217

X
Xin Pan 已提交
3218 3219
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
3237 3238 3239 3240
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
3241
            "data_layout": data_layout,
X
Xin Pan 已提交
3242
            "use_mkldnn": False,
3243 3244
            "fuse_with_relu": fuse_with_relu,
            "use_global_stats": use_global_stats
3245
        })
Y
Yu Yang 已提交
3246 3247 3248 3249

    return helper.append_activation(batch_norm_out)


H
heqiaozhi 已提交
3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300
def data_norm(input,
              act=None,
              epsilon=1e-05,
              param_attr=None,
              data_layout='NCHW',
              in_place=False,
              name=None,
              moving_mean_name=None,
              moving_variance_name=None,
              do_model_average_for_mean_and_var=False):
    """
    **Data Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:

    1. NHWC `[batch, in_height, in_width, in_channels]`

    2. NCHW `[batch, in_channels, in_height, in_width]`

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    Args:
        input(variable): The input variable which is a LoDTensor.
        act(string, Default None): Activation type, linear|relu|prelu|...
        epsilon(float, Default 1e-05):
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
        data_layout(string, default NCHW): NCHW|NHWC
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.

    Returns:
        Variable: A tensor variable which is the result after applying data normalization on the input.

    Examples:

        .. code-block:: python
3301 3302
            
            import paddle.fluid as fluid
H
heqiaozhi 已提交
3303

3304 3305
            hidden1 = fluid.layers.data(name="hidden1", shape=[200])
            hidden2 = fluid.layers.data_norm(name="hidden2", input=hidden1)
H
heqiaozhi 已提交
3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370
    """
    helper = LayerHelper('data_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    batch_size_default = 1e4
    batch_sum_default = 0.0
    batch_square_sum_default = 1e4

    if param_attr and isinstance(param_attr, dict):
        batch_size_default = param_attr.get("batch_size", 1e4)
        batch_sum_default = param_attr.get("batch_sum", 0.0)
        batch_square_sum_default = param_attr.get("batch_square", 1e4)

    # create parameter
    batch_size = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_size',
            initializer=Constant(value=float(batch_size_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_sum',
            initializer=Constant(value=float(batch_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_square_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_square_sum',
            initializer=Constant(value=float(batch_square_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    means = helper.create_variable(dtype=dtype, stop_gradient=True)
    scales = helper.create_variable(dtype=dtype, stop_gradient=True)

    data_norm_out = input if in_place else helper.create_variable(dtype=dtype)

    helper.append_op(
        type="data_norm",
        inputs={
            "X": input,
            "BatchSize": batch_size,
            "BatchSum": batch_sum,
            "BatchSquareSum": batch_square_sum
        },
        outputs={"Y": data_norm_out,
                 "Means": means,
                 "Scales": scales},
H
heqiaozhi 已提交
3371
        attrs={"epsilon": epsilon})
H
heqiaozhi 已提交
3372 3373 3374 3375

    return helper.append_activation(data_norm_out)


Y
yuyang18 已提交
3376
@templatedoc()
G
guosheng 已提交
3377 3378 3379 3380 3381 3382 3383 3384 3385 3386
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
3387
    ${comment}
G
guosheng 已提交
3388 3389 3390

    The formula is as follows:

Y
yuyang18 已提交
3391
    ..  math::
G
guosheng 已提交
3392 3393 3394 3395 3396 3397 3398

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
3399 3400 3401 3402 3403 3404 3405 3406
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
3407

G
guosheng 已提交
3408 3409
    Args:
        input(Variable): The input tensor variable.
3410
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
3411
            normalization. Default True.
3412
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
3413 3414
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
3415
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
3416
            Default 1.
3417
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
3418
            division by zero. Default 1e-05.
G
guosheng 已提交
3419
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3420 3421
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
3422 3423
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
3424
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3425 3426
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
3427
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
3428
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
3429
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
3430 3431 3432
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
3433 3434

    Returns:
Y
yuyang18 已提交
3435
        ${y_comment}
G
guosheng 已提交
3436 3437 3438

    Examples:

3439
        >>> import paddle.fluid as fluid
Y
yuyang18 已提交
3440 3441 3442
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
3443
    """
L
lujun 已提交
3444
    assert in_dygraph_mode(
L
lujun 已提交
3445
    ) is not True, "please use FC instead of fc in dygraph mode!"
G
guosheng 已提交
3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
3460
    if shift:
G
guosheng 已提交
3461 3462 3463 3464 3465 3466
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
3467 3468 3469 3470 3471
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


D
Dun 已提交
3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498
@templatedoc()
def group_norm(input,
               groups,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               data_layout='NCHW',
               name=None):
    """
    **Group Normalization Layer**

H
haowang101779990 已提交
3499
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .
D
Dun 已提交
3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520

    Args:
        input(Variable): The input tensor variable.
        groups(int): The number of groups that divided from channels.
        epsilon(float): The small value added to the variance to prevent
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            scale :math:`g`. If it is set to False, no scale will be added to the output units.
            If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str): Activation to be applied to the output of group normalizaiton.
        data_layout(string|NCHW): Only NCHW is supported.
        name (str): The name of this layer. It is optional.

    Returns:
        Variable: A tensor variable which is the result after applying group normalization on the input.

    Examples:

3521
        >>> import paddle.fluid as fluid
D
Dun 已提交
3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547
        >>> data = fluid.layers.data(name='data', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.group_norm(input=data, groups=4)
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    if data_layout != 'NCHW':
        raise ValueError("unsupported data layout:" + data_layout)
    param_shape = [input_shape[1]]
    if param_attr:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
    if bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
H
heqiaozhi 已提交
3548 3549
    mean_out = helper.create_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable(dtype=dtype, stop_gradient=True)
D
dengkaipeng 已提交
3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566
    group_norm_out = helper.create_variable(dtype=dtype)

    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "groups": groups})

    return helper.append_activation(group_norm_out)


@templatedoc()
3567
def spectral_norm(weight, dim=0, power_iters=1, eps=1e-12, name=None):
D
dengkaipeng 已提交
3568 3569 3570
    """
    **Spectral Normalization Layer**

D
dengkaipeng 已提交
3571
    This layer calculates the spectral normalization value of weight parameters of
3572
    fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
D
dengkaipeng 已提交
3573
    Parameters. Calculations are showed as follows.
3574

D
dengkaipeng 已提交
3575 3576 3577
    Step 1:
    Generate vector U in shape of [H], and V in shape of [W].
    While H is the :attr:`dim` th dimension of the input weights,
D
dengkaipeng 已提交
3578
    and W is the product result of remaining dimensions.
D
dengkaipeng 已提交
3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590

    Step 2:
    :attr:`power_iters` shoule be a positive interger, do following
    calculations with U and V for :attr:`power_iters` rounds.

    .. math:: 

        \mathbf{v} := \\frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}

        \mathbf{u} := \\frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}

    Step 3:
D
dengkaipeng 已提交
3591
    Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.
D
dengkaipeng 已提交
3592 3593 3594 3595

    .. math::

        \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}
3596

D
dengkaipeng 已提交
3597
        \mathbf{W} = \\frac{\mathbf{W}}{\sigma(\mathbf{W})}
3598 3599
                

D
dengkaipeng 已提交
3600 3601 3602 3603
    Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .

    Args:
        weight(${weight_type}): ${weight_comment}
D
dengkaipeng 已提交
3604 3605 3606
        dim(int): ${dim_comment}
        power_iters(int): ${power_iters_comment}
        eps(float): ${eps_comment}
D
dengkaipeng 已提交
3607 3608 3609
        name (str): The name of this layer. It is optional.

    Returns:
D
dengkaipeng 已提交
3610
        Variable: A tensor variable of weight parameters after spectral normalization.
D
dengkaipeng 已提交
3611 3612

    Examples:
K
Kaipeng Deng 已提交
3613
       .. code-block:: python
D
dengkaipeng 已提交
3614

K
Kaipeng Deng 已提交
3615 3616 3617 3618 3619
            import paddle.fluid as fluid

            weight = fluid.layers.data(name='weight', shape=[2, 8, 32, 32], 
                                       append_batch_size=False, dtype='float32')
            x = fluid.layers.spectral_norm(weight=weight, dim=1, power_iters=2)
D
dengkaipeng 已提交
3620 3621
    """
    helper = LayerHelper('spectral_norm', **locals())
3622
    dtype = weight.dtype
D
dengkaipeng 已提交
3623 3624 3625

    # create intput and parameters
    inputs = {'Weight': weight}
3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643
    input_shape = weight.shape
    h = input_shape[dim]
    w = np.prod(input_shape) // h

    u = helper.create_parameter(
        attr=ParamAttr(),
        shape=[h],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    u.stop_gradient = True
    inputs['U'] = u
    v = helper.create_parameter(
        attr=ParamAttr(),
        shape=[w],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    inputs['V'] = v
    v.stop_gradient = True
D
dengkaipeng 已提交
3644 3645

    # create output
3646
    out = helper.create_variable(dtype=dtype)
D
Dun 已提交
3647 3648

    helper.append_op(
3649
        type="spectral_norm",
D
Dun 已提交
3650
        inputs=inputs,
3651 3652 3653 3654 3655 3656
        outputs={"Out": out, },
        attrs={
            "dim": dim,
            "power_iters": power_iters,
            "eps": eps,
        })
D
Dun 已提交
3657

3658
    return out
D
Dun 已提交
3659 3660


Y
Yu Yang 已提交
3661 3662 3663 3664
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3665 3666 3667
                     padding=0,
                     stride=1,
                     dilation=1,
3668
                     groups=None,
C
caoying03 已提交
3669
                     param_attr=None,
3670
                     bias_attr=None,
C
chengduoZH 已提交
3671
                     use_cudnn=True,
3672
                     act=None,
C
caoying03 已提交
3673
                     name=None):
Y
Yu Yang 已提交
3674
    """
3675 3676 3677 3678 3679 3680 3681 3682
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
3683 3684
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3685 3686 3687
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3688 3689 3690 3691 3692

    For each input :math:`X`, the equation is:

    .. math::

3693
        Out = \sigma (W \\ast X + b)
3694

3695
    Where:
3696 3697 3698

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
3699 3700 3701 3702
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3703

3704 3705 3706 3707
    Example:

        - Input:

3708
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
3709

3710
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
3711 3712 3713

        - Output:

3714
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
3715 3716

        Where
Y
Yu Yang 已提交
3717

3718 3719
        .. math::

3720 3721
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
H
haowang101779990 已提交
3722 3723
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
3724 3725

    Args:
3726 3727 3728 3729
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3730 3731 3732 3733
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
3752 3753 3754 3755 3756 3757 3758 3759 3760 3761
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3762
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
3763 3764 3765
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3766
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
3767
            will be named automatically. Default: True.
Y
Yu Yang 已提交
3768 3769

    Returns:
3770
        Variable: The tensor variable storing the convolution transpose result.
3771 3772

    Raises:
3773 3774
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3775 3776 3777 3778

    Examples:
       .. code-block:: python

3779
          import paddle.fluid as fluid
3780 3781
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3782
    """
C
chengduo 已提交
3783
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
3784 3785 3786 3787 3788 3789 3790 3791
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
3792 3793 3794
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
3795 3796 3797
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
3798

C
chengduoZH 已提交
3799 3800
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
3801

Y
Yu Yang 已提交
3802 3803 3804 3805 3806
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
3807

Y
Yu Yang 已提交
3808 3809
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
3810

C
chengduoZH 已提交
3811
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3812
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
3813
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3814
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
3815
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
3816 3817 3818
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
3819

3820 3821 3822 3823 3824 3825 3826
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
3827
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3828
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
3829

Y
Yu Yang 已提交
3830 3831 3832
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3833
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3834
    helper.append_op(
3835
        type=op_type,
Y
Yu Yang 已提交
3836 3837
        inputs={'Input': [input],
                'Filter': [img_filter]},
3838
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3839
        attrs={
3840
            'output_size': output_size,
3841 3842 3843 3844 3845
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
3846 3847
        })

3848 3849 3850
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
3851 3852


3853
def conv3d_transpose(input,
Y
Yu Yang 已提交
3854 3855 3856
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3857 3858 3859
                     padding=0,
                     stride=1,
                     dilation=1,
3860
                     groups=None,
C
caoying03 已提交
3861
                     param_attr=None,
3862
                     bias_attr=None,
C
chengduoZH 已提交
3863
                     use_cudnn=True,
3864
                     act=None,
C
caoying03 已提交
3865
                     name=None):
Y
Yu Yang 已提交
3866
    """
3867
    **Convlution3D transpose layer**
3868

3869
    The convolution3D transpose layer calculates the output based on the input,
3870
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
3871 3872 3873 3874 3875 3876
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3877 3878 3879
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3880 3881 3882 3883 3884

    For each input :math:`X`, the equation is:

    .. math::

3885
        Out = \sigma (W \\ast X + b)
3886 3887 3888

    In the above equation:

3889 3890
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
3891 3892 3893 3894
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3895

3896 3897 3898 3899
    Example:

        - Input:

3900
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
3901

3902
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
3903 3904 3905

        - Output:

3906
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
3907 3908

        Where
Y
Yu Yang 已提交
3909

3910 3911
        .. math::

3912 3913 3914
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
3915 3916

    Args:
3917
        input(Variable): The input image with [N, C, D, H, W] format.
3918 3919 3920
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3921
            tuple, it must contain three integers, (image_D, image_H, image_W). This
3922 3923
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
3924
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
3925 3926 3927
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
3928 3929
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
3930
        stride(int|tuple): The stride size. If stride is a tuple, it must
3931 3932
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
3933
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
3934 3935 3936
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
3937 3938 3939 3940 3941
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
3942 3943 3944 3945 3946 3947 3948 3949 3950
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3951 3952
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
3953 3954
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3955 3956
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
3957 3958

    Returns:
3959
        Variable: The tensor variable storing the convolution transpose result.
3960 3961

    Raises:
3962 3963
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3964 3965 3966 3967

    Examples:
       .. code-block:: python

3968
          import paddle.fluid as fluid
3969 3970
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3971
    """
C
chengduo 已提交
3972
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
3973 3974
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
3975
    if not isinstance(input, Variable):
3976
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
3977 3978
    input_channel = input.shape[1]

3979 3980 3981
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
3982

C
chengduoZH 已提交
3983 3984 3985
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
3986 3987 3988 3989 3990 3991
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

3992 3993 3994
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
3995

3996
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3997
                         padding[0] - 1) // dilation[0] + 1
3998
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3999
                         padding[1] - 1) // dilation[1] + 1
4000
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
4001
                         padding[2] - 1) // dilation[2] + 1
4002
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
4003
    else:
4004 4005
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
4006

4007
    groups = 1 if groups is None else groups
M
minqiyang 已提交
4008
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
4009 4010 4011
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
4012
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
4013
    helper.append_op(
4014
        type=l_type,
Y
Yu Yang 已提交
4015 4016
        inputs={'Input': [input],
                'Filter': [img_filter]},
4017
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
4018 4019 4020 4021
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
4022
            'groups': groups,
C
chengduoZH 已提交
4023 4024
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
4025

4026 4027
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
4028
    return out
Y
yangyaming 已提交
4029 4030


Y
yangyaming 已提交
4031
def sequence_expand(x, y, ref_level=-1, name=None):
4032
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
4033 4034 4035 4036
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
4037 4038 4039 4040 4041

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
4042
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
4043
                x.data = [[a], [b], [c], [d]]
4044 4045 4046
                x.dims = [4, 1]

            y is a LoDTensor:
4047 4048
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
4049

Y
yangyaming 已提交
4050
            ref_level: 0
4051

Y
yangyaming 已提交
4052
            then output is a 1-level LoDTensor:
4053
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
4054
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
4055 4056 4057 4058
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
4059
                x.data = [[a], [b], [c]]
4060 4061 4062
                x.dims = [3, 1]

            y is a LoDTensor:
4063
                y.lod = [[2, 0, 3]]
4064

Y
yangyaming 已提交
4065
            ref_level: -1
4066

Y
yangyaming 已提交
4067 4068 4069
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
4070 4071 4072
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
4073 4074
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
4075
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
4076
                        will be named automatically.
4077 4078 4079 4080 4081 4082

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python
4083
	
4084
            import paddle.fluid as fluid
4085
            import paddle.fluid.layers as layers
4086 4087 4088
            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
4089
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
4090
    """
L
lujun 已提交
4091
    assert not in_dygraph_mode(), (
4092
        "sequence layer is not supported in dygraph mode yet.")
Y
yangyaming 已提交
4093
    helper = LayerHelper('sequence_expand', input=x, **locals())
4094
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4095
    tmp = helper.create_variable_for_type_inference(dtype)
4096
    helper.append_op(
Y
yangyaming 已提交
4097 4098 4099 4100 4101
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
4102
    return tmp
4103 4104


C
chengduo 已提交
4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python
4153 4154
            
            import paddle.fluid as fluid
4155
            import paddle.fluid.layers as layers
C
chengduo 已提交
4156 4157 4158 4159 4160 4161

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
L
lujun 已提交
4162
    assert not in_dygraph_mode(), (
4163
        "sequence layer is not supported in dygraph mode yet.")
C
chengduo 已提交
4164 4165
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4166
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
4167 4168 4169 4170 4171 4172 4173 4174
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
4175
@templatedoc()
4176
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
4177 4178 4179 4180 4181
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
4182 4183 4184
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
4185
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
4186 4187 4188 4189
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
4190 4191 4192
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
4193

F
fengjiayi 已提交
4194
    Returns:
M
minqiyang 已提交
4195
        Variable: The padded sequence batch and the original lengths before
4196
                  padding. All sequences has the same length.
M
minqiyang 已提交
4197

F
fengjiayi 已提交
4198 4199 4200
    Examples:
        .. code-block:: python

4201
            import paddle.fluid as fluid
F
fengjiayi 已提交
4202 4203 4204 4205
            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
G
gmcather 已提交
4206
            pad_value = fluid.layers.assign(
D
dongzhihong 已提交
4207
                input=numpy.array([0.0], dtype=numpy.float32))
F
fengjiayi 已提交
4208 4209 4210
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

L
lujun 已提交
4211
    assert not in_dygraph_mode(), (
4212
        "sequence layer is not supported in dygraph mode yet.")
F
fengjiayi 已提交
4213 4214
    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4215 4216
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
4217 4218 4219 4220

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
4221 4222 4223 4224 4225 4226
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
4227 4228
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
4229
        attrs={'padded_length': maxlen})
4230
    return out, length
F
fengjiayi 已提交
4231 4232


4233
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
4234
    """
4235
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
4236

4237 4238
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
4239 4240 4241 4242 4243 4244 4245 4246 4247
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
4248 4249 4250
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
4251
	specified by input Variable **length**:
Y
Yibing Liu 已提交
4252 4253 4254 4255 4256 4257

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
4258
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
4259 4260 4261 4262 4263 4264

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
4265 4266
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
4267 4268 4269 4270 4271 4272 4273

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

4274
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
4275 4276 4277 4278 4279
            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

L
lujun 已提交
4280
    assert not in_dygraph_mode(), (
4281
        "sequence layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
4282 4283
    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4284
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


4296 4297 4298 4299 4300 4301 4302
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
4303
                is_accumulated=True,
4304 4305
                name=None,
                return_parent_idx=False):
4306
    """
4307 4308
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
4309 4310 4311

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
4312 4313

    This layer does the search in beams for one time step. Specifically, it
4314 4315 4316
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327
    computation cell. If :attr:`ids` is not set, it will be calculated out
    according to :attr:`scores`. Additionally, :attr:`pre_ids` and
    :attr:`pre_scores` are the output of beam_search at previous step, they
    are needed for special use to handle ended candidate translations.

    Note that if :attr:`is_accumulated` is :attr:`True`, the :attr:`scores`
    passed in should be accumulated scores. Else, the :attr:`scores` are
    considered as the straightforward scores and will be transformed to the
    log field and accumulated the :attr:`pre_scores` in this operator.
    Length penalty should be done with extra operators before calculating the
    accumulated scores if needed.
4328 4329 4330 4331

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
4332

4333
    Args:
4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
4357 4358
        is_accumulated(bool, default True): Whether the input :attr:`score` is
             accumulated scores.
4359 4360
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
4361 4362 4363 4364
        return_parent_idx(bool): Whether to return an extra Tensor variable 
                        preserving the selected_ids' parent indice in pre_ids
                        in output, which can be used to gather cell states at
                        the next time step.
F
fengjiayi 已提交
4365

4366
    Returns:
4367 4368 4369 4370
        Variable: The LodTensor tuple containing the selected ids and the \
            corresponding scores. If :attr:`return_parent_idx` is :attr:`True`, \
            an extra Tensor variable preserving the selected_ids' parent indice \
            is included.
Y
Yan Chunwei 已提交
4371 4372 4373 4374

    Examples:
        .. code-block:: python

4375 4376
            import paddle.fluid as fluid

4377 4378 4379
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391
            beam_size = 4
            end_id = 1
            pre_ids = fluid.layers.data(
                name='pre_id', shape=[1], lod_level=2, dtype='int64')
            pre_scores = fluid.layers.data(
                name='pre_scores', shape=[1], lod_level=2, dtype='float32')
            probs = fluid.layers.data(
                name='probs', shape=[10000], dtype='float32')
            topk_scores, topk_indices = fluid.layers.topk(probs, k=beam_size)
            accu_scores = fluid.layers.elementwise_add(
                x=fluid.layers.log(x=topk_scores),
                y=fluid.layers.reshape(pre_scores, shape=[-1]),
4392
                axis=0)
4393
            selected_ids, selected_scores = fluid.layers.beam_search(
4394 4395 4396 4397 4398 4399 4400
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
4401
    helper = LayerHelper('beam_search', **locals())
4402 4403 4404 4405 4406 4407
    score_type = pre_scores.dtype
    id_type = pre_ids.dtype

    inputs = {"pre_ids": pre_ids, "pre_scores": pre_scores, "scores": scores}
    if ids is not None:
        inputs["ids"] = ids
Q
Qiao Longfei 已提交
4408

X
Xin Pan 已提交
4409 4410 4411
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
4412 4413 4414 4415 4416
    # parent_idx is a tensor used to gather cell states at the next time
    # step. Though lod in selected_ids can also be used to gather by
    # sequence_expand, it is not efficient.
    # gather_op's index input only supports int32 dtype currently
    parent_idx = helper.create_variable_for_type_inference(dtype="int32")
Q
Qiao Longfei 已提交
4417 4418 4419

    helper.append_op(
        type='beam_search',
4420
        inputs=inputs,
Q
Qiao Longfei 已提交
4421 4422 4423
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
4424
            'parent_idx': parent_idx
Q
Qiao Longfei 已提交
4425 4426 4427 4428 4429 4430
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
4431
            'is_accumulated': is_accumulated,
Q
Qiao Longfei 已提交
4432
        })
4433 4434 4435 4436
    if return_parent_idx:
        return selected_ids, selected_scores, parent_idx
    else:
        return selected_ids, selected_scores
Q
Qiao Longfei 已提交
4437 4438


4439 4440 4441 4442 4443 4444 4445
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
4446

4447 4448 4449 4450 4451 4452 4453 4454 4455
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
4456

4457 4458 4459 4460 4461 4462
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
4463

4464 4465
    Examples:
        .. code-block:: python
T
Tink_Y 已提交
4466

4467 4468
            import paddle.fluid as fluid

4469 4470
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
4471 4472 4473
            ids = fluid.layers.create_array(dtype='int64')
            scores = fluid.layers.create_array(dtype='float32')
            finished_ids, finished_scores = fluid.layers.beam_search_decode(
4474 4475 4476
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
4477 4478
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
4494 4495 4496 4497
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
4498
              param_attr=None,
C
caoying03 已提交
4499 4500
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
4501 4502 4503 4504
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

4505
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
4506

4507
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
4508

4509
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
4510

4511
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
4512 4513 4514

            h_t & = o_t tanh(c_t)

4515 4516 4517 4518 4519 4520
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
4521 4522 4523

        .. math::

4524
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
4525 4526 4527 4528 4529 4530 4531 4532

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

4533
    This layer has two outputs including :math:`h_t` and :math:`c_t`.
Y
yangyaming 已提交
4534 4535

    Args:
Y
yangyaming 已提交
4536 4537 4538 4539 4540 4541
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
4542
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
4555 4556
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
4557 4558

    Returns:
Y
yangyaming 已提交
4559
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
4560 4561

    Raises:
4562 4563 4564 4565
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
4566 4567 4568 4569 4570

    Examples:

        .. code-block:: python

4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583
            import paddle.fluid as fluid

            dict_dim, emb_dim, hidden_dim = 128, 64, 512
            data = fluid.layers.data(name='step_data', shape=[1], dtype='int32')
            x = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
            pre_hidden = fluid.layers.data(
                name='pre_hidden', shape=[hidden_dim], dtype='float32')
            pre_cell = fluid.layers.data(
                name='pre_cell', shape=[hidden_dim], dtype='float32')
            hidden = fluid.layers.lstm_unit(
                x_t=x,
                hidden_t_prev=pre_hidden,
                cell_t_prev=pre_cell)
Y
yangyaming 已提交
4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
4598
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
4599 4600 4601 4602
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
4603 4604
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
4605 4606 4607
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
4608
    size = cell_t_prev.shape[1]
4609
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
4610 4611
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
4612
                param_attr=param_attr,
4613
                bias_attr=bias_attr)
Y
yangyaming 已提交
4614
    dtype = x_t.dtype
X
Xin Pan 已提交
4615 4616
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
4617 4618 4619 4620 4621 4622 4623 4624 4625

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
4626
    return h, c
G
guosheng 已提交
4627 4628


C
caoying03 已提交
4629
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4630
    """
Y
yangyaming 已提交
4631
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
4632 4633 4634

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4635
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
4636 4637
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4638 4639
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4640
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
4641
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4642
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4643 4644
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4645 4646 4647

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
4648

G
guosheng 已提交
4649 4650 4651
    Examples:
        .. code-block:: python

4652
            import paddle.fluid as fluid
G
guosheng 已提交
4653 4654 4655
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
4656
            # Each example is followed by the corresponding output tensor.
4657
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
G
guosheng 已提交
4658 4659 4660 4661
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
4662

4663
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4664 4665
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
4666
            # Each example is followed by the corresponding output tensor.
4667 4668 4669
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_sum(y, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(y, dim=[0, 1]) # [16, 20]
W
whs 已提交
4670

G
guosheng 已提交
4671 4672
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
4673
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4674 4675
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4676 4677 4678 4679 4680
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4681
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4682 4683 4684 4685
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4686 4687


C
caoying03 已提交
4688
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4689
    """
Y
Yibing Liu 已提交
4690
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
4691 4692 4693

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
4694 4695 4696
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
4697
            must be in the range :math:`[-rank(input), rank(input))`. If
4698
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
4699
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
4700 4701
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4702
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
4703
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
4704
                       will be named automatically.
G
guosheng 已提交
4705 4706

    Returns:
Y
Yibing Liu 已提交
4707
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
4708

G
guosheng 已提交
4709 4710 4711
    Examples:
        .. code-block:: python

4712
            import paddle.fluid as fluid
G
guosheng 已提交
4713 4714 4715 4716
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
4717
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
G
guosheng 已提交
4718 4719 4720
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
4721
            fluid.layers.reduce_mean(x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
4722

4723
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4724 4725 4726
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
4727 4728 4729
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_mean(y, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(y, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
4730 4731
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
4732
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4733 4734
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4735 4736 4737 4738 4739
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4740
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4741 4742 4743 4744
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
4745 4746


C
caoying03 已提交
4747
def reduce_max(input, dim=None, keep_dim=False, name=None):
4748
    """
Y
yangyaming 已提交
4749
    Computes the maximum of tensor elements over the given dimension.
4750 4751 4752

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4753
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
4754 4755 4756
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4757
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4758 4759
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4760
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4761 4762
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4763 4764 4765

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4766

4767 4768 4769
    Examples:
        .. code-block:: python

4770
            import paddle.fluid as fluid
4771 4772 4773 4774
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
4775
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
4776 4777 4778 4779
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
4780

4781
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4782 4783 4784
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
4785 4786 4787
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_max(y, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(y, dim=[0, 1]) # [7.0, 8.0]
4788 4789
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
4790
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4791 4792
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4793 4794 4795 4796 4797
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4798
            'dim': dim if dim != None else [0],
4799 4800 4801 4802 4803 4804
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4805
def reduce_min(input, dim=None, keep_dim=False, name=None):
4806
    """
Y
yangyaming 已提交
4807
    Computes the minimum of tensor elements over the given dimension.
4808 4809 4810

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4811
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
4812 4813 4814
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4815
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4816 4817
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4818
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4819 4820
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4821 4822 4823

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4824

4825 4826 4827
    Examples:
        .. code-block:: python

4828
            import paddle.fluid as fluid
4829 4830 4831 4832
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
4833
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
4834 4835 4836 4837
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
4838

4839
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4840 4841 4842
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
4843 4844 4845
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_min(y, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(y, dim=[0, 1]) # [1.0, 2.0]
4846 4847
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
4848
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4849 4850
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4851 4852 4853 4854 4855
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4856
            'dim': dim if dim != None else [0],
4857 4858 4859 4860
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4861 4862


4863 4864 4865 4866 4867 4868
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4869
        dim (list|int|None): The dimensions along which the product is performed. If
4870 4871
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4872 4873
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4874 4875 4876
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
4877
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
4878
            layer will be named automatically.
4879 4880 4881 4882 4883 4884 4885

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

4886
            import paddle.fluid as fluid
4887 4888 4889 4890
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
4891
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
4892 4893 4894
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
4895
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
4896
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
4897

4898
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4899 4900 4901
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
4902 4903 4904
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_prod(y, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(y, dim=[0, 1]) # [105.0, 384.0]
4905 4906
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
4907
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4908 4909
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4910 4911 4912 4913 4914
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4915
            'dim': dim if dim != None else [0],
4916 4917 4918 4919 4920 4921
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


Z
zhoukunsheng 已提交
4922 4923
def reduce_all(input, dim=None, keep_dim=False, name=None):
    """
Z
zhoukunsheng 已提交
4924
    Computes the ``logical and`` of tensor elements over the given dimension.
Z
zhoukunsheng 已提交
4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
        dim (list|int|None): The dimension along which the logical and is computed.
            If :attr:`None`, compute the logical and over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python
Z
zhoukunsheng 已提交
4944
        
4945
            import paddle.fluid as fluid
4946 4947 4948
            import paddle.fluid.layers as layers
            import numpy as np

Z
zhoukunsheng 已提交
4949 4950 4951
            # x is a bool Tensor variable with following elements:
            #    [[True, False]
            #     [True, True]]
4952 4953 4954 4955 4956 4957 4958
            x = layers.assign(np.array([[1, 0], [1, 1]], dtype='int32'))
            x = layers.cast(x, 'bool')

            out = layers.reduce_all(x)  # False 
            out = layers.reduce_all(x, dim=0)  # [True, False]
            out = layers.reduce_all(x, dim=-1)  # [False, True]
            out = layers.reduce_all(x, dim=1, keep_dim=True)  # [[False], [True]]
Z
zhoukunsheng 已提交
4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978

    """
    helper = LayerHelper('reduce_all', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
    helper.append_op(
        type='reduce_all',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim if dim != None else [0],
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


def reduce_any(input, dim=None, keep_dim=False, name=None):
    """
Z
zhoukunsheng 已提交
4979
    Computes the ``logical or`` of tensor elements over the given dimension.
Z
zhoukunsheng 已提交
4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
        dim (list|int|None): The dimension along which the logical or is computed.
            If :attr:`None`, compute the logical or over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python
Z
zhoukunsheng 已提交
4999

5000
            import paddle.fluid as fluid
5001 5002 5003
            import paddle.fluid.layers as layers
            import numpy as np

Z
zhoukunsheng 已提交
5004 5005 5006
            # x is a bool Tensor variable with following elements:
            #    [[True, False]
            #     [False, False]]
5007 5008 5009 5010 5011 5012 5013
            x = layers.assign(np.array([[1, 0], [0, 0]], dtype='int32'))
            x = layers.cast(x, 'bool')

            out = layers.reduce_any(x)  # True
            out = layers.reduce_any(x, dim=0)  # [True, False]
            out = layers.reduce_any(x, dim=-1)  # [True, False]
            out = layers.reduce_any(x, dim=1,
Z
zhoukunsheng 已提交
5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027
                                     keep_dim=True)  # [[True], [False]]

    """
    helper = LayerHelper('reduce_any', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
    helper.append_op(
        type='reduce_any',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim if dim != None else [0],
            'keep_dim': keep_dim,
5028 5029 5030 5031 5032
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
5033
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
5034
    """
C
caoying03 已提交
5035
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
5036 5037 5038

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
5039 5040 5041 5042 5043
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
5044
            :attr:`dim` dimension orderly.
C
caoying03 已提交
5045
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
5046
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
5047 5048
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
5049 5050

    Returns:
D
dzhwinter 已提交
5051
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
5052 5053 5054 5055

    Examples:
        .. code-block:: python

5056 5057 5058 5059 5060 5061
            import paddle.fluid as fluid

            # input is a variable which shape is [-1, 3, 9, 5]
            input = fluid.layers.data(
                 name="input", shape=[3, 9, 5], dtype="float32")

5062
            x0, x1, x2 = fluid.layers.split(input, num_or_sections=3, dim=2)
5063 5064 5065 5066 5067 5068 5069 5070
            # x0.shape [-1, 3, 3, 5]
            # x1.shape [-1, 3, 3, 5]
            # x2.shape [-1, 3, 3, 5]

            x0, x1, x2 = fluid.layers.split(input, num_or_sections=3, dim=2)
            # x0.shape [-1, 3, 2, 5]
            # x1.shape [-1, 3, 3, 5]
            # x2.shape [-1, 3, 4, 5]
G
guosheng 已提交
5071 5072 5073 5074 5075 5076 5077 5078
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
T
tink2123 已提交
5079
        assert len(num_or_sections) <= input_shape[
G
guosheng 已提交
5080 5081 5082
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
5083
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
5097 5098 5099 5100 5101 5102 5103 5104 5105


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

5106
    .. math::
5107 5108

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
5109 5110 5111 5112 5113

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
5114
        x(Variable|list): The input tensor to l2_normalize layer.
5115
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
5116 5117
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
5118
        epsilon(float): The epsilon value is used to avoid division by zero, \
翟飞跃 已提交
5119
            the default value is 1e-12.
5120
        name(str|None): A name for this layer(optional). If set None, the layer \
5121
            will be named automatically.
C
caoying03 已提交
5122 5123

    Returns:
5124
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
5125 5126

    Examples:
5127

C
caoying03 已提交
5128 5129
        .. code-block:: python

5130
            import paddle.fluid as fluid
5131 5132 5133 5134
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
5135 5136
    """

F
fengjiayi 已提交
5137 5138
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
5139 5140
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
5141 5142
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
5143
    helper.append_op(
5144 5145 5146 5147
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
5148
        attrs={
5149 5150
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
5151 5152
        })
    return out
5153 5154


S
sneaxiy 已提交
5155
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
5156
    """
Y
ying 已提交
5157 5158 5159 5160
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
5161

C
chengduoZH 已提交
5162
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
5163
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
5164

5165 5166 5167 5168 5169
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
5170
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
5171

C
chengduoZH 已提交
5172
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
5173
      performs in the following way.
G
guosheng 已提交
5174

5175
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
5176
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
5177
        last two dimensions and a batched matrix multiply supporting broadcast
5178
        applies on the two tensors.
G
guosheng 已提交
5179

Y
ying 已提交
5180 5181
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
5182
    removed after matrix multiplication.
G
guosheng 已提交
5183 5184 5185

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
5186 5187 5188
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
5189
        alpha (float): The scale of output. Default 1.0.
5190
        name(str|None): A name for this layer(optional). If set None, the layer
5191
            will be named automatically.
G
guosheng 已提交
5192 5193

    Returns:
5194
        Variable: The product Tensor variable.
G
guosheng 已提交
5195

G
guosheng 已提交
5196 5197 5198
    Examples:
        .. code-block:: python

5199
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
5200
            # x: [B, ..., M, K], y: [B, ..., K, N]
5201
            # fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
5202

5203
            # x: [B, M, K], y: [B, K, N]
5204
            # fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
5205

5206
            # x: [B, M, K], y: [K, N]
5207
            # fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
5208

5209
            # x: [M, K], y: [K, N]
5210
            # fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
5211 5212

            # x: [B, M, K], y: [K]
5213
            # fluid.layers.matmul(x, y)  # out: [B, M]
Y
ying 已提交
5214

5215
            # x: [K], y: [K]
5216
            # fluid.layers.matmul(x, y)  # out: [1]
5217

Y
ying 已提交
5218
            # x: [M], y: [N]
5219 5220
            # fluid.layers.matmul(x, y, True, True)  # out: [M, N]

5221
            import paddle.fluid as fluid
5222 5223 5224
            x = fluid.layers.data(name='x', shape=[2, 3], dtype='float32')
            y = fluid.layers.data(name='y', shape=[3, 2], dtype='float32')
            out = fluid.layers.matmul(x, y, True, True)
G
guosheng 已提交
5225
    """
Y
ying 已提交
5226 5227 5228 5229 5230 5231 5232

    def __check_input(x, y):
        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
5233
            y_shape = y_shape + [1]
Y
ying 已提交
5234 5235 5236 5237 5238 5239 5240

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
5241 5242
            raise ValueError("Invalid inputs for matmul. x: %s, y: %s\n" %
                             (x_shape, y_shape))
Y
ying 已提交
5243

C
chengduo 已提交
5244
        if len(y_shape) > 2 and len(x_shape) > 2:
Y
ying 已提交
5245
            for i, dim_x in enumerate(x_shape[:-2]):
P
phlrain 已提交
5246 5247 5248
                # don't check neg shape
                if dim_x < 0 or y_shape[i] < 0:
                    continue
Y
ying 已提交
5249
                if dim_x != y_shape[i]:
C
chengduo 已提交
5250 5251
                    raise ValueError("Invalid inputs for matmul. x(%s), y(%s)" %
                                     (x.shape, y.shape))
Y
ying 已提交
5252 5253 5254

    __check_input(x, y)

5255
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
5256
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
5257
    helper.append_op(
5258 5259 5260 5261
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
5262 5263 5264
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
5265
            'alpha': float(alpha),
S
sneaxiy 已提交
5266
        })
5267
    return out
5268 5269


5270
def topk(input, k, name=None):
Q
qingqing01 已提交
5271 5272 5273 5274
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
5275
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
5276 5277 5278 5279 5280 5281
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
5303 5304 5305
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
W
whs 已提交
5306
        k(int | Variable):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
5307
                 of input.
5308
        name(str|None): A name for this layer(optional). If set None, the layer
5309
                       will be named automatically.
F
fengjiayi 已提交
5310
                       Default: None
Q
qingqing01 已提交
5311 5312

    Returns:
5313 5314 5315
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
5316
        within the last dimension of input.
Q
qingqing01 已提交
5317

F
fengjiayi 已提交
5318 5319
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
5320 5321 5322 5323

    Examples:
        .. code-block:: python

5324
            import paddle.fluid as fluid
5325 5326
            import paddle.fluid.layers as layers
            input = layers.data(name="input", shape=[13, 11], dtype='float32')
Q
qingqing01 已提交
5327 5328 5329
            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
5330 5331
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
W
whs 已提交
5332 5333 5334 5335 5336 5337
    inputs = {"X": [input]}
    attrs = None
    if isinstance(k, Variable):
        inputs['K'] = k
    else:
        attrs = {'k': k}
Q
qingqing01 已提交
5338 5339
    helper.append_op(
        type="top_k",
W
whs 已提交
5340
        inputs=inputs,
Q
qingqing01 已提交
5341 5342
        outputs={"Out": [values],
                 "Indices": [indices]},
W
whs 已提交
5343
        attrs=attrs)
Q
qingqing01 已提交
5344 5345 5346 5347 5348
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


5349
def edit_distance(input, label, normalized=True, ignored_tokens=None):
5350
    """
R
ruri 已提交
5351
    Edit distance operator computes the edit distances between a batch of
Y
ying 已提交
5352 5353 5354 5355 5356 5357 5358 5359
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
5360

Y
ying 已提交
5361
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
5362

5363
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
5364 5365
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
5366
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
5367

5368
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
5369 5370
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
5371

5372 5373 5374
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
5375
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
5376
                          the length of reference string.
5377
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
5378
                                     calculating edit distance.
5379
        name (str): The name of this layer. It is optional.
5380

W
wanghaoshuang 已提交
5381
    Returns:
W
wanghaoshuang 已提交
5382
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
5383 5384 5385 5386

    Examples:
        .. code-block:: python

R
ruri 已提交
5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[1], dtype='int64')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            cost, _ = fluid.layers.edit_distance(input=x, label=y)

            cpu = fluid.core.CPUPlace()
            exe = fluid.Executor(cpu)
            exe.run(fluid.default_startup_program())

            import numpy
            x_ = numpy.random.randint(5, size=(2, 1)).astype('int64')
            y_ = numpy.random.randint(5, size=(2, 1)).astype('int64')

            print(x_)
            print(y_)

            x = fluid.create_lod_tensor(x_, [[2]], cpu)
            y = fluid.create_lod_tensor(y_, [[2]], cpu)

            outs = exe.run(feed={'x':x, 'y':y}, fetch_list=[cost.name])

            print(outs)
5409
    """
5410
    helper = LayerHelper("edit_distance", **locals())
5411

5412
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
5413
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
5414 5415
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
5416 5417 5418 5419 5420

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
5421
            attrs={"tokens": ignored_tokens})
5422 5423 5424 5425 5426
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
5427
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
5428
            attrs={"tokens": ignored_tokens})
5429 5430
        label = erased_label

5431
    # edit distance op
X
Xin Pan 已提交
5432 5433
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
5434 5435 5436 5437
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
5438 5439
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
5440 5441
        attrs={"normalized": normalized})

5442
    return edit_distance_out, sequence_num
5443 5444 5445 5446 5447


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
5448

Y
ying 已提交
5449 5450 5451 5452
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

5470
        input.lod = [[4, 4]]
M
minqiyang 已提交
5471

W
whs 已提交
5472
        Computation:
5473

W
whs 已提交
5474 5475 5476 5477 5478 5479
        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]]
        step2: merge repeated tokens and remove blank which is 0. Then we get first output sequence:
               [[2], [1]]

        Finally:
5480 5481 5482 5483 5484

        output.data = [[2],
                       [1],
                       [3]]

5485
        output.lod = [[2, 1]]
5486

W
whs 已提交
5487

5488 5489
    Args:

Y
ying 已提交
5490 5491 5492 5493 5494 5495 5496 5497 5498
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
5499
        name (str): The name of this layer. It is optional.
5500 5501

    Returns:
H
haowang101779990 已提交
5502 5503 5504
        Variable: CTC greedy decode result which is a 2-D tensor with shape [Lp, 1]. \
                  'Lp' is the sum if all output sequences' length. If all the sequences \
                  in result were empty, the result LoDTensor will be [-1] with  \
M
minqiyang 已提交
5505
                  LoD [[]] and dims [1, 1].
5506 5507 5508 5509

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
5510
            import paddle.fluid as fluid
5511 5512
            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
5513
    """
5514
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
5515
    _, topk_indices = topk(input, k=1)
5516 5517

    # ctc align op
X
Xin Pan 已提交
5518
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
5519 5520 5521
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
5522
        outputs={"Output": [ctc_out]},
5523 5524
        attrs={"merge_repeated": True,
               "blank": blank})
5525
    return ctc_out
5526 5527


W
Wu Yi 已提交
5528
def warpctc(input, label, blank=0, norm_by_times=False, use_cudnn=False):
W
wanghaoshuang 已提交
5529
    """
5530 5531
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
5532
    to compute Connectionist Temporal Classification (CTC) loss.
5533 5534
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
5535 5536 5537
    input tensor.

    Args:
5538
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
5539 5540 5541 5542
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
5543
       label (Variable): The ground truth of variable-length sequence,
5544 5545 5546
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
5547 5548
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
5549 5550 5551
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
5552
         follewed by a mean_op.
W
Wu Yi 已提交
5553
       use_cudnn (bool, default false): Whether to use cudnn.
W
wanghaoshuang 已提交
5554 5555

    Returns:
5556 5557
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
5558 5559

    Examples:
5560

W
wanghaoshuang 已提交
5561
        .. code-block:: python
5562

B
Bai Yifan 已提交
5563 5564 5565 5566 5567
            import paddle.fluid as fluid
            label = fluid.layers.data(name='label', shape=[11, 8],
                                      dtype='float32', lod_level=1)
            predict = fluid.layers.data(name='predict', shape=[11, 1],
                                        dtype='float32')
5568
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
5569 5570

    """
F
fengjiayi 已提交
5571
    helper = LayerHelper('warpctc', **locals())
X
Xin Pan 已提交
5572 5573
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
W
wanghaoshuang 已提交
5574 5575 5576 5577 5578 5579
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
W
Wu Yi 已提交
5580 5581 5582 5583 5584
        attrs={
            'blank': blank,
            'norm_by_times': norm_by_times,
            'use_cudnn': use_cudnn
        })
W
wanghaoshuang 已提交
5585
    return loss_out
5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
5601 5602 5603
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
5604 5605 5606 5607 5608
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
5609

5610
            out.lod  = [[0, 1, 3]]
5611 5612 5613 5614

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
5615 5616 5617 5618 5619 5620 5621
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
5622 5623 5624

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
5625 5626

    Returns:
5627

5628 5629 5630 5631 5632
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

B
bdzhuxiaoning 已提交
5633 5634 5635
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[2, 6], append_batch_size=False, dtype='float32', lod_level=1)
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=4)
5636
    """
L
lujun 已提交
5637
    assert not in_dygraph_mode(), (
5638
        "sequence layer is not supported in dygraph mode yet.")
5639
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
5640
    out = helper.create_variable_for_type_inference(helper.input_dtype())
5641 5642 5643 5644 5645 5646
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
5647 5648


5649 5650 5651 5652
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
5653 5654 5655 5656 5657 5658
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
5659
        num_neg_samples=None,
5660 5661 5662
        name=None,
        sampler="uniform",
        custom_dist=None,
5663 5664
        seed=0,
        is_sparse=False):
5665 5666 5667 5668 5669 5670 5671
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
5672 5673
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
5674
            sample is 1.0.
C
chengduo 已提交
5675 5676 5677 5678 5679 5680 5681 5682 5683
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
5684
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
5685 5686
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
5687 5688 5689
        sampler (str): The sampler used to sample class from negtive classes.
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
5690
        custom_dist (float[]): A float[] with size=num_total_classes.
5691 5692 5693 5694
                       It is used when sampler is set to 'custom_dist'.
                       custom_dist[i] is the probsbility of i-th class to be sampled.
                       default: None.
        seed (int): The seed used in sampler. default: 0.
5695
        is_sparse(bool): The flag indicating whether to use sparse update, the weight@GRAD and bias@GRAD will be changed to SelectedRows.
F
fengjiayi 已提交
5696

5697
    Returns:
Y
Yibing Liu 已提交
5698 5699 5700 5701 5702 5703
        Variable: The output nce loss.

    Examples:
        .. code-block:: python


5704 5705
	    import paddle.fluid as fluid
        import numpy as np
Y
Yibing Liu 已提交
5706

Y
Yibing Liu 已提交
5707 5708 5709 5710 5711 5712 5713 5714
	    window_size = 5
	    words = []
	    for i in xrange(window_size):
		words.append(fluid.layers.data(
		    name='word_{0}'.format(i), shape=[1], dtype='int64'))

	    dict_size = 10000
	    label_word = int(window_size / 2) + 1
Y
Yibing Liu 已提交
5715

Y
Yibing Liu 已提交
5716 5717 5718 5719
	    embs = []
	    for i in xrange(window_size):
		if i == label_word:
		    continue
Y
Yibing Liu 已提交
5720

Y
Yibing Liu 已提交
5721 5722 5723
		emb = fluid.layers.embedding(input=words[i], size=[dict_size, 32],
				   param_attr='embed', is_sparse=True)
		embs.append(emb)
5724

Y
Yibing Liu 已提交
5725 5726 5727 5728
	    embs = fluid.layers.concat(input=embs, axis=1)
	    loss = fluid.layers.nce(input=embs, label=words[label_word],
		      num_total_classes=dict_size, param_attr='nce.w_0',
		      bias_attr='nce.b_0')
5729

Y
Yibing Liu 已提交
5730 5731 5732 5733 5734 5735 5736 5737
	    #or use custom distribution
	    dist = np.array([0.05,0.5,0.1,0.3,0.05])
	    loss = fluid.layers.nce(input=embs, label=words[label_word],
		      num_total_classes=5, param_attr='nce.w_1',
		      bias_attr='nce.b_1',
		      num_neg_samples=3,
		      sampler="custom_dist",
		      custom_dist=dist)
5738
    """
Y
Yang Yu 已提交
5739 5740 5741
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
5742 5743

    dim = input.shape[1]
Y
Yang Yu 已提交
5744 5745 5746 5747 5748 5749
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
5750
    inputs = {}
C
chengduo 已提交
5751 5752 5753 5754 5755 5756 5757
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
5758 5759 5760
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
5761

5762 5763 5764 5765
    inputs['Input'] = input
    inputs['Label'] = label
    inputs['Weight'] = w
    inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
5766 5767 5768 5769 5770 5771 5772

    if sampler == "uniform":
        sampler = 0
    elif sampler == "log_uniform":
        sampler = 1
    elif sampler == "custom_dist":
        assert custom_dist is not None
5773 5774
        # assert isinstance(custom_dist, Variable)

Y
Yibing Liu 已提交
5775
        custom_dist_len = num_total_classes
5776 5777 5778 5779 5780 5781
        alias_probs_ = [0] * custom_dist_len
        alias_ = [0] * custom_dist_len
        bigs = []
        littles = []
        for i in range(custom_dist_len):
            normal_prob = custom_dist[i] * custom_dist_len
5782
            if normal_prob - 1.0 > 0:
5783
                bigs.append((i, normal_prob))
5784
            elif 1.0 - normal_prob > 0:
5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799
                littles.append((i, normal_prob))
            else:
                alias_probs_[i] = normal_prob
                alias_[i] = -1

        while len(bigs) and len(littles):
            big = bigs.pop(0)
            little = littles.pop(0)

            big_idx = big[0]
            big_prob = big[1]

            alias_probs_[little[0]] = little[1]
            alias_[little[0]] = big_idx
            big_left = big[1] + little[1] - 1
5800
            if big_left - 1.0 > 0:
5801
                bigs.append((big_idx, big_left))
5802
            elif 1.0 - big_left > 0:
5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816
                littles.append((big_idx, big_left))
            else:
                alias_probs_[big_idx] = big_left
                alias_[big_idx] = -1

        if len(bigs):
            big = bigs.pop(0)
            alias_probs_[big[0]] = 1.0
            alias_[big[0]] = -1
        if len(littles):
            little = littles.pop(0)
            alias_probs_[little[0]] = 1.0
            alias_[little[0]] = -1

5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831
        def _init_by_numpy_array(numpy_array):
            ret = helper.create_parameter(
                attr=ParamAttr(),
                shape=numpy_array.shape,
                dtype=numpy_array.dtype,
                default_initializer=NumpyArrayInitializer(numpy_array))
            ret.stop_gradient = True
            return ret

        inputs['CustomDistProbs'] = _init_by_numpy_array(
            np.array(custom_dist).astype('float32'))
        inputs['CustomDistAlias'] = _init_by_numpy_array(
            np.array(alias_).astype('int32'))
        inputs['CustomDistAliasProbs'] = _init_by_numpy_array(
            np.array(alias_probs_).astype('float32'))
5832 5833 5834 5835
        sampler = 2
    else:
        raise Exception("Unsupported sampler type.")

5836 5837 5838 5839 5840
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

5841 5842 5843 5844
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
5845

Y
Yang Yu 已提交
5846 5847
    attrs = {
        'num_total_classes': int(num_total_classes),
5848 5849
        'num_neg_samples': num_neg_samples,
        'seed': seed,
5850
        'sampler': sampler,
5851 5852
        'is_sparse': is_sparse,
        'remote_prefetch': remote_prefetch
Y
Yang Yu 已提交
5853
    }
Y
Yang Yu 已提交
5854 5855 5856

    helper.append_op(
        type='nce',
C
chengduo 已提交
5857
        inputs=inputs,
Y
Yang Yu 已提交
5858 5859 5860 5861 5862 5863
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
5864
    return cost / (num_neg_samples + 1)
5865 5866


C
chengduo 已提交
5867 5868
def hsigmoid(input,
             label,
5869
             num_classes,
C
chengduo 已提交
5870 5871
             param_attr=None,
             bias_attr=None,
J
JiabinYang 已提交
5872
             name=None,
5873 5874 5875
             path_table=None,
             path_code=None,
             is_custom=False,
J
JiabinYang 已提交
5876
             is_sparse=False):
W
weixing02 已提交
5877 5878
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
5879
    process of language model. This operator organizes the classes into a
M
minqiyang 已提交
5880
    complete binary tree, or you can use is_custom to pass your own tree to
5881
    implement hierarchical. Each leaf node represents a class(a word) and each
G
guosheng 已提交
5882 5883 5884 5885 5886 5887
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

5888
    Using default tree you can Refer to `Hierarchical Probabilistic Neural Network Language Model
G
guosheng 已提交
5889
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
5890

5891 5892
    And if you want to use the costumed tree by set 'is_custom' as true you may need to do following things first:

H
haowang101779990 已提交
5893 5894 5895 5896
    1. using your word dict to build a binary tree, each leaf node should be an word of your word dict
    2. build a dict to store word_id -> word's leaf to root path, we call it path_table.
    3. build a dict to store word_id -> code of word's leaf to root path, we call it path_code. Code
       means label of each binary classification, using 1 indicate true, 0 indicate false.
M
minqiyang 已提交
5897
    4. now, each word should has its path and code along the path, you can pass a batch of path and code
H
haowang101779990 已提交
5898
       related to the same batch of inputs.
5899

W
weixing02 已提交
5900
    Args:
M
minqiyang 已提交
5901
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
5902 5903 5904 5905
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
M
minqiyang 已提交
5906 5907
        num_classes: (int), The number of classes, must not be less than 2. with default tree this has to be set,
            it should never be None under is_custom=False, but while is_custom is true, it should be non leaf num
5908
            which indicates the num of classes using by binary classify.
C
chengduo 已提交
5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
M
minqiyang 已提交
5920
        path_table: (Variable|None) this variable can store each batch of samples' path to root,
5921
            it should be in leaf -> root order
M
minqiyang 已提交
5922 5923 5924
            path_table should have the same shape with path_code, and for each sample i path_table[i] indicates a np.array like
            structure and each element in this array is indexes in parent nodes' Weight Matrix.
        path_code:  (Variable|None) this variable can store each batch of samples' code,
5925
            each code consist with every code of parent nodes. it should be in leaf -> root order
M
minqiyang 已提交
5926
        is_custom: (bool|False)using user defined binary tree instead of default complete binary tree, if costum is
5927
             set you need to set path_table/path_code/num_classes, otherwise num_classes should be set
M
minqiyang 已提交
5928
        is_sparse: (bool|False)using sparse update instead of dense update, if set, the gradient
5929
             of W and input will be sparse.
W
weixing02 已提交
5930 5931

    Returns:
J
JiabinYang 已提交
5932
        Out: (LodTensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]
W
weixing02 已提交
5933 5934 5935 5936 5937

    Examples:

        .. code-block:: python

5938
            import paddle.fluid as fluid
G
guosheng 已提交
5939 5940 5941
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
5942 5943 5944 5945
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5946 5947
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
5948
    dim = input.shape[1]
5949
    if ((num_classes is None) or (num_classes < 2)) and (not is_custom):
J
JiabinYang 已提交
5950 5951 5952
        raise ValueError(
            "num_classes must not be less than 2 with default tree")

5953 5954 5955 5956 5957 5958 5959 5960 5961
    if (not is_custom) and (is_sparse):
        print("Sparse mode should not be used without custom tree")
        is_sparse = False

    if (not is_custom) and ((path_table is not None) or
                            (path_code is not None)):
        raise ValueError(
            "only num_classes should be passed without custom tree")

5962
    if (is_custom) and (path_code is None):
5963
        raise ValueError("path_code should not be None with custom tree")
5964
    elif (is_custom) and (path_table is None):
5965
        raise ValueError("path_table should not be None with custom tree")
5966
    elif (is_custom) and (num_classes is None):
5967
        raise ValueError("num_classes should not be None with custom tree")
5968 5969 5970
    else:
        pass

J
JiabinYang 已提交
5971
    weights = None
5972 5973 5974 5975
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
5976
    if not is_custom:
J
JiabinYang 已提交
5977 5978 5979 5980 5981 5982 5983 5984
        weights = helper.create_parameter(
            attr=helper.param_attr,
            shape=[num_classes - 1, dim],
            is_bias=False,
            dtype=input.dtype)
    else:
        weights = helper.create_parameter(
            attr=helper.param_attr,
5985
            shape=[num_classes, dim],
J
JiabinYang 已提交
5986 5987
            is_bias=False,
            dtype=input.dtype)
5988 5989 5990
    inputs = {
        "X": input,
        "W": weights,
5991
        "PathTable": path_table,
5992
        "PathCode": path_code,
5993 5994
        "Label": label
    }
W
weixing02 已提交
5995
    if helper.bias_attr:
5996
        if not is_custom:
J
JiabinYang 已提交
5997 5998
            bias = helper.create_parameter(
                attr=helper.bias_attr,
J
JiabinYang 已提交
5999
                shape=[num_classes - 1, 1],
J
JiabinYang 已提交
6000 6001 6002 6003 6004 6005
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
        else:
            bias = helper.create_parameter(
                attr=helper.bias_attr,
6006
                shape=[num_classes, 1],
J
JiabinYang 已提交
6007 6008 6009
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
W
weixing02 已提交
6010 6011
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
6012
        inputs=inputs,
W
weixing02 已提交
6013
        outputs={"Out": out,
6014 6015 6016 6017 6018 6019 6020
                 "PreOut": pre_out,
                 "W_Out": weights},
        attrs={
            "num_classes": num_classes,
            "is_sparse": is_sparse,
            "remote_prefetch": remote_prefetch
        })
W
weixing02 已提交
6021 6022 6023
    return out


Y
fix ci.  
ying 已提交
6024
def transpose(x, perm, name=None):
Y
ying 已提交
6025 6026 6027 6028 6029 6030 6031
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
6032 6033 6034
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
6035 6036 6037 6038 6039 6040 6041

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

6042
            # use append_batch_size=False to avoid prepending extra
6043
            # batch size in shape
6044
            import paddle.fluid as fluid
6045
            x = fluid.layers.data(name='x', shape=[5, 10, 15],
6046
                            dtype='float32', append_batch_size=False)
6047
            x_transposed = fluid.layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
6048 6049
    """

Y
fix ci.  
ying 已提交
6050
    if len(perm) != len(x.shape):
Y
ying 已提交
6051 6052
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
6053
            "Its length should be equal to Input(input)'s rank.")
Y
ying 已提交
6054 6055 6056 6057 6058 6059
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
6060 6061

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
6062 6063
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
6064
    helper.append_op(
6065
        type='transpose2',
Y
fix ci.  
ying 已提交
6066
        inputs={'X': [x]},
6067 6068
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
6069 6070
        attrs={'axis': perm})
    return out
6071 6072


6073 6074 6075 6076 6077 6078 6079
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
6080
    """
6081 6082 6083 6084 6085 6086 6087
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
6088 6089 6090 6091 6092 6093 6094 6095 6096 6097

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

6116 6117 6118 6119 6120 6121 6122 6123 6124
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

6125 6126 6127
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
6128 6129 6130 6131 6132
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
6160 6161 6162
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

6175
            output.dims = {8, 8}
6176

6177
            output.lod = [[4, 4]]
6178

T
Tink_Y 已提交
6179
    Examples:
6180 6181 6182

        .. code-block:: python

B
Bai Yifan 已提交
6183 6184 6185
            import paddle.fluid as fluid
            data = fluid.layers.data(name='data', shape=[3, 32, 32],
                                     dtype='float32')
6186
            output = fluid.layers.im2sequence(
B
Bai Yifan 已提交
6187 6188
                input=data, stride=[1, 1], filter_size=[2, 2])

6189 6190

    """
L
lujun 已提交
6191
    assert not in_dygraph_mode(), (
6192
        "sequence layer is not supported in dygraph mode yet.")
W
wanghaoshuang 已提交
6193 6194 6195 6196 6197 6198 6199 6200 6201 6202

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
6203
    inputs = {"X": input}
6204
    attrs = {"kernels": filter_size, "strides": stride, "paddings": padding}
6205 6206 6207 6208 6209
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
6210
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
6211
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
6212
    helper.append_op(
6213
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
6214
    return out
6215 6216


Y
yuyang18 已提交
6217
@templatedoc()
6218
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
6219 6220
    """
    ${comment}
6221 6222

    Args:
Y
yuyang18 已提交
6223
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
6224 6225
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
6226 6227 6228 6229 6230
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
6231
        ${out_comment}.
6232 6233

    Examples:
Y
yuyang18 已提交
6234 6235 6236 6237
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
6238 6239 6240 6241 6242 6243
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
6244
    out = helper.create_variable_for_type_inference(dtype)
6245 6246 6247 6248 6249
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
6250
    return helper.append_activation(out)
6251 6252


Y
yuyang18 已提交
6253
@templatedoc()
6254 6255
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
6256 6257
    ${comment}

L
lujun 已提交
6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300
    For Example:

    .. code-block:: text

        case 1:

        Given:

        X = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
             [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]],
             [[2,0,3,4], [2,1,7,8], [2,2,4,2], [2,3,3,4]],
             [[3,0,3,4], [3,1,7,8], [3,2,4,2], [3,3,3,4]]]

        index = [3,0,1,2]

        out:[[3 0 3 4]    // X[3,0] (3 = index[i], 0 = i); i=0
             [0 1 3 4]    // X[0,1] (0 = index[i], 1 = i); i=1
             [1 2 4 2]    // X[1,2] (0 = index[i], 2 = i); i=2
             [2 3 3 4]]   // X[2,3] (0 = index[i], 3 = i); i=3

        case 2:

        Given:

        X = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
             [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]]]

        index = [1,0]

        out:[[1 0 3 4]    // X[1,0] (3 = index[0], 0 = i); i=1
             [0 1 3 4]    // X[0,1] (0 = index[1], 1 = i); i=2
             [0 2 4 4]    // X[0,2] (0 = 0, 2 = i); i=3
             [0 3 3 4]]   // X[0,3] (0 = 0, 3 = i); i=4

    Examples:

    .. code-block:: python

        import paddle.fluid as fluid
        x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
        x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
        index = fluid.layers.data(name='index', shape=[1], dtype='int32')
        out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
6301 6302

    Args:
Y
yuyang18 已提交
6303 6304
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
6305 6306

    Returns:
Y
yuyang18 已提交
6307
        ${out_comment}.
6308 6309
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
6310 6311 6312 6313 6314

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
6315
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
6316 6317 6318 6319 6320 6321
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
6322 6323


6324 6325 6326
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
J
jerrywgz 已提交
6327
                               ignore_index=kIgnoreIndex,
6328
                               numeric_stable_mode=True,
6329 6330
                               return_softmax=False,
                               axis=-1):
6331 6332
    """
    **Softmax With Cross Entropy Operator.**
6333

6334
    Cross entropy loss with softmax is used as the output layer extensively. This
6335 6336 6337
    operator computes the softmax normalized values for dimension :attr:`axis` of 
    the input tensor, after which cross-entropy loss is computed. This provides 
    a more numerically stable gradient.
6338

6339 6340 6341
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
6342

6343 6344 6345 6346
    When the attribute :attr:`soft_label` is set :attr:`False`, this operators 
    expects mutually exclusive hard labels, each sample in a batch is in exactly 
    one class with a probability of 1.0. Each sample in the batch will have a 
    single label.
6347

6348
    The equation is as follows:
6349

6350
    1) Hard label (one-hot label, so every sample has exactly one class)
6351

6352 6353 6354 6355
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
6356

6357 6358 6359
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
6360

6361 6362 6363 6364
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

6365 6366
    3) If :attr:`numeric_stable_mode` is :attr:`True`, softmax is calculated 
    first by:
S
sneaxiy 已提交
6367 6368

    .. math::
6369

H
haowang101779990 已提交
6370
        max_j &= \\max_{i=0}^{K}{\\text{logit}_i}
S
sneaxiy 已提交
6371

H
haowang101779990 已提交
6372
        log\\_max\\_sum_j &= \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)
S
sneaxiy 已提交
6373

H
haowang101779990 已提交
6374
        softmax_j &= \\exp(logit_j - max_j - {log\\_max\\_sum}_j)
S
sneaxiy 已提交
6375 6376 6377

    and then cross entropy loss is calculated by softmax and label.

6378
    Args:
6379 6380 6381 6382 6383 6384
        logits (Variable): The input tensor of unscaled log probabilities.
        label (Variable): The ground truth  tensor. If :attr:`soft_label`
            is set to :attr:`True`, Label is a Tensor<float/double> in the 
            same shape with :attr:`logits`. If :attr:`soft_label` is set to 
            :attr:`True`, Label is a Tensor<int64> in the same shape with 
            :attr:`logits` expect shape in dimension :attr:`axis` as 1.
6385
        soft_label (bool): A flag to indicate whether to interpretate the given
6386
            labels as soft labels. Default False.
M
minqiyang 已提交
6387 6388
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
6389 6390
                            if :attr:`soft_label` is set to :attr:`False`. 
                            Default: kIgnoreIndex
S
sneaxiy 已提交
6391 6392
        numeric_stable_mode (bool): A flag to indicate whether to use a more
                                    numerically stable algorithm. Only valid
6393 6394 6395 6396
                                    when :attr:`soft_label` is :attr:`False` 
                                    and GPU is used. When :attr:`soft_label` 
                                    is :attr:`True` or CPU is used, the 
                                    algorithm is always numerically stable.
6397
                                    Note that the speed may be slower when use
6398
                                    stable algorithm. Default: True
6399
        return_softmax (bool): A flag indicating whether to return the softmax
6400
                               along with the cross entropy loss. Default: False
6401 6402 6403
        axis (int): The index of dimension to perform softmax calculations. It 
                    should be in range :math:`[-1, rank - 1]`, while :math:`rank`
                    is the rank of input :attr:`logits`. Default: -1.
6404

6405
    Returns:
H
haowang101779990 已提交
6406 6407
        Variable or Tuple of two Variables: Return the cross entropy loss if \
                                            `return_softmax` is False, otherwise the tuple \
6408 6409 6410 6411
                                            (loss, softmax), softmax is in the same shape \
                                            with input logits and cross entropy loss is in \
                                            the same shape with input logits except shape \
                                            in dimension :attr:`axis` as 1.
6412 6413 6414 6415

    Examples:
        .. code-block:: python

6416 6417
            import paddle.fluid as fluid

6418 6419 6420
            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
6421 6422
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
6423 6424
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
6425 6426
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
6427 6428 6429 6430 6431 6432
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
S
sneaxiy 已提交
6433 6434 6435
        attrs={
            'soft_label': soft_label,
            'ignore_index': ignore_index,
6436 6437
            'numeric_stable_mode': numeric_stable_mode,
            'axis': axis
S
sneaxiy 已提交
6438
        })
6439 6440 6441 6442

    if return_softmax:
        return loss, softmax

6443 6444 6445
    return loss


6446 6447 6448
def sampled_softmax_with_cross_entropy(logits,
                                       label,
                                       num_samples,
X
xuezhong 已提交
6449
                                       num_true=1,
6450
                                       remove_accidental_hits=True,
X
xuezhong 已提交
6451 6452 6453
                                       use_customized_samples=False,
                                       customized_samples=None,
                                       customized_probabilities=None,
6454
                                       seed=0):
X
xuezhong 已提交
6455 6456 6457 6458 6459
    """
    **Sampled Softmax With Cross Entropy Operator.**

    Cross entropy loss with sampled softmax is used as the output layer for 
    larger output classes extensively. This operator samples a number of samples
6460
    for all examples, and computes the softmax normalized values for each 
X
xuezhong 已提交
6461 6462 6463 6464 6465 6466 6467 6468
    row of the sampled tensor, after which cross-entropy loss is computed. 

    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
    
    For examples with T true labels (T >= 1), we assume that each true label has
    a probability of 1/T. For each sample, S samples are generated using a
X
xuezhong 已提交
6469
    log uniform distribution. True labels are concatenated with these samples to
X
xuezhong 已提交
6470 6471 6472 6473 6474 6475 6476 6477
    form T + S samples for each example. So, assume the shape of logits is
    [N x K], the shape for samples is [N x (T+S)]. For each sampled label, a 
    probability is calculated, which corresponds to the Q(y|x) in 
    [Jean et al., 2014](http://arxiv.org/abs/1412.2007).
    
    Logits are sampled according to the sampled labels. Then if 
    remove_accidental_hits is True, if a sample[i, j] accidentally hits true 
    labels, then the corresponding sampled_logits[i, j] is minus by 1e20 to 
X
xuezhong 已提交
6478
    make its softmax result close to zero. Then sampled logits are subtracted by
X
xuezhong 已提交
6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489
    logQ(y|x), these sampled logits and re-indexed labels are used to compute 
    a softmax with cross entropy.

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. Label is a 
            Tensor<int64> with shape [N x T], where T is the number of true 
            labels per example. 
        num_samples (int): The number for each example, num_samples should be 
            less than the number of class.
6490
        num_true(int): The number of target classes per training example.
X
xuezhong 已提交
6491 6492 6493 6494 6495
        remove_accidental_hits (bool): A flag indicating whether to remove 
            accidental hits when sampling. If True and if a sample[i, j] 
            accidentally hits true labels, then the corresponding 
            sampled_logits[i, j] is minus by 1e20 to make its softmax result 
            close to zero. Default is True.
X
xuezhong 已提交
6496
        use_customized_samples (bool): Whether to use custom samples and probabities to sample
6497
            logits.
X
xuezhong 已提交
6498 6499 6500 6501 6502
        customized_samples (Variable): User defined samples, which is a 2-D tensor
            with shape [N, T + S]. S is the num_samples, and T is the number of true 
            labels per example. 
        customized_probabilities (Variable): User defined probabilities of samples, 
            a 2-D tensor which has the same shape with customized_samples.
6503 6504 6505
        seed (int): The random seed for generating random number, which is used
            in the process of sampling. Default is 0.

X
xuezhong 已提交
6506 6507 6508 6509 6510 6511 6512
    Returns:
        Variable: Return the cross entropy loss which is a 2-D tensor with shape
                  [N x 1].

    Examples:
        .. code-block:: python

6513 6514 6515
            import paddle.fluid as fluid

            input = fluid.layers.data(name='data', shape=[256], dtype='float32')
6516
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
6517
            fc = fluid.layers.fc(input=input, size=100)
X
xuezhong 已提交
6518
            out = fluid.layers.sampled_softmax_with_cross_entropy(
6519
                      logits=fc, label=label, num_samples=25)
X
xuezhong 已提交
6520 6521 6522 6523 6524 6525 6526 6527
    """
    helper = LayerHelper('sample_logits', **locals())
    samples = helper.create_variable_for_type_inference(dtype='int64')
    probabilities = helper.create_variable_for_type_inference(
        dtype=logits.dtype)
    sampled_logits \
        = helper.create_variable_for_type_inference(dtype=logits.dtype)
    sampled_label = helper.create_variable_for_type_inference(dtype='int64')
X
xuezhong 已提交
6528 6529
    sampled_softlabel = helper.create_variable_for_type_inference(
        dtype=logits.dtype)
6530 6531
    logits_dim = helper.create_variable_for_type_inference(dtype=logits.dtype)
    labels_dim = helper.create_variable_for_type_inference(dtype=label.type)
X
xuezhong 已提交
6532 6533 6534 6535 6536

    helper.append_op(
        type='sample_logits',
        inputs={
            'Logits': logits,
X
xuezhong 已提交
6537
            'Labels': label,
X
xuezhong 已提交
6538 6539
            'CustomizedSamples': customized_samples,
            'CustomizedProbabilities': customized_probabilities
X
xuezhong 已提交
6540 6541 6542 6543
        },
        outputs={
            'Samples': samples,
            'Probabilities': probabilities,
X
xuezhong 已提交
6544
            'SampledLabels': sampled_label,
6545 6546 6547
            'SampledLogits': sampled_logits,
            'LogitsDim': logits_dim,
            'LabelsDim': labels_dim
X
xuezhong 已提交
6548 6549
        },
        attrs={
X
xuezhong 已提交
6550
            'use_customized_samples': use_customized_samples,
6551
            'uniq': True,
X
xuezhong 已提交
6552 6553 6554 6555
            'remove_accidental_hits': remove_accidental_hits,
            'num_samples': num_samples,
            'seed': seed
        })
X
xuezhong 已提交
6556 6557
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
X
xuezhong 已提交
6558 6559 6560 6561 6562 6563
    helper.append_op(
        type='one_hot',
        inputs={'X': sampled_label},
        attrs={'depth': num_samples + 1},
        outputs={'Out': sampled_softlabel})

6564 6565
    helper.append_op(
        type='softmax_with_cross_entropy',
X
xuezhong 已提交
6566
        inputs={'Logits': sampled_logits,
X
xuezhong 已提交
6567
                'Label': sampled_softlabel},
X
xuezhong 已提交
6568 6569 6570
        outputs={'Softmax': softmax,
                 'Loss': loss},
        attrs={
X
xuezhong 已提交
6571
            'soft_label': True,
X
xuezhong 已提交
6572 6573 6574
            'ignore_index': False,
            'numeric_stable_mode': False
        })
X
xuezhong 已提交
6575
    return loss / num_true
X
xuezhong 已提交
6576 6577


6578 6579
def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
6580 6581
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
6582
    For each instance, it computes the smooth L1 loss element by element first
6583
    and then sums all the losses. So the shape of ouput Variable is
6584
    [batch_size, 1].
6585

6586 6587
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
6588
            L1 loss op with shape [batch_size, dim1, ..., dimN].
6589
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
6590
            L1 loss op with same shape as :attr:`x`.
6591
        inside_weight (Variable|None):  A tensor with rank at least 2. This
6592 6593
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
6594
            by this tensor element by element.
6595
        outside_weight (Variable|None): A tensor with rank at least 2. This
6596 6597
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
6598
            element by element.
6599
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
6600 6601
           scalar with default value 1.0.

6602
    Returns:
6603
        Variable: The output smooth L1 loss with shape [batch_size, 1].
6604 6605 6606 6607

    Examples:
        .. code-block:: python

6608
            import paddle.fluid as fluid
6609
            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
6610 6611
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
6612
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
6613
            out = fluid.layers.smooth_l1(x=fc, y=label)
6614
    """
6615

6616
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
6617 6618
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
6619 6620 6621 6622 6623 6624 6625 6626 6627 6628
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
6629
        attrs={'sigma': sigma if sigma is not None else 1.0})
6630
    return loss
6631 6632 6633 6634


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
6635
    This layer creates the one-hot representations for input indices.
6636 6637

    Args:
Y
Yibing Liu 已提交
6638 6639
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
6640 6641

    Returns:
Y
Yibing Liu 已提交
6642
        Variable: The one-hot representations of input.
6643 6644

    Examples:
C
caoying03 已提交
6645
        .. code-block:: python
6646

6647
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
6648 6649
            label = fluid.layers.data(name="label", shape=[1], dtype="int64")
            one_hot_label = fluid.layers.one_hot(input=label, depth=10)
6650 6651
    """
    helper = LayerHelper("one_hot", **locals())
6652

X
Xin Pan 已提交
6653
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
6654 6655 6656 6657 6658 6659 6660 6661 6662 6663

    if in_dygraph_mode():
        inputs = {'X': input}
        attrs = {'depth': depth}
    else:
        if not isinstance(depth, Variable):
            # user attribute 
            inputs = {'X': input}
            attrs = {'depth': depth}
        else:
H
Hongyu Liu 已提交
6664
            depth.stop_gradient = True
6665 6666
            inputs = {'X': input, 'depth_tensor': depth}
            attrs = {}
6667 6668
    helper.append_op(
        type="one_hot",
6669 6670
        inputs=inputs,
        attrs=attrs,
6671 6672
        outputs={'Out': one_hot_out},
        stop_gradient=True)
6673
    return one_hot_out
Y
Yu Yang 已提交
6674 6675


Y
Yu Yang 已提交
6676
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
6677
    """
Y
yi.wu 已提交
6678 6679 6680
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
6681 6682 6683 6684 6685 6686

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

6687 6688
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
6689 6690 6691 6692

    Examples:
        .. code-block:: python

6693
           import paddle.fluid as fluid
Y
yi.wu 已提交
6694
           global_step = fluid.layers.autoincreased_step_counter(
Y
Yibing Liu 已提交
6695
               counter_name='@LR_DECAY_COUNTER@', begin=0, step=1)
Y
Yu Yang 已提交
6696 6697
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
6698 6699
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
6700 6701 6702 6703 6704
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
6705
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
6706
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
6707 6708
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
6709
            outputs={'Out': [counter]},
M
minqiyang 已提交
6710 6711
            attrs={'step': float(step)},
            stop_gradient=True)
Y
Yu Yang 已提交
6712 6713 6714
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
6715 6716


6717
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
6718
    """
C
caoying03 已提交
6719 6720
    Gives a new shape to the input Tensor without changing its data.

6721 6722 6723 6724 6725
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
6726

6727
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
6728

6729 6730 6731 6732
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

6733
    2. 0 means the actual dimension value is going to be copied from the
6734 6735 6736 6737
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
6738 6739

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
6740
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
6741
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
6742

6743
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
6744 6745
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
6746 6747
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
6748
    dimensions.
C
caoying03 已提交
6749

6750
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
6751 6752 6753 6754
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
6755 6756

    Args:
6757
        x(variable): The input tensor.
C
caoying03 已提交
6758 6759
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
6760 6761 6762 6763 6764
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
6765 6766
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
C
chengduozh 已提交
6767 6768 6769
        inplace(bool): If ``inplace`` is `True`, the input and output of ``layers.reshape``
                       are the same variable, otherwise, the input and output of
                       ``layers.reshape`` are different variables. Note that if :attr:`x`
C
chengduozh 已提交
6770
                       is more than one layer's input, ``inplace`` must be :attr:`False`.
6771
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
6772

6773
    Returns:
G
guosheng 已提交
6774 6775 6776 6777
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
6778

X
Xin Pan 已提交
6779 6780 6781
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
6782 6783
    Examples:
        .. code-block:: python
G
guosheng 已提交
6784

6785
            import paddle.fluid as fluid
6786
            data = fluid.layers.data(
6787
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
6788
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
6789
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
6790 6791 6792
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
6793
        raise ValueError("Input shape must be a python list or tuple.")
6794

X
Xin Pan 已提交
6795 6796 6797 6798 6799
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
6800

6801 6802
    # Validate the shape
    unk_dim_idx = -1
6803
    contain_var = False
6804
    for dim_idx, dim_size in enumerate(shape):
6805 6806 6807 6808
        if isinstance(dim_size, Variable):
            contain_var = True
            continue

6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

6821
    helper = LayerHelper("reshape2", **locals())
6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843
    if in_dygraph_mode():
        inputs = {'X': x}
        attrs = {'shape': shape}
    else:
        if contain_var:
            new_shape_tensor = []
            for dim in shape:
                if isinstance(dim, Variable):
                    dim.stop_gradient = True
                    new_shape_tensor.append(dim)
                else:
                    assert (isinstance(dim, int))
                    temp_out = helper.create_variable_for_type_inference(
                        'int32')
                    fill_constant(
                        [1], 'int32', dim, force_cpu=True, out=temp_out)
                    new_shape_tensor.append(temp_out)
            inputs['ShapeTensor'] = new_shape_tensor
            attrs = {}

        else:
            attrs = {'shape': shape}
6844 6845
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
6846
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
6847
    helper.append_op(
6848
        type="reshape2",
X
Xin Pan 已提交
6849
        inputs=inputs,
6850
        attrs=attrs,
6851 6852
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
6853

D
dzhwinter 已提交
6854
    return helper.append_activation(out)
6855

6856

6857
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
6858
    """
M
minqiyang 已提交
6859 6860 6861
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
6862
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
6863

H
haowang101779990 已提交
6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884
    For example:

    .. code-block:: text

        Case 1:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = [0]
          we get:
            Out.shape = (3, 1, 5)

        Case 2:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = []
          we get:
            Out.shape = (3, 5)
M
minqiyang 已提交
6885

Y
Yibing Liu 已提交
6886
    Args:
6887
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
6888
        axes (list): List of integers, indicating the dimensions to be squeezed.
6889
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
6890 6891 6892 6893 6894 6895 6896

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

6897
            import paddle.fluid as fluid
6898
            import paddle.fluid.layers as layers
Y
Yibing Liu 已提交
6899
            x = layers.data(name='x', shape=[5, 1, 10])
6900
            y = layers.squeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
6901
    """
L
lujun 已提交
6902
    assert not in_dygraph_mode(), (
L
lujun 已提交
6903
        "squeeze layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
6904
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
6905 6906
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
6907
    helper.append_op(
6908
        type="squeeze2",
6909
        inputs={"X": input},
Y
Yibing Liu 已提交
6910
        attrs={"axes": axes},
6911 6912
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
6913

6914 6915 6916
    return out


6917
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
6918
    """
M
minqiyang 已提交
6919 6920 6921
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
6922

M
minqiyang 已提交
6923
    For example:
H
haowang101779990 已提交
6924 6925 6926

    .. code-block:: text

M
minqiyang 已提交
6927
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
6928
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
6929

Y
Yibing Liu 已提交
6930
    Args:
6931
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
6932
        axes (list): List of integers, indicating the dimensions to be inserted.
6933
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
6934 6935 6936 6937 6938 6939 6940

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

6941 6942 6943
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[5, 10])
            y = fluid.layers.unsqueeze(input=x, axes=[1])
Y
Yibing Liu 已提交
6944 6945
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
6946 6947
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
6948
    helper.append_op(
6949
        type="unsqueeze2",
6950
        inputs={"X": input},
Y
Yibing Liu 已提交
6951
        attrs={"axes": axes},
6952 6953
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
6954

6955 6956
    return out

6957

Y
yangyaming 已提交
6958
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
6959
    """
Y
Yibing Liu 已提交
6960
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
6961 6962 6963 6964
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
6965
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
6966 6967 6968 6969 6970 6971

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
6972
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
6973 6974 6975
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

6976
            target_lod: [4, 2]
Y
yangyaming 已提交
6977 6978

            then we get a 1-level LoDTensor:
6979
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
6980 6981 6982 6983 6984 6985
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
6986
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
6987 6988 6989 6990
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
6991
                y.data = [[2, 4]]
Y
yangyaming 已提交
6992 6993 6994
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
6995
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
6996 6997 6998 6999 7000 7001
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
7002
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
7003 7004 7005 7006
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
7007
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
7008 7009 7010 7011
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
7012
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
7013 7014 7015 7016 7017
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
7018
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
7019
                           from :attr:`y`.
Y
yangyaming 已提交
7020
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
7021
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
7022 7023

    Returns:
Y
Yibing Liu 已提交
7024
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
7025 7026

    Raises:
Y
Yibing Liu 已提交
7027
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
7028 7029 7030 7031

    Examples:
        .. code-block:: python

7032
            import paddle.fluid as fluid
7033 7034 7035
            x = fluid.layers.data(name='x', shape=[10])
            y = fluid.layers.data(name='y', shape=[10, 20], lod_level=2)
            out = fluid.layers.lod_reset(x=x, y=y)
Y
yangyaming 已提交
7036 7037
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
7038
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

X
xiaoting 已提交
7064
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C-1, i + n/2)}_{j = \\max(0, i - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

7093
          import paddle.fluid as fluid
F
stash  
fengjiayi 已提交
7094 7095
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
7108 7109 7110
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
7124 7125 7126 7127


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
7128
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
7129
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
7130

G
guosheng 已提交
7131 7132 7133 7134
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
7157
                         The length of :attr:paddings must be
G
guosheng 已提交
7158 7159 7160 7161 7162 7163 7164 7165 7166 7167
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
7168

G
guosheng 已提交
7169
            # x is a rank 2 tensor variable.
S
SunGaofeng 已提交
7170 7171
            import paddle.fluid as fluid
            x = fluid.layers.data(name='data', shape=[224], dtype='float32')
G
guosheng 已提交
7172 7173 7174 7175 7176
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7177
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
7178 7179 7180 7181 7182 7183 7184
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
7185 7186


C
chengduo 已提交
7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)
T
Tink_Y 已提交
7218 7219
		And
            pad_value = -1,
C
chengduo 已提交
7220

T
Tink_Y 已提交
7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234
        Return:
            Out = [[[[35, 36, 37],
                     [-1, -1, -1]],
                    [[38, 39, 40],
                     [-1, -1, -1]],
                    [[41, 42, 43],
                     [-1, -1, -1]]],
                  [[[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]]]]
            Out.shape = (2, 3, 2, 3)
C
chengduo 已提交
7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
S
SunGaofeng 已提交
7251 7252 7253
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[2,3,2,3], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1,3,1,3], dtype='float32')
C
chengduo 已提交
7254 7255 7256 7257 7258
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7259
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
7260 7261 7262 7263 7264 7265 7266 7267 7268
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


7269 7270 7271 7272 7273 7274 7275
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
7276 7277
    called label-smoothing regularization (LSR).

7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
7301
                              be :math:`(1, class\_num)`.
7302 7303
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
7304
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
7305 7306 7307 7308 7309 7310 7311 7312 7313
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python
7314
            
7315
            import paddle.fluid as fluid
7316
            import paddle.fluid.layers as layers
7317 7318 7319 7320 7321 7322 7323 7324 7325 7326

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
7327
    smooth_label = helper.create_variable_for_type_inference(dtype)
7328 7329 7330 7331 7332 7333 7334
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
7335 7336


W
wopeizl 已提交
7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354
@templatedoc()
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367
            import paddle.fluid as fluid

            x = fluid.layers.data(
                name='x', shape=[8, 112, 112], dtype='float32')
            rois = fluid.layers.data(
                name='roi', shape=[4], lod_level=1, dtype='float32')
            pool_out = fluid.layers.roi_pool(
                input=x,
                rois=rois,
                pooled_height=7,
                pooled_width=7,
                spatial_scale=1.0)

W
wopeizl 已提交
7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
7385 7386


J
jerrywgz 已提交
7387 7388 7389 7390 7391 7392
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
7393 7394
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

7411
            import paddle.fluid as fluid
J
jerrywgz 已提交
7412 7413 7414 7415
            x = fluid.layers.data(
                name='data', shape=[256, 32, 32], dtype='float32')
            rois = fluid.layers.data(
                name='rois', shape=[4], dtype='float32')
7416 7417 7418
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
7419 7420 7421 7422 7423 7424
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7425
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
7466 7467
        .. code-block:: python

S
SunGaofeng 已提交
7468 7469 7470
            import paddle.fluid as fluid
            x = fluid.layers.data(name='data', shape = [3, 224, 224, 2], dtype='float32')
            label = fluid.layers.data(name='label', shape=[3, 224, 224, 1], dtype='float32')
W
whs 已提交
7471
            predictions = fluid.layers.softmax(x)
S
SunGaofeng 已提交
7472
            loss = fluid.layers.dice_loss(input=predictions, label=label)
W
whs 已提交
7473 7474
    """
    label = one_hot(label, depth=input.shape[-1])
7475
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
7476 7477 7478 7479 7480 7481
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
7482 7483


7484 7485 7486 7487
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
7488
                 resample='BILINEAR',
7489 7490
                 actual_shape=None,
                 align_corners=True,
T
tink2123 已提交
7491
                 align_mode=1):
7492
    """
Q
qiaolongfei 已提交
7493
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
7494

7495
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
7496 7497 7498
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
7499

7500
        'BILINEAR' : Bilinear interpolation
T
Tink_Y 已提交
7501

7502
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
7503

7504 7505 7506 7507 7508 7509 7510 7511 7512 7513
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
    in both the 3rd dimention(in height direction) and the 4th dimention(in width 
    direction) on input tensor.
            
    Bilinear interpolation is an extension of linear interpolation for 
    interpolating functions of two variables (e.g. H-direction and 
    W-direction in this op) on a rectilinear 2D grid. The key idea is 
    to perform linear interpolation first in one direction, and then 
    again in the other direction.

T
tink2123 已提交
7514
    Align_corners and align_mode are optinal parameters,the calculation method 
7515 7516 7517 7518
    of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
7519
    .. code-block:: text
7520

T
Tink_Y 已提交
7521
        For scale:
7522
          
T
Tink_Y 已提交
7523
            if align_corners = True && out_size > 1 :
7524

T
Tink_Y 已提交
7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
            
          
        Nearest neighbor interpolation:
          
          if:
              align_corners = False
7536

T
Tink_Y 已提交
7537 7538
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7539

T
Tink_Y 已提交
7540 7541
              H_out = floor (H_{in} * scale_{factor})
              W_out = floor (W_{in} * scale_{factor})
7542

T
Tink_Y 已提交
7543 7544
          else:
              align_corners = True
7545

T
Tink_Y 已提交
7546 7547
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7548

T
Tink_Y 已提交
7549 7550
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
7551

T
Tink_Y 已提交
7552 7553 7554 7555 7556 7557 7558 7559 7560 7561
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
7562

T
Tink_Y 已提交
7563 7564 7565 7566
          else:
           
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7567

T
Tink_Y 已提交
7568 7569
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
7570 7571 7572 7573 7574 7575 7576 7577 7578

    For details of nearest neighbor interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.

    For details of bilinear interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Bilinear_interpolation.



7579
    Args:
7580
        input (Variable): The input tensor of image resize layer,
7581 7582
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
7583
        out_shape(list|tuple|Variable|None): Output shape of image resize
7584 7585
                                    layer, the shape is (out_h, out_w).
                                    Default: None
D
dengkaipeng 已提交
7586
        scale(float|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
7587
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
7588
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
D
dengkaipeng 已提交
7589
             Default: None.
7590 7591
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7592
        resample(str): The resample method. It supports 'BILINEAR' and 'NEAREST'
7593
                       currently.
7594
                       Default: 'BILINEAR'
7595 7596 7597
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7598
                                :attr:`out_shape` and :attr:`scale` specifying
7599 7600 7601 7602 7603 7604 7605
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7606 7607
                                constructing stage.
                                Default: None
7608 7609 7610 7611
        align_corners(bool) :  An optional bool, If True, the centers of the 4 corner pixels of the 
                               input and output tensors are aligned, preserving the values at the 
                               corner pixels.
                               Default: True
T
tink2123 已提交
7612
        align_mode(int)  :  An optional for bilinear interpolation. can be \'0\' 
T
tink2123 已提交
7613 7614
                            for src_idx = scale*(dst_indx+0.5)-0.5 , can be \'1\' for 
                            src_idx = scale*dst_index .
7615 7616

    Returns:
Q
update  
qiaolongfei 已提交
7617 7618
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
7619

7620 7621 7622
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
7623
        ValueError: The 'resample' of image_resize can only be 'BILINEAR'
7624 7625 7626
                    or 'NEAREST' currently.
        ValueError: One of out_shape and scale must not be None.
        ValueError: out_shape length should be 2.
D
dengkaipeng 已提交
7627
        ValueError: scale should be greater than zero.
7628 7629
        TypeError: align_corners shoule be a bool value
        ValueError: align_mode can only be '0' or '1'
7630

7631 7632 7633
    Examples:
        .. code-block:: python

7634
            import paddle.fluid as fluid
R
ruri 已提交
7635
            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
7636
            out = fluid.layers.image_resize(input, out_shape=[12, 12], resample="NEAREST")
7637
    """
7638 7639 7640 7641
    resample_methods = {
        'BILINEAR': 'bilinear',
        'NEAREST': 'nearest',
    }
7642 7643
    if resample not in resample_methods:
        raise ValueError(
7644
            "The 'resample' of image_resize can only be 'BILINEAR' or 'NEAREST' currently."
7645
        )
7646
    resample_type = resample_methods[resample]
7647 7648 7649 7650 7651 7652

    if not isinstance(align_corners, bool):
        raise TypeError("Attr align_corners should be a bool value")
    if align_mode != 0 and align_mode != 1:
        raise ValueError("align_mode can only be 0 or 1")

7653
    if out_shape is None and scale is None:
7654
        raise ValueError("One of out_shape and scale must not be None.")
7655
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
7656
    dtype = helper.input_dtype()
7657 7658 7659 7660

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

7661
    inputs = {"X": input}
D
dengkaipeng 已提交
7662
    attrs = {
D
dengkaipeng 已提交
7663 7664
        "out_h": 0,
        "out_w": 0,
D
dengkaipeng 已提交
7665 7666 7667 7668 7669
        "interp_method": resample_type,
        "align_corners": align_corners,
        "align_mode": align_mode
    }

7670
    if out_shape is not None:
7671 7672 7673 7674
        if isinstance(out_shape, Variable):
            warnings.warn("out_shape as Variable type is deprecated, \
                    it is recommended to use actual_shape instead of \
                    out_shape to specify output shape dynamically.")
7675
            inputs['OutSize'] = out_shape
7676 7677
        else:
            if not (_is_list_or_turple_(out_shape)):
D
dengkaipeng 已提交
7678 7679
                raise TypeError(
                    "out_shape should be a list or tuple or Variable.")
7680 7681 7682 7683 7684 7685 7686
            if len(out_shape) != 2:
                raise ValueError("out_shape length should be 2.")

            out_shape = list(map(int, out_shape))
            attrs['out_h'] = out_shape[0]
            attrs['out_w'] = out_shape[1]

7687
    else:
D
dengkaipeng 已提交
7688 7689
        if scale <= 0:
            raise ValueError("scale should be greater than zero.")
D
dengkaipeng 已提交
7690
        attrs['scale'] = float(scale)
7691

7692 7693 7694 7695 7696
    if isinstance(actual_shape, Variable):
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
7697
    out = helper.create_variable_for_type_inference(dtype)
7698
    helper.append_op(
7699
        type='{}_interp'.format(resample_type),
7700
        inputs=inputs,
7701
        outputs={"Out": out},
D
dengkaipeng 已提交
7702
        attrs=attrs)
7703
    return out
F
stash  
fengjiayi 已提交
7704 7705


7706
@templatedoc(op_type="bilinear_interp")
7707 7708 7709 7710
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
7711 7712
                    actual_shape=None,
                    align_corners=True,
T
tink2123 已提交
7713
                    align_mode=1):
7714
    """
7715 7716
    Resize input by performing bilinear interpolation based on given
    output shape which specified by actual_shape, out_shape and scale
7717 7718
    in priority order.

7719 7720 7721 7722
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
7723 7724
    again in the other direction.

7725
    For details of bilinear interpolation, please refer to Wikipedia:
7726
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
7727

T
tink2123 已提交
7728
    Align_corners and align_mode are optinal parameters,the calculation 
7729 7730 7731 7732
    method of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
7733
    .. code-block:: text
7734

T
Tink_Y 已提交
7735
        For scale:
7736
          
T
Tink_Y 已提交
7737
            if align_corners = True && out_size > 1 :
7738

T
Tink_Y 已提交
7739 7740 7741 7742 7743
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)     
7744

T
Tink_Y 已提交
7745 7746 7747 7748 7749 7750 7751 7752 7753 7754
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
7755 7756


T
Tink_Y 已提交
7757
          else:
T
tink2123 已提交
7758

T
Tink_Y 已提交
7759 7760
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7761

T
Tink_Y 已提交
7762 7763
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
7764 7765 7766



Y
yuyang18 已提交
7767 7768 7769
    Args:
        input(${x_type}): ${x_comment}.

D
dengkaipeng 已提交
7770 7771 7772
        out_shape(list|tuple|Variable|None): Output shape of resize bilinear
                                    layer, the shape is (out_h, out_w).
                                    Default: None
7773

Y
yuyang18 已提交
7774
        scale(float|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
7775
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
7776
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
D
dengkaipeng 已提交
7777
             Default: None.
Y
yuyang18 已提交
7778 7779

        name(str|None): The output variable name.
7780 7781 7782
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7783
                                :attr:`out_shape` and :attr:`scale` specifying
7784 7785 7786 7787 7788 7789 7790
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7791 7792
                                constructing stage.
                                Default: None
7793 7794
        align_corners(bool): ${align_corners_comment}
        align_mode(bool): ${align_mode_comment}
Y
yuyang18 已提交
7795 7796 7797

    Returns:
        ${out_comment}.
7798 7799 7800 7801

    Examples:
        .. code-block:: python

7802
            import paddle.fluid as fluid
R
ruri 已提交
7803
            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
7804
            out = fluid.layers.resize_bilinear(input, out_shape=[12, 12])
7805 7806
    """

7807 7808
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape,
                        align_corners, align_mode)
7809 7810


7811
@templatedoc(op_type="nearest_interp")
7812 7813 7814 7815
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
7816 7817
                   actual_shape=None,
                   align_corners=True):
7818
    """
7819
    Resize input by performing nearest neighbor interpolation in both the
T
Tink_Y 已提交
7820 7821
    3rd dimension(in height direction) and the 4th dimension(in width
    direction) based on given output shape which is specified by actual_shape,
7822 7823
    out_shape and scale in priority order.

7824 7825
    Example:

T
Tink_Y 已提交
7826 7827 7828 7829 7830
    .. code-block:: text

        For scale:
          
            if align_corners = True && out_size > 1 :
7831

T
Tink_Y 已提交
7832 7833 7834 7835 7836 7837 7838 7839
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
            
          
        Nearest neighbor interpolation:
7840
          
T
Tink_Y 已提交
7841 7842
          if:
              align_corners = False
7843

T
Tink_Y 已提交
7844 7845
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7846

T
Tink_Y 已提交
7847 7848
              H_out = floor(H_{in} * scale_{factor})
              W_out = floor(W_{in} * scale_{factor})
7849

T
Tink_Y 已提交
7850 7851
          else:
              align_corners = True
7852

T
Tink_Y 已提交
7853 7854
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7855

T
Tink_Y 已提交
7856 7857
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
7858 7859


7860
    For details of nearest neighbor interpolation, please refer to Wikipedia:
7861
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
7862 7863 7864 7865

    Args:
        input(${x_type}): ${x_comment}.

D
dengkaipeng 已提交
7866 7867 7868
        out_shape(list|tuple|Variable|None): Output shape of resize nearest
                                    layer, the shape is (out_h, out_w).
                                    Default: None
7869

Y
yuyang18 已提交
7870
        scale(float|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
7871
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
7872
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
D
dengkaipeng 已提交
7873
             Default: None.
Y
yuyang18 已提交
7874 7875

        name(str|None): The output variable name.
7876 7877 7878
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7879
                                :attr:`out_shape` and :attr:`scale` specifying
7880 7881 7882 7883 7884 7885 7886
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7887 7888
                                constructing stage.
                                Default: None
7889
        align_corners(bool): ${align_corners_comment}
Y
yuyang18 已提交
7890 7891 7892

    Returns:
        ${out_comment}.
7893 7894 7895 7896

    Examples:
        .. code-block:: python

7897
            import paddle.fluid as fluid
R
ruri 已提交
7898
            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
7899
            out = fluid.layers.resize_nearest(input, out_shape=[12, 12])
7900 7901
    """

7902 7903
    return image_resize(input, out_shape, scale, name, 'NEAREST', actual_shape,
                        align_corners)
7904 7905 7906 7907


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
7908 7909 7910
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
7911 7912 7913 7914 7915 7916 7917
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
7918
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
7919

7920
    Returns:
Q
update  
qiaolongfei 已提交
7921
        Variable: The output is a 4-D tensor of the shape
7922
        (num_batches, channls, out_h, out_w).
R
ruri 已提交
7923 7924 7925 7926

    Examples:
        .. code-block:: python

7927
            import paddle.fluid as fluid
R
ruri 已提交
7928 7929
            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
            out = fluid.layers.image_resize_short(input, out_short_len=3)
7930 7931 7932 7933 7934 7935 7936 7937 7938 7939
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
7940 7941 7942
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
7943 7944 7945
    return image_resize(input=input, out_shape=out_shape, resample=resample)


7946
def gather(input, index, overwrite=True):
W
whs 已提交
7947
    """
Q
qiaolongfei 已提交
7948 7949
    **Gather Layer**

7950
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
7951 7952 7953 7954
    of X indexed by `index` and concatenate them together.

    .. math::

7955
        Out = X[Index]
W
whs 已提交
7956 7957 7958 7959 7960 7961 7962


    .. code-block:: text


                Given:

7963 7964
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
7965 7966 7967 7968 7969 7970 7971 7972 7973 7974
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
7975
        input (Variable): The source input with rank>=1.
W
whs 已提交
7976
        index (Variable): The index input with rank=1.
7977 7978 7979 7980 7981 7982
        overwrite (bool): The mode that updating the grad when has same index.
            If True, use the overwrite mode to update the grad of the same index,
	    if False, use the accumulate mode to update the grad of the same index. 
	    Default value is True.
	    

W
whs 已提交
7983 7984 7985 7986 7987

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
7988

W
whs 已提交
7989 7990
        .. code-block:: python

7991
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
7992 7993
            x = fluid.layers.data(name='x', shape=[-1, 5], dtype='float32')
            index = fluid.layers.data(name='index', shape=[-1, 1], dtype='int32')
W
whs 已提交
7994 7995 7996 7997
            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7998
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
7999 8000 8001 8002
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
8003 8004
        outputs={"Out": out},
        attrs={'overwrite': overwrite})
W
whs 已提交
8005 8006 8007
    return out


8008
def scatter(input, index, updates, name=None, overwrite=True):
8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.
8026 8027 8028 8029
        overwrite (bool): The mode that updating the output when has same index.
            If True, use the overwrite mode to update the output of the same index,
	    if False, use the accumulate mode to update the output of the same index. 
	    Default value is True.You can set overwrite=False to implement scatter_add.
8030 8031 8032 8033 8034 8035 8036 8037

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

8038 8039 8040 8041 8042
            import paddle.fluid as fluid

            input = fluid.layers.data(name='data', shape=[3, 5, 9], dtype='float32', append_batch_size=False)
            index = fluid.layers.data(name='index', shape=[3], dtype='int64', append_batch_size=False)
            updates = fluid.layers.data(name='update', shape=[3, 5, 9], dtype='float32', append_batch_size=False)
8043

8044
            output = fluid.layers.scatter(input, index, updates)
8045 8046 8047
    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
8048
    out = helper.create_variable_for_type_inference(dtype)
8049 8050 8051 8052 8053
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
8054
        attrs={'overwrite': overwrite},
8055 8056 8057 8058
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
8059 8060 8061 8062 8063 8064 8065 8066 8067
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
H
haowang101779990 已提交
8068

Q
Qingsheng Li 已提交
8069
    Given the following input:
H
haowang101779990 已提交
8070

Q
Qingsheng Li 已提交
8071
    .. code-block:: text
H
haowang101779990 已提交
8072

Q
Qingsheng Li 已提交
8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
H
haowang101779990 已提交
8085

Q
Qingsheng Li 已提交
8086
    .. code-block:: text
H
haowang101779990 已提交
8087

Q
Qingsheng Li 已提交
8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
H
haowang101779990 已提交
8103
        Variable: The output is a tensor with the same shape as input.
Q
Qingsheng Li 已提交
8104 8105 8106 8107

    Examples:

        .. code-block:: python
8108
	
8109
            import paddle.fluid as fluid
8110
            import paddle.fluid.layers as layers
Q
Qingsheng Li 已提交
8111

8112 8113 8114
            input = layers.data( name="x", shape=[3, 6], append_batch_size=False, dtype='float32' )
            index = layers.data( name='index', shape=[1], dtype='int32')
            updates = layers.data( name='updates', shape=[1], dtype='float32')
Q
Qingsheng Li 已提交
8115 8116 8117
            output = fluid.layers.sequence_scatter(input, index, updates)

    """
L
lujun 已提交
8118
    assert not in_dygraph_mode(), (
8119
        "sequence layer is not supported in dygraph mode yet.")
Q
Qingsheng Li 已提交
8120 8121
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
8122
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
8123 8124 8125 8126 8127 8128 8129 8130 8131
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
8145

8146
    Examples:
8147
        >>> import paddle.fluid as fluid
8148 8149
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
8150
    """
F
stash  
fengjiayi 已提交
8151
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
8152
    dtype = x.dtype
X
Xin Pan 已提交
8153
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
8154
    if seed is None:
8155
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
8156
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
8157
    if isinstance(seed, int):
F
fengjiayi 已提交
8158 8159 8160 8161 8162
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
8163 8164 8165 8166
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
8167
        inputs={"X": x,
F
stash  
fengjiayi 已提交
8168 8169
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
8170 8171
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
8172
    return out
W
whs 已提交
8173 8174


8175
def log(x, name=None):
W
wanghaoshuang 已提交
8176 8177 8178 8179 8180
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

8181
        Out = \\ln(x)
W
wanghaoshuang 已提交
8182 8183

    Args:
8184
        x (Variable): Input tensor.
8185 8186
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
8187 8188 8189 8190 8191 8192 8193 8194

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

8195
            import paddle.fluid as fluid
8196
            x = fluid.layers.data(name="x", shape=[3, 4], dtype="float32")
8197
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
8198 8199
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
8200
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
8201
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
8202
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
8203 8204 8205
    return out


8206
def relu(x, name=None):
W
wanghaoshuang 已提交
8207 8208
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
8209
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
8210 8211 8212 8213
    the tensor elementwise.

    .. math::

8214
        Out = \\max(0, x)
W
wanghaoshuang 已提交
8215 8216

    Args:
8217
        x (Variable): The input tensor.
8218 8219
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
8220 8221 8222 8223 8224 8225 8226 8227

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

8228
            import paddle.fluid as fluid
8229
            x = fluid.layers.data(name="x", shape=[3, 4], dtype="float32")
8230
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
8231 8232
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
8233
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
8234
    out = helper.create_variable_for_type_inference(dtype)
X
Xin Pan 已提交
8235 8236
    helper.append_op(
        type="relu", inputs={"X": helper.input('x')}, outputs={"Out": out})
W
wanghaoshuang 已提交
8237
    return out
8238 8239


C
chengduo 已提交
8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263
@templatedoc()
def selu(x, scale=None, alpha=None, name=None):
    """
    ${comment}

    Args:
        x (Variable): The input tensor.
        scale(float, None): If the scale is not set,
            the default value is 1.0507009873554804934193349852946.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        alpha(float, None): If the alpha is not set,
            the default value is 1.6732632423543772848170429916717.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python
8264 8265 8266 8267 8268 8269
             
            import paddle.fluid as fluid
          
            input = fluid.layers.data(
                 name="input", shape=[3, 9, 5], dtype="float32")
            output = fluid.layers.selu(input)
C
chengduo 已提交
8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284
    """
    helper = LayerHelper('selu', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {}
    if scale is not None:
        attrs["scale"] = scale
    if alpha is not None:
        attrs["alpha"] = alpha

    helper.append_op(
        type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
    return out


W
whs 已提交
8285 8286 8287
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
8288 8289 8290 8291
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
8292
    .. math::
8293

H
haowang101779990 已提交
8294
        IOU = \\frac{true\_positive}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
8295

8296
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
8297 8298 8299 8300 8301
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
8302
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
8303
                           Its shape should be the same as input.
8304
        num_classes (int): The possible number of labels.
W
whs 已提交
8305 8306

    Returns:
M
minqiyang 已提交
8307 8308
        mean_iou (Variable),out_wrong(Variable),out_correct(Variable):

H
haowang101779990 已提交
8309
                     Three variables:
M
minqiyang 已提交
8310

H
haowang101779990 已提交
8311 8312 8313
                     - mean_iou : A Tensor representing the mean intersection-over-union with shape [1].
                     - out_wrong: A Tensor with shape [num_classes]. The wrong numbers of each class.
                     - out_correct: A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
8314 8315 8316 8317

    Examples:

        .. code-block:: python
8318

B
Bai Yifan 已提交
8319 8320 8321 8322 8323
            import paddle.fluid as fluid
            predict = fluid.layers.data(name='predict', shape=[3, 32, 32])
            label = fluid.layers.data(name='label', shape=[1])
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label,
                                                          num_classes=5)
W
whs 已提交
8324 8325 8326
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
8327 8328 8329
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
8330 8331
    helper.append_op(
        type="mean_iou",
W
whs 已提交
8332 8333
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
8334
        outputs={
W
whs 已提交
8335 8336 8337
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
8338 8339 8340
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
S
SunGaofeng 已提交
8383
        offsets (Variable|list/tuple of integer|None): Specifies the cropping
8384
            offsets at each dimension. It can be a Variable or or a list/tupe
S
SunGaofeng 已提交
8385
            of integers. If a tensor Variable, it's rank must be the same as `x`.
8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

S
SunGaofeng 已提交
8403
            import paddle.fluid as fluid
8404 8405 8406 8407 8408 8409
            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
T
Tink_Y 已提交
8410
            crop = fluid.layers.crop(z, shape=[-1, 2, 3])
8411 8412 8413 8414 8415

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
8416
            isinstance(shape, Variable)):
8417 8418 8419 8420 8421
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
8422
    out = helper.create_variable_for_type_inference(x.dtype)
8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
8440 8441


W
whs 已提交
8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    .. code-block:: text

        * Case 1:

          Given:

              theta = [[[x_11, x_12, x_13]
                        [x_14, x_15, x_16]]
                       [[x_21, x_22, x_23]
                        [x_24, x_25, x_26]]]
8459

W
whs 已提交
8460
              out_shape = [2, 3, 5, 5]
8461

W
whs 已提交
8462
          Step 1:
8463

W
whs 已提交
8464 8465 8466
              Generate normalized coordinates according to out_shape.
              The values of the normalized coordinates are in the interval between -1 and 1.
              The shape of the normalized coordinates is [2, H, W] as below:
8467

W
whs 已提交
8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512
              C = [[[-1.  -1.  -1.  -1.  -1. ]
                    [-0.5 -0.5 -0.5 -0.5 -0.5]
                    [ 0.   0.   0.   0.   0. ]
                    [ 0.5  0.5  0.5  0.5  0.5]
                    [ 1.   1.   1.   1.   1. ]]
                   [[-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]]]
              C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.

          Step2:

              Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
              C_ = [[-1.  -1.   1. ]
                    [-0.5 -1.   1. ]
                    [ 0.  -1.   1. ]
                    [ 0.5 -1.   1. ]
                    [ 1.  -1.   1. ]
                    [-1.  -0.5  1. ]
                    [-0.5 -0.5  1. ]
                    [ 0.  -0.5  1. ]
                    [ 0.5 -0.5  1. ]
                    [ 1.  -0.5  1. ]
                    [-1.   0.   1. ]
                    [-0.5  0.   1. ]
                    [ 0.   0.   1. ]
                    [ 0.5  0.   1. ]
                    [ 1.   0.   1. ]
                    [-1.   0.5  1. ]
                    [-0.5  0.5  1. ]
                    [ 0.   0.5  1. ]
                    [ 0.5  0.5  1. ]
                    [ 1.   0.5  1. ]
                    [-1.   1.   1. ]
                    [-0.5  1.   1. ]
                    [ 0.   1.   1. ]
                    [ 0.5  1.   1. ]
                    [ 1.   1.   1. ]]
          Step3:
              Compute output by equation $$Output[i] = C_ * Theta[i]^T$$

    Args:
        theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
M
minqiyang 已提交
8513
        out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
H
haowang101779990 已提交
8514
                                             ``out_shape`` can be a Variable or a list or tuple.
W
whs 已提交
8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output with shape [N, H, W, 2].

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
H
haowang101779990 已提交
8527

S
SunGaofeng 已提交
8528
            import paddle.fluid as fluid
W
whs 已提交
8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539
            theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
            out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
            data = fluid.layers.affine_grid(theta, out_shape)

            # or
            data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])

    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
8540
            isinstance(out_shape, Variable)):
W
whs 已提交
8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


8562 8563
def rank_loss(label, left, right, name=None):
    """
H
haowang101779990 已提交
8564

8565 8566
    **Rank loss layer for RankNet**

H
haowang101779990 已提交
8567
    `RankNet <http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf>`_
8568 8569 8570
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
8571

8572 8573
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
8574

H
haowang101779990 已提交
8575 8576
    Rank loss layer takes three inputs: left ( :math:`o_i` ), right ( :math:`o_j` ) and
    label ( :math:`P_{i,j}` ). The inputs respectively represent RankNet's output scores
8577 8578
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
8579

H
haowang101779990 已提交
8580 8581 8582 8583 8584 8585 8586 8587
    .. math::

      C_{i,j} &= -\\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\\\

      o_{i,j} &=  o_i - o_j  \\\\

      \\tilde{P_{i,j}} &= \\left \{0, 0.5, 1 \\right \} \ or \ \\left \{0, 1 \\right \}

M
minqiyang 已提交
8588 8589 8590

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

8608
            import paddle.fluid as fluid
8609 8610 8611
            label = fluid.layers.data(name="label", shape=[-1, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[-1, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[-1, 1], dtype="float32")
8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625
            out = fluid.layers.rank_loss(label, left, right)

    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
8626
    out = helper.create_variable_for_type_inference("float32")
8627 8628 8629 8630 8631 8632 8633 8634

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
8635 8636


M
minqiyang 已提交
8637 8638
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
8639
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
8640
    which compares left score and right score passed in.
M
minqiyang 已提交
8641
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
8642 8643 8644

    .. math::

H
haowang101779990 已提交
8645
        rank\_loss = max(0, -label * (left - right) + margin)
M
minqiyang 已提交
8646 8647

    Args:
M
minqiyang 已提交
8648
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
8649 8650
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
8651
       margin (float): Indicates the given margin.
M
minqiyang 已提交
8652 8653
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
H
haowang101779990 已提交
8654

M
minqiyang 已提交
8655
    Returns:
M
minqiyang 已提交
8656
       Variable: The ranking loss.
H
haowang101779990 已提交
8657

M
minqiyang 已提交
8658
    Raises:
M
minqiyang 已提交
8659
       ValueError: Any of label, left, and right is not a Variable.
H
haowang101779990 已提交
8660

M
minqiyang 已提交
8661
    Examples:
H
haowang101779990 已提交
8662

M
minqiyang 已提交
8663
        .. code-block:: python
H
haowang101779990 已提交
8664

8665
           import paddle.fluid as fluid
Y
Yibing Liu 已提交
8666 8667 8668
           label = fluid.layers.data(name="label", shape=[-1, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[-1, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[-1, 1], dtype="float32")
M
minqiyang 已提交
8669 8670
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
8671
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
8672 8673 8674 8675 8676 8677
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
8678 8679
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:
T
Tink_Y 已提交
8703
        .. code-block:: text
W
whs 已提交
8704

T
Tink_Y 已提交
8705
	      Given that X is a channel of image from input:
M
minqiyang 已提交
8706

T
Tink_Y 已提交
8707 8708
	      X = [[1, 2, 3],
		   [4, 5, 6]]
M
minqiyang 已提交
8709

T
Tink_Y 已提交
8710
	      Case 0:
M
minqiyang 已提交
8711

T
Tink_Y 已提交
8712 8713 8714
		paddings = [0, 1, 2, 3],
		mode = 'constant'
		pad_value = 0
M
minqiyang 已提交
8715

T
Tink_Y 已提交
8716 8717 8718
		Out = [[0, 0, 1, 2, 3, 0, 0, 0]
		       [0, 0, 4, 5, 6, 0, 0, 0]
		       [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
8719

T
Tink_Y 已提交
8720
	      Case 1:
M
minqiyang 已提交
8721

T
Tink_Y 已提交
8722 8723
		paddings = [0, 1, 2, 1],
		mode = 'reflect'
M
minqiyang 已提交
8724

T
Tink_Y 已提交
8725 8726 8727
		Out = [[3, 2, 1, 2, 3, 2]
		       [6, 5, 4, 5, 6, 5]
		       [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
8728

T
Tink_Y 已提交
8729
	      Case 2:
M
minqiyang 已提交
8730

T
Tink_Y 已提交
8731 8732
		paddings = [0, 1, 2, 1],
		mode = 'edge'
M
minqiyang 已提交
8733

T
Tink_Y 已提交
8734 8735 8736
		Out = [[1, 1, 1, 2, 3, 3]
		       [4, 4, 4, 5, 6, 6]
		       [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
8737 8738


W
whs 已提交
8739 8740
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
8741
        paddings (tuple|list|Variable): The padding size. If padding is a tuple, it must
W
whs 已提交
8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

B
Bai Yifan 已提交
8759 8760 8761 8762 8763
          import paddle.fluid as fluid
          data = fluid.layers.data(name='data', shape=[3, 32, 32],
                                   dtype='float32')
          result = fluid.layers.pad2d(input=data, paddings=[1, 2, 3, 4],
                                      mode='reflect')
W
whs 已提交
8764 8765 8766 8767
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
8768
    out = helper.create_variable_for_type_inference(dtype)
8769 8770 8771 8772 8773 8774 8775 8776 8777
    inputs = {'X': input}
    attrs = {'mode': mode, 'pad_value': pad_value, 'data_format': data_format}

    if isinstance(paddings, Variable):
        inputs['Paddings'] = paddings
        attrs['paddings'] = []
    else:
        attrs['paddings'] = paddings

W
whs 已提交
8778
    helper.append_op(
8779
        type='pad2d', inputs=inputs, outputs={"Out": out}, attrs=attrs)
W
whs 已提交
8780 8781 8782 8783

    return out


8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8796 8797 8798 8799 8800

    Examples:

        .. code-block:: python

8801
            import paddle.fluid as fluid
Z
ZhenWang 已提交
8802 8803
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.elu(x, alpha=0.2)
8804 8805
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
8806
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8827 8828 8829 8830 8831

    Examples:

        .. code-block:: python

8832
            import paddle.fluid as fluid
Z
ZhenWang 已提交
8833 8834
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.relu6(x, threshold=6.0)
8835 8836
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
8837
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8858 8859 8860 8861 8862

    Examples:

        .. code-block:: python

8863
            import paddle.fluid as fluid
Z
ZhenWang 已提交
8864 8865
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.pow(x, factor=2.0)
8866 8867
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
8868
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8890 8891 8892 8893 8894

    Examples:

        .. code-block:: python

8895
            import paddle.fluid as fluid
Z
ZhenWang 已提交
8896
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
Z
ZhenWang 已提交
8897
            y = fluid.layers.stanh(x, scale_a=0.67, scale_b=1.72)
8898 8899
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
8900
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8923 8924 8925 8926 8927

    Examples:

        .. code-block:: python

8928
            import paddle.fluid as fluid
Z
ZhenWang 已提交
8929 8930
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.hard_sigmoid(x, slope=0.3, offset=0.8)
8931 8932
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
8933
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8955 8956 8957 8958 8959

    Examples:

        .. code-block:: python

8960
            import paddle.fluid as fluid
Z
ZhenWang 已提交
8961 8962
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.swish(x, beta=2.0)
8963 8964
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
8965
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8966 8967 8968 8969 8970 8971 8972 8973
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
8974 8975 8976 8977
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

H
haowang101779990 已提交
8978 8979
    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)
J
jerrywgz 已提交
8980

J
jerrywgz 已提交
8981 8982 8983 8984 8985 8986 8987 8988
    There are three modes for the activation:

    .. code-block:: text

        all: All elements share same alpha.
        channel: Elements in same channel share same alpha.
        element: All elements do not share alpha. Each element has its own alpha.

J
jerrywgz 已提交
8989 8990
    Args:
        x (Variable): The input tensor.
J
jerrywgz 已提交
8991
        mode (string): The mode for weight sharing. 
J
jerrywgz 已提交
8992
        param_attr(ParamAttr|None): The parameter attribute for the learnable
J
jerrywgz 已提交
8993
          weight (alpha), it can be create by ParamAttr.
J
jerrywgz 已提交
8994
        name(str|None): A name for this layer(optional). If set None, the layer
T
Tink_Y 已提交
8995
          will be named automatically.
J
jerrywgz 已提交
8996 8997 8998 8999 9000 9001 9002 9003

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

J
jerrywgz 已提交
9004 9005 9006
            import paddle.fluid as fluid
            from paddle.fluid.param_attr import ParamAttr
            x = fluid.layers.data(name="x", shape=[5,10,10], dtype="float32")
J
jerrywgz 已提交
9007
            mode = 'channel'
J
jerrywgz 已提交
9008 9009 9010
            output = fluid.layers.prelu(
                     x,mode,param_attr=ParamAttr(name='alpha'))

J
jerrywgz 已提交
9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
Q
Qiao Longfei 已提交
9022
        attr=helper.param_attr,
J
jerrywgz 已提交
9023 9024 9025 9026
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
9027
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
9028 9029 9030 9031 9032 9033 9034 9035 9036
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


9037 9038 9039 9040 9041 9042 9043 9044 9045 9046
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
9047
    Returns:
9048
        output(${out_type}): ${out_comment}
9049 9050 9051

    Examples:

9052
    .. code-block:: python
9053

9054
            import paddle.fluid as fluid
H
haowang101779990 已提交
9055 9056
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.brelu(x, t_min=1.0, t_max=20.0)
9057 9058
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
9059
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
9078
    Returns:
9079
        output(${out_type}): ${out_comment}
9080 9081 9082 9083 9084

    Examples:

        .. code-block:: python

9085
            import paddle.fluid as fluid
H
haowang101779990 已提交
9086 9087
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.leaky_relu(x, alpha=0.01)
9088 9089
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
9090
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
9108
    Returns:
9109
        output(${out_type}): ${out_comment}
9110 9111 9112

    Examples:

9113 9114 9115 9116 9117
        .. code-block:: python 
 
            import paddle.fluid as fluid
   
            x = fluid.layers.data(name="x", shape=[3,16,16], dtype="float32")
H
haowang101779990 已提交
9118
            y = fluid.layers.soft_relu(x, threshold=20.0)
9119 9120
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
9121
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9122 9123 9124 9125 9126 9127 9128 9129
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


9130 9131 9132 9133
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.
M
minqiyang 已提交
9134

H
haowang101779990 已提交
9135
    For Example:
M
minqiyang 已提交
9136

H
haowang101779990 已提交
9137
    .. code-block:: text
9138

H
haowang101779990 已提交
9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159
        Case 1:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 2

          We get:
            Out.shape = (3 * 100, 4 * 100)

        Case 2:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 0

          We get:
            Out.shape = (1, 3 * 100 * 100 * 4)
9160 9161 9162

    Args:
        x (Variable): A tensor of rank >= axis.
9163 9164
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
9165 9166 9167 9168 9169 9170 9171 9172
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
H
haowang101779990 已提交
9173 9174 9175
        Variable: A 2D tensor with the contents of the input tensor, with input \
                  dimensions up to axis flattened to the outer dimension of \
                  the output and remaining input dimensions flattened into the \
9176 9177 9178 9179
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
9180
        ValueError: If axis is not in range [0, rank(x)].
9181 9182 9183 9184 9185

    Examples:

        .. code-block:: python

9186
            import paddle.fluid as fluid
9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197
            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
9198 9199
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
9200
    helper.append_op(
9201
        type='flatten2',
9202
        inputs={"X": x},
9203 9204
        outputs={'Out': out,
                 'XShape': x_shape},
9205 9206
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
9207 9208


C
chenweihang 已提交
9209
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
9210
    """
C
chenweihang 已提交
9211
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
9212
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
9213 9214
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
9215

H
haowang101779990 已提交
9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232
    .. code-block:: text

        Case 1:

          Input:
            X.lod = [[0, 3, 5]]
            X.data = [[1], [2], [3], [4], [5]]
            X.dims = [5, 1]

          Attrs:
            win_size = 2
            pad_value = 0

          Output:
            Out.lod = [[0, 3, 5]]
            Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
            Out.dims = [5, 2]
C
chenweihang 已提交
9233 9234

    Args:
C
chenweihang 已提交
9235 9236 9237
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
9238 9239 9240 9241 9242 9243 9244

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

9245 9246 9247
            import paddle.fluid as fluid

            x = fluid.layers.data(name='x', shape=[-1, 1], dtype='int32', lod_level=1)
C
chenweihang 已提交
9248 9249
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
L
lujun 已提交
9250
    assert not in_dygraph_mode(), (
9251
        "sequence layer is not supported in dygraph mode yet.")
C
chenweihang 已提交
9252
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
9253 9254
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
9255 9256 9257 9258 9259 9260
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
9261
    return out
9262

9263

S
sneaxiy 已提交
9264 9265 9266 9267 9268 9269 9270 9271 9272
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
9273

S
sneaxiy 已提交
9274
    .. math::
9275

S
sneaxiy 已提交
9276 9277 9278
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
9279
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
9280 9281 9282 9283
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
9284 9285 9286
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
9287 9288
    Returns:
        Variable: The output sequence mask.
9289

9290 9291 9292
    Examples:
        .. code-block:: python
	
9293
            import paddle.fluid as fluid
9294 9295 9296 9297 9298
            import paddle.fluid.layers as layers

            x = fluid.layers.data(name='x', shape=[10], dtype='float32', lod_level=1)
            mask = layers.sequence_mask(x=x)

S
sneaxiy 已提交
9299
    """
L
lujun 已提交
9300
    assert not in_dygraph_mode(), (
9301
        "sequence layer is not supported in dygraph mode yet.")
S
sneaxiy 已提交
9302

Q
qingqing01 已提交
9303
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
9304
    if name is None:
X
Xin Pan 已提交
9305
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
9306
    else:
X
Xin Pan 已提交
9307
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
9308

9309 9310 9311 9312 9313 9314 9315 9316
    inputs = {'X': [x]}
    attrs = {'out_dtype': out.dtype}
    if maxlen is not None:
        if isinstance(maxlen, Variable):
            inputs['MaxLenTensor'] = maxlen
        else:
            attrs['maxlen'] = maxlen

Q
qingqing01 已提交
9317
    helper.append_op(
9318 9319 9320
        type='sequence_mask', inputs=inputs, outputs={'Y': out}, attrs=attrs)

    out.stop_gradient = True
S
sneaxiy 已提交
9321
    return out
S
sneaxiy 已提交
9322 9323


X
Xin Pan 已提交
9324
def stack(x, axis=0):
S
sneaxiy 已提交
9325 9326 9327 9328
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
9329 9330 9331 9332 9333 9334 9335

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
9336
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
9337
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
9338

C
chengduozh 已提交
9339 9340
    For Example:

C
chengduozh 已提交
9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378
    .. code-block:: text

        Case 1:
          Input:
            x[0].data = [ [1.0 , 2.0 ] ]
            x[0].dims = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[1].dims = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]
            x[2].dims = [1, 2]

          Attrs:
            axis = 0

          Output:
            Out.data =[ [ [1.0, 2.0] ],
                        [ [3.0, 4.0] ],
                        [ [5.0, 6.0] ] ]
            Out.dims = [3, 1, 2]

        Case 2:
          Given
            x[0].data = [ [1.0 , 2.0 ] ]
            x[0].dims = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[1].dims = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]
            x[2].dims = [1, 2]

          Attrs:
            axis = 1 or axis = -2

          Output:
            Out.data =[ [ [1.0, 2.0]
                          [3.0, 4.0]
                          [5.0, 6.0] ] ]
            Out.dims = [1, 3, 2]

S
sneaxiy 已提交
9379
    Args:
9380
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
9381
        axis (int|None): The axis along which all inputs are stacked.
9382

S
sneaxiy 已提交
9383 9384
    Returns:
        Variable: The stacked variable.
9385

9386 9387 9388
    Examples:
        .. code-block:: python

9389
            import paddle.fluid as fluid
9390
            import paddle.fluid.layers as layers
9391 9392
            x1 = layers.data(name='x1', shape=[1, 2], dtype='int32')
            x2 = layers.data(name='x2', shape=[1, 2], dtype='int32')
9393 9394
            data = layers.stack([x1,x2])

S
sneaxiy 已提交
9395 9396
    """

X
Xin Pan 已提交
9397 9398 9399 9400 9401 9402
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
9403
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
9404
    helper.append_op(
S
sneaxiy 已提交
9405 9406
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
9407

X
Xin Pan 已提交
9408
    return out
D
dzhwinter 已提交
9409 9410 9411 9412 9413 9414 9415


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
9416

D
dzhwinter 已提交
9417 9418 9419
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
9420
    raised.
D
dzhwinter 已提交
9421 9422

    Args:
M
minqiyang 已提交
9423
        x (Variable): Input variable.
D
dzhwinter 已提交
9424 9425
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
9426

D
dzhwinter 已提交
9427 9428
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
9429

9430 9431 9432 9433 9434 9435
    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[5, 10], dtype='float32')
            y = fluid.layers.unstack(x, axis=1)
D
dzhwinter 已提交
9436 9437 9438 9439 9440 9441 9442 9443 9444 9445
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
Y
Yibing Liu 已提交
9446
    for _ in range(num):
X
Xin Pan 已提交
9447
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
9448 9449 9450 9451 9452 9453 9454 9455

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
9468

W
whs 已提交
9469 9470 9471 9472
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
9473

W
whs 已提交
9474
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
9475

W
whs 已提交
9476
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
9477

W
whs 已提交
9478 9479 9480 9481
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
9482

W
whs 已提交
9483 9484 9485 9486 9487 9488 9489 9490 9491 9492
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python
W
wangchaochaohu 已提交
9493 9494 9495
          
            import paddle.fluid as fluid
            x = fluid.layers.fill_constant(shape=[2, 3, 1], dtype='int32', value=0)
W
whs 已提交
9496 9497 9498 9499
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
9500
    out = helper.create_variable_for_type_inference(dtype)
9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517
    # check expand_times have tensor

    if in_dygraph_mode():
        inputs = {'X': x}
        attrs = {'expand_times': expand_times}
    else:

        def contain_tensor(expand_times):
            for ele in expand_times:
                if isinstance(ele, Variable):
                    return True
            return False

        if contain_tensor(expand_times):
            new_expand_times = []
            for ele in expand_times:
                if isinstance(ele, Variable):
H
Hongyu Liu 已提交
9518
                    ele.stop_gradient = True
9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531
                    new_expand_times.append(ele)
                else:
                    assert (isinstance(ele, int))
                    temp_out = helper.create_variable_for_type_inference(dtype)
                    fill_constant(
                        [1], 'int32', ele, force_cpu=True, out=temp_out)
                    new_expand_times.append(temp_out)
            inputs = {'X': x, 'expand_times_tensor': new_expand_times}
            attrs = {}
        else:
            inputs = {'X': x}
            attrs = {'expand_times': expand_times}

W
whs 已提交
9532
    helper.append_op(
9533
        type='expand', inputs=inputs, outputs={'Out': out}, attrs=attrs)
W
whs 已提交
9534
    return out
S
sneaxiy 已提交
9535 9536


G
fix  
gongweibao 已提交
9537 9538 9539
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
9540
@templatedoc()
G
fix  
gongweibao 已提交
9541 9542 9543 9544 9545 9546 9547 9548 9549
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
9550
    ${comment}
G
fix  
gongweibao 已提交
9551 9552

    Args:
G
gongweibao 已提交
9553 9554 9555
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
9556
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
9557 9558 9559
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
9560 9561
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
9562
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9563

9564 9565 9566
    Examples:
        .. code-block:: python

9567
            import paddle.fluid as fluid
9568 9569
            import paddle.fluid.layers as layers 

9570 9571
            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.uniform_random_batch_size_like(input, [-1, 11])
G
fix  
gongweibao 已提交
9572 9573 9574
    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
9575
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
9592 9593


G
gongweibao 已提交
9594
@templatedoc()
X
Xin Pan 已提交
9595
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
9596
    """
G
gongweibao 已提交
9597
    ${comment}
G
fix  
gongweibao 已提交
9598 9599

    Args:
G
gongweibao 已提交
9600 9601 9602 9603
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
9604 9605 9606
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
9607
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9608

9609 9610 9611
    Examples:
        .. code-block:: python

9612
            import paddle.fluid as fluid
J
JesseyXujin 已提交
9613
            import paddle.fluid.layers as layers
9614
            out = layers.gaussian_random(shape=[20, 30])
G
fix  
gongweibao 已提交
9615 9616 9617
    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
9618
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9619 9620 9621 9622 9623 9624 9625 9626 9627 9628
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
9629
            'use_mkldnn': False
G
fix  
gongweibao 已提交
9630 9631 9632 9633 9634
        })

    return out


G
gongweibao 已提交
9635
@templatedoc()
G
fix  
gongweibao 已提交
9636
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
9637
    """
G
gongweibao 已提交
9638
    ${comment}
G
fix  
gongweibao 已提交
9639 9640

    Args:
G
gongweibao 已提交
9641 9642 9643 9644
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
9645
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
9646 9647

    Returns:
G
gongweibao 已提交
9648
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9649

9650 9651 9652
    Examples:
        .. code-block:: python

9653
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
9654
            x = fluid.layers.data(
9655 9656 9657 9658 9659
                name="X",
                shape=[13, 11],
                dtype='float32',
                append_batch_size=False)

Y
Yibing Liu 已提交
9660
            out = fluid.layers.sampling_id(x)
G
fix  
gongweibao 已提交
9661 9662 9663
    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
9664
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
9676
@templatedoc()
G
fix  
gongweibao 已提交
9677 9678 9679 9680 9681 9682 9683 9684 9685
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
9686
    ${comment}
G
fix  
gongweibao 已提交
9687 9688

    Args:
G
gongweibao 已提交
9689 9690
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
9691
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
9692 9693 9694 9695
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
9696
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
9697 9698

    Returns:
G
gongweibao 已提交
9699
        out (Variable): ${out_comment}
9700 9701 9702 9703

    Examples:
        .. code-block:: python

9704
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
9705
            input = fluid.layers.data(name="input", shape=[13, 11], dtype='float32')
9706

Y
Yibing Liu 已提交
9707
            out = fluid.layers.gaussian_random_batch_size_like(
9708
                input, shape=[-1, 11], mean=1.0, std=2.0)
G
fix  
gongweibao 已提交
9709 9710 9711
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
9712
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
9731
@templatedoc()
X
Xin Pan 已提交
9732
def sum(x):
G
fix  
gongweibao 已提交
9733
    """
G
gongweibao 已提交
9734
    ${comment}
G
fix  
gongweibao 已提交
9735 9736

    Args:
G
gongweibao 已提交
9737
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
9738 9739

    Returns:
G
gongweibao 已提交
9740
        out (Variable): ${out_comment}
9741 9742 9743 9744

    Examples:
        .. code-block:: python

9745
            import paddle.fluid as fluid
9746 9747 9748 9749
            import paddle.fluid.layers as layers
            input0 = layers.data(name="input0", shape=[13, 11], dtype='float32')
            input1 = layers.data(name="input1", shape=[13, 11], dtype='float32')
            out = layers.sum([input0,input1])
G
fix  
gongweibao 已提交
9750 9751 9752
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
9753 9754
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
9755 9756 9757 9758
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
9759
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
9760 9761 9762 9763

    return out


G
gongweibao 已提交
9764
@templatedoc()
G
fix  
gongweibao 已提交
9765 9766
def slice(input, axes, starts, ends):
    """
9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781
    Slice Operator.

    Produces a slice of the input tensor along multiple axes. Similar to numpy:
    https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
    Slice uses `axes`, `starts` and `ends` attributes to specify the start and
    end dimension for each axis in the list of axes, it uses this information
    to slice the input data tensor. If a negative value is passed for any of
    the start or end indices, it represents number of elements before the end
    of that dimension. If the value passed to start or end is larger than
    the n (the number of elements in this dimension), it represents n.
    For slicing to the end of a dimension with unknown size, it is recommended
    to pass in INT_MAX. The size of axes must be equal to starts\' and ends\'.
    Following examples will explain how slice works:

    .. code-block:: text
G
fix  
gongweibao 已提交
9782

9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799
        Case1:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [1, 0]
                ends = [2, 3]
            Then:
                result = [ [5, 6, 7], ]
        
        Case2:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [0, 1]
                ends = [-1, 1000]
            Then:
                result = [ [2, 3, 4], ]
G
fix  
gongweibao 已提交
9800
    Args:
G
gongweibao 已提交
9801 9802 9803 9804
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
9805 9806

    Returns:
G
gongweibao 已提交
9807
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9808

9809 9810 9811
    Examples:
        .. code-block:: python

9812 9813
            import paddle.fluid as fluid
 
9814 9815 9816 9817
            starts = [1, 0, 2]
            ends = [3, 3, 4]
            axes = [0, 1, 2]

9818
            input = fluid.layers.data(
9819 9820
                name="input", shape=[3, 4, 5, 6], dtype='float32')

9821
            out = fluid.layers.slice(input, axes=axes, starts=starts, ends=ends)
G
fix  
gongweibao 已提交
9822 9823 9824
    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
9825 9826
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


def shape(input):
    """
C
chengduozh 已提交
9840 9841
    **Shape Layer**

C
fix doc  
chengduozh 已提交
9842
    Get the shape of the input.
G
fix  
gongweibao 已提交
9843 9844

    Args:
C
chengduozh 已提交
9845
        input (Variable): The input variable.
G
fix  
gongweibao 已提交
9846 9847

    Returns:
C
fix doc  
chengduozh 已提交
9848
        Variable: The shape of the input variable.
G
fix  
gongweibao 已提交
9849

9850 9851 9852
    Examples:
        .. code-block:: python

9853 9854 9855
            import paddle.fluid as fluid

            input = fluid.layers.data(
9856
                name="input", shape=[3, 100, 100], dtype="float32")
9857
            out = fluid.layers.shape(input)
G
fix  
gongweibao 已提交
9858 9859 9860
    """

    helper = LayerHelper('shape', **locals())
9861
    out = helper.create_variable_for_type_inference(dtype='int32')
G
fix  
gongweibao 已提交
9862
    helper.append_op(
G
fix  
gongweibao 已提交
9863
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
9864 9865

    return out
G
merge  
gongweibao 已提交
9866 9867


Z
zhoukunsheng 已提交
9868 9869 9870 9871
def rank(input):
    """
    **Rank Layer**

Z
zhoukunsheng 已提交
9872
    Returns the number of dimensions for a tensor, which is a 0-D int32 Tensor.
Z
zhoukunsheng 已提交
9873 9874 9875 9876 9877 9878 9879 9880 9881 9882

    Args:
        input (Variable): The input variable.

    Returns:
        Variable: The rank of the input variable.

    Examples:
        .. code-block:: python

9883 9884 9885 9886
            import paddle.fluid as fluid

            input = fluid.layers.data(name="input", shape=[3, 100, 100], dtype="float32")
            rank = fluid.layers.rank(input) # 4
Z
zhoukunsheng 已提交
9887 9888 9889 9890 9891 9892 9893 9894
    """

    ndims = len(input.shape)
    out = assign(np.array(ndims, 'int32'))

    return out


Z
zhoukunsheng 已提交
9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923
def size(input):
    """
    **Size Layer**

    Returns the number of elements for a tensor, which is a int64 Tensor with shape [1].

    Args:
        input (Variable): The input variable.

    Returns:
        Variable: The number of elements for the input variable.

    Examples:
        .. code-block:: python

            import paddle.fluid.layers as layers

            input = layers.data(
                name="input", shape=[3, 100], dtype="float32", append_batch_size=False)
            rank = layers.size(input) # 300
    """

    helper = LayerHelper('size', **locals())
    out = helper.create_variable_for_type_inference(dtype='int64')
    helper.append_op(type='size', inputs={'Input': input}, outputs={'Out': out})

    return out


S
sneaxiy 已提交
9924 9925 9926 9927
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
L
lujun 已提交
9928
    if in_dygraph_mode():
X
Xin Pan 已提交
9929 9930 9931
        x = base.to_variable(x)
        y = base.to_variable(y)

S
sneaxiy 已提交
9932 9933 9934 9935
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
9936 9937
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
9938
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
9939 9940 9941
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
9942

S
sneaxiy 已提交
9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
9954
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
9955 9956 9957 9958 9959 9960 9961 9962
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
9963
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
9964
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
9965 9966 9967

    Returns:
        out(${out_type}): ${out_comment}
9968 9969 9970 9971 9972 9973 9974 9975

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            x = fluid.layers.data(name="X", shape=[1, 2, 5, 5], dtype='float32')
            y = fluid.layers.scale(x, scale = 2.0, bias = 1.0)
S
sneaxiy 已提交
9976 9977 9978
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
9979
    if name is None:
X
Xin Pan 已提交
9980
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
9981 9982 9983
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
9984 9985 9986 9987 9988 9989 9990 9991 9992 9993

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
9994
    return helper.append_activation(out)
S
sneaxiy 已提交
9995 9996


X
Xin Pan 已提交
9997
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9998 9999 10000
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
10001
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
10002 10003 10004
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
10005
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
10006 10007 10008
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
10009
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
10010 10011 10012
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
10013
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
10014 10015 10016
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
10017
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
10018 10019 10020
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
10021
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
10022 10023 10024
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


10025 10026 10027 10028 10029 10030 10031 10032
def elementwise_mod(x, y, axis=-1, act=None, name=None):
    return _elementwise_op(LayerHelper('elementwise_mod', **locals()))


def elementwise_floordiv(x, y, axis=-1, act=None, name=None):
    return _elementwise_op(LayerHelper('elementwise_floordiv', **locals()))


S
sneaxiy 已提交
10033
for func in [
10034 10035 10036 10037 10038 10039 10040 10041 10042
        elementwise_add,
        elementwise_div,
        elementwise_sub,
        elementwise_mul,
        elementwise_max,
        elementwise_min,
        elementwise_pow,
        elementwise_mod,
        elementwise_floordiv,
S
sneaxiy 已提交
10043 10044 10045 10046 10047
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
10048 10049
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
10050
        ])
10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087
    func.__doc__ = func.__doc__ + """

Examples:
  .. code-block:: python
    
    import paddle.fluid as fluid
    # example 1: shape(x) = (2, 3, 4, 5), shape(y) = (2, 3, 4, 5)
    x0 = fluid.layers.data(name="x0", shape=[2, 3, 4, 5], dtype='float32')
    y0 = fluid.layers.data(name="y0", shape=[2, 3, 4, 5], dtype='float32')
    z0 = fluid.layers.%s(x0, y0)

    # example 2: shape(X) = (2, 3, 4, 5), shape(Y) = (5)
    x1 = fluid.layers.data(name="x1", shape=[2, 3, 4, 5], dtype='float32')
    y1 = fluid.layers.data(name="y1", shape=[5], dtype='float32')
    z1 = fluid.layers.%s(x1, y1)

    # example 3: shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5), with axis=-1(default) or axis=2
    x2 = fluid.layers.data(name="x2", shape=[2, 3, 4, 5], dtype='float32')
    y2 = fluid.layers.data(name="y2", shape=[4, 5], dtype='float32')
    z2 = fluid.layers.%s(x2, y2, axis=2)

    # example 4: shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
    x3 = fluid.layers.data(name="x3", shape=[2, 3, 4, 5], dtype='float32')
    y3 = fluid.layers.data(name="y3", shape=[3, 4], dtype='float32')
    z3 = fluid.layers.%s(x3, y3, axis=1)

    # example 5: shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
    x4 = fluid.layers.data(name="x4", shape=[2, 3, 4, 5], dtype='float32')
    y4 = fluid.layers.data(name="y4", shape=[2], dtype='float32')
    z4 = fluid.layers.%s(x4, y4, axis=0)

    # example 6: shape(X) = (2, 3, 4, 5), shape(Y) = (2, 1), with axis=0
    x5 = fluid.layers.data(name="x5", shape=[2, 3, 4, 5], dtype='float32')
    y5 = fluid.layers.data(name="y5", shape=[2], dtype='float32')
    z5 = fluid.layers.%s(x5, y5, axis=0)
    """ % (func.__name__, func.__name__, func.__name__, func.__name__,
           func.__name__, func.__name__)
M
minqiyang 已提交
10088 10089


10090
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
10091 10092
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
10093 10094
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
10095 10096 10097

    if out is None:
        if name is None:
X
Xin Pan 已提交
10098
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
10114
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10126 10127 10128 10129

    Examples:
        .. code-block:: python

10130
            import paddle.fluid as fluid
10131 10132 10133 10134 10135
            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_and(x=left, y=right)
M
minqiyang 已提交
10136 10137 10138 10139 10140 10141 10142
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
10143
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10155 10156 10157 10158

    Examples:
        .. code-block:: python

10159
            import paddle.fluid as fluid
10160 10161 10162 10163 10164
            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_or(x=left, y=right)
M
minqiyang 已提交
10165 10166 10167 10168 10169 10170 10171
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
10172
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10184 10185 10186 10187

    Examples:
        .. code-block:: python

10188
            import paddle.fluid as fluid
10189 10190 10191 10192 10193
            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_xor(x=left, y=right)
M
minqiyang 已提交
10194 10195 10196 10197 10198 10199 10200
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
10201
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
10202 10203 10204 10205 10206 10207 10208 10209 10210 10211
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10212 10213 10214 10215

    Examples:
        .. code-block:: python

10216
            import paddle.fluid as fluid
10217 10218 10219
            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            result = fluid.layers.logical_not(x=left)
M
minqiyang 已提交
10220 10221 10222 10223
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10239 10240 10241 10242

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
10243
            import paddle.fluid as fluid
10244 10245 10246
            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
10247 10248 10249 10250 10251
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
10252 10253
        name = unique_name.generate_with_ignorable_key(".".join(
            [helper.name, 'tmp']))
S
sneaxiy 已提交
10254 10255 10256

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10280 10281 10282 10283

    Examples:
        .. code-block:: python

10284
            import paddle.fluid as fluid
10285 10286 10287
            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
10288 10289 10290 10291 10292
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
10293 10294
        name = unique_name.generate_with_ignorable_key(".".join(
            [helper.name, 'tmp']))
S
sneaxiy 已提交
10295 10296 10297

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
10298 10299 10300 10301 10302 10303 10304 10305

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10319 10320 10321 10322

    Examples:
        .. code-block:: python

10323
            import paddle.fluid as fluid
10324 10325 10326
            input = fluid.layers.data(
                name='data', shape=[2, 3], dtype='float32')
            mean = fluid.layers.mean(input)
X
Xin Pan 已提交
10327 10328 10329 10330 10331
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
10332
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
10333 10334 10335 10336 10337 10338 10339 10340 10341 10342
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


C
chengduo 已提交
10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353
@templatedoc()
def merge_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10354 10355 10356 10357

    Examples:
        .. code-block:: python

10358
            import paddle.fluid as fluid
10359 10360 10361 10362 10363
            b = fluid.default_main_program().global_block()
            var = b.create_var(
                name="X", dtype="float32", persistable=True,
                type=fluid.core.VarDesc.VarType.SELECTED_ROWS)
            y = fluid.layers.merge_selected_rows(var)
C
chengduo 已提交
10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375
    """

    helper = LayerHelper("merge_selected_rows", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="merge_selected_rows",
        inputs={"X": x},
        attrs={},
        outputs={"Out": out})
    return out


X
Xin Pan 已提交
10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386 10387 10388 10389
@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10390 10391 10392 10393 10394 10395 10396 10397 10398 10399 10400 10401

    Examples:
        .. code-block:: python
            
            import paddle.fluid as fluid
            dataX = fluid.layers.data(name="dataX", append_batch_size = False, shape=[2, 5], dtype="float32")
            dataY = fluid.layers.data(name="dataY", append_batch_size = False, shape=[5, 3], dtype="float32")
            output = fluid.layers.mul(dataX, dataY,
                                      x_num_col_dims = 1,
                                      y_num_col_dims = 1)
            

X
Xin Pan 已提交
10402 10403 10404 10405 10406
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
10407
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
10408 10409 10410 10411 10412 10413 10414 10415 10416
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
10417 10418
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
10419 10420 10421 10422 10423 10424
        },
        outputs={"Out": out})
    return out


@templatedoc()
J
jerrywgz 已提交
10425 10426 10427
def sigmoid_cross_entropy_with_logits(x,
                                      label,
                                      ignore_index=kIgnoreIndex,
10428 10429
                                      name=None,
                                      normalize=False):
X
Xin Pan 已提交
10430 10431 10432 10433 10434 10435
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
10436
        ignore_index(&{ignore_index}): ${ignore_index_comment}
X
Xin Pan 已提交
10437
        name(basestring|None): Name of the output.
10438 10439
        normalize(bool): If true, divide the output by the number of
            targets != ignore_index.
X
Xin Pan 已提交
10440 10441 10442

    Returns:
        out(${out_type}): ${out_comment}
10443 10444 10445 10446

    Examples:
        .. code-block:: python

10447
            import paddle.fluid as fluid
10448 10449 10450 10451 10452 10453 10454 10455 10456 10457
            input = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            label = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            loss = fluid.layers.sigmoid_cross_entropy_with_logits(
                x=input,
                label=label,
                ignore_index=-1,
                normalize=True) # or False
            # loss = fluid.layers.reduce_sum(loss) # summation of loss
X
Xin Pan 已提交
10458 10459 10460 10461 10462
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
10463
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
10464 10465 10466 10467 10468 10469 10470 10471
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
10472 10473
        attrs={"ignore_index": ignore_index,
               'normalize': normalize},
X
Xin Pan 已提交
10474 10475 10476 10477 10478 10479 10480 10481 10482 10483 10484 10485 10486 10487 10488 10489
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
J
jerrywgz 已提交
10490 10491 10492 10493

    Examples:
        .. code-block:: python

10494
            import paddle.fluid as fluid
J
jerrywgz 已提交
10495 10496 10497 10498 10499
            input = fluid.layers.data(
                name='data', 
                shape=[256, 32, 32], 
                dtype='float32')
            out = fluid.layers.maxout(input, groups=2)
X
Xin Pan 已提交
10500 10501 10502 10503
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
10504
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
10505 10506 10507 10508 10509 10510 10511 10512 10513 10514
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
10515 10516


J
JiabinYang 已提交
10517
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
10518
    """
J
JiabinYang 已提交
10519
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
10520 10521 10522

    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the
    input LoDtensor where values from the height and width dimensions are moved to the channel dimension.
J
JiabinYang 已提交
10523
    The attr blocksize indicates the input block size.
10524 10525

    space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according
J
JiabinYang 已提交
10526
    to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
10527 10528

    space_to_depth is used to This operation is useful for resizing the activations between convolutions
J
JiabinYang 已提交
10529
    (but keeping all data)
J
JiabinYang 已提交
10530

J
JiabinYang 已提交
10531
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
10532
    - The depth of the output tensor is block_size * block_size * input channel
J
JiabinYang 已提交
10533 10534 10535 10536 10537
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize


J
JiabinYang 已提交
10538
    Args:
J
JiabinYang 已提交
10539
        x(variable): The input LoDtensor.
J
JiabinYang 已提交
10540
        blocksize(variable): The blocksize to select the element on each feature map should be > 2
J
JiabinYang 已提交
10541 10542

    Returns:
J
JiabinYang 已提交
10543
        Variable: The output LoDtensor.
J
JiabinYang 已提交
10544 10545

    Raises:
J
JiabinYang 已提交
10546
        TypeError: blocksize type must be a long.
J
JiabinYang 已提交
10547 10548 10549

    Examples:
        .. code-block:: python
10550 10551 10552
	
            import paddle.fluid as fluid
            import numpy as np
J
JiabinYang 已提交
10553 10554

            data = fluid.layers.data(
10555
                name='data', shape=[1, 4, 2, 2], dtype='float32', append_batch_size=False)
J
JiabinYang 已提交
10556
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
10557
                x=data, blocksize=2)
10558

10559
            exe = fluid.Executor(fluid.CPUPlace())
10560 10561 10562 10563
            data_np = np.arange(0,16).reshape((1,4,2,2)).astype('float32')
            out_main = exe.run(fluid.default_main_program(),
                          feed={'data': data_np},
                          fetch_list=[space_to_depthed])
10564

J
JiabinYang 已提交
10565 10566
    """

J
JiabinYang 已提交
10567
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
10568

J
JiabinYang 已提交
10569 10570
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
10571 10572

    if name is None:
J
JiabinYang 已提交
10573 10574
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
10575 10576 10577 10578 10579
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
10580
        type="space_to_depth",
J
JiabinYang 已提交
10581
        inputs={"X": x},
J
JiabinYang 已提交
10582
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
10583
        outputs={"Out": out})
J
JiabinYang 已提交
10584 10585
    return out

J
JiabinYang 已提交
10586

S
sneaxiy 已提交
10587 10588
@templatedoc()
def sequence_reverse(x, name=None):
10589
    """
S
sneaxiy 已提交
10590 10591 10592 10593 10594 10595 10596 10597
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
B
bdzhuxiaoning 已提交
10598 10599 10600 10601 10602 10603 10604

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[2, 6], dtype='float32')
            x_reversed = fluid.layers.sequence_reverse(x)
S
sneaxiy 已提交
10605
    """
L
lujun 已提交
10606
    assert not in_dygraph_mode(), (
10607
        "sequence layer is not supported in dygraph mode yet.")
S
sneaxiy 已提交
10608 10609
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
10610
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
10611 10612 10613 10614 10615 10616 10617 10618 10619 10620
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
10621 10622


10623 10624 10625 10626 10627 10628
def affine_channel(x,
                   scale=None,
                   bias=None,
                   data_layout='NCHW',
                   name=None,
                   act=None):
10629 10630 10631 10632 10633
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
10634

10635 10636 10637 10638 10639 10640 10641 10642 10643 10644 10645 10646
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.
10647
        act (str, default None): Activation to be applied to the output of this layer.
10648 10649 10650

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
B
Bai Yifan 已提交
10651 10652 10653 10654 10655 10656 10657 10658 10659 10660 10661 10662 10663 10664

    Examples:
        .. code-block:: python
            
            import paddle.fluid as fluid
            data = fluid.layers.data(name='data', shape=[3, 32, 32],
                                     dtype='float32')
            input_scale = fluid.layers.create_parameter(shape=[3],
                                     dtype="float32")
            input_bias = fluid.layers.create_parameter(shape=[3],
                                     dtype="float32")
            out = fluid.layers.affine_channel(data,scale=input_scale,
                                     bias=input_bias)

10665 10666 10667 10668
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
10669
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
10681
    return helper.append_activation(out)
10682 10683


B
barrierye 已提交
10684
def similarity_focus(input, axis, indexes, name=None):
10685
    """
B
barrierye 已提交
10686
    SimilarityFocus Operator
B
barrierye 已提交
10687 10688

    Generate a similarity focus mask with the same shape of input using the following method:
M
minqiyang 已提交
10689

10690 10691 10692
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
       to the axis according to the indexes. For example, if axis=1 and indexes=[a],
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
10693
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
10694 10695 10696 10697 10698 10699 10700
    2. For each index, find the largest numbers in the tensor T, so that the same
       row and same column has at most one number(what it means is that if the
       largest number has been found in the i-th row and the j-th column, then
       the numbers in the i-th row or j-th column will be skipped. And then the
       next largest number will be selected from the remaining numbers. Obviously
       there will be min(B, C) numbers), and mark the corresponding position of the
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
B
barrierye 已提交
10701
       each index.
B
barrierye 已提交
10702 10703 10704 10705
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739 10740 10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
10755
    Args:
10756
        input(Variable): The input tensor variable(default float). It should
B
barrierye 已提交
10757
            be a 4-D tensor with shape [BatchSize, A, B, C].
B
barrierye 已提交
10758
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
10759
            1, 2 or 3.
B
barrierye 已提交
10760
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
10761 10762

    Returns:
H
haowang101779990 已提交
10763 10764
        Variable: A tensor variable with the same shape and same type \
                  as the input.
10765

B
barrierye 已提交
10766 10767
    Examples:
        .. code-block:: python
H
haowang101779990 已提交
10768

10769
            import paddle.fluid as fluid
B
barrierye 已提交
10770
            data = fluid.layers.data(
Y
Yibing Liu 已提交
10771 10772
                name='data', shape=[-1, 3, 2, 2], dtype='float32')
            fluid.layers.similarity_focus(input=data, axis=1, indexes=[0])
B
barrierye 已提交
10773 10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
10785 10786 10787 10788 10789
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
10790 10791 10792 10793 10794 10795 10796
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
10797 10798


M
minqiyang 已提交
10799 10800
def hash(input, hash_size, num_hash=1, name=None):
    """
M
minqiyang 已提交
10801 10802
    Hash the input to an integer whose value is less than the given hash size.

M
minqiyang 已提交
10803 10804
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
10805 10806 10807 10808 10809 10810 10811 10812 10813

    A simple example as below:

    .. code-block:: text

        Given:

        # shape [2, 2]
        input.data = [
10814 10815
            [[1, 2],
             [3, 4]],
M
minqiyang 已提交
10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831
        ]

        input.lod = [[0, 2]]

        hash_size = 10000

        num_hash = 4

        Then:

        Hash op will take all number in input's 2nd dimension as hash algorithm's
        input for each time. Each input will be hashed for 4 times, and get an
        array whose length is 4. Each value in the array ranges from 0 to 9999.

        # shape [2, 4]
        output.data = [
10832 10833
            [[9662, 9217, 1129, 8487],
             [8310, 1327, 1654, 4567]],
M
minqiyang 已提交
10834 10835 10836 10837 10838 10839 10840 10841 10842
        ]

        output.lod = [[0, 2]]

    Args:
        input (Variable): The input variable which is a one-hot word. The
            dimensions of the input variable must be 2.
        hash_size (int): The space size for hash algorithm. The output value
            will keep in the range:math:`[0, hash_size - 1]`.
M
minqiyang 已提交
10843
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
10844
        name (str, default None): The name of this layer.
M
minqiyang 已提交
10845 10846 10847 10848 10849 10850

    Returns:
       Variable: The hash result variable which is a LoDTensor.

    Examples:
       .. code-block:: python
H
haowang101779990 已提交
10851

10852 10853 10854 10855 10856 10857 10858 10859 10860 10861 10862 10863 10864 10865 10866 10867 10868 10869
            import paddle.fluid as fluid
            import paddle.fluid.layers as layers
            import numpy as np

            titles = fluid.layers.data(name='titles', shape=[1], dtype='int32', lod_level=1)
            hash_r = fluid.layers.hash(name='hash_x', input=titles, num_hash=1, hash_size=1000)

            place = fluid.core.CPUPlace()
            exece = fluid.Executor(place)
            exece.run(fluid.default_startup_program()) 

            # Init Tensor
            tensor = fluid.core.LoDTensor() 
            tensor.set(np.random.randint(0, 10, (3, 1)).astype("int32"), place)
            # Set LoD
            tensor.set_recursive_sequence_lengths([[1, 1, 1]])

            out = exece.run(feed={'titles': tensor}, fetch_list=[hash_r], return_numpy=False)
M
minqiyang 已提交
10870 10871
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
10872 10873
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
10874 10875 10876 10877 10878 10879 10880
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
10881 10882


D
dengkaipeng 已提交
10883
@templatedoc()
10884 10885
def grid_sampler(x, grid, name=None):
    """
10886
    This operation samples input X by using bilinear interpolation based on
H
haowang101779990 已提交
10887
    flow field grid, which is usually gennerated by :code:`affine_grid` . The grid of
10888 10889 10890 10891
    shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates
    with shape [N, H, W] each, where grid_x is indexing the 4th dimension
    (in width dimension) of input data x and grid_y is indexng the 3rd
    dimention (in height dimension), finally results is the bilinear
10892
    interpolation value of 4 nearest corner points.
10893

H
haowang101779990 已提交
10894
    .. code-block:: text
10895

H
haowang101779990 已提交
10896 10897
        Step 1:
        Get (x, y) grid coordinates and scale to [0, H-1/W-1].
10898

H
haowang101779990 已提交
10899 10900
        grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
        grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)
10901

H
haowang101779990 已提交
10902 10903 10904
        Step 2:
        Indices input data X with grid (x, y) in each [H, W] area, and bilinear
        interpolate point value by 4 nearest points.
10905

H
haowang101779990 已提交
10906 10907 10908 10909 10910 10911 10912 10913 10914
          wn ------- y_n ------- en
          |           |           |
          |          d_n          |
          |           |           |
         x_w --d_w-- grid--d_e-- x_e
          |           |           |
          |          d_s          |
          |           |           |
          ws ------- y_s ------- wn
10915

H
haowang101779990 已提交
10916 10917 10918 10919
        x_w = floor(x)              // west side x coord
        x_e = x_w + 1               // east side x coord
        y_n = floor(y)              // north side y coord
        y_s = y_s + 1               // south side y coord
10920

H
haowang101779990 已提交
10921 10922 10923 10924
        d_w = grid_x - x_w          // distance to west side
        d_e = x_e - grid_x          // distance to east side
        d_n = grid_y - y_n          // distance to north side
        d_s = y_s - grid_y          // distance to south side
10925

H
haowang101779990 已提交
10926 10927 10928 10929
        wn = X[:, :, y_n, x_w]      // north-west point value
        en = X[:, :, y_n, x_e]      // north-east point value
        ws = X[:, :, y_s, x_w]      // south-east point value
        es = X[:, :, y_s, x_w]      // north-east point value
10930

H
haowang101779990 已提交
10931 10932
        output = wn * d_e * d_s + en * d_w * d_s
               + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
10933 10934

    Args:
10935 10936 10937
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
D
dengkaipeng 已提交
10938 10939

    Returns:
H
haowang101779990 已提交
10940
        Variable: Output of shape [N, C, H, W] data samples input X
10941 10942
        using bilnear interpolation based on input grid.

H
haowang101779990 已提交
10943 10944 10945 10946
    Examples:

        .. code-block:: python

K
Kaipeng Deng 已提交
10947 10948 10949 10950 10951
            import paddle.fluid as fluid

            x = fluid.layers.data(name='x', shape=[10, 32, 32], dtype='float32')
            theta = fluid.layers.data(name='theta', shape=[2, 3], dtype='float32')
            grid = fluid.layers.affine_grid(theta=theta, out_shape=[3, 10, 32, 32])
H
haowang101779990 已提交
10952
            out = fluid.layers.grid_sampler(x=x, grid=grid)
10953

D
dengkaipeng 已提交
10954 10955 10956 10957 10958 10959 10960 10961 10962
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

10963
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
10964 10965
    ipts = {'X': x, 'Grid': grid}

10966
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
10967 10968 10969
    return out


G
gmcather 已提交
10970 10971 10972 10973 10974 10975 10976 10977 10978 10979 10980 10981 10982 10983 10984 10985 10986 10987 10988 10989 10990 10991 10992 10993 10994 10995 10996
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

10997
          import paddle.fluid as fluid
Y
Yibing Liu 已提交
10998 10999
          label = fluid.layers.data(name='label', shape=[1], dtype='int64')
          prob = fluid.layers.data(name='prob', shape=[10], dtype='float32')
G
gmcather 已提交
11000 11001 11002 11003 11004 11005 11006 11007 11008 11009 11010 11011 11012 11013 11014 11015 11016 11017 11018
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


H
heqiaozhi 已提交
11019 11020 11021 11022 11023 11024 11025 11026 11027 11028 11029 11030 11031 11032 11033 11034 11035 11036 11037
def teacher_student_sigmoid_loss(input,
                                 label,
                                 soft_max_up_bound=15.0,
                                 soft_max_lower_bound=-15.0):
    """
    **Teacher Student Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    teacher_student loss.

    .. math::
        loss = max(x, 0) - x * z + log(1 + exp(-abs(x))) + max(x, 0) - x * z' + log(1 + exp(-abs(x)))

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
M
minqiyang 已提交
11038
        soft_max_up_bound  (float):  if input > soft_max_up_bound, will be bound
H
heqiaozhi 已提交
11039 11040 11041 11042 11043 11044 11045
        soft_max_lower_bound (float): if input < soft_max_lower_bound, will be bound

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the teacher_student_sigmoid_loss.

    Examples:
        .. code-block:: python
11046 11047
          
          import paddle.fluid as fluid
H
heqiaozhi 已提交
11048

11049 11050 11051 11052 11053
          batch_size = 64
          label = fluid.layers.data(
                    name="label", shape=[batch_size, 1], dtype="int64", append_batch_size=False)
          similarity = fluid.layers.data(
                    name="similarity", shape=[batch_size, 1], dtype="float32", append_batch_size=False)
H
heqiaozhi 已提交
11054
          cost = fluid.layers.teacher_student_sigmoid_loss(input=similarity, label=label)
11055

H
heqiaozhi 已提交
11056 11057 11058 11059 11060 11061 11062 11063 11064 11065 11066 11067 11068
    """
    helper = LayerHelper('teacher_student_sigmoid_loss', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='teacher_student_sigmoid_loss',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
        attrs={"soft_max_lower_bound": float(soft_max_lower_bound), \
                "soft_max_up_bound": float(soft_max_up_bound)})
    return out


G
gmcather 已提交
11069 11070 11071 11072
def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

H
haowang101779990 已提交
11073
    This layer accepts an input 3D-Tensor of shape [N x M x P], and returns an
G
gmcather 已提交
11074 11075
    output Tensor of shape [N x M x P] with positional encoding value.

H
haowang101779990 已提交
11076
    Refer to `Attention Is All You Need <http://arxiv.org/pdf/1706.03762.pdf>`_ .
G
gmcather 已提交
11077 11078

    .. math::
H
haowang101779990 已提交
11079 11080 11081
        PE(pos, 2i) &= \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) &= \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) &= \\alpha * input(:, pos, i) + \\beta * PE(pos, i)
G
gmcather 已提交
11082 11083

    Where:
H
haowang101779990 已提交
11084 11085
      - :math:`PE(pos, 2i)` : the increment for the number at even position
      - :math:`PE(pos, 2i + 1)` : the increment for the number at odd position
G
gmcather 已提交
11086 11087 11088 11089 11090 11091 11092 11093 11094 11095 11096 11097 11098

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

11099 11100 11101 11102 11103 11104 11105 11106 11107
          import paddle.fluid as fluid

          tensor = fluid.layers.data(
              name='tensor',
              shape=[32, 64, 512],
              dtype='float32',
              append_batch_size=False)
          position_tensor = fluid.layers.add_position_encoding(
              input=tensor, alpha=1.0, beta=1.0)
H
haowang101779990 已提交
11108

G
gmcather 已提交
11109 11110 11111 11112 11113 11114 11115 11116 11117 11118 11119 11120 11121 11122 11123 11124
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
11125 11126 11127 11128 11129 11130 11131 11132 11133 11134


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Q
Qiao Longfei 已提交
11135
    **Add Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
11136

Q
Qiao Longfei 已提交
11137
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
11138 11139 11140
    For example:

    .. math::
H
haowang101779990 已提交
11141
       out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
11142

Q
Qiao Longfei 已提交
11143
    In this formula:
11144 11145
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Q
Qiao Longfei 已提交
11146
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
H
haowang101779990 已提交
11147
      - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
11148 11149 11150
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
11151 11152
        x (Variable): 2-D input tensor with shape [batch_size, M]
        y (Variable): 2-D input tensor with shape [batch_size, N]
Q
Qiao Longfei 已提交
11153 11154 11155
        size (int): The dimension of this layer.
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Q
Qiao Longfei 已提交
11156
        param_attr (ParamAttr, default None): The parameter attribute for the learnable w.
Q
Qiao Longfei 已提交
11157
            parameters/weights of this layer.
Q
Qiao Longfei 已提交
11158
        bias_attr (ParamAttr, default None): The parameter attribute for the bias
Q
Qiao Longfei 已提交
11159 11160 11161 11162
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.

    Returns:
Q
Qiao Longfei 已提交
11163
        Variable: A 2-D Tensor of shape [batch_size, size].
Q
Qiao Longfei 已提交
11164 11165 11166 11167

    Examples:
        .. code-block:: python

11168
          import paddle.fluid as fluid
Y
Yibing Liu 已提交
11169 11170 11171
          layer1 = fluid.layers.data("t1", shape=[-1, 5], dtype="float32")
          layer2 = fluid.layers.data("t2", shape=[-1, 4], dtype="float32")
          tensor = fluid.layers.bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
11172 11173
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
11174
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
11175 11176 11177 11178

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
11179
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Q
Qiao Longfei 已提交
11180 11181 11182 11183 11184 11185 11186 11187 11188 11189 11190 11191 11192 11193 11194 11195 11196

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)
C
chengduo 已提交
11197 11198 11199 11200 11201 11202 11203 11204 11205 11206 11207 11208 11209


@templatedoc()
def get_tensor_from_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
B
bdzhuxiaoning 已提交
11210 11211 11212 11213 11214 11215 11216 11217

    Examples:
        .. code-block:: python
	    
            import paddle.fluid as fluid
            b = fluid.default_main_program().global_block()
            input = b.create_var(name="X", dtype="float32", persistable=True, type=fluid.core.VarDesc.VarType.SELECTED_ROWS)
            out = fluid.layers.get_tensor_from_selected_rows(input)
C
chengduo 已提交
11218 11219 11220 11221 11222 11223 11224 11225 11226 11227
    """

    helper = LayerHelper('get_tensor_from_selected_rows', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='get_tensor_from_selected_rows',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={})
    return out
11228 11229


S
shippingwang 已提交
11230
def shuffle_channel(x, group, name=None):
S
shippingwang 已提交
11231 11232
    """
    **Shuffle Channel Operator**
11233

S
shippingwang 已提交
11234 11235 11236 11237 11238 11239
    This operator shuffles the channels of input x.
    It divide the input channels in each group into :attr:`group` subgroups,
    and obtain a new order by selecting element from every subgroup one by one.

    Please refer to the paper
    https://arxiv.org/pdf/1707.01083.pdf
S
shippingwang 已提交
11240
    
S
shippingwang 已提交
11241
    .. code-block:: text
11242

S
shippingwang 已提交
11243 11244 11245 11246 11247 11248 11249 11250 11251 11252 11253 11254 11255 11256 11257 11258 11259 11260 11261 11262 11263 11264 11265 11266 11267 11268 11269 11270
        Given a 4-D tensor input with the shape (N, C, H, W):
            input.shape = (1, 4, 2, 2)
            input.data =[[[[0.1, 0.2],
                           [0.2, 0.3]],

                          [[0.3, 0.4],
                           [0.4, 0.5]],

                          [[0.5, 0.6],
                           [0.6, 0.7]],

                          [[0.7, 0.8],
                           [0.8, 0.9]]]]
            Given group: 2
            then we get a 4-D tensor out whth the same shape of input:
            out.shape = (1, 4, 2, 2)
            out.data = [[[[0.1, 0.2],
                          [0.2, 0.3]],
                          
                         [[0.5, 0.6],
                          [0.6, 0.7]],
                          
                         [[0.3, 0.4],
                          [0.4, 0.5]],
                          
                         [[0.7, 0.8],
                          [0.8, 0.9]]]]
                        
S
shippingwang 已提交
11271
    Args: 
S
shippingwang 已提交
11272 11273
        x(Variable): The input tensor variable. It should be a 4-D tensor with shape [N, C, H, W]
        group(int): Indicating the conuts of subgroups, It should divide the number of channels.
S
shippingwang 已提交
11274 11275

    Returns:
S
shippingwang 已提交
11276 11277
        out(Variable): the channels shuffling result is a tensor variable with the 
        same shape and same type as the input.
S
shippingwang 已提交
11278 11279

    Raises:
S
shippingwang 已提交
11280
        ValueError: If group is not an int type variable.
S
shippingwang 已提交
11281 11282 11283

    Examples:
        .. code-block:: python
11284

11285
            import paddle.fluid as fluid
11286
            input = fluid.layers.data(name='input', shape=[4,2,2], dtype='float32')
S
shippingwang 已提交
11287
            out = fluid.layers.shuffle_channel(x=input, group=2)
S
shippingwang 已提交
11288 11289 11290
    """
    helper = LayerHelper("shuffle_channel", **locals())

S
shippingwang 已提交
11291
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
shippingwang 已提交
11292 11293 11294 11295 11296 11297 11298 11299 11300

    if not isinstance(group, int):
        raise TypeError("group must be int type")

    helper.append_op(
        type="shuffle_channel",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"group": group})
S
shippingwang 已提交
11301
    return out
S
Add  
shippingwang 已提交
11302 11303


11304
@templatedoc()
D
dengkaipeng 已提交
11305
def temporal_shift(x, seg_num, shift_ratio=0.25, name=None):
11306 11307 11308 11309 11310 11311 11312 11313
    """
    **Temporal Shift Operator**
    
    ${comment}
                        
    Args: 
        x(Variable): ${x_comment}
        seg_num(int): ${seg_num_comment}
D
dengkaipeng 已提交
11314
        shift_ratio(float): ${shift_ratio_comment}
D
dengkaipeng 已提交
11315
        name (str, default None): The name of this layer.
11316 11317 11318 11319 11320 11321 11322 11323 11324 11325 11326

    Returns:
        out(Variable): The temporal shifting result is a tensor variable with the 
        same shape and same type as the input.

    Raises:
        TypeError: seg_num must be int type.

    Examples:
        .. code-block:: python

11327
            import paddle.fluid as fluid
11328
            input = fluid.layers.data(name='input', shape=[4,2,2], dtype='float32')
D
dengkaipeng 已提交
11329
            out = fluid.layers.temporal_shift(x=input, seg_num=2, shift_ratio=0.2)
11330 11331 11332 11333 11334 11335 11336 11337 11338 11339 11340 11341
    """
    helper = LayerHelper("temporal_shift", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if not isinstance(seg_num, int):
        raise TypeError("seg_num must be int type.")

    helper.append_op(
        type="temporal_shift",
        inputs={"X": x},
        outputs={"Out": out},
D
dengkaipeng 已提交
11342 11343
        attrs={"seg_num": seg_num,
               "shift_ratio": shift_ratio})
11344 11345 11346
    return out


S
sneaxiy 已提交
11347
class PyFuncRegistry(object):
S
sneaxiy 已提交
11348 11349 11350
    _register_funcs = []

    def __init__(self, func):
S
sneaxiy 已提交
11351
        if func is None or not callable(func):
S
sneaxiy 已提交
11352 11353 11354
            raise TypeError('func must be a Python function')

        self._func = func
M
minqiyang 已提交
11355
        # find named args using reflection
S
sneaxiy 已提交
11356 11357 11358 11359 11360 11361 11362
        args = inspect.getargspec(self._func)
        if len(args[0]) == 0 and args[1] is None and args[2] is None:
            # Function with no inputs
            self._named_args = None
        else:
            self._named_args = args[0]
        self._id = core._append_python_callable_object_and_return_id(self)
S
sneaxiy 已提交
11363 11364 11365
        '''
        Why record self here?

M
minqiyang 已提交
11366 11367
        1. For debug usage. Users can call
           :code:`py_func.registered_func(idx)` method
S
sneaxiy 已提交
11368
           to find the registered function corresponding
M
minqiyang 已提交
11369
           to :code:`idx`.
S
sneaxiy 已提交
11370

M
minqiyang 已提交
11371 11372
        2. For increasing reference count of self.
           It seems that to release Python object
S
sneaxiy 已提交
11373
           whose reference count is 1 would cause
M
minqiyang 已提交
11374
           segmentation fault error in C++ side.
S
sneaxiy 已提交
11375 11376
           May be lack of Python GC in C++ side?
        '''
S
sneaxiy 已提交
11377
        PyFuncRegistry._register_funcs.append(self)
S
sneaxiy 已提交
11378 11379 11380 11381 11382 11383 11384 11385 11386 11387 11388 11389 11390 11391

    @classmethod
    def registered_func(cls, idx):
        return cls._register_funcs[idx]._func

    @classmethod
    def registered_func_num(cls):
        return len(cls._register_funcs)

    @property
    def id(self):
        return self._id

    def __call__(self, *args):
S
sneaxiy 已提交
11392 11393 11394 11395 11396 11397 11398 11399 11400
        if self._named_args is None:
            func_ret = self._func()
        else:
            kwargs = dict()
            idx = 0
            for arg in self._named_args:
                kwargs[arg] = args[idx]
                idx += 1
            func_ret = self._func(*args[idx:], **kwargs)
S
sneaxiy 已提交
11401

S
sneaxiy 已提交
11402 11403
        if not isinstance(func_ret, (list, tuple)):
            func_ret = (func_ret, )
S
sneaxiy 已提交
11404 11405

        ret = []
S
sneaxiy 已提交
11406 11407 11408
        for each_ret in func_ret:
            if each_ret is None or isinstance(each_ret, core.LoDTensor):
                ret.append(each_ret)
S
sneaxiy 已提交
11409 11410
                continue

S
sneaxiy 已提交
11411 11412
            if not isinstance(each_ret, np.ndarray):
                each_ret = np.array(each_ret)
S
sneaxiy 已提交
11413

S
sneaxiy 已提交
11414 11415 11416
            tensor = core.LoDTensor()
            tensor.set(each_ret, core.CPUPlace())
            ret.append(tensor)
S
sneaxiy 已提交
11417

S
sneaxiy 已提交
11418
        return tuple(ret)
S
sneaxiy 已提交
11419 11420


S
sneaxiy 已提交
11421 11422 11423 11424
@templatedoc()
def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
    """
    PyFunc Operator.
M
minqiyang 已提交
11425

S
sneaxiy 已提交
11426 11427 11428 11429 11430 11431 11432 11433
    User can use :code:`py_func` to register operators in Python side.
    The inputs of :code:`func` is :code:`LoDTensor` and outputs can be
    numpy array or :code:`LoDTensor`. Paddle would call the registered
    :code:`func` in forward part, and call :code:`backward_func` in
    backward part (if :code:`backward_func` is not None).

    User should set the right data type and shape of :code:`out` before
    calling this function. However, data types and shapes of gradients of
S
sneaxiy 已提交
11434
    :code:`out` and :code:`x` would be inferred automatically.
S
sneaxiy 已提交
11435

S
sneaxiy 已提交
11436 11437
    Input orders of :code:`backward_func` would be: forward inputs
    :code:`x`, forward outputs :code:`out` and backward input gradients of
S
sneaxiy 已提交
11438 11439 11440 11441
    :code:`out`. If some variables of :code:`out` have no gradient, the input
    tensor would be None in Python side. If some variables of :code:`in` have
    no gradient, users should return None.

S
sneaxiy 已提交
11442
    This function can also be used to debug the running network. User can
M
minqiyang 已提交
11443
    add a :code:`py_func` operator without output, and print input
S
sneaxiy 已提交
11444 11445
    :code:`x` inside :code:`func`.

S
sneaxiy 已提交
11446 11447 11448 11449 11450
    Args:
        func (callable): forward Python function.
        x (Variable|list(Variable)|tuple(Variable)): inputs of :code:`func`.
        out (Variable|list(Variable)|tuple(Variable)): outputs of :code:`func`.
            Paddle cannot infer shapes and data types of :code:`out`. Users
M
minqiyang 已提交
11451
            should create :code:`out` beforehand.
S
sneaxiy 已提交
11452
        backward_func (callable|None): backward Python function.
M
minqiyang 已提交
11453
                                       None means no backward. Default None.
S
sneaxiy 已提交
11454
        skip_vars_in_backward_input (Variable|list(Variable)|tuple(Variable)):
M
minqiyang 已提交
11455
            Variables that are not needed in :code:`backward_func` inputs.
S
sneaxiy 已提交
11456 11457
            These variables must be any of :code:`x` and :code:`out`.
            If set, these vars would not be inputs of :code:`backward_func`,
M
minqiyang 已提交
11458
            Only useful when :code:`backward_func` is not None. Default None.
S
sneaxiy 已提交
11459 11460 11461

    Returns:
        out (Variable|list(Variable)|tuple(Variable)): input :code:`out`
S
sneaxiy 已提交
11462 11463

    Examples:
M
minqiyang 已提交
11464

S
sneaxiy 已提交
11465 11466 11467 11468 11469
        >>> import paddle.fluid as fluid
        >>> import six
        >>>
        >>> def create_tmp_var(name, dtype, shape):
        >>>     return fluid.default_main_program().current_block().create_var(
M
minqiyang 已提交
11470
        >>>         name=name, dtype=dtype, shape=shape)
S
sneaxiy 已提交
11471 11472
        >>>
        >>> # tanh activation has been provided by Paddle C++ op
M
minqiyang 已提交
11473
        >>> # Here, we only use tanh to be an example to show the usage
S
sneaxiy 已提交
11474 11475 11476
        >>> # of py_func
        >>> def tanh(x):
        >>>     return np.tanh(x)
M
minqiyang 已提交
11477
        >>>
S
sneaxiy 已提交
11478 11479 11480 11481 11482
        >>> # forward input x is skipped
        >>> def tanh_grad(y, dy):
        >>>     return np.array(dy) * (1 - np.square(np.array(y)))
        >>>
        >>> def debug_func(x):
M
minqiyang 已提交
11483
        >>>     print(x)
S
sneaxiy 已提交
11484 11485 11486 11487 11488 11489
        >>>
        >>> def simple_net(img, label):
        >>>     hidden = img
        >>>     for idx in six.moves.range(4):
        >>>         hidden = fluid.layers.fc(hidden, size=200)
        >>>         new_hidden = create_tmp_var(name='hidden_{}'.format(idx),
M
minqiyang 已提交
11490
        >>>             dtype=hidden.dtype, shape=hidden.shape)
S
sneaxiy 已提交
11491 11492
        >>>
        >>>         # user-defined layers with forward and backward
M
minqiyang 已提交
11493 11494
        >>>         hidden = fluid.layers.py_func(func=tanh, x=hidden,
        >>>             out=new_hidden, backward_func=tanh_grad,
S
sneaxiy 已提交
11495 11496 11497 11498 11499 11500 11501 11502
        >>>             skip_vars_in_backward_input=hidden)
        >>>
        >>>         # user-defined debug layers to print variables
        >>>         fluid.layers.py_func(func=debug_func, x=hidden, out=None)
        >>>
        >>>     prediction = fluid.layers.fc(hidden, size=10, act='softmax')
        >>>     loss = fluid.layers.cross_entropy(input=prediction, label=label)
        >>>     return fluid.layers.mean(loss)
S
sneaxiy 已提交
11503
    """
S
sneaxiy 已提交
11504
    helper = LayerHelper('py_func', **locals())
S
sneaxiy 已提交
11505 11506 11507
    if x is None:
        x = []
    elif isinstance(x, Variable):
S
sneaxiy 已提交
11508
        x = [x]
S
sneaxiy 已提交
11509 11510
    elif not isinstance(x, (list, tuple)):
        raise TypeError('Input must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
11511

S
sneaxiy 已提交
11512 11513 11514
    if out is None:
        out_list = []
    elif isinstance(out, Variable):
S
sneaxiy 已提交
11515
        out_list = [out]
S
sneaxiy 已提交
11516
    elif isinstance(out, (list, tuple)):
S
sneaxiy 已提交
11517
        out_list = out
S
sneaxiy 已提交
11518 11519 11520
    else:
        raise TypeError(
            'Output must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
11521

S
sneaxiy 已提交
11522 11523
    fwd_func_id = PyFuncRegistry(func).id
    bwd_func_id = PyFuncRegistry(
S
sneaxiy 已提交
11524
        backward_func).id if backward_func is not None else -1
S
sneaxiy 已提交
11525 11526

    for each_out in out_list:
S
sneaxiy 已提交
11527 11528
        if len(each_out.shape) == 0:
            raise ValueError(
S
sneaxiy 已提交
11529 11530
                'Output shapes of py_func op should be provided by users manually'
            )
S
sneaxiy 已提交
11531

S
sneaxiy 已提交
11532 11533 11534 11535 11536 11537 11538 11539 11540 11541 11542 11543 11544 11545 11546
    backward_skip_vars = set()
    if backward_func is not None and skip_vars_in_backward_input is not None:
        if isinstance(skip_vars_in_backward_input, Variable):
            skip_vars_in_backward_input = [skip_vars_in_backward_input]

        fwd_in_out = [v.name for v in x]
        fwd_in_out.extend([v.name for v in out_list])
        fwd_in_out = set(fwd_in_out)
        backward_skip_vars = set()
        for v in skip_vars_in_backward_input:
            if not v.name in fwd_in_out:
                raise ValueError(
                    'Variable {} is not found in forward inputs and outputs'
                    .format(v.name))
            backward_skip_vars.add(v.name)
S
sneaxiy 已提交
11547 11548 11549 11550

    helper.append_op(
        type='py_func',
        inputs={'X': x},
S
sneaxiy 已提交
11551 11552
        outputs={'Out': out_list},
        attrs={
S
sneaxiy 已提交
11553 11554 11555
            'forward_callable_id': fwd_func_id,
            'backward_callable_id': bwd_func_id,
            'backward_skip_vars': list(backward_skip_vars)
S
sneaxiy 已提交
11556
        })
S
sneaxiy 已提交
11557
    return out
S
sneaxiy 已提交
11558 11559 11560


# For debug usage
S
sneaxiy 已提交
11561 11562 11563 11564
py_func.registered_func = PyFuncRegistry.registered_func
py_func.registered_func_num = PyFuncRegistry.registered_func_num


11565 11566 11567 11568 11569 11570 11571 11572 11573 11574 11575 11576 11577
@templatedoc()
def psroi_pool(input,
               rois,
               output_channels,
               spatial_scale,
               pooled_height,
               pooled_width,
               name=None):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
S
SunGaofeng 已提交
11578 11579 11580 11581 11582
        rois (Variable): ROIs (Regions of Interest) to pool over.It should be
                         a 2-D LoDTensor of shape (num_rois, 4), the lod level
                         is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
                         the top left coordinates, and (x2, y2) is the bottom
                         right coordinates.
11583 11584 11585 11586 11587 11588 11589 11590 11591 11592 11593 11594
        output_channels (integer): ${output_channels_comment}
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        name (str, default None): The name of this layer.

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
11595 11596 11597 11598
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[490, 28, 28], dtype='float32')
            rois = fluid.layers.data(name='rois', shape=[4], lod_level=1, dtype='float32')
            pool_out = fluid.layers.psroi_pool(x, rois, 10, 1.0, 7, 7)
11599 11600 11601 11602 11603 11604 11605 11606 11607 11608 11609 11610 11611 11612 11613 11614 11615 11616 11617 11618 11619 11620 11621 11622 11623
    """
    helper = LayerHelper('psroi_pool', **locals())
    # check attrs
    if not isinstance(output_channels, int):
        raise TypeError("output_channels must be int type")
    if not isinstance(spatial_scale, float):
        raise TypeError("spatial_scale must be float type")
    if not isinstance(pooled_height, int):
        raise TypeError("pooled_height must be int type")
    if not isinstance(pooled_width, int):
        raise TypeError("pooled_width must be int type")
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='psroi_pool',
        inputs={'X': input,
                'ROIs': rois},
        outputs={'Out': out},
        attrs={
            'output_channels': output_channels,
            'spatial_scale': spatial_scale,
            'pooled_height': pooled_height,
            'pooled_width': pooled_width
        })
    return out
11624

M
minqiyang 已提交
11625

M
minqiyang 已提交
11626
def huber_loss(input, label, delta):
11627
    """
M
minqiyang 已提交
11628 11629 11630
    Huber loss is a loss function used in robust.
    Huber loss can evaluate the fitness of input to label.
    Different from MSE loss, Huber loss is more robust for outliers.
11631 11632 11633 11634

    When the difference between input and label is large than delta
    .. math::

M
minqiyang 已提交
11635
        huber\_loss = delta * (label - input) - 0.5 * delta * delta
11636 11637 11638 11639

    When the difference between input and label is less than delta
    .. math::

M
minqiyang 已提交
11640
        huber\_loss = 0.5 * (label - input) * (label - input)
11641 11642 11643 11644 11645 11646 11647


    Args:
        input (Variable): This input is a probability computed by the previous operator.
                          The first dimension is batch size, and the last dimension is 1.
        label (Variable): The groud truth whose first dimension is batch size
                          and last dimension is 1.
M
minqiyang 已提交
11648
        delta (float): The parameter of huber loss, which controls
11649 11650 11651
                       the range of outliers

    Returns:
M
minqiyang 已提交
11652
        huber\_loss (Variable): The huber loss with shape [batch_size, 1].
11653 11654 11655 11656

    Examples:
        .. code-block:: python

11657 11658 11659 11660 11661 11662 11663 11664 11665
            import paddle.fluid as fluid

            x = fluid.layers.data(name='x', shape=[13], dtype='float32')
            predict = fluid.layers.fc(input=x, size=1)
            label = fluid.layers.data(
                name='label', shape=[1], dtype='float32')
            loss = fluid.layers.huber_loss(
                input=predict, label=label, delta=1.0)

11666
    """
M
minqiyang 已提交
11667
    helper = LayerHelper('huber_loss', **locals())
11668 11669 11670 11671 11672 11673 11674 11675 11676 11677 11678
    residual = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    helper.append_op(
        type='huber_loss',
        inputs={'X': input,
                'Y': label},
        outputs={'Out': out,
                 'Residual': residual},
        attrs={'delta': delta})
    return out
Z
zhaozhehao 已提交
11679 11680


D
dengkaipeng 已提交
11681 11682 11683 11684 11685 11686 11687 11688 11689 11690 11691 11692 11693 11694 11695 11696 11697
@templatedoc()
def kldiv_loss(x, target, reduction='mean', name=None):
    """
    ${comment}

    Args:
        x (Variable): ${x_comment}
        target (Variable): ${target_comment}
        reduction (Variable): ${reduction_comment}
        name (str, default None): The name of this layer.

    Returns:
        kldiv\_loss (Variable): The KL divergence loss.

    Examples:
        .. code-block:: python

11698
            import paddle.fluid as fluid
D
dengkaipeng 已提交
11699 11700 11701 11702 11703 11704 11705 11706 11707 11708 11709 11710 11711 11712 11713
            x = fluid.layers.data(name='x', shape=[4,2,2], dtype='float32')
            target = fluid.layers.data(name='target', shape=[4,2,2], dtype='float32')
            loss = fluid.layers.kldiv_loss(x=x, target=target, reduction='batchmean')
    """
    helper = LayerHelper('kldiv_loss', **locals())
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='kldiv_loss',
        inputs={'X': x,
                'Target': target},
        outputs={'Loss': loss},
        attrs={'reduction': reduction})
    return loss


Z
zhaozhehao 已提交
11714 11715 11716 11717 11718 11719 11720 11721 11722 11723 11724 11725 11726 11727 11728 11729 11730 11731 11732 11733 11734 11735 11736 11737 11738 11739 11740 11741 11742 11743
@templatedoc()
def tree_conv(nodes_vector,
              edge_set,
              output_size,
              num_filters=1,
              max_depth=2,
              act='tanh',
              param_attr=None,
              bias_attr=None,
              name=None):
    """ 
    ${comment}
    		
    Args:
        nodes_vector(${nodes_vector_type}): ${nodes_vector_comment}
        edge_set(${edge_set_type}): ${edge_set_comment}
        output_size(int): output feature width
        num_filters(int): number of filters, Default 1
        max_depth(int): max depth of filters, Default 2
        act(str): activation function, Default tanh
        param_attr(ParamAttr): the parameter attribute for the filters, Default None
        bias_attr(ParamAttr): the parameter attribute for the bias of this layer, Default None
        name(str): a name of this layer(optional). If set None, the layer will be named automatically, Default None

    Returns:
        out(${out_type}): ${out_comment}

    Examples:
        .. code-block:: python

11744
          import paddle.fluid as fluid
T
Tao Luo 已提交
11745 11746 11747
          # 10 for max_node_size of dataset, 5 for vector width
          nodes_vector = fluid.layers.data(name='vectors', shape=[10, 5], dtype='float32')
          # 10 for max_node_size of dataset, 2 for every edge has two nodes
Z
zhaozhehao 已提交
11748
          # edges must be directional
T
Tao Luo 已提交
11749 11750 11751 11752
          edge_set = fluid.layers.data(name='edge_set', shape=[10, 2], dtype='float32')
          # the shape of output will be [10, 6, 1],
          # 10 for max_node_size of dataset, 6 for output size, 1 for 1 filter
          out_vector = fluid.layers.tree_conv(nodes_vector, edge_set, 6, 1, 2)
Z
zhaozhehao 已提交
11753
          # After reshape, output tensor could be nodes_vector for next tree convolution
T
Tao Luo 已提交
11754 11755
          out_vector = fluid.layers.reshape(out_vector, shape=[-1, 10, 6])
          out_vector_2 = fluid.layers.tree_conv(out_vector, edge_set, 3, 4, 2)
Z
zhaozhehao 已提交
11756
          # also output tensor could be pooling(the pooling in paper called global pooling)
T
Tao Luo 已提交
11757
          pooled = fluid.layers.reduce_max(out_vector, dim=2) # global pooling
Z
zhaozhehao 已提交
11758 11759 11760 11761 11762 11763 11764 11765 11766 11767 11768 11769 11770 11771 11772 11773 11774 11775 11776 11777 11778 11779 11780
    """
    helper = LayerHelper("tree_conv", **locals())
    dtype = helper.input_dtype('nodes_vector')
    feature_size = nodes_vector.shape[2]
    W_shape = [feature_size, 3, output_size, num_filters]
    W = helper.create_parameter(
        attr=param_attr, shape=W_shape, dtype=dtype, is_bias=False)
    if name == None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)
    helper.append_op(
        type='tree_conv',
        inputs={'NodesVector': nodes_vector,
                'EdgeSet': edge_set,
                'Filter': W},
        outputs={'Out': out, },
        attrs={'max_depth': max_depth})
    if helper.bias_attr:
        pre_activation = helper.append_bias_op(out)
    else:
        pre_activation = out
    return helper.append_activation(pre_activation)
C
ceci3 已提交
11781 11782


C
ceci3 已提交
11783
from .ops import square
C
ceci3 已提交
11784
from .control_flow import equal
C
ceci3 已提交
11785 11786


C
ceci3 已提交
11787 11788 11789
def npair_loss(anchor, positive, labels, l2_reg=0.002):
    '''
  **Npair Loss Layer**
C
ceci3 已提交
11790

C
ceci3 已提交
11791
  Read `Improved Deep Metric Learning with Multi class N pair Loss Objective <http://www.nec-labs.com/uploads/images/Department-Images/MediaAnalytics/papers/nips16_npairmetriclearning.pdf>`_ .
C
ceci3 已提交
11792 11793

  Npair loss requires paired data. Npair loss has two parts: the first part is L2
C
ceci3 已提交
11794
  regularizer on the embedding vector; the second part is cross entropy loss which
C
ceci3 已提交
11795 11796 11797 11798 11799
  takes the similarity matrix of anchor and positive as logits.

  Args:
    anchor(Variable): embedding vector for the anchor image. shape=[batch_size, embedding_dims]
    positive(Variable): embedding vector for the positive image. shape=[batch_size, embedding_dims]
C
ceci3 已提交
11800 11801
    labels(Variable): 1-D tensor. shape=[batch_size]
    l2_reg(float32): L2 regularization term on embedding vector, default: 0.002
C
ceci3 已提交
11802 11803 11804 11805 11806 11807 11808

  Returns:
    npair loss(Variable): return npair loss, shape=[1]

  Examples:
    .. code-block:: python

11809
       import paddle.fluid as fluid
C
ceci3 已提交
11810 11811 11812 11813 11814 11815 11816 11817
       anchor = fluid.layers.data(
                     name = 'anchor', shape = [18, 6], dtype = 'float32', append_batch_size=False)
       positive = fluid.layers.data(
                     name = 'positive', shape = [18, 6], dtype = 'float32', append_batch_size=False)
       labels = fluid.layers.data(
                     name = 'labels', shape = [18], dtype = 'float32', append_batch_size=False)

       npair_loss = fluid.layers.npair_loss(anchor, positive, labels, l2_reg = 0.002)
C
ceci3 已提交
11818 11819 11820 11821 11822 11823 11824
  '''
    Beta = 0.25
    batch_size = labels.shape[0]

    labels = reshape(labels, shape=[batch_size, 1], inplace=True)
    labels = expand(labels, expand_times=[1, batch_size])

C
ceci3 已提交
11825
    labels = equal(labels, transpose(labels, perm=[1, 0])).astype('float32')
C
ceci3 已提交
11826 11827
    labels = labels / reduce_sum(labels, dim=1, keep_dim=True)

C
ceci3 已提交
11828 11829
    l2loss = reduce_mean(reduce_sum(square(anchor), 1)) \
             + reduce_mean(reduce_sum(square(positive), 1))
C
ceci3 已提交
11830 11831 11832 11833
    l2loss = l2loss * Beta * l2_reg

    similarity_matrix = matmul(
        anchor, positive, transpose_x=False, transpose_y=True)
C
ceci3 已提交
11834 11835 11836
    softmax_ce = softmax_with_cross_entropy(
        logits=similarity_matrix, label=labels, soft_label=True)
    cross_entropy = reduce_sum(labels * softmax_ce, 0)
C
ceci3 已提交
11837 11838 11839
    celoss = reduce_mean(cross_entropy)

    return l2loss + celoss
11840 11841


R
ruri 已提交
11842 11843 11844 11845 11846 11847 11848 11849 11850 11851 11852 11853 11854 11855 11856 11857 11858 11859 11860 11861 11862 11863 11864 11865 11866 11867 11868 11869 11870
def pixel_shuffle(x, upscale_factor):
    """

    **Pixel Shuffle Layer**

    This layer rearranges elements in a tensor of shape [N, C, H, W]
    to a tensor of shape [N, C/r**2, H*r, W*r].
    This is useful for implementing efficient sub-pixel convolution
    with a stride of 1/r.
    Please refer to the paper: `Real-Time Single Image and Video Super-Resolution 
    Using an Efficient Sub-Pixel Convolutional Neural Network <https://arxiv.org/abs/1609.05158v2>`_ .
    by Shi et. al (2016) for more details.

        .. code-block:: text
        
            Given a 4-D tensor with the shape:
                x.shape = [1, 9, 4, 4]
            Given upscale_factor:
                upscale_factor= 3
            output shape is:
                [1, 1, 12, 12]
    
    Args:

        x(Variable): The input tensor variable.
        upscale_factor(int): factor to increase spatial resolution

    Returns:

11871
        Out(Variable): Reshaped tensor according to the new dimension.
R
ruri 已提交
11872 11873 11874 11875 11876 11877 11878 11879 11880

    Raises:

        ValueError: If the square of upscale_factor cannot divide the channels of input.

    Examples:

        .. code-block:: python

11881
            import paddle.fluid as fluid
R
ruri 已提交
11882
            input = fluid.layers.data(name="input", shape=[9,4,4])
R
ruri 已提交
11883 11884 11885 11886 11887 11888 11889 11890 11891 11892 11893 11894 11895 11896 11897 11898 11899 11900 11901
            output = fluid.layers.pixel_shuffle(x=input, upscale_factor=3)

    """

    helper = LayerHelper("pixel_shuffle", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if not isinstance(upscale_factor, int):
        raise TypeError("upscale factor must be int type")

    helper.append_op(
        type="pixel_shuffle",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"upscale_factor": upscale_factor})
    return out


11902 11903 11904 11905 11906 11907 11908 11909 11910 11911 11912 11913 11914 11915 11916 11917 11918 11919 11920 11921 11922 11923 11924 11925 11926 11927 11928 11929 11930 11931 11932
def fsp_matrix(x, y):
    """

    **FSP matrix op**

    This op is used to calculate the flow of solution procedure (FSP) matrix of two feature maps.
    Given feature map x with shape [x_channel, h, w] and feature map y with shape
    [y_channel, h, w], we can get the fsp matrix of x and y in two steps:

    1. reshape x into matrix with shape [x_channel, h * w] and reshape and
       transpose y into matrix with shape [h * w, y_channel].
    2. multiply x and y to get fsp matrix with shape [x_channel, y_channel].

    The output is a batch of fsp matrices.

    Args:

        x (Variable): A feature map with shape [batch_size, x_channel, height, width].
        y (Variable): A feature map with shape [batch_size, y_channel, height, width].
                      The y_channel can be different with the x_channel of Input(X)
                      while the other dimensions must be the same with Input(X)'s.

    Returns:

        fsp matrix (Variable): The output of FSP op with shape [batch_size, x_channel, y_channel].
        The x_channel is the channel of x and the y_channel is the channel of y.

    Examples:

        .. code-block:: python

B
Bai Yifan 已提交
11933 11934 11935 11936 11937 11938
            import paddle.fluid as fluid
            data = fluid.layers.data(name='data', shape=[3, 32, 32])
            feature_map_0 = fluid.layers.conv2d(data, num_filters=2,
                                                filter_size=3)
            feature_map_1 = fluid.layers.conv2d(feature_map_0, num_filters=2,
                                                filter_size=1)
11939 11940 11941 11942 11943 11944 11945 11946
            loss = fluid.layers.fsp_matrix(feature_map_0, feature_map_1)

    """
    helper = LayerHelper('fsp_matrix', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype(
        input_param_name='x'))
    helper.append_op(type='fsp', inputs={'X': x, 'Y': y}, outputs={'Out': out})
    return out
H
heqiaozhi 已提交
11947 11948 11949 11950


def continuous_value_model(input, cvm, use_cvm=True):
    """
H
fix doc  
heqiaozhi 已提交
11951

H
heqiaozhi 已提交
11952
    **continuous_value_model layers**
H
fix doc  
heqiaozhi 已提交
11953

H
fix doc  
heqiaozhi 已提交
11954
    continuous value model(cvm). Now, it only considers show and click value in CTR project.
H
fix doc  
heqiaozhi 已提交
11955 11956 11957
    We assume that input is an embedding vector with cvm_feature, whose shape is [N * D] (D is 2 + embedding dim).
    If use_cvm is True, it will log(cvm_feature), and output shape is [N * D].
    If use_cvm is False, it will remove cvm_feature from input, and output shape is [N * (D - 2)].
H
heqiaozhi 已提交
11958
    
H
fix doc  
heqiaozhi 已提交
11959
    This layer accepts a tensor named input which is ID after embedded(lod level is 1), cvm is a show_click info.
H
fix doc  
heqiaozhi 已提交
11960

H
heqiaozhi 已提交
11961
    Args:
H
fix doc  
heqiaozhi 已提交
11962 11963

        input (Variable): a 2-D LodTensor with shape [N x D], where N is the batch size, D is 2 + the embedding dim. lod level = 1.
H
heqiaozhi 已提交
11964 11965
        cvm (Variable):   a 2-D Tensor with shape [N x 2], where N is the batch size, 2 is show and click.
        use_cvm  (bool):  use cvm or not. if use cvm, the output dim is the same as input
H
fix doc  
heqiaozhi 已提交
11966
                          if don't use cvm, the output dim is input dim - 2(remove show and click)
11967
                          (cvm op is a customized op, which input is a sequence has embed_with_cvm default, so we need an op named cvm to decided whever use it or not.)
H
fix doc  
heqiaozhi 已提交
11968

H
heqiaozhi 已提交
11969
    Returns:
H
fix doc  
heqiaozhi 已提交
11970 11971 11972

        Variable: A 2-D LodTensor with shape [N x D], if use cvm, D is equal to input dim, if don't use cvm, D is equal to input dim - 2. 

H
heqiaozhi 已提交
11973
    Examples:
H
fix doc  
heqiaozhi 已提交
11974

H
heqiaozhi 已提交
11975
        .. code-block:: python
H
fix doc  
heqiaozhi 已提交
11976

11977
          import paddle.fluid as fluid
H
heqiaozhi 已提交
11978 11979 11980 11981 11982 11983 11984 11985 11986 11987
          input = fluid.layers.data(name="input", shape=[-1, 1], lod_level=1, append_batch_size=False, dtype="int64")#, stop_gradient=False)
          label = fluid.layers.data(name="label", shape=[-1, 1], append_batch_size=False, dtype="int64")
          embed = fluid.layers.embedding(
                            input=input,
                            size=[100, 11],
                            dtype='float32')
          ones = fluid.layers.fill_constant_batch_size_like(input=label, shape=[-1, 1], dtype="int64", value=1)
          show_clk = fluid.layers.cast(fluid.layers.concat([ones, label], axis=1), dtype='float32')
          show_clk.stop_gradient = True
          input_with_cvm = fluid.layers.continuous_value_model(embed, show_clk, True)
H
fix doc  
heqiaozhi 已提交
11988

H
heqiaozhi 已提交
11989 11990 11991 11992 11993 11994 11995 11996 11997
    """
    helper = LayerHelper('cvm', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='cvm',
        inputs={'X': [input],
                'CVM': [cvm]},
        outputs={'Y': [out]},
        attrs={"use_cvm": use_cvm})
H
heqiaozhi 已提交
11998
    return out
Z
zhoukunsheng 已提交
11999 12000 12001 12002 12003 12004 12005 12006 12007 12008 12009 12010 12011 12012 12013 12014 12015 12016


def where(condition):
    """
    Return an int64 tensor with rank 2, specifying the coordinate of true element in `condition`.

    Output's first dimension is the number of true element, second dimension is rank(number of dimension) of `condition`.
    If there is zero true element, then an empty tensor will be generated.  

    Args:
        condition(Variable): A bool tensor with rank at least 1.

    Returns:
        Variable: The tensor variable storing a 2-D tensor. 

    Examples:
        .. code-block:: python

12017
             import paddle.fluid as fluid
12018 12019 12020
             import paddle.fluid.layers as layers
             import numpy as np

Z
zhoukunsheng 已提交
12021
             # condition is a tensor [True, False, True]
12022 12023 12024
             condition = layers.assign(np.array([1, 0, 1], dtype='int32'))
             condition = layers.cast(condition, 'bool')
             out = layers.where(condition) # [[0], [2]]
Z
zhoukunsheng 已提交
12025 12026

             # condition is a tensor [[True, False], [False, True]]
12027 12028 12029
             condition = layers.assign(np.array([[1, 0], [0, 1]], dtype='int32'))
             condition = layers.cast(condition, 'bool')
             out = layers.where(condition) # [[0, 0], [1, 1]]
Z
zhoukunsheng 已提交
12030 12031

             # condition is a tensor [False, False, False]
12032 12033 12034 12035
             condition = layers.assign(np.array([0, 0, 0], dtype='int32'))
             condition = layers.cast(condition, 'bool')
             out = layers.where(condition) # [[]]

Z
zhoukunsheng 已提交
12036 12037 12038 12039 12040 12041 12042 12043 12044
    """
    helper = LayerHelper("where", **locals())

    out = helper.create_variable_for_type_inference(
        dtype=core.VarDesc.VarType.INT64)

    helper.append_op(
        type='where', inputs={'Condition': condition}, outputs={'Out': [out]})
    return out
Z
zhoukunsheng 已提交
12045 12046 12047 12048 12049 12050 12051 12052 12053 12054 12055 12056 12057 12058 12059 12060 12061


def sign(x):
    """
    **sign**

    This function returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero.

    Args:
        x(Variable|numpy.ndarray): The input tensor.

    Returns:
        Variable: The output sign tensor with identical shape and dtype to `x`.

    Examples:
        .. code-block:: python

12062 12063 12064
          import paddle.fluid as fluid
          import numpy as np

Z
zhoukunsheng 已提交
12065
          # [1, 0, -1]
12066 12067
          data = fluid.layers.sign(np.array([3, 0, -2], dtype='int32')) 

Z
zhoukunsheng 已提交
12068 12069 12070 12071 12072 12073 12074 12075 12076 12077 12078 12079
    """

    helper = LayerHelper("sign", **locals())

    if not isinstance(x, Variable):
        x = assign(x)

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(type='sign', inputs={'X': [x]}, outputs={'Out': [out]})

    return out
12080 12081 12082 12083 12084 12085 12086 12087 12088 12089 12090 12091 12092 12093 12094 12095 12096 12097 12098 12099 12100 12101 12102 12103 12104 12105 12106 12107 12108 12109 12110 12111 12112 12113 12114 12115 12116 12117 12118 12119 12120 12121 12122 12123 12124 12125 12126 12127 12128 12129 12130 12131 12132 12133 12134 12135 12136 12137 12138 12139 12140 12141 12142 12143 12144 12145 12146 12147 12148 12149 12150 12151 12152 12153 12154 12155 12156 12157 12158 12159 12160 12161 12162 12163 12164 12165 12166 12167 12168 12169 12170 12171 12172 12173 12174 12175 12176 12177 12178 12179 12180 12181 12182 12183


def deformable_conv(input,
                    offset,
                    mask,
                    num_filters,
                    filter_size,
                    stride=1,
                    padding=0,
                    dilation=1,
                    groups=None,
                    deformable_groups=None,
                    im2col_step=None,
                    param_attr=None,
                    bias_attr=None,
                    name=None):
    """
    **Deformable Convolution Layer**

    Compute 2-D deformable convolution on 4-D input.
    Given input image x, output feature map y, the deformable convolution operation can be expressed as follow:
    
    .. math::

        y(p) = \sum_{k=1}^{K}{w_k * x(p + p_k + \Delta p_k) * \Delta m_k}
    
    Where :math:`\Delta p_k` and :math:`\Delta m_k` are the learnable offset and modulation scalar for the k-th location, respectively.
    Refer to `Deformable ConvNets v2: More Deformable, Better Results
    <https://arxiv.org/abs/1811.11168v2>`_ .
    
    Example:
        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`

          Offset shape: :math:`(N, 2 * deformable\_groups * H_f * H_w, H_{in}, W_{in})`

          Mask shape: :math:`(N, deformable\_groups * H_f * H_w, H_{in}, W_{in})`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1

    Args:
        input (Variable): The input image with [N, C, H, W] format.
        offset (Variable): The input coord offset of deformable convolution layer.
        Mask (Variable): The input mask of deformable covolution layer.
        num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the deformable conv layer. According to
            grouped convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1.
        deformable_groups (int): The number of deformable group partitions.
            Default: deformable_groups = 1.
        im2col_step (int): Maximum number of images per im2col computation; 
            The total batch size should be divisable by this value or smaller
            than this value; if you face out of memory problem, you can try
            to use a smaller value here.
            Default: im2col_step = 64.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of deformable conv. If it is set to None or one attribute of ParamAttr,
            deformable conv will create ParamAttr as param_attr.
            If the Initializer of the param_attr is not set, the parameter is
            initialized with :math:`Normal(0.0, std)`, and the 
            :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of
            deformable conv layer. If it is set to False, no bias will be added
            to the output units. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None
    Returns:
        Variable: The tensor variable storing the deformable convolution \
                  result.
    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
    Examples:
        .. code-block:: python

12184
          import paddle.fluid as fluid
12185 12186 12187 12188 12189 12190 12191 12192 12193 12194 12195 12196 12197 12198 12199 12200 12201 12202 12203 12204 12205 12206 12207 12208 12209 12210 12211 12212 12213 12214 12215 12216 12217 12218 12219 12220 12221 12222 12223 12224 12225 12226 12227 12228 12229 12230 12231 12232 12233 12234 12235 12236 12237 12238 12239 12240 12241 12242 12243 12244 12245 12246 12247 12248 12249 12250 12251 12252
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          offset = fluid.layers.data(name='offset', shape=[18, 32, 32], dtype='float32')
          mask = fluid.layers.data(name='mask', shape=[9, 32, 32], dtype='float32')
          out = fluid.layers.deformable_conv(input=data, offset=offset, mask=mask,
                                             num_filters=2, filter_size=3, padding=1)
    """

    num_channels = input.shape[1]
    assert param_attr is not False, "param_attr should not be False here."

    helper = LayerHelper('deformable_conv', **locals())
    dtype = helper.input_dtype()

    if not isinstance(input, Variable):
        raise TypeError("Input of deformable_conv must be Variable")
    if not isinstance(offset, Variable):
        raise TypeError("Input Offset of deformable_conv must be Variable")
    if not isinstance(mask, Variable):
        raise TypeError("Input Mask of deformable_conv must be Variable")

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
        num_filter_channels = num_channels // groups

    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')

    input_shape = input.shape
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size

    def _get_default_param_initializer():
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_variable_for_type_inference(dtype)

    helper.append_op(
        type='deformable_conv',
        inputs={
            'Input': input,
            'Filter': filter_param,
            'Offset': offset,
            'Mask': mask,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'deformable_groups': deformable_groups,
            'im2col_step': im2col_step,
        })

    output = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    return output
12253 12254 12255 12256 12257 12258 12259 12260 12261 12262 12263 12264 12265 12266 12267 12268 12269 12270 12271 12272 12273 12274 12275 12276 12277 12278 12279 12280 12281 12282 12283 12284 12285 12286 12287 12288 12289 12290 12291 12292 12293 12294 12295 12296 12297 12298 12299 12300 12301 12302 12303 12304 12305 12306 12307 12308 12309 12310 12311 12312 12313 12314 12315 12316 12317 12318 12319 12320 12321 12322 12323 12324 12325 12326 12327 12328 12329 12330 12331 12332 12333 12334 12335 12336 12337 12338 12339 12340 12341 12342 12343 12344 12345 12346 12347 12348 12349 12350 12351 12352 12353 12354 12355 12356 12357 12358 12359 12360 12361 12362


def unfold(x, kernel_sizes, strides=1, paddings=0, dilations=1, name=None):
    """

    This function returns a col buffer of sliding local blocks of input x, also known
    as im2col for batched 2D image tensors. For each block under the convolution filter,
    all element will be rearranged as a column. While the convolution filter silding over
    the input feature map, a series of such columns will be formed.

    For each input :math:`X` with shape [N, C, H, W], the output shape [N, Cout, Lout]
    can be calculated as following.

    .. math::

        dkernel[0] &= dilations[0] \\times (kernel\_sizes[0] - 1) + 1

        dkernel[1] &= dilations[1] \\times (kernel\_sizes[1] - 1) + 1

        hout &= \\frac{H + paddings[0] + paddings[2] - dkernel[0]}{strides[0]} + 1

        wout &= \\frac{W + paddings[1] + paddings[3] - dkernel[1]}{strides[1]} + 1

        Cout &= C \\times kernel\_sizes[0] \\times kernel\_sizes[1]

        Lout &= hout \\times wout


    Args:
        x(Varaible):              The input tensor of format [N, C, H, W].
        kernel_sizes(int|list):   The size of convolution kernel, should be [k_h, k_w]
                                  or an integer k treated as [k, k].
        strides(int|list):        The strides, should be [stride_h, stride_w]
                                  or an integer stride treated as [sride, stride].
                                  For default, strides will be [1, 1].
        paddings(int|list):       The paddings of each dimension, should be
                                  [padding_top, padding_left, padding_bottom, padding_right]
                                  or [padding_h, padding_w] or an integer padding.
                                  If [padding_h, padding_w] was given, it will expanded to
                                  [padding_h, padding_w, padding_h, padding_w]. If an integer
                                  padding was given, [padding, padding, padding, padding] will
                                  be used. For default, paddings will be [0, 0, 0, 0]
        dilations(int|list):      the dilations of convolution kernel, shold be
                                  [dilation_h, dilation_w], or an integer dialtion treated as
                                  [dilation, dilation]. For default, it will be [1, 1].

    
    Returns:
        Variable: The tensor variable corresponding to the sliding local blocks. The output shape is [N, Cout, Lout] as decribled above. Cout is the  total number of values within each block, and Lout is the total number of such blocks.

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name = 'data', shape = [3, 224, 224], dtype = 'float32')
            y = fluid.layers.unfold(x, [3, 3], 1, 1, 1)
    """

    helper = LayerHelper("unfold", **locals())

    assert len(x.shape) == 4, \
            "input should be the format of [N, C, H, W]"

    if isinstance(kernel_sizes, int):
        kernel_sizes = [kernel_sizes, kernel_sizes]
    else:
        assert isinstance(kernel_sizes, list) and (len(kernel_sizes) == 2), \
            "kernel_sizes should either be an integer or a list of two integers"

    if isinstance(strides, int):
        strides = [strides, strides]
    else:
        assert isinstance(strides, list) and (len(strides) == 2), \
            "strides should either be an integer or a list of two integers"

    if isinstance(dilations, int):
        dilations = [dilations, dilations]
    else:
        assert isinstance(dilations, list) and (len(dilations) == 2), \
            "dilations should either be an integer or a list of two integers"

    if isinstance(paddings, int):
        paddings = [paddings] * 4
    elif isinstance(paddings, list):
        if len(paddings) == 2:
            paddings = paddings * 2
        elif len(paddings) == 4:
            pass
        else:
            raise ValueError(
                "paddings should either be an integer or a list of 2 or 4 integers"
            )
    else:
        raise ValueError(
            "Unexpected type of paddings, it should be either an integer or a list"
            "of 2 or 4 integers")

    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="unfold",
        inputs={"X": x},
        outputs={"Y": out},
        attrs={
            "kernel_sizes": kernel_sizes,
            "strides": strides,
            "paddings": paddings,
            "dilations": dilations
        })
    return out
C
cjt222 已提交
12363 12364 12365 12366 12367 12368 12369 12370 12371 12372 12373 12374 12375 12376 12377 12378 12379 12380 12381 12382 12383 12384 12385 12386 12387 12388 12389 12390 12391 12392 12393 12394 12395 12396 12397 12398 12399 12400 12401 12402 12403 12404 12405 12406 12407 12408 12409 12410 12411 12412 12413 12414 12415


def deformable_roi_pooling(input,
                           rois,
                           trans,
                           no_trans=False,
                           spatial_scale=1.0,
                           group_size=[1, 1],
                           pooled_height=1,
                           pooled_width=1,
                           part_size=None,
                           sample_per_part=1,
                           trans_std=0.1,
                           position_sensitive=False,
                           name=None):
    """
    Deformable PSROI Pooling Layer
    
    Args:
       input (Variable):The input of Deformable PSROIPooling.The shape of input tensor is 
                        [N,C,H,W]. Where N is batch size,C is number of input channels,H 
                        is height of the feature, and W is the width of the feature.
       rois (Variable): ROIs (Regions of Interest) to pool over.It should be
                        a 2-D LoDTensor of shape (num_rois, 4), the lod level
                        is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
                        the top left coordinates, and (x2, y2) is the bottom
                        right coordinates.
       trans (Variable): Offset of features on ROIs while pooling.The format is NCHW, where 
                         N is number of ROIs, C is number of channels, which indicate the offset distance 
                         in the x and y directions, H is pooled height, and W is pooled width.
       no_trans (bool): Whether to add offset to get new value or not while roi pooling, which 
                          value is True or False. Default: False.
       spatial_scale (float): Ratio of input feature map height (or width) to raw image height (or width).
                             Equals the reciprocal of total stride in convolutional layers, Default: 1.0.
       group_size (list|tuple): The number of groups which input channels are divided.(eg.number of input channels 
                         is k1*k2*(C+1), which k1 and k2 are group width and height and C+1 is number of output
                         chanels. eg.(4, 6), which 4 is height of group and 6 is width of group. Default: [1, 1].
       pooled_height (integer): The pooled output height. Default: 1.
       pooled_width (integer): The pooled output width. Default: 1.
       part_size (list|tuple): The height and width of offset, eg.(4, 6), which height is 4 and width is 6, Default: 
                        if None, default value is [pooled_height, pooled_width].
       sample_per_part (integer): The number of samples in each bin. Default: 1.
       trans_std (float): Coefficient of offset. Default: 0.1.
       position_sensitive (bool): Whether to choose deformable psroi pooling mode or not. Default: False.
       name (str): Name of layer. Default: None.
    Returns:
        Variable: The tensor variable storing the deformable psroi pooling \
                  result.


    Examples:
      .. code-block:: python

12416
        import paddle.fluid as fluid
C
cjt222 已提交
12417 12418 12419 12420 12421 12422 12423 12424 12425 12426 12427 12428 12429 12430 12431 12432 12433 12434 12435 12436 12437 12438 12439 12440 12441 12442 12443 12444 12445 12446 12447 12448 12449 12450 12451 12452 12453 12454 12455 12456 12457 12458 12459 12460 12461 12462 12463 12464 12465 12466 12467 12468 12469 12470 12471 12472 12473 12474 12475 12476 12477
        input = fluid.layers.data(name="input",
                                  shape=[2, 192, 64, 64], 
                                  dtype='float32', 
                                  append_batch_size=False)                   
        rois = fluid.layers.data(name="rois",
                                 shape=[4],
                                 dtype='float32', 
                                 lod_level=1)
        trans = fluid.layers.data(name="trans",
                                  shape=[2, 384, 64, 64], 
                                  dtype='float32', 
                                  append_batch_size=False) 
        x = fluid.layers.nn.deformable_roi_pooling(input=input, 
                                                     rois=rois, 
                                                     trans=trans, 
                                                     no_trans=False,
                                                     spatial_scale=1.0, 
                                                     group_size=(1, 1),
                                                     pooled_height=8,
                                                     pooled_width=8,
                                                     part_size=(8, 8),
                                                     sample_per_part=4, 
                                                     trans_std=0.1,
                                                     position_sensitive=False)
    """

    input_channels = input.shape[1]
    if position_sensitive == False:
        output_channels = input_channels
    else:
        output_channels = input_channels / pooled_height / pooled_width

    if part_size is None:
        part_height = pooled_height
        part_width = pooled_width
        part_size = [part_height, part_width]
    part_size = utils.convert_to_list(part_size, 2, 'part_size')
    group_size = utils.convert_to_list(group_size, 2, 'group_size')
    helper = LayerHelper('deformable_psroi_pooling', **locals())
    dtype = helper.input_dtype()
    output = helper.create_variable_for_type_inference(dtype)
    top_count = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="deformable_psroi_pooling",
        inputs={"Input": input,
                "ROIs": rois,
                "Trans": trans},
        outputs={"Output": output,
                 "TopCount": top_count},
        attrs={
            "no_trans": no_trans,
            "spatial_scale": spatial_scale,
            "output_dim": output_channels,
            "group_size": group_size,
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "part_size": part_size,
            "sample_per_part": sample_per_part,
            "trans_std": trans_std
        })
    return output