memcontrol.c 176.7 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
B
Balbir Singh 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
31
#include <linux/mm.h>
32
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
33
#include <linux/pagemap.h>
34
#include <linux/smp.h>
35
#include <linux/page-flags.h>
36
#include <linux/backing-dev.h>
37 38
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
39
#include <linux/limits.h>
40
#include <linux/export.h>
41
#include <linux/mutex.h>
42
#include <linux/slab.h>
43
#include <linux/swap.h>
44
#include <linux/swapops.h>
45
#include <linux/spinlock.h>
46 47
#include <linux/eventfd.h>
#include <linux/sort.h>
48
#include <linux/fs.h>
49
#include <linux/seq_file.h>
50
#include <linux/vmalloc.h>
51
#include <linux/vmpressure.h>
52
#include <linux/mm_inline.h>
53
#include <linux/page_cgroup.h>
54
#include <linux/cpu.h>
55
#include <linux/oom.h>
K
KAMEZAWA Hiroyuki 已提交
56
#include "internal.h"
G
Glauber Costa 已提交
57
#include <net/sock.h>
M
Michal Hocko 已提交
58
#include <net/ip.h>
G
Glauber Costa 已提交
59
#include <net/tcp_memcontrol.h>
B
Balbir Singh 已提交
60

61 62
#include <asm/uaccess.h>

63 64
#include <trace/events/vmscan.h>

65
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
66 67
EXPORT_SYMBOL(mem_cgroup_subsys);

68
#define MEM_CGROUP_RECLAIM_RETRIES	5
69
static struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
70

A
Andrew Morton 已提交
71
#ifdef CONFIG_MEMCG_SWAP
L
Li Zefan 已提交
72
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
73
int do_swap_account __read_mostly;
74 75

/* for remember boot option*/
A
Andrew Morton 已提交
76
#ifdef CONFIG_MEMCG_SWAP_ENABLED
77 78 79 80 81
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

82
#else
83
#define do_swap_account		0
84 85 86
#endif


87 88 89 90 91 92 93
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
94 95 96 97 98
	MEM_CGROUP_STAT_CACHE,		/* # of pages charged as cache */
	MEM_CGROUP_STAT_RSS,		/* # of pages charged as anon rss */
	MEM_CGROUP_STAT_RSS_HUGE,	/* # of pages charged as anon huge */
	MEM_CGROUP_STAT_FILE_MAPPED,	/* # of pages charged as file rss */
	MEM_CGROUP_STAT_SWAP,		/* # of pages, swapped out */
99 100 101
	MEM_CGROUP_STAT_NSTATS,
};

102 103 104
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
105
	"rss_huge",
106 107 108 109
	"mapped_file",
	"swap",
};

110 111 112
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
113 114
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
115 116
	MEM_CGROUP_EVENTS_NSTATS,
};
117 118 119 120 121 122 123 124

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

125 126 127 128 129 130 131 132
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

133 134 135 136 137 138 139 140
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
141
	MEM_CGROUP_TARGET_NUMAINFO,
142 143
	MEM_CGROUP_NTARGETS,
};
144 145 146
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
147

148
struct mem_cgroup_stat_cpu {
149
	long count[MEM_CGROUP_STAT_NSTATS];
150
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
151
	unsigned long nr_page_events;
152
	unsigned long targets[MEM_CGROUP_NTARGETS];
153 154
};

155
struct mem_cgroup_reclaim_iter {
M
Michal Hocko 已提交
156 157 158 159
	/*
	 * last scanned hierarchy member. Valid only if last_dead_count
	 * matches memcg->dead_count of the hierarchy root group.
	 */
160
	struct mem_cgroup *last_visited;
M
Michal Hocko 已提交
161 162
	unsigned long last_dead_count;

163 164 165 166
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

167 168 169 170
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
171
	struct lruvec		lruvec;
172
	unsigned long		lru_size[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
173

174 175
	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];

176
	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
177
						/* use container_of	   */
178 179 180 181 182 183
};

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

184 185 186 187 188
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
189
/* For threshold */
190
struct mem_cgroup_threshold_ary {
191
	/* An array index points to threshold just below or equal to usage. */
192
	int current_threshold;
193 194 195 196 197
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
198 199 200 201 202 203 204 205 206 207 208 209

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
210 211 212 213 214
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
215

216 217
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
218

B
Balbir Singh 已提交
219 220 221 222 223 224 225
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
226 227 228
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
229 230 231 232 233 234 235
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
236

237 238 239
	/* vmpressure notifications */
	struct vmpressure vmpressure;

240 241 242 243
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
244

245 246 247 248
	/*
	 * the counter to account for kernel memory usage.
	 */
	struct res_counter kmem;
249 250 251 252
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
253
	unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
254 255 256 257

	bool		oom_lock;
	atomic_t	under_oom;

258
	int	swappiness;
259 260
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
261

262 263 264
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

265 266 267 268
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
269
	struct mem_cgroup_thresholds thresholds;
270

271
	/* thresholds for mem+swap usage. RCU-protected */
272
	struct mem_cgroup_thresholds memsw_thresholds;
273

K
KAMEZAWA Hiroyuki 已提交
274 275
	/* For oom notifier event fd */
	struct list_head oom_notify;
276

277 278 279 280 281
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;
282 283 284 285
	/*
	 * set > 0 if pages under this cgroup are moving to other cgroup.
	 */
	atomic_t	moving_account;
286 287
	/* taken only while moving_account > 0 */
	spinlock_t	move_lock;
288
	/*
289
	 * percpu counter.
290
	 */
291
	struct mem_cgroup_stat_cpu __percpu *stat;
292 293 294 295 296 297
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
298

M
Michal Hocko 已提交
299
	atomic_t	dead_count;
M
Michal Hocko 已提交
300
#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
G
Glauber Costa 已提交
301 302
	struct tcp_memcontrol tcp_mem;
#endif
303 304 305 306 307 308 309 310
#if defined(CONFIG_MEMCG_KMEM)
	/* analogous to slab_common's slab_caches list. per-memcg */
	struct list_head memcg_slab_caches;
	/* Not a spinlock, we can take a lot of time walking the list */
	struct mutex slab_caches_mutex;
        /* Index in the kmem_cache->memcg_params->memcg_caches array */
	int kmemcg_id;
#endif
311 312 313 314 315 316 317

	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
#endif
318

319 320
	struct mem_cgroup_per_node *nodeinfo[0];
	/* WARNING: nodeinfo must be the last member here */
B
Balbir Singh 已提交
321 322
};

323 324 325 326 327 328
static size_t memcg_size(void)
{
	return sizeof(struct mem_cgroup) +
		nr_node_ids * sizeof(struct mem_cgroup_per_node);
}

329 330 331
/* internal only representation about the status of kmem accounting. */
enum {
	KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
332
	KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
333
	KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
334 335
};

336 337 338
/* We account when limit is on, but only after call sites are patched */
#define KMEM_ACCOUNTED_MASK \
		((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
339 340 341 342 343 344

#ifdef CONFIG_MEMCG_KMEM
static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}
345 346 347 348 349 350

static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
{
	return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}

351 352 353 354 355
static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
}

356 357 358 359 360
static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
{
	clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
}

361 362
static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
{
363 364 365 366 367
	/*
	 * Our caller must use css_get() first, because memcg_uncharge_kmem()
	 * will call css_put() if it sees the memcg is dead.
	 */
	smp_wmb();
368 369 370 371 372 373 374 375 376
	if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
		set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
}

static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
{
	return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
				  &memcg->kmem_account_flags);
}
377 378
#endif

379 380
/* Stuffs for move charges at task migration. */
/*
381 382
 * Types of charges to be moved. "move_charge_at_immitgrate" and
 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
383 384
 */
enum move_type {
385
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
386
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
387 388 389
	NR_MOVE_TYPE,
};

390 391
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
392
	spinlock_t	  lock; /* for from, to */
393 394
	struct mem_cgroup *from;
	struct mem_cgroup *to;
395
	unsigned long immigrate_flags;
396
	unsigned long precharge;
397
	unsigned long moved_charge;
398
	unsigned long moved_swap;
399 400 401
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
402
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
403 404
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
405

D
Daisuke Nishimura 已提交
406 407
static bool move_anon(void)
{
408
	return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
D
Daisuke Nishimura 已提交
409 410
}

411 412
static bool move_file(void)
{
413
	return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
414 415
}

416 417 418 419
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
420
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
421

422 423
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
424
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
425
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
426
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
427 428 429
	NR_CHARGE_TYPE,
};

430
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
431 432 433 434
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
435
	_KMEM,
G
Glauber Costa 已提交
436 437
};

438 439
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
440
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
441 442
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
443

444 445 446 447 448 449 450 451
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)

452 453 454 455 456 457 458
/*
 * The memcg_create_mutex will be held whenever a new cgroup is created.
 * As a consequence, any change that needs to protect against new child cgroups
 * appearing has to hold it as well.
 */
static DEFINE_MUTEX(memcg_create_mutex);

459 460
struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
{
461
	return s ? container_of(s, struct mem_cgroup, css) : NULL;
462 463
}

464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

struct vmpressure *css_to_vmpressure(struct cgroup_subsys_state *css)
{
	return &mem_cgroup_from_css(css)->vmpressure;
}

482 483 484 485 486
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

G
Glauber Costa 已提交
487
/* Writing them here to avoid exposing memcg's inner layout */
M
Michal Hocko 已提交
488
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
G
Glauber Costa 已提交
489 490 491

void sock_update_memcg(struct sock *sk)
{
492
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
493
		struct mem_cgroup *memcg;
494
		struct cg_proto *cg_proto;
G
Glauber Costa 已提交
495 496 497

		BUG_ON(!sk->sk_prot->proto_cgroup);

498 499 500 501 502 503 504 505 506 507
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
508
			css_get(&sk->sk_cgrp->memcg->css);
509 510 511
			return;
		}

G
Glauber Costa 已提交
512 513
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
514
		cg_proto = sk->sk_prot->proto_cgroup(memcg);
515 516
		if (!mem_cgroup_is_root(memcg) &&
		    memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) {
517
			sk->sk_cgrp = cg_proto;
G
Glauber Costa 已提交
518 519 520 521 522 523 524 525
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
526
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
527 528 529
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
530
		css_put(&sk->sk_cgrp->memcg->css);
G
Glauber Costa 已提交
531 532
	}
}
G
Glauber Costa 已提交
533 534 535 536 537 538 539 540 541

struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

	return &memcg->tcp_mem.cg_proto;
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
542

543 544 545 546 547 548 549 550 551 552 553 554
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
	if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
		return;
	static_key_slow_dec(&memcg_socket_limit_enabled);
}
#else
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
}
#endif

555
#ifdef CONFIG_MEMCG_KMEM
556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
/*
 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
 * There are two main reasons for not using the css_id for this:
 *  1) this works better in sparse environments, where we have a lot of memcgs,
 *     but only a few kmem-limited. Or also, if we have, for instance, 200
 *     memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *     200 entry array for that.
 *
 *  2) In order not to violate the cgroup API, we would like to do all memory
 *     allocation in ->create(). At that point, we haven't yet allocated the
 *     css_id. Having a separate index prevents us from messing with the cgroup
 *     core for this
 *
 * The current size of the caches array is stored in
 * memcg_limited_groups_array_size.  It will double each time we have to
 * increase it.
 */
static DEFINE_IDA(kmem_limited_groups);
574 575
int memcg_limited_groups_array_size;

576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
 * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
 * css_id space is not getting any smaller, and we don't have to necessarily
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
#define MEMCG_CACHES_MAX_SIZE 65535

591 592 593 594 595 596
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
597
struct static_key memcg_kmem_enabled_key;
598
EXPORT_SYMBOL(memcg_kmem_enabled_key);
599 600 601

static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
602
	if (memcg_kmem_is_active(memcg)) {
603
		static_key_slow_dec(&memcg_kmem_enabled_key);
604 605
		ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
	}
606 607 608 609 610
	/*
	 * This check can't live in kmem destruction function,
	 * since the charges will outlive the cgroup
	 */
	WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
611 612 613 614 615 616 617 618 619 620 621 622 623
}
#else
static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
}
#endif /* CONFIG_MEMCG_KMEM */

static void disarm_static_keys(struct mem_cgroup *memcg)
{
	disarm_sock_keys(memcg);
	disarm_kmem_keys(memcg);
}

624
static void drain_all_stock_async(struct mem_cgroup *memcg);
625

626
static struct mem_cgroup_per_zone *
627
mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
628
{
629
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
630
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
631 632
}

633
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
634
{
635
	return &memcg->css;
636 637
}

638
static struct mem_cgroup_per_zone *
639
page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
640
{
641 642
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
643

644
	return mem_cgroup_zoneinfo(memcg, nid, zid);
645 646
}

647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
666
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
667
				 enum mem_cgroup_stat_index idx)
668
{
669
	long val = 0;
670 671
	int cpu;

672 673
	get_online_cpus();
	for_each_online_cpu(cpu)
674
		val += per_cpu(memcg->stat->count[idx], cpu);
675
#ifdef CONFIG_HOTPLUG_CPU
676 677 678
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
679 680
#endif
	put_online_cpus();
681 682 683
	return val;
}

684
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
685 686 687
					 bool charge)
{
	int val = (charge) ? 1 : -1;
688
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
689 690
}

691
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
692 693 694 695 696 697
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

	for_each_online_cpu(cpu)
698
		val += per_cpu(memcg->stat->events[idx], cpu);
699
#ifdef CONFIG_HOTPLUG_CPU
700 701 702
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
703 704 705 706
#endif
	return val;
}

707
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
708
					 struct page *page,
709
					 bool anon, int nr_pages)
710
{
711 712
	preempt_disable();

713 714 715 716 717 718
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
	if (anon)
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
719
				nr_pages);
720
	else
721
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
722
				nr_pages);
723

724 725 726 727
	if (PageTransHuge(page))
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
				nr_pages);

728 729
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
730
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
731
	else {
732
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
733 734
		nr_pages = -nr_pages; /* for event */
	}
735

736
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
737

738
	preempt_enable();
739 740
}

741
unsigned long
742
mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
743 744 745 746 747 748 749 750
{
	struct mem_cgroup_per_zone *mz;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	return mz->lru_size[lru];
}

static unsigned long
751
mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
752
			unsigned int lru_mask)
753 754
{
	struct mem_cgroup_per_zone *mz;
H
Hugh Dickins 已提交
755
	enum lru_list lru;
756 757
	unsigned long ret = 0;

758
	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
759

H
Hugh Dickins 已提交
760 761 762
	for_each_lru(lru) {
		if (BIT(lru) & lru_mask)
			ret += mz->lru_size[lru];
763 764 765 766 767
	}
	return ret;
}

static unsigned long
768
mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
769 770
			int nid, unsigned int lru_mask)
{
771 772 773
	u64 total = 0;
	int zid;

774
	for (zid = 0; zid < MAX_NR_ZONES; zid++)
775 776
		total += mem_cgroup_zone_nr_lru_pages(memcg,
						nid, zid, lru_mask);
777

778 779
	return total;
}
780

781
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
782
			unsigned int lru_mask)
783
{
784
	int nid;
785 786
	u64 total = 0;

787
	for_each_node_state(nid, N_MEMORY)
788
		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
789
	return total;
790 791
}

792 793
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
794 795 796
{
	unsigned long val, next;

797
	val = __this_cpu_read(memcg->stat->nr_page_events);
798
	next = __this_cpu_read(memcg->stat->targets[target]);
799
	/* from time_after() in jiffies.h */
800 801 802 803 804 805 806 807 808 809 810 811 812
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
813
	}
814
	return false;
815 816 817 818 819 820
}

/*
 * Check events in order.
 *
 */
821
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
822
{
823
	preempt_disable();
824
	/* threshold event is triggered in finer grain than soft limit */
825 826
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
827
		bool do_numainfo __maybe_unused;
828 829 830 831 832 833 834

#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
		preempt_enable();

835
		mem_cgroup_threshold(memcg);
836
#if MAX_NUMNODES > 1
837
		if (unlikely(do_numainfo))
838
			atomic_inc(&memcg->numainfo_events);
839
#endif
840 841
	} else
		preempt_enable();
842 843
}

844
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
845
{
846 847 848 849 850 851 852 853
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

854
	return mem_cgroup_from_css(task_css(p, mem_cgroup_subsys_id));
855 856
}

857
struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
858
{
859
	struct mem_cgroup *memcg = NULL;
860 861 862

	if (!mm)
		return NULL;
863 864 865 866 867 868 869
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
870 871
		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!memcg))
872
			break;
873
	} while (!css_tryget(&memcg->css));
874
	rcu_read_unlock();
875
	return memcg;
876 877
}

878 879 880 881 882 883 884 885 886
static enum mem_cgroup_filter_t
mem_cgroup_filter(struct mem_cgroup *memcg, struct mem_cgroup *root,
		mem_cgroup_iter_filter cond)
{
	if (!cond)
		return VISIT;
	return cond(memcg, root);
}

887 888 889 890 891 892 893
/*
 * Returns a next (in a pre-order walk) alive memcg (with elevated css
 * ref. count) or NULL if the whole root's subtree has been visited.
 *
 * helper function to be used by mem_cgroup_iter
 */
static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
894
		struct mem_cgroup *last_visited, mem_cgroup_iter_filter cond)
895
{
896
	struct cgroup_subsys_state *prev_css, *next_css;
897

898
	prev_css = last_visited ? &last_visited->css : NULL;
899
skip_node:
900
	next_css = css_next_descendant_pre(prev_css, &root->css);
901 902 903 904 905 906 907 908

	/*
	 * Even if we found a group we have to make sure it is
	 * alive. css && !memcg means that the groups should be
	 * skipped and we should continue the tree walk.
	 * last_visited css is safe to use because it is
	 * protected by css_get and the tree walk is rcu safe.
	 */
909 910 911
	if (next_css) {
		struct mem_cgroup *mem = mem_cgroup_from_css(next_css);

912 913
		switch (mem_cgroup_filter(mem, root, cond)) {
		case SKIP:
914
			prev_css = next_css;
915
			goto skip_node;
916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936
		case SKIP_TREE:
			if (mem == root)
				return NULL;
			/*
			 * css_rightmost_descendant is not an optimal way to
			 * skip through a subtree (especially for imbalanced
			 * trees leaning to right) but that's what we have right
			 * now. More effective solution would be traversing
			 * right-up for first non-NULL without calling
			 * css_next_descendant_pre afterwards.
			 */
			prev_css = css_rightmost_descendant(next_css);
			goto skip_node;
		case VISIT:
			if (css_tryget(&mem->css))
				return mem;
			else {
				prev_css = next_css;
				goto skip_node;
			}
			break;
937 938 939 940 941 942
		}
	}

	return NULL;
}

943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994
static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
{
	/*
	 * When a group in the hierarchy below root is destroyed, the
	 * hierarchy iterator can no longer be trusted since it might
	 * have pointed to the destroyed group.  Invalidate it.
	 */
	atomic_inc(&root->dead_count);
}

static struct mem_cgroup *
mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
		     struct mem_cgroup *root,
		     int *sequence)
{
	struct mem_cgroup *position = NULL;
	/*
	 * A cgroup destruction happens in two stages: offlining and
	 * release.  They are separated by a RCU grace period.
	 *
	 * If the iterator is valid, we may still race with an
	 * offlining.  The RCU lock ensures the object won't be
	 * released, tryget will fail if we lost the race.
	 */
	*sequence = atomic_read(&root->dead_count);
	if (iter->last_dead_count == *sequence) {
		smp_rmb();
		position = iter->last_visited;
		if (position && !css_tryget(&position->css))
			position = NULL;
	}
	return position;
}

static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
				   struct mem_cgroup *last_visited,
				   struct mem_cgroup *new_position,
				   int sequence)
{
	if (last_visited)
		css_put(&last_visited->css);
	/*
	 * We store the sequence count from the time @last_visited was
	 * loaded successfully instead of rereading it here so that we
	 * don't lose destruction events in between.  We could have
	 * raced with the destruction of @new_position after all.
	 */
	iter->last_visited = new_position;
	smp_wmb();
	iter->last_dead_count = sequence;
}

995 996 997 998 999
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1000
 * @cond: filter for visited nodes, NULL for no filter
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
1013
struct mem_cgroup *mem_cgroup_iter_cond(struct mem_cgroup *root,
1014
				   struct mem_cgroup *prev,
1015 1016
				   struct mem_cgroup_reclaim_cookie *reclaim,
				   mem_cgroup_iter_filter cond)
K
KAMEZAWA Hiroyuki 已提交
1017
{
1018
	struct mem_cgroup *memcg = NULL;
1019
	struct mem_cgroup *last_visited = NULL;
1020

1021 1022 1023 1024
	if (mem_cgroup_disabled()) {
		/* first call must return non-NULL, second return NULL */
		return (struct mem_cgroup *)(unsigned long)!prev;
	}
1025

1026 1027
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
1028

1029
	if (prev && !reclaim)
1030
		last_visited = prev;
K
KAMEZAWA Hiroyuki 已提交
1031

1032 1033
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
1034
			goto out_css_put;
1035 1036 1037
		if (mem_cgroup_filter(root, root, cond) == VISIT)
			return root;
		return NULL;
1038
	}
K
KAMEZAWA Hiroyuki 已提交
1039

1040
	rcu_read_lock();
1041
	while (!memcg) {
1042
		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1043
		int uninitialized_var(seq);
1044

1045 1046 1047 1048 1049 1050 1051
		if (reclaim) {
			int nid = zone_to_nid(reclaim->zone);
			int zid = zone_idx(reclaim->zone);
			struct mem_cgroup_per_zone *mz;

			mz = mem_cgroup_zoneinfo(root, nid, zid);
			iter = &mz->reclaim_iter[reclaim->priority];
1052
			if (prev && reclaim->generation != iter->generation) {
M
Michal Hocko 已提交
1053
				iter->last_visited = NULL;
1054 1055
				goto out_unlock;
			}
M
Michal Hocko 已提交
1056

1057
			last_visited = mem_cgroup_iter_load(iter, root, &seq);
1058
		}
K
KAMEZAWA Hiroyuki 已提交
1059

1060
		memcg = __mem_cgroup_iter_next(root, last_visited, cond);
K
KAMEZAWA Hiroyuki 已提交
1061

1062
		if (reclaim) {
1063
			mem_cgroup_iter_update(iter, last_visited, memcg, seq);
1064

M
Michal Hocko 已提交
1065
			if (!memcg)
1066 1067 1068 1069
				iter->generation++;
			else if (!prev && memcg)
				reclaim->generation = iter->generation;
		}
1070

1071 1072 1073 1074 1075
		/*
		 * We have finished the whole tree walk or no group has been
		 * visited because filter told us to skip the root node.
		 */
		if (!memcg && (prev || (cond && !last_visited)))
1076
			goto out_unlock;
1077
	}
1078 1079
out_unlock:
	rcu_read_unlock();
1080 1081 1082 1083
out_css_put:
	if (prev && prev != root)
		css_put(&prev->css);

1084
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1085
}
K
KAMEZAWA Hiroyuki 已提交
1086

1087 1088 1089 1090 1091 1092 1093
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1094 1095 1096 1097 1098 1099
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1100

1101 1102 1103 1104 1105 1106
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
1107
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1108
	     iter != NULL;				\
1109
	     iter = mem_cgroup_iter(root, iter, NULL))
1110

1111
#define for_each_mem_cgroup(iter)			\
1112
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1113
	     iter != NULL;				\
1114
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
1115

1116
void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1117
{
1118
	struct mem_cgroup *memcg;
1119 1120

	rcu_read_lock();
1121 1122
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
1123 1124 1125 1126
		goto out;

	switch (idx) {
	case PGFAULT:
1127 1128 1129 1130
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1131 1132 1133 1134 1135 1136 1137
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
1138
EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1139

1140 1141 1142
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
1143
 * @memcg: memcg of the wanted lruvec
1144 1145 1146 1147 1148 1149 1150 1151 1152
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
1153
	struct lruvec *lruvec;
1154

1155 1156 1157 1158
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1159 1160

	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
1171 1172
}

K
KAMEZAWA Hiroyuki 已提交
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
1186

1187
/**
1188
 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1189
 * @page: the page
1190
 * @zone: zone of the page
1191
 */
1192
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1193 1194
{
	struct mem_cgroup_per_zone *mz;
1195 1196
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
1197
	struct lruvec *lruvec;
1198

1199 1200 1201 1202
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1203

K
KAMEZAWA Hiroyuki 已提交
1204
	pc = lookup_page_cgroup(page);
1205
	memcg = pc->mem_cgroup;
1206 1207

	/*
1208
	 * Surreptitiously switch any uncharged offlist page to root:
1209 1210 1211 1212 1213 1214 1215
	 * an uncharged page off lru does nothing to secure
	 * its former mem_cgroup from sudden removal.
	 *
	 * Our caller holds lru_lock, and PageCgroupUsed is updated
	 * under page_cgroup lock: between them, they make all uses
	 * of pc->mem_cgroup safe.
	 */
1216
	if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1217 1218
		pc->mem_cgroup = memcg = root_mem_cgroup;

1219
	mz = page_cgroup_zoneinfo(memcg, page);
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1230
}
1231

1232
/**
1233 1234 1235 1236
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1237
 *
1238 1239
 * This function must be called when a page is added to or removed from an
 * lru list.
1240
 */
1241 1242
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1243 1244
{
	struct mem_cgroup_per_zone *mz;
1245
	unsigned long *lru_size;
1246 1247 1248 1249

	if (mem_cgroup_disabled())
		return;

1250 1251 1252 1253
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1254
}
1255

1256
/*
1257
 * Checks whether given mem is same or in the root_mem_cgroup's
1258 1259
 * hierarchy subtree
 */
1260 1261
bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				  struct mem_cgroup *memcg)
1262
{
1263 1264
	if (root_memcg == memcg)
		return true;
1265
	if (!root_memcg->use_hierarchy || !memcg)
1266
		return false;
1267 1268 1269 1270 1271 1272 1273 1274
	return css_is_ancestor(&memcg->css, &root_memcg->css);
}

static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				       struct mem_cgroup *memcg)
{
	bool ret;

1275
	rcu_read_lock();
1276
	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1277 1278
	rcu_read_unlock();
	return ret;
1279 1280
}

1281 1282
bool task_in_mem_cgroup(struct task_struct *task,
			const struct mem_cgroup *memcg)
1283
{
1284
	struct mem_cgroup *curr = NULL;
1285
	struct task_struct *p;
1286
	bool ret;
1287

1288
	p = find_lock_task_mm(task);
1289 1290 1291 1292 1293 1294 1295 1296 1297
	if (p) {
		curr = try_get_mem_cgroup_from_mm(p->mm);
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1298
		rcu_read_lock();
1299 1300 1301
		curr = mem_cgroup_from_task(task);
		if (curr)
			css_get(&curr->css);
1302
		rcu_read_unlock();
1303
	}
1304
	if (!curr)
1305
		return false;
1306
	/*
1307
	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1308
	 * use_hierarchy of "curr" here make this function true if hierarchy is
1309 1310
	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1311
	 */
1312
	ret = mem_cgroup_same_or_subtree(memcg, curr);
1313
	css_put(&curr->css);
1314 1315 1316
	return ret;
}

1317
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1318
{
1319
	unsigned long inactive_ratio;
1320
	unsigned long inactive;
1321
	unsigned long active;
1322
	unsigned long gb;
1323

1324 1325
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1326

1327 1328 1329 1330 1331 1332
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1333
	return inactive * inactive_ratio < active;
1334 1335
}

1336 1337 1338
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1339
/**
1340
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1341
 * @memcg: the memory cgroup
1342
 *
1343
 * Returns the maximum amount of memory @mem can be charged with, in
1344
 * pages.
1345
 */
1346
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1347
{
1348 1349
	unsigned long long margin;

1350
	margin = res_counter_margin(&memcg->res);
1351
	if (do_swap_account)
1352
		margin = min(margin, res_counter_margin(&memcg->memsw));
1353
	return margin >> PAGE_SHIFT;
1354 1355
}

1356
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1357 1358
{
	/* root ? */
T
Tejun Heo 已提交
1359
	if (!css_parent(&memcg->css))
K
KOSAKI Motohiro 已提交
1360 1361
		return vm_swappiness;

1362
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1363 1364
}

1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378
/*
 * memcg->moving_account is used for checking possibility that some thread is
 * calling move_account(). When a thread on CPU-A starts moving pages under
 * a memcg, other threads should check memcg->moving_account under
 * rcu_read_lock(), like this:
 *
 *         CPU-A                                    CPU-B
 *                                              rcu_read_lock()
 *         memcg->moving_account+1              if (memcg->mocing_account)
 *                                                   take heavy locks.
 *         synchronize_rcu()                    update something.
 *                                              rcu_read_unlock()
 *         start move here.
 */
1379 1380 1381 1382

/* for quick checking without looking up memcg */
atomic_t memcg_moving __read_mostly;

1383
static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1384
{
1385
	atomic_inc(&memcg_moving);
1386
	atomic_inc(&memcg->moving_account);
1387 1388 1389
	synchronize_rcu();
}

1390
static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1391
{
1392 1393 1394 1395
	/*
	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
	 * We check NULL in callee rather than caller.
	 */
1396 1397
	if (memcg) {
		atomic_dec(&memcg_moving);
1398
		atomic_dec(&memcg->moving_account);
1399
	}
1400
}
1401

1402 1403 1404
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
1405 1406
 * mem_cgroup_stolen() -  checking whether a cgroup is mc.from or not. This
 *			  is used for avoiding races in accounting.  If true,
1407 1408 1409 1410 1411 1412 1413
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

1414
static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1415 1416
{
	VM_BUG_ON(!rcu_read_lock_held());
1417
	return atomic_read(&memcg->moving_account) > 0;
1418
}
1419

1420
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1421
{
1422 1423
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1424
	bool ret = false;
1425 1426 1427 1428 1429 1430 1431 1432 1433
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1434

1435 1436
	ret = mem_cgroup_same_or_subtree(memcg, from)
		|| mem_cgroup_same_or_subtree(memcg, to);
1437 1438
unlock:
	spin_unlock(&mc.lock);
1439 1440 1441
	return ret;
}

1442
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1443 1444
{
	if (mc.moving_task && current != mc.moving_task) {
1445
		if (mem_cgroup_under_move(memcg)) {
1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1458 1459 1460 1461
/*
 * Take this lock when
 * - a code tries to modify page's memcg while it's USED.
 * - a code tries to modify page state accounting in a memcg.
1462
 * see mem_cgroup_stolen(), too.
1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
 */
static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
				  unsigned long *flags)
{
	spin_lock_irqsave(&memcg->move_lock, *flags);
}

static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
				unsigned long *flags)
{
	spin_unlock_irqrestore(&memcg->move_lock, *flags);
}

1476
#define K(x) ((x) << (PAGE_SHIFT-10))
1477
/**
1478
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;
1496 1497
	struct mem_cgroup *iter;
	unsigned int i;
1498

1499
	if (!p)
1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
		return;

	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

1518
	pr_info("Task in %s killed", memcg_name);
1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
1531
	pr_cont(" as a result of limit of %s\n", memcg_name);
1532 1533
done:

1534
	pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1535 1536 1537
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1538
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1539 1540 1541
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1542
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1543 1544 1545
		res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569

	for_each_mem_cgroup_tree(iter, memcg) {
		pr_info("Memory cgroup stats");

		rcu_read_lock();
		ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
		if (!ret)
			pr_cont(" for %s", memcg_name);
		rcu_read_unlock();
		pr_cont(":");

		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
				continue;
			pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
				K(mem_cgroup_read_stat(iter, i)));
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1570 1571
}

1572 1573 1574 1575
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1576
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1577 1578
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1579 1580
	struct mem_cgroup *iter;

1581
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1582
		num++;
1583 1584 1585
	return num;
}

D
David Rientjes 已提交
1586 1587 1588
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1589
static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1590 1591 1592
{
	u64 limit;

1593 1594
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);

D
David Rientjes 已提交
1595
	/*
1596
	 * Do not consider swap space if we cannot swap due to swappiness
D
David Rientjes 已提交
1597
	 */
1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611
	if (mem_cgroup_swappiness(memcg)) {
		u64 memsw;

		limit += total_swap_pages << PAGE_SHIFT;
		memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);

		/*
		 * If memsw is finite and limits the amount of swap space
		 * available to this memcg, return that limit.
		 */
		limit = min(limit, memsw);
	}

	return limit;
D
David Rientjes 已提交
1612 1613
}

1614 1615
static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
				     int order)
1616 1617 1618 1619 1620 1621 1622
{
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1623
	/*
1624 1625 1626
	 * If current has a pending SIGKILL or is exiting, then automatically
	 * select it.  The goal is to allow it to allocate so that it may
	 * quickly exit and free its memory.
1627
	 */
1628
	if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1629 1630 1631 1632 1633
		set_thread_flag(TIF_MEMDIE);
		return;
	}

	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1634 1635
	totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
	for_each_mem_cgroup_tree(iter, memcg) {
1636
		struct css_task_iter it;
1637 1638
		struct task_struct *task;

1639 1640
		css_task_iter_start(&iter->css, &it);
		while ((task = css_task_iter_next(&it))) {
1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652
			switch (oom_scan_process_thread(task, totalpages, NULL,
							false)) {
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
1653
				css_task_iter_end(&it);
1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
				return;
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
			if (points > chosen_points) {
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = points;
				get_task_struct(chosen);
			}
		}
1670
		css_task_iter_end(&it);
1671 1672 1673 1674 1675 1676 1677 1678 1679
	}

	if (!chosen)
		return;
	points = chosen_points * 1000 / totalpages;
	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
			 NULL, "Memory cgroup out of memory");
}

1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715
static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
					gfp_t gfp_mask,
					unsigned long flags)
{
	unsigned long total = 0;
	bool noswap = false;
	int loop;

	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
		noswap = true;
	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
		noswap = true;

	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
		if (loop)
			drain_all_stock_async(memcg);
		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
		/*
		 * Allow limit shrinkers, which are triggered directly
		 * by userspace, to catch signals and stop reclaim
		 * after minimal progress, regardless of the margin.
		 */
		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
			break;
		if (mem_cgroup_margin(memcg))
			break;
		/*
		 * If nothing was reclaimed after two attempts, there
		 * may be no reclaimable pages in this hierarchy.
		 */
		if (loop && !total)
			break;
	}
	return total;
}

1716
#if MAX_NUMNODES > 1
1717 1718
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1719
 * @memcg: the target memcg
1720 1721 1722 1723 1724 1725 1726
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1727
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1728 1729
		int nid, bool noswap)
{
1730
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1731 1732 1733
		return true;
	if (noswap || !total_swap_pages)
		return false;
1734
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1735 1736 1737 1738
		return true;
	return false;

}
1739 1740 1741 1742 1743 1744 1745

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1746
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1747 1748
{
	int nid;
1749 1750 1751 1752
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1753
	if (!atomic_read(&memcg->numainfo_events))
1754
		return;
1755
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1756 1757 1758
		return;

	/* make a nodemask where this memcg uses memory from */
1759
	memcg->scan_nodes = node_states[N_MEMORY];
1760

1761
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1762

1763 1764
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1765
	}
1766

1767 1768
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1783
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1784 1785 1786
{
	int node;

1787 1788
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1789

1790
	node = next_node(node, memcg->scan_nodes);
1791
	if (node == MAX_NUMNODES)
1792
		node = first_node(memcg->scan_nodes);
1793 1794 1795 1796 1797 1798 1799 1800 1801
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1802
	memcg->last_scanned_node = node;
1803 1804 1805 1806
	return node;
}

#else
1807
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1808 1809 1810
{
	return 0;
}
1811

1812 1813
#endif

1814
/*
1815 1816 1817
 * A group is eligible for the soft limit reclaim under the given root
 * hierarchy if
 * 	a) it is over its soft limit
1818 1819
 * 	b) any parent up the hierarchy is over its soft limit
 */
1820 1821
enum mem_cgroup_filter_t
mem_cgroup_soft_reclaim_eligible(struct mem_cgroup *memcg,
1822
		struct mem_cgroup *root)
1823 1824 1825 1826
{
	struct mem_cgroup *parent = memcg;

	if (res_counter_soft_limit_excess(&memcg->res))
1827
		return VISIT;
1828 1829

	/*
1830 1831
	 * If any parent up to the root in the hierarchy is over its soft limit
	 * then we have to obey and reclaim from this group as well.
1832 1833 1834
	 */
	while((parent = parent_mem_cgroup(parent))) {
		if (res_counter_soft_limit_excess(&parent->res))
1835
			return VISIT;
1836 1837
		if (parent == root)
			break;
1838
	}
1839

1840
	return SKIP;
1841 1842
}

K
KAMEZAWA Hiroyuki 已提交
1843 1844 1845
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
1846
 * Has to be called with memcg_oom_lock
K
KAMEZAWA Hiroyuki 已提交
1847
 */
1848
static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1849
{
1850
	struct mem_cgroup *iter, *failed = NULL;
1851

1852
	for_each_mem_cgroup_tree(iter, memcg) {
1853
		if (iter->oom_lock) {
1854 1855 1856 1857 1858
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1859 1860
			mem_cgroup_iter_break(memcg, iter);
			break;
1861 1862
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1863
	}
K
KAMEZAWA Hiroyuki 已提交
1864

1865
	if (!failed)
1866
		return true;
1867 1868 1869 1870 1871

	/*
	 * OK, we failed to lock the whole subtree so we have to clean up
	 * what we set up to the failing subtree
	 */
1872
	for_each_mem_cgroup_tree(iter, memcg) {
1873
		if (iter == failed) {
1874 1875
			mem_cgroup_iter_break(memcg, iter);
			break;
1876 1877 1878
		}
		iter->oom_lock = false;
	}
1879
	return false;
1880
}
1881

1882
/*
1883
 * Has to be called with memcg_oom_lock
1884
 */
1885
static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1886
{
K
KAMEZAWA Hiroyuki 已提交
1887 1888
	struct mem_cgroup *iter;

1889
	for_each_mem_cgroup_tree(iter, memcg)
1890 1891 1892 1893
		iter->oom_lock = false;
	return 0;
}

1894
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1895 1896 1897
{
	struct mem_cgroup *iter;

1898
	for_each_mem_cgroup_tree(iter, memcg)
1899 1900 1901
		atomic_inc(&iter->under_oom);
}

1902
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1903 1904 1905
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1906 1907 1908 1909 1910
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
1911
	for_each_mem_cgroup_tree(iter, memcg)
1912
		atomic_add_unless(&iter->under_oom, -1, 0);
1913 1914
}

1915
static DEFINE_SPINLOCK(memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1916 1917
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1918
struct oom_wait_info {
1919
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
1920 1921 1922 1923 1924 1925
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
1926 1927
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1928 1929 1930
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1931
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1932 1933

	/*
1934
	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
K
KAMEZAWA Hiroyuki 已提交
1935 1936
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
1937 1938
	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
K
KAMEZAWA Hiroyuki 已提交
1939 1940 1941 1942
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1943
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1944
{
1945 1946
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
1947 1948
}

1949
static void memcg_oom_recover(struct mem_cgroup *memcg)
1950
{
1951 1952
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
1953 1954
}

K
KAMEZAWA Hiroyuki 已提交
1955 1956 1957
/*
 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 */
1958 1959
static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
				  int order)
1960
{
K
KAMEZAWA Hiroyuki 已提交
1961
	struct oom_wait_info owait;
1962
	bool locked, need_to_kill;
K
KAMEZAWA Hiroyuki 已提交
1963

1964
	owait.memcg = memcg;
K
KAMEZAWA Hiroyuki 已提交
1965 1966 1967 1968
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
1969
	need_to_kill = true;
1970
	mem_cgroup_mark_under_oom(memcg);
1971

1972
	/* At first, try to OOM lock hierarchy under memcg.*/
1973
	spin_lock(&memcg_oom_lock);
1974
	locked = mem_cgroup_oom_lock(memcg);
K
KAMEZAWA Hiroyuki 已提交
1975 1976 1977 1978 1979
	/*
	 * Even if signal_pending(), we can't quit charge() loop without
	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
	 * under OOM is always welcomed, use TASK_KILLABLE here.
	 */
1980
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1981
	if (!locked || memcg->oom_kill_disable)
1982 1983
		need_to_kill = false;
	if (locked)
1984
		mem_cgroup_oom_notify(memcg);
1985
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1986

1987 1988
	if (need_to_kill) {
		finish_wait(&memcg_oom_waitq, &owait.wait);
1989
		mem_cgroup_out_of_memory(memcg, mask, order);
1990
	} else {
K
KAMEZAWA Hiroyuki 已提交
1991
		schedule();
K
KAMEZAWA Hiroyuki 已提交
1992
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1993
	}
1994
	spin_lock(&memcg_oom_lock);
1995
	if (locked)
1996 1997
		mem_cgroup_oom_unlock(memcg);
	memcg_wakeup_oom(memcg);
1998
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1999

2000
	mem_cgroup_unmark_under_oom(memcg);
2001

K
KAMEZAWA Hiroyuki 已提交
2002 2003 2004
	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		return false;
	/* Give chance to dying process */
2005
	schedule_timeout_uninterruptible(1);
K
KAMEZAWA Hiroyuki 已提交
2006
	return true;
2007 2008
}

2009 2010 2011
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
2029 2030
 * small, we check mm->moving_account and detect there are possibility of race
 * If there is, we take a lock.
2031
 */
2032

2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045
void __mem_cgroup_begin_update_page_stat(struct page *page,
				bool *locked, unsigned long *flags)
{
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
again:
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
		return;
	/*
	 * If this memory cgroup is not under account moving, we don't
2046
	 * need to take move_lock_mem_cgroup(). Because we already hold
2047
	 * rcu_read_lock(), any calls to move_account will be delayed until
2048
	 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2049
	 */
2050
	if (!mem_cgroup_stolen(memcg))
2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067
		return;

	move_lock_mem_cgroup(memcg, flags);
	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
		move_unlock_mem_cgroup(memcg, flags);
		goto again;
	}
	*locked = true;
}

void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
{
	struct page_cgroup *pc = lookup_page_cgroup(page);

	/*
	 * It's guaranteed that pc->mem_cgroup never changes while
	 * lock is held because a routine modifies pc->mem_cgroup
2068
	 * should take move_lock_mem_cgroup().
2069 2070 2071 2072
	 */
	move_unlock_mem_cgroup(pc->mem_cgroup, flags);
}

2073 2074
void mem_cgroup_update_page_stat(struct page *page,
				 enum mem_cgroup_page_stat_item idx, int val)
2075
{
2076
	struct mem_cgroup *memcg;
2077
	struct page_cgroup *pc = lookup_page_cgroup(page);
2078
	unsigned long uninitialized_var(flags);
2079

2080
	if (mem_cgroup_disabled())
2081
		return;
2082

2083 2084
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2085
		return;
2086 2087

	switch (idx) {
2088 2089
	case MEMCG_NR_FILE_MAPPED:
		idx = MEM_CGROUP_STAT_FILE_MAPPED;
2090 2091 2092
		break;
	default:
		BUG();
2093
	}
2094

2095
	this_cpu_add(memcg->stat->count[idx], val);
2096
}
2097

2098 2099 2100 2101
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2102
#define CHARGE_BATCH	32U
2103 2104
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2105
	unsigned int nr_pages;
2106
	struct work_struct work;
2107
	unsigned long flags;
2108
#define FLUSHING_CACHED_CHARGE	0
2109 2110
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2111
static DEFINE_MUTEX(percpu_charge_mutex);
2112

2113 2114 2115 2116 2117 2118 2119 2120 2121 2122
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2123
 */
2124
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2125 2126 2127 2128
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

2129 2130 2131
	if (nr_pages > CHARGE_BATCH)
		return false;

2132
	stock = &get_cpu_var(memcg_stock);
2133 2134
	if (memcg == stock->cached && stock->nr_pages >= nr_pages)
		stock->nr_pages -= nr_pages;
2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2148 2149 2150 2151
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
2152
		if (do_swap_account)
2153 2154
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
2167
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2168 2169
}

2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180
static void __init memcg_stock_init(void)
{
	int cpu;

	for_each_possible_cpu(cpu) {
		struct memcg_stock_pcp *stock =
					&per_cpu(memcg_stock, cpu);
		INIT_WORK(&stock->work, drain_local_stock);
	}
}

2181 2182
/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
2183
 * This will be consumed by consume_stock() function, later.
2184
 */
2185
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2186 2187 2188
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2189
	if (stock->cached != memcg) { /* reset if necessary */
2190
		drain_stock(stock);
2191
		stock->cached = memcg;
2192
	}
2193
	stock->nr_pages += nr_pages;
2194 2195 2196 2197
	put_cpu_var(memcg_stock);
}

/*
2198
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2199 2200
 * of the hierarchy under it. sync flag says whether we should block
 * until the work is done.
2201
 */
2202
static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2203
{
2204
	int cpu, curcpu;
2205

2206 2207
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2208
	curcpu = get_cpu();
2209 2210
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2211
		struct mem_cgroup *memcg;
2212

2213 2214
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2215
			continue;
2216
		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2217
			continue;
2218 2219 2220 2221 2222 2223
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2224
	}
2225
	put_cpu();
2226 2227 2228 2229 2230 2231

	if (!sync)
		goto out;

	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2232
		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2233 2234 2235
			flush_work(&stock->work);
	}
out:
2236
 	put_online_cpus();
2237 2238 2239 2240 2241 2242 2243 2244
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
2245
static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2246
{
2247 2248 2249 2250 2251
	/*
	 * If someone calls draining, avoid adding more kworker runs.
	 */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2252
	drain_all_stock(root_memcg, false);
2253
	mutex_unlock(&percpu_charge_mutex);
2254 2255 2256
}

/* This is a synchronous drain interface. */
2257
static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2258 2259
{
	/* called when force_empty is called */
2260
	mutex_lock(&percpu_charge_mutex);
2261
	drain_all_stock(root_memcg, true);
2262
	mutex_unlock(&percpu_charge_mutex);
2263 2264
}

2265 2266 2267 2268
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2269
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2270 2271 2272
{
	int i;

2273
	spin_lock(&memcg->pcp_counter_lock);
2274
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2275
		long x = per_cpu(memcg->stat->count[i], cpu);
2276

2277 2278
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2279
	}
2280
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2281
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2282

2283 2284
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2285
	}
2286
	spin_unlock(&memcg->pcp_counter_lock);
2287 2288
}

2289
static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2290 2291 2292 2293 2294
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2295
	struct mem_cgroup *iter;
2296

2297
	if (action == CPU_ONLINE)
2298 2299
		return NOTIFY_OK;

2300
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2301
		return NOTIFY_OK;
2302

2303
	for_each_mem_cgroup(iter)
2304 2305
		mem_cgroup_drain_pcp_counter(iter, cpu);

2306 2307 2308 2309 2310
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2311 2312 2313 2314 2315 2316 2317 2318 2319 2320

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
};

2321
static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2322 2323
				unsigned int nr_pages, unsigned int min_pages,
				bool oom_check)
2324
{
2325
	unsigned long csize = nr_pages * PAGE_SIZE;
2326 2327 2328 2329 2330
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

2331
	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2332 2333 2334 2335

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
2336
		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2337 2338 2339
		if (likely(!ret))
			return CHARGE_OK;

2340
		res_counter_uncharge(&memcg->res, csize);
2341 2342 2343 2344
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2345 2346 2347 2348
	/*
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
2349
	if (nr_pages > min_pages)
2350 2351 2352 2353 2354
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

2355 2356 2357
	if (gfp_mask & __GFP_NORETRY)
		return CHARGE_NOMEM;

2358
	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2359
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2360
		return CHARGE_RETRY;
2361
	/*
2362 2363 2364 2365 2366 2367 2368
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
2369
	 */
2370
	if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

	/* If we don't need to call oom-killer at el, return immediately */
	if (!oom_check)
		return CHARGE_NOMEM;
	/* check OOM */
2384
	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2385 2386 2387 2388 2389
		return CHARGE_OOM_DIE;

	return CHARGE_RETRY;
}

2390
/*
2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409
 * __mem_cgroup_try_charge() does
 * 1. detect memcg to be charged against from passed *mm and *ptr,
 * 2. update res_counter
 * 3. call memory reclaim if necessary.
 *
 * In some special case, if the task is fatal, fatal_signal_pending() or
 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
 * as possible without any hazards. 2: all pages should have a valid
 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
 * pointer, that is treated as a charge to root_mem_cgroup.
 *
 * So __mem_cgroup_try_charge() will return
 *  0       ...  on success, filling *ptr with a valid memcg pointer.
 *  -ENOMEM ...  charge failure because of resource limits.
 *  -EINTR  ...  if thread is fatal. *ptr is filled with root_mem_cgroup.
 *
 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
 * the oom-killer can be invoked.
2410
 */
2411
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
2412
				   gfp_t gfp_mask,
2413
				   unsigned int nr_pages,
2414
				   struct mem_cgroup **ptr,
2415
				   bool oom)
2416
{
2417
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2418
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2419
	struct mem_cgroup *memcg = NULL;
2420
	int ret;
2421

K
KAMEZAWA Hiroyuki 已提交
2422 2423 2424 2425 2426 2427 2428 2429
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
2430

2431
	/*
2432 2433
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
2434
	 * thread group leader migrates. It's possible that mm is not
2435
	 * set, if so charge the root memcg (happens for pagecache usage).
2436
	 */
2437
	if (!*ptr && !mm)
2438
		*ptr = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
2439
again:
2440 2441 2442
	if (*ptr) { /* css should be a valid one */
		memcg = *ptr;
		if (mem_cgroup_is_root(memcg))
K
KAMEZAWA Hiroyuki 已提交
2443
			goto done;
2444
		if (consume_stock(memcg, nr_pages))
K
KAMEZAWA Hiroyuki 已提交
2445
			goto done;
2446
		css_get(&memcg->css);
2447
	} else {
K
KAMEZAWA Hiroyuki 已提交
2448
		struct task_struct *p;
2449

K
KAMEZAWA Hiroyuki 已提交
2450 2451 2452
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
2453
		 * Because we don't have task_lock(), "p" can exit.
2454
		 * In that case, "memcg" can point to root or p can be NULL with
2455 2456 2457 2458 2459 2460
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
2461
		 */
2462
		memcg = mem_cgroup_from_task(p);
2463 2464 2465
		if (!memcg)
			memcg = root_mem_cgroup;
		if (mem_cgroup_is_root(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2466 2467 2468
			rcu_read_unlock();
			goto done;
		}
2469
		if (consume_stock(memcg, nr_pages)) {
K
KAMEZAWA Hiroyuki 已提交
2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
2482
		if (!css_tryget(&memcg->css)) {
K
KAMEZAWA Hiroyuki 已提交
2483 2484 2485 2486 2487
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
2488

2489 2490
	do {
		bool oom_check;
2491

2492
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
2493
		if (fatal_signal_pending(current)) {
2494
			css_put(&memcg->css);
2495
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
2496
		}
2497

2498 2499 2500 2501
		oom_check = false;
		if (oom && !nr_oom_retries) {
			oom_check = true;
			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2502
		}
2503

2504 2505
		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, nr_pages,
		    oom_check);
2506 2507 2508 2509
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
2510
			batch = nr_pages;
2511 2512
			css_put(&memcg->css);
			memcg = NULL;
K
KAMEZAWA Hiroyuki 已提交
2513
			goto again;
2514
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2515
			css_put(&memcg->css);
2516 2517
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
K
KAMEZAWA Hiroyuki 已提交
2518
			if (!oom) {
2519
				css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2520
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
2521
			}
2522 2523 2524 2525
			/* If oom, we never return -ENOMEM */
			nr_oom_retries--;
			break;
		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2526
			css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2527
			goto bypass;
2528
		}
2529 2530
	} while (ret != CHARGE_OK);

2531
	if (batch > nr_pages)
2532 2533
		refill_stock(memcg, batch - nr_pages);
	css_put(&memcg->css);
2534
done:
2535
	*ptr = memcg;
2536 2537
	return 0;
nomem:
2538
	*ptr = NULL;
2539
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2540
bypass:
2541 2542
	*ptr = root_mem_cgroup;
	return -EINTR;
2543
}
2544

2545 2546 2547 2548 2549
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2550
static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2551
				       unsigned int nr_pages)
2552
{
2553
	if (!mem_cgroup_is_root(memcg)) {
2554 2555
		unsigned long bytes = nr_pages * PAGE_SIZE;

2556
		res_counter_uncharge(&memcg->res, bytes);
2557
		if (do_swap_account)
2558
			res_counter_uncharge(&memcg->memsw, bytes);
2559
	}
2560 2561
}

2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579
/*
 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
 * This is useful when moving usage to parent cgroup.
 */
static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
					unsigned int nr_pages)
{
	unsigned long bytes = nr_pages * PAGE_SIZE;

	if (mem_cgroup_is_root(memcg))
		return;

	res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
	if (do_swap_account)
		res_counter_uncharge_until(&memcg->memsw,
						memcg->memsw.parent, bytes);
}

2580 2581
/*
 * A helper function to get mem_cgroup from ID. must be called under
T
Tejun Heo 已提交
2582 2583 2584
 * rcu_read_lock().  The caller is responsible for calling css_tryget if
 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
 * called against removed memcg.)
2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
2596
	return mem_cgroup_from_css(css);
2597 2598
}

2599
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2600
{
2601
	struct mem_cgroup *memcg = NULL;
2602
	struct page_cgroup *pc;
2603
	unsigned short id;
2604 2605
	swp_entry_t ent;

2606 2607 2608
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2609
	lock_page_cgroup(pc);
2610
	if (PageCgroupUsed(pc)) {
2611 2612 2613
		memcg = pc->mem_cgroup;
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2614
	} else if (PageSwapCache(page)) {
2615
		ent.val = page_private(page);
2616
		id = lookup_swap_cgroup_id(ent);
2617
		rcu_read_lock();
2618 2619 2620
		memcg = mem_cgroup_lookup(id);
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2621
		rcu_read_unlock();
2622
	}
2623
	unlock_page_cgroup(pc);
2624
	return memcg;
2625 2626
}

2627
static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2628
				       struct page *page,
2629
				       unsigned int nr_pages,
2630 2631
				       enum charge_type ctype,
				       bool lrucare)
2632
{
2633
	struct page_cgroup *pc = lookup_page_cgroup(page);
2634
	struct zone *uninitialized_var(zone);
2635
	struct lruvec *lruvec;
2636
	bool was_on_lru = false;
2637
	bool anon;
2638

2639
	lock_page_cgroup(pc);
2640
	VM_BUG_ON(PageCgroupUsed(pc));
2641 2642 2643 2644
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2645 2646 2647 2648 2649 2650 2651 2652 2653

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
	if (lrucare) {
		zone = page_zone(page);
		spin_lock_irq(&zone->lru_lock);
		if (PageLRU(page)) {
2654
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2655
			ClearPageLRU(page);
2656
			del_page_from_lru_list(page, lruvec, page_lru(page));
2657 2658 2659 2660
			was_on_lru = true;
		}
	}

2661
	pc->mem_cgroup = memcg;
2662 2663 2664 2665 2666 2667 2668
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
2669
	smp_wmb();
2670
	SetPageCgroupUsed(pc);
2671

2672 2673
	if (lrucare) {
		if (was_on_lru) {
2674
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2675 2676
			VM_BUG_ON(PageLRU(page));
			SetPageLRU(page);
2677
			add_page_to_lru_list(page, lruvec, page_lru(page));
2678 2679 2680 2681
		}
		spin_unlock_irq(&zone->lru_lock);
	}

2682
	if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2683 2684 2685 2686
		anon = true;
	else
		anon = false;

2687
	mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
2688
	unlock_page_cgroup(pc);
2689

2690
	/*
2691
	 * "charge_statistics" updated event counter.
2692
	 */
2693
	memcg_check_events(memcg, page);
2694
}
2695

2696 2697
static DEFINE_MUTEX(set_limit_mutex);

2698 2699 2700 2701 2702 2703 2704
#ifdef CONFIG_MEMCG_KMEM
static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
{
	return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
		(memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
}

G
Glauber Costa 已提交
2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717
/*
 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
 * in the memcg_cache_params struct.
 */
static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
{
	struct kmem_cache *cachep;

	VM_BUG_ON(p->is_root_cache);
	cachep = p->root_cache;
	return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)];
}

2718
#ifdef CONFIG_SLABINFO
2719 2720
static int mem_cgroup_slabinfo_read(struct cgroup_subsys_state *css,
				    struct cftype *cft, struct seq_file *m)
2721
{
2722
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738
	struct memcg_cache_params *params;

	if (!memcg_can_account_kmem(memcg))
		return -EIO;

	print_slabinfo_header(m);

	mutex_lock(&memcg->slab_caches_mutex);
	list_for_each_entry(params, &memcg->memcg_slab_caches, list)
		cache_show(memcg_params_to_cache(params), m);
	mutex_unlock(&memcg->slab_caches_mutex);

	return 0;
}
#endif

2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791
static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
{
	struct res_counter *fail_res;
	struct mem_cgroup *_memcg;
	int ret = 0;
	bool may_oom;

	ret = res_counter_charge(&memcg->kmem, size, &fail_res);
	if (ret)
		return ret;

	/*
	 * Conditions under which we can wait for the oom_killer. Those are
	 * the same conditions tested by the core page allocator
	 */
	may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);

	_memcg = memcg;
	ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
				      &_memcg, may_oom);

	if (ret == -EINTR)  {
		/*
		 * __mem_cgroup_try_charge() chosed to bypass to root due to
		 * OOM kill or fatal signal.  Since our only options are to
		 * either fail the allocation or charge it to this cgroup, do
		 * it as a temporary condition. But we can't fail. From a
		 * kmem/slab perspective, the cache has already been selected,
		 * by mem_cgroup_kmem_get_cache(), so it is too late to change
		 * our minds.
		 *
		 * This condition will only trigger if the task entered
		 * memcg_charge_kmem in a sane state, but was OOM-killed during
		 * __mem_cgroup_try_charge() above. Tasks that were already
		 * dying when the allocation triggers should have been already
		 * directed to the root cgroup in memcontrol.h
		 */
		res_counter_charge_nofail(&memcg->res, size, &fail_res);
		if (do_swap_account)
			res_counter_charge_nofail(&memcg->memsw, size,
						  &fail_res);
		ret = 0;
	} else if (ret)
		res_counter_uncharge(&memcg->kmem, size);

	return ret;
}

static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
{
	res_counter_uncharge(&memcg->res, size);
	if (do_swap_account)
		res_counter_uncharge(&memcg->memsw, size);
2792 2793 2794 2795 2796

	/* Not down to 0 */
	if (res_counter_uncharge(&memcg->kmem, size))
		return;

2797 2798 2799 2800 2801 2802 2803 2804
	/*
	 * Releases a reference taken in kmem_cgroup_css_offline in case
	 * this last uncharge is racing with the offlining code or it is
	 * outliving the memcg existence.
	 *
	 * The memory barrier imposed by test&clear is paired with the
	 * explicit one in memcg_kmem_mark_dead().
	 */
2805
	if (memcg_kmem_test_and_clear_dead(memcg))
2806
		css_put(&memcg->css);
2807 2808
}

2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828
void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
{
	if (!memcg)
		return;

	mutex_lock(&memcg->slab_caches_mutex);
	list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
	mutex_unlock(&memcg->slab_caches_mutex);
}

/*
 * helper for acessing a memcg's index. It will be used as an index in the
 * child cache array in kmem_cache, and also to derive its name. This function
 * will return -1 when this is not a kmem-limited memcg.
 */
int memcg_cache_id(struct mem_cgroup *memcg)
{
	return memcg ? memcg->kmemcg_id : -1;
}

2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891
/*
 * This ends up being protected by the set_limit mutex, during normal
 * operation, because that is its main call site.
 *
 * But when we create a new cache, we can call this as well if its parent
 * is kmem-limited. That will have to hold set_limit_mutex as well.
 */
int memcg_update_cache_sizes(struct mem_cgroup *memcg)
{
	int num, ret;

	num = ida_simple_get(&kmem_limited_groups,
				0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (num < 0)
		return num;
	/*
	 * After this point, kmem_accounted (that we test atomically in
	 * the beginning of this conditional), is no longer 0. This
	 * guarantees only one process will set the following boolean
	 * to true. We don't need test_and_set because we're protected
	 * by the set_limit_mutex anyway.
	 */
	memcg_kmem_set_activated(memcg);

	ret = memcg_update_all_caches(num+1);
	if (ret) {
		ida_simple_remove(&kmem_limited_groups, num);
		memcg_kmem_clear_activated(memcg);
		return ret;
	}

	memcg->kmemcg_id = num;
	INIT_LIST_HEAD(&memcg->memcg_slab_caches);
	mutex_init(&memcg->slab_caches_mutex);
	return 0;
}

static size_t memcg_caches_array_size(int num_groups)
{
	ssize_t size;
	if (num_groups <= 0)
		return 0;

	size = 2 * num_groups;
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

	return size;
}

/*
 * We should update the current array size iff all caches updates succeed. This
 * can only be done from the slab side. The slab mutex needs to be held when
 * calling this.
 */
void memcg_update_array_size(int num)
{
	if (num > memcg_limited_groups_array_size)
		memcg_limited_groups_array_size = memcg_caches_array_size(num);
}

2892 2893
static void kmem_cache_destroy_work_func(struct work_struct *w);

2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904
int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
{
	struct memcg_cache_params *cur_params = s->memcg_params;

	VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);

	if (num_groups > memcg_limited_groups_array_size) {
		int i;
		ssize_t size = memcg_caches_array_size(num_groups);

		size *= sizeof(void *);
2905
		size += offsetof(struct memcg_cache_params, memcg_caches);
2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944

		s->memcg_params = kzalloc(size, GFP_KERNEL);
		if (!s->memcg_params) {
			s->memcg_params = cur_params;
			return -ENOMEM;
		}

		s->memcg_params->is_root_cache = true;

		/*
		 * There is the chance it will be bigger than
		 * memcg_limited_groups_array_size, if we failed an allocation
		 * in a cache, in which case all caches updated before it, will
		 * have a bigger array.
		 *
		 * But if that is the case, the data after
		 * memcg_limited_groups_array_size is certainly unused
		 */
		for (i = 0; i < memcg_limited_groups_array_size; i++) {
			if (!cur_params->memcg_caches[i])
				continue;
			s->memcg_params->memcg_caches[i] =
						cur_params->memcg_caches[i];
		}

		/*
		 * Ideally, we would wait until all caches succeed, and only
		 * then free the old one. But this is not worth the extra
		 * pointer per-cache we'd have to have for this.
		 *
		 * It is not a big deal if some caches are left with a size
		 * bigger than the others. And all updates will reset this
		 * anyway.
		 */
		kfree(cur_params);
	}
	return 0;
}

G
Glauber Costa 已提交
2945 2946
int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
			 struct kmem_cache *root_cache)
2947
{
2948
	size_t size;
2949 2950 2951 2952

	if (!memcg_kmem_enabled())
		return 0;

2953 2954
	if (!memcg) {
		size = offsetof(struct memcg_cache_params, memcg_caches);
2955
		size += memcg_limited_groups_array_size * sizeof(void *);
2956 2957
	} else
		size = sizeof(struct memcg_cache_params);
2958

2959 2960 2961 2962
	s->memcg_params = kzalloc(size, GFP_KERNEL);
	if (!s->memcg_params)
		return -ENOMEM;

G
Glauber Costa 已提交
2963
	if (memcg) {
2964
		s->memcg_params->memcg = memcg;
G
Glauber Costa 已提交
2965
		s->memcg_params->root_cache = root_cache;
2966 2967
		INIT_WORK(&s->memcg_params->destroy,
				kmem_cache_destroy_work_func);
2968 2969 2970
	} else
		s->memcg_params->is_root_cache = true;

2971 2972 2973 2974 2975
	return 0;
}

void memcg_release_cache(struct kmem_cache *s)
{
2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999
	struct kmem_cache *root;
	struct mem_cgroup *memcg;
	int id;

	/*
	 * This happens, for instance, when a root cache goes away before we
	 * add any memcg.
	 */
	if (!s->memcg_params)
		return;

	if (s->memcg_params->is_root_cache)
		goto out;

	memcg = s->memcg_params->memcg;
	id  = memcg_cache_id(memcg);

	root = s->memcg_params->root_cache;
	root->memcg_params->memcg_caches[id] = NULL;

	mutex_lock(&memcg->slab_caches_mutex);
	list_del(&s->memcg_params->list);
	mutex_unlock(&memcg->slab_caches_mutex);

3000
	css_put(&memcg->css);
3001
out:
3002 3003 3004
	kfree(s->memcg_params);
}

3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035
/*
 * During the creation a new cache, we need to disable our accounting mechanism
 * altogether. This is true even if we are not creating, but rather just
 * enqueing new caches to be created.
 *
 * This is because that process will trigger allocations; some visible, like
 * explicit kmallocs to auxiliary data structures, name strings and internal
 * cache structures; some well concealed, like INIT_WORK() that can allocate
 * objects during debug.
 *
 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
 * to it. This may not be a bounded recursion: since the first cache creation
 * failed to complete (waiting on the allocation), we'll just try to create the
 * cache again, failing at the same point.
 *
 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
 * inside the following two functions.
 */
static inline void memcg_stop_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account++;
}

static inline void memcg_resume_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account--;
}

G
Glauber Costa 已提交
3036 3037 3038 3039 3040 3041 3042 3043 3044
static void kmem_cache_destroy_work_func(struct work_struct *w)
{
	struct kmem_cache *cachep;
	struct memcg_cache_params *p;

	p = container_of(w, struct memcg_cache_params, destroy);

	cachep = memcg_params_to_cache(p);

G
Glauber Costa 已提交
3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065
	/*
	 * If we get down to 0 after shrink, we could delete right away.
	 * However, memcg_release_pages() already puts us back in the workqueue
	 * in that case. If we proceed deleting, we'll get a dangling
	 * reference, and removing the object from the workqueue in that case
	 * is unnecessary complication. We are not a fast path.
	 *
	 * Note that this case is fundamentally different from racing with
	 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
	 * kmem_cache_shrink, not only we would be reinserting a dead cache
	 * into the queue, but doing so from inside the worker racing to
	 * destroy it.
	 *
	 * So if we aren't down to zero, we'll just schedule a worker and try
	 * again
	 */
	if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
		kmem_cache_shrink(cachep);
		if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
			return;
	} else
G
Glauber Costa 已提交
3066 3067 3068 3069 3070 3071 3072 3073
		kmem_cache_destroy(cachep);
}

void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
{
	if (!cachep->memcg_params->dead)
		return;

G
Glauber Costa 已提交
3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093
	/*
	 * There are many ways in which we can get here.
	 *
	 * We can get to a memory-pressure situation while the delayed work is
	 * still pending to run. The vmscan shrinkers can then release all
	 * cache memory and get us to destruction. If this is the case, we'll
	 * be executed twice, which is a bug (the second time will execute over
	 * bogus data). In this case, cancelling the work should be fine.
	 *
	 * But we can also get here from the worker itself, if
	 * kmem_cache_shrink is enough to shake all the remaining objects and
	 * get the page count to 0. In this case, we'll deadlock if we try to
	 * cancel the work (the worker runs with an internal lock held, which
	 * is the same lock we would hold for cancel_work_sync().)
	 *
	 * Since we can't possibly know who got us here, just refrain from
	 * running if there is already work pending
	 */
	if (work_pending(&cachep->memcg_params->destroy))
		return;
G
Glauber Costa 已提交
3094 3095 3096 3097 3098 3099 3100
	/*
	 * We have to defer the actual destroying to a workqueue, because
	 * we might currently be in a context that cannot sleep.
	 */
	schedule_work(&cachep->memcg_params->destroy);
}

3101 3102 3103 3104 3105 3106 3107 3108 3109
/*
 * This lock protects updaters, not readers. We want readers to be as fast as
 * they can, and they will either see NULL or a valid cache value. Our model
 * allow them to see NULL, in which case the root memcg will be selected.
 *
 * We need this lock because multiple allocations to the same cache from a non
 * will span more than one worker. Only one of them can create the cache.
 */
static DEFINE_MUTEX(memcg_cache_mutex);
3110

3111 3112 3113
/*
 * Called with memcg_cache_mutex held
 */
3114 3115 3116 3117
static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
					 struct kmem_cache *s)
{
	struct kmem_cache *new;
3118
	static char *tmp_name = NULL;
3119

3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137
	lockdep_assert_held(&memcg_cache_mutex);

	/*
	 * kmem_cache_create_memcg duplicates the given name and
	 * cgroup_name for this name requires RCU context.
	 * This static temporary buffer is used to prevent from
	 * pointless shortliving allocation.
	 */
	if (!tmp_name) {
		tmp_name = kmalloc(PATH_MAX, GFP_KERNEL);
		if (!tmp_name)
			return NULL;
	}

	rcu_read_lock();
	snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name,
			 memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup));
	rcu_read_unlock();
3138

3139
	new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align,
G
Glauber Costa 已提交
3140
				      (s->flags & ~SLAB_PANIC), s->ctor, s);
3141

3142 3143 3144
	if (new)
		new->allocflags |= __GFP_KMEMCG;

3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159
	return new;
}

static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
						  struct kmem_cache *cachep)
{
	struct kmem_cache *new_cachep;
	int idx;

	BUG_ON(!memcg_can_account_kmem(memcg));

	idx = memcg_cache_id(memcg);

	mutex_lock(&memcg_cache_mutex);
	new_cachep = cachep->memcg_params->memcg_caches[idx];
3160 3161
	if (new_cachep) {
		css_put(&memcg->css);
3162
		goto out;
3163
	}
3164 3165 3166 3167

	new_cachep = kmem_cache_dup(memcg, cachep);
	if (new_cachep == NULL) {
		new_cachep = cachep;
3168
		css_put(&memcg->css);
3169 3170 3171
		goto out;
	}

G
Glauber Costa 已提交
3172
	atomic_set(&new_cachep->memcg_params->nr_pages , 0);
3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184

	cachep->memcg_params->memcg_caches[idx] = new_cachep;
	/*
	 * the readers won't lock, make sure everybody sees the updated value,
	 * so they won't put stuff in the queue again for no reason
	 */
	wmb();
out:
	mutex_unlock(&memcg_cache_mutex);
	return new_cachep;
}

3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223
void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
{
	struct kmem_cache *c;
	int i;

	if (!s->memcg_params)
		return;
	if (!s->memcg_params->is_root_cache)
		return;

	/*
	 * If the cache is being destroyed, we trust that there is no one else
	 * requesting objects from it. Even if there are, the sanity checks in
	 * kmem_cache_destroy should caught this ill-case.
	 *
	 * Still, we don't want anyone else freeing memcg_caches under our
	 * noses, which can happen if a new memcg comes to life. As usual,
	 * we'll take the set_limit_mutex to protect ourselves against this.
	 */
	mutex_lock(&set_limit_mutex);
	for (i = 0; i < memcg_limited_groups_array_size; i++) {
		c = s->memcg_params->memcg_caches[i];
		if (!c)
			continue;

		/*
		 * We will now manually delete the caches, so to avoid races
		 * we need to cancel all pending destruction workers and
		 * proceed with destruction ourselves.
		 *
		 * kmem_cache_destroy() will call kmem_cache_shrink internally,
		 * and that could spawn the workers again: it is likely that
		 * the cache still have active pages until this very moment.
		 * This would lead us back to mem_cgroup_destroy_cache.
		 *
		 * But that will not execute at all if the "dead" flag is not
		 * set, so flip it down to guarantee we are in control.
		 */
		c->memcg_params->dead = false;
G
Glauber Costa 已提交
3224
		cancel_work_sync(&c->memcg_params->destroy);
3225 3226 3227 3228 3229
		kmem_cache_destroy(c);
	}
	mutex_unlock(&set_limit_mutex);
}

3230 3231 3232 3233 3234 3235
struct create_work {
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

G
Glauber Costa 已提交
3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252
static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
{
	struct kmem_cache *cachep;
	struct memcg_cache_params *params;

	if (!memcg_kmem_is_active(memcg))
		return;

	mutex_lock(&memcg->slab_caches_mutex);
	list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
		cachep = memcg_params_to_cache(params);
		cachep->memcg_params->dead = true;
		schedule_work(&cachep->memcg_params->destroy);
	}
	mutex_unlock(&memcg->slab_caches_mutex);
}

3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264
static void memcg_create_cache_work_func(struct work_struct *w)
{
	struct create_work *cw;

	cw = container_of(w, struct create_work, work);
	memcg_create_kmem_cache(cw->memcg, cw->cachep);
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
3265 3266
static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
					 struct kmem_cache *cachep)
3267 3268 3269 3270
{
	struct create_work *cw;

	cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
3271 3272
	if (cw == NULL) {
		css_put(&memcg->css);
3273 3274 3275 3276 3277 3278 3279 3280 3281 3282
		return;
	}

	cw->memcg = memcg;
	cw->cachep = cachep;

	INIT_WORK(&cw->work, memcg_create_cache_work_func);
	schedule_work(&cw->work);
}

3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300
static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
				       struct kmem_cache *cachep)
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
	 * in __memcg_create_cache_enqueue will recurse.
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
	memcg_stop_kmem_account();
	__memcg_create_cache_enqueue(memcg, cachep);
	memcg_resume_kmem_account();
}
3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322
/*
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
 * If the cache does not exist yet, if we are the first user of it,
 * we either create it immediately, if possible, or create it asynchronously
 * in a workqueue.
 * In the latter case, we will let the current allocation go through with
 * the original cache.
 *
 * Can't be called in interrupt context or from kernel threads.
 * This function needs to be called with rcu_read_lock() held.
 */
struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
					  gfp_t gfp)
{
	struct mem_cgroup *memcg;
	int idx;

	VM_BUG_ON(!cachep->memcg_params);
	VM_BUG_ON(!cachep->memcg_params->is_root_cache);

3323 3324 3325
	if (!current->mm || current->memcg_kmem_skip_account)
		return cachep;

3326 3327 3328 3329
	rcu_read_lock();
	memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));

	if (!memcg_can_account_kmem(memcg))
3330
		goto out;
3331 3332 3333 3334 3335 3336 3337 3338

	idx = memcg_cache_id(memcg);

	/*
	 * barrier to mare sure we're always seeing the up to date value.  The
	 * code updating memcg_caches will issue a write barrier to match this.
	 */
	read_barrier_depends();
3339 3340 3341
	if (likely(cachep->memcg_params->memcg_caches[idx])) {
		cachep = cachep->memcg_params->memcg_caches[idx];
		goto out;
3342 3343
	}

3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370
	/* The corresponding put will be done in the workqueue. */
	if (!css_tryget(&memcg->css))
		goto out;
	rcu_read_unlock();

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
	 * kmem_cache_dup, this means no further allocation could happen
	 * with the slab_mutex held.
	 *
	 * Also, because cache creation issue get_online_cpus(), this
	 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
	 * that ends up reversed during cpu hotplug. (cpuset allocates
	 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
	 * better to defer everything.
	 */
	memcg_create_cache_enqueue(memcg, cachep);
	return cachep;
out:
	rcu_read_unlock();
	return cachep;
3371 3372 3373
}
EXPORT_SYMBOL(__memcg_kmem_get_cache);

3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394
/*
 * We need to verify if the allocation against current->mm->owner's memcg is
 * possible for the given order. But the page is not allocated yet, so we'll
 * need a further commit step to do the final arrangements.
 *
 * It is possible for the task to switch cgroups in this mean time, so at
 * commit time, we can't rely on task conversion any longer.  We'll then use
 * the handle argument to return to the caller which cgroup we should commit
 * against. We could also return the memcg directly and avoid the pointer
 * passing, but a boolean return value gives better semantics considering
 * the compiled-out case as well.
 *
 * Returning true means the allocation is possible.
 */
bool
__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
{
	struct mem_cgroup *memcg;
	int ret;

	*_memcg = NULL;
3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422

	/*
	 * Disabling accounting is only relevant for some specific memcg
	 * internal allocations. Therefore we would initially not have such
	 * check here, since direct calls to the page allocator that are marked
	 * with GFP_KMEMCG only happen outside memcg core. We are mostly
	 * concerned with cache allocations, and by having this test at
	 * memcg_kmem_get_cache, we are already able to relay the allocation to
	 * the root cache and bypass the memcg cache altogether.
	 *
	 * There is one exception, though: the SLUB allocator does not create
	 * large order caches, but rather service large kmallocs directly from
	 * the page allocator. Therefore, the following sequence when backed by
	 * the SLUB allocator:
	 *
	 * 	memcg_stop_kmem_account();
	 * 	kmalloc(<large_number>)
	 * 	memcg_resume_kmem_account();
	 *
	 * would effectively ignore the fact that we should skip accounting,
	 * since it will drive us directly to this function without passing
	 * through the cache selector memcg_kmem_get_cache. Such large
	 * allocations are extremely rare but can happen, for instance, for the
	 * cache arrays. We bring this test here.
	 */
	if (!current->mm || current->memcg_kmem_skip_account)
		return true;

3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496
	memcg = try_get_mem_cgroup_from_mm(current->mm);

	/*
	 * very rare case described in mem_cgroup_from_task. Unfortunately there
	 * isn't much we can do without complicating this too much, and it would
	 * be gfp-dependent anyway. Just let it go
	 */
	if (unlikely(!memcg))
		return true;

	if (!memcg_can_account_kmem(memcg)) {
		css_put(&memcg->css);
		return true;
	}

	ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
	if (!ret)
		*_memcg = memcg;

	css_put(&memcg->css);
	return (ret == 0);
}

void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      int order)
{
	struct page_cgroup *pc;

	VM_BUG_ON(mem_cgroup_is_root(memcg));

	/* The page allocation failed. Revert */
	if (!page) {
		memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
		return;
	}

	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	pc->mem_cgroup = memcg;
	SetPageCgroupUsed(pc);
	unlock_page_cgroup(pc);
}

void __memcg_kmem_uncharge_pages(struct page *page, int order)
{
	struct mem_cgroup *memcg = NULL;
	struct page_cgroup *pc;


	pc = lookup_page_cgroup(page);
	/*
	 * Fast unlocked return. Theoretically might have changed, have to
	 * check again after locking.
	 */
	if (!PageCgroupUsed(pc))
		return;

	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
		ClearPageCgroupUsed(pc);
	}
	unlock_page_cgroup(pc);

	/*
	 * We trust that only if there is a memcg associated with the page, it
	 * is a valid allocation
	 */
	if (!memcg)
		return;

	VM_BUG_ON(mem_cgroup_is_root(memcg));
	memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
}
G
Glauber Costa 已提交
3497 3498 3499 3500
#else
static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
{
}
3501 3502
#endif /* CONFIG_MEMCG_KMEM */

3503 3504
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

3505
#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3506 3507
/*
 * Because tail pages are not marked as "used", set it. We're under
3508 3509 3510
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
3511
 */
3512
void mem_cgroup_split_huge_fixup(struct page *head)
3513 3514
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
3515
	struct page_cgroup *pc;
3516
	struct mem_cgroup *memcg;
3517
	int i;
3518

3519 3520
	if (mem_cgroup_disabled())
		return;
3521 3522

	memcg = head_pc->mem_cgroup;
3523 3524
	for (i = 1; i < HPAGE_PMD_NR; i++) {
		pc = head_pc + i;
3525
		pc->mem_cgroup = memcg;
3526 3527 3528
		smp_wmb();/* see __commit_charge() */
		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	}
3529 3530
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
		       HPAGE_PMD_NR);
3531
}
3532
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3533

3534
/**
3535
 * mem_cgroup_move_account - move account of the page
3536
 * @page: the page
3537
 * @nr_pages: number of regular pages (>1 for huge pages)
3538 3539 3540 3541 3542
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
3543
 * - page is not on LRU (isolate_page() is useful.)
3544
 * - compound_lock is held when nr_pages > 1
3545
 *
3546 3547
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
3548
 */
3549 3550 3551 3552
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
3553
				   struct mem_cgroup *to)
3554
{
3555 3556
	unsigned long flags;
	int ret;
3557
	bool anon = PageAnon(page);
3558

3559
	VM_BUG_ON(from == to);
3560
	VM_BUG_ON(PageLRU(page));
3561 3562 3563 3564 3565 3566 3567
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
3568
	if (nr_pages > 1 && !PageTransHuge(page))
3569 3570 3571 3572 3573 3574 3575 3576
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

3577
	move_lock_mem_cgroup(from, &flags);
3578

3579
	if (!anon && page_mapped(page)) {
3580 3581 3582 3583 3584
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
3585
	}
3586
	mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
3587

3588
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
3589
	pc->mem_cgroup = to;
3590
	mem_cgroup_charge_statistics(to, page, anon, nr_pages);
3591
	move_unlock_mem_cgroup(from, &flags);
3592 3593
	ret = 0;
unlock:
3594
	unlock_page_cgroup(pc);
3595 3596 3597
	/*
	 * check events
	 */
3598 3599
	memcg_check_events(to, page);
	memcg_check_events(from, page);
3600
out:
3601 3602 3603
	return ret;
}

3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623
/**
 * mem_cgroup_move_parent - moves page to the parent group
 * @page: the page to move
 * @pc: page_cgroup of the page
 * @child: page's cgroup
 *
 * move charges to its parent or the root cgroup if the group has no
 * parent (aka use_hierarchy==0).
 * Although this might fail (get_page_unless_zero, isolate_lru_page or
 * mem_cgroup_move_account fails) the failure is always temporary and
 * it signals a race with a page removal/uncharge or migration. In the
 * first case the page is on the way out and it will vanish from the LRU
 * on the next attempt and the call should be retried later.
 * Isolation from the LRU fails only if page has been isolated from
 * the LRU since we looked at it and that usually means either global
 * reclaim or migration going on. The page will either get back to the
 * LRU or vanish.
 * Finaly mem_cgroup_move_account fails only if the page got uncharged
 * (!PageCgroupUsed) or moved to a different group. The page will
 * disappear in the next attempt.
3624
 */
3625 3626
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
3627
				  struct mem_cgroup *child)
3628 3629
{
	struct mem_cgroup *parent;
3630
	unsigned int nr_pages;
3631
	unsigned long uninitialized_var(flags);
3632 3633
	int ret;

3634
	VM_BUG_ON(mem_cgroup_is_root(child));
3635

3636 3637 3638 3639 3640
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
3641

3642
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
3643

3644 3645 3646 3647 3648 3649
	parent = parent_mem_cgroup(child);
	/*
	 * If no parent, move charges to root cgroup.
	 */
	if (!parent)
		parent = root_mem_cgroup;
3650

3651 3652
	if (nr_pages > 1) {
		VM_BUG_ON(!PageTransHuge(page));
3653
		flags = compound_lock_irqsave(page);
3654
	}
3655

3656
	ret = mem_cgroup_move_account(page, nr_pages,
3657
				pc, child, parent);
3658 3659
	if (!ret)
		__mem_cgroup_cancel_local_charge(child, nr_pages);
3660

3661
	if (nr_pages > 1)
3662
		compound_unlock_irqrestore(page, flags);
K
KAMEZAWA Hiroyuki 已提交
3663
	putback_lru_page(page);
3664
put:
3665
	put_page(page);
3666
out:
3667 3668 3669
	return ret;
}

3670 3671 3672 3673 3674 3675 3676
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
3677
				gfp_t gfp_mask, enum charge_type ctype)
3678
{
3679
	struct mem_cgroup *memcg = NULL;
3680
	unsigned int nr_pages = 1;
3681
	bool oom = true;
3682
	int ret;
A
Andrea Arcangeli 已提交
3683

A
Andrea Arcangeli 已提交
3684
	if (PageTransHuge(page)) {
3685
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
3686
		VM_BUG_ON(!PageTransHuge(page));
3687 3688 3689 3690 3691
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
3692
	}
3693

3694
	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
3695
	if (ret == -ENOMEM)
3696
		return ret;
3697
	__mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
3698 3699 3700
	return 0;
}

3701 3702
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
3703
{
3704
	if (mem_cgroup_disabled())
3705
		return 0;
3706 3707 3708
	VM_BUG_ON(page_mapped(page));
	VM_BUG_ON(page->mapping && !PageAnon(page));
	VM_BUG_ON(!mm);
3709
	return mem_cgroup_charge_common(page, mm, gfp_mask,
3710
					MEM_CGROUP_CHARGE_TYPE_ANON);
3711 3712
}

3713 3714 3715
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
3716
 * struct page_cgroup is acquired. This refcnt will be consumed by
3717 3718
 * "commit()" or removed by "cancel()"
 */
3719 3720 3721 3722
static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
					  struct page *page,
					  gfp_t mask,
					  struct mem_cgroup **memcgp)
3723
{
3724
	struct mem_cgroup *memcg;
3725
	struct page_cgroup *pc;
3726
	int ret;
3727

3728 3729 3730 3731 3732 3733 3734 3735 3736 3737
	pc = lookup_page_cgroup(page);
	/*
	 * Every swap fault against a single page tries to charge the
	 * page, bail as early as possible.  shmem_unuse() encounters
	 * already charged pages, too.  The USED bit is protected by
	 * the page lock, which serializes swap cache removal, which
	 * in turn serializes uncharging.
	 */
	if (PageCgroupUsed(pc))
		return 0;
3738 3739
	if (!do_swap_account)
		goto charge_cur_mm;
3740 3741
	memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
3742
		goto charge_cur_mm;
3743 3744
	*memcgp = memcg;
	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
3745
	css_put(&memcg->css);
3746 3747
	if (ret == -EINTR)
		ret = 0;
3748
	return ret;
3749
charge_cur_mm:
3750 3751 3752 3753
	ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
	if (ret == -EINTR)
		ret = 0;
	return ret;
3754 3755
}

3756 3757 3758 3759 3760 3761
int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
				 gfp_t gfp_mask, struct mem_cgroup **memcgp)
{
	*memcgp = NULL;
	if (mem_cgroup_disabled())
		return 0;
3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775
	/*
	 * A racing thread's fault, or swapoff, may have already
	 * updated the pte, and even removed page from swap cache: in
	 * those cases unuse_pte()'s pte_same() test will fail; but
	 * there's also a KSM case which does need to charge the page.
	 */
	if (!PageSwapCache(page)) {
		int ret;

		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
		if (ret == -EINTR)
			ret = 0;
		return ret;
	}
3776 3777 3778
	return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
}

3779 3780 3781 3782 3783 3784 3785 3786 3787
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return;
	if (!memcg)
		return;
	__mem_cgroup_cancel_charge(memcg, 1);
}

D
Daisuke Nishimura 已提交
3788
static void
3789
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
D
Daisuke Nishimura 已提交
3790
					enum charge_type ctype)
3791
{
3792
	if (mem_cgroup_disabled())
3793
		return;
3794
	if (!memcg)
3795
		return;
3796

3797
	__mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
3798 3799 3800
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
3801 3802 3803
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
3804
	 */
3805
	if (do_swap_account && PageSwapCache(page)) {
3806
		swp_entry_t ent = {.val = page_private(page)};
3807
		mem_cgroup_uncharge_swap(ent);
3808
	}
3809 3810
}

3811 3812
void mem_cgroup_commit_charge_swapin(struct page *page,
				     struct mem_cgroup *memcg)
D
Daisuke Nishimura 已提交
3813
{
3814
	__mem_cgroup_commit_charge_swapin(page, memcg,
3815
					  MEM_CGROUP_CHARGE_TYPE_ANON);
D
Daisuke Nishimura 已提交
3816 3817
}

3818 3819
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
3820
{
3821 3822 3823 3824
	struct mem_cgroup *memcg = NULL;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
	int ret;

3825
	if (mem_cgroup_disabled())
3826 3827 3828 3829 3830 3831 3832
		return 0;
	if (PageCompound(page))
		return 0;

	if (!PageSwapCache(page))
		ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
	else { /* page is swapcache/shmem */
3833 3834
		ret = __mem_cgroup_try_charge_swapin(mm, page,
						     gfp_mask, &memcg);
3835 3836 3837 3838
		if (!ret)
			__mem_cgroup_commit_charge_swapin(page, memcg, type);
	}
	return ret;
3839 3840
}

3841
static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
3842 3843
				   unsigned int nr_pages,
				   const enum charge_type ctype)
3844 3845 3846
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
3847

3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
3859
		batch->memcg = memcg;
3860 3861
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
L
Lucas De Marchi 已提交
3862
	 * In those cases, all pages freed continuously can be expected to be in
3863 3864 3865 3866 3867 3868 3869 3870
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

3871
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
3872 3873
		goto direct_uncharge;

3874 3875 3876 3877 3878
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
3879
	if (batch->memcg != memcg)
3880 3881
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
3882
	batch->nr_pages++;
3883
	if (uncharge_memsw)
3884
		batch->memsw_nr_pages++;
3885 3886
	return;
direct_uncharge:
3887
	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
3888
	if (uncharge_memsw)
3889 3890 3891
		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
	if (unlikely(batch->memcg != memcg))
		memcg_oom_recover(memcg);
3892
}
3893

3894
/*
3895
 * uncharge if !page_mapped(page)
3896
 */
3897
static struct mem_cgroup *
3898 3899
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
			     bool end_migration)
3900
{
3901
	struct mem_cgroup *memcg = NULL;
3902 3903
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
3904
	bool anon;
3905

3906
	if (mem_cgroup_disabled())
3907
		return NULL;
3908

A
Andrea Arcangeli 已提交
3909
	if (PageTransHuge(page)) {
3910
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
3911 3912
		VM_BUG_ON(!PageTransHuge(page));
	}
3913
	/*
3914
	 * Check if our page_cgroup is valid
3915
	 */
3916
	pc = lookup_page_cgroup(page);
3917
	if (unlikely(!PageCgroupUsed(pc)))
3918
		return NULL;
3919

3920
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
3921

3922
	memcg = pc->mem_cgroup;
3923

K
KAMEZAWA Hiroyuki 已提交
3924 3925 3926
	if (!PageCgroupUsed(pc))
		goto unlock_out;

3927 3928
	anon = PageAnon(page);

K
KAMEZAWA Hiroyuki 已提交
3929
	switch (ctype) {
3930
	case MEM_CGROUP_CHARGE_TYPE_ANON:
3931 3932 3933 3934 3935
		/*
		 * Generally PageAnon tells if it's the anon statistics to be
		 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
		 * used before page reached the stage of being marked PageAnon.
		 */
3936 3937
		anon = true;
		/* fallthrough */
K
KAMEZAWA Hiroyuki 已提交
3938
	case MEM_CGROUP_CHARGE_TYPE_DROP:
3939
		/* See mem_cgroup_prepare_migration() */
3940 3941 3942 3943 3944 3945 3946 3947 3948 3949
		if (page_mapped(page))
			goto unlock_out;
		/*
		 * Pages under migration may not be uncharged.  But
		 * end_migration() /must/ be the one uncharging the
		 * unused post-migration page and so it has to call
		 * here with the migration bit still set.  See the
		 * res_counter handling below.
		 */
		if (!end_migration && PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
3961
	}
K
KAMEZAWA Hiroyuki 已提交
3962

3963
	mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
3964

3965
	ClearPageCgroupUsed(pc);
3966 3967 3968 3969 3970 3971
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
3972

3973
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
3974
	/*
3975
	 * even after unlock, we have memcg->res.usage here and this memcg
L
Li Zefan 已提交
3976
	 * will never be freed, so it's safe to call css_get().
K
KAMEZAWA Hiroyuki 已提交
3977
	 */
3978
	memcg_check_events(memcg, page);
K
KAMEZAWA Hiroyuki 已提交
3979
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3980
		mem_cgroup_swap_statistics(memcg, true);
L
Li Zefan 已提交
3981
		css_get(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
3982
	}
3983 3984 3985 3986 3987 3988
	/*
	 * Migration does not charge the res_counter for the
	 * replacement page, so leave it alone when phasing out the
	 * page that is unused after the migration.
	 */
	if (!end_migration && !mem_cgroup_is_root(memcg))
3989
		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
3990

3991
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
3992 3993 3994

unlock_out:
	unlock_page_cgroup(pc);
3995
	return NULL;
3996 3997
}

3998 3999
void mem_cgroup_uncharge_page(struct page *page)
{
4000 4001 4002
	/* early check. */
	if (page_mapped(page))
		return;
4003
	VM_BUG_ON(page->mapping && !PageAnon(page));
4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015
	/*
	 * If the page is in swap cache, uncharge should be deferred
	 * to the swap path, which also properly accounts swap usage
	 * and handles memcg lifetime.
	 *
	 * Note that this check is not stable and reclaim may add the
	 * page to swap cache at any time after this.  However, if the
	 * page is not in swap cache by the time page->mapcount hits
	 * 0, there won't be any page table references to the swap
	 * slot, and reclaim will free it and not actually write the
	 * page to disk.
	 */
4016 4017
	if (PageSwapCache(page))
		return;
4018
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4019 4020 4021 4022 4023
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
4024
	VM_BUG_ON(page->mapping);
4025
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4026 4027
}

4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
4042 4043
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
4064 4065 4066 4067 4068 4069
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
4070
	memcg_oom_recover(batch->memcg);
4071 4072 4073 4074
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

4075
#ifdef CONFIG_SWAP
4076
/*
4077
 * called after __delete_from_swap_cache() and drop "page" account.
4078 4079
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
4080 4081
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4082 4083
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
4084 4085 4086 4087 4088
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

4089
	memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4090

K
KAMEZAWA Hiroyuki 已提交
4091 4092
	/*
	 * record memcg information,  if swapout && memcg != NULL,
L
Li Zefan 已提交
4093
	 * css_get() was called in uncharge().
K
KAMEZAWA Hiroyuki 已提交
4094 4095
	 */
	if (do_swap_account && swapout && memcg)
4096
		swap_cgroup_record(ent, css_id(&memcg->css));
4097
}
4098
#endif
4099

A
Andrew Morton 已提交
4100
#ifdef CONFIG_MEMCG_SWAP
4101 4102 4103 4104 4105
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
4106
{
4107
	struct mem_cgroup *memcg;
4108
	unsigned short id;
4109 4110 4111 4112

	if (!do_swap_account)
		return;

4113 4114 4115
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
4116
	if (memcg) {
4117 4118 4119 4120
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
4121
		if (!mem_cgroup_is_root(memcg))
4122
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4123
		mem_cgroup_swap_statistics(memcg, false);
L
Li Zefan 已提交
4124
		css_put(&memcg->css);
4125
	}
4126
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
4127
}
4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
4144
				struct mem_cgroup *from, struct mem_cgroup *to)
4145 4146 4147 4148 4149 4150 4151 4152
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
4153
		mem_cgroup_swap_statistics(to, true);
4154
		/*
4155 4156 4157
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
L
Li Zefan 已提交
4158 4159 4160 4161 4162 4163
		 * improvement. But we cannot postpone css_get(to)  because if
		 * the process that has been moved to @to does swap-in, the
		 * refcount of @to might be decreased to 0.
		 *
		 * We are in attach() phase, so the cgroup is guaranteed to be
		 * alive, so we can just call css_get().
4164
		 */
L
Li Zefan 已提交
4165
		css_get(&to->css);
4166 4167 4168 4169 4170 4171
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4172
				struct mem_cgroup *from, struct mem_cgroup *to)
4173 4174 4175
{
	return -EINVAL;
}
4176
#endif
K
KAMEZAWA Hiroyuki 已提交
4177

4178
/*
4179 4180
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
4181
 */
4182 4183
void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
				  struct mem_cgroup **memcgp)
4184
{
4185
	struct mem_cgroup *memcg = NULL;
4186
	unsigned int nr_pages = 1;
4187
	struct page_cgroup *pc;
4188
	enum charge_type ctype;
4189

4190
	*memcgp = NULL;
4191

4192
	if (mem_cgroup_disabled())
4193
		return;
4194

4195 4196 4197
	if (PageTransHuge(page))
		nr_pages <<= compound_order(page);

4198 4199 4200
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
4201 4202
		memcg = pc->mem_cgroup;
		css_get(&memcg->css);
4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
4234
	}
4235
	unlock_page_cgroup(pc);
4236 4237 4238 4239
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
4240
	if (!memcg)
4241
		return;
4242

4243
	*memcgp = memcg;
4244 4245 4246 4247 4248 4249 4250
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	if (PageAnon(page))
4251
		ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4252
	else
4253
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4254 4255 4256 4257 4258
	/*
	 * The page is committed to the memcg, but it's not actually
	 * charged to the res_counter since we plan on replacing the
	 * old one and only one page is going to be left afterwards.
	 */
4259
	__mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4260
}
4261

4262
/* remove redundant charge if migration failed*/
4263
void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4264
	struct page *oldpage, struct page *newpage, bool migration_ok)
4265
{
4266
	struct page *used, *unused;
4267
	struct page_cgroup *pc;
4268
	bool anon;
4269

4270
	if (!memcg)
4271
		return;
4272

4273
	if (!migration_ok) {
4274 4275
		used = oldpage;
		unused = newpage;
4276
	} else {
4277
		used = newpage;
4278 4279
		unused = oldpage;
	}
4280
	anon = PageAnon(used);
4281 4282 4283 4284
	__mem_cgroup_uncharge_common(unused,
				     anon ? MEM_CGROUP_CHARGE_TYPE_ANON
				     : MEM_CGROUP_CHARGE_TYPE_CACHE,
				     true);
4285
	css_put(&memcg->css);
4286
	/*
4287 4288 4289
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
4290
	 */
4291 4292 4293 4294 4295
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);

4296
	/*
4297 4298 4299 4300 4301 4302
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
4303
	 */
4304
	if (anon)
4305
		mem_cgroup_uncharge_page(used);
4306
}
4307

4308 4309 4310 4311 4312 4313 4314 4315
/*
 * At replace page cache, newpage is not under any memcg but it's on
 * LRU. So, this function doesn't touch res_counter but handles LRU
 * in correct way. Both pages are locked so we cannot race with uncharge.
 */
void mem_cgroup_replace_page_cache(struct page *oldpage,
				  struct page *newpage)
{
4316
	struct mem_cgroup *memcg = NULL;
4317 4318 4319 4320 4321 4322 4323 4324 4325
	struct page_cgroup *pc;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(oldpage);
	/* fix accounting on old pages */
	lock_page_cgroup(pc);
4326 4327
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
4328
		mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
4329 4330
		ClearPageCgroupUsed(pc);
	}
4331 4332
	unlock_page_cgroup(pc);

4333 4334 4335 4336 4337 4338
	/*
	 * When called from shmem_replace_page(), in some cases the
	 * oldpage has already been charged, and in some cases not.
	 */
	if (!memcg)
		return;
4339 4340 4341 4342 4343
	/*
	 * Even if newpage->mapping was NULL before starting replacement,
	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
	 * LRU while we overwrite pc->mem_cgroup.
	 */
4344
	__mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4345 4346
}

4347 4348 4349 4350 4351 4352
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
4353 4354 4355 4356 4357
	/*
	 * Can be NULL while feeding pages into the page allocator for
	 * the first time, i.e. during boot or memory hotplug;
	 * or when mem_cgroup_disabled().
	 */
4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
4377 4378
		pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
			 pc, pc->flags, pc->mem_cgroup);
4379 4380 4381 4382
	}
}
#endif

4383
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4384
				unsigned long long val)
4385
{
4386
	int retry_count;
4387
	u64 memswlimit, memlimit;
4388
	int ret = 0;
4389 4390
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
4391
	int enlarge;
4392 4393 4394 4395 4396 4397 4398 4399 4400

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4401

4402
	enlarge = 0;
4403
	while (retry_count) {
4404 4405 4406 4407
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
4408 4409 4410
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
4411
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4412 4413 4414 4415 4416 4417
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
4418 4419
			break;
		}
4420 4421 4422 4423 4424

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

4425
		ret = res_counter_set_limit(&memcg->res, val);
4426 4427 4428 4429 4430 4431
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
4432 4433 4434 4435 4436
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

4437 4438
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_SHRINK);
4439 4440 4441 4442 4443 4444
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
4445
	}
4446 4447
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
4448

4449 4450 4451
	return ret;
}

L
Li Zefan 已提交
4452 4453
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
4454
{
4455
	int retry_count;
4456
	u64 memlimit, memswlimit, oldusage, curusage;
4457 4458
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
4459
	int enlarge = 0;
4460

4461 4462 4463
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4464 4465 4466 4467 4468 4469 4470 4471
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
4472
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4473 4474 4475 4476 4477 4478 4479 4480
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
4481 4482 4483
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
4484
		ret = res_counter_set_limit(&memcg->memsw, val);
4485 4486 4487 4488 4489 4490
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
4491 4492 4493 4494 4495
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

4496 4497 4498
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_NOSWAP |
				   MEM_CGROUP_RECLAIM_SHRINK);
4499
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4500
		/* Usage is reduced ? */
4501
		if (curusage >= oldusage)
4502
			retry_count--;
4503 4504
		else
			oldusage = curusage;
4505
	}
4506 4507
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
4508 4509 4510
	return ret;
}

4511 4512 4513 4514 4515 4516 4517
/**
 * mem_cgroup_force_empty_list - clears LRU of a group
 * @memcg: group to clear
 * @node: NUMA node
 * @zid: zone id
 * @lru: lru to to clear
 *
4518
 * Traverse a specified page_cgroup list and try to drop them all.  This doesn't
4519 4520
 * reclaim the pages page themselves - pages are moved to the parent (or root)
 * group.
4521
 */
4522
static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
K
KAMEZAWA Hiroyuki 已提交
4523
				int node, int zid, enum lru_list lru)
4524
{
4525
	struct lruvec *lruvec;
4526
	unsigned long flags;
4527
	struct list_head *list;
4528 4529
	struct page *busy;
	struct zone *zone;
4530

K
KAMEZAWA Hiroyuki 已提交
4531
	zone = &NODE_DATA(node)->node_zones[zid];
4532 4533
	lruvec = mem_cgroup_zone_lruvec(zone, memcg);
	list = &lruvec->lists[lru];
4534

4535
	busy = NULL;
4536
	do {
4537
		struct page_cgroup *pc;
4538 4539
		struct page *page;

K
KAMEZAWA Hiroyuki 已提交
4540
		spin_lock_irqsave(&zone->lru_lock, flags);
4541
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
4542
			spin_unlock_irqrestore(&zone->lru_lock, flags);
4543
			break;
4544
		}
4545 4546 4547
		page = list_entry(list->prev, struct page, lru);
		if (busy == page) {
			list_move(&page->lru, list);
4548
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
4549
			spin_unlock_irqrestore(&zone->lru_lock, flags);
4550 4551
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
4552
		spin_unlock_irqrestore(&zone->lru_lock, flags);
4553

4554
		pc = lookup_page_cgroup(page);
4555

4556
		if (mem_cgroup_move_parent(page, pc, memcg)) {
4557
			/* found lock contention or "pc" is obsolete. */
4558
			busy = page;
4559 4560 4561
			cond_resched();
		} else
			busy = NULL;
4562
	} while (!list_empty(list));
4563 4564 4565
}

/*
4566 4567
 * make mem_cgroup's charge to be 0 if there is no task by moving
 * all the charges and pages to the parent.
4568
 * This enables deleting this mem_cgroup.
4569 4570
 *
 * Caller is responsible for holding css reference on the memcg.
4571
 */
4572
static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4573
{
4574
	int node, zid;
4575
	u64 usage;
4576

4577
	do {
4578 4579
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
4580 4581
		drain_all_stock_sync(memcg);
		mem_cgroup_start_move(memcg);
4582
		for_each_node_state(node, N_MEMORY) {
4583
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
H
Hugh Dickins 已提交
4584 4585
				enum lru_list lru;
				for_each_lru(lru) {
4586
					mem_cgroup_force_empty_list(memcg,
H
Hugh Dickins 已提交
4587
							node, zid, lru);
4588
				}
4589
			}
4590
		}
4591 4592
		mem_cgroup_end_move(memcg);
		memcg_oom_recover(memcg);
4593
		cond_resched();
4594

4595
		/*
4596 4597 4598 4599 4600
		 * Kernel memory may not necessarily be trackable to a specific
		 * process. So they are not migrated, and therefore we can't
		 * expect their value to drop to 0 here.
		 * Having res filled up with kmem only is enough.
		 *
4601 4602 4603 4604 4605 4606
		 * This is a safety check because mem_cgroup_force_empty_list
		 * could have raced with mem_cgroup_replace_page_cache callers
		 * so the lru seemed empty but the page could have been added
		 * right after the check. RES_USAGE should be safe as we always
		 * charge before adding to the LRU.
		 */
4607 4608 4609
		usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
			res_counter_read_u64(&memcg->kmem, RES_USAGE);
	} while (usage > 0);
4610 4611
}

4612 4613 4614 4615 4616 4617 4618
/*
 * This mainly exists for tests during the setting of set of use_hierarchy.
 * Since this is the very setting we are changing, the current hierarchy value
 * is meaningless
 */
static inline bool __memcg_has_children(struct mem_cgroup *memcg)
{
4619
	struct cgroup_subsys_state *pos;
4620 4621

	/* bounce at first found */
4622
	css_for_each_child(pos, &memcg->css)
4623 4624 4625 4626 4627
		return true;
	return false;
}

/*
4628 4629
 * Must be called with memcg_create_mutex held, unless the cgroup is guaranteed
 * to be already dead (as in mem_cgroup_force_empty, for instance).  This is
4630 4631 4632 4633 4634 4635 4636 4637 4638
 * from mem_cgroup_count_children(), in the sense that we don't really care how
 * many children we have; we only need to know if we have any.  It also counts
 * any memcg without hierarchy as infertile.
 */
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
	return memcg->use_hierarchy && __memcg_has_children(memcg);
}

4639 4640 4641 4642 4643 4644 4645 4646 4647 4648
/*
 * Reclaims as many pages from the given memcg as possible and moves
 * the rest to the parent.
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
	struct cgroup *cgrp = memcg->css.cgroup;
4649

4650
	/* returns EBUSY if there is a task or if we come here twice. */
4651 4652 4653
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
		return -EBUSY;

4654 4655
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
4656
	/* try to free all pages in this cgroup */
4657
	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
4658
		int progress;
4659

4660 4661 4662
		if (signal_pending(current))
			return -EINTR;

4663
		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
4664
						false);
4665
		if (!progress) {
4666
			nr_retries--;
4667
			/* maybe some writeback is necessary */
4668
			congestion_wait(BLK_RW_ASYNC, HZ/10);
4669
		}
4670 4671

	}
K
KAMEZAWA Hiroyuki 已提交
4672
	lru_add_drain();
4673 4674 4675
	mem_cgroup_reparent_charges(memcg);

	return 0;
4676 4677
}

4678 4679
static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css,
					unsigned int event)
4680
{
4681
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4682

4683 4684
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
4685
	return mem_cgroup_force_empty(memcg);
4686 4687
}

4688 4689
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
4690
{
4691
	return mem_cgroup_from_css(css)->use_hierarchy;
4692 4693
}

4694 4695
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
4696 4697
{
	int retval = 0;
4698
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
4699
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css));
4700

4701
	mutex_lock(&memcg_create_mutex);
4702 4703 4704 4705

	if (memcg->use_hierarchy == val)
		goto out;

4706
	/*
4707
	 * If parent's use_hierarchy is set, we can't make any modifications
4708 4709 4710 4711 4712 4713
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
4714
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
4715
				(val == 1 || val == 0)) {
4716
		if (!__memcg_has_children(memcg))
4717
			memcg->use_hierarchy = val;
4718 4719 4720 4721
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
4722 4723

out:
4724
	mutex_unlock(&memcg_create_mutex);
4725 4726 4727 4728

	return retval;
}

4729

4730
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
4731
					       enum mem_cgroup_stat_index idx)
4732
{
K
KAMEZAWA Hiroyuki 已提交
4733
	struct mem_cgroup *iter;
4734
	long val = 0;
4735

4736
	/* Per-cpu values can be negative, use a signed accumulator */
4737
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4738 4739 4740 4741 4742
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
4743 4744
}

4745
static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
4746
{
K
KAMEZAWA Hiroyuki 已提交
4747
	u64 val;
4748

4749
	if (!mem_cgroup_is_root(memcg)) {
4750
		if (!swap)
4751
			return res_counter_read_u64(&memcg->res, RES_USAGE);
4752
		else
4753
			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
4754 4755
	}

4756 4757 4758 4759
	/*
	 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
	 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
	 */
4760 4761
	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
4762

K
KAMEZAWA Hiroyuki 已提交
4763
	if (swap)
4764
		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
4765 4766 4767 4768

	return val << PAGE_SHIFT;
}

4769 4770 4771
static ssize_t mem_cgroup_read(struct cgroup_subsys_state *css,
			       struct cftype *cft, struct file *file,
			       char __user *buf, size_t nbytes, loff_t *ppos)
B
Balbir Singh 已提交
4772
{
4773
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4774
	char str[64];
4775
	u64 val;
G
Glauber Costa 已提交
4776 4777
	int name, len;
	enum res_type type;
4778 4779 4780

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
4781

4782 4783
	switch (type) {
	case _MEM:
4784
		if (name == RES_USAGE)
4785
			val = mem_cgroup_usage(memcg, false);
4786
		else
4787
			val = res_counter_read_u64(&memcg->res, name);
4788 4789
		break;
	case _MEMSWAP:
4790
		if (name == RES_USAGE)
4791
			val = mem_cgroup_usage(memcg, true);
4792
		else
4793
			val = res_counter_read_u64(&memcg->memsw, name);
4794
		break;
4795 4796 4797
	case _KMEM:
		val = res_counter_read_u64(&memcg->kmem, name);
		break;
4798 4799 4800
	default:
		BUG();
	}
4801 4802 4803

	len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
	return simple_read_from_buffer(buf, nbytes, ppos, str, len);
B
Balbir Singh 已提交
4804
}
4805

4806
static int memcg_update_kmem_limit(struct cgroup_subsys_state *css, u64 val)
4807 4808 4809
{
	int ret = -EINVAL;
#ifdef CONFIG_MEMCG_KMEM
4810
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822
	/*
	 * For simplicity, we won't allow this to be disabled.  It also can't
	 * be changed if the cgroup has children already, or if tasks had
	 * already joined.
	 *
	 * If tasks join before we set the limit, a person looking at
	 * kmem.usage_in_bytes will have no way to determine when it took
	 * place, which makes the value quite meaningless.
	 *
	 * After it first became limited, changes in the value of the limit are
	 * of course permitted.
	 */
4823
	mutex_lock(&memcg_create_mutex);
4824 4825
	mutex_lock(&set_limit_mutex);
	if (!memcg->kmem_account_flags && val != RESOURCE_MAX) {
4826
		if (cgroup_task_count(css->cgroup) || memcg_has_children(memcg)) {
4827 4828 4829 4830 4831 4832
			ret = -EBUSY;
			goto out;
		}
		ret = res_counter_set_limit(&memcg->kmem, val);
		VM_BUG_ON(ret);

4833 4834 4835 4836 4837
		ret = memcg_update_cache_sizes(memcg);
		if (ret) {
			res_counter_set_limit(&memcg->kmem, RESOURCE_MAX);
			goto out;
		}
4838 4839 4840 4841 4842 4843
		static_key_slow_inc(&memcg_kmem_enabled_key);
		/*
		 * setting the active bit after the inc will guarantee no one
		 * starts accounting before all call sites are patched
		 */
		memcg_kmem_set_active(memcg);
4844 4845 4846 4847
	} else
		ret = res_counter_set_limit(&memcg->kmem, val);
out:
	mutex_unlock(&set_limit_mutex);
4848
	mutex_unlock(&memcg_create_mutex);
4849 4850 4851 4852
#endif
	return ret;
}

4853
#ifdef CONFIG_MEMCG_KMEM
4854
static int memcg_propagate_kmem(struct mem_cgroup *memcg)
4855
{
4856
	int ret = 0;
4857 4858
	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
	if (!parent)
4859 4860
		goto out;

4861
	memcg->kmem_account_flags = parent->kmem_account_flags;
4862 4863 4864 4865 4866 4867 4868 4869 4870 4871
	/*
	 * When that happen, we need to disable the static branch only on those
	 * memcgs that enabled it. To achieve this, we would be forced to
	 * complicate the code by keeping track of which memcgs were the ones
	 * that actually enabled limits, and which ones got it from its
	 * parents.
	 *
	 * It is a lot simpler just to do static_key_slow_inc() on every child
	 * that is accounted.
	 */
4872 4873 4874 4875
	if (!memcg_kmem_is_active(memcg))
		goto out;

	/*
4876 4877 4878
	 * __mem_cgroup_free() will issue static_key_slow_dec() because this
	 * memcg is active already. If the later initialization fails then the
	 * cgroup core triggers the cleanup so we do not have to do it here.
4879 4880 4881 4882
	 */
	static_key_slow_inc(&memcg_kmem_enabled_key);

	mutex_lock(&set_limit_mutex);
4883
	memcg_stop_kmem_account();
4884
	ret = memcg_update_cache_sizes(memcg);
4885
	memcg_resume_kmem_account();
4886 4887 4888
	mutex_unlock(&set_limit_mutex);
out:
	return ret;
4889
}
4890
#endif /* CONFIG_MEMCG_KMEM */
4891

4892 4893 4894 4895
/*
 * The user of this function is...
 * RES_LIMIT.
 */
4896
static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft,
4897
			    const char *buffer)
B
Balbir Singh 已提交
4898
{
4899
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
G
Glauber Costa 已提交
4900 4901
	enum res_type type;
	int name;
4902 4903 4904
	unsigned long long val;
	int ret;

4905 4906
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
4907

4908
	switch (name) {
4909
	case RES_LIMIT:
4910 4911 4912 4913
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
4914 4915
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
4916 4917 4918
		if (ret)
			break;
		if (type == _MEM)
4919
			ret = mem_cgroup_resize_limit(memcg, val);
4920
		else if (type == _MEMSWAP)
4921
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
4922
		else if (type == _KMEM)
4923
			ret = memcg_update_kmem_limit(css, val);
4924 4925
		else
			return -EINVAL;
4926
		break;
4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
4941 4942 4943 4944 4945
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
4946 4947
}

4948 4949 4950 4951 4952 4953 4954 4955 4956 4957
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	if (!memcg->use_hierarchy)
		goto out;

T
Tejun Heo 已提交
4958 4959
	while (css_parent(&memcg->css)) {
		memcg = mem_cgroup_from_css(css_parent(&memcg->css));
4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
}

4972
static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event)
4973
{
4974
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
G
Glauber Costa 已提交
4975 4976
	int name;
	enum res_type type;
4977

4978 4979
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
4980

4981
	switch (name) {
4982
	case RES_MAX_USAGE:
4983
		if (type == _MEM)
4984
			res_counter_reset_max(&memcg->res);
4985
		else if (type == _MEMSWAP)
4986
			res_counter_reset_max(&memcg->memsw);
4987 4988 4989 4990
		else if (type == _KMEM)
			res_counter_reset_max(&memcg->kmem);
		else
			return -EINVAL;
4991 4992
		break;
	case RES_FAILCNT:
4993
		if (type == _MEM)
4994
			res_counter_reset_failcnt(&memcg->res);
4995
		else if (type == _MEMSWAP)
4996
			res_counter_reset_failcnt(&memcg->memsw);
4997 4998 4999 5000
		else if (type == _KMEM)
			res_counter_reset_failcnt(&memcg->kmem);
		else
			return -EINVAL;
5001 5002
		break;
	}
5003

5004
	return 0;
5005 5006
}

5007
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
5008 5009
					struct cftype *cft)
{
5010
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
5011 5012
}

5013
#ifdef CONFIG_MMU
5014
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5015 5016
					struct cftype *cft, u64 val)
{
5017
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5018 5019 5020

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
5021

5022
	/*
5023 5024 5025 5026
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
5027
	 */
5028
	memcg->move_charge_at_immigrate = val;
5029 5030
	return 0;
}
5031
#else
5032
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5033 5034 5035 5036 5037
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
5038

5039
#ifdef CONFIG_NUMA
5040 5041
static int memcg_numa_stat_show(struct cgroup_subsys_state *css,
				struct cftype *cft, struct seq_file *m)
5042 5043 5044 5045
{
	int nid;
	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
	unsigned long node_nr;
5046
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5047

5048
	total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
5049
	seq_printf(m, "total=%lu", total_nr);
5050
	for_each_node_state(nid, N_MEMORY) {
5051
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
5052 5053 5054 5055
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5056
	file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
5057
	seq_printf(m, "file=%lu", file_nr);
5058
	for_each_node_state(nid, N_MEMORY) {
5059
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5060
				LRU_ALL_FILE);
5061 5062 5063 5064
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5065
	anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
5066
	seq_printf(m, "anon=%lu", anon_nr);
5067
	for_each_node_state(nid, N_MEMORY) {
5068
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5069
				LRU_ALL_ANON);
5070 5071 5072 5073
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5074
	unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
5075
	seq_printf(m, "unevictable=%lu", unevictable_nr);
5076
	for_each_node_state(nid, N_MEMORY) {
5077
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5078
				BIT(LRU_UNEVICTABLE));
5079 5080 5081 5082 5083 5084 5085
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');
	return 0;
}
#endif /* CONFIG_NUMA */

5086 5087 5088 5089 5090
static inline void mem_cgroup_lru_names_not_uptodate(void)
{
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
}

5091
static int memcg_stat_show(struct cgroup_subsys_state *css, struct cftype *cft,
5092
				 struct seq_file *m)
5093
{
5094
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5095 5096
	struct mem_cgroup *mi;
	unsigned int i;
5097

5098
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5099
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5100
			continue;
5101 5102
		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5103
	}
L
Lee Schermerhorn 已提交
5104

5105 5106 5107 5108 5109 5110 5111 5112
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
5113
	/* Hierarchical information */
5114 5115
	{
		unsigned long long limit, memsw_limit;
5116
		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5117
		seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5118
		if (do_swap_account)
5119 5120
			seq_printf(m, "hierarchical_memsw_limit %llu\n",
				   memsw_limit);
5121
	}
K
KOSAKI Motohiro 已提交
5122

5123 5124 5125
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
		long long val = 0;

5126
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5127
			continue;
5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5148
	}
K
KAMEZAWA Hiroyuki 已提交
5149

K
KOSAKI Motohiro 已提交
5150 5151 5152 5153
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
5154
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
5155 5156 5157 5158 5159
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5160
				mz = mem_cgroup_zoneinfo(memcg, nid, zid);
5161
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
5162

5163 5164 5165 5166
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
5167
			}
5168 5169 5170 5171
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
5172 5173 5174
	}
#endif

5175 5176 5177
	return 0;
}

5178 5179
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
5180
{
5181
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
5182

5183
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
5184 5185
}

5186 5187
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
5188
{
5189
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
5190
	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
K
KOSAKI Motohiro 已提交
5191

T
Tejun Heo 已提交
5192
	if (val > 100 || !parent)
K
KOSAKI Motohiro 已提交
5193 5194
		return -EINVAL;

5195
	mutex_lock(&memcg_create_mutex);
5196

K
KOSAKI Motohiro 已提交
5197
	/* If under hierarchy, only empty-root can set this value */
5198
	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5199
		mutex_unlock(&memcg_create_mutex);
K
KOSAKI Motohiro 已提交
5200
		return -EINVAL;
5201
	}
K
KOSAKI Motohiro 已提交
5202 5203 5204

	memcg->swappiness = val;

5205
	mutex_unlock(&memcg_create_mutex);
5206

K
KOSAKI Motohiro 已提交
5207 5208 5209
	return 0;
}

5210 5211 5212 5213 5214 5215 5216 5217
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
5218
		t = rcu_dereference(memcg->thresholds.primary);
5219
	else
5220
		t = rcu_dereference(memcg->memsw_thresholds.primary);
5221 5222 5223 5224 5225 5226 5227

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
5228
	 * current_threshold points to threshold just below or equal to usage.
5229 5230 5231
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
5232
	i = t->current_threshold;
5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
5256
	t->current_threshold = i - 1;
5257 5258 5259 5260 5261 5262
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
5263 5264 5265 5266 5267 5268 5269
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
5270 5271 5272 5273 5274 5275 5276
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

5277 5278 5279 5280 5281 5282 5283
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
5284 5285
}

5286
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
5287 5288 5289
{
	struct mem_cgroup_eventfd_list *ev;

5290
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
5291 5292 5293 5294
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

5295
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
5296
{
K
KAMEZAWA Hiroyuki 已提交
5297 5298
	struct mem_cgroup *iter;

5299
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
5300
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
5301 5302
}

5303
static int mem_cgroup_usage_register_event(struct cgroup_subsys_state *css,
K
KAMEZAWA Hiroyuki 已提交
5304
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5305
{
5306
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5307 5308
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
G
Glauber Costa 已提交
5309
	enum res_type type = MEMFILE_TYPE(cft->private);
5310
	u64 threshold, usage;
5311
	int i, size, ret;
5312 5313 5314 5315 5316 5317

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
5318

5319
	if (type == _MEM)
5320
		thresholds = &memcg->thresholds;
5321
	else if (type == _MEMSWAP)
5322
		thresholds = &memcg->memsw_thresholds;
5323 5324 5325 5326 5327 5328
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
5329
	if (thresholds->primary)
5330 5331
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

5332
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5333 5334

	/* Allocate memory for new array of thresholds */
5335
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5336
			GFP_KERNEL);
5337
	if (!new) {
5338 5339 5340
		ret = -ENOMEM;
		goto unlock;
	}
5341
	new->size = size;
5342 5343

	/* Copy thresholds (if any) to new array */
5344 5345
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5346
				sizeof(struct mem_cgroup_threshold));
5347 5348
	}

5349
	/* Add new threshold */
5350 5351
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
5352 5353

	/* Sort thresholds. Registering of new threshold isn't time-critical */
5354
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5355 5356 5357
			compare_thresholds, NULL);

	/* Find current threshold */
5358
	new->current_threshold = -1;
5359
	for (i = 0; i < size; i++) {
5360
		if (new->entries[i].threshold <= usage) {
5361
			/*
5362 5363
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
5364 5365
			 * it here.
			 */
5366
			++new->current_threshold;
5367 5368
		} else
			break;
5369 5370
	}

5371 5372 5373 5374 5375
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
5376

5377
	/* To be sure that nobody uses thresholds */
5378 5379 5380 5381 5382 5383 5384 5385
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

5386
static void mem_cgroup_usage_unregister_event(struct cgroup_subsys_state *css,
K
KAMEZAWA Hiroyuki 已提交
5387
	struct cftype *cft, struct eventfd_ctx *eventfd)
5388
{
5389
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5390 5391
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
G
Glauber Costa 已提交
5392
	enum res_type type = MEMFILE_TYPE(cft->private);
5393
	u64 usage;
5394
	int i, j, size;
5395 5396 5397

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
5398
		thresholds = &memcg->thresholds;
5399
	else if (type == _MEMSWAP)
5400
		thresholds = &memcg->memsw_thresholds;
5401 5402 5403
	else
		BUG();

5404 5405 5406
	if (!thresholds->primary)
		goto unlock;

5407 5408 5409 5410 5411 5412
	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
5413 5414 5415
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
5416 5417 5418
			size++;
	}

5419
	new = thresholds->spare;
5420

5421 5422
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
5423 5424
		kfree(new);
		new = NULL;
5425
		goto swap_buffers;
5426 5427
	}

5428
	new->size = size;
5429 5430

	/* Copy thresholds and find current threshold */
5431 5432 5433
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
5434 5435
			continue;

5436
		new->entries[j] = thresholds->primary->entries[i];
5437
		if (new->entries[j].threshold <= usage) {
5438
			/*
5439
			 * new->current_threshold will not be used
5440 5441 5442
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
5443
			++new->current_threshold;
5444 5445 5446 5447
		}
		j++;
	}

5448
swap_buffers:
5449 5450
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
5451 5452 5453 5454 5455 5456
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

5457
	rcu_assign_pointer(thresholds->primary, new);
5458

5459
	/* To be sure that nobody uses thresholds */
5460
	synchronize_rcu();
5461
unlock:
5462 5463
	mutex_unlock(&memcg->thresholds_lock);
}
5464

5465
static int mem_cgroup_oom_register_event(struct cgroup_subsys_state *css,
K
KAMEZAWA Hiroyuki 已提交
5466 5467
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
5468
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
5469
	struct mem_cgroup_eventfd_list *event;
G
Glauber Costa 已提交
5470
	enum res_type type = MEMFILE_TYPE(cft->private);
K
KAMEZAWA Hiroyuki 已提交
5471 5472 5473 5474 5475 5476

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

5477
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5478 5479 5480 5481 5482

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
5483
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
5484
		eventfd_signal(eventfd, 1);
5485
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5486 5487 5488 5489

	return 0;
}

5490
static void mem_cgroup_oom_unregister_event(struct cgroup_subsys_state *css,
K
KAMEZAWA Hiroyuki 已提交
5491 5492
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
5493
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
5494
	struct mem_cgroup_eventfd_list *ev, *tmp;
G
Glauber Costa 已提交
5495
	enum res_type type = MEMFILE_TYPE(cft->private);
K
KAMEZAWA Hiroyuki 已提交
5496 5497 5498

	BUG_ON(type != _OOM_TYPE);

5499
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5500

5501
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
5502 5503 5504 5505 5506 5507
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

5508
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5509 5510
}

5511
static int mem_cgroup_oom_control_read(struct cgroup_subsys_state *css,
5512 5513
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
5514
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5515

5516
	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
5517

5518
	if (atomic_read(&memcg->under_oom))
5519 5520 5521 5522 5523 5524
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

5525
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
5526 5527
	struct cftype *cft, u64 val)
{
5528
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
5529
	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
5530 5531

	/* cannot set to root cgroup and only 0 and 1 are allowed */
T
Tejun Heo 已提交
5532
	if (!parent || !((val == 0) || (val == 1)))
5533 5534
		return -EINVAL;

5535
	mutex_lock(&memcg_create_mutex);
5536
	/* oom-kill-disable is a flag for subhierarchy. */
5537
	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5538
		mutex_unlock(&memcg_create_mutex);
5539 5540
		return -EINVAL;
	}
5541
	memcg->oom_kill_disable = val;
5542
	if (!val)
5543
		memcg_oom_recover(memcg);
5544
	mutex_unlock(&memcg_create_mutex);
5545 5546 5547
	return 0;
}

A
Andrew Morton 已提交
5548
#ifdef CONFIG_MEMCG_KMEM
5549
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5550
{
5551 5552
	int ret;

5553
	memcg->kmemcg_id = -1;
5554 5555 5556
	ret = memcg_propagate_kmem(memcg);
	if (ret)
		return ret;
5557

5558
	return mem_cgroup_sockets_init(memcg, ss);
5559
}
5560

5561
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
5562
{
5563
	mem_cgroup_sockets_destroy(memcg);
5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589
}

static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
{
	if (!memcg_kmem_is_active(memcg))
		return;

	/*
	 * kmem charges can outlive the cgroup. In the case of slab
	 * pages, for instance, a page contain objects from various
	 * processes. As we prevent from taking a reference for every
	 * such allocation we have to be careful when doing uncharge
	 * (see memcg_uncharge_kmem) and here during offlining.
	 *
	 * The idea is that that only the _last_ uncharge which sees
	 * the dead memcg will drop the last reference. An additional
	 * reference is taken here before the group is marked dead
	 * which is then paired with css_put during uncharge resp. here.
	 *
	 * Although this might sound strange as this path is called from
	 * css_offline() when the referencemight have dropped down to 0
	 * and shouldn't be incremented anymore (css_tryget would fail)
	 * we do not have other options because of the kmem allocations
	 * lifetime.
	 */
	css_get(&memcg->css);
5590 5591 5592 5593 5594 5595 5596

	memcg_kmem_mark_dead(memcg);

	if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
		return;

	if (memcg_kmem_test_and_clear_dead(memcg))
5597
		css_put(&memcg->css);
G
Glauber Costa 已提交
5598
}
5599
#else
5600
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5601 5602 5603
{
	return 0;
}
G
Glauber Costa 已提交
5604

5605 5606 5607 5608 5609
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
{
}

static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
5610 5611
{
}
5612 5613
#endif

B
Balbir Singh 已提交
5614 5615
static struct cftype mem_cgroup_files[] = {
	{
5616
		.name = "usage_in_bytes",
5617
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5618
		.read = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
5619 5620
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
5621
	},
5622 5623
	{
		.name = "max_usage_in_bytes",
5624
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5625
		.trigger = mem_cgroup_reset,
5626
		.read = mem_cgroup_read,
5627
	},
B
Balbir Singh 已提交
5628
	{
5629
		.name = "limit_in_bytes",
5630
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5631
		.write_string = mem_cgroup_write,
5632
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
5633
	},
5634 5635 5636 5637
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
5638
		.read = mem_cgroup_read,
5639
	},
B
Balbir Singh 已提交
5640 5641
	{
		.name = "failcnt",
5642
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5643
		.trigger = mem_cgroup_reset,
5644
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
5645
	},
5646 5647
	{
		.name = "stat",
5648
		.read_seq_string = memcg_stat_show,
5649
	},
5650 5651 5652 5653
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
5654 5655
	{
		.name = "use_hierarchy",
5656
		.flags = CFTYPE_INSANE,
5657 5658 5659
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
5660 5661 5662 5663 5664
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
5665 5666 5667 5668 5669
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
5670 5671
	{
		.name = "oom_control",
5672 5673
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
5674 5675 5676 5677
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
5678 5679 5680 5681 5682
	{
		.name = "pressure_level",
		.register_event = vmpressure_register_event,
		.unregister_event = vmpressure_unregister_event,
	},
5683 5684 5685
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
5686
		.read_seq_string = memcg_numa_stat_show,
5687 5688
	},
#endif
5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712
#ifdef CONFIG_MEMCG_KMEM
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
5713 5714 5715 5716 5717 5718
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
		.read_seq_string = mem_cgroup_slabinfo_read,
	},
#endif
5719
#endif
5720
	{ },	/* terminate */
5721
};
5722

5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752
#ifdef CONFIG_MEMCG_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read = mem_cgroup_read,
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{ },	/* terminate */
};
#endif
5753
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
5754 5755
{
	struct mem_cgroup_per_node *pn;
5756
	struct mem_cgroup_per_zone *mz;
5757
	int zone, tmp = node;
5758 5759 5760 5761 5762 5763 5764 5765
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
5766 5767
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
5768
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5769 5770
	if (!pn)
		return 1;
5771 5772 5773

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
5774
		lruvec_init(&mz->lruvec);
5775
		mz->memcg = memcg;
5776
	}
5777
	memcg->nodeinfo[node] = pn;
5778 5779 5780
	return 0;
}

5781
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
5782
{
5783
	kfree(memcg->nodeinfo[node]);
5784 5785
}

5786 5787
static struct mem_cgroup *mem_cgroup_alloc(void)
{
5788
	struct mem_cgroup *memcg;
5789
	size_t size = memcg_size();
5790

5791
	/* Can be very big if nr_node_ids is very big */
5792
	if (size < PAGE_SIZE)
5793
		memcg = kzalloc(size, GFP_KERNEL);
5794
	else
5795
		memcg = vzalloc(size);
5796

5797
	if (!memcg)
5798 5799
		return NULL;

5800 5801
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
5802
		goto out_free;
5803 5804
	spin_lock_init(&memcg->pcp_counter_lock);
	return memcg;
5805 5806 5807

out_free:
	if (size < PAGE_SIZE)
5808
		kfree(memcg);
5809
	else
5810
		vfree(memcg);
5811
	return NULL;
5812 5813
}

5814
/*
5815 5816 5817 5818 5819 5820 5821 5822
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
5823
 */
5824 5825

static void __mem_cgroup_free(struct mem_cgroup *memcg)
5826
{
5827
	int node;
5828
	size_t size = memcg_size();
5829

5830 5831 5832 5833 5834 5835 5836
	free_css_id(&mem_cgroup_subsys, &memcg->css);

	for_each_node(node)
		free_mem_cgroup_per_zone_info(memcg, node);

	free_percpu(memcg->stat);

5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847
	/*
	 * We need to make sure that (at least for now), the jump label
	 * destruction code runs outside of the cgroup lock. This is because
	 * get_online_cpus(), which is called from the static_branch update,
	 * can't be called inside the cgroup_lock. cpusets are the ones
	 * enforcing this dependency, so if they ever change, we might as well.
	 *
	 * schedule_work() will guarantee this happens. Be careful if you need
	 * to move this code around, and make sure it is outside
	 * the cgroup_lock.
	 */
5848
	disarm_static_keys(memcg);
5849 5850 5851 5852
	if (size < PAGE_SIZE)
		kfree(memcg);
	else
		vfree(memcg);
5853
}
5854

5855 5856 5857
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
5858
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
5859
{
5860
	if (!memcg->res.parent)
5861
		return NULL;
5862
	return mem_cgroup_from_res_counter(memcg->res.parent, res);
5863
}
G
Glauber Costa 已提交
5864
EXPORT_SYMBOL(parent_mem_cgroup);
5865

L
Li Zefan 已提交
5866
static struct cgroup_subsys_state * __ref
5867
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
B
Balbir Singh 已提交
5868
{
5869
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
5870
	long error = -ENOMEM;
5871
	int node;
B
Balbir Singh 已提交
5872

5873 5874
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
5875
		return ERR_PTR(error);
5876

B
Bob Liu 已提交
5877
	for_each_node(node)
5878
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
5879
			goto free_out;
5880

5881
	/* root ? */
5882
	if (parent_css == NULL) {
5883
		root_mem_cgroup = memcg;
5884 5885 5886
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
		res_counter_init(&memcg->kmem, NULL);
5887
	}
5888

5889 5890 5891 5892 5893
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
5894
	vmpressure_init(&memcg->vmpressure);
5895 5896 5897 5898 5899 5900 5901 5902 5903

	return &memcg->css;

free_out:
	__mem_cgroup_free(memcg);
	return ERR_PTR(error);
}

static int
5904
mem_cgroup_css_online(struct cgroup_subsys_state *css)
5905
{
5906 5907
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css));
5908 5909
	int error = 0;

T
Tejun Heo 已提交
5910
	if (!parent)
5911 5912
		return 0;

5913
	mutex_lock(&memcg_create_mutex);
5914 5915 5916 5917 5918 5919

	memcg->use_hierarchy = parent->use_hierarchy;
	memcg->oom_kill_disable = parent->oom_kill_disable;
	memcg->swappiness = mem_cgroup_swappiness(parent);

	if (parent->use_hierarchy) {
5920 5921
		res_counter_init(&memcg->res, &parent->res);
		res_counter_init(&memcg->memsw, &parent->memsw);
5922
		res_counter_init(&memcg->kmem, &parent->kmem);
5923

5924
		/*
5925 5926
		 * No need to take a reference to the parent because cgroup
		 * core guarantees its existence.
5927
		 */
5928
	} else {
5929 5930
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
5931
		res_counter_init(&memcg->kmem, NULL);
5932 5933 5934 5935 5936
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
5937
		if (parent != root_mem_cgroup)
5938
			mem_cgroup_subsys.broken_hierarchy = true;
5939
	}
5940 5941

	error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
5942
	mutex_unlock(&memcg_create_mutex);
5943
	return error;
B
Balbir Singh 已提交
5944 5945
}

M
Michal Hocko 已提交
5946 5947 5948 5949 5950 5951 5952 5953
/*
 * Announce all parents that a group from their hierarchy is gone.
 */
static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
{
	struct mem_cgroup *parent = memcg;

	while ((parent = parent_mem_cgroup(parent)))
5954
		mem_cgroup_iter_invalidate(parent);
M
Michal Hocko 已提交
5955 5956 5957 5958 5959 5960

	/*
	 * if the root memcg is not hierarchical we have to check it
	 * explicitely.
	 */
	if (!root_mem_cgroup->use_hierarchy)
5961
		mem_cgroup_iter_invalidate(root_mem_cgroup);
M
Michal Hocko 已提交
5962 5963
}

5964
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5965
{
5966
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5967

5968 5969
	kmem_cgroup_css_offline(memcg);

M
Michal Hocko 已提交
5970
	mem_cgroup_invalidate_reclaim_iterators(memcg);
5971
	mem_cgroup_reparent_charges(memcg);
G
Glauber Costa 已提交
5972
	mem_cgroup_destroy_all_caches(memcg);
5973
	vmpressure_cleanup(&memcg->vmpressure);
5974 5975
}

5976
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
5977
{
5978
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5979

5980
	memcg_destroy_kmem(memcg);
5981
	__mem_cgroup_free(memcg);
B
Balbir Singh 已提交
5982 5983
}

5984
#ifdef CONFIG_MMU
5985
/* Handlers for move charge at task migration. */
5986 5987
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
5988
{
5989 5990
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
5991
	struct mem_cgroup *memcg = mc.to;
5992

5993
	if (mem_cgroup_is_root(memcg)) {
5994 5995 5996 5997 5998 5999 6000 6001
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
6002
		 * "memcg" cannot be under rmdir() because we've already checked
6003 6004 6005 6006
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
6007
		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6008
			goto one_by_one;
6009
		if (do_swap_account && res_counter_charge(&memcg->memsw,
6010
						PAGE_SIZE * count, &dummy)) {
6011
			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
6028 6029
		ret = __mem_cgroup_try_charge(NULL,
					GFP_KERNEL, 1, &memcg, false);
6030
		if (ret)
6031
			/* mem_cgroup_clear_mc() will do uncharge later */
6032
			return ret;
6033 6034
		mc.precharge++;
	}
6035 6036 6037 6038
	return ret;
}

/**
6039
 * get_mctgt_type - get target type of moving charge
6040 6041 6042
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
6043
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6044 6045 6046 6047 6048 6049
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
6050 6051 6052
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
6053 6054 6055 6056 6057
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
6058
	swp_entry_t	ent;
6059 6060 6061
};

enum mc_target_type {
6062
	MC_TARGET_NONE = 0,
6063
	MC_TARGET_PAGE,
6064
	MC_TARGET_SWAP,
6065 6066
};

D
Daisuke Nishimura 已提交
6067 6068
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
6069
{
D
Daisuke Nishimura 已提交
6070
	struct page *page = vm_normal_page(vma, addr, ptent);
6071

D
Daisuke Nishimura 已提交
6072 6073 6074 6075
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
6076
		if (!move_anon())
D
Daisuke Nishimura 已提交
6077
			return NULL;
6078 6079
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
6080 6081 6082 6083 6084 6085 6086
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

6087
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
6088 6089 6090 6091 6092 6093 6094 6095
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
6096 6097 6098 6099
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
6100
	page = find_get_page(swap_address_space(ent), ent.val);
D
Daisuke Nishimura 已提交
6101 6102 6103 6104 6105
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}
6106 6107 6108 6109 6110 6111 6112
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
6113

6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
6133 6134 6135 6136 6137 6138
	page = find_get_page(mapping, pgoff);

#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
	if (radix_tree_exceptional_entry(page)) {
		swp_entry_t swap = radix_to_swp_entry(page);
6139
		if (do_swap_account)
6140
			*entry = swap;
6141
		page = find_get_page(swap_address_space(swap), swap.val);
6142
	}
6143
#endif
6144 6145 6146
	return page;
}

6147
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
6148 6149 6150 6151
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
6152
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
6153 6154 6155 6156 6157 6158
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6159 6160
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
6161 6162

	if (!page && !ent.val)
6163
		return ret;
6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
6179 6180
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
6181
			css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
6182 6183 6184
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
6185 6186 6187 6188
	}
	return ret;
}

6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
	VM_BUG_ON(!page || !PageHead(page));
	if (!move_anon())
		return ret;
	pc = lookup_page_cgroup(page);
	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

6224 6225 6226 6227 6228 6229 6230 6231
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

6232 6233 6234 6235
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
		spin_unlock(&vma->vm_mm->page_table_lock);
6236
		return 0;
6237
	}
6238

6239 6240
	if (pmd_trans_unstable(pmd))
		return 0;
6241 6242
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
6243
		if (get_mctgt_type(vma, addr, *pte, NULL))
6244 6245 6246 6247
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

6248 6249 6250
	return 0;
}

6251 6252 6253 6254 6255
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

6256
	down_read(&mm->mmap_sem);
6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
6268
	up_read(&mm->mmap_sem);
6269 6270 6271 6272 6273 6274 6275 6276 6277

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
6278 6279 6280 6281 6282
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
6283 6284
}

6285 6286
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
6287
{
6288 6289
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;
L
Li Zefan 已提交
6290
	int i;
6291

6292
	/* we must uncharge all the leftover precharges from mc.to */
6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
6304
	}
6305 6306 6307 6308 6309 6310
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
L
Li Zefan 已提交
6311 6312 6313

		for (i = 0; i < mc.moved_swap; i++)
			css_put(&mc.from->css);
6314 6315 6316 6317 6318 6319 6320 6321 6322

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
L
Li Zefan 已提交
6323
		/* we've already done css_get(mc.to) */
6324 6325
		mc.moved_swap = 0;
	}
6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
6341
	spin_lock(&mc.lock);
6342 6343
	mc.from = NULL;
	mc.to = NULL;
6344
	spin_unlock(&mc.lock);
6345
	mem_cgroup_end_move(from);
6346 6347
}

6348
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6349
				 struct cgroup_taskset *tset)
6350
{
6351
	struct task_struct *p = cgroup_taskset_first(tset);
6352
	int ret = 0;
6353
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6354
	unsigned long move_charge_at_immigrate;
6355

6356 6357 6358 6359 6360 6361 6362
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_charge_at_immigrate  = memcg->move_charge_at_immigrate;
	if (move_charge_at_immigrate) {
6363 6364 6365
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

6366
		VM_BUG_ON(from == memcg);
6367 6368 6369 6370 6371

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
6372 6373 6374 6375
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
6376
			VM_BUG_ON(mc.moved_charge);
6377
			VM_BUG_ON(mc.moved_swap);
6378
			mem_cgroup_start_move(from);
6379
			spin_lock(&mc.lock);
6380
			mc.from = from;
6381
			mc.to = memcg;
6382
			mc.immigrate_flags = move_charge_at_immigrate;
6383
			spin_unlock(&mc.lock);
6384
			/* We set mc.moving_task later */
6385 6386 6387 6388

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
6389 6390
		}
		mmput(mm);
6391 6392 6393 6394
	}
	return ret;
}

6395
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6396
				     struct cgroup_taskset *tset)
6397
{
6398
	mem_cgroup_clear_mc();
6399 6400
}

6401 6402 6403
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
6404
{
6405 6406 6407 6408
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;
6409 6410 6411 6412
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
	struct page_cgroup *pc;
6413

6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
6425
		if (mc.precharge < HPAGE_PMD_NR) {
6426 6427 6428 6429 6430 6431 6432 6433 6434
			spin_unlock(&vma->vm_mm->page_table_lock);
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				pc = lookup_page_cgroup(page);
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
6435
							pc, mc.from, mc.to)) {
6436 6437 6438 6439 6440 6441 6442 6443
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
		spin_unlock(&vma->vm_mm->page_table_lock);
6444
		return 0;
6445 6446
	}

6447 6448
	if (pmd_trans_unstable(pmd))
		return 0;
6449 6450 6451 6452
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
6453
		swp_entry_t ent;
6454 6455 6456 6457

		if (!mc.precharge)
			break;

6458
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6459 6460 6461 6462 6463
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
6464
			if (!mem_cgroup_move_account(page, 1, pc,
6465
						     mc.from, mc.to)) {
6466
				mc.precharge--;
6467 6468
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
6469 6470
			}
			putback_lru_page(page);
6471
put:			/* get_mctgt_type() gets the page */
6472 6473
			put_page(page);
			break;
6474 6475
		case MC_TARGET_SWAP:
			ent = target.ent;
6476
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6477
				mc.precharge--;
6478 6479 6480
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
6481
			break;
6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
6496
		ret = mem_cgroup_do_precharge(1);
6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
6540
	up_read(&mm->mmap_sem);
6541 6542
}

6543
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6544
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
6545
{
6546
	struct task_struct *p = cgroup_taskset_first(tset);
6547
	struct mm_struct *mm = get_task_mm(p);
6548 6549

	if (mm) {
6550 6551
		if (mc.to)
			mem_cgroup_move_charge(mm);
6552 6553
		mmput(mm);
	}
6554 6555
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
6556
}
6557
#else	/* !CONFIG_MMU */
6558
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6559
				 struct cgroup_taskset *tset)
6560 6561 6562
{
	return 0;
}
6563
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6564
				     struct cgroup_taskset *tset)
6565 6566
{
}
6567
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6568
				 struct cgroup_taskset *tset)
6569 6570 6571
{
}
#endif
B
Balbir Singh 已提交
6572

6573 6574 6575 6576
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
 * to verify sane_behavior flag on each mount attempt.
 */
6577
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
6578 6579 6580 6581 6582 6583
{
	/*
	 * use_hierarchy is forced with sane_behavior.  cgroup core
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
6584 6585
	if (cgroup_sane_behavior(root_css->cgroup))
		mem_cgroup_from_css(root_css)->use_hierarchy = true;
6586 6587
}

B
Balbir Singh 已提交
6588 6589 6590
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
6591
	.css_alloc = mem_cgroup_css_alloc,
6592
	.css_online = mem_cgroup_css_online,
6593 6594
	.css_offline = mem_cgroup_css_offline,
	.css_free = mem_cgroup_css_free,
6595 6596
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
6597
	.attach = mem_cgroup_move_task,
6598
	.bind = mem_cgroup_bind,
6599
	.base_cftypes = mem_cgroup_files,
6600
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
6601
	.use_id = 1,
B
Balbir Singh 已提交
6602
};
6603

A
Andrew Morton 已提交
6604
#ifdef CONFIG_MEMCG_SWAP
6605 6606
static int __init enable_swap_account(char *s)
{
6607
	if (!strcmp(s, "1"))
6608
		really_do_swap_account = 1;
6609
	else if (!strcmp(s, "0"))
6610 6611 6612
		really_do_swap_account = 0;
	return 1;
}
6613
__setup("swapaccount=", enable_swap_account);
6614

6615 6616
static void __init memsw_file_init(void)
{
6617 6618 6619 6620 6621 6622 6623 6624 6625
	WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
}

static void __init enable_swap_cgroup(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
		memsw_file_init();
	}
6626
}
6627

6628
#else
6629
static void __init enable_swap_cgroup(void)
6630 6631
{
}
6632
#endif
6633 6634

/*
6635 6636 6637 6638 6639 6640
 * subsys_initcall() for memory controller.
 *
 * Some parts like hotcpu_notifier() have to be initialized from this context
 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
 * everything that doesn't depend on a specific mem_cgroup structure should
 * be initialized from here.
6641 6642 6643 6644
 */
static int __init mem_cgroup_init(void)
{
	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6645
	enable_swap_cgroup();
6646
	memcg_stock_init();
6647 6648 6649
	return 0;
}
subsys_initcall(mem_cgroup_init);