memcontrol.c 157.6 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
17 18 19 20 21 22
 * Native page reclaim
 * Charge lifetime sanitation
 * Lockless page tracking & accounting
 * Unified hierarchy configuration model
 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
 *
B
Balbir Singh 已提交
23 24 25 26 27 28 29 30 31 32 33
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

34
#include <linux/page_counter.h>
B
Balbir Singh 已提交
35 36
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
37
#include <linux/mm.h>
38
#include <linux/sched/mm.h>
39
#include <linux/shmem_fs.h>
40
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
41
#include <linux/pagemap.h>
42
#include <linux/smp.h>
43
#include <linux/page-flags.h>
44
#include <linux/backing-dev.h>
45 46
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
47
#include <linux/limits.h>
48
#include <linux/export.h>
49
#include <linux/mutex.h>
50
#include <linux/rbtree.h>
51
#include <linux/slab.h>
52
#include <linux/swap.h>
53
#include <linux/swapops.h>
54
#include <linux/spinlock.h>
55
#include <linux/eventfd.h>
56
#include <linux/poll.h>
57
#include <linux/sort.h>
58
#include <linux/fs.h>
59
#include <linux/seq_file.h>
60
#include <linux/vmpressure.h>
61
#include <linux/mm_inline.h>
62
#include <linux/swap_cgroup.h>
63
#include <linux/cpu.h>
64
#include <linux/oom.h>
65
#include <linux/lockdep.h>
66
#include <linux/file.h>
67
#include <linux/tracehook.h>
K
KAMEZAWA Hiroyuki 已提交
68
#include "internal.h"
G
Glauber Costa 已提交
69
#include <net/sock.h>
M
Michal Hocko 已提交
70
#include <net/ip.h>
71
#include "slab.h"
B
Balbir Singh 已提交
72

73
#include <linux/uaccess.h>
74

75 76
#include <trace/events/vmscan.h>

77 78
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
79

80 81
struct mem_cgroup *root_mem_cgroup __read_mostly;

82
#define MEM_CGROUP_RECLAIM_RETRIES	5
B
Balbir Singh 已提交
83

84 85 86
/* Socket memory accounting disabled? */
static bool cgroup_memory_nosocket;

87 88 89
/* Kernel memory accounting disabled? */
static bool cgroup_memory_nokmem;

90
/* Whether the swap controller is active */
A
Andrew Morton 已提交
91
#ifdef CONFIG_MEMCG_SWAP
92 93
int do_swap_account __read_mostly;
#else
94
#define do_swap_account		0
95 96
#endif

97 98 99 100 101 102
/* Whether legacy memory+swap accounting is active */
static bool do_memsw_account(void)
{
	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
}

103
static const char *const mem_cgroup_lru_names[] = {
104 105 106 107 108 109 110
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

111 112 113
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
114

115 116 117 118 119
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

120
struct mem_cgroup_tree_per_node {
121 122 123 124 125 126 127 128 129 130
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

K
KAMEZAWA Hiroyuki 已提交
131 132 133 134 135
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
136

137 138 139
/*
 * cgroup_event represents events which userspace want to receive.
 */
140
struct mem_cgroup_event {
141
	/*
142
	 * memcg which the event belongs to.
143
	 */
144
	struct mem_cgroup *memcg;
145 146 147 148 149 150 151 152
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
153 154 155 156 157
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
158
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
159
			      struct eventfd_ctx *eventfd, const char *args);
160 161 162 163 164
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
165
	void (*unregister_event)(struct mem_cgroup *memcg,
166
				 struct eventfd_ctx *eventfd);
167 168 169 170 171 172
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
173
	wait_queue_entry_t wait;
174 175 176
	struct work_struct remove;
};

177 178
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
179

180 181
/* Stuffs for move charges at task migration. */
/*
182
 * Types of charges to be moved.
183
 */
184 185 186
#define MOVE_ANON	0x1U
#define MOVE_FILE	0x2U
#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
187

188 189
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
190
	spinlock_t	  lock; /* for from, to */
191
	struct mm_struct  *mm;
192 193
	struct mem_cgroup *from;
	struct mem_cgroup *to;
194
	unsigned long flags;
195
	unsigned long precharge;
196
	unsigned long moved_charge;
197
	unsigned long moved_swap;
198 199 200
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
201
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
202 203
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
204

205 206 207 208
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
209
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
210
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
211

212 213
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
214
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
215
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
216
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
217 218 219
	NR_CHARGE_TYPE,
};

220
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
221 222 223 224
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
225
	_KMEM,
V
Vladimir Davydov 已提交
226
	_TCP,
G
Glauber Costa 已提交
227 228
};

229 230
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
231
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
232 233
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
234

235 236 237 238 239 240 241 242 243 244 245 246 247
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

248 249 250 251 252
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

253
#ifndef CONFIG_SLOB
254
/*
255
 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
L
Li Zefan 已提交
256 257 258 259 260
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
261
 *
262 263
 * The current size of the caches array is stored in memcg_nr_cache_ids. It
 * will double each time we have to increase it.
264
 */
265 266
static DEFINE_IDA(memcg_cache_ida);
int memcg_nr_cache_ids;
267

268 269 270 271 272 273 274 275 276 277 278 279 280
/* Protects memcg_nr_cache_ids */
static DECLARE_RWSEM(memcg_cache_ids_sem);

void memcg_get_cache_ids(void)
{
	down_read(&memcg_cache_ids_sem);
}

void memcg_put_cache_ids(void)
{
	up_read(&memcg_cache_ids_sem);
}

281 282 283 284 285 286
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
287
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
288 289
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
290
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
291 292 293
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
294
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
295

296 297 298 299 300 301
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
302
DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
303
EXPORT_SYMBOL(memcg_kmem_enabled_key);
304

305 306
struct workqueue_struct *memcg_kmem_cache_wq;

307
#endif /* !CONFIG_SLOB */
308

309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
/**
 * mem_cgroup_css_from_page - css of the memcg associated with a page
 * @page: page of interest
 *
 * If memcg is bound to the default hierarchy, css of the memcg associated
 * with @page is returned.  The returned css remains associated with @page
 * until it is released.
 *
 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
 * is returned.
 */
struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
{
	struct mem_cgroup *memcg;

	memcg = page->mem_cgroup;

326
	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
327 328 329 330 331
		memcg = root_mem_cgroup;

	return &memcg->css;
}

332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
/**
 * page_cgroup_ino - return inode number of the memcg a page is charged to
 * @page: the page
 *
 * Look up the closest online ancestor of the memory cgroup @page is charged to
 * and return its inode number or 0 if @page is not charged to any cgroup. It
 * is safe to call this function without holding a reference to @page.
 *
 * Note, this function is inherently racy, because there is nothing to prevent
 * the cgroup inode from getting torn down and potentially reallocated a moment
 * after page_cgroup_ino() returns, so it only should be used by callers that
 * do not care (such as procfs interfaces).
 */
ino_t page_cgroup_ino(struct page *page)
{
	struct mem_cgroup *memcg;
	unsigned long ino = 0;

	rcu_read_lock();
	memcg = READ_ONCE(page->mem_cgroup);
	while (memcg && !(memcg->css.flags & CSS_ONLINE))
		memcg = parent_mem_cgroup(memcg);
	if (memcg)
		ino = cgroup_ino(memcg->css.cgroup);
	rcu_read_unlock();
	return ino;
}

360 361
static struct mem_cgroup_per_node *
mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
362
{
363
	int nid = page_to_nid(page);
364

365
	return memcg->nodeinfo[nid];
366 367
}

368 369
static struct mem_cgroup_tree_per_node *
soft_limit_tree_node(int nid)
370
{
371
	return soft_limit_tree.rb_tree_per_node[nid];
372 373
}

374
static struct mem_cgroup_tree_per_node *
375 376 377 378
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);

379
	return soft_limit_tree.rb_tree_per_node[nid];
380 381
}

382 383
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
					 struct mem_cgroup_tree_per_node *mctz,
384
					 unsigned long new_usage_in_excess)
385 386 387
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
388
	struct mem_cgroup_per_node *mz_node;
389 390 391 392 393 394 395 396 397

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
398
		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

414 415
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
					 struct mem_cgroup_tree_per_node *mctz)
416 417 418 419 420 421 422
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

423 424
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
				       struct mem_cgroup_tree_per_node *mctz)
425
{
426 427 428
	unsigned long flags;

	spin_lock_irqsave(&mctz->lock, flags);
429
	__mem_cgroup_remove_exceeded(mz, mctz);
430
	spin_unlock_irqrestore(&mctz->lock, flags);
431 432
}

433 434 435
static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
{
	unsigned long nr_pages = page_counter_read(&memcg->memory);
436
	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
437 438 439 440 441 442 443
	unsigned long excess = 0;

	if (nr_pages > soft_limit)
		excess = nr_pages - soft_limit;

	return excess;
}
444 445 446

static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
447
	unsigned long excess;
448 449
	struct mem_cgroup_per_node *mz;
	struct mem_cgroup_tree_per_node *mctz;
450

451
	mctz = soft_limit_tree_from_page(page);
452 453
	if (!mctz)
		return;
454 455 456 457 458
	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
459
		mz = mem_cgroup_page_nodeinfo(memcg, page);
460
		excess = soft_limit_excess(memcg);
461 462 463 464 465
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
466 467 468
			unsigned long flags;

			spin_lock_irqsave(&mctz->lock, flags);
469 470
			/* if on-tree, remove it */
			if (mz->on_tree)
471
				__mem_cgroup_remove_exceeded(mz, mctz);
472 473 474 475
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
476
			__mem_cgroup_insert_exceeded(mz, mctz, excess);
477
			spin_unlock_irqrestore(&mctz->lock, flags);
478 479 480 481 482 483
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
484 485 486
	struct mem_cgroup_tree_per_node *mctz;
	struct mem_cgroup_per_node *mz;
	int nid;
487

488
	for_each_node(nid) {
489 490
		mz = mem_cgroup_nodeinfo(memcg, nid);
		mctz = soft_limit_tree_node(nid);
491 492
		if (mctz)
			mem_cgroup_remove_exceeded(mz, mctz);
493 494 495
	}
}

496 497
static struct mem_cgroup_per_node *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
498 499
{
	struct rb_node *rightmost = NULL;
500
	struct mem_cgroup_per_node *mz;
501 502 503 504 505 506 507

retry:
	mz = NULL;
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

508
	mz = rb_entry(rightmost, struct mem_cgroup_per_node, tree_node);
509 510 511 512 513
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
514
	__mem_cgroup_remove_exceeded(mz, mctz);
515
	if (!soft_limit_excess(mz->memcg) ||
516
	    !css_tryget_online(&mz->memcg->css))
517 518 519 520 521
		goto retry;
done:
	return mz;
}

522 523
static struct mem_cgroup_per_node *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
524
{
525
	struct mem_cgroup_per_node *mz;
526

527
	spin_lock_irq(&mctz->lock);
528
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
529
	spin_unlock_irq(&mctz->lock);
530 531 532
	return mz;
}

533
/*
534 535
 * Return page count for single (non recursive) @memcg.
 *
536 537 538 539 540
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
541
 * a periodic synchronization of counter in memcg's counter.
542 543 544 545 546 547 548 549 550
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
551
 * common workload, threshold and synchronization as vmstat[] should be
552
 * implemented.
553 554
 *
 * The parameter idx can be of type enum memcg_event_item or vm_event_item.
555
 */
556

557
static unsigned long memcg_sum_events(struct mem_cgroup *memcg,
558
				      int event)
559 560 561 562
{
	unsigned long val = 0;
	int cpu;

563
	for_each_possible_cpu(cpu)
564
		val += per_cpu(memcg->stat->events[event], cpu);
565 566 567
	return val;
}

568
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
569
					 struct page *page,
570
					 bool compound, int nr_pages)
571
{
572 573 574 575
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
576
	if (PageAnon(page))
577
		__this_cpu_add(memcg->stat->count[MEMCG_RSS], nr_pages);
578
	else {
579
		__this_cpu_add(memcg->stat->count[MEMCG_CACHE], nr_pages);
580
		if (PageSwapBacked(page))
581
			__this_cpu_add(memcg->stat->count[NR_SHMEM], nr_pages);
582
	}
583

584 585
	if (compound) {
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
586
		__this_cpu_add(memcg->stat->count[MEMCG_RSS_HUGE], nr_pages);
587
	}
588

589 590
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
591
		__this_cpu_inc(memcg->stat->events[PGPGIN]);
592
	else {
593
		__this_cpu_inc(memcg->stat->events[PGPGOUT]);
594 595
		nr_pages = -nr_pages; /* for event */
	}
596

597
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
598 599
}

600 601
unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
					   int nid, unsigned int lru_mask)
602
{
603
	struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
604
	unsigned long nr = 0;
605
	enum lru_list lru;
606

607
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
608

609 610 611
	for_each_lru(lru) {
		if (!(BIT(lru) & lru_mask))
			continue;
612
		nr += mem_cgroup_get_lru_size(lruvec, lru);
613 614
	}
	return nr;
615
}
616

617
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
618
			unsigned int lru_mask)
619
{
620
	unsigned long nr = 0;
621
	int nid;
622

623
	for_each_node_state(nid, N_MEMORY)
624 625
		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
	return nr;
626 627
}

628 629
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
630 631 632
{
	unsigned long val, next;

633
	val = __this_cpu_read(memcg->stat->nr_page_events);
634
	next = __this_cpu_read(memcg->stat->targets[target]);
635
	/* from time_after() in jiffies.h */
636
	if ((long)(next - val) < 0) {
637 638 639 640
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
641 642 643
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
644 645 646 647 648 649 650 651
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
652
	}
653
	return false;
654 655 656 657 658 659
}

/*
 * Check events in order.
 *
 */
660
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
661 662
{
	/* threshold event is triggered in finer grain than soft limit */
663 664
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
665
		bool do_softlimit;
666
		bool do_numainfo __maybe_unused;
667

668 669
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
670 671 672 673
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
674
		mem_cgroup_threshold(memcg);
675 676
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
677
#if MAX_NUMNODES > 1
678
		if (unlikely(do_numainfo))
679
			atomic_inc(&memcg->numainfo_events);
680
#endif
681
	}
682 683
}

684
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
685
{
686 687 688 689 690 691 692 693
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

694
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
695
}
M
Michal Hocko 已提交
696
EXPORT_SYMBOL(mem_cgroup_from_task);
697

698
static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
699
{
700
	struct mem_cgroup *memcg = NULL;
701

702 703
	rcu_read_lock();
	do {
704 705 706 707 708 709
		/*
		 * Page cache insertions can happen withou an
		 * actual mm context, e.g. during disk probing
		 * on boot, loopback IO, acct() writes etc.
		 */
		if (unlikely(!mm))
710
			memcg = root_mem_cgroup;
711 712 713 714 715
		else {
			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
			if (unlikely(!memcg))
				memcg = root_mem_cgroup;
		}
716
	} while (!css_tryget_online(&memcg->css));
717
	rcu_read_unlock();
718
	return memcg;
719 720
}

721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
738
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
739
				   struct mem_cgroup *prev,
740
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
741
{
M
Michal Hocko 已提交
742
	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
743
	struct cgroup_subsys_state *css = NULL;
744
	struct mem_cgroup *memcg = NULL;
745
	struct mem_cgroup *pos = NULL;
746

747 748
	if (mem_cgroup_disabled())
		return NULL;
749

750 751
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
752

753
	if (prev && !reclaim)
754
		pos = prev;
K
KAMEZAWA Hiroyuki 已提交
755

756 757
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
758
			goto out;
759
		return root;
760
	}
K
KAMEZAWA Hiroyuki 已提交
761

762
	rcu_read_lock();
M
Michal Hocko 已提交
763

764
	if (reclaim) {
765
		struct mem_cgroup_per_node *mz;
766

767
		mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
768 769 770 771 772
		iter = &mz->iter[reclaim->priority];

		if (prev && reclaim->generation != iter->generation)
			goto out_unlock;

773
		while (1) {
774
			pos = READ_ONCE(iter->position);
775 776
			if (!pos || css_tryget(&pos->css))
				break;
777
			/*
778 779 780 781 782 783
			 * css reference reached zero, so iter->position will
			 * be cleared by ->css_released. However, we should not
			 * rely on this happening soon, because ->css_released
			 * is called from a work queue, and by busy-waiting we
			 * might block it. So we clear iter->position right
			 * away.
784
			 */
785 786
			(void)cmpxchg(&iter->position, pos, NULL);
		}
787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
	}

	if (pos)
		css = &pos->css;

	for (;;) {
		css = css_next_descendant_pre(css, &root->css);
		if (!css) {
			/*
			 * Reclaimers share the hierarchy walk, and a
			 * new one might jump in right at the end of
			 * the hierarchy - make sure they see at least
			 * one group and restart from the beginning.
			 */
			if (!prev)
				continue;
			break;
804
		}
K
KAMEZAWA Hiroyuki 已提交
805

806 807 808 809 810 811
		/*
		 * Verify the css and acquire a reference.  The root
		 * is provided by the caller, so we know it's alive
		 * and kicking, and don't take an extra reference.
		 */
		memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
812

813 814
		if (css == &root->css)
			break;
K
KAMEZAWA Hiroyuki 已提交
815

816 817
		if (css_tryget(css))
			break;
818

819
		memcg = NULL;
820
	}
821 822 823

	if (reclaim) {
		/*
824 825 826
		 * The position could have already been updated by a competing
		 * thread, so check that the value hasn't changed since we read
		 * it to avoid reclaiming from the same cgroup twice.
827
		 */
828 829
		(void)cmpxchg(&iter->position, pos, memcg);

830 831 832 833 834 835 836
		if (pos)
			css_put(&pos->css);

		if (!memcg)
			iter->generation++;
		else if (!prev)
			reclaim->generation = iter->generation;
837
	}
838

839 840
out_unlock:
	rcu_read_unlock();
841
out:
842 843 844
	if (prev && prev != root)
		css_put(&prev->css);

845
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
846
}
K
KAMEZAWA Hiroyuki 已提交
847

848 849 850 851 852 853 854
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
855 856 857 858 859 860
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
861

862 863 864 865
static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
{
	struct mem_cgroup *memcg = dead_memcg;
	struct mem_cgroup_reclaim_iter *iter;
866 867
	struct mem_cgroup_per_node *mz;
	int nid;
868 869 870 871
	int i;

	while ((memcg = parent_mem_cgroup(memcg))) {
		for_each_node(nid) {
872 873 874 875 876
			mz = mem_cgroup_nodeinfo(memcg, nid);
			for (i = 0; i <= DEF_PRIORITY; i++) {
				iter = &mz->iter[i];
				cmpxchg(&iter->position,
					dead_memcg, NULL);
877 878 879 880 881
			}
		}
	}
}

882 883 884 885 886 887
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
888
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
889
	     iter != NULL;				\
890
	     iter = mem_cgroup_iter(root, iter, NULL))
891

892
#define for_each_mem_cgroup(iter)			\
893
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
894
	     iter != NULL;				\
895
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
896

897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921
/**
 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
 * @memcg: hierarchy root
 * @fn: function to call for each task
 * @arg: argument passed to @fn
 *
 * This function iterates over tasks attached to @memcg or to any of its
 * descendants and calls @fn for each task. If @fn returns a non-zero
 * value, the function breaks the iteration loop and returns the value.
 * Otherwise, it will iterate over all tasks and return 0.
 *
 * This function must not be called for the root memory cgroup.
 */
int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
			  int (*fn)(struct task_struct *, void *), void *arg)
{
	struct mem_cgroup *iter;
	int ret = 0;

	BUG_ON(memcg == root_mem_cgroup);

	for_each_mem_cgroup_tree(iter, memcg) {
		struct css_task_iter it;
		struct task_struct *task;

922
		css_task_iter_start(&iter->css, 0, &it);
923 924 925 926 927 928 929 930 931 932 933
		while (!ret && (task = css_task_iter_next(&it)))
			ret = fn(task, arg);
		css_task_iter_end(&it);
		if (ret) {
			mem_cgroup_iter_break(memcg, iter);
			break;
		}
	}
	return ret;
}

934
/**
935
 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
936
 * @page: the page
937
 * @zone: zone of the page
938 939 940 941
 *
 * This function is only safe when following the LRU page isolation
 * and putback protocol: the LRU lock must be held, and the page must
 * either be PageLRU() or the caller must have isolated/allocated it.
942
 */
M
Mel Gorman 已提交
943
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
K
KAMEZAWA Hiroyuki 已提交
944
{
945
	struct mem_cgroup_per_node *mz;
946
	struct mem_cgroup *memcg;
947
	struct lruvec *lruvec;
948

949
	if (mem_cgroup_disabled()) {
M
Mel Gorman 已提交
950
		lruvec = &pgdat->lruvec;
951 952
		goto out;
	}
953

954
	memcg = page->mem_cgroup;
955
	/*
956
	 * Swapcache readahead pages are added to the LRU - and
957
	 * possibly migrated - before they are charged.
958
	 */
959 960
	if (!memcg)
		memcg = root_mem_cgroup;
961

962
	mz = mem_cgroup_page_nodeinfo(memcg, page);
963 964 965 966 967 968 969
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
M
Mel Gorman 已提交
970 971
	if (unlikely(lruvec->pgdat != pgdat))
		lruvec->pgdat = pgdat;
972
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
973
}
974

975
/**
976 977 978
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
979
 * @zid: zone id of the accounted pages
980
 * @nr_pages: positive when adding or negative when removing
981
 *
982 983 984
 * This function must be called under lru_lock, just before a page is added
 * to or just after a page is removed from an lru list (that ordering being
 * so as to allow it to check that lru_size 0 is consistent with list_empty).
985
 */
986
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
987
				int zid, int nr_pages)
988
{
989
	struct mem_cgroup_per_node *mz;
990
	unsigned long *lru_size;
991
	long size;
992 993 994 995

	if (mem_cgroup_disabled())
		return;

996
	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
997
	lru_size = &mz->lru_zone_size[zid][lru];
998 999 1000 1001 1002

	if (nr_pages < 0)
		*lru_size += nr_pages;

	size = *lru_size;
1003 1004 1005
	if (WARN_ONCE(size < 0,
		"%s(%p, %d, %d): lru_size %ld\n",
		__func__, lruvec, lru, nr_pages, size)) {
1006 1007 1008 1009 1010 1011
		VM_BUG_ON(1);
		*lru_size = 0;
	}

	if (nr_pages > 0)
		*lru_size += nr_pages;
K
KAMEZAWA Hiroyuki 已提交
1012
}
1013

1014
bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1015
{
1016
	struct mem_cgroup *task_memcg;
1017
	struct task_struct *p;
1018
	bool ret;
1019

1020
	p = find_lock_task_mm(task);
1021
	if (p) {
1022
		task_memcg = get_mem_cgroup_from_mm(p->mm);
1023 1024 1025 1026 1027 1028 1029
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1030
		rcu_read_lock();
1031 1032
		task_memcg = mem_cgroup_from_task(task);
		css_get(&task_memcg->css);
1033
		rcu_read_unlock();
1034
	}
1035 1036
	ret = mem_cgroup_is_descendant(task_memcg, memcg);
	css_put(&task_memcg->css);
1037 1038 1039
	return ret;
}

1040
/**
1041
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1042
 * @memcg: the memory cgroup
1043
 *
1044
 * Returns the maximum amount of memory @mem can be charged with, in
1045
 * pages.
1046
 */
1047
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1048
{
1049 1050 1051
	unsigned long margin = 0;
	unsigned long count;
	unsigned long limit;
1052

1053
	count = page_counter_read(&memcg->memory);
1054
	limit = READ_ONCE(memcg->memory.limit);
1055 1056 1057
	if (count < limit)
		margin = limit - count;

1058
	if (do_memsw_account()) {
1059
		count = page_counter_read(&memcg->memsw);
1060
		limit = READ_ONCE(memcg->memsw.limit);
1061 1062
		if (count <= limit)
			margin = min(margin, limit - count);
1063 1064
		else
			margin = 0;
1065 1066 1067
	}

	return margin;
1068 1069
}

1070
/*
Q
Qiang Huang 已提交
1071
 * A routine for checking "mem" is under move_account() or not.
1072
 *
Q
Qiang Huang 已提交
1073 1074 1075
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 * moving cgroups. This is for waiting at high-memory pressure
 * caused by "move".
1076
 */
1077
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1078
{
1079 1080
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1081
	bool ret = false;
1082 1083 1084 1085 1086 1087 1088 1089 1090
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1091

1092 1093
	ret = mem_cgroup_is_descendant(from, memcg) ||
		mem_cgroup_is_descendant(to, memcg);
1094 1095
unlock:
	spin_unlock(&mc.lock);
1096 1097 1098
	return ret;
}

1099
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1100 1101
{
	if (mc.moving_task && current != mc.moving_task) {
1102
		if (mem_cgroup_under_move(memcg)) {
1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
unsigned int memcg1_stats[] = {
	MEMCG_CACHE,
	MEMCG_RSS,
	MEMCG_RSS_HUGE,
	NR_SHMEM,
	NR_FILE_MAPPED,
	NR_FILE_DIRTY,
	NR_WRITEBACK,
	MEMCG_SWAP,
};

static const char *const memcg1_stat_names[] = {
	"cache",
	"rss",
	"rss_huge",
	"shmem",
	"mapped_file",
	"dirty",
	"writeback",
	"swap",
};

1137
#define K(x) ((x) << (PAGE_SHIFT-10))
1138
/**
1139
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1140 1141 1142 1143 1144 1145 1146 1147
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
1148 1149
	struct mem_cgroup *iter;
	unsigned int i;
1150 1151 1152

	rcu_read_lock();

1153 1154 1155 1156 1157 1158 1159 1160
	if (p) {
		pr_info("Task in ");
		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
		pr_cont(" killed as a result of limit of ");
	} else {
		pr_info("Memory limit reached of cgroup ");
	}

T
Tejun Heo 已提交
1161
	pr_cont_cgroup_path(memcg->css.cgroup);
1162
	pr_cont("\n");
1163 1164 1165

	rcu_read_unlock();

1166 1167 1168 1169 1170 1171 1172 1173 1174
	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memory)),
		K((u64)memcg->memory.limit), memcg->memory.failcnt);
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memsw)),
		K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->kmem)),
		K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1175 1176

	for_each_mem_cgroup_tree(iter, memcg) {
T
Tejun Heo 已提交
1177 1178
		pr_info("Memory cgroup stats for ");
		pr_cont_cgroup_path(iter->css.cgroup);
1179 1180
		pr_cont(":");

1181 1182
		for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
			if (memcg1_stats[i] == MEMCG_SWAP && !do_swap_account)
1183
				continue;
1184
			pr_cont(" %s:%luKB", memcg1_stat_names[i],
1185
				K(memcg_page_state(iter, memcg1_stats[i])));
1186 1187 1188 1189 1190 1191 1192 1193
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1194 1195
}

1196 1197 1198 1199
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1200
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1201 1202
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1203 1204
	struct mem_cgroup *iter;

1205
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1206
		num++;
1207 1208 1209
	return num;
}

D
David Rientjes 已提交
1210 1211 1212
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1213
unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1214
{
1215
	unsigned long limit;
1216

1217
	limit = memcg->memory.limit;
1218
	if (mem_cgroup_swappiness(memcg)) {
1219
		unsigned long memsw_limit;
1220
		unsigned long swap_limit;
1221

1222
		memsw_limit = memcg->memsw.limit;
1223 1224 1225
		swap_limit = memcg->swap.limit;
		swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
		limit = min(limit + swap_limit, memsw_limit);
1226 1227
	}
	return limit;
D
David Rientjes 已提交
1228 1229
}

1230
static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1231
				     int order)
1232
{
1233 1234 1235
	struct oom_control oc = {
		.zonelist = NULL,
		.nodemask = NULL,
1236
		.memcg = memcg,
1237 1238 1239
		.gfp_mask = gfp_mask,
		.order = order,
	};
1240
	bool ret;
1241

1242
	mutex_lock(&oom_lock);
1243
	ret = out_of_memory(&oc);
1244
	mutex_unlock(&oom_lock);
1245
	return ret;
1246 1247
}

1248 1249
#if MAX_NUMNODES > 1

1250 1251
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1252
 * @memcg: the target memcg
1253 1254 1255 1256 1257 1258 1259
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1260
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1261 1262
		int nid, bool noswap)
{
1263
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1264 1265 1266
		return true;
	if (noswap || !total_swap_pages)
		return false;
1267
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1268 1269 1270 1271
		return true;
	return false;

}
1272 1273 1274 1275 1276 1277 1278

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1279
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1280 1281
{
	int nid;
1282 1283 1284 1285
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1286
	if (!atomic_read(&memcg->numainfo_events))
1287
		return;
1288
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1289 1290 1291
		return;

	/* make a nodemask where this memcg uses memory from */
1292
	memcg->scan_nodes = node_states[N_MEMORY];
1293

1294
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1295

1296 1297
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1298
	}
1299

1300 1301
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1316
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1317 1318 1319
{
	int node;

1320 1321
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1322

1323
	node = next_node_in(node, memcg->scan_nodes);
1324
	/*
1325 1326 1327
	 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
	 * last time it really checked all the LRUs due to rate limiting.
	 * Fallback to the current node in that case for simplicity.
1328 1329 1330 1331
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1332
	memcg->last_scanned_node = node;
1333 1334 1335
	return node;
}
#else
1336
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1337 1338 1339 1340 1341
{
	return 0;
}
#endif

1342
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1343
				   pg_data_t *pgdat,
1344 1345 1346 1347 1348 1349 1350 1351 1352
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
1353
		.pgdat = pgdat,
1354 1355 1356
		.priority = 0,
	};

1357
	excess = soft_limit_excess(root_memcg);
1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
1383
		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1384
					pgdat, &nr_scanned);
1385
		*total_scanned += nr_scanned;
1386
		if (!soft_limit_excess(root_memcg))
1387
			break;
1388
	}
1389 1390
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
1391 1392
}

1393 1394 1395 1396 1397 1398
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

1399 1400
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
1401 1402 1403 1404
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
1405
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1406
{
1407
	struct mem_cgroup *iter, *failed = NULL;
1408

1409 1410
	spin_lock(&memcg_oom_lock);

1411
	for_each_mem_cgroup_tree(iter, memcg) {
1412
		if (iter->oom_lock) {
1413 1414 1415 1416 1417
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1418 1419
			mem_cgroup_iter_break(memcg, iter);
			break;
1420 1421
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1422
	}
K
KAMEZAWA Hiroyuki 已提交
1423

1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
1435
		}
1436 1437
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1438 1439 1440 1441

	spin_unlock(&memcg_oom_lock);

	return !failed;
1442
}
1443

1444
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1445
{
K
KAMEZAWA Hiroyuki 已提交
1446 1447
	struct mem_cgroup *iter;

1448
	spin_lock(&memcg_oom_lock);
1449
	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1450
	for_each_mem_cgroup_tree(iter, memcg)
1451
		iter->oom_lock = false;
1452
	spin_unlock(&memcg_oom_lock);
1453 1454
}

1455
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1456 1457 1458
{
	struct mem_cgroup *iter;

1459
	spin_lock(&memcg_oom_lock);
1460
	for_each_mem_cgroup_tree(iter, memcg)
1461 1462
		iter->under_oom++;
	spin_unlock(&memcg_oom_lock);
1463 1464
}

1465
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1466 1467 1468
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1469 1470
	/*
	 * When a new child is created while the hierarchy is under oom,
1471
	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
K
KAMEZAWA Hiroyuki 已提交
1472
	 */
1473
	spin_lock(&memcg_oom_lock);
1474
	for_each_mem_cgroup_tree(iter, memcg)
1475 1476 1477
		if (iter->under_oom > 0)
			iter->under_oom--;
	spin_unlock(&memcg_oom_lock);
1478 1479
}

K
KAMEZAWA Hiroyuki 已提交
1480 1481
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1482
struct oom_wait_info {
1483
	struct mem_cgroup *memcg;
1484
	wait_queue_entry_t	wait;
K
KAMEZAWA Hiroyuki 已提交
1485 1486
};

1487
static int memcg_oom_wake_function(wait_queue_entry_t *wait,
K
KAMEZAWA Hiroyuki 已提交
1488 1489
	unsigned mode, int sync, void *arg)
{
1490 1491
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1492 1493 1494
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1495
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1496

1497 1498
	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
K
KAMEZAWA Hiroyuki 已提交
1499 1500 1501 1502
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1503
static void memcg_oom_recover(struct mem_cgroup *memcg)
1504
{
1505 1506 1507 1508 1509 1510 1511 1512 1513
	/*
	 * For the following lockless ->under_oom test, the only required
	 * guarantee is that it must see the state asserted by an OOM when
	 * this function is called as a result of userland actions
	 * triggered by the notification of the OOM.  This is trivially
	 * achieved by invoking mem_cgroup_mark_under_oom() before
	 * triggering notification.
	 */
	if (memcg && memcg->under_oom)
1514
		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1515 1516
}

1517
static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1518
{
1519
	if (!current->memcg_may_oom)
1520
		return;
K
KAMEZAWA Hiroyuki 已提交
1521
	/*
1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
	 * Also, the caller may handle a failed allocation gracefully
	 * (like optional page cache readahead) and so an OOM killer
	 * invocation might not even be necessary.
	 *
	 * That's why we don't do anything here except remember the
	 * OOM context and then deal with it at the end of the page
	 * fault when the stack is unwound, the locks are released,
	 * and when we know whether the fault was overall successful.
K
KAMEZAWA Hiroyuki 已提交
1534
	 */
1535
	css_get(&memcg->css);
T
Tejun Heo 已提交
1536 1537 1538
	current->memcg_in_oom = memcg;
	current->memcg_oom_gfp_mask = mask;
	current->memcg_oom_order = order;
1539 1540 1541 1542
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1543
 * @handle: actually kill/wait or just clean up the OOM state
1544
 *
1545 1546
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
1547
 *
1548
 * Memcg supports userspace OOM handling where failed allocations must
1549 1550 1551 1552
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
1553
 * the end of the page fault to complete the OOM handling.
1554 1555
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
1556
 * completed, %false otherwise.
1557
 */
1558
bool mem_cgroup_oom_synchronize(bool handle)
1559
{
T
Tejun Heo 已提交
1560
	struct mem_cgroup *memcg = current->memcg_in_oom;
1561
	struct oom_wait_info owait;
1562
	bool locked;
1563 1564 1565

	/* OOM is global, do not handle */
	if (!memcg)
1566
		return false;
1567

1568
	if (!handle)
1569
		goto cleanup;
1570 1571 1572 1573 1574

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
1575
	INIT_LIST_HEAD(&owait.wait.entry);
K
KAMEZAWA Hiroyuki 已提交
1576

1577
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
T
Tejun Heo 已提交
1588 1589
		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
					 current->memcg_oom_order);
1590
	} else {
1591
		schedule();
1592 1593 1594 1595 1596
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
1597 1598 1599 1600 1601 1602 1603 1604
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
1605
cleanup:
T
Tejun Heo 已提交
1606
	current->memcg_in_oom = NULL;
1607
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
1608
	return true;
1609 1610
}

1611
/**
1612 1613
 * lock_page_memcg - lock a page->mem_cgroup binding
 * @page: the page
1614
 *
1615
 * This function protects unlocked LRU pages from being moved to
1616 1617 1618 1619 1620
 * another cgroup.
 *
 * It ensures lifetime of the returned memcg. Caller is responsible
 * for the lifetime of the page; __unlock_page_memcg() is available
 * when @page might get freed inside the locked section.
1621
 */
1622
struct mem_cgroup *lock_page_memcg(struct page *page)
1623 1624
{
	struct mem_cgroup *memcg;
1625
	unsigned long flags;
1626

1627 1628 1629 1630
	/*
	 * The RCU lock is held throughout the transaction.  The fast
	 * path can get away without acquiring the memcg->move_lock
	 * because page moving starts with an RCU grace period.
1631 1632 1633 1634 1635 1636 1637
	 *
	 * The RCU lock also protects the memcg from being freed when
	 * the page state that is going to change is the only thing
	 * preventing the page itself from being freed. E.g. writeback
	 * doesn't hold a page reference and relies on PG_writeback to
	 * keep off truncation, migration and so forth.
         */
1638 1639 1640
	rcu_read_lock();

	if (mem_cgroup_disabled())
1641
		return NULL;
1642
again:
1643
	memcg = page->mem_cgroup;
1644
	if (unlikely(!memcg))
1645
		return NULL;
1646

Q
Qiang Huang 已提交
1647
	if (atomic_read(&memcg->moving_account) <= 0)
1648
		return memcg;
1649

1650
	spin_lock_irqsave(&memcg->move_lock, flags);
1651
	if (memcg != page->mem_cgroup) {
1652
		spin_unlock_irqrestore(&memcg->move_lock, flags);
1653 1654
		goto again;
	}
1655 1656 1657 1658

	/*
	 * When charge migration first begins, we can have locked and
	 * unlocked page stat updates happening concurrently.  Track
1659
	 * the task who has the lock for unlock_page_memcg().
1660 1661 1662
	 */
	memcg->move_lock_task = current;
	memcg->move_lock_flags = flags;
1663

1664
	return memcg;
1665
}
1666
EXPORT_SYMBOL(lock_page_memcg);
1667

1668
/**
1669 1670 1671 1672
 * __unlock_page_memcg - unlock and unpin a memcg
 * @memcg: the memcg
 *
 * Unlock and unpin a memcg returned by lock_page_memcg().
1673
 */
1674
void __unlock_page_memcg(struct mem_cgroup *memcg)
1675
{
1676 1677 1678 1679 1680 1681 1682 1683
	if (memcg && memcg->move_lock_task == current) {
		unsigned long flags = memcg->move_lock_flags;

		memcg->move_lock_task = NULL;
		memcg->move_lock_flags = 0;

		spin_unlock_irqrestore(&memcg->move_lock, flags);
	}
1684

1685
	rcu_read_unlock();
1686
}
1687 1688 1689 1690 1691 1692 1693 1694 1695

/**
 * unlock_page_memcg - unlock a page->mem_cgroup binding
 * @page: the page
 */
void unlock_page_memcg(struct page *page)
{
	__unlock_page_memcg(page->mem_cgroup);
}
1696
EXPORT_SYMBOL(unlock_page_memcg);
1697

1698 1699 1700 1701
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
1702
#define CHARGE_BATCH	32U
1703 1704
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
1705
	unsigned int nr_pages;
1706
	struct work_struct work;
1707
	unsigned long flags;
1708
#define FLUSHING_CACHED_CHARGE	0
1709 1710
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1711
static DEFINE_MUTEX(percpu_charge_mutex);
1712

1713 1714 1715 1716 1717 1718 1719 1720 1721 1722
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
1723
 */
1724
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1725 1726
{
	struct memcg_stock_pcp *stock;
1727
	unsigned long flags;
1728
	bool ret = false;
1729

1730
	if (nr_pages > CHARGE_BATCH)
1731
		return ret;
1732

1733 1734 1735
	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
1736
	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1737
		stock->nr_pages -= nr_pages;
1738 1739
		ret = true;
	}
1740 1741 1742

	local_irq_restore(flags);

1743 1744 1745 1746
	return ret;
}

/*
1747
 * Returns stocks cached in percpu and reset cached information.
1748 1749 1750 1751 1752
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

1753
	if (stock->nr_pages) {
1754
		page_counter_uncharge(&old->memory, stock->nr_pages);
1755
		if (do_memsw_account())
1756
			page_counter_uncharge(&old->memsw, stock->nr_pages);
1757
		css_put_many(&old->css, stock->nr_pages);
1758
		stock->nr_pages = 0;
1759 1760 1761 1762 1763 1764
	}
	stock->cached = NULL;
}

static void drain_local_stock(struct work_struct *dummy)
{
1765 1766 1767 1768 1769 1770
	struct memcg_stock_pcp *stock;
	unsigned long flags;

	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
1771
	drain_stock(stock);
1772
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1773 1774

	local_irq_restore(flags);
1775 1776 1777
}

/*
1778
 * Cache charges(val) to local per_cpu area.
1779
 * This will be consumed by consume_stock() function, later.
1780
 */
1781
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1782
{
1783 1784 1785 1786
	struct memcg_stock_pcp *stock;
	unsigned long flags;

	local_irq_save(flags);
1787

1788
	stock = this_cpu_ptr(&memcg_stock);
1789
	if (stock->cached != memcg) { /* reset if necessary */
1790
		drain_stock(stock);
1791
		stock->cached = memcg;
1792
	}
1793
	stock->nr_pages += nr_pages;
1794 1795

	local_irq_restore(flags);
1796 1797 1798
}

/*
1799
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1800
 * of the hierarchy under it.
1801
 */
1802
static void drain_all_stock(struct mem_cgroup *root_memcg)
1803
{
1804
	int cpu, curcpu;
1805

1806 1807 1808
	/* If someone's already draining, avoid adding running more workers. */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
1809 1810
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
1811
	curcpu = get_cpu();
1812 1813
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1814
		struct mem_cgroup *memcg;
1815

1816 1817
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
1818
			continue;
1819
		if (!mem_cgroup_is_descendant(memcg, root_memcg))
1820
			continue;
1821 1822 1823 1824 1825 1826
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
1827
	}
1828
	put_cpu();
A
Andrew Morton 已提交
1829
	put_online_cpus();
1830
	mutex_unlock(&percpu_charge_mutex);
1831 1832
}

1833
static int memcg_hotplug_cpu_dead(unsigned int cpu)
1834 1835 1836 1837 1838
{
	struct memcg_stock_pcp *stock;

	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
1839
	return 0;
1840 1841
}

1842 1843 1844 1845 1846 1847 1848
static void reclaim_high(struct mem_cgroup *memcg,
			 unsigned int nr_pages,
			 gfp_t gfp_mask)
{
	do {
		if (page_counter_read(&memcg->memory) <= memcg->high)
			continue;
1849
		mem_cgroup_event(memcg, MEMCG_HIGH);
1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861
		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
	} while ((memcg = parent_mem_cgroup(memcg)));
}

static void high_work_func(struct work_struct *work)
{
	struct mem_cgroup *memcg;

	memcg = container_of(work, struct mem_cgroup, high_work);
	reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
}

1862 1863 1864 1865 1866 1867 1868
/*
 * Scheduled by try_charge() to be executed from the userland return path
 * and reclaims memory over the high limit.
 */
void mem_cgroup_handle_over_high(void)
{
	unsigned int nr_pages = current->memcg_nr_pages_over_high;
1869
	struct mem_cgroup *memcg;
1870 1871 1872 1873

	if (likely(!nr_pages))
		return;

1874 1875
	memcg = get_mem_cgroup_from_mm(current->mm);
	reclaim_high(memcg, nr_pages, GFP_KERNEL);
1876 1877 1878 1879
	css_put(&memcg->css);
	current->memcg_nr_pages_over_high = 0;
}

1880 1881
static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
		      unsigned int nr_pages)
1882
{
1883
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
1884
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1885
	struct mem_cgroup *mem_over_limit;
1886
	struct page_counter *counter;
1887
	unsigned long nr_reclaimed;
1888 1889
	bool may_swap = true;
	bool drained = false;
1890

1891
	if (mem_cgroup_is_root(memcg))
1892
		return 0;
1893
retry:
1894
	if (consume_stock(memcg, nr_pages))
1895
		return 0;
1896

1897
	if (!do_memsw_account() ||
1898 1899
	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
		if (page_counter_try_charge(&memcg->memory, batch, &counter))
1900
			goto done_restock;
1901
		if (do_memsw_account())
1902 1903
			page_counter_uncharge(&memcg->memsw, batch);
		mem_over_limit = mem_cgroup_from_counter(counter, memory);
1904
	} else {
1905
		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1906
		may_swap = false;
1907
	}
1908

1909 1910 1911 1912
	if (batch > nr_pages) {
		batch = nr_pages;
		goto retry;
	}
1913

1914 1915 1916 1917 1918 1919
	/*
	 * Unlike in global OOM situations, memcg is not in a physical
	 * memory shortage.  Allow dying and OOM-killed tasks to
	 * bypass the last charges so that they can exit quickly and
	 * free their memory.
	 */
1920
	if (unlikely(tsk_is_oom_victim(current) ||
1921 1922
		     fatal_signal_pending(current) ||
		     current->flags & PF_EXITING))
1923
		goto force;
1924

1925 1926 1927 1928 1929 1930 1931 1932 1933
	/*
	 * Prevent unbounded recursion when reclaim operations need to
	 * allocate memory. This might exceed the limits temporarily,
	 * but we prefer facilitating memory reclaim and getting back
	 * under the limit over triggering OOM kills in these cases.
	 */
	if (unlikely(current->flags & PF_MEMALLOC))
		goto force;

1934 1935 1936
	if (unlikely(task_in_memcg_oom(current)))
		goto nomem;

1937
	if (!gfpflags_allow_blocking(gfp_mask))
1938
		goto nomem;
1939

1940
	mem_cgroup_event(mem_over_limit, MEMCG_MAX);
1941

1942 1943
	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
						    gfp_mask, may_swap);
1944

1945
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
1946
		goto retry;
1947

1948
	if (!drained) {
1949
		drain_all_stock(mem_over_limit);
1950 1951 1952 1953
		drained = true;
		goto retry;
	}

1954 1955
	if (gfp_mask & __GFP_NORETRY)
		goto nomem;
1956 1957 1958 1959 1960 1961 1962 1963 1964
	/*
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
	 */
1965
	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
1966 1967 1968 1969 1970 1971 1972 1973
		goto retry;
	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		goto retry;

1974 1975 1976
	if (nr_retries--)
		goto retry;

1977
	if (gfp_mask & __GFP_NOFAIL)
1978
		goto force;
1979

1980
	if (fatal_signal_pending(current))
1981
		goto force;
1982

1983
	mem_cgroup_event(mem_over_limit, MEMCG_OOM);
1984

1985 1986
	mem_cgroup_oom(mem_over_limit, gfp_mask,
		       get_order(nr_pages * PAGE_SIZE));
1987
nomem:
1988
	if (!(gfp_mask & __GFP_NOFAIL))
1989
		return -ENOMEM;
1990 1991 1992 1993 1994 1995 1996
force:
	/*
	 * The allocation either can't fail or will lead to more memory
	 * being freed very soon.  Allow memory usage go over the limit
	 * temporarily by force charging it.
	 */
	page_counter_charge(&memcg->memory, nr_pages);
1997
	if (do_memsw_account())
1998 1999 2000 2001
		page_counter_charge(&memcg->memsw, nr_pages);
	css_get_many(&memcg->css, nr_pages);

	return 0;
2002 2003

done_restock:
2004
	css_get_many(&memcg->css, batch);
2005 2006
	if (batch > nr_pages)
		refill_stock(memcg, batch - nr_pages);
2007

2008
	/*
2009 2010
	 * If the hierarchy is above the normal consumption range, schedule
	 * reclaim on returning to userland.  We can perform reclaim here
2011
	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2012 2013 2014 2015
	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
	 * not recorded as it most likely matches current's and won't
	 * change in the meantime.  As high limit is checked again before
	 * reclaim, the cost of mismatch is negligible.
2016 2017
	 */
	do {
2018
		if (page_counter_read(&memcg->memory) > memcg->high) {
2019 2020 2021 2022 2023
			/* Don't bother a random interrupted task */
			if (in_interrupt()) {
				schedule_work(&memcg->high_work);
				break;
			}
V
Vladimir Davydov 已提交
2024
			current->memcg_nr_pages_over_high += batch;
2025 2026 2027
			set_notify_resume(current);
			break;
		}
2028
	} while ((memcg = parent_mem_cgroup(memcg)));
2029 2030

	return 0;
2031
}
2032

2033
static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2034
{
2035 2036 2037
	if (mem_cgroup_is_root(memcg))
		return;

2038
	page_counter_uncharge(&memcg->memory, nr_pages);
2039
	if (do_memsw_account())
2040
		page_counter_uncharge(&memcg->memsw, nr_pages);
2041

2042
	css_put_many(&memcg->css, nr_pages);
2043 2044
}

2045 2046 2047 2048
static void lock_page_lru(struct page *page, int *isolated)
{
	struct zone *zone = page_zone(page);

2049
	spin_lock_irq(zone_lru_lock(zone));
2050 2051 2052
	if (PageLRU(page)) {
		struct lruvec *lruvec;

M
Mel Gorman 已提交
2053
		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067
		ClearPageLRU(page);
		del_page_from_lru_list(page, lruvec, page_lru(page));
		*isolated = 1;
	} else
		*isolated = 0;
}

static void unlock_page_lru(struct page *page, int isolated)
{
	struct zone *zone = page_zone(page);

	if (isolated) {
		struct lruvec *lruvec;

M
Mel Gorman 已提交
2068
		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2069 2070 2071 2072
		VM_BUG_ON_PAGE(PageLRU(page), page);
		SetPageLRU(page);
		add_page_to_lru_list(page, lruvec, page_lru(page));
	}
2073
	spin_unlock_irq(zone_lru_lock(zone));
2074 2075
}

2076
static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2077
			  bool lrucare)
2078
{
2079
	int isolated;
2080

2081
	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2082 2083 2084 2085 2086

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
2087 2088
	if (lrucare)
		lock_page_lru(page, &isolated);
2089

2090 2091
	/*
	 * Nobody should be changing or seriously looking at
2092
	 * page->mem_cgroup at this point:
2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103
	 *
	 * - the page is uncharged
	 *
	 * - the page is off-LRU
	 *
	 * - an anonymous fault has exclusive page access, except for
	 *   a locked page table
	 *
	 * - a page cache insertion, a swapin fault, or a migration
	 *   have the page locked
	 */
2104
	page->mem_cgroup = memcg;
2105

2106 2107
	if (lrucare)
		unlock_page_lru(page, isolated);
2108
}
2109

2110
#ifndef CONFIG_SLOB
2111
static int memcg_alloc_cache_id(void)
2112
{
2113 2114 2115
	int id, size;
	int err;

2116
	id = ida_simple_get(&memcg_cache_ida,
2117 2118 2119
			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (id < 0)
		return id;
2120

2121
	if (id < memcg_nr_cache_ids)
2122 2123 2124 2125 2126 2127
		return id;

	/*
	 * There's no space for the new id in memcg_caches arrays,
	 * so we have to grow them.
	 */
2128
	down_write(&memcg_cache_ids_sem);
2129 2130

	size = 2 * (id + 1);
2131 2132 2133 2134 2135
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

2136
	err = memcg_update_all_caches(size);
2137 2138
	if (!err)
		err = memcg_update_all_list_lrus(size);
2139 2140 2141 2142 2143
	if (!err)
		memcg_nr_cache_ids = size;

	up_write(&memcg_cache_ids_sem);

2144
	if (err) {
2145
		ida_simple_remove(&memcg_cache_ida, id);
2146 2147 2148 2149 2150 2151 2152
		return err;
	}
	return id;
}

static void memcg_free_cache_id(int id)
{
2153
	ida_simple_remove(&memcg_cache_ida, id);
2154 2155
}

2156
struct memcg_kmem_cache_create_work {
2157 2158 2159 2160 2161
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

2162
static void memcg_kmem_cache_create_func(struct work_struct *w)
2163
{
2164 2165
	struct memcg_kmem_cache_create_work *cw =
		container_of(w, struct memcg_kmem_cache_create_work, work);
2166 2167
	struct mem_cgroup *memcg = cw->memcg;
	struct kmem_cache *cachep = cw->cachep;
2168

2169
	memcg_create_kmem_cache(memcg, cachep);
2170

2171
	css_put(&memcg->css);
2172 2173 2174 2175 2176 2177
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
2178 2179
static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					       struct kmem_cache *cachep)
2180
{
2181
	struct memcg_kmem_cache_create_work *cw;
2182

2183
	cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2184
	if (!cw)
2185
		return;
2186 2187

	css_get(&memcg->css);
2188 2189 2190

	cw->memcg = memcg;
	cw->cachep = cachep;
2191
	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2192

2193
	queue_work(memcg_kmem_cache_wq, &cw->work);
2194 2195
}

2196 2197
static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					     struct kmem_cache *cachep)
2198 2199 2200 2201
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
2202
	 * in __memcg_schedule_kmem_cache_create will recurse.
2203 2204 2205 2206 2207 2208 2209
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
2210
	current->memcg_kmem_skip_account = 1;
2211
	__memcg_schedule_kmem_cache_create(memcg, cachep);
2212
	current->memcg_kmem_skip_account = 0;
2213
}
2214

2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225
static inline bool memcg_kmem_bypass(void)
{
	if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
		return true;
	return false;
}

/**
 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
 * @cachep: the original global kmem cache
 *
2226 2227 2228
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
2229 2230 2231
 * If the cache does not exist yet, if we are the first user of it, we
 * create it asynchronously in a workqueue and let the current allocation
 * go through with the original cache.
2232
 *
2233 2234 2235 2236
 * This function takes a reference to the cache it returns to assure it
 * won't get destroyed while we are working with it. Once the caller is
 * done with it, memcg_kmem_put_cache() must be called to release the
 * reference.
2237
 */
2238
struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2239 2240
{
	struct mem_cgroup *memcg;
2241
	struct kmem_cache *memcg_cachep;
2242
	int kmemcg_id;
2243

2244
	VM_BUG_ON(!is_root_cache(cachep));
2245

2246
	if (memcg_kmem_bypass())
V
Vladimir Davydov 已提交
2247 2248
		return cachep;

2249
	if (current->memcg_kmem_skip_account)
2250 2251
		return cachep;

2252
	memcg = get_mem_cgroup_from_mm(current->mm);
2253
	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2254
	if (kmemcg_id < 0)
2255
		goto out;
2256

2257
	memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2258 2259
	if (likely(memcg_cachep))
		return memcg_cachep;
2260 2261 2262 2263 2264 2265 2266 2267 2268

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
2269 2270 2271
	 * memcg_create_kmem_cache, this means no further allocation
	 * could happen with the slab_mutex held. So it's better to
	 * defer everything.
2272
	 */
2273
	memcg_schedule_kmem_cache_create(memcg, cachep);
2274
out:
2275
	css_put(&memcg->css);
2276
	return cachep;
2277 2278
}

2279 2280 2281 2282 2283
/**
 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
 * @cachep: the cache returned by memcg_kmem_get_cache
 */
void memcg_kmem_put_cache(struct kmem_cache *cachep)
2284 2285
{
	if (!is_root_cache(cachep))
2286
		css_put(&cachep->memcg_params.memcg->css);
2287 2288
}

2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299
/**
 * memcg_kmem_charge: charge a kmem page
 * @page: page to charge
 * @gfp: reclaim mode
 * @order: allocation order
 * @memcg: memory cgroup to charge
 *
 * Returns 0 on success, an error code on failure.
 */
int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
			    struct mem_cgroup *memcg)
2300
{
2301 2302
	unsigned int nr_pages = 1 << order;
	struct page_counter *counter;
2303 2304
	int ret;

2305
	ret = try_charge(memcg, gfp, nr_pages);
2306
	if (ret)
2307
		return ret;
2308 2309 2310 2311 2312

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
		cancel_charge(memcg, nr_pages);
		return -ENOMEM;
2313 2314
	}

2315
	page->mem_cgroup = memcg;
2316

2317
	return 0;
2318 2319
}

2320 2321 2322 2323 2324 2325 2326 2327 2328
/**
 * memcg_kmem_charge: charge a kmem page to the current memory cgroup
 * @page: page to charge
 * @gfp: reclaim mode
 * @order: allocation order
 *
 * Returns 0 on success, an error code on failure.
 */
int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2329
{
2330
	struct mem_cgroup *memcg;
2331
	int ret = 0;
2332

2333 2334 2335
	if (memcg_kmem_bypass())
		return 0;

2336
	memcg = get_mem_cgroup_from_mm(current->mm);
2337
	if (!mem_cgroup_is_root(memcg)) {
2338
		ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
2339 2340 2341
		if (!ret)
			__SetPageKmemcg(page);
	}
2342
	css_put(&memcg->css);
2343
	return ret;
2344
}
2345 2346 2347 2348 2349 2350
/**
 * memcg_kmem_uncharge: uncharge a kmem page
 * @page: page to uncharge
 * @order: allocation order
 */
void memcg_kmem_uncharge(struct page *page, int order)
2351
{
2352
	struct mem_cgroup *memcg = page->mem_cgroup;
2353
	unsigned int nr_pages = 1 << order;
2354 2355 2356 2357

	if (!memcg)
		return;

2358
	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2359

2360 2361 2362
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
		page_counter_uncharge(&memcg->kmem, nr_pages);

2363
	page_counter_uncharge(&memcg->memory, nr_pages);
2364
	if (do_memsw_account())
2365
		page_counter_uncharge(&memcg->memsw, nr_pages);
2366

2367
	page->mem_cgroup = NULL;
2368 2369 2370 2371 2372

	/* slab pages do not have PageKmemcg flag set */
	if (PageKmemcg(page))
		__ClearPageKmemcg(page);

2373
	css_put_many(&memcg->css, nr_pages);
2374
}
2375
#endif /* !CONFIG_SLOB */
2376

2377 2378 2379 2380
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

/*
 * Because tail pages are not marked as "used", set it. We're under
2381
 * zone_lru_lock and migration entries setup in all page mappings.
2382
 */
2383
void mem_cgroup_split_huge_fixup(struct page *head)
2384
{
2385
	int i;
2386

2387 2388
	if (mem_cgroup_disabled())
		return;
2389

2390
	for (i = 1; i < HPAGE_PMD_NR; i++)
2391
		head[i].mem_cgroup = head->mem_cgroup;
2392

2393
	__this_cpu_sub(head->mem_cgroup->stat->count[MEMCG_RSS_HUGE],
2394
		       HPAGE_PMD_NR);
2395
}
2396
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2397

A
Andrew Morton 已提交
2398
#ifdef CONFIG_MEMCG_SWAP
2399
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2400
				       int nr_entries)
K
KAMEZAWA Hiroyuki 已提交
2401
{
2402
	this_cpu_add(memcg->stat->count[MEMCG_SWAP], nr_entries);
K
KAMEZAWA Hiroyuki 已提交
2403
}
2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
2416
 * The caller must have charged to @to, IOW, called page_counter_charge() about
2417 2418 2419
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
2420
				struct mem_cgroup *from, struct mem_cgroup *to)
2421 2422 2423
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
2424 2425
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
2426 2427

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2428 2429
		mem_cgroup_swap_statistics(from, -1);
		mem_cgroup_swap_statistics(to, 1);
2430 2431 2432 2433 2434 2435
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2436
				struct mem_cgroup *from, struct mem_cgroup *to)
2437 2438 2439
{
	return -EINVAL;
}
2440
#endif
K
KAMEZAWA Hiroyuki 已提交
2441

2442
static DEFINE_MUTEX(memcg_limit_mutex);
2443

2444
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2445
				   unsigned long limit)
2446
{
2447 2448 2449
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
2450
	int retry_count;
2451
	int ret;
2452 2453 2454 2455 2456 2457

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
2458 2459
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);
2460

2461
	oldusage = page_counter_read(&memcg->memory);
2462

2463
	do {
2464 2465 2466 2467
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2468 2469 2470 2471

		mutex_lock(&memcg_limit_mutex);
		if (limit > memcg->memsw.limit) {
			mutex_unlock(&memcg_limit_mutex);
2472
			ret = -EINVAL;
2473 2474
			break;
		}
2475 2476 2477 2478
		if (limit > memcg->memory.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memory, limit);
		mutex_unlock(&memcg_limit_mutex);
2479 2480 2481 2482

		if (!ret)
			break;

2483 2484
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);

2485
		curusage = page_counter_read(&memcg->memory);
2486
		/* Usage is reduced ? */
A
Andrew Morton 已提交
2487
		if (curusage >= oldusage)
2488 2489 2490
			retry_count--;
		else
			oldusage = curusage;
2491 2492
	} while (retry_count);

2493 2494
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2495

2496 2497 2498
	return ret;
}

L
Li Zefan 已提交
2499
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2500
					 unsigned long limit)
2501
{
2502 2503 2504
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
2505
	int retry_count;
2506
	int ret;
2507

2508
	/* see mem_cgroup_resize_res_limit */
2509 2510 2511 2512 2513 2514
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);

	oldusage = page_counter_read(&memcg->memsw);

	do {
2515 2516 2517 2518
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2519 2520 2521 2522

		mutex_lock(&memcg_limit_mutex);
		if (limit < memcg->memory.limit) {
			mutex_unlock(&memcg_limit_mutex);
2523 2524 2525
			ret = -EINVAL;
			break;
		}
2526 2527 2528 2529
		if (limit > memcg->memsw.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memsw, limit);
		mutex_unlock(&memcg_limit_mutex);
2530 2531 2532 2533

		if (!ret)
			break;

2534 2535
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);

2536
		curusage = page_counter_read(&memcg->memsw);
2537
		/* Usage is reduced ? */
2538
		if (curusage >= oldusage)
2539
			retry_count--;
2540 2541
		else
			oldusage = curusage;
2542 2543
	} while (retry_count);

2544 2545
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2546

2547 2548 2549
	return ret;
}

2550
unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
2551 2552 2553 2554
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
2555
	struct mem_cgroup_per_node *mz, *next_mz = NULL;
2556 2557
	unsigned long reclaimed;
	int loop = 0;
2558
	struct mem_cgroup_tree_per_node *mctz;
2559
	unsigned long excess;
2560 2561 2562 2563 2564
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

2565
	mctz = soft_limit_tree_node(pgdat->node_id);
2566 2567 2568 2569 2570 2571

	/*
	 * Do not even bother to check the largest node if the root
	 * is empty. Do it lockless to prevent lock bouncing. Races
	 * are acceptable as soft limit is best effort anyway.
	 */
2572
	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
2573 2574
		return 0;

2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
2589
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
2590 2591 2592
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
2593
		spin_lock_irq(&mctz->lock);
2594
		__mem_cgroup_remove_exceeded(mz, mctz);
2595 2596 2597 2598 2599 2600

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
2601 2602 2603
		if (!reclaimed)
			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);

2604
		excess = soft_limit_excess(mz->memcg);
2605 2606 2607 2608 2609 2610 2611 2612 2613
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
2614
		__mem_cgroup_insert_exceeded(mz, mctz, excess);
2615
		spin_unlock_irq(&mctz->lock);
2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

2633 2634 2635 2636 2637 2638
/*
 * Test whether @memcg has children, dead or alive.  Note that this
 * function doesn't care whether @memcg has use_hierarchy enabled and
 * returns %true if there are child csses according to the cgroup
 * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
 */
2639 2640
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
2641 2642 2643 2644 2645 2646
	bool ret;

	rcu_read_lock();
	ret = css_next_child(NULL, &memcg->css);
	rcu_read_unlock();
	return ret;
2647 2648
}

2649
/*
2650
 * Reclaims as many pages from the given memcg as possible.
2651 2652 2653 2654 2655 2656 2657
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;

2658 2659
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
2660
	/* try to free all pages in this cgroup */
2661
	while (nr_retries && page_counter_read(&memcg->memory)) {
2662
		int progress;
2663

2664 2665 2666
		if (signal_pending(current))
			return -EINTR;

2667 2668
		progress = try_to_free_mem_cgroup_pages(memcg, 1,
							GFP_KERNEL, true);
2669
		if (!progress) {
2670
			nr_retries--;
2671
			/* maybe some writeback is necessary */
2672
			congestion_wait(BLK_RW_ASYNC, HZ/10);
2673
		}
2674 2675

	}
2676 2677

	return 0;
2678 2679
}

2680 2681 2682
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
					    char *buf, size_t nbytes,
					    loff_t off)
2683
{
2684
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2685

2686 2687
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
2688
	return mem_cgroup_force_empty(memcg) ?: nbytes;
2689 2690
}

2691 2692
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
2693
{
2694
	return mem_cgroup_from_css(css)->use_hierarchy;
2695 2696
}

2697 2698
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
2699 2700
{
	int retval = 0;
2701
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
2702
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2703

2704
	if (memcg->use_hierarchy == val)
2705
		return 0;
2706

2707
	/*
2708
	 * If parent's use_hierarchy is set, we can't make any modifications
2709 2710 2711 2712 2713 2714
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
2715
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2716
				(val == 1 || val == 0)) {
2717
		if (!memcg_has_children(memcg))
2718
			memcg->use_hierarchy = val;
2719 2720 2721 2722
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
2723

2724 2725 2726
	return retval;
}

2727
static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
2728 2729
{
	struct mem_cgroup *iter;
2730
	int i;
2731

2732
	memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
2733

2734 2735
	for_each_mem_cgroup_tree(iter, memcg) {
		for (i = 0; i < MEMCG_NR_STAT; i++)
2736
			stat[i] += memcg_page_state(iter, i);
2737
	}
2738 2739
}

2740
static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
2741 2742
{
	struct mem_cgroup *iter;
2743
	int i;
2744

2745
	memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
2746

2747 2748
	for_each_mem_cgroup_tree(iter, memcg) {
		for (i = 0; i < MEMCG_NR_EVENTS; i++)
2749
			events[i] += memcg_sum_events(iter, i);
2750
	}
2751 2752
}

2753
static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2754
{
2755
	unsigned long val = 0;
2756

2757
	if (mem_cgroup_is_root(memcg)) {
2758 2759 2760
		struct mem_cgroup *iter;

		for_each_mem_cgroup_tree(iter, memcg) {
2761 2762
			val += memcg_page_state(iter, MEMCG_CACHE);
			val += memcg_page_state(iter, MEMCG_RSS);
2763
			if (swap)
2764
				val += memcg_page_state(iter, MEMCG_SWAP);
2765
		}
2766
	} else {
2767
		if (!swap)
2768
			val = page_counter_read(&memcg->memory);
2769
		else
2770
			val = page_counter_read(&memcg->memsw);
2771
	}
2772
	return val;
2773 2774
}

2775 2776 2777 2778 2779 2780 2781
enum {
	RES_USAGE,
	RES_LIMIT,
	RES_MAX_USAGE,
	RES_FAILCNT,
	RES_SOFT_LIMIT,
};
2782

2783
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2784
			       struct cftype *cft)
B
Balbir Singh 已提交
2785
{
2786
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2787
	struct page_counter *counter;
2788

2789
	switch (MEMFILE_TYPE(cft->private)) {
2790
	case _MEM:
2791 2792
		counter = &memcg->memory;
		break;
2793
	case _MEMSWAP:
2794 2795
		counter = &memcg->memsw;
		break;
2796
	case _KMEM:
2797
		counter = &memcg->kmem;
2798
		break;
V
Vladimir Davydov 已提交
2799
	case _TCP:
2800
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
2801
		break;
2802 2803 2804
	default:
		BUG();
	}
2805 2806 2807 2808

	switch (MEMFILE_ATTR(cft->private)) {
	case RES_USAGE:
		if (counter == &memcg->memory)
2809
			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2810
		if (counter == &memcg->memsw)
2811
			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823
		return (u64)page_counter_read(counter) * PAGE_SIZE;
	case RES_LIMIT:
		return (u64)counter->limit * PAGE_SIZE;
	case RES_MAX_USAGE:
		return (u64)counter->watermark * PAGE_SIZE;
	case RES_FAILCNT:
		return counter->failcnt;
	case RES_SOFT_LIMIT:
		return (u64)memcg->soft_limit * PAGE_SIZE;
	default:
		BUG();
	}
B
Balbir Singh 已提交
2824
}
2825

2826
#ifndef CONFIG_SLOB
2827
static int memcg_online_kmem(struct mem_cgroup *memcg)
2828 2829 2830
{
	int memcg_id;

2831 2832 2833
	if (cgroup_memory_nokmem)
		return 0;

2834
	BUG_ON(memcg->kmemcg_id >= 0);
2835
	BUG_ON(memcg->kmem_state);
2836

2837
	memcg_id = memcg_alloc_cache_id();
2838 2839
	if (memcg_id < 0)
		return memcg_id;
2840

2841
	static_branch_inc(&memcg_kmem_enabled_key);
2842
	/*
2843
	 * A memory cgroup is considered kmem-online as soon as it gets
V
Vladimir Davydov 已提交
2844
	 * kmemcg_id. Setting the id after enabling static branching will
2845 2846 2847
	 * guarantee no one starts accounting before all call sites are
	 * patched.
	 */
V
Vladimir Davydov 已提交
2848
	memcg->kmemcg_id = memcg_id;
2849
	memcg->kmem_state = KMEM_ONLINE;
2850
	INIT_LIST_HEAD(&memcg->kmem_caches);
2851 2852

	return 0;
2853 2854
}

2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
	struct cgroup_subsys_state *css;
	struct mem_cgroup *parent, *child;
	int kmemcg_id;

	if (memcg->kmem_state != KMEM_ONLINE)
		return;
	/*
	 * Clear the online state before clearing memcg_caches array
	 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
	 * guarantees that no cache will be created for this cgroup
	 * after we are done (see memcg_create_kmem_cache()).
	 */
	memcg->kmem_state = KMEM_ALLOCATED;

	memcg_deactivate_kmem_caches(memcg);

	kmemcg_id = memcg->kmemcg_id;
	BUG_ON(kmemcg_id < 0);

	parent = parent_mem_cgroup(memcg);
	if (!parent)
		parent = root_mem_cgroup;

	/*
	 * Change kmemcg_id of this cgroup and all its descendants to the
	 * parent's id, and then move all entries from this cgroup's list_lrus
	 * to ones of the parent. After we have finished, all list_lrus
	 * corresponding to this cgroup are guaranteed to remain empty. The
	 * ordering is imposed by list_lru_node->lock taken by
	 * memcg_drain_all_list_lrus().
	 */
2888
	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
2889 2890 2891 2892 2893 2894 2895
	css_for_each_descendant_pre(css, &memcg->css) {
		child = mem_cgroup_from_css(css);
		BUG_ON(child->kmemcg_id != kmemcg_id);
		child->kmemcg_id = parent->kmemcg_id;
		if (!memcg->use_hierarchy)
			break;
	}
2896 2897
	rcu_read_unlock();

2898 2899 2900 2901 2902 2903 2904
	memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);

	memcg_free_cache_id(kmemcg_id);
}

static void memcg_free_kmem(struct mem_cgroup *memcg)
{
2905 2906 2907 2908
	/* css_alloc() failed, offlining didn't happen */
	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
		memcg_offline_kmem(memcg);

2909 2910 2911 2912 2913 2914
	if (memcg->kmem_state == KMEM_ALLOCATED) {
		memcg_destroy_kmem_caches(memcg);
		static_branch_dec(&memcg_kmem_enabled_key);
		WARN_ON(page_counter_read(&memcg->kmem));
	}
}
2915
#else
2916
static int memcg_online_kmem(struct mem_cgroup *memcg)
2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927
{
	return 0;
}
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
}
static void memcg_free_kmem(struct mem_cgroup *memcg)
{
}
#endif /* !CONFIG_SLOB */

2928
static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2929
				   unsigned long limit)
2930
{
2931
	int ret;
2932 2933 2934 2935 2936

	mutex_lock(&memcg_limit_mutex);
	ret = page_counter_limit(&memcg->kmem, limit);
	mutex_unlock(&memcg_limit_mutex);
	return ret;
2937
}
2938

V
Vladimir Davydov 已提交
2939 2940 2941 2942 2943 2944
static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
{
	int ret;

	mutex_lock(&memcg_limit_mutex);

2945
	ret = page_counter_limit(&memcg->tcpmem, limit);
V
Vladimir Davydov 已提交
2946 2947 2948
	if (ret)
		goto out;

2949
	if (!memcg->tcpmem_active) {
V
Vladimir Davydov 已提交
2950 2951 2952
		/*
		 * The active flag needs to be written after the static_key
		 * update. This is what guarantees that the socket activation
2953 2954 2955
		 * function is the last one to run. See mem_cgroup_sk_alloc()
		 * for details, and note that we don't mark any socket as
		 * belonging to this memcg until that flag is up.
V
Vladimir Davydov 已提交
2956 2957 2958 2959 2960 2961
		 *
		 * We need to do this, because static_keys will span multiple
		 * sites, but we can't control their order. If we mark a socket
		 * as accounted, but the accounting functions are not patched in
		 * yet, we'll lose accounting.
		 *
2962
		 * We never race with the readers in mem_cgroup_sk_alloc(),
V
Vladimir Davydov 已提交
2963 2964 2965 2966
		 * because when this value change, the code to process it is not
		 * patched in yet.
		 */
		static_branch_inc(&memcg_sockets_enabled_key);
2967
		memcg->tcpmem_active = true;
V
Vladimir Davydov 已提交
2968 2969 2970 2971 2972 2973
	}
out:
	mutex_unlock(&memcg_limit_mutex);
	return ret;
}

2974 2975 2976 2977
/*
 * The user of this function is...
 * RES_LIMIT.
 */
2978 2979
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
B
Balbir Singh 已提交
2980
{
2981
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2982
	unsigned long nr_pages;
2983 2984
	int ret;

2985
	buf = strstrip(buf);
2986
	ret = page_counter_memparse(buf, "-1", &nr_pages);
2987 2988
	if (ret)
		return ret;
2989

2990
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
2991
	case RES_LIMIT:
2992 2993 2994 2995
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
2996 2997 2998
		switch (MEMFILE_TYPE(of_cft(of)->private)) {
		case _MEM:
			ret = mem_cgroup_resize_limit(memcg, nr_pages);
2999
			break;
3000 3001
		case _MEMSWAP:
			ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3002
			break;
3003 3004 3005
		case _KMEM:
			ret = memcg_update_kmem_limit(memcg, nr_pages);
			break;
V
Vladimir Davydov 已提交
3006 3007 3008
		case _TCP:
			ret = memcg_update_tcp_limit(memcg, nr_pages);
			break;
3009
		}
3010
		break;
3011 3012 3013
	case RES_SOFT_LIMIT:
		memcg->soft_limit = nr_pages;
		ret = 0;
3014 3015
		break;
	}
3016
	return ret ?: nbytes;
B
Balbir Singh 已提交
3017 3018
}

3019 3020
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
				size_t nbytes, loff_t off)
3021
{
3022
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3023
	struct page_counter *counter;
3024

3025 3026 3027 3028 3029 3030 3031 3032 3033 3034
	switch (MEMFILE_TYPE(of_cft(of)->private)) {
	case _MEM:
		counter = &memcg->memory;
		break;
	case _MEMSWAP:
		counter = &memcg->memsw;
		break;
	case _KMEM:
		counter = &memcg->kmem;
		break;
V
Vladimir Davydov 已提交
3035
	case _TCP:
3036
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
3037
		break;
3038 3039 3040
	default:
		BUG();
	}
3041

3042
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3043
	case RES_MAX_USAGE:
3044
		page_counter_reset_watermark(counter);
3045 3046
		break;
	case RES_FAILCNT:
3047
		counter->failcnt = 0;
3048
		break;
3049 3050
	default:
		BUG();
3051
	}
3052

3053
	return nbytes;
3054 3055
}

3056
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3057 3058
					struct cftype *cft)
{
3059
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3060 3061
}

3062
#ifdef CONFIG_MMU
3063
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3064 3065
					struct cftype *cft, u64 val)
{
3066
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3067

3068
	if (val & ~MOVE_MASK)
3069
		return -EINVAL;
3070

3071
	/*
3072 3073 3074 3075
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
3076
	 */
3077
	memcg->move_charge_at_immigrate = val;
3078 3079
	return 0;
}
3080
#else
3081
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3082 3083 3084 3085 3086
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3087

3088
#ifdef CONFIG_NUMA
3089
static int memcg_numa_stat_show(struct seq_file *m, void *v)
3090
{
3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
3103
	int nid;
3104
	unsigned long nr;
3105
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3106

3107 3108 3109 3110 3111 3112 3113 3114 3115
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
		seq_printf(m, "%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
							  stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3116 3117
	}

3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		struct mem_cgroup *iter;

		nr = 0;
		for_each_mem_cgroup_tree(iter, memcg)
			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = 0;
			for_each_mem_cgroup_tree(iter, memcg)
				nr += mem_cgroup_node_nr_lru_pages(
					iter, nid, stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3133 3134 3135 3136 3137 3138
	}

	return 0;
}
#endif /* CONFIG_NUMA */

3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153
/* Universal VM events cgroup1 shows, original sort order */
unsigned int memcg1_events[] = {
	PGPGIN,
	PGPGOUT,
	PGFAULT,
	PGMAJFAULT,
};

static const char *const memcg1_event_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

3154
static int memcg_stat_show(struct seq_file *m, void *v)
3155
{
3156
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3157
	unsigned long memory, memsw;
3158 3159
	struct mem_cgroup *mi;
	unsigned int i;
3160

3161
	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3162 3163
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);

3164 3165
	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3166
			continue;
3167
		seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
3168
			   memcg_page_state(memcg, memcg1_stats[i]) *
3169
			   PAGE_SIZE);
3170
	}
L
Lee Schermerhorn 已提交
3171

3172 3173
	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
		seq_printf(m, "%s %lu\n", memcg1_event_names[i],
3174
			   memcg_sum_events(memcg, memcg1_events[i]));
3175 3176 3177 3178 3179

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
3180
	/* Hierarchical information */
3181 3182 3183 3184
	memory = memsw = PAGE_COUNTER_MAX;
	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
		memory = min(memory, mi->memory.limit);
		memsw = min(memsw, mi->memsw.limit);
3185
	}
3186 3187
	seq_printf(m, "hierarchical_memory_limit %llu\n",
		   (u64)memory * PAGE_SIZE);
3188
	if (do_memsw_account())
3189 3190
		seq_printf(m, "hierarchical_memsw_limit %llu\n",
			   (u64)memsw * PAGE_SIZE);
K
KOSAKI Motohiro 已提交
3191

3192
	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3193
		unsigned long long val = 0;
3194

3195
		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3196
			continue;
3197
		for_each_mem_cgroup_tree(mi, memcg)
3198
			val += memcg_page_state(mi, memcg1_stats[i]) *
3199 3200
			PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i], val);
3201 3202
	}

3203
	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) {
3204 3205 3206
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
3207
			val += memcg_sum_events(mi, memcg1_events[i]);
3208
		seq_printf(m, "total_%s %llu\n", memcg1_event_names[i], val);
3209 3210 3211 3212 3213 3214 3215 3216
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3217
	}
K
KAMEZAWA Hiroyuki 已提交
3218

K
KOSAKI Motohiro 已提交
3219 3220
#ifdef CONFIG_DEBUG_VM
	{
3221 3222
		pg_data_t *pgdat;
		struct mem_cgroup_per_node *mz;
3223
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
3224 3225 3226
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

3227 3228 3229
		for_each_online_pgdat(pgdat) {
			mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
			rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
3230

3231 3232 3233 3234 3235
			recent_rotated[0] += rstat->recent_rotated[0];
			recent_rotated[1] += rstat->recent_rotated[1];
			recent_scanned[0] += rstat->recent_scanned[0];
			recent_scanned[1] += rstat->recent_scanned[1];
		}
3236 3237 3238 3239
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
3240 3241 3242
	}
#endif

3243 3244 3245
	return 0;
}

3246 3247
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
3248
{
3249
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3250

3251
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
3252 3253
}

3254 3255
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
3256
{
3257
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3258

3259
	if (val > 100)
K
KOSAKI Motohiro 已提交
3260 3261
		return -EINVAL;

3262
	if (css->parent)
3263 3264 3265
		memcg->swappiness = val;
	else
		vm_swappiness = val;
3266

K
KOSAKI Motohiro 已提交
3267 3268 3269
	return 0;
}

3270 3271 3272
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
3273
	unsigned long usage;
3274 3275 3276 3277
	int i;

	rcu_read_lock();
	if (!swap)
3278
		t = rcu_dereference(memcg->thresholds.primary);
3279
	else
3280
		t = rcu_dereference(memcg->memsw_thresholds.primary);
3281 3282 3283 3284

	if (!t)
		goto unlock;

3285
	usage = mem_cgroup_usage(memcg, swap);
3286 3287

	/*
3288
	 * current_threshold points to threshold just below or equal to usage.
3289 3290 3291
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
3292
	i = t->current_threshold;
3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
3316
	t->current_threshold = i - 1;
3317 3318 3319 3320 3321 3322
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
3323 3324
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
3325
		if (do_memsw_account())
3326 3327 3328 3329
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
3330 3331 3332 3333 3334 3335 3336
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

3337 3338 3339 3340 3341 3342 3343
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
3344 3345
}

3346
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3347 3348 3349
{
	struct mem_cgroup_eventfd_list *ev;

3350 3351
	spin_lock(&memcg_oom_lock);

3352
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
3353
		eventfd_signal(ev->eventfd, 1);
3354 3355

	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3356 3357 3358
	return 0;
}

3359
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3360
{
K
KAMEZAWA Hiroyuki 已提交
3361 3362
	struct mem_cgroup *iter;

3363
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3364
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
3365 3366
}

3367
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3368
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3369
{
3370 3371
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3372 3373
	unsigned long threshold;
	unsigned long usage;
3374
	int i, size, ret;
3375

3376
	ret = page_counter_memparse(args, "-1", &threshold);
3377 3378 3379 3380
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
3381

3382
	if (type == _MEM) {
3383
		thresholds = &memcg->thresholds;
3384
		usage = mem_cgroup_usage(memcg, false);
3385
	} else if (type == _MEMSWAP) {
3386
		thresholds = &memcg->memsw_thresholds;
3387
		usage = mem_cgroup_usage(memcg, true);
3388
	} else
3389 3390 3391
		BUG();

	/* Check if a threshold crossed before adding a new one */
3392
	if (thresholds->primary)
3393 3394
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

3395
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3396 3397

	/* Allocate memory for new array of thresholds */
3398
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3399
			GFP_KERNEL);
3400
	if (!new) {
3401 3402 3403
		ret = -ENOMEM;
		goto unlock;
	}
3404
	new->size = size;
3405 3406

	/* Copy thresholds (if any) to new array */
3407 3408
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3409
				sizeof(struct mem_cgroup_threshold));
3410 3411
	}

3412
	/* Add new threshold */
3413 3414
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
3415 3416

	/* Sort thresholds. Registering of new threshold isn't time-critical */
3417
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3418 3419 3420
			compare_thresholds, NULL);

	/* Find current threshold */
3421
	new->current_threshold = -1;
3422
	for (i = 0; i < size; i++) {
3423
		if (new->entries[i].threshold <= usage) {
3424
			/*
3425 3426
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
3427 3428
			 * it here.
			 */
3429
			++new->current_threshold;
3430 3431
		} else
			break;
3432 3433
	}

3434 3435 3436 3437 3438
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
3439

3440
	/* To be sure that nobody uses thresholds */
3441 3442 3443 3444 3445 3446 3447 3448
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

3449
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3450 3451
	struct eventfd_ctx *eventfd, const char *args)
{
3452
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
3453 3454
}

3455
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3456 3457
	struct eventfd_ctx *eventfd, const char *args)
{
3458
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
3459 3460
}

3461
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3462
	struct eventfd_ctx *eventfd, enum res_type type)
3463
{
3464 3465
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3466
	unsigned long usage;
3467
	int i, j, size;
3468 3469

	mutex_lock(&memcg->thresholds_lock);
3470 3471

	if (type == _MEM) {
3472
		thresholds = &memcg->thresholds;
3473
		usage = mem_cgroup_usage(memcg, false);
3474
	} else if (type == _MEMSWAP) {
3475
		thresholds = &memcg->memsw_thresholds;
3476
		usage = mem_cgroup_usage(memcg, true);
3477
	} else
3478 3479
		BUG();

3480 3481 3482
	if (!thresholds->primary)
		goto unlock;

3483 3484 3485 3486
	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
3487 3488 3489
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
3490 3491 3492
			size++;
	}

3493
	new = thresholds->spare;
3494

3495 3496
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
3497 3498
		kfree(new);
		new = NULL;
3499
		goto swap_buffers;
3500 3501
	}

3502
	new->size = size;
3503 3504

	/* Copy thresholds and find current threshold */
3505 3506 3507
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
3508 3509
			continue;

3510
		new->entries[j] = thresholds->primary->entries[i];
3511
		if (new->entries[j].threshold <= usage) {
3512
			/*
3513
			 * new->current_threshold will not be used
3514 3515 3516
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
3517
			++new->current_threshold;
3518 3519 3520 3521
		}
		j++;
	}

3522
swap_buffers:
3523 3524
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
3525

3526
	rcu_assign_pointer(thresholds->primary, new);
3527

3528
	/* To be sure that nobody uses thresholds */
3529
	synchronize_rcu();
3530 3531 3532 3533 3534 3535

	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}
3536
unlock:
3537 3538
	mutex_unlock(&memcg->thresholds_lock);
}
3539

3540
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3541 3542
	struct eventfd_ctx *eventfd)
{
3543
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
3544 3545
}

3546
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3547 3548
	struct eventfd_ctx *eventfd)
{
3549
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
3550 3551
}

3552
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3553
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
3554 3555 3556 3557 3558 3559 3560
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

3561
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3562 3563 3564 3565 3566

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
3567
	if (memcg->under_oom)
K
KAMEZAWA Hiroyuki 已提交
3568
		eventfd_signal(eventfd, 1);
3569
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3570 3571 3572 3573

	return 0;
}

3574
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3575
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
3576 3577 3578
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

3579
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3580

3581
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
3582 3583 3584 3585 3586 3587
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

3588
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3589 3590
}

3591
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3592
{
3593
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3594

3595
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3596
	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3597
	seq_printf(sf, "oom_kill %lu\n", memcg_sum_events(memcg, OOM_KILL));
3598 3599 3600
	return 0;
}

3601
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3602 3603
	struct cftype *cft, u64 val)
{
3604
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3605 3606

	/* cannot set to root cgroup and only 0 and 1 are allowed */
3607
	if (!css->parent || !((val == 0) || (val == 1)))
3608 3609
		return -EINVAL;

3610
	memcg->oom_kill_disable = val;
3611
	if (!val)
3612
		memcg_oom_recover(memcg);
3613

3614 3615 3616
	return 0;
}

3617 3618 3619 3620 3621 3622 3623
#ifdef CONFIG_CGROUP_WRITEBACK

struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
{
	return &memcg->cgwb_list;
}

T
Tejun Heo 已提交
3624 3625 3626 3627 3628 3629 3630 3631 3632 3633
static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return wb_domain_init(&memcg->cgwb_domain, gfp);
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
	wb_domain_exit(&memcg->cgwb_domain);
}

3634 3635 3636 3637 3638
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
	wb_domain_size_changed(&memcg->cgwb_domain);
}

T
Tejun Heo 已提交
3639 3640 3641 3642 3643 3644 3645 3646 3647 3648
struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);

	if (!memcg->css.parent)
		return NULL;

	return &memcg->cgwb_domain;
}

3649 3650 3651
/**
 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
 * @wb: bdi_writeback in question
3652 3653
 * @pfilepages: out parameter for number of file pages
 * @pheadroom: out parameter for number of allocatable pages according to memcg
3654 3655 3656
 * @pdirty: out parameter for number of dirty pages
 * @pwriteback: out parameter for number of pages under writeback
 *
3657 3658 3659
 * Determine the numbers of file, headroom, dirty, and writeback pages in
 * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
 * is a bit more involved.
3660
 *
3661 3662 3663 3664 3665
 * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
 * headroom is calculated as the lowest headroom of itself and the
 * ancestors.  Note that this doesn't consider the actual amount of
 * available memory in the system.  The caller should further cap
 * *@pheadroom accordingly.
3666
 */
3667 3668 3669
void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
			 unsigned long *pheadroom, unsigned long *pdirty,
			 unsigned long *pwriteback)
3670 3671 3672 3673
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
	struct mem_cgroup *parent;

3674
	*pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
3675 3676

	/* this should eventually include NR_UNSTABLE_NFS */
3677
	*pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
3678 3679 3680
	*pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
						     (1 << LRU_ACTIVE_FILE));
	*pheadroom = PAGE_COUNTER_MAX;
3681 3682 3683 3684 3685

	while ((parent = parent_mem_cgroup(memcg))) {
		unsigned long ceiling = min(memcg->memory.limit, memcg->high);
		unsigned long used = page_counter_read(&memcg->memory);

3686
		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3687 3688 3689 3690
		memcg = parent;
	}
}

T
Tejun Heo 已提交
3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701
#else	/* CONFIG_CGROUP_WRITEBACK */

static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return 0;
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
}

3702 3703 3704 3705
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
}

3706 3707
#endif	/* CONFIG_CGROUP_WRITEBACK */

3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

3721 3722 3723 3724 3725
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
3726
static void memcg_event_remove(struct work_struct *work)
3727
{
3728 3729
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
3730
	struct mem_cgroup *memcg = event->memcg;
3731 3732 3733

	remove_wait_queue(event->wqh, &event->wait);

3734
	event->unregister_event(memcg, event->eventfd);
3735 3736 3737 3738 3739 3740

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
3741
	css_put(&memcg->css);
3742 3743 3744 3745 3746 3747 3748
}

/*
 * Gets called on POLLHUP on eventfd when user closes it.
 *
 * Called with wqh->lock held and interrupts disabled.
 */
3749
static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
3750
			    int sync, void *key)
3751
{
3752 3753
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
3754
	struct mem_cgroup *memcg = event->memcg;
3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766
	unsigned long flags = (unsigned long)key;

	if (flags & POLLHUP) {
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
3767
		spin_lock(&memcg->event_list_lock);
3768 3769 3770 3771 3772 3773 3774 3775
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
3776
		spin_unlock(&memcg->event_list_lock);
3777 3778 3779 3780 3781
	}

	return 0;
}

3782
static void memcg_event_ptable_queue_proc(struct file *file,
3783 3784
		wait_queue_head_t *wqh, poll_table *pt)
{
3785 3786
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
3787 3788 3789 3790 3791 3792

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
3793 3794
 * DO NOT USE IN NEW FILES.
 *
3795 3796 3797 3798 3799
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
3800 3801
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
					 char *buf, size_t nbytes, loff_t off)
3802
{
3803
	struct cgroup_subsys_state *css = of_css(of);
3804
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3805
	struct mem_cgroup_event *event;
3806 3807 3808 3809
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
3810
	const char *name;
3811 3812 3813
	char *endp;
	int ret;

3814 3815 3816
	buf = strstrip(buf);

	efd = simple_strtoul(buf, &endp, 10);
3817 3818
	if (*endp != ' ')
		return -EINVAL;
3819
	buf = endp + 1;
3820

3821
	cfd = simple_strtoul(buf, &endp, 10);
3822 3823
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
3824
	buf = endp + 1;
3825 3826 3827 3828 3829

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

3830
	event->memcg = memcg;
3831
	INIT_LIST_HEAD(&event->list);
3832 3833 3834
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
	if (ret < 0)
		goto out_put_cfile;

3860 3861 3862 3863 3864
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
3865 3866
	 *
	 * DO NOT ADD NEW FILES.
3867
	 */
A
Al Viro 已提交
3868
	name = cfile.file->f_path.dentry->d_name.name;
3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
3880 3881
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
3882 3883 3884 3885 3886
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

3887
	/*
3888 3889 3890
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
3891
	 */
A
Al Viro 已提交
3892
	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3893
					       &memory_cgrp_subsys);
3894
	ret = -EINVAL;
3895
	if (IS_ERR(cfile_css))
3896
		goto out_put_cfile;
3897 3898
	if (cfile_css != css) {
		css_put(cfile_css);
3899
		goto out_put_cfile;
3900
	}
3901

3902
	ret = event->register_event(memcg, event->eventfd, buf);
3903 3904 3905 3906 3907
	if (ret)
		goto out_put_css;

	efile.file->f_op->poll(efile.file, &event->pt);

3908 3909 3910
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
3911 3912 3913 3914

	fdput(cfile);
	fdput(efile);

3915
	return nbytes;
3916 3917

out_put_css:
3918
	css_put(css);
3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

3931
static struct cftype mem_cgroup_legacy_files[] = {
B
Balbir Singh 已提交
3932
	{
3933
		.name = "usage_in_bytes",
3934
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3935
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
3936
	},
3937 3938
	{
		.name = "max_usage_in_bytes",
3939
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3940
		.write = mem_cgroup_reset,
3941
		.read_u64 = mem_cgroup_read_u64,
3942
	},
B
Balbir Singh 已提交
3943
	{
3944
		.name = "limit_in_bytes",
3945
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3946
		.write = mem_cgroup_write,
3947
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
3948
	},
3949 3950 3951
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3952
		.write = mem_cgroup_write,
3953
		.read_u64 = mem_cgroup_read_u64,
3954
	},
B
Balbir Singh 已提交
3955 3956
	{
		.name = "failcnt",
3957
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3958
		.write = mem_cgroup_reset,
3959
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
3960
	},
3961 3962
	{
		.name = "stat",
3963
		.seq_show = memcg_stat_show,
3964
	},
3965 3966
	{
		.name = "force_empty",
3967
		.write = mem_cgroup_force_empty_write,
3968
	},
3969 3970 3971 3972 3973
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
3974
	{
3975
		.name = "cgroup.event_control",		/* XXX: for compat */
3976
		.write = memcg_write_event_control,
3977
		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
3978
	},
K
KOSAKI Motohiro 已提交
3979 3980 3981 3982 3983
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
3984 3985 3986 3987 3988
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
3989 3990
	{
		.name = "oom_control",
3991
		.seq_show = mem_cgroup_oom_control_read,
3992
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
3993 3994
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
3995 3996 3997
	{
		.name = "pressure_level",
	},
3998 3999 4000
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
4001
		.seq_show = memcg_numa_stat_show,
4002 4003
	},
#endif
4004 4005 4006
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4007
		.write = mem_cgroup_write,
4008
		.read_u64 = mem_cgroup_read_u64,
4009 4010 4011 4012
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4013
		.read_u64 = mem_cgroup_read_u64,
4014 4015 4016 4017
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4018
		.write = mem_cgroup_reset,
4019
		.read_u64 = mem_cgroup_read_u64,
4020 4021 4022 4023
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4024
		.write = mem_cgroup_reset,
4025
		.read_u64 = mem_cgroup_read_u64,
4026
	},
4027 4028 4029
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
4030 4031 4032
		.seq_start = memcg_slab_start,
		.seq_next = memcg_slab_next,
		.seq_stop = memcg_slab_stop,
4033
		.seq_show = memcg_slab_show,
4034 4035
	},
#endif
V
Vladimir Davydov 已提交
4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058
	{
		.name = "kmem.tcp.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.failcnt",
		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
4059
	{ },	/* terminate */
4060
};
4061

4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087
/*
 * Private memory cgroup IDR
 *
 * Swap-out records and page cache shadow entries need to store memcg
 * references in constrained space, so we maintain an ID space that is
 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
 * memory-controlled cgroups to 64k.
 *
 * However, there usually are many references to the oflline CSS after
 * the cgroup has been destroyed, such as page cache or reclaimable
 * slab objects, that don't need to hang on to the ID. We want to keep
 * those dead CSS from occupying IDs, or we might quickly exhaust the
 * relatively small ID space and prevent the creation of new cgroups
 * even when there are much fewer than 64k cgroups - possibly none.
 *
 * Maintain a private 16-bit ID space for memcg, and allow the ID to
 * be freed and recycled when it's no longer needed, which is usually
 * when the CSS is offlined.
 *
 * The only exception to that are records of swapped out tmpfs/shmem
 * pages that need to be attributed to live ancestors on swapin. But
 * those references are manageable from userspace.
 */

static DEFINE_IDR(mem_cgroup_idr);

4088
static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4089
{
4090
	VM_BUG_ON(atomic_read(&memcg->id.ref) <= 0);
4091
	atomic_add(n, &memcg->id.ref);
4092 4093
}

4094
static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4095
{
4096
	VM_BUG_ON(atomic_read(&memcg->id.ref) < n);
4097
	if (atomic_sub_and_test(n, &memcg->id.ref)) {
4098 4099 4100 4101 4102 4103 4104 4105
		idr_remove(&mem_cgroup_idr, memcg->id.id);
		memcg->id.id = 0;

		/* Memcg ID pins CSS */
		css_put(&memcg->css);
	}
}

4106 4107 4108 4109 4110 4111 4112 4113 4114 4115
static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
{
	mem_cgroup_id_get_many(memcg, 1);
}

static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
{
	mem_cgroup_id_put_many(memcg, 1);
}

4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127
/**
 * mem_cgroup_from_id - look up a memcg from a memcg id
 * @id: the memcg id to look up
 *
 * Caller must hold rcu_read_lock().
 */
struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	WARN_ON_ONCE(!rcu_read_lock_held());
	return idr_find(&mem_cgroup_idr, id);
}

4128
static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4129 4130
{
	struct mem_cgroup_per_node *pn;
4131
	int tmp = node;
4132 4133 4134 4135 4136 4137 4138 4139
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4140 4141
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4142
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4143 4144
	if (!pn)
		return 1;
4145

4146 4147 4148 4149 4150 4151
	pn->lruvec_stat = alloc_percpu(struct lruvec_stat);
	if (!pn->lruvec_stat) {
		kfree(pn);
		return 1;
	}

4152 4153 4154 4155 4156
	lruvec_init(&pn->lruvec);
	pn->usage_in_excess = 0;
	pn->on_tree = false;
	pn->memcg = memcg;

4157
	memcg->nodeinfo[node] = pn;
4158 4159 4160
	return 0;
}

4161
static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4162
{
4163 4164 4165 4166
	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];

	free_percpu(pn->lruvec_stat);
	kfree(pn);
4167 4168
}

4169
static void __mem_cgroup_free(struct mem_cgroup *memcg)
4170
{
4171
	int node;
4172

4173
	for_each_node(node)
4174
		free_mem_cgroup_per_node_info(memcg, node);
4175
	free_percpu(memcg->stat);
4176
	kfree(memcg);
4177
}
4178

4179 4180 4181 4182 4183 4184
static void mem_cgroup_free(struct mem_cgroup *memcg)
{
	memcg_wb_domain_exit(memcg);
	__mem_cgroup_free(memcg);
}

4185
static struct mem_cgroup *mem_cgroup_alloc(void)
B
Balbir Singh 已提交
4186
{
4187
	struct mem_cgroup *memcg;
4188
	size_t size;
4189
	int node;
B
Balbir Singh 已提交
4190

4191 4192 4193 4194
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);

	memcg = kzalloc(size, GFP_KERNEL);
4195
	if (!memcg)
4196 4197
		return NULL;

4198 4199 4200 4201 4202 4203
	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
				 1, MEM_CGROUP_ID_MAX,
				 GFP_KERNEL);
	if (memcg->id.id < 0)
		goto fail;

4204 4205 4206
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
		goto fail;
4207

B
Bob Liu 已提交
4208
	for_each_node(node)
4209
		if (alloc_mem_cgroup_per_node_info(memcg, node))
4210
			goto fail;
4211

4212 4213
	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
		goto fail;
4214

4215
	INIT_WORK(&memcg->high_work, high_work_func);
4216 4217 4218 4219
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
4220
	vmpressure_init(&memcg->vmpressure);
4221 4222
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
4223
	memcg->socket_pressure = jiffies;
4224
#ifndef CONFIG_SLOB
V
Vladimir Davydov 已提交
4225 4226
	memcg->kmemcg_id = -1;
#endif
4227 4228 4229
#ifdef CONFIG_CGROUP_WRITEBACK
	INIT_LIST_HEAD(&memcg->cgwb_list);
#endif
4230
	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4231 4232
	return memcg;
fail:
4233 4234
	if (memcg->id.id > 0)
		idr_remove(&mem_cgroup_idr, memcg->id.id);
4235
	__mem_cgroup_free(memcg);
4236
	return NULL;
4237 4238
}

4239 4240
static struct cgroup_subsys_state * __ref
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4241
{
4242 4243 4244
	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
	struct mem_cgroup *memcg;
	long error = -ENOMEM;
4245

4246 4247 4248
	memcg = mem_cgroup_alloc();
	if (!memcg)
		return ERR_PTR(error);
4249

4250 4251 4252 4253 4254 4255 4256 4257
	memcg->high = PAGE_COUNTER_MAX;
	memcg->soft_limit = PAGE_COUNTER_MAX;
	if (parent) {
		memcg->swappiness = mem_cgroup_swappiness(parent);
		memcg->oom_kill_disable = parent->oom_kill_disable;
	}
	if (parent && parent->use_hierarchy) {
		memcg->use_hierarchy = true;
4258
		page_counter_init(&memcg->memory, &parent->memory);
4259
		page_counter_init(&memcg->swap, &parent->swap);
4260 4261
		page_counter_init(&memcg->memsw, &parent->memsw);
		page_counter_init(&memcg->kmem, &parent->kmem);
4262
		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4263
	} else {
4264
		page_counter_init(&memcg->memory, NULL);
4265
		page_counter_init(&memcg->swap, NULL);
4266 4267
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
4268
		page_counter_init(&memcg->tcpmem, NULL);
4269 4270 4271 4272 4273
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
4274
		if (parent != root_mem_cgroup)
4275
			memory_cgrp_subsys.broken_hierarchy = true;
4276
	}
4277

4278 4279 4280 4281 4282 4283
	/* The following stuff does not apply to the root */
	if (!parent) {
		root_mem_cgroup = memcg;
		return &memcg->css;
	}

4284
	error = memcg_online_kmem(memcg);
4285 4286
	if (error)
		goto fail;
4287

4288
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4289
		static_branch_inc(&memcg_sockets_enabled_key);
4290

4291 4292 4293
	return &memcg->css;
fail:
	mem_cgroup_free(memcg);
4294
	return ERR_PTR(-ENOMEM);
4295 4296
}

4297
static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
4298
{
4299 4300
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

4301
	/* Online state pins memcg ID, memcg ID pins CSS */
4302
	atomic_set(&memcg->id.ref, 1);
4303
	css_get(css);
4304
	return 0;
B
Balbir Singh 已提交
4305 4306
}

4307
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4308
{
4309
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4310
	struct mem_cgroup_event *event, *tmp;
4311 4312 4313 4314 4315 4316

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
4317 4318
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4319 4320 4321
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
4322
	spin_unlock(&memcg->event_list_lock);
4323

4324 4325
	memcg->low = 0;

4326
	memcg_offline_kmem(memcg);
4327
	wb_memcg_offline(memcg);
4328 4329

	mem_cgroup_id_put(memcg);
4330 4331
}

4332 4333 4334 4335 4336 4337 4338
static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	invalidate_reclaim_iterators(memcg);
}

4339
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
4340
{
4341
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4342

4343
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4344
		static_branch_dec(&memcg_sockets_enabled_key);
4345

4346
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
V
Vladimir Davydov 已提交
4347
		static_branch_dec(&memcg_sockets_enabled_key);
4348

4349 4350 4351
	vmpressure_cleanup(&memcg->vmpressure);
	cancel_work_sync(&memcg->high_work);
	mem_cgroup_remove_from_trees(memcg);
4352
	memcg_free_kmem(memcg);
4353
	mem_cgroup_free(memcg);
B
Balbir Singh 已提交
4354 4355
}

4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372
/**
 * mem_cgroup_css_reset - reset the states of a mem_cgroup
 * @css: the target css
 *
 * Reset the states of the mem_cgroup associated with @css.  This is
 * invoked when the userland requests disabling on the default hierarchy
 * but the memcg is pinned through dependency.  The memcg should stop
 * applying policies and should revert to the vanilla state as it may be
 * made visible again.
 *
 * The current implementation only resets the essential configurations.
 * This needs to be expanded to cover all the visible parts.
 */
static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

4373 4374 4375 4376 4377
	page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
	page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
	page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
	page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
	page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
4378 4379
	memcg->low = 0;
	memcg->high = PAGE_COUNTER_MAX;
4380
	memcg->soft_limit = PAGE_COUNTER_MAX;
4381
	memcg_wb_domain_size_changed(memcg);
4382 4383
}

4384
#ifdef CONFIG_MMU
4385
/* Handlers for move charge at task migration. */
4386
static int mem_cgroup_do_precharge(unsigned long count)
4387
{
4388
	int ret;
4389

4390 4391
	/* Try a single bulk charge without reclaim first, kswapd may wake */
	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4392
	if (!ret) {
4393 4394 4395
		mc.precharge += count;
		return ret;
	}
4396

4397
	/* Try charges one by one with reclaim, but do not retry */
4398
	while (count--) {
4399
		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
4400 4401
		if (ret)
			return ret;
4402
		mc.precharge++;
4403
		cond_resched();
4404
	}
4405
	return 0;
4406 4407 4408 4409
}

union mc_target {
	struct page	*page;
4410
	swp_entry_t	ent;
4411 4412 4413
};

enum mc_target_type {
4414
	MC_TARGET_NONE = 0,
4415
	MC_TARGET_PAGE,
4416
	MC_TARGET_SWAP,
4417 4418
};

D
Daisuke Nishimura 已提交
4419 4420
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
4421
{
D
Daisuke Nishimura 已提交
4422
	struct page *page = vm_normal_page(vma, addr, ptent);
4423

D
Daisuke Nishimura 已提交
4424 4425 4426
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
4427
		if (!(mc.flags & MOVE_ANON))
D
Daisuke Nishimura 已提交
4428
			return NULL;
4429 4430 4431 4432
	} else {
		if (!(mc.flags & MOVE_FILE))
			return NULL;
	}
D
Daisuke Nishimura 已提交
4433 4434 4435 4436 4437 4438
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

4439
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
4440
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4441
			pte_t ptent, swp_entry_t *entry)
D
Daisuke Nishimura 已提交
4442 4443 4444 4445
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

4446
	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
D
Daisuke Nishimura 已提交
4447
		return NULL;
4448 4449 4450 4451
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
4452
	page = find_get_page(swap_address_space(ent), swp_offset(ent));
4453
	if (do_memsw_account())
D
Daisuke Nishimura 已提交
4454 4455 4456 4457
		entry->val = ent.val;

	return page;
}
4458 4459
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4460
			pte_t ptent, swp_entry_t *entry)
4461 4462 4463 4464
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
4465

4466 4467 4468 4469 4470 4471 4472 4473 4474
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
4475
	if (!(mc.flags & MOVE_FILE))
4476 4477 4478
		return NULL;

	mapping = vma->vm_file->f_mapping;
4479
	pgoff = linear_page_index(vma, addr);
4480 4481

	/* page is moved even if it's not RSS of this task(page-faulted). */
4482 4483
#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
4484 4485 4486 4487
	if (shmem_mapping(mapping)) {
		page = find_get_entry(mapping, pgoff);
		if (radix_tree_exceptional_entry(page)) {
			swp_entry_t swp = radix_to_swp_entry(page);
4488
			if (do_memsw_account())
4489
				*entry = swp;
4490 4491
			page = find_get_page(swap_address_space(swp),
					     swp_offset(swp));
4492 4493 4494 4495 4496
		}
	} else
		page = find_get_page(mapping, pgoff);
#else
	page = find_get_page(mapping, pgoff);
4497
#endif
4498 4499 4500
	return page;
}

4501 4502 4503
/**
 * mem_cgroup_move_account - move account of the page
 * @page: the page
4504
 * @compound: charge the page as compound or small page
4505 4506 4507
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
4508
 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4509 4510 4511 4512 4513
 *
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
 */
static int mem_cgroup_move_account(struct page *page,
4514
				   bool compound,
4515 4516 4517 4518
				   struct mem_cgroup *from,
				   struct mem_cgroup *to)
{
	unsigned long flags;
4519
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4520
	int ret;
4521
	bool anon;
4522 4523 4524

	VM_BUG_ON(from == to);
	VM_BUG_ON_PAGE(PageLRU(page), page);
4525
	VM_BUG_ON(compound && !PageTransHuge(page));
4526 4527

	/*
4528
	 * Prevent mem_cgroup_migrate() from looking at
4529
	 * page->mem_cgroup of its source page while we change it.
4530
	 */
4531
	ret = -EBUSY;
4532 4533 4534 4535 4536 4537 4538
	if (!trylock_page(page))
		goto out;

	ret = -EINVAL;
	if (page->mem_cgroup != from)
		goto out_unlock;

4539 4540
	anon = PageAnon(page);

4541 4542
	spin_lock_irqsave(&from->move_lock, flags);

4543
	if (!anon && page_mapped(page)) {
4544 4545
		__this_cpu_sub(from->stat->count[NR_FILE_MAPPED], nr_pages);
		__this_cpu_add(to->stat->count[NR_FILE_MAPPED], nr_pages);
4546 4547
	}

4548 4549
	/*
	 * move_lock grabbed above and caller set from->moving_account, so
4550
	 * mod_memcg_page_state will serialize updates to PageDirty.
4551 4552 4553 4554 4555 4556
	 * So mapping should be stable for dirty pages.
	 */
	if (!anon && PageDirty(page)) {
		struct address_space *mapping = page_mapping(page);

		if (mapping_cap_account_dirty(mapping)) {
4557
			__this_cpu_sub(from->stat->count[NR_FILE_DIRTY],
4558
				       nr_pages);
4559
			__this_cpu_add(to->stat->count[NR_FILE_DIRTY],
4560 4561 4562 4563
				       nr_pages);
		}
	}

4564
	if (PageWriteback(page)) {
4565 4566
		__this_cpu_sub(from->stat->count[NR_WRITEBACK], nr_pages);
		__this_cpu_add(to->stat->count[NR_WRITEBACK], nr_pages);
4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581
	}

	/*
	 * It is safe to change page->mem_cgroup here because the page
	 * is referenced, charged, and isolated - we can't race with
	 * uncharging, charging, migration, or LRU putback.
	 */

	/* caller should have done css_get */
	page->mem_cgroup = to;
	spin_unlock_irqrestore(&from->move_lock, flags);

	ret = 0;

	local_irq_disable();
4582
	mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4583
	memcg_check_events(to, page);
4584
	mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4585 4586 4587 4588 4589 4590 4591 4592
	memcg_check_events(from, page);
	local_irq_enable();
out_unlock:
	unlock_page(page);
out:
	return ret;
}

4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611
/**
 * get_mctgt_type - get target type of moving charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
 *
 * Called with pte lock held.
 */

4612
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
4613 4614 4615
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
4616
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
4617 4618 4619 4620 4621
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
4622
		page = mc_handle_swap_pte(vma, ptent, &ent);
4623
	else if (pte_none(ptent))
4624
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
4625 4626

	if (!page && !ent.val)
4627
		return ret;
4628 4629
	if (page) {
		/*
4630
		 * Do only loose check w/o serialization.
4631
		 * mem_cgroup_move_account() checks the page is valid or
4632
		 * not under LRU exclusion.
4633
		 */
4634
		if (page->mem_cgroup == mc.from) {
4635 4636 4637 4638 4639 4640 4641
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
4642 4643 4644 4645 4646
	/*
	 * There is a swap entry and a page doesn't exist or isn't charged.
	 * But we cannot move a tail-page in a THP.
	 */
	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
L
Li Zefan 已提交
4647
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4648 4649 4650
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
4651 4652 4653 4654
	}
	return ret;
}

4655 4656
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
4657 4658
 * We don't consider PMD mapped swapping or file mapped pages because THP does
 * not support them for now.
4659 4660 4661 4662 4663 4664 4665 4666
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	enum mc_target_type ret = MC_TARGET_NONE;

4667 4668 4669 4670 4671
	if (unlikely(is_swap_pmd(pmd))) {
		VM_BUG_ON(thp_migration_supported() &&
				  !is_pmd_migration_entry(pmd));
		return ret;
	}
4672
	page = pmd_page(pmd);
4673
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4674
	if (!(mc.flags & MOVE_ANON))
4675
		return ret;
4676
	if (page->mem_cgroup == mc.from) {
4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

4693 4694 4695 4696
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
4697
	struct vm_area_struct *vma = walk->vma;
4698 4699 4700
	pte_t *pte;
	spinlock_t *ptl;

4701 4702
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
4703 4704
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
4705
		spin_unlock(ptl);
4706
		return 0;
4707
	}
4708

4709 4710
	if (pmd_trans_unstable(pmd))
		return 0;
4711 4712
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
4713
		if (get_mctgt_type(vma, addr, *pte, NULL))
4714 4715 4716 4717
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

4718 4719 4720
	return 0;
}

4721 4722 4723 4724
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;

4725 4726 4727 4728
	struct mm_walk mem_cgroup_count_precharge_walk = {
		.pmd_entry = mem_cgroup_count_precharge_pte_range,
		.mm = mm,
	};
4729
	down_read(&mm->mmap_sem);
4730 4731
	walk_page_range(0, mm->highest_vm_end,
			&mem_cgroup_count_precharge_walk);
4732
	up_read(&mm->mmap_sem);
4733 4734 4735 4736 4737 4738 4739 4740 4741

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
4742 4743 4744 4745 4746
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
4747 4748
}

4749 4750
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
4751
{
4752 4753 4754
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

4755
	/* we must uncharge all the leftover precharges from mc.to */
4756
	if (mc.precharge) {
4757
		cancel_charge(mc.to, mc.precharge);
4758 4759 4760 4761 4762 4763 4764
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
4765
		cancel_charge(mc.from, mc.moved_charge);
4766
		mc.moved_charge = 0;
4767
	}
4768 4769 4770
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
4771
		if (!mem_cgroup_is_root(mc.from))
4772
			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4773

4774 4775
		mem_cgroup_id_put_many(mc.from, mc.moved_swap);

4776
		/*
4777 4778
		 * we charged both to->memory and to->memsw, so we
		 * should uncharge to->memory.
4779
		 */
4780
		if (!mem_cgroup_is_root(mc.to))
4781 4782
			page_counter_uncharge(&mc.to->memory, mc.moved_swap);

4783 4784
		mem_cgroup_id_get_many(mc.to, mc.moved_swap);
		css_put_many(&mc.to->css, mc.moved_swap);
4785

4786 4787
		mc.moved_swap = 0;
	}
4788 4789 4790 4791 4792 4793 4794
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
4795 4796
	struct mm_struct *mm = mc.mm;

4797 4798 4799 4800 4801 4802
	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
4803
	spin_lock(&mc.lock);
4804 4805
	mc.from = NULL;
	mc.to = NULL;
4806
	mc.mm = NULL;
4807
	spin_unlock(&mc.lock);
4808 4809

	mmput(mm);
4810 4811
}

4812
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4813
{
4814
	struct cgroup_subsys_state *css;
4815
	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4816
	struct mem_cgroup *from;
4817
	struct task_struct *leader, *p;
4818
	struct mm_struct *mm;
4819
	unsigned long move_flags;
4820
	int ret = 0;
4821

4822 4823
	/* charge immigration isn't supported on the default hierarchy */
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4824 4825
		return 0;

4826 4827 4828 4829 4830 4831 4832
	/*
	 * Multi-process migrations only happen on the default hierarchy
	 * where charge immigration is not used.  Perform charge
	 * immigration if @tset contains a leader and whine if there are
	 * multiple.
	 */
	p = NULL;
4833
	cgroup_taskset_for_each_leader(leader, css, tset) {
4834 4835
		WARN_ON_ONCE(p);
		p = leader;
4836
		memcg = mem_cgroup_from_css(css);
4837 4838 4839 4840
	}
	if (!p)
		return 0;

4841 4842 4843 4844 4845 4846 4847 4848 4849
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
	if (!move_flags)
		return 0;

4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865
	from = mem_cgroup_from_task(p);

	VM_BUG_ON(from == memcg);

	mm = get_task_mm(p);
	if (!mm)
		return 0;
	/* We move charges only when we move a owner of the mm */
	if (mm->owner == p) {
		VM_BUG_ON(mc.from);
		VM_BUG_ON(mc.to);
		VM_BUG_ON(mc.precharge);
		VM_BUG_ON(mc.moved_charge);
		VM_BUG_ON(mc.moved_swap);

		spin_lock(&mc.lock);
4866
		mc.mm = mm;
4867 4868 4869 4870 4871 4872 4873 4874 4875
		mc.from = from;
		mc.to = memcg;
		mc.flags = move_flags;
		spin_unlock(&mc.lock);
		/* We set mc.moving_task later */

		ret = mem_cgroup_precharge_mc(mm);
		if (ret)
			mem_cgroup_clear_mc();
4876 4877
	} else {
		mmput(mm);
4878 4879 4880 4881
	}
	return ret;
}

4882
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4883
{
4884 4885
	if (mc.to)
		mem_cgroup_clear_mc();
4886 4887
}

4888 4889 4890
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
4891
{
4892
	int ret = 0;
4893
	struct vm_area_struct *vma = walk->vma;
4894 4895
	pte_t *pte;
	spinlock_t *ptl;
4896 4897 4898
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
4899

4900 4901
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
4902
		if (mc.precharge < HPAGE_PMD_NR) {
4903
			spin_unlock(ptl);
4904 4905 4906 4907 4908 4909
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
4910
				if (!mem_cgroup_move_account(page, true,
4911
							     mc.from, mc.to)) {
4912 4913 4914 4915 4916 4917 4918
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
4919
		spin_unlock(ptl);
4920
		return 0;
4921 4922
	}

4923 4924
	if (pmd_trans_unstable(pmd))
		return 0;
4925 4926 4927 4928
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
4929
		swp_entry_t ent;
4930 4931 4932 4933

		if (!mc.precharge)
			break;

4934
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
4935 4936
		case MC_TARGET_PAGE:
			page = target.page;
4937 4938 4939 4940 4941 4942 4943 4944
			/*
			 * We can have a part of the split pmd here. Moving it
			 * can be done but it would be too convoluted so simply
			 * ignore such a partial THP and keep it in original
			 * memcg. There should be somebody mapping the head.
			 */
			if (PageTransCompound(page))
				goto put;
4945 4946
			if (isolate_lru_page(page))
				goto put;
4947 4948
			if (!mem_cgroup_move_account(page, false,
						mc.from, mc.to)) {
4949
				mc.precharge--;
4950 4951
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
4952 4953
			}
			putback_lru_page(page);
4954
put:			/* get_mctgt_type() gets the page */
4955 4956
			put_page(page);
			break;
4957 4958
		case MC_TARGET_SWAP:
			ent = target.ent;
4959
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4960
				mc.precharge--;
4961 4962 4963
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
4964
			break;
4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
4979
		ret = mem_cgroup_do_precharge(1);
4980 4981 4982 4983 4984 4985 4986
		if (!ret)
			goto retry;
	}

	return ret;
}

4987
static void mem_cgroup_move_charge(void)
4988
{
4989 4990
	struct mm_walk mem_cgroup_move_charge_walk = {
		.pmd_entry = mem_cgroup_move_charge_pte_range,
4991
		.mm = mc.mm,
4992
	};
4993 4994

	lru_add_drain_all();
4995
	/*
4996 4997 4998
	 * Signal lock_page_memcg() to take the memcg's move_lock
	 * while we're moving its pages to another memcg. Then wait
	 * for already started RCU-only updates to finish.
4999 5000 5001
	 */
	atomic_inc(&mc.from->moving_account);
	synchronize_rcu();
5002
retry:
5003
	if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5015 5016 5017 5018
	/*
	 * When we have consumed all precharges and failed in doing
	 * additional charge, the page walk just aborts.
	 */
5019 5020
	walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);

5021
	up_read(&mc.mm->mmap_sem);
5022
	atomic_dec(&mc.from->moving_account);
5023 5024
}

5025
static void mem_cgroup_move_task(void)
B
Balbir Singh 已提交
5026
{
5027 5028
	if (mc.to) {
		mem_cgroup_move_charge();
5029
		mem_cgroup_clear_mc();
5030
	}
B
Balbir Singh 已提交
5031
}
5032
#else	/* !CONFIG_MMU */
5033
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5034 5035 5036
{
	return 0;
}
5037
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5038 5039
{
}
5040
static void mem_cgroup_move_task(void)
5041 5042 5043
{
}
#endif
B
Balbir Singh 已提交
5044

5045 5046
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5047 5048
 * to verify whether we're attached to the default hierarchy on each mount
 * attempt.
5049
 */
5050
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5051 5052
{
	/*
5053
	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5054 5055 5056
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
5057
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5058 5059 5060
		root_mem_cgroup->use_hierarchy = true;
	else
		root_mem_cgroup->use_hierarchy = false;
5061 5062
}

5063 5064 5065
static u64 memory_current_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
{
5066 5067 5068
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5069 5070 5071 5072 5073
}

static int memory_low_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5074
	unsigned long low = READ_ONCE(memcg->low);
5075 5076

	if (low == PAGE_COUNTER_MAX)
5077
		seq_puts(m, "max\n");
5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091
	else
		seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);

	return 0;
}

static ssize_t memory_low_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long low;
	int err;

	buf = strstrip(buf);
5092
	err = page_counter_memparse(buf, "max", &low);
5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103
	if (err)
		return err;

	memcg->low = low;

	return nbytes;
}

static int memory_high_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5104
	unsigned long high = READ_ONCE(memcg->high);
5105 5106

	if (high == PAGE_COUNTER_MAX)
5107
		seq_puts(m, "max\n");
5108 5109 5110 5111 5112 5113 5114 5115 5116 5117
	else
		seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);

	return 0;
}

static ssize_t memory_high_write(struct kernfs_open_file *of,
				 char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5118
	unsigned long nr_pages;
5119 5120 5121 5122
	unsigned long high;
	int err;

	buf = strstrip(buf);
5123
	err = page_counter_memparse(buf, "max", &high);
5124 5125 5126 5127 5128
	if (err)
		return err;

	memcg->high = high;

5129 5130 5131 5132 5133
	nr_pages = page_counter_read(&memcg->memory);
	if (nr_pages > high)
		try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
					     GFP_KERNEL, true);

5134
	memcg_wb_domain_size_changed(memcg);
5135 5136 5137 5138 5139 5140
	return nbytes;
}

static int memory_max_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5141
	unsigned long max = READ_ONCE(memcg->memory.limit);
5142 5143

	if (max == PAGE_COUNTER_MAX)
5144
		seq_puts(m, "max\n");
5145 5146 5147 5148 5149 5150 5151 5152 5153 5154
	else
		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);

	return 0;
}

static ssize_t memory_max_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5155 5156
	unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
	bool drained = false;
5157 5158 5159 5160
	unsigned long max;
	int err;

	buf = strstrip(buf);
5161
	err = page_counter_memparse(buf, "max", &max);
5162 5163 5164
	if (err)
		return err;

5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190
	xchg(&memcg->memory.limit, max);

	for (;;) {
		unsigned long nr_pages = page_counter_read(&memcg->memory);

		if (nr_pages <= max)
			break;

		if (signal_pending(current)) {
			err = -EINTR;
			break;
		}

		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

		if (nr_reclaims) {
			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
							  GFP_KERNEL, true))
				nr_reclaims--;
			continue;
		}

5191
		mem_cgroup_event(memcg, MEMCG_OOM);
5192 5193 5194
		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
			break;
	}
5195

5196
	memcg_wb_domain_size_changed(memcg);
5197 5198 5199 5200 5201 5202 5203
	return nbytes;
}

static int memory_events_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));

5204 5205 5206 5207
	seq_printf(m, "low %lu\n", memcg_sum_events(memcg, MEMCG_LOW));
	seq_printf(m, "high %lu\n", memcg_sum_events(memcg, MEMCG_HIGH));
	seq_printf(m, "max %lu\n", memcg_sum_events(memcg, MEMCG_MAX));
	seq_printf(m, "oom %lu\n", memcg_sum_events(memcg, MEMCG_OOM));
5208
	seq_printf(m, "oom_kill %lu\n", memcg_sum_events(memcg, OOM_KILL));
5209 5210 5211 5212

	return 0;
}

5213 5214 5215
static int memory_stat_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5216 5217
	unsigned long stat[MEMCG_NR_STAT];
	unsigned long events[MEMCG_NR_EVENTS];
5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230
	int i;

	/*
	 * Provide statistics on the state of the memory subsystem as
	 * well as cumulative event counters that show past behavior.
	 *
	 * This list is ordered following a combination of these gradients:
	 * 1) generic big picture -> specifics and details
	 * 2) reflecting userspace activity -> reflecting kernel heuristics
	 *
	 * Current memory state:
	 */

5231 5232 5233
	tree_stat(memcg, stat);
	tree_events(memcg, events);

5234
	seq_printf(m, "anon %llu\n",
5235
		   (u64)stat[MEMCG_RSS] * PAGE_SIZE);
5236
	seq_printf(m, "file %llu\n",
5237
		   (u64)stat[MEMCG_CACHE] * PAGE_SIZE);
5238
	seq_printf(m, "kernel_stack %llu\n",
5239
		   (u64)stat[MEMCG_KERNEL_STACK_KB] * 1024);
5240
	seq_printf(m, "slab %llu\n",
5241 5242
		   (u64)(stat[NR_SLAB_RECLAIMABLE] +
			 stat[NR_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5243
	seq_printf(m, "sock %llu\n",
5244
		   (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
5245

5246
	seq_printf(m, "shmem %llu\n",
5247
		   (u64)stat[NR_SHMEM] * PAGE_SIZE);
5248
	seq_printf(m, "file_mapped %llu\n",
5249
		   (u64)stat[NR_FILE_MAPPED] * PAGE_SIZE);
5250
	seq_printf(m, "file_dirty %llu\n",
5251
		   (u64)stat[NR_FILE_DIRTY] * PAGE_SIZE);
5252
	seq_printf(m, "file_writeback %llu\n",
5253
		   (u64)stat[NR_WRITEBACK] * PAGE_SIZE);
5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264

	for (i = 0; i < NR_LRU_LISTS; i++) {
		struct mem_cgroup *mi;
		unsigned long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i));
		seq_printf(m, "%s %llu\n",
			   mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
	}

5265
	seq_printf(m, "slab_reclaimable %llu\n",
5266
		   (u64)stat[NR_SLAB_RECLAIMABLE] * PAGE_SIZE);
5267
	seq_printf(m, "slab_unreclaimable %llu\n",
5268
		   (u64)stat[NR_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5269

5270 5271
	/* Accumulated memory events */

5272 5273
	seq_printf(m, "pgfault %lu\n", events[PGFAULT]);
	seq_printf(m, "pgmajfault %lu\n", events[PGMAJFAULT]);
5274

5275 5276 5277 5278 5279 5280 5281 5282 5283 5284
	seq_printf(m, "pgrefill %lu\n", events[PGREFILL]);
	seq_printf(m, "pgscan %lu\n", events[PGSCAN_KSWAPD] +
		   events[PGSCAN_DIRECT]);
	seq_printf(m, "pgsteal %lu\n", events[PGSTEAL_KSWAPD] +
		   events[PGSTEAL_DIRECT]);
	seq_printf(m, "pgactivate %lu\n", events[PGACTIVATE]);
	seq_printf(m, "pgdeactivate %lu\n", events[PGDEACTIVATE]);
	seq_printf(m, "pglazyfree %lu\n", events[PGLAZYFREE]);
	seq_printf(m, "pglazyfreed %lu\n", events[PGLAZYFREED]);

5285
	seq_printf(m, "workingset_refault %lu\n",
5286
		   stat[WORKINGSET_REFAULT]);
5287
	seq_printf(m, "workingset_activate %lu\n",
5288
		   stat[WORKINGSET_ACTIVATE]);
5289
	seq_printf(m, "workingset_nodereclaim %lu\n",
5290
		   stat[WORKINGSET_NODERECLAIM]);
5291

5292 5293 5294
	return 0;
}

5295 5296 5297
static struct cftype memory_files[] = {
	{
		.name = "current",
5298
		.flags = CFTYPE_NOT_ON_ROOT,
5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321
		.read_u64 = memory_current_read,
	},
	{
		.name = "low",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_low_show,
		.write = memory_low_write,
	},
	{
		.name = "high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_high_show,
		.write = memory_high_write,
	},
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_max_show,
		.write = memory_max_write,
	},
	{
		.name = "events",
		.flags = CFTYPE_NOT_ON_ROOT,
5322
		.file_offset = offsetof(struct mem_cgroup, events_file),
5323 5324
		.seq_show = memory_events_show,
	},
5325 5326 5327 5328 5329
	{
		.name = "stat",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_stat_show,
	},
5330 5331 5332
	{ }	/* terminate */
};

5333
struct cgroup_subsys memory_cgrp_subsys = {
5334
	.css_alloc = mem_cgroup_css_alloc,
5335
	.css_online = mem_cgroup_css_online,
5336
	.css_offline = mem_cgroup_css_offline,
5337
	.css_released = mem_cgroup_css_released,
5338
	.css_free = mem_cgroup_css_free,
5339
	.css_reset = mem_cgroup_css_reset,
5340 5341
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
5342
	.post_attach = mem_cgroup_move_task,
5343
	.bind = mem_cgroup_bind,
5344 5345
	.dfl_cftypes = memory_files,
	.legacy_cftypes = mem_cgroup_legacy_files,
5346
	.early_init = 0,
B
Balbir Singh 已提交
5347
};
5348

5349 5350
/**
 * mem_cgroup_low - check if memory consumption is below the normal range
5351
 * @root: the top ancestor of the sub-tree being checked
5352 5353 5354
 * @memcg: the memory cgroup to check
 *
 * Returns %true if memory consumption of @memcg, and that of all
5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380
 * ancestors up to (but not including) @root, is below the normal range.
 *
 * @root is exclusive; it is never low when looked at directly and isn't
 * checked when traversing the hierarchy.
 *
 * Excluding @root enables using memory.low to prioritize memory usage
 * between cgroups within a subtree of the hierarchy that is limited by
 * memory.high or memory.max.
 *
 * For example, given cgroup A with children B and C:
 *
 *    A
 *   / \
 *  B   C
 *
 * and
 *
 *  1. A/memory.current > A/memory.high
 *  2. A/B/memory.current < A/B/memory.low
 *  3. A/C/memory.current >= A/C/memory.low
 *
 * As 'A' is high, i.e. triggers reclaim from 'A', and 'B' is low, we
 * should reclaim from 'C' until 'A' is no longer high or until we can
 * no longer reclaim from 'C'.  If 'A', i.e. @root, isn't excluded by
 * mem_cgroup_low when reclaming from 'A', then 'B' won't be considered
 * low and we will reclaim indiscriminately from both 'B' and 'C'.
5381 5382 5383 5384 5385 5386
 */
bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return false;

5387 5388 5389
	if (!root)
		root = root_mem_cgroup;
	if (memcg == root)
5390 5391
		return false;

5392
	for (; memcg != root; memcg = parent_mem_cgroup(memcg)) {
M
Michal Hocko 已提交
5393
		if (page_counter_read(&memcg->memory) >= memcg->low)
5394 5395
			return false;
	}
5396

5397 5398 5399
	return true;
}

5400 5401 5402 5403 5404 5405
/**
 * mem_cgroup_try_charge - try charging a page
 * @page: page to charge
 * @mm: mm context of the victim
 * @gfp_mask: reclaim mode
 * @memcgp: charged memcg return
5406
 * @compound: charge the page as compound or small page
5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418
 *
 * Try to charge @page to the memcg that @mm belongs to, reclaiming
 * pages according to @gfp_mask if necessary.
 *
 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
 * Otherwise, an error code is returned.
 *
 * After page->mapping has been set up, the caller must finalize the
 * charge with mem_cgroup_commit_charge().  Or abort the transaction
 * with mem_cgroup_cancel_charge() in case page instantiation fails.
 */
int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5419 5420
			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
			  bool compound)
5421 5422
{
	struct mem_cgroup *memcg = NULL;
5423
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436
	int ret = 0;

	if (mem_cgroup_disabled())
		goto out;

	if (PageSwapCache(page)) {
		/*
		 * Every swap fault against a single page tries to charge the
		 * page, bail as early as possible.  shmem_unuse() encounters
		 * already charged pages, too.  The USED bit is protected by
		 * the page lock, which serializes swap cache removal, which
		 * in turn serializes uncharging.
		 */
5437
		VM_BUG_ON_PAGE(!PageLocked(page), page);
5438
		if (compound_head(page)->mem_cgroup)
5439
			goto out;
5440

5441
		if (do_swap_account) {
5442 5443 5444 5445 5446 5447 5448 5449 5450
			swp_entry_t ent = { .val = page_private(page), };
			unsigned short id = lookup_swap_cgroup_id(ent);

			rcu_read_lock();
			memcg = mem_cgroup_from_id(id);
			if (memcg && !css_tryget_online(&memcg->css))
				memcg = NULL;
			rcu_read_unlock();
		}
5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468
	}

	if (!memcg)
		memcg = get_mem_cgroup_from_mm(mm);

	ret = try_charge(memcg, gfp_mask, nr_pages);

	css_put(&memcg->css);
out:
	*memcgp = memcg;
	return ret;
}

/**
 * mem_cgroup_commit_charge - commit a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 * @lrucare: page might be on LRU already
5469
 * @compound: charge the page as compound or small page
5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481
 *
 * Finalize a charge transaction started by mem_cgroup_try_charge(),
 * after page->mapping has been set up.  This must happen atomically
 * as part of the page instantiation, i.e. under the page table lock
 * for anonymous pages, under the page lock for page and swap cache.
 *
 * In addition, the page must not be on the LRU during the commit, to
 * prevent racing with task migration.  If it might be, use @lrucare.
 *
 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
 */
void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5482
			      bool lrucare, bool compound)
5483
{
5484
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498

	VM_BUG_ON_PAGE(!page->mapping, page);
	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

5499 5500 5501
	commit_charge(page, memcg, lrucare);

	local_irq_disable();
5502
	mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5503 5504
	memcg_check_events(memcg, page);
	local_irq_enable();
5505

5506
	if (do_memsw_account() && PageSwapCache(page)) {
5507 5508 5509 5510 5511 5512
		swp_entry_t entry = { .val = page_private(page) };
		/*
		 * The swap entry might not get freed for a long time,
		 * let's not wait for it.  The page already received a
		 * memory+swap charge, drop the swap entry duplicate.
		 */
5513
		mem_cgroup_uncharge_swap(entry, nr_pages);
5514 5515 5516 5517 5518 5519 5520
	}
}

/**
 * mem_cgroup_cancel_charge - cancel a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
5521
 * @compound: charge the page as compound or small page
5522 5523 5524
 *
 * Cancel a charge transaction started by mem_cgroup_try_charge().
 */
5525 5526
void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
		bool compound)
5527
{
5528
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

	cancel_charge(memcg, nr_pages);
}

5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554
struct uncharge_gather {
	struct mem_cgroup *memcg;
	unsigned long pgpgout;
	unsigned long nr_anon;
	unsigned long nr_file;
	unsigned long nr_kmem;
	unsigned long nr_huge;
	unsigned long nr_shmem;
	struct page *dummy_page;
};

static inline void uncharge_gather_clear(struct uncharge_gather *ug)
5555
{
5556 5557 5558 5559 5560 5561
	memset(ug, 0, sizeof(*ug));
}

static void uncharge_batch(const struct uncharge_gather *ug)
{
	unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
5562 5563
	unsigned long flags;

5564 5565
	if (!mem_cgroup_is_root(ug->memcg)) {
		page_counter_uncharge(&ug->memcg->memory, nr_pages);
5566
		if (do_memsw_account())
5567 5568 5569 5570
			page_counter_uncharge(&ug->memcg->memsw, nr_pages);
		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
			page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
		memcg_oom_recover(ug->memcg);
5571
	}
5572 5573

	local_irq_save(flags);
5574 5575 5576 5577 5578 5579 5580
	__this_cpu_sub(ug->memcg->stat->count[MEMCG_RSS], ug->nr_anon);
	__this_cpu_sub(ug->memcg->stat->count[MEMCG_CACHE], ug->nr_file);
	__this_cpu_sub(ug->memcg->stat->count[MEMCG_RSS_HUGE], ug->nr_huge);
	__this_cpu_sub(ug->memcg->stat->count[NR_SHMEM], ug->nr_shmem);
	__this_cpu_add(ug->memcg->stat->events[PGPGOUT], ug->pgpgout);
	__this_cpu_add(ug->memcg->stat->nr_page_events, nr_pages);
	memcg_check_events(ug->memcg, ug->dummy_page);
5581
	local_irq_restore(flags);
5582

5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630
	if (!mem_cgroup_is_root(ug->memcg))
		css_put_many(&ug->memcg->css, nr_pages);
}

static void uncharge_page(struct page *page, struct uncharge_gather *ug)
{
	VM_BUG_ON_PAGE(PageLRU(page), page);
	VM_BUG_ON_PAGE(!PageHWPoison(page) && page_count(page), page);

	if (!page->mem_cgroup)
		return;

	/*
	 * Nobody should be changing or seriously looking at
	 * page->mem_cgroup at this point, we have fully
	 * exclusive access to the page.
	 */

	if (ug->memcg != page->mem_cgroup) {
		if (ug->memcg) {
			uncharge_batch(ug);
			uncharge_gather_clear(ug);
		}
		ug->memcg = page->mem_cgroup;
	}

	if (!PageKmemcg(page)) {
		unsigned int nr_pages = 1;

		if (PageTransHuge(page)) {
			nr_pages <<= compound_order(page);
			ug->nr_huge += nr_pages;
		}
		if (PageAnon(page))
			ug->nr_anon += nr_pages;
		else {
			ug->nr_file += nr_pages;
			if (PageSwapBacked(page))
				ug->nr_shmem += nr_pages;
		}
		ug->pgpgout++;
	} else {
		ug->nr_kmem += 1 << compound_order(page);
		__ClearPageKmemcg(page);
	}

	ug->dummy_page = page;
	page->mem_cgroup = NULL;
5631 5632 5633 5634
}

static void uncharge_list(struct list_head *page_list)
{
5635
	struct uncharge_gather ug;
5636
	struct list_head *next;
5637 5638

	uncharge_gather_clear(&ug);
5639

5640 5641 5642 5643
	/*
	 * Note that the list can be a single page->lru; hence the
	 * do-while loop instead of a simple list_for_each_entry().
	 */
5644 5645
	next = page_list->next;
	do {
5646 5647
		struct page *page;

5648 5649 5650
		page = list_entry(next, struct page, lru);
		next = page->lru.next;

5651
		uncharge_page(page, &ug);
5652 5653
	} while (next != page_list);

5654 5655
	if (ug.memcg)
		uncharge_batch(&ug);
5656 5657
}

5658 5659 5660 5661 5662 5663 5664 5665 5666
/**
 * mem_cgroup_uncharge - uncharge a page
 * @page: page to uncharge
 *
 * Uncharge a page previously charged with mem_cgroup_try_charge() and
 * mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge(struct page *page)
{
5667 5668
	struct uncharge_gather ug;

5669 5670 5671
	if (mem_cgroup_disabled())
		return;

5672
	/* Don't touch page->lru of any random page, pre-check: */
5673
	if (!page->mem_cgroup)
5674 5675
		return;

5676 5677 5678
	uncharge_gather_clear(&ug);
	uncharge_page(page, &ug);
	uncharge_batch(&ug);
5679
}
5680

5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691
/**
 * mem_cgroup_uncharge_list - uncharge a list of page
 * @page_list: list of pages to uncharge
 *
 * Uncharge a list of pages previously charged with
 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge_list(struct list_head *page_list)
{
	if (mem_cgroup_disabled())
		return;
5692

5693 5694
	if (!list_empty(page_list))
		uncharge_list(page_list);
5695 5696 5697
}

/**
5698 5699 5700
 * mem_cgroup_migrate - charge a page's replacement
 * @oldpage: currently circulating page
 * @newpage: replacement page
5701
 *
5702 5703
 * Charge @newpage as a replacement page for @oldpage. @oldpage will
 * be uncharged upon free.
5704 5705 5706
 *
 * Both pages must be locked, @newpage->mapping must be set up.
 */
5707
void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
5708
{
5709
	struct mem_cgroup *memcg;
5710 5711
	unsigned int nr_pages;
	bool compound;
5712
	unsigned long flags;
5713 5714 5715 5716

	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5717 5718
	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
		       newpage);
5719 5720 5721 5722 5723

	if (mem_cgroup_disabled())
		return;

	/* Page cache replacement: new page already charged? */
5724
	if (newpage->mem_cgroup)
5725 5726
		return;

5727
	/* Swapcache readahead pages can get replaced before being charged */
5728
	memcg = oldpage->mem_cgroup;
5729
	if (!memcg)
5730 5731
		return;

5732 5733 5734 5735 5736 5737 5738 5739
	/* Force-charge the new page. The old one will be freed soon */
	compound = PageTransHuge(newpage);
	nr_pages = compound ? hpage_nr_pages(newpage) : 1;

	page_counter_charge(&memcg->memory, nr_pages);
	if (do_memsw_account())
		page_counter_charge(&memcg->memsw, nr_pages);
	css_get_many(&memcg->css, nr_pages);
5740

5741
	commit_charge(newpage, memcg, false);
5742

5743
	local_irq_save(flags);
5744 5745
	mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
	memcg_check_events(memcg, newpage);
5746
	local_irq_restore(flags);
5747 5748
}

5749
DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5750 5751
EXPORT_SYMBOL(memcg_sockets_enabled_key);

5752
void mem_cgroup_sk_alloc(struct sock *sk)
5753 5754 5755
{
	struct mem_cgroup *memcg;

5756 5757 5758 5759 5760
	if (!mem_cgroup_sockets_enabled)
		return;

	/*
	 * Socket cloning can throw us here with sk_memcg already
5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775
	 * filled. It won't however, necessarily happen from
	 * process context. So the test for root memcg given
	 * the current task's memcg won't help us in this case.
	 *
	 * Respecting the original socket's memcg is a better
	 * decision in this case.
	 */
	if (sk->sk_memcg) {
		BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
		css_get(&sk->sk_memcg->css);
		return;
	}

	rcu_read_lock();
	memcg = mem_cgroup_from_task(current);
5776 5777
	if (memcg == root_mem_cgroup)
		goto out;
5778
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5779 5780
		goto out;
	if (css_tryget_online(&memcg->css))
5781
		sk->sk_memcg = memcg;
5782
out:
5783 5784 5785
	rcu_read_unlock();
}

5786
void mem_cgroup_sk_free(struct sock *sk)
5787
{
5788 5789
	if (sk->sk_memcg)
		css_put(&sk->sk_memcg->css);
5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801
}

/**
 * mem_cgroup_charge_skmem - charge socket memory
 * @memcg: memcg to charge
 * @nr_pages: number of pages to charge
 *
 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
 * @memcg's configured limit, %false if the charge had to be forced.
 */
bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
5802
	gfp_t gfp_mask = GFP_KERNEL;
5803

5804
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5805
		struct page_counter *fail;
5806

5807 5808
		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
			memcg->tcpmem_pressure = 0;
5809 5810
			return true;
		}
5811 5812
		page_counter_charge(&memcg->tcpmem, nr_pages);
		memcg->tcpmem_pressure = 1;
5813
		return false;
5814
	}
5815

5816 5817 5818 5819
	/* Don't block in the packet receive path */
	if (in_softirq())
		gfp_mask = GFP_NOWAIT;

5820 5821
	this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);

5822 5823 5824 5825
	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
		return true;

	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5826 5827 5828 5829 5830 5831 5832 5833 5834 5835
	return false;
}

/**
 * mem_cgroup_uncharge_skmem - uncharge socket memory
 * @memcg - memcg to uncharge
 * @nr_pages - number of pages to uncharge
 */
void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
5836
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5837
		page_counter_uncharge(&memcg->tcpmem, nr_pages);
5838 5839
		return;
	}
5840

5841 5842
	this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);

5843 5844
	page_counter_uncharge(&memcg->memory, nr_pages);
	css_put_many(&memcg->css, nr_pages);
5845 5846
}

5847 5848 5849 5850 5851 5852 5853 5854 5855
static int __init cgroup_memory(char *s)
{
	char *token;

	while ((token = strsep(&s, ",")) != NULL) {
		if (!*token)
			continue;
		if (!strcmp(token, "nosocket"))
			cgroup_memory_nosocket = true;
5856 5857
		if (!strcmp(token, "nokmem"))
			cgroup_memory_nokmem = true;
5858 5859 5860 5861
	}
	return 0;
}
__setup("cgroup.memory=", cgroup_memory);
5862

5863
/*
5864 5865
 * subsys_initcall() for memory controller.
 *
5866 5867 5868 5869
 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
 * basically everything that doesn't depend on a specific mem_cgroup structure
 * should be initialized from here.
5870 5871 5872
 */
static int __init mem_cgroup_init(void)
{
5873 5874
	int cpu, node;

5875 5876 5877
#ifndef CONFIG_SLOB
	/*
	 * Kmem cache creation is mostly done with the slab_mutex held,
5878 5879 5880
	 * so use a workqueue with limited concurrency to avoid stalling
	 * all worker threads in case lots of cgroups are created and
	 * destroyed simultaneously.
5881
	 */
5882 5883
	memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
	BUG_ON(!memcg_kmem_cache_wq);
5884 5885
#endif

5886 5887
	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
				  memcg_hotplug_cpu_dead);
5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898

	for_each_possible_cpu(cpu)
		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
			  drain_local_stock);

	for_each_node(node) {
		struct mem_cgroup_tree_per_node *rtpn;

		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
				    node_online(node) ? node : NUMA_NO_NODE);

5899 5900
		rtpn->rb_root = RB_ROOT;
		spin_lock_init(&rtpn->lock);
5901 5902 5903
		soft_limit_tree.rb_tree_per_node[node] = rtpn;
	}

5904 5905 5906
	return 0;
}
subsys_initcall(mem_cgroup_init);
5907 5908

#ifdef CONFIG_MEMCG_SWAP
5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926
static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
{
	while (!atomic_inc_not_zero(&memcg->id.ref)) {
		/*
		 * The root cgroup cannot be destroyed, so it's refcount must
		 * always be >= 1.
		 */
		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
			VM_BUG_ON(1);
			break;
		}
		memcg = parent_mem_cgroup(memcg);
		if (!memcg)
			memcg = root_mem_cgroup;
	}
	return memcg;
}

5927 5928 5929 5930 5931 5932 5933 5934 5935
/**
 * mem_cgroup_swapout - transfer a memsw charge to swap
 * @page: page whose memsw charge to transfer
 * @entry: swap entry to move the charge to
 *
 * Transfer the memsw charge of @page to @entry.
 */
void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
{
5936
	struct mem_cgroup *memcg, *swap_memcg;
5937
	unsigned int nr_entries;
5938 5939 5940 5941 5942
	unsigned short oldid;

	VM_BUG_ON_PAGE(PageLRU(page), page);
	VM_BUG_ON_PAGE(page_count(page), page);

5943
	if (!do_memsw_account())
5944 5945 5946 5947 5948 5949 5950 5951
		return;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return;

5952 5953 5954 5955 5956 5957
	/*
	 * In case the memcg owning these pages has been offlined and doesn't
	 * have an ID allocated to it anymore, charge the closest online
	 * ancestor for the swap instead and transfer the memory+swap charge.
	 */
	swap_memcg = mem_cgroup_id_get_online(memcg);
5958 5959 5960 5961 5962 5963
	nr_entries = hpage_nr_pages(page);
	/* Get references for the tail pages, too */
	if (nr_entries > 1)
		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
				   nr_entries);
5964
	VM_BUG_ON_PAGE(oldid, page);
5965
	mem_cgroup_swap_statistics(swap_memcg, nr_entries);
5966 5967 5968 5969

	page->mem_cgroup = NULL;

	if (!mem_cgroup_is_root(memcg))
5970
		page_counter_uncharge(&memcg->memory, nr_entries);
5971

5972 5973
	if (memcg != swap_memcg) {
		if (!mem_cgroup_is_root(swap_memcg))
5974 5975
			page_counter_charge(&swap_memcg->memsw, nr_entries);
		page_counter_uncharge(&memcg->memsw, nr_entries);
5976 5977
	}

5978 5979 5980 5981 5982 5983 5984
	/*
	 * Interrupts should be disabled here because the caller holds the
	 * mapping->tree_lock lock which is taken with interrupts-off. It is
	 * important here to have the interrupts disabled because it is the
	 * only synchronisation we have for udpating the per-CPU variables.
	 */
	VM_BUG_ON(!irqs_disabled());
5985 5986
	mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
				     -nr_entries);
5987
	memcg_check_events(memcg, page);
5988 5989 5990

	if (!mem_cgroup_is_root(memcg))
		css_put(&memcg->css);
5991 5992
}

5993 5994
/**
 * mem_cgroup_try_charge_swap - try charging swap space for a page
5995 5996 5997
 * @page: page being added to swap
 * @entry: swap entry to charge
 *
5998
 * Try to charge @page's memcg for the swap space at @entry.
5999 6000 6001 6002 6003
 *
 * Returns 0 on success, -ENOMEM on failure.
 */
int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
{
6004
	unsigned int nr_pages = hpage_nr_pages(page);
6005
	struct page_counter *counter;
6006
	struct mem_cgroup *memcg;
6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017
	unsigned short oldid;

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
		return 0;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return 0;

6018 6019
	memcg = mem_cgroup_id_get_online(memcg);

6020
	if (!mem_cgroup_is_root(memcg) &&
6021
	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
6022
		mem_cgroup_id_put(memcg);
6023
		return -ENOMEM;
6024
	}
6025

6026 6027 6028 6029
	/* Get references for the tail pages, too */
	if (nr_pages > 1)
		mem_cgroup_id_get_many(memcg, nr_pages - 1);
	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
6030
	VM_BUG_ON_PAGE(oldid, page);
6031
	mem_cgroup_swap_statistics(memcg, nr_pages);
6032 6033 6034 6035

	return 0;
}

6036
/**
6037
 * mem_cgroup_uncharge_swap - uncharge swap space
6038
 * @entry: swap entry to uncharge
6039
 * @nr_pages: the amount of swap space to uncharge
6040
 */
6041
void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
6042 6043 6044 6045
{
	struct mem_cgroup *memcg;
	unsigned short id;

6046
	if (!do_swap_account)
6047 6048
		return;

6049
	id = swap_cgroup_record(entry, 0, nr_pages);
6050
	rcu_read_lock();
6051
	memcg = mem_cgroup_from_id(id);
6052
	if (memcg) {
6053 6054
		if (!mem_cgroup_is_root(memcg)) {
			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6055
				page_counter_uncharge(&memcg->swap, nr_pages);
6056
			else
6057
				page_counter_uncharge(&memcg->memsw, nr_pages);
6058
		}
6059 6060
		mem_cgroup_swap_statistics(memcg, -nr_pages);
		mem_cgroup_id_put_many(memcg, nr_pages);
6061 6062 6063 6064
	}
	rcu_read_unlock();
}

6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077
long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
{
	long nr_swap_pages = get_nr_swap_pages();

	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return nr_swap_pages;
	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
		nr_swap_pages = min_t(long, nr_swap_pages,
				      READ_ONCE(memcg->swap.limit) -
				      page_counter_read(&memcg->swap));
	return nr_swap_pages;
}

6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099
bool mem_cgroup_swap_full(struct page *page)
{
	struct mem_cgroup *memcg;

	VM_BUG_ON_PAGE(!PageLocked(page), page);

	if (vm_swap_full())
		return true;
	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return false;

	memcg = page->mem_cgroup;
	if (!memcg)
		return false;

	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
		if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
			return true;

	return false;
}

6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116
/* for remember boot option*/
#ifdef CONFIG_MEMCG_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata;
#endif

static int __init enable_swap_account(char *s)
{
	if (!strcmp(s, "1"))
		really_do_swap_account = 1;
	else if (!strcmp(s, "0"))
		really_do_swap_account = 0;
	return 1;
}
__setup("swapaccount=", enable_swap_account);

6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173
static u64 swap_current_read(struct cgroup_subsys_state *css,
			     struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
}

static int swap_max_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
	unsigned long max = READ_ONCE(memcg->swap.limit);

	if (max == PAGE_COUNTER_MAX)
		seq_puts(m, "max\n");
	else
		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);

	return 0;
}

static ssize_t swap_max_write(struct kernfs_open_file *of,
			      char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long max;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &max);
	if (err)
		return err;

	mutex_lock(&memcg_limit_mutex);
	err = page_counter_limit(&memcg->swap, max);
	mutex_unlock(&memcg_limit_mutex);
	if (err)
		return err;

	return nbytes;
}

static struct cftype swap_files[] = {
	{
		.name = "swap.current",
		.flags = CFTYPE_NOT_ON_ROOT,
		.read_u64 = swap_current_read,
	},
	{
		.name = "swap.max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = swap_max_show,
		.write = swap_max_write,
	},
	{ }	/* terminate */
};

6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{ },	/* terminate */
};

static int __init mem_cgroup_swap_init(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
6205 6206
		WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
					       swap_files));
6207 6208 6209 6210 6211 6212 6213 6214
		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
						  memsw_cgroup_files));
	}
	return 0;
}
subsys_initcall(mem_cgroup_swap_init);

#endif /* CONFIG_MEMCG_SWAP */