memcontrol.c 151.3 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
17 18 19 20 21 22
 * Native page reclaim
 * Charge lifetime sanitation
 * Lockless page tracking & accounting
 * Unified hierarchy configuration model
 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
 *
B
Balbir Singh 已提交
23 24 25 26 27 28 29 30 31 32 33
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

34
#include <linux/page_counter.h>
B
Balbir Singh 已提交
35 36
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
37
#include <linux/mm.h>
38
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
39
#include <linux/pagemap.h>
40
#include <linux/smp.h>
41
#include <linux/page-flags.h>
42
#include <linux/backing-dev.h>
43 44
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
45
#include <linux/limits.h>
46
#include <linux/export.h>
47
#include <linux/mutex.h>
48
#include <linux/rbtree.h>
49
#include <linux/slab.h>
50
#include <linux/swap.h>
51
#include <linux/swapops.h>
52
#include <linux/spinlock.h>
53
#include <linux/eventfd.h>
54
#include <linux/poll.h>
55
#include <linux/sort.h>
56
#include <linux/fs.h>
57
#include <linux/seq_file.h>
58
#include <linux/vmpressure.h>
59
#include <linux/mm_inline.h>
60
#include <linux/swap_cgroup.h>
61
#include <linux/cpu.h>
62
#include <linux/oom.h>
63
#include <linux/lockdep.h>
64
#include <linux/file.h>
65
#include <linux/tracehook.h>
K
KAMEZAWA Hiroyuki 已提交
66
#include "internal.h"
G
Glauber Costa 已提交
67
#include <net/sock.h>
M
Michal Hocko 已提交
68
#include <net/ip.h>
69
#include "slab.h"
B
Balbir Singh 已提交
70

71 72
#include <asm/uaccess.h>

73 74
#include <trace/events/vmscan.h>

75 76
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
77

78 79
struct mem_cgroup *root_mem_cgroup __read_mostly;

80
#define MEM_CGROUP_RECLAIM_RETRIES	5
B
Balbir Singh 已提交
81

82 83 84
/* Socket memory accounting disabled? */
static bool cgroup_memory_nosocket;

85 86 87
/* Kernel memory accounting disabled? */
static bool cgroup_memory_nokmem;

88
/* Whether the swap controller is active */
A
Andrew Morton 已提交
89
#ifdef CONFIG_MEMCG_SWAP
90 91
int do_swap_account __read_mostly;
#else
92
#define do_swap_account		0
93 94
#endif

95 96 97 98 99 100
/* Whether legacy memory+swap accounting is active */
static bool do_memsw_account(void)
{
	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
}

101 102 103
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
104
	"rss_huge",
105
	"mapped_file",
106
	"dirty",
107
	"writeback",
108 109 110 111 112 113 114 115 116 117
	"swap",
};

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

118 119 120 121 122 123 124 125
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

126 127 128
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
129

130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

K
KAMEZAWA Hiroyuki 已提交
150 151 152 153 154
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
155

156 157 158
/*
 * cgroup_event represents events which userspace want to receive.
 */
159
struct mem_cgroup_event {
160
	/*
161
	 * memcg which the event belongs to.
162
	 */
163
	struct mem_cgroup *memcg;
164 165 166 167 168 169 170 171
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
172 173 174 175 176
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
177
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
178
			      struct eventfd_ctx *eventfd, const char *args);
179 180 181 182 183
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
184
	void (*unregister_event)(struct mem_cgroup *memcg,
185
				 struct eventfd_ctx *eventfd);
186 187 188 189 190 191 192 193 194 195
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
	wait_queue_t wait;
	struct work_struct remove;
};

196 197
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
198

199 200
/* Stuffs for move charges at task migration. */
/*
201
 * Types of charges to be moved.
202
 */
203 204 205
#define MOVE_ANON	0x1U
#define MOVE_FILE	0x2U
#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
206

207 208
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
209
	spinlock_t	  lock; /* for from, to */
210
	struct mm_struct  *mm;
211 212
	struct mem_cgroup *from;
	struct mem_cgroup *to;
213
	unsigned long flags;
214
	unsigned long precharge;
215
	unsigned long moved_charge;
216
	unsigned long moved_swap;
217 218 219
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
220
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
221 222
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
223

224 225 226 227
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
228
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
229
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
230

231 232
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
233
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
234
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
235
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
236 237 238
	NR_CHARGE_TYPE,
};

239
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
240 241 242 243
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
244
	_KMEM,
V
Vladimir Davydov 已提交
245
	_TCP,
G
Glauber Costa 已提交
246 247
};

248 249
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
250
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
251 252
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
253

254 255 256 257 258 259 260 261 262 263 264 265 266
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

267 268 269 270 271
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

272
#ifndef CONFIG_SLOB
273
/*
274
 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
L
Li Zefan 已提交
275 276 277 278 279
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
280
 *
281 282
 * The current size of the caches array is stored in memcg_nr_cache_ids. It
 * will double each time we have to increase it.
283
 */
284 285
static DEFINE_IDA(memcg_cache_ida);
int memcg_nr_cache_ids;
286

287 288 289 290 291 292 293 294 295 296 297 298 299
/* Protects memcg_nr_cache_ids */
static DECLARE_RWSEM(memcg_cache_ids_sem);

void memcg_get_cache_ids(void)
{
	down_read(&memcg_cache_ids_sem);
}

void memcg_put_cache_ids(void)
{
	up_read(&memcg_cache_ids_sem);
}

300 301 302 303 304 305
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
306
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
307 308
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
309
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
310 311 312
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
313
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
314

315 316 317 318 319 320
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
321
DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
322
EXPORT_SYMBOL(memcg_kmem_enabled_key);
323

324
#endif /* !CONFIG_SLOB */
325

326
static struct mem_cgroup_per_zone *
327
mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
328
{
329 330 331
	int nid = zone_to_nid(zone);
	int zid = zone_idx(zone);

332
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
333 334
}

335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
/**
 * mem_cgroup_css_from_page - css of the memcg associated with a page
 * @page: page of interest
 *
 * If memcg is bound to the default hierarchy, css of the memcg associated
 * with @page is returned.  The returned css remains associated with @page
 * until it is released.
 *
 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
 * is returned.
 */
struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
{
	struct mem_cgroup *memcg;

	memcg = page->mem_cgroup;

352
	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
353 354 355 356 357
		memcg = root_mem_cgroup;

	return &memcg->css;
}

358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
/**
 * page_cgroup_ino - return inode number of the memcg a page is charged to
 * @page: the page
 *
 * Look up the closest online ancestor of the memory cgroup @page is charged to
 * and return its inode number or 0 if @page is not charged to any cgroup. It
 * is safe to call this function without holding a reference to @page.
 *
 * Note, this function is inherently racy, because there is nothing to prevent
 * the cgroup inode from getting torn down and potentially reallocated a moment
 * after page_cgroup_ino() returns, so it only should be used by callers that
 * do not care (such as procfs interfaces).
 */
ino_t page_cgroup_ino(struct page *page)
{
	struct mem_cgroup *memcg;
	unsigned long ino = 0;

	rcu_read_lock();
	memcg = READ_ONCE(page->mem_cgroup);
	while (memcg && !(memcg->css.flags & CSS_ONLINE))
		memcg = parent_mem_cgroup(memcg);
	if (memcg)
		ino = cgroup_ino(memcg->css.cgroup);
	rcu_read_unlock();
	return ino;
}

386
static struct mem_cgroup_per_zone *
387
mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
388
{
389 390
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
391

392
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
393 394
}

395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

410 411
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
					 struct mem_cgroup_tree_per_zone *mctz,
412
					 unsigned long new_usage_in_excess)
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

442 443
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
					 struct mem_cgroup_tree_per_zone *mctz)
444 445 446 447 448 449 450
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

451 452
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
				       struct mem_cgroup_tree_per_zone *mctz)
453
{
454 455 456
	unsigned long flags;

	spin_lock_irqsave(&mctz->lock, flags);
457
	__mem_cgroup_remove_exceeded(mz, mctz);
458
	spin_unlock_irqrestore(&mctz->lock, flags);
459 460
}

461 462 463
static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
{
	unsigned long nr_pages = page_counter_read(&memcg->memory);
464
	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
465 466 467 468 469 470 471
	unsigned long excess = 0;

	if (nr_pages > soft_limit)
		excess = nr_pages - soft_limit;

	return excess;
}
472 473 474

static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
475
	unsigned long excess;
476 477 478
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

479
	mctz = soft_limit_tree_from_page(page);
480 481 482 483 484
	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
485
		mz = mem_cgroup_page_zoneinfo(memcg, page);
486
		excess = soft_limit_excess(memcg);
487 488 489 490 491
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
492 493 494
			unsigned long flags;

			spin_lock_irqsave(&mctz->lock, flags);
495 496
			/* if on-tree, remove it */
			if (mz->on_tree)
497
				__mem_cgroup_remove_exceeded(mz, mctz);
498 499 500 501
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
502
			__mem_cgroup_insert_exceeded(mz, mctz, excess);
503
			spin_unlock_irqrestore(&mctz->lock, flags);
504 505 506 507 508 509 510
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
	struct mem_cgroup_tree_per_zone *mctz;
511 512
	struct mem_cgroup_per_zone *mz;
	int nid, zid;
513

514 515 516 517
	for_each_node(nid) {
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			mctz = soft_limit_tree_node_zone(nid, zid);
518
			mem_cgroup_remove_exceeded(mz, mctz);
519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
		}
	}
}

static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
	struct mem_cgroup_per_zone *mz;

retry:
	mz = NULL;
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
541
	__mem_cgroup_remove_exceeded(mz, mctz);
542
	if (!soft_limit_excess(mz->memcg) ||
543
	    !css_tryget_online(&mz->memcg->css))
544 545 546 547 548 549 550 551 552 553
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

554
	spin_lock_irq(&mctz->lock);
555
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
556
	spin_unlock_irq(&mctz->lock);
557 558 559
	return mz;
}

560
/*
561 562
 * Return page count for single (non recursive) @memcg.
 *
563 564 565 566 567
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
568
 * a periodic synchronization of counter in memcg's counter.
569 570 571 572 573 574 575 576 577
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
578
 * common workload, threshold and synchronization as vmstat[] should be
579 580
 * implemented.
 */
581 582
static unsigned long
mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
583
{
584
	long val = 0;
585 586
	int cpu;

587
	/* Per-cpu values can be negative, use a signed accumulator */
588
	for_each_possible_cpu(cpu)
589
		val += per_cpu(memcg->stat->count[idx], cpu);
590 591 592 593 594 595
	/*
	 * Summing races with updates, so val may be negative.  Avoid exposing
	 * transient negative values.
	 */
	if (val < 0)
		val = 0;
596 597 598
	return val;
}

599
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
600 601 602 603 604
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

605
	for_each_possible_cpu(cpu)
606
		val += per_cpu(memcg->stat->events[idx], cpu);
607 608 609
	return val;
}

610
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
611
					 struct page *page,
612
					 bool compound, int nr_pages)
613
{
614 615 616 617
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
618
	if (PageAnon(page))
619
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
620
				nr_pages);
621
	else
622
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
623
				nr_pages);
624

625 626
	if (compound) {
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
627 628
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
				nr_pages);
629
	}
630

631 632
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
633
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
634
	else {
635
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
636 637
		nr_pages = -nr_pages; /* for event */
	}
638

639
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
640 641
}

642 643
unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
					   int nid, unsigned int lru_mask)
644
{
645
	unsigned long nr = 0;
646 647
	int zid;

648
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
649

650 651 652 653 654 655 656 657 658 659 660 661
	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		struct mem_cgroup_per_zone *mz;
		enum lru_list lru;

		for_each_lru(lru) {
			if (!(BIT(lru) & lru_mask))
				continue;
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			nr += mz->lru_size[lru];
		}
	}
	return nr;
662
}
663

664
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
665
			unsigned int lru_mask)
666
{
667
	unsigned long nr = 0;
668
	int nid;
669

670
	for_each_node_state(nid, N_MEMORY)
671 672
		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
	return nr;
673 674
}

675 676
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
677 678 679
{
	unsigned long val, next;

680
	val = __this_cpu_read(memcg->stat->nr_page_events);
681
	next = __this_cpu_read(memcg->stat->targets[target]);
682
	/* from time_after() in jiffies.h */
683 684 685 686 687
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
688 689 690
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
691 692 693 694 695 696 697 698
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
699
	}
700
	return false;
701 702 703 704 705 706
}

/*
 * Check events in order.
 *
 */
707
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
708 709
{
	/* threshold event is triggered in finer grain than soft limit */
710 711
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
712
		bool do_softlimit;
713
		bool do_numainfo __maybe_unused;
714

715 716
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
717 718 719 720
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
721
		mem_cgroup_threshold(memcg);
722 723
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
724
#if MAX_NUMNODES > 1
725
		if (unlikely(do_numainfo))
726
			atomic_inc(&memcg->numainfo_events);
727
#endif
728
	}
729 730
}

731
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
732
{
733 734 735 736 737 738 739 740
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

741
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
742
}
M
Michal Hocko 已提交
743
EXPORT_SYMBOL(mem_cgroup_from_task);
744

745
static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
746
{
747
	struct mem_cgroup *memcg = NULL;
748

749 750
	rcu_read_lock();
	do {
751 752 753 754 755 756
		/*
		 * Page cache insertions can happen withou an
		 * actual mm context, e.g. during disk probing
		 * on boot, loopback IO, acct() writes etc.
		 */
		if (unlikely(!mm))
757
			memcg = root_mem_cgroup;
758 759 760 761 762
		else {
			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
			if (unlikely(!memcg))
				memcg = root_mem_cgroup;
		}
763
	} while (!css_tryget_online(&memcg->css));
764
	rcu_read_unlock();
765
	return memcg;
766 767
}

768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
785
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
786
				   struct mem_cgroup *prev,
787
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
788
{
M
Michal Hocko 已提交
789
	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
790
	struct cgroup_subsys_state *css = NULL;
791
	struct mem_cgroup *memcg = NULL;
792
	struct mem_cgroup *pos = NULL;
793

794 795
	if (mem_cgroup_disabled())
		return NULL;
796

797 798
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
799

800
	if (prev && !reclaim)
801
		pos = prev;
K
KAMEZAWA Hiroyuki 已提交
802

803 804
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
805
			goto out;
806
		return root;
807
	}
K
KAMEZAWA Hiroyuki 已提交
808

809
	rcu_read_lock();
M
Michal Hocko 已提交
810

811 812 813 814 815 816 817 818 819
	if (reclaim) {
		struct mem_cgroup_per_zone *mz;

		mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
		iter = &mz->iter[reclaim->priority];

		if (prev && reclaim->generation != iter->generation)
			goto out_unlock;

820
		while (1) {
821
			pos = READ_ONCE(iter->position);
822 823
			if (!pos || css_tryget(&pos->css))
				break;
824
			/*
825 826 827 828 829 830
			 * css reference reached zero, so iter->position will
			 * be cleared by ->css_released. However, we should not
			 * rely on this happening soon, because ->css_released
			 * is called from a work queue, and by busy-waiting we
			 * might block it. So we clear iter->position right
			 * away.
831
			 */
832 833
			(void)cmpxchg(&iter->position, pos, NULL);
		}
834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
	}

	if (pos)
		css = &pos->css;

	for (;;) {
		css = css_next_descendant_pre(css, &root->css);
		if (!css) {
			/*
			 * Reclaimers share the hierarchy walk, and a
			 * new one might jump in right at the end of
			 * the hierarchy - make sure they see at least
			 * one group and restart from the beginning.
			 */
			if (!prev)
				continue;
			break;
851
		}
K
KAMEZAWA Hiroyuki 已提交
852

853 854 855 856 857 858
		/*
		 * Verify the css and acquire a reference.  The root
		 * is provided by the caller, so we know it's alive
		 * and kicking, and don't take an extra reference.
		 */
		memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
859

860 861
		if (css == &root->css)
			break;
K
KAMEZAWA Hiroyuki 已提交
862

863 864
		if (css_tryget(css))
			break;
865

866
		memcg = NULL;
867
	}
868 869 870

	if (reclaim) {
		/*
871 872 873
		 * The position could have already been updated by a competing
		 * thread, so check that the value hasn't changed since we read
		 * it to avoid reclaiming from the same cgroup twice.
874
		 */
875 876
		(void)cmpxchg(&iter->position, pos, memcg);

877 878 879 880 881 882 883
		if (pos)
			css_put(&pos->css);

		if (!memcg)
			iter->generation++;
		else if (!prev)
			reclaim->generation = iter->generation;
884
	}
885

886 887
out_unlock:
	rcu_read_unlock();
888
out:
889 890 891
	if (prev && prev != root)
		css_put(&prev->css);

892
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
893
}
K
KAMEZAWA Hiroyuki 已提交
894

895 896 897 898 899 900 901
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
902 903 904 905 906 907
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
908

909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930
static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
{
	struct mem_cgroup *memcg = dead_memcg;
	struct mem_cgroup_reclaim_iter *iter;
	struct mem_cgroup_per_zone *mz;
	int nid, zid;
	int i;

	while ((memcg = parent_mem_cgroup(memcg))) {
		for_each_node(nid) {
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
				for (i = 0; i <= DEF_PRIORITY; i++) {
					iter = &mz->iter[i];
					cmpxchg(&iter->position,
						dead_memcg, NULL);
				}
			}
		}
	}
}

931 932 933 934 935 936
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
937
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
938
	     iter != NULL;				\
939
	     iter = mem_cgroup_iter(root, iter, NULL))
940

941
#define for_each_mem_cgroup(iter)			\
942
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
943
	     iter != NULL;				\
944
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
945

946 947 948
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
949
 * @memcg: memcg of the wanted lruvec
950 951 952 953 954 955 956 957 958
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
959
	struct lruvec *lruvec;
960

961 962 963 964
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
965

966
	mz = mem_cgroup_zone_zoneinfo(memcg, zone);
967 968 969 970 971 972 973 974 975 976
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
977 978 979
}

/**
980
 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
981
 * @page: the page
982
 * @zone: zone of the page
983 984 985 986
 *
 * This function is only safe when following the LRU page isolation
 * and putback protocol: the LRU lock must be held, and the page must
 * either be PageLRU() or the caller must have isolated/allocated it.
987
 */
988
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
989 990
{
	struct mem_cgroup_per_zone *mz;
991
	struct mem_cgroup *memcg;
992
	struct lruvec *lruvec;
993

994 995 996 997
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
998

999
	memcg = page->mem_cgroup;
1000
	/*
1001
	 * Swapcache readahead pages are added to the LRU - and
1002
	 * possibly migrated - before they are charged.
1003
	 */
1004 1005
	if (!memcg)
		memcg = root_mem_cgroup;
1006

1007
	mz = mem_cgroup_page_zoneinfo(memcg, page);
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1018
}
1019

1020
/**
1021 1022 1023 1024
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1025
 *
1026 1027 1028
 * This function must be called under lru_lock, just before a page is added
 * to or just after a page is removed from an lru list (that ordering being
 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1029
 */
1030 1031
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1032 1033
{
	struct mem_cgroup_per_zone *mz;
1034
	unsigned long *lru_size;
1035 1036
	long size;
	bool empty;
1037

1038 1039
	__update_lru_size(lruvec, lru, nr_pages);

1040 1041 1042
	if (mem_cgroup_disabled())
		return;

1043 1044
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
	empty = list_empty(lruvec->lists + lru);

	if (nr_pages < 0)
		*lru_size += nr_pages;

	size = *lru_size;
	if (WARN_ONCE(size < 0 || empty != !size,
		"%s(%p, %d, %d): lru_size %ld but %sempty\n",
		__func__, lruvec, lru, nr_pages, size, empty ? "" : "not ")) {
		VM_BUG_ON(1);
		*lru_size = 0;
	}

	if (nr_pages > 0)
		*lru_size += nr_pages;
K
KAMEZAWA Hiroyuki 已提交
1060
}
1061

1062
bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1063
{
1064
	struct mem_cgroup *task_memcg;
1065
	struct task_struct *p;
1066
	bool ret;
1067

1068
	p = find_lock_task_mm(task);
1069
	if (p) {
1070
		task_memcg = get_mem_cgroup_from_mm(p->mm);
1071 1072 1073 1074 1075 1076 1077
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1078
		rcu_read_lock();
1079 1080
		task_memcg = mem_cgroup_from_task(task);
		css_get(&task_memcg->css);
1081
		rcu_read_unlock();
1082
	}
1083 1084
	ret = mem_cgroup_is_descendant(task_memcg, memcg);
	css_put(&task_memcg->css);
1085 1086 1087
	return ret;
}

1088
/**
1089
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1090
 * @memcg: the memory cgroup
1091
 *
1092
 * Returns the maximum amount of memory @mem can be charged with, in
1093
 * pages.
1094
 */
1095
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1096
{
1097 1098 1099
	unsigned long margin = 0;
	unsigned long count;
	unsigned long limit;
1100

1101
	count = page_counter_read(&memcg->memory);
1102
	limit = READ_ONCE(memcg->memory.limit);
1103 1104 1105
	if (count < limit)
		margin = limit - count;

1106
	if (do_memsw_account()) {
1107
		count = page_counter_read(&memcg->memsw);
1108
		limit = READ_ONCE(memcg->memsw.limit);
1109 1110 1111 1112 1113
		if (count <= limit)
			margin = min(margin, limit - count);
	}

	return margin;
1114 1115
}

1116
/*
Q
Qiang Huang 已提交
1117
 * A routine for checking "mem" is under move_account() or not.
1118
 *
Q
Qiang Huang 已提交
1119 1120 1121
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 * moving cgroups. This is for waiting at high-memory pressure
 * caused by "move".
1122
 */
1123
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1124
{
1125 1126
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1127
	bool ret = false;
1128 1129 1130 1131 1132 1133 1134 1135 1136
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1137

1138 1139
	ret = mem_cgroup_is_descendant(from, memcg) ||
		mem_cgroup_is_descendant(to, memcg);
1140 1141
unlock:
	spin_unlock(&mc.lock);
1142 1143 1144
	return ret;
}

1145
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1146 1147
{
	if (mc.moving_task && current != mc.moving_task) {
1148
		if (mem_cgroup_under_move(memcg)) {
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1161
#define K(x) ((x) << (PAGE_SHIFT-10))
1162
/**
1163
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1164 1165 1166 1167 1168 1169 1170 1171
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
1172 1173
	struct mem_cgroup *iter;
	unsigned int i;
1174 1175 1176

	rcu_read_lock();

1177 1178 1179 1180 1181 1182 1183 1184
	if (p) {
		pr_info("Task in ");
		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
		pr_cont(" killed as a result of limit of ");
	} else {
		pr_info("Memory limit reached of cgroup ");
	}

T
Tejun Heo 已提交
1185
	pr_cont_cgroup_path(memcg->css.cgroup);
1186
	pr_cont("\n");
1187 1188 1189

	rcu_read_unlock();

1190 1191 1192 1193 1194 1195 1196 1197 1198
	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memory)),
		K((u64)memcg->memory.limit), memcg->memory.failcnt);
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memsw)),
		K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->kmem)),
		K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1199 1200

	for_each_mem_cgroup_tree(iter, memcg) {
T
Tejun Heo 已提交
1201 1202
		pr_info("Memory cgroup stats for ");
		pr_cont_cgroup_path(iter->css.cgroup);
1203 1204 1205
		pr_cont(":");

		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1206
			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1207
				continue;
1208
			pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1209 1210 1211 1212 1213 1214 1215 1216 1217
				K(mem_cgroup_read_stat(iter, i)));
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1218 1219
}

1220 1221 1222 1223
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1224
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1225 1226
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1227 1228
	struct mem_cgroup *iter;

1229
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1230
		num++;
1231 1232 1233
	return num;
}

D
David Rientjes 已提交
1234 1235 1236
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1237
static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1238
{
1239
	unsigned long limit;
1240

1241
	limit = memcg->memory.limit;
1242
	if (mem_cgroup_swappiness(memcg)) {
1243
		unsigned long memsw_limit;
1244
		unsigned long swap_limit;
1245

1246
		memsw_limit = memcg->memsw.limit;
1247 1248 1249
		swap_limit = memcg->swap.limit;
		swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
		limit = min(limit + swap_limit, memsw_limit);
1250 1251
	}
	return limit;
D
David Rientjes 已提交
1252 1253
}

1254
static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1255
				     int order)
1256
{
1257 1258 1259 1260 1261 1262
	struct oom_control oc = {
		.zonelist = NULL,
		.nodemask = NULL,
		.gfp_mask = gfp_mask,
		.order = order,
	};
1263 1264 1265 1266 1267 1268
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1269 1270
	mutex_lock(&oom_lock);

1271
	/*
1272 1273 1274
	 * If current has a pending SIGKILL or is exiting, then automatically
	 * select it.  The goal is to allow it to allocate so that it may
	 * quickly exit and free its memory.
1275
	 */
1276
	if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1277
		mark_oom_victim(current);
1278
		try_oom_reaper(current);
1279
		goto unlock;
1280 1281
	}

1282
	check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg);
1283
	totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1284
	for_each_mem_cgroup_tree(iter, memcg) {
1285
		struct css_task_iter it;
1286 1287
		struct task_struct *task;

1288 1289
		css_task_iter_start(&iter->css, &it);
		while ((task = css_task_iter_next(&it))) {
1290
			switch (oom_scan_process_thread(&oc, task, totalpages)) {
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
1301
				css_task_iter_end(&it);
1302 1303 1304
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
1305 1306
				/* Set a dummy value to return "true". */
				chosen = (void *) 1;
1307
				goto unlock;
1308 1309 1310 1311
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
			if (!points || points < chosen_points)
				continue;
			/* Prefer thread group leaders for display purposes */
			if (points == chosen_points &&
			    thread_group_leader(chosen))
				continue;

			if (chosen)
				put_task_struct(chosen);
			chosen = task;
			chosen_points = points;
			get_task_struct(chosen);
1324
		}
1325
		css_task_iter_end(&it);
1326 1327
	}

1328 1329
	if (chosen) {
		points = chosen_points * 1000 / totalpages;
1330 1331
		oom_kill_process(&oc, chosen, points, totalpages, memcg,
				 "Memory cgroup out of memory");
1332 1333 1334
	}
unlock:
	mutex_unlock(&oom_lock);
1335
	return chosen;
1336 1337
}

1338 1339
#if MAX_NUMNODES > 1

1340 1341
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1342
 * @memcg: the target memcg
1343 1344 1345 1346 1347 1348 1349
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1350
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1351 1352
		int nid, bool noswap)
{
1353
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1354 1355 1356
		return true;
	if (noswap || !total_swap_pages)
		return false;
1357
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1358 1359 1360 1361
		return true;
	return false;

}
1362 1363 1364 1365 1366 1367 1368

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1369
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1370 1371
{
	int nid;
1372 1373 1374 1375
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1376
	if (!atomic_read(&memcg->numainfo_events))
1377
		return;
1378
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1379 1380 1381
		return;

	/* make a nodemask where this memcg uses memory from */
1382
	memcg->scan_nodes = node_states[N_MEMORY];
1383

1384
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1385

1386 1387
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1388
	}
1389

1390 1391
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1406
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1407 1408 1409
{
	int node;

1410 1411
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1412

1413
	node = next_node_in(node, memcg->scan_nodes);
1414
	/*
1415 1416 1417
	 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
	 * last time it really checked all the LRUs due to rate limiting.
	 * Fallback to the current node in that case for simplicity.
1418 1419 1420 1421
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1422
	memcg->last_scanned_node = node;
1423 1424 1425
	return node;
}
#else
1426
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1427 1428 1429 1430 1431
{
	return 0;
}
#endif

1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};

1447
	excess = soft_limit_excess(root_memcg);
1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
1476
		if (!soft_limit_excess(root_memcg))
1477
			break;
1478
	}
1479 1480
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
1481 1482
}

1483 1484 1485 1486 1487 1488
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

1489 1490
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
1491 1492 1493 1494
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
1495
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1496
{
1497
	struct mem_cgroup *iter, *failed = NULL;
1498

1499 1500
	spin_lock(&memcg_oom_lock);

1501
	for_each_mem_cgroup_tree(iter, memcg) {
1502
		if (iter->oom_lock) {
1503 1504 1505 1506 1507
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1508 1509
			mem_cgroup_iter_break(memcg, iter);
			break;
1510 1511
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1512
	}
K
KAMEZAWA Hiroyuki 已提交
1513

1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
1525
		}
1526 1527
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1528 1529 1530 1531

	spin_unlock(&memcg_oom_lock);

	return !failed;
1532
}
1533

1534
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1535
{
K
KAMEZAWA Hiroyuki 已提交
1536 1537
	struct mem_cgroup *iter;

1538
	spin_lock(&memcg_oom_lock);
1539
	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1540
	for_each_mem_cgroup_tree(iter, memcg)
1541
		iter->oom_lock = false;
1542
	spin_unlock(&memcg_oom_lock);
1543 1544
}

1545
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1546 1547 1548
{
	struct mem_cgroup *iter;

1549
	spin_lock(&memcg_oom_lock);
1550
	for_each_mem_cgroup_tree(iter, memcg)
1551 1552
		iter->under_oom++;
	spin_unlock(&memcg_oom_lock);
1553 1554
}

1555
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1556 1557 1558
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1559 1560
	/*
	 * When a new child is created while the hierarchy is under oom,
1561
	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
K
KAMEZAWA Hiroyuki 已提交
1562
	 */
1563
	spin_lock(&memcg_oom_lock);
1564
	for_each_mem_cgroup_tree(iter, memcg)
1565 1566 1567
		if (iter->under_oom > 0)
			iter->under_oom--;
	spin_unlock(&memcg_oom_lock);
1568 1569
}

K
KAMEZAWA Hiroyuki 已提交
1570 1571
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1572
struct oom_wait_info {
1573
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
1574 1575 1576 1577 1578 1579
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
1580 1581
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1582 1583 1584
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1585
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1586

1587 1588
	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
K
KAMEZAWA Hiroyuki 已提交
1589 1590 1591 1592
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1593
static void memcg_oom_recover(struct mem_cgroup *memcg)
1594
{
1595 1596 1597 1598 1599 1600 1601 1602 1603
	/*
	 * For the following lockless ->under_oom test, the only required
	 * guarantee is that it must see the state asserted by an OOM when
	 * this function is called as a result of userland actions
	 * triggered by the notification of the OOM.  This is trivially
	 * achieved by invoking mem_cgroup_mark_under_oom() before
	 * triggering notification.
	 */
	if (memcg && memcg->under_oom)
1604
		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1605 1606
}

1607
static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1608
{
1609
	if (!current->memcg_may_oom || current->memcg_in_oom)
1610
		return;
K
KAMEZAWA Hiroyuki 已提交
1611
	/*
1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
	 * Also, the caller may handle a failed allocation gracefully
	 * (like optional page cache readahead) and so an OOM killer
	 * invocation might not even be necessary.
	 *
	 * That's why we don't do anything here except remember the
	 * OOM context and then deal with it at the end of the page
	 * fault when the stack is unwound, the locks are released,
	 * and when we know whether the fault was overall successful.
K
KAMEZAWA Hiroyuki 已提交
1624
	 */
1625
	css_get(&memcg->css);
T
Tejun Heo 已提交
1626 1627 1628
	current->memcg_in_oom = memcg;
	current->memcg_oom_gfp_mask = mask;
	current->memcg_oom_order = order;
1629 1630 1631 1632
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1633
 * @handle: actually kill/wait or just clean up the OOM state
1634
 *
1635 1636
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
1637
 *
1638
 * Memcg supports userspace OOM handling where failed allocations must
1639 1640 1641 1642
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
1643
 * the end of the page fault to complete the OOM handling.
1644 1645
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
1646
 * completed, %false otherwise.
1647
 */
1648
bool mem_cgroup_oom_synchronize(bool handle)
1649
{
T
Tejun Heo 已提交
1650
	struct mem_cgroup *memcg = current->memcg_in_oom;
1651
	struct oom_wait_info owait;
1652
	bool locked;
1653 1654 1655

	/* OOM is global, do not handle */
	if (!memcg)
1656
		return false;
1657

1658
	if (!handle || oom_killer_disabled)
1659
		goto cleanup;
1660 1661 1662 1663 1664 1665

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
K
KAMEZAWA Hiroyuki 已提交
1666

1667
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1668 1669 1670 1671 1672 1673 1674 1675 1676 1677
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
T
Tejun Heo 已提交
1678 1679
		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
					 current->memcg_oom_order);
1680
	} else {
1681
		schedule();
1682 1683 1684 1685 1686
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
1687 1688 1689 1690 1691 1692 1693 1694
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
1695
cleanup:
T
Tejun Heo 已提交
1696
	current->memcg_in_oom = NULL;
1697
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
1698
	return true;
1699 1700
}

1701
/**
1702 1703
 * lock_page_memcg - lock a page->mem_cgroup binding
 * @page: the page
1704
 *
1705 1706
 * This function protects unlocked LRU pages from being moved to
 * another cgroup and stabilizes their page->mem_cgroup binding.
1707
 */
J
Johannes Weiner 已提交
1708
void lock_page_memcg(struct page *page)
1709 1710
{
	struct mem_cgroup *memcg;
1711
	unsigned long flags;
1712

1713 1714 1715 1716 1717
	/*
	 * The RCU lock is held throughout the transaction.  The fast
	 * path can get away without acquiring the memcg->move_lock
	 * because page moving starts with an RCU grace period.
	 */
1718 1719 1720
	rcu_read_lock();

	if (mem_cgroup_disabled())
J
Johannes Weiner 已提交
1721
		return;
1722
again:
1723
	memcg = page->mem_cgroup;
1724
	if (unlikely(!memcg))
J
Johannes Weiner 已提交
1725
		return;
1726

Q
Qiang Huang 已提交
1727
	if (atomic_read(&memcg->moving_account) <= 0)
J
Johannes Weiner 已提交
1728
		return;
1729

1730
	spin_lock_irqsave(&memcg->move_lock, flags);
1731
	if (memcg != page->mem_cgroup) {
1732
		spin_unlock_irqrestore(&memcg->move_lock, flags);
1733 1734
		goto again;
	}
1735 1736 1737 1738

	/*
	 * When charge migration first begins, we can have locked and
	 * unlocked page stat updates happening concurrently.  Track
1739
	 * the task who has the lock for unlock_page_memcg().
1740 1741 1742
	 */
	memcg->move_lock_task = current;
	memcg->move_lock_flags = flags;
1743

J
Johannes Weiner 已提交
1744
	return;
1745
}
1746
EXPORT_SYMBOL(lock_page_memcg);
1747

1748
/**
1749
 * unlock_page_memcg - unlock a page->mem_cgroup binding
J
Johannes Weiner 已提交
1750
 * @page: the page
1751
 */
J
Johannes Weiner 已提交
1752
void unlock_page_memcg(struct page *page)
1753
{
J
Johannes Weiner 已提交
1754 1755
	struct mem_cgroup *memcg = page->mem_cgroup;

1756 1757 1758 1759 1760 1761 1762 1763
	if (memcg && memcg->move_lock_task == current) {
		unsigned long flags = memcg->move_lock_flags;

		memcg->move_lock_task = NULL;
		memcg->move_lock_flags = 0;

		spin_unlock_irqrestore(&memcg->move_lock, flags);
	}
1764

1765
	rcu_read_unlock();
1766
}
1767
EXPORT_SYMBOL(unlock_page_memcg);
1768

1769 1770 1771 1772
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
1773
#define CHARGE_BATCH	32U
1774 1775
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
1776
	unsigned int nr_pages;
1777
	struct work_struct work;
1778
	unsigned long flags;
1779
#define FLUSHING_CACHED_CHARGE	0
1780 1781
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1782
static DEFINE_MUTEX(percpu_charge_mutex);
1783

1784 1785 1786 1787 1788 1789 1790 1791 1792 1793
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
1794
 */
1795
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1796 1797
{
	struct memcg_stock_pcp *stock;
1798
	bool ret = false;
1799

1800
	if (nr_pages > CHARGE_BATCH)
1801
		return ret;
1802

1803
	stock = &get_cpu_var(memcg_stock);
1804
	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1805
		stock->nr_pages -= nr_pages;
1806 1807
		ret = true;
	}
1808 1809 1810 1811 1812
	put_cpu_var(memcg_stock);
	return ret;
}

/*
1813
 * Returns stocks cached in percpu and reset cached information.
1814 1815 1816 1817 1818
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

1819
	if (stock->nr_pages) {
1820
		page_counter_uncharge(&old->memory, stock->nr_pages);
1821
		if (do_memsw_account())
1822
			page_counter_uncharge(&old->memsw, stock->nr_pages);
1823
		css_put_many(&old->css, stock->nr_pages);
1824
		stock->nr_pages = 0;
1825 1826 1827 1828 1829 1830 1831 1832 1833 1834
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
1835
	struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
1836
	drain_stock(stock);
1837
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1838 1839 1840
}

/*
1841
 * Cache charges(val) to local per_cpu area.
1842
 * This will be consumed by consume_stock() function, later.
1843
 */
1844
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1845 1846 1847
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

1848
	if (stock->cached != memcg) { /* reset if necessary */
1849
		drain_stock(stock);
1850
		stock->cached = memcg;
1851
	}
1852
	stock->nr_pages += nr_pages;
1853 1854 1855 1856
	put_cpu_var(memcg_stock);
}

/*
1857
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1858
 * of the hierarchy under it.
1859
 */
1860
static void drain_all_stock(struct mem_cgroup *root_memcg)
1861
{
1862
	int cpu, curcpu;
1863

1864 1865 1866
	/* If someone's already draining, avoid adding running more workers. */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
1867 1868
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
1869
	curcpu = get_cpu();
1870 1871
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1872
		struct mem_cgroup *memcg;
1873

1874 1875
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
1876
			continue;
1877
		if (!mem_cgroup_is_descendant(memcg, root_memcg))
1878
			continue;
1879 1880 1881 1882 1883 1884
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
1885
	}
1886
	put_cpu();
A
Andrew Morton 已提交
1887
	put_online_cpus();
1888
	mutex_unlock(&percpu_charge_mutex);
1889 1890
}

1891
static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
1892 1893 1894 1895 1896 1897
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;

1898
	if (action == CPU_ONLINE)
1899 1900
		return NOTIFY_OK;

1901
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1902
		return NOTIFY_OK;
1903

1904 1905 1906 1907 1908
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928
static void reclaim_high(struct mem_cgroup *memcg,
			 unsigned int nr_pages,
			 gfp_t gfp_mask)
{
	do {
		if (page_counter_read(&memcg->memory) <= memcg->high)
			continue;
		mem_cgroup_events(memcg, MEMCG_HIGH, 1);
		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
	} while ((memcg = parent_mem_cgroup(memcg)));
}

static void high_work_func(struct work_struct *work)
{
	struct mem_cgroup *memcg;

	memcg = container_of(work, struct mem_cgroup, high_work);
	reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
}

1929 1930 1931 1932 1933 1934 1935
/*
 * Scheduled by try_charge() to be executed from the userland return path
 * and reclaims memory over the high limit.
 */
void mem_cgroup_handle_over_high(void)
{
	unsigned int nr_pages = current->memcg_nr_pages_over_high;
1936
	struct mem_cgroup *memcg;
1937 1938 1939 1940

	if (likely(!nr_pages))
		return;

1941 1942
	memcg = get_mem_cgroup_from_mm(current->mm);
	reclaim_high(memcg, nr_pages, GFP_KERNEL);
1943 1944 1945 1946
	css_put(&memcg->css);
	current->memcg_nr_pages_over_high = 0;
}

1947 1948
static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
		      unsigned int nr_pages)
1949
{
1950
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
1951
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1952
	struct mem_cgroup *mem_over_limit;
1953
	struct page_counter *counter;
1954
	unsigned long nr_reclaimed;
1955 1956
	bool may_swap = true;
	bool drained = false;
1957

1958
	if (mem_cgroup_is_root(memcg))
1959
		return 0;
1960
retry:
1961
	if (consume_stock(memcg, nr_pages))
1962
		return 0;
1963

1964
	if (!do_memsw_account() ||
1965 1966
	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
		if (page_counter_try_charge(&memcg->memory, batch, &counter))
1967
			goto done_restock;
1968
		if (do_memsw_account())
1969 1970
			page_counter_uncharge(&memcg->memsw, batch);
		mem_over_limit = mem_cgroup_from_counter(counter, memory);
1971
	} else {
1972
		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1973
		may_swap = false;
1974
	}
1975

1976 1977 1978 1979
	if (batch > nr_pages) {
		batch = nr_pages;
		goto retry;
	}
1980

1981 1982 1983 1984 1985 1986 1987 1988 1989
	/*
	 * Unlike in global OOM situations, memcg is not in a physical
	 * memory shortage.  Allow dying and OOM-killed tasks to
	 * bypass the last charges so that they can exit quickly and
	 * free their memory.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE) ||
		     fatal_signal_pending(current) ||
		     current->flags & PF_EXITING))
1990
		goto force;
1991 1992 1993 1994

	if (unlikely(task_in_memcg_oom(current)))
		goto nomem;

1995
	if (!gfpflags_allow_blocking(gfp_mask))
1996
		goto nomem;
1997

1998 1999
	mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);

2000 2001
	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
						    gfp_mask, may_swap);
2002

2003
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2004
		goto retry;
2005

2006
	if (!drained) {
2007
		drain_all_stock(mem_over_limit);
2008 2009 2010 2011
		drained = true;
		goto retry;
	}

2012 2013
	if (gfp_mask & __GFP_NORETRY)
		goto nomem;
2014 2015 2016 2017 2018 2019 2020 2021 2022
	/*
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
	 */
2023
	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2024 2025 2026 2027 2028 2029 2030 2031
		goto retry;
	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		goto retry;

2032 2033 2034
	if (nr_retries--)
		goto retry;

2035
	if (gfp_mask & __GFP_NOFAIL)
2036
		goto force;
2037

2038
	if (fatal_signal_pending(current))
2039
		goto force;
2040

2041 2042
	mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);

2043 2044
	mem_cgroup_oom(mem_over_limit, gfp_mask,
		       get_order(nr_pages * PAGE_SIZE));
2045
nomem:
2046
	if (!(gfp_mask & __GFP_NOFAIL))
2047
		return -ENOMEM;
2048 2049 2050 2051 2052 2053 2054
force:
	/*
	 * The allocation either can't fail or will lead to more memory
	 * being freed very soon.  Allow memory usage go over the limit
	 * temporarily by force charging it.
	 */
	page_counter_charge(&memcg->memory, nr_pages);
2055
	if (do_memsw_account())
2056 2057 2058 2059
		page_counter_charge(&memcg->memsw, nr_pages);
	css_get_many(&memcg->css, nr_pages);

	return 0;
2060 2061

done_restock:
2062
	css_get_many(&memcg->css, batch);
2063 2064
	if (batch > nr_pages)
		refill_stock(memcg, batch - nr_pages);
2065

2066
	/*
2067 2068
	 * If the hierarchy is above the normal consumption range, schedule
	 * reclaim on returning to userland.  We can perform reclaim here
2069
	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2070 2071 2072 2073
	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
	 * not recorded as it most likely matches current's and won't
	 * change in the meantime.  As high limit is checked again before
	 * reclaim, the cost of mismatch is negligible.
2074 2075
	 */
	do {
2076
		if (page_counter_read(&memcg->memory) > memcg->high) {
2077 2078 2079 2080 2081
			/* Don't bother a random interrupted task */
			if (in_interrupt()) {
				schedule_work(&memcg->high_work);
				break;
			}
V
Vladimir Davydov 已提交
2082
			current->memcg_nr_pages_over_high += batch;
2083 2084 2085
			set_notify_resume(current);
			break;
		}
2086
	} while ((memcg = parent_mem_cgroup(memcg)));
2087 2088

	return 0;
2089
}
2090

2091
static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2092
{
2093 2094 2095
	if (mem_cgroup_is_root(memcg))
		return;

2096
	page_counter_uncharge(&memcg->memory, nr_pages);
2097
	if (do_memsw_account())
2098
		page_counter_uncharge(&memcg->memsw, nr_pages);
2099

2100
	css_put_many(&memcg->css, nr_pages);
2101 2102
}

2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133
static void lock_page_lru(struct page *page, int *isolated)
{
	struct zone *zone = page_zone(page);

	spin_lock_irq(&zone->lru_lock);
	if (PageLRU(page)) {
		struct lruvec *lruvec;

		lruvec = mem_cgroup_page_lruvec(page, zone);
		ClearPageLRU(page);
		del_page_from_lru_list(page, lruvec, page_lru(page));
		*isolated = 1;
	} else
		*isolated = 0;
}

static void unlock_page_lru(struct page *page, int isolated)
{
	struct zone *zone = page_zone(page);

	if (isolated) {
		struct lruvec *lruvec;

		lruvec = mem_cgroup_page_lruvec(page, zone);
		VM_BUG_ON_PAGE(PageLRU(page), page);
		SetPageLRU(page);
		add_page_to_lru_list(page, lruvec, page_lru(page));
	}
	spin_unlock_irq(&zone->lru_lock);
}

2134
static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2135
			  bool lrucare)
2136
{
2137
	int isolated;
2138

2139
	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2140 2141 2142 2143 2144

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
2145 2146
	if (lrucare)
		lock_page_lru(page, &isolated);
2147

2148 2149
	/*
	 * Nobody should be changing or seriously looking at
2150
	 * page->mem_cgroup at this point:
2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161
	 *
	 * - the page is uncharged
	 *
	 * - the page is off-LRU
	 *
	 * - an anonymous fault has exclusive page access, except for
	 *   a locked page table
	 *
	 * - a page cache insertion, a swapin fault, or a migration
	 *   have the page locked
	 */
2162
	page->mem_cgroup = memcg;
2163

2164 2165
	if (lrucare)
		unlock_page_lru(page, isolated);
2166
}
2167

2168
#ifndef CONFIG_SLOB
2169
static int memcg_alloc_cache_id(void)
2170
{
2171 2172 2173
	int id, size;
	int err;

2174
	id = ida_simple_get(&memcg_cache_ida,
2175 2176 2177
			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (id < 0)
		return id;
2178

2179
	if (id < memcg_nr_cache_ids)
2180 2181 2182 2183 2184 2185
		return id;

	/*
	 * There's no space for the new id in memcg_caches arrays,
	 * so we have to grow them.
	 */
2186
	down_write(&memcg_cache_ids_sem);
2187 2188

	size = 2 * (id + 1);
2189 2190 2191 2192 2193
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

2194
	err = memcg_update_all_caches(size);
2195 2196
	if (!err)
		err = memcg_update_all_list_lrus(size);
2197 2198 2199 2200 2201
	if (!err)
		memcg_nr_cache_ids = size;

	up_write(&memcg_cache_ids_sem);

2202
	if (err) {
2203
		ida_simple_remove(&memcg_cache_ida, id);
2204 2205 2206 2207 2208 2209 2210
		return err;
	}
	return id;
}

static void memcg_free_cache_id(int id)
{
2211
	ida_simple_remove(&memcg_cache_ida, id);
2212 2213
}

2214
struct memcg_kmem_cache_create_work {
2215 2216 2217 2218 2219
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

2220
static void memcg_kmem_cache_create_func(struct work_struct *w)
2221
{
2222 2223
	struct memcg_kmem_cache_create_work *cw =
		container_of(w, struct memcg_kmem_cache_create_work, work);
2224 2225
	struct mem_cgroup *memcg = cw->memcg;
	struct kmem_cache *cachep = cw->cachep;
2226

2227
	memcg_create_kmem_cache(memcg, cachep);
2228

2229
	css_put(&memcg->css);
2230 2231 2232 2233 2234 2235
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
2236 2237
static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					       struct kmem_cache *cachep)
2238
{
2239
	struct memcg_kmem_cache_create_work *cw;
2240

2241
	cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2242
	if (!cw)
2243
		return;
2244 2245

	css_get(&memcg->css);
2246 2247 2248

	cw->memcg = memcg;
	cw->cachep = cachep;
2249
	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2250 2251 2252 2253

	schedule_work(&cw->work);
}

2254 2255
static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					     struct kmem_cache *cachep)
2256 2257 2258 2259
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
2260
	 * in __memcg_schedule_kmem_cache_create will recurse.
2261 2262 2263 2264 2265 2266 2267
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
2268
	current->memcg_kmem_skip_account = 1;
2269
	__memcg_schedule_kmem_cache_create(memcg, cachep);
2270
	current->memcg_kmem_skip_account = 0;
2271
}
2272

2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285
/*
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
 * If the cache does not exist yet, if we are the first user of it,
 * we either create it immediately, if possible, or create it asynchronously
 * in a workqueue.
 * In the latter case, we will let the current allocation go through with
 * the original cache.
 *
 * Can't be called in interrupt context or from kernel threads.
 * This function needs to be called with rcu_read_lock() held.
 */
V
Vladimir Davydov 已提交
2286
struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
2287 2288
{
	struct mem_cgroup *memcg;
2289
	struct kmem_cache *memcg_cachep;
2290
	int kmemcg_id;
2291

2292
	VM_BUG_ON(!is_root_cache(cachep));
2293

V
Vladimir Davydov 已提交
2294 2295 2296 2297 2298 2299
	if (cachep->flags & SLAB_ACCOUNT)
		gfp |= __GFP_ACCOUNT;

	if (!(gfp & __GFP_ACCOUNT))
		return cachep;

2300
	if (current->memcg_kmem_skip_account)
2301 2302
		return cachep;

2303
	memcg = get_mem_cgroup_from_mm(current->mm);
2304
	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2305
	if (kmemcg_id < 0)
2306
		goto out;
2307

2308
	memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2309 2310
	if (likely(memcg_cachep))
		return memcg_cachep;
2311 2312 2313 2314 2315 2316 2317 2318 2319

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
2320 2321 2322
	 * memcg_create_kmem_cache, this means no further allocation
	 * could happen with the slab_mutex held. So it's better to
	 * defer everything.
2323
	 */
2324
	memcg_schedule_kmem_cache_create(memcg, cachep);
2325
out:
2326
	css_put(&memcg->css);
2327
	return cachep;
2328 2329
}

2330 2331 2332
void __memcg_kmem_put_cache(struct kmem_cache *cachep)
{
	if (!is_root_cache(cachep))
2333
		css_put(&cachep->memcg_params.memcg->css);
2334 2335
}

2336 2337
int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
			      struct mem_cgroup *memcg)
2338
{
2339 2340
	unsigned int nr_pages = 1 << order;
	struct page_counter *counter;
2341 2342
	int ret;

2343
	ret = try_charge(memcg, gfp, nr_pages);
2344
	if (ret)
2345
		return ret;
2346 2347 2348 2349 2350

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
		cancel_charge(memcg, nr_pages);
		return -ENOMEM;
2351 2352
	}

2353
	page->mem_cgroup = memcg;
2354

2355
	return 0;
2356 2357
}

2358
int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2359
{
2360
	struct mem_cgroup *memcg;
2361
	int ret = 0;
2362

2363
	memcg = get_mem_cgroup_from_mm(current->mm);
2364
	if (!mem_cgroup_is_root(memcg))
2365
		ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2366
	css_put(&memcg->css);
2367
	return ret;
2368 2369
}

2370
void __memcg_kmem_uncharge(struct page *page, int order)
2371
{
2372
	struct mem_cgroup *memcg = page->mem_cgroup;
2373
	unsigned int nr_pages = 1 << order;
2374 2375 2376 2377

	if (!memcg)
		return;

2378
	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2379

2380 2381 2382
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
		page_counter_uncharge(&memcg->kmem, nr_pages);

2383
	page_counter_uncharge(&memcg->memory, nr_pages);
2384
	if (do_memsw_account())
2385
		page_counter_uncharge(&memcg->memsw, nr_pages);
2386

2387
	page->mem_cgroup = NULL;
2388
	css_put_many(&memcg->css, nr_pages);
2389
}
2390
#endif /* !CONFIG_SLOB */
2391

2392 2393 2394 2395
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

/*
 * Because tail pages are not marked as "used", set it. We're under
2396
 * zone->lru_lock and migration entries setup in all page mappings.
2397
 */
2398
void mem_cgroup_split_huge_fixup(struct page *head)
2399
{
2400
	int i;
2401

2402 2403
	if (mem_cgroup_disabled())
		return;
2404

2405
	for (i = 1; i < HPAGE_PMD_NR; i++)
2406
		head[i].mem_cgroup = head->mem_cgroup;
2407

2408
	__this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2409
		       HPAGE_PMD_NR);
2410
}
2411
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2412

A
Andrew Morton 已提交
2413
#ifdef CONFIG_MEMCG_SWAP
2414 2415
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
					 bool charge)
K
KAMEZAWA Hiroyuki 已提交
2416
{
2417 2418
	int val = (charge) ? 1 : -1;
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
K
KAMEZAWA Hiroyuki 已提交
2419
}
2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
2432
 * The caller must have charged to @to, IOW, called page_counter_charge() about
2433 2434 2435
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
2436
				struct mem_cgroup *from, struct mem_cgroup *to)
2437 2438 2439
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
2440 2441
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
2442 2443 2444

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
2445
		mem_cgroup_swap_statistics(to, true);
2446 2447 2448 2449 2450 2451
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2452
				struct mem_cgroup *from, struct mem_cgroup *to)
2453 2454 2455
{
	return -EINVAL;
}
2456
#endif
K
KAMEZAWA Hiroyuki 已提交
2457

2458
static DEFINE_MUTEX(memcg_limit_mutex);
2459

2460
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2461
				   unsigned long limit)
2462
{
2463 2464 2465
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
2466
	int retry_count;
2467
	int ret;
2468 2469 2470 2471 2472 2473

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
2474 2475
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);
2476

2477
	oldusage = page_counter_read(&memcg->memory);
2478

2479
	do {
2480 2481 2482 2483
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2484 2485 2486 2487

		mutex_lock(&memcg_limit_mutex);
		if (limit > memcg->memsw.limit) {
			mutex_unlock(&memcg_limit_mutex);
2488
			ret = -EINVAL;
2489 2490
			break;
		}
2491 2492 2493 2494
		if (limit > memcg->memory.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memory, limit);
		mutex_unlock(&memcg_limit_mutex);
2495 2496 2497 2498

		if (!ret)
			break;

2499 2500
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);

2501
		curusage = page_counter_read(&memcg->memory);
2502
		/* Usage is reduced ? */
A
Andrew Morton 已提交
2503
		if (curusage >= oldusage)
2504 2505 2506
			retry_count--;
		else
			oldusage = curusage;
2507 2508
	} while (retry_count);

2509 2510
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2511

2512 2513 2514
	return ret;
}

L
Li Zefan 已提交
2515
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2516
					 unsigned long limit)
2517
{
2518 2519 2520
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
2521
	int retry_count;
2522
	int ret;
2523

2524
	/* see mem_cgroup_resize_res_limit */
2525 2526 2527 2528 2529 2530
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);

	oldusage = page_counter_read(&memcg->memsw);

	do {
2531 2532 2533 2534
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2535 2536 2537 2538

		mutex_lock(&memcg_limit_mutex);
		if (limit < memcg->memory.limit) {
			mutex_unlock(&memcg_limit_mutex);
2539 2540 2541
			ret = -EINVAL;
			break;
		}
2542 2543 2544 2545
		if (limit > memcg->memsw.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memsw, limit);
		mutex_unlock(&memcg_limit_mutex);
2546 2547 2548 2549

		if (!ret)
			break;

2550 2551
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);

2552
		curusage = page_counter_read(&memcg->memsw);
2553
		/* Usage is reduced ? */
2554
		if (curusage >= oldusage)
2555
			retry_count--;
2556 2557
		else
			oldusage = curusage;
2558 2559
	} while (retry_count);

2560 2561
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2562

2563 2564 2565
	return ret;
}

2566 2567 2568 2569 2570 2571 2572 2573 2574
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
2575
	unsigned long excess;
2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
2600
		spin_lock_irq(&mctz->lock);
2601
		__mem_cgroup_remove_exceeded(mz, mctz);
2602 2603 2604 2605 2606 2607

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
2608 2609 2610
		if (!reclaimed)
			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);

2611
		excess = soft_limit_excess(mz->memcg);
2612 2613 2614 2615 2616 2617 2618 2619 2620
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
2621
		__mem_cgroup_insert_exceeded(mz, mctz, excess);
2622
		spin_unlock_irq(&mctz->lock);
2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

2640 2641 2642 2643 2644 2645
/*
 * Test whether @memcg has children, dead or alive.  Note that this
 * function doesn't care whether @memcg has use_hierarchy enabled and
 * returns %true if there are child csses according to the cgroup
 * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
 */
2646 2647
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
2648 2649 2650 2651 2652 2653
	bool ret;

	rcu_read_lock();
	ret = css_next_child(NULL, &memcg->css);
	rcu_read_unlock();
	return ret;
2654 2655
}

2656
/*
2657
 * Reclaims as many pages from the given memcg as possible.
2658 2659 2660 2661 2662 2663 2664
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;

2665 2666
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
2667
	/* try to free all pages in this cgroup */
2668
	while (nr_retries && page_counter_read(&memcg->memory)) {
2669
		int progress;
2670

2671 2672 2673
		if (signal_pending(current))
			return -EINTR;

2674 2675
		progress = try_to_free_mem_cgroup_pages(memcg, 1,
							GFP_KERNEL, true);
2676
		if (!progress) {
2677
			nr_retries--;
2678
			/* maybe some writeback is necessary */
2679
			congestion_wait(BLK_RW_ASYNC, HZ/10);
2680
		}
2681 2682

	}
2683 2684

	return 0;
2685 2686
}

2687 2688 2689
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
					    char *buf, size_t nbytes,
					    loff_t off)
2690
{
2691
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2692

2693 2694
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
2695
	return mem_cgroup_force_empty(memcg) ?: nbytes;
2696 2697
}

2698 2699
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
2700
{
2701
	return mem_cgroup_from_css(css)->use_hierarchy;
2702 2703
}

2704 2705
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
2706 2707
{
	int retval = 0;
2708
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
2709
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2710

2711
	if (memcg->use_hierarchy == val)
2712
		return 0;
2713

2714
	/*
2715
	 * If parent's use_hierarchy is set, we can't make any modifications
2716 2717 2718 2719 2720 2721
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
2722
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2723
				(val == 1 || val == 0)) {
2724
		if (!memcg_has_children(memcg))
2725
			memcg->use_hierarchy = val;
2726 2727 2728 2729
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
2730

2731 2732 2733
	return retval;
}

2734
static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
2735 2736
{
	struct mem_cgroup *iter;
2737
	int i;
2738

2739
	memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
2740

2741 2742 2743 2744
	for_each_mem_cgroup_tree(iter, memcg) {
		for (i = 0; i < MEMCG_NR_STAT; i++)
			stat[i] += mem_cgroup_read_stat(iter, i);
	}
2745 2746
}

2747
static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
2748 2749
{
	struct mem_cgroup *iter;
2750
	int i;
2751

2752
	memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
2753

2754 2755 2756 2757
	for_each_mem_cgroup_tree(iter, memcg) {
		for (i = 0; i < MEMCG_NR_EVENTS; i++)
			events[i] += mem_cgroup_read_events(iter, i);
	}
2758 2759
}

2760
static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2761
{
2762
	unsigned long val = 0;
2763

2764
	if (mem_cgroup_is_root(memcg)) {
2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775
		struct mem_cgroup *iter;

		for_each_mem_cgroup_tree(iter, memcg) {
			val += mem_cgroup_read_stat(iter,
					MEM_CGROUP_STAT_CACHE);
			val += mem_cgroup_read_stat(iter,
					MEM_CGROUP_STAT_RSS);
			if (swap)
				val += mem_cgroup_read_stat(iter,
						MEM_CGROUP_STAT_SWAP);
		}
2776
	} else {
2777
		if (!swap)
2778
			val = page_counter_read(&memcg->memory);
2779
		else
2780
			val = page_counter_read(&memcg->memsw);
2781
	}
2782
	return val;
2783 2784
}

2785 2786 2787 2788 2789 2790 2791
enum {
	RES_USAGE,
	RES_LIMIT,
	RES_MAX_USAGE,
	RES_FAILCNT,
	RES_SOFT_LIMIT,
};
2792

2793
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2794
			       struct cftype *cft)
B
Balbir Singh 已提交
2795
{
2796
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2797
	struct page_counter *counter;
2798

2799
	switch (MEMFILE_TYPE(cft->private)) {
2800
	case _MEM:
2801 2802
		counter = &memcg->memory;
		break;
2803
	case _MEMSWAP:
2804 2805
		counter = &memcg->memsw;
		break;
2806
	case _KMEM:
2807
		counter = &memcg->kmem;
2808
		break;
V
Vladimir Davydov 已提交
2809
	case _TCP:
2810
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
2811
		break;
2812 2813 2814
	default:
		BUG();
	}
2815 2816 2817 2818

	switch (MEMFILE_ATTR(cft->private)) {
	case RES_USAGE:
		if (counter == &memcg->memory)
2819
			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2820
		if (counter == &memcg->memsw)
2821
			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833
		return (u64)page_counter_read(counter) * PAGE_SIZE;
	case RES_LIMIT:
		return (u64)counter->limit * PAGE_SIZE;
	case RES_MAX_USAGE:
		return (u64)counter->watermark * PAGE_SIZE;
	case RES_FAILCNT:
		return counter->failcnt;
	case RES_SOFT_LIMIT:
		return (u64)memcg->soft_limit * PAGE_SIZE;
	default:
		BUG();
	}
B
Balbir Singh 已提交
2834
}
2835

2836
#ifndef CONFIG_SLOB
2837
static int memcg_online_kmem(struct mem_cgroup *memcg)
2838 2839 2840
{
	int memcg_id;

2841 2842 2843
	if (cgroup_memory_nokmem)
		return 0;

2844
	BUG_ON(memcg->kmemcg_id >= 0);
2845
	BUG_ON(memcg->kmem_state);
2846

2847
	memcg_id = memcg_alloc_cache_id();
2848 2849
	if (memcg_id < 0)
		return memcg_id;
2850

2851
	static_branch_inc(&memcg_kmem_enabled_key);
2852
	/*
2853
	 * A memory cgroup is considered kmem-online as soon as it gets
V
Vladimir Davydov 已提交
2854
	 * kmemcg_id. Setting the id after enabling static branching will
2855 2856 2857
	 * guarantee no one starts accounting before all call sites are
	 * patched.
	 */
V
Vladimir Davydov 已提交
2858
	memcg->kmemcg_id = memcg_id;
2859
	memcg->kmem_state = KMEM_ONLINE;
2860 2861

	return 0;
2862 2863
}

2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
	struct cgroup_subsys_state *css;
	struct mem_cgroup *parent, *child;
	int kmemcg_id;

	if (memcg->kmem_state != KMEM_ONLINE)
		return;
	/*
	 * Clear the online state before clearing memcg_caches array
	 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
	 * guarantees that no cache will be created for this cgroup
	 * after we are done (see memcg_create_kmem_cache()).
	 */
	memcg->kmem_state = KMEM_ALLOCATED;

	memcg_deactivate_kmem_caches(memcg);

	kmemcg_id = memcg->kmemcg_id;
	BUG_ON(kmemcg_id < 0);

	parent = parent_mem_cgroup(memcg);
	if (!parent)
		parent = root_mem_cgroup;

	/*
	 * Change kmemcg_id of this cgroup and all its descendants to the
	 * parent's id, and then move all entries from this cgroup's list_lrus
	 * to ones of the parent. After we have finished, all list_lrus
	 * corresponding to this cgroup are guaranteed to remain empty. The
	 * ordering is imposed by list_lru_node->lock taken by
	 * memcg_drain_all_list_lrus().
	 */
	css_for_each_descendant_pre(css, &memcg->css) {
		child = mem_cgroup_from_css(css);
		BUG_ON(child->kmemcg_id != kmemcg_id);
		child->kmemcg_id = parent->kmemcg_id;
		if (!memcg->use_hierarchy)
			break;
	}
	memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);

	memcg_free_cache_id(kmemcg_id);
}

static void memcg_free_kmem(struct mem_cgroup *memcg)
{
2911 2912 2913 2914
	/* css_alloc() failed, offlining didn't happen */
	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
		memcg_offline_kmem(memcg);

2915 2916 2917 2918 2919 2920
	if (memcg->kmem_state == KMEM_ALLOCATED) {
		memcg_destroy_kmem_caches(memcg);
		static_branch_dec(&memcg_kmem_enabled_key);
		WARN_ON(page_counter_read(&memcg->kmem));
	}
}
2921
#else
2922
static int memcg_online_kmem(struct mem_cgroup *memcg)
2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933
{
	return 0;
}
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
}
static void memcg_free_kmem(struct mem_cgroup *memcg)
{
}
#endif /* !CONFIG_SLOB */

2934
static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2935
				   unsigned long limit)
2936
{
2937
	int ret;
2938 2939 2940 2941 2942

	mutex_lock(&memcg_limit_mutex);
	ret = page_counter_limit(&memcg->kmem, limit);
	mutex_unlock(&memcg_limit_mutex);
	return ret;
2943
}
2944

V
Vladimir Davydov 已提交
2945 2946 2947 2948 2949 2950
static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
{
	int ret;

	mutex_lock(&memcg_limit_mutex);

2951
	ret = page_counter_limit(&memcg->tcpmem, limit);
V
Vladimir Davydov 已提交
2952 2953 2954
	if (ret)
		goto out;

2955
	if (!memcg->tcpmem_active) {
V
Vladimir Davydov 已提交
2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972
		/*
		 * The active flag needs to be written after the static_key
		 * update. This is what guarantees that the socket activation
		 * function is the last one to run. See sock_update_memcg() for
		 * details, and note that we don't mark any socket as belonging
		 * to this memcg until that flag is up.
		 *
		 * We need to do this, because static_keys will span multiple
		 * sites, but we can't control their order. If we mark a socket
		 * as accounted, but the accounting functions are not patched in
		 * yet, we'll lose accounting.
		 *
		 * We never race with the readers in sock_update_memcg(),
		 * because when this value change, the code to process it is not
		 * patched in yet.
		 */
		static_branch_inc(&memcg_sockets_enabled_key);
2973
		memcg->tcpmem_active = true;
V
Vladimir Davydov 已提交
2974 2975 2976 2977 2978 2979
	}
out:
	mutex_unlock(&memcg_limit_mutex);
	return ret;
}

2980 2981 2982 2983
/*
 * The user of this function is...
 * RES_LIMIT.
 */
2984 2985
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
B
Balbir Singh 已提交
2986
{
2987
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2988
	unsigned long nr_pages;
2989 2990
	int ret;

2991
	buf = strstrip(buf);
2992
	ret = page_counter_memparse(buf, "-1", &nr_pages);
2993 2994
	if (ret)
		return ret;
2995

2996
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
2997
	case RES_LIMIT:
2998 2999 3000 3001
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3002 3003 3004
		switch (MEMFILE_TYPE(of_cft(of)->private)) {
		case _MEM:
			ret = mem_cgroup_resize_limit(memcg, nr_pages);
3005
			break;
3006 3007
		case _MEMSWAP:
			ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3008
			break;
3009 3010 3011
		case _KMEM:
			ret = memcg_update_kmem_limit(memcg, nr_pages);
			break;
V
Vladimir Davydov 已提交
3012 3013 3014
		case _TCP:
			ret = memcg_update_tcp_limit(memcg, nr_pages);
			break;
3015
		}
3016
		break;
3017 3018 3019
	case RES_SOFT_LIMIT:
		memcg->soft_limit = nr_pages;
		ret = 0;
3020 3021
		break;
	}
3022
	return ret ?: nbytes;
B
Balbir Singh 已提交
3023 3024
}

3025 3026
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
				size_t nbytes, loff_t off)
3027
{
3028
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3029
	struct page_counter *counter;
3030

3031 3032 3033 3034 3035 3036 3037 3038 3039 3040
	switch (MEMFILE_TYPE(of_cft(of)->private)) {
	case _MEM:
		counter = &memcg->memory;
		break;
	case _MEMSWAP:
		counter = &memcg->memsw;
		break;
	case _KMEM:
		counter = &memcg->kmem;
		break;
V
Vladimir Davydov 已提交
3041
	case _TCP:
3042
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
3043
		break;
3044 3045 3046
	default:
		BUG();
	}
3047

3048
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3049
	case RES_MAX_USAGE:
3050
		page_counter_reset_watermark(counter);
3051 3052
		break;
	case RES_FAILCNT:
3053
		counter->failcnt = 0;
3054
		break;
3055 3056
	default:
		BUG();
3057
	}
3058

3059
	return nbytes;
3060 3061
}

3062
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3063 3064
					struct cftype *cft)
{
3065
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3066 3067
}

3068
#ifdef CONFIG_MMU
3069
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3070 3071
					struct cftype *cft, u64 val)
{
3072
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3073

3074
	if (val & ~MOVE_MASK)
3075
		return -EINVAL;
3076

3077
	/*
3078 3079 3080 3081
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
3082
	 */
3083
	memcg->move_charge_at_immigrate = val;
3084 3085
	return 0;
}
3086
#else
3087
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3088 3089 3090 3091 3092
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3093

3094
#ifdef CONFIG_NUMA
3095
static int memcg_numa_stat_show(struct seq_file *m, void *v)
3096
{
3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
3109
	int nid;
3110
	unsigned long nr;
3111
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3112

3113 3114 3115 3116 3117 3118 3119 3120 3121
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
		seq_printf(m, "%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
							  stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3122 3123
	}

3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		struct mem_cgroup *iter;

		nr = 0;
		for_each_mem_cgroup_tree(iter, memcg)
			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = 0;
			for_each_mem_cgroup_tree(iter, memcg)
				nr += mem_cgroup_node_nr_lru_pages(
					iter, nid, stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3139 3140 3141 3142 3143 3144
	}

	return 0;
}
#endif /* CONFIG_NUMA */

3145
static int memcg_stat_show(struct seq_file *m, void *v)
3146
{
3147
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3148
	unsigned long memory, memsw;
3149 3150
	struct mem_cgroup *mi;
	unsigned int i;
3151

3152 3153 3154 3155
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
		     MEM_CGROUP_STAT_NSTATS);
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
		     MEM_CGROUP_EVENTS_NSTATS);
3156 3157
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);

3158
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3159
		if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3160
			continue;
3161
		seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3162
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3163
	}
L
Lee Schermerhorn 已提交
3164

3165 3166 3167 3168 3169 3170 3171 3172
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
3173
	/* Hierarchical information */
3174 3175 3176 3177
	memory = memsw = PAGE_COUNTER_MAX;
	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
		memory = min(memory, mi->memory.limit);
		memsw = min(memsw, mi->memsw.limit);
3178
	}
3179 3180
	seq_printf(m, "hierarchical_memory_limit %llu\n",
		   (u64)memory * PAGE_SIZE);
3181
	if (do_memsw_account())
3182 3183
		seq_printf(m, "hierarchical_memsw_limit %llu\n",
			   (u64)memsw * PAGE_SIZE);
K
KOSAKI Motohiro 已提交
3184

3185
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3186
		unsigned long long val = 0;
3187

3188
		if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3189
			continue;
3190 3191
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3192
		seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3210
	}
K
KAMEZAWA Hiroyuki 已提交
3211

K
KOSAKI Motohiro 已提交
3212 3213 3214 3215
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
3216
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
3217 3218 3219 3220 3221
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3222
				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3223
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
3224

3225 3226 3227 3228
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
3229
			}
3230 3231 3232 3233
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
3234 3235 3236
	}
#endif

3237 3238 3239
	return 0;
}

3240 3241
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
3242
{
3243
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3244

3245
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
3246 3247
}

3248 3249
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
3250
{
3251
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3252

3253
	if (val > 100)
K
KOSAKI Motohiro 已提交
3254 3255
		return -EINVAL;

3256
	if (css->parent)
3257 3258 3259
		memcg->swappiness = val;
	else
		vm_swappiness = val;
3260

K
KOSAKI Motohiro 已提交
3261 3262 3263
	return 0;
}

3264 3265 3266
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
3267
	unsigned long usage;
3268 3269 3270 3271
	int i;

	rcu_read_lock();
	if (!swap)
3272
		t = rcu_dereference(memcg->thresholds.primary);
3273
	else
3274
		t = rcu_dereference(memcg->memsw_thresholds.primary);
3275 3276 3277 3278

	if (!t)
		goto unlock;

3279
	usage = mem_cgroup_usage(memcg, swap);
3280 3281

	/*
3282
	 * current_threshold points to threshold just below or equal to usage.
3283 3284 3285
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
3286
	i = t->current_threshold;
3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
3310
	t->current_threshold = i - 1;
3311 3312 3313 3314 3315 3316
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
3317 3318
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
3319
		if (do_memsw_account())
3320 3321 3322 3323
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
3324 3325 3326 3327 3328 3329 3330
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

3331 3332 3333 3334 3335 3336 3337
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
3338 3339
}

3340
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3341 3342 3343
{
	struct mem_cgroup_eventfd_list *ev;

3344 3345
	spin_lock(&memcg_oom_lock);

3346
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
3347
		eventfd_signal(ev->eventfd, 1);
3348 3349

	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3350 3351 3352
	return 0;
}

3353
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3354
{
K
KAMEZAWA Hiroyuki 已提交
3355 3356
	struct mem_cgroup *iter;

3357
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3358
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
3359 3360
}

3361
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3362
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3363
{
3364 3365
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3366 3367
	unsigned long threshold;
	unsigned long usage;
3368
	int i, size, ret;
3369

3370
	ret = page_counter_memparse(args, "-1", &threshold);
3371 3372 3373 3374
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
3375

3376
	if (type == _MEM) {
3377
		thresholds = &memcg->thresholds;
3378
		usage = mem_cgroup_usage(memcg, false);
3379
	} else if (type == _MEMSWAP) {
3380
		thresholds = &memcg->memsw_thresholds;
3381
		usage = mem_cgroup_usage(memcg, true);
3382
	} else
3383 3384 3385
		BUG();

	/* Check if a threshold crossed before adding a new one */
3386
	if (thresholds->primary)
3387 3388
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

3389
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3390 3391

	/* Allocate memory for new array of thresholds */
3392
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3393
			GFP_KERNEL);
3394
	if (!new) {
3395 3396 3397
		ret = -ENOMEM;
		goto unlock;
	}
3398
	new->size = size;
3399 3400

	/* Copy thresholds (if any) to new array */
3401 3402
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3403
				sizeof(struct mem_cgroup_threshold));
3404 3405
	}

3406
	/* Add new threshold */
3407 3408
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
3409 3410

	/* Sort thresholds. Registering of new threshold isn't time-critical */
3411
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3412 3413 3414
			compare_thresholds, NULL);

	/* Find current threshold */
3415
	new->current_threshold = -1;
3416
	for (i = 0; i < size; i++) {
3417
		if (new->entries[i].threshold <= usage) {
3418
			/*
3419 3420
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
3421 3422
			 * it here.
			 */
3423
			++new->current_threshold;
3424 3425
		} else
			break;
3426 3427
	}

3428 3429 3430 3431 3432
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
3433

3434
	/* To be sure that nobody uses thresholds */
3435 3436 3437 3438 3439 3440 3441 3442
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

3443
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3444 3445
	struct eventfd_ctx *eventfd, const char *args)
{
3446
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
3447 3448
}

3449
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3450 3451
	struct eventfd_ctx *eventfd, const char *args)
{
3452
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
3453 3454
}

3455
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3456
	struct eventfd_ctx *eventfd, enum res_type type)
3457
{
3458 3459
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3460
	unsigned long usage;
3461
	int i, j, size;
3462 3463

	mutex_lock(&memcg->thresholds_lock);
3464 3465

	if (type == _MEM) {
3466
		thresholds = &memcg->thresholds;
3467
		usage = mem_cgroup_usage(memcg, false);
3468
	} else if (type == _MEMSWAP) {
3469
		thresholds = &memcg->memsw_thresholds;
3470
		usage = mem_cgroup_usage(memcg, true);
3471
	} else
3472 3473
		BUG();

3474 3475 3476
	if (!thresholds->primary)
		goto unlock;

3477 3478 3479 3480
	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
3481 3482 3483
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
3484 3485 3486
			size++;
	}

3487
	new = thresholds->spare;
3488

3489 3490
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
3491 3492
		kfree(new);
		new = NULL;
3493
		goto swap_buffers;
3494 3495
	}

3496
	new->size = size;
3497 3498

	/* Copy thresholds and find current threshold */
3499 3500 3501
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
3502 3503
			continue;

3504
		new->entries[j] = thresholds->primary->entries[i];
3505
		if (new->entries[j].threshold <= usage) {
3506
			/*
3507
			 * new->current_threshold will not be used
3508 3509 3510
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
3511
			++new->current_threshold;
3512 3513 3514 3515
		}
		j++;
	}

3516
swap_buffers:
3517 3518
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
3519

3520
	rcu_assign_pointer(thresholds->primary, new);
3521

3522
	/* To be sure that nobody uses thresholds */
3523
	synchronize_rcu();
3524 3525 3526 3527 3528 3529

	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}
3530
unlock:
3531 3532
	mutex_unlock(&memcg->thresholds_lock);
}
3533

3534
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3535 3536
	struct eventfd_ctx *eventfd)
{
3537
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
3538 3539
}

3540
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3541 3542
	struct eventfd_ctx *eventfd)
{
3543
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
3544 3545
}

3546
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3547
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
3548 3549 3550 3551 3552 3553 3554
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

3555
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3556 3557 3558 3559 3560

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
3561
	if (memcg->under_oom)
K
KAMEZAWA Hiroyuki 已提交
3562
		eventfd_signal(eventfd, 1);
3563
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3564 3565 3566 3567

	return 0;
}

3568
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3569
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
3570 3571 3572
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

3573
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3574

3575
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
3576 3577 3578 3579 3580 3581
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

3582
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3583 3584
}

3585
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3586
{
3587
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3588

3589
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3590
	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3591 3592 3593
	return 0;
}

3594
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3595 3596
	struct cftype *cft, u64 val)
{
3597
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3598 3599

	/* cannot set to root cgroup and only 0 and 1 are allowed */
3600
	if (!css->parent || !((val == 0) || (val == 1)))
3601 3602
		return -EINVAL;

3603
	memcg->oom_kill_disable = val;
3604
	if (!val)
3605
		memcg_oom_recover(memcg);
3606

3607 3608 3609
	return 0;
}

3610 3611 3612 3613 3614 3615 3616
#ifdef CONFIG_CGROUP_WRITEBACK

struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
{
	return &memcg->cgwb_list;
}

T
Tejun Heo 已提交
3617 3618 3619 3620 3621 3622 3623 3624 3625 3626
static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return wb_domain_init(&memcg->cgwb_domain, gfp);
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
	wb_domain_exit(&memcg->cgwb_domain);
}

3627 3628 3629 3630 3631
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
	wb_domain_size_changed(&memcg->cgwb_domain);
}

T
Tejun Heo 已提交
3632 3633 3634 3635 3636 3637 3638 3639 3640 3641
struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);

	if (!memcg->css.parent)
		return NULL;

	return &memcg->cgwb_domain;
}

3642 3643 3644
/**
 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
 * @wb: bdi_writeback in question
3645 3646
 * @pfilepages: out parameter for number of file pages
 * @pheadroom: out parameter for number of allocatable pages according to memcg
3647 3648 3649
 * @pdirty: out parameter for number of dirty pages
 * @pwriteback: out parameter for number of pages under writeback
 *
3650 3651 3652
 * Determine the numbers of file, headroom, dirty, and writeback pages in
 * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
 * is a bit more involved.
3653
 *
3654 3655 3656 3657 3658
 * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
 * headroom is calculated as the lowest headroom of itself and the
 * ancestors.  Note that this doesn't consider the actual amount of
 * available memory in the system.  The caller should further cap
 * *@pheadroom accordingly.
3659
 */
3660 3661 3662
void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
			 unsigned long *pheadroom, unsigned long *pdirty,
			 unsigned long *pwriteback)
3663 3664 3665 3666 3667 3668 3669 3670
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
	struct mem_cgroup *parent;

	*pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);

	/* this should eventually include NR_UNSTABLE_NFS */
	*pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3671 3672 3673
	*pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
						     (1 << LRU_ACTIVE_FILE));
	*pheadroom = PAGE_COUNTER_MAX;
3674 3675 3676 3677 3678

	while ((parent = parent_mem_cgroup(memcg))) {
		unsigned long ceiling = min(memcg->memory.limit, memcg->high);
		unsigned long used = page_counter_read(&memcg->memory);

3679
		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3680 3681 3682 3683
		memcg = parent;
	}
}

T
Tejun Heo 已提交
3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694
#else	/* CONFIG_CGROUP_WRITEBACK */

static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return 0;
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
}

3695 3696 3697 3698
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
}

3699 3700
#endif	/* CONFIG_CGROUP_WRITEBACK */

3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

3714 3715 3716 3717 3718
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
3719
static void memcg_event_remove(struct work_struct *work)
3720
{
3721 3722
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
3723
	struct mem_cgroup *memcg = event->memcg;
3724 3725 3726

	remove_wait_queue(event->wqh, &event->wait);

3727
	event->unregister_event(memcg, event->eventfd);
3728 3729 3730 3731 3732 3733

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
3734
	css_put(&memcg->css);
3735 3736 3737 3738 3739 3740 3741
}

/*
 * Gets called on POLLHUP on eventfd when user closes it.
 *
 * Called with wqh->lock held and interrupts disabled.
 */
3742 3743
static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
			    int sync, void *key)
3744
{
3745 3746
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
3747
	struct mem_cgroup *memcg = event->memcg;
3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759
	unsigned long flags = (unsigned long)key;

	if (flags & POLLHUP) {
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
3760
		spin_lock(&memcg->event_list_lock);
3761 3762 3763 3764 3765 3766 3767 3768
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
3769
		spin_unlock(&memcg->event_list_lock);
3770 3771 3772 3773 3774
	}

	return 0;
}

3775
static void memcg_event_ptable_queue_proc(struct file *file,
3776 3777
		wait_queue_head_t *wqh, poll_table *pt)
{
3778 3779
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
3780 3781 3782 3783 3784 3785

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
3786 3787
 * DO NOT USE IN NEW FILES.
 *
3788 3789 3790 3791 3792
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
3793 3794
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
					 char *buf, size_t nbytes, loff_t off)
3795
{
3796
	struct cgroup_subsys_state *css = of_css(of);
3797
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3798
	struct mem_cgroup_event *event;
3799 3800 3801 3802
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
3803
	const char *name;
3804 3805 3806
	char *endp;
	int ret;

3807 3808 3809
	buf = strstrip(buf);

	efd = simple_strtoul(buf, &endp, 10);
3810 3811
	if (*endp != ' ')
		return -EINVAL;
3812
	buf = endp + 1;
3813

3814
	cfd = simple_strtoul(buf, &endp, 10);
3815 3816
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
3817
	buf = endp + 1;
3818 3819 3820 3821 3822

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

3823
	event->memcg = memcg;
3824
	INIT_LIST_HEAD(&event->list);
3825 3826 3827
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
	if (ret < 0)
		goto out_put_cfile;

3853 3854 3855 3856 3857
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
3858 3859
	 *
	 * DO NOT ADD NEW FILES.
3860
	 */
A
Al Viro 已提交
3861
	name = cfile.file->f_path.dentry->d_name.name;
3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
3873 3874
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
3875 3876 3877 3878 3879
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

3880
	/*
3881 3882 3883
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
3884
	 */
A
Al Viro 已提交
3885
	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3886
					       &memory_cgrp_subsys);
3887
	ret = -EINVAL;
3888
	if (IS_ERR(cfile_css))
3889
		goto out_put_cfile;
3890 3891
	if (cfile_css != css) {
		css_put(cfile_css);
3892
		goto out_put_cfile;
3893
	}
3894

3895
	ret = event->register_event(memcg, event->eventfd, buf);
3896 3897 3898 3899 3900
	if (ret)
		goto out_put_css;

	efile.file->f_op->poll(efile.file, &event->pt);

3901 3902 3903
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
3904 3905 3906 3907

	fdput(cfile);
	fdput(efile);

3908
	return nbytes;
3909 3910

out_put_css:
3911
	css_put(css);
3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

3924
static struct cftype mem_cgroup_legacy_files[] = {
B
Balbir Singh 已提交
3925
	{
3926
		.name = "usage_in_bytes",
3927
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3928
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
3929
	},
3930 3931
	{
		.name = "max_usage_in_bytes",
3932
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3933
		.write = mem_cgroup_reset,
3934
		.read_u64 = mem_cgroup_read_u64,
3935
	},
B
Balbir Singh 已提交
3936
	{
3937
		.name = "limit_in_bytes",
3938
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3939
		.write = mem_cgroup_write,
3940
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
3941
	},
3942 3943 3944
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3945
		.write = mem_cgroup_write,
3946
		.read_u64 = mem_cgroup_read_u64,
3947
	},
B
Balbir Singh 已提交
3948 3949
	{
		.name = "failcnt",
3950
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3951
		.write = mem_cgroup_reset,
3952
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
3953
	},
3954 3955
	{
		.name = "stat",
3956
		.seq_show = memcg_stat_show,
3957
	},
3958 3959
	{
		.name = "force_empty",
3960
		.write = mem_cgroup_force_empty_write,
3961
	},
3962 3963 3964 3965 3966
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
3967
	{
3968
		.name = "cgroup.event_control",		/* XXX: for compat */
3969
		.write = memcg_write_event_control,
3970
		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
3971
	},
K
KOSAKI Motohiro 已提交
3972 3973 3974 3975 3976
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
3977 3978 3979 3980 3981
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
3982 3983
	{
		.name = "oom_control",
3984
		.seq_show = mem_cgroup_oom_control_read,
3985
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
3986 3987
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
3988 3989 3990
	{
		.name = "pressure_level",
	},
3991 3992 3993
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
3994
		.seq_show = memcg_numa_stat_show,
3995 3996
	},
#endif
3997 3998 3999
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4000
		.write = mem_cgroup_write,
4001
		.read_u64 = mem_cgroup_read_u64,
4002 4003 4004 4005
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4006
		.read_u64 = mem_cgroup_read_u64,
4007 4008 4009 4010
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4011
		.write = mem_cgroup_reset,
4012
		.read_u64 = mem_cgroup_read_u64,
4013 4014 4015 4016
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4017
		.write = mem_cgroup_reset,
4018
		.read_u64 = mem_cgroup_read_u64,
4019
	},
4020 4021 4022
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
4023 4024 4025 4026
		.seq_start = slab_start,
		.seq_next = slab_next,
		.seq_stop = slab_stop,
		.seq_show = memcg_slab_show,
4027 4028
	},
#endif
V
Vladimir Davydov 已提交
4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051
	{
		.name = "kmem.tcp.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.failcnt",
		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
4052
	{ },	/* terminate */
4053
};
4054

4055
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4056 4057
{
	struct mem_cgroup_per_node *pn;
4058
	struct mem_cgroup_per_zone *mz;
4059
	int zone, tmp = node;
4060 4061 4062 4063 4064 4065 4066 4067
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4068 4069
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4070
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4071 4072
	if (!pn)
		return 1;
4073 4074 4075

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4076
		lruvec_init(&mz->lruvec);
4077 4078
		mz->usage_in_excess = 0;
		mz->on_tree = false;
4079
		mz->memcg = memcg;
4080
	}
4081
	memcg->nodeinfo[node] = pn;
4082 4083 4084
	return 0;
}

4085
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4086
{
4087
	kfree(memcg->nodeinfo[node]);
4088 4089
}

4090
static void mem_cgroup_free(struct mem_cgroup *memcg)
4091
{
4092
	int node;
4093

4094
	memcg_wb_domain_exit(memcg);
4095 4096 4097
	for_each_node(node)
		free_mem_cgroup_per_zone_info(memcg, node);
	free_percpu(memcg->stat);
4098
	kfree(memcg);
4099
}
4100

4101
static struct mem_cgroup *mem_cgroup_alloc(void)
B
Balbir Singh 已提交
4102
{
4103
	struct mem_cgroup *memcg;
4104
	size_t size;
4105
	int node;
B
Balbir Singh 已提交
4106

4107 4108 4109 4110
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);

	memcg = kzalloc(size, GFP_KERNEL);
4111
	if (!memcg)
4112 4113 4114 4115 4116
		return NULL;

	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
		goto fail;
4117

B
Bob Liu 已提交
4118
	for_each_node(node)
4119
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4120
			goto fail;
4121

4122 4123
	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
		goto fail;
4124

4125
	INIT_WORK(&memcg->high_work, high_work_func);
4126 4127 4128 4129
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
4130
	vmpressure_init(&memcg->vmpressure);
4131 4132
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
4133
	memcg->socket_pressure = jiffies;
4134
#ifndef CONFIG_SLOB
V
Vladimir Davydov 已提交
4135 4136
	memcg->kmemcg_id = -1;
#endif
4137 4138 4139
#ifdef CONFIG_CGROUP_WRITEBACK
	INIT_LIST_HEAD(&memcg->cgwb_list);
#endif
4140 4141 4142 4143
	return memcg;
fail:
	mem_cgroup_free(memcg);
	return NULL;
4144 4145
}

4146 4147
static struct cgroup_subsys_state * __ref
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4148
{
4149 4150 4151
	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
	struct mem_cgroup *memcg;
	long error = -ENOMEM;
4152

4153 4154 4155
	memcg = mem_cgroup_alloc();
	if (!memcg)
		return ERR_PTR(error);
4156

4157 4158 4159 4160 4161 4162 4163 4164
	memcg->high = PAGE_COUNTER_MAX;
	memcg->soft_limit = PAGE_COUNTER_MAX;
	if (parent) {
		memcg->swappiness = mem_cgroup_swappiness(parent);
		memcg->oom_kill_disable = parent->oom_kill_disable;
	}
	if (parent && parent->use_hierarchy) {
		memcg->use_hierarchy = true;
4165
		page_counter_init(&memcg->memory, &parent->memory);
4166
		page_counter_init(&memcg->swap, &parent->swap);
4167 4168
		page_counter_init(&memcg->memsw, &parent->memsw);
		page_counter_init(&memcg->kmem, &parent->kmem);
4169
		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4170
	} else {
4171
		page_counter_init(&memcg->memory, NULL);
4172
		page_counter_init(&memcg->swap, NULL);
4173 4174
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
4175
		page_counter_init(&memcg->tcpmem, NULL);
4176 4177 4178 4179 4180
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
4181
		if (parent != root_mem_cgroup)
4182
			memory_cgrp_subsys.broken_hierarchy = true;
4183
	}
4184

4185 4186 4187 4188 4189 4190
	/* The following stuff does not apply to the root */
	if (!parent) {
		root_mem_cgroup = memcg;
		return &memcg->css;
	}

4191
	error = memcg_online_kmem(memcg);
4192 4193
	if (error)
		goto fail;
4194

4195
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4196
		static_branch_inc(&memcg_sockets_enabled_key);
4197

4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208
	return &memcg->css;
fail:
	mem_cgroup_free(memcg);
	return NULL;
}

static int
mem_cgroup_css_online(struct cgroup_subsys_state *css)
{
	if (css->id > MEM_CGROUP_ID_MAX)
		return -ENOSPC;
4209 4210

	return 0;
B
Balbir Singh 已提交
4211 4212
}

4213
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4214
{
4215
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4216
	struct mem_cgroup_event *event, *tmp;
4217 4218 4219 4220 4221 4222

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
4223 4224
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4225 4226 4227
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
4228
	spin_unlock(&memcg->event_list_lock);
4229

4230
	memcg_offline_kmem(memcg);
4231
	wb_memcg_offline(memcg);
4232 4233
}

4234 4235 4236 4237 4238 4239 4240
static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	invalidate_reclaim_iterators(memcg);
}

4241
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
4242
{
4243
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4244

4245
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4246
		static_branch_dec(&memcg_sockets_enabled_key);
4247

4248
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
V
Vladimir Davydov 已提交
4249
		static_branch_dec(&memcg_sockets_enabled_key);
4250

4251 4252 4253
	vmpressure_cleanup(&memcg->vmpressure);
	cancel_work_sync(&memcg->high_work);
	mem_cgroup_remove_from_trees(memcg);
4254
	memcg_free_kmem(memcg);
4255
	mem_cgroup_free(memcg);
B
Balbir Singh 已提交
4256 4257
}

4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274
/**
 * mem_cgroup_css_reset - reset the states of a mem_cgroup
 * @css: the target css
 *
 * Reset the states of the mem_cgroup associated with @css.  This is
 * invoked when the userland requests disabling on the default hierarchy
 * but the memcg is pinned through dependency.  The memcg should stop
 * applying policies and should revert to the vanilla state as it may be
 * made visible again.
 *
 * The current implementation only resets the essential configurations.
 * This needs to be expanded to cover all the visible parts.
 */
static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

4275 4276 4277 4278 4279
	page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
	page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
	page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
	page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
	page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
4280 4281
	memcg->low = 0;
	memcg->high = PAGE_COUNTER_MAX;
4282
	memcg->soft_limit = PAGE_COUNTER_MAX;
4283
	memcg_wb_domain_size_changed(memcg);
4284 4285
}

4286
#ifdef CONFIG_MMU
4287
/* Handlers for move charge at task migration. */
4288
static int mem_cgroup_do_precharge(unsigned long count)
4289
{
4290
	int ret;
4291

4292 4293
	/* Try a single bulk charge without reclaim first, kswapd may wake */
	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4294
	if (!ret) {
4295 4296 4297
		mc.precharge += count;
		return ret;
	}
4298 4299

	/* Try charges one by one with reclaim */
4300
	while (count--) {
4301
		ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4302 4303
		if (ret)
			return ret;
4304
		mc.precharge++;
4305
		cond_resched();
4306
	}
4307
	return 0;
4308 4309 4310
}

/**
4311
 * get_mctgt_type - get target type of moving charge
4312 4313 4314
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
4315
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4316 4317 4318 4319 4320 4321
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
4322 4323 4324
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
4325 4326 4327 4328 4329
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
4330
	swp_entry_t	ent;
4331 4332 4333
};

enum mc_target_type {
4334
	MC_TARGET_NONE = 0,
4335
	MC_TARGET_PAGE,
4336
	MC_TARGET_SWAP,
4337 4338
};

D
Daisuke Nishimura 已提交
4339 4340
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
4341
{
D
Daisuke Nishimura 已提交
4342
	struct page *page = vm_normal_page(vma, addr, ptent);
4343

D
Daisuke Nishimura 已提交
4344 4345 4346
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
4347
		if (!(mc.flags & MOVE_ANON))
D
Daisuke Nishimura 已提交
4348
			return NULL;
4349 4350 4351 4352
	} else {
		if (!(mc.flags & MOVE_FILE))
			return NULL;
	}
D
Daisuke Nishimura 已提交
4353 4354 4355 4356 4357 4358
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

4359
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
4360 4361 4362 4363 4364 4365
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

4366
	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
D
Daisuke Nishimura 已提交
4367
		return NULL;
4368 4369 4370 4371
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
4372
	page = find_get_page(swap_address_space(ent), ent.val);
4373
	if (do_memsw_account())
D
Daisuke Nishimura 已提交
4374 4375 4376 4377
		entry->val = ent.val;

	return page;
}
4378 4379 4380 4381 4382 4383 4384
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
4385

4386 4387 4388 4389 4390 4391 4392 4393 4394
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
4395
	if (!(mc.flags & MOVE_FILE))
4396 4397 4398
		return NULL;

	mapping = vma->vm_file->f_mapping;
4399
	pgoff = linear_page_index(vma, addr);
4400 4401

	/* page is moved even if it's not RSS of this task(page-faulted). */
4402 4403
#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
4404 4405 4406 4407
	if (shmem_mapping(mapping)) {
		page = find_get_entry(mapping, pgoff);
		if (radix_tree_exceptional_entry(page)) {
			swp_entry_t swp = radix_to_swp_entry(page);
4408
			if (do_memsw_account())
4409 4410 4411 4412 4413 4414 4415
				*entry = swp;
			page = find_get_page(swap_address_space(swp), swp.val);
		}
	} else
		page = find_get_page(mapping, pgoff);
#else
	page = find_get_page(mapping, pgoff);
4416
#endif
4417 4418 4419
	return page;
}

4420 4421 4422 4423 4424 4425 4426
/**
 * mem_cgroup_move_account - move account of the page
 * @page: the page
 * @nr_pages: number of regular pages (>1 for huge pages)
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
4427
 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4428 4429 4430 4431 4432
 *
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
 */
static int mem_cgroup_move_account(struct page *page,
4433
				   bool compound,
4434 4435 4436 4437
				   struct mem_cgroup *from,
				   struct mem_cgroup *to)
{
	unsigned long flags;
4438
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4439
	int ret;
4440
	bool anon;
4441 4442 4443

	VM_BUG_ON(from == to);
	VM_BUG_ON_PAGE(PageLRU(page), page);
4444
	VM_BUG_ON(compound && !PageTransHuge(page));
4445 4446

	/*
4447
	 * Prevent mem_cgroup_migrate() from looking at
4448
	 * page->mem_cgroup of its source page while we change it.
4449
	 */
4450
	ret = -EBUSY;
4451 4452 4453 4454 4455 4456 4457
	if (!trylock_page(page))
		goto out;

	ret = -EINVAL;
	if (page->mem_cgroup != from)
		goto out_unlock;

4458 4459
	anon = PageAnon(page);

4460 4461
	spin_lock_irqsave(&from->move_lock, flags);

4462
	if (!anon && page_mapped(page)) {
4463 4464 4465 4466 4467 4468
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
	}

4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484
	/*
	 * move_lock grabbed above and caller set from->moving_account, so
	 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
	 * So mapping should be stable for dirty pages.
	 */
	if (!anon && PageDirty(page)) {
		struct address_space *mapping = page_mapping(page);

		if (mapping_cap_account_dirty(mapping)) {
			__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
				       nr_pages);
			__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
				       nr_pages);
		}
	}

4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504
	if (PageWriteback(page)) {
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
	}

	/*
	 * It is safe to change page->mem_cgroup here because the page
	 * is referenced, charged, and isolated - we can't race with
	 * uncharging, charging, migration, or LRU putback.
	 */

	/* caller should have done css_get */
	page->mem_cgroup = to;
	spin_unlock_irqrestore(&from->move_lock, flags);

	ret = 0;

	local_irq_disable();
4505
	mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4506
	memcg_check_events(to, page);
4507
	mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4508 4509 4510 4511 4512 4513 4514 4515
	memcg_check_events(from, page);
	local_irq_enable();
out_unlock:
	unlock_page(page);
out:
	return ret;
}

4516
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
4517 4518 4519
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
4520
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
4521 4522 4523 4524 4525 4526
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4527
	else if (pte_none(ptent))
4528
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
4529 4530

	if (!page && !ent.val)
4531
		return ret;
4532 4533
	if (page) {
		/*
4534
		 * Do only loose check w/o serialization.
4535
		 * mem_cgroup_move_account() checks the page is valid or
4536
		 * not under LRU exclusion.
4537
		 */
4538
		if (page->mem_cgroup == mc.from) {
4539 4540 4541 4542 4543 4544 4545
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
4546 4547
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
L
Li Zefan 已提交
4548
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4549 4550 4551
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
4552 4553 4554 4555
	}
	return ret;
}

4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
4569
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4570
	if (!(mc.flags & MOVE_ANON))
4571
		return ret;
4572
	if (page->mem_cgroup == mc.from) {
4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

4589 4590 4591 4592
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
4593
	struct vm_area_struct *vma = walk->vma;
4594 4595 4596
	pte_t *pte;
	spinlock_t *ptl;

4597 4598
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
4599 4600
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
4601
		spin_unlock(ptl);
4602
		return 0;
4603
	}
4604

4605 4606
	if (pmd_trans_unstable(pmd))
		return 0;
4607 4608
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
4609
		if (get_mctgt_type(vma, addr, *pte, NULL))
4610 4611 4612 4613
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

4614 4615 4616
	return 0;
}

4617 4618 4619 4620
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;

4621 4622 4623 4624
	struct mm_walk mem_cgroup_count_precharge_walk = {
		.pmd_entry = mem_cgroup_count_precharge_pte_range,
		.mm = mm,
	};
4625
	down_read(&mm->mmap_sem);
4626
	walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4627
	up_read(&mm->mmap_sem);
4628 4629 4630 4631 4632 4633 4634 4635 4636

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
4637 4638 4639 4640 4641
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
4642 4643
}

4644 4645
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
4646
{
4647 4648 4649
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

4650
	/* we must uncharge all the leftover precharges from mc.to */
4651
	if (mc.precharge) {
4652
		cancel_charge(mc.to, mc.precharge);
4653 4654 4655 4656 4657 4658 4659
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
4660
		cancel_charge(mc.from, mc.moved_charge);
4661
		mc.moved_charge = 0;
4662
	}
4663 4664 4665
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
4666
		if (!mem_cgroup_is_root(mc.from))
4667
			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4668

4669
		/*
4670 4671
		 * we charged both to->memory and to->memsw, so we
		 * should uncharge to->memory.
4672
		 */
4673
		if (!mem_cgroup_is_root(mc.to))
4674 4675
			page_counter_uncharge(&mc.to->memory, mc.moved_swap);

4676
		css_put_many(&mc.from->css, mc.moved_swap);
4677

L
Li Zefan 已提交
4678
		/* we've already done css_get(mc.to) */
4679 4680
		mc.moved_swap = 0;
	}
4681 4682 4683 4684 4685 4686 4687
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
4688 4689
	struct mm_struct *mm = mc.mm;

4690 4691 4692 4693 4694 4695
	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
4696
	spin_lock(&mc.lock);
4697 4698
	mc.from = NULL;
	mc.to = NULL;
4699
	mc.mm = NULL;
4700
	spin_unlock(&mc.lock);
4701 4702

	mmput(mm);
4703 4704
}

4705
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4706
{
4707
	struct cgroup_subsys_state *css;
4708
	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4709
	struct mem_cgroup *from;
4710
	struct task_struct *leader, *p;
4711
	struct mm_struct *mm;
4712
	unsigned long move_flags;
4713
	int ret = 0;
4714

4715 4716
	/* charge immigration isn't supported on the default hierarchy */
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4717 4718
		return 0;

4719 4720 4721 4722 4723 4724 4725
	/*
	 * Multi-process migrations only happen on the default hierarchy
	 * where charge immigration is not used.  Perform charge
	 * immigration if @tset contains a leader and whine if there are
	 * multiple.
	 */
	p = NULL;
4726
	cgroup_taskset_for_each_leader(leader, css, tset) {
4727 4728
		WARN_ON_ONCE(p);
		p = leader;
4729
		memcg = mem_cgroup_from_css(css);
4730 4731 4732 4733
	}
	if (!p)
		return 0;

4734 4735 4736 4737 4738 4739 4740 4741 4742
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
	if (!move_flags)
		return 0;

4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758
	from = mem_cgroup_from_task(p);

	VM_BUG_ON(from == memcg);

	mm = get_task_mm(p);
	if (!mm)
		return 0;
	/* We move charges only when we move a owner of the mm */
	if (mm->owner == p) {
		VM_BUG_ON(mc.from);
		VM_BUG_ON(mc.to);
		VM_BUG_ON(mc.precharge);
		VM_BUG_ON(mc.moved_charge);
		VM_BUG_ON(mc.moved_swap);

		spin_lock(&mc.lock);
4759
		mc.mm = mm;
4760 4761 4762 4763 4764 4765 4766 4767 4768
		mc.from = from;
		mc.to = memcg;
		mc.flags = move_flags;
		spin_unlock(&mc.lock);
		/* We set mc.moving_task later */

		ret = mem_cgroup_precharge_mc(mm);
		if (ret)
			mem_cgroup_clear_mc();
4769 4770
	} else {
		mmput(mm);
4771 4772 4773 4774
	}
	return ret;
}

4775
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4776
{
4777 4778
	if (mc.to)
		mem_cgroup_clear_mc();
4779 4780
}

4781 4782 4783
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
4784
{
4785
	int ret = 0;
4786
	struct vm_area_struct *vma = walk->vma;
4787 4788
	pte_t *pte;
	spinlock_t *ptl;
4789 4790 4791
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
4792

4793 4794
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
4795
		if (mc.precharge < HPAGE_PMD_NR) {
4796
			spin_unlock(ptl);
4797 4798 4799 4800 4801 4802
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
4803
				if (!mem_cgroup_move_account(page, true,
4804
							     mc.from, mc.to)) {
4805 4806 4807 4808 4809 4810 4811
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
4812
		spin_unlock(ptl);
4813
		return 0;
4814 4815
	}

4816 4817
	if (pmd_trans_unstable(pmd))
		return 0;
4818 4819 4820 4821
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
4822
		swp_entry_t ent;
4823 4824 4825 4826

		if (!mc.precharge)
			break;

4827
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
4828 4829
		case MC_TARGET_PAGE:
			page = target.page;
4830 4831 4832 4833 4834 4835 4836 4837
			/*
			 * We can have a part of the split pmd here. Moving it
			 * can be done but it would be too convoluted so simply
			 * ignore such a partial THP and keep it in original
			 * memcg. There should be somebody mapping the head.
			 */
			if (PageTransCompound(page))
				goto put;
4838 4839
			if (isolate_lru_page(page))
				goto put;
4840 4841
			if (!mem_cgroup_move_account(page, false,
						mc.from, mc.to)) {
4842
				mc.precharge--;
4843 4844
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
4845 4846
			}
			putback_lru_page(page);
4847
put:			/* get_mctgt_type() gets the page */
4848 4849
			put_page(page);
			break;
4850 4851
		case MC_TARGET_SWAP:
			ent = target.ent;
4852
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4853
				mc.precharge--;
4854 4855 4856
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
4857
			break;
4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
4872
		ret = mem_cgroup_do_precharge(1);
4873 4874 4875 4876 4877 4878 4879
		if (!ret)
			goto retry;
	}

	return ret;
}

4880
static void mem_cgroup_move_charge(void)
4881
{
4882 4883
	struct mm_walk mem_cgroup_move_charge_walk = {
		.pmd_entry = mem_cgroup_move_charge_pte_range,
4884
		.mm = mc.mm,
4885
	};
4886 4887

	lru_add_drain_all();
4888
	/*
4889 4890 4891
	 * Signal lock_page_memcg() to take the memcg's move_lock
	 * while we're moving its pages to another memcg. Then wait
	 * for already started RCU-only updates to finish.
4892 4893 4894
	 */
	atomic_inc(&mc.from->moving_account);
	synchronize_rcu();
4895
retry:
4896
	if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
4908 4909 4910 4911 4912
	/*
	 * When we have consumed all precharges and failed in doing
	 * additional charge, the page walk just aborts.
	 */
	walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
4913
	up_read(&mc.mm->mmap_sem);
4914
	atomic_dec(&mc.from->moving_account);
4915 4916
}

4917
static void mem_cgroup_move_task(void)
B
Balbir Singh 已提交
4918
{
4919 4920
	if (mc.to) {
		mem_cgroup_move_charge();
4921
		mem_cgroup_clear_mc();
4922
	}
B
Balbir Singh 已提交
4923
}
4924
#else	/* !CONFIG_MMU */
4925
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4926 4927 4928
{
	return 0;
}
4929
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4930 4931
{
}
4932
static void mem_cgroup_move_task(void)
4933 4934 4935
{
}
#endif
B
Balbir Singh 已提交
4936

4937 4938
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
4939 4940
 * to verify whether we're attached to the default hierarchy on each mount
 * attempt.
4941
 */
4942
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
4943 4944
{
	/*
4945
	 * use_hierarchy is forced on the default hierarchy.  cgroup core
4946 4947 4948
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
4949
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4950 4951 4952
		root_mem_cgroup->use_hierarchy = true;
	else
		root_mem_cgroup->use_hierarchy = false;
4953 4954
}

4955 4956 4957
static u64 memory_current_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
{
4958 4959 4960
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
4961 4962 4963 4964 4965
}

static int memory_low_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4966
	unsigned long low = READ_ONCE(memcg->low);
4967 4968

	if (low == PAGE_COUNTER_MAX)
4969
		seq_puts(m, "max\n");
4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983
	else
		seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);

	return 0;
}

static ssize_t memory_low_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long low;
	int err;

	buf = strstrip(buf);
4984
	err = page_counter_memparse(buf, "max", &low);
4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995
	if (err)
		return err;

	memcg->low = low;

	return nbytes;
}

static int memory_high_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4996
	unsigned long high = READ_ONCE(memcg->high);
4997 4998

	if (high == PAGE_COUNTER_MAX)
4999
		seq_puts(m, "max\n");
5000 5001 5002 5003 5004 5005 5006 5007 5008 5009
	else
		seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);

	return 0;
}

static ssize_t memory_high_write(struct kernfs_open_file *of,
				 char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5010
	unsigned long nr_pages;
5011 5012 5013 5014
	unsigned long high;
	int err;

	buf = strstrip(buf);
5015
	err = page_counter_memparse(buf, "max", &high);
5016 5017 5018 5019 5020
	if (err)
		return err;

	memcg->high = high;

5021 5022 5023 5024 5025
	nr_pages = page_counter_read(&memcg->memory);
	if (nr_pages > high)
		try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
					     GFP_KERNEL, true);

5026
	memcg_wb_domain_size_changed(memcg);
5027 5028 5029 5030 5031 5032
	return nbytes;
}

static int memory_max_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5033
	unsigned long max = READ_ONCE(memcg->memory.limit);
5034 5035

	if (max == PAGE_COUNTER_MAX)
5036
		seq_puts(m, "max\n");
5037 5038 5039 5040 5041 5042 5043 5044 5045 5046
	else
		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);

	return 0;
}

static ssize_t memory_max_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5047 5048
	unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
	bool drained = false;
5049 5050 5051 5052
	unsigned long max;
	int err;

	buf = strstrip(buf);
5053
	err = page_counter_memparse(buf, "max", &max);
5054 5055 5056
	if (err)
		return err;

5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086
	xchg(&memcg->memory.limit, max);

	for (;;) {
		unsigned long nr_pages = page_counter_read(&memcg->memory);

		if (nr_pages <= max)
			break;

		if (signal_pending(current)) {
			err = -EINTR;
			break;
		}

		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

		if (nr_reclaims) {
			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
							  GFP_KERNEL, true))
				nr_reclaims--;
			continue;
		}

		mem_cgroup_events(memcg, MEMCG_OOM, 1);
		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
			break;
	}
5087

5088
	memcg_wb_domain_size_changed(memcg);
5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103
	return nbytes;
}

static int memory_events_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));

	seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
	seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
	seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
	seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));

	return 0;
}

5104 5105 5106
static int memory_stat_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5107 5108
	unsigned long stat[MEMCG_NR_STAT];
	unsigned long events[MEMCG_NR_EVENTS];
5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121
	int i;

	/*
	 * Provide statistics on the state of the memory subsystem as
	 * well as cumulative event counters that show past behavior.
	 *
	 * This list is ordered following a combination of these gradients:
	 * 1) generic big picture -> specifics and details
	 * 2) reflecting userspace activity -> reflecting kernel heuristics
	 *
	 * Current memory state:
	 */

5122 5123 5124
	tree_stat(memcg, stat);
	tree_events(memcg, events);

5125
	seq_printf(m, "anon %llu\n",
5126
		   (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE);
5127
	seq_printf(m, "file %llu\n",
5128
		   (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE);
5129 5130
	seq_printf(m, "kernel_stack %llu\n",
		   (u64)stat[MEMCG_KERNEL_STACK] * PAGE_SIZE);
5131 5132 5133
	seq_printf(m, "slab %llu\n",
		   (u64)(stat[MEMCG_SLAB_RECLAIMABLE] +
			 stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5134
	seq_printf(m, "sock %llu\n",
5135
		   (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
5136 5137

	seq_printf(m, "file_mapped %llu\n",
5138
		   (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE);
5139
	seq_printf(m, "file_dirty %llu\n",
5140
		   (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE);
5141
	seq_printf(m, "file_writeback %llu\n",
5142
		   (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE);
5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153

	for (i = 0; i < NR_LRU_LISTS; i++) {
		struct mem_cgroup *mi;
		unsigned long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i));
		seq_printf(m, "%s %llu\n",
			   mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
	}

5154 5155 5156 5157 5158
	seq_printf(m, "slab_reclaimable %llu\n",
		   (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE);
	seq_printf(m, "slab_unreclaimable %llu\n",
		   (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE);

5159 5160 5161
	/* Accumulated memory events */

	seq_printf(m, "pgfault %lu\n",
5162
		   events[MEM_CGROUP_EVENTS_PGFAULT]);
5163
	seq_printf(m, "pgmajfault %lu\n",
5164
		   events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
5165 5166 5167 5168

	return 0;
}

5169 5170 5171
static struct cftype memory_files[] = {
	{
		.name = "current",
5172
		.flags = CFTYPE_NOT_ON_ROOT,
5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195
		.read_u64 = memory_current_read,
	},
	{
		.name = "low",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_low_show,
		.write = memory_low_write,
	},
	{
		.name = "high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_high_show,
		.write = memory_high_write,
	},
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_max_show,
		.write = memory_max_write,
	},
	{
		.name = "events",
		.flags = CFTYPE_NOT_ON_ROOT,
5196
		.file_offset = offsetof(struct mem_cgroup, events_file),
5197 5198
		.seq_show = memory_events_show,
	},
5199 5200 5201 5202 5203
	{
		.name = "stat",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_stat_show,
	},
5204 5205 5206
	{ }	/* terminate */
};

5207
struct cgroup_subsys memory_cgrp_subsys = {
5208
	.css_alloc = mem_cgroup_css_alloc,
5209
	.css_online = mem_cgroup_css_online,
5210
	.css_offline = mem_cgroup_css_offline,
5211
	.css_released = mem_cgroup_css_released,
5212
	.css_free = mem_cgroup_css_free,
5213
	.css_reset = mem_cgroup_css_reset,
5214 5215
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
5216
	.post_attach = mem_cgroup_move_task,
5217
	.bind = mem_cgroup_bind,
5218 5219
	.dfl_cftypes = memory_files,
	.legacy_cftypes = mem_cgroup_legacy_files,
5220
	.early_init = 0,
B
Balbir Singh 已提交
5221
};
5222

5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244
/**
 * mem_cgroup_low - check if memory consumption is below the normal range
 * @root: the highest ancestor to consider
 * @memcg: the memory cgroup to check
 *
 * Returns %true if memory consumption of @memcg, and that of all
 * configurable ancestors up to @root, is below the normal range.
 */
bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return false;

	/*
	 * The toplevel group doesn't have a configurable range, so
	 * it's never low when looked at directly, and it is not
	 * considered an ancestor when assessing the hierarchy.
	 */

	if (memcg == root_mem_cgroup)
		return false;

M
Michal Hocko 已提交
5245
	if (page_counter_read(&memcg->memory) >= memcg->low)
5246 5247 5248 5249 5250 5251 5252 5253
		return false;

	while (memcg != root) {
		memcg = parent_mem_cgroup(memcg);

		if (memcg == root_mem_cgroup)
			break;

M
Michal Hocko 已提交
5254
		if (page_counter_read(&memcg->memory) >= memcg->low)
5255 5256 5257 5258 5259
			return false;
	}
	return true;
}

5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277
/**
 * mem_cgroup_try_charge - try charging a page
 * @page: page to charge
 * @mm: mm context of the victim
 * @gfp_mask: reclaim mode
 * @memcgp: charged memcg return
 *
 * Try to charge @page to the memcg that @mm belongs to, reclaiming
 * pages according to @gfp_mask if necessary.
 *
 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
 * Otherwise, an error code is returned.
 *
 * After page->mapping has been set up, the caller must finalize the
 * charge with mem_cgroup_commit_charge().  Or abort the transaction
 * with mem_cgroup_cancel_charge() in case page instantiation fails.
 */
int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5278 5279
			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
			  bool compound)
5280 5281
{
	struct mem_cgroup *memcg = NULL;
5282
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295
	int ret = 0;

	if (mem_cgroup_disabled())
		goto out;

	if (PageSwapCache(page)) {
		/*
		 * Every swap fault against a single page tries to charge the
		 * page, bail as early as possible.  shmem_unuse() encounters
		 * already charged pages, too.  The USED bit is protected by
		 * the page lock, which serializes swap cache removal, which
		 * in turn serializes uncharging.
		 */
5296
		VM_BUG_ON_PAGE(!PageLocked(page), page);
5297
		if (page->mem_cgroup)
5298
			goto out;
5299

5300
		if (do_swap_account) {
5301 5302 5303 5304 5305 5306 5307 5308 5309
			swp_entry_t ent = { .val = page_private(page), };
			unsigned short id = lookup_swap_cgroup_id(ent);

			rcu_read_lock();
			memcg = mem_cgroup_from_id(id);
			if (memcg && !css_tryget_online(&memcg->css))
				memcg = NULL;
			rcu_read_unlock();
		}
5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339
	}

	if (!memcg)
		memcg = get_mem_cgroup_from_mm(mm);

	ret = try_charge(memcg, gfp_mask, nr_pages);

	css_put(&memcg->css);
out:
	*memcgp = memcg;
	return ret;
}

/**
 * mem_cgroup_commit_charge - commit a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 * @lrucare: page might be on LRU already
 *
 * Finalize a charge transaction started by mem_cgroup_try_charge(),
 * after page->mapping has been set up.  This must happen atomically
 * as part of the page instantiation, i.e. under the page table lock
 * for anonymous pages, under the page lock for page and swap cache.
 *
 * In addition, the page must not be on the LRU during the commit, to
 * prevent racing with task migration.  If it might be, use @lrucare.
 *
 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
 */
void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5340
			      bool lrucare, bool compound)
5341
{
5342
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356

	VM_BUG_ON_PAGE(!page->mapping, page);
	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

5357 5358 5359
	commit_charge(page, memcg, lrucare);

	local_irq_disable();
5360
	mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5361 5362
	memcg_check_events(memcg, page);
	local_irq_enable();
5363

5364
	if (do_memsw_account() && PageSwapCache(page)) {
5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381
		swp_entry_t entry = { .val = page_private(page) };
		/*
		 * The swap entry might not get freed for a long time,
		 * let's not wait for it.  The page already received a
		 * memory+swap charge, drop the swap entry duplicate.
		 */
		mem_cgroup_uncharge_swap(entry);
	}
}

/**
 * mem_cgroup_cancel_charge - cancel a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 *
 * Cancel a charge transaction started by mem_cgroup_try_charge().
 */
5382 5383
void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
		bool compound)
5384
{
5385
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

	cancel_charge(memcg, nr_pages);
}

5400 5401 5402 5403
static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
			   unsigned long nr_anon, unsigned long nr_file,
			   unsigned long nr_huge, struct page *dummy_page)
{
5404
	unsigned long nr_pages = nr_anon + nr_file;
5405 5406
	unsigned long flags;

5407
	if (!mem_cgroup_is_root(memcg)) {
5408
		page_counter_uncharge(&memcg->memory, nr_pages);
5409
		if (do_memsw_account())
5410
			page_counter_uncharge(&memcg->memsw, nr_pages);
5411 5412
		memcg_oom_recover(memcg);
	}
5413 5414 5415 5416 5417 5418

	local_irq_save(flags);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5419
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5420 5421
	memcg_check_events(memcg, dummy_page);
	local_irq_restore(flags);
5422 5423

	if (!mem_cgroup_is_root(memcg))
5424
		css_put_many(&memcg->css, nr_pages);
5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436
}

static void uncharge_list(struct list_head *page_list)
{
	struct mem_cgroup *memcg = NULL;
	unsigned long nr_anon = 0;
	unsigned long nr_file = 0;
	unsigned long nr_huge = 0;
	unsigned long pgpgout = 0;
	struct list_head *next;
	struct page *page;

5437 5438 5439 5440
	/*
	 * Note that the list can be a single page->lru; hence the
	 * do-while loop instead of a simple list_for_each_entry().
	 */
5441 5442 5443 5444 5445 5446 5447 5448 5449 5450
	next = page_list->next;
	do {
		unsigned int nr_pages = 1;

		page = list_entry(next, struct page, lru);
		next = page->lru.next;

		VM_BUG_ON_PAGE(PageLRU(page), page);
		VM_BUG_ON_PAGE(page_count(page), page);

5451
		if (!page->mem_cgroup)
5452 5453 5454 5455
			continue;

		/*
		 * Nobody should be changing or seriously looking at
5456
		 * page->mem_cgroup at this point, we have fully
5457
		 * exclusive access to the page.
5458 5459
		 */

5460
		if (memcg != page->mem_cgroup) {
5461
			if (memcg) {
5462 5463 5464
				uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
					       nr_huge, page);
				pgpgout = nr_anon = nr_file = nr_huge = 0;
5465
			}
5466
			memcg = page->mem_cgroup;
5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479
		}

		if (PageTransHuge(page)) {
			nr_pages <<= compound_order(page);
			VM_BUG_ON_PAGE(!PageTransHuge(page), page);
			nr_huge += nr_pages;
		}

		if (PageAnon(page))
			nr_anon += nr_pages;
		else
			nr_file += nr_pages;

5480
		page->mem_cgroup = NULL;
5481 5482 5483 5484 5485

		pgpgout++;
	} while (next != page_list);

	if (memcg)
5486 5487
		uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
			       nr_huge, page);
5488 5489
}

5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501
/**
 * mem_cgroup_uncharge - uncharge a page
 * @page: page to uncharge
 *
 * Uncharge a page previously charged with mem_cgroup_try_charge() and
 * mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge(struct page *page)
{
	if (mem_cgroup_disabled())
		return;

5502
	/* Don't touch page->lru of any random page, pre-check: */
5503
	if (!page->mem_cgroup)
5504 5505
		return;

5506 5507 5508
	INIT_LIST_HEAD(&page->lru);
	uncharge_list(&page->lru);
}
5509

5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520
/**
 * mem_cgroup_uncharge_list - uncharge a list of page
 * @page_list: list of pages to uncharge
 *
 * Uncharge a list of pages previously charged with
 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge_list(struct list_head *page_list)
{
	if (mem_cgroup_disabled())
		return;
5521

5522 5523
	if (!list_empty(page_list))
		uncharge_list(page_list);
5524 5525 5526
}

/**
5527 5528 5529
 * mem_cgroup_migrate - charge a page's replacement
 * @oldpage: currently circulating page
 * @newpage: replacement page
5530
 *
5531 5532
 * Charge @newpage as a replacement page for @oldpage. @oldpage will
 * be uncharged upon free.
5533 5534 5535
 *
 * Both pages must be locked, @newpage->mapping must be set up.
 */
5536
void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
5537
{
5538
	struct mem_cgroup *memcg;
5539 5540
	unsigned int nr_pages;
	bool compound;
5541 5542 5543 5544

	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5545 5546
	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
		       newpage);
5547 5548 5549 5550 5551

	if (mem_cgroup_disabled())
		return;

	/* Page cache replacement: new page already charged? */
5552
	if (newpage->mem_cgroup)
5553 5554
		return;

5555
	/* Swapcache readahead pages can get replaced before being charged */
5556
	memcg = oldpage->mem_cgroup;
5557
	if (!memcg)
5558 5559
		return;

5560 5561 5562 5563 5564 5565 5566 5567
	/* Force-charge the new page. The old one will be freed soon */
	compound = PageTransHuge(newpage);
	nr_pages = compound ? hpage_nr_pages(newpage) : 1;

	page_counter_charge(&memcg->memory, nr_pages);
	if (do_memsw_account())
		page_counter_charge(&memcg->memsw, nr_pages);
	css_get_many(&memcg->css, nr_pages);
5568

5569
	commit_charge(newpage, memcg, false);
5570 5571 5572 5573 5574

	local_irq_disable();
	mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
	memcg_check_events(memcg, newpage);
	local_irq_enable();
5575 5576
}

5577
DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599
EXPORT_SYMBOL(memcg_sockets_enabled_key);

void sock_update_memcg(struct sock *sk)
{
	struct mem_cgroup *memcg;

	/* Socket cloning can throw us here with sk_cgrp already
	 * filled. It won't however, necessarily happen from
	 * process context. So the test for root memcg given
	 * the current task's memcg won't help us in this case.
	 *
	 * Respecting the original socket's memcg is a better
	 * decision in this case.
	 */
	if (sk->sk_memcg) {
		BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
		css_get(&sk->sk_memcg->css);
		return;
	}

	rcu_read_lock();
	memcg = mem_cgroup_from_task(current);
5600 5601
	if (memcg == root_mem_cgroup)
		goto out;
5602
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5603 5604
		goto out;
	if (css_tryget_online(&memcg->css))
5605
		sk->sk_memcg = memcg;
5606
out:
5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626
	rcu_read_unlock();
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
	WARN_ON(!sk->sk_memcg);
	css_put(&sk->sk_memcg->css);
}

/**
 * mem_cgroup_charge_skmem - charge socket memory
 * @memcg: memcg to charge
 * @nr_pages: number of pages to charge
 *
 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
 * @memcg's configured limit, %false if the charge had to be forced.
 */
bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
5627
	gfp_t gfp_mask = GFP_KERNEL;
5628

5629
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5630
		struct page_counter *fail;
5631

5632 5633
		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
			memcg->tcpmem_pressure = 0;
5634 5635
			return true;
		}
5636 5637
		page_counter_charge(&memcg->tcpmem, nr_pages);
		memcg->tcpmem_pressure = 1;
5638
		return false;
5639
	}
5640

5641 5642 5643 5644
	/* Don't block in the packet receive path */
	if (in_softirq())
		gfp_mask = GFP_NOWAIT;

5645 5646
	this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);

5647 5648 5649 5650
	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
		return true;

	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5651 5652 5653 5654 5655 5656 5657 5658 5659 5660
	return false;
}

/**
 * mem_cgroup_uncharge_skmem - uncharge socket memory
 * @memcg - memcg to uncharge
 * @nr_pages - number of pages to uncharge
 */
void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
5661
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5662
		page_counter_uncharge(&memcg->tcpmem, nr_pages);
5663 5664
		return;
	}
5665

5666 5667
	this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);

5668 5669
	page_counter_uncharge(&memcg->memory, nr_pages);
	css_put_many(&memcg->css, nr_pages);
5670 5671
}

5672 5673 5674 5675 5676 5677 5678 5679 5680
static int __init cgroup_memory(char *s)
{
	char *token;

	while ((token = strsep(&s, ",")) != NULL) {
		if (!*token)
			continue;
		if (!strcmp(token, "nosocket"))
			cgroup_memory_nosocket = true;
5681 5682
		if (!strcmp(token, "nokmem"))
			cgroup_memory_nokmem = true;
5683 5684 5685 5686
	}
	return 0;
}
__setup("cgroup.memory=", cgroup_memory);
5687

5688
/*
5689 5690 5691 5692 5693 5694
 * subsys_initcall() for memory controller.
 *
 * Some parts like hotcpu_notifier() have to be initialized from this context
 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
 * everything that doesn't depend on a specific mem_cgroup structure should
 * be initialized from here.
5695 5696 5697
 */
static int __init mem_cgroup_init(void)
{
5698 5699
	int cpu, node;

5700
	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722

	for_each_possible_cpu(cpu)
		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
			  drain_local_stock);

	for_each_node(node) {
		struct mem_cgroup_tree_per_node *rtpn;
		int zone;

		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
				    node_online(node) ? node : NUMA_NO_NODE);

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			struct mem_cgroup_tree_per_zone *rtpz;

			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
		soft_limit_tree.rb_tree_per_node[node] = rtpn;
	}

5723 5724 5725
	return 0;
}
subsys_initcall(mem_cgroup_init);
5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742

#ifdef CONFIG_MEMCG_SWAP
/**
 * mem_cgroup_swapout - transfer a memsw charge to swap
 * @page: page whose memsw charge to transfer
 * @entry: swap entry to move the charge to
 *
 * Transfer the memsw charge of @page to @entry.
 */
void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	unsigned short oldid;

	VM_BUG_ON_PAGE(PageLRU(page), page);
	VM_BUG_ON_PAGE(page_count(page), page);

5743
	if (!do_memsw_account())
5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760
		return;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return;

	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
	VM_BUG_ON_PAGE(oldid, page);
	mem_cgroup_swap_statistics(memcg, true);

	page->mem_cgroup = NULL;

	if (!mem_cgroup_is_root(memcg))
		page_counter_uncharge(&memcg->memory, 1);

5761 5762 5763 5764 5765 5766 5767
	/*
	 * Interrupts should be disabled here because the caller holds the
	 * mapping->tree_lock lock which is taken with interrupts-off. It is
	 * important here to have the interrupts disabled because it is the
	 * only synchronisation we have for udpating the per-CPU variables.
	 */
	VM_BUG_ON(!irqs_disabled());
5768
	mem_cgroup_charge_statistics(memcg, page, false, -1);
5769 5770 5771
	memcg_check_events(memcg, page);
}

5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807
/*
 * mem_cgroup_try_charge_swap - try charging a swap entry
 * @page: page being added to swap
 * @entry: swap entry to charge
 *
 * Try to charge @entry to the memcg that @page belongs to.
 *
 * Returns 0 on success, -ENOMEM on failure.
 */
int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	struct page_counter *counter;
	unsigned short oldid;

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
		return 0;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return 0;

	if (!mem_cgroup_is_root(memcg) &&
	    !page_counter_try_charge(&memcg->swap, 1, &counter))
		return -ENOMEM;

	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
	VM_BUG_ON_PAGE(oldid, page);
	mem_cgroup_swap_statistics(memcg, true);

	css_get(&memcg->css);
	return 0;
}

5808 5809 5810 5811
/**
 * mem_cgroup_uncharge_swap - uncharge a swap entry
 * @entry: swap entry to uncharge
 *
5812
 * Drop the swap charge associated with @entry.
5813 5814 5815 5816 5817 5818
 */
void mem_cgroup_uncharge_swap(swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	unsigned short id;

5819
	if (!do_swap_account)
5820 5821 5822 5823
		return;

	id = swap_cgroup_record(entry, 0);
	rcu_read_lock();
5824
	memcg = mem_cgroup_from_id(id);
5825
	if (memcg) {
5826 5827 5828 5829 5830 5831
		if (!mem_cgroup_is_root(memcg)) {
			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
				page_counter_uncharge(&memcg->swap, 1);
			else
				page_counter_uncharge(&memcg->memsw, 1);
		}
5832 5833 5834 5835 5836 5837
		mem_cgroup_swap_statistics(memcg, false);
		css_put(&memcg->css);
	}
	rcu_read_unlock();
}

5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850
long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
{
	long nr_swap_pages = get_nr_swap_pages();

	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return nr_swap_pages;
	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
		nr_swap_pages = min_t(long, nr_swap_pages,
				      READ_ONCE(memcg->swap.limit) -
				      page_counter_read(&memcg->swap));
	return nr_swap_pages;
}

5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872
bool mem_cgroup_swap_full(struct page *page)
{
	struct mem_cgroup *memcg;

	VM_BUG_ON_PAGE(!PageLocked(page), page);

	if (vm_swap_full())
		return true;
	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return false;

	memcg = page->mem_cgroup;
	if (!memcg)
		return false;

	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
		if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
			return true;

	return false;
}

5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889
/* for remember boot option*/
#ifdef CONFIG_MEMCG_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata;
#endif

static int __init enable_swap_account(char *s)
{
	if (!strcmp(s, "1"))
		really_do_swap_account = 1;
	else if (!strcmp(s, "0"))
		really_do_swap_account = 0;
	return 1;
}
__setup("swapaccount=", enable_swap_account);

5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946
static u64 swap_current_read(struct cgroup_subsys_state *css,
			     struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
}

static int swap_max_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
	unsigned long max = READ_ONCE(memcg->swap.limit);

	if (max == PAGE_COUNTER_MAX)
		seq_puts(m, "max\n");
	else
		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);

	return 0;
}

static ssize_t swap_max_write(struct kernfs_open_file *of,
			      char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long max;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &max);
	if (err)
		return err;

	mutex_lock(&memcg_limit_mutex);
	err = page_counter_limit(&memcg->swap, max);
	mutex_unlock(&memcg_limit_mutex);
	if (err)
		return err;

	return nbytes;
}

static struct cftype swap_files[] = {
	{
		.name = "swap.current",
		.flags = CFTYPE_NOT_ON_ROOT,
		.read_u64 = swap_current_read,
	},
	{
		.name = "swap.max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = swap_max_show,
		.write = swap_max_write,
	},
	{ }	/* terminate */
};

5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{ },	/* terminate */
};

static int __init mem_cgroup_swap_init(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
5978 5979
		WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
					       swap_files));
5980 5981 5982 5983 5984 5985 5986 5987
		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
						  memsw_cgroup_files));
	}
	return 0;
}
subsys_initcall(mem_cgroup_swap_init);

#endif /* CONFIG_MEMCG_SWAP */