memcontrol.c 155.1 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
17 18 19 20 21 22
 * Native page reclaim
 * Charge lifetime sanitation
 * Lockless page tracking & accounting
 * Unified hierarchy configuration model
 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
 *
B
Balbir Singh 已提交
23 24 25 26 27 28 29 30 31 32 33
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

34
#include <linux/page_counter.h>
B
Balbir Singh 已提交
35 36
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
37
#include <linux/mm.h>
38
#include <linux/sched/mm.h>
39
#include <linux/shmem_fs.h>
40
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
41
#include <linux/pagemap.h>
42
#include <linux/smp.h>
43
#include <linux/page-flags.h>
44
#include <linux/backing-dev.h>
45 46
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
47
#include <linux/limits.h>
48
#include <linux/export.h>
49
#include <linux/mutex.h>
50
#include <linux/rbtree.h>
51
#include <linux/slab.h>
52
#include <linux/swap.h>
53
#include <linux/swapops.h>
54
#include <linux/spinlock.h>
55
#include <linux/eventfd.h>
56
#include <linux/poll.h>
57
#include <linux/sort.h>
58
#include <linux/fs.h>
59
#include <linux/seq_file.h>
60
#include <linux/vmpressure.h>
61
#include <linux/mm_inline.h>
62
#include <linux/swap_cgroup.h>
63
#include <linux/cpu.h>
64
#include <linux/oom.h>
65
#include <linux/lockdep.h>
66
#include <linux/file.h>
67
#include <linux/tracehook.h>
K
KAMEZAWA Hiroyuki 已提交
68
#include "internal.h"
G
Glauber Costa 已提交
69
#include <net/sock.h>
M
Michal Hocko 已提交
70
#include <net/ip.h>
71
#include "slab.h"
B
Balbir Singh 已提交
72

73
#include <linux/uaccess.h>
74

75 76
#include <trace/events/vmscan.h>

77 78
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
79

80 81
struct mem_cgroup *root_mem_cgroup __read_mostly;

82
#define MEM_CGROUP_RECLAIM_RETRIES	5
B
Balbir Singh 已提交
83

84 85 86
/* Socket memory accounting disabled? */
static bool cgroup_memory_nosocket;

87 88 89
/* Kernel memory accounting disabled? */
static bool cgroup_memory_nokmem;

90
/* Whether the swap controller is active */
A
Andrew Morton 已提交
91
#ifdef CONFIG_MEMCG_SWAP
92 93
int do_swap_account __read_mostly;
#else
94
#define do_swap_account		0
95 96
#endif

97 98 99 100 101 102
/* Whether legacy memory+swap accounting is active */
static bool do_memsw_account(void)
{
	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
}

103 104 105
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
106
	"rss_huge",
107
	"shmem",
108
	"mapped_file",
109
	"dirty",
110
	"writeback",
111 112 113 114 115 116 117 118 119 120
	"swap",
};

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

121 122 123 124 125 126 127 128
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

129 130 131
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
132

133 134 135 136 137
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

138
struct mem_cgroup_tree_per_node {
139 140 141 142 143 144 145 146 147 148
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

K
KAMEZAWA Hiroyuki 已提交
149 150 151 152 153
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
154

155 156 157
/*
 * cgroup_event represents events which userspace want to receive.
 */
158
struct mem_cgroup_event {
159
	/*
160
	 * memcg which the event belongs to.
161
	 */
162
	struct mem_cgroup *memcg;
163 164 165 166 167 168 169 170
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
171 172 173 174 175
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
176
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
177
			      struct eventfd_ctx *eventfd, const char *args);
178 179 180 181 182
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
183
	void (*unregister_event)(struct mem_cgroup *memcg,
184
				 struct eventfd_ctx *eventfd);
185 186 187 188 189 190 191 192 193 194
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
	wait_queue_t wait;
	struct work_struct remove;
};

195 196
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
197

198 199
/* Stuffs for move charges at task migration. */
/*
200
 * Types of charges to be moved.
201
 */
202 203 204
#define MOVE_ANON	0x1U
#define MOVE_FILE	0x2U
#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
205

206 207
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
208
	spinlock_t	  lock; /* for from, to */
209
	struct mm_struct  *mm;
210 211
	struct mem_cgroup *from;
	struct mem_cgroup *to;
212
	unsigned long flags;
213
	unsigned long precharge;
214
	unsigned long moved_charge;
215
	unsigned long moved_swap;
216 217 218
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
219
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
220 221
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
222

223 224 225 226
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
227
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
228
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
229

230 231
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
232
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
233
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
234
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
235 236 237
	NR_CHARGE_TYPE,
};

238
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
239 240 241 242
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
243
	_KMEM,
V
Vladimir Davydov 已提交
244
	_TCP,
G
Glauber Costa 已提交
245 246
};

247 248
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
249
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
250 251
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
252

253 254 255 256 257 258 259 260 261 262 263 264 265
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

266 267 268 269 270
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

271
#ifndef CONFIG_SLOB
272
/*
273
 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
L
Li Zefan 已提交
274 275 276 277 278
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
279
 *
280 281
 * The current size of the caches array is stored in memcg_nr_cache_ids. It
 * will double each time we have to increase it.
282
 */
283 284
static DEFINE_IDA(memcg_cache_ida);
int memcg_nr_cache_ids;
285

286 287 288 289 290 291 292 293 294 295 296 297 298
/* Protects memcg_nr_cache_ids */
static DECLARE_RWSEM(memcg_cache_ids_sem);

void memcg_get_cache_ids(void)
{
	down_read(&memcg_cache_ids_sem);
}

void memcg_put_cache_ids(void)
{
	up_read(&memcg_cache_ids_sem);
}

299 300 301 302 303 304
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
305
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
306 307
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
308
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
309 310 311
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
312
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
313

314 315 316 317 318 319
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
320
DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
321
EXPORT_SYMBOL(memcg_kmem_enabled_key);
322

323 324
struct workqueue_struct *memcg_kmem_cache_wq;

325
#endif /* !CONFIG_SLOB */
326

327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
/**
 * mem_cgroup_css_from_page - css of the memcg associated with a page
 * @page: page of interest
 *
 * If memcg is bound to the default hierarchy, css of the memcg associated
 * with @page is returned.  The returned css remains associated with @page
 * until it is released.
 *
 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
 * is returned.
 */
struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
{
	struct mem_cgroup *memcg;

	memcg = page->mem_cgroup;

344
	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
345 346 347 348 349
		memcg = root_mem_cgroup;

	return &memcg->css;
}

350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
/**
 * page_cgroup_ino - return inode number of the memcg a page is charged to
 * @page: the page
 *
 * Look up the closest online ancestor of the memory cgroup @page is charged to
 * and return its inode number or 0 if @page is not charged to any cgroup. It
 * is safe to call this function without holding a reference to @page.
 *
 * Note, this function is inherently racy, because there is nothing to prevent
 * the cgroup inode from getting torn down and potentially reallocated a moment
 * after page_cgroup_ino() returns, so it only should be used by callers that
 * do not care (such as procfs interfaces).
 */
ino_t page_cgroup_ino(struct page *page)
{
	struct mem_cgroup *memcg;
	unsigned long ino = 0;

	rcu_read_lock();
	memcg = READ_ONCE(page->mem_cgroup);
	while (memcg && !(memcg->css.flags & CSS_ONLINE))
		memcg = parent_mem_cgroup(memcg);
	if (memcg)
		ino = cgroup_ino(memcg->css.cgroup);
	rcu_read_unlock();
	return ino;
}

378 379
static struct mem_cgroup_per_node *
mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
380
{
381
	int nid = page_to_nid(page);
382

383
	return memcg->nodeinfo[nid];
384 385
}

386 387
static struct mem_cgroup_tree_per_node *
soft_limit_tree_node(int nid)
388
{
389
	return soft_limit_tree.rb_tree_per_node[nid];
390 391
}

392
static struct mem_cgroup_tree_per_node *
393 394 395 396
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);

397
	return soft_limit_tree.rb_tree_per_node[nid];
398 399
}

400 401
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
					 struct mem_cgroup_tree_per_node *mctz,
402
					 unsigned long new_usage_in_excess)
403 404 405
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
406
	struct mem_cgroup_per_node *mz_node;
407 408 409 410 411 412 413 414 415

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
416
		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

432 433
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
					 struct mem_cgroup_tree_per_node *mctz)
434 435 436 437 438 439 440
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

441 442
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
				       struct mem_cgroup_tree_per_node *mctz)
443
{
444 445 446
	unsigned long flags;

	spin_lock_irqsave(&mctz->lock, flags);
447
	__mem_cgroup_remove_exceeded(mz, mctz);
448
	spin_unlock_irqrestore(&mctz->lock, flags);
449 450
}

451 452 453
static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
{
	unsigned long nr_pages = page_counter_read(&memcg->memory);
454
	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
455 456 457 458 459 460 461
	unsigned long excess = 0;

	if (nr_pages > soft_limit)
		excess = nr_pages - soft_limit;

	return excess;
}
462 463 464

static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
465
	unsigned long excess;
466 467
	struct mem_cgroup_per_node *mz;
	struct mem_cgroup_tree_per_node *mctz;
468

469
	mctz = soft_limit_tree_from_page(page);
470 471
	if (!mctz)
		return;
472 473 474 475 476
	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
477
		mz = mem_cgroup_page_nodeinfo(memcg, page);
478
		excess = soft_limit_excess(memcg);
479 480 481 482 483
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
484 485 486
			unsigned long flags;

			spin_lock_irqsave(&mctz->lock, flags);
487 488
			/* if on-tree, remove it */
			if (mz->on_tree)
489
				__mem_cgroup_remove_exceeded(mz, mctz);
490 491 492 493
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
494
			__mem_cgroup_insert_exceeded(mz, mctz, excess);
495
			spin_unlock_irqrestore(&mctz->lock, flags);
496 497 498 499 500 501
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
502 503 504
	struct mem_cgroup_tree_per_node *mctz;
	struct mem_cgroup_per_node *mz;
	int nid;
505

506
	for_each_node(nid) {
507 508
		mz = mem_cgroup_nodeinfo(memcg, nid);
		mctz = soft_limit_tree_node(nid);
509 510
		if (mctz)
			mem_cgroup_remove_exceeded(mz, mctz);
511 512 513
	}
}

514 515
static struct mem_cgroup_per_node *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
516 517
{
	struct rb_node *rightmost = NULL;
518
	struct mem_cgroup_per_node *mz;
519 520 521 522 523 524 525

retry:
	mz = NULL;
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

526
	mz = rb_entry(rightmost, struct mem_cgroup_per_node, tree_node);
527 528 529 530 531
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
532
	__mem_cgroup_remove_exceeded(mz, mctz);
533
	if (!soft_limit_excess(mz->memcg) ||
534
	    !css_tryget_online(&mz->memcg->css))
535 536 537 538 539
		goto retry;
done:
	return mz;
}

540 541
static struct mem_cgroup_per_node *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
542
{
543
	struct mem_cgroup_per_node *mz;
544

545
	spin_lock_irq(&mctz->lock);
546
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
547
	spin_unlock_irq(&mctz->lock);
548 549 550
	return mz;
}

551
/*
552 553
 * Return page count for single (non recursive) @memcg.
 *
554 555 556 557 558
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
559
 * a periodic synchronization of counter in memcg's counter.
560 561 562 563 564 565 566 567 568
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
569
 * common workload, threshold and synchronization as vmstat[] should be
570 571
 * implemented.
 */
572 573
static unsigned long
mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
574
{
575
	long val = 0;
576 577
	int cpu;

578
	/* Per-cpu values can be negative, use a signed accumulator */
579
	for_each_possible_cpu(cpu)
580
		val += per_cpu(memcg->stat->count[idx], cpu);
581 582 583 584 585 586
	/*
	 * Summing races with updates, so val may be negative.  Avoid exposing
	 * transient negative values.
	 */
	if (val < 0)
		val = 0;
587 588 589
	return val;
}

590
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
591 592 593 594 595
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

596
	for_each_possible_cpu(cpu)
597
		val += per_cpu(memcg->stat->events[idx], cpu);
598 599 600
	return val;
}

601
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
602
					 struct page *page,
603
					 bool compound, int nr_pages)
604
{
605 606 607 608
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
609
	if (PageAnon(page))
610
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
611
				nr_pages);
612
	else {
613
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
614
				nr_pages);
615 616 617 618
		if (PageSwapBacked(page))
			__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SHMEM],
				       nr_pages);
	}
619

620 621
	if (compound) {
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
622 623
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
				nr_pages);
624
	}
625

626 627
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
628
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
629
	else {
630
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
631 632
		nr_pages = -nr_pages; /* for event */
	}
633

634
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
635 636
}

637 638
unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
					   int nid, unsigned int lru_mask)
639
{
640
	struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
641
	unsigned long nr = 0;
642
	enum lru_list lru;
643

644
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
645

646 647 648
	for_each_lru(lru) {
		if (!(BIT(lru) & lru_mask))
			continue;
649
		nr += mem_cgroup_get_lru_size(lruvec, lru);
650 651
	}
	return nr;
652
}
653

654
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
655
			unsigned int lru_mask)
656
{
657
	unsigned long nr = 0;
658
	int nid;
659

660
	for_each_node_state(nid, N_MEMORY)
661 662
		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
	return nr;
663 664
}

665 666
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
667 668 669
{
	unsigned long val, next;

670
	val = __this_cpu_read(memcg->stat->nr_page_events);
671
	next = __this_cpu_read(memcg->stat->targets[target]);
672
	/* from time_after() in jiffies.h */
673 674 675 676 677
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
678 679 680
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
681 682 683 684 685 686 687 688
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
689
	}
690
	return false;
691 692 693 694 695 696
}

/*
 * Check events in order.
 *
 */
697
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
698 699
{
	/* threshold event is triggered in finer grain than soft limit */
700 701
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
702
		bool do_softlimit;
703
		bool do_numainfo __maybe_unused;
704

705 706
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
707 708 709 710
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
711
		mem_cgroup_threshold(memcg);
712 713
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
714
#if MAX_NUMNODES > 1
715
		if (unlikely(do_numainfo))
716
			atomic_inc(&memcg->numainfo_events);
717
#endif
718
	}
719 720
}

721
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
722
{
723 724 725 726 727 728 729 730
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

731
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
732
}
M
Michal Hocko 已提交
733
EXPORT_SYMBOL(mem_cgroup_from_task);
734

735
static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
736
{
737
	struct mem_cgroup *memcg = NULL;
738

739 740
	rcu_read_lock();
	do {
741 742 743 744 745 746
		/*
		 * Page cache insertions can happen withou an
		 * actual mm context, e.g. during disk probing
		 * on boot, loopback IO, acct() writes etc.
		 */
		if (unlikely(!mm))
747
			memcg = root_mem_cgroup;
748 749 750 751 752
		else {
			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
			if (unlikely(!memcg))
				memcg = root_mem_cgroup;
		}
753
	} while (!css_tryget_online(&memcg->css));
754
	rcu_read_unlock();
755
	return memcg;
756 757
}

758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
775
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
776
				   struct mem_cgroup *prev,
777
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
778
{
M
Michal Hocko 已提交
779
	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
780
	struct cgroup_subsys_state *css = NULL;
781
	struct mem_cgroup *memcg = NULL;
782
	struct mem_cgroup *pos = NULL;
783

784 785
	if (mem_cgroup_disabled())
		return NULL;
786

787 788
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
789

790
	if (prev && !reclaim)
791
		pos = prev;
K
KAMEZAWA Hiroyuki 已提交
792

793 794
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
795
			goto out;
796
		return root;
797
	}
K
KAMEZAWA Hiroyuki 已提交
798

799
	rcu_read_lock();
M
Michal Hocko 已提交
800

801
	if (reclaim) {
802
		struct mem_cgroup_per_node *mz;
803

804
		mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
805 806 807 808 809
		iter = &mz->iter[reclaim->priority];

		if (prev && reclaim->generation != iter->generation)
			goto out_unlock;

810
		while (1) {
811
			pos = READ_ONCE(iter->position);
812 813
			if (!pos || css_tryget(&pos->css))
				break;
814
			/*
815 816 817 818 819 820
			 * css reference reached zero, so iter->position will
			 * be cleared by ->css_released. However, we should not
			 * rely on this happening soon, because ->css_released
			 * is called from a work queue, and by busy-waiting we
			 * might block it. So we clear iter->position right
			 * away.
821
			 */
822 823
			(void)cmpxchg(&iter->position, pos, NULL);
		}
824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840
	}

	if (pos)
		css = &pos->css;

	for (;;) {
		css = css_next_descendant_pre(css, &root->css);
		if (!css) {
			/*
			 * Reclaimers share the hierarchy walk, and a
			 * new one might jump in right at the end of
			 * the hierarchy - make sure they see at least
			 * one group and restart from the beginning.
			 */
			if (!prev)
				continue;
			break;
841
		}
K
KAMEZAWA Hiroyuki 已提交
842

843 844 845 846 847 848
		/*
		 * Verify the css and acquire a reference.  The root
		 * is provided by the caller, so we know it's alive
		 * and kicking, and don't take an extra reference.
		 */
		memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
849

850 851
		if (css == &root->css)
			break;
K
KAMEZAWA Hiroyuki 已提交
852

853 854
		if (css_tryget(css))
			break;
855

856
		memcg = NULL;
857
	}
858 859 860

	if (reclaim) {
		/*
861 862 863
		 * The position could have already been updated by a competing
		 * thread, so check that the value hasn't changed since we read
		 * it to avoid reclaiming from the same cgroup twice.
864
		 */
865 866
		(void)cmpxchg(&iter->position, pos, memcg);

867 868 869 870 871 872 873
		if (pos)
			css_put(&pos->css);

		if (!memcg)
			iter->generation++;
		else if (!prev)
			reclaim->generation = iter->generation;
874
	}
875

876 877
out_unlock:
	rcu_read_unlock();
878
out:
879 880 881
	if (prev && prev != root)
		css_put(&prev->css);

882
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
883
}
K
KAMEZAWA Hiroyuki 已提交
884

885 886 887 888 889 890 891
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
892 893 894 895 896 897
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
898

899 900 901 902
static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
{
	struct mem_cgroup *memcg = dead_memcg;
	struct mem_cgroup_reclaim_iter *iter;
903 904
	struct mem_cgroup_per_node *mz;
	int nid;
905 906 907 908
	int i;

	while ((memcg = parent_mem_cgroup(memcg))) {
		for_each_node(nid) {
909 910 911 912 913
			mz = mem_cgroup_nodeinfo(memcg, nid);
			for (i = 0; i <= DEF_PRIORITY; i++) {
				iter = &mz->iter[i];
				cmpxchg(&iter->position,
					dead_memcg, NULL);
914 915 916 917 918
			}
		}
	}
}

919 920 921 922 923 924
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
925
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
926
	     iter != NULL;				\
927
	     iter = mem_cgroup_iter(root, iter, NULL))
928

929
#define for_each_mem_cgroup(iter)			\
930
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
931
	     iter != NULL;				\
932
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
933

934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970
/**
 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
 * @memcg: hierarchy root
 * @fn: function to call for each task
 * @arg: argument passed to @fn
 *
 * This function iterates over tasks attached to @memcg or to any of its
 * descendants and calls @fn for each task. If @fn returns a non-zero
 * value, the function breaks the iteration loop and returns the value.
 * Otherwise, it will iterate over all tasks and return 0.
 *
 * This function must not be called for the root memory cgroup.
 */
int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
			  int (*fn)(struct task_struct *, void *), void *arg)
{
	struct mem_cgroup *iter;
	int ret = 0;

	BUG_ON(memcg == root_mem_cgroup);

	for_each_mem_cgroup_tree(iter, memcg) {
		struct css_task_iter it;
		struct task_struct *task;

		css_task_iter_start(&iter->css, &it);
		while (!ret && (task = css_task_iter_next(&it)))
			ret = fn(task, arg);
		css_task_iter_end(&it);
		if (ret) {
			mem_cgroup_iter_break(memcg, iter);
			break;
		}
	}
	return ret;
}

971
/**
972
 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
973
 * @page: the page
974
 * @zone: zone of the page
975 976 977 978
 *
 * This function is only safe when following the LRU page isolation
 * and putback protocol: the LRU lock must be held, and the page must
 * either be PageLRU() or the caller must have isolated/allocated it.
979
 */
M
Mel Gorman 已提交
980
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
K
KAMEZAWA Hiroyuki 已提交
981
{
982
	struct mem_cgroup_per_node *mz;
983
	struct mem_cgroup *memcg;
984
	struct lruvec *lruvec;
985

986
	if (mem_cgroup_disabled()) {
M
Mel Gorman 已提交
987
		lruvec = &pgdat->lruvec;
988 989
		goto out;
	}
990

991
	memcg = page->mem_cgroup;
992
	/*
993
	 * Swapcache readahead pages are added to the LRU - and
994
	 * possibly migrated - before they are charged.
995
	 */
996 997
	if (!memcg)
		memcg = root_mem_cgroup;
998

999
	mz = mem_cgroup_page_nodeinfo(memcg, page);
1000 1001 1002 1003 1004 1005 1006
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
M
Mel Gorman 已提交
1007 1008
	if (unlikely(lruvec->pgdat != pgdat))
		lruvec->pgdat = pgdat;
1009
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1010
}
1011

1012
/**
1013 1014 1015
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
1016
 * @zid: zone id of the accounted pages
1017
 * @nr_pages: positive when adding or negative when removing
1018
 *
1019 1020 1021
 * This function must be called under lru_lock, just before a page is added
 * to or just after a page is removed from an lru list (that ordering being
 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1022
 */
1023
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1024
				int zid, int nr_pages)
1025
{
1026
	struct mem_cgroup_per_node *mz;
1027
	unsigned long *lru_size;
1028
	long size;
1029 1030 1031 1032

	if (mem_cgroup_disabled())
		return;

1033
	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1034
	lru_size = &mz->lru_zone_size[zid][lru];
1035 1036 1037 1038 1039

	if (nr_pages < 0)
		*lru_size += nr_pages;

	size = *lru_size;
1040 1041 1042
	if (WARN_ONCE(size < 0,
		"%s(%p, %d, %d): lru_size %ld\n",
		__func__, lruvec, lru, nr_pages, size)) {
1043 1044 1045 1046 1047 1048
		VM_BUG_ON(1);
		*lru_size = 0;
	}

	if (nr_pages > 0)
		*lru_size += nr_pages;
K
KAMEZAWA Hiroyuki 已提交
1049
}
1050

1051
bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1052
{
1053
	struct mem_cgroup *task_memcg;
1054
	struct task_struct *p;
1055
	bool ret;
1056

1057
	p = find_lock_task_mm(task);
1058
	if (p) {
1059
		task_memcg = get_mem_cgroup_from_mm(p->mm);
1060 1061 1062 1063 1064 1065 1066
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1067
		rcu_read_lock();
1068 1069
		task_memcg = mem_cgroup_from_task(task);
		css_get(&task_memcg->css);
1070
		rcu_read_unlock();
1071
	}
1072 1073
	ret = mem_cgroup_is_descendant(task_memcg, memcg);
	css_put(&task_memcg->css);
1074 1075 1076
	return ret;
}

1077
/**
1078
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1079
 * @memcg: the memory cgroup
1080
 *
1081
 * Returns the maximum amount of memory @mem can be charged with, in
1082
 * pages.
1083
 */
1084
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1085
{
1086 1087 1088
	unsigned long margin = 0;
	unsigned long count;
	unsigned long limit;
1089

1090
	count = page_counter_read(&memcg->memory);
1091
	limit = READ_ONCE(memcg->memory.limit);
1092 1093 1094
	if (count < limit)
		margin = limit - count;

1095
	if (do_memsw_account()) {
1096
		count = page_counter_read(&memcg->memsw);
1097
		limit = READ_ONCE(memcg->memsw.limit);
1098 1099
		if (count <= limit)
			margin = min(margin, limit - count);
1100 1101
		else
			margin = 0;
1102 1103 1104
	}

	return margin;
1105 1106
}

1107
/*
Q
Qiang Huang 已提交
1108
 * A routine for checking "mem" is under move_account() or not.
1109
 *
Q
Qiang Huang 已提交
1110 1111 1112
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 * moving cgroups. This is for waiting at high-memory pressure
 * caused by "move".
1113
 */
1114
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1115
{
1116 1117
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1118
	bool ret = false;
1119 1120 1121 1122 1123 1124 1125 1126 1127
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1128

1129 1130
	ret = mem_cgroup_is_descendant(from, memcg) ||
		mem_cgroup_is_descendant(to, memcg);
1131 1132
unlock:
	spin_unlock(&mc.lock);
1133 1134 1135
	return ret;
}

1136
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1137 1138
{
	if (mc.moving_task && current != mc.moving_task) {
1139
		if (mem_cgroup_under_move(memcg)) {
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1152
#define K(x) ((x) << (PAGE_SHIFT-10))
1153
/**
1154
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1155 1156 1157 1158 1159 1160 1161 1162
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
1163 1164
	struct mem_cgroup *iter;
	unsigned int i;
1165 1166 1167

	rcu_read_lock();

1168 1169 1170 1171 1172 1173 1174 1175
	if (p) {
		pr_info("Task in ");
		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
		pr_cont(" killed as a result of limit of ");
	} else {
		pr_info("Memory limit reached of cgroup ");
	}

T
Tejun Heo 已提交
1176
	pr_cont_cgroup_path(memcg->css.cgroup);
1177
	pr_cont("\n");
1178 1179 1180

	rcu_read_unlock();

1181 1182 1183 1184 1185 1186 1187 1188 1189
	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memory)),
		K((u64)memcg->memory.limit), memcg->memory.failcnt);
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memsw)),
		K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->kmem)),
		K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1190 1191

	for_each_mem_cgroup_tree(iter, memcg) {
T
Tejun Heo 已提交
1192 1193
		pr_info("Memory cgroup stats for ");
		pr_cont_cgroup_path(iter->css.cgroup);
1194 1195 1196
		pr_cont(":");

		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1197
			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1198
				continue;
1199
			pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1200 1201 1202 1203 1204 1205 1206 1207 1208
				K(mem_cgroup_read_stat(iter, i)));
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1209 1210
}

1211 1212 1213 1214
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1215
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1216 1217
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1218 1219
	struct mem_cgroup *iter;

1220
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1221
		num++;
1222 1223 1224
	return num;
}

D
David Rientjes 已提交
1225 1226 1227
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1228
unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1229
{
1230
	unsigned long limit;
1231

1232
	limit = memcg->memory.limit;
1233
	if (mem_cgroup_swappiness(memcg)) {
1234
		unsigned long memsw_limit;
1235
		unsigned long swap_limit;
1236

1237
		memsw_limit = memcg->memsw.limit;
1238 1239 1240
		swap_limit = memcg->swap.limit;
		swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
		limit = min(limit + swap_limit, memsw_limit);
1241 1242
	}
	return limit;
D
David Rientjes 已提交
1243 1244
}

1245
static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1246
				     int order)
1247
{
1248 1249 1250
	struct oom_control oc = {
		.zonelist = NULL,
		.nodemask = NULL,
1251
		.memcg = memcg,
1252 1253 1254
		.gfp_mask = gfp_mask,
		.order = order,
	};
1255
	bool ret;
1256

1257
	mutex_lock(&oom_lock);
1258
	ret = out_of_memory(&oc);
1259
	mutex_unlock(&oom_lock);
1260
	return ret;
1261 1262
}

1263 1264
#if MAX_NUMNODES > 1

1265 1266
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1267
 * @memcg: the target memcg
1268 1269 1270 1271 1272 1273 1274
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1275
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1276 1277
		int nid, bool noswap)
{
1278
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1279 1280 1281
		return true;
	if (noswap || !total_swap_pages)
		return false;
1282
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1283 1284 1285 1286
		return true;
	return false;

}
1287 1288 1289 1290 1291 1292 1293

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1294
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1295 1296
{
	int nid;
1297 1298 1299 1300
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1301
	if (!atomic_read(&memcg->numainfo_events))
1302
		return;
1303
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1304 1305 1306
		return;

	/* make a nodemask where this memcg uses memory from */
1307
	memcg->scan_nodes = node_states[N_MEMORY];
1308

1309
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1310

1311 1312
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1313
	}
1314

1315 1316
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1331
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1332 1333 1334
{
	int node;

1335 1336
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1337

1338
	node = next_node_in(node, memcg->scan_nodes);
1339
	/*
1340 1341 1342
	 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
	 * last time it really checked all the LRUs due to rate limiting.
	 * Fallback to the current node in that case for simplicity.
1343 1344 1345 1346
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1347
	memcg->last_scanned_node = node;
1348 1349 1350
	return node;
}
#else
1351
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1352 1353 1354 1355 1356
{
	return 0;
}
#endif

1357
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1358
				   pg_data_t *pgdat,
1359 1360 1361 1362 1363 1364 1365 1366 1367
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
1368
		.pgdat = pgdat,
1369 1370 1371
		.priority = 0,
	};

1372
	excess = soft_limit_excess(root_memcg);
1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
1398
		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1399
					pgdat, &nr_scanned);
1400
		*total_scanned += nr_scanned;
1401
		if (!soft_limit_excess(root_memcg))
1402
			break;
1403
	}
1404 1405
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
1406 1407
}

1408 1409 1410 1411 1412 1413
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

1414 1415
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
1416 1417 1418 1419
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
1420
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1421
{
1422
	struct mem_cgroup *iter, *failed = NULL;
1423

1424 1425
	spin_lock(&memcg_oom_lock);

1426
	for_each_mem_cgroup_tree(iter, memcg) {
1427
		if (iter->oom_lock) {
1428 1429 1430 1431 1432
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1433 1434
			mem_cgroup_iter_break(memcg, iter);
			break;
1435 1436
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1437
	}
K
KAMEZAWA Hiroyuki 已提交
1438

1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
1450
		}
1451 1452
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1453 1454 1455 1456

	spin_unlock(&memcg_oom_lock);

	return !failed;
1457
}
1458

1459
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1460
{
K
KAMEZAWA Hiroyuki 已提交
1461 1462
	struct mem_cgroup *iter;

1463
	spin_lock(&memcg_oom_lock);
1464
	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1465
	for_each_mem_cgroup_tree(iter, memcg)
1466
		iter->oom_lock = false;
1467
	spin_unlock(&memcg_oom_lock);
1468 1469
}

1470
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1471 1472 1473
{
	struct mem_cgroup *iter;

1474
	spin_lock(&memcg_oom_lock);
1475
	for_each_mem_cgroup_tree(iter, memcg)
1476 1477
		iter->under_oom++;
	spin_unlock(&memcg_oom_lock);
1478 1479
}

1480
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1481 1482 1483
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1484 1485
	/*
	 * When a new child is created while the hierarchy is under oom,
1486
	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
K
KAMEZAWA Hiroyuki 已提交
1487
	 */
1488
	spin_lock(&memcg_oom_lock);
1489
	for_each_mem_cgroup_tree(iter, memcg)
1490 1491 1492
		if (iter->under_oom > 0)
			iter->under_oom--;
	spin_unlock(&memcg_oom_lock);
1493 1494
}

K
KAMEZAWA Hiroyuki 已提交
1495 1496
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1497
struct oom_wait_info {
1498
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
1499 1500 1501 1502 1503 1504
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
1505 1506
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1507 1508 1509
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1510
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1511

1512 1513
	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
K
KAMEZAWA Hiroyuki 已提交
1514 1515 1516 1517
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1518
static void memcg_oom_recover(struct mem_cgroup *memcg)
1519
{
1520 1521 1522 1523 1524 1525 1526 1527 1528
	/*
	 * For the following lockless ->under_oom test, the only required
	 * guarantee is that it must see the state asserted by an OOM when
	 * this function is called as a result of userland actions
	 * triggered by the notification of the OOM.  This is trivially
	 * achieved by invoking mem_cgroup_mark_under_oom() before
	 * triggering notification.
	 */
	if (memcg && memcg->under_oom)
1529
		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1530 1531
}

1532
static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1533
{
1534
	if (!current->memcg_may_oom)
1535
		return;
K
KAMEZAWA Hiroyuki 已提交
1536
	/*
1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
	 * Also, the caller may handle a failed allocation gracefully
	 * (like optional page cache readahead) and so an OOM killer
	 * invocation might not even be necessary.
	 *
	 * That's why we don't do anything here except remember the
	 * OOM context and then deal with it at the end of the page
	 * fault when the stack is unwound, the locks are released,
	 * and when we know whether the fault was overall successful.
K
KAMEZAWA Hiroyuki 已提交
1549
	 */
1550
	css_get(&memcg->css);
T
Tejun Heo 已提交
1551 1552 1553
	current->memcg_in_oom = memcg;
	current->memcg_oom_gfp_mask = mask;
	current->memcg_oom_order = order;
1554 1555 1556 1557
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1558
 * @handle: actually kill/wait or just clean up the OOM state
1559
 *
1560 1561
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
1562
 *
1563
 * Memcg supports userspace OOM handling where failed allocations must
1564 1565 1566 1567
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
1568
 * the end of the page fault to complete the OOM handling.
1569 1570
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
1571
 * completed, %false otherwise.
1572
 */
1573
bool mem_cgroup_oom_synchronize(bool handle)
1574
{
T
Tejun Heo 已提交
1575
	struct mem_cgroup *memcg = current->memcg_in_oom;
1576
	struct oom_wait_info owait;
1577
	bool locked;
1578 1579 1580

	/* OOM is global, do not handle */
	if (!memcg)
1581
		return false;
1582

1583
	if (!handle)
1584
		goto cleanup;
1585 1586 1587 1588 1589 1590

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
K
KAMEZAWA Hiroyuki 已提交
1591

1592
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
T
Tejun Heo 已提交
1603 1604
		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
					 current->memcg_oom_order);
1605
	} else {
1606
		schedule();
1607 1608 1609 1610 1611
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
1612 1613 1614 1615 1616 1617 1618 1619
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
1620
cleanup:
T
Tejun Heo 已提交
1621
	current->memcg_in_oom = NULL;
1622
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
1623
	return true;
1624 1625
}

1626
/**
1627 1628
 * lock_page_memcg - lock a page->mem_cgroup binding
 * @page: the page
1629
 *
1630 1631
 * This function protects unlocked LRU pages from being moved to
 * another cgroup and stabilizes their page->mem_cgroup binding.
1632
 */
J
Johannes Weiner 已提交
1633
void lock_page_memcg(struct page *page)
1634 1635
{
	struct mem_cgroup *memcg;
1636
	unsigned long flags;
1637

1638 1639 1640 1641 1642
	/*
	 * The RCU lock is held throughout the transaction.  The fast
	 * path can get away without acquiring the memcg->move_lock
	 * because page moving starts with an RCU grace period.
	 */
1643 1644 1645
	rcu_read_lock();

	if (mem_cgroup_disabled())
J
Johannes Weiner 已提交
1646
		return;
1647
again:
1648
	memcg = page->mem_cgroup;
1649
	if (unlikely(!memcg))
J
Johannes Weiner 已提交
1650
		return;
1651

Q
Qiang Huang 已提交
1652
	if (atomic_read(&memcg->moving_account) <= 0)
J
Johannes Weiner 已提交
1653
		return;
1654

1655
	spin_lock_irqsave(&memcg->move_lock, flags);
1656
	if (memcg != page->mem_cgroup) {
1657
		spin_unlock_irqrestore(&memcg->move_lock, flags);
1658 1659
		goto again;
	}
1660 1661 1662 1663

	/*
	 * When charge migration first begins, we can have locked and
	 * unlocked page stat updates happening concurrently.  Track
1664
	 * the task who has the lock for unlock_page_memcg().
1665 1666 1667
	 */
	memcg->move_lock_task = current;
	memcg->move_lock_flags = flags;
1668

J
Johannes Weiner 已提交
1669
	return;
1670
}
1671
EXPORT_SYMBOL(lock_page_memcg);
1672

1673
/**
1674
 * unlock_page_memcg - unlock a page->mem_cgroup binding
J
Johannes Weiner 已提交
1675
 * @page: the page
1676
 */
J
Johannes Weiner 已提交
1677
void unlock_page_memcg(struct page *page)
1678
{
J
Johannes Weiner 已提交
1679 1680
	struct mem_cgroup *memcg = page->mem_cgroup;

1681 1682 1683 1684 1685 1686 1687 1688
	if (memcg && memcg->move_lock_task == current) {
		unsigned long flags = memcg->move_lock_flags;

		memcg->move_lock_task = NULL;
		memcg->move_lock_flags = 0;

		spin_unlock_irqrestore(&memcg->move_lock, flags);
	}
1689

1690
	rcu_read_unlock();
1691
}
1692
EXPORT_SYMBOL(unlock_page_memcg);
1693

1694 1695 1696 1697
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
1698
#define CHARGE_BATCH	32U
1699 1700
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
1701
	unsigned int nr_pages;
1702
	struct work_struct work;
1703
	unsigned long flags;
1704
#define FLUSHING_CACHED_CHARGE	0
1705 1706
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1707
static DEFINE_MUTEX(percpu_charge_mutex);
1708

1709 1710 1711 1712 1713 1714 1715 1716 1717 1718
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
1719
 */
1720
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1721 1722
{
	struct memcg_stock_pcp *stock;
1723
	unsigned long flags;
1724
	bool ret = false;
1725

1726
	if (nr_pages > CHARGE_BATCH)
1727
		return ret;
1728

1729 1730 1731
	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
1732
	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1733
		stock->nr_pages -= nr_pages;
1734 1735
		ret = true;
	}
1736 1737 1738

	local_irq_restore(flags);

1739 1740 1741 1742
	return ret;
}

/*
1743
 * Returns stocks cached in percpu and reset cached information.
1744 1745 1746 1747 1748
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

1749
	if (stock->nr_pages) {
1750
		page_counter_uncharge(&old->memory, stock->nr_pages);
1751
		if (do_memsw_account())
1752
			page_counter_uncharge(&old->memsw, stock->nr_pages);
1753
		css_put_many(&old->css, stock->nr_pages);
1754
		stock->nr_pages = 0;
1755 1756 1757 1758 1759 1760
	}
	stock->cached = NULL;
}

static void drain_local_stock(struct work_struct *dummy)
{
1761 1762 1763 1764 1765 1766
	struct memcg_stock_pcp *stock;
	unsigned long flags;

	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
1767
	drain_stock(stock);
1768
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1769 1770

	local_irq_restore(flags);
1771 1772 1773
}

/*
1774
 * Cache charges(val) to local per_cpu area.
1775
 * This will be consumed by consume_stock() function, later.
1776
 */
1777
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1778
{
1779 1780 1781 1782
	struct memcg_stock_pcp *stock;
	unsigned long flags;

	local_irq_save(flags);
1783

1784
	stock = this_cpu_ptr(&memcg_stock);
1785
	if (stock->cached != memcg) { /* reset if necessary */
1786
		drain_stock(stock);
1787
		stock->cached = memcg;
1788
	}
1789
	stock->nr_pages += nr_pages;
1790 1791

	local_irq_restore(flags);
1792 1793 1794
}

/*
1795
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1796
 * of the hierarchy under it.
1797
 */
1798
static void drain_all_stock(struct mem_cgroup *root_memcg)
1799
{
1800
	int cpu, curcpu;
1801

1802 1803 1804
	/* If someone's already draining, avoid adding running more workers. */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
1805 1806
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
1807
	curcpu = get_cpu();
1808 1809
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1810
		struct mem_cgroup *memcg;
1811

1812 1813
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
1814
			continue;
1815
		if (!mem_cgroup_is_descendant(memcg, root_memcg))
1816
			continue;
1817 1818 1819 1820 1821 1822
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
1823
	}
1824
	put_cpu();
A
Andrew Morton 已提交
1825
	put_online_cpus();
1826
	mutex_unlock(&percpu_charge_mutex);
1827 1828
}

1829
static int memcg_hotplug_cpu_dead(unsigned int cpu)
1830 1831 1832 1833 1834
{
	struct memcg_stock_pcp *stock;

	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
1835
	return 0;
1836 1837
}

1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857
static void reclaim_high(struct mem_cgroup *memcg,
			 unsigned int nr_pages,
			 gfp_t gfp_mask)
{
	do {
		if (page_counter_read(&memcg->memory) <= memcg->high)
			continue;
		mem_cgroup_events(memcg, MEMCG_HIGH, 1);
		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
	} while ((memcg = parent_mem_cgroup(memcg)));
}

static void high_work_func(struct work_struct *work)
{
	struct mem_cgroup *memcg;

	memcg = container_of(work, struct mem_cgroup, high_work);
	reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
}

1858 1859 1860 1861 1862 1863 1864
/*
 * Scheduled by try_charge() to be executed from the userland return path
 * and reclaims memory over the high limit.
 */
void mem_cgroup_handle_over_high(void)
{
	unsigned int nr_pages = current->memcg_nr_pages_over_high;
1865
	struct mem_cgroup *memcg;
1866 1867 1868 1869

	if (likely(!nr_pages))
		return;

1870 1871
	memcg = get_mem_cgroup_from_mm(current->mm);
	reclaim_high(memcg, nr_pages, GFP_KERNEL);
1872 1873 1874 1875
	css_put(&memcg->css);
	current->memcg_nr_pages_over_high = 0;
}

1876 1877
static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
		      unsigned int nr_pages)
1878
{
1879
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
1880
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1881
	struct mem_cgroup *mem_over_limit;
1882
	struct page_counter *counter;
1883
	unsigned long nr_reclaimed;
1884 1885
	bool may_swap = true;
	bool drained = false;
1886

1887
	if (mem_cgroup_is_root(memcg))
1888
		return 0;
1889
retry:
1890
	if (consume_stock(memcg, nr_pages))
1891
		return 0;
1892

1893
	if (!do_memsw_account() ||
1894 1895
	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
		if (page_counter_try_charge(&memcg->memory, batch, &counter))
1896
			goto done_restock;
1897
		if (do_memsw_account())
1898 1899
			page_counter_uncharge(&memcg->memsw, batch);
		mem_over_limit = mem_cgroup_from_counter(counter, memory);
1900
	} else {
1901
		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1902
		may_swap = false;
1903
	}
1904

1905 1906 1907 1908
	if (batch > nr_pages) {
		batch = nr_pages;
		goto retry;
	}
1909

1910 1911 1912 1913 1914 1915 1916 1917 1918
	/*
	 * Unlike in global OOM situations, memcg is not in a physical
	 * memory shortage.  Allow dying and OOM-killed tasks to
	 * bypass the last charges so that they can exit quickly and
	 * free their memory.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE) ||
		     fatal_signal_pending(current) ||
		     current->flags & PF_EXITING))
1919
		goto force;
1920

1921 1922 1923 1924 1925 1926 1927 1928 1929
	/*
	 * Prevent unbounded recursion when reclaim operations need to
	 * allocate memory. This might exceed the limits temporarily,
	 * but we prefer facilitating memory reclaim and getting back
	 * under the limit over triggering OOM kills in these cases.
	 */
	if (unlikely(current->flags & PF_MEMALLOC))
		goto force;

1930 1931 1932
	if (unlikely(task_in_memcg_oom(current)))
		goto nomem;

1933
	if (!gfpflags_allow_blocking(gfp_mask))
1934
		goto nomem;
1935

1936 1937
	mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);

1938 1939
	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
						    gfp_mask, may_swap);
1940

1941
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
1942
		goto retry;
1943

1944
	if (!drained) {
1945
		drain_all_stock(mem_over_limit);
1946 1947 1948 1949
		drained = true;
		goto retry;
	}

1950 1951
	if (gfp_mask & __GFP_NORETRY)
		goto nomem;
1952 1953 1954 1955 1956 1957 1958 1959 1960
	/*
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
	 */
1961
	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
1962 1963 1964 1965 1966 1967 1968 1969
		goto retry;
	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		goto retry;

1970 1971 1972
	if (nr_retries--)
		goto retry;

1973
	if (gfp_mask & __GFP_NOFAIL)
1974
		goto force;
1975

1976
	if (fatal_signal_pending(current))
1977
		goto force;
1978

1979 1980
	mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);

1981 1982
	mem_cgroup_oom(mem_over_limit, gfp_mask,
		       get_order(nr_pages * PAGE_SIZE));
1983
nomem:
1984
	if (!(gfp_mask & __GFP_NOFAIL))
1985
		return -ENOMEM;
1986 1987 1988 1989 1990 1991 1992
force:
	/*
	 * The allocation either can't fail or will lead to more memory
	 * being freed very soon.  Allow memory usage go over the limit
	 * temporarily by force charging it.
	 */
	page_counter_charge(&memcg->memory, nr_pages);
1993
	if (do_memsw_account())
1994 1995 1996 1997
		page_counter_charge(&memcg->memsw, nr_pages);
	css_get_many(&memcg->css, nr_pages);

	return 0;
1998 1999

done_restock:
2000
	css_get_many(&memcg->css, batch);
2001 2002
	if (batch > nr_pages)
		refill_stock(memcg, batch - nr_pages);
2003

2004
	/*
2005 2006
	 * If the hierarchy is above the normal consumption range, schedule
	 * reclaim on returning to userland.  We can perform reclaim here
2007
	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2008 2009 2010 2011
	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
	 * not recorded as it most likely matches current's and won't
	 * change in the meantime.  As high limit is checked again before
	 * reclaim, the cost of mismatch is negligible.
2012 2013
	 */
	do {
2014
		if (page_counter_read(&memcg->memory) > memcg->high) {
2015 2016 2017 2018 2019
			/* Don't bother a random interrupted task */
			if (in_interrupt()) {
				schedule_work(&memcg->high_work);
				break;
			}
V
Vladimir Davydov 已提交
2020
			current->memcg_nr_pages_over_high += batch;
2021 2022 2023
			set_notify_resume(current);
			break;
		}
2024
	} while ((memcg = parent_mem_cgroup(memcg)));
2025 2026

	return 0;
2027
}
2028

2029
static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2030
{
2031 2032 2033
	if (mem_cgroup_is_root(memcg))
		return;

2034
	page_counter_uncharge(&memcg->memory, nr_pages);
2035
	if (do_memsw_account())
2036
		page_counter_uncharge(&memcg->memsw, nr_pages);
2037

2038
	css_put_many(&memcg->css, nr_pages);
2039 2040
}

2041 2042 2043 2044
static void lock_page_lru(struct page *page, int *isolated)
{
	struct zone *zone = page_zone(page);

2045
	spin_lock_irq(zone_lru_lock(zone));
2046 2047 2048
	if (PageLRU(page)) {
		struct lruvec *lruvec;

M
Mel Gorman 已提交
2049
		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
		ClearPageLRU(page);
		del_page_from_lru_list(page, lruvec, page_lru(page));
		*isolated = 1;
	} else
		*isolated = 0;
}

static void unlock_page_lru(struct page *page, int isolated)
{
	struct zone *zone = page_zone(page);

	if (isolated) {
		struct lruvec *lruvec;

M
Mel Gorman 已提交
2064
		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2065 2066 2067 2068
		VM_BUG_ON_PAGE(PageLRU(page), page);
		SetPageLRU(page);
		add_page_to_lru_list(page, lruvec, page_lru(page));
	}
2069
	spin_unlock_irq(zone_lru_lock(zone));
2070 2071
}

2072
static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2073
			  bool lrucare)
2074
{
2075
	int isolated;
2076

2077
	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2078 2079 2080 2081 2082

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
2083 2084
	if (lrucare)
		lock_page_lru(page, &isolated);
2085

2086 2087
	/*
	 * Nobody should be changing or seriously looking at
2088
	 * page->mem_cgroup at this point:
2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099
	 *
	 * - the page is uncharged
	 *
	 * - the page is off-LRU
	 *
	 * - an anonymous fault has exclusive page access, except for
	 *   a locked page table
	 *
	 * - a page cache insertion, a swapin fault, or a migration
	 *   have the page locked
	 */
2100
	page->mem_cgroup = memcg;
2101

2102 2103
	if (lrucare)
		unlock_page_lru(page, isolated);
2104
}
2105

2106
#ifndef CONFIG_SLOB
2107
static int memcg_alloc_cache_id(void)
2108
{
2109 2110 2111
	int id, size;
	int err;

2112
	id = ida_simple_get(&memcg_cache_ida,
2113 2114 2115
			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (id < 0)
		return id;
2116

2117
	if (id < memcg_nr_cache_ids)
2118 2119 2120 2121 2122 2123
		return id;

	/*
	 * There's no space for the new id in memcg_caches arrays,
	 * so we have to grow them.
	 */
2124
	down_write(&memcg_cache_ids_sem);
2125 2126

	size = 2 * (id + 1);
2127 2128 2129 2130 2131
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

2132
	err = memcg_update_all_caches(size);
2133 2134
	if (!err)
		err = memcg_update_all_list_lrus(size);
2135 2136 2137 2138 2139
	if (!err)
		memcg_nr_cache_ids = size;

	up_write(&memcg_cache_ids_sem);

2140
	if (err) {
2141
		ida_simple_remove(&memcg_cache_ida, id);
2142 2143 2144 2145 2146 2147 2148
		return err;
	}
	return id;
}

static void memcg_free_cache_id(int id)
{
2149
	ida_simple_remove(&memcg_cache_ida, id);
2150 2151
}

2152
struct memcg_kmem_cache_create_work {
2153 2154 2155 2156 2157
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

2158
static void memcg_kmem_cache_create_func(struct work_struct *w)
2159
{
2160 2161
	struct memcg_kmem_cache_create_work *cw =
		container_of(w, struct memcg_kmem_cache_create_work, work);
2162 2163
	struct mem_cgroup *memcg = cw->memcg;
	struct kmem_cache *cachep = cw->cachep;
2164

2165
	memcg_create_kmem_cache(memcg, cachep);
2166

2167
	css_put(&memcg->css);
2168 2169 2170 2171 2172 2173
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
2174 2175
static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					       struct kmem_cache *cachep)
2176
{
2177
	struct memcg_kmem_cache_create_work *cw;
2178

2179
	cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2180
	if (!cw)
2181
		return;
2182 2183

	css_get(&memcg->css);
2184 2185 2186

	cw->memcg = memcg;
	cw->cachep = cachep;
2187
	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2188

2189
	queue_work(memcg_kmem_cache_wq, &cw->work);
2190 2191
}

2192 2193
static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					     struct kmem_cache *cachep)
2194 2195 2196 2197
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
2198
	 * in __memcg_schedule_kmem_cache_create will recurse.
2199 2200 2201 2202 2203 2204 2205
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
2206
	current->memcg_kmem_skip_account = 1;
2207
	__memcg_schedule_kmem_cache_create(memcg, cachep);
2208
	current->memcg_kmem_skip_account = 0;
2209
}
2210

2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221
static inline bool memcg_kmem_bypass(void)
{
	if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
		return true;
	return false;
}

/**
 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
 * @cachep: the original global kmem cache
 *
2222 2223 2224
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
2225 2226 2227
 * If the cache does not exist yet, if we are the first user of it, we
 * create it asynchronously in a workqueue and let the current allocation
 * go through with the original cache.
2228
 *
2229 2230 2231 2232
 * This function takes a reference to the cache it returns to assure it
 * won't get destroyed while we are working with it. Once the caller is
 * done with it, memcg_kmem_put_cache() must be called to release the
 * reference.
2233
 */
2234
struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2235 2236
{
	struct mem_cgroup *memcg;
2237
	struct kmem_cache *memcg_cachep;
2238
	int kmemcg_id;
2239

2240
	VM_BUG_ON(!is_root_cache(cachep));
2241

2242
	if (memcg_kmem_bypass())
V
Vladimir Davydov 已提交
2243 2244
		return cachep;

2245
	if (current->memcg_kmem_skip_account)
2246 2247
		return cachep;

2248
	memcg = get_mem_cgroup_from_mm(current->mm);
2249
	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2250
	if (kmemcg_id < 0)
2251
		goto out;
2252

2253
	memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2254 2255
	if (likely(memcg_cachep))
		return memcg_cachep;
2256 2257 2258 2259 2260 2261 2262 2263 2264

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
2265 2266 2267
	 * memcg_create_kmem_cache, this means no further allocation
	 * could happen with the slab_mutex held. So it's better to
	 * defer everything.
2268
	 */
2269
	memcg_schedule_kmem_cache_create(memcg, cachep);
2270
out:
2271
	css_put(&memcg->css);
2272
	return cachep;
2273 2274
}

2275 2276 2277 2278 2279
/**
 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
 * @cachep: the cache returned by memcg_kmem_get_cache
 */
void memcg_kmem_put_cache(struct kmem_cache *cachep)
2280 2281
{
	if (!is_root_cache(cachep))
2282
		css_put(&cachep->memcg_params.memcg->css);
2283 2284
}

2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295
/**
 * memcg_kmem_charge: charge a kmem page
 * @page: page to charge
 * @gfp: reclaim mode
 * @order: allocation order
 * @memcg: memory cgroup to charge
 *
 * Returns 0 on success, an error code on failure.
 */
int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
			    struct mem_cgroup *memcg)
2296
{
2297 2298
	unsigned int nr_pages = 1 << order;
	struct page_counter *counter;
2299 2300
	int ret;

2301
	ret = try_charge(memcg, gfp, nr_pages);
2302
	if (ret)
2303
		return ret;
2304 2305 2306 2307 2308

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
		cancel_charge(memcg, nr_pages);
		return -ENOMEM;
2309 2310
	}

2311
	page->mem_cgroup = memcg;
2312

2313
	return 0;
2314 2315
}

2316 2317 2318 2319 2320 2321 2322 2323 2324
/**
 * memcg_kmem_charge: charge a kmem page to the current memory cgroup
 * @page: page to charge
 * @gfp: reclaim mode
 * @order: allocation order
 *
 * Returns 0 on success, an error code on failure.
 */
int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2325
{
2326
	struct mem_cgroup *memcg;
2327
	int ret = 0;
2328

2329 2330 2331
	if (memcg_kmem_bypass())
		return 0;

2332
	memcg = get_mem_cgroup_from_mm(current->mm);
2333
	if (!mem_cgroup_is_root(memcg)) {
2334
		ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
2335 2336 2337
		if (!ret)
			__SetPageKmemcg(page);
	}
2338
	css_put(&memcg->css);
2339
	return ret;
2340
}
2341 2342 2343 2344 2345 2346
/**
 * memcg_kmem_uncharge: uncharge a kmem page
 * @page: page to uncharge
 * @order: allocation order
 */
void memcg_kmem_uncharge(struct page *page, int order)
2347
{
2348
	struct mem_cgroup *memcg = page->mem_cgroup;
2349
	unsigned int nr_pages = 1 << order;
2350 2351 2352 2353

	if (!memcg)
		return;

2354
	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2355

2356 2357 2358
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
		page_counter_uncharge(&memcg->kmem, nr_pages);

2359
	page_counter_uncharge(&memcg->memory, nr_pages);
2360
	if (do_memsw_account())
2361
		page_counter_uncharge(&memcg->memsw, nr_pages);
2362

2363
	page->mem_cgroup = NULL;
2364 2365 2366 2367 2368

	/* slab pages do not have PageKmemcg flag set */
	if (PageKmemcg(page))
		__ClearPageKmemcg(page);

2369
	css_put_many(&memcg->css, nr_pages);
2370
}
2371
#endif /* !CONFIG_SLOB */
2372

2373 2374 2375 2376
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

/*
 * Because tail pages are not marked as "used", set it. We're under
2377
 * zone_lru_lock and migration entries setup in all page mappings.
2378
 */
2379
void mem_cgroup_split_huge_fixup(struct page *head)
2380
{
2381
	int i;
2382

2383 2384
	if (mem_cgroup_disabled())
		return;
2385

2386
	for (i = 1; i < HPAGE_PMD_NR; i++)
2387
		head[i].mem_cgroup = head->mem_cgroup;
2388

2389
	__this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2390
		       HPAGE_PMD_NR);
2391
}
2392
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2393

A
Andrew Morton 已提交
2394
#ifdef CONFIG_MEMCG_SWAP
2395 2396
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
					 bool charge)
K
KAMEZAWA Hiroyuki 已提交
2397
{
2398 2399
	int val = (charge) ? 1 : -1;
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
K
KAMEZAWA Hiroyuki 已提交
2400
}
2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
2413
 * The caller must have charged to @to, IOW, called page_counter_charge() about
2414 2415 2416
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
2417
				struct mem_cgroup *from, struct mem_cgroup *to)
2418 2419 2420
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
2421 2422
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
2423 2424 2425

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
2426
		mem_cgroup_swap_statistics(to, true);
2427 2428 2429 2430 2431 2432
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2433
				struct mem_cgroup *from, struct mem_cgroup *to)
2434 2435 2436
{
	return -EINVAL;
}
2437
#endif
K
KAMEZAWA Hiroyuki 已提交
2438

2439
static DEFINE_MUTEX(memcg_limit_mutex);
2440

2441
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2442
				   unsigned long limit)
2443
{
2444 2445 2446
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
2447
	int retry_count;
2448
	int ret;
2449 2450 2451 2452 2453 2454

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
2455 2456
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);
2457

2458
	oldusage = page_counter_read(&memcg->memory);
2459

2460
	do {
2461 2462 2463 2464
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2465 2466 2467 2468

		mutex_lock(&memcg_limit_mutex);
		if (limit > memcg->memsw.limit) {
			mutex_unlock(&memcg_limit_mutex);
2469
			ret = -EINVAL;
2470 2471
			break;
		}
2472 2473 2474 2475
		if (limit > memcg->memory.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memory, limit);
		mutex_unlock(&memcg_limit_mutex);
2476 2477 2478 2479

		if (!ret)
			break;

2480 2481
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);

2482
		curusage = page_counter_read(&memcg->memory);
2483
		/* Usage is reduced ? */
A
Andrew Morton 已提交
2484
		if (curusage >= oldusage)
2485 2486 2487
			retry_count--;
		else
			oldusage = curusage;
2488 2489
	} while (retry_count);

2490 2491
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2492

2493 2494 2495
	return ret;
}

L
Li Zefan 已提交
2496
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2497
					 unsigned long limit)
2498
{
2499 2500 2501
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
2502
	int retry_count;
2503
	int ret;
2504

2505
	/* see mem_cgroup_resize_res_limit */
2506 2507 2508 2509 2510 2511
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);

	oldusage = page_counter_read(&memcg->memsw);

	do {
2512 2513 2514 2515
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2516 2517 2518 2519

		mutex_lock(&memcg_limit_mutex);
		if (limit < memcg->memory.limit) {
			mutex_unlock(&memcg_limit_mutex);
2520 2521 2522
			ret = -EINVAL;
			break;
		}
2523 2524 2525 2526
		if (limit > memcg->memsw.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memsw, limit);
		mutex_unlock(&memcg_limit_mutex);
2527 2528 2529 2530

		if (!ret)
			break;

2531 2532
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);

2533
		curusage = page_counter_read(&memcg->memsw);
2534
		/* Usage is reduced ? */
2535
		if (curusage >= oldusage)
2536
			retry_count--;
2537 2538
		else
			oldusage = curusage;
2539 2540
	} while (retry_count);

2541 2542
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2543

2544 2545 2546
	return ret;
}

2547
unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
2548 2549 2550 2551
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
2552
	struct mem_cgroup_per_node *mz, *next_mz = NULL;
2553 2554
	unsigned long reclaimed;
	int loop = 0;
2555
	struct mem_cgroup_tree_per_node *mctz;
2556
	unsigned long excess;
2557 2558 2559 2560 2561
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

2562
	mctz = soft_limit_tree_node(pgdat->node_id);
2563 2564 2565 2566 2567 2568

	/*
	 * Do not even bother to check the largest node if the root
	 * is empty. Do it lockless to prevent lock bouncing. Races
	 * are acceptable as soft limit is best effort anyway.
	 */
2569
	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
2570 2571
		return 0;

2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
2586
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
2587 2588 2589
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
2590
		spin_lock_irq(&mctz->lock);
2591
		__mem_cgroup_remove_exceeded(mz, mctz);
2592 2593 2594 2595 2596 2597

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
2598 2599 2600
		if (!reclaimed)
			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);

2601
		excess = soft_limit_excess(mz->memcg);
2602 2603 2604 2605 2606 2607 2608 2609 2610
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
2611
		__mem_cgroup_insert_exceeded(mz, mctz, excess);
2612
		spin_unlock_irq(&mctz->lock);
2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

2630 2631 2632 2633 2634 2635
/*
 * Test whether @memcg has children, dead or alive.  Note that this
 * function doesn't care whether @memcg has use_hierarchy enabled and
 * returns %true if there are child csses according to the cgroup
 * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
 */
2636 2637
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
2638 2639 2640 2641 2642 2643
	bool ret;

	rcu_read_lock();
	ret = css_next_child(NULL, &memcg->css);
	rcu_read_unlock();
	return ret;
2644 2645
}

2646
/*
2647
 * Reclaims as many pages from the given memcg as possible.
2648 2649 2650 2651 2652 2653 2654
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;

2655 2656
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
2657
	/* try to free all pages in this cgroup */
2658
	while (nr_retries && page_counter_read(&memcg->memory)) {
2659
		int progress;
2660

2661 2662 2663
		if (signal_pending(current))
			return -EINTR;

2664 2665
		progress = try_to_free_mem_cgroup_pages(memcg, 1,
							GFP_KERNEL, true);
2666
		if (!progress) {
2667
			nr_retries--;
2668
			/* maybe some writeback is necessary */
2669
			congestion_wait(BLK_RW_ASYNC, HZ/10);
2670
		}
2671 2672

	}
2673 2674

	return 0;
2675 2676
}

2677 2678 2679
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
					    char *buf, size_t nbytes,
					    loff_t off)
2680
{
2681
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2682

2683 2684
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
2685
	return mem_cgroup_force_empty(memcg) ?: nbytes;
2686 2687
}

2688 2689
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
2690
{
2691
	return mem_cgroup_from_css(css)->use_hierarchy;
2692 2693
}

2694 2695
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
2696 2697
{
	int retval = 0;
2698
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
2699
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2700

2701
	if (memcg->use_hierarchy == val)
2702
		return 0;
2703

2704
	/*
2705
	 * If parent's use_hierarchy is set, we can't make any modifications
2706 2707 2708 2709 2710 2711
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
2712
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2713
				(val == 1 || val == 0)) {
2714
		if (!memcg_has_children(memcg))
2715
			memcg->use_hierarchy = val;
2716 2717 2718 2719
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
2720

2721 2722 2723
	return retval;
}

2724
static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
2725 2726
{
	struct mem_cgroup *iter;
2727
	int i;
2728

2729
	memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
2730

2731 2732 2733 2734
	for_each_mem_cgroup_tree(iter, memcg) {
		for (i = 0; i < MEMCG_NR_STAT; i++)
			stat[i] += mem_cgroup_read_stat(iter, i);
	}
2735 2736
}

2737
static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
2738 2739
{
	struct mem_cgroup *iter;
2740
	int i;
2741

2742
	memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
2743

2744 2745 2746 2747
	for_each_mem_cgroup_tree(iter, memcg) {
		for (i = 0; i < MEMCG_NR_EVENTS; i++)
			events[i] += mem_cgroup_read_events(iter, i);
	}
2748 2749
}

2750
static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2751
{
2752
	unsigned long val = 0;
2753

2754
	if (mem_cgroup_is_root(memcg)) {
2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765
		struct mem_cgroup *iter;

		for_each_mem_cgroup_tree(iter, memcg) {
			val += mem_cgroup_read_stat(iter,
					MEM_CGROUP_STAT_CACHE);
			val += mem_cgroup_read_stat(iter,
					MEM_CGROUP_STAT_RSS);
			if (swap)
				val += mem_cgroup_read_stat(iter,
						MEM_CGROUP_STAT_SWAP);
		}
2766
	} else {
2767
		if (!swap)
2768
			val = page_counter_read(&memcg->memory);
2769
		else
2770
			val = page_counter_read(&memcg->memsw);
2771
	}
2772
	return val;
2773 2774
}

2775 2776 2777 2778 2779 2780 2781
enum {
	RES_USAGE,
	RES_LIMIT,
	RES_MAX_USAGE,
	RES_FAILCNT,
	RES_SOFT_LIMIT,
};
2782

2783
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2784
			       struct cftype *cft)
B
Balbir Singh 已提交
2785
{
2786
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2787
	struct page_counter *counter;
2788

2789
	switch (MEMFILE_TYPE(cft->private)) {
2790
	case _MEM:
2791 2792
		counter = &memcg->memory;
		break;
2793
	case _MEMSWAP:
2794 2795
		counter = &memcg->memsw;
		break;
2796
	case _KMEM:
2797
		counter = &memcg->kmem;
2798
		break;
V
Vladimir Davydov 已提交
2799
	case _TCP:
2800
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
2801
		break;
2802 2803 2804
	default:
		BUG();
	}
2805 2806 2807 2808

	switch (MEMFILE_ATTR(cft->private)) {
	case RES_USAGE:
		if (counter == &memcg->memory)
2809
			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2810
		if (counter == &memcg->memsw)
2811
			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823
		return (u64)page_counter_read(counter) * PAGE_SIZE;
	case RES_LIMIT:
		return (u64)counter->limit * PAGE_SIZE;
	case RES_MAX_USAGE:
		return (u64)counter->watermark * PAGE_SIZE;
	case RES_FAILCNT:
		return counter->failcnt;
	case RES_SOFT_LIMIT:
		return (u64)memcg->soft_limit * PAGE_SIZE;
	default:
		BUG();
	}
B
Balbir Singh 已提交
2824
}
2825

2826
#ifndef CONFIG_SLOB
2827
static int memcg_online_kmem(struct mem_cgroup *memcg)
2828 2829 2830
{
	int memcg_id;

2831 2832 2833
	if (cgroup_memory_nokmem)
		return 0;

2834
	BUG_ON(memcg->kmemcg_id >= 0);
2835
	BUG_ON(memcg->kmem_state);
2836

2837
	memcg_id = memcg_alloc_cache_id();
2838 2839
	if (memcg_id < 0)
		return memcg_id;
2840

2841
	static_branch_inc(&memcg_kmem_enabled_key);
2842
	/*
2843
	 * A memory cgroup is considered kmem-online as soon as it gets
V
Vladimir Davydov 已提交
2844
	 * kmemcg_id. Setting the id after enabling static branching will
2845 2846 2847
	 * guarantee no one starts accounting before all call sites are
	 * patched.
	 */
V
Vladimir Davydov 已提交
2848
	memcg->kmemcg_id = memcg_id;
2849
	memcg->kmem_state = KMEM_ONLINE;
2850
	INIT_LIST_HEAD(&memcg->kmem_caches);
2851 2852

	return 0;
2853 2854
}

2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
	struct cgroup_subsys_state *css;
	struct mem_cgroup *parent, *child;
	int kmemcg_id;

	if (memcg->kmem_state != KMEM_ONLINE)
		return;
	/*
	 * Clear the online state before clearing memcg_caches array
	 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
	 * guarantees that no cache will be created for this cgroup
	 * after we are done (see memcg_create_kmem_cache()).
	 */
	memcg->kmem_state = KMEM_ALLOCATED;

	memcg_deactivate_kmem_caches(memcg);

	kmemcg_id = memcg->kmemcg_id;
	BUG_ON(kmemcg_id < 0);

	parent = parent_mem_cgroup(memcg);
	if (!parent)
		parent = root_mem_cgroup;

	/*
	 * Change kmemcg_id of this cgroup and all its descendants to the
	 * parent's id, and then move all entries from this cgroup's list_lrus
	 * to ones of the parent. After we have finished, all list_lrus
	 * corresponding to this cgroup are guaranteed to remain empty. The
	 * ordering is imposed by list_lru_node->lock taken by
	 * memcg_drain_all_list_lrus().
	 */
2888
	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
2889 2890 2891 2892 2893 2894 2895
	css_for_each_descendant_pre(css, &memcg->css) {
		child = mem_cgroup_from_css(css);
		BUG_ON(child->kmemcg_id != kmemcg_id);
		child->kmemcg_id = parent->kmemcg_id;
		if (!memcg->use_hierarchy)
			break;
	}
2896 2897
	rcu_read_unlock();

2898 2899 2900 2901 2902 2903 2904
	memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);

	memcg_free_cache_id(kmemcg_id);
}

static void memcg_free_kmem(struct mem_cgroup *memcg)
{
2905 2906 2907 2908
	/* css_alloc() failed, offlining didn't happen */
	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
		memcg_offline_kmem(memcg);

2909 2910 2911 2912 2913 2914
	if (memcg->kmem_state == KMEM_ALLOCATED) {
		memcg_destroy_kmem_caches(memcg);
		static_branch_dec(&memcg_kmem_enabled_key);
		WARN_ON(page_counter_read(&memcg->kmem));
	}
}
2915
#else
2916
static int memcg_online_kmem(struct mem_cgroup *memcg)
2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927
{
	return 0;
}
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
}
static void memcg_free_kmem(struct mem_cgroup *memcg)
{
}
#endif /* !CONFIG_SLOB */

2928
static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2929
				   unsigned long limit)
2930
{
2931
	int ret;
2932 2933 2934 2935 2936

	mutex_lock(&memcg_limit_mutex);
	ret = page_counter_limit(&memcg->kmem, limit);
	mutex_unlock(&memcg_limit_mutex);
	return ret;
2937
}
2938

V
Vladimir Davydov 已提交
2939 2940 2941 2942 2943 2944
static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
{
	int ret;

	mutex_lock(&memcg_limit_mutex);

2945
	ret = page_counter_limit(&memcg->tcpmem, limit);
V
Vladimir Davydov 已提交
2946 2947 2948
	if (ret)
		goto out;

2949
	if (!memcg->tcpmem_active) {
V
Vladimir Davydov 已提交
2950 2951 2952
		/*
		 * The active flag needs to be written after the static_key
		 * update. This is what guarantees that the socket activation
2953 2954 2955
		 * function is the last one to run. See mem_cgroup_sk_alloc()
		 * for details, and note that we don't mark any socket as
		 * belonging to this memcg until that flag is up.
V
Vladimir Davydov 已提交
2956 2957 2958 2959 2960 2961
		 *
		 * We need to do this, because static_keys will span multiple
		 * sites, but we can't control their order. If we mark a socket
		 * as accounted, but the accounting functions are not patched in
		 * yet, we'll lose accounting.
		 *
2962
		 * We never race with the readers in mem_cgroup_sk_alloc(),
V
Vladimir Davydov 已提交
2963 2964 2965 2966
		 * because when this value change, the code to process it is not
		 * patched in yet.
		 */
		static_branch_inc(&memcg_sockets_enabled_key);
2967
		memcg->tcpmem_active = true;
V
Vladimir Davydov 已提交
2968 2969 2970 2971 2972 2973
	}
out:
	mutex_unlock(&memcg_limit_mutex);
	return ret;
}

2974 2975 2976 2977
/*
 * The user of this function is...
 * RES_LIMIT.
 */
2978 2979
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
B
Balbir Singh 已提交
2980
{
2981
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2982
	unsigned long nr_pages;
2983 2984
	int ret;

2985
	buf = strstrip(buf);
2986
	ret = page_counter_memparse(buf, "-1", &nr_pages);
2987 2988
	if (ret)
		return ret;
2989

2990
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
2991
	case RES_LIMIT:
2992 2993 2994 2995
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
2996 2997 2998
		switch (MEMFILE_TYPE(of_cft(of)->private)) {
		case _MEM:
			ret = mem_cgroup_resize_limit(memcg, nr_pages);
2999
			break;
3000 3001
		case _MEMSWAP:
			ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3002
			break;
3003 3004 3005
		case _KMEM:
			ret = memcg_update_kmem_limit(memcg, nr_pages);
			break;
V
Vladimir Davydov 已提交
3006 3007 3008
		case _TCP:
			ret = memcg_update_tcp_limit(memcg, nr_pages);
			break;
3009
		}
3010
		break;
3011 3012 3013
	case RES_SOFT_LIMIT:
		memcg->soft_limit = nr_pages;
		ret = 0;
3014 3015
		break;
	}
3016
	return ret ?: nbytes;
B
Balbir Singh 已提交
3017 3018
}

3019 3020
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
				size_t nbytes, loff_t off)
3021
{
3022
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3023
	struct page_counter *counter;
3024

3025 3026 3027 3028 3029 3030 3031 3032 3033 3034
	switch (MEMFILE_TYPE(of_cft(of)->private)) {
	case _MEM:
		counter = &memcg->memory;
		break;
	case _MEMSWAP:
		counter = &memcg->memsw;
		break;
	case _KMEM:
		counter = &memcg->kmem;
		break;
V
Vladimir Davydov 已提交
3035
	case _TCP:
3036
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
3037
		break;
3038 3039 3040
	default:
		BUG();
	}
3041

3042
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3043
	case RES_MAX_USAGE:
3044
		page_counter_reset_watermark(counter);
3045 3046
		break;
	case RES_FAILCNT:
3047
		counter->failcnt = 0;
3048
		break;
3049 3050
	default:
		BUG();
3051
	}
3052

3053
	return nbytes;
3054 3055
}

3056
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3057 3058
					struct cftype *cft)
{
3059
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3060 3061
}

3062
#ifdef CONFIG_MMU
3063
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3064 3065
					struct cftype *cft, u64 val)
{
3066
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3067

3068
	if (val & ~MOVE_MASK)
3069
		return -EINVAL;
3070

3071
	/*
3072 3073 3074 3075
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
3076
	 */
3077
	memcg->move_charge_at_immigrate = val;
3078 3079
	return 0;
}
3080
#else
3081
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3082 3083 3084 3085 3086
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3087

3088
#ifdef CONFIG_NUMA
3089
static int memcg_numa_stat_show(struct seq_file *m, void *v)
3090
{
3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
3103
	int nid;
3104
	unsigned long nr;
3105
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3106

3107 3108 3109 3110 3111 3112 3113 3114 3115
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
		seq_printf(m, "%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
							  stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3116 3117
	}

3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		struct mem_cgroup *iter;

		nr = 0;
		for_each_mem_cgroup_tree(iter, memcg)
			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = 0;
			for_each_mem_cgroup_tree(iter, memcg)
				nr += mem_cgroup_node_nr_lru_pages(
					iter, nid, stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3133 3134 3135 3136 3137 3138
	}

	return 0;
}
#endif /* CONFIG_NUMA */

3139
static int memcg_stat_show(struct seq_file *m, void *v)
3140
{
3141
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3142
	unsigned long memory, memsw;
3143 3144
	struct mem_cgroup *mi;
	unsigned int i;
3145

3146 3147 3148 3149
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
		     MEM_CGROUP_STAT_NSTATS);
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
		     MEM_CGROUP_EVENTS_NSTATS);
3150 3151
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);

3152
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3153
		if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3154
			continue;
3155
		seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3156
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3157
	}
L
Lee Schermerhorn 已提交
3158

3159 3160 3161 3162 3163 3164 3165 3166
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
3167
	/* Hierarchical information */
3168 3169 3170 3171
	memory = memsw = PAGE_COUNTER_MAX;
	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
		memory = min(memory, mi->memory.limit);
		memsw = min(memsw, mi->memsw.limit);
3172
	}
3173 3174
	seq_printf(m, "hierarchical_memory_limit %llu\n",
		   (u64)memory * PAGE_SIZE);
3175
	if (do_memsw_account())
3176 3177
		seq_printf(m, "hierarchical_memsw_limit %llu\n",
			   (u64)memsw * PAGE_SIZE);
K
KOSAKI Motohiro 已提交
3178

3179
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3180
		unsigned long long val = 0;
3181

3182
		if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3183
			continue;
3184 3185
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3186
		seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3204
	}
K
KAMEZAWA Hiroyuki 已提交
3205

K
KOSAKI Motohiro 已提交
3206 3207
#ifdef CONFIG_DEBUG_VM
	{
3208 3209
		pg_data_t *pgdat;
		struct mem_cgroup_per_node *mz;
3210
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
3211 3212 3213
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

3214 3215 3216
		for_each_online_pgdat(pgdat) {
			mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
			rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
3217

3218 3219 3220 3221 3222
			recent_rotated[0] += rstat->recent_rotated[0];
			recent_rotated[1] += rstat->recent_rotated[1];
			recent_scanned[0] += rstat->recent_scanned[0];
			recent_scanned[1] += rstat->recent_scanned[1];
		}
3223 3224 3225 3226
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
3227 3228 3229
	}
#endif

3230 3231 3232
	return 0;
}

3233 3234
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
3235
{
3236
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3237

3238
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
3239 3240
}

3241 3242
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
3243
{
3244
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3245

3246
	if (val > 100)
K
KOSAKI Motohiro 已提交
3247 3248
		return -EINVAL;

3249
	if (css->parent)
3250 3251 3252
		memcg->swappiness = val;
	else
		vm_swappiness = val;
3253

K
KOSAKI Motohiro 已提交
3254 3255 3256
	return 0;
}

3257 3258 3259
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
3260
	unsigned long usage;
3261 3262 3263 3264
	int i;

	rcu_read_lock();
	if (!swap)
3265
		t = rcu_dereference(memcg->thresholds.primary);
3266
	else
3267
		t = rcu_dereference(memcg->memsw_thresholds.primary);
3268 3269 3270 3271

	if (!t)
		goto unlock;

3272
	usage = mem_cgroup_usage(memcg, swap);
3273 3274

	/*
3275
	 * current_threshold points to threshold just below or equal to usage.
3276 3277 3278
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
3279
	i = t->current_threshold;
3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
3303
	t->current_threshold = i - 1;
3304 3305 3306 3307 3308 3309
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
3310 3311
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
3312
		if (do_memsw_account())
3313 3314 3315 3316
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
3317 3318 3319 3320 3321 3322 3323
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

3324 3325 3326 3327 3328 3329 3330
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
3331 3332
}

3333
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3334 3335 3336
{
	struct mem_cgroup_eventfd_list *ev;

3337 3338
	spin_lock(&memcg_oom_lock);

3339
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
3340
		eventfd_signal(ev->eventfd, 1);
3341 3342

	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3343 3344 3345
	return 0;
}

3346
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3347
{
K
KAMEZAWA Hiroyuki 已提交
3348 3349
	struct mem_cgroup *iter;

3350
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3351
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
3352 3353
}

3354
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3355
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3356
{
3357 3358
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3359 3360
	unsigned long threshold;
	unsigned long usage;
3361
	int i, size, ret;
3362

3363
	ret = page_counter_memparse(args, "-1", &threshold);
3364 3365 3366 3367
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
3368

3369
	if (type == _MEM) {
3370
		thresholds = &memcg->thresholds;
3371
		usage = mem_cgroup_usage(memcg, false);
3372
	} else if (type == _MEMSWAP) {
3373
		thresholds = &memcg->memsw_thresholds;
3374
		usage = mem_cgroup_usage(memcg, true);
3375
	} else
3376 3377 3378
		BUG();

	/* Check if a threshold crossed before adding a new one */
3379
	if (thresholds->primary)
3380 3381
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

3382
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3383 3384

	/* Allocate memory for new array of thresholds */
3385
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3386
			GFP_KERNEL);
3387
	if (!new) {
3388 3389 3390
		ret = -ENOMEM;
		goto unlock;
	}
3391
	new->size = size;
3392 3393

	/* Copy thresholds (if any) to new array */
3394 3395
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3396
				sizeof(struct mem_cgroup_threshold));
3397 3398
	}

3399
	/* Add new threshold */
3400 3401
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
3402 3403

	/* Sort thresholds. Registering of new threshold isn't time-critical */
3404
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3405 3406 3407
			compare_thresholds, NULL);

	/* Find current threshold */
3408
	new->current_threshold = -1;
3409
	for (i = 0; i < size; i++) {
3410
		if (new->entries[i].threshold <= usage) {
3411
			/*
3412 3413
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
3414 3415
			 * it here.
			 */
3416
			++new->current_threshold;
3417 3418
		} else
			break;
3419 3420
	}

3421 3422 3423 3424 3425
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
3426

3427
	/* To be sure that nobody uses thresholds */
3428 3429 3430 3431 3432 3433 3434 3435
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

3436
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3437 3438
	struct eventfd_ctx *eventfd, const char *args)
{
3439
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
3440 3441
}

3442
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3443 3444
	struct eventfd_ctx *eventfd, const char *args)
{
3445
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
3446 3447
}

3448
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3449
	struct eventfd_ctx *eventfd, enum res_type type)
3450
{
3451 3452
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3453
	unsigned long usage;
3454
	int i, j, size;
3455 3456

	mutex_lock(&memcg->thresholds_lock);
3457 3458

	if (type == _MEM) {
3459
		thresholds = &memcg->thresholds;
3460
		usage = mem_cgroup_usage(memcg, false);
3461
	} else if (type == _MEMSWAP) {
3462
		thresholds = &memcg->memsw_thresholds;
3463
		usage = mem_cgroup_usage(memcg, true);
3464
	} else
3465 3466
		BUG();

3467 3468 3469
	if (!thresholds->primary)
		goto unlock;

3470 3471 3472 3473
	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
3474 3475 3476
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
3477 3478 3479
			size++;
	}

3480
	new = thresholds->spare;
3481

3482 3483
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
3484 3485
		kfree(new);
		new = NULL;
3486
		goto swap_buffers;
3487 3488
	}

3489
	new->size = size;
3490 3491

	/* Copy thresholds and find current threshold */
3492 3493 3494
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
3495 3496
			continue;

3497
		new->entries[j] = thresholds->primary->entries[i];
3498
		if (new->entries[j].threshold <= usage) {
3499
			/*
3500
			 * new->current_threshold will not be used
3501 3502 3503
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
3504
			++new->current_threshold;
3505 3506 3507 3508
		}
		j++;
	}

3509
swap_buffers:
3510 3511
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
3512

3513
	rcu_assign_pointer(thresholds->primary, new);
3514

3515
	/* To be sure that nobody uses thresholds */
3516
	synchronize_rcu();
3517 3518 3519 3520 3521 3522

	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}
3523
unlock:
3524 3525
	mutex_unlock(&memcg->thresholds_lock);
}
3526

3527
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3528 3529
	struct eventfd_ctx *eventfd)
{
3530
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
3531 3532
}

3533
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3534 3535
	struct eventfd_ctx *eventfd)
{
3536
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
3537 3538
}

3539
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3540
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
3541 3542 3543 3544 3545 3546 3547
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

3548
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3549 3550 3551 3552 3553

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
3554
	if (memcg->under_oom)
K
KAMEZAWA Hiroyuki 已提交
3555
		eventfd_signal(eventfd, 1);
3556
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3557 3558 3559 3560

	return 0;
}

3561
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3562
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
3563 3564 3565
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

3566
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3567

3568
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
3569 3570 3571 3572 3573 3574
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

3575
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3576 3577
}

3578
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3579
{
3580
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3581

3582
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3583
	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3584 3585 3586
	return 0;
}

3587
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3588 3589
	struct cftype *cft, u64 val)
{
3590
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3591 3592

	/* cannot set to root cgroup and only 0 and 1 are allowed */
3593
	if (!css->parent || !((val == 0) || (val == 1)))
3594 3595
		return -EINVAL;

3596
	memcg->oom_kill_disable = val;
3597
	if (!val)
3598
		memcg_oom_recover(memcg);
3599

3600 3601 3602
	return 0;
}

3603 3604 3605 3606 3607 3608 3609
#ifdef CONFIG_CGROUP_WRITEBACK

struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
{
	return &memcg->cgwb_list;
}

T
Tejun Heo 已提交
3610 3611 3612 3613 3614 3615 3616 3617 3618 3619
static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return wb_domain_init(&memcg->cgwb_domain, gfp);
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
	wb_domain_exit(&memcg->cgwb_domain);
}

3620 3621 3622 3623 3624
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
	wb_domain_size_changed(&memcg->cgwb_domain);
}

T
Tejun Heo 已提交
3625 3626 3627 3628 3629 3630 3631 3632 3633 3634
struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);

	if (!memcg->css.parent)
		return NULL;

	return &memcg->cgwb_domain;
}

3635 3636 3637
/**
 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
 * @wb: bdi_writeback in question
3638 3639
 * @pfilepages: out parameter for number of file pages
 * @pheadroom: out parameter for number of allocatable pages according to memcg
3640 3641 3642
 * @pdirty: out parameter for number of dirty pages
 * @pwriteback: out parameter for number of pages under writeback
 *
3643 3644 3645
 * Determine the numbers of file, headroom, dirty, and writeback pages in
 * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
 * is a bit more involved.
3646
 *
3647 3648 3649 3650 3651
 * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
 * headroom is calculated as the lowest headroom of itself and the
 * ancestors.  Note that this doesn't consider the actual amount of
 * available memory in the system.  The caller should further cap
 * *@pheadroom accordingly.
3652
 */
3653 3654 3655
void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
			 unsigned long *pheadroom, unsigned long *pdirty,
			 unsigned long *pwriteback)
3656 3657 3658 3659 3660 3661 3662 3663
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
	struct mem_cgroup *parent;

	*pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);

	/* this should eventually include NR_UNSTABLE_NFS */
	*pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3664 3665 3666
	*pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
						     (1 << LRU_ACTIVE_FILE));
	*pheadroom = PAGE_COUNTER_MAX;
3667 3668 3669 3670 3671

	while ((parent = parent_mem_cgroup(memcg))) {
		unsigned long ceiling = min(memcg->memory.limit, memcg->high);
		unsigned long used = page_counter_read(&memcg->memory);

3672
		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3673 3674 3675 3676
		memcg = parent;
	}
}

T
Tejun Heo 已提交
3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687
#else	/* CONFIG_CGROUP_WRITEBACK */

static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return 0;
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
}

3688 3689 3690 3691
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
}

3692 3693
#endif	/* CONFIG_CGROUP_WRITEBACK */

3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

3707 3708 3709 3710 3711
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
3712
static void memcg_event_remove(struct work_struct *work)
3713
{
3714 3715
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
3716
	struct mem_cgroup *memcg = event->memcg;
3717 3718 3719

	remove_wait_queue(event->wqh, &event->wait);

3720
	event->unregister_event(memcg, event->eventfd);
3721 3722 3723 3724 3725 3726

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
3727
	css_put(&memcg->css);
3728 3729 3730 3731 3732 3733 3734
}

/*
 * Gets called on POLLHUP on eventfd when user closes it.
 *
 * Called with wqh->lock held and interrupts disabled.
 */
3735 3736
static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
			    int sync, void *key)
3737
{
3738 3739
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
3740
	struct mem_cgroup *memcg = event->memcg;
3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752
	unsigned long flags = (unsigned long)key;

	if (flags & POLLHUP) {
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
3753
		spin_lock(&memcg->event_list_lock);
3754 3755 3756 3757 3758 3759 3760 3761
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
3762
		spin_unlock(&memcg->event_list_lock);
3763 3764 3765 3766 3767
	}

	return 0;
}

3768
static void memcg_event_ptable_queue_proc(struct file *file,
3769 3770
		wait_queue_head_t *wqh, poll_table *pt)
{
3771 3772
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
3773 3774 3775 3776 3777 3778

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
3779 3780
 * DO NOT USE IN NEW FILES.
 *
3781 3782 3783 3784 3785
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
3786 3787
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
					 char *buf, size_t nbytes, loff_t off)
3788
{
3789
	struct cgroup_subsys_state *css = of_css(of);
3790
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3791
	struct mem_cgroup_event *event;
3792 3793 3794 3795
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
3796
	const char *name;
3797 3798 3799
	char *endp;
	int ret;

3800 3801 3802
	buf = strstrip(buf);

	efd = simple_strtoul(buf, &endp, 10);
3803 3804
	if (*endp != ' ')
		return -EINVAL;
3805
	buf = endp + 1;
3806

3807
	cfd = simple_strtoul(buf, &endp, 10);
3808 3809
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
3810
	buf = endp + 1;
3811 3812 3813 3814 3815

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

3816
	event->memcg = memcg;
3817
	INIT_LIST_HEAD(&event->list);
3818 3819 3820
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
	if (ret < 0)
		goto out_put_cfile;

3846 3847 3848 3849 3850
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
3851 3852
	 *
	 * DO NOT ADD NEW FILES.
3853
	 */
A
Al Viro 已提交
3854
	name = cfile.file->f_path.dentry->d_name.name;
3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
3866 3867
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
3868 3869 3870 3871 3872
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

3873
	/*
3874 3875 3876
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
3877
	 */
A
Al Viro 已提交
3878
	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3879
					       &memory_cgrp_subsys);
3880
	ret = -EINVAL;
3881
	if (IS_ERR(cfile_css))
3882
		goto out_put_cfile;
3883 3884
	if (cfile_css != css) {
		css_put(cfile_css);
3885
		goto out_put_cfile;
3886
	}
3887

3888
	ret = event->register_event(memcg, event->eventfd, buf);
3889 3890 3891 3892 3893
	if (ret)
		goto out_put_css;

	efile.file->f_op->poll(efile.file, &event->pt);

3894 3895 3896
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
3897 3898 3899 3900

	fdput(cfile);
	fdput(efile);

3901
	return nbytes;
3902 3903

out_put_css:
3904
	css_put(css);
3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

3917
static struct cftype mem_cgroup_legacy_files[] = {
B
Balbir Singh 已提交
3918
	{
3919
		.name = "usage_in_bytes",
3920
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3921
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
3922
	},
3923 3924
	{
		.name = "max_usage_in_bytes",
3925
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3926
		.write = mem_cgroup_reset,
3927
		.read_u64 = mem_cgroup_read_u64,
3928
	},
B
Balbir Singh 已提交
3929
	{
3930
		.name = "limit_in_bytes",
3931
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3932
		.write = mem_cgroup_write,
3933
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
3934
	},
3935 3936 3937
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3938
		.write = mem_cgroup_write,
3939
		.read_u64 = mem_cgroup_read_u64,
3940
	},
B
Balbir Singh 已提交
3941 3942
	{
		.name = "failcnt",
3943
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3944
		.write = mem_cgroup_reset,
3945
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
3946
	},
3947 3948
	{
		.name = "stat",
3949
		.seq_show = memcg_stat_show,
3950
	},
3951 3952
	{
		.name = "force_empty",
3953
		.write = mem_cgroup_force_empty_write,
3954
	},
3955 3956 3957 3958 3959
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
3960
	{
3961
		.name = "cgroup.event_control",		/* XXX: for compat */
3962
		.write = memcg_write_event_control,
3963
		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
3964
	},
K
KOSAKI Motohiro 已提交
3965 3966 3967 3968 3969
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
3970 3971 3972 3973 3974
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
3975 3976
	{
		.name = "oom_control",
3977
		.seq_show = mem_cgroup_oom_control_read,
3978
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
3979 3980
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
3981 3982 3983
	{
		.name = "pressure_level",
	},
3984 3985 3986
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
3987
		.seq_show = memcg_numa_stat_show,
3988 3989
	},
#endif
3990 3991 3992
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
3993
		.write = mem_cgroup_write,
3994
		.read_u64 = mem_cgroup_read_u64,
3995 3996 3997 3998
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
3999
		.read_u64 = mem_cgroup_read_u64,
4000 4001 4002 4003
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4004
		.write = mem_cgroup_reset,
4005
		.read_u64 = mem_cgroup_read_u64,
4006 4007 4008 4009
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4010
		.write = mem_cgroup_reset,
4011
		.read_u64 = mem_cgroup_read_u64,
4012
	},
4013 4014 4015
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
4016 4017 4018
		.seq_start = memcg_slab_start,
		.seq_next = memcg_slab_next,
		.seq_stop = memcg_slab_stop,
4019
		.seq_show = memcg_slab_show,
4020 4021
	},
#endif
V
Vladimir Davydov 已提交
4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044
	{
		.name = "kmem.tcp.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.failcnt",
		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
4045
	{ },	/* terminate */
4046
};
4047

4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073
/*
 * Private memory cgroup IDR
 *
 * Swap-out records and page cache shadow entries need to store memcg
 * references in constrained space, so we maintain an ID space that is
 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
 * memory-controlled cgroups to 64k.
 *
 * However, there usually are many references to the oflline CSS after
 * the cgroup has been destroyed, such as page cache or reclaimable
 * slab objects, that don't need to hang on to the ID. We want to keep
 * those dead CSS from occupying IDs, or we might quickly exhaust the
 * relatively small ID space and prevent the creation of new cgroups
 * even when there are much fewer than 64k cgroups - possibly none.
 *
 * Maintain a private 16-bit ID space for memcg, and allow the ID to
 * be freed and recycled when it's no longer needed, which is usually
 * when the CSS is offlined.
 *
 * The only exception to that are records of swapped out tmpfs/shmem
 * pages that need to be attributed to live ancestors on swapin. But
 * those references are manageable from userspace.
 */

static DEFINE_IDR(mem_cgroup_idr);

4074
static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4075
{
4076
	VM_BUG_ON(atomic_read(&memcg->id.ref) <= 0);
4077
	atomic_add(n, &memcg->id.ref);
4078 4079
}

4080
static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4081
{
4082
	VM_BUG_ON(atomic_read(&memcg->id.ref) < n);
4083
	if (atomic_sub_and_test(n, &memcg->id.ref)) {
4084 4085 4086 4087 4088 4089 4090 4091
		idr_remove(&mem_cgroup_idr, memcg->id.id);
		memcg->id.id = 0;

		/* Memcg ID pins CSS */
		css_put(&memcg->css);
	}
}

4092 4093 4094 4095 4096 4097 4098 4099 4100 4101
static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
{
	mem_cgroup_id_get_many(memcg, 1);
}

static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
{
	mem_cgroup_id_put_many(memcg, 1);
}

4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113
/**
 * mem_cgroup_from_id - look up a memcg from a memcg id
 * @id: the memcg id to look up
 *
 * Caller must hold rcu_read_lock().
 */
struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	WARN_ON_ONCE(!rcu_read_lock_held());
	return idr_find(&mem_cgroup_idr, id);
}

4114
static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4115 4116
{
	struct mem_cgroup_per_node *pn;
4117
	int tmp = node;
4118 4119 4120 4121 4122 4123 4124 4125
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4126 4127
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4128
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4129 4130
	if (!pn)
		return 1;
4131

4132 4133 4134 4135 4136
	lruvec_init(&pn->lruvec);
	pn->usage_in_excess = 0;
	pn->on_tree = false;
	pn->memcg = memcg;

4137
	memcg->nodeinfo[node] = pn;
4138 4139 4140
	return 0;
}

4141
static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4142
{
4143
	kfree(memcg->nodeinfo[node]);
4144 4145
}

4146
static void __mem_cgroup_free(struct mem_cgroup *memcg)
4147
{
4148
	int node;
4149

4150
	for_each_node(node)
4151
		free_mem_cgroup_per_node_info(memcg, node);
4152
	free_percpu(memcg->stat);
4153
	kfree(memcg);
4154
}
4155

4156 4157 4158 4159 4160 4161
static void mem_cgroup_free(struct mem_cgroup *memcg)
{
	memcg_wb_domain_exit(memcg);
	__mem_cgroup_free(memcg);
}

4162
static struct mem_cgroup *mem_cgroup_alloc(void)
B
Balbir Singh 已提交
4163
{
4164
	struct mem_cgroup *memcg;
4165
	size_t size;
4166
	int node;
B
Balbir Singh 已提交
4167

4168 4169 4170 4171
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);

	memcg = kzalloc(size, GFP_KERNEL);
4172
	if (!memcg)
4173 4174
		return NULL;

4175 4176 4177 4178 4179 4180
	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
				 1, MEM_CGROUP_ID_MAX,
				 GFP_KERNEL);
	if (memcg->id.id < 0)
		goto fail;

4181 4182 4183
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
		goto fail;
4184

B
Bob Liu 已提交
4185
	for_each_node(node)
4186
		if (alloc_mem_cgroup_per_node_info(memcg, node))
4187
			goto fail;
4188

4189 4190
	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
		goto fail;
4191

4192
	INIT_WORK(&memcg->high_work, high_work_func);
4193 4194 4195 4196
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
4197
	vmpressure_init(&memcg->vmpressure);
4198 4199
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
4200
	memcg->socket_pressure = jiffies;
4201
#ifndef CONFIG_SLOB
V
Vladimir Davydov 已提交
4202 4203
	memcg->kmemcg_id = -1;
#endif
4204 4205 4206
#ifdef CONFIG_CGROUP_WRITEBACK
	INIT_LIST_HEAD(&memcg->cgwb_list);
#endif
4207
	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4208 4209
	return memcg;
fail:
4210 4211
	if (memcg->id.id > 0)
		idr_remove(&mem_cgroup_idr, memcg->id.id);
4212
	__mem_cgroup_free(memcg);
4213
	return NULL;
4214 4215
}

4216 4217
static struct cgroup_subsys_state * __ref
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4218
{
4219 4220 4221
	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
	struct mem_cgroup *memcg;
	long error = -ENOMEM;
4222

4223 4224 4225
	memcg = mem_cgroup_alloc();
	if (!memcg)
		return ERR_PTR(error);
4226

4227 4228 4229 4230 4231 4232 4233 4234
	memcg->high = PAGE_COUNTER_MAX;
	memcg->soft_limit = PAGE_COUNTER_MAX;
	if (parent) {
		memcg->swappiness = mem_cgroup_swappiness(parent);
		memcg->oom_kill_disable = parent->oom_kill_disable;
	}
	if (parent && parent->use_hierarchy) {
		memcg->use_hierarchy = true;
4235
		page_counter_init(&memcg->memory, &parent->memory);
4236
		page_counter_init(&memcg->swap, &parent->swap);
4237 4238
		page_counter_init(&memcg->memsw, &parent->memsw);
		page_counter_init(&memcg->kmem, &parent->kmem);
4239
		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4240
	} else {
4241
		page_counter_init(&memcg->memory, NULL);
4242
		page_counter_init(&memcg->swap, NULL);
4243 4244
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
4245
		page_counter_init(&memcg->tcpmem, NULL);
4246 4247 4248 4249 4250
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
4251
		if (parent != root_mem_cgroup)
4252
			memory_cgrp_subsys.broken_hierarchy = true;
4253
	}
4254

4255 4256 4257 4258 4259 4260
	/* The following stuff does not apply to the root */
	if (!parent) {
		root_mem_cgroup = memcg;
		return &memcg->css;
	}

4261
	error = memcg_online_kmem(memcg);
4262 4263
	if (error)
		goto fail;
4264

4265
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4266
		static_branch_inc(&memcg_sockets_enabled_key);
4267

4268 4269 4270
	return &memcg->css;
fail:
	mem_cgroup_free(memcg);
4271
	return ERR_PTR(-ENOMEM);
4272 4273
}

4274
static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
4275
{
4276 4277
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

4278
	/* Online state pins memcg ID, memcg ID pins CSS */
4279
	atomic_set(&memcg->id.ref, 1);
4280
	css_get(css);
4281
	return 0;
B
Balbir Singh 已提交
4282 4283
}

4284
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4285
{
4286
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4287
	struct mem_cgroup_event *event, *tmp;
4288 4289 4290 4291 4292 4293

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
4294 4295
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4296 4297 4298
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
4299
	spin_unlock(&memcg->event_list_lock);
4300

4301
	memcg_offline_kmem(memcg);
4302
	wb_memcg_offline(memcg);
4303 4304

	mem_cgroup_id_put(memcg);
4305 4306
}

4307 4308 4309 4310 4311 4312 4313
static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	invalidate_reclaim_iterators(memcg);
}

4314
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
4315
{
4316
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4317

4318
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4319
		static_branch_dec(&memcg_sockets_enabled_key);
4320

4321
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
V
Vladimir Davydov 已提交
4322
		static_branch_dec(&memcg_sockets_enabled_key);
4323

4324 4325 4326
	vmpressure_cleanup(&memcg->vmpressure);
	cancel_work_sync(&memcg->high_work);
	mem_cgroup_remove_from_trees(memcg);
4327
	memcg_free_kmem(memcg);
4328
	mem_cgroup_free(memcg);
B
Balbir Singh 已提交
4329 4330
}

4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347
/**
 * mem_cgroup_css_reset - reset the states of a mem_cgroup
 * @css: the target css
 *
 * Reset the states of the mem_cgroup associated with @css.  This is
 * invoked when the userland requests disabling on the default hierarchy
 * but the memcg is pinned through dependency.  The memcg should stop
 * applying policies and should revert to the vanilla state as it may be
 * made visible again.
 *
 * The current implementation only resets the essential configurations.
 * This needs to be expanded to cover all the visible parts.
 */
static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

4348 4349 4350 4351 4352
	page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
	page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
	page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
	page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
	page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
4353 4354
	memcg->low = 0;
	memcg->high = PAGE_COUNTER_MAX;
4355
	memcg->soft_limit = PAGE_COUNTER_MAX;
4356
	memcg_wb_domain_size_changed(memcg);
4357 4358
}

4359
#ifdef CONFIG_MMU
4360
/* Handlers for move charge at task migration. */
4361
static int mem_cgroup_do_precharge(unsigned long count)
4362
{
4363
	int ret;
4364

4365 4366
	/* Try a single bulk charge without reclaim first, kswapd may wake */
	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4367
	if (!ret) {
4368 4369 4370
		mc.precharge += count;
		return ret;
	}
4371

4372
	/* Try charges one by one with reclaim, but do not retry */
4373
	while (count--) {
4374
		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
4375 4376
		if (ret)
			return ret;
4377
		mc.precharge++;
4378
		cond_resched();
4379
	}
4380
	return 0;
4381 4382 4383 4384
}

union mc_target {
	struct page	*page;
4385
	swp_entry_t	ent;
4386 4387 4388
};

enum mc_target_type {
4389
	MC_TARGET_NONE = 0,
4390
	MC_TARGET_PAGE,
4391
	MC_TARGET_SWAP,
4392 4393
};

D
Daisuke Nishimura 已提交
4394 4395
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
4396
{
D
Daisuke Nishimura 已提交
4397
	struct page *page = vm_normal_page(vma, addr, ptent);
4398

D
Daisuke Nishimura 已提交
4399 4400 4401
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
4402
		if (!(mc.flags & MOVE_ANON))
D
Daisuke Nishimura 已提交
4403
			return NULL;
4404 4405 4406 4407
	} else {
		if (!(mc.flags & MOVE_FILE))
			return NULL;
	}
D
Daisuke Nishimura 已提交
4408 4409 4410 4411 4412 4413
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

4414
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
4415
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4416
			pte_t ptent, swp_entry_t *entry)
D
Daisuke Nishimura 已提交
4417 4418 4419 4420
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

4421
	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
D
Daisuke Nishimura 已提交
4422
		return NULL;
4423 4424 4425 4426
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
4427
	page = find_get_page(swap_address_space(ent), swp_offset(ent));
4428
	if (do_memsw_account())
D
Daisuke Nishimura 已提交
4429 4430 4431 4432
		entry->val = ent.val;

	return page;
}
4433 4434
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4435
			pte_t ptent, swp_entry_t *entry)
4436 4437 4438 4439
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
4440

4441 4442 4443 4444 4445 4446 4447 4448 4449
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
4450
	if (!(mc.flags & MOVE_FILE))
4451 4452 4453
		return NULL;

	mapping = vma->vm_file->f_mapping;
4454
	pgoff = linear_page_index(vma, addr);
4455 4456

	/* page is moved even if it's not RSS of this task(page-faulted). */
4457 4458
#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
4459 4460 4461 4462
	if (shmem_mapping(mapping)) {
		page = find_get_entry(mapping, pgoff);
		if (radix_tree_exceptional_entry(page)) {
			swp_entry_t swp = radix_to_swp_entry(page);
4463
			if (do_memsw_account())
4464
				*entry = swp;
4465 4466
			page = find_get_page(swap_address_space(swp),
					     swp_offset(swp));
4467 4468 4469 4470 4471
		}
	} else
		page = find_get_page(mapping, pgoff);
#else
	page = find_get_page(mapping, pgoff);
4472
#endif
4473 4474 4475
	return page;
}

4476 4477 4478
/**
 * mem_cgroup_move_account - move account of the page
 * @page: the page
4479
 * @compound: charge the page as compound or small page
4480 4481 4482
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
4483
 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4484 4485 4486 4487 4488
 *
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
 */
static int mem_cgroup_move_account(struct page *page,
4489
				   bool compound,
4490 4491 4492 4493
				   struct mem_cgroup *from,
				   struct mem_cgroup *to)
{
	unsigned long flags;
4494
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4495
	int ret;
4496
	bool anon;
4497 4498 4499

	VM_BUG_ON(from == to);
	VM_BUG_ON_PAGE(PageLRU(page), page);
4500
	VM_BUG_ON(compound && !PageTransHuge(page));
4501 4502

	/*
4503
	 * Prevent mem_cgroup_migrate() from looking at
4504
	 * page->mem_cgroup of its source page while we change it.
4505
	 */
4506
	ret = -EBUSY;
4507 4508 4509 4510 4511 4512 4513
	if (!trylock_page(page))
		goto out;

	ret = -EINVAL;
	if (page->mem_cgroup != from)
		goto out_unlock;

4514 4515
	anon = PageAnon(page);

4516 4517
	spin_lock_irqsave(&from->move_lock, flags);

4518
	if (!anon && page_mapped(page)) {
4519 4520 4521 4522 4523 4524
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
	}

4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540
	/*
	 * move_lock grabbed above and caller set from->moving_account, so
	 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
	 * So mapping should be stable for dirty pages.
	 */
	if (!anon && PageDirty(page)) {
		struct address_space *mapping = page_mapping(page);

		if (mapping_cap_account_dirty(mapping)) {
			__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
				       nr_pages);
			__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
				       nr_pages);
		}
	}

4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560
	if (PageWriteback(page)) {
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
	}

	/*
	 * It is safe to change page->mem_cgroup here because the page
	 * is referenced, charged, and isolated - we can't race with
	 * uncharging, charging, migration, or LRU putback.
	 */

	/* caller should have done css_get */
	page->mem_cgroup = to;
	spin_unlock_irqrestore(&from->move_lock, flags);

	ret = 0;

	local_irq_disable();
4561
	mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4562
	memcg_check_events(to, page);
4563
	mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4564 4565 4566 4567 4568 4569 4570 4571
	memcg_check_events(from, page);
	local_irq_enable();
out_unlock:
	unlock_page(page);
out:
	return ret;
}

4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590
/**
 * get_mctgt_type - get target type of moving charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
 *
 * Called with pte lock held.
 */

4591
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
4592 4593 4594
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
4595
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
4596 4597 4598 4599 4600
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
4601
		page = mc_handle_swap_pte(vma, ptent, &ent);
4602
	else if (pte_none(ptent))
4603
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
4604 4605

	if (!page && !ent.val)
4606
		return ret;
4607 4608
	if (page) {
		/*
4609
		 * Do only loose check w/o serialization.
4610
		 * mem_cgroup_move_account() checks the page is valid or
4611
		 * not under LRU exclusion.
4612
		 */
4613
		if (page->mem_cgroup == mc.from) {
4614 4615 4616 4617 4618 4619 4620
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
4621 4622
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
L
Li Zefan 已提交
4623
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4624 4625 4626
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
4627 4628 4629 4630
	}
	return ret;
}

4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
4644
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4645
	if (!(mc.flags & MOVE_ANON))
4646
		return ret;
4647
	if (page->mem_cgroup == mc.from) {
4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

4664 4665 4666 4667
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
4668
	struct vm_area_struct *vma = walk->vma;
4669 4670 4671
	pte_t *pte;
	spinlock_t *ptl;

4672 4673
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
4674 4675
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
4676
		spin_unlock(ptl);
4677
		return 0;
4678
	}
4679

4680 4681
	if (pmd_trans_unstable(pmd))
		return 0;
4682 4683
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
4684
		if (get_mctgt_type(vma, addr, *pte, NULL))
4685 4686 4687 4688
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

4689 4690 4691
	return 0;
}

4692 4693 4694 4695
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;

4696 4697 4698 4699
	struct mm_walk mem_cgroup_count_precharge_walk = {
		.pmd_entry = mem_cgroup_count_precharge_pte_range,
		.mm = mm,
	};
4700
	down_read(&mm->mmap_sem);
4701 4702
	walk_page_range(0, mm->highest_vm_end,
			&mem_cgroup_count_precharge_walk);
4703
	up_read(&mm->mmap_sem);
4704 4705 4706 4707 4708 4709 4710 4711 4712

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
4713 4714 4715 4716 4717
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
4718 4719
}

4720 4721
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
4722
{
4723 4724 4725
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

4726
	/* we must uncharge all the leftover precharges from mc.to */
4727
	if (mc.precharge) {
4728
		cancel_charge(mc.to, mc.precharge);
4729 4730 4731 4732 4733 4734 4735
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
4736
		cancel_charge(mc.from, mc.moved_charge);
4737
		mc.moved_charge = 0;
4738
	}
4739 4740 4741
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
4742
		if (!mem_cgroup_is_root(mc.from))
4743
			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4744

4745 4746
		mem_cgroup_id_put_many(mc.from, mc.moved_swap);

4747
		/*
4748 4749
		 * we charged both to->memory and to->memsw, so we
		 * should uncharge to->memory.
4750
		 */
4751
		if (!mem_cgroup_is_root(mc.to))
4752 4753
			page_counter_uncharge(&mc.to->memory, mc.moved_swap);

4754 4755
		mem_cgroup_id_get_many(mc.to, mc.moved_swap);
		css_put_many(&mc.to->css, mc.moved_swap);
4756

4757 4758
		mc.moved_swap = 0;
	}
4759 4760 4761 4762 4763 4764 4765
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
4766 4767
	struct mm_struct *mm = mc.mm;

4768 4769 4770 4771 4772 4773
	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
4774
	spin_lock(&mc.lock);
4775 4776
	mc.from = NULL;
	mc.to = NULL;
4777
	mc.mm = NULL;
4778
	spin_unlock(&mc.lock);
4779 4780

	mmput(mm);
4781 4782
}

4783
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4784
{
4785
	struct cgroup_subsys_state *css;
4786
	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4787
	struct mem_cgroup *from;
4788
	struct task_struct *leader, *p;
4789
	struct mm_struct *mm;
4790
	unsigned long move_flags;
4791
	int ret = 0;
4792

4793 4794
	/* charge immigration isn't supported on the default hierarchy */
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4795 4796
		return 0;

4797 4798 4799 4800 4801 4802 4803
	/*
	 * Multi-process migrations only happen on the default hierarchy
	 * where charge immigration is not used.  Perform charge
	 * immigration if @tset contains a leader and whine if there are
	 * multiple.
	 */
	p = NULL;
4804
	cgroup_taskset_for_each_leader(leader, css, tset) {
4805 4806
		WARN_ON_ONCE(p);
		p = leader;
4807
		memcg = mem_cgroup_from_css(css);
4808 4809 4810 4811
	}
	if (!p)
		return 0;

4812 4813 4814 4815 4816 4817 4818 4819 4820
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
	if (!move_flags)
		return 0;

4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836
	from = mem_cgroup_from_task(p);

	VM_BUG_ON(from == memcg);

	mm = get_task_mm(p);
	if (!mm)
		return 0;
	/* We move charges only when we move a owner of the mm */
	if (mm->owner == p) {
		VM_BUG_ON(mc.from);
		VM_BUG_ON(mc.to);
		VM_BUG_ON(mc.precharge);
		VM_BUG_ON(mc.moved_charge);
		VM_BUG_ON(mc.moved_swap);

		spin_lock(&mc.lock);
4837
		mc.mm = mm;
4838 4839 4840 4841 4842 4843 4844 4845 4846
		mc.from = from;
		mc.to = memcg;
		mc.flags = move_flags;
		spin_unlock(&mc.lock);
		/* We set mc.moving_task later */

		ret = mem_cgroup_precharge_mc(mm);
		if (ret)
			mem_cgroup_clear_mc();
4847 4848
	} else {
		mmput(mm);
4849 4850 4851 4852
	}
	return ret;
}

4853
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4854
{
4855 4856
	if (mc.to)
		mem_cgroup_clear_mc();
4857 4858
}

4859 4860 4861
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
4862
{
4863
	int ret = 0;
4864
	struct vm_area_struct *vma = walk->vma;
4865 4866
	pte_t *pte;
	spinlock_t *ptl;
4867 4868 4869
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
4870

4871 4872
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
4873
		if (mc.precharge < HPAGE_PMD_NR) {
4874
			spin_unlock(ptl);
4875 4876 4877 4878 4879 4880
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
4881
				if (!mem_cgroup_move_account(page, true,
4882
							     mc.from, mc.to)) {
4883 4884 4885 4886 4887 4888 4889
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
4890
		spin_unlock(ptl);
4891
		return 0;
4892 4893
	}

4894 4895
	if (pmd_trans_unstable(pmd))
		return 0;
4896 4897 4898 4899
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
4900
		swp_entry_t ent;
4901 4902 4903 4904

		if (!mc.precharge)
			break;

4905
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
4906 4907
		case MC_TARGET_PAGE:
			page = target.page;
4908 4909 4910 4911 4912 4913 4914 4915
			/*
			 * We can have a part of the split pmd here. Moving it
			 * can be done but it would be too convoluted so simply
			 * ignore such a partial THP and keep it in original
			 * memcg. There should be somebody mapping the head.
			 */
			if (PageTransCompound(page))
				goto put;
4916 4917
			if (isolate_lru_page(page))
				goto put;
4918 4919
			if (!mem_cgroup_move_account(page, false,
						mc.from, mc.to)) {
4920
				mc.precharge--;
4921 4922
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
4923 4924
			}
			putback_lru_page(page);
4925
put:			/* get_mctgt_type() gets the page */
4926 4927
			put_page(page);
			break;
4928 4929
		case MC_TARGET_SWAP:
			ent = target.ent;
4930
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4931
				mc.precharge--;
4932 4933 4934
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
4935
			break;
4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
4950
		ret = mem_cgroup_do_precharge(1);
4951 4952 4953 4954 4955 4956 4957
		if (!ret)
			goto retry;
	}

	return ret;
}

4958
static void mem_cgroup_move_charge(void)
4959
{
4960 4961
	struct mm_walk mem_cgroup_move_charge_walk = {
		.pmd_entry = mem_cgroup_move_charge_pte_range,
4962
		.mm = mc.mm,
4963
	};
4964 4965

	lru_add_drain_all();
4966
	/*
4967 4968 4969
	 * Signal lock_page_memcg() to take the memcg's move_lock
	 * while we're moving its pages to another memcg. Then wait
	 * for already started RCU-only updates to finish.
4970 4971 4972
	 */
	atomic_inc(&mc.from->moving_account);
	synchronize_rcu();
4973
retry:
4974
	if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
4986 4987 4988 4989
	/*
	 * When we have consumed all precharges and failed in doing
	 * additional charge, the page walk just aborts.
	 */
4990 4991
	walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);

4992
	up_read(&mc.mm->mmap_sem);
4993
	atomic_dec(&mc.from->moving_account);
4994 4995
}

4996
static void mem_cgroup_move_task(void)
B
Balbir Singh 已提交
4997
{
4998 4999
	if (mc.to) {
		mem_cgroup_move_charge();
5000
		mem_cgroup_clear_mc();
5001
	}
B
Balbir Singh 已提交
5002
}
5003
#else	/* !CONFIG_MMU */
5004
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5005 5006 5007
{
	return 0;
}
5008
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5009 5010
{
}
5011
static void mem_cgroup_move_task(void)
5012 5013 5014
{
}
#endif
B
Balbir Singh 已提交
5015

5016 5017
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5018 5019
 * to verify whether we're attached to the default hierarchy on each mount
 * attempt.
5020
 */
5021
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5022 5023
{
	/*
5024
	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5025 5026 5027
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
5028
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5029 5030 5031
		root_mem_cgroup->use_hierarchy = true;
	else
		root_mem_cgroup->use_hierarchy = false;
5032 5033
}

5034 5035 5036
static u64 memory_current_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
{
5037 5038 5039
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5040 5041 5042 5043 5044
}

static int memory_low_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5045
	unsigned long low = READ_ONCE(memcg->low);
5046 5047

	if (low == PAGE_COUNTER_MAX)
5048
		seq_puts(m, "max\n");
5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062
	else
		seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);

	return 0;
}

static ssize_t memory_low_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long low;
	int err;

	buf = strstrip(buf);
5063
	err = page_counter_memparse(buf, "max", &low);
5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074
	if (err)
		return err;

	memcg->low = low;

	return nbytes;
}

static int memory_high_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5075
	unsigned long high = READ_ONCE(memcg->high);
5076 5077

	if (high == PAGE_COUNTER_MAX)
5078
		seq_puts(m, "max\n");
5079 5080 5081 5082 5083 5084 5085 5086 5087 5088
	else
		seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);

	return 0;
}

static ssize_t memory_high_write(struct kernfs_open_file *of,
				 char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5089
	unsigned long nr_pages;
5090 5091 5092 5093
	unsigned long high;
	int err;

	buf = strstrip(buf);
5094
	err = page_counter_memparse(buf, "max", &high);
5095 5096 5097 5098 5099
	if (err)
		return err;

	memcg->high = high;

5100 5101 5102 5103 5104
	nr_pages = page_counter_read(&memcg->memory);
	if (nr_pages > high)
		try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
					     GFP_KERNEL, true);

5105
	memcg_wb_domain_size_changed(memcg);
5106 5107 5108 5109 5110 5111
	return nbytes;
}

static int memory_max_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5112
	unsigned long max = READ_ONCE(memcg->memory.limit);
5113 5114

	if (max == PAGE_COUNTER_MAX)
5115
		seq_puts(m, "max\n");
5116 5117 5118 5119 5120 5121 5122 5123 5124 5125
	else
		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);

	return 0;
}

static ssize_t memory_max_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5126 5127
	unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
	bool drained = false;
5128 5129 5130 5131
	unsigned long max;
	int err;

	buf = strstrip(buf);
5132
	err = page_counter_memparse(buf, "max", &max);
5133 5134 5135
	if (err)
		return err;

5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165
	xchg(&memcg->memory.limit, max);

	for (;;) {
		unsigned long nr_pages = page_counter_read(&memcg->memory);

		if (nr_pages <= max)
			break;

		if (signal_pending(current)) {
			err = -EINTR;
			break;
		}

		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

		if (nr_reclaims) {
			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
							  GFP_KERNEL, true))
				nr_reclaims--;
			continue;
		}

		mem_cgroup_events(memcg, MEMCG_OOM, 1);
		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
			break;
	}
5166

5167
	memcg_wb_domain_size_changed(memcg);
5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182
	return nbytes;
}

static int memory_events_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));

	seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
	seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
	seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
	seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));

	return 0;
}

5183 5184 5185
static int memory_stat_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5186 5187
	unsigned long stat[MEMCG_NR_STAT];
	unsigned long events[MEMCG_NR_EVENTS];
5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200
	int i;

	/*
	 * Provide statistics on the state of the memory subsystem as
	 * well as cumulative event counters that show past behavior.
	 *
	 * This list is ordered following a combination of these gradients:
	 * 1) generic big picture -> specifics and details
	 * 2) reflecting userspace activity -> reflecting kernel heuristics
	 *
	 * Current memory state:
	 */

5201 5202 5203
	tree_stat(memcg, stat);
	tree_events(memcg, events);

5204
	seq_printf(m, "anon %llu\n",
5205
		   (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE);
5206
	seq_printf(m, "file %llu\n",
5207
		   (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE);
5208
	seq_printf(m, "kernel_stack %llu\n",
5209
		   (u64)stat[MEMCG_KERNEL_STACK_KB] * 1024);
5210 5211 5212
	seq_printf(m, "slab %llu\n",
		   (u64)(stat[MEMCG_SLAB_RECLAIMABLE] +
			 stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5213
	seq_printf(m, "sock %llu\n",
5214
		   (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
5215

5216 5217
	seq_printf(m, "shmem %llu\n",
		   (u64)stat[MEM_CGROUP_STAT_SHMEM] * PAGE_SIZE);
5218
	seq_printf(m, "file_mapped %llu\n",
5219
		   (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE);
5220
	seq_printf(m, "file_dirty %llu\n",
5221
		   (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE);
5222
	seq_printf(m, "file_writeback %llu\n",
5223
		   (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE);
5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234

	for (i = 0; i < NR_LRU_LISTS; i++) {
		struct mem_cgroup *mi;
		unsigned long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i));
		seq_printf(m, "%s %llu\n",
			   mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
	}

5235 5236 5237 5238 5239
	seq_printf(m, "slab_reclaimable %llu\n",
		   (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE);
	seq_printf(m, "slab_unreclaimable %llu\n",
		   (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE);

5240 5241 5242
	/* Accumulated memory events */

	seq_printf(m, "pgfault %lu\n",
5243
		   events[MEM_CGROUP_EVENTS_PGFAULT]);
5244
	seq_printf(m, "pgmajfault %lu\n",
5245
		   events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
5246 5247 5248 5249

	return 0;
}

5250 5251 5252
static struct cftype memory_files[] = {
	{
		.name = "current",
5253
		.flags = CFTYPE_NOT_ON_ROOT,
5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276
		.read_u64 = memory_current_read,
	},
	{
		.name = "low",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_low_show,
		.write = memory_low_write,
	},
	{
		.name = "high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_high_show,
		.write = memory_high_write,
	},
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_max_show,
		.write = memory_max_write,
	},
	{
		.name = "events",
		.flags = CFTYPE_NOT_ON_ROOT,
5277
		.file_offset = offsetof(struct mem_cgroup, events_file),
5278 5279
		.seq_show = memory_events_show,
	},
5280 5281 5282 5283 5284
	{
		.name = "stat",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_stat_show,
	},
5285 5286 5287
	{ }	/* terminate */
};

5288
struct cgroup_subsys memory_cgrp_subsys = {
5289
	.css_alloc = mem_cgroup_css_alloc,
5290
	.css_online = mem_cgroup_css_online,
5291
	.css_offline = mem_cgroup_css_offline,
5292
	.css_released = mem_cgroup_css_released,
5293
	.css_free = mem_cgroup_css_free,
5294
	.css_reset = mem_cgroup_css_reset,
5295 5296
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
5297
	.post_attach = mem_cgroup_move_task,
5298
	.bind = mem_cgroup_bind,
5299 5300
	.dfl_cftypes = memory_files,
	.legacy_cftypes = mem_cgroup_legacy_files,
5301
	.early_init = 0,
B
Balbir Singh 已提交
5302
};
5303

5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325
/**
 * mem_cgroup_low - check if memory consumption is below the normal range
 * @root: the highest ancestor to consider
 * @memcg: the memory cgroup to check
 *
 * Returns %true if memory consumption of @memcg, and that of all
 * configurable ancestors up to @root, is below the normal range.
 */
bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return false;

	/*
	 * The toplevel group doesn't have a configurable range, so
	 * it's never low when looked at directly, and it is not
	 * considered an ancestor when assessing the hierarchy.
	 */

	if (memcg == root_mem_cgroup)
		return false;

M
Michal Hocko 已提交
5326
	if (page_counter_read(&memcg->memory) >= memcg->low)
5327 5328 5329 5330 5331 5332 5333 5334
		return false;

	while (memcg != root) {
		memcg = parent_mem_cgroup(memcg);

		if (memcg == root_mem_cgroup)
			break;

M
Michal Hocko 已提交
5335
		if (page_counter_read(&memcg->memory) >= memcg->low)
5336 5337 5338 5339 5340
			return false;
	}
	return true;
}

5341 5342 5343 5344 5345 5346
/**
 * mem_cgroup_try_charge - try charging a page
 * @page: page to charge
 * @mm: mm context of the victim
 * @gfp_mask: reclaim mode
 * @memcgp: charged memcg return
5347
 * @compound: charge the page as compound or small page
5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359
 *
 * Try to charge @page to the memcg that @mm belongs to, reclaiming
 * pages according to @gfp_mask if necessary.
 *
 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
 * Otherwise, an error code is returned.
 *
 * After page->mapping has been set up, the caller must finalize the
 * charge with mem_cgroup_commit_charge().  Or abort the transaction
 * with mem_cgroup_cancel_charge() in case page instantiation fails.
 */
int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5360 5361
			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
			  bool compound)
5362 5363
{
	struct mem_cgroup *memcg = NULL;
5364
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377
	int ret = 0;

	if (mem_cgroup_disabled())
		goto out;

	if (PageSwapCache(page)) {
		/*
		 * Every swap fault against a single page tries to charge the
		 * page, bail as early as possible.  shmem_unuse() encounters
		 * already charged pages, too.  The USED bit is protected by
		 * the page lock, which serializes swap cache removal, which
		 * in turn serializes uncharging.
		 */
5378
		VM_BUG_ON_PAGE(!PageLocked(page), page);
5379
		if (page->mem_cgroup)
5380
			goto out;
5381

5382
		if (do_swap_account) {
5383 5384 5385 5386 5387 5388 5389 5390 5391
			swp_entry_t ent = { .val = page_private(page), };
			unsigned short id = lookup_swap_cgroup_id(ent);

			rcu_read_lock();
			memcg = mem_cgroup_from_id(id);
			if (memcg && !css_tryget_online(&memcg->css))
				memcg = NULL;
			rcu_read_unlock();
		}
5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409
	}

	if (!memcg)
		memcg = get_mem_cgroup_from_mm(mm);

	ret = try_charge(memcg, gfp_mask, nr_pages);

	css_put(&memcg->css);
out:
	*memcgp = memcg;
	return ret;
}

/**
 * mem_cgroup_commit_charge - commit a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 * @lrucare: page might be on LRU already
5410
 * @compound: charge the page as compound or small page
5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422
 *
 * Finalize a charge transaction started by mem_cgroup_try_charge(),
 * after page->mapping has been set up.  This must happen atomically
 * as part of the page instantiation, i.e. under the page table lock
 * for anonymous pages, under the page lock for page and swap cache.
 *
 * In addition, the page must not be on the LRU during the commit, to
 * prevent racing with task migration.  If it might be, use @lrucare.
 *
 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
 */
void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5423
			      bool lrucare, bool compound)
5424
{
5425
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439

	VM_BUG_ON_PAGE(!page->mapping, page);
	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

5440 5441 5442
	commit_charge(page, memcg, lrucare);

	local_irq_disable();
5443
	mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5444 5445
	memcg_check_events(memcg, page);
	local_irq_enable();
5446

5447
	if (do_memsw_account() && PageSwapCache(page)) {
5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461
		swp_entry_t entry = { .val = page_private(page) };
		/*
		 * The swap entry might not get freed for a long time,
		 * let's not wait for it.  The page already received a
		 * memory+swap charge, drop the swap entry duplicate.
		 */
		mem_cgroup_uncharge_swap(entry);
	}
}

/**
 * mem_cgroup_cancel_charge - cancel a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
5462
 * @compound: charge the page as compound or small page
5463 5464 5465
 *
 * Cancel a charge transaction started by mem_cgroup_try_charge().
 */
5466 5467
void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
		bool compound)
5468
{
5469
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

	cancel_charge(memcg, nr_pages);
}

5484 5485
static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
			   unsigned long nr_anon, unsigned long nr_file,
5486 5487
			   unsigned long nr_kmem, unsigned long nr_huge,
			   unsigned long nr_shmem, struct page *dummy_page)
5488
{
5489
	unsigned long nr_pages = nr_anon + nr_file + nr_kmem;
5490 5491
	unsigned long flags;

5492
	if (!mem_cgroup_is_root(memcg)) {
5493
		page_counter_uncharge(&memcg->memory, nr_pages);
5494
		if (do_memsw_account())
5495
			page_counter_uncharge(&memcg->memsw, nr_pages);
5496 5497
		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && nr_kmem)
			page_counter_uncharge(&memcg->kmem, nr_kmem);
5498 5499
		memcg_oom_recover(memcg);
	}
5500 5501 5502 5503 5504

	local_irq_save(flags);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5505
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_SHMEM], nr_shmem);
5506
	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5507
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5508 5509
	memcg_check_events(memcg, dummy_page);
	local_irq_restore(flags);
5510 5511

	if (!mem_cgroup_is_root(memcg))
5512
		css_put_many(&memcg->css, nr_pages);
5513 5514 5515 5516 5517
}

static void uncharge_list(struct list_head *page_list)
{
	struct mem_cgroup *memcg = NULL;
5518
	unsigned long nr_shmem = 0;
5519 5520 5521
	unsigned long nr_anon = 0;
	unsigned long nr_file = 0;
	unsigned long nr_huge = 0;
5522
	unsigned long nr_kmem = 0;
5523 5524 5525 5526
	unsigned long pgpgout = 0;
	struct list_head *next;
	struct page *page;

5527 5528 5529 5530
	/*
	 * Note that the list can be a single page->lru; hence the
	 * do-while loop instead of a simple list_for_each_entry().
	 */
5531 5532 5533 5534 5535 5536 5537 5538
	next = page_list->next;
	do {
		page = list_entry(next, struct page, lru);
		next = page->lru.next;

		VM_BUG_ON_PAGE(PageLRU(page), page);
		VM_BUG_ON_PAGE(page_count(page), page);

5539
		if (!page->mem_cgroup)
5540 5541 5542 5543
			continue;

		/*
		 * Nobody should be changing or seriously looking at
5544
		 * page->mem_cgroup at this point, we have fully
5545
		 * exclusive access to the page.
5546 5547
		 */

5548
		if (memcg != page->mem_cgroup) {
5549
			if (memcg) {
5550
				uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5551 5552 5553
					       nr_kmem, nr_huge, nr_shmem, page);
				pgpgout = nr_anon = nr_file = nr_kmem = 0;
				nr_huge = nr_shmem = 0;
5554
			}
5555
			memcg = page->mem_cgroup;
5556 5557
		}

5558 5559
		if (!PageKmemcg(page)) {
			unsigned int nr_pages = 1;
5560

5561 5562 5563 5564 5565 5566
			if (PageTransHuge(page)) {
				nr_pages <<= compound_order(page);
				nr_huge += nr_pages;
			}
			if (PageAnon(page))
				nr_anon += nr_pages;
5567
			else {
5568
				nr_file += nr_pages;
5569 5570 5571
				if (PageSwapBacked(page))
					nr_shmem += nr_pages;
			}
5572
			pgpgout++;
5573
		} else {
5574
			nr_kmem += 1 << compound_order(page);
5575 5576
			__ClearPageKmemcg(page);
		}
5577

5578
		page->mem_cgroup = NULL;
5579 5580 5581
	} while (next != page_list);

	if (memcg)
5582
		uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5583
			       nr_kmem, nr_huge, nr_shmem, page);
5584 5585
}

5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597
/**
 * mem_cgroup_uncharge - uncharge a page
 * @page: page to uncharge
 *
 * Uncharge a page previously charged with mem_cgroup_try_charge() and
 * mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge(struct page *page)
{
	if (mem_cgroup_disabled())
		return;

5598
	/* Don't touch page->lru of any random page, pre-check: */
5599
	if (!page->mem_cgroup)
5600 5601
		return;

5602 5603 5604
	INIT_LIST_HEAD(&page->lru);
	uncharge_list(&page->lru);
}
5605

5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616
/**
 * mem_cgroup_uncharge_list - uncharge a list of page
 * @page_list: list of pages to uncharge
 *
 * Uncharge a list of pages previously charged with
 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge_list(struct list_head *page_list)
{
	if (mem_cgroup_disabled())
		return;
5617

5618 5619
	if (!list_empty(page_list))
		uncharge_list(page_list);
5620 5621 5622
}

/**
5623 5624 5625
 * mem_cgroup_migrate - charge a page's replacement
 * @oldpage: currently circulating page
 * @newpage: replacement page
5626
 *
5627 5628
 * Charge @newpage as a replacement page for @oldpage. @oldpage will
 * be uncharged upon free.
5629 5630 5631
 *
 * Both pages must be locked, @newpage->mapping must be set up.
 */
5632
void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
5633
{
5634
	struct mem_cgroup *memcg;
5635 5636
	unsigned int nr_pages;
	bool compound;
5637
	unsigned long flags;
5638 5639 5640 5641

	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5642 5643
	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
		       newpage);
5644 5645 5646 5647 5648

	if (mem_cgroup_disabled())
		return;

	/* Page cache replacement: new page already charged? */
5649
	if (newpage->mem_cgroup)
5650 5651
		return;

5652
	/* Swapcache readahead pages can get replaced before being charged */
5653
	memcg = oldpage->mem_cgroup;
5654
	if (!memcg)
5655 5656
		return;

5657 5658 5659 5660 5661 5662 5663 5664
	/* Force-charge the new page. The old one will be freed soon */
	compound = PageTransHuge(newpage);
	nr_pages = compound ? hpage_nr_pages(newpage) : 1;

	page_counter_charge(&memcg->memory, nr_pages);
	if (do_memsw_account())
		page_counter_charge(&memcg->memsw, nr_pages);
	css_get_many(&memcg->css, nr_pages);
5665

5666
	commit_charge(newpage, memcg, false);
5667

5668
	local_irq_save(flags);
5669 5670
	mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
	memcg_check_events(memcg, newpage);
5671
	local_irq_restore(flags);
5672 5673
}

5674
DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5675 5676
EXPORT_SYMBOL(memcg_sockets_enabled_key);

5677
void mem_cgroup_sk_alloc(struct sock *sk)
5678 5679 5680
{
	struct mem_cgroup *memcg;

5681 5682 5683 5684 5685
	if (!mem_cgroup_sockets_enabled)
		return;

	/*
	 * Socket cloning can throw us here with sk_memcg already
5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700
	 * filled. It won't however, necessarily happen from
	 * process context. So the test for root memcg given
	 * the current task's memcg won't help us in this case.
	 *
	 * Respecting the original socket's memcg is a better
	 * decision in this case.
	 */
	if (sk->sk_memcg) {
		BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
		css_get(&sk->sk_memcg->css);
		return;
	}

	rcu_read_lock();
	memcg = mem_cgroup_from_task(current);
5701 5702
	if (memcg == root_mem_cgroup)
		goto out;
5703
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5704 5705
		goto out;
	if (css_tryget_online(&memcg->css))
5706
		sk->sk_memcg = memcg;
5707
out:
5708 5709 5710
	rcu_read_unlock();
}

5711
void mem_cgroup_sk_free(struct sock *sk)
5712
{
5713 5714
	if (sk->sk_memcg)
		css_put(&sk->sk_memcg->css);
5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726
}

/**
 * mem_cgroup_charge_skmem - charge socket memory
 * @memcg: memcg to charge
 * @nr_pages: number of pages to charge
 *
 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
 * @memcg's configured limit, %false if the charge had to be forced.
 */
bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
5727
	gfp_t gfp_mask = GFP_KERNEL;
5728

5729
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5730
		struct page_counter *fail;
5731

5732 5733
		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
			memcg->tcpmem_pressure = 0;
5734 5735
			return true;
		}
5736 5737
		page_counter_charge(&memcg->tcpmem, nr_pages);
		memcg->tcpmem_pressure = 1;
5738
		return false;
5739
	}
5740

5741 5742 5743 5744
	/* Don't block in the packet receive path */
	if (in_softirq())
		gfp_mask = GFP_NOWAIT;

5745 5746
	this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);

5747 5748 5749 5750
	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
		return true;

	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5751 5752 5753 5754 5755 5756 5757 5758 5759 5760
	return false;
}

/**
 * mem_cgroup_uncharge_skmem - uncharge socket memory
 * @memcg - memcg to uncharge
 * @nr_pages - number of pages to uncharge
 */
void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
5761
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5762
		page_counter_uncharge(&memcg->tcpmem, nr_pages);
5763 5764
		return;
	}
5765

5766 5767
	this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);

5768 5769
	page_counter_uncharge(&memcg->memory, nr_pages);
	css_put_many(&memcg->css, nr_pages);
5770 5771
}

5772 5773 5774 5775 5776 5777 5778 5779 5780
static int __init cgroup_memory(char *s)
{
	char *token;

	while ((token = strsep(&s, ",")) != NULL) {
		if (!*token)
			continue;
		if (!strcmp(token, "nosocket"))
			cgroup_memory_nosocket = true;
5781 5782
		if (!strcmp(token, "nokmem"))
			cgroup_memory_nokmem = true;
5783 5784 5785 5786
	}
	return 0;
}
__setup("cgroup.memory=", cgroup_memory);
5787

5788
/*
5789 5790
 * subsys_initcall() for memory controller.
 *
5791 5792 5793 5794
 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
 * basically everything that doesn't depend on a specific mem_cgroup structure
 * should be initialized from here.
5795 5796 5797
 */
static int __init mem_cgroup_init(void)
{
5798 5799
	int cpu, node;

5800 5801 5802
#ifndef CONFIG_SLOB
	/*
	 * Kmem cache creation is mostly done with the slab_mutex held,
5803 5804 5805
	 * so use a workqueue with limited concurrency to avoid stalling
	 * all worker threads in case lots of cgroups are created and
	 * destroyed simultaneously.
5806
	 */
5807 5808
	memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
	BUG_ON(!memcg_kmem_cache_wq);
5809 5810
#endif

5811 5812
	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
				  memcg_hotplug_cpu_dead);
5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823

	for_each_possible_cpu(cpu)
		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
			  drain_local_stock);

	for_each_node(node) {
		struct mem_cgroup_tree_per_node *rtpn;

		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
				    node_online(node) ? node : NUMA_NO_NODE);

5824 5825
		rtpn->rb_root = RB_ROOT;
		spin_lock_init(&rtpn->lock);
5826 5827 5828
		soft_limit_tree.rb_tree_per_node[node] = rtpn;
	}

5829 5830 5831
	return 0;
}
subsys_initcall(mem_cgroup_init);
5832 5833

#ifdef CONFIG_MEMCG_SWAP
5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851
static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
{
	while (!atomic_inc_not_zero(&memcg->id.ref)) {
		/*
		 * The root cgroup cannot be destroyed, so it's refcount must
		 * always be >= 1.
		 */
		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
			VM_BUG_ON(1);
			break;
		}
		memcg = parent_mem_cgroup(memcg);
		if (!memcg)
			memcg = root_mem_cgroup;
	}
	return memcg;
}

5852 5853 5854 5855 5856 5857 5858 5859 5860
/**
 * mem_cgroup_swapout - transfer a memsw charge to swap
 * @page: page whose memsw charge to transfer
 * @entry: swap entry to move the charge to
 *
 * Transfer the memsw charge of @page to @entry.
 */
void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
{
5861
	struct mem_cgroup *memcg, *swap_memcg;
5862 5863 5864 5865 5866
	unsigned short oldid;

	VM_BUG_ON_PAGE(PageLRU(page), page);
	VM_BUG_ON_PAGE(page_count(page), page);

5867
	if (!do_memsw_account())
5868 5869 5870 5871 5872 5873 5874 5875
		return;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return;

5876 5877 5878 5879 5880 5881 5882
	/*
	 * In case the memcg owning these pages has been offlined and doesn't
	 * have an ID allocated to it anymore, charge the closest online
	 * ancestor for the swap instead and transfer the memory+swap charge.
	 */
	swap_memcg = mem_cgroup_id_get_online(memcg);
	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg));
5883
	VM_BUG_ON_PAGE(oldid, page);
5884
	mem_cgroup_swap_statistics(swap_memcg, true);
5885 5886 5887 5888 5889 5890

	page->mem_cgroup = NULL;

	if (!mem_cgroup_is_root(memcg))
		page_counter_uncharge(&memcg->memory, 1);

5891 5892 5893 5894 5895 5896
	if (memcg != swap_memcg) {
		if (!mem_cgroup_is_root(swap_memcg))
			page_counter_charge(&swap_memcg->memsw, 1);
		page_counter_uncharge(&memcg->memsw, 1);
	}

5897 5898 5899 5900 5901 5902 5903
	/*
	 * Interrupts should be disabled here because the caller holds the
	 * mapping->tree_lock lock which is taken with interrupts-off. It is
	 * important here to have the interrupts disabled because it is the
	 * only synchronisation we have for udpating the per-CPU variables.
	 */
	VM_BUG_ON(!irqs_disabled());
5904
	mem_cgroup_charge_statistics(memcg, page, false, -1);
5905
	memcg_check_events(memcg, page);
5906 5907 5908

	if (!mem_cgroup_is_root(memcg))
		css_put(&memcg->css);
5909 5910
}

5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934
/*
 * mem_cgroup_try_charge_swap - try charging a swap entry
 * @page: page being added to swap
 * @entry: swap entry to charge
 *
 * Try to charge @entry to the memcg that @page belongs to.
 *
 * Returns 0 on success, -ENOMEM on failure.
 */
int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	struct page_counter *counter;
	unsigned short oldid;

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
		return 0;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return 0;

5935 5936
	memcg = mem_cgroup_id_get_online(memcg);

5937
	if (!mem_cgroup_is_root(memcg) &&
5938 5939
	    !page_counter_try_charge(&memcg->swap, 1, &counter)) {
		mem_cgroup_id_put(memcg);
5940
		return -ENOMEM;
5941
	}
5942 5943 5944 5945 5946 5947 5948 5949

	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
	VM_BUG_ON_PAGE(oldid, page);
	mem_cgroup_swap_statistics(memcg, true);

	return 0;
}

5950 5951 5952 5953
/**
 * mem_cgroup_uncharge_swap - uncharge a swap entry
 * @entry: swap entry to uncharge
 *
5954
 * Drop the swap charge associated with @entry.
5955 5956 5957 5958 5959 5960
 */
void mem_cgroup_uncharge_swap(swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	unsigned short id;

5961
	if (!do_swap_account)
5962 5963 5964 5965
		return;

	id = swap_cgroup_record(entry, 0);
	rcu_read_lock();
5966
	memcg = mem_cgroup_from_id(id);
5967
	if (memcg) {
5968 5969 5970 5971 5972 5973
		if (!mem_cgroup_is_root(memcg)) {
			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
				page_counter_uncharge(&memcg->swap, 1);
			else
				page_counter_uncharge(&memcg->memsw, 1);
		}
5974
		mem_cgroup_swap_statistics(memcg, false);
5975
		mem_cgroup_id_put(memcg);
5976 5977 5978 5979
	}
	rcu_read_unlock();
}

5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992
long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
{
	long nr_swap_pages = get_nr_swap_pages();

	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return nr_swap_pages;
	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
		nr_swap_pages = min_t(long, nr_swap_pages,
				      READ_ONCE(memcg->swap.limit) -
				      page_counter_read(&memcg->swap));
	return nr_swap_pages;
}

5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014
bool mem_cgroup_swap_full(struct page *page)
{
	struct mem_cgroup *memcg;

	VM_BUG_ON_PAGE(!PageLocked(page), page);

	if (vm_swap_full())
		return true;
	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return false;

	memcg = page->mem_cgroup;
	if (!memcg)
		return false;

	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
		if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
			return true;

	return false;
}

6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031
/* for remember boot option*/
#ifdef CONFIG_MEMCG_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata;
#endif

static int __init enable_swap_account(char *s)
{
	if (!strcmp(s, "1"))
		really_do_swap_account = 1;
	else if (!strcmp(s, "0"))
		really_do_swap_account = 0;
	return 1;
}
__setup("swapaccount=", enable_swap_account);

6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088
static u64 swap_current_read(struct cgroup_subsys_state *css,
			     struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
}

static int swap_max_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
	unsigned long max = READ_ONCE(memcg->swap.limit);

	if (max == PAGE_COUNTER_MAX)
		seq_puts(m, "max\n");
	else
		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);

	return 0;
}

static ssize_t swap_max_write(struct kernfs_open_file *of,
			      char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long max;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &max);
	if (err)
		return err;

	mutex_lock(&memcg_limit_mutex);
	err = page_counter_limit(&memcg->swap, max);
	mutex_unlock(&memcg_limit_mutex);
	if (err)
		return err;

	return nbytes;
}

static struct cftype swap_files[] = {
	{
		.name = "swap.current",
		.flags = CFTYPE_NOT_ON_ROOT,
		.read_u64 = swap_current_read,
	},
	{
		.name = "swap.max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = swap_max_show,
		.write = swap_max_write,
	},
	{ }	/* terminate */
};

6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{ },	/* terminate */
};

static int __init mem_cgroup_swap_init(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
6120 6121
		WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
					       swap_files));
6122 6123 6124 6125 6126 6127 6128 6129
		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
						  memsw_cgroup_files));
	}
	return 0;
}
subsys_initcall(mem_cgroup_swap_init);

#endif /* CONFIG_MEMCG_SWAP */