memcontrol.c 154.4 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
17 18 19 20 21 22
 * Native page reclaim
 * Charge lifetime sanitation
 * Lockless page tracking & accounting
 * Unified hierarchy configuration model
 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
 *
B
Balbir Singh 已提交
23 24 25 26 27 28 29 30 31 32 33
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

34
#include <linux/page_counter.h>
B
Balbir Singh 已提交
35 36
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
37
#include <linux/mm.h>
38
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
39
#include <linux/pagemap.h>
40
#include <linux/smp.h>
41
#include <linux/page-flags.h>
42
#include <linux/backing-dev.h>
43 44
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
45
#include <linux/limits.h>
46
#include <linux/export.h>
47
#include <linux/mutex.h>
48
#include <linux/rbtree.h>
49
#include <linux/slab.h>
50
#include <linux/swap.h>
51
#include <linux/swapops.h>
52
#include <linux/spinlock.h>
53
#include <linux/eventfd.h>
54
#include <linux/poll.h>
55
#include <linux/sort.h>
56
#include <linux/fs.h>
57
#include <linux/seq_file.h>
58
#include <linux/vmpressure.h>
59
#include <linux/mm_inline.h>
60
#include <linux/swap_cgroup.h>
61
#include <linux/cpu.h>
62
#include <linux/oom.h>
63
#include <linux/lockdep.h>
64
#include <linux/file.h>
65
#include <linux/tracehook.h>
K
KAMEZAWA Hiroyuki 已提交
66
#include "internal.h"
G
Glauber Costa 已提交
67
#include <net/sock.h>
M
Michal Hocko 已提交
68
#include <net/ip.h>
69
#include "slab.h"
B
Balbir Singh 已提交
70

71 72
#include <asm/uaccess.h>

73 74
#include <trace/events/vmscan.h>

75 76
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
77

78 79
struct mem_cgroup *root_mem_cgroup __read_mostly;

80
#define MEM_CGROUP_RECLAIM_RETRIES	5
B
Balbir Singh 已提交
81

82 83 84
/* Socket memory accounting disabled? */
static bool cgroup_memory_nosocket;

85 86 87
/* Kernel memory accounting disabled? */
static bool cgroup_memory_nokmem;

88
/* Whether the swap controller is active */
A
Andrew Morton 已提交
89
#ifdef CONFIG_MEMCG_SWAP
90 91
int do_swap_account __read_mostly;
#else
92
#define do_swap_account		0
93 94
#endif

95 96 97 98 99 100
/* Whether legacy memory+swap accounting is active */
static bool do_memsw_account(void)
{
	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
}

101 102 103
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
104
	"rss_huge",
105
	"mapped_file",
106
	"dirty",
107
	"writeback",
108 109 110 111 112 113 114 115 116 117
	"swap",
};

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

118 119 120 121 122 123 124 125
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

126 127 128
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
129

130 131 132 133 134
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

135
struct mem_cgroup_tree_per_node {
136 137 138 139 140 141 142 143 144 145
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

K
KAMEZAWA Hiroyuki 已提交
146 147 148 149 150
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
151

152 153 154
/*
 * cgroup_event represents events which userspace want to receive.
 */
155
struct mem_cgroup_event {
156
	/*
157
	 * memcg which the event belongs to.
158
	 */
159
	struct mem_cgroup *memcg;
160 161 162 163 164 165 166 167
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
168 169 170 171 172
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
173
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
174
			      struct eventfd_ctx *eventfd, const char *args);
175 176 177 178 179
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
180
	void (*unregister_event)(struct mem_cgroup *memcg,
181
				 struct eventfd_ctx *eventfd);
182 183 184 185 186 187 188 189 190 191
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
	wait_queue_t wait;
	struct work_struct remove;
};

192 193
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
194

195 196
/* Stuffs for move charges at task migration. */
/*
197
 * Types of charges to be moved.
198
 */
199 200 201
#define MOVE_ANON	0x1U
#define MOVE_FILE	0x2U
#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
202

203 204
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
205
	spinlock_t	  lock; /* for from, to */
206
	struct mm_struct  *mm;
207 208
	struct mem_cgroup *from;
	struct mem_cgroup *to;
209
	unsigned long flags;
210
	unsigned long precharge;
211
	unsigned long moved_charge;
212
	unsigned long moved_swap;
213 214 215
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
216
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
217 218
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
219

220 221 222 223
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
224
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
225
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
226

227 228
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
229
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
230
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
231
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
232 233 234
	NR_CHARGE_TYPE,
};

235
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
236 237 238 239
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
240
	_KMEM,
V
Vladimir Davydov 已提交
241
	_TCP,
G
Glauber Costa 已提交
242 243
};

244 245
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
246
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
247 248
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
249

250 251 252 253 254 255 256 257 258 259 260 261 262
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

263 264 265 266 267
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

268
#ifndef CONFIG_SLOB
269
/*
270
 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
L
Li Zefan 已提交
271 272 273 274 275
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
276
 *
277 278
 * The current size of the caches array is stored in memcg_nr_cache_ids. It
 * will double each time we have to increase it.
279
 */
280 281
static DEFINE_IDA(memcg_cache_ida);
int memcg_nr_cache_ids;
282

283 284 285 286 287 288 289 290 291 292 293 294 295
/* Protects memcg_nr_cache_ids */
static DECLARE_RWSEM(memcg_cache_ids_sem);

void memcg_get_cache_ids(void)
{
	down_read(&memcg_cache_ids_sem);
}

void memcg_put_cache_ids(void)
{
	up_read(&memcg_cache_ids_sem);
}

296 297 298 299 300 301
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
302
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
303 304
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
305
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
306 307 308
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
309
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
310

311 312 313 314 315 316
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
317
DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
318
EXPORT_SYMBOL(memcg_kmem_enabled_key);
319

320
#endif /* !CONFIG_SLOB */
321

322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
/**
 * mem_cgroup_css_from_page - css of the memcg associated with a page
 * @page: page of interest
 *
 * If memcg is bound to the default hierarchy, css of the memcg associated
 * with @page is returned.  The returned css remains associated with @page
 * until it is released.
 *
 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
 * is returned.
 */
struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
{
	struct mem_cgroup *memcg;

	memcg = page->mem_cgroup;

339
	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
340 341 342 343 344
		memcg = root_mem_cgroup;

	return &memcg->css;
}

345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
/**
 * page_cgroup_ino - return inode number of the memcg a page is charged to
 * @page: the page
 *
 * Look up the closest online ancestor of the memory cgroup @page is charged to
 * and return its inode number or 0 if @page is not charged to any cgroup. It
 * is safe to call this function without holding a reference to @page.
 *
 * Note, this function is inherently racy, because there is nothing to prevent
 * the cgroup inode from getting torn down and potentially reallocated a moment
 * after page_cgroup_ino() returns, so it only should be used by callers that
 * do not care (such as procfs interfaces).
 */
ino_t page_cgroup_ino(struct page *page)
{
	struct mem_cgroup *memcg;
	unsigned long ino = 0;

	rcu_read_lock();
	memcg = READ_ONCE(page->mem_cgroup);
	while (memcg && !(memcg->css.flags & CSS_ONLINE))
		memcg = parent_mem_cgroup(memcg);
	if (memcg)
		ino = cgroup_ino(memcg->css.cgroup);
	rcu_read_unlock();
	return ino;
}

373 374
static struct mem_cgroup_per_node *
mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
375
{
376
	int nid = page_to_nid(page);
377

378
	return memcg->nodeinfo[nid];
379 380
}

381 382
static struct mem_cgroup_tree_per_node *
soft_limit_tree_node(int nid)
383
{
384
	return soft_limit_tree.rb_tree_per_node[nid];
385 386
}

387
static struct mem_cgroup_tree_per_node *
388 389 390 391
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);

392
	return soft_limit_tree.rb_tree_per_node[nid];
393 394
}

395 396
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
					 struct mem_cgroup_tree_per_node *mctz,
397
					 unsigned long new_usage_in_excess)
398 399 400
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
401
	struct mem_cgroup_per_node *mz_node;
402 403 404 405 406 407 408 409 410

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
411
		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

427 428
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
					 struct mem_cgroup_tree_per_node *mctz)
429 430 431 432 433 434 435
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

436 437
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
				       struct mem_cgroup_tree_per_node *mctz)
438
{
439 440 441
	unsigned long flags;

	spin_lock_irqsave(&mctz->lock, flags);
442
	__mem_cgroup_remove_exceeded(mz, mctz);
443
	spin_unlock_irqrestore(&mctz->lock, flags);
444 445
}

446 447 448
static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
{
	unsigned long nr_pages = page_counter_read(&memcg->memory);
449
	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
450 451 452 453 454 455 456
	unsigned long excess = 0;

	if (nr_pages > soft_limit)
		excess = nr_pages - soft_limit;

	return excess;
}
457 458 459

static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
460
	unsigned long excess;
461 462
	struct mem_cgroup_per_node *mz;
	struct mem_cgroup_tree_per_node *mctz;
463

464
	mctz = soft_limit_tree_from_page(page);
465 466 467 468 469
	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
470
		mz = mem_cgroup_page_nodeinfo(memcg, page);
471
		excess = soft_limit_excess(memcg);
472 473 474 475 476
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
477 478 479
			unsigned long flags;

			spin_lock_irqsave(&mctz->lock, flags);
480 481
			/* if on-tree, remove it */
			if (mz->on_tree)
482
				__mem_cgroup_remove_exceeded(mz, mctz);
483 484 485 486
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
487
			__mem_cgroup_insert_exceeded(mz, mctz, excess);
488
			spin_unlock_irqrestore(&mctz->lock, flags);
489 490 491 492 493 494
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
495 496 497
	struct mem_cgroup_tree_per_node *mctz;
	struct mem_cgroup_per_node *mz;
	int nid;
498

499
	for_each_node(nid) {
500 501 502
		mz = mem_cgroup_nodeinfo(memcg, nid);
		mctz = soft_limit_tree_node(nid);
		mem_cgroup_remove_exceeded(mz, mctz);
503 504 505
	}
}

506 507
static struct mem_cgroup_per_node *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
508 509
{
	struct rb_node *rightmost = NULL;
510
	struct mem_cgroup_per_node *mz;
511 512 513 514 515 516 517

retry:
	mz = NULL;
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

518
	mz = rb_entry(rightmost, struct mem_cgroup_per_node, tree_node);
519 520 521 522 523
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
524
	__mem_cgroup_remove_exceeded(mz, mctz);
525
	if (!soft_limit_excess(mz->memcg) ||
526
	    !css_tryget_online(&mz->memcg->css))
527 528 529 530 531
		goto retry;
done:
	return mz;
}

532 533
static struct mem_cgroup_per_node *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
534
{
535
	struct mem_cgroup_per_node *mz;
536

537
	spin_lock_irq(&mctz->lock);
538
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
539
	spin_unlock_irq(&mctz->lock);
540 541 542
	return mz;
}

543
/*
544 545
 * Return page count for single (non recursive) @memcg.
 *
546 547 548 549 550
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
551
 * a periodic synchronization of counter in memcg's counter.
552 553 554 555 556 557 558 559 560
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
561
 * common workload, threshold and synchronization as vmstat[] should be
562 563
 * implemented.
 */
564 565
static unsigned long
mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
566
{
567
	long val = 0;
568 569
	int cpu;

570
	/* Per-cpu values can be negative, use a signed accumulator */
571
	for_each_possible_cpu(cpu)
572
		val += per_cpu(memcg->stat->count[idx], cpu);
573 574 575 576 577 578
	/*
	 * Summing races with updates, so val may be negative.  Avoid exposing
	 * transient negative values.
	 */
	if (val < 0)
		val = 0;
579 580 581
	return val;
}

582
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
583 584 585 586 587
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

588
	for_each_possible_cpu(cpu)
589
		val += per_cpu(memcg->stat->events[idx], cpu);
590 591 592
	return val;
}

593
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
594
					 struct page *page,
595
					 bool compound, int nr_pages)
596
{
597 598 599 600
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
601
	if (PageAnon(page))
602
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
603
				nr_pages);
604
	else
605
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
606
				nr_pages);
607

608 609
	if (compound) {
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
610 611
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
				nr_pages);
612
	}
613

614 615
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
616
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
617
	else {
618
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
619 620
		nr_pages = -nr_pages; /* for event */
	}
621

622
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
623 624
}

625 626
unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
					   int nid, unsigned int lru_mask)
627
{
628
	unsigned long nr = 0;
629 630
	struct mem_cgroup_per_node *mz;
	enum lru_list lru;
631

632
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
633

634 635 636 637 638
	for_each_lru(lru) {
		if (!(BIT(lru) & lru_mask))
			continue;
		mz = mem_cgroup_nodeinfo(memcg, nid);
		nr += mz->lru_size[lru];
639 640
	}
	return nr;
641
}
642

643
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
644
			unsigned int lru_mask)
645
{
646
	unsigned long nr = 0;
647
	int nid;
648

649
	for_each_node_state(nid, N_MEMORY)
650 651
		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
	return nr;
652 653
}

654 655
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
656 657 658
{
	unsigned long val, next;

659
	val = __this_cpu_read(memcg->stat->nr_page_events);
660
	next = __this_cpu_read(memcg->stat->targets[target]);
661
	/* from time_after() in jiffies.h */
662 663 664 665 666
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
667 668 669
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
670 671 672 673 674 675 676 677
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
678
	}
679
	return false;
680 681 682 683 684 685
}

/*
 * Check events in order.
 *
 */
686
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
687 688
{
	/* threshold event is triggered in finer grain than soft limit */
689 690
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
691
		bool do_softlimit;
692
		bool do_numainfo __maybe_unused;
693

694 695
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
696 697 698 699
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
700
		mem_cgroup_threshold(memcg);
701 702
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
703
#if MAX_NUMNODES > 1
704
		if (unlikely(do_numainfo))
705
			atomic_inc(&memcg->numainfo_events);
706
#endif
707
	}
708 709
}

710
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
711
{
712 713 714 715 716 717 718 719
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

720
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
721
}
M
Michal Hocko 已提交
722
EXPORT_SYMBOL(mem_cgroup_from_task);
723

724
static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
725
{
726
	struct mem_cgroup *memcg = NULL;
727

728 729
	rcu_read_lock();
	do {
730 731 732 733 734 735
		/*
		 * Page cache insertions can happen withou an
		 * actual mm context, e.g. during disk probing
		 * on boot, loopback IO, acct() writes etc.
		 */
		if (unlikely(!mm))
736
			memcg = root_mem_cgroup;
737 738 739 740 741
		else {
			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
			if (unlikely(!memcg))
				memcg = root_mem_cgroup;
		}
742
	} while (!css_tryget_online(&memcg->css));
743
	rcu_read_unlock();
744
	return memcg;
745 746
}

747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
764
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
765
				   struct mem_cgroup *prev,
766
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
767
{
M
Michal Hocko 已提交
768
	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
769
	struct cgroup_subsys_state *css = NULL;
770
	struct mem_cgroup *memcg = NULL;
771
	struct mem_cgroup *pos = NULL;
772

773 774
	if (mem_cgroup_disabled())
		return NULL;
775

776 777
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
778

779
	if (prev && !reclaim)
780
		pos = prev;
K
KAMEZAWA Hiroyuki 已提交
781

782 783
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
784
			goto out;
785
		return root;
786
	}
K
KAMEZAWA Hiroyuki 已提交
787

788
	rcu_read_lock();
M
Michal Hocko 已提交
789

790
	if (reclaim) {
791
		struct mem_cgroup_per_node *mz;
792

793
		mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
794 795 796 797 798
		iter = &mz->iter[reclaim->priority];

		if (prev && reclaim->generation != iter->generation)
			goto out_unlock;

799
		while (1) {
800
			pos = READ_ONCE(iter->position);
801 802
			if (!pos || css_tryget(&pos->css))
				break;
803
			/*
804 805 806 807 808 809
			 * css reference reached zero, so iter->position will
			 * be cleared by ->css_released. However, we should not
			 * rely on this happening soon, because ->css_released
			 * is called from a work queue, and by busy-waiting we
			 * might block it. So we clear iter->position right
			 * away.
810
			 */
811 812
			(void)cmpxchg(&iter->position, pos, NULL);
		}
813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
	}

	if (pos)
		css = &pos->css;

	for (;;) {
		css = css_next_descendant_pre(css, &root->css);
		if (!css) {
			/*
			 * Reclaimers share the hierarchy walk, and a
			 * new one might jump in right at the end of
			 * the hierarchy - make sure they see at least
			 * one group and restart from the beginning.
			 */
			if (!prev)
				continue;
			break;
830
		}
K
KAMEZAWA Hiroyuki 已提交
831

832 833 834 835 836 837
		/*
		 * Verify the css and acquire a reference.  The root
		 * is provided by the caller, so we know it's alive
		 * and kicking, and don't take an extra reference.
		 */
		memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
838

839 840
		if (css == &root->css)
			break;
K
KAMEZAWA Hiroyuki 已提交
841

842 843
		if (css_tryget(css))
			break;
844

845
		memcg = NULL;
846
	}
847 848 849

	if (reclaim) {
		/*
850 851 852
		 * The position could have already been updated by a competing
		 * thread, so check that the value hasn't changed since we read
		 * it to avoid reclaiming from the same cgroup twice.
853
		 */
854 855
		(void)cmpxchg(&iter->position, pos, memcg);

856 857 858 859 860 861 862
		if (pos)
			css_put(&pos->css);

		if (!memcg)
			iter->generation++;
		else if (!prev)
			reclaim->generation = iter->generation;
863
	}
864

865 866
out_unlock:
	rcu_read_unlock();
867
out:
868 869 870
	if (prev && prev != root)
		css_put(&prev->css);

871
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
872
}
K
KAMEZAWA Hiroyuki 已提交
873

874 875 876 877 878 879 880
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
881 882 883 884 885 886
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
887

888 889 890 891
static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
{
	struct mem_cgroup *memcg = dead_memcg;
	struct mem_cgroup_reclaim_iter *iter;
892 893
	struct mem_cgroup_per_node *mz;
	int nid;
894 895 896 897
	int i;

	while ((memcg = parent_mem_cgroup(memcg))) {
		for_each_node(nid) {
898 899 900 901 902
			mz = mem_cgroup_nodeinfo(memcg, nid);
			for (i = 0; i <= DEF_PRIORITY; i++) {
				iter = &mz->iter[i];
				cmpxchg(&iter->position,
					dead_memcg, NULL);
903 904 905 906 907
			}
		}
	}
}

908 909 910 911 912 913
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
914
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
915
	     iter != NULL;				\
916
	     iter = mem_cgroup_iter(root, iter, NULL))
917

918
#define for_each_mem_cgroup(iter)			\
919
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
920
	     iter != NULL;				\
921
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
922

923
/**
924
 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925
 * @page: the page
926
 * @zone: zone of the page
927 928 929 930
 *
 * This function is only safe when following the LRU page isolation
 * and putback protocol: the LRU lock must be held, and the page must
 * either be PageLRU() or the caller must have isolated/allocated it.
931
 */
M
Mel Gorman 已提交
932
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
K
KAMEZAWA Hiroyuki 已提交
933
{
934
	struct mem_cgroup_per_node *mz;
935
	struct mem_cgroup *memcg;
936
	struct lruvec *lruvec;
937

938
	if (mem_cgroup_disabled()) {
M
Mel Gorman 已提交
939
		lruvec = &pgdat->lruvec;
940 941
		goto out;
	}
942

943
	memcg = page->mem_cgroup;
944
	/*
945
	 * Swapcache readahead pages are added to the LRU - and
946
	 * possibly migrated - before they are charged.
947
	 */
948 949
	if (!memcg)
		memcg = root_mem_cgroup;
950

951
	mz = mem_cgroup_page_nodeinfo(memcg, page);
952 953 954 955 956 957 958
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
M
Mel Gorman 已提交
959 960
	if (unlikely(lruvec->pgdat != pgdat))
		lruvec->pgdat = pgdat;
961
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
962
}
963

964
/**
965 966 967 968
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
969
 *
970 971 972
 * This function must be called under lru_lock, just before a page is added
 * to or just after a page is removed from an lru list (that ordering being
 * so as to allow it to check that lru_size 0 is consistent with list_empty).
973
 */
974
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
975
				int nr_pages)
976
{
977
	struct mem_cgroup_per_node *mz;
978
	unsigned long *lru_size;
979 980
	long size;
	bool empty;
981 982 983 984

	if (mem_cgroup_disabled())
		return;

985
	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
986
	lru_size = mz->lru_size + lru;
987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001
	empty = list_empty(lruvec->lists + lru);

	if (nr_pages < 0)
		*lru_size += nr_pages;

	size = *lru_size;
	if (WARN_ONCE(size < 0 || empty != !size,
		"%s(%p, %d, %d): lru_size %ld but %sempty\n",
		__func__, lruvec, lru, nr_pages, size, empty ? "" : "not ")) {
		VM_BUG_ON(1);
		*lru_size = 0;
	}

	if (nr_pages > 0)
		*lru_size += nr_pages;
K
KAMEZAWA Hiroyuki 已提交
1002
}
1003

1004
bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1005
{
1006
	struct mem_cgroup *task_memcg;
1007
	struct task_struct *p;
1008
	bool ret;
1009

1010
	p = find_lock_task_mm(task);
1011
	if (p) {
1012
		task_memcg = get_mem_cgroup_from_mm(p->mm);
1013 1014 1015 1016 1017 1018 1019
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1020
		rcu_read_lock();
1021 1022
		task_memcg = mem_cgroup_from_task(task);
		css_get(&task_memcg->css);
1023
		rcu_read_unlock();
1024
	}
1025 1026
	ret = mem_cgroup_is_descendant(task_memcg, memcg);
	css_put(&task_memcg->css);
1027 1028 1029
	return ret;
}

1030
/**
1031
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1032
 * @memcg: the memory cgroup
1033
 *
1034
 * Returns the maximum amount of memory @mem can be charged with, in
1035
 * pages.
1036
 */
1037
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1038
{
1039 1040 1041
	unsigned long margin = 0;
	unsigned long count;
	unsigned long limit;
1042

1043
	count = page_counter_read(&memcg->memory);
1044
	limit = READ_ONCE(memcg->memory.limit);
1045 1046 1047
	if (count < limit)
		margin = limit - count;

1048
	if (do_memsw_account()) {
1049
		count = page_counter_read(&memcg->memsw);
1050
		limit = READ_ONCE(memcg->memsw.limit);
1051 1052
		if (count <= limit)
			margin = min(margin, limit - count);
1053 1054
		else
			margin = 0;
1055 1056 1057
	}

	return margin;
1058 1059
}

1060
/*
Q
Qiang Huang 已提交
1061
 * A routine for checking "mem" is under move_account() or not.
1062
 *
Q
Qiang Huang 已提交
1063 1064 1065
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 * moving cgroups. This is for waiting at high-memory pressure
 * caused by "move".
1066
 */
1067
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1068
{
1069 1070
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1071
	bool ret = false;
1072 1073 1074 1075 1076 1077 1078 1079 1080
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1081

1082 1083
	ret = mem_cgroup_is_descendant(from, memcg) ||
		mem_cgroup_is_descendant(to, memcg);
1084 1085
unlock:
	spin_unlock(&mc.lock);
1086 1087 1088
	return ret;
}

1089
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1090 1091
{
	if (mc.moving_task && current != mc.moving_task) {
1092
		if (mem_cgroup_under_move(memcg)) {
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1105
#define K(x) ((x) << (PAGE_SHIFT-10))
1106
/**
1107
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1108 1109 1110 1111 1112 1113 1114 1115
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
1116 1117
	struct mem_cgroup *iter;
	unsigned int i;
1118 1119 1120

	rcu_read_lock();

1121 1122 1123 1124 1125 1126 1127 1128
	if (p) {
		pr_info("Task in ");
		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
		pr_cont(" killed as a result of limit of ");
	} else {
		pr_info("Memory limit reached of cgroup ");
	}

T
Tejun Heo 已提交
1129
	pr_cont_cgroup_path(memcg->css.cgroup);
1130
	pr_cont("\n");
1131 1132 1133

	rcu_read_unlock();

1134 1135 1136 1137 1138 1139 1140 1141 1142
	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memory)),
		K((u64)memcg->memory.limit), memcg->memory.failcnt);
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memsw)),
		K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->kmem)),
		K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1143 1144

	for_each_mem_cgroup_tree(iter, memcg) {
T
Tejun Heo 已提交
1145 1146
		pr_info("Memory cgroup stats for ");
		pr_cont_cgroup_path(iter->css.cgroup);
1147 1148 1149
		pr_cont(":");

		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1150
			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1151
				continue;
1152
			pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1153 1154 1155 1156 1157 1158 1159 1160 1161
				K(mem_cgroup_read_stat(iter, i)));
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1162 1163
}

1164 1165 1166 1167
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1168
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1169 1170
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1171 1172
	struct mem_cgroup *iter;

1173
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1174
		num++;
1175 1176 1177
	return num;
}

D
David Rientjes 已提交
1178 1179 1180
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1181
static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1182
{
1183
	unsigned long limit;
1184

1185
	limit = memcg->memory.limit;
1186
	if (mem_cgroup_swappiness(memcg)) {
1187
		unsigned long memsw_limit;
1188
		unsigned long swap_limit;
1189

1190
		memsw_limit = memcg->memsw.limit;
1191 1192 1193
		swap_limit = memcg->swap.limit;
		swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
		limit = min(limit + swap_limit, memsw_limit);
1194 1195
	}
	return limit;
D
David Rientjes 已提交
1196 1197
}

1198
static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1199
				     int order)
1200
{
1201 1202 1203
	struct oom_control oc = {
		.zonelist = NULL,
		.nodemask = NULL,
1204
		.memcg = memcg,
1205 1206 1207
		.gfp_mask = gfp_mask,
		.order = order,
	};
1208 1209 1210 1211 1212 1213
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1214 1215
	mutex_lock(&oom_lock);

1216
	/*
1217 1218 1219
	 * If current has a pending SIGKILL or is exiting, then automatically
	 * select it.  The goal is to allow it to allocate so that it may
	 * quickly exit and free its memory.
1220
	 */
1221
	if (task_will_free_mem(current)) {
1222
		mark_oom_victim(current);
1223
		wake_oom_reaper(current);
1224
		goto unlock;
1225 1226
	}

1227
	check_panic_on_oom(&oc, CONSTRAINT_MEMCG);
1228
	totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1229
	for_each_mem_cgroup_tree(iter, memcg) {
1230
		struct css_task_iter it;
1231 1232
		struct task_struct *task;

1233 1234
		css_task_iter_start(&iter->css, &it);
		while ((task = css_task_iter_next(&it))) {
1235
			switch (oom_scan_process_thread(&oc, task)) {
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
1246
				css_task_iter_end(&it);
1247 1248 1249
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
1250 1251
				/* Set a dummy value to return "true". */
				chosen = (void *) 1;
1252
				goto unlock;
1253 1254 1255 1256
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
			if (!points || points < chosen_points)
				continue;
			/* Prefer thread group leaders for display purposes */
			if (points == chosen_points &&
			    thread_group_leader(chosen))
				continue;

			if (chosen)
				put_task_struct(chosen);
			chosen = task;
			chosen_points = points;
			get_task_struct(chosen);
1269
		}
1270
		css_task_iter_end(&it);
1271 1272
	}

1273 1274
	if (chosen) {
		points = chosen_points * 1000 / totalpages;
1275
		oom_kill_process(&oc, chosen, points, totalpages,
1276
				 "Memory cgroup out of memory");
1277 1278 1279
	}
unlock:
	mutex_unlock(&oom_lock);
1280
	return chosen;
1281 1282
}

1283 1284
#if MAX_NUMNODES > 1

1285 1286
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1287
 * @memcg: the target memcg
1288 1289 1290 1291 1292 1293 1294
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1295
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1296 1297
		int nid, bool noswap)
{
1298
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1299 1300 1301
		return true;
	if (noswap || !total_swap_pages)
		return false;
1302
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1303 1304 1305 1306
		return true;
	return false;

}
1307 1308 1309 1310 1311 1312 1313

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1314
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1315 1316
{
	int nid;
1317 1318 1319 1320
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1321
	if (!atomic_read(&memcg->numainfo_events))
1322
		return;
1323
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1324 1325 1326
		return;

	/* make a nodemask where this memcg uses memory from */
1327
	memcg->scan_nodes = node_states[N_MEMORY];
1328

1329
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1330

1331 1332
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1333
	}
1334

1335 1336
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1351
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1352 1353 1354
{
	int node;

1355 1356
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1357

1358
	node = next_node_in(node, memcg->scan_nodes);
1359
	/*
1360 1361 1362
	 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
	 * last time it really checked all the LRUs due to rate limiting.
	 * Fallback to the current node in that case for simplicity.
1363 1364 1365 1366
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1367
	memcg->last_scanned_node = node;
1368 1369 1370
	return node;
}
#else
1371
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1372 1373 1374 1375 1376
{
	return 0;
}
#endif

1377
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1378
				   pg_data_t *pgdat,
1379 1380 1381 1382 1383 1384 1385 1386 1387
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
1388
		.pgdat = pgdat,
1389 1390 1391
		.priority = 0,
	};

1392
	excess = soft_limit_excess(root_memcg);
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
1418
		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1419
					pgdat, &nr_scanned);
1420
		*total_scanned += nr_scanned;
1421
		if (!soft_limit_excess(root_memcg))
1422
			break;
1423
	}
1424 1425
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
1426 1427
}

1428 1429 1430 1431 1432 1433
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

1434 1435
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
1436 1437 1438 1439
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
1440
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1441
{
1442
	struct mem_cgroup *iter, *failed = NULL;
1443

1444 1445
	spin_lock(&memcg_oom_lock);

1446
	for_each_mem_cgroup_tree(iter, memcg) {
1447
		if (iter->oom_lock) {
1448 1449 1450 1451 1452
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1453 1454
			mem_cgroup_iter_break(memcg, iter);
			break;
1455 1456
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1457
	}
K
KAMEZAWA Hiroyuki 已提交
1458

1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
1470
		}
1471 1472
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1473 1474 1475 1476

	spin_unlock(&memcg_oom_lock);

	return !failed;
1477
}
1478

1479
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1480
{
K
KAMEZAWA Hiroyuki 已提交
1481 1482
	struct mem_cgroup *iter;

1483
	spin_lock(&memcg_oom_lock);
1484
	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1485
	for_each_mem_cgroup_tree(iter, memcg)
1486
		iter->oom_lock = false;
1487
	spin_unlock(&memcg_oom_lock);
1488 1489
}

1490
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1491 1492 1493
{
	struct mem_cgroup *iter;

1494
	spin_lock(&memcg_oom_lock);
1495
	for_each_mem_cgroup_tree(iter, memcg)
1496 1497
		iter->under_oom++;
	spin_unlock(&memcg_oom_lock);
1498 1499
}

1500
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1501 1502 1503
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1504 1505
	/*
	 * When a new child is created while the hierarchy is under oom,
1506
	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
K
KAMEZAWA Hiroyuki 已提交
1507
	 */
1508
	spin_lock(&memcg_oom_lock);
1509
	for_each_mem_cgroup_tree(iter, memcg)
1510 1511 1512
		if (iter->under_oom > 0)
			iter->under_oom--;
	spin_unlock(&memcg_oom_lock);
1513 1514
}

K
KAMEZAWA Hiroyuki 已提交
1515 1516
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1517
struct oom_wait_info {
1518
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
1519 1520 1521 1522 1523 1524
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
1525 1526
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1527 1528 1529
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1530
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1531

1532 1533
	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
K
KAMEZAWA Hiroyuki 已提交
1534 1535 1536 1537
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1538
static void memcg_oom_recover(struct mem_cgroup *memcg)
1539
{
1540 1541 1542 1543 1544 1545 1546 1547 1548
	/*
	 * For the following lockless ->under_oom test, the only required
	 * guarantee is that it must see the state asserted by an OOM when
	 * this function is called as a result of userland actions
	 * triggered by the notification of the OOM.  This is trivially
	 * achieved by invoking mem_cgroup_mark_under_oom() before
	 * triggering notification.
	 */
	if (memcg && memcg->under_oom)
1549
		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1550 1551
}

1552
static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1553
{
1554
	if (!current->memcg_may_oom)
1555
		return;
K
KAMEZAWA Hiroyuki 已提交
1556
	/*
1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
	 * Also, the caller may handle a failed allocation gracefully
	 * (like optional page cache readahead) and so an OOM killer
	 * invocation might not even be necessary.
	 *
	 * That's why we don't do anything here except remember the
	 * OOM context and then deal with it at the end of the page
	 * fault when the stack is unwound, the locks are released,
	 * and when we know whether the fault was overall successful.
K
KAMEZAWA Hiroyuki 已提交
1569
	 */
1570
	css_get(&memcg->css);
T
Tejun Heo 已提交
1571 1572 1573
	current->memcg_in_oom = memcg;
	current->memcg_oom_gfp_mask = mask;
	current->memcg_oom_order = order;
1574 1575 1576 1577
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1578
 * @handle: actually kill/wait or just clean up the OOM state
1579
 *
1580 1581
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
1582
 *
1583
 * Memcg supports userspace OOM handling where failed allocations must
1584 1585 1586 1587
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
1588
 * the end of the page fault to complete the OOM handling.
1589 1590
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
1591
 * completed, %false otherwise.
1592
 */
1593
bool mem_cgroup_oom_synchronize(bool handle)
1594
{
T
Tejun Heo 已提交
1595
	struct mem_cgroup *memcg = current->memcg_in_oom;
1596
	struct oom_wait_info owait;
1597
	bool locked;
1598 1599 1600

	/* OOM is global, do not handle */
	if (!memcg)
1601
		return false;
1602

1603
	if (!handle || oom_killer_disabled)
1604
		goto cleanup;
1605 1606 1607 1608 1609 1610

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
K
KAMEZAWA Hiroyuki 已提交
1611

1612
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
T
Tejun Heo 已提交
1623 1624
		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
					 current->memcg_oom_order);
1625
	} else {
1626
		schedule();
1627 1628 1629 1630 1631
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
1632 1633 1634 1635 1636 1637 1638 1639
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
1640
cleanup:
T
Tejun Heo 已提交
1641
	current->memcg_in_oom = NULL;
1642
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
1643
	return true;
1644 1645
}

1646
/**
1647 1648
 * lock_page_memcg - lock a page->mem_cgroup binding
 * @page: the page
1649
 *
1650 1651
 * This function protects unlocked LRU pages from being moved to
 * another cgroup and stabilizes their page->mem_cgroup binding.
1652
 */
J
Johannes Weiner 已提交
1653
void lock_page_memcg(struct page *page)
1654 1655
{
	struct mem_cgroup *memcg;
1656
	unsigned long flags;
1657

1658 1659 1660 1661 1662
	/*
	 * The RCU lock is held throughout the transaction.  The fast
	 * path can get away without acquiring the memcg->move_lock
	 * because page moving starts with an RCU grace period.
	 */
1663 1664 1665
	rcu_read_lock();

	if (mem_cgroup_disabled())
J
Johannes Weiner 已提交
1666
		return;
1667
again:
1668
	memcg = page->mem_cgroup;
1669
	if (unlikely(!memcg))
J
Johannes Weiner 已提交
1670
		return;
1671

Q
Qiang Huang 已提交
1672
	if (atomic_read(&memcg->moving_account) <= 0)
J
Johannes Weiner 已提交
1673
		return;
1674

1675
	spin_lock_irqsave(&memcg->move_lock, flags);
1676
	if (memcg != page->mem_cgroup) {
1677
		spin_unlock_irqrestore(&memcg->move_lock, flags);
1678 1679
		goto again;
	}
1680 1681 1682 1683

	/*
	 * When charge migration first begins, we can have locked and
	 * unlocked page stat updates happening concurrently.  Track
1684
	 * the task who has the lock for unlock_page_memcg().
1685 1686 1687
	 */
	memcg->move_lock_task = current;
	memcg->move_lock_flags = flags;
1688

J
Johannes Weiner 已提交
1689
	return;
1690
}
1691
EXPORT_SYMBOL(lock_page_memcg);
1692

1693
/**
1694
 * unlock_page_memcg - unlock a page->mem_cgroup binding
J
Johannes Weiner 已提交
1695
 * @page: the page
1696
 */
J
Johannes Weiner 已提交
1697
void unlock_page_memcg(struct page *page)
1698
{
J
Johannes Weiner 已提交
1699 1700
	struct mem_cgroup *memcg = page->mem_cgroup;

1701 1702 1703 1704 1705 1706 1707 1708
	if (memcg && memcg->move_lock_task == current) {
		unsigned long flags = memcg->move_lock_flags;

		memcg->move_lock_task = NULL;
		memcg->move_lock_flags = 0;

		spin_unlock_irqrestore(&memcg->move_lock, flags);
	}
1709

1710
	rcu_read_unlock();
1711
}
1712
EXPORT_SYMBOL(unlock_page_memcg);
1713

1714 1715 1716 1717
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
1718
#define CHARGE_BATCH	32U
1719 1720
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
1721
	unsigned int nr_pages;
1722
	struct work_struct work;
1723
	unsigned long flags;
1724
#define FLUSHING_CACHED_CHARGE	0
1725 1726
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1727
static DEFINE_MUTEX(percpu_charge_mutex);
1728

1729 1730 1731 1732 1733 1734 1735 1736 1737 1738
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
1739
 */
1740
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1741 1742
{
	struct memcg_stock_pcp *stock;
1743
	unsigned long flags;
1744
	bool ret = false;
1745

1746
	if (nr_pages > CHARGE_BATCH)
1747
		return ret;
1748

1749 1750 1751
	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
1752
	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1753
		stock->nr_pages -= nr_pages;
1754 1755
		ret = true;
	}
1756 1757 1758

	local_irq_restore(flags);

1759 1760 1761 1762
	return ret;
}

/*
1763
 * Returns stocks cached in percpu and reset cached information.
1764 1765 1766 1767 1768
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

1769
	if (stock->nr_pages) {
1770
		page_counter_uncharge(&old->memory, stock->nr_pages);
1771
		if (do_memsw_account())
1772
			page_counter_uncharge(&old->memsw, stock->nr_pages);
1773
		css_put_many(&old->css, stock->nr_pages);
1774
		stock->nr_pages = 0;
1775 1776 1777 1778 1779 1780
	}
	stock->cached = NULL;
}

static void drain_local_stock(struct work_struct *dummy)
{
1781 1782 1783 1784 1785 1786
	struct memcg_stock_pcp *stock;
	unsigned long flags;

	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
1787
	drain_stock(stock);
1788
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1789 1790

	local_irq_restore(flags);
1791 1792 1793
}

/*
1794
 * Cache charges(val) to local per_cpu area.
1795
 * This will be consumed by consume_stock() function, later.
1796
 */
1797
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1798
{
1799 1800 1801 1802
	struct memcg_stock_pcp *stock;
	unsigned long flags;

	local_irq_save(flags);
1803

1804
	stock = this_cpu_ptr(&memcg_stock);
1805
	if (stock->cached != memcg) { /* reset if necessary */
1806
		drain_stock(stock);
1807
		stock->cached = memcg;
1808
	}
1809
	stock->nr_pages += nr_pages;
1810 1811

	local_irq_restore(flags);
1812 1813 1814
}

/*
1815
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1816
 * of the hierarchy under it.
1817
 */
1818
static void drain_all_stock(struct mem_cgroup *root_memcg)
1819
{
1820
	int cpu, curcpu;
1821

1822 1823 1824
	/* If someone's already draining, avoid adding running more workers. */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
1825 1826
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
1827
	curcpu = get_cpu();
1828 1829
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1830
		struct mem_cgroup *memcg;
1831

1832 1833
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
1834
			continue;
1835
		if (!mem_cgroup_is_descendant(memcg, root_memcg))
1836
			continue;
1837 1838 1839 1840 1841 1842
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
1843
	}
1844
	put_cpu();
A
Andrew Morton 已提交
1845
	put_online_cpus();
1846
	mutex_unlock(&percpu_charge_mutex);
1847 1848
}

1849
static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
1850 1851 1852 1853 1854 1855
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;

1856
	if (action == CPU_ONLINE)
1857 1858
		return NOTIFY_OK;

1859
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1860
		return NOTIFY_OK;
1861

1862 1863 1864 1865 1866
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886
static void reclaim_high(struct mem_cgroup *memcg,
			 unsigned int nr_pages,
			 gfp_t gfp_mask)
{
	do {
		if (page_counter_read(&memcg->memory) <= memcg->high)
			continue;
		mem_cgroup_events(memcg, MEMCG_HIGH, 1);
		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
	} while ((memcg = parent_mem_cgroup(memcg)));
}

static void high_work_func(struct work_struct *work)
{
	struct mem_cgroup *memcg;

	memcg = container_of(work, struct mem_cgroup, high_work);
	reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
}

1887 1888 1889 1890 1891 1892 1893
/*
 * Scheduled by try_charge() to be executed from the userland return path
 * and reclaims memory over the high limit.
 */
void mem_cgroup_handle_over_high(void)
{
	unsigned int nr_pages = current->memcg_nr_pages_over_high;
1894
	struct mem_cgroup *memcg;
1895 1896 1897 1898

	if (likely(!nr_pages))
		return;

1899 1900
	memcg = get_mem_cgroup_from_mm(current->mm);
	reclaim_high(memcg, nr_pages, GFP_KERNEL);
1901 1902 1903 1904
	css_put(&memcg->css);
	current->memcg_nr_pages_over_high = 0;
}

1905 1906
static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
		      unsigned int nr_pages)
1907
{
1908
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
1909
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1910
	struct mem_cgroup *mem_over_limit;
1911
	struct page_counter *counter;
1912
	unsigned long nr_reclaimed;
1913 1914
	bool may_swap = true;
	bool drained = false;
1915

1916
	if (mem_cgroup_is_root(memcg))
1917
		return 0;
1918
retry:
1919
	if (consume_stock(memcg, nr_pages))
1920
		return 0;
1921

1922
	if (!do_memsw_account() ||
1923 1924
	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
		if (page_counter_try_charge(&memcg->memory, batch, &counter))
1925
			goto done_restock;
1926
		if (do_memsw_account())
1927 1928
			page_counter_uncharge(&memcg->memsw, batch);
		mem_over_limit = mem_cgroup_from_counter(counter, memory);
1929
	} else {
1930
		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1931
		may_swap = false;
1932
	}
1933

1934 1935 1936 1937
	if (batch > nr_pages) {
		batch = nr_pages;
		goto retry;
	}
1938

1939 1940 1941 1942 1943 1944 1945 1946 1947
	/*
	 * Unlike in global OOM situations, memcg is not in a physical
	 * memory shortage.  Allow dying and OOM-killed tasks to
	 * bypass the last charges so that they can exit quickly and
	 * free their memory.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE) ||
		     fatal_signal_pending(current) ||
		     current->flags & PF_EXITING))
1948
		goto force;
1949 1950 1951 1952

	if (unlikely(task_in_memcg_oom(current)))
		goto nomem;

1953
	if (!gfpflags_allow_blocking(gfp_mask))
1954
		goto nomem;
1955

1956 1957
	mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);

1958 1959
	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
						    gfp_mask, may_swap);
1960

1961
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
1962
		goto retry;
1963

1964
	if (!drained) {
1965
		drain_all_stock(mem_over_limit);
1966 1967 1968 1969
		drained = true;
		goto retry;
	}

1970 1971
	if (gfp_mask & __GFP_NORETRY)
		goto nomem;
1972 1973 1974 1975 1976 1977 1978 1979 1980
	/*
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
	 */
1981
	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
1982 1983 1984 1985 1986 1987 1988 1989
		goto retry;
	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		goto retry;

1990 1991 1992
	if (nr_retries--)
		goto retry;

1993
	if (gfp_mask & __GFP_NOFAIL)
1994
		goto force;
1995

1996
	if (fatal_signal_pending(current))
1997
		goto force;
1998

1999 2000
	mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);

2001 2002
	mem_cgroup_oom(mem_over_limit, gfp_mask,
		       get_order(nr_pages * PAGE_SIZE));
2003
nomem:
2004
	if (!(gfp_mask & __GFP_NOFAIL))
2005
		return -ENOMEM;
2006 2007 2008 2009 2010 2011 2012
force:
	/*
	 * The allocation either can't fail or will lead to more memory
	 * being freed very soon.  Allow memory usage go over the limit
	 * temporarily by force charging it.
	 */
	page_counter_charge(&memcg->memory, nr_pages);
2013
	if (do_memsw_account())
2014 2015 2016 2017
		page_counter_charge(&memcg->memsw, nr_pages);
	css_get_many(&memcg->css, nr_pages);

	return 0;
2018 2019

done_restock:
2020
	css_get_many(&memcg->css, batch);
2021 2022
	if (batch > nr_pages)
		refill_stock(memcg, batch - nr_pages);
2023

2024
	/*
2025 2026
	 * If the hierarchy is above the normal consumption range, schedule
	 * reclaim on returning to userland.  We can perform reclaim here
2027
	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2028 2029 2030 2031
	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
	 * not recorded as it most likely matches current's and won't
	 * change in the meantime.  As high limit is checked again before
	 * reclaim, the cost of mismatch is negligible.
2032 2033
	 */
	do {
2034
		if (page_counter_read(&memcg->memory) > memcg->high) {
2035 2036 2037 2038 2039
			/* Don't bother a random interrupted task */
			if (in_interrupt()) {
				schedule_work(&memcg->high_work);
				break;
			}
V
Vladimir Davydov 已提交
2040
			current->memcg_nr_pages_over_high += batch;
2041 2042 2043
			set_notify_resume(current);
			break;
		}
2044
	} while ((memcg = parent_mem_cgroup(memcg)));
2045 2046

	return 0;
2047
}
2048

2049
static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2050
{
2051 2052 2053
	if (mem_cgroup_is_root(memcg))
		return;

2054
	page_counter_uncharge(&memcg->memory, nr_pages);
2055
	if (do_memsw_account())
2056
		page_counter_uncharge(&memcg->memsw, nr_pages);
2057

2058
	css_put_many(&memcg->css, nr_pages);
2059 2060
}

2061 2062 2063 2064
static void lock_page_lru(struct page *page, int *isolated)
{
	struct zone *zone = page_zone(page);

2065
	spin_lock_irq(zone_lru_lock(zone));
2066 2067 2068
	if (PageLRU(page)) {
		struct lruvec *lruvec;

M
Mel Gorman 已提交
2069
		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083
		ClearPageLRU(page);
		del_page_from_lru_list(page, lruvec, page_lru(page));
		*isolated = 1;
	} else
		*isolated = 0;
}

static void unlock_page_lru(struct page *page, int isolated)
{
	struct zone *zone = page_zone(page);

	if (isolated) {
		struct lruvec *lruvec;

M
Mel Gorman 已提交
2084
		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2085 2086 2087 2088
		VM_BUG_ON_PAGE(PageLRU(page), page);
		SetPageLRU(page);
		add_page_to_lru_list(page, lruvec, page_lru(page));
	}
2089
	spin_unlock_irq(zone_lru_lock(zone));
2090 2091
}

2092
static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2093
			  bool lrucare)
2094
{
2095
	int isolated;
2096

2097
	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2098 2099 2100 2101 2102

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
2103 2104
	if (lrucare)
		lock_page_lru(page, &isolated);
2105

2106 2107
	/*
	 * Nobody should be changing or seriously looking at
2108
	 * page->mem_cgroup at this point:
2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119
	 *
	 * - the page is uncharged
	 *
	 * - the page is off-LRU
	 *
	 * - an anonymous fault has exclusive page access, except for
	 *   a locked page table
	 *
	 * - a page cache insertion, a swapin fault, or a migration
	 *   have the page locked
	 */
2120
	page->mem_cgroup = memcg;
2121

2122 2123
	if (lrucare)
		unlock_page_lru(page, isolated);
2124
}
2125

2126
#ifndef CONFIG_SLOB
2127
static int memcg_alloc_cache_id(void)
2128
{
2129 2130 2131
	int id, size;
	int err;

2132
	id = ida_simple_get(&memcg_cache_ida,
2133 2134 2135
			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (id < 0)
		return id;
2136

2137
	if (id < memcg_nr_cache_ids)
2138 2139 2140 2141 2142 2143
		return id;

	/*
	 * There's no space for the new id in memcg_caches arrays,
	 * so we have to grow them.
	 */
2144
	down_write(&memcg_cache_ids_sem);
2145 2146

	size = 2 * (id + 1);
2147 2148 2149 2150 2151
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

2152
	err = memcg_update_all_caches(size);
2153 2154
	if (!err)
		err = memcg_update_all_list_lrus(size);
2155 2156 2157 2158 2159
	if (!err)
		memcg_nr_cache_ids = size;

	up_write(&memcg_cache_ids_sem);

2160
	if (err) {
2161
		ida_simple_remove(&memcg_cache_ida, id);
2162 2163 2164 2165 2166 2167 2168
		return err;
	}
	return id;
}

static void memcg_free_cache_id(int id)
{
2169
	ida_simple_remove(&memcg_cache_ida, id);
2170 2171
}

2172
struct memcg_kmem_cache_create_work {
2173 2174 2175 2176 2177
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

2178
static void memcg_kmem_cache_create_func(struct work_struct *w)
2179
{
2180 2181
	struct memcg_kmem_cache_create_work *cw =
		container_of(w, struct memcg_kmem_cache_create_work, work);
2182 2183
	struct mem_cgroup *memcg = cw->memcg;
	struct kmem_cache *cachep = cw->cachep;
2184

2185
	memcg_create_kmem_cache(memcg, cachep);
2186

2187
	css_put(&memcg->css);
2188 2189 2190 2191 2192 2193
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
2194 2195
static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					       struct kmem_cache *cachep)
2196
{
2197
	struct memcg_kmem_cache_create_work *cw;
2198

2199
	cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2200
	if (!cw)
2201
		return;
2202 2203

	css_get(&memcg->css);
2204 2205 2206

	cw->memcg = memcg;
	cw->cachep = cachep;
2207
	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2208 2209 2210 2211

	schedule_work(&cw->work);
}

2212 2213
static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					     struct kmem_cache *cachep)
2214 2215 2216 2217
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
2218
	 * in __memcg_schedule_kmem_cache_create will recurse.
2219 2220 2221 2222 2223 2224 2225
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
2226
	current->memcg_kmem_skip_account = 1;
2227
	__memcg_schedule_kmem_cache_create(memcg, cachep);
2228
	current->memcg_kmem_skip_account = 0;
2229
}
2230

2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241
static inline bool memcg_kmem_bypass(void)
{
	if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
		return true;
	return false;
}

/**
 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
 * @cachep: the original global kmem cache
 *
2242 2243 2244
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
2245 2246 2247
 * If the cache does not exist yet, if we are the first user of it, we
 * create it asynchronously in a workqueue and let the current allocation
 * go through with the original cache.
2248
 *
2249 2250 2251 2252
 * This function takes a reference to the cache it returns to assure it
 * won't get destroyed while we are working with it. Once the caller is
 * done with it, memcg_kmem_put_cache() must be called to release the
 * reference.
2253
 */
2254
struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2255 2256
{
	struct mem_cgroup *memcg;
2257
	struct kmem_cache *memcg_cachep;
2258
	int kmemcg_id;
2259

2260
	VM_BUG_ON(!is_root_cache(cachep));
2261

2262
	if (memcg_kmem_bypass())
V
Vladimir Davydov 已提交
2263 2264
		return cachep;

2265
	if (current->memcg_kmem_skip_account)
2266 2267
		return cachep;

2268
	memcg = get_mem_cgroup_from_mm(current->mm);
2269
	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2270
	if (kmemcg_id < 0)
2271
		goto out;
2272

2273
	memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2274 2275
	if (likely(memcg_cachep))
		return memcg_cachep;
2276 2277 2278 2279 2280 2281 2282 2283 2284

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
2285 2286 2287
	 * memcg_create_kmem_cache, this means no further allocation
	 * could happen with the slab_mutex held. So it's better to
	 * defer everything.
2288
	 */
2289
	memcg_schedule_kmem_cache_create(memcg, cachep);
2290
out:
2291
	css_put(&memcg->css);
2292
	return cachep;
2293 2294
}

2295 2296 2297 2298 2299
/**
 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
 * @cachep: the cache returned by memcg_kmem_get_cache
 */
void memcg_kmem_put_cache(struct kmem_cache *cachep)
2300 2301
{
	if (!is_root_cache(cachep))
2302
		css_put(&cachep->memcg_params.memcg->css);
2303 2304
}

2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315
/**
 * memcg_kmem_charge: charge a kmem page
 * @page: page to charge
 * @gfp: reclaim mode
 * @order: allocation order
 * @memcg: memory cgroup to charge
 *
 * Returns 0 on success, an error code on failure.
 */
int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
			    struct mem_cgroup *memcg)
2316
{
2317 2318
	unsigned int nr_pages = 1 << order;
	struct page_counter *counter;
2319 2320
	int ret;

2321
	ret = try_charge(memcg, gfp, nr_pages);
2322
	if (ret)
2323
		return ret;
2324 2325 2326 2327 2328

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
		cancel_charge(memcg, nr_pages);
		return -ENOMEM;
2329 2330
	}

2331
	page->mem_cgroup = memcg;
2332

2333
	return 0;
2334 2335
}

2336 2337 2338 2339 2340 2341 2342 2343 2344
/**
 * memcg_kmem_charge: charge a kmem page to the current memory cgroup
 * @page: page to charge
 * @gfp: reclaim mode
 * @order: allocation order
 *
 * Returns 0 on success, an error code on failure.
 */
int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2345
{
2346
	struct mem_cgroup *memcg;
2347
	int ret = 0;
2348

2349 2350 2351
	if (memcg_kmem_bypass())
		return 0;

2352
	memcg = get_mem_cgroup_from_mm(current->mm);
2353
	if (!mem_cgroup_is_root(memcg)) {
2354
		ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
2355 2356 2357
		if (!ret)
			__SetPageKmemcg(page);
	}
2358
	css_put(&memcg->css);
2359
	return ret;
2360
}
2361 2362 2363 2364 2365 2366
/**
 * memcg_kmem_uncharge: uncharge a kmem page
 * @page: page to uncharge
 * @order: allocation order
 */
void memcg_kmem_uncharge(struct page *page, int order)
2367
{
2368
	struct mem_cgroup *memcg = page->mem_cgroup;
2369
	unsigned int nr_pages = 1 << order;
2370 2371 2372 2373

	if (!memcg)
		return;

2374
	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2375

2376 2377 2378
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
		page_counter_uncharge(&memcg->kmem, nr_pages);

2379
	page_counter_uncharge(&memcg->memory, nr_pages);
2380
	if (do_memsw_account())
2381
		page_counter_uncharge(&memcg->memsw, nr_pages);
2382

2383
	page->mem_cgroup = NULL;
2384 2385 2386 2387 2388

	/* slab pages do not have PageKmemcg flag set */
	if (PageKmemcg(page))
		__ClearPageKmemcg(page);

2389
	css_put_many(&memcg->css, nr_pages);
2390
}
2391
#endif /* !CONFIG_SLOB */
2392

2393 2394 2395 2396
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

/*
 * Because tail pages are not marked as "used", set it. We're under
2397
 * zone_lru_lock and migration entries setup in all page mappings.
2398
 */
2399
void mem_cgroup_split_huge_fixup(struct page *head)
2400
{
2401
	int i;
2402

2403 2404
	if (mem_cgroup_disabled())
		return;
2405

2406
	for (i = 1; i < HPAGE_PMD_NR; i++)
2407
		head[i].mem_cgroup = head->mem_cgroup;
2408

2409
	__this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2410
		       HPAGE_PMD_NR);
2411
}
2412
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2413

A
Andrew Morton 已提交
2414
#ifdef CONFIG_MEMCG_SWAP
2415 2416
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
					 bool charge)
K
KAMEZAWA Hiroyuki 已提交
2417
{
2418 2419
	int val = (charge) ? 1 : -1;
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
K
KAMEZAWA Hiroyuki 已提交
2420
}
2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
2433
 * The caller must have charged to @to, IOW, called page_counter_charge() about
2434 2435 2436
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
2437
				struct mem_cgroup *from, struct mem_cgroup *to)
2438 2439 2440
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
2441 2442
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
2443 2444 2445

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
2446
		mem_cgroup_swap_statistics(to, true);
2447 2448 2449 2450 2451 2452
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2453
				struct mem_cgroup *from, struct mem_cgroup *to)
2454 2455 2456
{
	return -EINVAL;
}
2457
#endif
K
KAMEZAWA Hiroyuki 已提交
2458

2459
static DEFINE_MUTEX(memcg_limit_mutex);
2460

2461
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2462
				   unsigned long limit)
2463
{
2464 2465 2466
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
2467
	int retry_count;
2468
	int ret;
2469 2470 2471 2472 2473 2474

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
2475 2476
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);
2477

2478
	oldusage = page_counter_read(&memcg->memory);
2479

2480
	do {
2481 2482 2483 2484
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2485 2486 2487 2488

		mutex_lock(&memcg_limit_mutex);
		if (limit > memcg->memsw.limit) {
			mutex_unlock(&memcg_limit_mutex);
2489
			ret = -EINVAL;
2490 2491
			break;
		}
2492 2493 2494 2495
		if (limit > memcg->memory.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memory, limit);
		mutex_unlock(&memcg_limit_mutex);
2496 2497 2498 2499

		if (!ret)
			break;

2500 2501
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);

2502
		curusage = page_counter_read(&memcg->memory);
2503
		/* Usage is reduced ? */
A
Andrew Morton 已提交
2504
		if (curusage >= oldusage)
2505 2506 2507
			retry_count--;
		else
			oldusage = curusage;
2508 2509
	} while (retry_count);

2510 2511
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2512

2513 2514 2515
	return ret;
}

L
Li Zefan 已提交
2516
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2517
					 unsigned long limit)
2518
{
2519 2520 2521
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
2522
	int retry_count;
2523
	int ret;
2524

2525
	/* see mem_cgroup_resize_res_limit */
2526 2527 2528 2529 2530 2531
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);

	oldusage = page_counter_read(&memcg->memsw);

	do {
2532 2533 2534 2535
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2536 2537 2538 2539

		mutex_lock(&memcg_limit_mutex);
		if (limit < memcg->memory.limit) {
			mutex_unlock(&memcg_limit_mutex);
2540 2541 2542
			ret = -EINVAL;
			break;
		}
2543 2544 2545 2546
		if (limit > memcg->memsw.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memsw, limit);
		mutex_unlock(&memcg_limit_mutex);
2547 2548 2549 2550

		if (!ret)
			break;

2551 2552
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);

2553
		curusage = page_counter_read(&memcg->memsw);
2554
		/* Usage is reduced ? */
2555
		if (curusage >= oldusage)
2556
			retry_count--;
2557 2558
		else
			oldusage = curusage;
2559 2560
	} while (retry_count);

2561 2562
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2563

2564 2565 2566
	return ret;
}

2567
unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
2568 2569 2570 2571
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
2572
	struct mem_cgroup_per_node *mz, *next_mz = NULL;
2573 2574
	unsigned long reclaimed;
	int loop = 0;
2575
	struct mem_cgroup_tree_per_node *mctz;
2576
	unsigned long excess;
2577 2578 2579 2580 2581
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

2582
	mctz = soft_limit_tree_node(pgdat->node_id);
2583 2584 2585 2586 2587 2588 2589 2590 2591

	/*
	 * Do not even bother to check the largest node if the root
	 * is empty. Do it lockless to prevent lock bouncing. Races
	 * are acceptable as soft limit is best effort anyway.
	 */
	if (RB_EMPTY_ROOT(&mctz->rb_root))
		return 0;

2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
2606
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
2607 2608 2609
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
2610
		spin_lock_irq(&mctz->lock);
2611
		__mem_cgroup_remove_exceeded(mz, mctz);
2612 2613 2614 2615 2616 2617

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
2618 2619 2620
		if (!reclaimed)
			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);

2621
		excess = soft_limit_excess(mz->memcg);
2622 2623 2624 2625 2626 2627 2628 2629 2630
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
2631
		__mem_cgroup_insert_exceeded(mz, mctz, excess);
2632
		spin_unlock_irq(&mctz->lock);
2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

2650 2651 2652 2653 2654 2655
/*
 * Test whether @memcg has children, dead or alive.  Note that this
 * function doesn't care whether @memcg has use_hierarchy enabled and
 * returns %true if there are child csses according to the cgroup
 * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
 */
2656 2657
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
2658 2659 2660 2661 2662 2663
	bool ret;

	rcu_read_lock();
	ret = css_next_child(NULL, &memcg->css);
	rcu_read_unlock();
	return ret;
2664 2665
}

2666
/*
2667
 * Reclaims as many pages from the given memcg as possible.
2668 2669 2670 2671 2672 2673 2674
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;

2675 2676
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
2677
	/* try to free all pages in this cgroup */
2678
	while (nr_retries && page_counter_read(&memcg->memory)) {
2679
		int progress;
2680

2681 2682 2683
		if (signal_pending(current))
			return -EINTR;

2684 2685
		progress = try_to_free_mem_cgroup_pages(memcg, 1,
							GFP_KERNEL, true);
2686
		if (!progress) {
2687
			nr_retries--;
2688
			/* maybe some writeback is necessary */
2689
			congestion_wait(BLK_RW_ASYNC, HZ/10);
2690
		}
2691 2692

	}
2693 2694

	return 0;
2695 2696
}

2697 2698 2699
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
					    char *buf, size_t nbytes,
					    loff_t off)
2700
{
2701
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2702

2703 2704
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
2705
	return mem_cgroup_force_empty(memcg) ?: nbytes;
2706 2707
}

2708 2709
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
2710
{
2711
	return mem_cgroup_from_css(css)->use_hierarchy;
2712 2713
}

2714 2715
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
2716 2717
{
	int retval = 0;
2718
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
2719
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2720

2721
	if (memcg->use_hierarchy == val)
2722
		return 0;
2723

2724
	/*
2725
	 * If parent's use_hierarchy is set, we can't make any modifications
2726 2727 2728 2729 2730 2731
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
2732
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2733
				(val == 1 || val == 0)) {
2734
		if (!memcg_has_children(memcg))
2735
			memcg->use_hierarchy = val;
2736 2737 2738 2739
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
2740

2741 2742 2743
	return retval;
}

2744
static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
2745 2746
{
	struct mem_cgroup *iter;
2747
	int i;
2748

2749
	memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
2750

2751 2752 2753 2754
	for_each_mem_cgroup_tree(iter, memcg) {
		for (i = 0; i < MEMCG_NR_STAT; i++)
			stat[i] += mem_cgroup_read_stat(iter, i);
	}
2755 2756
}

2757
static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
2758 2759
{
	struct mem_cgroup *iter;
2760
	int i;
2761

2762
	memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
2763

2764 2765 2766 2767
	for_each_mem_cgroup_tree(iter, memcg) {
		for (i = 0; i < MEMCG_NR_EVENTS; i++)
			events[i] += mem_cgroup_read_events(iter, i);
	}
2768 2769
}

2770
static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2771
{
2772
	unsigned long val = 0;
2773

2774
	if (mem_cgroup_is_root(memcg)) {
2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785
		struct mem_cgroup *iter;

		for_each_mem_cgroup_tree(iter, memcg) {
			val += mem_cgroup_read_stat(iter,
					MEM_CGROUP_STAT_CACHE);
			val += mem_cgroup_read_stat(iter,
					MEM_CGROUP_STAT_RSS);
			if (swap)
				val += mem_cgroup_read_stat(iter,
						MEM_CGROUP_STAT_SWAP);
		}
2786
	} else {
2787
		if (!swap)
2788
			val = page_counter_read(&memcg->memory);
2789
		else
2790
			val = page_counter_read(&memcg->memsw);
2791
	}
2792
	return val;
2793 2794
}

2795 2796 2797 2798 2799 2800 2801
enum {
	RES_USAGE,
	RES_LIMIT,
	RES_MAX_USAGE,
	RES_FAILCNT,
	RES_SOFT_LIMIT,
};
2802

2803
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2804
			       struct cftype *cft)
B
Balbir Singh 已提交
2805
{
2806
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2807
	struct page_counter *counter;
2808

2809
	switch (MEMFILE_TYPE(cft->private)) {
2810
	case _MEM:
2811 2812
		counter = &memcg->memory;
		break;
2813
	case _MEMSWAP:
2814 2815
		counter = &memcg->memsw;
		break;
2816
	case _KMEM:
2817
		counter = &memcg->kmem;
2818
		break;
V
Vladimir Davydov 已提交
2819
	case _TCP:
2820
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
2821
		break;
2822 2823 2824
	default:
		BUG();
	}
2825 2826 2827 2828

	switch (MEMFILE_ATTR(cft->private)) {
	case RES_USAGE:
		if (counter == &memcg->memory)
2829
			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2830
		if (counter == &memcg->memsw)
2831
			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843
		return (u64)page_counter_read(counter) * PAGE_SIZE;
	case RES_LIMIT:
		return (u64)counter->limit * PAGE_SIZE;
	case RES_MAX_USAGE:
		return (u64)counter->watermark * PAGE_SIZE;
	case RES_FAILCNT:
		return counter->failcnt;
	case RES_SOFT_LIMIT:
		return (u64)memcg->soft_limit * PAGE_SIZE;
	default:
		BUG();
	}
B
Balbir Singh 已提交
2844
}
2845

2846
#ifndef CONFIG_SLOB
2847
static int memcg_online_kmem(struct mem_cgroup *memcg)
2848 2849 2850
{
	int memcg_id;

2851 2852 2853
	if (cgroup_memory_nokmem)
		return 0;

2854
	BUG_ON(memcg->kmemcg_id >= 0);
2855
	BUG_ON(memcg->kmem_state);
2856

2857
	memcg_id = memcg_alloc_cache_id();
2858 2859
	if (memcg_id < 0)
		return memcg_id;
2860

2861
	static_branch_inc(&memcg_kmem_enabled_key);
2862
	/*
2863
	 * A memory cgroup is considered kmem-online as soon as it gets
V
Vladimir Davydov 已提交
2864
	 * kmemcg_id. Setting the id after enabling static branching will
2865 2866 2867
	 * guarantee no one starts accounting before all call sites are
	 * patched.
	 */
V
Vladimir Davydov 已提交
2868
	memcg->kmemcg_id = memcg_id;
2869
	memcg->kmem_state = KMEM_ONLINE;
2870 2871

	return 0;
2872 2873
}

2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
	struct cgroup_subsys_state *css;
	struct mem_cgroup *parent, *child;
	int kmemcg_id;

	if (memcg->kmem_state != KMEM_ONLINE)
		return;
	/*
	 * Clear the online state before clearing memcg_caches array
	 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
	 * guarantees that no cache will be created for this cgroup
	 * after we are done (see memcg_create_kmem_cache()).
	 */
	memcg->kmem_state = KMEM_ALLOCATED;

	memcg_deactivate_kmem_caches(memcg);

	kmemcg_id = memcg->kmemcg_id;
	BUG_ON(kmemcg_id < 0);

	parent = parent_mem_cgroup(memcg);
	if (!parent)
		parent = root_mem_cgroup;

	/*
	 * Change kmemcg_id of this cgroup and all its descendants to the
	 * parent's id, and then move all entries from this cgroup's list_lrus
	 * to ones of the parent. After we have finished, all list_lrus
	 * corresponding to this cgroup are guaranteed to remain empty. The
	 * ordering is imposed by list_lru_node->lock taken by
	 * memcg_drain_all_list_lrus().
	 */
2907
	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
2908 2909 2910 2911 2912 2913 2914
	css_for_each_descendant_pre(css, &memcg->css) {
		child = mem_cgroup_from_css(css);
		BUG_ON(child->kmemcg_id != kmemcg_id);
		child->kmemcg_id = parent->kmemcg_id;
		if (!memcg->use_hierarchy)
			break;
	}
2915 2916
	rcu_read_unlock();

2917 2918 2919 2920 2921 2922 2923
	memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);

	memcg_free_cache_id(kmemcg_id);
}

static void memcg_free_kmem(struct mem_cgroup *memcg)
{
2924 2925 2926 2927
	/* css_alloc() failed, offlining didn't happen */
	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
		memcg_offline_kmem(memcg);

2928 2929 2930 2931 2932 2933
	if (memcg->kmem_state == KMEM_ALLOCATED) {
		memcg_destroy_kmem_caches(memcg);
		static_branch_dec(&memcg_kmem_enabled_key);
		WARN_ON(page_counter_read(&memcg->kmem));
	}
}
2934
#else
2935
static int memcg_online_kmem(struct mem_cgroup *memcg)
2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946
{
	return 0;
}
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
}
static void memcg_free_kmem(struct mem_cgroup *memcg)
{
}
#endif /* !CONFIG_SLOB */

2947
static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2948
				   unsigned long limit)
2949
{
2950
	int ret;
2951 2952 2953 2954 2955

	mutex_lock(&memcg_limit_mutex);
	ret = page_counter_limit(&memcg->kmem, limit);
	mutex_unlock(&memcg_limit_mutex);
	return ret;
2956
}
2957

V
Vladimir Davydov 已提交
2958 2959 2960 2961 2962 2963
static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
{
	int ret;

	mutex_lock(&memcg_limit_mutex);

2964
	ret = page_counter_limit(&memcg->tcpmem, limit);
V
Vladimir Davydov 已提交
2965 2966 2967
	if (ret)
		goto out;

2968
	if (!memcg->tcpmem_active) {
V
Vladimir Davydov 已提交
2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985
		/*
		 * The active flag needs to be written after the static_key
		 * update. This is what guarantees that the socket activation
		 * function is the last one to run. See sock_update_memcg() for
		 * details, and note that we don't mark any socket as belonging
		 * to this memcg until that flag is up.
		 *
		 * We need to do this, because static_keys will span multiple
		 * sites, but we can't control their order. If we mark a socket
		 * as accounted, but the accounting functions are not patched in
		 * yet, we'll lose accounting.
		 *
		 * We never race with the readers in sock_update_memcg(),
		 * because when this value change, the code to process it is not
		 * patched in yet.
		 */
		static_branch_inc(&memcg_sockets_enabled_key);
2986
		memcg->tcpmem_active = true;
V
Vladimir Davydov 已提交
2987 2988 2989 2990 2991 2992
	}
out:
	mutex_unlock(&memcg_limit_mutex);
	return ret;
}

2993 2994 2995 2996
/*
 * The user of this function is...
 * RES_LIMIT.
 */
2997 2998
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
B
Balbir Singh 已提交
2999
{
3000
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3001
	unsigned long nr_pages;
3002 3003
	int ret;

3004
	buf = strstrip(buf);
3005
	ret = page_counter_memparse(buf, "-1", &nr_pages);
3006 3007
	if (ret)
		return ret;
3008

3009
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3010
	case RES_LIMIT:
3011 3012 3013 3014
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3015 3016 3017
		switch (MEMFILE_TYPE(of_cft(of)->private)) {
		case _MEM:
			ret = mem_cgroup_resize_limit(memcg, nr_pages);
3018
			break;
3019 3020
		case _MEMSWAP:
			ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3021
			break;
3022 3023 3024
		case _KMEM:
			ret = memcg_update_kmem_limit(memcg, nr_pages);
			break;
V
Vladimir Davydov 已提交
3025 3026 3027
		case _TCP:
			ret = memcg_update_tcp_limit(memcg, nr_pages);
			break;
3028
		}
3029
		break;
3030 3031 3032
	case RES_SOFT_LIMIT:
		memcg->soft_limit = nr_pages;
		ret = 0;
3033 3034
		break;
	}
3035
	return ret ?: nbytes;
B
Balbir Singh 已提交
3036 3037
}

3038 3039
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
				size_t nbytes, loff_t off)
3040
{
3041
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3042
	struct page_counter *counter;
3043

3044 3045 3046 3047 3048 3049 3050 3051 3052 3053
	switch (MEMFILE_TYPE(of_cft(of)->private)) {
	case _MEM:
		counter = &memcg->memory;
		break;
	case _MEMSWAP:
		counter = &memcg->memsw;
		break;
	case _KMEM:
		counter = &memcg->kmem;
		break;
V
Vladimir Davydov 已提交
3054
	case _TCP:
3055
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
3056
		break;
3057 3058 3059
	default:
		BUG();
	}
3060

3061
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3062
	case RES_MAX_USAGE:
3063
		page_counter_reset_watermark(counter);
3064 3065
		break;
	case RES_FAILCNT:
3066
		counter->failcnt = 0;
3067
		break;
3068 3069
	default:
		BUG();
3070
	}
3071

3072
	return nbytes;
3073 3074
}

3075
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3076 3077
					struct cftype *cft)
{
3078
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3079 3080
}

3081
#ifdef CONFIG_MMU
3082
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3083 3084
					struct cftype *cft, u64 val)
{
3085
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3086

3087
	if (val & ~MOVE_MASK)
3088
		return -EINVAL;
3089

3090
	/*
3091 3092 3093 3094
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
3095
	 */
3096
	memcg->move_charge_at_immigrate = val;
3097 3098
	return 0;
}
3099
#else
3100
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3101 3102 3103 3104 3105
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3106

3107
#ifdef CONFIG_NUMA
3108
static int memcg_numa_stat_show(struct seq_file *m, void *v)
3109
{
3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
3122
	int nid;
3123
	unsigned long nr;
3124
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3125

3126 3127 3128 3129 3130 3131 3132 3133 3134
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
		seq_printf(m, "%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
							  stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3135 3136
	}

3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		struct mem_cgroup *iter;

		nr = 0;
		for_each_mem_cgroup_tree(iter, memcg)
			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = 0;
			for_each_mem_cgroup_tree(iter, memcg)
				nr += mem_cgroup_node_nr_lru_pages(
					iter, nid, stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3152 3153 3154 3155 3156 3157
	}

	return 0;
}
#endif /* CONFIG_NUMA */

3158
static int memcg_stat_show(struct seq_file *m, void *v)
3159
{
3160
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3161
	unsigned long memory, memsw;
3162 3163
	struct mem_cgroup *mi;
	unsigned int i;
3164

3165 3166 3167 3168
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
		     MEM_CGROUP_STAT_NSTATS);
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
		     MEM_CGROUP_EVENTS_NSTATS);
3169 3170
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);

3171
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3172
		if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3173
			continue;
3174
		seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3175
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3176
	}
L
Lee Schermerhorn 已提交
3177

3178 3179 3180 3181 3182 3183 3184 3185
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
3186
	/* Hierarchical information */
3187 3188 3189 3190
	memory = memsw = PAGE_COUNTER_MAX;
	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
		memory = min(memory, mi->memory.limit);
		memsw = min(memsw, mi->memsw.limit);
3191
	}
3192 3193
	seq_printf(m, "hierarchical_memory_limit %llu\n",
		   (u64)memory * PAGE_SIZE);
3194
	if (do_memsw_account())
3195 3196
		seq_printf(m, "hierarchical_memsw_limit %llu\n",
			   (u64)memsw * PAGE_SIZE);
K
KOSAKI Motohiro 已提交
3197

3198
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3199
		unsigned long long val = 0;
3200

3201
		if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3202
			continue;
3203 3204
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3205
		seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3223
	}
K
KAMEZAWA Hiroyuki 已提交
3224

K
KOSAKI Motohiro 已提交
3225 3226
#ifdef CONFIG_DEBUG_VM
	{
3227 3228
		pg_data_t *pgdat;
		struct mem_cgroup_per_node *mz;
3229
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
3230 3231 3232
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

3233 3234 3235
		for_each_online_pgdat(pgdat) {
			mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
			rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
3236

3237 3238 3239 3240 3241
			recent_rotated[0] += rstat->recent_rotated[0];
			recent_rotated[1] += rstat->recent_rotated[1];
			recent_scanned[0] += rstat->recent_scanned[0];
			recent_scanned[1] += rstat->recent_scanned[1];
		}
3242 3243 3244 3245
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
3246 3247 3248
	}
#endif

3249 3250 3251
	return 0;
}

3252 3253
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
3254
{
3255
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3256

3257
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
3258 3259
}

3260 3261
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
3262
{
3263
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3264

3265
	if (val > 100)
K
KOSAKI Motohiro 已提交
3266 3267
		return -EINVAL;

3268
	if (css->parent)
3269 3270 3271
		memcg->swappiness = val;
	else
		vm_swappiness = val;
3272

K
KOSAKI Motohiro 已提交
3273 3274 3275
	return 0;
}

3276 3277 3278
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
3279
	unsigned long usage;
3280 3281 3282 3283
	int i;

	rcu_read_lock();
	if (!swap)
3284
		t = rcu_dereference(memcg->thresholds.primary);
3285
	else
3286
		t = rcu_dereference(memcg->memsw_thresholds.primary);
3287 3288 3289 3290

	if (!t)
		goto unlock;

3291
	usage = mem_cgroup_usage(memcg, swap);
3292 3293

	/*
3294
	 * current_threshold points to threshold just below or equal to usage.
3295 3296 3297
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
3298
	i = t->current_threshold;
3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
3322
	t->current_threshold = i - 1;
3323 3324 3325 3326 3327 3328
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
3329 3330
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
3331
		if (do_memsw_account())
3332 3333 3334 3335
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
3336 3337 3338 3339 3340 3341 3342
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

3343 3344 3345 3346 3347 3348 3349
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
3350 3351
}

3352
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3353 3354 3355
{
	struct mem_cgroup_eventfd_list *ev;

3356 3357
	spin_lock(&memcg_oom_lock);

3358
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
3359
		eventfd_signal(ev->eventfd, 1);
3360 3361

	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3362 3363 3364
	return 0;
}

3365
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3366
{
K
KAMEZAWA Hiroyuki 已提交
3367 3368
	struct mem_cgroup *iter;

3369
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3370
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
3371 3372
}

3373
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3374
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3375
{
3376 3377
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3378 3379
	unsigned long threshold;
	unsigned long usage;
3380
	int i, size, ret;
3381

3382
	ret = page_counter_memparse(args, "-1", &threshold);
3383 3384 3385 3386
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
3387

3388
	if (type == _MEM) {
3389
		thresholds = &memcg->thresholds;
3390
		usage = mem_cgroup_usage(memcg, false);
3391
	} else if (type == _MEMSWAP) {
3392
		thresholds = &memcg->memsw_thresholds;
3393
		usage = mem_cgroup_usage(memcg, true);
3394
	} else
3395 3396 3397
		BUG();

	/* Check if a threshold crossed before adding a new one */
3398
	if (thresholds->primary)
3399 3400
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

3401
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3402 3403

	/* Allocate memory for new array of thresholds */
3404
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3405
			GFP_KERNEL);
3406
	if (!new) {
3407 3408 3409
		ret = -ENOMEM;
		goto unlock;
	}
3410
	new->size = size;
3411 3412

	/* Copy thresholds (if any) to new array */
3413 3414
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3415
				sizeof(struct mem_cgroup_threshold));
3416 3417
	}

3418
	/* Add new threshold */
3419 3420
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
3421 3422

	/* Sort thresholds. Registering of new threshold isn't time-critical */
3423
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3424 3425 3426
			compare_thresholds, NULL);

	/* Find current threshold */
3427
	new->current_threshold = -1;
3428
	for (i = 0; i < size; i++) {
3429
		if (new->entries[i].threshold <= usage) {
3430
			/*
3431 3432
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
3433 3434
			 * it here.
			 */
3435
			++new->current_threshold;
3436 3437
		} else
			break;
3438 3439
	}

3440 3441 3442 3443 3444
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
3445

3446
	/* To be sure that nobody uses thresholds */
3447 3448 3449 3450 3451 3452 3453 3454
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

3455
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3456 3457
	struct eventfd_ctx *eventfd, const char *args)
{
3458
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
3459 3460
}

3461
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3462 3463
	struct eventfd_ctx *eventfd, const char *args)
{
3464
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
3465 3466
}

3467
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3468
	struct eventfd_ctx *eventfd, enum res_type type)
3469
{
3470 3471
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3472
	unsigned long usage;
3473
	int i, j, size;
3474 3475

	mutex_lock(&memcg->thresholds_lock);
3476 3477

	if (type == _MEM) {
3478
		thresholds = &memcg->thresholds;
3479
		usage = mem_cgroup_usage(memcg, false);
3480
	} else if (type == _MEMSWAP) {
3481
		thresholds = &memcg->memsw_thresholds;
3482
		usage = mem_cgroup_usage(memcg, true);
3483
	} else
3484 3485
		BUG();

3486 3487 3488
	if (!thresholds->primary)
		goto unlock;

3489 3490 3491 3492
	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
3493 3494 3495
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
3496 3497 3498
			size++;
	}

3499
	new = thresholds->spare;
3500

3501 3502
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
3503 3504
		kfree(new);
		new = NULL;
3505
		goto swap_buffers;
3506 3507
	}

3508
	new->size = size;
3509 3510

	/* Copy thresholds and find current threshold */
3511 3512 3513
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
3514 3515
			continue;

3516
		new->entries[j] = thresholds->primary->entries[i];
3517
		if (new->entries[j].threshold <= usage) {
3518
			/*
3519
			 * new->current_threshold will not be used
3520 3521 3522
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
3523
			++new->current_threshold;
3524 3525 3526 3527
		}
		j++;
	}

3528
swap_buffers:
3529 3530
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
3531

3532
	rcu_assign_pointer(thresholds->primary, new);
3533

3534
	/* To be sure that nobody uses thresholds */
3535
	synchronize_rcu();
3536 3537 3538 3539 3540 3541

	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}
3542
unlock:
3543 3544
	mutex_unlock(&memcg->thresholds_lock);
}
3545

3546
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3547 3548
	struct eventfd_ctx *eventfd)
{
3549
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
3550 3551
}

3552
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3553 3554
	struct eventfd_ctx *eventfd)
{
3555
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
3556 3557
}

3558
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3559
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
3560 3561 3562 3563 3564 3565 3566
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

3567
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3568 3569 3570 3571 3572

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
3573
	if (memcg->under_oom)
K
KAMEZAWA Hiroyuki 已提交
3574
		eventfd_signal(eventfd, 1);
3575
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3576 3577 3578 3579

	return 0;
}

3580
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3581
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
3582 3583 3584
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

3585
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3586

3587
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
3588 3589 3590 3591 3592 3593
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

3594
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3595 3596
}

3597
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3598
{
3599
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3600

3601
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3602
	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3603 3604 3605
	return 0;
}

3606
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3607 3608
	struct cftype *cft, u64 val)
{
3609
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3610 3611

	/* cannot set to root cgroup and only 0 and 1 are allowed */
3612
	if (!css->parent || !((val == 0) || (val == 1)))
3613 3614
		return -EINVAL;

3615
	memcg->oom_kill_disable = val;
3616
	if (!val)
3617
		memcg_oom_recover(memcg);
3618

3619 3620 3621
	return 0;
}

3622 3623 3624 3625 3626 3627 3628
#ifdef CONFIG_CGROUP_WRITEBACK

struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
{
	return &memcg->cgwb_list;
}

T
Tejun Heo 已提交
3629 3630 3631 3632 3633 3634 3635 3636 3637 3638
static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return wb_domain_init(&memcg->cgwb_domain, gfp);
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
	wb_domain_exit(&memcg->cgwb_domain);
}

3639 3640 3641 3642 3643
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
	wb_domain_size_changed(&memcg->cgwb_domain);
}

T
Tejun Heo 已提交
3644 3645 3646 3647 3648 3649 3650 3651 3652 3653
struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);

	if (!memcg->css.parent)
		return NULL;

	return &memcg->cgwb_domain;
}

3654 3655 3656
/**
 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
 * @wb: bdi_writeback in question
3657 3658
 * @pfilepages: out parameter for number of file pages
 * @pheadroom: out parameter for number of allocatable pages according to memcg
3659 3660 3661
 * @pdirty: out parameter for number of dirty pages
 * @pwriteback: out parameter for number of pages under writeback
 *
3662 3663 3664
 * Determine the numbers of file, headroom, dirty, and writeback pages in
 * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
 * is a bit more involved.
3665
 *
3666 3667 3668 3669 3670
 * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
 * headroom is calculated as the lowest headroom of itself and the
 * ancestors.  Note that this doesn't consider the actual amount of
 * available memory in the system.  The caller should further cap
 * *@pheadroom accordingly.
3671
 */
3672 3673 3674
void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
			 unsigned long *pheadroom, unsigned long *pdirty,
			 unsigned long *pwriteback)
3675 3676 3677 3678 3679 3680 3681 3682
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
	struct mem_cgroup *parent;

	*pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);

	/* this should eventually include NR_UNSTABLE_NFS */
	*pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3683 3684 3685
	*pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
						     (1 << LRU_ACTIVE_FILE));
	*pheadroom = PAGE_COUNTER_MAX;
3686 3687 3688 3689 3690

	while ((parent = parent_mem_cgroup(memcg))) {
		unsigned long ceiling = min(memcg->memory.limit, memcg->high);
		unsigned long used = page_counter_read(&memcg->memory);

3691
		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3692 3693 3694 3695
		memcg = parent;
	}
}

T
Tejun Heo 已提交
3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706
#else	/* CONFIG_CGROUP_WRITEBACK */

static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return 0;
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
}

3707 3708 3709 3710
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
}

3711 3712
#endif	/* CONFIG_CGROUP_WRITEBACK */

3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

3726 3727 3728 3729 3730
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
3731
static void memcg_event_remove(struct work_struct *work)
3732
{
3733 3734
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
3735
	struct mem_cgroup *memcg = event->memcg;
3736 3737 3738

	remove_wait_queue(event->wqh, &event->wait);

3739
	event->unregister_event(memcg, event->eventfd);
3740 3741 3742 3743 3744 3745

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
3746
	css_put(&memcg->css);
3747 3748 3749 3750 3751 3752 3753
}

/*
 * Gets called on POLLHUP on eventfd when user closes it.
 *
 * Called with wqh->lock held and interrupts disabled.
 */
3754 3755
static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
			    int sync, void *key)
3756
{
3757 3758
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
3759
	struct mem_cgroup *memcg = event->memcg;
3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771
	unsigned long flags = (unsigned long)key;

	if (flags & POLLHUP) {
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
3772
		spin_lock(&memcg->event_list_lock);
3773 3774 3775 3776 3777 3778 3779 3780
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
3781
		spin_unlock(&memcg->event_list_lock);
3782 3783 3784 3785 3786
	}

	return 0;
}

3787
static void memcg_event_ptable_queue_proc(struct file *file,
3788 3789
		wait_queue_head_t *wqh, poll_table *pt)
{
3790 3791
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
3792 3793 3794 3795 3796 3797

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
3798 3799
 * DO NOT USE IN NEW FILES.
 *
3800 3801 3802 3803 3804
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
3805 3806
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
					 char *buf, size_t nbytes, loff_t off)
3807
{
3808
	struct cgroup_subsys_state *css = of_css(of);
3809
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3810
	struct mem_cgroup_event *event;
3811 3812 3813 3814
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
3815
	const char *name;
3816 3817 3818
	char *endp;
	int ret;

3819 3820 3821
	buf = strstrip(buf);

	efd = simple_strtoul(buf, &endp, 10);
3822 3823
	if (*endp != ' ')
		return -EINVAL;
3824
	buf = endp + 1;
3825

3826
	cfd = simple_strtoul(buf, &endp, 10);
3827 3828
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
3829
	buf = endp + 1;
3830 3831 3832 3833 3834

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

3835
	event->memcg = memcg;
3836
	INIT_LIST_HEAD(&event->list);
3837 3838 3839
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
	if (ret < 0)
		goto out_put_cfile;

3865 3866 3867 3868 3869
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
3870 3871
	 *
	 * DO NOT ADD NEW FILES.
3872
	 */
A
Al Viro 已提交
3873
	name = cfile.file->f_path.dentry->d_name.name;
3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
3885 3886
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
3887 3888 3889 3890 3891
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

3892
	/*
3893 3894 3895
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
3896
	 */
A
Al Viro 已提交
3897
	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3898
					       &memory_cgrp_subsys);
3899
	ret = -EINVAL;
3900
	if (IS_ERR(cfile_css))
3901
		goto out_put_cfile;
3902 3903
	if (cfile_css != css) {
		css_put(cfile_css);
3904
		goto out_put_cfile;
3905
	}
3906

3907
	ret = event->register_event(memcg, event->eventfd, buf);
3908 3909 3910 3911 3912
	if (ret)
		goto out_put_css;

	efile.file->f_op->poll(efile.file, &event->pt);

3913 3914 3915
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
3916 3917 3918 3919

	fdput(cfile);
	fdput(efile);

3920
	return nbytes;
3921 3922

out_put_css:
3923
	css_put(css);
3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

3936
static struct cftype mem_cgroup_legacy_files[] = {
B
Balbir Singh 已提交
3937
	{
3938
		.name = "usage_in_bytes",
3939
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3940
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
3941
	},
3942 3943
	{
		.name = "max_usage_in_bytes",
3944
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3945
		.write = mem_cgroup_reset,
3946
		.read_u64 = mem_cgroup_read_u64,
3947
	},
B
Balbir Singh 已提交
3948
	{
3949
		.name = "limit_in_bytes",
3950
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3951
		.write = mem_cgroup_write,
3952
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
3953
	},
3954 3955 3956
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3957
		.write = mem_cgroup_write,
3958
		.read_u64 = mem_cgroup_read_u64,
3959
	},
B
Balbir Singh 已提交
3960 3961
	{
		.name = "failcnt",
3962
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3963
		.write = mem_cgroup_reset,
3964
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
3965
	},
3966 3967
	{
		.name = "stat",
3968
		.seq_show = memcg_stat_show,
3969
	},
3970 3971
	{
		.name = "force_empty",
3972
		.write = mem_cgroup_force_empty_write,
3973
	},
3974 3975 3976 3977 3978
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
3979
	{
3980
		.name = "cgroup.event_control",		/* XXX: for compat */
3981
		.write = memcg_write_event_control,
3982
		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
3983
	},
K
KOSAKI Motohiro 已提交
3984 3985 3986 3987 3988
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
3989 3990 3991 3992 3993
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
3994 3995
	{
		.name = "oom_control",
3996
		.seq_show = mem_cgroup_oom_control_read,
3997
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
3998 3999
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4000 4001 4002
	{
		.name = "pressure_level",
	},
4003 4004 4005
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
4006
		.seq_show = memcg_numa_stat_show,
4007 4008
	},
#endif
4009 4010 4011
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4012
		.write = mem_cgroup_write,
4013
		.read_u64 = mem_cgroup_read_u64,
4014 4015 4016 4017
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4018
		.read_u64 = mem_cgroup_read_u64,
4019 4020 4021 4022
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4023
		.write = mem_cgroup_reset,
4024
		.read_u64 = mem_cgroup_read_u64,
4025 4026 4027 4028
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4029
		.write = mem_cgroup_reset,
4030
		.read_u64 = mem_cgroup_read_u64,
4031
	},
4032 4033 4034
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
4035 4036 4037 4038
		.seq_start = slab_start,
		.seq_next = slab_next,
		.seq_stop = slab_stop,
		.seq_show = memcg_slab_show,
4039 4040
	},
#endif
V
Vladimir Davydov 已提交
4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063
	{
		.name = "kmem.tcp.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.failcnt",
		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
4064
	{ },	/* terminate */
4065
};
4066

4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092
/*
 * Private memory cgroup IDR
 *
 * Swap-out records and page cache shadow entries need to store memcg
 * references in constrained space, so we maintain an ID space that is
 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
 * memory-controlled cgroups to 64k.
 *
 * However, there usually are many references to the oflline CSS after
 * the cgroup has been destroyed, such as page cache or reclaimable
 * slab objects, that don't need to hang on to the ID. We want to keep
 * those dead CSS from occupying IDs, or we might quickly exhaust the
 * relatively small ID space and prevent the creation of new cgroups
 * even when there are much fewer than 64k cgroups - possibly none.
 *
 * Maintain a private 16-bit ID space for memcg, and allow the ID to
 * be freed and recycled when it's no longer needed, which is usually
 * when the CSS is offlined.
 *
 * The only exception to that are records of swapped out tmpfs/shmem
 * pages that need to be attributed to live ancestors on swapin. But
 * those references are manageable from userspace.
 */

static DEFINE_IDR(mem_cgroup_idr);

4093
static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4094
{
4095
	atomic_add(n, &memcg->id.ref);
4096 4097
}

4098
static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4099
{
4100
	if (atomic_sub_and_test(n, &memcg->id.ref)) {
4101 4102 4103 4104 4105 4106 4107 4108
		idr_remove(&mem_cgroup_idr, memcg->id.id);
		memcg->id.id = 0;

		/* Memcg ID pins CSS */
		css_put(&memcg->css);
	}
}

4109 4110 4111 4112 4113 4114 4115 4116 4117 4118
static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
{
	mem_cgroup_id_get_many(memcg, 1);
}

static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
{
	mem_cgroup_id_put_many(memcg, 1);
}

4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130
/**
 * mem_cgroup_from_id - look up a memcg from a memcg id
 * @id: the memcg id to look up
 *
 * Caller must hold rcu_read_lock().
 */
struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	WARN_ON_ONCE(!rcu_read_lock_held());
	return idr_find(&mem_cgroup_idr, id);
}

4131
static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4132 4133
{
	struct mem_cgroup_per_node *pn;
4134
	int tmp = node;
4135 4136 4137 4138 4139 4140 4141 4142
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4143 4144
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4145
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4146 4147
	if (!pn)
		return 1;
4148

4149 4150 4151 4152 4153
	lruvec_init(&pn->lruvec);
	pn->usage_in_excess = 0;
	pn->on_tree = false;
	pn->memcg = memcg;

4154
	memcg->nodeinfo[node] = pn;
4155 4156 4157
	return 0;
}

4158
static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4159
{
4160
	kfree(memcg->nodeinfo[node]);
4161 4162
}

4163
static void mem_cgroup_free(struct mem_cgroup *memcg)
4164
{
4165
	int node;
4166

4167
	memcg_wb_domain_exit(memcg);
4168
	for_each_node(node)
4169
		free_mem_cgroup_per_node_info(memcg, node);
4170
	free_percpu(memcg->stat);
4171
	kfree(memcg);
4172
}
4173

4174
static struct mem_cgroup *mem_cgroup_alloc(void)
B
Balbir Singh 已提交
4175
{
4176
	struct mem_cgroup *memcg;
4177
	size_t size;
4178
	int node;
B
Balbir Singh 已提交
4179

4180 4181 4182 4183
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);

	memcg = kzalloc(size, GFP_KERNEL);
4184
	if (!memcg)
4185 4186
		return NULL;

4187 4188 4189 4190 4191 4192
	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
				 1, MEM_CGROUP_ID_MAX,
				 GFP_KERNEL);
	if (memcg->id.id < 0)
		goto fail;

4193 4194 4195
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
		goto fail;
4196

B
Bob Liu 已提交
4197
	for_each_node(node)
4198
		if (alloc_mem_cgroup_per_node_info(memcg, node))
4199
			goto fail;
4200

4201 4202
	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
		goto fail;
4203

4204
	INIT_WORK(&memcg->high_work, high_work_func);
4205 4206 4207 4208
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
4209
	vmpressure_init(&memcg->vmpressure);
4210 4211
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
4212
	memcg->socket_pressure = jiffies;
4213
#ifndef CONFIG_SLOB
V
Vladimir Davydov 已提交
4214 4215
	memcg->kmemcg_id = -1;
#endif
4216 4217 4218
#ifdef CONFIG_CGROUP_WRITEBACK
	INIT_LIST_HEAD(&memcg->cgwb_list);
#endif
4219
	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4220 4221
	return memcg;
fail:
4222 4223
	if (memcg->id.id > 0)
		idr_remove(&mem_cgroup_idr, memcg->id.id);
4224 4225
	mem_cgroup_free(memcg);
	return NULL;
4226 4227
}

4228 4229
static struct cgroup_subsys_state * __ref
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4230
{
4231 4232 4233
	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
	struct mem_cgroup *memcg;
	long error = -ENOMEM;
4234

4235 4236 4237
	memcg = mem_cgroup_alloc();
	if (!memcg)
		return ERR_PTR(error);
4238

4239 4240 4241 4242 4243 4244 4245 4246
	memcg->high = PAGE_COUNTER_MAX;
	memcg->soft_limit = PAGE_COUNTER_MAX;
	if (parent) {
		memcg->swappiness = mem_cgroup_swappiness(parent);
		memcg->oom_kill_disable = parent->oom_kill_disable;
	}
	if (parent && parent->use_hierarchy) {
		memcg->use_hierarchy = true;
4247
		page_counter_init(&memcg->memory, &parent->memory);
4248
		page_counter_init(&memcg->swap, &parent->swap);
4249 4250
		page_counter_init(&memcg->memsw, &parent->memsw);
		page_counter_init(&memcg->kmem, &parent->kmem);
4251
		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4252
	} else {
4253
		page_counter_init(&memcg->memory, NULL);
4254
		page_counter_init(&memcg->swap, NULL);
4255 4256
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
4257
		page_counter_init(&memcg->tcpmem, NULL);
4258 4259 4260 4261 4262
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
4263
		if (parent != root_mem_cgroup)
4264
			memory_cgrp_subsys.broken_hierarchy = true;
4265
	}
4266

4267 4268 4269 4270 4271 4272
	/* The following stuff does not apply to the root */
	if (!parent) {
		root_mem_cgroup = memcg;
		return &memcg->css;
	}

4273
	error = memcg_online_kmem(memcg);
4274 4275
	if (error)
		goto fail;
4276

4277
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4278
		static_branch_inc(&memcg_sockets_enabled_key);
4279

4280 4281 4282
	return &memcg->css;
fail:
	mem_cgroup_free(memcg);
4283
	return ERR_PTR(-ENOMEM);
4284 4285
}

4286
static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
4287
{
4288 4289 4290
	/* Online state pins memcg ID, memcg ID pins CSS */
	mem_cgroup_id_get(mem_cgroup_from_css(css));
	css_get(css);
4291
	return 0;
B
Balbir Singh 已提交
4292 4293
}

4294
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4295
{
4296
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4297
	struct mem_cgroup_event *event, *tmp;
4298 4299 4300 4301 4302 4303

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
4304 4305
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4306 4307 4308
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
4309
	spin_unlock(&memcg->event_list_lock);
4310

4311
	memcg_offline_kmem(memcg);
4312
	wb_memcg_offline(memcg);
4313 4314

	mem_cgroup_id_put(memcg);
4315 4316
}

4317 4318 4319 4320 4321 4322 4323
static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	invalidate_reclaim_iterators(memcg);
}

4324
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
4325
{
4326
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4327

4328
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4329
		static_branch_dec(&memcg_sockets_enabled_key);
4330

4331
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
V
Vladimir Davydov 已提交
4332
		static_branch_dec(&memcg_sockets_enabled_key);
4333

4334 4335 4336
	vmpressure_cleanup(&memcg->vmpressure);
	cancel_work_sync(&memcg->high_work);
	mem_cgroup_remove_from_trees(memcg);
4337
	memcg_free_kmem(memcg);
4338
	mem_cgroup_free(memcg);
B
Balbir Singh 已提交
4339 4340
}

4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357
/**
 * mem_cgroup_css_reset - reset the states of a mem_cgroup
 * @css: the target css
 *
 * Reset the states of the mem_cgroup associated with @css.  This is
 * invoked when the userland requests disabling on the default hierarchy
 * but the memcg is pinned through dependency.  The memcg should stop
 * applying policies and should revert to the vanilla state as it may be
 * made visible again.
 *
 * The current implementation only resets the essential configurations.
 * This needs to be expanded to cover all the visible parts.
 */
static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

4358 4359 4360 4361 4362
	page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
	page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
	page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
	page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
	page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
4363 4364
	memcg->low = 0;
	memcg->high = PAGE_COUNTER_MAX;
4365
	memcg->soft_limit = PAGE_COUNTER_MAX;
4366
	memcg_wb_domain_size_changed(memcg);
4367 4368
}

4369
#ifdef CONFIG_MMU
4370
/* Handlers for move charge at task migration. */
4371
static int mem_cgroup_do_precharge(unsigned long count)
4372
{
4373
	int ret;
4374

4375 4376
	/* Try a single bulk charge without reclaim first, kswapd may wake */
	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4377
	if (!ret) {
4378 4379 4380
		mc.precharge += count;
		return ret;
	}
4381 4382

	/* Try charges one by one with reclaim */
4383
	while (count--) {
4384
		ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4385 4386
		if (ret)
			return ret;
4387
		mc.precharge++;
4388
		cond_resched();
4389
	}
4390
	return 0;
4391 4392 4393 4394
}

union mc_target {
	struct page	*page;
4395
	swp_entry_t	ent;
4396 4397 4398
};

enum mc_target_type {
4399
	MC_TARGET_NONE = 0,
4400
	MC_TARGET_PAGE,
4401
	MC_TARGET_SWAP,
4402 4403
};

D
Daisuke Nishimura 已提交
4404 4405
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
4406
{
D
Daisuke Nishimura 已提交
4407
	struct page *page = vm_normal_page(vma, addr, ptent);
4408

D
Daisuke Nishimura 已提交
4409 4410 4411
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
4412
		if (!(mc.flags & MOVE_ANON))
D
Daisuke Nishimura 已提交
4413
			return NULL;
4414 4415 4416 4417
	} else {
		if (!(mc.flags & MOVE_FILE))
			return NULL;
	}
D
Daisuke Nishimura 已提交
4418 4419 4420 4421 4422 4423
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

4424
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
4425
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4426
			pte_t ptent, swp_entry_t *entry)
D
Daisuke Nishimura 已提交
4427 4428 4429 4430
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

4431
	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
D
Daisuke Nishimura 已提交
4432
		return NULL;
4433 4434 4435 4436
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
4437
	page = find_get_page(swap_address_space(ent), ent.val);
4438
	if (do_memsw_account())
D
Daisuke Nishimura 已提交
4439 4440 4441 4442
		entry->val = ent.val;

	return page;
}
4443 4444
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4445
			pte_t ptent, swp_entry_t *entry)
4446 4447 4448 4449
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
4450

4451 4452 4453 4454 4455 4456 4457 4458 4459
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
4460
	if (!(mc.flags & MOVE_FILE))
4461 4462 4463
		return NULL;

	mapping = vma->vm_file->f_mapping;
4464
	pgoff = linear_page_index(vma, addr);
4465 4466

	/* page is moved even if it's not RSS of this task(page-faulted). */
4467 4468
#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
4469 4470 4471 4472
	if (shmem_mapping(mapping)) {
		page = find_get_entry(mapping, pgoff);
		if (radix_tree_exceptional_entry(page)) {
			swp_entry_t swp = radix_to_swp_entry(page);
4473
			if (do_memsw_account())
4474 4475 4476 4477 4478 4479 4480
				*entry = swp;
			page = find_get_page(swap_address_space(swp), swp.val);
		}
	} else
		page = find_get_page(mapping, pgoff);
#else
	page = find_get_page(mapping, pgoff);
4481
#endif
4482 4483 4484
	return page;
}

4485 4486 4487
/**
 * mem_cgroup_move_account - move account of the page
 * @page: the page
4488
 * @compound: charge the page as compound or small page
4489 4490 4491
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
4492
 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4493 4494 4495 4496 4497
 *
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
 */
static int mem_cgroup_move_account(struct page *page,
4498
				   bool compound,
4499 4500 4501 4502
				   struct mem_cgroup *from,
				   struct mem_cgroup *to)
{
	unsigned long flags;
4503
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4504
	int ret;
4505
	bool anon;
4506 4507 4508

	VM_BUG_ON(from == to);
	VM_BUG_ON_PAGE(PageLRU(page), page);
4509
	VM_BUG_ON(compound && !PageTransHuge(page));
4510 4511

	/*
4512
	 * Prevent mem_cgroup_migrate() from looking at
4513
	 * page->mem_cgroup of its source page while we change it.
4514
	 */
4515
	ret = -EBUSY;
4516 4517 4518 4519 4520 4521 4522
	if (!trylock_page(page))
		goto out;

	ret = -EINVAL;
	if (page->mem_cgroup != from)
		goto out_unlock;

4523 4524
	anon = PageAnon(page);

4525 4526
	spin_lock_irqsave(&from->move_lock, flags);

4527
	if (!anon && page_mapped(page)) {
4528 4529 4530 4531 4532 4533
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
	}

4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549
	/*
	 * move_lock grabbed above and caller set from->moving_account, so
	 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
	 * So mapping should be stable for dirty pages.
	 */
	if (!anon && PageDirty(page)) {
		struct address_space *mapping = page_mapping(page);

		if (mapping_cap_account_dirty(mapping)) {
			__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
				       nr_pages);
			__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
				       nr_pages);
		}
	}

4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569
	if (PageWriteback(page)) {
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
	}

	/*
	 * It is safe to change page->mem_cgroup here because the page
	 * is referenced, charged, and isolated - we can't race with
	 * uncharging, charging, migration, or LRU putback.
	 */

	/* caller should have done css_get */
	page->mem_cgroup = to;
	spin_unlock_irqrestore(&from->move_lock, flags);

	ret = 0;

	local_irq_disable();
4570
	mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4571
	memcg_check_events(to, page);
4572
	mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4573 4574 4575 4576 4577 4578 4579 4580
	memcg_check_events(from, page);
	local_irq_enable();
out_unlock:
	unlock_page(page);
out:
	return ret;
}

4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599
/**
 * get_mctgt_type - get target type of moving charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
 *
 * Called with pte lock held.
 */

4600
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
4601 4602 4603
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
4604
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
4605 4606 4607 4608 4609
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
4610
		page = mc_handle_swap_pte(vma, ptent, &ent);
4611
	else if (pte_none(ptent))
4612
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
4613 4614

	if (!page && !ent.val)
4615
		return ret;
4616 4617
	if (page) {
		/*
4618
		 * Do only loose check w/o serialization.
4619
		 * mem_cgroup_move_account() checks the page is valid or
4620
		 * not under LRU exclusion.
4621
		 */
4622
		if (page->mem_cgroup == mc.from) {
4623 4624 4625 4626 4627 4628 4629
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
4630 4631
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
L
Li Zefan 已提交
4632
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4633 4634 4635
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
4636 4637 4638 4639
	}
	return ret;
}

4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
4653
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4654
	if (!(mc.flags & MOVE_ANON))
4655
		return ret;
4656
	if (page->mem_cgroup == mc.from) {
4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

4673 4674 4675 4676
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
4677
	struct vm_area_struct *vma = walk->vma;
4678 4679 4680
	pte_t *pte;
	spinlock_t *ptl;

4681 4682
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
4683 4684
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
4685
		spin_unlock(ptl);
4686
		return 0;
4687
	}
4688

4689 4690
	if (pmd_trans_unstable(pmd))
		return 0;
4691 4692
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
4693
		if (get_mctgt_type(vma, addr, *pte, NULL))
4694 4695 4696 4697
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

4698 4699 4700
	return 0;
}

4701 4702 4703 4704
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;

4705 4706 4707 4708
	struct mm_walk mem_cgroup_count_precharge_walk = {
		.pmd_entry = mem_cgroup_count_precharge_pte_range,
		.mm = mm,
	};
4709
	down_read(&mm->mmap_sem);
4710
	walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4711
	up_read(&mm->mmap_sem);
4712 4713 4714 4715 4716 4717 4718 4719 4720

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
4721 4722 4723 4724 4725
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
4726 4727
}

4728 4729
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
4730
{
4731 4732 4733
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

4734
	/* we must uncharge all the leftover precharges from mc.to */
4735
	if (mc.precharge) {
4736
		cancel_charge(mc.to, mc.precharge);
4737 4738 4739 4740 4741 4742 4743
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
4744
		cancel_charge(mc.from, mc.moved_charge);
4745
		mc.moved_charge = 0;
4746
	}
4747 4748 4749
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
4750
		if (!mem_cgroup_is_root(mc.from))
4751
			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4752

4753 4754
		mem_cgroup_id_put_many(mc.from, mc.moved_swap);

4755
		/*
4756 4757
		 * we charged both to->memory and to->memsw, so we
		 * should uncharge to->memory.
4758
		 */
4759
		if (!mem_cgroup_is_root(mc.to))
4760 4761
			page_counter_uncharge(&mc.to->memory, mc.moved_swap);

4762 4763
		mem_cgroup_id_get_many(mc.to, mc.moved_swap);
		css_put_many(&mc.to->css, mc.moved_swap);
4764

4765 4766
		mc.moved_swap = 0;
	}
4767 4768 4769 4770 4771 4772 4773
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
4774 4775
	struct mm_struct *mm = mc.mm;

4776 4777 4778 4779 4780 4781
	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
4782
	spin_lock(&mc.lock);
4783 4784
	mc.from = NULL;
	mc.to = NULL;
4785
	mc.mm = NULL;
4786
	spin_unlock(&mc.lock);
4787 4788

	mmput(mm);
4789 4790
}

4791
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4792
{
4793
	struct cgroup_subsys_state *css;
4794
	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4795
	struct mem_cgroup *from;
4796
	struct task_struct *leader, *p;
4797
	struct mm_struct *mm;
4798
	unsigned long move_flags;
4799
	int ret = 0;
4800

4801 4802
	/* charge immigration isn't supported on the default hierarchy */
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4803 4804
		return 0;

4805 4806 4807 4808 4809 4810 4811
	/*
	 * Multi-process migrations only happen on the default hierarchy
	 * where charge immigration is not used.  Perform charge
	 * immigration if @tset contains a leader and whine if there are
	 * multiple.
	 */
	p = NULL;
4812
	cgroup_taskset_for_each_leader(leader, css, tset) {
4813 4814
		WARN_ON_ONCE(p);
		p = leader;
4815
		memcg = mem_cgroup_from_css(css);
4816 4817 4818 4819
	}
	if (!p)
		return 0;

4820 4821 4822 4823 4824 4825 4826 4827 4828
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
	if (!move_flags)
		return 0;

4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844
	from = mem_cgroup_from_task(p);

	VM_BUG_ON(from == memcg);

	mm = get_task_mm(p);
	if (!mm)
		return 0;
	/* We move charges only when we move a owner of the mm */
	if (mm->owner == p) {
		VM_BUG_ON(mc.from);
		VM_BUG_ON(mc.to);
		VM_BUG_ON(mc.precharge);
		VM_BUG_ON(mc.moved_charge);
		VM_BUG_ON(mc.moved_swap);

		spin_lock(&mc.lock);
4845
		mc.mm = mm;
4846 4847 4848 4849 4850 4851 4852 4853 4854
		mc.from = from;
		mc.to = memcg;
		mc.flags = move_flags;
		spin_unlock(&mc.lock);
		/* We set mc.moving_task later */

		ret = mem_cgroup_precharge_mc(mm);
		if (ret)
			mem_cgroup_clear_mc();
4855 4856
	} else {
		mmput(mm);
4857 4858 4859 4860
	}
	return ret;
}

4861
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4862
{
4863 4864
	if (mc.to)
		mem_cgroup_clear_mc();
4865 4866
}

4867 4868 4869
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
4870
{
4871
	int ret = 0;
4872
	struct vm_area_struct *vma = walk->vma;
4873 4874
	pte_t *pte;
	spinlock_t *ptl;
4875 4876 4877
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
4878

4879 4880
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
4881
		if (mc.precharge < HPAGE_PMD_NR) {
4882
			spin_unlock(ptl);
4883 4884 4885 4886 4887 4888
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
4889
				if (!mem_cgroup_move_account(page, true,
4890
							     mc.from, mc.to)) {
4891 4892 4893 4894 4895 4896 4897
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
4898
		spin_unlock(ptl);
4899
		return 0;
4900 4901
	}

4902 4903
	if (pmd_trans_unstable(pmd))
		return 0;
4904 4905 4906 4907
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
4908
		swp_entry_t ent;
4909 4910 4911 4912

		if (!mc.precharge)
			break;

4913
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
4914 4915
		case MC_TARGET_PAGE:
			page = target.page;
4916 4917 4918 4919 4920 4921 4922 4923
			/*
			 * We can have a part of the split pmd here. Moving it
			 * can be done but it would be too convoluted so simply
			 * ignore such a partial THP and keep it in original
			 * memcg. There should be somebody mapping the head.
			 */
			if (PageTransCompound(page))
				goto put;
4924 4925
			if (isolate_lru_page(page))
				goto put;
4926 4927
			if (!mem_cgroup_move_account(page, false,
						mc.from, mc.to)) {
4928
				mc.precharge--;
4929 4930
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
4931 4932
			}
			putback_lru_page(page);
4933
put:			/* get_mctgt_type() gets the page */
4934 4935
			put_page(page);
			break;
4936 4937
		case MC_TARGET_SWAP:
			ent = target.ent;
4938
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4939
				mc.precharge--;
4940 4941 4942
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
4943
			break;
4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
4958
		ret = mem_cgroup_do_precharge(1);
4959 4960 4961 4962 4963 4964 4965
		if (!ret)
			goto retry;
	}

	return ret;
}

4966
static void mem_cgroup_move_charge(void)
4967
{
4968 4969
	struct mm_walk mem_cgroup_move_charge_walk = {
		.pmd_entry = mem_cgroup_move_charge_pte_range,
4970
		.mm = mc.mm,
4971
	};
4972 4973

	lru_add_drain_all();
4974
	/*
4975 4976 4977
	 * Signal lock_page_memcg() to take the memcg's move_lock
	 * while we're moving its pages to another memcg. Then wait
	 * for already started RCU-only updates to finish.
4978 4979 4980
	 */
	atomic_inc(&mc.from->moving_account);
	synchronize_rcu();
4981
retry:
4982
	if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
4994 4995 4996 4997 4998
	/*
	 * When we have consumed all precharges and failed in doing
	 * additional charge, the page walk just aborts.
	 */
	walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
4999
	up_read(&mc.mm->mmap_sem);
5000
	atomic_dec(&mc.from->moving_account);
5001 5002
}

5003
static void mem_cgroup_move_task(void)
B
Balbir Singh 已提交
5004
{
5005 5006
	if (mc.to) {
		mem_cgroup_move_charge();
5007
		mem_cgroup_clear_mc();
5008
	}
B
Balbir Singh 已提交
5009
}
5010
#else	/* !CONFIG_MMU */
5011
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5012 5013 5014
{
	return 0;
}
5015
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5016 5017
{
}
5018
static void mem_cgroup_move_task(void)
5019 5020 5021
{
}
#endif
B
Balbir Singh 已提交
5022

5023 5024
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5025 5026
 * to verify whether we're attached to the default hierarchy on each mount
 * attempt.
5027
 */
5028
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5029 5030
{
	/*
5031
	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5032 5033 5034
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
5035
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5036 5037 5038
		root_mem_cgroup->use_hierarchy = true;
	else
		root_mem_cgroup->use_hierarchy = false;
5039 5040
}

5041 5042 5043
static u64 memory_current_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
{
5044 5045 5046
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5047 5048 5049 5050 5051
}

static int memory_low_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5052
	unsigned long low = READ_ONCE(memcg->low);
5053 5054

	if (low == PAGE_COUNTER_MAX)
5055
		seq_puts(m, "max\n");
5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069
	else
		seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);

	return 0;
}

static ssize_t memory_low_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long low;
	int err;

	buf = strstrip(buf);
5070
	err = page_counter_memparse(buf, "max", &low);
5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081
	if (err)
		return err;

	memcg->low = low;

	return nbytes;
}

static int memory_high_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5082
	unsigned long high = READ_ONCE(memcg->high);
5083 5084

	if (high == PAGE_COUNTER_MAX)
5085
		seq_puts(m, "max\n");
5086 5087 5088 5089 5090 5091 5092 5093 5094 5095
	else
		seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);

	return 0;
}

static ssize_t memory_high_write(struct kernfs_open_file *of,
				 char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5096
	unsigned long nr_pages;
5097 5098 5099 5100
	unsigned long high;
	int err;

	buf = strstrip(buf);
5101
	err = page_counter_memparse(buf, "max", &high);
5102 5103 5104 5105 5106
	if (err)
		return err;

	memcg->high = high;

5107 5108 5109 5110 5111
	nr_pages = page_counter_read(&memcg->memory);
	if (nr_pages > high)
		try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
					     GFP_KERNEL, true);

5112
	memcg_wb_domain_size_changed(memcg);
5113 5114 5115 5116 5117 5118
	return nbytes;
}

static int memory_max_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5119
	unsigned long max = READ_ONCE(memcg->memory.limit);
5120 5121

	if (max == PAGE_COUNTER_MAX)
5122
		seq_puts(m, "max\n");
5123 5124 5125 5126 5127 5128 5129 5130 5131 5132
	else
		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);

	return 0;
}

static ssize_t memory_max_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5133 5134
	unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
	bool drained = false;
5135 5136 5137 5138
	unsigned long max;
	int err;

	buf = strstrip(buf);
5139
	err = page_counter_memparse(buf, "max", &max);
5140 5141 5142
	if (err)
		return err;

5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172
	xchg(&memcg->memory.limit, max);

	for (;;) {
		unsigned long nr_pages = page_counter_read(&memcg->memory);

		if (nr_pages <= max)
			break;

		if (signal_pending(current)) {
			err = -EINTR;
			break;
		}

		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

		if (nr_reclaims) {
			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
							  GFP_KERNEL, true))
				nr_reclaims--;
			continue;
		}

		mem_cgroup_events(memcg, MEMCG_OOM, 1);
		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
			break;
	}
5173

5174
	memcg_wb_domain_size_changed(memcg);
5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189
	return nbytes;
}

static int memory_events_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));

	seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
	seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
	seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
	seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));

	return 0;
}

5190 5191 5192
static int memory_stat_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5193 5194
	unsigned long stat[MEMCG_NR_STAT];
	unsigned long events[MEMCG_NR_EVENTS];
5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207
	int i;

	/*
	 * Provide statistics on the state of the memory subsystem as
	 * well as cumulative event counters that show past behavior.
	 *
	 * This list is ordered following a combination of these gradients:
	 * 1) generic big picture -> specifics and details
	 * 2) reflecting userspace activity -> reflecting kernel heuristics
	 *
	 * Current memory state:
	 */

5208 5209 5210
	tree_stat(memcg, stat);
	tree_events(memcg, events);

5211
	seq_printf(m, "anon %llu\n",
5212
		   (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE);
5213
	seq_printf(m, "file %llu\n",
5214
		   (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE);
5215
	seq_printf(m, "kernel_stack %llu\n",
5216
		   (u64)stat[MEMCG_KERNEL_STACK_KB] * 1024);
5217 5218 5219
	seq_printf(m, "slab %llu\n",
		   (u64)(stat[MEMCG_SLAB_RECLAIMABLE] +
			 stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5220
	seq_printf(m, "sock %llu\n",
5221
		   (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
5222 5223

	seq_printf(m, "file_mapped %llu\n",
5224
		   (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE);
5225
	seq_printf(m, "file_dirty %llu\n",
5226
		   (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE);
5227
	seq_printf(m, "file_writeback %llu\n",
5228
		   (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE);
5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239

	for (i = 0; i < NR_LRU_LISTS; i++) {
		struct mem_cgroup *mi;
		unsigned long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i));
		seq_printf(m, "%s %llu\n",
			   mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
	}

5240 5241 5242 5243 5244
	seq_printf(m, "slab_reclaimable %llu\n",
		   (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE);
	seq_printf(m, "slab_unreclaimable %llu\n",
		   (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE);

5245 5246 5247
	/* Accumulated memory events */

	seq_printf(m, "pgfault %lu\n",
5248
		   events[MEM_CGROUP_EVENTS_PGFAULT]);
5249
	seq_printf(m, "pgmajfault %lu\n",
5250
		   events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
5251 5252 5253 5254

	return 0;
}

5255 5256 5257
static struct cftype memory_files[] = {
	{
		.name = "current",
5258
		.flags = CFTYPE_NOT_ON_ROOT,
5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281
		.read_u64 = memory_current_read,
	},
	{
		.name = "low",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_low_show,
		.write = memory_low_write,
	},
	{
		.name = "high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_high_show,
		.write = memory_high_write,
	},
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_max_show,
		.write = memory_max_write,
	},
	{
		.name = "events",
		.flags = CFTYPE_NOT_ON_ROOT,
5282
		.file_offset = offsetof(struct mem_cgroup, events_file),
5283 5284
		.seq_show = memory_events_show,
	},
5285 5286 5287 5288 5289
	{
		.name = "stat",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_stat_show,
	},
5290 5291 5292
	{ }	/* terminate */
};

5293
struct cgroup_subsys memory_cgrp_subsys = {
5294
	.css_alloc = mem_cgroup_css_alloc,
5295
	.css_online = mem_cgroup_css_online,
5296
	.css_offline = mem_cgroup_css_offline,
5297
	.css_released = mem_cgroup_css_released,
5298
	.css_free = mem_cgroup_css_free,
5299
	.css_reset = mem_cgroup_css_reset,
5300 5301
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
5302
	.post_attach = mem_cgroup_move_task,
5303
	.bind = mem_cgroup_bind,
5304 5305
	.dfl_cftypes = memory_files,
	.legacy_cftypes = mem_cgroup_legacy_files,
5306
	.early_init = 0,
B
Balbir Singh 已提交
5307
};
5308

5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330
/**
 * mem_cgroup_low - check if memory consumption is below the normal range
 * @root: the highest ancestor to consider
 * @memcg: the memory cgroup to check
 *
 * Returns %true if memory consumption of @memcg, and that of all
 * configurable ancestors up to @root, is below the normal range.
 */
bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return false;

	/*
	 * The toplevel group doesn't have a configurable range, so
	 * it's never low when looked at directly, and it is not
	 * considered an ancestor when assessing the hierarchy.
	 */

	if (memcg == root_mem_cgroup)
		return false;

M
Michal Hocko 已提交
5331
	if (page_counter_read(&memcg->memory) >= memcg->low)
5332 5333 5334 5335 5336 5337 5338 5339
		return false;

	while (memcg != root) {
		memcg = parent_mem_cgroup(memcg);

		if (memcg == root_mem_cgroup)
			break;

M
Michal Hocko 已提交
5340
		if (page_counter_read(&memcg->memory) >= memcg->low)
5341 5342 5343 5344 5345
			return false;
	}
	return true;
}

5346 5347 5348 5349 5350 5351
/**
 * mem_cgroup_try_charge - try charging a page
 * @page: page to charge
 * @mm: mm context of the victim
 * @gfp_mask: reclaim mode
 * @memcgp: charged memcg return
5352
 * @compound: charge the page as compound or small page
5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364
 *
 * Try to charge @page to the memcg that @mm belongs to, reclaiming
 * pages according to @gfp_mask if necessary.
 *
 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
 * Otherwise, an error code is returned.
 *
 * After page->mapping has been set up, the caller must finalize the
 * charge with mem_cgroup_commit_charge().  Or abort the transaction
 * with mem_cgroup_cancel_charge() in case page instantiation fails.
 */
int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5365 5366
			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
			  bool compound)
5367 5368
{
	struct mem_cgroup *memcg = NULL;
5369
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382
	int ret = 0;

	if (mem_cgroup_disabled())
		goto out;

	if (PageSwapCache(page)) {
		/*
		 * Every swap fault against a single page tries to charge the
		 * page, bail as early as possible.  shmem_unuse() encounters
		 * already charged pages, too.  The USED bit is protected by
		 * the page lock, which serializes swap cache removal, which
		 * in turn serializes uncharging.
		 */
5383
		VM_BUG_ON_PAGE(!PageLocked(page), page);
5384
		if (page->mem_cgroup)
5385
			goto out;
5386

5387
		if (do_swap_account) {
5388 5389 5390 5391 5392 5393 5394 5395 5396
			swp_entry_t ent = { .val = page_private(page), };
			unsigned short id = lookup_swap_cgroup_id(ent);

			rcu_read_lock();
			memcg = mem_cgroup_from_id(id);
			if (memcg && !css_tryget_online(&memcg->css))
				memcg = NULL;
			rcu_read_unlock();
		}
5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414
	}

	if (!memcg)
		memcg = get_mem_cgroup_from_mm(mm);

	ret = try_charge(memcg, gfp_mask, nr_pages);

	css_put(&memcg->css);
out:
	*memcgp = memcg;
	return ret;
}

/**
 * mem_cgroup_commit_charge - commit a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 * @lrucare: page might be on LRU already
5415
 * @compound: charge the page as compound or small page
5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427
 *
 * Finalize a charge transaction started by mem_cgroup_try_charge(),
 * after page->mapping has been set up.  This must happen atomically
 * as part of the page instantiation, i.e. under the page table lock
 * for anonymous pages, under the page lock for page and swap cache.
 *
 * In addition, the page must not be on the LRU during the commit, to
 * prevent racing with task migration.  If it might be, use @lrucare.
 *
 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
 */
void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5428
			      bool lrucare, bool compound)
5429
{
5430
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444

	VM_BUG_ON_PAGE(!page->mapping, page);
	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

5445 5446 5447
	commit_charge(page, memcg, lrucare);

	local_irq_disable();
5448
	mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5449 5450
	memcg_check_events(memcg, page);
	local_irq_enable();
5451

5452
	if (do_memsw_account() && PageSwapCache(page)) {
5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466
		swp_entry_t entry = { .val = page_private(page) };
		/*
		 * The swap entry might not get freed for a long time,
		 * let's not wait for it.  The page already received a
		 * memory+swap charge, drop the swap entry duplicate.
		 */
		mem_cgroup_uncharge_swap(entry);
	}
}

/**
 * mem_cgroup_cancel_charge - cancel a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
5467
 * @compound: charge the page as compound or small page
5468 5469 5470
 *
 * Cancel a charge transaction started by mem_cgroup_try_charge().
 */
5471 5472
void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
		bool compound)
5473
{
5474
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

	cancel_charge(memcg, nr_pages);
}

5489 5490
static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
			   unsigned long nr_anon, unsigned long nr_file,
5491 5492
			   unsigned long nr_huge, unsigned long nr_kmem,
			   struct page *dummy_page)
5493
{
5494
	unsigned long nr_pages = nr_anon + nr_file + nr_kmem;
5495 5496
	unsigned long flags;

5497
	if (!mem_cgroup_is_root(memcg)) {
5498
		page_counter_uncharge(&memcg->memory, nr_pages);
5499
		if (do_memsw_account())
5500
			page_counter_uncharge(&memcg->memsw, nr_pages);
5501 5502
		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && nr_kmem)
			page_counter_uncharge(&memcg->kmem, nr_kmem);
5503 5504
		memcg_oom_recover(memcg);
	}
5505 5506 5507 5508 5509 5510

	local_irq_save(flags);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5511
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5512 5513
	memcg_check_events(memcg, dummy_page);
	local_irq_restore(flags);
5514 5515

	if (!mem_cgroup_is_root(memcg))
5516
		css_put_many(&memcg->css, nr_pages);
5517 5518 5519 5520 5521 5522 5523 5524
}

static void uncharge_list(struct list_head *page_list)
{
	struct mem_cgroup *memcg = NULL;
	unsigned long nr_anon = 0;
	unsigned long nr_file = 0;
	unsigned long nr_huge = 0;
5525
	unsigned long nr_kmem = 0;
5526 5527 5528 5529
	unsigned long pgpgout = 0;
	struct list_head *next;
	struct page *page;

5530 5531 5532 5533
	/*
	 * Note that the list can be a single page->lru; hence the
	 * do-while loop instead of a simple list_for_each_entry().
	 */
5534 5535 5536 5537 5538 5539 5540 5541
	next = page_list->next;
	do {
		page = list_entry(next, struct page, lru);
		next = page->lru.next;

		VM_BUG_ON_PAGE(PageLRU(page), page);
		VM_BUG_ON_PAGE(page_count(page), page);

5542
		if (!page->mem_cgroup)
5543 5544 5545 5546
			continue;

		/*
		 * Nobody should be changing or seriously looking at
5547
		 * page->mem_cgroup at this point, we have fully
5548
		 * exclusive access to the page.
5549 5550
		 */

5551
		if (memcg != page->mem_cgroup) {
5552
			if (memcg) {
5553
				uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5554 5555 5556
					       nr_huge, nr_kmem, page);
				pgpgout = nr_anon = nr_file =
					nr_huge = nr_kmem = 0;
5557
			}
5558
			memcg = page->mem_cgroup;
5559 5560
		}

5561 5562
		if (!PageKmemcg(page)) {
			unsigned int nr_pages = 1;
5563

5564 5565 5566 5567 5568 5569 5570 5571 5572
			if (PageTransHuge(page)) {
				nr_pages <<= compound_order(page);
				nr_huge += nr_pages;
			}
			if (PageAnon(page))
				nr_anon += nr_pages;
			else
				nr_file += nr_pages;
			pgpgout++;
5573
		} else {
5574
			nr_kmem += 1 << compound_order(page);
5575 5576
			__ClearPageKmemcg(page);
		}
5577

5578
		page->mem_cgroup = NULL;
5579 5580 5581
	} while (next != page_list);

	if (memcg)
5582
		uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5583
			       nr_huge, nr_kmem, page);
5584 5585
}

5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597
/**
 * mem_cgroup_uncharge - uncharge a page
 * @page: page to uncharge
 *
 * Uncharge a page previously charged with mem_cgroup_try_charge() and
 * mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge(struct page *page)
{
	if (mem_cgroup_disabled())
		return;

5598
	/* Don't touch page->lru of any random page, pre-check: */
5599
	if (!page->mem_cgroup)
5600 5601
		return;

5602 5603 5604
	INIT_LIST_HEAD(&page->lru);
	uncharge_list(&page->lru);
}
5605

5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616
/**
 * mem_cgroup_uncharge_list - uncharge a list of page
 * @page_list: list of pages to uncharge
 *
 * Uncharge a list of pages previously charged with
 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge_list(struct list_head *page_list)
{
	if (mem_cgroup_disabled())
		return;
5617

5618 5619
	if (!list_empty(page_list))
		uncharge_list(page_list);
5620 5621 5622
}

/**
5623 5624 5625
 * mem_cgroup_migrate - charge a page's replacement
 * @oldpage: currently circulating page
 * @newpage: replacement page
5626
 *
5627 5628
 * Charge @newpage as a replacement page for @oldpage. @oldpage will
 * be uncharged upon free.
5629 5630 5631
 *
 * Both pages must be locked, @newpage->mapping must be set up.
 */
5632
void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
5633
{
5634
	struct mem_cgroup *memcg;
5635 5636
	unsigned int nr_pages;
	bool compound;
5637
	unsigned long flags;
5638 5639 5640 5641

	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5642 5643
	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
		       newpage);
5644 5645 5646 5647 5648

	if (mem_cgroup_disabled())
		return;

	/* Page cache replacement: new page already charged? */
5649
	if (newpage->mem_cgroup)
5650 5651
		return;

5652
	/* Swapcache readahead pages can get replaced before being charged */
5653
	memcg = oldpage->mem_cgroup;
5654
	if (!memcg)
5655 5656
		return;

5657 5658 5659 5660 5661 5662 5663 5664
	/* Force-charge the new page. The old one will be freed soon */
	compound = PageTransHuge(newpage);
	nr_pages = compound ? hpage_nr_pages(newpage) : 1;

	page_counter_charge(&memcg->memory, nr_pages);
	if (do_memsw_account())
		page_counter_charge(&memcg->memsw, nr_pages);
	css_get_many(&memcg->css, nr_pages);
5665

5666
	commit_charge(newpage, memcg, false);
5667

5668
	local_irq_save(flags);
5669 5670
	mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
	memcg_check_events(memcg, newpage);
5671
	local_irq_restore(flags);
5672 5673
}

5674
DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696
EXPORT_SYMBOL(memcg_sockets_enabled_key);

void sock_update_memcg(struct sock *sk)
{
	struct mem_cgroup *memcg;

	/* Socket cloning can throw us here with sk_cgrp already
	 * filled. It won't however, necessarily happen from
	 * process context. So the test for root memcg given
	 * the current task's memcg won't help us in this case.
	 *
	 * Respecting the original socket's memcg is a better
	 * decision in this case.
	 */
	if (sk->sk_memcg) {
		BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
		css_get(&sk->sk_memcg->css);
		return;
	}

	rcu_read_lock();
	memcg = mem_cgroup_from_task(current);
5697 5698
	if (memcg == root_mem_cgroup)
		goto out;
5699
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5700 5701
		goto out;
	if (css_tryget_online(&memcg->css))
5702
		sk->sk_memcg = memcg;
5703
out:
5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723
	rcu_read_unlock();
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
	WARN_ON(!sk->sk_memcg);
	css_put(&sk->sk_memcg->css);
}

/**
 * mem_cgroup_charge_skmem - charge socket memory
 * @memcg: memcg to charge
 * @nr_pages: number of pages to charge
 *
 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
 * @memcg's configured limit, %false if the charge had to be forced.
 */
bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
5724
	gfp_t gfp_mask = GFP_KERNEL;
5725

5726
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5727
		struct page_counter *fail;
5728

5729 5730
		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
			memcg->tcpmem_pressure = 0;
5731 5732
			return true;
		}
5733 5734
		page_counter_charge(&memcg->tcpmem, nr_pages);
		memcg->tcpmem_pressure = 1;
5735
		return false;
5736
	}
5737

5738 5739 5740 5741
	/* Don't block in the packet receive path */
	if (in_softirq())
		gfp_mask = GFP_NOWAIT;

5742 5743
	this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);

5744 5745 5746 5747
	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
		return true;

	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5748 5749 5750 5751 5752 5753 5754 5755 5756 5757
	return false;
}

/**
 * mem_cgroup_uncharge_skmem - uncharge socket memory
 * @memcg - memcg to uncharge
 * @nr_pages - number of pages to uncharge
 */
void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
5758
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5759
		page_counter_uncharge(&memcg->tcpmem, nr_pages);
5760 5761
		return;
	}
5762

5763 5764
	this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);

5765 5766
	page_counter_uncharge(&memcg->memory, nr_pages);
	css_put_many(&memcg->css, nr_pages);
5767 5768
}

5769 5770 5771 5772 5773 5774 5775 5776 5777
static int __init cgroup_memory(char *s)
{
	char *token;

	while ((token = strsep(&s, ",")) != NULL) {
		if (!*token)
			continue;
		if (!strcmp(token, "nosocket"))
			cgroup_memory_nosocket = true;
5778 5779
		if (!strcmp(token, "nokmem"))
			cgroup_memory_nokmem = true;
5780 5781 5782 5783
	}
	return 0;
}
__setup("cgroup.memory=", cgroup_memory);
5784

5785
/*
5786 5787 5788 5789 5790 5791
 * subsys_initcall() for memory controller.
 *
 * Some parts like hotcpu_notifier() have to be initialized from this context
 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
 * everything that doesn't depend on a specific mem_cgroup structure should
 * be initialized from here.
5792 5793 5794
 */
static int __init mem_cgroup_init(void)
{
5795 5796
	int cpu, node;

5797
	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808

	for_each_possible_cpu(cpu)
		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
			  drain_local_stock);

	for_each_node(node) {
		struct mem_cgroup_tree_per_node *rtpn;

		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
				    node_online(node) ? node : NUMA_NO_NODE);

5809 5810
		rtpn->rb_root = RB_ROOT;
		spin_lock_init(&rtpn->lock);
5811 5812 5813
		soft_limit_tree.rb_tree_per_node[node] = rtpn;
	}

5814 5815 5816
	return 0;
}
subsys_initcall(mem_cgroup_init);
5817 5818

#ifdef CONFIG_MEMCG_SWAP
5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836
static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
{
	while (!atomic_inc_not_zero(&memcg->id.ref)) {
		/*
		 * The root cgroup cannot be destroyed, so it's refcount must
		 * always be >= 1.
		 */
		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
			VM_BUG_ON(1);
			break;
		}
		memcg = parent_mem_cgroup(memcg);
		if (!memcg)
			memcg = root_mem_cgroup;
	}
	return memcg;
}

5837 5838 5839 5840 5841 5842 5843 5844 5845
/**
 * mem_cgroup_swapout - transfer a memsw charge to swap
 * @page: page whose memsw charge to transfer
 * @entry: swap entry to move the charge to
 *
 * Transfer the memsw charge of @page to @entry.
 */
void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
{
5846
	struct mem_cgroup *memcg, *swap_memcg;
5847 5848 5849 5850 5851
	unsigned short oldid;

	VM_BUG_ON_PAGE(PageLRU(page), page);
	VM_BUG_ON_PAGE(page_count(page), page);

5852
	if (!do_memsw_account())
5853 5854 5855 5856 5857 5858 5859 5860
		return;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return;

5861 5862 5863 5864 5865 5866 5867
	/*
	 * In case the memcg owning these pages has been offlined and doesn't
	 * have an ID allocated to it anymore, charge the closest online
	 * ancestor for the swap instead and transfer the memory+swap charge.
	 */
	swap_memcg = mem_cgroup_id_get_online(memcg);
	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg));
5868
	VM_BUG_ON_PAGE(oldid, page);
5869
	mem_cgroup_swap_statistics(swap_memcg, true);
5870 5871 5872 5873 5874 5875

	page->mem_cgroup = NULL;

	if (!mem_cgroup_is_root(memcg))
		page_counter_uncharge(&memcg->memory, 1);

5876 5877 5878 5879 5880 5881
	if (memcg != swap_memcg) {
		if (!mem_cgroup_is_root(swap_memcg))
			page_counter_charge(&swap_memcg->memsw, 1);
		page_counter_uncharge(&memcg->memsw, 1);
	}

5882 5883 5884 5885 5886 5887 5888
	/*
	 * Interrupts should be disabled here because the caller holds the
	 * mapping->tree_lock lock which is taken with interrupts-off. It is
	 * important here to have the interrupts disabled because it is the
	 * only synchronisation we have for udpating the per-CPU variables.
	 */
	VM_BUG_ON(!irqs_disabled());
5889
	mem_cgroup_charge_statistics(memcg, page, false, -1);
5890
	memcg_check_events(memcg, page);
5891 5892 5893

	if (!mem_cgroup_is_root(memcg))
		css_put(&memcg->css);
5894 5895
}

5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919
/*
 * mem_cgroup_try_charge_swap - try charging a swap entry
 * @page: page being added to swap
 * @entry: swap entry to charge
 *
 * Try to charge @entry to the memcg that @page belongs to.
 *
 * Returns 0 on success, -ENOMEM on failure.
 */
int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	struct page_counter *counter;
	unsigned short oldid;

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
		return 0;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return 0;

5920 5921
	memcg = mem_cgroup_id_get_online(memcg);

5922
	if (!mem_cgroup_is_root(memcg) &&
5923 5924
	    !page_counter_try_charge(&memcg->swap, 1, &counter)) {
		mem_cgroup_id_put(memcg);
5925
		return -ENOMEM;
5926
	}
5927 5928 5929 5930 5931 5932 5933 5934

	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
	VM_BUG_ON_PAGE(oldid, page);
	mem_cgroup_swap_statistics(memcg, true);

	return 0;
}

5935 5936 5937 5938
/**
 * mem_cgroup_uncharge_swap - uncharge a swap entry
 * @entry: swap entry to uncharge
 *
5939
 * Drop the swap charge associated with @entry.
5940 5941 5942 5943 5944 5945
 */
void mem_cgroup_uncharge_swap(swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	unsigned short id;

5946
	if (!do_swap_account)
5947 5948 5949 5950
		return;

	id = swap_cgroup_record(entry, 0);
	rcu_read_lock();
5951
	memcg = mem_cgroup_from_id(id);
5952
	if (memcg) {
5953 5954 5955 5956 5957 5958
		if (!mem_cgroup_is_root(memcg)) {
			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
				page_counter_uncharge(&memcg->swap, 1);
			else
				page_counter_uncharge(&memcg->memsw, 1);
		}
5959
		mem_cgroup_swap_statistics(memcg, false);
5960
		mem_cgroup_id_put(memcg);
5961 5962 5963 5964
	}
	rcu_read_unlock();
}

5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977
long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
{
	long nr_swap_pages = get_nr_swap_pages();

	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return nr_swap_pages;
	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
		nr_swap_pages = min_t(long, nr_swap_pages,
				      READ_ONCE(memcg->swap.limit) -
				      page_counter_read(&memcg->swap));
	return nr_swap_pages;
}

5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999
bool mem_cgroup_swap_full(struct page *page)
{
	struct mem_cgroup *memcg;

	VM_BUG_ON_PAGE(!PageLocked(page), page);

	if (vm_swap_full())
		return true;
	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return false;

	memcg = page->mem_cgroup;
	if (!memcg)
		return false;

	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
		if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
			return true;

	return false;
}

6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016
/* for remember boot option*/
#ifdef CONFIG_MEMCG_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata;
#endif

static int __init enable_swap_account(char *s)
{
	if (!strcmp(s, "1"))
		really_do_swap_account = 1;
	else if (!strcmp(s, "0"))
		really_do_swap_account = 0;
	return 1;
}
__setup("swapaccount=", enable_swap_account);

6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073
static u64 swap_current_read(struct cgroup_subsys_state *css,
			     struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
}

static int swap_max_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
	unsigned long max = READ_ONCE(memcg->swap.limit);

	if (max == PAGE_COUNTER_MAX)
		seq_puts(m, "max\n");
	else
		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);

	return 0;
}

static ssize_t swap_max_write(struct kernfs_open_file *of,
			      char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long max;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &max);
	if (err)
		return err;

	mutex_lock(&memcg_limit_mutex);
	err = page_counter_limit(&memcg->swap, max);
	mutex_unlock(&memcg_limit_mutex);
	if (err)
		return err;

	return nbytes;
}

static struct cftype swap_files[] = {
	{
		.name = "swap.current",
		.flags = CFTYPE_NOT_ON_ROOT,
		.read_u64 = swap_current_read,
	},
	{
		.name = "swap.max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = swap_max_show,
		.write = swap_max_write,
	},
	{ }	/* terminate */
};

6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{ },	/* terminate */
};

static int __init mem_cgroup_swap_init(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
6105 6106
		WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
					       swap_files));
6107 6108 6109 6110 6111 6112 6113 6114
		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
						  memsw_cgroup_files));
	}
	return 0;
}
subsys_initcall(mem_cgroup_swap_init);

#endif /* CONFIG_MEMCG_SWAP */