memcontrol.c 146.4 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
17 18 19 20 21 22
 * Native page reclaim
 * Charge lifetime sanitation
 * Lockless page tracking & accounting
 * Unified hierarchy configuration model
 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
 *
B
Balbir Singh 已提交
23 24 25 26 27 28 29 30 31 32 33
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

34
#include <linux/page_counter.h>
B
Balbir Singh 已提交
35 36
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
37
#include <linux/mm.h>
38
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
39
#include <linux/pagemap.h>
40
#include <linux/smp.h>
41
#include <linux/page-flags.h>
42
#include <linux/backing-dev.h>
43 44
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
45
#include <linux/limits.h>
46
#include <linux/export.h>
47
#include <linux/mutex.h>
48
#include <linux/rbtree.h>
49
#include <linux/slab.h>
50
#include <linux/swap.h>
51
#include <linux/swapops.h>
52
#include <linux/spinlock.h>
53
#include <linux/eventfd.h>
54
#include <linux/poll.h>
55
#include <linux/sort.h>
56
#include <linux/fs.h>
57
#include <linux/seq_file.h>
58
#include <linux/vmpressure.h>
59
#include <linux/mm_inline.h>
60
#include <linux/swap_cgroup.h>
61
#include <linux/cpu.h>
62
#include <linux/oom.h>
63
#include <linux/lockdep.h>
64
#include <linux/file.h>
65
#include <linux/tracehook.h>
K
KAMEZAWA Hiroyuki 已提交
66
#include "internal.h"
G
Glauber Costa 已提交
67
#include <net/sock.h>
M
Michal Hocko 已提交
68
#include <net/ip.h>
G
Glauber Costa 已提交
69
#include <net/tcp_memcontrol.h>
70
#include "slab.h"
B
Balbir Singh 已提交
71

72 73
#include <asm/uaccess.h>

74 75
#include <trace/events/vmscan.h>

76 77
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
78

79
#define MEM_CGROUP_RECLAIM_RETRIES	5
80
static struct mem_cgroup *root_mem_cgroup __read_mostly;
T
Tejun Heo 已提交
81
struct cgroup_subsys_state *mem_cgroup_root_css __read_mostly;
B
Balbir Singh 已提交
82

83
/* Whether the swap controller is active */
A
Andrew Morton 已提交
84
#ifdef CONFIG_MEMCG_SWAP
85 86
int do_swap_account __read_mostly;
#else
87
#define do_swap_account		0
88 89
#endif

90 91 92
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
93
	"rss_huge",
94
	"mapped_file",
95
	"dirty",
96
	"writeback",
97 98 99 100 101 102 103 104 105 106
	"swap",
};

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

107 108 109 110 111 112 113 114
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

115 116 117
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
118

119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

K
KAMEZAWA Hiroyuki 已提交
139 140 141 142 143
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
144

145 146 147
/*
 * cgroup_event represents events which userspace want to receive.
 */
148
struct mem_cgroup_event {
149
	/*
150
	 * memcg which the event belongs to.
151
	 */
152
	struct mem_cgroup *memcg;
153 154 155 156 157 158 159 160
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
161 162 163 164 165
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
166
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
167
			      struct eventfd_ctx *eventfd, const char *args);
168 169 170 171 172
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
173
	void (*unregister_event)(struct mem_cgroup *memcg,
174
				 struct eventfd_ctx *eventfd);
175 176 177 178 179 180 181 182 183 184
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
	wait_queue_t wait;
	struct work_struct remove;
};

185 186
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
187

188 189
/* Stuffs for move charges at task migration. */
/*
190
 * Types of charges to be moved.
191
 */
192 193 194
#define MOVE_ANON	0x1U
#define MOVE_FILE	0x2U
#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
195

196 197
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
198
	spinlock_t	  lock; /* for from, to */
199 200
	struct mem_cgroup *from;
	struct mem_cgroup *to;
201
	unsigned long flags;
202
	unsigned long precharge;
203
	unsigned long moved_charge;
204
	unsigned long moved_swap;
205 206 207
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
208
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
209 210
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
211

212 213 214 215
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
216
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
217
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
218

219 220
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
221
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
222
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
223
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
224 225 226
	NR_CHARGE_TYPE,
};

227
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
228 229 230 231
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
232
	_KMEM,
G
Glauber Costa 已提交
233 234
};

235 236
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
237
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
238 239
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
240

241 242 243 244 245 246 247
/*
 * The memcg_create_mutex will be held whenever a new cgroup is created.
 * As a consequence, any change that needs to protect against new child cgroups
 * appearing has to hold it as well.
 */
static DEFINE_MUTEX(memcg_create_mutex);

248 249 250 251 252 253 254 255 256 257 258 259 260
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

261 262 263 264 265
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

266 267 268 269 270 271
/*
 * We restrict the id in the range of [1, 65535], so it can fit into
 * an unsigned short.
 */
#define MEM_CGROUP_ID_MAX	USHRT_MAX

L
Li Zefan 已提交
272 273
static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
{
274
	return memcg->css.id;
L
Li Zefan 已提交
275 276
}

277 278 279 280 281 282
/*
 * A helper function to get mem_cgroup from ID. must be called under
 * rcu_read_lock().  The caller is responsible for calling
 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
 * refcnt from swap can be called against removed memcg.)
 */
L
Li Zefan 已提交
283 284 285 286
static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	struct cgroup_subsys_state *css;

287
	css = css_from_id(id, &memory_cgrp_subsys);
L
Li Zefan 已提交
288 289 290
	return mem_cgroup_from_css(css);
}

G
Glauber Costa 已提交
291
/* Writing them here to avoid exposing memcg's inner layout */
M
Michal Hocko 已提交
292
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
G
Glauber Costa 已提交
293 294 295

void sock_update_memcg(struct sock *sk)
{
296
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
297
		struct mem_cgroup *memcg;
298
		struct cg_proto *cg_proto;
G
Glauber Costa 已提交
299 300 301

		BUG_ON(!sk->sk_prot->proto_cgroup);

302 303 304 305 306 307 308 309 310 311
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
312
			css_get(&sk->sk_cgrp->memcg->css);
313 314 315
			return;
		}

G
Glauber Costa 已提交
316 317
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
318
		cg_proto = sk->sk_prot->proto_cgroup(memcg);
319
		if (cg_proto && test_bit(MEMCG_SOCK_ACTIVE, &cg_proto->flags) &&
320
		    css_tryget_online(&memcg->css)) {
321
			sk->sk_cgrp = cg_proto;
G
Glauber Costa 已提交
322 323 324 325 326 327 328 329
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
330
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
331 332 333
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
334
		css_put(&sk->sk_cgrp->memcg->css);
G
Glauber Costa 已提交
335 336
	}
}
G
Glauber Costa 已提交
337 338 339 340 341 342

struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

343
	return &memcg->tcp_mem;
G
Glauber Costa 已提交
344 345
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
346

347 348
#endif

349
#ifdef CONFIG_MEMCG_KMEM
350
/*
351
 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
L
Li Zefan 已提交
352 353 354 355 356
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
357
 *
358 359
 * The current size of the caches array is stored in memcg_nr_cache_ids. It
 * will double each time we have to increase it.
360
 */
361 362
static DEFINE_IDA(memcg_cache_ida);
int memcg_nr_cache_ids;
363

364 365 366 367 368 369 370 371 372 373 374 375 376
/* Protects memcg_nr_cache_ids */
static DECLARE_RWSEM(memcg_cache_ids_sem);

void memcg_get_cache_ids(void)
{
	down_read(&memcg_cache_ids_sem);
}

void memcg_put_cache_ids(void)
{
	up_read(&memcg_cache_ids_sem);
}

377 378 379 380 381 382
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
383
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
384 385
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
386
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
387 388 389
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
390
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
391

392 393 394 395 396 397
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
398
struct static_key memcg_kmem_enabled_key;
399
EXPORT_SYMBOL(memcg_kmem_enabled_key);
400 401 402

#endif /* CONFIG_MEMCG_KMEM */

403
static struct mem_cgroup_per_zone *
404
mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
405
{
406 407 408
	int nid = zone_to_nid(zone);
	int zid = zone_idx(zone);

409
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
410 411
}

412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
/**
 * mem_cgroup_css_from_page - css of the memcg associated with a page
 * @page: page of interest
 *
 * If memcg is bound to the default hierarchy, css of the memcg associated
 * with @page is returned.  The returned css remains associated with @page
 * until it is released.
 *
 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
 * is returned.
 *
 * XXX: The above description of behavior on the default hierarchy isn't
 * strictly true yet as replace_page_cache_page() can modify the
 * association before @page is released even on the default hierarchy;
 * however, the current and planned usages don't mix the the two functions
 * and replace_page_cache_page() will soon be updated to make the invariant
 * actually true.
 */
struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
{
	struct mem_cgroup *memcg;

	rcu_read_lock();

	memcg = page->mem_cgroup;

	if (!memcg || !cgroup_on_dfl(memcg->css.cgroup))
		memcg = root_mem_cgroup;

	rcu_read_unlock();
	return &memcg->css;
}

445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
/**
 * page_cgroup_ino - return inode number of the memcg a page is charged to
 * @page: the page
 *
 * Look up the closest online ancestor of the memory cgroup @page is charged to
 * and return its inode number or 0 if @page is not charged to any cgroup. It
 * is safe to call this function without holding a reference to @page.
 *
 * Note, this function is inherently racy, because there is nothing to prevent
 * the cgroup inode from getting torn down and potentially reallocated a moment
 * after page_cgroup_ino() returns, so it only should be used by callers that
 * do not care (such as procfs interfaces).
 */
ino_t page_cgroup_ino(struct page *page)
{
	struct mem_cgroup *memcg;
	unsigned long ino = 0;

	rcu_read_lock();
	memcg = READ_ONCE(page->mem_cgroup);
	while (memcg && !(memcg->css.flags & CSS_ONLINE))
		memcg = parent_mem_cgroup(memcg);
	if (memcg)
		ino = cgroup_ino(memcg->css.cgroup);
	rcu_read_unlock();
	return ino;
}

473
static struct mem_cgroup_per_zone *
474
mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
475
{
476 477
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
478

479
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
480 481
}

482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

497 498
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
					 struct mem_cgroup_tree_per_zone *mctz,
499
					 unsigned long new_usage_in_excess)
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

529 530
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
					 struct mem_cgroup_tree_per_zone *mctz)
531 532 533 534 535 536 537
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

538 539
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
				       struct mem_cgroup_tree_per_zone *mctz)
540
{
541 542 543
	unsigned long flags;

	spin_lock_irqsave(&mctz->lock, flags);
544
	__mem_cgroup_remove_exceeded(mz, mctz);
545
	spin_unlock_irqrestore(&mctz->lock, flags);
546 547
}

548 549 550
static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
{
	unsigned long nr_pages = page_counter_read(&memcg->memory);
551
	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
552 553 554 555 556 557 558
	unsigned long excess = 0;

	if (nr_pages > soft_limit)
		excess = nr_pages - soft_limit;

	return excess;
}
559 560 561

static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
562
	unsigned long excess;
563 564 565
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

566
	mctz = soft_limit_tree_from_page(page);
567 568 569 570 571
	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
572
		mz = mem_cgroup_page_zoneinfo(memcg, page);
573
		excess = soft_limit_excess(memcg);
574 575 576 577 578
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
579 580 581
			unsigned long flags;

			spin_lock_irqsave(&mctz->lock, flags);
582 583
			/* if on-tree, remove it */
			if (mz->on_tree)
584
				__mem_cgroup_remove_exceeded(mz, mctz);
585 586 587 588
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
589
			__mem_cgroup_insert_exceeded(mz, mctz, excess);
590
			spin_unlock_irqrestore(&mctz->lock, flags);
591 592 593 594 595 596 597
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
	struct mem_cgroup_tree_per_zone *mctz;
598 599
	struct mem_cgroup_per_zone *mz;
	int nid, zid;
600

601 602 603 604
	for_each_node(nid) {
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			mctz = soft_limit_tree_node_zone(nid, zid);
605
			mem_cgroup_remove_exceeded(mz, mctz);
606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
		}
	}
}

static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
	struct mem_cgroup_per_zone *mz;

retry:
	mz = NULL;
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
628
	__mem_cgroup_remove_exceeded(mz, mctz);
629
	if (!soft_limit_excess(mz->memcg) ||
630
	    !css_tryget_online(&mz->memcg->css))
631 632 633 634 635 636 637 638 639 640
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

641
	spin_lock_irq(&mctz->lock);
642
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
643
	spin_unlock_irq(&mctz->lock);
644 645 646
	return mz;
}

647
/*
648 649
 * Return page count for single (non recursive) @memcg.
 *
650 651 652 653 654
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
655
 * a periodic synchronization of counter in memcg's counter.
656 657 658 659 660 661 662 663 664
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
665
 * common workload, threshold and synchronization as vmstat[] should be
666 667
 * implemented.
 */
668 669
static unsigned long
mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
670
{
671
	long val = 0;
672 673
	int cpu;

674
	/* Per-cpu values can be negative, use a signed accumulator */
675
	for_each_possible_cpu(cpu)
676
		val += per_cpu(memcg->stat->count[idx], cpu);
677 678 679 680 681 682
	/*
	 * Summing races with updates, so val may be negative.  Avoid exposing
	 * transient negative values.
	 */
	if (val < 0)
		val = 0;
683 684 685
	return val;
}

686
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
687 688 689 690 691
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

692
	for_each_possible_cpu(cpu)
693
		val += per_cpu(memcg->stat->events[idx], cpu);
694 695 696
	return val;
}

697
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
698
					 struct page *page,
699
					 int nr_pages)
700
{
701 702 703 704
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
705
	if (PageAnon(page))
706
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
707
				nr_pages);
708
	else
709
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
710
				nr_pages);
711

712 713 714 715
	if (PageTransHuge(page))
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
				nr_pages);

716 717
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
718
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
719
	else {
720
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
721 722
		nr_pages = -nr_pages; /* for event */
	}
723

724
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
725 726
}

727 728 729
static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
						  int nid,
						  unsigned int lru_mask)
730
{
731
	unsigned long nr = 0;
732 733
	int zid;

734
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
735

736 737 738 739 740 741 742 743 744 745 746 747
	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		struct mem_cgroup_per_zone *mz;
		enum lru_list lru;

		for_each_lru(lru) {
			if (!(BIT(lru) & lru_mask))
				continue;
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			nr += mz->lru_size[lru];
		}
	}
	return nr;
748
}
749

750
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
751
			unsigned int lru_mask)
752
{
753
	unsigned long nr = 0;
754
	int nid;
755

756
	for_each_node_state(nid, N_MEMORY)
757 758
		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
	return nr;
759 760
}

761 762
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
763 764 765
{
	unsigned long val, next;

766
	val = __this_cpu_read(memcg->stat->nr_page_events);
767
	next = __this_cpu_read(memcg->stat->targets[target]);
768
	/* from time_after() in jiffies.h */
769 770 771 772 773
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
774 775 776
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
777 778 779 780 781 782 783 784
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
785
	}
786
	return false;
787 788 789 790 791 792
}

/*
 * Check events in order.
 *
 */
793
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
794 795
{
	/* threshold event is triggered in finer grain than soft limit */
796 797
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
798
		bool do_softlimit;
799
		bool do_numainfo __maybe_unused;
800

801 802
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
803 804 805 806
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
807
		mem_cgroup_threshold(memcg);
808 809
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
810
#if MAX_NUMNODES > 1
811
		if (unlikely(do_numainfo))
812
			atomic_inc(&memcg->numainfo_events);
813
#endif
814
	}
815 816
}

817
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
818
{
819 820 821 822 823 824 825 826
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

827
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
828
}
M
Michal Hocko 已提交
829
EXPORT_SYMBOL(mem_cgroup_from_task);
830

831
static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
832
{
833
	struct mem_cgroup *memcg = NULL;
834

835 836
	rcu_read_lock();
	do {
837 838 839 840 841 842
		/*
		 * Page cache insertions can happen withou an
		 * actual mm context, e.g. during disk probing
		 * on boot, loopback IO, acct() writes etc.
		 */
		if (unlikely(!mm))
843
			memcg = root_mem_cgroup;
844 845 846 847 848
		else {
			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
			if (unlikely(!memcg))
				memcg = root_mem_cgroup;
		}
849
	} while (!css_tryget_online(&memcg->css));
850
	rcu_read_unlock();
851
	return memcg;
852 853
}

854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
871
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
872
				   struct mem_cgroup *prev,
873
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
874
{
M
Michal Hocko 已提交
875
	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
876
	struct cgroup_subsys_state *css = NULL;
877
	struct mem_cgroup *memcg = NULL;
878
	struct mem_cgroup *pos = NULL;
879

880 881
	if (mem_cgroup_disabled())
		return NULL;
882

883 884
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
885

886
	if (prev && !reclaim)
887
		pos = prev;
K
KAMEZAWA Hiroyuki 已提交
888

889 890
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
891
			goto out;
892
		return root;
893
	}
K
KAMEZAWA Hiroyuki 已提交
894

895
	rcu_read_lock();
M
Michal Hocko 已提交
896

897 898 899 900 901 902 903 904 905 906
	if (reclaim) {
		struct mem_cgroup_per_zone *mz;

		mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
		iter = &mz->iter[reclaim->priority];

		if (prev && reclaim->generation != iter->generation)
			goto out_unlock;

		do {
907
			pos = READ_ONCE(iter->position);
908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930
			/*
			 * A racing update may change the position and
			 * put the last reference, hence css_tryget(),
			 * or retry to see the updated position.
			 */
		} while (pos && !css_tryget(&pos->css));
	}

	if (pos)
		css = &pos->css;

	for (;;) {
		css = css_next_descendant_pre(css, &root->css);
		if (!css) {
			/*
			 * Reclaimers share the hierarchy walk, and a
			 * new one might jump in right at the end of
			 * the hierarchy - make sure they see at least
			 * one group and restart from the beginning.
			 */
			if (!prev)
				continue;
			break;
931
		}
K
KAMEZAWA Hiroyuki 已提交
932

933 934 935 936 937 938
		/*
		 * Verify the css and acquire a reference.  The root
		 * is provided by the caller, so we know it's alive
		 * and kicking, and don't take an extra reference.
		 */
		memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
939

940 941
		if (css == &root->css)
			break;
K
KAMEZAWA Hiroyuki 已提交
942

943
		if (css_tryget(css)) {
944 945 946 947 948 949 950
			/*
			 * Make sure the memcg is initialized:
			 * mem_cgroup_css_online() orders the the
			 * initialization against setting the flag.
			 */
			if (smp_load_acquire(&memcg->initialized))
				break;
951

952
			css_put(css);
953
		}
954

955
		memcg = NULL;
956
	}
957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976

	if (reclaim) {
		if (cmpxchg(&iter->position, pos, memcg) == pos) {
			if (memcg)
				css_get(&memcg->css);
			if (pos)
				css_put(&pos->css);
		}

		/*
		 * pairs with css_tryget when dereferencing iter->position
		 * above.
		 */
		if (pos)
			css_put(&pos->css);

		if (!memcg)
			iter->generation++;
		else if (!prev)
			reclaim->generation = iter->generation;
977
	}
978

979 980
out_unlock:
	rcu_read_unlock();
981
out:
982 983 984
	if (prev && prev != root)
		css_put(&prev->css);

985
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
986
}
K
KAMEZAWA Hiroyuki 已提交
987

988 989 990 991 992 993 994
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
995 996 997 998 999 1000
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1001

1002 1003 1004 1005 1006 1007
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
1008
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1009
	     iter != NULL;				\
1010
	     iter = mem_cgroup_iter(root, iter, NULL))
1011

1012
#define for_each_mem_cgroup(iter)			\
1013
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1014
	     iter != NULL;				\
1015
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
1016

1017 1018 1019
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
1020
 * @memcg: memcg of the wanted lruvec
1021 1022 1023 1024 1025 1026 1027 1028 1029
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
1030
	struct lruvec *lruvec;
1031

1032 1033 1034 1035
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1036

1037
	mz = mem_cgroup_zone_zoneinfo(memcg, zone);
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
1048 1049 1050
}

/**
1051
 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1052
 * @page: the page
1053
 * @zone: zone of the page
1054 1055 1056 1057
 *
 * This function is only safe when following the LRU page isolation
 * and putback protocol: the LRU lock must be held, and the page must
 * either be PageLRU() or the caller must have isolated/allocated it.
1058
 */
1059
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1060 1061
{
	struct mem_cgroup_per_zone *mz;
1062
	struct mem_cgroup *memcg;
1063
	struct lruvec *lruvec;
1064

1065 1066 1067 1068
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1069

1070
	memcg = page->mem_cgroup;
1071
	/*
1072
	 * Swapcache readahead pages are added to the LRU - and
1073
	 * possibly migrated - before they are charged.
1074
	 */
1075 1076
	if (!memcg)
		memcg = root_mem_cgroup;
1077

1078
	mz = mem_cgroup_page_zoneinfo(memcg, page);
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1089
}
1090

1091
/**
1092 1093 1094 1095
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1096
 *
1097 1098
 * This function must be called when a page is added to or removed from an
 * lru list.
1099
 */
1100 1101
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1102 1103
{
	struct mem_cgroup_per_zone *mz;
1104
	unsigned long *lru_size;
1105 1106 1107 1108

	if (mem_cgroup_disabled())
		return;

1109 1110 1111 1112
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1113
}
1114

1115
bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1116
{
1117
	struct mem_cgroup *task_memcg;
1118
	struct task_struct *p;
1119
	bool ret;
1120

1121
	p = find_lock_task_mm(task);
1122
	if (p) {
1123
		task_memcg = get_mem_cgroup_from_mm(p->mm);
1124 1125 1126 1127 1128 1129 1130
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1131
		rcu_read_lock();
1132 1133
		task_memcg = mem_cgroup_from_task(task);
		css_get(&task_memcg->css);
1134
		rcu_read_unlock();
1135
	}
1136 1137
	ret = mem_cgroup_is_descendant(task_memcg, memcg);
	css_put(&task_memcg->css);
1138 1139 1140
	return ret;
}

1141
#define mem_cgroup_from_counter(counter, member)	\
1142 1143
	container_of(counter, struct mem_cgroup, member)

1144
/**
1145
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1146
 * @memcg: the memory cgroup
1147
 *
1148
 * Returns the maximum amount of memory @mem can be charged with, in
1149
 * pages.
1150
 */
1151
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1152
{
1153 1154 1155
	unsigned long margin = 0;
	unsigned long count;
	unsigned long limit;
1156

1157
	count = page_counter_read(&memcg->memory);
1158
	limit = READ_ONCE(memcg->memory.limit);
1159 1160 1161 1162 1163
	if (count < limit)
		margin = limit - count;

	if (do_swap_account) {
		count = page_counter_read(&memcg->memsw);
1164
		limit = READ_ONCE(memcg->memsw.limit);
1165 1166 1167 1168 1169
		if (count <= limit)
			margin = min(margin, limit - count);
	}

	return margin;
1170 1171
}

1172
/*
Q
Qiang Huang 已提交
1173
 * A routine for checking "mem" is under move_account() or not.
1174
 *
Q
Qiang Huang 已提交
1175 1176 1177
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 * moving cgroups. This is for waiting at high-memory pressure
 * caused by "move".
1178
 */
1179
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1180
{
1181 1182
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1183
	bool ret = false;
1184 1185 1186 1187 1188 1189 1190 1191 1192
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1193

1194 1195
	ret = mem_cgroup_is_descendant(from, memcg) ||
		mem_cgroup_is_descendant(to, memcg);
1196 1197
unlock:
	spin_unlock(&mc.lock);
1198 1199 1200
	return ret;
}

1201
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1202 1203
{
	if (mc.moving_task && current != mc.moving_task) {
1204
		if (mem_cgroup_under_move(memcg)) {
1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1217
#define K(x) ((x) << (PAGE_SHIFT-10))
1218
/**
1219
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1220 1221 1222 1223 1224 1225 1226 1227
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
T
Tejun Heo 已提交
1228
	/* oom_info_lock ensures that parallel ooms do not interleave */
1229
	static DEFINE_MUTEX(oom_info_lock);
1230 1231
	struct mem_cgroup *iter;
	unsigned int i;
1232

1233
	mutex_lock(&oom_info_lock);
1234 1235
	rcu_read_lock();

1236 1237 1238 1239 1240 1241 1242 1243
	if (p) {
		pr_info("Task in ");
		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
		pr_cont(" killed as a result of limit of ");
	} else {
		pr_info("Memory limit reached of cgroup ");
	}

T
Tejun Heo 已提交
1244
	pr_cont_cgroup_path(memcg->css.cgroup);
1245
	pr_cont("\n");
1246 1247 1248

	rcu_read_unlock();

1249 1250 1251 1252 1253 1254 1255 1256 1257
	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memory)),
		K((u64)memcg->memory.limit), memcg->memory.failcnt);
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memsw)),
		K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->kmem)),
		K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1258 1259

	for_each_mem_cgroup_tree(iter, memcg) {
T
Tejun Heo 已提交
1260 1261
		pr_info("Memory cgroup stats for ");
		pr_cont_cgroup_path(iter->css.cgroup);
1262 1263 1264 1265 1266
		pr_cont(":");

		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
				continue;
1267
			pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1268 1269 1270 1271 1272 1273 1274 1275 1276
				K(mem_cgroup_read_stat(iter, i)));
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1277
	mutex_unlock(&oom_info_lock);
1278 1279
}

1280 1281 1282 1283
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1284
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1285 1286
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1287 1288
	struct mem_cgroup *iter;

1289
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1290
		num++;
1291 1292 1293
	return num;
}

D
David Rientjes 已提交
1294 1295 1296
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1297
static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1298
{
1299
	unsigned long limit;
1300

1301
	limit = memcg->memory.limit;
1302
	if (mem_cgroup_swappiness(memcg)) {
1303
		unsigned long memsw_limit;
1304

1305 1306
		memsw_limit = memcg->memsw.limit;
		limit = min(limit + total_swap_pages, memsw_limit);
1307 1308
	}
	return limit;
D
David Rientjes 已提交
1309 1310
}

1311 1312
static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
				     int order)
1313
{
1314 1315 1316 1317 1318 1319
	struct oom_control oc = {
		.zonelist = NULL,
		.nodemask = NULL,
		.gfp_mask = gfp_mask,
		.order = order,
	};
1320 1321 1322 1323 1324 1325
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1326 1327
	mutex_lock(&oom_lock);

1328
	/*
1329 1330 1331
	 * If current has a pending SIGKILL or is exiting, then automatically
	 * select it.  The goal is to allow it to allocate so that it may
	 * quickly exit and free its memory.
1332
	 */
1333
	if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1334
		mark_oom_victim(current);
1335
		goto unlock;
1336 1337
	}

1338
	check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg);
1339
	totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1340
	for_each_mem_cgroup_tree(iter, memcg) {
1341
		struct css_task_iter it;
1342 1343
		struct task_struct *task;

1344 1345
		css_task_iter_start(&iter->css, &it);
		while ((task = css_task_iter_next(&it))) {
1346
			switch (oom_scan_process_thread(&oc, task, totalpages)) {
1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
1357
				css_task_iter_end(&it);
1358 1359 1360
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
1361
				goto unlock;
1362 1363 1364 1365
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
			if (!points || points < chosen_points)
				continue;
			/* Prefer thread group leaders for display purposes */
			if (points == chosen_points &&
			    thread_group_leader(chosen))
				continue;

			if (chosen)
				put_task_struct(chosen);
			chosen = task;
			chosen_points = points;
			get_task_struct(chosen);
1378
		}
1379
		css_task_iter_end(&it);
1380 1381
	}

1382 1383
	if (chosen) {
		points = chosen_points * 1000 / totalpages;
1384 1385
		oom_kill_process(&oc, chosen, points, totalpages, memcg,
				 "Memory cgroup out of memory");
1386 1387 1388
	}
unlock:
	mutex_unlock(&oom_lock);
1389 1390
}

1391 1392
#if MAX_NUMNODES > 1

1393 1394
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1395
 * @memcg: the target memcg
1396 1397 1398 1399 1400 1401 1402
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1403
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1404 1405
		int nid, bool noswap)
{
1406
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1407 1408 1409
		return true;
	if (noswap || !total_swap_pages)
		return false;
1410
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1411 1412 1413 1414
		return true;
	return false;

}
1415 1416 1417 1418 1419 1420 1421

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1422
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1423 1424
{
	int nid;
1425 1426 1427 1428
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1429
	if (!atomic_read(&memcg->numainfo_events))
1430
		return;
1431
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1432 1433 1434
		return;

	/* make a nodemask where this memcg uses memory from */
1435
	memcg->scan_nodes = node_states[N_MEMORY];
1436

1437
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1438

1439 1440
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1441
	}
1442

1443 1444
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1459
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1460 1461 1462
{
	int node;

1463 1464
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1465

1466
	node = next_node(node, memcg->scan_nodes);
1467
	if (node == MAX_NUMNODES)
1468
		node = first_node(memcg->scan_nodes);
1469 1470 1471 1472 1473 1474 1475 1476 1477
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1478
	memcg->last_scanned_node = node;
1479 1480 1481
	return node;
}
#else
1482
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1483 1484 1485 1486 1487
{
	return 0;
}
#endif

1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};

1503
	excess = soft_limit_excess(root_memcg);
1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
1532
		if (!soft_limit_excess(root_memcg))
1533
			break;
1534
	}
1535 1536
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
1537 1538
}

1539 1540 1541 1542 1543 1544
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

1545 1546
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
1547 1548 1549 1550
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
1551
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1552
{
1553
	struct mem_cgroup *iter, *failed = NULL;
1554

1555 1556
	spin_lock(&memcg_oom_lock);

1557
	for_each_mem_cgroup_tree(iter, memcg) {
1558
		if (iter->oom_lock) {
1559 1560 1561 1562 1563
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1564 1565
			mem_cgroup_iter_break(memcg, iter);
			break;
1566 1567
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1568
	}
K
KAMEZAWA Hiroyuki 已提交
1569

1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
1581
		}
1582 1583
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1584 1585 1586 1587

	spin_unlock(&memcg_oom_lock);

	return !failed;
1588
}
1589

1590
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1591
{
K
KAMEZAWA Hiroyuki 已提交
1592 1593
	struct mem_cgroup *iter;

1594
	spin_lock(&memcg_oom_lock);
1595
	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1596
	for_each_mem_cgroup_tree(iter, memcg)
1597
		iter->oom_lock = false;
1598
	spin_unlock(&memcg_oom_lock);
1599 1600
}

1601
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1602 1603 1604
{
	struct mem_cgroup *iter;

1605
	spin_lock(&memcg_oom_lock);
1606
	for_each_mem_cgroup_tree(iter, memcg)
1607 1608
		iter->under_oom++;
	spin_unlock(&memcg_oom_lock);
1609 1610
}

1611
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1612 1613 1614
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1615 1616
	/*
	 * When a new child is created while the hierarchy is under oom,
1617
	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
K
KAMEZAWA Hiroyuki 已提交
1618
	 */
1619
	spin_lock(&memcg_oom_lock);
1620
	for_each_mem_cgroup_tree(iter, memcg)
1621 1622 1623
		if (iter->under_oom > 0)
			iter->under_oom--;
	spin_unlock(&memcg_oom_lock);
1624 1625
}

K
KAMEZAWA Hiroyuki 已提交
1626 1627
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1628
struct oom_wait_info {
1629
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
1630 1631 1632 1633 1634 1635
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
1636 1637
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1638 1639 1640
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1641
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1642

1643 1644
	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
K
KAMEZAWA Hiroyuki 已提交
1645 1646 1647 1648
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1649
static void memcg_oom_recover(struct mem_cgroup *memcg)
1650
{
1651 1652 1653 1654 1655 1656 1657 1658 1659
	/*
	 * For the following lockless ->under_oom test, the only required
	 * guarantee is that it must see the state asserted by an OOM when
	 * this function is called as a result of userland actions
	 * triggered by the notification of the OOM.  This is trivially
	 * achieved by invoking mem_cgroup_mark_under_oom() before
	 * triggering notification.
	 */
	if (memcg && memcg->under_oom)
1660
		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1661 1662
}

1663
static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1664
{
T
Tejun Heo 已提交
1665
	if (!current->memcg_may_oom)
1666
		return;
K
KAMEZAWA Hiroyuki 已提交
1667
	/*
1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
	 * Also, the caller may handle a failed allocation gracefully
	 * (like optional page cache readahead) and so an OOM killer
	 * invocation might not even be necessary.
	 *
	 * That's why we don't do anything here except remember the
	 * OOM context and then deal with it at the end of the page
	 * fault when the stack is unwound, the locks are released,
	 * and when we know whether the fault was overall successful.
K
KAMEZAWA Hiroyuki 已提交
1680
	 */
1681
	css_get(&memcg->css);
T
Tejun Heo 已提交
1682 1683 1684
	current->memcg_in_oom = memcg;
	current->memcg_oom_gfp_mask = mask;
	current->memcg_oom_order = order;
1685 1686 1687 1688
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1689
 * @handle: actually kill/wait or just clean up the OOM state
1690
 *
1691 1692
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
1693
 *
1694
 * Memcg supports userspace OOM handling where failed allocations must
1695 1696 1697 1698
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
1699
 * the end of the page fault to complete the OOM handling.
1700 1701
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
1702
 * completed, %false otherwise.
1703
 */
1704
bool mem_cgroup_oom_synchronize(bool handle)
1705
{
T
Tejun Heo 已提交
1706
	struct mem_cgroup *memcg = current->memcg_in_oom;
1707
	struct oom_wait_info owait;
1708
	bool locked;
1709 1710 1711

	/* OOM is global, do not handle */
	if (!memcg)
1712
		return false;
1713

1714
	if (!handle || oom_killer_disabled)
1715
		goto cleanup;
1716 1717 1718 1719 1720 1721

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
K
KAMEZAWA Hiroyuki 已提交
1722

1723
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1724 1725 1726 1727 1728 1729 1730 1731 1732 1733
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
T
Tejun Heo 已提交
1734 1735
		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
					 current->memcg_oom_order);
1736
	} else {
1737
		schedule();
1738 1739 1740 1741 1742
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
1743 1744 1745 1746 1747 1748 1749 1750
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
1751
cleanup:
T
Tejun Heo 已提交
1752
	current->memcg_in_oom = NULL;
1753
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
1754
	return true;
1755 1756
}

1757 1758 1759
/**
 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
 * @page: page that is going to change accounted state
1760
 *
1761 1762 1763
 * This function must mark the beginning of an accounted page state
 * change to prevent double accounting when the page is concurrently
 * being moved to another memcg:
1764
 *
1765
 *   memcg = mem_cgroup_begin_page_stat(page);
1766 1767
 *   if (TestClearPageState(page))
 *     mem_cgroup_update_page_stat(memcg, state, -1);
1768
 *   mem_cgroup_end_page_stat(memcg);
1769
 */
1770
struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
1771 1772
{
	struct mem_cgroup *memcg;
1773
	unsigned long flags;
1774

1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786
	/*
	 * The RCU lock is held throughout the transaction.  The fast
	 * path can get away without acquiring the memcg->move_lock
	 * because page moving starts with an RCU grace period.
	 *
	 * The RCU lock also protects the memcg from being freed when
	 * the page state that is going to change is the only thing
	 * preventing the page from being uncharged.
	 * E.g. end-writeback clearing PageWriteback(), which allows
	 * migration to go ahead and uncharge the page before the
	 * account transaction might be complete.
	 */
1787 1788 1789 1790
	rcu_read_lock();

	if (mem_cgroup_disabled())
		return NULL;
1791
again:
1792
	memcg = page->mem_cgroup;
1793
	if (unlikely(!memcg))
1794 1795
		return NULL;

Q
Qiang Huang 已提交
1796
	if (atomic_read(&memcg->moving_account) <= 0)
1797
		return memcg;
1798

1799
	spin_lock_irqsave(&memcg->move_lock, flags);
1800
	if (memcg != page->mem_cgroup) {
1801
		spin_unlock_irqrestore(&memcg->move_lock, flags);
1802 1803
		goto again;
	}
1804 1805 1806 1807 1808 1809 1810 1811

	/*
	 * When charge migration first begins, we can have locked and
	 * unlocked page stat updates happening concurrently.  Track
	 * the task who has the lock for mem_cgroup_end_page_stat().
	 */
	memcg->move_lock_task = current;
	memcg->move_lock_flags = flags;
1812 1813

	return memcg;
1814
}
1815
EXPORT_SYMBOL(mem_cgroup_begin_page_stat);
1816

1817 1818 1819 1820
/**
 * mem_cgroup_end_page_stat - finish a page state statistics transaction
 * @memcg: the memcg that was accounted against
 */
1821
void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
1822
{
1823 1824 1825 1826 1827 1828 1829 1830
	if (memcg && memcg->move_lock_task == current) {
		unsigned long flags = memcg->move_lock_flags;

		memcg->move_lock_task = NULL;
		memcg->move_lock_flags = 0;

		spin_unlock_irqrestore(&memcg->move_lock, flags);
	}
1831

1832
	rcu_read_unlock();
1833
}
1834
EXPORT_SYMBOL(mem_cgroup_end_page_stat);
1835

1836 1837 1838 1839
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
1840
#define CHARGE_BATCH	32U
1841 1842
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
1843
	unsigned int nr_pages;
1844
	struct work_struct work;
1845
	unsigned long flags;
1846
#define FLUSHING_CACHED_CHARGE	0
1847 1848
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1849
static DEFINE_MUTEX(percpu_charge_mutex);
1850

1851 1852 1853 1854 1855 1856 1857 1858 1859 1860
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
1861
 */
1862
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1863 1864
{
	struct memcg_stock_pcp *stock;
1865
	bool ret = false;
1866

1867
	if (nr_pages > CHARGE_BATCH)
1868
		return ret;
1869

1870
	stock = &get_cpu_var(memcg_stock);
1871
	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1872
		stock->nr_pages -= nr_pages;
1873 1874
		ret = true;
	}
1875 1876 1877 1878 1879
	put_cpu_var(memcg_stock);
	return ret;
}

/*
1880
 * Returns stocks cached in percpu and reset cached information.
1881 1882 1883 1884 1885
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

1886
	if (stock->nr_pages) {
1887
		page_counter_uncharge(&old->memory, stock->nr_pages);
1888
		if (do_swap_account)
1889
			page_counter_uncharge(&old->memsw, stock->nr_pages);
1890
		css_put_many(&old->css, stock->nr_pages);
1891
		stock->nr_pages = 0;
1892 1893 1894 1895 1896 1897 1898 1899 1900 1901
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
1902
	struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
1903
	drain_stock(stock);
1904
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1905 1906 1907
}

/*
1908
 * Cache charges(val) to local per_cpu area.
1909
 * This will be consumed by consume_stock() function, later.
1910
 */
1911
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1912 1913 1914
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

1915
	if (stock->cached != memcg) { /* reset if necessary */
1916
		drain_stock(stock);
1917
		stock->cached = memcg;
1918
	}
1919
	stock->nr_pages += nr_pages;
1920 1921 1922 1923
	put_cpu_var(memcg_stock);
}

/*
1924
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1925
 * of the hierarchy under it.
1926
 */
1927
static void drain_all_stock(struct mem_cgroup *root_memcg)
1928
{
1929
	int cpu, curcpu;
1930

1931 1932 1933
	/* If someone's already draining, avoid adding running more workers. */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
1934 1935
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
1936
	curcpu = get_cpu();
1937 1938
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1939
		struct mem_cgroup *memcg;
1940

1941 1942
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
1943
			continue;
1944
		if (!mem_cgroup_is_descendant(memcg, root_memcg))
1945
			continue;
1946 1947 1948 1949 1950 1951
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
1952
	}
1953
	put_cpu();
A
Andrew Morton 已提交
1954
	put_online_cpus();
1955
	mutex_unlock(&percpu_charge_mutex);
1956 1957
}

1958
static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
1959 1960 1961 1962 1963 1964
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;

1965
	if (action == CPU_ONLINE)
1966 1967
		return NOTIFY_OK;

1968
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1969
		return NOTIFY_OK;
1970

1971 1972 1973 1974 1975
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
/*
 * Scheduled by try_charge() to be executed from the userland return path
 * and reclaims memory over the high limit.
 */
void mem_cgroup_handle_over_high(void)
{
	unsigned int nr_pages = current->memcg_nr_pages_over_high;
	struct mem_cgroup *memcg, *pos;

	if (likely(!nr_pages))
		return;

	pos = memcg = get_mem_cgroup_from_mm(current->mm);

	do {
		if (page_counter_read(&pos->memory) <= pos->high)
			continue;
		mem_cgroup_events(pos, MEMCG_HIGH, 1);
		try_to_free_mem_cgroup_pages(pos, nr_pages, GFP_KERNEL, true);
	} while ((pos = parent_mem_cgroup(pos)));

	css_put(&memcg->css);
	current->memcg_nr_pages_over_high = 0;
}

2001 2002
static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
		      unsigned int nr_pages)
2003
{
2004
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2005
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2006
	struct mem_cgroup *mem_over_limit;
2007
	struct page_counter *counter;
2008
	unsigned long nr_reclaimed;
2009 2010
	bool may_swap = true;
	bool drained = false;
2011

2012
	if (mem_cgroup_is_root(memcg))
2013
		return 0;
2014
retry:
2015
	if (consume_stock(memcg, nr_pages))
2016
		return 0;
2017

2018
	if (!do_swap_account ||
2019 2020
	    !page_counter_try_charge(&memcg->memsw, batch, &counter)) {
		if (!page_counter_try_charge(&memcg->memory, batch, &counter))
2021
			goto done_restock;
2022
		if (do_swap_account)
2023 2024
			page_counter_uncharge(&memcg->memsw, batch);
		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2025
	} else {
2026
		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2027
		may_swap = false;
2028
	}
2029

2030 2031 2032 2033
	if (batch > nr_pages) {
		batch = nr_pages;
		goto retry;
	}
2034

2035 2036 2037 2038 2039 2040 2041 2042 2043
	/*
	 * Unlike in global OOM situations, memcg is not in a physical
	 * memory shortage.  Allow dying and OOM-killed tasks to
	 * bypass the last charges so that they can exit quickly and
	 * free their memory.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE) ||
		     fatal_signal_pending(current) ||
		     current->flags & PF_EXITING))
2044
		goto force;
2045 2046 2047 2048

	if (unlikely(task_in_memcg_oom(current)))
		goto nomem;

2049 2050
	if (!(gfp_mask & __GFP_WAIT))
		goto nomem;
2051

2052 2053
	mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);

2054 2055
	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
						    gfp_mask, may_swap);
2056

2057
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2058
		goto retry;
2059

2060
	if (!drained) {
2061
		drain_all_stock(mem_over_limit);
2062 2063 2064 2065
		drained = true;
		goto retry;
	}

2066 2067
	if (gfp_mask & __GFP_NORETRY)
		goto nomem;
2068 2069 2070 2071 2072 2073 2074 2075 2076
	/*
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
	 */
2077
	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2078 2079 2080 2081 2082 2083 2084 2085
		goto retry;
	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		goto retry;

2086 2087 2088
	if (nr_retries--)
		goto retry;

2089
	if (gfp_mask & __GFP_NOFAIL)
2090
		goto force;
2091

2092
	if (fatal_signal_pending(current))
2093
		goto force;
2094

2095 2096
	mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);

2097 2098
	mem_cgroup_oom(mem_over_limit, gfp_mask,
		       get_order(nr_pages * PAGE_SIZE));
2099
nomem:
2100
	if (!(gfp_mask & __GFP_NOFAIL))
2101
		return -ENOMEM;
2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113
force:
	/*
	 * The allocation either can't fail or will lead to more memory
	 * being freed very soon.  Allow memory usage go over the limit
	 * temporarily by force charging it.
	 */
	page_counter_charge(&memcg->memory, nr_pages);
	if (do_swap_account)
		page_counter_charge(&memcg->memsw, nr_pages);
	css_get_many(&memcg->css, nr_pages);

	return 0;
2114 2115

done_restock:
2116
	css_get_many(&memcg->css, batch);
2117 2118
	if (batch > nr_pages)
		refill_stock(memcg, batch - nr_pages);
2119

2120
	/*
2121 2122 2123 2124 2125 2126 2127
	 * If the hierarchy is above the normal consumption range, schedule
	 * reclaim on returning to userland.  We can perform reclaim here
	 * if __GFP_WAIT but let's always punt for simplicity and so that
	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
	 * not recorded as it most likely matches current's and won't
	 * change in the meantime.  As high limit is checked again before
	 * reclaim, the cost of mismatch is negligible.
2128 2129
	 */
	do {
2130 2131 2132 2133 2134
		if (page_counter_read(&memcg->memory) > memcg->high) {
			current->memcg_nr_pages_over_high += nr_pages;
			set_notify_resume(current);
			break;
		}
2135
	} while ((memcg = parent_mem_cgroup(memcg)));
2136 2137

	return 0;
2138
}
2139

2140
static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2141
{
2142 2143 2144
	if (mem_cgroup_is_root(memcg))
		return;

2145
	page_counter_uncharge(&memcg->memory, nr_pages);
2146
	if (do_swap_account)
2147
		page_counter_uncharge(&memcg->memsw, nr_pages);
2148

2149
	css_put_many(&memcg->css, nr_pages);
2150 2151
}

2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182
static void lock_page_lru(struct page *page, int *isolated)
{
	struct zone *zone = page_zone(page);

	spin_lock_irq(&zone->lru_lock);
	if (PageLRU(page)) {
		struct lruvec *lruvec;

		lruvec = mem_cgroup_page_lruvec(page, zone);
		ClearPageLRU(page);
		del_page_from_lru_list(page, lruvec, page_lru(page));
		*isolated = 1;
	} else
		*isolated = 0;
}

static void unlock_page_lru(struct page *page, int isolated)
{
	struct zone *zone = page_zone(page);

	if (isolated) {
		struct lruvec *lruvec;

		lruvec = mem_cgroup_page_lruvec(page, zone);
		VM_BUG_ON_PAGE(PageLRU(page), page);
		SetPageLRU(page);
		add_page_to_lru_list(page, lruvec, page_lru(page));
	}
	spin_unlock_irq(&zone->lru_lock);
}

2183
static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2184
			  bool lrucare)
2185
{
2186
	int isolated;
2187

2188
	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2189 2190 2191 2192 2193

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
2194 2195
	if (lrucare)
		lock_page_lru(page, &isolated);
2196

2197 2198
	/*
	 * Nobody should be changing or seriously looking at
2199
	 * page->mem_cgroup at this point:
2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210
	 *
	 * - the page is uncharged
	 *
	 * - the page is off-LRU
	 *
	 * - an anonymous fault has exclusive page access, except for
	 *   a locked page table
	 *
	 * - a page cache insertion, a swapin fault, or a migration
	 *   have the page locked
	 */
2211
	page->mem_cgroup = memcg;
2212

2213 2214
	if (lrucare)
		unlock_page_lru(page, isolated);
2215
}
2216

2217
#ifdef CONFIG_MEMCG_KMEM
2218 2219
int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp,
		      unsigned long nr_pages)
2220
{
2221
	struct page_counter *counter;
2222 2223
	int ret = 0;

2224 2225
	ret = page_counter_try_charge(&memcg->kmem, nr_pages, &counter);
	if (ret < 0)
2226 2227
		return ret;

2228
	ret = try_charge(memcg, gfp, nr_pages);
2229
	if (ret)
2230
		page_counter_uncharge(&memcg->kmem, nr_pages);
2231 2232 2233 2234

	return ret;
}

2235
void memcg_uncharge_kmem(struct mem_cgroup *memcg, unsigned long nr_pages)
2236
{
2237
	page_counter_uncharge(&memcg->memory, nr_pages);
2238
	if (do_swap_account)
2239
		page_counter_uncharge(&memcg->memsw, nr_pages);
2240

2241
	page_counter_uncharge(&memcg->kmem, nr_pages);
2242

2243
	css_put_many(&memcg->css, nr_pages);
2244 2245
}

2246
static int memcg_alloc_cache_id(void)
2247
{
2248 2249 2250
	int id, size;
	int err;

2251
	id = ida_simple_get(&memcg_cache_ida,
2252 2253 2254
			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (id < 0)
		return id;
2255

2256
	if (id < memcg_nr_cache_ids)
2257 2258 2259 2260 2261 2262
		return id;

	/*
	 * There's no space for the new id in memcg_caches arrays,
	 * so we have to grow them.
	 */
2263
	down_write(&memcg_cache_ids_sem);
2264 2265

	size = 2 * (id + 1);
2266 2267 2268 2269 2270
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

2271
	err = memcg_update_all_caches(size);
2272 2273
	if (!err)
		err = memcg_update_all_list_lrus(size);
2274 2275 2276 2277 2278
	if (!err)
		memcg_nr_cache_ids = size;

	up_write(&memcg_cache_ids_sem);

2279
	if (err) {
2280
		ida_simple_remove(&memcg_cache_ida, id);
2281 2282 2283 2284 2285 2286 2287
		return err;
	}
	return id;
}

static void memcg_free_cache_id(int id)
{
2288
	ida_simple_remove(&memcg_cache_ida, id);
2289 2290
}

2291
struct memcg_kmem_cache_create_work {
2292 2293 2294 2295 2296
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

2297
static void memcg_kmem_cache_create_func(struct work_struct *w)
2298
{
2299 2300
	struct memcg_kmem_cache_create_work *cw =
		container_of(w, struct memcg_kmem_cache_create_work, work);
2301 2302
	struct mem_cgroup *memcg = cw->memcg;
	struct kmem_cache *cachep = cw->cachep;
2303

2304
	memcg_create_kmem_cache(memcg, cachep);
2305

2306
	css_put(&memcg->css);
2307 2308 2309 2310 2311 2312
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
2313 2314
static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					       struct kmem_cache *cachep)
2315
{
2316
	struct memcg_kmem_cache_create_work *cw;
2317

2318
	cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2319
	if (!cw)
2320
		return;
2321 2322

	css_get(&memcg->css);
2323 2324 2325

	cw->memcg = memcg;
	cw->cachep = cachep;
2326
	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2327 2328 2329 2330

	schedule_work(&cw->work);
}

2331 2332
static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					     struct kmem_cache *cachep)
2333 2334 2335 2336
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
2337
	 * in __memcg_schedule_kmem_cache_create will recurse.
2338 2339 2340 2341 2342 2343 2344
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
2345
	current->memcg_kmem_skip_account = 1;
2346
	__memcg_schedule_kmem_cache_create(memcg, cachep);
2347
	current->memcg_kmem_skip_account = 0;
2348
}
2349

2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362
/*
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
 * If the cache does not exist yet, if we are the first user of it,
 * we either create it immediately, if possible, or create it asynchronously
 * in a workqueue.
 * In the latter case, we will let the current allocation go through with
 * the original cache.
 *
 * Can't be called in interrupt context or from kernel threads.
 * This function needs to be called with rcu_read_lock() held.
 */
2363
struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep)
2364 2365
{
	struct mem_cgroup *memcg;
2366
	struct kmem_cache *memcg_cachep;
2367
	int kmemcg_id;
2368

2369
	VM_BUG_ON(!is_root_cache(cachep));
2370

2371
	if (current->memcg_kmem_skip_account)
2372 2373
		return cachep;

2374
	memcg = get_mem_cgroup_from_mm(current->mm);
2375
	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2376
	if (kmemcg_id < 0)
2377
		goto out;
2378

2379
	memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2380 2381
	if (likely(memcg_cachep))
		return memcg_cachep;
2382 2383 2384 2385 2386 2387 2388 2389 2390

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
2391 2392 2393
	 * memcg_create_kmem_cache, this means no further allocation
	 * could happen with the slab_mutex held. So it's better to
	 * defer everything.
2394
	 */
2395
	memcg_schedule_kmem_cache_create(memcg, cachep);
2396
out:
2397
	css_put(&memcg->css);
2398
	return cachep;
2399 2400
}

2401 2402 2403
void __memcg_kmem_put_cache(struct kmem_cache *cachep)
{
	if (!is_root_cache(cachep))
2404
		css_put(&cachep->memcg_params.memcg->css);
2405 2406
}

2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427
/*
 * We need to verify if the allocation against current->mm->owner's memcg is
 * possible for the given order. But the page is not allocated yet, so we'll
 * need a further commit step to do the final arrangements.
 *
 * It is possible for the task to switch cgroups in this mean time, so at
 * commit time, we can't rely on task conversion any longer.  We'll then use
 * the handle argument to return to the caller which cgroup we should commit
 * against. We could also return the memcg directly and avoid the pointer
 * passing, but a boolean return value gives better semantics considering
 * the compiled-out case as well.
 *
 * Returning true means the allocation is possible.
 */
bool
__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
{
	struct mem_cgroup *memcg;
	int ret;

	*_memcg = NULL;
2428

2429
	memcg = get_mem_cgroup_from_mm(current->mm);
2430

2431
	if (!memcg_kmem_is_active(memcg)) {
2432 2433 2434 2435
		css_put(&memcg->css);
		return true;
	}

2436
	ret = memcg_charge_kmem(memcg, gfp, 1 << order);
2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450
	if (!ret)
		*_memcg = memcg;

	css_put(&memcg->css);
	return (ret == 0);
}

void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      int order)
{
	VM_BUG_ON(mem_cgroup_is_root(memcg));

	/* The page allocation failed. Revert */
	if (!page) {
2451
		memcg_uncharge_kmem(memcg, 1 << order);
2452 2453
		return;
	}
2454
	page->mem_cgroup = memcg;
2455 2456 2457 2458
}

void __memcg_kmem_uncharge_pages(struct page *page, int order)
{
2459
	struct mem_cgroup *memcg = page->mem_cgroup;
2460 2461 2462 2463

	if (!memcg)
		return;

2464
	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2465

2466
	memcg_uncharge_kmem(memcg, 1 << order);
2467
	page->mem_cgroup = NULL;
2468
}
2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479

struct mem_cgroup *__mem_cgroup_from_kmem(void *ptr)
{
	struct mem_cgroup *memcg = NULL;
	struct kmem_cache *cachep;
	struct page *page;

	page = virt_to_head_page(ptr);
	if (PageSlab(page)) {
		cachep = page->slab_cache;
		if (!is_root_cache(cachep))
2480
			memcg = cachep->memcg_params.memcg;
2481 2482 2483 2484 2485 2486
	} else
		/* page allocated by alloc_kmem_pages */
		memcg = page->mem_cgroup;

	return memcg;
}
2487 2488
#endif /* CONFIG_MEMCG_KMEM */

2489 2490 2491 2492
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

/*
 * Because tail pages are not marked as "used", set it. We're under
2493 2494 2495
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
2496
 */
2497
void mem_cgroup_split_huge_fixup(struct page *head)
2498
{
2499
	int i;
2500

2501 2502
	if (mem_cgroup_disabled())
		return;
2503

2504
	for (i = 1; i < HPAGE_PMD_NR; i++)
2505
		head[i].mem_cgroup = head->mem_cgroup;
2506

2507
	__this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2508
		       HPAGE_PMD_NR);
2509
}
2510
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2511

A
Andrew Morton 已提交
2512
#ifdef CONFIG_MEMCG_SWAP
2513 2514
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
					 bool charge)
K
KAMEZAWA Hiroyuki 已提交
2515
{
2516 2517
	int val = (charge) ? 1 : -1;
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
K
KAMEZAWA Hiroyuki 已提交
2518
}
2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
2531
 * The caller must have charged to @to, IOW, called page_counter_charge() about
2532 2533 2534
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
2535
				struct mem_cgroup *from, struct mem_cgroup *to)
2536 2537 2538
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
2539 2540
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
2541 2542 2543

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
2544
		mem_cgroup_swap_statistics(to, true);
2545 2546 2547 2548 2549 2550
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2551
				struct mem_cgroup *from, struct mem_cgroup *to)
2552 2553 2554
{
	return -EINVAL;
}
2555
#endif
K
KAMEZAWA Hiroyuki 已提交
2556

2557
static DEFINE_MUTEX(memcg_limit_mutex);
2558

2559
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2560
				   unsigned long limit)
2561
{
2562 2563 2564
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
2565
	int retry_count;
2566
	int ret;
2567 2568 2569 2570 2571 2572

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
2573 2574
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);
2575

2576
	oldusage = page_counter_read(&memcg->memory);
2577

2578
	do {
2579 2580 2581 2582
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2583 2584 2585 2586

		mutex_lock(&memcg_limit_mutex);
		if (limit > memcg->memsw.limit) {
			mutex_unlock(&memcg_limit_mutex);
2587
			ret = -EINVAL;
2588 2589
			break;
		}
2590 2591 2592 2593
		if (limit > memcg->memory.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memory, limit);
		mutex_unlock(&memcg_limit_mutex);
2594 2595 2596 2597

		if (!ret)
			break;

2598 2599
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);

2600
		curusage = page_counter_read(&memcg->memory);
2601
		/* Usage is reduced ? */
A
Andrew Morton 已提交
2602
		if (curusage >= oldusage)
2603 2604 2605
			retry_count--;
		else
			oldusage = curusage;
2606 2607
	} while (retry_count);

2608 2609
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2610

2611 2612 2613
	return ret;
}

L
Li Zefan 已提交
2614
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2615
					 unsigned long limit)
2616
{
2617 2618 2619
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
2620
	int retry_count;
2621
	int ret;
2622

2623
	/* see mem_cgroup_resize_res_limit */
2624 2625 2626 2627 2628 2629
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);

	oldusage = page_counter_read(&memcg->memsw);

	do {
2630 2631 2632 2633
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2634 2635 2636 2637

		mutex_lock(&memcg_limit_mutex);
		if (limit < memcg->memory.limit) {
			mutex_unlock(&memcg_limit_mutex);
2638 2639 2640
			ret = -EINVAL;
			break;
		}
2641 2642 2643 2644
		if (limit > memcg->memsw.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memsw, limit);
		mutex_unlock(&memcg_limit_mutex);
2645 2646 2647 2648

		if (!ret)
			break;

2649 2650
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);

2651
		curusage = page_counter_read(&memcg->memsw);
2652
		/* Usage is reduced ? */
2653
		if (curusage >= oldusage)
2654
			retry_count--;
2655 2656
		else
			oldusage = curusage;
2657 2658
	} while (retry_count);

2659 2660
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2661

2662 2663 2664
	return ret;
}

2665 2666 2667 2668 2669 2670 2671 2672 2673
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
2674
	unsigned long excess;
2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
2699
		spin_lock_irq(&mctz->lock);
2700
		__mem_cgroup_remove_exceeded(mz, mctz);
2701 2702 2703 2704 2705 2706

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
2707 2708 2709
		if (!reclaimed)
			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);

2710
		excess = soft_limit_excess(mz->memcg);
2711 2712 2713 2714 2715 2716 2717 2718 2719
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
2720
		__mem_cgroup_insert_exceeded(mz, mctz, excess);
2721
		spin_unlock_irq(&mctz->lock);
2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

2739 2740 2741 2742 2743 2744
/*
 * Test whether @memcg has children, dead or alive.  Note that this
 * function doesn't care whether @memcg has use_hierarchy enabled and
 * returns %true if there are child csses according to the cgroup
 * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
 */
2745 2746
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
2747 2748
	bool ret;

2749
	/*
2750 2751 2752 2753
	 * The lock does not prevent addition or deletion of children, but
	 * it prevents a new child from being initialized based on this
	 * parent in css_online(), so it's enough to decide whether
	 * hierarchically inherited attributes can still be changed or not.
2754
	 */
2755 2756 2757 2758 2759 2760
	lockdep_assert_held(&memcg_create_mutex);

	rcu_read_lock();
	ret = css_next_child(NULL, &memcg->css);
	rcu_read_unlock();
	return ret;
2761 2762
}

2763 2764 2765 2766 2767 2768 2769 2770 2771 2772
/*
 * Reclaims as many pages from the given memcg as possible and moves
 * the rest to the parent.
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;

2773 2774
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
2775
	/* try to free all pages in this cgroup */
2776
	while (nr_retries && page_counter_read(&memcg->memory)) {
2777
		int progress;
2778

2779 2780 2781
		if (signal_pending(current))
			return -EINTR;

2782 2783
		progress = try_to_free_mem_cgroup_pages(memcg, 1,
							GFP_KERNEL, true);
2784
		if (!progress) {
2785
			nr_retries--;
2786
			/* maybe some writeback is necessary */
2787
			congestion_wait(BLK_RW_ASYNC, HZ/10);
2788
		}
2789 2790

	}
2791 2792

	return 0;
2793 2794
}

2795 2796 2797
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
					    char *buf, size_t nbytes,
					    loff_t off)
2798
{
2799
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2800

2801 2802
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
2803
	return mem_cgroup_force_empty(memcg) ?: nbytes;
2804 2805
}

2806 2807
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
2808
{
2809
	return mem_cgroup_from_css(css)->use_hierarchy;
2810 2811
}

2812 2813
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
2814 2815
{
	int retval = 0;
2816
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
2817
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2818

2819
	mutex_lock(&memcg_create_mutex);
2820 2821 2822 2823

	if (memcg->use_hierarchy == val)
		goto out;

2824
	/*
2825
	 * If parent's use_hierarchy is set, we can't make any modifications
2826 2827 2828 2829 2830 2831
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
2832
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2833
				(val == 1 || val == 0)) {
2834
		if (!memcg_has_children(memcg))
2835
			memcg->use_hierarchy = val;
2836 2837 2838 2839
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
2840 2841

out:
2842
	mutex_unlock(&memcg_create_mutex);
2843 2844 2845 2846

	return retval;
}

2847 2848
static unsigned long tree_stat(struct mem_cgroup *memcg,
			       enum mem_cgroup_stat_index idx)
2849 2850
{
	struct mem_cgroup *iter;
2851
	unsigned long val = 0;
2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862

	for_each_mem_cgroup_tree(iter, memcg)
		val += mem_cgroup_read_stat(iter, idx);

	return val;
}

static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
{
	u64 val;

2863 2864 2865 2866 2867 2868
	if (mem_cgroup_is_root(memcg)) {
		val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
		val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
		if (swap)
			val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
	} else {
2869
		if (!swap)
2870
			val = page_counter_read(&memcg->memory);
2871
		else
2872
			val = page_counter_read(&memcg->memsw);
2873 2874 2875 2876
	}
	return val << PAGE_SHIFT;
}

2877 2878 2879 2880 2881 2882 2883
enum {
	RES_USAGE,
	RES_LIMIT,
	RES_MAX_USAGE,
	RES_FAILCNT,
	RES_SOFT_LIMIT,
};
2884

2885
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2886
			       struct cftype *cft)
B
Balbir Singh 已提交
2887
{
2888
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2889
	struct page_counter *counter;
2890

2891
	switch (MEMFILE_TYPE(cft->private)) {
2892
	case _MEM:
2893 2894
		counter = &memcg->memory;
		break;
2895
	case _MEMSWAP:
2896 2897
		counter = &memcg->memsw;
		break;
2898
	case _KMEM:
2899
		counter = &memcg->kmem;
2900
		break;
2901 2902 2903
	default:
		BUG();
	}
2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922

	switch (MEMFILE_ATTR(cft->private)) {
	case RES_USAGE:
		if (counter == &memcg->memory)
			return mem_cgroup_usage(memcg, false);
		if (counter == &memcg->memsw)
			return mem_cgroup_usage(memcg, true);
		return (u64)page_counter_read(counter) * PAGE_SIZE;
	case RES_LIMIT:
		return (u64)counter->limit * PAGE_SIZE;
	case RES_MAX_USAGE:
		return (u64)counter->watermark * PAGE_SIZE;
	case RES_FAILCNT:
		return counter->failcnt;
	case RES_SOFT_LIMIT:
		return (u64)memcg->soft_limit * PAGE_SIZE;
	default:
		BUG();
	}
B
Balbir Singh 已提交
2923
}
2924 2925

#ifdef CONFIG_MEMCG_KMEM
2926 2927
static int memcg_activate_kmem(struct mem_cgroup *memcg,
			       unsigned long nr_pages)
2928 2929 2930 2931
{
	int err = 0;
	int memcg_id;

2932
	BUG_ON(memcg->kmemcg_id >= 0);
2933
	BUG_ON(memcg->kmem_acct_activated);
2934
	BUG_ON(memcg->kmem_acct_active);
2935

2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947
	/*
	 * For simplicity, we won't allow this to be disabled.  It also can't
	 * be changed if the cgroup has children already, or if tasks had
	 * already joined.
	 *
	 * If tasks join before we set the limit, a person looking at
	 * kmem.usage_in_bytes will have no way to determine when it took
	 * place, which makes the value quite meaningless.
	 *
	 * After it first became limited, changes in the value of the limit are
	 * of course permitted.
	 */
2948
	mutex_lock(&memcg_create_mutex);
2949 2950
	if (cgroup_has_tasks(memcg->css.cgroup) ||
	    (memcg->use_hierarchy && memcg_has_children(memcg)))
2951 2952 2953 2954
		err = -EBUSY;
	mutex_unlock(&memcg_create_mutex);
	if (err)
		goto out;
2955

2956
	memcg_id = memcg_alloc_cache_id();
2957 2958 2959 2960 2961 2962
	if (memcg_id < 0) {
		err = memcg_id;
		goto out;
	}

	/*
V
Vladimir Davydov 已提交
2963 2964
	 * We couldn't have accounted to this cgroup, because it hasn't got
	 * activated yet, so this should succeed.
2965
	 */
2966
	err = page_counter_limit(&memcg->kmem, nr_pages);
2967 2968 2969 2970
	VM_BUG_ON(err);

	static_key_slow_inc(&memcg_kmem_enabled_key);
	/*
V
Vladimir Davydov 已提交
2971 2972
	 * A memory cgroup is considered kmem-active as soon as it gets
	 * kmemcg_id. Setting the id after enabling static branching will
2973 2974 2975
	 * guarantee no one starts accounting before all call sites are
	 * patched.
	 */
V
Vladimir Davydov 已提交
2976
	memcg->kmemcg_id = memcg_id;
2977
	memcg->kmem_acct_activated = true;
2978
	memcg->kmem_acct_active = true;
2979
out:
2980 2981 2982 2983
	return err;
}

static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2984
				   unsigned long limit)
2985 2986 2987
{
	int ret;

2988
	mutex_lock(&memcg_limit_mutex);
2989
	if (!memcg_kmem_is_active(memcg))
2990
		ret = memcg_activate_kmem(memcg, limit);
2991
	else
2992 2993
		ret = page_counter_limit(&memcg->kmem, limit);
	mutex_unlock(&memcg_limit_mutex);
2994 2995 2996
	return ret;
}

2997
static int memcg_propagate_kmem(struct mem_cgroup *memcg)
2998
{
2999
	int ret = 0;
3000
	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
3001

3002 3003
	if (!parent)
		return 0;
3004

3005
	mutex_lock(&memcg_limit_mutex);
3006
	/*
3007 3008
	 * If the parent cgroup is not kmem-active now, it cannot be activated
	 * after this point, because it has at least one child already.
3009
	 */
3010
	if (memcg_kmem_is_active(parent))
3011 3012
		ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
	mutex_unlock(&memcg_limit_mutex);
3013
	return ret;
3014
}
3015 3016
#else
static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3017
				   unsigned long limit)
3018 3019 3020
{
	return -EINVAL;
}
3021
#endif /* CONFIG_MEMCG_KMEM */
3022

3023 3024 3025 3026
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3027 3028
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
B
Balbir Singh 已提交
3029
{
3030
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3031
	unsigned long nr_pages;
3032 3033
	int ret;

3034
	buf = strstrip(buf);
3035
	ret = page_counter_memparse(buf, "-1", &nr_pages);
3036 3037
	if (ret)
		return ret;
3038

3039
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3040
	case RES_LIMIT:
3041 3042 3043 3044
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3045 3046 3047
		switch (MEMFILE_TYPE(of_cft(of)->private)) {
		case _MEM:
			ret = mem_cgroup_resize_limit(memcg, nr_pages);
3048
			break;
3049 3050
		case _MEMSWAP:
			ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3051
			break;
3052 3053 3054 3055
		case _KMEM:
			ret = memcg_update_kmem_limit(memcg, nr_pages);
			break;
		}
3056
		break;
3057 3058 3059
	case RES_SOFT_LIMIT:
		memcg->soft_limit = nr_pages;
		ret = 0;
3060 3061
		break;
	}
3062
	return ret ?: nbytes;
B
Balbir Singh 已提交
3063 3064
}

3065 3066
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
				size_t nbytes, loff_t off)
3067
{
3068
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3069
	struct page_counter *counter;
3070

3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083
	switch (MEMFILE_TYPE(of_cft(of)->private)) {
	case _MEM:
		counter = &memcg->memory;
		break;
	case _MEMSWAP:
		counter = &memcg->memsw;
		break;
	case _KMEM:
		counter = &memcg->kmem;
		break;
	default:
		BUG();
	}
3084

3085
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3086
	case RES_MAX_USAGE:
3087
		page_counter_reset_watermark(counter);
3088 3089
		break;
	case RES_FAILCNT:
3090
		counter->failcnt = 0;
3091
		break;
3092 3093
	default:
		BUG();
3094
	}
3095

3096
	return nbytes;
3097 3098
}

3099
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3100 3101
					struct cftype *cft)
{
3102
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3103 3104
}

3105
#ifdef CONFIG_MMU
3106
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3107 3108
					struct cftype *cft, u64 val)
{
3109
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3110

3111
	if (val & ~MOVE_MASK)
3112
		return -EINVAL;
3113

3114
	/*
3115 3116 3117 3118
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
3119
	 */
3120
	memcg->move_charge_at_immigrate = val;
3121 3122
	return 0;
}
3123
#else
3124
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3125 3126 3127 3128 3129
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3130

3131
#ifdef CONFIG_NUMA
3132
static int memcg_numa_stat_show(struct seq_file *m, void *v)
3133
{
3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
3146
	int nid;
3147
	unsigned long nr;
3148
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3149

3150 3151 3152 3153 3154 3155 3156 3157 3158
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
		seq_printf(m, "%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
							  stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3159 3160
	}

3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		struct mem_cgroup *iter;

		nr = 0;
		for_each_mem_cgroup_tree(iter, memcg)
			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = 0;
			for_each_mem_cgroup_tree(iter, memcg)
				nr += mem_cgroup_node_nr_lru_pages(
					iter, nid, stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3176 3177 3178 3179 3180 3181
	}

	return 0;
}
#endif /* CONFIG_NUMA */

3182
static int memcg_stat_show(struct seq_file *m, void *v)
3183
{
3184
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3185
	unsigned long memory, memsw;
3186 3187
	struct mem_cgroup *mi;
	unsigned int i;
3188

3189 3190 3191 3192
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
		     MEM_CGROUP_STAT_NSTATS);
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
		     MEM_CGROUP_EVENTS_NSTATS);
3193 3194
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);

3195
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3196
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3197
			continue;
3198
		seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3199
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3200
	}
L
Lee Schermerhorn 已提交
3201

3202 3203 3204 3205 3206 3207 3208 3209
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
3210
	/* Hierarchical information */
3211 3212 3213 3214
	memory = memsw = PAGE_COUNTER_MAX;
	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
		memory = min(memory, mi->memory.limit);
		memsw = min(memsw, mi->memsw.limit);
3215
	}
3216 3217 3218 3219 3220
	seq_printf(m, "hierarchical_memory_limit %llu\n",
		   (u64)memory * PAGE_SIZE);
	if (do_swap_account)
		seq_printf(m, "hierarchical_memsw_limit %llu\n",
			   (u64)memsw * PAGE_SIZE);
K
KOSAKI Motohiro 已提交
3221

3222
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3223
		unsigned long long val = 0;
3224

3225
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3226
			continue;
3227 3228
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3229
		seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3247
	}
K
KAMEZAWA Hiroyuki 已提交
3248

K
KOSAKI Motohiro 已提交
3249 3250 3251 3252
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
3253
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
3254 3255 3256 3257 3258
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3259
				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3260
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
3261

3262 3263 3264 3265
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
3266
			}
3267 3268 3269 3270
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
3271 3272 3273
	}
#endif

3274 3275 3276
	return 0;
}

3277 3278
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
3279
{
3280
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3281

3282
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
3283 3284
}

3285 3286
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
3287
{
3288
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3289

3290
	if (val > 100)
K
KOSAKI Motohiro 已提交
3291 3292
		return -EINVAL;

3293
	if (css->parent)
3294 3295 3296
		memcg->swappiness = val;
	else
		vm_swappiness = val;
3297

K
KOSAKI Motohiro 已提交
3298 3299 3300
	return 0;
}

3301 3302 3303
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
3304
	unsigned long usage;
3305 3306 3307 3308
	int i;

	rcu_read_lock();
	if (!swap)
3309
		t = rcu_dereference(memcg->thresholds.primary);
3310
	else
3311
		t = rcu_dereference(memcg->memsw_thresholds.primary);
3312 3313 3314 3315

	if (!t)
		goto unlock;

3316
	usage = mem_cgroup_usage(memcg, swap);
3317 3318

	/*
3319
	 * current_threshold points to threshold just below or equal to usage.
3320 3321 3322
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
3323
	i = t->current_threshold;
3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
3347
	t->current_threshold = i - 1;
3348 3349 3350 3351 3352 3353
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
3354 3355 3356 3357 3358 3359 3360
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
3361 3362 3363 3364 3365 3366 3367
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

3368 3369 3370 3371 3372 3373 3374
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
3375 3376
}

3377
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3378 3379 3380
{
	struct mem_cgroup_eventfd_list *ev;

3381 3382
	spin_lock(&memcg_oom_lock);

3383
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
3384
		eventfd_signal(ev->eventfd, 1);
3385 3386

	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3387 3388 3389
	return 0;
}

3390
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3391
{
K
KAMEZAWA Hiroyuki 已提交
3392 3393
	struct mem_cgroup *iter;

3394
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3395
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
3396 3397
}

3398
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3399
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3400
{
3401 3402
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3403 3404
	unsigned long threshold;
	unsigned long usage;
3405
	int i, size, ret;
3406

3407
	ret = page_counter_memparse(args, "-1", &threshold);
3408 3409
	if (ret)
		return ret;
S
Shaohua Li 已提交
3410
	threshold <<= PAGE_SHIFT;
3411 3412

	mutex_lock(&memcg->thresholds_lock);
3413

3414
	if (type == _MEM) {
3415
		thresholds = &memcg->thresholds;
3416
		usage = mem_cgroup_usage(memcg, false);
3417
	} else if (type == _MEMSWAP) {
3418
		thresholds = &memcg->memsw_thresholds;
3419
		usage = mem_cgroup_usage(memcg, true);
3420
	} else
3421 3422 3423
		BUG();

	/* Check if a threshold crossed before adding a new one */
3424
	if (thresholds->primary)
3425 3426
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

3427
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3428 3429

	/* Allocate memory for new array of thresholds */
3430
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3431
			GFP_KERNEL);
3432
	if (!new) {
3433 3434 3435
		ret = -ENOMEM;
		goto unlock;
	}
3436
	new->size = size;
3437 3438

	/* Copy thresholds (if any) to new array */
3439 3440
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3441
				sizeof(struct mem_cgroup_threshold));
3442 3443
	}

3444
	/* Add new threshold */
3445 3446
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
3447 3448

	/* Sort thresholds. Registering of new threshold isn't time-critical */
3449
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3450 3451 3452
			compare_thresholds, NULL);

	/* Find current threshold */
3453
	new->current_threshold = -1;
3454
	for (i = 0; i < size; i++) {
3455
		if (new->entries[i].threshold <= usage) {
3456
			/*
3457 3458
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
3459 3460
			 * it here.
			 */
3461
			++new->current_threshold;
3462 3463
		} else
			break;
3464 3465
	}

3466 3467 3468 3469 3470
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
3471

3472
	/* To be sure that nobody uses thresholds */
3473 3474 3475 3476 3477 3478 3479 3480
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

3481
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3482 3483
	struct eventfd_ctx *eventfd, const char *args)
{
3484
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
3485 3486
}

3487
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3488 3489
	struct eventfd_ctx *eventfd, const char *args)
{
3490
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
3491 3492
}

3493
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3494
	struct eventfd_ctx *eventfd, enum res_type type)
3495
{
3496 3497
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3498
	unsigned long usage;
3499
	int i, j, size;
3500 3501

	mutex_lock(&memcg->thresholds_lock);
3502 3503

	if (type == _MEM) {
3504
		thresholds = &memcg->thresholds;
3505
		usage = mem_cgroup_usage(memcg, false);
3506
	} else if (type == _MEMSWAP) {
3507
		thresholds = &memcg->memsw_thresholds;
3508
		usage = mem_cgroup_usage(memcg, true);
3509
	} else
3510 3511
		BUG();

3512 3513 3514
	if (!thresholds->primary)
		goto unlock;

3515 3516 3517 3518
	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
3519 3520 3521
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
3522 3523 3524
			size++;
	}

3525
	new = thresholds->spare;
3526

3527 3528
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
3529 3530
		kfree(new);
		new = NULL;
3531
		goto swap_buffers;
3532 3533
	}

3534
	new->size = size;
3535 3536

	/* Copy thresholds and find current threshold */
3537 3538 3539
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
3540 3541
			continue;

3542
		new->entries[j] = thresholds->primary->entries[i];
3543
		if (new->entries[j].threshold <= usage) {
3544
			/*
3545
			 * new->current_threshold will not be used
3546 3547 3548
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
3549
			++new->current_threshold;
3550 3551 3552 3553
		}
		j++;
	}

3554
swap_buffers:
3555 3556
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
3557 3558 3559 3560 3561 3562
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

3563
	rcu_assign_pointer(thresholds->primary, new);
3564

3565
	/* To be sure that nobody uses thresholds */
3566
	synchronize_rcu();
3567
unlock:
3568 3569
	mutex_unlock(&memcg->thresholds_lock);
}
3570

3571
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3572 3573
	struct eventfd_ctx *eventfd)
{
3574
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
3575 3576
}

3577
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3578 3579
	struct eventfd_ctx *eventfd)
{
3580
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
3581 3582
}

3583
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3584
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
3585 3586 3587 3588 3589 3590 3591
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

3592
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3593 3594 3595 3596 3597

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
3598
	if (memcg->under_oom)
K
KAMEZAWA Hiroyuki 已提交
3599
		eventfd_signal(eventfd, 1);
3600
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3601 3602 3603 3604

	return 0;
}

3605
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3606
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
3607 3608 3609
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

3610
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3611

3612
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
3613 3614 3615 3616 3617 3618
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

3619
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3620 3621
}

3622
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3623
{
3624
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3625

3626
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3627
	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3628 3629 3630
	return 0;
}

3631
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3632 3633
	struct cftype *cft, u64 val)
{
3634
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3635 3636

	/* cannot set to root cgroup and only 0 and 1 are allowed */
3637
	if (!css->parent || !((val == 0) || (val == 1)))
3638 3639
		return -EINVAL;

3640
	memcg->oom_kill_disable = val;
3641
	if (!val)
3642
		memcg_oom_recover(memcg);
3643

3644 3645 3646
	return 0;
}

A
Andrew Morton 已提交
3647
#ifdef CONFIG_MEMCG_KMEM
3648
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
3649
{
3650 3651 3652 3653 3654
	int ret;

	ret = memcg_propagate_kmem(memcg);
	if (ret)
		return ret;
3655

3656
	return mem_cgroup_sockets_init(memcg, ss);
3657
}
3658

3659 3660
static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
{
3661 3662 3663 3664
	struct cgroup_subsys_state *css;
	struct mem_cgroup *parent, *child;
	int kmemcg_id;

3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676
	if (!memcg->kmem_acct_active)
		return;

	/*
	 * Clear the 'active' flag before clearing memcg_caches arrays entries.
	 * Since we take the slab_mutex in memcg_deactivate_kmem_caches(), it
	 * guarantees no cache will be created for this cgroup after we are
	 * done (see memcg_create_kmem_cache()).
	 */
	memcg->kmem_acct_active = false;

	memcg_deactivate_kmem_caches(memcg);
3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702

	kmemcg_id = memcg->kmemcg_id;
	BUG_ON(kmemcg_id < 0);

	parent = parent_mem_cgroup(memcg);
	if (!parent)
		parent = root_mem_cgroup;

	/*
	 * Change kmemcg_id of this cgroup and all its descendants to the
	 * parent's id, and then move all entries from this cgroup's list_lrus
	 * to ones of the parent. After we have finished, all list_lrus
	 * corresponding to this cgroup are guaranteed to remain empty. The
	 * ordering is imposed by list_lru_node->lock taken by
	 * memcg_drain_all_list_lrus().
	 */
	css_for_each_descendant_pre(css, &memcg->css) {
		child = mem_cgroup_from_css(css);
		BUG_ON(child->kmemcg_id != kmemcg_id);
		child->kmemcg_id = parent->kmemcg_id;
		if (!memcg->use_hierarchy)
			break;
	}
	memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);

	memcg_free_cache_id(kmemcg_id);
3703 3704
}

3705
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
3706
{
3707 3708 3709 3710 3711
	if (memcg->kmem_acct_activated) {
		memcg_destroy_kmem_caches(memcg);
		static_key_slow_dec(&memcg_kmem_enabled_key);
		WARN_ON(page_counter_read(&memcg->kmem));
	}
3712
	mem_cgroup_sockets_destroy(memcg);
3713
}
3714
#else
3715
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
3716 3717 3718
{
	return 0;
}
G
Glauber Costa 已提交
3719

3720 3721 3722 3723
static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
{
}

3724 3725 3726
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
{
}
3727 3728
#endif

3729 3730 3731 3732 3733 3734 3735
#ifdef CONFIG_CGROUP_WRITEBACK

struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
{
	return &memcg->cgwb_list;
}

T
Tejun Heo 已提交
3736 3737 3738 3739 3740 3741 3742 3743 3744 3745
static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return wb_domain_init(&memcg->cgwb_domain, gfp);
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
	wb_domain_exit(&memcg->cgwb_domain);
}

3746 3747 3748 3749 3750
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
	wb_domain_size_changed(&memcg->cgwb_domain);
}

T
Tejun Heo 已提交
3751 3752 3753 3754 3755 3756 3757 3758 3759 3760
struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);

	if (!memcg->css.parent)
		return NULL;

	return &memcg->cgwb_domain;
}

3761 3762 3763
/**
 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
 * @wb: bdi_writeback in question
3764 3765
 * @pfilepages: out parameter for number of file pages
 * @pheadroom: out parameter for number of allocatable pages according to memcg
3766 3767 3768
 * @pdirty: out parameter for number of dirty pages
 * @pwriteback: out parameter for number of pages under writeback
 *
3769 3770 3771
 * Determine the numbers of file, headroom, dirty, and writeback pages in
 * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
 * is a bit more involved.
3772
 *
3773 3774 3775 3776 3777
 * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
 * headroom is calculated as the lowest headroom of itself and the
 * ancestors.  Note that this doesn't consider the actual amount of
 * available memory in the system.  The caller should further cap
 * *@pheadroom accordingly.
3778
 */
3779 3780 3781
void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
			 unsigned long *pheadroom, unsigned long *pdirty,
			 unsigned long *pwriteback)
3782 3783 3784 3785 3786 3787 3788 3789
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
	struct mem_cgroup *parent;

	*pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);

	/* this should eventually include NR_UNSTABLE_NFS */
	*pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3790 3791 3792
	*pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
						     (1 << LRU_ACTIVE_FILE));
	*pheadroom = PAGE_COUNTER_MAX;
3793 3794 3795 3796 3797

	while ((parent = parent_mem_cgroup(memcg))) {
		unsigned long ceiling = min(memcg->memory.limit, memcg->high);
		unsigned long used = page_counter_read(&memcg->memory);

3798
		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3799 3800 3801 3802
		memcg = parent;
	}
}

T
Tejun Heo 已提交
3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813
#else	/* CONFIG_CGROUP_WRITEBACK */

static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return 0;
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
}

3814 3815 3816 3817
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
}

3818 3819
#endif	/* CONFIG_CGROUP_WRITEBACK */

3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

3833 3834 3835 3836 3837
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
3838
static void memcg_event_remove(struct work_struct *work)
3839
{
3840 3841
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
3842
	struct mem_cgroup *memcg = event->memcg;
3843 3844 3845

	remove_wait_queue(event->wqh, &event->wait);

3846
	event->unregister_event(memcg, event->eventfd);
3847 3848 3849 3850 3851 3852

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
3853
	css_put(&memcg->css);
3854 3855 3856 3857 3858 3859 3860
}

/*
 * Gets called on POLLHUP on eventfd when user closes it.
 *
 * Called with wqh->lock held and interrupts disabled.
 */
3861 3862
static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
			    int sync, void *key)
3863
{
3864 3865
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
3866
	struct mem_cgroup *memcg = event->memcg;
3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878
	unsigned long flags = (unsigned long)key;

	if (flags & POLLHUP) {
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
3879
		spin_lock(&memcg->event_list_lock);
3880 3881 3882 3883 3884 3885 3886 3887
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
3888
		spin_unlock(&memcg->event_list_lock);
3889 3890 3891 3892 3893
	}

	return 0;
}

3894
static void memcg_event_ptable_queue_proc(struct file *file,
3895 3896
		wait_queue_head_t *wqh, poll_table *pt)
{
3897 3898
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
3899 3900 3901 3902 3903 3904

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
3905 3906
 * DO NOT USE IN NEW FILES.
 *
3907 3908 3909 3910 3911
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
3912 3913
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
					 char *buf, size_t nbytes, loff_t off)
3914
{
3915
	struct cgroup_subsys_state *css = of_css(of);
3916
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3917
	struct mem_cgroup_event *event;
3918 3919 3920 3921
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
3922
	const char *name;
3923 3924 3925
	char *endp;
	int ret;

3926 3927 3928
	buf = strstrip(buf);

	efd = simple_strtoul(buf, &endp, 10);
3929 3930
	if (*endp != ' ')
		return -EINVAL;
3931
	buf = endp + 1;
3932

3933
	cfd = simple_strtoul(buf, &endp, 10);
3934 3935
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
3936
	buf = endp + 1;
3937 3938 3939 3940 3941

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

3942
	event->memcg = memcg;
3943
	INIT_LIST_HEAD(&event->list);
3944 3945 3946
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
	if (ret < 0)
		goto out_put_cfile;

3972 3973 3974 3975 3976
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
3977 3978
	 *
	 * DO NOT ADD NEW FILES.
3979
	 */
A
Al Viro 已提交
3980
	name = cfile.file->f_path.dentry->d_name.name;
3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
3992 3993
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
3994 3995 3996 3997 3998
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

3999
	/*
4000 4001 4002
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
4003
	 */
A
Al Viro 已提交
4004
	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4005
					       &memory_cgrp_subsys);
4006
	ret = -EINVAL;
4007
	if (IS_ERR(cfile_css))
4008
		goto out_put_cfile;
4009 4010
	if (cfile_css != css) {
		css_put(cfile_css);
4011
		goto out_put_cfile;
4012
	}
4013

4014
	ret = event->register_event(memcg, event->eventfd, buf);
4015 4016 4017 4018 4019
	if (ret)
		goto out_put_css;

	efile.file->f_op->poll(efile.file, &event->pt);

4020 4021 4022
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
4023 4024 4025 4026

	fdput(cfile);
	fdput(efile);

4027
	return nbytes;
4028 4029

out_put_css:
4030
	css_put(css);
4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

4043
static struct cftype mem_cgroup_legacy_files[] = {
B
Balbir Singh 已提交
4044
	{
4045
		.name = "usage_in_bytes",
4046
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4047
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4048
	},
4049 4050
	{
		.name = "max_usage_in_bytes",
4051
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4052
		.write = mem_cgroup_reset,
4053
		.read_u64 = mem_cgroup_read_u64,
4054
	},
B
Balbir Singh 已提交
4055
	{
4056
		.name = "limit_in_bytes",
4057
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4058
		.write = mem_cgroup_write,
4059
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4060
	},
4061 4062 4063
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4064
		.write = mem_cgroup_write,
4065
		.read_u64 = mem_cgroup_read_u64,
4066
	},
B
Balbir Singh 已提交
4067 4068
	{
		.name = "failcnt",
4069
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4070
		.write = mem_cgroup_reset,
4071
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4072
	},
4073 4074
	{
		.name = "stat",
4075
		.seq_show = memcg_stat_show,
4076
	},
4077 4078
	{
		.name = "force_empty",
4079
		.write = mem_cgroup_force_empty_write,
4080
	},
4081 4082 4083 4084 4085
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
4086
	{
4087
		.name = "cgroup.event_control",		/* XXX: for compat */
4088
		.write = memcg_write_event_control,
4089 4090 4091
		.flags = CFTYPE_NO_PREFIX,
		.mode = S_IWUGO,
	},
K
KOSAKI Motohiro 已提交
4092 4093 4094 4095 4096
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4097 4098 4099 4100 4101
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4102 4103
	{
		.name = "oom_control",
4104
		.seq_show = mem_cgroup_oom_control_read,
4105
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4106 4107
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4108 4109 4110
	{
		.name = "pressure_level",
	},
4111 4112 4113
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
4114
		.seq_show = memcg_numa_stat_show,
4115 4116
	},
#endif
4117 4118 4119 4120
#ifdef CONFIG_MEMCG_KMEM
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4121
		.write = mem_cgroup_write,
4122
		.read_u64 = mem_cgroup_read_u64,
4123 4124 4125 4126
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4127
		.read_u64 = mem_cgroup_read_u64,
4128 4129 4130 4131
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4132
		.write = mem_cgroup_reset,
4133
		.read_u64 = mem_cgroup_read_u64,
4134 4135 4136 4137
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4138
		.write = mem_cgroup_reset,
4139
		.read_u64 = mem_cgroup_read_u64,
4140
	},
4141 4142 4143
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
4144 4145 4146 4147
		.seq_start = slab_start,
		.seq_next = slab_next,
		.seq_stop = slab_stop,
		.seq_show = memcg_slab_show,
4148 4149
	},
#endif
4150
#endif
4151
	{ },	/* terminate */
4152
};
4153

4154
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4155 4156
{
	struct mem_cgroup_per_node *pn;
4157
	struct mem_cgroup_per_zone *mz;
4158
	int zone, tmp = node;
4159 4160 4161 4162 4163 4164 4165 4166
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4167 4168
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4169
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4170 4171
	if (!pn)
		return 1;
4172 4173 4174

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4175
		lruvec_init(&mz->lruvec);
4176 4177
		mz->usage_in_excess = 0;
		mz->on_tree = false;
4178
		mz->memcg = memcg;
4179
	}
4180
	memcg->nodeinfo[node] = pn;
4181 4182 4183
	return 0;
}

4184
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4185
{
4186
	kfree(memcg->nodeinfo[node]);
4187 4188
}

4189 4190
static struct mem_cgroup *mem_cgroup_alloc(void)
{
4191
	struct mem_cgroup *memcg;
4192
	size_t size;
4193

4194 4195
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4196

4197
	memcg = kzalloc(size, GFP_KERNEL);
4198
	if (!memcg)
4199 4200
		return NULL;

4201 4202
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
4203
		goto out_free;
T
Tejun Heo 已提交
4204 4205 4206 4207

	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
		goto out_free_stat;

4208
	return memcg;
4209

T
Tejun Heo 已提交
4210 4211
out_free_stat:
	free_percpu(memcg->stat);
4212
out_free:
4213
	kfree(memcg);
4214
	return NULL;
4215 4216
}

4217
/*
4218 4219 4220 4221 4222 4223 4224 4225
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
4226
 */
4227 4228

static void __mem_cgroup_free(struct mem_cgroup *memcg)
4229
{
4230
	int node;
4231

4232
	mem_cgroup_remove_from_trees(memcg);
4233 4234 4235 4236 4237

	for_each_node(node)
		free_mem_cgroup_per_zone_info(memcg, node);

	free_percpu(memcg->stat);
T
Tejun Heo 已提交
4238
	memcg_wb_domain_exit(memcg);
4239
	kfree(memcg);
4240
}
4241

4242 4243 4244
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
4245
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4246
{
4247
	if (!memcg->memory.parent)
4248
		return NULL;
4249
	return mem_cgroup_from_counter(memcg->memory.parent, memory);
4250
}
G
Glauber Costa 已提交
4251
EXPORT_SYMBOL(parent_mem_cgroup);
4252

L
Li Zefan 已提交
4253
static struct cgroup_subsys_state * __ref
4254
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
B
Balbir Singh 已提交
4255
{
4256
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
4257
	long error = -ENOMEM;
4258
	int node;
B
Balbir Singh 已提交
4259

4260 4261
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
4262
		return ERR_PTR(error);
4263

B
Bob Liu 已提交
4264
	for_each_node(node)
4265
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4266
			goto free_out;
4267

4268
	/* root ? */
4269
	if (parent_css == NULL) {
4270
		root_mem_cgroup = memcg;
T
Tejun Heo 已提交
4271
		mem_cgroup_root_css = &memcg->css;
4272
		page_counter_init(&memcg->memory, NULL);
4273
		memcg->high = PAGE_COUNTER_MAX;
4274
		memcg->soft_limit = PAGE_COUNTER_MAX;
4275 4276
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
4277
	}
4278

4279 4280 4281 4282 4283
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
4284
	vmpressure_init(&memcg->vmpressure);
4285 4286
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
V
Vladimir Davydov 已提交
4287 4288 4289
#ifdef CONFIG_MEMCG_KMEM
	memcg->kmemcg_id = -1;
#endif
4290 4291 4292
#ifdef CONFIG_CGROUP_WRITEBACK
	INIT_LIST_HEAD(&memcg->cgwb_list);
#endif
4293 4294 4295 4296 4297 4298 4299 4300
	return &memcg->css;

free_out:
	__mem_cgroup_free(memcg);
	return ERR_PTR(error);
}

static int
4301
mem_cgroup_css_online(struct cgroup_subsys_state *css)
4302
{
4303
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
4304
	struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
4305
	int ret;
4306

4307
	if (css->id > MEM_CGROUP_ID_MAX)
4308 4309
		return -ENOSPC;

T
Tejun Heo 已提交
4310
	if (!parent)
4311 4312
		return 0;

4313
	mutex_lock(&memcg_create_mutex);
4314 4315 4316 4317 4318 4319

	memcg->use_hierarchy = parent->use_hierarchy;
	memcg->oom_kill_disable = parent->oom_kill_disable;
	memcg->swappiness = mem_cgroup_swappiness(parent);

	if (parent->use_hierarchy) {
4320
		page_counter_init(&memcg->memory, &parent->memory);
4321
		memcg->high = PAGE_COUNTER_MAX;
4322
		memcg->soft_limit = PAGE_COUNTER_MAX;
4323 4324
		page_counter_init(&memcg->memsw, &parent->memsw);
		page_counter_init(&memcg->kmem, &parent->kmem);
4325

4326
		/*
4327 4328
		 * No need to take a reference to the parent because cgroup
		 * core guarantees its existence.
4329
		 */
4330
	} else {
4331
		page_counter_init(&memcg->memory, NULL);
4332
		memcg->high = PAGE_COUNTER_MAX;
4333
		memcg->soft_limit = PAGE_COUNTER_MAX;
4334 4335
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
4336 4337 4338 4339 4340
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
4341
		if (parent != root_mem_cgroup)
4342
			memory_cgrp_subsys.broken_hierarchy = true;
4343
	}
4344
	mutex_unlock(&memcg_create_mutex);
4345

4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357
	ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
	if (ret)
		return ret;

	/*
	 * Make sure the memcg is initialized: mem_cgroup_iter()
	 * orders reading memcg->initialized against its callers
	 * reading the memcg members.
	 */
	smp_store_release(&memcg->initialized, 1);

	return 0;
B
Balbir Singh 已提交
4358 4359
}

4360
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4361
{
4362
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4363
	struct mem_cgroup_event *event, *tmp;
4364 4365 4366 4367 4368 4369

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
4370 4371
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4372 4373 4374
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
4375
	spin_unlock(&memcg->event_list_lock);
4376

4377
	vmpressure_cleanup(&memcg->vmpressure);
4378 4379

	memcg_deactivate_kmem(memcg);
4380 4381

	wb_memcg_offline(memcg);
4382 4383
}

4384
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
4385
{
4386
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4387

4388
	memcg_destroy_kmem(memcg);
4389
	__mem_cgroup_free(memcg);
B
Balbir Singh 已提交
4390 4391
}

4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408
/**
 * mem_cgroup_css_reset - reset the states of a mem_cgroup
 * @css: the target css
 *
 * Reset the states of the mem_cgroup associated with @css.  This is
 * invoked when the userland requests disabling on the default hierarchy
 * but the memcg is pinned through dependency.  The memcg should stop
 * applying policies and should revert to the vanilla state as it may be
 * made visible again.
 *
 * The current implementation only resets the essential configurations.
 * This needs to be expanded to cover all the visible parts.
 */
static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

4409 4410 4411
	mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
	mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
	memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
4412 4413
	memcg->low = 0;
	memcg->high = PAGE_COUNTER_MAX;
4414
	memcg->soft_limit = PAGE_COUNTER_MAX;
4415
	memcg_wb_domain_size_changed(memcg);
4416 4417
}

4418
#ifdef CONFIG_MMU
4419
/* Handlers for move charge at task migration. */
4420
static int mem_cgroup_do_precharge(unsigned long count)
4421
{
4422
	int ret;
4423 4424

	/* Try a single bulk charge without reclaim first */
4425
	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
4426
	if (!ret) {
4427 4428 4429
		mc.precharge += count;
		return ret;
	}
4430 4431

	/* Try charges one by one with reclaim */
4432
	while (count--) {
4433
		ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4434 4435
		if (ret)
			return ret;
4436
		mc.precharge++;
4437
		cond_resched();
4438
	}
4439
	return 0;
4440 4441 4442
}

/**
4443
 * get_mctgt_type - get target type of moving charge
4444 4445 4446
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
4447
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4448 4449 4450 4451 4452 4453
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
4454 4455 4456
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
4457 4458 4459 4460 4461
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
4462
	swp_entry_t	ent;
4463 4464 4465
};

enum mc_target_type {
4466
	MC_TARGET_NONE = 0,
4467
	MC_TARGET_PAGE,
4468
	MC_TARGET_SWAP,
4469 4470
};

D
Daisuke Nishimura 已提交
4471 4472
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
4473
{
D
Daisuke Nishimura 已提交
4474
	struct page *page = vm_normal_page(vma, addr, ptent);
4475

D
Daisuke Nishimura 已提交
4476 4477 4478
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
4479
		if (!(mc.flags & MOVE_ANON))
D
Daisuke Nishimura 已提交
4480
			return NULL;
4481 4482 4483 4484
	} else {
		if (!(mc.flags & MOVE_FILE))
			return NULL;
	}
D
Daisuke Nishimura 已提交
4485 4486 4487 4488 4489 4490
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

4491
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
4492 4493 4494 4495 4496 4497
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

4498
	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
D
Daisuke Nishimura 已提交
4499
		return NULL;
4500 4501 4502 4503
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
4504
	page = find_get_page(swap_address_space(ent), ent.val);
D
Daisuke Nishimura 已提交
4505 4506 4507 4508 4509
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}
4510 4511 4512 4513 4514 4515 4516
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
4517

4518 4519 4520 4521 4522 4523 4524 4525 4526
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
4527
	if (!(mc.flags & MOVE_FILE))
4528 4529 4530
		return NULL;

	mapping = vma->vm_file->f_mapping;
4531
	pgoff = linear_page_index(vma, addr);
4532 4533

	/* page is moved even if it's not RSS of this task(page-faulted). */
4534 4535
#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547
	if (shmem_mapping(mapping)) {
		page = find_get_entry(mapping, pgoff);
		if (radix_tree_exceptional_entry(page)) {
			swp_entry_t swp = radix_to_swp_entry(page);
			if (do_swap_account)
				*entry = swp;
			page = find_get_page(swap_address_space(swp), swp.val);
		}
	} else
		page = find_get_page(mapping, pgoff);
#else
	page = find_get_page(mapping, pgoff);
4548
#endif
4549 4550 4551
	return page;
}

4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572
/**
 * mem_cgroup_move_account - move account of the page
 * @page: the page
 * @nr_pages: number of regular pages (>1 for huge pages)
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
 * - page is not on LRU (isolate_page() is useful.)
 * - compound_lock is held when nr_pages > 1
 *
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
 */
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct mem_cgroup *from,
				   struct mem_cgroup *to)
{
	unsigned long flags;
	int ret;
4573
	bool anon;
4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598

	VM_BUG_ON(from == to);
	VM_BUG_ON_PAGE(PageLRU(page), page);
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
	if (nr_pages > 1 && !PageTransHuge(page))
		goto out;

	/*
	 * Prevent mem_cgroup_migrate() from looking at page->mem_cgroup
	 * of its source page while we change it: page migration takes
	 * both pages off the LRU, but page cache replacement doesn't.
	 */
	if (!trylock_page(page))
		goto out;

	ret = -EINVAL;
	if (page->mem_cgroup != from)
		goto out_unlock;

4599 4600
	anon = PageAnon(page);

4601 4602
	spin_lock_irqsave(&from->move_lock, flags);

4603
	if (!anon && page_mapped(page)) {
4604 4605 4606 4607 4608 4609
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
	}

4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625
	/*
	 * move_lock grabbed above and caller set from->moving_account, so
	 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
	 * So mapping should be stable for dirty pages.
	 */
	if (!anon && PageDirty(page)) {
		struct address_space *mapping = page_mapping(page);

		if (mapping_cap_account_dirty(mapping)) {
			__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
				       nr_pages);
			__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
				       nr_pages);
		}
	}

4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656
	if (PageWriteback(page)) {
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
	}

	/*
	 * It is safe to change page->mem_cgroup here because the page
	 * is referenced, charged, and isolated - we can't race with
	 * uncharging, charging, migration, or LRU putback.
	 */

	/* caller should have done css_get */
	page->mem_cgroup = to;
	spin_unlock_irqrestore(&from->move_lock, flags);

	ret = 0;

	local_irq_disable();
	mem_cgroup_charge_statistics(to, page, nr_pages);
	memcg_check_events(to, page);
	mem_cgroup_charge_statistics(from, page, -nr_pages);
	memcg_check_events(from, page);
	local_irq_enable();
out_unlock:
	unlock_page(page);
out:
	return ret;
}

4657
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
4658 4659 4660
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
4661
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
4662 4663 4664 4665 4666 4667
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4668
	else if (pte_none(ptent))
4669
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
4670 4671

	if (!page && !ent.val)
4672
		return ret;
4673 4674
	if (page) {
		/*
4675
		 * Do only loose check w/o serialization.
4676
		 * mem_cgroup_move_account() checks the page is valid or
4677
		 * not under LRU exclusion.
4678
		 */
4679
		if (page->mem_cgroup == mc.from) {
4680 4681 4682 4683 4684 4685 4686
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
4687 4688
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
L
Li Zefan 已提交
4689
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4690 4691 4692
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
4693 4694 4695 4696
	}
	return ret;
}

4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
4710
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4711
	if (!(mc.flags & MOVE_ANON))
4712
		return ret;
4713
	if (page->mem_cgroup == mc.from) {
4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

4730 4731 4732 4733
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
4734
	struct vm_area_struct *vma = walk->vma;
4735 4736 4737
	pte_t *pte;
	spinlock_t *ptl;

4738
	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
4739 4740
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
4741
		spin_unlock(ptl);
4742
		return 0;
4743
	}
4744

4745 4746
	if (pmd_trans_unstable(pmd))
		return 0;
4747 4748
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
4749
		if (get_mctgt_type(vma, addr, *pte, NULL))
4750 4751 4752 4753
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

4754 4755 4756
	return 0;
}

4757 4758 4759 4760
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;

4761 4762 4763 4764
	struct mm_walk mem_cgroup_count_precharge_walk = {
		.pmd_entry = mem_cgroup_count_precharge_pte_range,
		.mm = mm,
	};
4765
	down_read(&mm->mmap_sem);
4766
	walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4767
	up_read(&mm->mmap_sem);
4768 4769 4770 4771 4772 4773 4774 4775 4776

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
4777 4778 4779 4780 4781
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
4782 4783
}

4784 4785
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
4786
{
4787 4788 4789
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

4790
	/* we must uncharge all the leftover precharges from mc.to */
4791
	if (mc.precharge) {
4792
		cancel_charge(mc.to, mc.precharge);
4793 4794 4795 4796 4797 4798 4799
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
4800
		cancel_charge(mc.from, mc.moved_charge);
4801
		mc.moved_charge = 0;
4802
	}
4803 4804 4805
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
4806
		if (!mem_cgroup_is_root(mc.from))
4807
			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4808

4809
		/*
4810 4811
		 * we charged both to->memory and to->memsw, so we
		 * should uncharge to->memory.
4812
		 */
4813
		if (!mem_cgroup_is_root(mc.to))
4814 4815
			page_counter_uncharge(&mc.to->memory, mc.moved_swap);

4816
		css_put_many(&mc.from->css, mc.moved_swap);
4817

L
Li Zefan 已提交
4818
		/* we've already done css_get(mc.to) */
4819 4820
		mc.moved_swap = 0;
	}
4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
4834
	spin_lock(&mc.lock);
4835 4836
	mc.from = NULL;
	mc.to = NULL;
4837
	spin_unlock(&mc.lock);
4838 4839
}

4840
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
4841
				 struct cgroup_taskset *tset)
4842
{
4843
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4844 4845 4846
	struct mem_cgroup *from;
	struct task_struct *p;
	struct mm_struct *mm;
4847
	unsigned long move_flags;
4848
	int ret = 0;
4849

4850 4851 4852 4853 4854
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
4855
	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884
	if (!move_flags)
		return 0;

	p = cgroup_taskset_first(tset);
	from = mem_cgroup_from_task(p);

	VM_BUG_ON(from == memcg);

	mm = get_task_mm(p);
	if (!mm)
		return 0;
	/* We move charges only when we move a owner of the mm */
	if (mm->owner == p) {
		VM_BUG_ON(mc.from);
		VM_BUG_ON(mc.to);
		VM_BUG_ON(mc.precharge);
		VM_BUG_ON(mc.moved_charge);
		VM_BUG_ON(mc.moved_swap);

		spin_lock(&mc.lock);
		mc.from = from;
		mc.to = memcg;
		mc.flags = move_flags;
		spin_unlock(&mc.lock);
		/* We set mc.moving_task later */

		ret = mem_cgroup_precharge_mc(mm);
		if (ret)
			mem_cgroup_clear_mc();
4885
	}
4886
	mmput(mm);
4887 4888 4889
	return ret;
}

4890
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
4891
				     struct cgroup_taskset *tset)
4892
{
4893 4894
	if (mc.to)
		mem_cgroup_clear_mc();
4895 4896
}

4897 4898 4899
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
4900
{
4901
	int ret = 0;
4902
	struct vm_area_struct *vma = walk->vma;
4903 4904
	pte_t *pte;
	spinlock_t *ptl;
4905 4906 4907
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
4908

4909 4910 4911 4912 4913 4914 4915 4916 4917 4918
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
4919
	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
4920
		if (mc.precharge < HPAGE_PMD_NR) {
4921
			spin_unlock(ptl);
4922 4923 4924 4925 4926 4927 4928
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
4929
							     mc.from, mc.to)) {
4930 4931 4932 4933 4934 4935 4936
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
4937
		spin_unlock(ptl);
4938
		return 0;
4939 4940
	}

4941 4942
	if (pmd_trans_unstable(pmd))
		return 0;
4943 4944 4945 4946
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
4947
		swp_entry_t ent;
4948 4949 4950 4951

		if (!mc.precharge)
			break;

4952
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
4953 4954 4955 4956
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
4957
			if (!mem_cgroup_move_account(page, 1, mc.from, mc.to)) {
4958
				mc.precharge--;
4959 4960
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
4961 4962
			}
			putback_lru_page(page);
4963
put:			/* get_mctgt_type() gets the page */
4964 4965
			put_page(page);
			break;
4966 4967
		case MC_TARGET_SWAP:
			ent = target.ent;
4968
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4969
				mc.precharge--;
4970 4971 4972
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
4973
			break;
4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
4988
		ret = mem_cgroup_do_precharge(1);
4989 4990 4991 4992 4993 4994 4995 4996 4997
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
4998 4999 5000 5001
	struct mm_walk mem_cgroup_move_charge_walk = {
		.pmd_entry = mem_cgroup_move_charge_pte_range,
		.mm = mm,
	};
5002 5003

	lru_add_drain_all();
5004 5005 5006 5007 5008 5009 5010
	/*
	 * Signal mem_cgroup_begin_page_stat() to take the memcg's
	 * move_lock while we're moving its pages to another memcg.
	 * Then wait for already started RCU-only updates to finish.
	 */
	atomic_inc(&mc.from->moving_account);
	synchronize_rcu();
5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5024 5025 5026 5027 5028
	/*
	 * When we have consumed all precharges and failed in doing
	 * additional charge, the page walk just aborts.
	 */
	walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
5029
	up_read(&mm->mmap_sem);
5030
	atomic_dec(&mc.from->moving_account);
5031 5032
}

5033
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5034
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
5035
{
5036
	struct task_struct *p = cgroup_taskset_first(tset);
5037
	struct mm_struct *mm = get_task_mm(p);
5038 5039

	if (mm) {
5040 5041
		if (mc.to)
			mem_cgroup_move_charge(mm);
5042 5043
		mmput(mm);
	}
5044 5045
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
5046
}
5047
#else	/* !CONFIG_MMU */
5048
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
5049
				 struct cgroup_taskset *tset)
5050 5051 5052
{
	return 0;
}
5053
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
5054
				     struct cgroup_taskset *tset)
5055 5056
{
}
5057
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5058
				 struct cgroup_taskset *tset)
5059 5060 5061
{
}
#endif
B
Balbir Singh 已提交
5062

5063 5064
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5065 5066
 * to verify whether we're attached to the default hierarchy on each mount
 * attempt.
5067
 */
5068
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5069 5070
{
	/*
5071
	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5072 5073 5074
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
5075
	if (cgroup_on_dfl(root_css->cgroup))
5076 5077 5078
		root_mem_cgroup->use_hierarchy = true;
	else
		root_mem_cgroup->use_hierarchy = false;
5079 5080
}

5081 5082 5083 5084 5085 5086 5087 5088 5089
static u64 memory_current_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
{
	return mem_cgroup_usage(mem_cgroup_from_css(css), false);
}

static int memory_low_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5090
	unsigned long low = READ_ONCE(memcg->low);
5091 5092

	if (low == PAGE_COUNTER_MAX)
5093
		seq_puts(m, "max\n");
5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107
	else
		seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);

	return 0;
}

static ssize_t memory_low_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long low;
	int err;

	buf = strstrip(buf);
5108
	err = page_counter_memparse(buf, "max", &low);
5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119
	if (err)
		return err;

	memcg->low = low;

	return nbytes;
}

static int memory_high_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5120
	unsigned long high = READ_ONCE(memcg->high);
5121 5122

	if (high == PAGE_COUNTER_MAX)
5123
		seq_puts(m, "max\n");
5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137
	else
		seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);

	return 0;
}

static ssize_t memory_high_write(struct kernfs_open_file *of,
				 char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long high;
	int err;

	buf = strstrip(buf);
5138
	err = page_counter_memparse(buf, "max", &high);
5139 5140 5141 5142 5143
	if (err)
		return err;

	memcg->high = high;

5144
	memcg_wb_domain_size_changed(memcg);
5145 5146 5147 5148 5149 5150
	return nbytes;
}

static int memory_max_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5151
	unsigned long max = READ_ONCE(memcg->memory.limit);
5152 5153

	if (max == PAGE_COUNTER_MAX)
5154
		seq_puts(m, "max\n");
5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168
	else
		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);

	return 0;
}

static ssize_t memory_max_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long max;
	int err;

	buf = strstrip(buf);
5169
	err = page_counter_memparse(buf, "max", &max);
5170 5171 5172 5173 5174 5175 5176
	if (err)
		return err;

	err = mem_cgroup_resize_limit(memcg, max);
	if (err)
		return err;

5177
	memcg_wb_domain_size_changed(memcg);
5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223
	return nbytes;
}

static int memory_events_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));

	seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
	seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
	seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
	seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));

	return 0;
}

static struct cftype memory_files[] = {
	{
		.name = "current",
		.read_u64 = memory_current_read,
	},
	{
		.name = "low",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_low_show,
		.write = memory_low_write,
	},
	{
		.name = "high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_high_show,
		.write = memory_high_write,
	},
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_max_show,
		.write = memory_max_write,
	},
	{
		.name = "events",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_events_show,
	},
	{ }	/* terminate */
};

5224
struct cgroup_subsys memory_cgrp_subsys = {
5225
	.css_alloc = mem_cgroup_css_alloc,
5226
	.css_online = mem_cgroup_css_online,
5227 5228
	.css_offline = mem_cgroup_css_offline,
	.css_free = mem_cgroup_css_free,
5229
	.css_reset = mem_cgroup_css_reset,
5230 5231
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
5232
	.attach = mem_cgroup_move_task,
5233
	.bind = mem_cgroup_bind,
5234 5235
	.dfl_cftypes = memory_files,
	.legacy_cftypes = mem_cgroup_legacy_files,
5236
	.early_init = 0,
B
Balbir Singh 已提交
5237
};
5238

5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260
/**
 * mem_cgroup_low - check if memory consumption is below the normal range
 * @root: the highest ancestor to consider
 * @memcg: the memory cgroup to check
 *
 * Returns %true if memory consumption of @memcg, and that of all
 * configurable ancestors up to @root, is below the normal range.
 */
bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return false;

	/*
	 * The toplevel group doesn't have a configurable range, so
	 * it's never low when looked at directly, and it is not
	 * considered an ancestor when assessing the hierarchy.
	 */

	if (memcg == root_mem_cgroup)
		return false;

M
Michal Hocko 已提交
5261
	if (page_counter_read(&memcg->memory) >= memcg->low)
5262 5263 5264 5265 5266 5267 5268 5269
		return false;

	while (memcg != root) {
		memcg = parent_mem_cgroup(memcg);

		if (memcg == root_mem_cgroup)
			break;

M
Michal Hocko 已提交
5270
		if (page_counter_read(&memcg->memory) >= memcg->low)
5271 5272 5273 5274 5275
			return false;
	}
	return true;
}

5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310
/**
 * mem_cgroup_try_charge - try charging a page
 * @page: page to charge
 * @mm: mm context of the victim
 * @gfp_mask: reclaim mode
 * @memcgp: charged memcg return
 *
 * Try to charge @page to the memcg that @mm belongs to, reclaiming
 * pages according to @gfp_mask if necessary.
 *
 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
 * Otherwise, an error code is returned.
 *
 * After page->mapping has been set up, the caller must finalize the
 * charge with mem_cgroup_commit_charge().  Or abort the transaction
 * with mem_cgroup_cancel_charge() in case page instantiation fails.
 */
int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
			  gfp_t gfp_mask, struct mem_cgroup **memcgp)
{
	struct mem_cgroup *memcg = NULL;
	unsigned int nr_pages = 1;
	int ret = 0;

	if (mem_cgroup_disabled())
		goto out;

	if (PageSwapCache(page)) {
		/*
		 * Every swap fault against a single page tries to charge the
		 * page, bail as early as possible.  shmem_unuse() encounters
		 * already charged pages, too.  The USED bit is protected by
		 * the page lock, which serializes swap cache removal, which
		 * in turn serializes uncharging.
		 */
5311
		VM_BUG_ON_PAGE(!PageLocked(page), page);
5312
		if (page->mem_cgroup)
5313
			goto out;
5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324

		if (do_swap_account) {
			swp_entry_t ent = { .val = page_private(page), };
			unsigned short id = lookup_swap_cgroup_id(ent);

			rcu_read_lock();
			memcg = mem_cgroup_from_id(id);
			if (memcg && !css_tryget_online(&memcg->css))
				memcg = NULL;
			rcu_read_unlock();
		}
5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376
	}

	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

	if (!memcg)
		memcg = get_mem_cgroup_from_mm(mm);

	ret = try_charge(memcg, gfp_mask, nr_pages);

	css_put(&memcg->css);
out:
	*memcgp = memcg;
	return ret;
}

/**
 * mem_cgroup_commit_charge - commit a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 * @lrucare: page might be on LRU already
 *
 * Finalize a charge transaction started by mem_cgroup_try_charge(),
 * after page->mapping has been set up.  This must happen atomically
 * as part of the page instantiation, i.e. under the page table lock
 * for anonymous pages, under the page lock for page and swap cache.
 *
 * In addition, the page must not be on the LRU during the commit, to
 * prevent racing with task migration.  If it might be, use @lrucare.
 *
 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
 */
void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      bool lrucare)
{
	unsigned int nr_pages = 1;

	VM_BUG_ON_PAGE(!page->mapping, page);
	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

5377 5378
	commit_charge(page, memcg, lrucare);

5379 5380 5381 5382 5383
	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

5384 5385 5386 5387
	local_irq_disable();
	mem_cgroup_charge_statistics(memcg, page, nr_pages);
	memcg_check_events(memcg, page);
	local_irq_enable();
5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428

	if (do_swap_account && PageSwapCache(page)) {
		swp_entry_t entry = { .val = page_private(page) };
		/*
		 * The swap entry might not get freed for a long time,
		 * let's not wait for it.  The page already received a
		 * memory+swap charge, drop the swap entry duplicate.
		 */
		mem_cgroup_uncharge_swap(entry);
	}
}

/**
 * mem_cgroup_cancel_charge - cancel a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 *
 * Cancel a charge transaction started by mem_cgroup_try_charge().
 */
void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
{
	unsigned int nr_pages = 1;

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

	cancel_charge(memcg, nr_pages);
}

5429 5430 5431 5432
static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
			   unsigned long nr_anon, unsigned long nr_file,
			   unsigned long nr_huge, struct page *dummy_page)
{
5433
	unsigned long nr_pages = nr_anon + nr_file;
5434 5435
	unsigned long flags;

5436
	if (!mem_cgroup_is_root(memcg)) {
5437 5438 5439
		page_counter_uncharge(&memcg->memory, nr_pages);
		if (do_swap_account)
			page_counter_uncharge(&memcg->memsw, nr_pages);
5440 5441
		memcg_oom_recover(memcg);
	}
5442 5443 5444 5445 5446 5447

	local_irq_save(flags);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5448
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5449 5450
	memcg_check_events(memcg, dummy_page);
	local_irq_restore(flags);
5451 5452

	if (!mem_cgroup_is_root(memcg))
5453
		css_put_many(&memcg->css, nr_pages);
5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475
}

static void uncharge_list(struct list_head *page_list)
{
	struct mem_cgroup *memcg = NULL;
	unsigned long nr_anon = 0;
	unsigned long nr_file = 0;
	unsigned long nr_huge = 0;
	unsigned long pgpgout = 0;
	struct list_head *next;
	struct page *page;

	next = page_list->next;
	do {
		unsigned int nr_pages = 1;

		page = list_entry(next, struct page, lru);
		next = page->lru.next;

		VM_BUG_ON_PAGE(PageLRU(page), page);
		VM_BUG_ON_PAGE(page_count(page), page);

5476
		if (!page->mem_cgroup)
5477 5478 5479 5480
			continue;

		/*
		 * Nobody should be changing or seriously looking at
5481
		 * page->mem_cgroup at this point, we have fully
5482
		 * exclusive access to the page.
5483 5484
		 */

5485
		if (memcg != page->mem_cgroup) {
5486
			if (memcg) {
5487 5488 5489
				uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
					       nr_huge, page);
				pgpgout = nr_anon = nr_file = nr_huge = 0;
5490
			}
5491
			memcg = page->mem_cgroup;
5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504
		}

		if (PageTransHuge(page)) {
			nr_pages <<= compound_order(page);
			VM_BUG_ON_PAGE(!PageTransHuge(page), page);
			nr_huge += nr_pages;
		}

		if (PageAnon(page))
			nr_anon += nr_pages;
		else
			nr_file += nr_pages;

5505
		page->mem_cgroup = NULL;
5506 5507 5508 5509 5510

		pgpgout++;
	} while (next != page_list);

	if (memcg)
5511 5512
		uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
			       nr_huge, page);
5513 5514
}

5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526
/**
 * mem_cgroup_uncharge - uncharge a page
 * @page: page to uncharge
 *
 * Uncharge a page previously charged with mem_cgroup_try_charge() and
 * mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge(struct page *page)
{
	if (mem_cgroup_disabled())
		return;

5527
	/* Don't touch page->lru of any random page, pre-check: */
5528
	if (!page->mem_cgroup)
5529 5530
		return;

5531 5532 5533
	INIT_LIST_HEAD(&page->lru);
	uncharge_list(&page->lru);
}
5534

5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545
/**
 * mem_cgroup_uncharge_list - uncharge a list of page
 * @page_list: list of pages to uncharge
 *
 * Uncharge a list of pages previously charged with
 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge_list(struct list_head *page_list)
{
	if (mem_cgroup_disabled())
		return;
5546

5547 5548
	if (!list_empty(page_list))
		uncharge_list(page_list);
5549 5550 5551 5552 5553 5554
}

/**
 * mem_cgroup_migrate - migrate a charge to another page
 * @oldpage: currently charged page
 * @newpage: page to transfer the charge to
5555
 * @lrucare: either or both pages might be on the LRU already
5556 5557 5558 5559 5560 5561 5562 5563
 *
 * Migrate the charge from @oldpage to @newpage.
 *
 * Both pages must be locked, @newpage->mapping must be set up.
 */
void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
			bool lrucare)
{
5564
	struct mem_cgroup *memcg;
5565 5566 5567 5568 5569 5570 5571
	int isolated;

	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
	VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
	VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5572 5573
	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
		       newpage);
5574 5575 5576 5577 5578

	if (mem_cgroup_disabled())
		return;

	/* Page cache replacement: new page already charged? */
5579
	if (newpage->mem_cgroup)
5580 5581
		return;

5582 5583 5584 5585 5586 5587
	/*
	 * Swapcache readahead pages can get migrated before being
	 * charged, and migration from compaction can happen to an
	 * uncharged page when the PFN walker finds a page that
	 * reclaim just put back on the LRU but has not released yet.
	 */
5588
	memcg = oldpage->mem_cgroup;
5589
	if (!memcg)
5590 5591 5592 5593 5594
		return;

	if (lrucare)
		lock_page_lru(oldpage, &isolated);

5595
	oldpage->mem_cgroup = NULL;
5596 5597 5598 5599

	if (lrucare)
		unlock_page_lru(oldpage, isolated);

5600
	commit_charge(newpage, memcg, lrucare);
5601 5602
}

5603
/*
5604 5605 5606 5607 5608 5609
 * subsys_initcall() for memory controller.
 *
 * Some parts like hotcpu_notifier() have to be initialized from this context
 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
 * everything that doesn't depend on a specific mem_cgroup structure should
 * be initialized from here.
5610 5611 5612
 */
static int __init mem_cgroup_init(void)
{
5613 5614
	int cpu, node;

5615
	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637

	for_each_possible_cpu(cpu)
		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
			  drain_local_stock);

	for_each_node(node) {
		struct mem_cgroup_tree_per_node *rtpn;
		int zone;

		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
				    node_online(node) ? node : NUMA_NO_NODE);

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			struct mem_cgroup_tree_per_zone *rtpz;

			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
		soft_limit_tree.rb_tree_per_node[node] = rtpn;
	}

5638 5639 5640
	return 0;
}
subsys_initcall(mem_cgroup_init);
5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675

#ifdef CONFIG_MEMCG_SWAP
/**
 * mem_cgroup_swapout - transfer a memsw charge to swap
 * @page: page whose memsw charge to transfer
 * @entry: swap entry to move the charge to
 *
 * Transfer the memsw charge of @page to @entry.
 */
void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	unsigned short oldid;

	VM_BUG_ON_PAGE(PageLRU(page), page);
	VM_BUG_ON_PAGE(page_count(page), page);

	if (!do_swap_account)
		return;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return;

	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
	VM_BUG_ON_PAGE(oldid, page);
	mem_cgroup_swap_statistics(memcg, true);

	page->mem_cgroup = NULL;

	if (!mem_cgroup_is_root(memcg))
		page_counter_uncharge(&memcg->memory, 1);

5676 5677 5678 5679 5680 5681 5682
	/*
	 * Interrupts should be disabled here because the caller holds the
	 * mapping->tree_lock lock which is taken with interrupts-off. It is
	 * important here to have the interrupts disabled because it is the
	 * only synchronisation we have for udpating the per-CPU variables.
	 */
	VM_BUG_ON(!irqs_disabled());
5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702
	mem_cgroup_charge_statistics(memcg, page, -1);
	memcg_check_events(memcg, page);
}

/**
 * mem_cgroup_uncharge_swap - uncharge a swap entry
 * @entry: swap entry to uncharge
 *
 * Drop the memsw charge associated with @entry.
 */
void mem_cgroup_uncharge_swap(swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	unsigned short id;

	if (!do_swap_account)
		return;

	id = swap_cgroup_record(entry, 0);
	rcu_read_lock();
5703
	memcg = mem_cgroup_from_id(id);
5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768
	if (memcg) {
		if (!mem_cgroup_is_root(memcg))
			page_counter_uncharge(&memcg->memsw, 1);
		mem_cgroup_swap_statistics(memcg, false);
		css_put(&memcg->css);
	}
	rcu_read_unlock();
}

/* for remember boot option*/
#ifdef CONFIG_MEMCG_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata;
#endif

static int __init enable_swap_account(char *s)
{
	if (!strcmp(s, "1"))
		really_do_swap_account = 1;
	else if (!strcmp(s, "0"))
		really_do_swap_account = 0;
	return 1;
}
__setup("swapaccount=", enable_swap_account);

static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{ },	/* terminate */
};

static int __init mem_cgroup_swap_init(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
						  memsw_cgroup_files));
	}
	return 0;
}
subsys_initcall(mem_cgroup_swap_init);

#endif /* CONFIG_MEMCG_SWAP */