memcontrol.c 156.9 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
17 18 19 20 21 22
 * Native page reclaim
 * Charge lifetime sanitation
 * Lockless page tracking & accounting
 * Unified hierarchy configuration model
 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
 *
B
Balbir Singh 已提交
23 24 25 26 27 28 29 30 31 32 33
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

34
#include <linux/page_counter.h>
B
Balbir Singh 已提交
35 36
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
37
#include <linux/mm.h>
38
#include <linux/sched/mm.h>
39
#include <linux/shmem_fs.h>
40
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
41
#include <linux/pagemap.h>
42
#include <linux/smp.h>
43
#include <linux/page-flags.h>
44
#include <linux/backing-dev.h>
45 46
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
47
#include <linux/limits.h>
48
#include <linux/export.h>
49
#include <linux/mutex.h>
50
#include <linux/rbtree.h>
51
#include <linux/slab.h>
52
#include <linux/swap.h>
53
#include <linux/swapops.h>
54
#include <linux/spinlock.h>
55
#include <linux/eventfd.h>
56
#include <linux/poll.h>
57
#include <linux/sort.h>
58
#include <linux/fs.h>
59
#include <linux/seq_file.h>
60
#include <linux/vmpressure.h>
61
#include <linux/mm_inline.h>
62
#include <linux/swap_cgroup.h>
63
#include <linux/cpu.h>
64
#include <linux/oom.h>
65
#include <linux/lockdep.h>
66
#include <linux/file.h>
67
#include <linux/tracehook.h>
K
KAMEZAWA Hiroyuki 已提交
68
#include "internal.h"
G
Glauber Costa 已提交
69
#include <net/sock.h>
M
Michal Hocko 已提交
70
#include <net/ip.h>
71
#include "slab.h"
B
Balbir Singh 已提交
72

73
#include <linux/uaccess.h>
74

75 76
#include <trace/events/vmscan.h>

77 78
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
79

80 81
struct mem_cgroup *root_mem_cgroup __read_mostly;

82
#define MEM_CGROUP_RECLAIM_RETRIES	5
B
Balbir Singh 已提交
83

84 85 86
/* Socket memory accounting disabled? */
static bool cgroup_memory_nosocket;

87 88 89
/* Kernel memory accounting disabled? */
static bool cgroup_memory_nokmem;

90
/* Whether the swap controller is active */
A
Andrew Morton 已提交
91
#ifdef CONFIG_MEMCG_SWAP
92 93
int do_swap_account __read_mostly;
#else
94
#define do_swap_account		0
95 96
#endif

97 98 99 100 101 102
/* Whether legacy memory+swap accounting is active */
static bool do_memsw_account(void)
{
	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
}

103
static const char *const mem_cgroup_lru_names[] = {
104 105 106 107 108 109 110
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

111 112 113
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
114

115 116 117 118 119
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

120
struct mem_cgroup_tree_per_node {
121 122 123 124 125 126 127 128 129 130
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

K
KAMEZAWA Hiroyuki 已提交
131 132 133 134 135
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
136

137 138 139
/*
 * cgroup_event represents events which userspace want to receive.
 */
140
struct mem_cgroup_event {
141
	/*
142
	 * memcg which the event belongs to.
143
	 */
144
	struct mem_cgroup *memcg;
145 146 147 148 149 150 151 152
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
153 154 155 156 157
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
158
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
159
			      struct eventfd_ctx *eventfd, const char *args);
160 161 162 163 164
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
165
	void (*unregister_event)(struct mem_cgroup *memcg,
166
				 struct eventfd_ctx *eventfd);
167 168 169 170 171 172
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
173
	wait_queue_entry_t wait;
174 175 176
	struct work_struct remove;
};

177 178
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
179

180 181
/* Stuffs for move charges at task migration. */
/*
182
 * Types of charges to be moved.
183
 */
184 185 186
#define MOVE_ANON	0x1U
#define MOVE_FILE	0x2U
#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
187

188 189
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
190
	spinlock_t	  lock; /* for from, to */
191
	struct mm_struct  *mm;
192 193
	struct mem_cgroup *from;
	struct mem_cgroup *to;
194
	unsigned long flags;
195
	unsigned long precharge;
196
	unsigned long moved_charge;
197
	unsigned long moved_swap;
198 199 200
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
201
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
202 203
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
204

205 206 207 208
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
209
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
210
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
211

212 213
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
214
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
215
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
216
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
217 218 219
	NR_CHARGE_TYPE,
};

220
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
221 222 223 224
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
225
	_KMEM,
V
Vladimir Davydov 已提交
226
	_TCP,
G
Glauber Costa 已提交
227 228
};

229 230
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
231
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
232 233
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
234

235 236 237 238 239 240 241 242 243 244 245 246 247
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

248 249 250 251 252
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

253
#ifndef CONFIG_SLOB
254
/*
255
 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
L
Li Zefan 已提交
256 257 258 259 260
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
261
 *
262 263
 * The current size of the caches array is stored in memcg_nr_cache_ids. It
 * will double each time we have to increase it.
264
 */
265 266
static DEFINE_IDA(memcg_cache_ida);
int memcg_nr_cache_ids;
267

268 269 270 271 272 273 274 275 276 277 278 279 280
/* Protects memcg_nr_cache_ids */
static DECLARE_RWSEM(memcg_cache_ids_sem);

void memcg_get_cache_ids(void)
{
	down_read(&memcg_cache_ids_sem);
}

void memcg_put_cache_ids(void)
{
	up_read(&memcg_cache_ids_sem);
}

281 282 283 284 285 286
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
287
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
288 289
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
290
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
291 292 293
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
294
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
295

296 297 298 299 300 301
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
302
DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
303
EXPORT_SYMBOL(memcg_kmem_enabled_key);
304

305 306
struct workqueue_struct *memcg_kmem_cache_wq;

307
#endif /* !CONFIG_SLOB */
308

309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
/**
 * mem_cgroup_css_from_page - css of the memcg associated with a page
 * @page: page of interest
 *
 * If memcg is bound to the default hierarchy, css of the memcg associated
 * with @page is returned.  The returned css remains associated with @page
 * until it is released.
 *
 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
 * is returned.
 */
struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
{
	struct mem_cgroup *memcg;

	memcg = page->mem_cgroup;

326
	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
327 328 329 330 331
		memcg = root_mem_cgroup;

	return &memcg->css;
}

332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
/**
 * page_cgroup_ino - return inode number of the memcg a page is charged to
 * @page: the page
 *
 * Look up the closest online ancestor of the memory cgroup @page is charged to
 * and return its inode number or 0 if @page is not charged to any cgroup. It
 * is safe to call this function without holding a reference to @page.
 *
 * Note, this function is inherently racy, because there is nothing to prevent
 * the cgroup inode from getting torn down and potentially reallocated a moment
 * after page_cgroup_ino() returns, so it only should be used by callers that
 * do not care (such as procfs interfaces).
 */
ino_t page_cgroup_ino(struct page *page)
{
	struct mem_cgroup *memcg;
	unsigned long ino = 0;

	rcu_read_lock();
	memcg = READ_ONCE(page->mem_cgroup);
	while (memcg && !(memcg->css.flags & CSS_ONLINE))
		memcg = parent_mem_cgroup(memcg);
	if (memcg)
		ino = cgroup_ino(memcg->css.cgroup);
	rcu_read_unlock();
	return ino;
}

360 361
static struct mem_cgroup_per_node *
mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
362
{
363
	int nid = page_to_nid(page);
364

365
	return memcg->nodeinfo[nid];
366 367
}

368 369
static struct mem_cgroup_tree_per_node *
soft_limit_tree_node(int nid)
370
{
371
	return soft_limit_tree.rb_tree_per_node[nid];
372 373
}

374
static struct mem_cgroup_tree_per_node *
375 376 377 378
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);

379
	return soft_limit_tree.rb_tree_per_node[nid];
380 381
}

382 383
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
					 struct mem_cgroup_tree_per_node *mctz,
384
					 unsigned long new_usage_in_excess)
385 386 387
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
388
	struct mem_cgroup_per_node *mz_node;
389 390 391 392 393 394 395 396 397

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
398
		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

414 415
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
					 struct mem_cgroup_tree_per_node *mctz)
416 417 418 419 420 421 422
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

423 424
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
				       struct mem_cgroup_tree_per_node *mctz)
425
{
426 427 428
	unsigned long flags;

	spin_lock_irqsave(&mctz->lock, flags);
429
	__mem_cgroup_remove_exceeded(mz, mctz);
430
	spin_unlock_irqrestore(&mctz->lock, flags);
431 432
}

433 434 435
static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
{
	unsigned long nr_pages = page_counter_read(&memcg->memory);
436
	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
437 438 439 440 441 442 443
	unsigned long excess = 0;

	if (nr_pages > soft_limit)
		excess = nr_pages - soft_limit;

	return excess;
}
444 445 446

static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
447
	unsigned long excess;
448 449
	struct mem_cgroup_per_node *mz;
	struct mem_cgroup_tree_per_node *mctz;
450

451
	mctz = soft_limit_tree_from_page(page);
452 453
	if (!mctz)
		return;
454 455 456 457 458
	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
459
		mz = mem_cgroup_page_nodeinfo(memcg, page);
460
		excess = soft_limit_excess(memcg);
461 462 463 464 465
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
466 467 468
			unsigned long flags;

			spin_lock_irqsave(&mctz->lock, flags);
469 470
			/* if on-tree, remove it */
			if (mz->on_tree)
471
				__mem_cgroup_remove_exceeded(mz, mctz);
472 473 474 475
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
476
			__mem_cgroup_insert_exceeded(mz, mctz, excess);
477
			spin_unlock_irqrestore(&mctz->lock, flags);
478 479 480 481 482 483
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
484 485 486
	struct mem_cgroup_tree_per_node *mctz;
	struct mem_cgroup_per_node *mz;
	int nid;
487

488
	for_each_node(nid) {
489 490
		mz = mem_cgroup_nodeinfo(memcg, nid);
		mctz = soft_limit_tree_node(nid);
491 492
		if (mctz)
			mem_cgroup_remove_exceeded(mz, mctz);
493 494 495
	}
}

496 497
static struct mem_cgroup_per_node *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
498 499
{
	struct rb_node *rightmost = NULL;
500
	struct mem_cgroup_per_node *mz;
501 502 503 504 505 506 507

retry:
	mz = NULL;
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

508
	mz = rb_entry(rightmost, struct mem_cgroup_per_node, tree_node);
509 510 511 512 513
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
514
	__mem_cgroup_remove_exceeded(mz, mctz);
515
	if (!soft_limit_excess(mz->memcg) ||
516
	    !css_tryget_online(&mz->memcg->css))
517 518 519 520 521
		goto retry;
done:
	return mz;
}

522 523
static struct mem_cgroup_per_node *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
524
{
525
	struct mem_cgroup_per_node *mz;
526

527
	spin_lock_irq(&mctz->lock);
528
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
529
	spin_unlock_irq(&mctz->lock);
530 531 532
	return mz;
}

533
/*
534 535
 * Return page count for single (non recursive) @memcg.
 *
536 537 538 539 540
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
541
 * a periodic synchronization of counter in memcg's counter.
542 543 544 545 546 547 548 549 550
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
551
 * common workload, threshold and synchronization as vmstat[] should be
552 553
 * implemented.
 */
554

555 556
static unsigned long memcg_sum_events(struct mem_cgroup *memcg,
				      enum memcg_event_item event)
557 558 559 560
{
	unsigned long val = 0;
	int cpu;

561
	for_each_possible_cpu(cpu)
562
		val += per_cpu(memcg->stat->events[event], cpu);
563 564 565
	return val;
}

566
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
567
					 struct page *page,
568
					 bool compound, int nr_pages)
569
{
570 571 572 573
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
574
	if (PageAnon(page))
575
		__this_cpu_add(memcg->stat->count[MEMCG_RSS], nr_pages);
576
	else {
577
		__this_cpu_add(memcg->stat->count[MEMCG_CACHE], nr_pages);
578
		if (PageSwapBacked(page))
579
			__this_cpu_add(memcg->stat->count[NR_SHMEM], nr_pages);
580
	}
581

582 583
	if (compound) {
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
584
		__this_cpu_add(memcg->stat->count[MEMCG_RSS_HUGE], nr_pages);
585
	}
586

587 588
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
589
		__this_cpu_inc(memcg->stat->events[PGPGIN]);
590
	else {
591
		__this_cpu_inc(memcg->stat->events[PGPGOUT]);
592 593
		nr_pages = -nr_pages; /* for event */
	}
594

595
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
596 597
}

598 599
unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
					   int nid, unsigned int lru_mask)
600
{
601
	struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
602
	unsigned long nr = 0;
603
	enum lru_list lru;
604

605
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
606

607 608 609
	for_each_lru(lru) {
		if (!(BIT(lru) & lru_mask))
			continue;
610
		nr += mem_cgroup_get_lru_size(lruvec, lru);
611 612
	}
	return nr;
613
}
614

615
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
616
			unsigned int lru_mask)
617
{
618
	unsigned long nr = 0;
619
	int nid;
620

621
	for_each_node_state(nid, N_MEMORY)
622 623
		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
	return nr;
624 625
}

626 627
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
628 629 630
{
	unsigned long val, next;

631
	val = __this_cpu_read(memcg->stat->nr_page_events);
632
	next = __this_cpu_read(memcg->stat->targets[target]);
633
	/* from time_after() in jiffies.h */
634
	if ((long)(next - val) < 0) {
635 636 637 638
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
639 640 641
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
642 643 644 645 646 647 648 649
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
650
	}
651
	return false;
652 653 654 655 656 657
}

/*
 * Check events in order.
 *
 */
658
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
659 660
{
	/* threshold event is triggered in finer grain than soft limit */
661 662
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
663
		bool do_softlimit;
664
		bool do_numainfo __maybe_unused;
665

666 667
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
668 669 670 671
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
672
		mem_cgroup_threshold(memcg);
673 674
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
675
#if MAX_NUMNODES > 1
676
		if (unlikely(do_numainfo))
677
			atomic_inc(&memcg->numainfo_events);
678
#endif
679
	}
680 681
}

682
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
683
{
684 685 686 687 688 689 690 691
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

692
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
693
}
M
Michal Hocko 已提交
694
EXPORT_SYMBOL(mem_cgroup_from_task);
695

696
static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
697
{
698
	struct mem_cgroup *memcg = NULL;
699

700 701
	rcu_read_lock();
	do {
702 703 704 705 706 707
		/*
		 * Page cache insertions can happen withou an
		 * actual mm context, e.g. during disk probing
		 * on boot, loopback IO, acct() writes etc.
		 */
		if (unlikely(!mm))
708
			memcg = root_mem_cgroup;
709 710 711 712 713
		else {
			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
			if (unlikely(!memcg))
				memcg = root_mem_cgroup;
		}
714
	} while (!css_tryget_online(&memcg->css));
715
	rcu_read_unlock();
716
	return memcg;
717 718
}

719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
736
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
737
				   struct mem_cgroup *prev,
738
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
739
{
M
Michal Hocko 已提交
740
	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
741
	struct cgroup_subsys_state *css = NULL;
742
	struct mem_cgroup *memcg = NULL;
743
	struct mem_cgroup *pos = NULL;
744

745 746
	if (mem_cgroup_disabled())
		return NULL;
747

748 749
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
750

751
	if (prev && !reclaim)
752
		pos = prev;
K
KAMEZAWA Hiroyuki 已提交
753

754 755
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
756
			goto out;
757
		return root;
758
	}
K
KAMEZAWA Hiroyuki 已提交
759

760
	rcu_read_lock();
M
Michal Hocko 已提交
761

762
	if (reclaim) {
763
		struct mem_cgroup_per_node *mz;
764

765
		mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
766 767 768 769 770
		iter = &mz->iter[reclaim->priority];

		if (prev && reclaim->generation != iter->generation)
			goto out_unlock;

771
		while (1) {
772
			pos = READ_ONCE(iter->position);
773 774
			if (!pos || css_tryget(&pos->css))
				break;
775
			/*
776 777 778 779 780 781
			 * css reference reached zero, so iter->position will
			 * be cleared by ->css_released. However, we should not
			 * rely on this happening soon, because ->css_released
			 * is called from a work queue, and by busy-waiting we
			 * might block it. So we clear iter->position right
			 * away.
782
			 */
783 784
			(void)cmpxchg(&iter->position, pos, NULL);
		}
785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801
	}

	if (pos)
		css = &pos->css;

	for (;;) {
		css = css_next_descendant_pre(css, &root->css);
		if (!css) {
			/*
			 * Reclaimers share the hierarchy walk, and a
			 * new one might jump in right at the end of
			 * the hierarchy - make sure they see at least
			 * one group and restart from the beginning.
			 */
			if (!prev)
				continue;
			break;
802
		}
K
KAMEZAWA Hiroyuki 已提交
803

804 805 806 807 808 809
		/*
		 * Verify the css and acquire a reference.  The root
		 * is provided by the caller, so we know it's alive
		 * and kicking, and don't take an extra reference.
		 */
		memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
810

811 812
		if (css == &root->css)
			break;
K
KAMEZAWA Hiroyuki 已提交
813

814 815
		if (css_tryget(css))
			break;
816

817
		memcg = NULL;
818
	}
819 820 821

	if (reclaim) {
		/*
822 823 824
		 * The position could have already been updated by a competing
		 * thread, so check that the value hasn't changed since we read
		 * it to avoid reclaiming from the same cgroup twice.
825
		 */
826 827
		(void)cmpxchg(&iter->position, pos, memcg);

828 829 830 831 832 833 834
		if (pos)
			css_put(&pos->css);

		if (!memcg)
			iter->generation++;
		else if (!prev)
			reclaim->generation = iter->generation;
835
	}
836

837 838
out_unlock:
	rcu_read_unlock();
839
out:
840 841 842
	if (prev && prev != root)
		css_put(&prev->css);

843
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
844
}
K
KAMEZAWA Hiroyuki 已提交
845

846 847 848 849 850 851 852
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
853 854 855 856 857 858
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
859

860 861 862 863
static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
{
	struct mem_cgroup *memcg = dead_memcg;
	struct mem_cgroup_reclaim_iter *iter;
864 865
	struct mem_cgroup_per_node *mz;
	int nid;
866 867 868 869
	int i;

	while ((memcg = parent_mem_cgroup(memcg))) {
		for_each_node(nid) {
870 871 872 873 874
			mz = mem_cgroup_nodeinfo(memcg, nid);
			for (i = 0; i <= DEF_PRIORITY; i++) {
				iter = &mz->iter[i];
				cmpxchg(&iter->position,
					dead_memcg, NULL);
875 876 877 878 879
			}
		}
	}
}

880 881 882 883 884 885
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
886
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
887
	     iter != NULL;				\
888
	     iter = mem_cgroup_iter(root, iter, NULL))
889

890
#define for_each_mem_cgroup(iter)			\
891
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
892
	     iter != NULL;				\
893
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
894

895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931
/**
 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
 * @memcg: hierarchy root
 * @fn: function to call for each task
 * @arg: argument passed to @fn
 *
 * This function iterates over tasks attached to @memcg or to any of its
 * descendants and calls @fn for each task. If @fn returns a non-zero
 * value, the function breaks the iteration loop and returns the value.
 * Otherwise, it will iterate over all tasks and return 0.
 *
 * This function must not be called for the root memory cgroup.
 */
int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
			  int (*fn)(struct task_struct *, void *), void *arg)
{
	struct mem_cgroup *iter;
	int ret = 0;

	BUG_ON(memcg == root_mem_cgroup);

	for_each_mem_cgroup_tree(iter, memcg) {
		struct css_task_iter it;
		struct task_struct *task;

		css_task_iter_start(&iter->css, &it);
		while (!ret && (task = css_task_iter_next(&it)))
			ret = fn(task, arg);
		css_task_iter_end(&it);
		if (ret) {
			mem_cgroup_iter_break(memcg, iter);
			break;
		}
	}
	return ret;
}

932
/**
933
 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
934
 * @page: the page
935
 * @zone: zone of the page
936 937 938 939
 *
 * This function is only safe when following the LRU page isolation
 * and putback protocol: the LRU lock must be held, and the page must
 * either be PageLRU() or the caller must have isolated/allocated it.
940
 */
M
Mel Gorman 已提交
941
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
K
KAMEZAWA Hiroyuki 已提交
942
{
943
	struct mem_cgroup_per_node *mz;
944
	struct mem_cgroup *memcg;
945
	struct lruvec *lruvec;
946

947
	if (mem_cgroup_disabled()) {
M
Mel Gorman 已提交
948
		lruvec = &pgdat->lruvec;
949 950
		goto out;
	}
951

952
	memcg = page->mem_cgroup;
953
	/*
954
	 * Swapcache readahead pages are added to the LRU - and
955
	 * possibly migrated - before they are charged.
956
	 */
957 958
	if (!memcg)
		memcg = root_mem_cgroup;
959

960
	mz = mem_cgroup_page_nodeinfo(memcg, page);
961 962 963 964 965 966 967
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
M
Mel Gorman 已提交
968 969
	if (unlikely(lruvec->pgdat != pgdat))
		lruvec->pgdat = pgdat;
970
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
971
}
972

973
/**
974 975 976
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
977
 * @zid: zone id of the accounted pages
978
 * @nr_pages: positive when adding or negative when removing
979
 *
980 981 982
 * This function must be called under lru_lock, just before a page is added
 * to or just after a page is removed from an lru list (that ordering being
 * so as to allow it to check that lru_size 0 is consistent with list_empty).
983
 */
984
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
985
				int zid, int nr_pages)
986
{
987
	struct mem_cgroup_per_node *mz;
988
	unsigned long *lru_size;
989
	long size;
990 991 992 993

	if (mem_cgroup_disabled())
		return;

994
	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
995
	lru_size = &mz->lru_zone_size[zid][lru];
996 997 998 999 1000

	if (nr_pages < 0)
		*lru_size += nr_pages;

	size = *lru_size;
1001 1002 1003
	if (WARN_ONCE(size < 0,
		"%s(%p, %d, %d): lru_size %ld\n",
		__func__, lruvec, lru, nr_pages, size)) {
1004 1005 1006 1007 1008 1009
		VM_BUG_ON(1);
		*lru_size = 0;
	}

	if (nr_pages > 0)
		*lru_size += nr_pages;
K
KAMEZAWA Hiroyuki 已提交
1010
}
1011

1012
bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1013
{
1014
	struct mem_cgroup *task_memcg;
1015
	struct task_struct *p;
1016
	bool ret;
1017

1018
	p = find_lock_task_mm(task);
1019
	if (p) {
1020
		task_memcg = get_mem_cgroup_from_mm(p->mm);
1021 1022 1023 1024 1025 1026 1027
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1028
		rcu_read_lock();
1029 1030
		task_memcg = mem_cgroup_from_task(task);
		css_get(&task_memcg->css);
1031
		rcu_read_unlock();
1032
	}
1033 1034
	ret = mem_cgroup_is_descendant(task_memcg, memcg);
	css_put(&task_memcg->css);
1035 1036 1037
	return ret;
}

1038
/**
1039
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1040
 * @memcg: the memory cgroup
1041
 *
1042
 * Returns the maximum amount of memory @mem can be charged with, in
1043
 * pages.
1044
 */
1045
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1046
{
1047 1048 1049
	unsigned long margin = 0;
	unsigned long count;
	unsigned long limit;
1050

1051
	count = page_counter_read(&memcg->memory);
1052
	limit = READ_ONCE(memcg->memory.limit);
1053 1054 1055
	if (count < limit)
		margin = limit - count;

1056
	if (do_memsw_account()) {
1057
		count = page_counter_read(&memcg->memsw);
1058
		limit = READ_ONCE(memcg->memsw.limit);
1059 1060
		if (count <= limit)
			margin = min(margin, limit - count);
1061 1062
		else
			margin = 0;
1063 1064 1065
	}

	return margin;
1066 1067
}

1068
/*
Q
Qiang Huang 已提交
1069
 * A routine for checking "mem" is under move_account() or not.
1070
 *
Q
Qiang Huang 已提交
1071 1072 1073
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 * moving cgroups. This is for waiting at high-memory pressure
 * caused by "move".
1074
 */
1075
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1076
{
1077 1078
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1079
	bool ret = false;
1080 1081 1082 1083 1084 1085 1086 1087 1088
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1089

1090 1091
	ret = mem_cgroup_is_descendant(from, memcg) ||
		mem_cgroup_is_descendant(to, memcg);
1092 1093
unlock:
	spin_unlock(&mc.lock);
1094 1095 1096
	return ret;
}

1097
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1098 1099
{
	if (mc.moving_task && current != mc.moving_task) {
1100
		if (mem_cgroup_under_move(memcg)) {
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
unsigned int memcg1_stats[] = {
	MEMCG_CACHE,
	MEMCG_RSS,
	MEMCG_RSS_HUGE,
	NR_SHMEM,
	NR_FILE_MAPPED,
	NR_FILE_DIRTY,
	NR_WRITEBACK,
	MEMCG_SWAP,
};

static const char *const memcg1_stat_names[] = {
	"cache",
	"rss",
	"rss_huge",
	"shmem",
	"mapped_file",
	"dirty",
	"writeback",
	"swap",
};

1135
#define K(x) ((x) << (PAGE_SHIFT-10))
1136
/**
1137
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1138 1139 1140 1141 1142 1143 1144 1145
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
1146 1147
	struct mem_cgroup *iter;
	unsigned int i;
1148 1149 1150

	rcu_read_lock();

1151 1152 1153 1154 1155 1156 1157 1158
	if (p) {
		pr_info("Task in ");
		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
		pr_cont(" killed as a result of limit of ");
	} else {
		pr_info("Memory limit reached of cgroup ");
	}

T
Tejun Heo 已提交
1159
	pr_cont_cgroup_path(memcg->css.cgroup);
1160
	pr_cont("\n");
1161 1162 1163

	rcu_read_unlock();

1164 1165 1166 1167 1168 1169 1170 1171 1172
	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memory)),
		K((u64)memcg->memory.limit), memcg->memory.failcnt);
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memsw)),
		K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->kmem)),
		K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1173 1174

	for_each_mem_cgroup_tree(iter, memcg) {
T
Tejun Heo 已提交
1175 1176
		pr_info("Memory cgroup stats for ");
		pr_cont_cgroup_path(iter->css.cgroup);
1177 1178
		pr_cont(":");

1179 1180
		for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
			if (memcg1_stats[i] == MEMCG_SWAP && !do_swap_account)
1181
				continue;
1182
			pr_cont(" %s:%luKB", memcg1_stat_names[i],
1183
				K(memcg_page_state(iter, memcg1_stats[i])));
1184 1185 1186 1187 1188 1189 1190 1191
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1192 1193
}

1194 1195 1196 1197
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1198
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1199 1200
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1201 1202
	struct mem_cgroup *iter;

1203
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1204
		num++;
1205 1206 1207
	return num;
}

D
David Rientjes 已提交
1208 1209 1210
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1211
unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1212
{
1213
	unsigned long limit;
1214

1215
	limit = memcg->memory.limit;
1216
	if (mem_cgroup_swappiness(memcg)) {
1217
		unsigned long memsw_limit;
1218
		unsigned long swap_limit;
1219

1220
		memsw_limit = memcg->memsw.limit;
1221 1222 1223
		swap_limit = memcg->swap.limit;
		swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
		limit = min(limit + swap_limit, memsw_limit);
1224 1225
	}
	return limit;
D
David Rientjes 已提交
1226 1227
}

1228
static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1229
				     int order)
1230
{
1231 1232 1233
	struct oom_control oc = {
		.zonelist = NULL,
		.nodemask = NULL,
1234
		.memcg = memcg,
1235 1236 1237
		.gfp_mask = gfp_mask,
		.order = order,
	};
1238
	bool ret;
1239

1240
	mutex_lock(&oom_lock);
1241
	ret = out_of_memory(&oc);
1242
	mutex_unlock(&oom_lock);
1243
	return ret;
1244 1245
}

1246 1247
#if MAX_NUMNODES > 1

1248 1249
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1250
 * @memcg: the target memcg
1251 1252 1253 1254 1255 1256 1257
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1258
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1259 1260
		int nid, bool noswap)
{
1261
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1262 1263 1264
		return true;
	if (noswap || !total_swap_pages)
		return false;
1265
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1266 1267 1268 1269
		return true;
	return false;

}
1270 1271 1272 1273 1274 1275 1276

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1277
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1278 1279
{
	int nid;
1280 1281 1282 1283
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1284
	if (!atomic_read(&memcg->numainfo_events))
1285
		return;
1286
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1287 1288 1289
		return;

	/* make a nodemask where this memcg uses memory from */
1290
	memcg->scan_nodes = node_states[N_MEMORY];
1291

1292
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1293

1294 1295
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1296
	}
1297

1298 1299
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1314
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1315 1316 1317
{
	int node;

1318 1319
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1320

1321
	node = next_node_in(node, memcg->scan_nodes);
1322
	/*
1323 1324 1325
	 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
	 * last time it really checked all the LRUs due to rate limiting.
	 * Fallback to the current node in that case for simplicity.
1326 1327 1328 1329
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1330
	memcg->last_scanned_node = node;
1331 1332 1333
	return node;
}
#else
1334
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1335 1336 1337 1338 1339
{
	return 0;
}
#endif

1340
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1341
				   pg_data_t *pgdat,
1342 1343 1344 1345 1346 1347 1348 1349 1350
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
1351
		.pgdat = pgdat,
1352 1353 1354
		.priority = 0,
	};

1355
	excess = soft_limit_excess(root_memcg);
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
1381
		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1382
					pgdat, &nr_scanned);
1383
		*total_scanned += nr_scanned;
1384
		if (!soft_limit_excess(root_memcg))
1385
			break;
1386
	}
1387 1388
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
1389 1390
}

1391 1392 1393 1394 1395 1396
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

1397 1398
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
1399 1400 1401 1402
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
1403
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1404
{
1405
	struct mem_cgroup *iter, *failed = NULL;
1406

1407 1408
	spin_lock(&memcg_oom_lock);

1409
	for_each_mem_cgroup_tree(iter, memcg) {
1410
		if (iter->oom_lock) {
1411 1412 1413 1414 1415
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1416 1417
			mem_cgroup_iter_break(memcg, iter);
			break;
1418 1419
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1420
	}
K
KAMEZAWA Hiroyuki 已提交
1421

1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
1433
		}
1434 1435
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1436 1437 1438 1439

	spin_unlock(&memcg_oom_lock);

	return !failed;
1440
}
1441

1442
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1443
{
K
KAMEZAWA Hiroyuki 已提交
1444 1445
	struct mem_cgroup *iter;

1446
	spin_lock(&memcg_oom_lock);
1447
	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1448
	for_each_mem_cgroup_tree(iter, memcg)
1449
		iter->oom_lock = false;
1450
	spin_unlock(&memcg_oom_lock);
1451 1452
}

1453
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1454 1455 1456
{
	struct mem_cgroup *iter;

1457
	spin_lock(&memcg_oom_lock);
1458
	for_each_mem_cgroup_tree(iter, memcg)
1459 1460
		iter->under_oom++;
	spin_unlock(&memcg_oom_lock);
1461 1462
}

1463
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1464 1465 1466
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1467 1468
	/*
	 * When a new child is created while the hierarchy is under oom,
1469
	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
K
KAMEZAWA Hiroyuki 已提交
1470
	 */
1471
	spin_lock(&memcg_oom_lock);
1472
	for_each_mem_cgroup_tree(iter, memcg)
1473 1474 1475
		if (iter->under_oom > 0)
			iter->under_oom--;
	spin_unlock(&memcg_oom_lock);
1476 1477
}

K
KAMEZAWA Hiroyuki 已提交
1478 1479
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1480
struct oom_wait_info {
1481
	struct mem_cgroup *memcg;
1482
	wait_queue_entry_t	wait;
K
KAMEZAWA Hiroyuki 已提交
1483 1484
};

1485
static int memcg_oom_wake_function(wait_queue_entry_t *wait,
K
KAMEZAWA Hiroyuki 已提交
1486 1487
	unsigned mode, int sync, void *arg)
{
1488 1489
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1490 1491 1492
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1493
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1494

1495 1496
	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
K
KAMEZAWA Hiroyuki 已提交
1497 1498 1499 1500
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1501
static void memcg_oom_recover(struct mem_cgroup *memcg)
1502
{
1503 1504 1505 1506 1507 1508 1509 1510 1511
	/*
	 * For the following lockless ->under_oom test, the only required
	 * guarantee is that it must see the state asserted by an OOM when
	 * this function is called as a result of userland actions
	 * triggered by the notification of the OOM.  This is trivially
	 * achieved by invoking mem_cgroup_mark_under_oom() before
	 * triggering notification.
	 */
	if (memcg && memcg->under_oom)
1512
		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1513 1514
}

1515
static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1516
{
1517
	if (!current->memcg_may_oom)
1518
		return;
K
KAMEZAWA Hiroyuki 已提交
1519
	/*
1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
	 * Also, the caller may handle a failed allocation gracefully
	 * (like optional page cache readahead) and so an OOM killer
	 * invocation might not even be necessary.
	 *
	 * That's why we don't do anything here except remember the
	 * OOM context and then deal with it at the end of the page
	 * fault when the stack is unwound, the locks are released,
	 * and when we know whether the fault was overall successful.
K
KAMEZAWA Hiroyuki 已提交
1532
	 */
1533
	css_get(&memcg->css);
T
Tejun Heo 已提交
1534 1535 1536
	current->memcg_in_oom = memcg;
	current->memcg_oom_gfp_mask = mask;
	current->memcg_oom_order = order;
1537 1538 1539 1540
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1541
 * @handle: actually kill/wait or just clean up the OOM state
1542
 *
1543 1544
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
1545
 *
1546
 * Memcg supports userspace OOM handling where failed allocations must
1547 1548 1549 1550
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
1551
 * the end of the page fault to complete the OOM handling.
1552 1553
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
1554
 * completed, %false otherwise.
1555
 */
1556
bool mem_cgroup_oom_synchronize(bool handle)
1557
{
T
Tejun Heo 已提交
1558
	struct mem_cgroup *memcg = current->memcg_in_oom;
1559
	struct oom_wait_info owait;
1560
	bool locked;
1561 1562 1563

	/* OOM is global, do not handle */
	if (!memcg)
1564
		return false;
1565

1566
	if (!handle)
1567
		goto cleanup;
1568 1569 1570 1571 1572

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
1573
	INIT_LIST_HEAD(&owait.wait.entry);
K
KAMEZAWA Hiroyuki 已提交
1574

1575
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
T
Tejun Heo 已提交
1586 1587
		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
					 current->memcg_oom_order);
1588
	} else {
1589
		schedule();
1590 1591 1592 1593 1594
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
1595 1596 1597 1598 1599 1600 1601 1602
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
1603
cleanup:
T
Tejun Heo 已提交
1604
	current->memcg_in_oom = NULL;
1605
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
1606
	return true;
1607 1608
}

1609
/**
1610 1611
 * lock_page_memcg - lock a page->mem_cgroup binding
 * @page: the page
1612
 *
1613
 * This function protects unlocked LRU pages from being moved to
1614 1615 1616 1617 1618
 * another cgroup.
 *
 * It ensures lifetime of the returned memcg. Caller is responsible
 * for the lifetime of the page; __unlock_page_memcg() is available
 * when @page might get freed inside the locked section.
1619
 */
1620
struct mem_cgroup *lock_page_memcg(struct page *page)
1621 1622
{
	struct mem_cgroup *memcg;
1623
	unsigned long flags;
1624

1625 1626 1627 1628
	/*
	 * The RCU lock is held throughout the transaction.  The fast
	 * path can get away without acquiring the memcg->move_lock
	 * because page moving starts with an RCU grace period.
1629 1630 1631 1632 1633 1634 1635
	 *
	 * The RCU lock also protects the memcg from being freed when
	 * the page state that is going to change is the only thing
	 * preventing the page itself from being freed. E.g. writeback
	 * doesn't hold a page reference and relies on PG_writeback to
	 * keep off truncation, migration and so forth.
         */
1636 1637 1638
	rcu_read_lock();

	if (mem_cgroup_disabled())
1639
		return NULL;
1640
again:
1641
	memcg = page->mem_cgroup;
1642
	if (unlikely(!memcg))
1643
		return NULL;
1644

Q
Qiang Huang 已提交
1645
	if (atomic_read(&memcg->moving_account) <= 0)
1646
		return memcg;
1647

1648
	spin_lock_irqsave(&memcg->move_lock, flags);
1649
	if (memcg != page->mem_cgroup) {
1650
		spin_unlock_irqrestore(&memcg->move_lock, flags);
1651 1652
		goto again;
	}
1653 1654 1655 1656

	/*
	 * When charge migration first begins, we can have locked and
	 * unlocked page stat updates happening concurrently.  Track
1657
	 * the task who has the lock for unlock_page_memcg().
1658 1659 1660
	 */
	memcg->move_lock_task = current;
	memcg->move_lock_flags = flags;
1661

1662
	return memcg;
1663
}
1664
EXPORT_SYMBOL(lock_page_memcg);
1665

1666
/**
1667 1668 1669 1670
 * __unlock_page_memcg - unlock and unpin a memcg
 * @memcg: the memcg
 *
 * Unlock and unpin a memcg returned by lock_page_memcg().
1671
 */
1672
void __unlock_page_memcg(struct mem_cgroup *memcg)
1673
{
1674 1675 1676 1677 1678 1679 1680 1681
	if (memcg && memcg->move_lock_task == current) {
		unsigned long flags = memcg->move_lock_flags;

		memcg->move_lock_task = NULL;
		memcg->move_lock_flags = 0;

		spin_unlock_irqrestore(&memcg->move_lock, flags);
	}
1682

1683
	rcu_read_unlock();
1684
}
1685 1686 1687 1688 1689 1690 1691 1692 1693

/**
 * unlock_page_memcg - unlock a page->mem_cgroup binding
 * @page: the page
 */
void unlock_page_memcg(struct page *page)
{
	__unlock_page_memcg(page->mem_cgroup);
}
1694
EXPORT_SYMBOL(unlock_page_memcg);
1695

1696 1697 1698 1699
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
1700
#define CHARGE_BATCH	32U
1701 1702
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
1703
	unsigned int nr_pages;
1704
	struct work_struct work;
1705
	unsigned long flags;
1706
#define FLUSHING_CACHED_CHARGE	0
1707 1708
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1709
static DEFINE_MUTEX(percpu_charge_mutex);
1710

1711 1712 1713 1714 1715 1716 1717 1718 1719 1720
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
1721
 */
1722
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1723 1724
{
	struct memcg_stock_pcp *stock;
1725
	unsigned long flags;
1726
	bool ret = false;
1727

1728
	if (nr_pages > CHARGE_BATCH)
1729
		return ret;
1730

1731 1732 1733
	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
1734
	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1735
		stock->nr_pages -= nr_pages;
1736 1737
		ret = true;
	}
1738 1739 1740

	local_irq_restore(flags);

1741 1742 1743 1744
	return ret;
}

/*
1745
 * Returns stocks cached in percpu and reset cached information.
1746 1747 1748 1749 1750
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

1751
	if (stock->nr_pages) {
1752
		page_counter_uncharge(&old->memory, stock->nr_pages);
1753
		if (do_memsw_account())
1754
			page_counter_uncharge(&old->memsw, stock->nr_pages);
1755
		css_put_many(&old->css, stock->nr_pages);
1756
		stock->nr_pages = 0;
1757 1758 1759 1760 1761 1762
	}
	stock->cached = NULL;
}

static void drain_local_stock(struct work_struct *dummy)
{
1763 1764 1765 1766 1767 1768
	struct memcg_stock_pcp *stock;
	unsigned long flags;

	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
1769
	drain_stock(stock);
1770
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1771 1772

	local_irq_restore(flags);
1773 1774 1775
}

/*
1776
 * Cache charges(val) to local per_cpu area.
1777
 * This will be consumed by consume_stock() function, later.
1778
 */
1779
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1780
{
1781 1782 1783 1784
	struct memcg_stock_pcp *stock;
	unsigned long flags;

	local_irq_save(flags);
1785

1786
	stock = this_cpu_ptr(&memcg_stock);
1787
	if (stock->cached != memcg) { /* reset if necessary */
1788
		drain_stock(stock);
1789
		stock->cached = memcg;
1790
	}
1791
	stock->nr_pages += nr_pages;
1792 1793

	local_irq_restore(flags);
1794 1795 1796
}

/*
1797
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1798
 * of the hierarchy under it.
1799
 */
1800
static void drain_all_stock(struct mem_cgroup *root_memcg)
1801
{
1802
	int cpu, curcpu;
1803

1804 1805 1806
	/* If someone's already draining, avoid adding running more workers. */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
1807 1808
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
1809
	curcpu = get_cpu();
1810 1811
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1812
		struct mem_cgroup *memcg;
1813

1814 1815
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
1816
			continue;
1817
		if (!mem_cgroup_is_descendant(memcg, root_memcg))
1818
			continue;
1819 1820 1821 1822 1823 1824
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
1825
	}
1826
	put_cpu();
A
Andrew Morton 已提交
1827
	put_online_cpus();
1828
	mutex_unlock(&percpu_charge_mutex);
1829 1830
}

1831
static int memcg_hotplug_cpu_dead(unsigned int cpu)
1832 1833 1834 1835 1836
{
	struct memcg_stock_pcp *stock;

	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
1837
	return 0;
1838 1839
}

1840 1841 1842 1843 1844 1845 1846
static void reclaim_high(struct mem_cgroup *memcg,
			 unsigned int nr_pages,
			 gfp_t gfp_mask)
{
	do {
		if (page_counter_read(&memcg->memory) <= memcg->high)
			continue;
1847
		mem_cgroup_event(memcg, MEMCG_HIGH);
1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859
		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
	} while ((memcg = parent_mem_cgroup(memcg)));
}

static void high_work_func(struct work_struct *work)
{
	struct mem_cgroup *memcg;

	memcg = container_of(work, struct mem_cgroup, high_work);
	reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
}

1860 1861 1862 1863 1864 1865 1866
/*
 * Scheduled by try_charge() to be executed from the userland return path
 * and reclaims memory over the high limit.
 */
void mem_cgroup_handle_over_high(void)
{
	unsigned int nr_pages = current->memcg_nr_pages_over_high;
1867
	struct mem_cgroup *memcg;
1868 1869 1870 1871

	if (likely(!nr_pages))
		return;

1872 1873
	memcg = get_mem_cgroup_from_mm(current->mm);
	reclaim_high(memcg, nr_pages, GFP_KERNEL);
1874 1875 1876 1877
	css_put(&memcg->css);
	current->memcg_nr_pages_over_high = 0;
}

1878 1879
static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
		      unsigned int nr_pages)
1880
{
1881
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
1882
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1883
	struct mem_cgroup *mem_over_limit;
1884
	struct page_counter *counter;
1885
	unsigned long nr_reclaimed;
1886 1887
	bool may_swap = true;
	bool drained = false;
1888

1889
	if (mem_cgroup_is_root(memcg))
1890
		return 0;
1891
retry:
1892
	if (consume_stock(memcg, nr_pages))
1893
		return 0;
1894

1895
	if (!do_memsw_account() ||
1896 1897
	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
		if (page_counter_try_charge(&memcg->memory, batch, &counter))
1898
			goto done_restock;
1899
		if (do_memsw_account())
1900 1901
			page_counter_uncharge(&memcg->memsw, batch);
		mem_over_limit = mem_cgroup_from_counter(counter, memory);
1902
	} else {
1903
		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1904
		may_swap = false;
1905
	}
1906

1907 1908 1909 1910
	if (batch > nr_pages) {
		batch = nr_pages;
		goto retry;
	}
1911

1912 1913 1914 1915 1916 1917 1918 1919 1920
	/*
	 * Unlike in global OOM situations, memcg is not in a physical
	 * memory shortage.  Allow dying and OOM-killed tasks to
	 * bypass the last charges so that they can exit quickly and
	 * free their memory.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE) ||
		     fatal_signal_pending(current) ||
		     current->flags & PF_EXITING))
1921
		goto force;
1922

1923 1924 1925 1926 1927 1928 1929 1930 1931
	/*
	 * Prevent unbounded recursion when reclaim operations need to
	 * allocate memory. This might exceed the limits temporarily,
	 * but we prefer facilitating memory reclaim and getting back
	 * under the limit over triggering OOM kills in these cases.
	 */
	if (unlikely(current->flags & PF_MEMALLOC))
		goto force;

1932 1933 1934
	if (unlikely(task_in_memcg_oom(current)))
		goto nomem;

1935
	if (!gfpflags_allow_blocking(gfp_mask))
1936
		goto nomem;
1937

1938
	mem_cgroup_event(mem_over_limit, MEMCG_MAX);
1939

1940 1941
	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
						    gfp_mask, may_swap);
1942

1943
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
1944
		goto retry;
1945

1946
	if (!drained) {
1947
		drain_all_stock(mem_over_limit);
1948 1949 1950 1951
		drained = true;
		goto retry;
	}

1952 1953
	if (gfp_mask & __GFP_NORETRY)
		goto nomem;
1954 1955 1956 1957 1958 1959 1960 1961 1962
	/*
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
	 */
1963
	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
1964 1965 1966 1967 1968 1969 1970 1971
		goto retry;
	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		goto retry;

1972 1973 1974
	if (nr_retries--)
		goto retry;

1975
	if (gfp_mask & __GFP_NOFAIL)
1976
		goto force;
1977

1978
	if (fatal_signal_pending(current))
1979
		goto force;
1980

1981
	mem_cgroup_event(mem_over_limit, MEMCG_OOM);
1982

1983 1984
	mem_cgroup_oom(mem_over_limit, gfp_mask,
		       get_order(nr_pages * PAGE_SIZE));
1985
nomem:
1986
	if (!(gfp_mask & __GFP_NOFAIL))
1987
		return -ENOMEM;
1988 1989 1990 1991 1992 1993 1994
force:
	/*
	 * The allocation either can't fail or will lead to more memory
	 * being freed very soon.  Allow memory usage go over the limit
	 * temporarily by force charging it.
	 */
	page_counter_charge(&memcg->memory, nr_pages);
1995
	if (do_memsw_account())
1996 1997 1998 1999
		page_counter_charge(&memcg->memsw, nr_pages);
	css_get_many(&memcg->css, nr_pages);

	return 0;
2000 2001

done_restock:
2002
	css_get_many(&memcg->css, batch);
2003 2004
	if (batch > nr_pages)
		refill_stock(memcg, batch - nr_pages);
2005

2006
	/*
2007 2008
	 * If the hierarchy is above the normal consumption range, schedule
	 * reclaim on returning to userland.  We can perform reclaim here
2009
	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2010 2011 2012 2013
	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
	 * not recorded as it most likely matches current's and won't
	 * change in the meantime.  As high limit is checked again before
	 * reclaim, the cost of mismatch is negligible.
2014 2015
	 */
	do {
2016
		if (page_counter_read(&memcg->memory) > memcg->high) {
2017 2018 2019 2020 2021
			/* Don't bother a random interrupted task */
			if (in_interrupt()) {
				schedule_work(&memcg->high_work);
				break;
			}
V
Vladimir Davydov 已提交
2022
			current->memcg_nr_pages_over_high += batch;
2023 2024 2025
			set_notify_resume(current);
			break;
		}
2026
	} while ((memcg = parent_mem_cgroup(memcg)));
2027 2028

	return 0;
2029
}
2030

2031
static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2032
{
2033 2034 2035
	if (mem_cgroup_is_root(memcg))
		return;

2036
	page_counter_uncharge(&memcg->memory, nr_pages);
2037
	if (do_memsw_account())
2038
		page_counter_uncharge(&memcg->memsw, nr_pages);
2039

2040
	css_put_many(&memcg->css, nr_pages);
2041 2042
}

2043 2044 2045 2046
static void lock_page_lru(struct page *page, int *isolated)
{
	struct zone *zone = page_zone(page);

2047
	spin_lock_irq(zone_lru_lock(zone));
2048 2049 2050
	if (PageLRU(page)) {
		struct lruvec *lruvec;

M
Mel Gorman 已提交
2051
		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065
		ClearPageLRU(page);
		del_page_from_lru_list(page, lruvec, page_lru(page));
		*isolated = 1;
	} else
		*isolated = 0;
}

static void unlock_page_lru(struct page *page, int isolated)
{
	struct zone *zone = page_zone(page);

	if (isolated) {
		struct lruvec *lruvec;

M
Mel Gorman 已提交
2066
		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2067 2068 2069 2070
		VM_BUG_ON_PAGE(PageLRU(page), page);
		SetPageLRU(page);
		add_page_to_lru_list(page, lruvec, page_lru(page));
	}
2071
	spin_unlock_irq(zone_lru_lock(zone));
2072 2073
}

2074
static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2075
			  bool lrucare)
2076
{
2077
	int isolated;
2078

2079
	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2080 2081 2082 2083 2084

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
2085 2086
	if (lrucare)
		lock_page_lru(page, &isolated);
2087

2088 2089
	/*
	 * Nobody should be changing or seriously looking at
2090
	 * page->mem_cgroup at this point:
2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101
	 *
	 * - the page is uncharged
	 *
	 * - the page is off-LRU
	 *
	 * - an anonymous fault has exclusive page access, except for
	 *   a locked page table
	 *
	 * - a page cache insertion, a swapin fault, or a migration
	 *   have the page locked
	 */
2102
	page->mem_cgroup = memcg;
2103

2104 2105
	if (lrucare)
		unlock_page_lru(page, isolated);
2106
}
2107

2108
#ifndef CONFIG_SLOB
2109
static int memcg_alloc_cache_id(void)
2110
{
2111 2112 2113
	int id, size;
	int err;

2114
	id = ida_simple_get(&memcg_cache_ida,
2115 2116 2117
			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (id < 0)
		return id;
2118

2119
	if (id < memcg_nr_cache_ids)
2120 2121 2122 2123 2124 2125
		return id;

	/*
	 * There's no space for the new id in memcg_caches arrays,
	 * so we have to grow them.
	 */
2126
	down_write(&memcg_cache_ids_sem);
2127 2128

	size = 2 * (id + 1);
2129 2130 2131 2132 2133
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

2134
	err = memcg_update_all_caches(size);
2135 2136
	if (!err)
		err = memcg_update_all_list_lrus(size);
2137 2138 2139 2140 2141
	if (!err)
		memcg_nr_cache_ids = size;

	up_write(&memcg_cache_ids_sem);

2142
	if (err) {
2143
		ida_simple_remove(&memcg_cache_ida, id);
2144 2145 2146 2147 2148 2149 2150
		return err;
	}
	return id;
}

static void memcg_free_cache_id(int id)
{
2151
	ida_simple_remove(&memcg_cache_ida, id);
2152 2153
}

2154
struct memcg_kmem_cache_create_work {
2155 2156 2157 2158 2159
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

2160
static void memcg_kmem_cache_create_func(struct work_struct *w)
2161
{
2162 2163
	struct memcg_kmem_cache_create_work *cw =
		container_of(w, struct memcg_kmem_cache_create_work, work);
2164 2165
	struct mem_cgroup *memcg = cw->memcg;
	struct kmem_cache *cachep = cw->cachep;
2166

2167
	memcg_create_kmem_cache(memcg, cachep);
2168

2169
	css_put(&memcg->css);
2170 2171 2172 2173 2174 2175
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
2176 2177
static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					       struct kmem_cache *cachep)
2178
{
2179
	struct memcg_kmem_cache_create_work *cw;
2180

2181
	cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2182
	if (!cw)
2183
		return;
2184 2185

	css_get(&memcg->css);
2186 2187 2188

	cw->memcg = memcg;
	cw->cachep = cachep;
2189
	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2190

2191
	queue_work(memcg_kmem_cache_wq, &cw->work);
2192 2193
}

2194 2195
static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					     struct kmem_cache *cachep)
2196 2197 2198 2199
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
2200
	 * in __memcg_schedule_kmem_cache_create will recurse.
2201 2202 2203 2204 2205 2206 2207
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
2208
	current->memcg_kmem_skip_account = 1;
2209
	__memcg_schedule_kmem_cache_create(memcg, cachep);
2210
	current->memcg_kmem_skip_account = 0;
2211
}
2212

2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
static inline bool memcg_kmem_bypass(void)
{
	if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
		return true;
	return false;
}

/**
 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
 * @cachep: the original global kmem cache
 *
2224 2225 2226
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
2227 2228 2229
 * If the cache does not exist yet, if we are the first user of it, we
 * create it asynchronously in a workqueue and let the current allocation
 * go through with the original cache.
2230
 *
2231 2232 2233 2234
 * This function takes a reference to the cache it returns to assure it
 * won't get destroyed while we are working with it. Once the caller is
 * done with it, memcg_kmem_put_cache() must be called to release the
 * reference.
2235
 */
2236
struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2237 2238
{
	struct mem_cgroup *memcg;
2239
	struct kmem_cache *memcg_cachep;
2240
	int kmemcg_id;
2241

2242
	VM_BUG_ON(!is_root_cache(cachep));
2243

2244
	if (memcg_kmem_bypass())
V
Vladimir Davydov 已提交
2245 2246
		return cachep;

2247
	if (current->memcg_kmem_skip_account)
2248 2249
		return cachep;

2250
	memcg = get_mem_cgroup_from_mm(current->mm);
2251
	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2252
	if (kmemcg_id < 0)
2253
		goto out;
2254

2255
	memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2256 2257
	if (likely(memcg_cachep))
		return memcg_cachep;
2258 2259 2260 2261 2262 2263 2264 2265 2266

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
2267 2268 2269
	 * memcg_create_kmem_cache, this means no further allocation
	 * could happen with the slab_mutex held. So it's better to
	 * defer everything.
2270
	 */
2271
	memcg_schedule_kmem_cache_create(memcg, cachep);
2272
out:
2273
	css_put(&memcg->css);
2274
	return cachep;
2275 2276
}

2277 2278 2279 2280 2281
/**
 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
 * @cachep: the cache returned by memcg_kmem_get_cache
 */
void memcg_kmem_put_cache(struct kmem_cache *cachep)
2282 2283
{
	if (!is_root_cache(cachep))
2284
		css_put(&cachep->memcg_params.memcg->css);
2285 2286
}

2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297
/**
 * memcg_kmem_charge: charge a kmem page
 * @page: page to charge
 * @gfp: reclaim mode
 * @order: allocation order
 * @memcg: memory cgroup to charge
 *
 * Returns 0 on success, an error code on failure.
 */
int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
			    struct mem_cgroup *memcg)
2298
{
2299 2300
	unsigned int nr_pages = 1 << order;
	struct page_counter *counter;
2301 2302
	int ret;

2303
	ret = try_charge(memcg, gfp, nr_pages);
2304
	if (ret)
2305
		return ret;
2306 2307 2308 2309 2310

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
		cancel_charge(memcg, nr_pages);
		return -ENOMEM;
2311 2312
	}

2313
	page->mem_cgroup = memcg;
2314

2315
	return 0;
2316 2317
}

2318 2319 2320 2321 2322 2323 2324 2325 2326
/**
 * memcg_kmem_charge: charge a kmem page to the current memory cgroup
 * @page: page to charge
 * @gfp: reclaim mode
 * @order: allocation order
 *
 * Returns 0 on success, an error code on failure.
 */
int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2327
{
2328
	struct mem_cgroup *memcg;
2329
	int ret = 0;
2330

2331 2332 2333
	if (memcg_kmem_bypass())
		return 0;

2334
	memcg = get_mem_cgroup_from_mm(current->mm);
2335
	if (!mem_cgroup_is_root(memcg)) {
2336
		ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
2337 2338 2339
		if (!ret)
			__SetPageKmemcg(page);
	}
2340
	css_put(&memcg->css);
2341
	return ret;
2342
}
2343 2344 2345 2346 2347 2348
/**
 * memcg_kmem_uncharge: uncharge a kmem page
 * @page: page to uncharge
 * @order: allocation order
 */
void memcg_kmem_uncharge(struct page *page, int order)
2349
{
2350
	struct mem_cgroup *memcg = page->mem_cgroup;
2351
	unsigned int nr_pages = 1 << order;
2352 2353 2354 2355

	if (!memcg)
		return;

2356
	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2357

2358 2359 2360
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
		page_counter_uncharge(&memcg->kmem, nr_pages);

2361
	page_counter_uncharge(&memcg->memory, nr_pages);
2362
	if (do_memsw_account())
2363
		page_counter_uncharge(&memcg->memsw, nr_pages);
2364

2365
	page->mem_cgroup = NULL;
2366 2367 2368 2369 2370

	/* slab pages do not have PageKmemcg flag set */
	if (PageKmemcg(page))
		__ClearPageKmemcg(page);

2371
	css_put_many(&memcg->css, nr_pages);
2372
}
2373
#endif /* !CONFIG_SLOB */
2374

2375 2376 2377 2378
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

/*
 * Because tail pages are not marked as "used", set it. We're under
2379
 * zone_lru_lock and migration entries setup in all page mappings.
2380
 */
2381
void mem_cgroup_split_huge_fixup(struct page *head)
2382
{
2383
	int i;
2384

2385 2386
	if (mem_cgroup_disabled())
		return;
2387

2388
	for (i = 1; i < HPAGE_PMD_NR; i++)
2389
		head[i].mem_cgroup = head->mem_cgroup;
2390

2391
	__this_cpu_sub(head->mem_cgroup->stat->count[MEMCG_RSS_HUGE],
2392
		       HPAGE_PMD_NR);
2393
}
2394
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2395

A
Andrew Morton 已提交
2396
#ifdef CONFIG_MEMCG_SWAP
2397
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2398
				       int nr_entries)
K
KAMEZAWA Hiroyuki 已提交
2399
{
2400
	this_cpu_add(memcg->stat->count[MEMCG_SWAP], nr_entries);
K
KAMEZAWA Hiroyuki 已提交
2401
}
2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
2414
 * The caller must have charged to @to, IOW, called page_counter_charge() about
2415 2416 2417
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
2418
				struct mem_cgroup *from, struct mem_cgroup *to)
2419 2420 2421
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
2422 2423
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
2424 2425

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2426 2427
		mem_cgroup_swap_statistics(from, -1);
		mem_cgroup_swap_statistics(to, 1);
2428 2429 2430 2431 2432 2433
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2434
				struct mem_cgroup *from, struct mem_cgroup *to)
2435 2436 2437
{
	return -EINVAL;
}
2438
#endif
K
KAMEZAWA Hiroyuki 已提交
2439

2440
static DEFINE_MUTEX(memcg_limit_mutex);
2441

2442
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2443
				   unsigned long limit)
2444
{
2445 2446 2447
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
2448
	int retry_count;
2449
	int ret;
2450 2451 2452 2453 2454 2455

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
2456 2457
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);
2458

2459
	oldusage = page_counter_read(&memcg->memory);
2460

2461
	do {
2462 2463 2464 2465
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2466 2467 2468 2469

		mutex_lock(&memcg_limit_mutex);
		if (limit > memcg->memsw.limit) {
			mutex_unlock(&memcg_limit_mutex);
2470
			ret = -EINVAL;
2471 2472
			break;
		}
2473 2474 2475 2476
		if (limit > memcg->memory.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memory, limit);
		mutex_unlock(&memcg_limit_mutex);
2477 2478 2479 2480

		if (!ret)
			break;

2481 2482
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);

2483
		curusage = page_counter_read(&memcg->memory);
2484
		/* Usage is reduced ? */
A
Andrew Morton 已提交
2485
		if (curusage >= oldusage)
2486 2487 2488
			retry_count--;
		else
			oldusage = curusage;
2489 2490
	} while (retry_count);

2491 2492
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2493

2494 2495 2496
	return ret;
}

L
Li Zefan 已提交
2497
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2498
					 unsigned long limit)
2499
{
2500 2501 2502
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
2503
	int retry_count;
2504
	int ret;
2505

2506
	/* see mem_cgroup_resize_res_limit */
2507 2508 2509 2510 2511 2512
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);

	oldusage = page_counter_read(&memcg->memsw);

	do {
2513 2514 2515 2516
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2517 2518 2519 2520

		mutex_lock(&memcg_limit_mutex);
		if (limit < memcg->memory.limit) {
			mutex_unlock(&memcg_limit_mutex);
2521 2522 2523
			ret = -EINVAL;
			break;
		}
2524 2525 2526 2527
		if (limit > memcg->memsw.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memsw, limit);
		mutex_unlock(&memcg_limit_mutex);
2528 2529 2530 2531

		if (!ret)
			break;

2532 2533
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);

2534
		curusage = page_counter_read(&memcg->memsw);
2535
		/* Usage is reduced ? */
2536
		if (curusage >= oldusage)
2537
			retry_count--;
2538 2539
		else
			oldusage = curusage;
2540 2541
	} while (retry_count);

2542 2543
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2544

2545 2546 2547
	return ret;
}

2548
unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
2549 2550 2551 2552
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
2553
	struct mem_cgroup_per_node *mz, *next_mz = NULL;
2554 2555
	unsigned long reclaimed;
	int loop = 0;
2556
	struct mem_cgroup_tree_per_node *mctz;
2557
	unsigned long excess;
2558 2559 2560 2561 2562
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

2563
	mctz = soft_limit_tree_node(pgdat->node_id);
2564 2565 2566 2567 2568 2569

	/*
	 * Do not even bother to check the largest node if the root
	 * is empty. Do it lockless to prevent lock bouncing. Races
	 * are acceptable as soft limit is best effort anyway.
	 */
2570
	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
2571 2572
		return 0;

2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
2587
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
2588 2589 2590
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
2591
		spin_lock_irq(&mctz->lock);
2592
		__mem_cgroup_remove_exceeded(mz, mctz);
2593 2594 2595 2596 2597 2598

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
2599 2600 2601
		if (!reclaimed)
			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);

2602
		excess = soft_limit_excess(mz->memcg);
2603 2604 2605 2606 2607 2608 2609 2610 2611
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
2612
		__mem_cgroup_insert_exceeded(mz, mctz, excess);
2613
		spin_unlock_irq(&mctz->lock);
2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

2631 2632 2633 2634 2635 2636
/*
 * Test whether @memcg has children, dead or alive.  Note that this
 * function doesn't care whether @memcg has use_hierarchy enabled and
 * returns %true if there are child csses according to the cgroup
 * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
 */
2637 2638
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
2639 2640 2641 2642 2643 2644
	bool ret;

	rcu_read_lock();
	ret = css_next_child(NULL, &memcg->css);
	rcu_read_unlock();
	return ret;
2645 2646
}

2647
/*
2648
 * Reclaims as many pages from the given memcg as possible.
2649 2650 2651 2652 2653 2654 2655
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;

2656 2657
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
2658
	/* try to free all pages in this cgroup */
2659
	while (nr_retries && page_counter_read(&memcg->memory)) {
2660
		int progress;
2661

2662 2663 2664
		if (signal_pending(current))
			return -EINTR;

2665 2666
		progress = try_to_free_mem_cgroup_pages(memcg, 1,
							GFP_KERNEL, true);
2667
		if (!progress) {
2668
			nr_retries--;
2669
			/* maybe some writeback is necessary */
2670
			congestion_wait(BLK_RW_ASYNC, HZ/10);
2671
		}
2672 2673

	}
2674 2675

	return 0;
2676 2677
}

2678 2679 2680
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
					    char *buf, size_t nbytes,
					    loff_t off)
2681
{
2682
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2683

2684 2685
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
2686
	return mem_cgroup_force_empty(memcg) ?: nbytes;
2687 2688
}

2689 2690
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
2691
{
2692
	return mem_cgroup_from_css(css)->use_hierarchy;
2693 2694
}

2695 2696
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
2697 2698
{
	int retval = 0;
2699
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
2700
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2701

2702
	if (memcg->use_hierarchy == val)
2703
		return 0;
2704

2705
	/*
2706
	 * If parent's use_hierarchy is set, we can't make any modifications
2707 2708 2709 2710 2711 2712
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
2713
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2714
				(val == 1 || val == 0)) {
2715
		if (!memcg_has_children(memcg))
2716
			memcg->use_hierarchy = val;
2717 2718 2719 2720
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
2721

2722 2723 2724
	return retval;
}

2725
static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
2726 2727
{
	struct mem_cgroup *iter;
2728
	int i;
2729

2730
	memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
2731

2732 2733
	for_each_mem_cgroup_tree(iter, memcg) {
		for (i = 0; i < MEMCG_NR_STAT; i++)
2734
			stat[i] += memcg_page_state(iter, i);
2735
	}
2736 2737
}

2738
static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
2739 2740
{
	struct mem_cgroup *iter;
2741
	int i;
2742

2743
	memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
2744

2745 2746
	for_each_mem_cgroup_tree(iter, memcg) {
		for (i = 0; i < MEMCG_NR_EVENTS; i++)
2747
			events[i] += memcg_sum_events(iter, i);
2748
	}
2749 2750
}

2751
static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2752
{
2753
	unsigned long val = 0;
2754

2755
	if (mem_cgroup_is_root(memcg)) {
2756 2757 2758
		struct mem_cgroup *iter;

		for_each_mem_cgroup_tree(iter, memcg) {
2759 2760
			val += memcg_page_state(iter, MEMCG_CACHE);
			val += memcg_page_state(iter, MEMCG_RSS);
2761
			if (swap)
2762
				val += memcg_page_state(iter, MEMCG_SWAP);
2763
		}
2764
	} else {
2765
		if (!swap)
2766
			val = page_counter_read(&memcg->memory);
2767
		else
2768
			val = page_counter_read(&memcg->memsw);
2769
	}
2770
	return val;
2771 2772
}

2773 2774 2775 2776 2777 2778 2779
enum {
	RES_USAGE,
	RES_LIMIT,
	RES_MAX_USAGE,
	RES_FAILCNT,
	RES_SOFT_LIMIT,
};
2780

2781
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2782
			       struct cftype *cft)
B
Balbir Singh 已提交
2783
{
2784
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2785
	struct page_counter *counter;
2786

2787
	switch (MEMFILE_TYPE(cft->private)) {
2788
	case _MEM:
2789 2790
		counter = &memcg->memory;
		break;
2791
	case _MEMSWAP:
2792 2793
		counter = &memcg->memsw;
		break;
2794
	case _KMEM:
2795
		counter = &memcg->kmem;
2796
		break;
V
Vladimir Davydov 已提交
2797
	case _TCP:
2798
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
2799
		break;
2800 2801 2802
	default:
		BUG();
	}
2803 2804 2805 2806

	switch (MEMFILE_ATTR(cft->private)) {
	case RES_USAGE:
		if (counter == &memcg->memory)
2807
			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2808
		if (counter == &memcg->memsw)
2809
			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821
		return (u64)page_counter_read(counter) * PAGE_SIZE;
	case RES_LIMIT:
		return (u64)counter->limit * PAGE_SIZE;
	case RES_MAX_USAGE:
		return (u64)counter->watermark * PAGE_SIZE;
	case RES_FAILCNT:
		return counter->failcnt;
	case RES_SOFT_LIMIT:
		return (u64)memcg->soft_limit * PAGE_SIZE;
	default:
		BUG();
	}
B
Balbir Singh 已提交
2822
}
2823

2824
#ifndef CONFIG_SLOB
2825
static int memcg_online_kmem(struct mem_cgroup *memcg)
2826 2827 2828
{
	int memcg_id;

2829 2830 2831
	if (cgroup_memory_nokmem)
		return 0;

2832
	BUG_ON(memcg->kmemcg_id >= 0);
2833
	BUG_ON(memcg->kmem_state);
2834

2835
	memcg_id = memcg_alloc_cache_id();
2836 2837
	if (memcg_id < 0)
		return memcg_id;
2838

2839
	static_branch_inc(&memcg_kmem_enabled_key);
2840
	/*
2841
	 * A memory cgroup is considered kmem-online as soon as it gets
V
Vladimir Davydov 已提交
2842
	 * kmemcg_id. Setting the id after enabling static branching will
2843 2844 2845
	 * guarantee no one starts accounting before all call sites are
	 * patched.
	 */
V
Vladimir Davydov 已提交
2846
	memcg->kmemcg_id = memcg_id;
2847
	memcg->kmem_state = KMEM_ONLINE;
2848
	INIT_LIST_HEAD(&memcg->kmem_caches);
2849 2850

	return 0;
2851 2852
}

2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
	struct cgroup_subsys_state *css;
	struct mem_cgroup *parent, *child;
	int kmemcg_id;

	if (memcg->kmem_state != KMEM_ONLINE)
		return;
	/*
	 * Clear the online state before clearing memcg_caches array
	 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
	 * guarantees that no cache will be created for this cgroup
	 * after we are done (see memcg_create_kmem_cache()).
	 */
	memcg->kmem_state = KMEM_ALLOCATED;

	memcg_deactivate_kmem_caches(memcg);

	kmemcg_id = memcg->kmemcg_id;
	BUG_ON(kmemcg_id < 0);

	parent = parent_mem_cgroup(memcg);
	if (!parent)
		parent = root_mem_cgroup;

	/*
	 * Change kmemcg_id of this cgroup and all its descendants to the
	 * parent's id, and then move all entries from this cgroup's list_lrus
	 * to ones of the parent. After we have finished, all list_lrus
	 * corresponding to this cgroup are guaranteed to remain empty. The
	 * ordering is imposed by list_lru_node->lock taken by
	 * memcg_drain_all_list_lrus().
	 */
2886
	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
2887 2888 2889 2890 2891 2892 2893
	css_for_each_descendant_pre(css, &memcg->css) {
		child = mem_cgroup_from_css(css);
		BUG_ON(child->kmemcg_id != kmemcg_id);
		child->kmemcg_id = parent->kmemcg_id;
		if (!memcg->use_hierarchy)
			break;
	}
2894 2895
	rcu_read_unlock();

2896 2897 2898 2899 2900 2901 2902
	memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);

	memcg_free_cache_id(kmemcg_id);
}

static void memcg_free_kmem(struct mem_cgroup *memcg)
{
2903 2904 2905 2906
	/* css_alloc() failed, offlining didn't happen */
	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
		memcg_offline_kmem(memcg);

2907 2908 2909 2910 2911 2912
	if (memcg->kmem_state == KMEM_ALLOCATED) {
		memcg_destroy_kmem_caches(memcg);
		static_branch_dec(&memcg_kmem_enabled_key);
		WARN_ON(page_counter_read(&memcg->kmem));
	}
}
2913
#else
2914
static int memcg_online_kmem(struct mem_cgroup *memcg)
2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925
{
	return 0;
}
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
}
static void memcg_free_kmem(struct mem_cgroup *memcg)
{
}
#endif /* !CONFIG_SLOB */

2926
static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2927
				   unsigned long limit)
2928
{
2929
	int ret;
2930 2931 2932 2933 2934

	mutex_lock(&memcg_limit_mutex);
	ret = page_counter_limit(&memcg->kmem, limit);
	mutex_unlock(&memcg_limit_mutex);
	return ret;
2935
}
2936

V
Vladimir Davydov 已提交
2937 2938 2939 2940 2941 2942
static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
{
	int ret;

	mutex_lock(&memcg_limit_mutex);

2943
	ret = page_counter_limit(&memcg->tcpmem, limit);
V
Vladimir Davydov 已提交
2944 2945 2946
	if (ret)
		goto out;

2947
	if (!memcg->tcpmem_active) {
V
Vladimir Davydov 已提交
2948 2949 2950
		/*
		 * The active flag needs to be written after the static_key
		 * update. This is what guarantees that the socket activation
2951 2952 2953
		 * function is the last one to run. See mem_cgroup_sk_alloc()
		 * for details, and note that we don't mark any socket as
		 * belonging to this memcg until that flag is up.
V
Vladimir Davydov 已提交
2954 2955 2956 2957 2958 2959
		 *
		 * We need to do this, because static_keys will span multiple
		 * sites, but we can't control their order. If we mark a socket
		 * as accounted, but the accounting functions are not patched in
		 * yet, we'll lose accounting.
		 *
2960
		 * We never race with the readers in mem_cgroup_sk_alloc(),
V
Vladimir Davydov 已提交
2961 2962 2963 2964
		 * because when this value change, the code to process it is not
		 * patched in yet.
		 */
		static_branch_inc(&memcg_sockets_enabled_key);
2965
		memcg->tcpmem_active = true;
V
Vladimir Davydov 已提交
2966 2967 2968 2969 2970 2971
	}
out:
	mutex_unlock(&memcg_limit_mutex);
	return ret;
}

2972 2973 2974 2975
/*
 * The user of this function is...
 * RES_LIMIT.
 */
2976 2977
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
B
Balbir Singh 已提交
2978
{
2979
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2980
	unsigned long nr_pages;
2981 2982
	int ret;

2983
	buf = strstrip(buf);
2984
	ret = page_counter_memparse(buf, "-1", &nr_pages);
2985 2986
	if (ret)
		return ret;
2987

2988
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
2989
	case RES_LIMIT:
2990 2991 2992 2993
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
2994 2995 2996
		switch (MEMFILE_TYPE(of_cft(of)->private)) {
		case _MEM:
			ret = mem_cgroup_resize_limit(memcg, nr_pages);
2997
			break;
2998 2999
		case _MEMSWAP:
			ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3000
			break;
3001 3002 3003
		case _KMEM:
			ret = memcg_update_kmem_limit(memcg, nr_pages);
			break;
V
Vladimir Davydov 已提交
3004 3005 3006
		case _TCP:
			ret = memcg_update_tcp_limit(memcg, nr_pages);
			break;
3007
		}
3008
		break;
3009 3010 3011
	case RES_SOFT_LIMIT:
		memcg->soft_limit = nr_pages;
		ret = 0;
3012 3013
		break;
	}
3014
	return ret ?: nbytes;
B
Balbir Singh 已提交
3015 3016
}

3017 3018
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
				size_t nbytes, loff_t off)
3019
{
3020
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3021
	struct page_counter *counter;
3022

3023 3024 3025 3026 3027 3028 3029 3030 3031 3032
	switch (MEMFILE_TYPE(of_cft(of)->private)) {
	case _MEM:
		counter = &memcg->memory;
		break;
	case _MEMSWAP:
		counter = &memcg->memsw;
		break;
	case _KMEM:
		counter = &memcg->kmem;
		break;
V
Vladimir Davydov 已提交
3033
	case _TCP:
3034
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
3035
		break;
3036 3037 3038
	default:
		BUG();
	}
3039

3040
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3041
	case RES_MAX_USAGE:
3042
		page_counter_reset_watermark(counter);
3043 3044
		break;
	case RES_FAILCNT:
3045
		counter->failcnt = 0;
3046
		break;
3047 3048
	default:
		BUG();
3049
	}
3050

3051
	return nbytes;
3052 3053
}

3054
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3055 3056
					struct cftype *cft)
{
3057
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3058 3059
}

3060
#ifdef CONFIG_MMU
3061
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3062 3063
					struct cftype *cft, u64 val)
{
3064
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3065

3066
	if (val & ~MOVE_MASK)
3067
		return -EINVAL;
3068

3069
	/*
3070 3071 3072 3073
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
3074
	 */
3075
	memcg->move_charge_at_immigrate = val;
3076 3077
	return 0;
}
3078
#else
3079
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3080 3081 3082 3083 3084
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3085

3086
#ifdef CONFIG_NUMA
3087
static int memcg_numa_stat_show(struct seq_file *m, void *v)
3088
{
3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
3101
	int nid;
3102
	unsigned long nr;
3103
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3104

3105 3106 3107 3108 3109 3110 3111 3112 3113
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
		seq_printf(m, "%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
							  stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3114 3115
	}

3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		struct mem_cgroup *iter;

		nr = 0;
		for_each_mem_cgroup_tree(iter, memcg)
			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = 0;
			for_each_mem_cgroup_tree(iter, memcg)
				nr += mem_cgroup_node_nr_lru_pages(
					iter, nid, stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3131 3132 3133 3134 3135 3136
	}

	return 0;
}
#endif /* CONFIG_NUMA */

3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151
/* Universal VM events cgroup1 shows, original sort order */
unsigned int memcg1_events[] = {
	PGPGIN,
	PGPGOUT,
	PGFAULT,
	PGMAJFAULT,
};

static const char *const memcg1_event_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

3152
static int memcg_stat_show(struct seq_file *m, void *v)
3153
{
3154
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3155
	unsigned long memory, memsw;
3156 3157
	struct mem_cgroup *mi;
	unsigned int i;
3158

3159
	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3160 3161
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);

3162 3163
	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3164
			continue;
3165
		seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
3166
			   memcg_page_state(memcg, memcg1_stats[i]) *
3167
			   PAGE_SIZE);
3168
	}
L
Lee Schermerhorn 已提交
3169

3170 3171
	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
		seq_printf(m, "%s %lu\n", memcg1_event_names[i],
3172
			   memcg_sum_events(memcg, memcg1_events[i]));
3173 3174 3175 3176 3177

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
3178
	/* Hierarchical information */
3179 3180 3181 3182
	memory = memsw = PAGE_COUNTER_MAX;
	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
		memory = min(memory, mi->memory.limit);
		memsw = min(memsw, mi->memsw.limit);
3183
	}
3184 3185
	seq_printf(m, "hierarchical_memory_limit %llu\n",
		   (u64)memory * PAGE_SIZE);
3186
	if (do_memsw_account())
3187 3188
		seq_printf(m, "hierarchical_memsw_limit %llu\n",
			   (u64)memsw * PAGE_SIZE);
K
KOSAKI Motohiro 已提交
3189

3190
	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3191
		unsigned long long val = 0;
3192

3193
		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3194
			continue;
3195
		for_each_mem_cgroup_tree(mi, memcg)
3196
			val += memcg_page_state(mi, memcg1_stats[i]) *
3197 3198
			PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i], val);
3199 3200
	}

3201
	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) {
3202 3203 3204
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
3205
			val += memcg_sum_events(mi, memcg1_events[i]);
3206
		seq_printf(m, "total_%s %llu\n", memcg1_event_names[i], val);
3207 3208 3209 3210 3211 3212 3213 3214
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3215
	}
K
KAMEZAWA Hiroyuki 已提交
3216

K
KOSAKI Motohiro 已提交
3217 3218
#ifdef CONFIG_DEBUG_VM
	{
3219 3220
		pg_data_t *pgdat;
		struct mem_cgroup_per_node *mz;
3221
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
3222 3223 3224
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

3225 3226 3227
		for_each_online_pgdat(pgdat) {
			mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
			rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
3228

3229 3230 3231 3232 3233
			recent_rotated[0] += rstat->recent_rotated[0];
			recent_rotated[1] += rstat->recent_rotated[1];
			recent_scanned[0] += rstat->recent_scanned[0];
			recent_scanned[1] += rstat->recent_scanned[1];
		}
3234 3235 3236 3237
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
3238 3239 3240
	}
#endif

3241 3242 3243
	return 0;
}

3244 3245
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
3246
{
3247
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3248

3249
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
3250 3251
}

3252 3253
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
3254
{
3255
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3256

3257
	if (val > 100)
K
KOSAKI Motohiro 已提交
3258 3259
		return -EINVAL;

3260
	if (css->parent)
3261 3262 3263
		memcg->swappiness = val;
	else
		vm_swappiness = val;
3264

K
KOSAKI Motohiro 已提交
3265 3266 3267
	return 0;
}

3268 3269 3270
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
3271
	unsigned long usage;
3272 3273 3274 3275
	int i;

	rcu_read_lock();
	if (!swap)
3276
		t = rcu_dereference(memcg->thresholds.primary);
3277
	else
3278
		t = rcu_dereference(memcg->memsw_thresholds.primary);
3279 3280 3281 3282

	if (!t)
		goto unlock;

3283
	usage = mem_cgroup_usage(memcg, swap);
3284 3285

	/*
3286
	 * current_threshold points to threshold just below or equal to usage.
3287 3288 3289
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
3290
	i = t->current_threshold;
3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
3314
	t->current_threshold = i - 1;
3315 3316 3317 3318 3319 3320
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
3321 3322
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
3323
		if (do_memsw_account())
3324 3325 3326 3327
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
3328 3329 3330 3331 3332 3333 3334
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

3335 3336 3337 3338 3339 3340 3341
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
3342 3343
}

3344
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3345 3346 3347
{
	struct mem_cgroup_eventfd_list *ev;

3348 3349
	spin_lock(&memcg_oom_lock);

3350
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
3351
		eventfd_signal(ev->eventfd, 1);
3352 3353

	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3354 3355 3356
	return 0;
}

3357
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3358
{
K
KAMEZAWA Hiroyuki 已提交
3359 3360
	struct mem_cgroup *iter;

3361
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3362
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
3363 3364
}

3365
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3366
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3367
{
3368 3369
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3370 3371
	unsigned long threshold;
	unsigned long usage;
3372
	int i, size, ret;
3373

3374
	ret = page_counter_memparse(args, "-1", &threshold);
3375 3376 3377 3378
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
3379

3380
	if (type == _MEM) {
3381
		thresholds = &memcg->thresholds;
3382
		usage = mem_cgroup_usage(memcg, false);
3383
	} else if (type == _MEMSWAP) {
3384
		thresholds = &memcg->memsw_thresholds;
3385
		usage = mem_cgroup_usage(memcg, true);
3386
	} else
3387 3388 3389
		BUG();

	/* Check if a threshold crossed before adding a new one */
3390
	if (thresholds->primary)
3391 3392
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

3393
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3394 3395

	/* Allocate memory for new array of thresholds */
3396
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3397
			GFP_KERNEL);
3398
	if (!new) {
3399 3400 3401
		ret = -ENOMEM;
		goto unlock;
	}
3402
	new->size = size;
3403 3404

	/* Copy thresholds (if any) to new array */
3405 3406
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3407
				sizeof(struct mem_cgroup_threshold));
3408 3409
	}

3410
	/* Add new threshold */
3411 3412
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
3413 3414

	/* Sort thresholds. Registering of new threshold isn't time-critical */
3415
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3416 3417 3418
			compare_thresholds, NULL);

	/* Find current threshold */
3419
	new->current_threshold = -1;
3420
	for (i = 0; i < size; i++) {
3421
		if (new->entries[i].threshold <= usage) {
3422
			/*
3423 3424
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
3425 3426
			 * it here.
			 */
3427
			++new->current_threshold;
3428 3429
		} else
			break;
3430 3431
	}

3432 3433 3434 3435 3436
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
3437

3438
	/* To be sure that nobody uses thresholds */
3439 3440 3441 3442 3443 3444 3445 3446
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

3447
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3448 3449
	struct eventfd_ctx *eventfd, const char *args)
{
3450
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
3451 3452
}

3453
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3454 3455
	struct eventfd_ctx *eventfd, const char *args)
{
3456
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
3457 3458
}

3459
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3460
	struct eventfd_ctx *eventfd, enum res_type type)
3461
{
3462 3463
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3464
	unsigned long usage;
3465
	int i, j, size;
3466 3467

	mutex_lock(&memcg->thresholds_lock);
3468 3469

	if (type == _MEM) {
3470
		thresholds = &memcg->thresholds;
3471
		usage = mem_cgroup_usage(memcg, false);
3472
	} else if (type == _MEMSWAP) {
3473
		thresholds = &memcg->memsw_thresholds;
3474
		usage = mem_cgroup_usage(memcg, true);
3475
	} else
3476 3477
		BUG();

3478 3479 3480
	if (!thresholds->primary)
		goto unlock;

3481 3482 3483 3484
	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
3485 3486 3487
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
3488 3489 3490
			size++;
	}

3491
	new = thresholds->spare;
3492

3493 3494
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
3495 3496
		kfree(new);
		new = NULL;
3497
		goto swap_buffers;
3498 3499
	}

3500
	new->size = size;
3501 3502

	/* Copy thresholds and find current threshold */
3503 3504 3505
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
3506 3507
			continue;

3508
		new->entries[j] = thresholds->primary->entries[i];
3509
		if (new->entries[j].threshold <= usage) {
3510
			/*
3511
			 * new->current_threshold will not be used
3512 3513 3514
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
3515
			++new->current_threshold;
3516 3517 3518 3519
		}
		j++;
	}

3520
swap_buffers:
3521 3522
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
3523

3524
	rcu_assign_pointer(thresholds->primary, new);
3525

3526
	/* To be sure that nobody uses thresholds */
3527
	synchronize_rcu();
3528 3529 3530 3531 3532 3533

	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}
3534
unlock:
3535 3536
	mutex_unlock(&memcg->thresholds_lock);
}
3537

3538
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3539 3540
	struct eventfd_ctx *eventfd)
{
3541
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
3542 3543
}

3544
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3545 3546
	struct eventfd_ctx *eventfd)
{
3547
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
3548 3549
}

3550
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3551
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
3552 3553 3554 3555 3556 3557 3558
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

3559
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3560 3561 3562 3563 3564

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
3565
	if (memcg->under_oom)
K
KAMEZAWA Hiroyuki 已提交
3566
		eventfd_signal(eventfd, 1);
3567
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3568 3569 3570 3571

	return 0;
}

3572
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3573
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
3574 3575 3576
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

3577
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3578

3579
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
3580 3581 3582 3583 3584 3585
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

3586
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3587 3588
}

3589
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3590
{
3591
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3592

3593
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3594
	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3595
	seq_printf(sf, "oom_kill %lu\n", memcg_sum_events(memcg, OOM_KILL));
3596 3597 3598
	return 0;
}

3599
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3600 3601
	struct cftype *cft, u64 val)
{
3602
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3603 3604

	/* cannot set to root cgroup and only 0 and 1 are allowed */
3605
	if (!css->parent || !((val == 0) || (val == 1)))
3606 3607
		return -EINVAL;

3608
	memcg->oom_kill_disable = val;
3609
	if (!val)
3610
		memcg_oom_recover(memcg);
3611

3612 3613 3614
	return 0;
}

3615 3616 3617 3618 3619 3620 3621
#ifdef CONFIG_CGROUP_WRITEBACK

struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
{
	return &memcg->cgwb_list;
}

T
Tejun Heo 已提交
3622 3623 3624 3625 3626 3627 3628 3629 3630 3631
static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return wb_domain_init(&memcg->cgwb_domain, gfp);
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
	wb_domain_exit(&memcg->cgwb_domain);
}

3632 3633 3634 3635 3636
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
	wb_domain_size_changed(&memcg->cgwb_domain);
}

T
Tejun Heo 已提交
3637 3638 3639 3640 3641 3642 3643 3644 3645 3646
struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);

	if (!memcg->css.parent)
		return NULL;

	return &memcg->cgwb_domain;
}

3647 3648 3649
/**
 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
 * @wb: bdi_writeback in question
3650 3651
 * @pfilepages: out parameter for number of file pages
 * @pheadroom: out parameter for number of allocatable pages according to memcg
3652 3653 3654
 * @pdirty: out parameter for number of dirty pages
 * @pwriteback: out parameter for number of pages under writeback
 *
3655 3656 3657
 * Determine the numbers of file, headroom, dirty, and writeback pages in
 * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
 * is a bit more involved.
3658
 *
3659 3660 3661 3662 3663
 * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
 * headroom is calculated as the lowest headroom of itself and the
 * ancestors.  Note that this doesn't consider the actual amount of
 * available memory in the system.  The caller should further cap
 * *@pheadroom accordingly.
3664
 */
3665 3666 3667
void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
			 unsigned long *pheadroom, unsigned long *pdirty,
			 unsigned long *pwriteback)
3668 3669 3670 3671
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
	struct mem_cgroup *parent;

3672
	*pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
3673 3674

	/* this should eventually include NR_UNSTABLE_NFS */
3675
	*pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
3676 3677 3678
	*pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
						     (1 << LRU_ACTIVE_FILE));
	*pheadroom = PAGE_COUNTER_MAX;
3679 3680 3681 3682 3683

	while ((parent = parent_mem_cgroup(memcg))) {
		unsigned long ceiling = min(memcg->memory.limit, memcg->high);
		unsigned long used = page_counter_read(&memcg->memory);

3684
		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3685 3686 3687 3688
		memcg = parent;
	}
}

T
Tejun Heo 已提交
3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699
#else	/* CONFIG_CGROUP_WRITEBACK */

static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return 0;
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
}

3700 3701 3702 3703
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
}

3704 3705
#endif	/* CONFIG_CGROUP_WRITEBACK */

3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

3719 3720 3721 3722 3723
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
3724
static void memcg_event_remove(struct work_struct *work)
3725
{
3726 3727
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
3728
	struct mem_cgroup *memcg = event->memcg;
3729 3730 3731

	remove_wait_queue(event->wqh, &event->wait);

3732
	event->unregister_event(memcg, event->eventfd);
3733 3734 3735 3736 3737 3738

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
3739
	css_put(&memcg->css);
3740 3741 3742 3743 3744 3745 3746
}

/*
 * Gets called on POLLHUP on eventfd when user closes it.
 *
 * Called with wqh->lock held and interrupts disabled.
 */
3747
static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
3748
			    int sync, void *key)
3749
{
3750 3751
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
3752
	struct mem_cgroup *memcg = event->memcg;
3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764
	unsigned long flags = (unsigned long)key;

	if (flags & POLLHUP) {
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
3765
		spin_lock(&memcg->event_list_lock);
3766 3767 3768 3769 3770 3771 3772 3773
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
3774
		spin_unlock(&memcg->event_list_lock);
3775 3776 3777 3778 3779
	}

	return 0;
}

3780
static void memcg_event_ptable_queue_proc(struct file *file,
3781 3782
		wait_queue_head_t *wqh, poll_table *pt)
{
3783 3784
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
3785 3786 3787 3788 3789 3790

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
3791 3792
 * DO NOT USE IN NEW FILES.
 *
3793 3794 3795 3796 3797
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
3798 3799
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
					 char *buf, size_t nbytes, loff_t off)
3800
{
3801
	struct cgroup_subsys_state *css = of_css(of);
3802
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3803
	struct mem_cgroup_event *event;
3804 3805 3806 3807
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
3808
	const char *name;
3809 3810 3811
	char *endp;
	int ret;

3812 3813 3814
	buf = strstrip(buf);

	efd = simple_strtoul(buf, &endp, 10);
3815 3816
	if (*endp != ' ')
		return -EINVAL;
3817
	buf = endp + 1;
3818

3819
	cfd = simple_strtoul(buf, &endp, 10);
3820 3821
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
3822
	buf = endp + 1;
3823 3824 3825 3826 3827

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

3828
	event->memcg = memcg;
3829
	INIT_LIST_HEAD(&event->list);
3830 3831 3832
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
	if (ret < 0)
		goto out_put_cfile;

3858 3859 3860 3861 3862
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
3863 3864
	 *
	 * DO NOT ADD NEW FILES.
3865
	 */
A
Al Viro 已提交
3866
	name = cfile.file->f_path.dentry->d_name.name;
3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
3878 3879
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
3880 3881 3882 3883 3884
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

3885
	/*
3886 3887 3888
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
3889
	 */
A
Al Viro 已提交
3890
	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3891
					       &memory_cgrp_subsys);
3892
	ret = -EINVAL;
3893
	if (IS_ERR(cfile_css))
3894
		goto out_put_cfile;
3895 3896
	if (cfile_css != css) {
		css_put(cfile_css);
3897
		goto out_put_cfile;
3898
	}
3899

3900
	ret = event->register_event(memcg, event->eventfd, buf);
3901 3902 3903 3904 3905
	if (ret)
		goto out_put_css;

	efile.file->f_op->poll(efile.file, &event->pt);

3906 3907 3908
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
3909 3910 3911 3912

	fdput(cfile);
	fdput(efile);

3913
	return nbytes;
3914 3915

out_put_css:
3916
	css_put(css);
3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

3929
static struct cftype mem_cgroup_legacy_files[] = {
B
Balbir Singh 已提交
3930
	{
3931
		.name = "usage_in_bytes",
3932
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3933
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
3934
	},
3935 3936
	{
		.name = "max_usage_in_bytes",
3937
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3938
		.write = mem_cgroup_reset,
3939
		.read_u64 = mem_cgroup_read_u64,
3940
	},
B
Balbir Singh 已提交
3941
	{
3942
		.name = "limit_in_bytes",
3943
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3944
		.write = mem_cgroup_write,
3945
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
3946
	},
3947 3948 3949
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3950
		.write = mem_cgroup_write,
3951
		.read_u64 = mem_cgroup_read_u64,
3952
	},
B
Balbir Singh 已提交
3953 3954
	{
		.name = "failcnt",
3955
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3956
		.write = mem_cgroup_reset,
3957
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
3958
	},
3959 3960
	{
		.name = "stat",
3961
		.seq_show = memcg_stat_show,
3962
	},
3963 3964
	{
		.name = "force_empty",
3965
		.write = mem_cgroup_force_empty_write,
3966
	},
3967 3968 3969 3970 3971
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
3972
	{
3973
		.name = "cgroup.event_control",		/* XXX: for compat */
3974
		.write = memcg_write_event_control,
3975
		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
3976
	},
K
KOSAKI Motohiro 已提交
3977 3978 3979 3980 3981
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
3982 3983 3984 3985 3986
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
3987 3988
	{
		.name = "oom_control",
3989
		.seq_show = mem_cgroup_oom_control_read,
3990
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
3991 3992
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
3993 3994 3995
	{
		.name = "pressure_level",
	},
3996 3997 3998
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
3999
		.seq_show = memcg_numa_stat_show,
4000 4001
	},
#endif
4002 4003 4004
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4005
		.write = mem_cgroup_write,
4006
		.read_u64 = mem_cgroup_read_u64,
4007 4008 4009 4010
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4011
		.read_u64 = mem_cgroup_read_u64,
4012 4013 4014 4015
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4016
		.write = mem_cgroup_reset,
4017
		.read_u64 = mem_cgroup_read_u64,
4018 4019 4020 4021
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4022
		.write = mem_cgroup_reset,
4023
		.read_u64 = mem_cgroup_read_u64,
4024
	},
4025 4026 4027
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
4028 4029 4030
		.seq_start = memcg_slab_start,
		.seq_next = memcg_slab_next,
		.seq_stop = memcg_slab_stop,
4031
		.seq_show = memcg_slab_show,
4032 4033
	},
#endif
V
Vladimir Davydov 已提交
4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056
	{
		.name = "kmem.tcp.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.failcnt",
		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
4057
	{ },	/* terminate */
4058
};
4059

4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085
/*
 * Private memory cgroup IDR
 *
 * Swap-out records and page cache shadow entries need to store memcg
 * references in constrained space, so we maintain an ID space that is
 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
 * memory-controlled cgroups to 64k.
 *
 * However, there usually are many references to the oflline CSS after
 * the cgroup has been destroyed, such as page cache or reclaimable
 * slab objects, that don't need to hang on to the ID. We want to keep
 * those dead CSS from occupying IDs, or we might quickly exhaust the
 * relatively small ID space and prevent the creation of new cgroups
 * even when there are much fewer than 64k cgroups - possibly none.
 *
 * Maintain a private 16-bit ID space for memcg, and allow the ID to
 * be freed and recycled when it's no longer needed, which is usually
 * when the CSS is offlined.
 *
 * The only exception to that are records of swapped out tmpfs/shmem
 * pages that need to be attributed to live ancestors on swapin. But
 * those references are manageable from userspace.
 */

static DEFINE_IDR(mem_cgroup_idr);

4086
static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4087
{
4088
	VM_BUG_ON(atomic_read(&memcg->id.ref) <= 0);
4089
	atomic_add(n, &memcg->id.ref);
4090 4091
}

4092
static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4093
{
4094
	VM_BUG_ON(atomic_read(&memcg->id.ref) < n);
4095
	if (atomic_sub_and_test(n, &memcg->id.ref)) {
4096 4097 4098 4099 4100 4101 4102 4103
		idr_remove(&mem_cgroup_idr, memcg->id.id);
		memcg->id.id = 0;

		/* Memcg ID pins CSS */
		css_put(&memcg->css);
	}
}

4104 4105 4106 4107 4108 4109 4110 4111 4112 4113
static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
{
	mem_cgroup_id_get_many(memcg, 1);
}

static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
{
	mem_cgroup_id_put_many(memcg, 1);
}

4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125
/**
 * mem_cgroup_from_id - look up a memcg from a memcg id
 * @id: the memcg id to look up
 *
 * Caller must hold rcu_read_lock().
 */
struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	WARN_ON_ONCE(!rcu_read_lock_held());
	return idr_find(&mem_cgroup_idr, id);
}

4126
static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4127 4128
{
	struct mem_cgroup_per_node *pn;
4129
	int tmp = node;
4130 4131 4132 4133 4134 4135 4136 4137
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4138 4139
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4140
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4141 4142
	if (!pn)
		return 1;
4143

4144 4145 4146 4147 4148 4149
	pn->lruvec_stat = alloc_percpu(struct lruvec_stat);
	if (!pn->lruvec_stat) {
		kfree(pn);
		return 1;
	}

4150 4151 4152 4153 4154
	lruvec_init(&pn->lruvec);
	pn->usage_in_excess = 0;
	pn->on_tree = false;
	pn->memcg = memcg;

4155
	memcg->nodeinfo[node] = pn;
4156 4157 4158
	return 0;
}

4159
static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4160
{
4161 4162 4163 4164
	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];

	free_percpu(pn->lruvec_stat);
	kfree(pn);
4165 4166
}

4167
static void __mem_cgroup_free(struct mem_cgroup *memcg)
4168
{
4169
	int node;
4170

4171
	for_each_node(node)
4172
		free_mem_cgroup_per_node_info(memcg, node);
4173
	free_percpu(memcg->stat);
4174
	kfree(memcg);
4175
}
4176

4177 4178 4179 4180 4181 4182
static void mem_cgroup_free(struct mem_cgroup *memcg)
{
	memcg_wb_domain_exit(memcg);
	__mem_cgroup_free(memcg);
}

4183
static struct mem_cgroup *mem_cgroup_alloc(void)
B
Balbir Singh 已提交
4184
{
4185
	struct mem_cgroup *memcg;
4186
	size_t size;
4187
	int node;
B
Balbir Singh 已提交
4188

4189 4190 4191 4192
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);

	memcg = kzalloc(size, GFP_KERNEL);
4193
	if (!memcg)
4194 4195
		return NULL;

4196 4197 4198 4199 4200 4201
	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
				 1, MEM_CGROUP_ID_MAX,
				 GFP_KERNEL);
	if (memcg->id.id < 0)
		goto fail;

4202 4203 4204
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
		goto fail;
4205

B
Bob Liu 已提交
4206
	for_each_node(node)
4207
		if (alloc_mem_cgroup_per_node_info(memcg, node))
4208
			goto fail;
4209

4210 4211
	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
		goto fail;
4212

4213
	INIT_WORK(&memcg->high_work, high_work_func);
4214 4215 4216 4217
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
4218
	vmpressure_init(&memcg->vmpressure);
4219 4220
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
4221
	memcg->socket_pressure = jiffies;
4222
#ifndef CONFIG_SLOB
V
Vladimir Davydov 已提交
4223 4224
	memcg->kmemcg_id = -1;
#endif
4225 4226 4227
#ifdef CONFIG_CGROUP_WRITEBACK
	INIT_LIST_HEAD(&memcg->cgwb_list);
#endif
4228
	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4229 4230
	return memcg;
fail:
4231 4232
	if (memcg->id.id > 0)
		idr_remove(&mem_cgroup_idr, memcg->id.id);
4233
	__mem_cgroup_free(memcg);
4234
	return NULL;
4235 4236
}

4237 4238
static struct cgroup_subsys_state * __ref
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4239
{
4240 4241 4242
	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
	struct mem_cgroup *memcg;
	long error = -ENOMEM;
4243

4244 4245 4246
	memcg = mem_cgroup_alloc();
	if (!memcg)
		return ERR_PTR(error);
4247

4248 4249 4250 4251 4252 4253 4254 4255
	memcg->high = PAGE_COUNTER_MAX;
	memcg->soft_limit = PAGE_COUNTER_MAX;
	if (parent) {
		memcg->swappiness = mem_cgroup_swappiness(parent);
		memcg->oom_kill_disable = parent->oom_kill_disable;
	}
	if (parent && parent->use_hierarchy) {
		memcg->use_hierarchy = true;
4256
		page_counter_init(&memcg->memory, &parent->memory);
4257
		page_counter_init(&memcg->swap, &parent->swap);
4258 4259
		page_counter_init(&memcg->memsw, &parent->memsw);
		page_counter_init(&memcg->kmem, &parent->kmem);
4260
		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4261
	} else {
4262
		page_counter_init(&memcg->memory, NULL);
4263
		page_counter_init(&memcg->swap, NULL);
4264 4265
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
4266
		page_counter_init(&memcg->tcpmem, NULL);
4267 4268 4269 4270 4271
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
4272
		if (parent != root_mem_cgroup)
4273
			memory_cgrp_subsys.broken_hierarchy = true;
4274
	}
4275

4276 4277 4278 4279 4280 4281
	/* The following stuff does not apply to the root */
	if (!parent) {
		root_mem_cgroup = memcg;
		return &memcg->css;
	}

4282
	error = memcg_online_kmem(memcg);
4283 4284
	if (error)
		goto fail;
4285

4286
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4287
		static_branch_inc(&memcg_sockets_enabled_key);
4288

4289 4290 4291
	return &memcg->css;
fail:
	mem_cgroup_free(memcg);
4292
	return ERR_PTR(-ENOMEM);
4293 4294
}

4295
static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
4296
{
4297 4298
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

4299
	/* Online state pins memcg ID, memcg ID pins CSS */
4300
	atomic_set(&memcg->id.ref, 1);
4301
	css_get(css);
4302
	return 0;
B
Balbir Singh 已提交
4303 4304
}

4305
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4306
{
4307
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4308
	struct mem_cgroup_event *event, *tmp;
4309 4310 4311 4312 4313 4314

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
4315 4316
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4317 4318 4319
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
4320
	spin_unlock(&memcg->event_list_lock);
4321

4322 4323
	memcg->low = 0;

4324
	memcg_offline_kmem(memcg);
4325
	wb_memcg_offline(memcg);
4326 4327

	mem_cgroup_id_put(memcg);
4328 4329
}

4330 4331 4332 4333 4334 4335 4336
static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	invalidate_reclaim_iterators(memcg);
}

4337
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
4338
{
4339
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4340

4341
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4342
		static_branch_dec(&memcg_sockets_enabled_key);
4343

4344
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
V
Vladimir Davydov 已提交
4345
		static_branch_dec(&memcg_sockets_enabled_key);
4346

4347 4348 4349
	vmpressure_cleanup(&memcg->vmpressure);
	cancel_work_sync(&memcg->high_work);
	mem_cgroup_remove_from_trees(memcg);
4350
	memcg_free_kmem(memcg);
4351
	mem_cgroup_free(memcg);
B
Balbir Singh 已提交
4352 4353
}

4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370
/**
 * mem_cgroup_css_reset - reset the states of a mem_cgroup
 * @css: the target css
 *
 * Reset the states of the mem_cgroup associated with @css.  This is
 * invoked when the userland requests disabling on the default hierarchy
 * but the memcg is pinned through dependency.  The memcg should stop
 * applying policies and should revert to the vanilla state as it may be
 * made visible again.
 *
 * The current implementation only resets the essential configurations.
 * This needs to be expanded to cover all the visible parts.
 */
static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

4371 4372 4373 4374 4375
	page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
	page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
	page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
	page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
	page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
4376 4377
	memcg->low = 0;
	memcg->high = PAGE_COUNTER_MAX;
4378
	memcg->soft_limit = PAGE_COUNTER_MAX;
4379
	memcg_wb_domain_size_changed(memcg);
4380 4381
}

4382
#ifdef CONFIG_MMU
4383
/* Handlers for move charge at task migration. */
4384
static int mem_cgroup_do_precharge(unsigned long count)
4385
{
4386
	int ret;
4387

4388 4389
	/* Try a single bulk charge without reclaim first, kswapd may wake */
	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4390
	if (!ret) {
4391 4392 4393
		mc.precharge += count;
		return ret;
	}
4394

4395
	/* Try charges one by one with reclaim, but do not retry */
4396
	while (count--) {
4397
		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
4398 4399
		if (ret)
			return ret;
4400
		mc.precharge++;
4401
		cond_resched();
4402
	}
4403
	return 0;
4404 4405 4406 4407
}

union mc_target {
	struct page	*page;
4408
	swp_entry_t	ent;
4409 4410 4411
};

enum mc_target_type {
4412
	MC_TARGET_NONE = 0,
4413
	MC_TARGET_PAGE,
4414
	MC_TARGET_SWAP,
4415 4416
};

D
Daisuke Nishimura 已提交
4417 4418
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
4419
{
D
Daisuke Nishimura 已提交
4420
	struct page *page = vm_normal_page(vma, addr, ptent);
4421

D
Daisuke Nishimura 已提交
4422 4423 4424
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
4425
		if (!(mc.flags & MOVE_ANON))
D
Daisuke Nishimura 已提交
4426
			return NULL;
4427 4428 4429 4430
	} else {
		if (!(mc.flags & MOVE_FILE))
			return NULL;
	}
D
Daisuke Nishimura 已提交
4431 4432 4433 4434 4435 4436
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

4437
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
4438
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4439
			pte_t ptent, swp_entry_t *entry)
D
Daisuke Nishimura 已提交
4440 4441 4442 4443
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

4444
	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
D
Daisuke Nishimura 已提交
4445
		return NULL;
4446 4447 4448 4449
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
4450
	page = find_get_page(swap_address_space(ent), swp_offset(ent));
4451
	if (do_memsw_account())
D
Daisuke Nishimura 已提交
4452 4453 4454 4455
		entry->val = ent.val;

	return page;
}
4456 4457
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4458
			pte_t ptent, swp_entry_t *entry)
4459 4460 4461 4462
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
4463

4464 4465 4466 4467 4468 4469 4470 4471 4472
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
4473
	if (!(mc.flags & MOVE_FILE))
4474 4475 4476
		return NULL;

	mapping = vma->vm_file->f_mapping;
4477
	pgoff = linear_page_index(vma, addr);
4478 4479

	/* page is moved even if it's not RSS of this task(page-faulted). */
4480 4481
#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
4482 4483 4484 4485
	if (shmem_mapping(mapping)) {
		page = find_get_entry(mapping, pgoff);
		if (radix_tree_exceptional_entry(page)) {
			swp_entry_t swp = radix_to_swp_entry(page);
4486
			if (do_memsw_account())
4487
				*entry = swp;
4488 4489
			page = find_get_page(swap_address_space(swp),
					     swp_offset(swp));
4490 4491 4492 4493 4494
		}
	} else
		page = find_get_page(mapping, pgoff);
#else
	page = find_get_page(mapping, pgoff);
4495
#endif
4496 4497 4498
	return page;
}

4499 4500 4501
/**
 * mem_cgroup_move_account - move account of the page
 * @page: the page
4502
 * @compound: charge the page as compound or small page
4503 4504 4505
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
4506
 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4507 4508 4509 4510 4511
 *
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
 */
static int mem_cgroup_move_account(struct page *page,
4512
				   bool compound,
4513 4514 4515 4516
				   struct mem_cgroup *from,
				   struct mem_cgroup *to)
{
	unsigned long flags;
4517
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4518
	int ret;
4519
	bool anon;
4520 4521 4522

	VM_BUG_ON(from == to);
	VM_BUG_ON_PAGE(PageLRU(page), page);
4523
	VM_BUG_ON(compound && !PageTransHuge(page));
4524 4525

	/*
4526
	 * Prevent mem_cgroup_migrate() from looking at
4527
	 * page->mem_cgroup of its source page while we change it.
4528
	 */
4529
	ret = -EBUSY;
4530 4531 4532 4533 4534 4535 4536
	if (!trylock_page(page))
		goto out;

	ret = -EINVAL;
	if (page->mem_cgroup != from)
		goto out_unlock;

4537 4538
	anon = PageAnon(page);

4539 4540
	spin_lock_irqsave(&from->move_lock, flags);

4541
	if (!anon && page_mapped(page)) {
4542 4543
		__this_cpu_sub(from->stat->count[NR_FILE_MAPPED], nr_pages);
		__this_cpu_add(to->stat->count[NR_FILE_MAPPED], nr_pages);
4544 4545
	}

4546 4547
	/*
	 * move_lock grabbed above and caller set from->moving_account, so
4548
	 * mod_memcg_page_state will serialize updates to PageDirty.
4549 4550 4551 4552 4553 4554
	 * So mapping should be stable for dirty pages.
	 */
	if (!anon && PageDirty(page)) {
		struct address_space *mapping = page_mapping(page);

		if (mapping_cap_account_dirty(mapping)) {
4555
			__this_cpu_sub(from->stat->count[NR_FILE_DIRTY],
4556
				       nr_pages);
4557
			__this_cpu_add(to->stat->count[NR_FILE_DIRTY],
4558 4559 4560 4561
				       nr_pages);
		}
	}

4562
	if (PageWriteback(page)) {
4563 4564
		__this_cpu_sub(from->stat->count[NR_WRITEBACK], nr_pages);
		__this_cpu_add(to->stat->count[NR_WRITEBACK], nr_pages);
4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579
	}

	/*
	 * It is safe to change page->mem_cgroup here because the page
	 * is referenced, charged, and isolated - we can't race with
	 * uncharging, charging, migration, or LRU putback.
	 */

	/* caller should have done css_get */
	page->mem_cgroup = to;
	spin_unlock_irqrestore(&from->move_lock, flags);

	ret = 0;

	local_irq_disable();
4580
	mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4581
	memcg_check_events(to, page);
4582
	mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4583 4584 4585 4586 4587 4588 4589 4590
	memcg_check_events(from, page);
	local_irq_enable();
out_unlock:
	unlock_page(page);
out:
	return ret;
}

4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609
/**
 * get_mctgt_type - get target type of moving charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
 *
 * Called with pte lock held.
 */

4610
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
4611 4612 4613
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
4614
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
4615 4616 4617 4618 4619
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
4620
		page = mc_handle_swap_pte(vma, ptent, &ent);
4621
	else if (pte_none(ptent))
4622
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
4623 4624

	if (!page && !ent.val)
4625
		return ret;
4626 4627
	if (page) {
		/*
4628
		 * Do only loose check w/o serialization.
4629
		 * mem_cgroup_move_account() checks the page is valid or
4630
		 * not under LRU exclusion.
4631
		 */
4632
		if (page->mem_cgroup == mc.from) {
4633 4634 4635 4636 4637 4638 4639
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
4640 4641
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
L
Li Zefan 已提交
4642
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4643 4644 4645
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
4646 4647 4648 4649
	}
	return ret;
}

4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
4663
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4664
	if (!(mc.flags & MOVE_ANON))
4665
		return ret;
4666
	if (page->mem_cgroup == mc.from) {
4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

4683 4684 4685 4686
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
4687
	struct vm_area_struct *vma = walk->vma;
4688 4689 4690
	pte_t *pte;
	spinlock_t *ptl;

4691 4692
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
4693 4694
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
4695
		spin_unlock(ptl);
4696
		return 0;
4697
	}
4698

4699 4700
	if (pmd_trans_unstable(pmd))
		return 0;
4701 4702
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
4703
		if (get_mctgt_type(vma, addr, *pte, NULL))
4704 4705 4706 4707
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

4708 4709 4710
	return 0;
}

4711 4712 4713 4714
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;

4715 4716 4717 4718
	struct mm_walk mem_cgroup_count_precharge_walk = {
		.pmd_entry = mem_cgroup_count_precharge_pte_range,
		.mm = mm,
	};
4719
	down_read(&mm->mmap_sem);
4720 4721
	walk_page_range(0, mm->highest_vm_end,
			&mem_cgroup_count_precharge_walk);
4722
	up_read(&mm->mmap_sem);
4723 4724 4725 4726 4727 4728 4729 4730 4731

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
4732 4733 4734 4735 4736
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
4737 4738
}

4739 4740
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
4741
{
4742 4743 4744
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

4745
	/* we must uncharge all the leftover precharges from mc.to */
4746
	if (mc.precharge) {
4747
		cancel_charge(mc.to, mc.precharge);
4748 4749 4750 4751 4752 4753 4754
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
4755
		cancel_charge(mc.from, mc.moved_charge);
4756
		mc.moved_charge = 0;
4757
	}
4758 4759 4760
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
4761
		if (!mem_cgroup_is_root(mc.from))
4762
			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4763

4764 4765
		mem_cgroup_id_put_many(mc.from, mc.moved_swap);

4766
		/*
4767 4768
		 * we charged both to->memory and to->memsw, so we
		 * should uncharge to->memory.
4769
		 */
4770
		if (!mem_cgroup_is_root(mc.to))
4771 4772
			page_counter_uncharge(&mc.to->memory, mc.moved_swap);

4773 4774
		mem_cgroup_id_get_many(mc.to, mc.moved_swap);
		css_put_many(&mc.to->css, mc.moved_swap);
4775

4776 4777
		mc.moved_swap = 0;
	}
4778 4779 4780 4781 4782 4783 4784
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
4785 4786
	struct mm_struct *mm = mc.mm;

4787 4788 4789 4790 4791 4792
	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
4793
	spin_lock(&mc.lock);
4794 4795
	mc.from = NULL;
	mc.to = NULL;
4796
	mc.mm = NULL;
4797
	spin_unlock(&mc.lock);
4798 4799

	mmput(mm);
4800 4801
}

4802
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4803
{
4804
	struct cgroup_subsys_state *css;
4805
	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4806
	struct mem_cgroup *from;
4807
	struct task_struct *leader, *p;
4808
	struct mm_struct *mm;
4809
	unsigned long move_flags;
4810
	int ret = 0;
4811

4812 4813
	/* charge immigration isn't supported on the default hierarchy */
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4814 4815
		return 0;

4816 4817 4818 4819 4820 4821 4822
	/*
	 * Multi-process migrations only happen on the default hierarchy
	 * where charge immigration is not used.  Perform charge
	 * immigration if @tset contains a leader and whine if there are
	 * multiple.
	 */
	p = NULL;
4823
	cgroup_taskset_for_each_leader(leader, css, tset) {
4824 4825
		WARN_ON_ONCE(p);
		p = leader;
4826
		memcg = mem_cgroup_from_css(css);
4827 4828 4829 4830
	}
	if (!p)
		return 0;

4831 4832 4833 4834 4835 4836 4837 4838 4839
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
	if (!move_flags)
		return 0;

4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855
	from = mem_cgroup_from_task(p);

	VM_BUG_ON(from == memcg);

	mm = get_task_mm(p);
	if (!mm)
		return 0;
	/* We move charges only when we move a owner of the mm */
	if (mm->owner == p) {
		VM_BUG_ON(mc.from);
		VM_BUG_ON(mc.to);
		VM_BUG_ON(mc.precharge);
		VM_BUG_ON(mc.moved_charge);
		VM_BUG_ON(mc.moved_swap);

		spin_lock(&mc.lock);
4856
		mc.mm = mm;
4857 4858 4859 4860 4861 4862 4863 4864 4865
		mc.from = from;
		mc.to = memcg;
		mc.flags = move_flags;
		spin_unlock(&mc.lock);
		/* We set mc.moving_task later */

		ret = mem_cgroup_precharge_mc(mm);
		if (ret)
			mem_cgroup_clear_mc();
4866 4867
	} else {
		mmput(mm);
4868 4869 4870 4871
	}
	return ret;
}

4872
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4873
{
4874 4875
	if (mc.to)
		mem_cgroup_clear_mc();
4876 4877
}

4878 4879 4880
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
4881
{
4882
	int ret = 0;
4883
	struct vm_area_struct *vma = walk->vma;
4884 4885
	pte_t *pte;
	spinlock_t *ptl;
4886 4887 4888
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
4889

4890 4891
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
4892
		if (mc.precharge < HPAGE_PMD_NR) {
4893
			spin_unlock(ptl);
4894 4895 4896 4897 4898 4899
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
4900
				if (!mem_cgroup_move_account(page, true,
4901
							     mc.from, mc.to)) {
4902 4903 4904 4905 4906 4907 4908
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
4909
		spin_unlock(ptl);
4910
		return 0;
4911 4912
	}

4913 4914
	if (pmd_trans_unstable(pmd))
		return 0;
4915 4916 4917 4918
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
4919
		swp_entry_t ent;
4920 4921 4922 4923

		if (!mc.precharge)
			break;

4924
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
4925 4926
		case MC_TARGET_PAGE:
			page = target.page;
4927 4928 4929 4930 4931 4932 4933 4934
			/*
			 * We can have a part of the split pmd here. Moving it
			 * can be done but it would be too convoluted so simply
			 * ignore such a partial THP and keep it in original
			 * memcg. There should be somebody mapping the head.
			 */
			if (PageTransCompound(page))
				goto put;
4935 4936
			if (isolate_lru_page(page))
				goto put;
4937 4938
			if (!mem_cgroup_move_account(page, false,
						mc.from, mc.to)) {
4939
				mc.precharge--;
4940 4941
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
4942 4943
			}
			putback_lru_page(page);
4944
put:			/* get_mctgt_type() gets the page */
4945 4946
			put_page(page);
			break;
4947 4948
		case MC_TARGET_SWAP:
			ent = target.ent;
4949
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4950
				mc.precharge--;
4951 4952 4953
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
4954
			break;
4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
4969
		ret = mem_cgroup_do_precharge(1);
4970 4971 4972 4973 4974 4975 4976
		if (!ret)
			goto retry;
	}

	return ret;
}

4977
static void mem_cgroup_move_charge(void)
4978
{
4979 4980
	struct mm_walk mem_cgroup_move_charge_walk = {
		.pmd_entry = mem_cgroup_move_charge_pte_range,
4981
		.mm = mc.mm,
4982
	};
4983 4984

	lru_add_drain_all();
4985
	/*
4986 4987 4988
	 * Signal lock_page_memcg() to take the memcg's move_lock
	 * while we're moving its pages to another memcg. Then wait
	 * for already started RCU-only updates to finish.
4989 4990 4991
	 */
	atomic_inc(&mc.from->moving_account);
	synchronize_rcu();
4992
retry:
4993
	if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5005 5006 5007 5008
	/*
	 * When we have consumed all precharges and failed in doing
	 * additional charge, the page walk just aborts.
	 */
5009 5010
	walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);

5011
	up_read(&mc.mm->mmap_sem);
5012
	atomic_dec(&mc.from->moving_account);
5013 5014
}

5015
static void mem_cgroup_move_task(void)
B
Balbir Singh 已提交
5016
{
5017 5018
	if (mc.to) {
		mem_cgroup_move_charge();
5019
		mem_cgroup_clear_mc();
5020
	}
B
Balbir Singh 已提交
5021
}
5022
#else	/* !CONFIG_MMU */
5023
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5024 5025 5026
{
	return 0;
}
5027
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5028 5029
{
}
5030
static void mem_cgroup_move_task(void)
5031 5032 5033
{
}
#endif
B
Balbir Singh 已提交
5034

5035 5036
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5037 5038
 * to verify whether we're attached to the default hierarchy on each mount
 * attempt.
5039
 */
5040
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5041 5042
{
	/*
5043
	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5044 5045 5046
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
5047
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5048 5049 5050
		root_mem_cgroup->use_hierarchy = true;
	else
		root_mem_cgroup->use_hierarchy = false;
5051 5052
}

5053 5054 5055
static u64 memory_current_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
{
5056 5057 5058
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5059 5060 5061 5062 5063
}

static int memory_low_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5064
	unsigned long low = READ_ONCE(memcg->low);
5065 5066

	if (low == PAGE_COUNTER_MAX)
5067
		seq_puts(m, "max\n");
5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081
	else
		seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);

	return 0;
}

static ssize_t memory_low_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long low;
	int err;

	buf = strstrip(buf);
5082
	err = page_counter_memparse(buf, "max", &low);
5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093
	if (err)
		return err;

	memcg->low = low;

	return nbytes;
}

static int memory_high_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5094
	unsigned long high = READ_ONCE(memcg->high);
5095 5096

	if (high == PAGE_COUNTER_MAX)
5097
		seq_puts(m, "max\n");
5098 5099 5100 5101 5102 5103 5104 5105 5106 5107
	else
		seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);

	return 0;
}

static ssize_t memory_high_write(struct kernfs_open_file *of,
				 char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5108
	unsigned long nr_pages;
5109 5110 5111 5112
	unsigned long high;
	int err;

	buf = strstrip(buf);
5113
	err = page_counter_memparse(buf, "max", &high);
5114 5115 5116 5117 5118
	if (err)
		return err;

	memcg->high = high;

5119 5120 5121 5122 5123
	nr_pages = page_counter_read(&memcg->memory);
	if (nr_pages > high)
		try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
					     GFP_KERNEL, true);

5124
	memcg_wb_domain_size_changed(memcg);
5125 5126 5127 5128 5129 5130
	return nbytes;
}

static int memory_max_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5131
	unsigned long max = READ_ONCE(memcg->memory.limit);
5132 5133

	if (max == PAGE_COUNTER_MAX)
5134
		seq_puts(m, "max\n");
5135 5136 5137 5138 5139 5140 5141 5142 5143 5144
	else
		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);

	return 0;
}

static ssize_t memory_max_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5145 5146
	unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
	bool drained = false;
5147 5148 5149 5150
	unsigned long max;
	int err;

	buf = strstrip(buf);
5151
	err = page_counter_memparse(buf, "max", &max);
5152 5153 5154
	if (err)
		return err;

5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180
	xchg(&memcg->memory.limit, max);

	for (;;) {
		unsigned long nr_pages = page_counter_read(&memcg->memory);

		if (nr_pages <= max)
			break;

		if (signal_pending(current)) {
			err = -EINTR;
			break;
		}

		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

		if (nr_reclaims) {
			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
							  GFP_KERNEL, true))
				nr_reclaims--;
			continue;
		}

5181
		mem_cgroup_event(memcg, MEMCG_OOM);
5182 5183 5184
		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
			break;
	}
5185

5186
	memcg_wb_domain_size_changed(memcg);
5187 5188 5189 5190 5191 5192 5193
	return nbytes;
}

static int memory_events_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));

5194 5195 5196 5197
	seq_printf(m, "low %lu\n", memcg_sum_events(memcg, MEMCG_LOW));
	seq_printf(m, "high %lu\n", memcg_sum_events(memcg, MEMCG_HIGH));
	seq_printf(m, "max %lu\n", memcg_sum_events(memcg, MEMCG_MAX));
	seq_printf(m, "oom %lu\n", memcg_sum_events(memcg, MEMCG_OOM));
5198
	seq_printf(m, "oom_kill %lu\n", memcg_sum_events(memcg, OOM_KILL));
5199 5200 5201 5202

	return 0;
}

5203 5204 5205
static int memory_stat_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5206 5207
	unsigned long stat[MEMCG_NR_STAT];
	unsigned long events[MEMCG_NR_EVENTS];
5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220
	int i;

	/*
	 * Provide statistics on the state of the memory subsystem as
	 * well as cumulative event counters that show past behavior.
	 *
	 * This list is ordered following a combination of these gradients:
	 * 1) generic big picture -> specifics and details
	 * 2) reflecting userspace activity -> reflecting kernel heuristics
	 *
	 * Current memory state:
	 */

5221 5222 5223
	tree_stat(memcg, stat);
	tree_events(memcg, events);

5224
	seq_printf(m, "anon %llu\n",
5225
		   (u64)stat[MEMCG_RSS] * PAGE_SIZE);
5226
	seq_printf(m, "file %llu\n",
5227
		   (u64)stat[MEMCG_CACHE] * PAGE_SIZE);
5228
	seq_printf(m, "kernel_stack %llu\n",
5229
		   (u64)stat[MEMCG_KERNEL_STACK_KB] * 1024);
5230
	seq_printf(m, "slab %llu\n",
5231 5232
		   (u64)(stat[NR_SLAB_RECLAIMABLE] +
			 stat[NR_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5233
	seq_printf(m, "sock %llu\n",
5234
		   (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
5235

5236
	seq_printf(m, "shmem %llu\n",
5237
		   (u64)stat[NR_SHMEM] * PAGE_SIZE);
5238
	seq_printf(m, "file_mapped %llu\n",
5239
		   (u64)stat[NR_FILE_MAPPED] * PAGE_SIZE);
5240
	seq_printf(m, "file_dirty %llu\n",
5241
		   (u64)stat[NR_FILE_DIRTY] * PAGE_SIZE);
5242
	seq_printf(m, "file_writeback %llu\n",
5243
		   (u64)stat[NR_WRITEBACK] * PAGE_SIZE);
5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254

	for (i = 0; i < NR_LRU_LISTS; i++) {
		struct mem_cgroup *mi;
		unsigned long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i));
		seq_printf(m, "%s %llu\n",
			   mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
	}

5255
	seq_printf(m, "slab_reclaimable %llu\n",
5256
		   (u64)stat[NR_SLAB_RECLAIMABLE] * PAGE_SIZE);
5257
	seq_printf(m, "slab_unreclaimable %llu\n",
5258
		   (u64)stat[NR_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5259

5260 5261
	/* Accumulated memory events */

5262 5263
	seq_printf(m, "pgfault %lu\n", events[PGFAULT]);
	seq_printf(m, "pgmajfault %lu\n", events[PGMAJFAULT]);
5264

5265 5266 5267 5268 5269 5270 5271 5272 5273 5274
	seq_printf(m, "pgrefill %lu\n", events[PGREFILL]);
	seq_printf(m, "pgscan %lu\n", events[PGSCAN_KSWAPD] +
		   events[PGSCAN_DIRECT]);
	seq_printf(m, "pgsteal %lu\n", events[PGSTEAL_KSWAPD] +
		   events[PGSTEAL_DIRECT]);
	seq_printf(m, "pgactivate %lu\n", events[PGACTIVATE]);
	seq_printf(m, "pgdeactivate %lu\n", events[PGDEACTIVATE]);
	seq_printf(m, "pglazyfree %lu\n", events[PGLAZYFREE]);
	seq_printf(m, "pglazyfreed %lu\n", events[PGLAZYFREED]);

5275
	seq_printf(m, "workingset_refault %lu\n",
5276
		   stat[WORKINGSET_REFAULT]);
5277
	seq_printf(m, "workingset_activate %lu\n",
5278
		   stat[WORKINGSET_ACTIVATE]);
5279
	seq_printf(m, "workingset_nodereclaim %lu\n",
5280
		   stat[WORKINGSET_NODERECLAIM]);
5281

5282 5283 5284
	return 0;
}

5285 5286 5287
static struct cftype memory_files[] = {
	{
		.name = "current",
5288
		.flags = CFTYPE_NOT_ON_ROOT,
5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311
		.read_u64 = memory_current_read,
	},
	{
		.name = "low",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_low_show,
		.write = memory_low_write,
	},
	{
		.name = "high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_high_show,
		.write = memory_high_write,
	},
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_max_show,
		.write = memory_max_write,
	},
	{
		.name = "events",
		.flags = CFTYPE_NOT_ON_ROOT,
5312
		.file_offset = offsetof(struct mem_cgroup, events_file),
5313 5314
		.seq_show = memory_events_show,
	},
5315 5316 5317 5318 5319
	{
		.name = "stat",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_stat_show,
	},
5320 5321 5322
	{ }	/* terminate */
};

5323
struct cgroup_subsys memory_cgrp_subsys = {
5324
	.css_alloc = mem_cgroup_css_alloc,
5325
	.css_online = mem_cgroup_css_online,
5326
	.css_offline = mem_cgroup_css_offline,
5327
	.css_released = mem_cgroup_css_released,
5328
	.css_free = mem_cgroup_css_free,
5329
	.css_reset = mem_cgroup_css_reset,
5330 5331
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
5332
	.post_attach = mem_cgroup_move_task,
5333
	.bind = mem_cgroup_bind,
5334 5335
	.dfl_cftypes = memory_files,
	.legacy_cftypes = mem_cgroup_legacy_files,
5336
	.early_init = 0,
B
Balbir Singh 已提交
5337
};
5338

5339 5340
/**
 * mem_cgroup_low - check if memory consumption is below the normal range
5341
 * @root: the top ancestor of the sub-tree being checked
5342 5343 5344
 * @memcg: the memory cgroup to check
 *
 * Returns %true if memory consumption of @memcg, and that of all
5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370
 * ancestors up to (but not including) @root, is below the normal range.
 *
 * @root is exclusive; it is never low when looked at directly and isn't
 * checked when traversing the hierarchy.
 *
 * Excluding @root enables using memory.low to prioritize memory usage
 * between cgroups within a subtree of the hierarchy that is limited by
 * memory.high or memory.max.
 *
 * For example, given cgroup A with children B and C:
 *
 *    A
 *   / \
 *  B   C
 *
 * and
 *
 *  1. A/memory.current > A/memory.high
 *  2. A/B/memory.current < A/B/memory.low
 *  3. A/C/memory.current >= A/C/memory.low
 *
 * As 'A' is high, i.e. triggers reclaim from 'A', and 'B' is low, we
 * should reclaim from 'C' until 'A' is no longer high or until we can
 * no longer reclaim from 'C'.  If 'A', i.e. @root, isn't excluded by
 * mem_cgroup_low when reclaming from 'A', then 'B' won't be considered
 * low and we will reclaim indiscriminately from both 'B' and 'C'.
5371 5372 5373 5374 5375 5376
 */
bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return false;

5377 5378 5379
	if (!root)
		root = root_mem_cgroup;
	if (memcg == root)
5380 5381
		return false;

5382
	for (; memcg != root; memcg = parent_mem_cgroup(memcg)) {
M
Michal Hocko 已提交
5383
		if (page_counter_read(&memcg->memory) >= memcg->low)
5384 5385
			return false;
	}
5386

5387 5388 5389
	return true;
}

5390 5391 5392 5393 5394 5395
/**
 * mem_cgroup_try_charge - try charging a page
 * @page: page to charge
 * @mm: mm context of the victim
 * @gfp_mask: reclaim mode
 * @memcgp: charged memcg return
5396
 * @compound: charge the page as compound or small page
5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408
 *
 * Try to charge @page to the memcg that @mm belongs to, reclaiming
 * pages according to @gfp_mask if necessary.
 *
 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
 * Otherwise, an error code is returned.
 *
 * After page->mapping has been set up, the caller must finalize the
 * charge with mem_cgroup_commit_charge().  Or abort the transaction
 * with mem_cgroup_cancel_charge() in case page instantiation fails.
 */
int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5409 5410
			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
			  bool compound)
5411 5412
{
	struct mem_cgroup *memcg = NULL;
5413
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426
	int ret = 0;

	if (mem_cgroup_disabled())
		goto out;

	if (PageSwapCache(page)) {
		/*
		 * Every swap fault against a single page tries to charge the
		 * page, bail as early as possible.  shmem_unuse() encounters
		 * already charged pages, too.  The USED bit is protected by
		 * the page lock, which serializes swap cache removal, which
		 * in turn serializes uncharging.
		 */
5427
		VM_BUG_ON_PAGE(!PageLocked(page), page);
5428
		if (page->mem_cgroup)
5429
			goto out;
5430

5431
		if (do_swap_account) {
5432 5433 5434 5435 5436 5437 5438 5439 5440
			swp_entry_t ent = { .val = page_private(page), };
			unsigned short id = lookup_swap_cgroup_id(ent);

			rcu_read_lock();
			memcg = mem_cgroup_from_id(id);
			if (memcg && !css_tryget_online(&memcg->css))
				memcg = NULL;
			rcu_read_unlock();
		}
5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458
	}

	if (!memcg)
		memcg = get_mem_cgroup_from_mm(mm);

	ret = try_charge(memcg, gfp_mask, nr_pages);

	css_put(&memcg->css);
out:
	*memcgp = memcg;
	return ret;
}

/**
 * mem_cgroup_commit_charge - commit a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 * @lrucare: page might be on LRU already
5459
 * @compound: charge the page as compound or small page
5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471
 *
 * Finalize a charge transaction started by mem_cgroup_try_charge(),
 * after page->mapping has been set up.  This must happen atomically
 * as part of the page instantiation, i.e. under the page table lock
 * for anonymous pages, under the page lock for page and swap cache.
 *
 * In addition, the page must not be on the LRU during the commit, to
 * prevent racing with task migration.  If it might be, use @lrucare.
 *
 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
 */
void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5472
			      bool lrucare, bool compound)
5473
{
5474
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488

	VM_BUG_ON_PAGE(!page->mapping, page);
	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

5489 5490 5491
	commit_charge(page, memcg, lrucare);

	local_irq_disable();
5492
	mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5493 5494
	memcg_check_events(memcg, page);
	local_irq_enable();
5495

5496
	if (do_memsw_account() && PageSwapCache(page)) {
5497 5498 5499 5500 5501 5502
		swp_entry_t entry = { .val = page_private(page) };
		/*
		 * The swap entry might not get freed for a long time,
		 * let's not wait for it.  The page already received a
		 * memory+swap charge, drop the swap entry duplicate.
		 */
5503
		mem_cgroup_uncharge_swap(entry, nr_pages);
5504 5505 5506 5507 5508 5509 5510
	}
}

/**
 * mem_cgroup_cancel_charge - cancel a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
5511
 * @compound: charge the page as compound or small page
5512 5513 5514
 *
 * Cancel a charge transaction started by mem_cgroup_try_charge().
 */
5515 5516
void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
		bool compound)
5517
{
5518
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

	cancel_charge(memcg, nr_pages);
}

5533 5534
static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
			   unsigned long nr_anon, unsigned long nr_file,
5535 5536
			   unsigned long nr_kmem, unsigned long nr_huge,
			   unsigned long nr_shmem, struct page *dummy_page)
5537
{
5538
	unsigned long nr_pages = nr_anon + nr_file + nr_kmem;
5539 5540
	unsigned long flags;

5541
	if (!mem_cgroup_is_root(memcg)) {
5542
		page_counter_uncharge(&memcg->memory, nr_pages);
5543
		if (do_memsw_account())
5544
			page_counter_uncharge(&memcg->memsw, nr_pages);
5545 5546
		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && nr_kmem)
			page_counter_uncharge(&memcg->kmem, nr_kmem);
5547 5548
		memcg_oom_recover(memcg);
	}
5549 5550

	local_irq_save(flags);
5551 5552 5553 5554
	__this_cpu_sub(memcg->stat->count[MEMCG_RSS], nr_anon);
	__this_cpu_sub(memcg->stat->count[MEMCG_CACHE], nr_file);
	__this_cpu_sub(memcg->stat->count[MEMCG_RSS_HUGE], nr_huge);
	__this_cpu_sub(memcg->stat->count[NR_SHMEM], nr_shmem);
5555
	__this_cpu_add(memcg->stat->events[PGPGOUT], pgpgout);
5556
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5557 5558
	memcg_check_events(memcg, dummy_page);
	local_irq_restore(flags);
5559 5560

	if (!mem_cgroup_is_root(memcg))
5561
		css_put_many(&memcg->css, nr_pages);
5562 5563 5564 5565 5566
}

static void uncharge_list(struct list_head *page_list)
{
	struct mem_cgroup *memcg = NULL;
5567
	unsigned long nr_shmem = 0;
5568 5569 5570
	unsigned long nr_anon = 0;
	unsigned long nr_file = 0;
	unsigned long nr_huge = 0;
5571
	unsigned long nr_kmem = 0;
5572 5573 5574 5575
	unsigned long pgpgout = 0;
	struct list_head *next;
	struct page *page;

5576 5577 5578 5579
	/*
	 * Note that the list can be a single page->lru; hence the
	 * do-while loop instead of a simple list_for_each_entry().
	 */
5580 5581 5582 5583 5584 5585
	next = page_list->next;
	do {
		page = list_entry(next, struct page, lru);
		next = page->lru.next;

		VM_BUG_ON_PAGE(PageLRU(page), page);
5586
		VM_BUG_ON_PAGE(!PageHWPoison(page) && page_count(page), page);
5587

5588
		if (!page->mem_cgroup)
5589 5590 5591 5592
			continue;

		/*
		 * Nobody should be changing or seriously looking at
5593
		 * page->mem_cgroup at this point, we have fully
5594
		 * exclusive access to the page.
5595 5596
		 */

5597
		if (memcg != page->mem_cgroup) {
5598
			if (memcg) {
5599
				uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5600 5601 5602
					       nr_kmem, nr_huge, nr_shmem, page);
				pgpgout = nr_anon = nr_file = nr_kmem = 0;
				nr_huge = nr_shmem = 0;
5603
			}
5604
			memcg = page->mem_cgroup;
5605 5606
		}

5607 5608
		if (!PageKmemcg(page)) {
			unsigned int nr_pages = 1;
5609

5610 5611 5612 5613 5614 5615
			if (PageTransHuge(page)) {
				nr_pages <<= compound_order(page);
				nr_huge += nr_pages;
			}
			if (PageAnon(page))
				nr_anon += nr_pages;
5616
			else {
5617
				nr_file += nr_pages;
5618 5619 5620
				if (PageSwapBacked(page))
					nr_shmem += nr_pages;
			}
5621
			pgpgout++;
5622
		} else {
5623
			nr_kmem += 1 << compound_order(page);
5624 5625
			__ClearPageKmemcg(page);
		}
5626

5627
		page->mem_cgroup = NULL;
5628 5629 5630
	} while (next != page_list);

	if (memcg)
5631
		uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5632
			       nr_kmem, nr_huge, nr_shmem, page);
5633 5634
}

5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646
/**
 * mem_cgroup_uncharge - uncharge a page
 * @page: page to uncharge
 *
 * Uncharge a page previously charged with mem_cgroup_try_charge() and
 * mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge(struct page *page)
{
	if (mem_cgroup_disabled())
		return;

5647
	/* Don't touch page->lru of any random page, pre-check: */
5648
	if (!page->mem_cgroup)
5649 5650
		return;

5651 5652 5653
	INIT_LIST_HEAD(&page->lru);
	uncharge_list(&page->lru);
}
5654

5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665
/**
 * mem_cgroup_uncharge_list - uncharge a list of page
 * @page_list: list of pages to uncharge
 *
 * Uncharge a list of pages previously charged with
 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge_list(struct list_head *page_list)
{
	if (mem_cgroup_disabled())
		return;
5666

5667 5668
	if (!list_empty(page_list))
		uncharge_list(page_list);
5669 5670 5671
}

/**
5672 5673 5674
 * mem_cgroup_migrate - charge a page's replacement
 * @oldpage: currently circulating page
 * @newpage: replacement page
5675
 *
5676 5677
 * Charge @newpage as a replacement page for @oldpage. @oldpage will
 * be uncharged upon free.
5678 5679 5680
 *
 * Both pages must be locked, @newpage->mapping must be set up.
 */
5681
void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
5682
{
5683
	struct mem_cgroup *memcg;
5684 5685
	unsigned int nr_pages;
	bool compound;
5686
	unsigned long flags;
5687 5688 5689 5690

	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5691 5692
	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
		       newpage);
5693 5694 5695 5696 5697

	if (mem_cgroup_disabled())
		return;

	/* Page cache replacement: new page already charged? */
5698
	if (newpage->mem_cgroup)
5699 5700
		return;

5701
	/* Swapcache readahead pages can get replaced before being charged */
5702
	memcg = oldpage->mem_cgroup;
5703
	if (!memcg)
5704 5705
		return;

5706 5707 5708 5709 5710 5711 5712 5713
	/* Force-charge the new page. The old one will be freed soon */
	compound = PageTransHuge(newpage);
	nr_pages = compound ? hpage_nr_pages(newpage) : 1;

	page_counter_charge(&memcg->memory, nr_pages);
	if (do_memsw_account())
		page_counter_charge(&memcg->memsw, nr_pages);
	css_get_many(&memcg->css, nr_pages);
5714

5715
	commit_charge(newpage, memcg, false);
5716

5717
	local_irq_save(flags);
5718 5719
	mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
	memcg_check_events(memcg, newpage);
5720
	local_irq_restore(flags);
5721 5722
}

5723
DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5724 5725
EXPORT_SYMBOL(memcg_sockets_enabled_key);

5726
void mem_cgroup_sk_alloc(struct sock *sk)
5727 5728 5729
{
	struct mem_cgroup *memcg;

5730 5731 5732 5733 5734
	if (!mem_cgroup_sockets_enabled)
		return;

	/*
	 * Socket cloning can throw us here with sk_memcg already
5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749
	 * filled. It won't however, necessarily happen from
	 * process context. So the test for root memcg given
	 * the current task's memcg won't help us in this case.
	 *
	 * Respecting the original socket's memcg is a better
	 * decision in this case.
	 */
	if (sk->sk_memcg) {
		BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
		css_get(&sk->sk_memcg->css);
		return;
	}

	rcu_read_lock();
	memcg = mem_cgroup_from_task(current);
5750 5751
	if (memcg == root_mem_cgroup)
		goto out;
5752
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5753 5754
		goto out;
	if (css_tryget_online(&memcg->css))
5755
		sk->sk_memcg = memcg;
5756
out:
5757 5758 5759
	rcu_read_unlock();
}

5760
void mem_cgroup_sk_free(struct sock *sk)
5761
{
5762 5763
	if (sk->sk_memcg)
		css_put(&sk->sk_memcg->css);
5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775
}

/**
 * mem_cgroup_charge_skmem - charge socket memory
 * @memcg: memcg to charge
 * @nr_pages: number of pages to charge
 *
 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
 * @memcg's configured limit, %false if the charge had to be forced.
 */
bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
5776
	gfp_t gfp_mask = GFP_KERNEL;
5777

5778
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5779
		struct page_counter *fail;
5780

5781 5782
		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
			memcg->tcpmem_pressure = 0;
5783 5784
			return true;
		}
5785 5786
		page_counter_charge(&memcg->tcpmem, nr_pages);
		memcg->tcpmem_pressure = 1;
5787
		return false;
5788
	}
5789

5790 5791 5792 5793
	/* Don't block in the packet receive path */
	if (in_softirq())
		gfp_mask = GFP_NOWAIT;

5794 5795
	this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);

5796 5797 5798 5799
	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
		return true;

	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5800 5801 5802 5803 5804 5805 5806 5807 5808 5809
	return false;
}

/**
 * mem_cgroup_uncharge_skmem - uncharge socket memory
 * @memcg - memcg to uncharge
 * @nr_pages - number of pages to uncharge
 */
void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
5810
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5811
		page_counter_uncharge(&memcg->tcpmem, nr_pages);
5812 5813
		return;
	}
5814

5815 5816
	this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);

5817 5818
	page_counter_uncharge(&memcg->memory, nr_pages);
	css_put_many(&memcg->css, nr_pages);
5819 5820
}

5821 5822 5823 5824 5825 5826 5827 5828 5829
static int __init cgroup_memory(char *s)
{
	char *token;

	while ((token = strsep(&s, ",")) != NULL) {
		if (!*token)
			continue;
		if (!strcmp(token, "nosocket"))
			cgroup_memory_nosocket = true;
5830 5831
		if (!strcmp(token, "nokmem"))
			cgroup_memory_nokmem = true;
5832 5833 5834 5835
	}
	return 0;
}
__setup("cgroup.memory=", cgroup_memory);
5836

5837
/*
5838 5839
 * subsys_initcall() for memory controller.
 *
5840 5841 5842 5843
 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
 * basically everything that doesn't depend on a specific mem_cgroup structure
 * should be initialized from here.
5844 5845 5846
 */
static int __init mem_cgroup_init(void)
{
5847 5848
	int cpu, node;

5849 5850 5851
#ifndef CONFIG_SLOB
	/*
	 * Kmem cache creation is mostly done with the slab_mutex held,
5852 5853 5854
	 * so use a workqueue with limited concurrency to avoid stalling
	 * all worker threads in case lots of cgroups are created and
	 * destroyed simultaneously.
5855
	 */
5856 5857
	memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
	BUG_ON(!memcg_kmem_cache_wq);
5858 5859
#endif

5860 5861
	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
				  memcg_hotplug_cpu_dead);
5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872

	for_each_possible_cpu(cpu)
		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
			  drain_local_stock);

	for_each_node(node) {
		struct mem_cgroup_tree_per_node *rtpn;

		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
				    node_online(node) ? node : NUMA_NO_NODE);

5873 5874
		rtpn->rb_root = RB_ROOT;
		spin_lock_init(&rtpn->lock);
5875 5876 5877
		soft_limit_tree.rb_tree_per_node[node] = rtpn;
	}

5878 5879 5880
	return 0;
}
subsys_initcall(mem_cgroup_init);
5881 5882

#ifdef CONFIG_MEMCG_SWAP
5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900
static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
{
	while (!atomic_inc_not_zero(&memcg->id.ref)) {
		/*
		 * The root cgroup cannot be destroyed, so it's refcount must
		 * always be >= 1.
		 */
		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
			VM_BUG_ON(1);
			break;
		}
		memcg = parent_mem_cgroup(memcg);
		if (!memcg)
			memcg = root_mem_cgroup;
	}
	return memcg;
}

5901 5902 5903 5904 5905 5906 5907 5908 5909
/**
 * mem_cgroup_swapout - transfer a memsw charge to swap
 * @page: page whose memsw charge to transfer
 * @entry: swap entry to move the charge to
 *
 * Transfer the memsw charge of @page to @entry.
 */
void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
{
5910
	struct mem_cgroup *memcg, *swap_memcg;
5911 5912 5913 5914 5915
	unsigned short oldid;

	VM_BUG_ON_PAGE(PageLRU(page), page);
	VM_BUG_ON_PAGE(page_count(page), page);

5916
	if (!do_memsw_account())
5917 5918 5919 5920 5921 5922 5923 5924
		return;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return;

5925 5926 5927 5928 5929 5930
	/*
	 * In case the memcg owning these pages has been offlined and doesn't
	 * have an ID allocated to it anymore, charge the closest online
	 * ancestor for the swap instead and transfer the memory+swap charge.
	 */
	swap_memcg = mem_cgroup_id_get_online(memcg);
5931
	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg), 1);
5932
	VM_BUG_ON_PAGE(oldid, page);
5933
	mem_cgroup_swap_statistics(swap_memcg, 1);
5934 5935 5936 5937 5938 5939

	page->mem_cgroup = NULL;

	if (!mem_cgroup_is_root(memcg))
		page_counter_uncharge(&memcg->memory, 1);

5940 5941 5942 5943 5944 5945
	if (memcg != swap_memcg) {
		if (!mem_cgroup_is_root(swap_memcg))
			page_counter_charge(&swap_memcg->memsw, 1);
		page_counter_uncharge(&memcg->memsw, 1);
	}

5946 5947 5948 5949 5950 5951 5952
	/*
	 * Interrupts should be disabled here because the caller holds the
	 * mapping->tree_lock lock which is taken with interrupts-off. It is
	 * important here to have the interrupts disabled because it is the
	 * only synchronisation we have for udpating the per-CPU variables.
	 */
	VM_BUG_ON(!irqs_disabled());
5953
	mem_cgroup_charge_statistics(memcg, page, false, -1);
5954
	memcg_check_events(memcg, page);
5955 5956 5957

	if (!mem_cgroup_is_root(memcg))
		css_put(&memcg->css);
5958 5959
}

5960 5961
/**
 * mem_cgroup_try_charge_swap - try charging swap space for a page
5962 5963 5964
 * @page: page being added to swap
 * @entry: swap entry to charge
 *
5965
 * Try to charge @page's memcg for the swap space at @entry.
5966 5967 5968 5969 5970
 *
 * Returns 0 on success, -ENOMEM on failure.
 */
int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
{
5971
	unsigned int nr_pages = hpage_nr_pages(page);
5972
	struct page_counter *counter;
5973
	struct mem_cgroup *memcg;
5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984
	unsigned short oldid;

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
		return 0;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return 0;

5985 5986
	memcg = mem_cgroup_id_get_online(memcg);

5987
	if (!mem_cgroup_is_root(memcg) &&
5988
	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
5989
		mem_cgroup_id_put(memcg);
5990
		return -ENOMEM;
5991
	}
5992

5993 5994 5995 5996
	/* Get references for the tail pages, too */
	if (nr_pages > 1)
		mem_cgroup_id_get_many(memcg, nr_pages - 1);
	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
5997
	VM_BUG_ON_PAGE(oldid, page);
5998
	mem_cgroup_swap_statistics(memcg, nr_pages);
5999 6000 6001 6002

	return 0;
}

6003
/**
6004
 * mem_cgroup_uncharge_swap - uncharge swap space
6005
 * @entry: swap entry to uncharge
6006
 * @nr_pages: the amount of swap space to uncharge
6007
 */
6008
void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
6009 6010 6011 6012
{
	struct mem_cgroup *memcg;
	unsigned short id;

6013
	if (!do_swap_account)
6014 6015
		return;

6016
	id = swap_cgroup_record(entry, 0, nr_pages);
6017
	rcu_read_lock();
6018
	memcg = mem_cgroup_from_id(id);
6019
	if (memcg) {
6020 6021
		if (!mem_cgroup_is_root(memcg)) {
			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6022
				page_counter_uncharge(&memcg->swap, nr_pages);
6023
			else
6024
				page_counter_uncharge(&memcg->memsw, nr_pages);
6025
		}
6026 6027
		mem_cgroup_swap_statistics(memcg, -nr_pages);
		mem_cgroup_id_put_many(memcg, nr_pages);
6028 6029 6030 6031
	}
	rcu_read_unlock();
}

6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044
long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
{
	long nr_swap_pages = get_nr_swap_pages();

	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return nr_swap_pages;
	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
		nr_swap_pages = min_t(long, nr_swap_pages,
				      READ_ONCE(memcg->swap.limit) -
				      page_counter_read(&memcg->swap));
	return nr_swap_pages;
}

6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066
bool mem_cgroup_swap_full(struct page *page)
{
	struct mem_cgroup *memcg;

	VM_BUG_ON_PAGE(!PageLocked(page), page);

	if (vm_swap_full())
		return true;
	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return false;

	memcg = page->mem_cgroup;
	if (!memcg)
		return false;

	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
		if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
			return true;

	return false;
}

6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083
/* for remember boot option*/
#ifdef CONFIG_MEMCG_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata;
#endif

static int __init enable_swap_account(char *s)
{
	if (!strcmp(s, "1"))
		really_do_swap_account = 1;
	else if (!strcmp(s, "0"))
		really_do_swap_account = 0;
	return 1;
}
__setup("swapaccount=", enable_swap_account);

6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140
static u64 swap_current_read(struct cgroup_subsys_state *css,
			     struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
}

static int swap_max_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
	unsigned long max = READ_ONCE(memcg->swap.limit);

	if (max == PAGE_COUNTER_MAX)
		seq_puts(m, "max\n");
	else
		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);

	return 0;
}

static ssize_t swap_max_write(struct kernfs_open_file *of,
			      char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long max;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &max);
	if (err)
		return err;

	mutex_lock(&memcg_limit_mutex);
	err = page_counter_limit(&memcg->swap, max);
	mutex_unlock(&memcg_limit_mutex);
	if (err)
		return err;

	return nbytes;
}

static struct cftype swap_files[] = {
	{
		.name = "swap.current",
		.flags = CFTYPE_NOT_ON_ROOT,
		.read_u64 = swap_current_read,
	},
	{
		.name = "swap.max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = swap_max_show,
		.write = swap_max_write,
	},
	{ }	/* terminate */
};

6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{ },	/* terminate */
};

static int __init mem_cgroup_swap_init(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
6172 6173
		WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
					       swap_files));
6174 6175 6176 6177 6178 6179 6180 6181
		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
						  memsw_cgroup_files));
	}
	return 0;
}
subsys_initcall(mem_cgroup_swap_init);

#endif /* CONFIG_MEMCG_SWAP */