memcontrol.c 149.7 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
17 18 19 20 21 22
 * Native page reclaim
 * Charge lifetime sanitation
 * Lockless page tracking & accounting
 * Unified hierarchy configuration model
 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
 *
B
Balbir Singh 已提交
23 24 25 26 27 28 29 30 31 32 33
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

34
#include <linux/page_counter.h>
B
Balbir Singh 已提交
35 36
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
37
#include <linux/mm.h>
38
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
39
#include <linux/pagemap.h>
40
#include <linux/smp.h>
41
#include <linux/page-flags.h>
42
#include <linux/backing-dev.h>
43 44
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
45
#include <linux/limits.h>
46
#include <linux/export.h>
47
#include <linux/mutex.h>
48
#include <linux/rbtree.h>
49
#include <linux/slab.h>
50
#include <linux/swap.h>
51
#include <linux/swapops.h>
52
#include <linux/spinlock.h>
53
#include <linux/eventfd.h>
54
#include <linux/poll.h>
55
#include <linux/sort.h>
56
#include <linux/fs.h>
57
#include <linux/seq_file.h>
58
#include <linux/vmpressure.h>
59
#include <linux/mm_inline.h>
60
#include <linux/swap_cgroup.h>
61
#include <linux/cpu.h>
62
#include <linux/oom.h>
63
#include <linux/lockdep.h>
64
#include <linux/file.h>
65
#include <linux/tracehook.h>
K
KAMEZAWA Hiroyuki 已提交
66
#include "internal.h"
G
Glauber Costa 已提交
67
#include <net/sock.h>
M
Michal Hocko 已提交
68
#include <net/ip.h>
69
#include "slab.h"
B
Balbir Singh 已提交
70

71 72
#include <asm/uaccess.h>

73 74
#include <trace/events/vmscan.h>

75 76
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
77

78 79
struct mem_cgroup *root_mem_cgroup __read_mostly;

80
#define MEM_CGROUP_RECLAIM_RETRIES	5
B
Balbir Singh 已提交
81

82 83 84
/* Socket memory accounting disabled? */
static bool cgroup_memory_nosocket;

85 86 87
/* Kernel memory accounting disabled? */
static bool cgroup_memory_nokmem;

88
/* Whether the swap controller is active */
A
Andrew Morton 已提交
89
#ifdef CONFIG_MEMCG_SWAP
90 91
int do_swap_account __read_mostly;
#else
92
#define do_swap_account		0
93 94
#endif

95 96 97 98 99 100
/* Whether legacy memory+swap accounting is active */
static bool do_memsw_account(void)
{
	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
}

101 102 103
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
104
	"rss_huge",
105
	"mapped_file",
106
	"dirty",
107
	"writeback",
108 109 110 111 112 113 114 115 116 117
	"swap",
};

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

118 119 120 121 122 123 124 125
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

126 127 128
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
129

130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

K
KAMEZAWA Hiroyuki 已提交
150 151 152 153 154
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
155

156 157 158
/*
 * cgroup_event represents events which userspace want to receive.
 */
159
struct mem_cgroup_event {
160
	/*
161
	 * memcg which the event belongs to.
162
	 */
163
	struct mem_cgroup *memcg;
164 165 166 167 168 169 170 171
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
172 173 174 175 176
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
177
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
178
			      struct eventfd_ctx *eventfd, const char *args);
179 180 181 182 183
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
184
	void (*unregister_event)(struct mem_cgroup *memcg,
185
				 struct eventfd_ctx *eventfd);
186 187 188 189 190 191 192 193 194 195
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
	wait_queue_t wait;
	struct work_struct remove;
};

196 197
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
198

199 200
/* Stuffs for move charges at task migration. */
/*
201
 * Types of charges to be moved.
202
 */
203 204 205
#define MOVE_ANON	0x1U
#define MOVE_FILE	0x2U
#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
206

207 208
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
209
	spinlock_t	  lock; /* for from, to */
210 211
	struct mem_cgroup *from;
	struct mem_cgroup *to;
212
	unsigned long flags;
213
	unsigned long precharge;
214
	unsigned long moved_charge;
215
	unsigned long moved_swap;
216 217 218
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
219
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
220 221
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
222

223 224 225 226
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
227
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
228
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
229

230 231
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
232
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
233
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
234
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
235 236 237
	NR_CHARGE_TYPE,
};

238
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
239 240 241 242
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
243
	_KMEM,
V
Vladimir Davydov 已提交
244
	_TCP,
G
Glauber Costa 已提交
245 246
};

247 248
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
249
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
250 251
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
252

253 254 255 256 257 258 259 260 261 262 263 264 265
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

266 267 268 269 270
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

271 272 273 274 275 276
/*
 * We restrict the id in the range of [1, 65535], so it can fit into
 * an unsigned short.
 */
#define MEM_CGROUP_ID_MAX	USHRT_MAX

L
Li Zefan 已提交
277 278
static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
{
279
	return memcg->css.id;
L
Li Zefan 已提交
280 281
}

282 283 284 285 286 287
/*
 * A helper function to get mem_cgroup from ID. must be called under
 * rcu_read_lock().  The caller is responsible for calling
 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
 * refcnt from swap can be called against removed memcg.)
 */
L
Li Zefan 已提交
288 289 290 291
static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	struct cgroup_subsys_state *css;

292
	css = css_from_id(id, &memory_cgrp_subsys);
L
Li Zefan 已提交
293 294 295
	return mem_cgroup_from_css(css);
}

296
#ifndef CONFIG_SLOB
297
/*
298
 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
L
Li Zefan 已提交
299 300 301 302 303
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
304
 *
305 306
 * The current size of the caches array is stored in memcg_nr_cache_ids. It
 * will double each time we have to increase it.
307
 */
308 309
static DEFINE_IDA(memcg_cache_ida);
int memcg_nr_cache_ids;
310

311 312 313 314 315 316 317 318 319 320 321 322 323
/* Protects memcg_nr_cache_ids */
static DECLARE_RWSEM(memcg_cache_ids_sem);

void memcg_get_cache_ids(void)
{
	down_read(&memcg_cache_ids_sem);
}

void memcg_put_cache_ids(void)
{
	up_read(&memcg_cache_ids_sem);
}

324 325 326 327 328 329
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
330
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
331 332
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
333
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
334 335 336
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
337
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
338

339 340 341 342 343 344
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
345
DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
346
EXPORT_SYMBOL(memcg_kmem_enabled_key);
347

348
#endif /* !CONFIG_SLOB */
349

350
static struct mem_cgroup_per_zone *
351
mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
352
{
353 354 355
	int nid = zone_to_nid(zone);
	int zid = zone_idx(zone);

356
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
357 358
}

359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
/**
 * mem_cgroup_css_from_page - css of the memcg associated with a page
 * @page: page of interest
 *
 * If memcg is bound to the default hierarchy, css of the memcg associated
 * with @page is returned.  The returned css remains associated with @page
 * until it is released.
 *
 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
 * is returned.
 *
 * XXX: The above description of behavior on the default hierarchy isn't
 * strictly true yet as replace_page_cache_page() can modify the
 * association before @page is released even on the default hierarchy;
 * however, the current and planned usages don't mix the the two functions
 * and replace_page_cache_page() will soon be updated to make the invariant
 * actually true.
 */
struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
{
	struct mem_cgroup *memcg;

	memcg = page->mem_cgroup;

383
	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
384 385 386 387 388
		memcg = root_mem_cgroup;

	return &memcg->css;
}

389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
/**
 * page_cgroup_ino - return inode number of the memcg a page is charged to
 * @page: the page
 *
 * Look up the closest online ancestor of the memory cgroup @page is charged to
 * and return its inode number or 0 if @page is not charged to any cgroup. It
 * is safe to call this function without holding a reference to @page.
 *
 * Note, this function is inherently racy, because there is nothing to prevent
 * the cgroup inode from getting torn down and potentially reallocated a moment
 * after page_cgroup_ino() returns, so it only should be used by callers that
 * do not care (such as procfs interfaces).
 */
ino_t page_cgroup_ino(struct page *page)
{
	struct mem_cgroup *memcg;
	unsigned long ino = 0;

	rcu_read_lock();
	memcg = READ_ONCE(page->mem_cgroup);
	while (memcg && !(memcg->css.flags & CSS_ONLINE))
		memcg = parent_mem_cgroup(memcg);
	if (memcg)
		ino = cgroup_ino(memcg->css.cgroup);
	rcu_read_unlock();
	return ino;
}

417
static struct mem_cgroup_per_zone *
418
mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
419
{
420 421
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
422

423
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
424 425
}

426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

441 442
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
					 struct mem_cgroup_tree_per_zone *mctz,
443
					 unsigned long new_usage_in_excess)
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

473 474
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
					 struct mem_cgroup_tree_per_zone *mctz)
475 476 477 478 479 480 481
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

482 483
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
				       struct mem_cgroup_tree_per_zone *mctz)
484
{
485 486 487
	unsigned long flags;

	spin_lock_irqsave(&mctz->lock, flags);
488
	__mem_cgroup_remove_exceeded(mz, mctz);
489
	spin_unlock_irqrestore(&mctz->lock, flags);
490 491
}

492 493 494
static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
{
	unsigned long nr_pages = page_counter_read(&memcg->memory);
495
	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
496 497 498 499 500 501 502
	unsigned long excess = 0;

	if (nr_pages > soft_limit)
		excess = nr_pages - soft_limit;

	return excess;
}
503 504 505

static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
506
	unsigned long excess;
507 508 509
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

510
	mctz = soft_limit_tree_from_page(page);
511 512 513 514 515
	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
516
		mz = mem_cgroup_page_zoneinfo(memcg, page);
517
		excess = soft_limit_excess(memcg);
518 519 520 521 522
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
523 524 525
			unsigned long flags;

			spin_lock_irqsave(&mctz->lock, flags);
526 527
			/* if on-tree, remove it */
			if (mz->on_tree)
528
				__mem_cgroup_remove_exceeded(mz, mctz);
529 530 531 532
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
533
			__mem_cgroup_insert_exceeded(mz, mctz, excess);
534
			spin_unlock_irqrestore(&mctz->lock, flags);
535 536 537 538 539 540 541
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
	struct mem_cgroup_tree_per_zone *mctz;
542 543
	struct mem_cgroup_per_zone *mz;
	int nid, zid;
544

545 546 547 548
	for_each_node(nid) {
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			mctz = soft_limit_tree_node_zone(nid, zid);
549
			mem_cgroup_remove_exceeded(mz, mctz);
550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
		}
	}
}

static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
	struct mem_cgroup_per_zone *mz;

retry:
	mz = NULL;
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
572
	__mem_cgroup_remove_exceeded(mz, mctz);
573
	if (!soft_limit_excess(mz->memcg) ||
574
	    !css_tryget_online(&mz->memcg->css))
575 576 577 578 579 580 581 582 583 584
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

585
	spin_lock_irq(&mctz->lock);
586
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
587
	spin_unlock_irq(&mctz->lock);
588 589 590
	return mz;
}

591
/*
592 593
 * Return page count for single (non recursive) @memcg.
 *
594 595 596 597 598
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
599
 * a periodic synchronization of counter in memcg's counter.
600 601 602 603 604 605 606 607 608
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
609
 * common workload, threshold and synchronization as vmstat[] should be
610 611
 * implemented.
 */
612 613
static unsigned long
mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
614
{
615
	long val = 0;
616 617
	int cpu;

618
	/* Per-cpu values can be negative, use a signed accumulator */
619
	for_each_possible_cpu(cpu)
620
		val += per_cpu(memcg->stat->count[idx], cpu);
621 622 623 624 625 626
	/*
	 * Summing races with updates, so val may be negative.  Avoid exposing
	 * transient negative values.
	 */
	if (val < 0)
		val = 0;
627 628 629
	return val;
}

630
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
631 632 633 634 635
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

636
	for_each_possible_cpu(cpu)
637
		val += per_cpu(memcg->stat->events[idx], cpu);
638 639 640
	return val;
}

641
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
642
					 struct page *page,
643
					 bool compound, int nr_pages)
644
{
645 646 647 648
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
649
	if (PageAnon(page))
650
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
651
				nr_pages);
652
	else
653
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
654
				nr_pages);
655

656 657
	if (compound) {
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
658 659
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
				nr_pages);
660
	}
661

662 663
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
664
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
665
	else {
666
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
667 668
		nr_pages = -nr_pages; /* for event */
	}
669

670
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
671 672
}

673 674 675
static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
						  int nid,
						  unsigned int lru_mask)
676
{
677
	unsigned long nr = 0;
678 679
	int zid;

680
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
681

682 683 684 685 686 687 688 689 690 691 692 693
	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		struct mem_cgroup_per_zone *mz;
		enum lru_list lru;

		for_each_lru(lru) {
			if (!(BIT(lru) & lru_mask))
				continue;
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			nr += mz->lru_size[lru];
		}
	}
	return nr;
694
}
695

696
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
697
			unsigned int lru_mask)
698
{
699
	unsigned long nr = 0;
700
	int nid;
701

702
	for_each_node_state(nid, N_MEMORY)
703 704
		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
	return nr;
705 706
}

707 708
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
709 710 711
{
	unsigned long val, next;

712
	val = __this_cpu_read(memcg->stat->nr_page_events);
713
	next = __this_cpu_read(memcg->stat->targets[target]);
714
	/* from time_after() in jiffies.h */
715 716 717 718 719
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
720 721 722
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
723 724 725 726 727 728 729 730
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
731
	}
732
	return false;
733 734 735 736 737 738
}

/*
 * Check events in order.
 *
 */
739
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
740 741
{
	/* threshold event is triggered in finer grain than soft limit */
742 743
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
744
		bool do_softlimit;
745
		bool do_numainfo __maybe_unused;
746

747 748
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
749 750 751 752
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
753
		mem_cgroup_threshold(memcg);
754 755
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
756
#if MAX_NUMNODES > 1
757
		if (unlikely(do_numainfo))
758
			atomic_inc(&memcg->numainfo_events);
759
#endif
760
	}
761 762
}

763
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
764
{
765 766 767 768 769 770 771 772
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

773
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
774
}
M
Michal Hocko 已提交
775
EXPORT_SYMBOL(mem_cgroup_from_task);
776

777
static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
778
{
779
	struct mem_cgroup *memcg = NULL;
780

781 782
	rcu_read_lock();
	do {
783 784 785 786 787 788
		/*
		 * Page cache insertions can happen withou an
		 * actual mm context, e.g. during disk probing
		 * on boot, loopback IO, acct() writes etc.
		 */
		if (unlikely(!mm))
789
			memcg = root_mem_cgroup;
790 791 792 793 794
		else {
			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
			if (unlikely(!memcg))
				memcg = root_mem_cgroup;
		}
795
	} while (!css_tryget_online(&memcg->css));
796
	rcu_read_unlock();
797
	return memcg;
798 799
}

800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
817
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
818
				   struct mem_cgroup *prev,
819
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
820
{
M
Michal Hocko 已提交
821
	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
822
	struct cgroup_subsys_state *css = NULL;
823
	struct mem_cgroup *memcg = NULL;
824
	struct mem_cgroup *pos = NULL;
825

826 827
	if (mem_cgroup_disabled())
		return NULL;
828

829 830
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
831

832
	if (prev && !reclaim)
833
		pos = prev;
K
KAMEZAWA Hiroyuki 已提交
834

835 836
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
837
			goto out;
838
		return root;
839
	}
K
KAMEZAWA Hiroyuki 已提交
840

841
	rcu_read_lock();
M
Michal Hocko 已提交
842

843 844 845 846 847 848 849 850 851
	if (reclaim) {
		struct mem_cgroup_per_zone *mz;

		mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
		iter = &mz->iter[reclaim->priority];

		if (prev && reclaim->generation != iter->generation)
			goto out_unlock;

852
		while (1) {
853
			pos = READ_ONCE(iter->position);
854 855
			if (!pos || css_tryget(&pos->css))
				break;
856
			/*
857 858 859 860 861 862
			 * css reference reached zero, so iter->position will
			 * be cleared by ->css_released. However, we should not
			 * rely on this happening soon, because ->css_released
			 * is called from a work queue, and by busy-waiting we
			 * might block it. So we clear iter->position right
			 * away.
863
			 */
864 865
			(void)cmpxchg(&iter->position, pos, NULL);
		}
866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882
	}

	if (pos)
		css = &pos->css;

	for (;;) {
		css = css_next_descendant_pre(css, &root->css);
		if (!css) {
			/*
			 * Reclaimers share the hierarchy walk, and a
			 * new one might jump in right at the end of
			 * the hierarchy - make sure they see at least
			 * one group and restart from the beginning.
			 */
			if (!prev)
				continue;
			break;
883
		}
K
KAMEZAWA Hiroyuki 已提交
884

885 886 887 888 889 890
		/*
		 * Verify the css and acquire a reference.  The root
		 * is provided by the caller, so we know it's alive
		 * and kicking, and don't take an extra reference.
		 */
		memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
891

892 893
		if (css == &root->css)
			break;
K
KAMEZAWA Hiroyuki 已提交
894

895 896
		if (css_tryget(css))
			break;
897

898
		memcg = NULL;
899
	}
900 901 902

	if (reclaim) {
		/*
903 904 905
		 * The position could have already been updated by a competing
		 * thread, so check that the value hasn't changed since we read
		 * it to avoid reclaiming from the same cgroup twice.
906
		 */
907 908
		(void)cmpxchg(&iter->position, pos, memcg);

909 910 911 912 913 914 915
		if (pos)
			css_put(&pos->css);

		if (!memcg)
			iter->generation++;
		else if (!prev)
			reclaim->generation = iter->generation;
916
	}
917

918 919
out_unlock:
	rcu_read_unlock();
920
out:
921 922 923
	if (prev && prev != root)
		css_put(&prev->css);

924
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
925
}
K
KAMEZAWA Hiroyuki 已提交
926

927 928 929 930 931 932 933
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
934 935 936 937 938 939
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
940

941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962
static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
{
	struct mem_cgroup *memcg = dead_memcg;
	struct mem_cgroup_reclaim_iter *iter;
	struct mem_cgroup_per_zone *mz;
	int nid, zid;
	int i;

	while ((memcg = parent_mem_cgroup(memcg))) {
		for_each_node(nid) {
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
				for (i = 0; i <= DEF_PRIORITY; i++) {
					iter = &mz->iter[i];
					cmpxchg(&iter->position,
						dead_memcg, NULL);
				}
			}
		}
	}
}

963 964 965 966 967 968
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
969
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
970
	     iter != NULL;				\
971
	     iter = mem_cgroup_iter(root, iter, NULL))
972

973
#define for_each_mem_cgroup(iter)			\
974
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
975
	     iter != NULL;				\
976
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
977

978 979 980
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
981
 * @memcg: memcg of the wanted lruvec
982 983 984 985 986 987 988 989 990
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
991
	struct lruvec *lruvec;
992

993 994 995 996
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
997

998
	mz = mem_cgroup_zone_zoneinfo(memcg, zone);
999 1000 1001 1002 1003 1004 1005 1006 1007 1008
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
1009 1010 1011
}

/**
1012
 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1013
 * @page: the page
1014
 * @zone: zone of the page
1015 1016 1017 1018
 *
 * This function is only safe when following the LRU page isolation
 * and putback protocol: the LRU lock must be held, and the page must
 * either be PageLRU() or the caller must have isolated/allocated it.
1019
 */
1020
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1021 1022
{
	struct mem_cgroup_per_zone *mz;
1023
	struct mem_cgroup *memcg;
1024
	struct lruvec *lruvec;
1025

1026 1027 1028 1029
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1030

1031
	memcg = page->mem_cgroup;
1032
	/*
1033
	 * Swapcache readahead pages are added to the LRU - and
1034
	 * possibly migrated - before they are charged.
1035
	 */
1036 1037
	if (!memcg)
		memcg = root_mem_cgroup;
1038

1039
	mz = mem_cgroup_page_zoneinfo(memcg, page);
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1050
}
1051

1052
/**
1053 1054 1055 1056
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1057
 *
1058 1059
 * This function must be called when a page is added to or removed from an
 * lru list.
1060
 */
1061 1062
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1063 1064
{
	struct mem_cgroup_per_zone *mz;
1065
	unsigned long *lru_size;
1066 1067 1068 1069

	if (mem_cgroup_disabled())
		return;

1070 1071 1072 1073
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1074
}
1075

1076
bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1077
{
1078
	struct mem_cgroup *task_memcg;
1079
	struct task_struct *p;
1080
	bool ret;
1081

1082
	p = find_lock_task_mm(task);
1083
	if (p) {
1084
		task_memcg = get_mem_cgroup_from_mm(p->mm);
1085 1086 1087 1088 1089 1090 1091
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1092
		rcu_read_lock();
1093 1094
		task_memcg = mem_cgroup_from_task(task);
		css_get(&task_memcg->css);
1095
		rcu_read_unlock();
1096
	}
1097 1098
	ret = mem_cgroup_is_descendant(task_memcg, memcg);
	css_put(&task_memcg->css);
1099 1100 1101
	return ret;
}

1102
/**
1103
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1104
 * @memcg: the memory cgroup
1105
 *
1106
 * Returns the maximum amount of memory @mem can be charged with, in
1107
 * pages.
1108
 */
1109
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1110
{
1111 1112 1113
	unsigned long margin = 0;
	unsigned long count;
	unsigned long limit;
1114

1115
	count = page_counter_read(&memcg->memory);
1116
	limit = READ_ONCE(memcg->memory.limit);
1117 1118 1119
	if (count < limit)
		margin = limit - count;

1120
	if (do_memsw_account()) {
1121
		count = page_counter_read(&memcg->memsw);
1122
		limit = READ_ONCE(memcg->memsw.limit);
1123 1124 1125 1126 1127
		if (count <= limit)
			margin = min(margin, limit - count);
	}

	return margin;
1128 1129
}

1130
/*
Q
Qiang Huang 已提交
1131
 * A routine for checking "mem" is under move_account() or not.
1132
 *
Q
Qiang Huang 已提交
1133 1134 1135
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 * moving cgroups. This is for waiting at high-memory pressure
 * caused by "move".
1136
 */
1137
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1138
{
1139 1140
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1141
	bool ret = false;
1142 1143 1144 1145 1146 1147 1148 1149 1150
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1151

1152 1153
	ret = mem_cgroup_is_descendant(from, memcg) ||
		mem_cgroup_is_descendant(to, memcg);
1154 1155
unlock:
	spin_unlock(&mc.lock);
1156 1157 1158
	return ret;
}

1159
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1160 1161
{
	if (mc.moving_task && current != mc.moving_task) {
1162
		if (mem_cgroup_under_move(memcg)) {
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1175
#define K(x) ((x) << (PAGE_SHIFT-10))
1176
/**
1177
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1178 1179 1180 1181 1182 1183 1184 1185
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
T
Tejun Heo 已提交
1186
	/* oom_info_lock ensures that parallel ooms do not interleave */
1187
	static DEFINE_MUTEX(oom_info_lock);
1188 1189
	struct mem_cgroup *iter;
	unsigned int i;
1190

1191
	mutex_lock(&oom_info_lock);
1192 1193
	rcu_read_lock();

1194 1195 1196 1197 1198 1199 1200 1201
	if (p) {
		pr_info("Task in ");
		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
		pr_cont(" killed as a result of limit of ");
	} else {
		pr_info("Memory limit reached of cgroup ");
	}

T
Tejun Heo 已提交
1202
	pr_cont_cgroup_path(memcg->css.cgroup);
1203
	pr_cont("\n");
1204 1205 1206

	rcu_read_unlock();

1207 1208 1209 1210 1211 1212 1213 1214 1215
	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memory)),
		K((u64)memcg->memory.limit), memcg->memory.failcnt);
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memsw)),
		K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->kmem)),
		K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1216 1217

	for_each_mem_cgroup_tree(iter, memcg) {
T
Tejun Heo 已提交
1218 1219
		pr_info("Memory cgroup stats for ");
		pr_cont_cgroup_path(iter->css.cgroup);
1220 1221 1222
		pr_cont(":");

		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1223
			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1224
				continue;
1225
			pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1226 1227 1228 1229 1230 1231 1232 1233 1234
				K(mem_cgroup_read_stat(iter, i)));
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1235
	mutex_unlock(&oom_info_lock);
1236 1237
}

1238 1239 1240 1241
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1242
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1243 1244
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1245 1246
	struct mem_cgroup *iter;

1247
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1248
		num++;
1249 1250 1251
	return num;
}

D
David Rientjes 已提交
1252 1253 1254
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1255
static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1256
{
1257
	unsigned long limit;
1258

1259
	limit = memcg->memory.limit;
1260
	if (mem_cgroup_swappiness(memcg)) {
1261
		unsigned long memsw_limit;
1262
		unsigned long swap_limit;
1263

1264
		memsw_limit = memcg->memsw.limit;
1265 1266 1267
		swap_limit = memcg->swap.limit;
		swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
		limit = min(limit + swap_limit, memsw_limit);
1268 1269
	}
	return limit;
D
David Rientjes 已提交
1270 1271
}

1272 1273
static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
				     int order)
1274
{
1275 1276 1277 1278 1279 1280
	struct oom_control oc = {
		.zonelist = NULL,
		.nodemask = NULL,
		.gfp_mask = gfp_mask,
		.order = order,
	};
1281 1282 1283 1284 1285 1286
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1287 1288
	mutex_lock(&oom_lock);

1289
	/*
1290 1291 1292
	 * If current has a pending SIGKILL or is exiting, then automatically
	 * select it.  The goal is to allow it to allocate so that it may
	 * quickly exit and free its memory.
1293
	 */
1294
	if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1295
		mark_oom_victim(current);
1296
		goto unlock;
1297 1298
	}

1299
	check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg);
1300
	totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1301
	for_each_mem_cgroup_tree(iter, memcg) {
1302
		struct css_task_iter it;
1303 1304
		struct task_struct *task;

1305 1306
		css_task_iter_start(&iter->css, &it);
		while ((task = css_task_iter_next(&it))) {
1307
			switch (oom_scan_process_thread(&oc, task, totalpages)) {
1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
1318
				css_task_iter_end(&it);
1319 1320 1321
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
1322
				goto unlock;
1323 1324 1325 1326
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
			if (!points || points < chosen_points)
				continue;
			/* Prefer thread group leaders for display purposes */
			if (points == chosen_points &&
			    thread_group_leader(chosen))
				continue;

			if (chosen)
				put_task_struct(chosen);
			chosen = task;
			chosen_points = points;
			get_task_struct(chosen);
1339
		}
1340
		css_task_iter_end(&it);
1341 1342
	}

1343 1344
	if (chosen) {
		points = chosen_points * 1000 / totalpages;
1345 1346
		oom_kill_process(&oc, chosen, points, totalpages, memcg,
				 "Memory cgroup out of memory");
1347 1348 1349
	}
unlock:
	mutex_unlock(&oom_lock);
1350 1351
}

1352 1353
#if MAX_NUMNODES > 1

1354 1355
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1356
 * @memcg: the target memcg
1357 1358 1359 1360 1361 1362 1363
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1364
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1365 1366
		int nid, bool noswap)
{
1367
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1368 1369 1370
		return true;
	if (noswap || !total_swap_pages)
		return false;
1371
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1372 1373 1374 1375
		return true;
	return false;

}
1376 1377 1378 1379 1380 1381 1382

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1383
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1384 1385
{
	int nid;
1386 1387 1388 1389
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1390
	if (!atomic_read(&memcg->numainfo_events))
1391
		return;
1392
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1393 1394 1395
		return;

	/* make a nodemask where this memcg uses memory from */
1396
	memcg->scan_nodes = node_states[N_MEMORY];
1397

1398
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1399

1400 1401
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1402
	}
1403

1404 1405
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1420
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1421 1422 1423
{
	int node;

1424 1425
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1426

1427
	node = next_node(node, memcg->scan_nodes);
1428
	if (node == MAX_NUMNODES)
1429
		node = first_node(memcg->scan_nodes);
1430 1431 1432 1433 1434 1435 1436 1437 1438
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1439
	memcg->last_scanned_node = node;
1440 1441 1442
	return node;
}
#else
1443
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1444 1445 1446 1447 1448
{
	return 0;
}
#endif

1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};

1464
	excess = soft_limit_excess(root_memcg);
1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
1493
		if (!soft_limit_excess(root_memcg))
1494
			break;
1495
	}
1496 1497
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
1498 1499
}

1500 1501 1502 1503 1504 1505
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

1506 1507
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
1508 1509 1510 1511
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
1512
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1513
{
1514
	struct mem_cgroup *iter, *failed = NULL;
1515

1516 1517
	spin_lock(&memcg_oom_lock);

1518
	for_each_mem_cgroup_tree(iter, memcg) {
1519
		if (iter->oom_lock) {
1520 1521 1522 1523 1524
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1525 1526
			mem_cgroup_iter_break(memcg, iter);
			break;
1527 1528
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1529
	}
K
KAMEZAWA Hiroyuki 已提交
1530

1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
1542
		}
1543 1544
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1545 1546 1547 1548

	spin_unlock(&memcg_oom_lock);

	return !failed;
1549
}
1550

1551
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1552
{
K
KAMEZAWA Hiroyuki 已提交
1553 1554
	struct mem_cgroup *iter;

1555
	spin_lock(&memcg_oom_lock);
1556
	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1557
	for_each_mem_cgroup_tree(iter, memcg)
1558
		iter->oom_lock = false;
1559
	spin_unlock(&memcg_oom_lock);
1560 1561
}

1562
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1563 1564 1565
{
	struct mem_cgroup *iter;

1566
	spin_lock(&memcg_oom_lock);
1567
	for_each_mem_cgroup_tree(iter, memcg)
1568 1569
		iter->under_oom++;
	spin_unlock(&memcg_oom_lock);
1570 1571
}

1572
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1573 1574 1575
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1576 1577
	/*
	 * When a new child is created while the hierarchy is under oom,
1578
	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
K
KAMEZAWA Hiroyuki 已提交
1579
	 */
1580
	spin_lock(&memcg_oom_lock);
1581
	for_each_mem_cgroup_tree(iter, memcg)
1582 1583 1584
		if (iter->under_oom > 0)
			iter->under_oom--;
	spin_unlock(&memcg_oom_lock);
1585 1586
}

K
KAMEZAWA Hiroyuki 已提交
1587 1588
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1589
struct oom_wait_info {
1590
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
1591 1592 1593 1594 1595 1596
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
1597 1598
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1599 1600 1601
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1602
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1603

1604 1605
	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
K
KAMEZAWA Hiroyuki 已提交
1606 1607 1608 1609
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1610
static void memcg_oom_recover(struct mem_cgroup *memcg)
1611
{
1612 1613 1614 1615 1616 1617 1618 1619 1620
	/*
	 * For the following lockless ->under_oom test, the only required
	 * guarantee is that it must see the state asserted by an OOM when
	 * this function is called as a result of userland actions
	 * triggered by the notification of the OOM.  This is trivially
	 * achieved by invoking mem_cgroup_mark_under_oom() before
	 * triggering notification.
	 */
	if (memcg && memcg->under_oom)
1621
		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1622 1623
}

1624
static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1625
{
T
Tejun Heo 已提交
1626
	if (!current->memcg_may_oom)
1627
		return;
K
KAMEZAWA Hiroyuki 已提交
1628
	/*
1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
	 * Also, the caller may handle a failed allocation gracefully
	 * (like optional page cache readahead) and so an OOM killer
	 * invocation might not even be necessary.
	 *
	 * That's why we don't do anything here except remember the
	 * OOM context and then deal with it at the end of the page
	 * fault when the stack is unwound, the locks are released,
	 * and when we know whether the fault was overall successful.
K
KAMEZAWA Hiroyuki 已提交
1641
	 */
1642
	css_get(&memcg->css);
T
Tejun Heo 已提交
1643 1644 1645
	current->memcg_in_oom = memcg;
	current->memcg_oom_gfp_mask = mask;
	current->memcg_oom_order = order;
1646 1647 1648 1649
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1650
 * @handle: actually kill/wait or just clean up the OOM state
1651
 *
1652 1653
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
1654
 *
1655
 * Memcg supports userspace OOM handling where failed allocations must
1656 1657 1658 1659
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
1660
 * the end of the page fault to complete the OOM handling.
1661 1662
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
1663
 * completed, %false otherwise.
1664
 */
1665
bool mem_cgroup_oom_synchronize(bool handle)
1666
{
T
Tejun Heo 已提交
1667
	struct mem_cgroup *memcg = current->memcg_in_oom;
1668
	struct oom_wait_info owait;
1669
	bool locked;
1670 1671 1672

	/* OOM is global, do not handle */
	if (!memcg)
1673
		return false;
1674

1675
	if (!handle || oom_killer_disabled)
1676
		goto cleanup;
1677 1678 1679 1680 1681 1682

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
K
KAMEZAWA Hiroyuki 已提交
1683

1684
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1685 1686 1687 1688 1689 1690 1691 1692 1693 1694
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
T
Tejun Heo 已提交
1695 1696
		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
					 current->memcg_oom_order);
1697
	} else {
1698
		schedule();
1699 1700 1701 1702 1703
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
1704 1705 1706 1707 1708 1709 1710 1711
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
1712
cleanup:
T
Tejun Heo 已提交
1713
	current->memcg_in_oom = NULL;
1714
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
1715
	return true;
1716 1717
}

1718 1719 1720
/**
 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
 * @page: page that is going to change accounted state
1721
 *
1722 1723 1724
 * This function must mark the beginning of an accounted page state
 * change to prevent double accounting when the page is concurrently
 * being moved to another memcg:
1725
 *
1726
 *   memcg = mem_cgroup_begin_page_stat(page);
1727 1728
 *   if (TestClearPageState(page))
 *     mem_cgroup_update_page_stat(memcg, state, -1);
1729
 *   mem_cgroup_end_page_stat(memcg);
1730
 */
1731
struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
1732 1733
{
	struct mem_cgroup *memcg;
1734
	unsigned long flags;
1735

1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747
	/*
	 * The RCU lock is held throughout the transaction.  The fast
	 * path can get away without acquiring the memcg->move_lock
	 * because page moving starts with an RCU grace period.
	 *
	 * The RCU lock also protects the memcg from being freed when
	 * the page state that is going to change is the only thing
	 * preventing the page from being uncharged.
	 * E.g. end-writeback clearing PageWriteback(), which allows
	 * migration to go ahead and uncharge the page before the
	 * account transaction might be complete.
	 */
1748 1749 1750 1751
	rcu_read_lock();

	if (mem_cgroup_disabled())
		return NULL;
1752
again:
1753
	memcg = page->mem_cgroup;
1754
	if (unlikely(!memcg))
1755 1756
		return NULL;

Q
Qiang Huang 已提交
1757
	if (atomic_read(&memcg->moving_account) <= 0)
1758
		return memcg;
1759

1760
	spin_lock_irqsave(&memcg->move_lock, flags);
1761
	if (memcg != page->mem_cgroup) {
1762
		spin_unlock_irqrestore(&memcg->move_lock, flags);
1763 1764
		goto again;
	}
1765 1766 1767 1768 1769 1770 1771 1772

	/*
	 * When charge migration first begins, we can have locked and
	 * unlocked page stat updates happening concurrently.  Track
	 * the task who has the lock for mem_cgroup_end_page_stat().
	 */
	memcg->move_lock_task = current;
	memcg->move_lock_flags = flags;
1773 1774

	return memcg;
1775
}
1776
EXPORT_SYMBOL(mem_cgroup_begin_page_stat);
1777

1778 1779 1780 1781
/**
 * mem_cgroup_end_page_stat - finish a page state statistics transaction
 * @memcg: the memcg that was accounted against
 */
1782
void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
1783
{
1784 1785 1786 1787 1788 1789 1790 1791
	if (memcg && memcg->move_lock_task == current) {
		unsigned long flags = memcg->move_lock_flags;

		memcg->move_lock_task = NULL;
		memcg->move_lock_flags = 0;

		spin_unlock_irqrestore(&memcg->move_lock, flags);
	}
1792

1793
	rcu_read_unlock();
1794
}
1795
EXPORT_SYMBOL(mem_cgroup_end_page_stat);
1796

1797 1798 1799 1800
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
1801
#define CHARGE_BATCH	32U
1802 1803
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
1804
	unsigned int nr_pages;
1805
	struct work_struct work;
1806
	unsigned long flags;
1807
#define FLUSHING_CACHED_CHARGE	0
1808 1809
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1810
static DEFINE_MUTEX(percpu_charge_mutex);
1811

1812 1813 1814 1815 1816 1817 1818 1819 1820 1821
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
1822
 */
1823
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1824 1825
{
	struct memcg_stock_pcp *stock;
1826
	bool ret = false;
1827

1828
	if (nr_pages > CHARGE_BATCH)
1829
		return ret;
1830

1831
	stock = &get_cpu_var(memcg_stock);
1832
	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1833
		stock->nr_pages -= nr_pages;
1834 1835
		ret = true;
	}
1836 1837 1838 1839 1840
	put_cpu_var(memcg_stock);
	return ret;
}

/*
1841
 * Returns stocks cached in percpu and reset cached information.
1842 1843 1844 1845 1846
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

1847
	if (stock->nr_pages) {
1848
		page_counter_uncharge(&old->memory, stock->nr_pages);
1849
		if (do_memsw_account())
1850
			page_counter_uncharge(&old->memsw, stock->nr_pages);
1851
		css_put_many(&old->css, stock->nr_pages);
1852
		stock->nr_pages = 0;
1853 1854 1855 1856 1857 1858 1859 1860 1861 1862
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
1863
	struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
1864
	drain_stock(stock);
1865
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1866 1867 1868
}

/*
1869
 * Cache charges(val) to local per_cpu area.
1870
 * This will be consumed by consume_stock() function, later.
1871
 */
1872
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1873 1874 1875
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

1876
	if (stock->cached != memcg) { /* reset if necessary */
1877
		drain_stock(stock);
1878
		stock->cached = memcg;
1879
	}
1880
	stock->nr_pages += nr_pages;
1881 1882 1883 1884
	put_cpu_var(memcg_stock);
}

/*
1885
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1886
 * of the hierarchy under it.
1887
 */
1888
static void drain_all_stock(struct mem_cgroup *root_memcg)
1889
{
1890
	int cpu, curcpu;
1891

1892 1893 1894
	/* If someone's already draining, avoid adding running more workers. */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
1895 1896
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
1897
	curcpu = get_cpu();
1898 1899
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1900
		struct mem_cgroup *memcg;
1901

1902 1903
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
1904
			continue;
1905
		if (!mem_cgroup_is_descendant(memcg, root_memcg))
1906
			continue;
1907 1908 1909 1910 1911 1912
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
1913
	}
1914
	put_cpu();
A
Andrew Morton 已提交
1915
	put_online_cpus();
1916
	mutex_unlock(&percpu_charge_mutex);
1917 1918
}

1919
static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
1920 1921 1922 1923 1924 1925
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;

1926
	if (action == CPU_ONLINE)
1927 1928
		return NOTIFY_OK;

1929
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1930
		return NOTIFY_OK;
1931

1932 1933 1934 1935 1936
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956
static void reclaim_high(struct mem_cgroup *memcg,
			 unsigned int nr_pages,
			 gfp_t gfp_mask)
{
	do {
		if (page_counter_read(&memcg->memory) <= memcg->high)
			continue;
		mem_cgroup_events(memcg, MEMCG_HIGH, 1);
		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
	} while ((memcg = parent_mem_cgroup(memcg)));
}

static void high_work_func(struct work_struct *work)
{
	struct mem_cgroup *memcg;

	memcg = container_of(work, struct mem_cgroup, high_work);
	reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
}

1957 1958 1959 1960 1961 1962 1963
/*
 * Scheduled by try_charge() to be executed from the userland return path
 * and reclaims memory over the high limit.
 */
void mem_cgroup_handle_over_high(void)
{
	unsigned int nr_pages = current->memcg_nr_pages_over_high;
1964
	struct mem_cgroup *memcg;
1965 1966 1967 1968

	if (likely(!nr_pages))
		return;

1969 1970
	memcg = get_mem_cgroup_from_mm(current->mm);
	reclaim_high(memcg, nr_pages, GFP_KERNEL);
1971 1972 1973 1974
	css_put(&memcg->css);
	current->memcg_nr_pages_over_high = 0;
}

1975 1976
static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
		      unsigned int nr_pages)
1977
{
1978
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
1979
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1980
	struct mem_cgroup *mem_over_limit;
1981
	struct page_counter *counter;
1982
	unsigned long nr_reclaimed;
1983 1984
	bool may_swap = true;
	bool drained = false;
1985

1986
	if (mem_cgroup_is_root(memcg))
1987
		return 0;
1988
retry:
1989
	if (consume_stock(memcg, nr_pages))
1990
		return 0;
1991

1992
	if (!do_memsw_account() ||
1993 1994
	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
		if (page_counter_try_charge(&memcg->memory, batch, &counter))
1995
			goto done_restock;
1996
		if (do_memsw_account())
1997 1998
			page_counter_uncharge(&memcg->memsw, batch);
		mem_over_limit = mem_cgroup_from_counter(counter, memory);
1999
	} else {
2000
		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2001
		may_swap = false;
2002
	}
2003

2004 2005 2006 2007
	if (batch > nr_pages) {
		batch = nr_pages;
		goto retry;
	}
2008

2009 2010 2011 2012 2013 2014 2015 2016 2017
	/*
	 * Unlike in global OOM situations, memcg is not in a physical
	 * memory shortage.  Allow dying and OOM-killed tasks to
	 * bypass the last charges so that they can exit quickly and
	 * free their memory.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE) ||
		     fatal_signal_pending(current) ||
		     current->flags & PF_EXITING))
2018
		goto force;
2019 2020 2021 2022

	if (unlikely(task_in_memcg_oom(current)))
		goto nomem;

2023
	if (!gfpflags_allow_blocking(gfp_mask))
2024
		goto nomem;
2025

2026 2027
	mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);

2028 2029
	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
						    gfp_mask, may_swap);
2030

2031
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2032
		goto retry;
2033

2034
	if (!drained) {
2035
		drain_all_stock(mem_over_limit);
2036 2037 2038 2039
		drained = true;
		goto retry;
	}

2040 2041
	if (gfp_mask & __GFP_NORETRY)
		goto nomem;
2042 2043 2044 2045 2046 2047 2048 2049 2050
	/*
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
	 */
2051
	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2052 2053 2054 2055 2056 2057 2058 2059
		goto retry;
	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		goto retry;

2060 2061 2062
	if (nr_retries--)
		goto retry;

2063
	if (gfp_mask & __GFP_NOFAIL)
2064
		goto force;
2065

2066
	if (fatal_signal_pending(current))
2067
		goto force;
2068

2069 2070
	mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);

2071 2072
	mem_cgroup_oom(mem_over_limit, gfp_mask,
		       get_order(nr_pages * PAGE_SIZE));
2073
nomem:
2074
	if (!(gfp_mask & __GFP_NOFAIL))
2075
		return -ENOMEM;
2076 2077 2078 2079 2080 2081 2082
force:
	/*
	 * The allocation either can't fail or will lead to more memory
	 * being freed very soon.  Allow memory usage go over the limit
	 * temporarily by force charging it.
	 */
	page_counter_charge(&memcg->memory, nr_pages);
2083
	if (do_memsw_account())
2084 2085 2086 2087
		page_counter_charge(&memcg->memsw, nr_pages);
	css_get_many(&memcg->css, nr_pages);

	return 0;
2088 2089

done_restock:
2090
	css_get_many(&memcg->css, batch);
2091 2092
	if (batch > nr_pages)
		refill_stock(memcg, batch - nr_pages);
2093

2094
	/*
2095 2096
	 * If the hierarchy is above the normal consumption range, schedule
	 * reclaim on returning to userland.  We can perform reclaim here
2097
	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2098 2099 2100 2101
	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
	 * not recorded as it most likely matches current's and won't
	 * change in the meantime.  As high limit is checked again before
	 * reclaim, the cost of mismatch is negligible.
2102 2103
	 */
	do {
2104
		if (page_counter_read(&memcg->memory) > memcg->high) {
2105 2106 2107 2108 2109
			/* Don't bother a random interrupted task */
			if (in_interrupt()) {
				schedule_work(&memcg->high_work);
				break;
			}
V
Vladimir Davydov 已提交
2110
			current->memcg_nr_pages_over_high += batch;
2111 2112 2113
			set_notify_resume(current);
			break;
		}
2114
	} while ((memcg = parent_mem_cgroup(memcg)));
2115 2116

	return 0;
2117
}
2118

2119
static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2120
{
2121 2122 2123
	if (mem_cgroup_is_root(memcg))
		return;

2124
	page_counter_uncharge(&memcg->memory, nr_pages);
2125
	if (do_memsw_account())
2126
		page_counter_uncharge(&memcg->memsw, nr_pages);
2127

2128
	css_put_many(&memcg->css, nr_pages);
2129 2130
}

2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161
static void lock_page_lru(struct page *page, int *isolated)
{
	struct zone *zone = page_zone(page);

	spin_lock_irq(&zone->lru_lock);
	if (PageLRU(page)) {
		struct lruvec *lruvec;

		lruvec = mem_cgroup_page_lruvec(page, zone);
		ClearPageLRU(page);
		del_page_from_lru_list(page, lruvec, page_lru(page));
		*isolated = 1;
	} else
		*isolated = 0;
}

static void unlock_page_lru(struct page *page, int isolated)
{
	struct zone *zone = page_zone(page);

	if (isolated) {
		struct lruvec *lruvec;

		lruvec = mem_cgroup_page_lruvec(page, zone);
		VM_BUG_ON_PAGE(PageLRU(page), page);
		SetPageLRU(page);
		add_page_to_lru_list(page, lruvec, page_lru(page));
	}
	spin_unlock_irq(&zone->lru_lock);
}

2162
static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2163
			  bool lrucare)
2164
{
2165
	int isolated;
2166

2167
	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2168 2169 2170 2171 2172

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
2173 2174
	if (lrucare)
		lock_page_lru(page, &isolated);
2175

2176 2177
	/*
	 * Nobody should be changing or seriously looking at
2178
	 * page->mem_cgroup at this point:
2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189
	 *
	 * - the page is uncharged
	 *
	 * - the page is off-LRU
	 *
	 * - an anonymous fault has exclusive page access, except for
	 *   a locked page table
	 *
	 * - a page cache insertion, a swapin fault, or a migration
	 *   have the page locked
	 */
2190
	page->mem_cgroup = memcg;
2191

2192 2193
	if (lrucare)
		unlock_page_lru(page, isolated);
2194
}
2195

2196
#ifndef CONFIG_SLOB
2197
static int memcg_alloc_cache_id(void)
2198
{
2199 2200 2201
	int id, size;
	int err;

2202
	id = ida_simple_get(&memcg_cache_ida,
2203 2204 2205
			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (id < 0)
		return id;
2206

2207
	if (id < memcg_nr_cache_ids)
2208 2209 2210 2211 2212 2213
		return id;

	/*
	 * There's no space for the new id in memcg_caches arrays,
	 * so we have to grow them.
	 */
2214
	down_write(&memcg_cache_ids_sem);
2215 2216

	size = 2 * (id + 1);
2217 2218 2219 2220 2221
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

2222
	err = memcg_update_all_caches(size);
2223 2224
	if (!err)
		err = memcg_update_all_list_lrus(size);
2225 2226 2227 2228 2229
	if (!err)
		memcg_nr_cache_ids = size;

	up_write(&memcg_cache_ids_sem);

2230
	if (err) {
2231
		ida_simple_remove(&memcg_cache_ida, id);
2232 2233 2234 2235 2236 2237 2238
		return err;
	}
	return id;
}

static void memcg_free_cache_id(int id)
{
2239
	ida_simple_remove(&memcg_cache_ida, id);
2240 2241
}

2242
struct memcg_kmem_cache_create_work {
2243 2244 2245 2246 2247
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

2248
static void memcg_kmem_cache_create_func(struct work_struct *w)
2249
{
2250 2251
	struct memcg_kmem_cache_create_work *cw =
		container_of(w, struct memcg_kmem_cache_create_work, work);
2252 2253
	struct mem_cgroup *memcg = cw->memcg;
	struct kmem_cache *cachep = cw->cachep;
2254

2255
	memcg_create_kmem_cache(memcg, cachep);
2256

2257
	css_put(&memcg->css);
2258 2259 2260 2261 2262 2263
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
2264 2265
static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					       struct kmem_cache *cachep)
2266
{
2267
	struct memcg_kmem_cache_create_work *cw;
2268

2269
	cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2270
	if (!cw)
2271
		return;
2272 2273

	css_get(&memcg->css);
2274 2275 2276

	cw->memcg = memcg;
	cw->cachep = cachep;
2277
	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2278 2279 2280 2281

	schedule_work(&cw->work);
}

2282 2283
static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					     struct kmem_cache *cachep)
2284 2285 2286 2287
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
2288
	 * in __memcg_schedule_kmem_cache_create will recurse.
2289 2290 2291 2292 2293 2294 2295
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
2296
	current->memcg_kmem_skip_account = 1;
2297
	__memcg_schedule_kmem_cache_create(memcg, cachep);
2298
	current->memcg_kmem_skip_account = 0;
2299
}
2300

2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313
/*
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
 * If the cache does not exist yet, if we are the first user of it,
 * we either create it immediately, if possible, or create it asynchronously
 * in a workqueue.
 * In the latter case, we will let the current allocation go through with
 * the original cache.
 *
 * Can't be called in interrupt context or from kernel threads.
 * This function needs to be called with rcu_read_lock() held.
 */
V
Vladimir Davydov 已提交
2314
struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
2315 2316
{
	struct mem_cgroup *memcg;
2317
	struct kmem_cache *memcg_cachep;
2318
	int kmemcg_id;
2319

2320
	VM_BUG_ON(!is_root_cache(cachep));
2321

V
Vladimir Davydov 已提交
2322 2323 2324 2325 2326 2327
	if (cachep->flags & SLAB_ACCOUNT)
		gfp |= __GFP_ACCOUNT;

	if (!(gfp & __GFP_ACCOUNT))
		return cachep;

2328
	if (current->memcg_kmem_skip_account)
2329 2330
		return cachep;

2331
	memcg = get_mem_cgroup_from_mm(current->mm);
2332
	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2333
	if (kmemcg_id < 0)
2334
		goto out;
2335

2336
	memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2337 2338
	if (likely(memcg_cachep))
		return memcg_cachep;
2339 2340 2341 2342 2343 2344 2345 2346 2347

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
2348 2349 2350
	 * memcg_create_kmem_cache, this means no further allocation
	 * could happen with the slab_mutex held. So it's better to
	 * defer everything.
2351
	 */
2352
	memcg_schedule_kmem_cache_create(memcg, cachep);
2353
out:
2354
	css_put(&memcg->css);
2355
	return cachep;
2356 2357
}

2358 2359 2360
void __memcg_kmem_put_cache(struct kmem_cache *cachep)
{
	if (!is_root_cache(cachep))
2361
		css_put(&cachep->memcg_params.memcg->css);
2362 2363
}

2364 2365
int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
			      struct mem_cgroup *memcg)
2366
{
2367 2368
	unsigned int nr_pages = 1 << order;
	struct page_counter *counter;
2369 2370
	int ret;

2371
	if (!memcg_kmem_online(memcg))
2372
		return 0;
2373

2374
	ret = try_charge(memcg, gfp, nr_pages);
2375
	if (ret)
2376
		return ret;
2377 2378 2379 2380 2381

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
		cancel_charge(memcg, nr_pages);
		return -ENOMEM;
2382 2383
	}

2384
	page->mem_cgroup = memcg;
2385

2386
	return 0;
2387 2388
}

2389
int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2390
{
2391 2392
	struct mem_cgroup *memcg;
	int ret;
2393

2394 2395
	memcg = get_mem_cgroup_from_mm(current->mm);
	ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2396
	css_put(&memcg->css);
2397
	return ret;
2398 2399
}

2400
void __memcg_kmem_uncharge(struct page *page, int order)
2401
{
2402
	struct mem_cgroup *memcg = page->mem_cgroup;
2403
	unsigned int nr_pages = 1 << order;
2404 2405 2406 2407

	if (!memcg)
		return;

2408
	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2409

2410 2411 2412
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
		page_counter_uncharge(&memcg->kmem, nr_pages);

2413
	page_counter_uncharge(&memcg->memory, nr_pages);
2414
	if (do_memsw_account())
2415
		page_counter_uncharge(&memcg->memsw, nr_pages);
2416

2417
	page->mem_cgroup = NULL;
2418
	css_put_many(&memcg->css, nr_pages);
2419
}
2420
#endif /* !CONFIG_SLOB */
2421

2422 2423 2424 2425
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

/*
 * Because tail pages are not marked as "used", set it. We're under
2426
 * zone->lru_lock and migration entries setup in all page mappings.
2427
 */
2428
void mem_cgroup_split_huge_fixup(struct page *head)
2429
{
2430
	int i;
2431

2432 2433
	if (mem_cgroup_disabled())
		return;
2434

2435
	for (i = 1; i < HPAGE_PMD_NR; i++)
2436
		head[i].mem_cgroup = head->mem_cgroup;
2437

2438
	__this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2439
		       HPAGE_PMD_NR);
2440
}
2441
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2442

A
Andrew Morton 已提交
2443
#ifdef CONFIG_MEMCG_SWAP
2444 2445
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
					 bool charge)
K
KAMEZAWA Hiroyuki 已提交
2446
{
2447 2448
	int val = (charge) ? 1 : -1;
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
K
KAMEZAWA Hiroyuki 已提交
2449
}
2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
2462
 * The caller must have charged to @to, IOW, called page_counter_charge() about
2463 2464 2465
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
2466
				struct mem_cgroup *from, struct mem_cgroup *to)
2467 2468 2469
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
2470 2471
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
2472 2473 2474

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
2475
		mem_cgroup_swap_statistics(to, true);
2476 2477 2478 2479 2480 2481
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2482
				struct mem_cgroup *from, struct mem_cgroup *to)
2483 2484 2485
{
	return -EINVAL;
}
2486
#endif
K
KAMEZAWA Hiroyuki 已提交
2487

2488
static DEFINE_MUTEX(memcg_limit_mutex);
2489

2490
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2491
				   unsigned long limit)
2492
{
2493 2494 2495
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
2496
	int retry_count;
2497
	int ret;
2498 2499 2500 2501 2502 2503

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
2504 2505
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);
2506

2507
	oldusage = page_counter_read(&memcg->memory);
2508

2509
	do {
2510 2511 2512 2513
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2514 2515 2516 2517

		mutex_lock(&memcg_limit_mutex);
		if (limit > memcg->memsw.limit) {
			mutex_unlock(&memcg_limit_mutex);
2518
			ret = -EINVAL;
2519 2520
			break;
		}
2521 2522 2523 2524
		if (limit > memcg->memory.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memory, limit);
		mutex_unlock(&memcg_limit_mutex);
2525 2526 2527 2528

		if (!ret)
			break;

2529 2530
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);

2531
		curusage = page_counter_read(&memcg->memory);
2532
		/* Usage is reduced ? */
A
Andrew Morton 已提交
2533
		if (curusage >= oldusage)
2534 2535 2536
			retry_count--;
		else
			oldusage = curusage;
2537 2538
	} while (retry_count);

2539 2540
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2541

2542 2543 2544
	return ret;
}

L
Li Zefan 已提交
2545
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2546
					 unsigned long limit)
2547
{
2548 2549 2550
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
2551
	int retry_count;
2552
	int ret;
2553

2554
	/* see mem_cgroup_resize_res_limit */
2555 2556 2557 2558 2559 2560
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);

	oldusage = page_counter_read(&memcg->memsw);

	do {
2561 2562 2563 2564
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2565 2566 2567 2568

		mutex_lock(&memcg_limit_mutex);
		if (limit < memcg->memory.limit) {
			mutex_unlock(&memcg_limit_mutex);
2569 2570 2571
			ret = -EINVAL;
			break;
		}
2572 2573 2574 2575
		if (limit > memcg->memsw.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memsw, limit);
		mutex_unlock(&memcg_limit_mutex);
2576 2577 2578 2579

		if (!ret)
			break;

2580 2581
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);

2582
		curusage = page_counter_read(&memcg->memsw);
2583
		/* Usage is reduced ? */
2584
		if (curusage >= oldusage)
2585
			retry_count--;
2586 2587
		else
			oldusage = curusage;
2588 2589
	} while (retry_count);

2590 2591
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2592

2593 2594 2595
	return ret;
}

2596 2597 2598 2599 2600 2601 2602 2603 2604
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
2605
	unsigned long excess;
2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
2630
		spin_lock_irq(&mctz->lock);
2631
		__mem_cgroup_remove_exceeded(mz, mctz);
2632 2633 2634 2635 2636 2637

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
2638 2639 2640
		if (!reclaimed)
			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);

2641
		excess = soft_limit_excess(mz->memcg);
2642 2643 2644 2645 2646 2647 2648 2649 2650
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
2651
		__mem_cgroup_insert_exceeded(mz, mctz, excess);
2652
		spin_unlock_irq(&mctz->lock);
2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

2670 2671 2672 2673 2674 2675
/*
 * Test whether @memcg has children, dead or alive.  Note that this
 * function doesn't care whether @memcg has use_hierarchy enabled and
 * returns %true if there are child csses according to the cgroup
 * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
 */
2676 2677
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
2678 2679 2680 2681 2682 2683
	bool ret;

	rcu_read_lock();
	ret = css_next_child(NULL, &memcg->css);
	rcu_read_unlock();
	return ret;
2684 2685
}

2686 2687 2688 2689 2690 2691 2692 2693 2694 2695
/*
 * Reclaims as many pages from the given memcg as possible and moves
 * the rest to the parent.
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;

2696 2697
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
2698
	/* try to free all pages in this cgroup */
2699
	while (nr_retries && page_counter_read(&memcg->memory)) {
2700
		int progress;
2701

2702 2703 2704
		if (signal_pending(current))
			return -EINTR;

2705 2706
		progress = try_to_free_mem_cgroup_pages(memcg, 1,
							GFP_KERNEL, true);
2707
		if (!progress) {
2708
			nr_retries--;
2709
			/* maybe some writeback is necessary */
2710
			congestion_wait(BLK_RW_ASYNC, HZ/10);
2711
		}
2712 2713

	}
2714 2715

	return 0;
2716 2717
}

2718 2719 2720
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
					    char *buf, size_t nbytes,
					    loff_t off)
2721
{
2722
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2723

2724 2725
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
2726
	return mem_cgroup_force_empty(memcg) ?: nbytes;
2727 2728
}

2729 2730
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
2731
{
2732
	return mem_cgroup_from_css(css)->use_hierarchy;
2733 2734
}

2735 2736
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
2737 2738
{
	int retval = 0;
2739
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
2740
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2741

2742
	if (memcg->use_hierarchy == val)
2743
		return 0;
2744

2745
	/*
2746
	 * If parent's use_hierarchy is set, we can't make any modifications
2747 2748 2749 2750 2751 2752
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
2753
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2754
				(val == 1 || val == 0)) {
2755
		if (!memcg_has_children(memcg))
2756
			memcg->use_hierarchy = val;
2757 2758 2759 2760
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
2761

2762 2763 2764
	return retval;
}

2765 2766
static unsigned long tree_stat(struct mem_cgroup *memcg,
			       enum mem_cgroup_stat_index idx)
2767 2768
{
	struct mem_cgroup *iter;
2769
	unsigned long val = 0;
2770 2771 2772 2773 2774 2775 2776

	for_each_mem_cgroup_tree(iter, memcg)
		val += mem_cgroup_read_stat(iter, idx);

	return val;
}

2777
static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2778
{
2779
	unsigned long val;
2780

2781 2782 2783 2784 2785 2786
	if (mem_cgroup_is_root(memcg)) {
		val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
		val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
		if (swap)
			val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
	} else {
2787
		if (!swap)
2788
			val = page_counter_read(&memcg->memory);
2789
		else
2790
			val = page_counter_read(&memcg->memsw);
2791
	}
2792
	return val;
2793 2794
}

2795 2796 2797 2798 2799 2800 2801
enum {
	RES_USAGE,
	RES_LIMIT,
	RES_MAX_USAGE,
	RES_FAILCNT,
	RES_SOFT_LIMIT,
};
2802

2803
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2804
			       struct cftype *cft)
B
Balbir Singh 已提交
2805
{
2806
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2807
	struct page_counter *counter;
2808

2809
	switch (MEMFILE_TYPE(cft->private)) {
2810
	case _MEM:
2811 2812
		counter = &memcg->memory;
		break;
2813
	case _MEMSWAP:
2814 2815
		counter = &memcg->memsw;
		break;
2816
	case _KMEM:
2817
		counter = &memcg->kmem;
2818
		break;
V
Vladimir Davydov 已提交
2819
	case _TCP:
2820
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
2821
		break;
2822 2823 2824
	default:
		BUG();
	}
2825 2826 2827 2828

	switch (MEMFILE_ATTR(cft->private)) {
	case RES_USAGE:
		if (counter == &memcg->memory)
2829
			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2830
		if (counter == &memcg->memsw)
2831
			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843
		return (u64)page_counter_read(counter) * PAGE_SIZE;
	case RES_LIMIT:
		return (u64)counter->limit * PAGE_SIZE;
	case RES_MAX_USAGE:
		return (u64)counter->watermark * PAGE_SIZE;
	case RES_FAILCNT:
		return counter->failcnt;
	case RES_SOFT_LIMIT:
		return (u64)memcg->soft_limit * PAGE_SIZE;
	default:
		BUG();
	}
B
Balbir Singh 已提交
2844
}
2845

2846
#ifndef CONFIG_SLOB
2847
static int memcg_online_kmem(struct mem_cgroup *memcg)
2848 2849 2850
{
	int memcg_id;

2851
	BUG_ON(memcg->kmemcg_id >= 0);
2852
	BUG_ON(memcg->kmem_state);
2853

2854
	memcg_id = memcg_alloc_cache_id();
2855 2856
	if (memcg_id < 0)
		return memcg_id;
2857

2858
	static_branch_inc(&memcg_kmem_enabled_key);
2859
	/*
2860
	 * A memory cgroup is considered kmem-online as soon as it gets
V
Vladimir Davydov 已提交
2861
	 * kmemcg_id. Setting the id after enabling static branching will
2862 2863 2864
	 * guarantee no one starts accounting before all call sites are
	 * patched.
	 */
V
Vladimir Davydov 已提交
2865
	memcg->kmemcg_id = memcg_id;
2866
	memcg->kmem_state = KMEM_ONLINE;
2867 2868

	return 0;
2869 2870
}

2871 2872
static int memcg_propagate_kmem(struct mem_cgroup *parent,
				struct mem_cgroup *memcg)
2873
{
2874 2875
	int ret = 0;

2876
	mutex_lock(&memcg_limit_mutex);
2877
	/*
2878 2879 2880
	 * If the parent cgroup is not kmem-online now, it cannot be
	 * onlined after this point, because it has at least one child
	 * already.
2881
	 */
2882 2883
	if (memcg_kmem_online(parent) ||
	    (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nokmem))
2884
		ret = memcg_online_kmem(memcg);
2885
	mutex_unlock(&memcg_limit_mutex);
2886
	return ret;
2887
}
2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935

static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
	struct cgroup_subsys_state *css;
	struct mem_cgroup *parent, *child;
	int kmemcg_id;

	if (memcg->kmem_state != KMEM_ONLINE)
		return;
	/*
	 * Clear the online state before clearing memcg_caches array
	 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
	 * guarantees that no cache will be created for this cgroup
	 * after we are done (see memcg_create_kmem_cache()).
	 */
	memcg->kmem_state = KMEM_ALLOCATED;

	memcg_deactivate_kmem_caches(memcg);

	kmemcg_id = memcg->kmemcg_id;
	BUG_ON(kmemcg_id < 0);

	parent = parent_mem_cgroup(memcg);
	if (!parent)
		parent = root_mem_cgroup;

	/*
	 * Change kmemcg_id of this cgroup and all its descendants to the
	 * parent's id, and then move all entries from this cgroup's list_lrus
	 * to ones of the parent. After we have finished, all list_lrus
	 * corresponding to this cgroup are guaranteed to remain empty. The
	 * ordering is imposed by list_lru_node->lock taken by
	 * memcg_drain_all_list_lrus().
	 */
	css_for_each_descendant_pre(css, &memcg->css) {
		child = mem_cgroup_from_css(css);
		BUG_ON(child->kmemcg_id != kmemcg_id);
		child->kmemcg_id = parent->kmemcg_id;
		if (!memcg->use_hierarchy)
			break;
	}
	memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);

	memcg_free_cache_id(kmemcg_id);
}

static void memcg_free_kmem(struct mem_cgroup *memcg)
{
2936 2937 2938 2939
	/* css_alloc() failed, offlining didn't happen */
	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
		memcg_offline_kmem(memcg);

2940 2941 2942 2943 2944 2945
	if (memcg->kmem_state == KMEM_ALLOCATED) {
		memcg_destroy_kmem_caches(memcg);
		static_branch_dec(&memcg_kmem_enabled_key);
		WARN_ON(page_counter_read(&memcg->kmem));
	}
}
2946
#else
2947 2948 2949 2950 2951
static int memcg_propagate_kmem(struct mem_cgroup *parent, struct mem_cgroup *memcg)
{
	return 0;
}
static int memcg_online_kmem(struct mem_cgroup *memcg)
2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962
{
	return 0;
}
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
}
static void memcg_free_kmem(struct mem_cgroup *memcg)
{
}
#endif /* !CONFIG_SLOB */

2963
static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2964
				   unsigned long limit)
2965
{
2966
	int ret = 0;
2967 2968 2969 2970

	mutex_lock(&memcg_limit_mutex);
	/* Top-level cgroup doesn't propagate from root */
	if (!memcg_kmem_online(memcg)) {
2971 2972 2973 2974 2975
		if (cgroup_is_populated(memcg->css.cgroup) ||
		    (memcg->use_hierarchy && memcg_has_children(memcg)))
			ret = -EBUSY;
		if (ret)
			goto out;
2976 2977 2978 2979 2980 2981 2982 2983
		ret = memcg_online_kmem(memcg);
		if (ret)
			goto out;
	}
	ret = page_counter_limit(&memcg->kmem, limit);
out:
	mutex_unlock(&memcg_limit_mutex);
	return ret;
2984
}
2985

V
Vladimir Davydov 已提交
2986 2987 2988 2989 2990 2991
static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
{
	int ret;

	mutex_lock(&memcg_limit_mutex);

2992
	ret = page_counter_limit(&memcg->tcpmem, limit);
V
Vladimir Davydov 已提交
2993 2994 2995
	if (ret)
		goto out;

2996
	if (!memcg->tcpmem_active) {
V
Vladimir Davydov 已提交
2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013
		/*
		 * The active flag needs to be written after the static_key
		 * update. This is what guarantees that the socket activation
		 * function is the last one to run. See sock_update_memcg() for
		 * details, and note that we don't mark any socket as belonging
		 * to this memcg until that flag is up.
		 *
		 * We need to do this, because static_keys will span multiple
		 * sites, but we can't control their order. If we mark a socket
		 * as accounted, but the accounting functions are not patched in
		 * yet, we'll lose accounting.
		 *
		 * We never race with the readers in sock_update_memcg(),
		 * because when this value change, the code to process it is not
		 * patched in yet.
		 */
		static_branch_inc(&memcg_sockets_enabled_key);
3014
		memcg->tcpmem_active = true;
V
Vladimir Davydov 已提交
3015 3016 3017 3018 3019 3020
	}
out:
	mutex_unlock(&memcg_limit_mutex);
	return ret;
}

3021 3022 3023 3024
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3025 3026
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
B
Balbir Singh 已提交
3027
{
3028
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3029
	unsigned long nr_pages;
3030 3031
	int ret;

3032
	buf = strstrip(buf);
3033
	ret = page_counter_memparse(buf, "-1", &nr_pages);
3034 3035
	if (ret)
		return ret;
3036

3037
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3038
	case RES_LIMIT:
3039 3040 3041 3042
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3043 3044 3045
		switch (MEMFILE_TYPE(of_cft(of)->private)) {
		case _MEM:
			ret = mem_cgroup_resize_limit(memcg, nr_pages);
3046
			break;
3047 3048
		case _MEMSWAP:
			ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3049
			break;
3050 3051 3052
		case _KMEM:
			ret = memcg_update_kmem_limit(memcg, nr_pages);
			break;
V
Vladimir Davydov 已提交
3053 3054 3055
		case _TCP:
			ret = memcg_update_tcp_limit(memcg, nr_pages);
			break;
3056
		}
3057
		break;
3058 3059 3060
	case RES_SOFT_LIMIT:
		memcg->soft_limit = nr_pages;
		ret = 0;
3061 3062
		break;
	}
3063
	return ret ?: nbytes;
B
Balbir Singh 已提交
3064 3065
}

3066 3067
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
				size_t nbytes, loff_t off)
3068
{
3069
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3070
	struct page_counter *counter;
3071

3072 3073 3074 3075 3076 3077 3078 3079 3080 3081
	switch (MEMFILE_TYPE(of_cft(of)->private)) {
	case _MEM:
		counter = &memcg->memory;
		break;
	case _MEMSWAP:
		counter = &memcg->memsw;
		break;
	case _KMEM:
		counter = &memcg->kmem;
		break;
V
Vladimir Davydov 已提交
3082
	case _TCP:
3083
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
3084
		break;
3085 3086 3087
	default:
		BUG();
	}
3088

3089
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3090
	case RES_MAX_USAGE:
3091
		page_counter_reset_watermark(counter);
3092 3093
		break;
	case RES_FAILCNT:
3094
		counter->failcnt = 0;
3095
		break;
3096 3097
	default:
		BUG();
3098
	}
3099

3100
	return nbytes;
3101 3102
}

3103
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3104 3105
					struct cftype *cft)
{
3106
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3107 3108
}

3109
#ifdef CONFIG_MMU
3110
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3111 3112
					struct cftype *cft, u64 val)
{
3113
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3114

3115
	if (val & ~MOVE_MASK)
3116
		return -EINVAL;
3117

3118
	/*
3119 3120 3121 3122
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
3123
	 */
3124
	memcg->move_charge_at_immigrate = val;
3125 3126
	return 0;
}
3127
#else
3128
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3129 3130 3131 3132 3133
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3134

3135
#ifdef CONFIG_NUMA
3136
static int memcg_numa_stat_show(struct seq_file *m, void *v)
3137
{
3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
3150
	int nid;
3151
	unsigned long nr;
3152
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3153

3154 3155 3156 3157 3158 3159 3160 3161 3162
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
		seq_printf(m, "%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
							  stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3163 3164
	}

3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		struct mem_cgroup *iter;

		nr = 0;
		for_each_mem_cgroup_tree(iter, memcg)
			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = 0;
			for_each_mem_cgroup_tree(iter, memcg)
				nr += mem_cgroup_node_nr_lru_pages(
					iter, nid, stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3180 3181 3182 3183 3184 3185
	}

	return 0;
}
#endif /* CONFIG_NUMA */

3186
static int memcg_stat_show(struct seq_file *m, void *v)
3187
{
3188
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3189
	unsigned long memory, memsw;
3190 3191
	struct mem_cgroup *mi;
	unsigned int i;
3192

3193 3194 3195 3196
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
		     MEM_CGROUP_STAT_NSTATS);
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
		     MEM_CGROUP_EVENTS_NSTATS);
3197 3198
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);

3199
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3200
		if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3201
			continue;
3202
		seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3203
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3204
	}
L
Lee Schermerhorn 已提交
3205

3206 3207 3208 3209 3210 3211 3212 3213
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
3214
	/* Hierarchical information */
3215 3216 3217 3218
	memory = memsw = PAGE_COUNTER_MAX;
	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
		memory = min(memory, mi->memory.limit);
		memsw = min(memsw, mi->memsw.limit);
3219
	}
3220 3221
	seq_printf(m, "hierarchical_memory_limit %llu\n",
		   (u64)memory * PAGE_SIZE);
3222
	if (do_memsw_account())
3223 3224
		seq_printf(m, "hierarchical_memsw_limit %llu\n",
			   (u64)memsw * PAGE_SIZE);
K
KOSAKI Motohiro 已提交
3225

3226
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3227
		unsigned long long val = 0;
3228

3229
		if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3230
			continue;
3231 3232
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3233
		seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3251
	}
K
KAMEZAWA Hiroyuki 已提交
3252

K
KOSAKI Motohiro 已提交
3253 3254 3255 3256
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
3257
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
3258 3259 3260 3261 3262
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3263
				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3264
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
3265

3266 3267 3268 3269
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
3270
			}
3271 3272 3273 3274
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
3275 3276 3277
	}
#endif

3278 3279 3280
	return 0;
}

3281 3282
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
3283
{
3284
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3285

3286
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
3287 3288
}

3289 3290
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
3291
{
3292
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3293

3294
	if (val > 100)
K
KOSAKI Motohiro 已提交
3295 3296
		return -EINVAL;

3297
	if (css->parent)
3298 3299 3300
		memcg->swappiness = val;
	else
		vm_swappiness = val;
3301

K
KOSAKI Motohiro 已提交
3302 3303 3304
	return 0;
}

3305 3306 3307
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
3308
	unsigned long usage;
3309 3310 3311 3312
	int i;

	rcu_read_lock();
	if (!swap)
3313
		t = rcu_dereference(memcg->thresholds.primary);
3314
	else
3315
		t = rcu_dereference(memcg->memsw_thresholds.primary);
3316 3317 3318 3319

	if (!t)
		goto unlock;

3320
	usage = mem_cgroup_usage(memcg, swap);
3321 3322

	/*
3323
	 * current_threshold points to threshold just below or equal to usage.
3324 3325 3326
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
3327
	i = t->current_threshold;
3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
3351
	t->current_threshold = i - 1;
3352 3353 3354 3355 3356 3357
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
3358 3359
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
3360
		if (do_memsw_account())
3361 3362 3363 3364
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
3365 3366 3367 3368 3369 3370 3371
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

3372 3373 3374 3375 3376 3377 3378
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
3379 3380
}

3381
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3382 3383 3384
{
	struct mem_cgroup_eventfd_list *ev;

3385 3386
	spin_lock(&memcg_oom_lock);

3387
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
3388
		eventfd_signal(ev->eventfd, 1);
3389 3390

	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3391 3392 3393
	return 0;
}

3394
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3395
{
K
KAMEZAWA Hiroyuki 已提交
3396 3397
	struct mem_cgroup *iter;

3398
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3399
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
3400 3401
}

3402
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3403
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3404
{
3405 3406
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3407 3408
	unsigned long threshold;
	unsigned long usage;
3409
	int i, size, ret;
3410

3411
	ret = page_counter_memparse(args, "-1", &threshold);
3412 3413 3414 3415
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
3416

3417
	if (type == _MEM) {
3418
		thresholds = &memcg->thresholds;
3419
		usage = mem_cgroup_usage(memcg, false);
3420
	} else if (type == _MEMSWAP) {
3421
		thresholds = &memcg->memsw_thresholds;
3422
		usage = mem_cgroup_usage(memcg, true);
3423
	} else
3424 3425 3426
		BUG();

	/* Check if a threshold crossed before adding a new one */
3427
	if (thresholds->primary)
3428 3429
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

3430
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3431 3432

	/* Allocate memory for new array of thresholds */
3433
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3434
			GFP_KERNEL);
3435
	if (!new) {
3436 3437 3438
		ret = -ENOMEM;
		goto unlock;
	}
3439
	new->size = size;
3440 3441

	/* Copy thresholds (if any) to new array */
3442 3443
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3444
				sizeof(struct mem_cgroup_threshold));
3445 3446
	}

3447
	/* Add new threshold */
3448 3449
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
3450 3451

	/* Sort thresholds. Registering of new threshold isn't time-critical */
3452
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3453 3454 3455
			compare_thresholds, NULL);

	/* Find current threshold */
3456
	new->current_threshold = -1;
3457
	for (i = 0; i < size; i++) {
3458
		if (new->entries[i].threshold <= usage) {
3459
			/*
3460 3461
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
3462 3463
			 * it here.
			 */
3464
			++new->current_threshold;
3465 3466
		} else
			break;
3467 3468
	}

3469 3470 3471 3472 3473
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
3474

3475
	/* To be sure that nobody uses thresholds */
3476 3477 3478 3479 3480 3481 3482 3483
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

3484
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3485 3486
	struct eventfd_ctx *eventfd, const char *args)
{
3487
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
3488 3489
}

3490
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3491 3492
	struct eventfd_ctx *eventfd, const char *args)
{
3493
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
3494 3495
}

3496
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3497
	struct eventfd_ctx *eventfd, enum res_type type)
3498
{
3499 3500
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3501
	unsigned long usage;
3502
	int i, j, size;
3503 3504

	mutex_lock(&memcg->thresholds_lock);
3505 3506

	if (type == _MEM) {
3507
		thresholds = &memcg->thresholds;
3508
		usage = mem_cgroup_usage(memcg, false);
3509
	} else if (type == _MEMSWAP) {
3510
		thresholds = &memcg->memsw_thresholds;
3511
		usage = mem_cgroup_usage(memcg, true);
3512
	} else
3513 3514
		BUG();

3515 3516 3517
	if (!thresholds->primary)
		goto unlock;

3518 3519 3520 3521
	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
3522 3523 3524
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
3525 3526 3527
			size++;
	}

3528
	new = thresholds->spare;
3529

3530 3531
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
3532 3533
		kfree(new);
		new = NULL;
3534
		goto swap_buffers;
3535 3536
	}

3537
	new->size = size;
3538 3539

	/* Copy thresholds and find current threshold */
3540 3541 3542
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
3543 3544
			continue;

3545
		new->entries[j] = thresholds->primary->entries[i];
3546
		if (new->entries[j].threshold <= usage) {
3547
			/*
3548
			 * new->current_threshold will not be used
3549 3550 3551
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
3552
			++new->current_threshold;
3553 3554 3555 3556
		}
		j++;
	}

3557
swap_buffers:
3558 3559
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
3560

3561
	rcu_assign_pointer(thresholds->primary, new);
3562

3563
	/* To be sure that nobody uses thresholds */
3564
	synchronize_rcu();
3565 3566 3567 3568 3569 3570

	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}
3571
unlock:
3572 3573
	mutex_unlock(&memcg->thresholds_lock);
}
3574

3575
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3576 3577
	struct eventfd_ctx *eventfd)
{
3578
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
3579 3580
}

3581
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3582 3583
	struct eventfd_ctx *eventfd)
{
3584
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
3585 3586
}

3587
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3588
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
3589 3590 3591 3592 3593 3594 3595
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

3596
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3597 3598 3599 3600 3601

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
3602
	if (memcg->under_oom)
K
KAMEZAWA Hiroyuki 已提交
3603
		eventfd_signal(eventfd, 1);
3604
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3605 3606 3607 3608

	return 0;
}

3609
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3610
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
3611 3612 3613
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

3614
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3615

3616
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
3617 3618 3619 3620 3621 3622
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

3623
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3624 3625
}

3626
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3627
{
3628
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3629

3630
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3631
	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3632 3633 3634
	return 0;
}

3635
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3636 3637
	struct cftype *cft, u64 val)
{
3638
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3639 3640

	/* cannot set to root cgroup and only 0 and 1 are allowed */
3641
	if (!css->parent || !((val == 0) || (val == 1)))
3642 3643
		return -EINVAL;

3644
	memcg->oom_kill_disable = val;
3645
	if (!val)
3646
		memcg_oom_recover(memcg);
3647

3648 3649 3650
	return 0;
}

3651 3652 3653 3654 3655 3656 3657
#ifdef CONFIG_CGROUP_WRITEBACK

struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
{
	return &memcg->cgwb_list;
}

T
Tejun Heo 已提交
3658 3659 3660 3661 3662 3663 3664 3665 3666 3667
static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return wb_domain_init(&memcg->cgwb_domain, gfp);
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
	wb_domain_exit(&memcg->cgwb_domain);
}

3668 3669 3670 3671 3672
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
	wb_domain_size_changed(&memcg->cgwb_domain);
}

T
Tejun Heo 已提交
3673 3674 3675 3676 3677 3678 3679 3680 3681 3682
struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);

	if (!memcg->css.parent)
		return NULL;

	return &memcg->cgwb_domain;
}

3683 3684 3685
/**
 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
 * @wb: bdi_writeback in question
3686 3687
 * @pfilepages: out parameter for number of file pages
 * @pheadroom: out parameter for number of allocatable pages according to memcg
3688 3689 3690
 * @pdirty: out parameter for number of dirty pages
 * @pwriteback: out parameter for number of pages under writeback
 *
3691 3692 3693
 * Determine the numbers of file, headroom, dirty, and writeback pages in
 * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
 * is a bit more involved.
3694
 *
3695 3696 3697 3698 3699
 * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
 * headroom is calculated as the lowest headroom of itself and the
 * ancestors.  Note that this doesn't consider the actual amount of
 * available memory in the system.  The caller should further cap
 * *@pheadroom accordingly.
3700
 */
3701 3702 3703
void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
			 unsigned long *pheadroom, unsigned long *pdirty,
			 unsigned long *pwriteback)
3704 3705 3706 3707 3708 3709 3710 3711
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
	struct mem_cgroup *parent;

	*pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);

	/* this should eventually include NR_UNSTABLE_NFS */
	*pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3712 3713 3714
	*pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
						     (1 << LRU_ACTIVE_FILE));
	*pheadroom = PAGE_COUNTER_MAX;
3715 3716 3717 3718 3719

	while ((parent = parent_mem_cgroup(memcg))) {
		unsigned long ceiling = min(memcg->memory.limit, memcg->high);
		unsigned long used = page_counter_read(&memcg->memory);

3720
		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3721 3722 3723 3724
		memcg = parent;
	}
}

T
Tejun Heo 已提交
3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735
#else	/* CONFIG_CGROUP_WRITEBACK */

static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return 0;
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
}

3736 3737 3738 3739
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
}

3740 3741
#endif	/* CONFIG_CGROUP_WRITEBACK */

3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

3755 3756 3757 3758 3759
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
3760
static void memcg_event_remove(struct work_struct *work)
3761
{
3762 3763
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
3764
	struct mem_cgroup *memcg = event->memcg;
3765 3766 3767

	remove_wait_queue(event->wqh, &event->wait);

3768
	event->unregister_event(memcg, event->eventfd);
3769 3770 3771 3772 3773 3774

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
3775
	css_put(&memcg->css);
3776 3777 3778 3779 3780 3781 3782
}

/*
 * Gets called on POLLHUP on eventfd when user closes it.
 *
 * Called with wqh->lock held and interrupts disabled.
 */
3783 3784
static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
			    int sync, void *key)
3785
{
3786 3787
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
3788
	struct mem_cgroup *memcg = event->memcg;
3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800
	unsigned long flags = (unsigned long)key;

	if (flags & POLLHUP) {
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
3801
		spin_lock(&memcg->event_list_lock);
3802 3803 3804 3805 3806 3807 3808 3809
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
3810
		spin_unlock(&memcg->event_list_lock);
3811 3812 3813 3814 3815
	}

	return 0;
}

3816
static void memcg_event_ptable_queue_proc(struct file *file,
3817 3818
		wait_queue_head_t *wqh, poll_table *pt)
{
3819 3820
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
3821 3822 3823 3824 3825 3826

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
3827 3828
 * DO NOT USE IN NEW FILES.
 *
3829 3830 3831 3832 3833
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
3834 3835
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
					 char *buf, size_t nbytes, loff_t off)
3836
{
3837
	struct cgroup_subsys_state *css = of_css(of);
3838
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3839
	struct mem_cgroup_event *event;
3840 3841 3842 3843
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
3844
	const char *name;
3845 3846 3847
	char *endp;
	int ret;

3848 3849 3850
	buf = strstrip(buf);

	efd = simple_strtoul(buf, &endp, 10);
3851 3852
	if (*endp != ' ')
		return -EINVAL;
3853
	buf = endp + 1;
3854

3855
	cfd = simple_strtoul(buf, &endp, 10);
3856 3857
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
3858
	buf = endp + 1;
3859 3860 3861 3862 3863

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

3864
	event->memcg = memcg;
3865
	INIT_LIST_HEAD(&event->list);
3866 3867 3868
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
	if (ret < 0)
		goto out_put_cfile;

3894 3895 3896 3897 3898
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
3899 3900
	 *
	 * DO NOT ADD NEW FILES.
3901
	 */
A
Al Viro 已提交
3902
	name = cfile.file->f_path.dentry->d_name.name;
3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
3914 3915
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
3916 3917 3918 3919 3920
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

3921
	/*
3922 3923 3924
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
3925
	 */
A
Al Viro 已提交
3926
	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3927
					       &memory_cgrp_subsys);
3928
	ret = -EINVAL;
3929
	if (IS_ERR(cfile_css))
3930
		goto out_put_cfile;
3931 3932
	if (cfile_css != css) {
		css_put(cfile_css);
3933
		goto out_put_cfile;
3934
	}
3935

3936
	ret = event->register_event(memcg, event->eventfd, buf);
3937 3938 3939 3940 3941
	if (ret)
		goto out_put_css;

	efile.file->f_op->poll(efile.file, &event->pt);

3942 3943 3944
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
3945 3946 3947 3948

	fdput(cfile);
	fdput(efile);

3949
	return nbytes;
3950 3951

out_put_css:
3952
	css_put(css);
3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

3965
static struct cftype mem_cgroup_legacy_files[] = {
B
Balbir Singh 已提交
3966
	{
3967
		.name = "usage_in_bytes",
3968
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3969
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
3970
	},
3971 3972
	{
		.name = "max_usage_in_bytes",
3973
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3974
		.write = mem_cgroup_reset,
3975
		.read_u64 = mem_cgroup_read_u64,
3976
	},
B
Balbir Singh 已提交
3977
	{
3978
		.name = "limit_in_bytes",
3979
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3980
		.write = mem_cgroup_write,
3981
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
3982
	},
3983 3984 3985
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3986
		.write = mem_cgroup_write,
3987
		.read_u64 = mem_cgroup_read_u64,
3988
	},
B
Balbir Singh 已提交
3989 3990
	{
		.name = "failcnt",
3991
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3992
		.write = mem_cgroup_reset,
3993
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
3994
	},
3995 3996
	{
		.name = "stat",
3997
		.seq_show = memcg_stat_show,
3998
	},
3999 4000
	{
		.name = "force_empty",
4001
		.write = mem_cgroup_force_empty_write,
4002
	},
4003 4004 4005 4006 4007
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
4008
	{
4009
		.name = "cgroup.event_control",		/* XXX: for compat */
4010
		.write = memcg_write_event_control,
4011
		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4012
	},
K
KOSAKI Motohiro 已提交
4013 4014 4015 4016 4017
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4018 4019 4020 4021 4022
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4023 4024
	{
		.name = "oom_control",
4025
		.seq_show = mem_cgroup_oom_control_read,
4026
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4027 4028
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4029 4030 4031
	{
		.name = "pressure_level",
	},
4032 4033 4034
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
4035
		.seq_show = memcg_numa_stat_show,
4036 4037
	},
#endif
4038 4039 4040
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4041
		.write = mem_cgroup_write,
4042
		.read_u64 = mem_cgroup_read_u64,
4043 4044 4045 4046
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4047
		.read_u64 = mem_cgroup_read_u64,
4048 4049 4050 4051
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4052
		.write = mem_cgroup_reset,
4053
		.read_u64 = mem_cgroup_read_u64,
4054 4055 4056 4057
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4058
		.write = mem_cgroup_reset,
4059
		.read_u64 = mem_cgroup_read_u64,
4060
	},
4061 4062 4063
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
4064 4065 4066 4067
		.seq_start = slab_start,
		.seq_next = slab_next,
		.seq_stop = slab_stop,
		.seq_show = memcg_slab_show,
4068 4069
	},
#endif
V
Vladimir Davydov 已提交
4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092
	{
		.name = "kmem.tcp.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.failcnt",
		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
4093
	{ },	/* terminate */
4094
};
4095

4096
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4097 4098
{
	struct mem_cgroup_per_node *pn;
4099
	struct mem_cgroup_per_zone *mz;
4100
	int zone, tmp = node;
4101 4102 4103 4104 4105 4106 4107 4108
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4109 4110
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4111
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4112 4113
	if (!pn)
		return 1;
4114 4115 4116

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4117
		lruvec_init(&mz->lruvec);
4118 4119
		mz->usage_in_excess = 0;
		mz->on_tree = false;
4120
		mz->memcg = memcg;
4121
	}
4122
	memcg->nodeinfo[node] = pn;
4123 4124 4125
	return 0;
}

4126
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4127
{
4128
	kfree(memcg->nodeinfo[node]);
4129 4130
}

4131
static void mem_cgroup_free(struct mem_cgroup *memcg)
4132
{
4133
	int node;
4134

4135
	memcg_wb_domain_exit(memcg);
4136 4137 4138
	for_each_node(node)
		free_mem_cgroup_per_zone_info(memcg, node);
	free_percpu(memcg->stat);
4139
	kfree(memcg);
4140
}
4141

4142
static struct mem_cgroup *mem_cgroup_alloc(void)
B
Balbir Singh 已提交
4143
{
4144
	struct mem_cgroup *memcg;
4145
	size_t size;
4146
	int node;
B
Balbir Singh 已提交
4147

4148 4149 4150 4151
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);

	memcg = kzalloc(size, GFP_KERNEL);
4152
	if (!memcg)
4153 4154 4155 4156 4157
		return NULL;

	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
		goto fail;
4158

B
Bob Liu 已提交
4159
	for_each_node(node)
4160
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4161
			goto fail;
4162

4163 4164
	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
		goto fail;
4165

4166
	INIT_WORK(&memcg->high_work, high_work_func);
4167 4168 4169 4170
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
4171
	vmpressure_init(&memcg->vmpressure);
4172 4173
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
4174
	memcg->socket_pressure = jiffies;
4175
#ifndef CONFIG_SLOB
V
Vladimir Davydov 已提交
4176 4177
	memcg->kmemcg_id = -1;
#endif
4178 4179 4180
#ifdef CONFIG_CGROUP_WRITEBACK
	INIT_LIST_HEAD(&memcg->cgwb_list);
#endif
4181 4182 4183 4184
	return memcg;
fail:
	mem_cgroup_free(memcg);
	return NULL;
4185 4186
}

4187 4188
static struct cgroup_subsys_state * __ref
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4189
{
4190 4191 4192
	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
	struct mem_cgroup *memcg;
	long error = -ENOMEM;
4193

4194 4195 4196
	memcg = mem_cgroup_alloc();
	if (!memcg)
		return ERR_PTR(error);
4197

4198 4199 4200 4201 4202 4203 4204 4205
	memcg->high = PAGE_COUNTER_MAX;
	memcg->soft_limit = PAGE_COUNTER_MAX;
	if (parent) {
		memcg->swappiness = mem_cgroup_swappiness(parent);
		memcg->oom_kill_disable = parent->oom_kill_disable;
	}
	if (parent && parent->use_hierarchy) {
		memcg->use_hierarchy = true;
4206
		page_counter_init(&memcg->memory, &parent->memory);
4207
		page_counter_init(&memcg->swap, &parent->swap);
4208 4209
		page_counter_init(&memcg->memsw, &parent->memsw);
		page_counter_init(&memcg->kmem, &parent->kmem);
4210
		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4211
	} else {
4212
		page_counter_init(&memcg->memory, NULL);
4213
		page_counter_init(&memcg->swap, NULL);
4214 4215
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
4216
		page_counter_init(&memcg->tcpmem, NULL);
4217 4218 4219 4220 4221
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
4222
		if (parent != root_mem_cgroup)
4223
			memory_cgrp_subsys.broken_hierarchy = true;
4224
	}
4225

4226 4227 4228 4229 4230 4231 4232 4233 4234
	/* The following stuff does not apply to the root */
	if (!parent) {
		root_mem_cgroup = memcg;
		return &memcg->css;
	}

	error = memcg_propagate_kmem(parent, memcg);
	if (error)
		goto fail;
4235

4236
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4237
		static_branch_inc(&memcg_sockets_enabled_key);
4238

4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249
	return &memcg->css;
fail:
	mem_cgroup_free(memcg);
	return NULL;
}

static int
mem_cgroup_css_online(struct cgroup_subsys_state *css)
{
	if (css->id > MEM_CGROUP_ID_MAX)
		return -ENOSPC;
4250 4251

	return 0;
B
Balbir Singh 已提交
4252 4253
}

4254
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4255
{
4256
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4257
	struct mem_cgroup_event *event, *tmp;
4258 4259 4260 4261 4262 4263

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
4264 4265
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4266 4267 4268
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
4269
	spin_unlock(&memcg->event_list_lock);
4270

4271
	memcg_offline_kmem(memcg);
4272
	wb_memcg_offline(memcg);
4273 4274
}

4275 4276 4277 4278 4279 4280 4281
static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	invalidate_reclaim_iterators(memcg);
}

4282
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
4283
{
4284
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4285

4286
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4287
		static_branch_dec(&memcg_sockets_enabled_key);
4288

4289
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
V
Vladimir Davydov 已提交
4290
		static_branch_dec(&memcg_sockets_enabled_key);
4291

4292 4293 4294
	vmpressure_cleanup(&memcg->vmpressure);
	cancel_work_sync(&memcg->high_work);
	mem_cgroup_remove_from_trees(memcg);
4295
	memcg_free_kmem(memcg);
4296
	mem_cgroup_free(memcg);
B
Balbir Singh 已提交
4297 4298
}

4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315
/**
 * mem_cgroup_css_reset - reset the states of a mem_cgroup
 * @css: the target css
 *
 * Reset the states of the mem_cgroup associated with @css.  This is
 * invoked when the userland requests disabling on the default hierarchy
 * but the memcg is pinned through dependency.  The memcg should stop
 * applying policies and should revert to the vanilla state as it may be
 * made visible again.
 *
 * The current implementation only resets the essential configurations.
 * This needs to be expanded to cover all the visible parts.
 */
static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

4316 4317 4318
	mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
	mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
	memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
4319 4320
	memcg->low = 0;
	memcg->high = PAGE_COUNTER_MAX;
4321
	memcg->soft_limit = PAGE_COUNTER_MAX;
4322
	memcg_wb_domain_size_changed(memcg);
4323 4324
}

4325
#ifdef CONFIG_MMU
4326
/* Handlers for move charge at task migration. */
4327
static int mem_cgroup_do_precharge(unsigned long count)
4328
{
4329
	int ret;
4330

4331 4332
	/* Try a single bulk charge without reclaim first, kswapd may wake */
	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4333
	if (!ret) {
4334 4335 4336
		mc.precharge += count;
		return ret;
	}
4337 4338

	/* Try charges one by one with reclaim */
4339
	while (count--) {
4340
		ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4341 4342
		if (ret)
			return ret;
4343
		mc.precharge++;
4344
		cond_resched();
4345
	}
4346
	return 0;
4347 4348 4349
}

/**
4350
 * get_mctgt_type - get target type of moving charge
4351 4352 4353
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
4354
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4355 4356 4357 4358 4359 4360
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
4361 4362 4363
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
4364 4365 4366 4367 4368
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
4369
	swp_entry_t	ent;
4370 4371 4372
};

enum mc_target_type {
4373
	MC_TARGET_NONE = 0,
4374
	MC_TARGET_PAGE,
4375
	MC_TARGET_SWAP,
4376 4377
};

D
Daisuke Nishimura 已提交
4378 4379
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
4380
{
D
Daisuke Nishimura 已提交
4381
	struct page *page = vm_normal_page(vma, addr, ptent);
4382

D
Daisuke Nishimura 已提交
4383 4384 4385
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
4386
		if (!(mc.flags & MOVE_ANON))
D
Daisuke Nishimura 已提交
4387
			return NULL;
4388 4389 4390 4391
	} else {
		if (!(mc.flags & MOVE_FILE))
			return NULL;
	}
D
Daisuke Nishimura 已提交
4392 4393 4394 4395 4396 4397
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

4398
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
4399 4400 4401 4402 4403 4404
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

4405
	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
D
Daisuke Nishimura 已提交
4406
		return NULL;
4407 4408 4409 4410
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
4411
	page = find_get_page(swap_address_space(ent), ent.val);
4412
	if (do_memsw_account())
D
Daisuke Nishimura 已提交
4413 4414 4415 4416
		entry->val = ent.val;

	return page;
}
4417 4418 4419 4420 4421 4422 4423
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
4424

4425 4426 4427 4428 4429 4430 4431 4432 4433
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
4434
	if (!(mc.flags & MOVE_FILE))
4435 4436 4437
		return NULL;

	mapping = vma->vm_file->f_mapping;
4438
	pgoff = linear_page_index(vma, addr);
4439 4440

	/* page is moved even if it's not RSS of this task(page-faulted). */
4441 4442
#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
4443 4444 4445 4446
	if (shmem_mapping(mapping)) {
		page = find_get_entry(mapping, pgoff);
		if (radix_tree_exceptional_entry(page)) {
			swp_entry_t swp = radix_to_swp_entry(page);
4447
			if (do_memsw_account())
4448 4449 4450 4451 4452 4453 4454
				*entry = swp;
			page = find_get_page(swap_address_space(swp), swp.val);
		}
	} else
		page = find_get_page(mapping, pgoff);
#else
	page = find_get_page(mapping, pgoff);
4455
#endif
4456 4457 4458
	return page;
}

4459 4460 4461 4462 4463 4464 4465
/**
 * mem_cgroup_move_account - move account of the page
 * @page: the page
 * @nr_pages: number of regular pages (>1 for huge pages)
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
4466
 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4467 4468 4469 4470 4471
 *
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
 */
static int mem_cgroup_move_account(struct page *page,
4472
				   bool compound,
4473 4474 4475 4476
				   struct mem_cgroup *from,
				   struct mem_cgroup *to)
{
	unsigned long flags;
4477
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4478
	int ret;
4479
	bool anon;
4480 4481 4482

	VM_BUG_ON(from == to);
	VM_BUG_ON_PAGE(PageLRU(page), page);
4483
	VM_BUG_ON(compound && !PageTransHuge(page));
4484 4485

	/*
4486 4487
	 * Prevent mem_cgroup_replace_page() from looking at
	 * page->mem_cgroup of its source page while we change it.
4488
	 */
4489
	ret = -EBUSY;
4490 4491 4492 4493 4494 4495 4496
	if (!trylock_page(page))
		goto out;

	ret = -EINVAL;
	if (page->mem_cgroup != from)
		goto out_unlock;

4497 4498
	anon = PageAnon(page);

4499 4500
	spin_lock_irqsave(&from->move_lock, flags);

4501
	if (!anon && page_mapped(page)) {
4502 4503 4504 4505 4506 4507
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
	}

4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523
	/*
	 * move_lock grabbed above and caller set from->moving_account, so
	 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
	 * So mapping should be stable for dirty pages.
	 */
	if (!anon && PageDirty(page)) {
		struct address_space *mapping = page_mapping(page);

		if (mapping_cap_account_dirty(mapping)) {
			__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
				       nr_pages);
			__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
				       nr_pages);
		}
	}

4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543
	if (PageWriteback(page)) {
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
	}

	/*
	 * It is safe to change page->mem_cgroup here because the page
	 * is referenced, charged, and isolated - we can't race with
	 * uncharging, charging, migration, or LRU putback.
	 */

	/* caller should have done css_get */
	page->mem_cgroup = to;
	spin_unlock_irqrestore(&from->move_lock, flags);

	ret = 0;

	local_irq_disable();
4544
	mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4545
	memcg_check_events(to, page);
4546
	mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4547 4548 4549 4550 4551 4552 4553 4554
	memcg_check_events(from, page);
	local_irq_enable();
out_unlock:
	unlock_page(page);
out:
	return ret;
}

4555
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
4556 4557 4558
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
4559
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
4560 4561 4562 4563 4564 4565
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4566
	else if (pte_none(ptent))
4567
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
4568 4569

	if (!page && !ent.val)
4570
		return ret;
4571 4572
	if (page) {
		/*
4573
		 * Do only loose check w/o serialization.
4574
		 * mem_cgroup_move_account() checks the page is valid or
4575
		 * not under LRU exclusion.
4576
		 */
4577
		if (page->mem_cgroup == mc.from) {
4578 4579 4580 4581 4582 4583 4584
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
4585 4586
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
L
Li Zefan 已提交
4587
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4588 4589 4590
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
4591 4592 4593 4594
	}
	return ret;
}

4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
4608
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4609
	if (!(mc.flags & MOVE_ANON))
4610
		return ret;
4611
	if (page->mem_cgroup == mc.from) {
4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

4628 4629 4630 4631
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
4632
	struct vm_area_struct *vma = walk->vma;
4633 4634 4635
	pte_t *pte;
	spinlock_t *ptl;

4636
	if (pmd_trans_huge_lock(pmd, vma, &ptl)) {
4637 4638
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
4639
		spin_unlock(ptl);
4640
		return 0;
4641
	}
4642

4643 4644
	if (pmd_trans_unstable(pmd))
		return 0;
4645 4646
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
4647
		if (get_mctgt_type(vma, addr, *pte, NULL))
4648 4649 4650 4651
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

4652 4653 4654
	return 0;
}

4655 4656 4657 4658
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;

4659 4660 4661 4662
	struct mm_walk mem_cgroup_count_precharge_walk = {
		.pmd_entry = mem_cgroup_count_precharge_pte_range,
		.mm = mm,
	};
4663
	down_read(&mm->mmap_sem);
4664
	walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4665
	up_read(&mm->mmap_sem);
4666 4667 4668 4669 4670 4671 4672 4673 4674

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
4675 4676 4677 4678 4679
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
4680 4681
}

4682 4683
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
4684
{
4685 4686 4687
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

4688
	/* we must uncharge all the leftover precharges from mc.to */
4689
	if (mc.precharge) {
4690
		cancel_charge(mc.to, mc.precharge);
4691 4692 4693 4694 4695 4696 4697
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
4698
		cancel_charge(mc.from, mc.moved_charge);
4699
		mc.moved_charge = 0;
4700
	}
4701 4702 4703
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
4704
		if (!mem_cgroup_is_root(mc.from))
4705
			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4706

4707
		/*
4708 4709
		 * we charged both to->memory and to->memsw, so we
		 * should uncharge to->memory.
4710
		 */
4711
		if (!mem_cgroup_is_root(mc.to))
4712 4713
			page_counter_uncharge(&mc.to->memory, mc.moved_swap);

4714
		css_put_many(&mc.from->css, mc.moved_swap);
4715

L
Li Zefan 已提交
4716
		/* we've already done css_get(mc.to) */
4717 4718
		mc.moved_swap = 0;
	}
4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
4732
	spin_lock(&mc.lock);
4733 4734
	mc.from = NULL;
	mc.to = NULL;
4735
	spin_unlock(&mc.lock);
4736 4737
}

4738
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4739
{
4740
	struct cgroup_subsys_state *css;
4741
	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4742
	struct mem_cgroup *from;
4743
	struct task_struct *leader, *p;
4744
	struct mm_struct *mm;
4745
	unsigned long move_flags;
4746
	int ret = 0;
4747

4748 4749
	/* charge immigration isn't supported on the default hierarchy */
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4750 4751
		return 0;

4752 4753 4754 4755 4756 4757 4758
	/*
	 * Multi-process migrations only happen on the default hierarchy
	 * where charge immigration is not used.  Perform charge
	 * immigration if @tset contains a leader and whine if there are
	 * multiple.
	 */
	p = NULL;
4759
	cgroup_taskset_for_each_leader(leader, css, tset) {
4760 4761
		WARN_ON_ONCE(p);
		p = leader;
4762
		memcg = mem_cgroup_from_css(css);
4763 4764 4765 4766
	}
	if (!p)
		return 0;

4767 4768 4769 4770 4771 4772 4773 4774 4775
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
	if (!move_flags)
		return 0;

4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800
	from = mem_cgroup_from_task(p);

	VM_BUG_ON(from == memcg);

	mm = get_task_mm(p);
	if (!mm)
		return 0;
	/* We move charges only when we move a owner of the mm */
	if (mm->owner == p) {
		VM_BUG_ON(mc.from);
		VM_BUG_ON(mc.to);
		VM_BUG_ON(mc.precharge);
		VM_BUG_ON(mc.moved_charge);
		VM_BUG_ON(mc.moved_swap);

		spin_lock(&mc.lock);
		mc.from = from;
		mc.to = memcg;
		mc.flags = move_flags;
		spin_unlock(&mc.lock);
		/* We set mc.moving_task later */

		ret = mem_cgroup_precharge_mc(mm);
		if (ret)
			mem_cgroup_clear_mc();
4801
	}
4802
	mmput(mm);
4803 4804 4805
	return ret;
}

4806
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4807
{
4808 4809
	if (mc.to)
		mem_cgroup_clear_mc();
4810 4811
}

4812 4813 4814
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
4815
{
4816
	int ret = 0;
4817
	struct vm_area_struct *vma = walk->vma;
4818 4819
	pte_t *pte;
	spinlock_t *ptl;
4820 4821 4822
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
4823

4824
	if (pmd_trans_huge_lock(pmd, vma, &ptl)) {
4825
		if (mc.precharge < HPAGE_PMD_NR) {
4826
			spin_unlock(ptl);
4827 4828 4829 4830 4831 4832
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
4833
				if (!mem_cgroup_move_account(page, true,
4834
							     mc.from, mc.to)) {
4835 4836 4837 4838 4839 4840 4841
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
4842
		spin_unlock(ptl);
4843
		return 0;
4844 4845
	}

4846 4847
	if (pmd_trans_unstable(pmd))
		return 0;
4848 4849 4850 4851
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
4852
		swp_entry_t ent;
4853 4854 4855 4856

		if (!mc.precharge)
			break;

4857
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
4858 4859
		case MC_TARGET_PAGE:
			page = target.page;
4860 4861 4862 4863 4864 4865 4866 4867
			/*
			 * We can have a part of the split pmd here. Moving it
			 * can be done but it would be too convoluted so simply
			 * ignore such a partial THP and keep it in original
			 * memcg. There should be somebody mapping the head.
			 */
			if (PageTransCompound(page))
				goto put;
4868 4869
			if (isolate_lru_page(page))
				goto put;
4870 4871
			if (!mem_cgroup_move_account(page, false,
						mc.from, mc.to)) {
4872
				mc.precharge--;
4873 4874
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
4875 4876
			}
			putback_lru_page(page);
4877
put:			/* get_mctgt_type() gets the page */
4878 4879
			put_page(page);
			break;
4880 4881
		case MC_TARGET_SWAP:
			ent = target.ent;
4882
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4883
				mc.precharge--;
4884 4885 4886
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
4887
			break;
4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
4902
		ret = mem_cgroup_do_precharge(1);
4903 4904 4905 4906 4907 4908 4909 4910 4911
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
4912 4913 4914 4915
	struct mm_walk mem_cgroup_move_charge_walk = {
		.pmd_entry = mem_cgroup_move_charge_pte_range,
		.mm = mm,
	};
4916 4917

	lru_add_drain_all();
4918 4919 4920 4921 4922 4923 4924
	/*
	 * Signal mem_cgroup_begin_page_stat() to take the memcg's
	 * move_lock while we're moving its pages to another memcg.
	 * Then wait for already started RCU-only updates to finish.
	 */
	atomic_inc(&mc.from->moving_account);
	synchronize_rcu();
4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
4938 4939 4940 4941 4942
	/*
	 * When we have consumed all precharges and failed in doing
	 * additional charge, the page walk just aborts.
	 */
	walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
4943
	up_read(&mm->mmap_sem);
4944
	atomic_dec(&mc.from->moving_account);
4945 4946
}

4947
static void mem_cgroup_move_task(struct cgroup_taskset *tset)
B
Balbir Singh 已提交
4948
{
4949 4950
	struct cgroup_subsys_state *css;
	struct task_struct *p = cgroup_taskset_first(tset, &css);
4951
	struct mm_struct *mm = get_task_mm(p);
4952 4953

	if (mm) {
4954 4955
		if (mc.to)
			mem_cgroup_move_charge(mm);
4956 4957
		mmput(mm);
	}
4958 4959
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
4960
}
4961
#else	/* !CONFIG_MMU */
4962
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4963 4964 4965
{
	return 0;
}
4966
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4967 4968
{
}
4969
static void mem_cgroup_move_task(struct cgroup_taskset *tset)
4970 4971 4972
{
}
#endif
B
Balbir Singh 已提交
4973

4974 4975
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
4976 4977
 * to verify whether we're attached to the default hierarchy on each mount
 * attempt.
4978
 */
4979
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
4980 4981
{
	/*
4982
	 * use_hierarchy is forced on the default hierarchy.  cgroup core
4983 4984 4985
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
4986
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4987 4988 4989
		root_mem_cgroup->use_hierarchy = true;
	else
		root_mem_cgroup->use_hierarchy = false;
4990 4991
}

4992 4993 4994
static u64 memory_current_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
{
4995 4996 4997
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
4998 4999 5000 5001 5002
}

static int memory_low_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5003
	unsigned long low = READ_ONCE(memcg->low);
5004 5005

	if (low == PAGE_COUNTER_MAX)
5006
		seq_puts(m, "max\n");
5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020
	else
		seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);

	return 0;
}

static ssize_t memory_low_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long low;
	int err;

	buf = strstrip(buf);
5021
	err = page_counter_memparse(buf, "max", &low);
5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032
	if (err)
		return err;

	memcg->low = low;

	return nbytes;
}

static int memory_high_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5033
	unsigned long high = READ_ONCE(memcg->high);
5034 5035

	if (high == PAGE_COUNTER_MAX)
5036
		seq_puts(m, "max\n");
5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050
	else
		seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);

	return 0;
}

static ssize_t memory_high_write(struct kernfs_open_file *of,
				 char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long high;
	int err;

	buf = strstrip(buf);
5051
	err = page_counter_memparse(buf, "max", &high);
5052 5053 5054 5055 5056
	if (err)
		return err;

	memcg->high = high;

5057
	memcg_wb_domain_size_changed(memcg);
5058 5059 5060 5061 5062 5063
	return nbytes;
}

static int memory_max_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5064
	unsigned long max = READ_ONCE(memcg->memory.limit);
5065 5066

	if (max == PAGE_COUNTER_MAX)
5067
		seq_puts(m, "max\n");
5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081
	else
		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);

	return 0;
}

static ssize_t memory_max_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long max;
	int err;

	buf = strstrip(buf);
5082
	err = page_counter_memparse(buf, "max", &max);
5083 5084 5085 5086 5087 5088 5089
	if (err)
		return err;

	err = mem_cgroup_resize_limit(memcg, max);
	if (err)
		return err;

5090
	memcg_wb_domain_size_changed(memcg);
5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108
	return nbytes;
}

static int memory_events_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));

	seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
	seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
	seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
	seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));

	return 0;
}

static struct cftype memory_files[] = {
	{
		.name = "current",
5109
		.flags = CFTYPE_NOT_ON_ROOT,
5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132
		.read_u64 = memory_current_read,
	},
	{
		.name = "low",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_low_show,
		.write = memory_low_write,
	},
	{
		.name = "high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_high_show,
		.write = memory_high_write,
	},
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_max_show,
		.write = memory_max_write,
	},
	{
		.name = "events",
		.flags = CFTYPE_NOT_ON_ROOT,
5133
		.file_offset = offsetof(struct mem_cgroup, events_file),
5134 5135 5136 5137 5138
		.seq_show = memory_events_show,
	},
	{ }	/* terminate */
};

5139
struct cgroup_subsys memory_cgrp_subsys = {
5140
	.css_alloc = mem_cgroup_css_alloc,
5141
	.css_online = mem_cgroup_css_online,
5142
	.css_offline = mem_cgroup_css_offline,
5143
	.css_released = mem_cgroup_css_released,
5144
	.css_free = mem_cgroup_css_free,
5145
	.css_reset = mem_cgroup_css_reset,
5146 5147
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
5148
	.attach = mem_cgroup_move_task,
5149
	.bind = mem_cgroup_bind,
5150 5151
	.dfl_cftypes = memory_files,
	.legacy_cftypes = mem_cgroup_legacy_files,
5152
	.early_init = 0,
B
Balbir Singh 已提交
5153
};
5154

5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176
/**
 * mem_cgroup_low - check if memory consumption is below the normal range
 * @root: the highest ancestor to consider
 * @memcg: the memory cgroup to check
 *
 * Returns %true if memory consumption of @memcg, and that of all
 * configurable ancestors up to @root, is below the normal range.
 */
bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return false;

	/*
	 * The toplevel group doesn't have a configurable range, so
	 * it's never low when looked at directly, and it is not
	 * considered an ancestor when assessing the hierarchy.
	 */

	if (memcg == root_mem_cgroup)
		return false;

M
Michal Hocko 已提交
5177
	if (page_counter_read(&memcg->memory) >= memcg->low)
5178 5179 5180 5181 5182 5183 5184 5185
		return false;

	while (memcg != root) {
		memcg = parent_mem_cgroup(memcg);

		if (memcg == root_mem_cgroup)
			break;

M
Michal Hocko 已提交
5186
		if (page_counter_read(&memcg->memory) >= memcg->low)
5187 5188 5189 5190 5191
			return false;
	}
	return true;
}

5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209
/**
 * mem_cgroup_try_charge - try charging a page
 * @page: page to charge
 * @mm: mm context of the victim
 * @gfp_mask: reclaim mode
 * @memcgp: charged memcg return
 *
 * Try to charge @page to the memcg that @mm belongs to, reclaiming
 * pages according to @gfp_mask if necessary.
 *
 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
 * Otherwise, an error code is returned.
 *
 * After page->mapping has been set up, the caller must finalize the
 * charge with mem_cgroup_commit_charge().  Or abort the transaction
 * with mem_cgroup_cancel_charge() in case page instantiation fails.
 */
int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5210 5211
			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
			  bool compound)
5212 5213
{
	struct mem_cgroup *memcg = NULL;
5214
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227
	int ret = 0;

	if (mem_cgroup_disabled())
		goto out;

	if (PageSwapCache(page)) {
		/*
		 * Every swap fault against a single page tries to charge the
		 * page, bail as early as possible.  shmem_unuse() encounters
		 * already charged pages, too.  The USED bit is protected by
		 * the page lock, which serializes swap cache removal, which
		 * in turn serializes uncharging.
		 */
5228
		VM_BUG_ON_PAGE(!PageLocked(page), page);
5229
		if (page->mem_cgroup)
5230
			goto out;
5231

5232
		if (do_swap_account) {
5233 5234 5235 5236 5237 5238 5239 5240 5241
			swp_entry_t ent = { .val = page_private(page), };
			unsigned short id = lookup_swap_cgroup_id(ent);

			rcu_read_lock();
			memcg = mem_cgroup_from_id(id);
			if (memcg && !css_tryget_online(&memcg->css))
				memcg = NULL;
			rcu_read_unlock();
		}
5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271
	}

	if (!memcg)
		memcg = get_mem_cgroup_from_mm(mm);

	ret = try_charge(memcg, gfp_mask, nr_pages);

	css_put(&memcg->css);
out:
	*memcgp = memcg;
	return ret;
}

/**
 * mem_cgroup_commit_charge - commit a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 * @lrucare: page might be on LRU already
 *
 * Finalize a charge transaction started by mem_cgroup_try_charge(),
 * after page->mapping has been set up.  This must happen atomically
 * as part of the page instantiation, i.e. under the page table lock
 * for anonymous pages, under the page lock for page and swap cache.
 *
 * In addition, the page must not be on the LRU during the commit, to
 * prevent racing with task migration.  If it might be, use @lrucare.
 *
 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
 */
void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5272
			      bool lrucare, bool compound)
5273
{
5274
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288

	VM_BUG_ON_PAGE(!page->mapping, page);
	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

5289 5290 5291
	commit_charge(page, memcg, lrucare);

	local_irq_disable();
5292
	mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5293 5294
	memcg_check_events(memcg, page);
	local_irq_enable();
5295

5296
	if (do_memsw_account() && PageSwapCache(page)) {
5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313
		swp_entry_t entry = { .val = page_private(page) };
		/*
		 * The swap entry might not get freed for a long time,
		 * let's not wait for it.  The page already received a
		 * memory+swap charge, drop the swap entry duplicate.
		 */
		mem_cgroup_uncharge_swap(entry);
	}
}

/**
 * mem_cgroup_cancel_charge - cancel a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 *
 * Cancel a charge transaction started by mem_cgroup_try_charge().
 */
5314 5315
void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
		bool compound)
5316
{
5317
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

	cancel_charge(memcg, nr_pages);
}

5332 5333 5334 5335
static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
			   unsigned long nr_anon, unsigned long nr_file,
			   unsigned long nr_huge, struct page *dummy_page)
{
5336
	unsigned long nr_pages = nr_anon + nr_file;
5337 5338
	unsigned long flags;

5339
	if (!mem_cgroup_is_root(memcg)) {
5340
		page_counter_uncharge(&memcg->memory, nr_pages);
5341
		if (do_memsw_account())
5342
			page_counter_uncharge(&memcg->memsw, nr_pages);
5343 5344
		memcg_oom_recover(memcg);
	}
5345 5346 5347 5348 5349 5350

	local_irq_save(flags);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5351
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5352 5353
	memcg_check_events(memcg, dummy_page);
	local_irq_restore(flags);
5354 5355

	if (!mem_cgroup_is_root(memcg))
5356
		css_put_many(&memcg->css, nr_pages);
5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378
}

static void uncharge_list(struct list_head *page_list)
{
	struct mem_cgroup *memcg = NULL;
	unsigned long nr_anon = 0;
	unsigned long nr_file = 0;
	unsigned long nr_huge = 0;
	unsigned long pgpgout = 0;
	struct list_head *next;
	struct page *page;

	next = page_list->next;
	do {
		unsigned int nr_pages = 1;

		page = list_entry(next, struct page, lru);
		next = page->lru.next;

		VM_BUG_ON_PAGE(PageLRU(page), page);
		VM_BUG_ON_PAGE(page_count(page), page);

5379
		if (!page->mem_cgroup)
5380 5381 5382 5383
			continue;

		/*
		 * Nobody should be changing or seriously looking at
5384
		 * page->mem_cgroup at this point, we have fully
5385
		 * exclusive access to the page.
5386 5387
		 */

5388
		if (memcg != page->mem_cgroup) {
5389
			if (memcg) {
5390 5391 5392
				uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
					       nr_huge, page);
				pgpgout = nr_anon = nr_file = nr_huge = 0;
5393
			}
5394
			memcg = page->mem_cgroup;
5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407
		}

		if (PageTransHuge(page)) {
			nr_pages <<= compound_order(page);
			VM_BUG_ON_PAGE(!PageTransHuge(page), page);
			nr_huge += nr_pages;
		}

		if (PageAnon(page))
			nr_anon += nr_pages;
		else
			nr_file += nr_pages;

5408
		page->mem_cgroup = NULL;
5409 5410 5411 5412 5413

		pgpgout++;
	} while (next != page_list);

	if (memcg)
5414 5415
		uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
			       nr_huge, page);
5416 5417
}

5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429
/**
 * mem_cgroup_uncharge - uncharge a page
 * @page: page to uncharge
 *
 * Uncharge a page previously charged with mem_cgroup_try_charge() and
 * mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge(struct page *page)
{
	if (mem_cgroup_disabled())
		return;

5430
	/* Don't touch page->lru of any random page, pre-check: */
5431
	if (!page->mem_cgroup)
5432 5433
		return;

5434 5435 5436
	INIT_LIST_HEAD(&page->lru);
	uncharge_list(&page->lru);
}
5437

5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448
/**
 * mem_cgroup_uncharge_list - uncharge a list of page
 * @page_list: list of pages to uncharge
 *
 * Uncharge a list of pages previously charged with
 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge_list(struct list_head *page_list)
{
	if (mem_cgroup_disabled())
		return;
5449

5450 5451
	if (!list_empty(page_list))
		uncharge_list(page_list);
5452 5453 5454
}

/**
5455
 * mem_cgroup_replace_page - migrate a charge to another page
5456 5457 5458 5459 5460 5461
 * @oldpage: currently charged page
 * @newpage: page to transfer the charge to
 *
 * Migrate the charge from @oldpage to @newpage.
 *
 * Both pages must be locked, @newpage->mapping must be set up.
5462
 * Either or both pages might be on the LRU already.
5463
 */
5464
void mem_cgroup_replace_page(struct page *oldpage, struct page *newpage)
5465
{
5466
	struct mem_cgroup *memcg;
5467 5468 5469 5470 5471
	int isolated;

	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5472 5473
	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
		       newpage);
5474 5475 5476 5477 5478

	if (mem_cgroup_disabled())
		return;

	/* Page cache replacement: new page already charged? */
5479
	if (newpage->mem_cgroup)
5480 5481
		return;

5482
	/* Swapcache readahead pages can get replaced before being charged */
5483
	memcg = oldpage->mem_cgroup;
5484
	if (!memcg)
5485 5486
		return;

5487
	lock_page_lru(oldpage, &isolated);
5488
	oldpage->mem_cgroup = NULL;
5489
	unlock_page_lru(oldpage, isolated);
5490

5491
	commit_charge(newpage, memcg, true);
5492 5493
}

5494
DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516
EXPORT_SYMBOL(memcg_sockets_enabled_key);

void sock_update_memcg(struct sock *sk)
{
	struct mem_cgroup *memcg;

	/* Socket cloning can throw us here with sk_cgrp already
	 * filled. It won't however, necessarily happen from
	 * process context. So the test for root memcg given
	 * the current task's memcg won't help us in this case.
	 *
	 * Respecting the original socket's memcg is a better
	 * decision in this case.
	 */
	if (sk->sk_memcg) {
		BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
		css_get(&sk->sk_memcg->css);
		return;
	}

	rcu_read_lock();
	memcg = mem_cgroup_from_task(current);
5517 5518
	if (memcg == root_mem_cgroup)
		goto out;
5519
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5520 5521
		goto out;
	if (css_tryget_online(&memcg->css))
5522
		sk->sk_memcg = memcg;
5523
out:
5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543
	rcu_read_unlock();
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
	WARN_ON(!sk->sk_memcg);
	css_put(&sk->sk_memcg->css);
}

/**
 * mem_cgroup_charge_skmem - charge socket memory
 * @memcg: memcg to charge
 * @nr_pages: number of pages to charge
 *
 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
 * @memcg's configured limit, %false if the charge had to be forced.
 */
bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
5544
	gfp_t gfp_mask = GFP_KERNEL;
5545

5546
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5547
		struct page_counter *fail;
5548

5549 5550
		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
			memcg->tcpmem_pressure = 0;
5551 5552
			return true;
		}
5553 5554
		page_counter_charge(&memcg->tcpmem, nr_pages);
		memcg->tcpmem_pressure = 1;
5555
		return false;
5556
	}
5557

5558 5559 5560 5561 5562 5563 5564 5565
	/* Don't block in the packet receive path */
	if (in_softirq())
		gfp_mask = GFP_NOWAIT;

	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
		return true;

	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5566 5567 5568 5569 5570 5571 5572 5573 5574 5575
	return false;
}

/**
 * mem_cgroup_uncharge_skmem - uncharge socket memory
 * @memcg - memcg to uncharge
 * @nr_pages - number of pages to uncharge
 */
void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
5576
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5577
		page_counter_uncharge(&memcg->tcpmem, nr_pages);
5578 5579
		return;
	}
5580

5581 5582
	page_counter_uncharge(&memcg->memory, nr_pages);
	css_put_many(&memcg->css, nr_pages);
5583 5584
}

5585 5586 5587 5588 5589 5590 5591 5592 5593
static int __init cgroup_memory(char *s)
{
	char *token;

	while ((token = strsep(&s, ",")) != NULL) {
		if (!*token)
			continue;
		if (!strcmp(token, "nosocket"))
			cgroup_memory_nosocket = true;
5594 5595
		if (!strcmp(token, "nokmem"))
			cgroup_memory_nokmem = true;
5596 5597 5598 5599
	}
	return 0;
}
__setup("cgroup.memory=", cgroup_memory);
5600

5601
/*
5602 5603 5604 5605 5606 5607
 * subsys_initcall() for memory controller.
 *
 * Some parts like hotcpu_notifier() have to be initialized from this context
 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
 * everything that doesn't depend on a specific mem_cgroup structure should
 * be initialized from here.
5608 5609 5610
 */
static int __init mem_cgroup_init(void)
{
5611 5612
	int cpu, node;

5613
	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635

	for_each_possible_cpu(cpu)
		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
			  drain_local_stock);

	for_each_node(node) {
		struct mem_cgroup_tree_per_node *rtpn;
		int zone;

		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
				    node_online(node) ? node : NUMA_NO_NODE);

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			struct mem_cgroup_tree_per_zone *rtpz;

			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
		soft_limit_tree.rb_tree_per_node[node] = rtpn;
	}

5636 5637 5638
	return 0;
}
subsys_initcall(mem_cgroup_init);
5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655

#ifdef CONFIG_MEMCG_SWAP
/**
 * mem_cgroup_swapout - transfer a memsw charge to swap
 * @page: page whose memsw charge to transfer
 * @entry: swap entry to move the charge to
 *
 * Transfer the memsw charge of @page to @entry.
 */
void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	unsigned short oldid;

	VM_BUG_ON_PAGE(PageLRU(page), page);
	VM_BUG_ON_PAGE(page_count(page), page);

5656
	if (!do_memsw_account())
5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673
		return;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return;

	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
	VM_BUG_ON_PAGE(oldid, page);
	mem_cgroup_swap_statistics(memcg, true);

	page->mem_cgroup = NULL;

	if (!mem_cgroup_is_root(memcg))
		page_counter_uncharge(&memcg->memory, 1);

5674 5675 5676 5677 5678 5679 5680
	/*
	 * Interrupts should be disabled here because the caller holds the
	 * mapping->tree_lock lock which is taken with interrupts-off. It is
	 * important here to have the interrupts disabled because it is the
	 * only synchronisation we have for udpating the per-CPU variables.
	 */
	VM_BUG_ON(!irqs_disabled());
5681
	mem_cgroup_charge_statistics(memcg, page, false, -1);
5682 5683 5684
	memcg_check_events(memcg, page);
}

5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720
/*
 * mem_cgroup_try_charge_swap - try charging a swap entry
 * @page: page being added to swap
 * @entry: swap entry to charge
 *
 * Try to charge @entry to the memcg that @page belongs to.
 *
 * Returns 0 on success, -ENOMEM on failure.
 */
int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	struct page_counter *counter;
	unsigned short oldid;

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
		return 0;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return 0;

	if (!mem_cgroup_is_root(memcg) &&
	    !page_counter_try_charge(&memcg->swap, 1, &counter))
		return -ENOMEM;

	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
	VM_BUG_ON_PAGE(oldid, page);
	mem_cgroup_swap_statistics(memcg, true);

	css_get(&memcg->css);
	return 0;
}

5721 5722 5723 5724
/**
 * mem_cgroup_uncharge_swap - uncharge a swap entry
 * @entry: swap entry to uncharge
 *
5725
 * Drop the swap charge associated with @entry.
5726 5727 5728 5729 5730 5731
 */
void mem_cgroup_uncharge_swap(swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	unsigned short id;

5732
	if (!do_swap_account)
5733 5734 5735 5736
		return;

	id = swap_cgroup_record(entry, 0);
	rcu_read_lock();
5737
	memcg = mem_cgroup_from_id(id);
5738
	if (memcg) {
5739 5740 5741 5742 5743 5744
		if (!mem_cgroup_is_root(memcg)) {
			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
				page_counter_uncharge(&memcg->swap, 1);
			else
				page_counter_uncharge(&memcg->memsw, 1);
		}
5745 5746 5747 5748 5749 5750
		mem_cgroup_swap_statistics(memcg, false);
		css_put(&memcg->css);
	}
	rcu_read_unlock();
}

5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763
long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
{
	long nr_swap_pages = get_nr_swap_pages();

	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return nr_swap_pages;
	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
		nr_swap_pages = min_t(long, nr_swap_pages,
				      READ_ONCE(memcg->swap.limit) -
				      page_counter_read(&memcg->swap));
	return nr_swap_pages;
}

5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785
bool mem_cgroup_swap_full(struct page *page)
{
	struct mem_cgroup *memcg;

	VM_BUG_ON_PAGE(!PageLocked(page), page);

	if (vm_swap_full())
		return true;
	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return false;

	memcg = page->mem_cgroup;
	if (!memcg)
		return false;

	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
		if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
			return true;

	return false;
}

5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802
/* for remember boot option*/
#ifdef CONFIG_MEMCG_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata;
#endif

static int __init enable_swap_account(char *s)
{
	if (!strcmp(s, "1"))
		really_do_swap_account = 1;
	else if (!strcmp(s, "0"))
		really_do_swap_account = 0;
	return 1;
}
__setup("swapaccount=", enable_swap_account);

5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859
static u64 swap_current_read(struct cgroup_subsys_state *css,
			     struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
}

static int swap_max_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
	unsigned long max = READ_ONCE(memcg->swap.limit);

	if (max == PAGE_COUNTER_MAX)
		seq_puts(m, "max\n");
	else
		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);

	return 0;
}

static ssize_t swap_max_write(struct kernfs_open_file *of,
			      char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long max;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &max);
	if (err)
		return err;

	mutex_lock(&memcg_limit_mutex);
	err = page_counter_limit(&memcg->swap, max);
	mutex_unlock(&memcg_limit_mutex);
	if (err)
		return err;

	return nbytes;
}

static struct cftype swap_files[] = {
	{
		.name = "swap.current",
		.flags = CFTYPE_NOT_ON_ROOT,
		.read_u64 = swap_current_read,
	},
	{
		.name = "swap.max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = swap_max_show,
		.write = swap_max_write,
	},
	{ }	/* terminate */
};

5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{ },	/* terminate */
};

static int __init mem_cgroup_swap_init(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
5891 5892
		WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
					       swap_files));
5893 5894 5895 5896 5897 5898 5899 5900
		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
						  memsw_cgroup_files));
	}
	return 0;
}
subsys_initcall(mem_cgroup_swap_init);

#endif /* CONFIG_MEMCG_SWAP */