memcontrol.c 79.8 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
B
Balbir Singh 已提交
9 10 11 12 13 14 15 16 17 18 19 20 21 22
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
23
#include <linux/mm.h>
K
KAMEZAWA Hiroyuki 已提交
24
#include <linux/pagemap.h>
25
#include <linux/smp.h>
26
#include <linux/page-flags.h>
27
#include <linux/backing-dev.h>
28 29
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
30
#include <linux/limits.h>
31
#include <linux/mutex.h>
32
#include <linux/rbtree.h>
33
#include <linux/slab.h>
34 35 36
#include <linux/swap.h>
#include <linux/spinlock.h>
#include <linux/fs.h>
37
#include <linux/seq_file.h>
38
#include <linux/vmalloc.h>
39
#include <linux/mm_inline.h>
40
#include <linux/page_cgroup.h>
K
KAMEZAWA Hiroyuki 已提交
41
#include "internal.h"
B
Balbir Singh 已提交
42

43 44
#include <asm/uaccess.h>

45 46
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
#define MEM_CGROUP_RECLAIM_RETRIES	5
47
struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
48

49
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
L
Li Zefan 已提交
50
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
51 52 53 54 55 56
int do_swap_account __read_mostly;
static int really_do_swap_account __initdata = 1; /* for remember boot option*/
#else
#define do_swap_account		(0)
#endif

57
static DEFINE_MUTEX(memcg_tasklist);	/* can be hold under cgroup_mutex */
58
#define SOFTLIMIT_EVENTS_THRESH (1000)
59

60 61 62 63 64 65 66 67
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
68 69
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
	MEM_CGROUP_STAT_MAPPED_FILE,  /* # of pages charged as file rss */
70 71
	MEM_CGROUP_STAT_PGPGIN_COUNT,	/* # of pages paged in */
	MEM_CGROUP_STAT_PGPGOUT_COUNT,	/* # of pages paged out */
72
	MEM_CGROUP_STAT_EVENTS,	/* sum of pagein + pageout for internal use */
73
	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
74 75 76 77 78 79 80 81 82

	MEM_CGROUP_STAT_NSTATS,
};

struct mem_cgroup_stat_cpu {
	s64 count[MEM_CGROUP_STAT_NSTATS];
} ____cacheline_aligned_in_smp;

struct mem_cgroup_stat {
83
	struct mem_cgroup_stat_cpu cpustat[0];
84 85
};

86 87 88 89 90 91 92 93 94 95 96 97 98 99
static inline void
__mem_cgroup_stat_reset_safe(struct mem_cgroup_stat_cpu *stat,
				enum mem_cgroup_stat_index idx)
{
	stat->count[idx] = 0;
}

static inline s64
__mem_cgroup_stat_read_local(struct mem_cgroup_stat_cpu *stat,
				enum mem_cgroup_stat_index idx)
{
	return stat->count[idx];
}

100 101 102
/*
 * For accounting under irq disable, no need for increment preempt count.
 */
103
static inline void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat_cpu *stat,
104 105
		enum mem_cgroup_stat_index idx, int val)
{
106
	stat->count[idx] += val;
107 108 109 110 111 112 113 114 115 116 117 118
}

static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
		enum mem_cgroup_stat_index idx)
{
	int cpu;
	s64 ret = 0;
	for_each_possible_cpu(cpu)
		ret += stat->cpustat[cpu].count[idx];
	return ret;
}

K
KAMEZAWA Hiroyuki 已提交
119 120 121 122 123 124 125 126 127
static s64 mem_cgroup_local_usage(struct mem_cgroup_stat *stat)
{
	s64 ret;

	ret = mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_CACHE);
	ret += mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_RSS);
	return ret;
}

128 129 130 131
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
132 133 134
	/*
	 * spin_lock to protect the per cgroup LRU
	 */
135 136
	struct list_head	lists[NR_LRU_LISTS];
	unsigned long		count[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
137 138

	struct zone_reclaim_stat reclaim_stat;
139 140 141 142
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
143 144
	struct mem_cgroup	*mem;		/* Back pointer, we cannot */
						/* use container_of	   */
145 146 147 148 149 150 151 152 153 154 155 156
};
/* Macro for accessing counter */
#define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

B
Balbir Singh 已提交
177 178 179 180 181 182 183
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
184 185 186
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
187 188 189 190 191 192 193
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
194 195 196 197
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
198 199 200 201
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 */
202
	struct mem_cgroup_lru_info info;
203

K
KOSAKI Motohiro 已提交
204 205 206 207 208
	/*
	  protect against reclaim related member.
	*/
	spinlock_t reclaim_param_lock;

209
	int	prev_priority;	/* for recording reclaim priority */
210 211 212

	/*
	 * While reclaiming in a hiearchy, we cache the last child we
K
KAMEZAWA Hiroyuki 已提交
213
	 * reclaimed from.
214
	 */
K
KAMEZAWA Hiroyuki 已提交
215
	int last_scanned_child;
216 217 218 219
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
220
	unsigned long	last_oom_jiffies;
221
	atomic_t	refcnt;
222

K
KOSAKI Motohiro 已提交
223 224
	unsigned int	swappiness;

225 226 227
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

228
	/*
229
	 * statistics. This must be placed at the end of memcg.
230 231
	 */
	struct mem_cgroup_stat stat;
B
Balbir Singh 已提交
232 233
};

234 235 236 237 238 239 240
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)

241 242 243
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
	MEM_CGROUP_CHARGE_TYPE_MAPPED,
244
	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
245
	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
K
KAMEZAWA Hiroyuki 已提交
246
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
247
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
248 249 250
	NR_CHARGE_TYPE,
};

251 252 253 254
/* only for here (for easy reading.) */
#define PCGF_CACHE	(1UL << PCG_CACHE)
#define PCGF_USED	(1UL << PCG_USED)
#define PCGF_LOCK	(1UL << PCG_LOCK)
255 256
/* Not used, but added here for completeness */
#define PCGF_ACCT	(1UL << PCG_ACCT)
257

258 259 260 261 262 263 264
/* for encoding cft->private value on file */
#define _MEM			(0)
#define _MEMSWAP		(1)
#define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
#define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
#define MEMFILE_ATTR(val)	((val) & 0xffff)

265 266 267 268 269 270 271
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
272 273
#define MEM_CGROUP_RECLAIM_SOFT_BIT	0x2
#define MEM_CGROUP_RECLAIM_SOFT		(1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
274

275 276
static void mem_cgroup_get(struct mem_cgroup *mem);
static void mem_cgroup_put(struct mem_cgroup *mem);
277
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
278

279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
static struct mem_cgroup_per_zone *
mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
{
	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
}

static struct mem_cgroup_per_zone *
page_cgroup_zoneinfo(struct page_cgroup *pc)
{
	struct mem_cgroup *mem = pc->mem_cgroup;
	int nid = page_cgroup_nid(pc);
	int zid = page_cgroup_zid(pc);

	if (!mem)
		return NULL;

	return mem_cgroup_zoneinfo(mem, nid, zid);
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
314
__mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

	mz->usage_in_excess = res_counter_soft_limit_excess(&mem->res);
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
}

static void
__mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

static void
mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
	__mem_cgroup_insert_exceeded(mem, mz, mctz);
362 363 364 365 366 367 368 369 370
	spin_unlock(&mctz->lock);
}

static void
mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
371
	__mem_cgroup_remove_exceeded(mem, mz, mctz);
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
	spin_unlock(&mctz->lock);
}

static bool mem_cgroup_soft_limit_check(struct mem_cgroup *mem)
{
	bool ret = false;
	int cpu;
	s64 val;
	struct mem_cgroup_stat_cpu *cpustat;

	cpu = get_cpu();
	cpustat = &mem->stat.cpustat[cpu];
	val = __mem_cgroup_stat_read_local(cpustat, MEM_CGROUP_STAT_EVENTS);
	if (unlikely(val > SOFTLIMIT_EVENTS_THRESH)) {
		__mem_cgroup_stat_reset_safe(cpustat, MEM_CGROUP_STAT_EVENTS);
		ret = true;
	}
	put_cpu();
	return ret;
}

static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
{
	unsigned long long prev_usage_in_excess, new_usage_in_excess;
	bool updated_tree = false;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

	mz = mem_cgroup_zoneinfo(mem, page_to_nid(page), page_zonenum(page));
	mctz = soft_limit_tree_from_page(page);

	/*
	 * We do updates in lazy mode, mem's are removed
	 * lazily from the per-zone, per-node rb tree
	 */
	prev_usage_in_excess = mz->usage_in_excess;

	new_usage_in_excess = res_counter_soft_limit_excess(&mem->res);
	if (prev_usage_in_excess) {
		mem_cgroup_remove_exceeded(mem, mz, mctz);
		updated_tree = true;
	}
	if (!new_usage_in_excess)
		goto done;
	mem_cgroup_insert_exceeded(mem, mz, mctz);

done:
	if (updated_tree) {
		spin_lock(&mctz->lock);
		mz->usage_in_excess = new_usage_in_excess;
		spin_unlock(&mctz->lock);
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

	for_each_node_state(node, N_POSSIBLE) {
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			mz = mem_cgroup_zoneinfo(mem, node, zone);
			mctz = soft_limit_tree_node_zone(node, zone);
			mem_cgroup_remove_exceeded(mem, mz, mctz);
		}
	}
}

441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
static inline unsigned long mem_cgroup_get_excess(struct mem_cgroup *mem)
{
	return res_counter_soft_limit_excess(&mem->res) >> PAGE_SHIFT;
}

static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
	struct mem_cgroup_per_zone *mz = NULL;

retry:
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
	__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->mem->res) ||
		!css_tryget(&mz->mem->css))
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

482 483 484 485 486 487 488 489 490 491 492 493 494
static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
					 bool charge)
{
	int val = (charge) ? 1 : -1;
	struct mem_cgroup_stat *stat = &mem->stat;
	struct mem_cgroup_stat_cpu *cpustat;
	int cpu = get_cpu();

	cpustat = &stat->cpustat[cpu];
	__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_SWAPOUT, val);
	put_cpu();
}

495 496 497
static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
					 struct page_cgroup *pc,
					 bool charge)
498
{
499
	int val = (charge) ? 1 : -1;
500
	struct mem_cgroup_stat *stat = &mem->stat;
501
	struct mem_cgroup_stat_cpu *cpustat;
K
KAMEZAWA Hiroyuki 已提交
502
	int cpu = get_cpu();
503

K
KAMEZAWA Hiroyuki 已提交
504
	cpustat = &stat->cpustat[cpu];
505
	if (PageCgroupCache(pc))
506
		__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_CACHE, val);
507
	else
508
		__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_RSS, val);
509 510

	if (charge)
511
		__mem_cgroup_stat_add_safe(cpustat,
512 513
				MEM_CGROUP_STAT_PGPGIN_COUNT, 1);
	else
514
		__mem_cgroup_stat_add_safe(cpustat,
515
				MEM_CGROUP_STAT_PGPGOUT_COUNT, 1);
516
	__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_EVENTS, 1);
K
KAMEZAWA Hiroyuki 已提交
517
	put_cpu();
518 519
}

K
KAMEZAWA Hiroyuki 已提交
520
static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
521
					enum lru_list idx)
522 523 524 525 526 527 528 529 530 531 532
{
	int nid, zid;
	struct mem_cgroup_per_zone *mz;
	u64 total = 0;

	for_each_online_node(nid)
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			mz = mem_cgroup_zoneinfo(mem, nid, zid);
			total += MEM_CGROUP_ZSTAT(mz, idx);
		}
	return total;
533 534
}

535
static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
536 537 538 539 540 541
{
	return container_of(cgroup_subsys_state(cont,
				mem_cgroup_subsys_id), struct mem_cgroup,
				css);
}

542
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
543
{
544 545 546 547 548 549 550 551
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

552 553 554 555
	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
				struct mem_cgroup, css);
}

556 557 558
static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
{
	struct mem_cgroup *mem = NULL;
559 560 561

	if (!mm)
		return NULL;
562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
		mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!mem))
			break;
	} while (!css_tryget(&mem->css));
	rcu_read_unlock();
	return mem;
}

K
KAMEZAWA Hiroyuki 已提交
577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
/*
 * Call callback function against all cgroup under hierarchy tree.
 */
static int mem_cgroup_walk_tree(struct mem_cgroup *root, void *data,
			  int (*func)(struct mem_cgroup *, void *))
{
	int found, ret, nextid;
	struct cgroup_subsys_state *css;
	struct mem_cgroup *mem;

	if (!root->use_hierarchy)
		return (*func)(root, data);

	nextid = 1;
	do {
		ret = 0;
		mem = NULL;

		rcu_read_lock();
		css = css_get_next(&mem_cgroup_subsys, nextid, &root->css,
				   &found);
		if (css && css_tryget(css))
			mem = container_of(css, struct mem_cgroup, css);
		rcu_read_unlock();

		if (mem) {
			ret = (*func)(mem, data);
			css_put(&mem->css);
		}
		nextid = found + 1;
	} while (!ret && css);

	return ret;
}

612 613 614 615 616
static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
{
	return (mem == root_mem_cgroup);
}

K
KAMEZAWA Hiroyuki 已提交
617 618 619 620 621 622 623 624 625 626 627 628 629
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
630

K
KAMEZAWA Hiroyuki 已提交
631 632 633 634
void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
635

636
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
637 638 639
		return;
	pc = lookup_page_cgroup(page);
	/* can happen while we handle swapcache. */
640
	if (!TestClearPageCgroupAcctLRU(pc))
K
KAMEZAWA Hiroyuki 已提交
641
		return;
642
	VM_BUG_ON(!pc->mem_cgroup);
643 644 645 646
	/*
	 * We don't check PCG_USED bit. It's cleared when the "page" is finally
	 * removed from global LRU.
	 */
K
KAMEZAWA Hiroyuki 已提交
647
	mz = page_cgroup_zoneinfo(pc);
648
	MEM_CGROUP_ZSTAT(mz, lru) -= 1;
649 650 651
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
	VM_BUG_ON(list_empty(&pc->lru));
K
KAMEZAWA Hiroyuki 已提交
652 653
	list_del_init(&pc->lru);
	return;
654 655
}

K
KAMEZAWA Hiroyuki 已提交
656
void mem_cgroup_del_lru(struct page *page)
657
{
K
KAMEZAWA Hiroyuki 已提交
658 659
	mem_cgroup_del_lru_list(page, page_lru(page));
}
660

K
KAMEZAWA Hiroyuki 已提交
661 662 663 664
void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
{
	struct mem_cgroup_per_zone *mz;
	struct page_cgroup *pc;
665

666
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
667
		return;
668

K
KAMEZAWA Hiroyuki 已提交
669
	pc = lookup_page_cgroup(page);
670 671 672 673
	/*
	 * Used bit is set without atomic ops but after smp_wmb().
	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
	 */
K
KAMEZAWA Hiroyuki 已提交
674
	smp_rmb();
675 676
	/* unused or root page is not rotated. */
	if (!PageCgroupUsed(pc) || mem_cgroup_is_root(pc->mem_cgroup))
K
KAMEZAWA Hiroyuki 已提交
677 678 679
		return;
	mz = page_cgroup_zoneinfo(pc);
	list_move(&pc->lru, &mz->lists[lru]);
680 681
}

K
KAMEZAWA Hiroyuki 已提交
682
void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
683
{
K
KAMEZAWA Hiroyuki 已提交
684 685
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
686

687
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
688 689
		return;
	pc = lookup_page_cgroup(page);
690
	VM_BUG_ON(PageCgroupAcctLRU(pc));
691 692 693 694
	/*
	 * Used bit is set without atomic ops but after smp_wmb().
	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
	 */
K
KAMEZAWA Hiroyuki 已提交
695 696
	smp_rmb();
	if (!PageCgroupUsed(pc))
L
Lee Schermerhorn 已提交
697
		return;
698

K
KAMEZAWA Hiroyuki 已提交
699
	mz = page_cgroup_zoneinfo(pc);
700
	MEM_CGROUP_ZSTAT(mz, lru) += 1;
701 702 703
	SetPageCgroupAcctLRU(pc);
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
K
KAMEZAWA Hiroyuki 已提交
704 705
	list_add(&pc->lru, &mz->lists[lru]);
}
706

K
KAMEZAWA Hiroyuki 已提交
707
/*
708 709 710 711 712
 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
 * lru because the page may.be reused after it's fully uncharged (because of
 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
 * it again. This function is only used to charge SwapCache. It's done under
 * lock_page and expected that zone->lru_lock is never held.
K
KAMEZAWA Hiroyuki 已提交
713
 */
714
static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
K
KAMEZAWA Hiroyuki 已提交
715
{
716 717 718 719 720 721 722 723 724 725 726 727
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

	spin_lock_irqsave(&zone->lru_lock, flags);
	/*
	 * Forget old LRU when this page_cgroup is *not* used. This Used bit
	 * is guarded by lock_page() because the page is SwapCache.
	 */
	if (!PageCgroupUsed(pc))
		mem_cgroup_del_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
K
KAMEZAWA Hiroyuki 已提交
728 729
}

730 731 732 733 734 735 736 737
static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
{
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

	spin_lock_irqsave(&zone->lru_lock, flags);
	/* link when the page is linked to LRU but page_cgroup isn't */
738
	if (PageLRU(page) && !PageCgroupAcctLRU(pc))
739 740 741 742 743
		mem_cgroup_add_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
}


K
KAMEZAWA Hiroyuki 已提交
744 745 746
void mem_cgroup_move_lists(struct page *page,
			   enum lru_list from, enum lru_list to)
{
747
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
748 749 750
		return;
	mem_cgroup_del_lru_list(page, from);
	mem_cgroup_add_lru_list(page, to);
751 752
}

753 754 755
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
{
	int ret;
756
	struct mem_cgroup *curr = NULL;
757 758

	task_lock(task);
759 760 761
	rcu_read_lock();
	curr = try_get_mem_cgroup_from_mm(task->mm);
	rcu_read_unlock();
762
	task_unlock(task);
763 764 765 766 767 768 769
	if (!curr)
		return 0;
	if (curr->use_hierarchy)
		ret = css_is_ancestor(&curr->css, &mem->css);
	else
		ret = (curr == mem);
	css_put(&curr->css);
770 771 772
	return ret;
}

773 774 775 776 777
/*
 * prev_priority control...this will be used in memory reclaim path.
 */
int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
{
K
KOSAKI Motohiro 已提交
778 779 780 781 782 783 784
	int prev_priority;

	spin_lock(&mem->reclaim_param_lock);
	prev_priority = mem->prev_priority;
	spin_unlock(&mem->reclaim_param_lock);

	return prev_priority;
785 786 787 788
}

void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
{
K
KOSAKI Motohiro 已提交
789
	spin_lock(&mem->reclaim_param_lock);
790 791
	if (priority < mem->prev_priority)
		mem->prev_priority = priority;
K
KOSAKI Motohiro 已提交
792
	spin_unlock(&mem->reclaim_param_lock);
793 794 795 796
}

void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
{
K
KOSAKI Motohiro 已提交
797
	spin_lock(&mem->reclaim_param_lock);
798
	mem->prev_priority = priority;
K
KOSAKI Motohiro 已提交
799
	spin_unlock(&mem->reclaim_param_lock);
800 801
}

802
static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
803 804 805
{
	unsigned long active;
	unsigned long inactive;
806 807
	unsigned long gb;
	unsigned long inactive_ratio;
808

K
KAMEZAWA Hiroyuki 已提交
809 810
	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
811

812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

	if (present_pages) {
		present_pages[0] = inactive;
		present_pages[1] = active;
	}

	return inactive_ratio;
}

int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
{
	unsigned long active;
	unsigned long inactive;
	unsigned long present_pages[2];
	unsigned long inactive_ratio;

	inactive_ratio = calc_inactive_ratio(memcg, present_pages);

	inactive = present_pages[0];
	active = present_pages[1];

	if (inactive * inactive_ratio < active)
839 840 841 842 843
		return 1;

	return 0;
}

844 845 846 847 848 849 850 851 852 853 854
int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
{
	unsigned long active;
	unsigned long inactive;

	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);

	return (active > inactive);
}

855 856 857 858 859 860 861 862 863 864 865
unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
				       struct zone *zone,
				       enum lru_list lru)
{
	int nid = zone->zone_pgdat->node_id;
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return MEM_CGROUP_ZSTAT(mz, lru);
}

K
KOSAKI Motohiro 已提交
866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885
struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
						      struct zone *zone)
{
	int nid = zone->zone_pgdat->node_id;
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return &mz->reclaim_stat;
}

struct zone_reclaim_stat *
mem_cgroup_get_reclaim_stat_from_page(struct page *page)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;

	if (mem_cgroup_disabled())
		return NULL;

	pc = lookup_page_cgroup(page);
886 887 888 889 890 891 892 893
	/*
	 * Used bit is set without atomic ops but after smp_wmb().
	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
	 */
	smp_rmb();
	if (!PageCgroupUsed(pc))
		return NULL;

K
KOSAKI Motohiro 已提交
894 895 896 897 898 899 900
	mz = page_cgroup_zoneinfo(pc);
	if (!mz)
		return NULL;

	return &mz->reclaim_stat;
}

901 902 903 904 905
unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
					struct list_head *dst,
					unsigned long *scanned, int order,
					int mode, struct zone *z,
					struct mem_cgroup *mem_cont,
906
					int active, int file)
907 908 909 910 911 912
{
	unsigned long nr_taken = 0;
	struct page *page;
	unsigned long scan;
	LIST_HEAD(pc_list);
	struct list_head *src;
913
	struct page_cgroup *pc, *tmp;
914 915 916
	int nid = z->zone_pgdat->node_id;
	int zid = zone_idx(z);
	struct mem_cgroup_per_zone *mz;
917
	int lru = LRU_FILE * file + active;
918
	int ret;
919

920
	BUG_ON(!mem_cont);
921
	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
922
	src = &mz->lists[lru];
923

924 925
	scan = 0;
	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
H
Hugh Dickins 已提交
926
		if (scan >= nr_to_scan)
927
			break;
K
KAMEZAWA Hiroyuki 已提交
928 929

		page = pc->page;
930 931
		if (unlikely(!PageCgroupUsed(pc)))
			continue;
H
Hugh Dickins 已提交
932
		if (unlikely(!PageLRU(page)))
933 934
			continue;

H
Hugh Dickins 已提交
935
		scan++;
936 937 938
		ret = __isolate_lru_page(page, mode, file);
		switch (ret) {
		case 0:
939
			list_move(&page->lru, dst);
940
			mem_cgroup_del_lru(page);
941
			nr_taken++;
942 943 944 945 946 947 948
			break;
		case -EBUSY:
			/* we don't affect global LRU but rotate in our LRU */
			mem_cgroup_rotate_lru_list(page, page_lru(page));
			break;
		default:
			break;
949 950 951 952 953 954 955
		}
	}

	*scanned = scan;
	return nr_taken;
}

956 957 958
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

959 960 961 962 963 964 965 966 967 968 969 970
static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
{
	if (do_swap_account) {
		if (res_counter_check_under_limit(&mem->res) &&
			res_counter_check_under_limit(&mem->memsw))
			return true;
	} else
		if (res_counter_check_under_limit(&mem->res))
			return true;
	return false;
}

K
KOSAKI Motohiro 已提交
971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986
static unsigned int get_swappiness(struct mem_cgroup *memcg)
{
	struct cgroup *cgrp = memcg->css.cgroup;
	unsigned int swappiness;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

	spin_lock(&memcg->reclaim_param_lock);
	swappiness = memcg->swappiness;
	spin_unlock(&memcg->reclaim_param_lock);

	return swappiness;
}

987 988 989 990 991 992
static int mem_cgroup_count_children_cb(struct mem_cgroup *mem, void *data)
{
	int *val = data;
	(*val)++;
	return 0;
}
993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060

/**
 * mem_cgroup_print_mem_info: Called from OOM with tasklist_lock held in read mode.
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;

	if (!memcg)
		return;


	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	printk(KERN_INFO "Task in %s killed", memcg_name);

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
done:

	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
		"failcnt %llu\n",
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
}

1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
static int mem_cgroup_count_children(struct mem_cgroup *mem)
{
	int num = 0;
 	mem_cgroup_walk_tree(mem, &num, mem_cgroup_count_children_cb);
	return num;
}

1072
/*
K
KAMEZAWA Hiroyuki 已提交
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
 * Visit the first child (need not be the first child as per the ordering
 * of the cgroup list, since we track last_scanned_child) of @mem and use
 * that to reclaim free pages from.
 */
static struct mem_cgroup *
mem_cgroup_select_victim(struct mem_cgroup *root_mem)
{
	struct mem_cgroup *ret = NULL;
	struct cgroup_subsys_state *css;
	int nextid, found;

	if (!root_mem->use_hierarchy) {
		css_get(&root_mem->css);
		ret = root_mem;
	}

	while (!ret) {
		rcu_read_lock();
		nextid = root_mem->last_scanned_child + 1;
		css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
				   &found);
		if (css && css_tryget(css))
			ret = container_of(css, struct mem_cgroup, css);

		rcu_read_unlock();
		/* Updates scanning parameter */
		spin_lock(&root_mem->reclaim_param_lock);
		if (!css) {
			/* this means start scan from ID:1 */
			root_mem->last_scanned_child = 0;
		} else
			root_mem->last_scanned_child = found;
		spin_unlock(&root_mem->reclaim_param_lock);
	}

	return ret;
}

/*
 * Scan the hierarchy if needed to reclaim memory. We remember the last child
 * we reclaimed from, so that we don't end up penalizing one child extensively
 * based on its position in the children list.
1115 1116
 *
 * root_mem is the original ancestor that we've been reclaim from.
K
KAMEZAWA Hiroyuki 已提交
1117 1118 1119
 *
 * We give up and return to the caller when we visit root_mem twice.
 * (other groups can be removed while we're walking....)
1120 1121
 *
 * If shrink==true, for avoiding to free too much, this returns immedieately.
1122 1123
 */
static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1124
						struct zone *zone,
1125 1126
						gfp_t gfp_mask,
						unsigned long reclaim_options)
1127
{
K
KAMEZAWA Hiroyuki 已提交
1128 1129 1130
	struct mem_cgroup *victim;
	int ret, total = 0;
	int loop = 0;
1131 1132
	bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
	bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1133 1134
	bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
	unsigned long excess = mem_cgroup_get_excess(root_mem);
K
KAMEZAWA Hiroyuki 已提交
1135

1136 1137 1138 1139
	/* If memsw_is_minimum==1, swap-out is of-no-use. */
	if (root_mem->memsw_is_minimum)
		noswap = true;

1140
	while (1) {
K
KAMEZAWA Hiroyuki 已提交
1141
		victim = mem_cgroup_select_victim(root_mem);
1142
		if (victim == root_mem) {
K
KAMEZAWA Hiroyuki 已提交
1143
			loop++;
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!check_soft || !total) {
					css_put(&victim->css);
					break;
				}
				/*
				 * We want to do more targetted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
					css_put(&victim->css);
					break;
				}
			}
		}
K
KAMEZAWA Hiroyuki 已提交
1167 1168 1169
		if (!mem_cgroup_local_usage(&victim->stat)) {
			/* this cgroup's local usage == 0 */
			css_put(&victim->css);
1170 1171
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
1172
		/* we use swappiness of local cgroup */
1173 1174 1175 1176 1177 1178 1179
		if (check_soft)
			ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
				noswap, get_swappiness(victim), zone,
				zone->zone_pgdat->node_id);
		else
			ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
						noswap, get_swappiness(victim));
K
KAMEZAWA Hiroyuki 已提交
1180
		css_put(&victim->css);
1181 1182 1183 1184 1185 1186 1187
		/*
		 * At shrinking usage, we can't check we should stop here or
		 * reclaim more. It's depends on callers. last_scanned_child
		 * will work enough for keeping fairness under tree.
		 */
		if (shrink)
			return ret;
K
KAMEZAWA Hiroyuki 已提交
1188
		total += ret;
1189 1190 1191 1192
		if (check_soft) {
			if (res_counter_check_under_soft_limit(&root_mem->res))
				return total;
		} else if (mem_cgroup_check_under_limit(root_mem))
K
KAMEZAWA Hiroyuki 已提交
1193
			return 1 + total;
1194
	}
K
KAMEZAWA Hiroyuki 已提交
1195
	return total;
1196 1197
}

1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
bool mem_cgroup_oom_called(struct task_struct *task)
{
	bool ret = false;
	struct mem_cgroup *mem;
	struct mm_struct *mm;

	rcu_read_lock();
	mm = task->mm;
	if (!mm)
		mm = &init_mm;
	mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (mem && time_before(jiffies, mem->last_oom_jiffies + HZ/10))
		ret = true;
	rcu_read_unlock();
	return ret;
}
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225

static int record_last_oom_cb(struct mem_cgroup *mem, void *data)
{
	mem->last_oom_jiffies = jiffies;
	return 0;
}

static void record_last_oom(struct mem_cgroup *mem)
{
	mem_cgroup_walk_tree(mem, NULL, record_last_oom_cb);
}

1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
 */
void mem_cgroup_update_mapped_file_stat(struct page *page, int val)
{
	struct mem_cgroup *mem;
	struct mem_cgroup_stat *stat;
	struct mem_cgroup_stat_cpu *cpustat;
	int cpu;
	struct page_cgroup *pc;

	if (!page_is_file_cache(page))
		return;

	pc = lookup_page_cgroup(page);
	if (unlikely(!pc))
		return;

	lock_page_cgroup(pc);
	mem = pc->mem_cgroup;
	if (!mem)
		goto done;

	if (!PageCgroupUsed(pc))
		goto done;

	/*
	 * Preemption is already disabled, we don't need get_cpu()
	 */
	cpu = smp_processor_id();
	stat = &mem->stat;
	cpustat = &stat->cpustat[cpu];

	__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_MAPPED_FILE, val);
done:
	unlock_page_cgroup(pc);
}
1264

1265 1266 1267
/*
 * Unlike exported interface, "oom" parameter is added. if oom==true,
 * oom-killer can be invoked.
1268
 */
1269
static int __mem_cgroup_try_charge(struct mm_struct *mm,
1270
			gfp_t gfp_mask, struct mem_cgroup **memcg,
1271
			bool oom, struct page *page)
1272
{
1273
	struct mem_cgroup *mem, *mem_over_limit, *mem_over_soft_limit;
1274
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1275
	struct res_counter *fail_res, *soft_fail_res = NULL;
1276 1277 1278 1279 1280 1281 1282

	if (unlikely(test_thread_flag(TIF_MEMDIE))) {
		/* Don't account this! */
		*memcg = NULL;
		return 0;
	}

1283
	/*
1284 1285
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
1286 1287 1288
	 * thread group leader migrates. It's possible that mm is not
	 * set, if so charge the init_mm (happens for pagecache usage).
	 */
1289 1290 1291
	mem = *memcg;
	if (likely(!mem)) {
		mem = try_get_mem_cgroup_from_mm(mm);
1292
		*memcg = mem;
1293
	} else {
1294
		css_get(&mem->css);
1295
	}
1296 1297 1298
	if (unlikely(!mem))
		return 0;

1299
	VM_BUG_ON(css_is_removed(&mem->css));
1300

1301
	while (1) {
1302
		int ret = 0;
1303
		unsigned long flags = 0;
1304

1305 1306
		if (mem_cgroup_is_root(mem))
			goto done;
1307 1308
		ret = res_counter_charge(&mem->res, PAGE_SIZE, &fail_res,
						&soft_fail_res);
1309 1310 1311
		if (likely(!ret)) {
			if (!do_swap_account)
				break;
1312
			ret = res_counter_charge(&mem->memsw, PAGE_SIZE,
1313
							&fail_res, NULL);
1314 1315 1316
			if (likely(!ret))
				break;
			/* mem+swap counter fails */
1317
			res_counter_uncharge(&mem->res, PAGE_SIZE, NULL);
1318
			flags |= MEM_CGROUP_RECLAIM_NOSWAP;
1319 1320 1321 1322 1323 1324 1325
			mem_over_limit = mem_cgroup_from_res_counter(fail_res,
									memsw);
		} else
			/* mem counter fails */
			mem_over_limit = mem_cgroup_from_res_counter(fail_res,
									res);

1326
		if (!(gfp_mask & __GFP_WAIT))
1327
			goto nomem;
1328

1329 1330
		ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
						gfp_mask, flags);
1331 1332
		if (ret)
			continue;
1333 1334

		/*
1335 1336 1337 1338 1339
		 * try_to_free_mem_cgroup_pages() might not give us a full
		 * picture of reclaim. Some pages are reclaimed and might be
		 * moved to swap cache or just unmapped from the cgroup.
		 * Check the limit again to see if the reclaim reduced the
		 * current usage of the cgroup before giving up
1340
		 *
1341
		 */
1342 1343
		if (mem_cgroup_check_under_limit(mem_over_limit))
			continue;
1344 1345

		if (!nr_retries--) {
1346
			if (oom) {
1347
				mutex_lock(&memcg_tasklist);
1348
				mem_cgroup_out_of_memory(mem_over_limit, gfp_mask);
1349
				mutex_unlock(&memcg_tasklist);
1350
				record_last_oom(mem_over_limit);
1351
			}
1352
			goto nomem;
1353
		}
1354
	}
1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
	/*
	 * Insert just the ancestor, we should trickle down to the correct
	 * cgroup for reclaim, since the other nodes will be below their
	 * soft limit
	 */
	if (soft_fail_res) {
		mem_over_soft_limit =
			mem_cgroup_from_res_counter(soft_fail_res, res);
		if (mem_cgroup_soft_limit_check(mem_over_soft_limit))
			mem_cgroup_update_tree(mem_over_soft_limit, page);
	}
1366
done:
1367 1368 1369 1370 1371
	return 0;
nomem:
	css_put(&mem->css);
	return -ENOMEM;
}
1372

1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
/*
 * A helper function to get mem_cgroup from ID. must be called under
 * rcu_read_lock(). The caller must check css_is_removed() or some if
 * it's concern. (dropping refcnt from swap can be called against removed
 * memcg.)
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
	return container_of(css, struct mem_cgroup, css);
}

1392 1393 1394
static struct mem_cgroup *try_get_mem_cgroup_from_swapcache(struct page *page)
{
	struct mem_cgroup *mem;
1395
	struct page_cgroup *pc;
1396
	unsigned short id;
1397 1398
	swp_entry_t ent;

1399 1400
	VM_BUG_ON(!PageLocked(page));

1401 1402 1403
	if (!PageSwapCache(page))
		return NULL;

1404
	pc = lookup_page_cgroup(page);
1405
	lock_page_cgroup(pc);
1406
	if (PageCgroupUsed(pc)) {
1407
		mem = pc->mem_cgroup;
1408 1409 1410
		if (mem && !css_tryget(&mem->css))
			mem = NULL;
	} else {
1411
		ent.val = page_private(page);
1412 1413 1414 1415 1416 1417
		id = lookup_swap_cgroup(ent);
		rcu_read_lock();
		mem = mem_cgroup_lookup(id);
		if (mem && !css_tryget(&mem->css))
			mem = NULL;
		rcu_read_unlock();
1418
	}
1419
	unlock_page_cgroup(pc);
1420 1421 1422
	return mem;
}

1423
/*
1424
 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
 * USED state. If already USED, uncharge and return.
 */

static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
				     struct page_cgroup *pc,
				     enum charge_type ctype)
{
	/* try_charge() can return NULL to *memcg, taking care of it. */
	if (!mem)
		return;
1435 1436 1437 1438

	lock_page_cgroup(pc);
	if (unlikely(PageCgroupUsed(pc))) {
		unlock_page_cgroup(pc);
1439 1440 1441 1442 1443 1444
		if (!mem_cgroup_is_root(mem)) {
			res_counter_uncharge(&mem->res, PAGE_SIZE, NULL);
			if (do_swap_account)
				res_counter_uncharge(&mem->memsw, PAGE_SIZE,
							NULL);
		}
1445
		css_put(&mem->css);
1446
		return;
1447
	}
1448

1449
	pc->mem_cgroup = mem;
1450 1451 1452 1453 1454 1455 1456
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
1457
	smp_wmb();
1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_CACHE:
	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
		SetPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
		ClearPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	default:
		break;
	}
1471

K
KAMEZAWA Hiroyuki 已提交
1472
	mem_cgroup_charge_statistics(mem, pc, true);
1473 1474

	unlock_page_cgroup(pc);
1475
}
1476

1477 1478 1479 1480 1481 1482 1483
/**
 * mem_cgroup_move_account - move account of the page
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
1484
 * - page is not on LRU (isolate_page() is useful.)
1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498
 *
 * returns 0 at success,
 * returns -EBUSY when lock is busy or "pc" is unstable.
 *
 * This function does "uncharge" from old cgroup but doesn't do "charge" to
 * new cgroup. It should be done by a caller.
 */

static int mem_cgroup_move_account(struct page_cgroup *pc,
	struct mem_cgroup *from, struct mem_cgroup *to)
{
	struct mem_cgroup_per_zone *from_mz, *to_mz;
	int nid, zid;
	int ret = -EBUSY;
1499 1500 1501 1502
	struct page *page;
	int cpu;
	struct mem_cgroup_stat *stat;
	struct mem_cgroup_stat_cpu *cpustat;
1503 1504

	VM_BUG_ON(from == to);
K
KAMEZAWA Hiroyuki 已提交
1505
	VM_BUG_ON(PageLRU(pc->page));
1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520

	nid = page_cgroup_nid(pc);
	zid = page_cgroup_zid(pc);
	from_mz =  mem_cgroup_zoneinfo(from, nid, zid);
	to_mz =  mem_cgroup_zoneinfo(to, nid, zid);

	if (!trylock_page_cgroup(pc))
		return ret;

	if (!PageCgroupUsed(pc))
		goto out;

	if (pc->mem_cgroup != from)
		goto out;

1521 1522
	if (!mem_cgroup_is_root(from))
		res_counter_uncharge(&from->res, PAGE_SIZE, NULL);
K
KAMEZAWA Hiroyuki 已提交
1523
	mem_cgroup_charge_statistics(from, pc, false);
1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540

	page = pc->page;
	if (page_is_file_cache(page) && page_mapped(page)) {
		cpu = smp_processor_id();
		/* Update mapped_file data for mem_cgroup "from" */
		stat = &from->stat;
		cpustat = &stat->cpustat[cpu];
		__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_MAPPED_FILE,
						-1);

		/* Update mapped_file data for mem_cgroup "to" */
		stat = &to->stat;
		cpustat = &stat->cpustat[cpu];
		__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_MAPPED_FILE,
						1);
	}

1541
	if (do_swap_account && !mem_cgroup_is_root(from))
1542
		res_counter_uncharge(&from->memsw, PAGE_SIZE, NULL);
1543 1544 1545
	css_put(&from->css);

	css_get(&to->css);
K
KAMEZAWA Hiroyuki 已提交
1546 1547 1548
	pc->mem_cgroup = to;
	mem_cgroup_charge_statistics(to, pc, true);
	ret = 0;
1549 1550
out:
	unlock_page_cgroup(pc);
1551 1552 1553 1554 1555 1556
	/*
	 * We charges against "to" which may not have any tasks. Then, "to"
	 * can be under rmdir(). But in current implementation, caller of
	 * this function is just force_empty() and it's garanteed that
	 * "to" is never removed. So, we don't check rmdir status here.
	 */
1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
	return ret;
}

/*
 * move charges to its parent.
 */

static int mem_cgroup_move_parent(struct page_cgroup *pc,
				  struct mem_cgroup *child,
				  gfp_t gfp_mask)
{
K
KAMEZAWA Hiroyuki 已提交
1568
	struct page *page = pc->page;
1569 1570 1571 1572 1573 1574 1575 1576 1577
	struct cgroup *cg = child->css.cgroup;
	struct cgroup *pcg = cg->parent;
	struct mem_cgroup *parent;
	int ret;

	/* Is ROOT ? */
	if (!pcg)
		return -EINVAL;

K
KAMEZAWA Hiroyuki 已提交
1578

1579 1580
	parent = mem_cgroup_from_cont(pcg);

K
KAMEZAWA Hiroyuki 已提交
1581

1582
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false, page);
1583
	if (ret || !parent)
1584 1585
		return ret;

1586 1587 1588 1589
	if (!get_page_unless_zero(page)) {
		ret = -EBUSY;
		goto uncharge;
	}
K
KAMEZAWA Hiroyuki 已提交
1590 1591 1592 1593 1594

	ret = isolate_lru_page(page);

	if (ret)
		goto cancel;
1595 1596 1597

	ret = mem_cgroup_move_account(pc, child, parent);

K
KAMEZAWA Hiroyuki 已提交
1598 1599 1600
	putback_lru_page(page);
	if (!ret) {
		put_page(page);
1601 1602
		/* drop extra refcnt by try_charge() */
		css_put(&parent->css);
K
KAMEZAWA Hiroyuki 已提交
1603
		return 0;
1604
	}
1605

K
KAMEZAWA Hiroyuki 已提交
1606
cancel:
1607 1608 1609 1610 1611
	put_page(page);
uncharge:
	/* drop extra refcnt by try_charge() */
	css_put(&parent->css);
	/* uncharge if move fails */
1612 1613 1614 1615 1616
	if (!mem_cgroup_is_root(parent)) {
		res_counter_uncharge(&parent->res, PAGE_SIZE, NULL);
		if (do_swap_account)
			res_counter_uncharge(&parent->memsw, PAGE_SIZE, NULL);
	}
1617 1618 1619
	return ret;
}

1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask, enum charge_type ctype,
				struct mem_cgroup *memcg)
{
	struct mem_cgroup *mem;
	struct page_cgroup *pc;
	int ret;

	pc = lookup_page_cgroup(page);
	/* can happen at boot */
	if (unlikely(!pc))
		return 0;
	prefetchw(pc);

	mem = memcg;
1641
	ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true, page);
1642
	if (ret || !mem)
1643 1644 1645
		return ret;

	__mem_cgroup_commit_charge(mem, pc, ctype);
1646 1647 1648
	return 0;
}

1649 1650
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
1651
{
1652
	if (mem_cgroup_disabled())
1653
		return 0;
1654 1655
	if (PageCompound(page))
		return 0;
1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666
	/*
	 * If already mapped, we don't have to account.
	 * If page cache, page->mapping has address_space.
	 * But page->mapping may have out-of-use anon_vma pointer,
	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
	 * is NULL.
  	 */
	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
		return 0;
	if (unlikely(!mm))
		mm = &init_mm;
1667
	return mem_cgroup_charge_common(page, mm, gfp_mask,
1668
				MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
1669 1670
}

D
Daisuke Nishimura 已提交
1671 1672 1673 1674
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype);

1675 1676
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
1677
{
1678 1679 1680
	struct mem_cgroup *mem = NULL;
	int ret;

1681
	if (mem_cgroup_disabled())
1682
		return 0;
1683 1684
	if (PageCompound(page))
		return 0;
1685 1686 1687 1688 1689 1690 1691 1692
	/*
	 * Corner case handling. This is called from add_to_page_cache()
	 * in usual. But some FS (shmem) precharges this page before calling it
	 * and call add_to_page_cache() with GFP_NOWAIT.
	 *
	 * For GFP_NOWAIT case, the page may be pre-charged before calling
	 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
	 * charge twice. (It works but has to pay a bit larger cost.)
1693 1694
	 * And when the page is SwapCache, it should take swap information
	 * into account. This is under lock_page() now.
1695 1696 1697 1698
	 */
	if (!(gfp_mask & __GFP_WAIT)) {
		struct page_cgroup *pc;

1699 1700 1701 1702 1703 1704 1705

		pc = lookup_page_cgroup(page);
		if (!pc)
			return 0;
		lock_page_cgroup(pc);
		if (PageCgroupUsed(pc)) {
			unlock_page_cgroup(pc);
1706 1707
			return 0;
		}
1708
		unlock_page_cgroup(pc);
1709 1710
	}

1711
	if (unlikely(!mm && !mem))
1712
		mm = &init_mm;
1713

1714 1715
	if (page_is_file_cache(page))
		return mem_cgroup_charge_common(page, mm, gfp_mask,
1716
				MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
1717

D
Daisuke Nishimura 已提交
1718 1719 1720 1721 1722 1723 1724 1725 1726
	/* shmem */
	if (PageSwapCache(page)) {
		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
		if (!ret)
			__mem_cgroup_commit_charge_swapin(page, mem,
					MEM_CGROUP_CHARGE_TYPE_SHMEM);
	} else
		ret = mem_cgroup_charge_common(page, mm, gfp_mask,
					MEM_CGROUP_CHARGE_TYPE_SHMEM, mem);
1727 1728

	return ret;
1729 1730
}

1731 1732 1733 1734 1735 1736
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
 * struct page_cgroup is aquired. This refcnt will be cumsumed by
 * "commit()" or removed by "cancel()"
 */
1737 1738 1739 1740 1741
int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
				 struct page *page,
				 gfp_t mask, struct mem_cgroup **ptr)
{
	struct mem_cgroup *mem;
1742
	int ret;
1743

1744
	if (mem_cgroup_disabled())
1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755
		return 0;

	if (!do_swap_account)
		goto charge_cur_mm;
	/*
	 * A racing thread's fault, or swapoff, may have already updated
	 * the pte, and even removed page from swap cache: return success
	 * to go on to do_swap_page()'s pte_same() test, which should fail.
	 */
	if (!PageSwapCache(page))
		return 0;
1756
	mem = try_get_mem_cgroup_from_swapcache(page);
1757 1758
	if (!mem)
		goto charge_cur_mm;
1759
	*ptr = mem;
1760
	ret = __mem_cgroup_try_charge(NULL, mask, ptr, true, page);
1761 1762 1763
	/* drop extra refcnt from tryget */
	css_put(&mem->css);
	return ret;
1764 1765 1766
charge_cur_mm:
	if (unlikely(!mm))
		mm = &init_mm;
1767
	return __mem_cgroup_try_charge(mm, mask, ptr, true, page);
1768 1769
}

D
Daisuke Nishimura 已提交
1770 1771 1772
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype)
1773 1774 1775
{
	struct page_cgroup *pc;

1776
	if (mem_cgroup_disabled())
1777 1778 1779
		return;
	if (!ptr)
		return;
1780
	cgroup_exclude_rmdir(&ptr->css);
1781
	pc = lookup_page_cgroup(page);
1782
	mem_cgroup_lru_del_before_commit_swapcache(page);
D
Daisuke Nishimura 已提交
1783
	__mem_cgroup_commit_charge(ptr, pc, ctype);
1784
	mem_cgroup_lru_add_after_commit_swapcache(page);
1785 1786 1787
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
1788 1789 1790
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
1791
	 */
1792
	if (do_swap_account && PageSwapCache(page)) {
1793
		swp_entry_t ent = {.val = page_private(page)};
1794
		unsigned short id;
1795
		struct mem_cgroup *memcg;
1796 1797 1798 1799

		id = swap_cgroup_record(ent, 0);
		rcu_read_lock();
		memcg = mem_cgroup_lookup(id);
1800
		if (memcg) {
1801 1802 1803 1804
			/*
			 * This recorded memcg can be obsolete one. So, avoid
			 * calling css_tryget
			 */
1805 1806 1807 1808
			if (!mem_cgroup_is_root(memcg))
				res_counter_uncharge(&memcg->memsw, PAGE_SIZE,
							NULL);
			mem_cgroup_swap_statistics(memcg, false);
1809 1810
			mem_cgroup_put(memcg);
		}
1811
		rcu_read_unlock();
1812
	}
1813 1814 1815 1816 1817 1818
	/*
	 * At swapin, we may charge account against cgroup which has no tasks.
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
	cgroup_release_and_wakeup_rmdir(&ptr->css);
1819 1820
}

D
Daisuke Nishimura 已提交
1821 1822 1823 1824 1825 1826
void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
{
	__mem_cgroup_commit_charge_swapin(page, ptr,
					MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

1827 1828
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
{
1829
	if (mem_cgroup_disabled())
1830 1831 1832
		return;
	if (!mem)
		return;
1833 1834 1835 1836 1837
	if (!mem_cgroup_is_root(mem)) {
		res_counter_uncharge(&mem->res, PAGE_SIZE, NULL);
		if (do_swap_account)
			res_counter_uncharge(&mem->memsw, PAGE_SIZE, NULL);
	}
1838 1839 1840 1841
	css_put(&mem->css);
}


1842
/*
1843
 * uncharge if !page_mapped(page)
1844
 */
1845
static struct mem_cgroup *
1846
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
1847
{
H
Hugh Dickins 已提交
1848
	struct page_cgroup *pc;
1849
	struct mem_cgroup *mem = NULL;
1850
	struct mem_cgroup_per_zone *mz;
1851
	bool soft_limit_excess = false;
1852

1853
	if (mem_cgroup_disabled())
1854
		return NULL;
1855

K
KAMEZAWA Hiroyuki 已提交
1856
	if (PageSwapCache(page))
1857
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
1858

1859
	/*
1860
	 * Check if our page_cgroup is valid
1861
	 */
1862 1863
	pc = lookup_page_cgroup(page);
	if (unlikely(!pc || !PageCgroupUsed(pc)))
1864
		return NULL;
1865

1866
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
1867

1868 1869
	mem = pc->mem_cgroup;

K
KAMEZAWA Hiroyuki 已提交
1870 1871 1872 1873 1874
	if (!PageCgroupUsed(pc))
		goto unlock_out;

	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
K
KAMEZAWA Hiroyuki 已提交
1875
	case MEM_CGROUP_CHARGE_TYPE_DROP:
K
KAMEZAWA Hiroyuki 已提交
1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
		if (page_mapped(page))
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
1888
	}
K
KAMEZAWA Hiroyuki 已提交
1889

1890 1891 1892 1893 1894 1895 1896 1897
	if (!mem_cgroup_is_root(mem)) {
		res_counter_uncharge(&mem->res, PAGE_SIZE, &soft_limit_excess);
		if (do_swap_account &&
				(ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT))
			res_counter_uncharge(&mem->memsw, PAGE_SIZE, NULL);
	}
	if (ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		mem_cgroup_swap_statistics(mem, true);
K
KAMEZAWA Hiroyuki 已提交
1898
	mem_cgroup_charge_statistics(mem, pc, false);
K
KAMEZAWA Hiroyuki 已提交
1899

1900
	ClearPageCgroupUsed(pc);
1901 1902 1903 1904 1905 1906
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
1907

1908
	mz = page_cgroup_zoneinfo(pc);
1909
	unlock_page_cgroup(pc);
H
Hugh Dickins 已提交
1910

1911 1912
	if (soft_limit_excess && mem_cgroup_soft_limit_check(mem))
		mem_cgroup_update_tree(mem, page);
K
KAMEZAWA Hiroyuki 已提交
1913 1914 1915
	/* at swapout, this memcg will be accessed to record to swap */
	if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		css_put(&mem->css);
1916

1917
	return mem;
K
KAMEZAWA Hiroyuki 已提交
1918 1919 1920

unlock_out:
	unlock_page_cgroup(pc);
1921
	return NULL;
1922 1923
}

1924 1925
void mem_cgroup_uncharge_page(struct page *page)
{
1926 1927 1928 1929 1930
	/* early check. */
	if (page_mapped(page))
		return;
	if (page->mapping && !PageAnon(page))
		return;
1931 1932 1933 1934 1935 1936
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
1937
	VM_BUG_ON(page->mapping);
1938 1939 1940
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
}

1941
#ifdef CONFIG_SWAP
1942
/*
1943
 * called after __delete_from_swap_cache() and drop "page" account.
1944 1945
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
1946 1947
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
1948 1949
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
1950 1951 1952 1953 1954 1955
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

	memcg = __mem_cgroup_uncharge_common(page, ctype);
1956 1957

	/* record memcg information */
K
KAMEZAWA Hiroyuki 已提交
1958
	if (do_swap_account && swapout && memcg) {
1959
		swap_cgroup_record(ent, css_id(&memcg->css));
1960 1961
		mem_cgroup_get(memcg);
	}
K
KAMEZAWA Hiroyuki 已提交
1962
	if (swapout && memcg)
K
KAMEZAWA Hiroyuki 已提交
1963
		css_put(&memcg->css);
1964
}
1965
#endif
1966 1967 1968 1969 1970 1971 1972

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
1973
{
1974
	struct mem_cgroup *memcg;
1975
	unsigned short id;
1976 1977 1978 1979

	if (!do_swap_account)
		return;

1980 1981 1982
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
1983
	if (memcg) {
1984 1985 1986 1987
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
1988 1989 1990
		if (!mem_cgroup_is_root(memcg))
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE, NULL);
		mem_cgroup_swap_statistics(memcg, false);
1991 1992
		mem_cgroup_put(memcg);
	}
1993
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
1994
}
1995
#endif
K
KAMEZAWA Hiroyuki 已提交
1996

1997
/*
1998 1999
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
2000
 */
2001
int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr)
2002 2003
{
	struct page_cgroup *pc;
2004 2005
	struct mem_cgroup *mem = NULL;
	int ret = 0;
2006

2007
	if (mem_cgroup_disabled())
2008 2009
		return 0;

2010 2011 2012
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
2013 2014 2015
		mem = pc->mem_cgroup;
		css_get(&mem->css);
	}
2016
	unlock_page_cgroup(pc);
2017

2018
	if (mem) {
2019 2020
		ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false,
						page);
2021 2022
		css_put(&mem->css);
	}
2023
	*ptr = mem;
2024
	return ret;
2025
}
2026

2027
/* remove redundant charge if migration failed*/
2028 2029
void mem_cgroup_end_migration(struct mem_cgroup *mem,
		struct page *oldpage, struct page *newpage)
2030
{
2031 2032 2033 2034 2035 2036
	struct page *target, *unused;
	struct page_cgroup *pc;
	enum charge_type ctype;

	if (!mem)
		return;
2037
	cgroup_exclude_rmdir(&mem->css);
2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054
	/* at migration success, oldpage->mapping is NULL. */
	if (oldpage->mapping) {
		target = oldpage;
		unused = NULL;
	} else {
		target = newpage;
		unused = oldpage;
	}

	if (PageAnon(target))
		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
	else if (page_is_file_cache(target))
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
	else
		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;

	/* unused page is not on radix-tree now. */
K
KAMEZAWA Hiroyuki 已提交
2055
	if (unused)
2056 2057 2058
		__mem_cgroup_uncharge_common(unused, ctype);

	pc = lookup_page_cgroup(target);
2059
	/*
2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073
	 * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
	 * So, double-counting is effectively avoided.
	 */
	__mem_cgroup_commit_charge(mem, pc, ctype);

	/*
	 * Both of oldpage and newpage are still under lock_page().
	 * Then, we don't have to care about race in radix-tree.
	 * But we have to be careful that this page is unmapped or not.
	 *
	 * There is a case for !page_mapped(). At the start of
	 * migration, oldpage was mapped. But now, it's zapped.
	 * But we know *target* page is not freed/reused under us.
	 * mem_cgroup_uncharge_page() does all necessary checks.
2074
	 */
2075 2076
	if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
		mem_cgroup_uncharge_page(target);
2077 2078 2079 2080 2081 2082
	/*
	 * At migration, we may charge account against cgroup which has no tasks
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
	cgroup_release_and_wakeup_rmdir(&mem->css);
2083
}
2084

2085
/*
2086 2087 2088 2089 2090 2091
 * A call to try to shrink memory usage on charge failure at shmem's swapin.
 * Calling hierarchical_reclaim is not enough because we should update
 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
 * not from the memcg which this page would be charged to.
 * try_charge_swapin does all of these works properly.
2092
 */
2093
int mem_cgroup_shmem_charge_fallback(struct page *page,
2094 2095
			    struct mm_struct *mm,
			    gfp_t gfp_mask)
2096
{
2097
	struct mem_cgroup *mem = NULL;
2098
	int ret;
2099

2100
	if (mem_cgroup_disabled())
2101
		return 0;
2102

2103 2104 2105
	ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
	if (!ret)
		mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
2106

2107
	return ret;
2108 2109
}

2110 2111
static DEFINE_MUTEX(set_limit_mutex);

2112
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2113
				unsigned long long val)
2114
{
2115
	int retry_count;
2116
	int progress;
2117
	u64 memswlimit;
2118
	int ret = 0;
2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
2130

2131
	while (retry_count) {
2132 2133 2134 2135
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2136 2137 2138 2139 2140 2141 2142 2143 2144 2145
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
2146 2147
			break;
		}
2148
		ret = res_counter_set_limit(&memcg->res, val);
2149 2150 2151 2152 2153 2154
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
2155 2156 2157 2158 2159
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

2160 2161 2162
		progress = mem_cgroup_hierarchical_reclaim(memcg, NULL,
						GFP_KERNEL,
						MEM_CGROUP_RECLAIM_SHRINK);
2163 2164 2165 2166 2167 2168
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
2169
	}
2170

2171 2172 2173
	return ret;
}

L
Li Zefan 已提交
2174 2175
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
2176
{
2177
	int retry_count;
2178
	u64 memlimit, oldusage, curusage;
2179 2180
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
2181

2182 2183 2184
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
		ret = res_counter_set_limit(&memcg->memsw, val);
2203 2204 2205 2206 2207 2208
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
2209 2210 2211 2212 2213
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

2214
		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
2215 2216
						MEM_CGROUP_RECLAIM_NOSWAP |
						MEM_CGROUP_RECLAIM_SHRINK);
2217
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
2218
		/* Usage is reduced ? */
2219
		if (curusage >= oldusage)
2220
			retry_count--;
2221 2222
		else
			oldusage = curusage;
2223 2224 2225 2226
	}
	return ret;
}

2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
						gfp_t gfp_mask, int nid,
						int zid)
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;

	if (order > 0)
		return 0;

	mctz = soft_limit_tree_node_zone(nid, zid);
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
						gfp_mask,
						MEM_CGROUP_RECLAIM_SOFT);
		nr_reclaimed += reclaimed;
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
				if (next_mz == mz) {
					css_put(&next_mz->mem->css);
					next_mz = NULL;
				} else /* next_mz == NULL or other memcg */
					break;
			} while (1);
		}
		mz->usage_in_excess =
			res_counter_soft_limit_excess(&mz->mem->res);
		__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		if (mz->usage_in_excess)
			__mem_cgroup_insert_exceeded(mz->mem, mz, mctz);
		spin_unlock(&mctz->lock);
		css_put(&mz->mem->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->mem->css);
	return nr_reclaimed;
}

2318 2319 2320 2321
/*
 * This routine traverse page_cgroup in given list and drop them all.
 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
 */
2322
static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
K
KAMEZAWA Hiroyuki 已提交
2323
				int node, int zid, enum lru_list lru)
2324
{
K
KAMEZAWA Hiroyuki 已提交
2325 2326
	struct zone *zone;
	struct mem_cgroup_per_zone *mz;
2327
	struct page_cgroup *pc, *busy;
K
KAMEZAWA Hiroyuki 已提交
2328
	unsigned long flags, loop;
2329
	struct list_head *list;
2330
	int ret = 0;
2331

K
KAMEZAWA Hiroyuki 已提交
2332 2333
	zone = &NODE_DATA(node)->node_zones[zid];
	mz = mem_cgroup_zoneinfo(mem, node, zid);
2334
	list = &mz->lists[lru];
2335

2336 2337 2338 2339 2340 2341
	loop = MEM_CGROUP_ZSTAT(mz, lru);
	/* give some margin against EBUSY etc...*/
	loop += 256;
	busy = NULL;
	while (loop--) {
		ret = 0;
K
KAMEZAWA Hiroyuki 已提交
2342
		spin_lock_irqsave(&zone->lru_lock, flags);
2343
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
2344
			spin_unlock_irqrestore(&zone->lru_lock, flags);
2345
			break;
2346 2347 2348 2349 2350
		}
		pc = list_entry(list->prev, struct page_cgroup, lru);
		if (busy == pc) {
			list_move(&pc->lru, list);
			busy = 0;
K
KAMEZAWA Hiroyuki 已提交
2351
			spin_unlock_irqrestore(&zone->lru_lock, flags);
2352 2353
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
2354
		spin_unlock_irqrestore(&zone->lru_lock, flags);
2355

K
KAMEZAWA Hiroyuki 已提交
2356
		ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
2357
		if (ret == -ENOMEM)
2358
			break;
2359 2360 2361 2362 2363 2364 2365

		if (ret == -EBUSY || ret == -EINVAL) {
			/* found lock contention or "pc" is obsolete. */
			busy = pc;
			cond_resched();
		} else
			busy = NULL;
2366
	}
K
KAMEZAWA Hiroyuki 已提交
2367

2368 2369 2370
	if (!ret && !list_empty(list))
		return -EBUSY;
	return ret;
2371 2372 2373 2374 2375 2376
}

/*
 * make mem_cgroup's charge to be 0 if there is no task.
 * This enables deleting this mem_cgroup.
 */
2377
static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
2378
{
2379 2380 2381
	int ret;
	int node, zid, shrink;
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2382
	struct cgroup *cgrp = mem->css.cgroup;
2383

2384
	css_get(&mem->css);
2385 2386

	shrink = 0;
2387 2388 2389
	/* should free all ? */
	if (free_all)
		goto try_to_free;
2390
move_account:
2391
	while (mem->res.usage > 0) {
2392
		ret = -EBUSY;
2393 2394 2395 2396
		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
			goto out;
		ret = -EINTR;
		if (signal_pending(current))
2397
			goto out;
2398 2399
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
2400
		ret = 0;
2401
		for_each_node_state(node, N_HIGH_MEMORY) {
2402
			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
2403
				enum lru_list l;
2404 2405
				for_each_lru(l) {
					ret = mem_cgroup_force_empty_list(mem,
K
KAMEZAWA Hiroyuki 已提交
2406
							node, zid, l);
2407 2408 2409
					if (ret)
						break;
				}
2410
			}
2411 2412 2413 2414 2415 2416
			if (ret)
				break;
		}
		/* it seems parent cgroup doesn't have enough mem */
		if (ret == -ENOMEM)
			goto try_to_free;
2417
		cond_resched();
2418 2419 2420 2421 2422
	}
	ret = 0;
out:
	css_put(&mem->css);
	return ret;
2423 2424

try_to_free:
2425 2426
	/* returns EBUSY if there is a task or if we come here twice. */
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
2427 2428 2429
		ret = -EBUSY;
		goto out;
	}
2430 2431
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
2432 2433 2434 2435
	/* try to free all pages in this cgroup */
	shrink = 1;
	while (nr_retries && mem->res.usage > 0) {
		int progress;
2436 2437 2438 2439 2440

		if (signal_pending(current)) {
			ret = -EINTR;
			goto out;
		}
K
KOSAKI Motohiro 已提交
2441 2442
		progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
						false, get_swappiness(mem));
2443
		if (!progress) {
2444
			nr_retries--;
2445
			/* maybe some writeback is necessary */
2446
			congestion_wait(BLK_RW_ASYNC, HZ/10);
2447
		}
2448 2449

	}
K
KAMEZAWA Hiroyuki 已提交
2450
	lru_add_drain();
2451 2452 2453 2454 2455
	/* try move_account...there may be some *locked* pages. */
	if (mem->res.usage)
		goto move_account;
	ret = 0;
	goto out;
2456 2457
}

2458 2459 2460 2461 2462 2463
int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
{
	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
}


2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
	struct cgroup *parent = cont->parent;
	struct mem_cgroup *parent_mem = NULL;

	if (parent)
		parent_mem = mem_cgroup_from_cont(parent);

	cgroup_lock();
	/*
	 * If parent's use_hiearchy is set, we can't make any modifications
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
	if ((!parent_mem || !parent_mem->use_hierarchy) &&
				(val == 1 || val == 0)) {
		if (list_empty(&cont->children))
			mem->use_hierarchy = val;
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
	cgroup_unlock();

	return retval;
}

2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525
struct mem_cgroup_idx_data {
	s64 val;
	enum mem_cgroup_stat_index idx;
};

static int
mem_cgroup_get_idx_stat(struct mem_cgroup *mem, void *data)
{
	struct mem_cgroup_idx_data *d = data;
	d->val += mem_cgroup_read_stat(&mem->stat, d->idx);
	return 0;
}

static void
mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,
				enum mem_cgroup_stat_index idx, s64 *val)
{
	struct mem_cgroup_idx_data d;
	d.idx = idx;
	d.val = 0;
	mem_cgroup_walk_tree(mem, &d, mem_cgroup_get_idx_stat);
	*val = d.val;
}

2526
static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
B
Balbir Singh 已提交
2527
{
2528
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
2529
	u64 idx_val, val;
2530 2531 2532 2533 2534 2535
	int type, name;

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (type) {
	case _MEM:
2536 2537 2538 2539 2540 2541 2542 2543 2544 2545
		if (name == RES_USAGE && mem_cgroup_is_root(mem)) {
			mem_cgroup_get_recursive_idx_stat(mem,
				MEM_CGROUP_STAT_CACHE, &idx_val);
			val = idx_val;
			mem_cgroup_get_recursive_idx_stat(mem,
				MEM_CGROUP_STAT_RSS, &idx_val);
			val += idx_val;
			val <<= PAGE_SHIFT;
		} else
			val = res_counter_read_u64(&mem->res, name);
2546 2547
		break;
	case _MEMSWAP:
2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559
		if (name == RES_USAGE && mem_cgroup_is_root(mem)) {
			mem_cgroup_get_recursive_idx_stat(mem,
				MEM_CGROUP_STAT_CACHE, &idx_val);
			val = idx_val;
			mem_cgroup_get_recursive_idx_stat(mem,
				MEM_CGROUP_STAT_RSS, &idx_val);
			val += idx_val;
			mem_cgroup_get_recursive_idx_stat(mem,
				MEM_CGROUP_STAT_SWAPOUT, &idx_val);
			val <<= PAGE_SHIFT;
		} else
			val = res_counter_read_u64(&mem->memsw, name);
2560 2561 2562 2563 2564 2565
		break;
	default:
		BUG();
		break;
	}
	return val;
B
Balbir Singh 已提交
2566
}
2567 2568 2569 2570
/*
 * The user of this function is...
 * RES_LIMIT.
 */
2571 2572
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
2573
{
2574
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
2575
	int type, name;
2576 2577 2578
	unsigned long long val;
	int ret;

2579 2580 2581
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (name) {
2582
	case RES_LIMIT:
2583 2584 2585 2586
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
2587 2588
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
2589 2590 2591
		if (ret)
			break;
		if (type == _MEM)
2592
			ret = mem_cgroup_resize_limit(memcg, val);
2593 2594
		else
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
2595
		break;
2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
2610 2611 2612 2613 2614
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
2615 2616
}

2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
	return;
}

2645
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
2646 2647
{
	struct mem_cgroup *mem;
2648
	int type, name;
2649 2650

	mem = mem_cgroup_from_cont(cont);
2651 2652 2653
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
	switch (name) {
2654
	case RES_MAX_USAGE:
2655 2656 2657 2658
		if (type == _MEM)
			res_counter_reset_max(&mem->res);
		else
			res_counter_reset_max(&mem->memsw);
2659 2660
		break;
	case RES_FAILCNT:
2661 2662 2663 2664
		if (type == _MEM)
			res_counter_reset_failcnt(&mem->res);
		else
			res_counter_reset_failcnt(&mem->memsw);
2665 2666
		break;
	}
2667

2668
	return 0;
2669 2670
}

K
KAMEZAWA Hiroyuki 已提交
2671 2672 2673 2674 2675

/* For read statistics */
enum {
	MCS_CACHE,
	MCS_RSS,
2676
	MCS_MAPPED_FILE,
K
KAMEZAWA Hiroyuki 已提交
2677 2678
	MCS_PGPGIN,
	MCS_PGPGOUT,
2679
	MCS_SWAP,
K
KAMEZAWA Hiroyuki 已提交
2680 2681 2682 2683 2684 2685 2686 2687 2688 2689
	MCS_INACTIVE_ANON,
	MCS_ACTIVE_ANON,
	MCS_INACTIVE_FILE,
	MCS_ACTIVE_FILE,
	MCS_UNEVICTABLE,
	NR_MCS_STAT,
};

struct mcs_total_stat {
	s64 stat[NR_MCS_STAT];
2690 2691
};

K
KAMEZAWA Hiroyuki 已提交
2692 2693 2694 2695 2696 2697
struct {
	char *local_name;
	char *total_name;
} memcg_stat_strings[NR_MCS_STAT] = {
	{"cache", "total_cache"},
	{"rss", "total_rss"},
2698
	{"mapped_file", "total_mapped_file"},
K
KAMEZAWA Hiroyuki 已提交
2699 2700
	{"pgpgin", "total_pgpgin"},
	{"pgpgout", "total_pgpgout"},
2701
	{"swap", "total_swap"},
K
KAMEZAWA Hiroyuki 已提交
2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
	{"inactive_anon", "total_inactive_anon"},
	{"active_anon", "total_active_anon"},
	{"inactive_file", "total_inactive_file"},
	{"active_file", "total_active_file"},
	{"unevictable", "total_unevictable"}
};


static int mem_cgroup_get_local_stat(struct mem_cgroup *mem, void *data)
{
	struct mcs_total_stat *s = data;
	s64 val;

	/* per cpu stat */
	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_CACHE);
	s->stat[MCS_CACHE] += val * PAGE_SIZE;
	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
	s->stat[MCS_RSS] += val * PAGE_SIZE;
2720 2721
	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_MAPPED_FILE);
	s->stat[MCS_MAPPED_FILE] += val * PAGE_SIZE;
K
KAMEZAWA Hiroyuki 已提交
2722 2723 2724 2725
	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_PGPGIN_COUNT);
	s->stat[MCS_PGPGIN] += val;
	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_PGPGOUT_COUNT);
	s->stat[MCS_PGPGOUT] += val;
2726 2727 2728 2729
	if (do_swap_account) {
		val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_SWAPOUT);
		s->stat[MCS_SWAP] += val * PAGE_SIZE;
	}
K
KAMEZAWA Hiroyuki 已提交
2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750

	/* per zone stat */
	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
	return 0;
}

static void
mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
{
	mem_cgroup_walk_tree(mem, s, mem_cgroup_get_local_stat);
}

2751 2752
static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
				 struct cgroup_map_cb *cb)
2753 2754
{
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
K
KAMEZAWA Hiroyuki 已提交
2755
	struct mcs_total_stat mystat;
2756 2757
	int i;

K
KAMEZAWA Hiroyuki 已提交
2758 2759
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_local_stat(mem_cont, &mystat);
2760

2761 2762 2763
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
2764
		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
2765
	}
L
Lee Schermerhorn 已提交
2766

K
KAMEZAWA Hiroyuki 已提交
2767
	/* Hierarchical information */
2768 2769 2770 2771 2772 2773 2774
	{
		unsigned long long limit, memsw_limit;
		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
		cb->fill(cb, "hierarchical_memory_limit", limit);
		if (do_swap_account)
			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
	}
K
KOSAKI Motohiro 已提交
2775

K
KAMEZAWA Hiroyuki 已提交
2776 2777
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_total_stat(mem_cont, &mystat);
2778 2779 2780
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
2781
		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
2782
	}
K
KAMEZAWA Hiroyuki 已提交
2783

K
KOSAKI Motohiro 已提交
2784
#ifdef CONFIG_DEBUG_VM
2785
	cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
K
KOSAKI Motohiro 已提交
2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812

	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);

				recent_rotated[0] +=
					mz->reclaim_stat.recent_rotated[0];
				recent_rotated[1] +=
					mz->reclaim_stat.recent_rotated[1];
				recent_scanned[0] +=
					mz->reclaim_stat.recent_scanned[0];
				recent_scanned[1] +=
					mz->reclaim_stat.recent_scanned[1];
			}
		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
	}
#endif

2813 2814 2815
	return 0;
}

K
KOSAKI Motohiro 已提交
2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

	return get_swappiness(memcg);
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
2828

K
KOSAKI Motohiro 已提交
2829 2830 2831 2832 2833 2834 2835
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
2836 2837 2838

	cgroup_lock();

K
KOSAKI Motohiro 已提交
2839 2840
	/* If under hierarchy, only empty-root can set this value */
	if ((parent->use_hierarchy) ||
2841 2842
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
K
KOSAKI Motohiro 已提交
2843
		return -EINVAL;
2844
	}
K
KOSAKI Motohiro 已提交
2845 2846 2847 2848 2849

	spin_lock(&memcg->reclaim_param_lock);
	memcg->swappiness = val;
	spin_unlock(&memcg->reclaim_param_lock);

2850 2851
	cgroup_unlock();

K
KOSAKI Motohiro 已提交
2852 2853 2854
	return 0;
}

2855

B
Balbir Singh 已提交
2856 2857
static struct cftype mem_cgroup_files[] = {
	{
2858
		.name = "usage_in_bytes",
2859
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
2860
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
2861
	},
2862 2863
	{
		.name = "max_usage_in_bytes",
2864
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
2865
		.trigger = mem_cgroup_reset,
2866 2867
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
2868
	{
2869
		.name = "limit_in_bytes",
2870
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
2871
		.write_string = mem_cgroup_write,
2872
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
2873
	},
2874 2875 2876 2877 2878 2879
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
2880 2881
	{
		.name = "failcnt",
2882
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
2883
		.trigger = mem_cgroup_reset,
2884
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
2885
	},
2886 2887
	{
		.name = "stat",
2888
		.read_map = mem_control_stat_show,
2889
	},
2890 2891 2892 2893
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
2894 2895 2896 2897 2898
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
2899 2900 2901 2902 2903
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
B
Balbir Singh 已提交
2904 2905
};

2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
};

static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	if (!do_swap_account)
		return 0;
	return cgroup_add_files(cont, ss, memsw_cgroup_files,
				ARRAY_SIZE(memsw_cgroup_files));
};
#else
static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	return 0;
}
#endif

2947 2948 2949
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	struct mem_cgroup_per_node *pn;
2950
	struct mem_cgroup_per_zone *mz;
2951
	enum lru_list l;
2952
	int zone, tmp = node;
2953 2954 2955 2956 2957 2958 2959 2960
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
2961 2962 2963
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
	pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
2964 2965
	if (!pn)
		return 1;
2966

2967 2968
	mem->info.nodeinfo[node] = pn;
	memset(pn, 0, sizeof(*pn));
2969 2970 2971

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
2972 2973
		for_each_lru(l)
			INIT_LIST_HEAD(&mz->lists[l]);
2974
		mz->usage_in_excess = 0;
2975 2976
		mz->on_tree = false;
		mz->mem = mem;
2977
	}
2978 2979 2980
	return 0;
}

2981 2982 2983 2984 2985
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	kfree(mem->info.nodeinfo[node]);
}

2986 2987 2988 2989 2990 2991
static int mem_cgroup_size(void)
{
	int cpustat_size = nr_cpu_ids * sizeof(struct mem_cgroup_stat_cpu);
	return sizeof(struct mem_cgroup) + cpustat_size;
}

2992 2993 2994
static struct mem_cgroup *mem_cgroup_alloc(void)
{
	struct mem_cgroup *mem;
2995
	int size = mem_cgroup_size();
2996

2997 2998
	if (size < PAGE_SIZE)
		mem = kmalloc(size, GFP_KERNEL);
2999
	else
3000
		mem = vmalloc(size);
3001 3002

	if (mem)
3003
		memset(mem, 0, size);
3004 3005 3006
	return mem;
}

3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017
/*
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
 */

3018
static void __mem_cgroup_free(struct mem_cgroup *mem)
3019
{
K
KAMEZAWA Hiroyuki 已提交
3020 3021
	int node;

3022
	mem_cgroup_remove_from_trees(mem);
K
KAMEZAWA Hiroyuki 已提交
3023 3024
	free_css_id(&mem_cgroup_subsys, &mem->css);

K
KAMEZAWA Hiroyuki 已提交
3025 3026 3027
	for_each_node_state(node, N_POSSIBLE)
		free_mem_cgroup_per_zone_info(mem, node);

3028
	if (mem_cgroup_size() < PAGE_SIZE)
3029 3030 3031 3032 3033
		kfree(mem);
	else
		vfree(mem);
}

3034 3035 3036 3037 3038 3039 3040
static void mem_cgroup_get(struct mem_cgroup *mem)
{
	atomic_inc(&mem->refcnt);
}

static void mem_cgroup_put(struct mem_cgroup *mem)
{
3041 3042
	if (atomic_dec_and_test(&mem->refcnt)) {
		struct mem_cgroup *parent = parent_mem_cgroup(mem);
3043
		__mem_cgroup_free(mem);
3044 3045 3046
		if (parent)
			mem_cgroup_put(parent);
	}
3047 3048
}

3049 3050 3051 3052 3053 3054 3055 3056 3057
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
{
	if (!mem->res.parent)
		return NULL;
	return mem_cgroup_from_res_counter(mem->res.parent, res);
}
3058

3059 3060 3061
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static void __init enable_swap_cgroup(void)
{
3062
	if (!mem_cgroup_disabled() && really_do_swap_account)
3063 3064 3065 3066 3067 3068 3069 3070
		do_swap_account = 1;
}
#else
static void __init enable_swap_cgroup(void)
{
}
#endif

3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095
static int mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

	for_each_node_state(node, N_POSSIBLE) {
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		if (!rtpn)
			return 1;

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
	return 0;
}

L
Li Zefan 已提交
3096
static struct cgroup_subsys_state * __ref
B
Balbir Singh 已提交
3097 3098
mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
{
3099
	struct mem_cgroup *mem, *parent;
K
KAMEZAWA Hiroyuki 已提交
3100
	long error = -ENOMEM;
3101
	int node;
B
Balbir Singh 已提交
3102

3103 3104
	mem = mem_cgroup_alloc();
	if (!mem)
K
KAMEZAWA Hiroyuki 已提交
3105
		return ERR_PTR(error);
3106

3107 3108 3109
	for_each_node_state(node, N_POSSIBLE)
		if (alloc_mem_cgroup_per_zone_info(mem, node))
			goto free_out;
3110

3111
	/* root ? */
3112
	if (cont->parent == NULL) {
3113
		enable_swap_cgroup();
3114
		parent = NULL;
3115
		root_mem_cgroup = mem;
3116 3117 3118
		if (mem_cgroup_soft_limit_tree_init())
			goto free_out;

3119
	} else {
3120
		parent = mem_cgroup_from_cont(cont->parent);
3121 3122
		mem->use_hierarchy = parent->use_hierarchy;
	}
3123

3124 3125 3126
	if (parent && parent->use_hierarchy) {
		res_counter_init(&mem->res, &parent->res);
		res_counter_init(&mem->memsw, &parent->memsw);
3127 3128 3129 3130 3131 3132 3133
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
3134 3135 3136 3137
	} else {
		res_counter_init(&mem->res, NULL);
		res_counter_init(&mem->memsw, NULL);
	}
K
KAMEZAWA Hiroyuki 已提交
3138
	mem->last_scanned_child = 0;
K
KOSAKI Motohiro 已提交
3139
	spin_lock_init(&mem->reclaim_param_lock);
3140

K
KOSAKI Motohiro 已提交
3141 3142
	if (parent)
		mem->swappiness = get_swappiness(parent);
3143
	atomic_set(&mem->refcnt, 1);
B
Balbir Singh 已提交
3144
	return &mem->css;
3145
free_out:
3146
	__mem_cgroup_free(mem);
3147
	root_mem_cgroup = NULL;
K
KAMEZAWA Hiroyuki 已提交
3148
	return ERR_PTR(error);
B
Balbir Singh 已提交
3149 3150
}

3151
static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
3152 3153 3154
					struct cgroup *cont)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3155 3156

	return mem_cgroup_force_empty(mem, false);
3157 3158
}

B
Balbir Singh 已提交
3159 3160 3161
static void mem_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
3162 3163 3164
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);

	mem_cgroup_put(mem);
B
Balbir Singh 已提交
3165 3166 3167 3168 3169
}

static int mem_cgroup_populate(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
3170 3171 3172 3173 3174 3175 3176 3177
	int ret;

	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
				ARRAY_SIZE(mem_cgroup_files));

	if (!ret)
		ret = register_memsw_files(cont, ss);
	return ret;
B
Balbir Singh 已提交
3178 3179
}

B
Balbir Singh 已提交
3180 3181 3182
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
3183 3184
				struct task_struct *p,
				bool threadgroup)
B
Balbir Singh 已提交
3185
{
3186
	mutex_lock(&memcg_tasklist);
B
Balbir Singh 已提交
3187
	/*
3188 3189
	 * FIXME: It's better to move charges of this process from old
	 * memcg to new memcg. But it's just on TODO-List now.
B
Balbir Singh 已提交
3190
	 */
3191
	mutex_unlock(&memcg_tasklist);
B
Balbir Singh 已提交
3192 3193
}

B
Balbir Singh 已提交
3194 3195 3196 3197
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
	.create = mem_cgroup_create,
3198
	.pre_destroy = mem_cgroup_pre_destroy,
B
Balbir Singh 已提交
3199 3200
	.destroy = mem_cgroup_destroy,
	.populate = mem_cgroup_populate,
B
Balbir Singh 已提交
3201
	.attach = mem_cgroup_move_task,
3202
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
3203
	.use_id = 1,
B
Balbir Singh 已提交
3204
};
3205 3206 3207 3208 3209 3210 3211 3212 3213 3214

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP

static int __init disable_swap_account(char *s)
{
	really_do_swap_account = 0;
	return 1;
}
__setup("noswapaccount", disable_swap_account);
#endif