i915_gem.c 135.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
C
Chris Wilson 已提交
32
#include "i915_trace.h"
33
#include "intel_drv.h"
34
#include <linux/oom.h>
35
#include <linux/shmem_fs.h>
36
#include <linux/slab.h>
37
#include <linux/swap.h>
J
Jesse Barnes 已提交
38
#include <linux/pci.h>
39
#include <linux/dma-buf.h>
40

41
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
42 43
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
						   bool force);
44
static __must_check int
45 46
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
			       bool readonly);
47 48 49
static void
i915_gem_object_retire(struct drm_i915_gem_object *obj);

50 51 52 53 54 55
static void i915_gem_write_fence(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj);
static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
					 struct drm_i915_fence_reg *fence,
					 bool enable);

56
static unsigned long i915_gem_shrinker_count(struct shrinker *shrinker,
57
					     struct shrink_control *sc);
58
static unsigned long i915_gem_shrinker_scan(struct shrinker *shrinker,
59
					    struct shrink_control *sc);
60 61 62
static int i915_gem_shrinker_oom(struct notifier_block *nb,
				 unsigned long event,
				 void *ptr);
63
static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
64

65 66 67 68 69 70
static bool cpu_cache_is_coherent(struct drm_device *dev,
				  enum i915_cache_level level)
{
	return HAS_LLC(dev) || level != I915_CACHE_NONE;
}

71 72 73 74 75 76 77 78
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		return true;

	return obj->pin_display;
}

79 80 81 82 83 84 85 86
static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
{
	if (obj->tiling_mode)
		i915_gem_release_mmap(obj);

	/* As we do not have an associated fence register, we will force
	 * a tiling change if we ever need to acquire one.
	 */
87
	obj->fence_dirty = false;
88 89 90
	obj->fence_reg = I915_FENCE_REG_NONE;
}

91 92 93 94
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
95
	spin_lock(&dev_priv->mm.object_stat_lock);
96 97
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
98
	spin_unlock(&dev_priv->mm.object_stat_lock);
99 100 101 102 103
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
104
	spin_lock(&dev_priv->mm.object_stat_lock);
105 106
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
107
	spin_unlock(&dev_priv->mm.object_stat_lock);
108 109
}

110
static int
111
i915_gem_wait_for_error(struct i915_gpu_error *error)
112 113 114
{
	int ret;

115 116
#define EXIT_COND (!i915_reset_in_progress(error) || \
		   i915_terminally_wedged(error))
117
	if (EXIT_COND)
118 119
		return 0;

120 121 122 123 124
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
125 126 127
	ret = wait_event_interruptible_timeout(error->reset_queue,
					       EXIT_COND,
					       10*HZ);
128 129 130 131
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
132
		return ret;
133
	}
134
#undef EXIT_COND
135

136
	return 0;
137 138
}

139
int i915_mutex_lock_interruptible(struct drm_device *dev)
140
{
141
	struct drm_i915_private *dev_priv = dev->dev_private;
142 143
	int ret;

144
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
145 146 147 148 149 150 151
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

152
	WARN_ON(i915_verify_lists(dev));
153 154
	return 0;
}
155

156
static inline bool
157
i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
158
{
159
	return i915_gem_obj_bound_any(obj) && !obj->active;
160 161
}

162 163
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
164
			    struct drm_file *file)
165
{
166
	struct drm_i915_private *dev_priv = dev->dev_private;
167
	struct drm_i915_gem_get_aperture *args = data;
168 169
	struct drm_i915_gem_object *obj;
	size_t pinned;
170

171
	pinned = 0;
172
	mutex_lock(&dev->struct_mutex);
173
	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
B
Ben Widawsky 已提交
174
		if (i915_gem_obj_is_pinned(obj))
175
			pinned += i915_gem_obj_ggtt_size(obj);
176
	mutex_unlock(&dev->struct_mutex);
177

178
	args->aper_size = dev_priv->gtt.base.total;
179
	args->aper_available_size = args->aper_size - pinned;
180

181 182 183
	return 0;
}

184 185
static int
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
186
{
187 188 189 190 191
	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
	char *vaddr = obj->phys_handle->vaddr;
	struct sg_table *st;
	struct scatterlist *sg;
	int i;
192

193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
		return -EINVAL;

	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
		if (IS_ERR(page))
			return PTR_ERR(page);

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

		page_cache_release(page);
		vaddr += PAGE_SIZE;
	}

	i915_gem_chipset_flush(obj->base.dev);

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
		return -ENOMEM;
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
227

228 229 230 231 232 233 234 235 236 237 238 239 240 241
	sg_dma_address(sg) = obj->phys_handle->busaddr;
	sg_dma_len(sg) = obj->base.size;

	obj->pages = st;
	obj->has_dma_mapping = true;
	return 0;
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
{
	int ret;

	BUG_ON(obj->madv == __I915_MADV_PURGED);
242

243 244 245 246 247 248 249 250 251 252 253 254 255
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret) {
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		WARN_ON(ret != -EIO);
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;

	if (obj->dirty) {
256
		struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
257
		char *vaddr = obj->phys_handle->vaddr;
258 259 260
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
261 262 263 264 265 266 267 268 269 270 271 272 273 274
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
			if (obj->madv == I915_MADV_WILLNEED)
275
				mark_page_accessed(page);
276
			page_cache_release(page);
277 278
			vaddr += PAGE_SIZE;
		}
279
		obj->dirty = 0;
280 281
	}

282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
	sg_free_table(obj->pages);
	kfree(obj->pages);

	obj->has_dma_mapping = false;
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
	drm_pci_free(obj->base.dev, obj->phys_handle);
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

static int
drop_pages(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma, *next;
	int ret;

	drm_gem_object_reference(&obj->base);
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
		if (i915_vma_unbind(vma))
			break;

	ret = i915_gem_object_put_pages(obj);
	drm_gem_object_unreference(&obj->base);

	return ret;
315 316 317 318 319 320 321
}

int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
			    int align)
{
	drm_dma_handle_t *phys;
322
	int ret;
323 324 325 326 327 328 329 330 331 332 333 334 335 336

	if (obj->phys_handle) {
		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
			return -EBUSY;

		return 0;
	}

	if (obj->madv != I915_MADV_WILLNEED)
		return -EFAULT;

	if (obj->base.filp == NULL)
		return -EINVAL;

337 338 339 340
	ret = drop_pages(obj);
	if (ret)
		return ret;

341 342 343 344 345 346
	/* create a new object */
	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
	if (!phys)
		return -ENOMEM;

	obj->phys_handle = phys;
347 348 349
	obj->ops = &i915_gem_phys_ops;

	return i915_gem_object_get_pages(obj);
350 351 352 353 354 355 356 357 358 359
}

static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
	struct drm_device *dev = obj->base.dev;
	void *vaddr = obj->phys_handle->vaddr + args->offset;
	char __user *user_data = to_user_ptr(args->data_ptr);
360 361 362 363 364 365 366 367
	int ret;

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret)
		return ret;
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382

	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
		if (unwritten)
			return -EFAULT;
	}

383
	drm_clflush_virt_range(vaddr, args->size);
384 385 386 387
	i915_gem_chipset_flush(dev);
	return 0;
}

388 389 390
void *i915_gem_object_alloc(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
391
	return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
392 393 394 395 396 397 398 399
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	kmem_cache_free(dev_priv->slab, obj);
}

400 401 402 403
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
404
		bool dumb,
405
		uint32_t *handle_p)
406
{
407
	struct drm_i915_gem_object *obj;
408 409
	int ret;
	u32 handle;
410

411
	size = roundup(size, PAGE_SIZE);
412 413
	if (size == 0)
		return -EINVAL;
414 415

	/* Allocate the new object */
416
	obj = i915_gem_alloc_object(dev, size);
417 418 419
	if (obj == NULL)
		return -ENOMEM;

420
	obj->base.dumb = dumb;
421
	ret = drm_gem_handle_create(file, &obj->base, &handle);
422
	/* drop reference from allocate - handle holds it now */
423 424 425
	drm_gem_object_unreference_unlocked(&obj->base);
	if (ret)
		return ret;
426

427
	*handle_p = handle;
428 429 430
	return 0;
}

431 432 433 434 435 436
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
437
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
438 439
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
440
			       args->size, true, &args->handle);
441 442 443 444 445 446 447 448 449 450
}

/**
 * Creates a new mm object and returns a handle to it.
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
451

452
	return i915_gem_create(file, dev,
453
			       args->size, false, &args->handle);
454 455
}

456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

482
static inline int
483 484
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
				    int *needs_clflush)
{
	int ret;

	*needs_clflush = 0;

	if (!obj->base.filp)
		return -EINVAL;

	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
		/* If we're not in the cpu read domain, set ourself into the gtt
		 * read domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will dirty the data
		 * anyway again before the next pread happens. */
		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
							obj->cache_level);
		ret = i915_gem_object_wait_rendering(obj, true);
		if (ret)
			return ret;
533 534

		i915_gem_object_retire(obj);
535 536 537 538 539 540 541 542 543 544 545
	}

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

	i915_gem_object_pin_pages(obj);

	return ret;
}

546 547 548
/* Per-page copy function for the shmem pread fastpath.
 * Flushes invalid cachelines before reading the target if
 * needs_clflush is set. */
549
static int
550 551 552 553 554 555 556
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

557
	if (unlikely(page_do_bit17_swizzling))
558 559 560 561 562 563 564 565 566 567 568
		return -EINVAL;

	vaddr = kmap_atomic(page);
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_to_user_inatomic(user_data,
				      vaddr + shmem_page_offset,
				      page_length);
	kunmap_atomic(vaddr);

569
	return ret ? -EFAULT : 0;
570 571
}

572 573 574 575
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
576
	if (unlikely(swizzled)) {
577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

594 595 596 597 598 599 600 601 602 603 604 605
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
606 607 608
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
609 610 611 612 613 614 615 616 617 618 619

	if (page_do_bit17_swizzling)
		ret = __copy_to_user_swizzled(user_data,
					      vaddr, shmem_page_offset,
					      page_length);
	else
		ret = __copy_to_user(user_data,
				     vaddr + shmem_page_offset,
				     page_length);
	kunmap(page);

620
	return ret ? - EFAULT : 0;
621 622
}

623
static int
624 625 626 627
i915_gem_shmem_pread(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args,
		     struct drm_file *file)
628
{
629
	char __user *user_data;
630
	ssize_t remain;
631
	loff_t offset;
632
	int shmem_page_offset, page_length, ret = 0;
633
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
634
	int prefaulted = 0;
635
	int needs_clflush = 0;
636
	struct sg_page_iter sg_iter;
637

V
Ville Syrjälä 已提交
638
	user_data = to_user_ptr(args->data_ptr);
639 640
	remain = args->size;

641
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
642

643
	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
644 645 646
	if (ret)
		return ret;

647
	offset = args->offset;
648

649 650
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
651
		struct page *page = sg_page_iter_page(&sg_iter);
652 653 654 655

		if (remain <= 0)
			break;

656 657 658 659 660
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
661
		shmem_page_offset = offset_in_page(offset);
662 663 664 665
		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

666 667 668
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

669 670 671 672 673
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
		if (ret == 0)
			goto next_page;
674 675 676

		mutex_unlock(&dev->struct_mutex);

677
		if (likely(!i915.prefault_disable) && !prefaulted) {
678
			ret = fault_in_multipages_writeable(user_data, remain);
679 680 681 682 683 684 685
			/* Userspace is tricking us, but we've already clobbered
			 * its pages with the prefault and promised to write the
			 * data up to the first fault. Hence ignore any errors
			 * and just continue. */
			(void)ret;
			prefaulted = 1;
		}
686

687 688 689
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
690

691
		mutex_lock(&dev->struct_mutex);
692 693

		if (ret)
694 695
			goto out;

696
next_page:
697
		remain -= page_length;
698
		user_data += page_length;
699 700 701
		offset += page_length;
	}

702
out:
703 704
	i915_gem_object_unpin_pages(obj);

705 706 707
	return ret;
}

708 709 710 711 712 713 714
/**
 * Reads data from the object referenced by handle.
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
715
		     struct drm_file *file)
716 717
{
	struct drm_i915_gem_pread *args = data;
718
	struct drm_i915_gem_object *obj;
719
	int ret = 0;
720

721 722 723 724
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
V
Ville Syrjälä 已提交
725
		       to_user_ptr(args->data_ptr),
726 727 728
		       args->size))
		return -EFAULT;

729
	ret = i915_mutex_lock_interruptible(dev);
730
	if (ret)
731
		return ret;
732

733
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
734
	if (&obj->base == NULL) {
735 736
		ret = -ENOENT;
		goto unlock;
737
	}
738

739
	/* Bounds check source.  */
740 741
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
742
		ret = -EINVAL;
743
		goto out;
C
Chris Wilson 已提交
744 745
	}

746 747 748 749 750 751 752 753
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
754 755
	trace_i915_gem_object_pread(obj, args->offset, args->size);

756
	ret = i915_gem_shmem_pread(dev, obj, args, file);
757

758
out:
759
	drm_gem_object_unreference(&obj->base);
760
unlock:
761
	mutex_unlock(&dev->struct_mutex);
762
	return ret;
763 764
}

765 766
/* This is the fast write path which cannot handle
 * page faults in the source data
767
 */
768 769 770 771 772 773

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
774
{
775 776
	void __iomem *vaddr_atomic;
	void *vaddr;
777
	unsigned long unwritten;
778

P
Peter Zijlstra 已提交
779
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
780 781 782
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force*)vaddr_atomic + page_offset;
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
783
						      user_data, length);
P
Peter Zijlstra 已提交
784
	io_mapping_unmap_atomic(vaddr_atomic);
785
	return unwritten;
786 787
}

788 789 790 791
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
 */
792
static int
793 794
i915_gem_gtt_pwrite_fast(struct drm_device *dev,
			 struct drm_i915_gem_object *obj,
795
			 struct drm_i915_gem_pwrite *args,
796
			 struct drm_file *file)
797
{
798
	struct drm_i915_private *dev_priv = dev->dev_private;
799
	ssize_t remain;
800
	loff_t offset, page_base;
801
	char __user *user_data;
D
Daniel Vetter 已提交
802 803
	int page_offset, page_length, ret;

804
	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
D
Daniel Vetter 已提交
805 806 807 808 809 810 811 812 813 814
	if (ret)
		goto out;

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

	ret = i915_gem_object_put_fence(obj);
	if (ret)
		goto out_unpin;
815

V
Ville Syrjälä 已提交
816
	user_data = to_user_ptr(args->data_ptr);
817 818
	remain = args->size;

819
	offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
820 821 822 823

	while (remain > 0) {
		/* Operation in this page
		 *
824 825 826
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
827
		 */
828 829
		page_base = offset & PAGE_MASK;
		page_offset = offset_in_page(offset);
830 831 832 833 834
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		/* If we get a fault while copying data, then (presumably) our
835 836
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
837
		 */
B
Ben Widawsky 已提交
838
		if (fast_user_write(dev_priv->gtt.mappable, page_base,
D
Daniel Vetter 已提交
839 840 841 842
				    page_offset, user_data, page_length)) {
			ret = -EFAULT;
			goto out_unpin;
		}
843

844 845 846
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
847 848
	}

D
Daniel Vetter 已提交
849
out_unpin:
B
Ben Widawsky 已提交
850
	i915_gem_object_ggtt_unpin(obj);
D
Daniel Vetter 已提交
851
out:
852
	return ret;
853 854
}

855 856 857 858
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set. */
859
static int
860 861 862 863 864
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
865
{
866
	char *vaddr;
867
	int ret;
868

869
	if (unlikely(page_do_bit17_swizzling))
870
		return -EINVAL;
871

872 873 874 875
	vaddr = kmap_atomic(page);
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
876 877
	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
					user_data, page_length);
878 879 880 881
	if (needs_clflush_after)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	kunmap_atomic(vaddr);
882

883
	return ret ? -EFAULT : 0;
884 885
}

886 887
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
888
static int
889 890 891 892 893
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
894
{
895 896
	char *vaddr;
	int ret;
897

898
	vaddr = kmap(page);
899
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
900 901 902
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
903 904
	if (page_do_bit17_swizzling)
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
905 906
						user_data,
						page_length);
907 908 909 910 911
	else
		ret = __copy_from_user(vaddr + shmem_page_offset,
				       user_data,
				       page_length);
	if (needs_clflush_after)
912 913 914
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
915
	kunmap(page);
916

917
	return ret ? -EFAULT : 0;
918 919 920
}

static int
921 922 923 924
i915_gem_shmem_pwrite(struct drm_device *dev,
		      struct drm_i915_gem_object *obj,
		      struct drm_i915_gem_pwrite *args,
		      struct drm_file *file)
925 926
{
	ssize_t remain;
927 928
	loff_t offset;
	char __user *user_data;
929
	int shmem_page_offset, page_length, ret = 0;
930
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
931
	int hit_slowpath = 0;
932 933
	int needs_clflush_after = 0;
	int needs_clflush_before = 0;
934
	struct sg_page_iter sg_iter;
935

V
Ville Syrjälä 已提交
936
	user_data = to_user_ptr(args->data_ptr);
937 938
	remain = args->size;

939
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
940

941 942 943 944 945
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
		/* If we're not in the cpu write domain, set ourself into the gtt
		 * write domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will use the data
		 * right away and we therefore have to clflush anyway. */
946
		needs_clflush_after = cpu_write_needs_clflush(obj);
947 948 949
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
			return ret;
950 951

		i915_gem_object_retire(obj);
952
	}
953 954 955 956 957
	/* Same trick applies to invalidate partially written cachelines read
	 * before writing. */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
		needs_clflush_before =
			!cpu_cache_is_coherent(dev, obj->cache_level);
958

959 960 961 962 963 964
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

	i915_gem_object_pin_pages(obj);

965
	offset = args->offset;
966
	obj->dirty = 1;
967

968 969
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
970
		struct page *page = sg_page_iter_page(&sg_iter);
971
		int partial_cacheline_write;
972

973 974 975
		if (remain <= 0)
			break;

976 977 978 979 980
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
981
		shmem_page_offset = offset_in_page(offset);
982 983 984 985 986

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

987 988 989 990 991 992 993
		/* If we don't overwrite a cacheline completely we need to be
		 * careful to have up-to-date data by first clflushing. Don't
		 * overcomplicate things and flush the entire patch. */
		partial_cacheline_write = needs_clflush_before &&
			((shmem_page_offset | page_length)
				& (boot_cpu_data.x86_clflush_size - 1));

994 995 996
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

997 998 999 1000 1001 1002
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
		if (ret == 0)
			goto next_page;
1003 1004 1005

		hit_slowpath = 1;
		mutex_unlock(&dev->struct_mutex);
1006 1007 1008 1009
		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
1010

1011
		mutex_lock(&dev->struct_mutex);
1012 1013

		if (ret)
1014 1015
			goto out;

1016
next_page:
1017
		remain -= page_length;
1018
		user_data += page_length;
1019
		offset += page_length;
1020 1021
	}

1022
out:
1023 1024
	i915_gem_object_unpin_pages(obj);

1025
	if (hit_slowpath) {
1026 1027 1028 1029 1030 1031 1032
		/*
		 * Fixup: Flush cpu caches in case we didn't flush the dirty
		 * cachelines in-line while writing and the object moved
		 * out of the cpu write domain while we've dropped the lock.
		 */
		if (!needs_clflush_after &&
		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1033 1034
			if (i915_gem_clflush_object(obj, obj->pin_display))
				i915_gem_chipset_flush(dev);
1035
		}
1036
	}
1037

1038
	if (needs_clflush_after)
1039
		i915_gem_chipset_flush(dev);
1040

1041
	return ret;
1042 1043 1044 1045 1046 1047 1048 1049 1050
}

/**
 * Writes data to the object referenced by handle.
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1051
		      struct drm_file *file)
1052 1053
{
	struct drm_i915_gem_pwrite *args = data;
1054
	struct drm_i915_gem_object *obj;
1055 1056 1057 1058 1059 1060
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
V
Ville Syrjälä 已提交
1061
		       to_user_ptr(args->data_ptr),
1062 1063 1064
		       args->size))
		return -EFAULT;

1065
	if (likely(!i915.prefault_disable)) {
1066 1067 1068 1069 1070
		ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
						   args->size);
		if (ret)
			return -EFAULT;
	}
1071

1072
	ret = i915_mutex_lock_interruptible(dev);
1073
	if (ret)
1074
		return ret;
1075

1076
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1077
	if (&obj->base == NULL) {
1078 1079
		ret = -ENOENT;
		goto unlock;
1080
	}
1081

1082
	/* Bounds check destination. */
1083 1084
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
1085
		ret = -EINVAL;
1086
		goto out;
C
Chris Wilson 已提交
1087 1088
	}

1089 1090 1091 1092 1093 1094 1095 1096
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
1097 1098
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

D
Daniel Vetter 已提交
1099
	ret = -EFAULT;
1100 1101 1102 1103 1104 1105
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1106 1107 1108
	if (obj->tiling_mode == I915_TILING_NONE &&
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
	    cpu_write_needs_clflush(obj)) {
1109
		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
D
Daniel Vetter 已提交
1110 1111 1112
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
		 * textures). Fallback to the shmem path in that case. */
1113
	}
1114

1115 1116 1117 1118 1119 1120
	if (ret == -EFAULT || ret == -ENOSPC) {
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
		else
			ret = i915_gem_shmem_pwrite(dev, obj, args, file);
	}
1121

1122
out:
1123
	drm_gem_object_unreference(&obj->base);
1124
unlock:
1125
	mutex_unlock(&dev->struct_mutex);
1126 1127 1128
	return ret;
}

1129
int
1130
i915_gem_check_wedge(struct i915_gpu_error *error,
1131 1132
		     bool interruptible)
{
1133
	if (i915_reset_in_progress(error)) {
1134 1135 1136 1137 1138
		/* Non-interruptible callers can't handle -EAGAIN, hence return
		 * -EIO unconditionally for these. */
		if (!interruptible)
			return -EIO;

1139 1140
		/* Recovery complete, but the reset failed ... */
		if (i915_terminally_wedged(error))
1141 1142
			return -EIO;

1143 1144 1145 1146 1147 1148 1149
		/*
		 * Check if GPU Reset is in progress - we need intel_ring_begin
		 * to work properly to reinit the hw state while the gpu is
		 * still marked as reset-in-progress. Handle this with a flag.
		 */
		if (!error->reload_in_reset)
			return -EAGAIN;
1150 1151 1152 1153 1154 1155
	}

	return 0;
}

/*
1156
 * Compare arbitrary request against outstanding lazy request. Emit on match.
1157
 */
1158
int
1159
i915_gem_check_olr(struct drm_i915_gem_request *req)
1160 1161 1162
{
	int ret;

1163
	WARN_ON(!mutex_is_locked(&req->ring->dev->struct_mutex));
1164 1165

	ret = 0;
1166
	if (req == req->ring->outstanding_lazy_request)
1167
		ret = i915_add_request(req->ring);
1168 1169 1170 1171

	return ret;
}

1172 1173 1174 1175 1176 1177
static void fake_irq(unsigned long data)
{
	wake_up_process((struct task_struct *)data);
}

static bool missed_irq(struct drm_i915_private *dev_priv,
1178
		       struct intel_engine_cs *ring)
1179 1180 1181 1182
{
	return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
}

1183 1184 1185 1186 1187 1188 1189 1190
static bool can_wait_boost(struct drm_i915_file_private *file_priv)
{
	if (file_priv == NULL)
		return true;

	return !atomic_xchg(&file_priv->rps_wait_boost, true);
}

1191
/**
1192 1193 1194
 * __i915_wait_request - wait until execution of request has finished
 * @req: duh!
 * @reset_counter: reset sequence associated with the given request
1195 1196 1197
 * @interruptible: do an interruptible wait (normally yes)
 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
 *
1198 1199 1200 1201 1202 1203 1204
 * Note: It is of utmost importance that the passed in seqno and reset_counter
 * values have been read by the caller in an smp safe manner. Where read-side
 * locks are involved, it is sufficient to read the reset_counter before
 * unlocking the lock that protects the seqno. For lockless tricks, the
 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
 * inserted.
 *
1205
 * Returns 0 if the request was found within the alloted time. Else returns the
1206 1207
 * errno with remaining time filled in timeout argument.
 */
1208
int __i915_wait_request(struct drm_i915_gem_request *req,
1209
			unsigned reset_counter,
1210
			bool interruptible,
1211
			s64 *timeout,
1212
			struct drm_i915_file_private *file_priv)
1213
{
1214
	struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
1215
	struct drm_device *dev = ring->dev;
1216
	struct drm_i915_private *dev_priv = dev->dev_private;
1217 1218
	const bool irq_test_in_progress =
		ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1219
	DEFINE_WAIT(wait);
1220
	unsigned long timeout_expire;
1221
	s64 before, now;
1222 1223
	int ret;

1224
	WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1225

1226
	if (i915_gem_request_completed(req, true))
1227 1228
		return 0;

1229
	timeout_expire = timeout ? jiffies + nsecs_to_jiffies((u64)*timeout) : 0;
1230

1231
	if (INTEL_INFO(dev)->gen >= 6 && ring->id == RCS && can_wait_boost(file_priv)) {
1232 1233 1234 1235 1236 1237 1238
		gen6_rps_boost(dev_priv);
		if (file_priv)
			mod_delayed_work(dev_priv->wq,
					 &file_priv->mm.idle_work,
					 msecs_to_jiffies(100));
	}

1239
	if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
1240 1241
		return -ENODEV;

1242
	/* Record current time in case interrupted by signal, or wedged */
1243
	trace_i915_gem_request_wait_begin(req);
1244
	before = ktime_get_raw_ns();
1245 1246
	for (;;) {
		struct timer_list timer;
1247

1248 1249
		prepare_to_wait(&ring->irq_queue, &wait,
				interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1250

1251 1252
		/* We need to check whether any gpu reset happened in between
		 * the caller grabbing the seqno and now ... */
1253 1254 1255 1256 1257 1258 1259 1260
		if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
			/* ... but upgrade the -EAGAIN to an -EIO if the gpu
			 * is truely gone. */
			ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
			if (ret == 0)
				ret = -EAGAIN;
			break;
		}
1261

1262
		if (i915_gem_request_completed(req, false)) {
1263 1264 1265
			ret = 0;
			break;
		}
1266

1267 1268 1269 1270 1271
		if (interruptible && signal_pending(current)) {
			ret = -ERESTARTSYS;
			break;
		}

1272
		if (timeout && time_after_eq(jiffies, timeout_expire)) {
1273 1274 1275 1276 1277 1278
			ret = -ETIME;
			break;
		}

		timer.function = NULL;
		if (timeout || missed_irq(dev_priv, ring)) {
1279 1280
			unsigned long expire;

1281
			setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1282
			expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1283 1284 1285
			mod_timer(&timer, expire);
		}

1286
		io_schedule();
1287 1288 1289 1290 1291 1292

		if (timer.function) {
			del_singleshot_timer_sync(&timer);
			destroy_timer_on_stack(&timer);
		}
	}
1293
	now = ktime_get_raw_ns();
1294
	trace_i915_gem_request_wait_end(req);
1295

1296 1297
	if (!irq_test_in_progress)
		ring->irq_put(ring);
1298 1299

	finish_wait(&ring->irq_queue, &wait);
1300 1301

	if (timeout) {
1302 1303 1304
		s64 tres = *timeout - (now - before);

		*timeout = tres < 0 ? 0 : tres;
1305 1306
	}

1307
	return ret;
1308 1309 1310
}

/**
1311
 * Waits for a request to be signaled, and cleans up the
1312 1313 1314
 * request and object lists appropriately for that event.
 */
int
1315
i915_wait_request(struct drm_i915_gem_request *req)
1316
{
1317 1318 1319
	struct drm_device *dev;
	struct drm_i915_private *dev_priv;
	bool interruptible;
1320
	unsigned reset_counter;
1321 1322
	int ret;

1323 1324 1325 1326 1327 1328
	BUG_ON(req == NULL);

	dev = req->ring->dev;
	dev_priv = dev->dev_private;
	interruptible = dev_priv->mm.interruptible;

1329 1330
	BUG_ON(!mutex_is_locked(&dev->struct_mutex));

1331
	ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1332 1333 1334
	if (ret)
		return ret;

1335
	ret = i915_gem_check_olr(req);
1336 1337 1338
	if (ret)
		return ret;

1339
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1340
	i915_gem_request_reference(req);
1341 1342
	ret = __i915_wait_request(req, reset_counter,
				  interruptible, NULL, NULL);
1343 1344
	i915_gem_request_unreference(req);
	return ret;
1345 1346
}

1347
static int
1348
i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj)
1349
{
1350 1351
	if (!obj->active)
		return 0;
1352 1353 1354 1355

	/* Manually manage the write flush as we may have not yet
	 * retired the buffer.
	 *
1356 1357
	 * Note that the last_write_req is always the earlier of
	 * the two (read/write) requests, so if we haved successfully waited,
1358 1359
	 * we know we have passed the last write.
	 */
1360
	i915_gem_request_assign(&obj->last_write_req, NULL);
1361 1362 1363 1364

	return 0;
}

1365 1366 1367 1368 1369 1370 1371 1372
/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 */
static __must_check int
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
			       bool readonly)
{
1373
	struct drm_i915_gem_request *req;
1374 1375
	int ret;

1376 1377
	req = readonly ? obj->last_write_req : obj->last_read_req;
	if (!req)
1378 1379
		return 0;

1380
	ret = i915_wait_request(req);
1381 1382 1383
	if (ret)
		return ret;

1384
	return i915_gem_object_wait_rendering__tail(obj);
1385 1386
}

1387 1388 1389 1390 1391
/* A nonblocking variant of the above wait. This is a highly dangerous routine
 * as the object state may change during this call.
 */
static __must_check int
i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1392
					    struct drm_i915_file_private *file_priv,
1393 1394
					    bool readonly)
{
1395
	struct drm_i915_gem_request *req;
1396 1397
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1398
	unsigned reset_counter;
1399 1400 1401 1402 1403
	int ret;

	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
	BUG_ON(!dev_priv->mm.interruptible);

1404 1405
	req = readonly ? obj->last_write_req : obj->last_read_req;
	if (!req)
1406 1407
		return 0;

1408
	ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1409 1410 1411
	if (ret)
		return ret;

1412
	ret = i915_gem_check_olr(req);
1413 1414 1415
	if (ret)
		return ret;

1416
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1417
	i915_gem_request_reference(req);
1418
	mutex_unlock(&dev->struct_mutex);
1419
	ret = __i915_wait_request(req, reset_counter, true, NULL, file_priv);
1420
	mutex_lock(&dev->struct_mutex);
1421
	i915_gem_request_unreference(req);
1422 1423
	if (ret)
		return ret;
1424

1425
	return i915_gem_object_wait_rendering__tail(obj);
1426 1427
}

1428
/**
1429 1430
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1431 1432 1433
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1434
			  struct drm_file *file)
1435 1436
{
	struct drm_i915_gem_set_domain *args = data;
1437
	struct drm_i915_gem_object *obj;
1438 1439
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1440 1441
	int ret;

1442
	/* Only handle setting domains to types used by the CPU. */
1443
	if (write_domain & I915_GEM_GPU_DOMAINS)
1444 1445
		return -EINVAL;

1446
	if (read_domains & I915_GEM_GPU_DOMAINS)
1447 1448 1449 1450 1451 1452 1453 1454
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1455
	ret = i915_mutex_lock_interruptible(dev);
1456
	if (ret)
1457
		return ret;
1458

1459
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1460
	if (&obj->base == NULL) {
1461 1462
		ret = -ENOENT;
		goto unlock;
1463
	}
1464

1465 1466 1467 1468
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1469 1470 1471
	ret = i915_gem_object_wait_rendering__nonblocking(obj,
							  file->driver_priv,
							  !write_domain);
1472 1473 1474
	if (ret)
		goto unref;

1475 1476
	if (read_domains & I915_GEM_DOMAIN_GTT) {
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1477 1478 1479 1480 1481 1482 1483

		/* Silently promote "you're not bound, there was nothing to do"
		 * to success, since the client was just asking us to
		 * make sure everything was done.
		 */
		if (ret == -EINVAL)
			ret = 0;
1484
	} else {
1485
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1486 1487
	}

1488
unref:
1489
	drm_gem_object_unreference(&obj->base);
1490
unlock:
1491 1492 1493 1494 1495 1496 1497 1498 1499
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1500
			 struct drm_file *file)
1501 1502
{
	struct drm_i915_gem_sw_finish *args = data;
1503
	struct drm_i915_gem_object *obj;
1504 1505
	int ret = 0;

1506
	ret = i915_mutex_lock_interruptible(dev);
1507
	if (ret)
1508
		return ret;
1509

1510
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1511
	if (&obj->base == NULL) {
1512 1513
		ret = -ENOENT;
		goto unlock;
1514 1515 1516
	}

	/* Pinned buffers may be scanout, so flush the cache */
1517 1518
	if (obj->pin_display)
		i915_gem_object_flush_cpu_write_domain(obj, true);
1519

1520
	drm_gem_object_unreference(&obj->base);
1521
unlock:
1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Maps the contents of an object, returning the address it is mapped
 * into.
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1542 1543 1544
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1545
		    struct drm_file *file)
1546 1547 1548 1549 1550
{
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	unsigned long addr;

1551
	obj = drm_gem_object_lookup(dev, file, args->handle);
1552
	if (obj == NULL)
1553
		return -ENOENT;
1554

1555 1556 1557 1558 1559 1560 1561 1562
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
	if (!obj->filp) {
		drm_gem_object_unreference_unlocked(obj);
		return -EINVAL;
	}

1563
	addr = vm_mmap(obj->filp, 0, args->size,
1564 1565
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1566
	drm_gem_object_unreference_unlocked(obj);
1567 1568 1569 1570 1571 1572 1573 1574
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592
/**
 * i915_gem_fault - fault a page into the GTT
 * vma: VMA in question
 * vmf: fault info
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
1593 1594
	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
	struct drm_device *dev = obj->base.dev;
1595
	struct drm_i915_private *dev_priv = dev->dev_private;
1596 1597 1598
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1599
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1600

1601 1602
	intel_runtime_pm_get(dev_priv);

1603 1604 1605 1606
	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

1607 1608 1609
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
1610

C
Chris Wilson 已提交
1611 1612
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1613 1614 1615 1616 1617 1618 1619 1620 1621
	/* Try to flush the object off the GPU first without holding the lock.
	 * Upon reacquiring the lock, we will perform our sanity checks and then
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
	if (ret)
		goto unlock;

1622 1623
	/* Access to snoopable pages through the GTT is incoherent. */
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1624
		ret = -EFAULT;
1625 1626 1627
		goto unlock;
	}

1628
	/* Now bind it into the GTT if needed */
1629
	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
1630 1631
	if (ret)
		goto unlock;
1632

1633 1634 1635
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
		goto unpin;
1636

1637
	ret = i915_gem_object_get_fence(obj);
1638
	if (ret)
1639
		goto unpin;
1640

1641
	/* Finally, remap it using the new GTT offset */
1642 1643
	pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
	pfn >>= PAGE_SHIFT;
1644

1645
	if (!obj->fault_mappable) {
1646 1647 1648
		unsigned long size = min_t(unsigned long,
					   vma->vm_end - vma->vm_start,
					   obj->base.size);
1649 1650
		int i;

1651
		for (i = 0; i < size >> PAGE_SHIFT; i++) {
1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
			ret = vm_insert_pfn(vma,
					    (unsigned long)vma->vm_start + i * PAGE_SIZE,
					    pfn + i);
			if (ret)
				break;
		}

		obj->fault_mappable = true;
	} else
		ret = vm_insert_pfn(vma,
				    (unsigned long)vmf->virtual_address,
				    pfn + page_offset);
1664
unpin:
B
Ben Widawsky 已提交
1665
	i915_gem_object_ggtt_unpin(obj);
1666
unlock:
1667
	mutex_unlock(&dev->struct_mutex);
1668
out:
1669
	switch (ret) {
1670
	case -EIO:
1671 1672 1673 1674 1675 1676 1677
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1678 1679 1680
			ret = VM_FAULT_SIGBUS;
			break;
		}
1681
	case -EAGAIN:
D
Daniel Vetter 已提交
1682 1683 1684 1685
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1686
		 */
1687 1688
	case 0:
	case -ERESTARTSYS:
1689
	case -EINTR:
1690 1691 1692 1693 1694
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1695 1696
		ret = VM_FAULT_NOPAGE;
		break;
1697
	case -ENOMEM:
1698 1699
		ret = VM_FAULT_OOM;
		break;
1700
	case -ENOSPC:
1701
	case -EFAULT:
1702 1703
		ret = VM_FAULT_SIGBUS;
		break;
1704
	default:
1705
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1706 1707
		ret = VM_FAULT_SIGBUS;
		break;
1708
	}
1709 1710 1711

	intel_runtime_pm_put(dev_priv);
	return ret;
1712 1713
}

1714 1715 1716 1717
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1718
 * Preserve the reservation of the mmapping with the DRM core code, but
1719 1720 1721 1722 1723 1724 1725 1726 1727
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1728
void
1729
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1730
{
1731 1732
	if (!obj->fault_mappable)
		return;
1733

1734 1735
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
1736
	obj->fault_mappable = false;
1737 1738
}

1739 1740 1741 1742 1743 1744 1745 1746 1747
void
i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
		i915_gem_release_mmap(obj);
}

1748
uint32_t
1749
i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1750
{
1751
	uint32_t gtt_size;
1752 1753

	if (INTEL_INFO(dev)->gen >= 4 ||
1754 1755
	    tiling_mode == I915_TILING_NONE)
		return size;
1756 1757 1758

	/* Previous chips need a power-of-two fence region when tiling */
	if (INTEL_INFO(dev)->gen == 3)
1759
		gtt_size = 1024*1024;
1760
	else
1761
		gtt_size = 512*1024;
1762

1763 1764
	while (gtt_size < size)
		gtt_size <<= 1;
1765

1766
	return gtt_size;
1767 1768
}

1769 1770 1771 1772 1773
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, taking into account
1774
 * potential fence register mapping.
1775
 */
1776 1777 1778
uint32_t
i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
			   int tiling_mode, bool fenced)
1779 1780 1781 1782 1783
{
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
1784
	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1785
	    tiling_mode == I915_TILING_NONE)
1786 1787
		return 4096;

1788 1789 1790 1791
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
1792
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1793 1794
}

1795 1796 1797 1798 1799
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	int ret;

1800
	if (drm_vma_node_has_offset(&obj->base.vma_node))
1801 1802
		return 0;

1803 1804
	dev_priv->mm.shrinker_no_lock_stealing = true;

1805 1806
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
1807
		goto out;
1808 1809 1810 1811 1812 1813 1814 1815

	/* Badly fragmented mmap space? The only way we can recover
	 * space is by destroying unwanted objects. We can't randomly release
	 * mmap_offsets as userspace expects them to be persistent for the
	 * lifetime of the objects. The closest we can is to release the
	 * offsets on purgeable objects by truncating it and marking it purged,
	 * which prevents userspace from ever using that object again.
	 */
1816 1817 1818 1819 1820
	i915_gem_shrink(dev_priv,
			obj->base.size >> PAGE_SHIFT,
			I915_SHRINK_BOUND |
			I915_SHRINK_UNBOUND |
			I915_SHRINK_PURGEABLE);
1821 1822
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
1823
		goto out;
1824 1825

	i915_gem_shrink_all(dev_priv);
1826 1827 1828 1829 1830
	ret = drm_gem_create_mmap_offset(&obj->base);
out:
	dev_priv->mm.shrinker_no_lock_stealing = false;

	return ret;
1831 1832 1833 1834 1835 1836 1837
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

1838
static int
1839 1840
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
1841
		  uint32_t handle, bool dumb,
1842
		  uint64_t *offset)
1843
{
1844
	struct drm_i915_private *dev_priv = dev->dev_private;
1845
	struct drm_i915_gem_object *obj;
1846 1847
	int ret;

1848
	ret = i915_mutex_lock_interruptible(dev);
1849
	if (ret)
1850
		return ret;
1851

1852
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1853
	if (&obj->base == NULL) {
1854 1855 1856
		ret = -ENOENT;
		goto unlock;
	}
1857

1858 1859 1860 1861 1862 1863 1864
	/*
	 * We don't allow dumb mmaps on objects created using another
	 * interface.
	 */
	WARN_ONCE(dumb && !(obj->base.dumb || obj->base.import_attach),
		  "Illegal dumb map of accelerated buffer.\n");

B
Ben Widawsky 已提交
1865
	if (obj->base.size > dev_priv->gtt.mappable_end) {
1866
		ret = -E2BIG;
1867
		goto out;
1868 1869
	}

1870
	if (obj->madv != I915_MADV_WILLNEED) {
1871
		DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
1872
		ret = -EFAULT;
1873
		goto out;
1874 1875
	}

1876 1877 1878
	ret = i915_gem_object_create_mmap_offset(obj);
	if (ret)
		goto out;
1879

1880
	*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1881

1882
out:
1883
	drm_gem_object_unreference(&obj->base);
1884
unlock:
1885
	mutex_unlock(&dev->struct_mutex);
1886
	return ret;
1887 1888
}

1889 1890 1891 1892 1893 1894 1895 1896 1897
int
i915_gem_dumb_map_offset(struct drm_file *file,
			 struct drm_device *dev,
			 uint32_t handle,
			 uint64_t *offset)
{
	return i915_gem_mmap_gtt(file, dev, handle, true, offset);
}

1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

1919
	return i915_gem_mmap_gtt(file, dev, args->handle, false, &args->offset);
1920 1921
}

1922 1923 1924 1925 1926 1927
static inline int
i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
{
	return obj->madv == I915_MADV_DONTNEED;
}

D
Daniel Vetter 已提交
1928 1929 1930
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1931
{
1932
	i915_gem_object_free_mmap_offset(obj);
1933

1934 1935
	if (obj->base.filp == NULL)
		return;
1936

D
Daniel Vetter 已提交
1937 1938 1939 1940 1941
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
1942
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
D
Daniel Vetter 已提交
1943 1944
	obj->madv = __I915_MADV_PURGED;
}
1945

1946 1947 1948
/* Try to discard unwanted pages */
static void
i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
1949
{
1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963
	struct address_space *mapping;

	switch (obj->madv) {
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

	mapping = file_inode(obj->base.filp)->i_mapping,
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
1964 1965
}

1966
static void
1967
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1968
{
1969 1970
	struct sg_page_iter sg_iter;
	int ret;
1971

1972
	BUG_ON(obj->madv == __I915_MADV_PURGED);
1973

C
Chris Wilson 已提交
1974 1975 1976 1977 1978 1979
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret) {
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		WARN_ON(ret != -EIO);
1980
		i915_gem_clflush_object(obj, true);
C
Chris Wilson 已提交
1981 1982 1983
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

1984
	if (i915_gem_object_needs_bit17_swizzle(obj))
1985 1986
		i915_gem_object_save_bit_17_swizzle(obj);

1987 1988
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
1989

1990
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1991
		struct page *page = sg_page_iter_page(&sg_iter);
1992

1993
		if (obj->dirty)
1994
			set_page_dirty(page);
1995

1996
		if (obj->madv == I915_MADV_WILLNEED)
1997
			mark_page_accessed(page);
1998

1999
		page_cache_release(page);
2000
	}
2001
	obj->dirty = 0;
2002

2003 2004
	sg_free_table(obj->pages);
	kfree(obj->pages);
2005
}
C
Chris Wilson 已提交
2006

2007
int
2008 2009 2010 2011
i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
{
	const struct drm_i915_gem_object_ops *ops = obj->ops;

2012
	if (obj->pages == NULL)
2013 2014
		return 0;

2015 2016 2017
	if (obj->pages_pin_count)
		return -EBUSY;

2018
	BUG_ON(i915_gem_obj_bound_any(obj));
B
Ben Widawsky 已提交
2019

2020 2021 2022
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2023
	list_del(&obj->global_list);
2024

2025
	ops->put_pages(obj);
2026
	obj->pages = NULL;
2027

2028
	i915_gem_object_invalidate(obj);
C
Chris Wilson 已提交
2029 2030 2031 2032

	return 0;
}

2033 2034 2035
unsigned long
i915_gem_shrink(struct drm_i915_private *dev_priv,
		long target, unsigned flags)
C
Chris Wilson 已提交
2036
{
2037 2038 2039 2040 2041 2042 2043 2044
	const struct {
		struct list_head *list;
		unsigned int bit;
	} phases[] = {
		{ &dev_priv->mm.unbound_list, I915_SHRINK_UNBOUND },
		{ &dev_priv->mm.bound_list, I915_SHRINK_BOUND },
		{ NULL, 0 },
	}, *phase;
2045
	unsigned long count = 0;
C
Chris Wilson 已提交
2046

2047
	/*
2048
	 * As we may completely rewrite the (un)bound list whilst unbinding
2049 2050 2051
	 * (due to retiring requests) we have to strictly process only
	 * one element of the list at the time, and recheck the list
	 * on every iteration.
2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064
	 *
	 * In particular, we must hold a reference whilst removing the
	 * object as we may end up waiting for and/or retiring the objects.
	 * This might release the final reference (held by the active list)
	 * and result in the object being freed from under us. This is
	 * similar to the precautions the eviction code must take whilst
	 * removing objects.
	 *
	 * Also note that although these lists do not hold a reference to
	 * the object we can safely grab one here: The final object
	 * unreferencing and the bound_list are both protected by the
	 * dev->struct_mutex and so we won't ever be able to observe an
	 * object on the bound_list with a reference count equals 0.
2065
	 */
2066
	for (phase = phases; phase->list; phase++) {
2067
		struct list_head still_in_list;
2068

2069 2070
		if ((flags & phase->bit) == 0)
			continue;
2071

2072
		INIT_LIST_HEAD(&still_in_list);
2073
		while (count < target && !list_empty(phase->list)) {
2074 2075
			struct drm_i915_gem_object *obj;
			struct i915_vma *vma, *v;
2076

2077
			obj = list_first_entry(phase->list,
2078 2079
					       typeof(*obj), global_list);
			list_move_tail(&obj->global_list, &still_in_list);
2080

2081 2082
			if (flags & I915_SHRINK_PURGEABLE &&
			    !i915_gem_object_is_purgeable(obj))
2083
				continue;
2084

2085
			drm_gem_object_reference(&obj->base);
2086

2087 2088 2089
			/* For the unbound phase, this should be a no-op! */
			list_for_each_entry_safe(vma, v,
						 &obj->vma_list, vma_link)
2090 2091
				if (i915_vma_unbind(vma))
					break;
2092

2093 2094 2095 2096 2097
			if (i915_gem_object_put_pages(obj) == 0)
				count += obj->base.size >> PAGE_SHIFT;

			drm_gem_object_unreference(&obj->base);
		}
2098
		list_splice(&still_in_list, phase->list);
C
Chris Wilson 已提交
2099 2100 2101 2102 2103
	}

	return count;
}

2104
static unsigned long
C
Chris Wilson 已提交
2105 2106 2107
i915_gem_shrink_all(struct drm_i915_private *dev_priv)
{
	i915_gem_evict_everything(dev_priv->dev);
2108 2109
	return i915_gem_shrink(dev_priv, LONG_MAX,
			       I915_SHRINK_BOUND | I915_SHRINK_UNBOUND);
D
Daniel Vetter 已提交
2110 2111
}

2112
static int
C
Chris Wilson 已提交
2113
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2114
{
C
Chris Wilson 已提交
2115
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2116 2117
	int page_count, i;
	struct address_space *mapping;
2118 2119
	struct sg_table *st;
	struct scatterlist *sg;
2120
	struct sg_page_iter sg_iter;
2121
	struct page *page;
2122
	unsigned long last_pfn = 0;	/* suppress gcc warning */
C
Chris Wilson 已提交
2123
	gfp_t gfp;
2124

C
Chris Wilson 已提交
2125 2126 2127 2128 2129 2130 2131
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);

2132 2133 2134 2135
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

2136
	page_count = obj->base.size / PAGE_SIZE;
2137 2138
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2139
		return -ENOMEM;
2140
	}
2141

2142 2143 2144 2145 2146
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
A
Al Viro 已提交
2147
	mapping = file_inode(obj->base.filp)->i_mapping;
C
Chris Wilson 已提交
2148
	gfp = mapping_gfp_mask(mapping);
2149
	gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
C
Chris Wilson 已提交
2150
	gfp &= ~(__GFP_IO | __GFP_WAIT);
2151 2152 2153
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
C
Chris Wilson 已提交
2154 2155
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		if (IS_ERR(page)) {
2156 2157 2158 2159 2160
			i915_gem_shrink(dev_priv,
					page_count,
					I915_SHRINK_BOUND |
					I915_SHRINK_UNBOUND |
					I915_SHRINK_PURGEABLE);
C
Chris Wilson 已提交
2161 2162 2163 2164 2165 2166 2167 2168
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
		if (IS_ERR(page)) {
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 */
			i915_gem_shrink_all(dev_priv);
2169
			page = shmem_read_mapping_page(mapping, i);
C
Chris Wilson 已提交
2170 2171 2172
			if (IS_ERR(page))
				goto err_pages;
		}
2173 2174 2175 2176 2177 2178 2179 2180
#ifdef CONFIG_SWIOTLB
		if (swiotlb_nr_tbl()) {
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
			sg = sg_next(sg);
			continue;
		}
#endif
2181 2182 2183 2184 2185 2186 2187 2188 2189
		if (!i || page_to_pfn(page) != last_pfn + 1) {
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2190 2191 2192

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2193
	}
2194 2195 2196 2197
#ifdef CONFIG_SWIOTLB
	if (!swiotlb_nr_tbl())
#endif
		sg_mark_end(sg);
2198 2199
	obj->pages = st;

2200
	if (i915_gem_object_needs_bit17_swizzle(obj))
2201 2202
		i915_gem_object_do_bit_17_swizzle(obj);

2203 2204 2205 2206
	if (obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
		i915_gem_object_pin_pages(obj);

2207 2208 2209
	return 0;

err_pages:
2210 2211
	sg_mark_end(sg);
	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2212
		page_cache_release(sg_page_iter_page(&sg_iter));
2213 2214
	sg_free_table(st);
	kfree(st);
2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
	if (PTR_ERR(page) == -ENOSPC)
		return -ENOMEM;
	else
		return PTR_ERR(page);
2228 2229
}

2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243
/* Ensure that the associated pages are gathered from the backing storage
 * and pinned into our object. i915_gem_object_get_pages() may be called
 * multiple times before they are released by a single call to
 * i915_gem_object_put_pages() - once the pages are no longer referenced
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
int
i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	const struct drm_i915_gem_object_ops *ops = obj->ops;
	int ret;

2244
	if (obj->pages)
2245 2246
		return 0;

2247
	if (obj->madv != I915_MADV_WILLNEED) {
2248
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2249
		return -EFAULT;
2250 2251
	}

2252 2253
	BUG_ON(obj->pages_pin_count);

2254 2255 2256 2257
	ret = ops->get_pages(obj);
	if (ret)
		return ret;

2258
	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2259
	return 0;
2260 2261
}

B
Ben Widawsky 已提交
2262
static void
2263
i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
2264
			       struct intel_engine_cs *ring)
2265
{
2266 2267
	struct drm_i915_gem_request *req;
	struct intel_engine_cs *old_ring;
2268

2269
	BUG_ON(ring == NULL);
2270 2271 2272 2273 2274

	req = intel_ring_get_request(ring);
	old_ring = i915_gem_request_get_ring(obj->last_read_req);

	if (old_ring != ring && obj->last_write_req) {
2275 2276
		/* Keep the request relative to the current ring */
		i915_gem_request_assign(&obj->last_write_req, req);
2277
	}
2278 2279

	/* Add a reference if we're newly entering the active list. */
2280 2281 2282
	if (!obj->active) {
		drm_gem_object_reference(&obj->base);
		obj->active = 1;
2283
	}
2284

2285
	list_move_tail(&obj->ring_list, &ring->active_list);
2286

2287
	i915_gem_request_assign(&obj->last_read_req, req);
2288 2289
}

B
Ben Widawsky 已提交
2290
void i915_vma_move_to_active(struct i915_vma *vma,
2291
			     struct intel_engine_cs *ring)
B
Ben Widawsky 已提交
2292 2293 2294 2295 2296
{
	list_move_tail(&vma->mm_list, &vma->vm->active_list);
	return i915_gem_object_move_to_active(vma->obj, ring);
}

2297 2298
static void
i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2299
{
2300
	struct i915_vma *vma;
2301

2302
	BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2303
	BUG_ON(!obj->active);
2304

2305 2306 2307
	list_for_each_entry(vma, &obj->vma_list, vma_link) {
		if (!list_empty(&vma->mm_list))
			list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
2308
	}
2309

2310 2311
	intel_fb_obj_flush(obj, true);

2312
	list_del_init(&obj->ring_list);
2313

2314 2315
	i915_gem_request_assign(&obj->last_read_req, NULL);
	i915_gem_request_assign(&obj->last_write_req, NULL);
2316 2317
	obj->base.write_domain = 0;

2318
	i915_gem_request_assign(&obj->last_fenced_req, NULL);
2319 2320 2321 2322 2323

	obj->active = 0;
	drm_gem_object_unreference(&obj->base);

	WARN_ON(i915_verify_lists(dev));
2324
}
2325

2326 2327 2328
static void
i915_gem_object_retire(struct drm_i915_gem_object *obj)
{
2329
	if (obj->last_read_req == NULL)
2330 2331
		return;

2332
	if (i915_gem_request_completed(obj->last_read_req, true))
2333 2334 2335
		i915_gem_object_move_to_inactive(obj);
}

2336
static int
2337
i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2338
{
2339
	struct drm_i915_private *dev_priv = dev->dev_private;
2340
	struct intel_engine_cs *ring;
2341
	int ret, i, j;
2342

2343
	/* Carefully retire all requests without writing to the rings */
2344
	for_each_ring(ring, dev_priv, i) {
2345 2346 2347
		ret = intel_ring_idle(ring);
		if (ret)
			return ret;
2348 2349
	}
	i915_gem_retire_requests(dev);
2350 2351

	/* Finally reset hw state */
2352
	for_each_ring(ring, dev_priv, i) {
2353
		intel_ring_init_seqno(ring, seqno);
2354

2355 2356
		for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
			ring->semaphore.sync_seqno[j] = 0;
2357
	}
2358

2359
	return 0;
2360 2361
}

2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387
int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	if (seqno == 0)
		return -EINVAL;

	/* HWS page needs to be set less than what we
	 * will inject to ring
	 */
	ret = i915_gem_init_seqno(dev, seqno - 1);
	if (ret)
		return ret;

	/* Carefully set the last_seqno value so that wrap
	 * detection still works
	 */
	dev_priv->next_seqno = seqno;
	dev_priv->last_seqno = seqno - 1;
	if (dev_priv->last_seqno == 0)
		dev_priv->last_seqno--;

	return 0;
}

2388 2389
int
i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2390
{
2391 2392 2393 2394
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* reserve 0 for non-seqno */
	if (dev_priv->next_seqno == 0) {
2395
		int ret = i915_gem_init_seqno(dev, 0);
2396 2397
		if (ret)
			return ret;
2398

2399 2400
		dev_priv->next_seqno = 1;
	}
2401

2402
	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2403
	return 0;
2404 2405
}

2406
int __i915_add_request(struct intel_engine_cs *ring,
2407
		       struct drm_file *file,
2408
		       struct drm_i915_gem_object *obj)
2409
{
2410
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2411
	struct drm_i915_gem_request *request;
2412
	struct intel_ringbuffer *ringbuf;
2413
	u32 request_ring_position, request_start;
2414 2415
	int ret;

2416
	request = ring->outstanding_lazy_request;
2417 2418 2419 2420 2421 2422 2423 2424 2425 2426
	if (WARN_ON(request == NULL))
		return -ENOMEM;

	if (i915.enable_execlists) {
		struct intel_context *ctx = request->ctx;
		ringbuf = ctx->engine[ring->id].ringbuf;
	} else
		ringbuf = ring->buffer;

	request_start = intel_ring_get_tail(ringbuf);
2427 2428 2429 2430 2431 2432 2433
	/*
	 * Emit any outstanding flushes - execbuf can fail to emit the flush
	 * after having emitted the batchbuffer command. Hence we need to fix
	 * things up similar to emitting the lazy request. The difference here
	 * is that the flush _must_ happen before the next request, no matter
	 * what.
	 */
2434 2435 2436 2437 2438 2439 2440 2441 2442
	if (i915.enable_execlists) {
		ret = logical_ring_flush_all_caches(ringbuf);
		if (ret)
			return ret;
	} else {
		ret = intel_ring_flush_all_caches(ring);
		if (ret)
			return ret;
	}
2443

2444 2445 2446 2447 2448
	/* Record the position of the start of the request so that
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
2449
	request_ring_position = intel_ring_get_tail(ringbuf);
2450

2451 2452 2453 2454 2455 2456 2457 2458 2459
	if (i915.enable_execlists) {
		ret = ring->emit_request(ringbuf);
		if (ret)
			return ret;
	} else {
		ret = ring->add_request(ring);
		if (ret)
			return ret;
	}
2460

2461
	request->head = request_start;
2462
	request->tail = request_ring_position;
2463 2464 2465 2466 2467 2468 2469

	/* Whilst this request exists, batch_obj will be on the
	 * active_list, and so will hold the active reference. Only when this
	 * request is retired will the the batch_obj be moved onto the
	 * inactive_list and lose its active reference. Hence we do not need
	 * to explicitly hold another reference here.
	 */
2470
	request->batch_obj = obj;
2471

2472 2473 2474 2475 2476 2477 2478 2479
	if (!i915.enable_execlists) {
		/* Hold a reference to the current context so that we can inspect
		 * it later in case a hangcheck error event fires.
		 */
		request->ctx = ring->last_context;
		if (request->ctx)
			i915_gem_context_reference(request->ctx);
	}
2480

2481
	request->emitted_jiffies = jiffies;
2482
	list_add_tail(&request->list, &ring->request_list);
2483
	request->file_priv = NULL;
2484

C
Chris Wilson 已提交
2485 2486 2487
	if (file) {
		struct drm_i915_file_private *file_priv = file->driver_priv;

2488
		spin_lock(&file_priv->mm.lock);
2489
		request->file_priv = file_priv;
2490
		list_add_tail(&request->client_list,
2491
			      &file_priv->mm.request_list);
2492
		spin_unlock(&file_priv->mm.lock);
2493
	}
2494

2495
	trace_i915_gem_request_add(request);
2496
	ring->outstanding_lazy_request = NULL;
C
Chris Wilson 已提交
2497

2498
	i915_queue_hangcheck(ring->dev);
2499

2500 2501 2502 2503 2504
	cancel_delayed_work_sync(&dev_priv->mm.idle_work);
	queue_delayed_work(dev_priv->wq,
			   &dev_priv->mm.retire_work,
			   round_jiffies_up_relative(HZ));
	intel_mark_busy(dev_priv->dev);
2505

2506
	return 0;
2507 2508
}

2509 2510
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2511
{
2512
	struct drm_i915_file_private *file_priv = request->file_priv;
2513

2514 2515
	if (!file_priv)
		return;
C
Chris Wilson 已提交
2516

2517
	spin_lock(&file_priv->mm.lock);
2518 2519
	list_del(&request->client_list);
	request->file_priv = NULL;
2520
	spin_unlock(&file_priv->mm.lock);
2521 2522
}

2523
static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2524
				   const struct intel_context *ctx)
2525
{
2526
	unsigned long elapsed;
2527

2528 2529 2530
	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;

	if (ctx->hang_stats.banned)
2531 2532 2533
		return true;

	if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
2534
		if (!i915_gem_context_is_default(ctx)) {
2535
			DRM_DEBUG("context hanging too fast, banning!\n");
2536
			return true;
2537 2538 2539
		} else if (i915_stop_ring_allow_ban(dev_priv)) {
			if (i915_stop_ring_allow_warn(dev_priv))
				DRM_ERROR("gpu hanging too fast, banning!\n");
2540
			return true;
2541
		}
2542 2543 2544 2545 2546
	}

	return false;
}

2547
static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2548
				  struct intel_context *ctx,
2549
				  const bool guilty)
2550
{
2551 2552 2553 2554
	struct i915_ctx_hang_stats *hs;

	if (WARN_ON(!ctx))
		return;
2555

2556 2557 2558
	hs = &ctx->hang_stats;

	if (guilty) {
2559
		hs->banned = i915_context_is_banned(dev_priv, ctx);
2560 2561 2562 2563
		hs->batch_active++;
		hs->guilty_ts = get_seconds();
	} else {
		hs->batch_pending++;
2564 2565 2566
	}
}

2567 2568 2569 2570 2571
static void i915_gem_free_request(struct drm_i915_gem_request *request)
{
	list_del(&request->list);
	i915_gem_request_remove_from_client(request);

2572 2573 2574 2575 2576 2577 2578 2579 2580
	i915_gem_request_unreference(request);
}

void i915_gem_request_free(struct kref *req_ref)
{
	struct drm_i915_gem_request *req = container_of(req_ref,
						 typeof(*req), ref);
	struct intel_context *ctx = req->ctx;

2581 2582
	if (ctx) {
		if (i915.enable_execlists) {
2583
			struct intel_engine_cs *ring = req->ring;
2584

2585 2586 2587
			if (ctx != ring->default_context)
				intel_lr_context_unpin(ring, ctx);
		}
2588

2589 2590
		i915_gem_context_unreference(ctx);
	}
2591 2592

	kfree(req);
2593 2594
}

2595
struct drm_i915_gem_request *
2596
i915_gem_find_active_request(struct intel_engine_cs *ring)
2597
{
2598 2599 2600
	struct drm_i915_gem_request *request;

	list_for_each_entry(request, &ring->request_list, list) {
2601
		if (i915_gem_request_completed(request, false))
2602
			continue;
2603

2604
		return request;
2605
	}
2606 2607 2608 2609 2610

	return NULL;
}

static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2611
				       struct intel_engine_cs *ring)
2612 2613 2614 2615
{
	struct drm_i915_gem_request *request;
	bool ring_hung;

2616
	request = i915_gem_find_active_request(ring);
2617 2618 2619 2620 2621 2622

	if (request == NULL)
		return;

	ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;

2623
	i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2624 2625

	list_for_each_entry_continue(request, &ring->request_list, list)
2626
		i915_set_reset_status(dev_priv, request->ctx, false);
2627
}
2628

2629
static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2630
					struct intel_engine_cs *ring)
2631
{
2632
	while (!list_empty(&ring->active_list)) {
2633
		struct drm_i915_gem_object *obj;
2634

2635 2636 2637
		obj = list_first_entry(&ring->active_list,
				       struct drm_i915_gem_object,
				       ring_list);
2638

2639
		i915_gem_object_move_to_inactive(obj);
2640
	}
2641

2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658
	/*
	 * Clear the execlists queue up before freeing the requests, as those
	 * are the ones that keep the context and ringbuffer backing objects
	 * pinned in place.
	 */
	while (!list_empty(&ring->execlist_queue)) {
		struct intel_ctx_submit_request *submit_req;

		submit_req = list_first_entry(&ring->execlist_queue,
				struct intel_ctx_submit_request,
				execlist_link);
		list_del(&submit_req->execlist_link);
		intel_runtime_pm_put(dev_priv);
		i915_gem_context_unreference(submit_req->ctx);
		kfree(submit_req);
	}

2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674
	/*
	 * We must free the requests after all the corresponding objects have
	 * been moved off active lists. Which is the same order as the normal
	 * retire_requests function does. This is important if object hold
	 * implicit references on things like e.g. ppgtt address spaces through
	 * the request.
	 */
	while (!list_empty(&ring->request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&ring->request_list,
					   struct drm_i915_gem_request,
					   list);

		i915_gem_free_request(request);
	}
2675

2676 2677
	/* This may not have been flushed before the reset, so clean it now */
	i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
2678 2679
}

2680
void i915_gem_restore_fences(struct drm_device *dev)
2681 2682 2683 2684
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int i;

2685
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
2686
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2687

2688 2689 2690 2691 2692 2693 2694 2695 2696 2697
		/*
		 * Commit delayed tiling changes if we have an object still
		 * attached to the fence, otherwise just clear the fence.
		 */
		if (reg->obj) {
			i915_gem_object_update_fence(reg->obj, reg,
						     reg->obj->tiling_mode);
		} else {
			i915_gem_write_fence(dev, i, NULL);
		}
2698 2699 2700
	}
}

2701
void i915_gem_reset(struct drm_device *dev)
2702
{
2703
	struct drm_i915_private *dev_priv = dev->dev_private;
2704
	struct intel_engine_cs *ring;
2705
	int i;
2706

2707 2708 2709 2710 2711 2712 2713 2714
	/*
	 * Before we free the objects from the requests, we need to inspect
	 * them for finding the guilty party. As the requests only borrow
	 * their reference to the objects, the inspection must be done first.
	 */
	for_each_ring(ring, dev_priv, i)
		i915_gem_reset_ring_status(dev_priv, ring);

2715
	for_each_ring(ring, dev_priv, i)
2716
		i915_gem_reset_ring_cleanup(dev_priv, ring);
2717

2718 2719
	i915_gem_context_reset(dev);

2720
	i915_gem_restore_fences(dev);
2721 2722 2723 2724 2725
}

/**
 * This function clears the request list as sequence numbers are passed.
 */
2726
void
2727
i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2728
{
C
Chris Wilson 已提交
2729
	if (list_empty(&ring->request_list))
2730 2731
		return;

C
Chris Wilson 已提交
2732
	WARN_ON(i915_verify_lists(ring->dev));
2733

2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744
	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate,
	 * before we free the context associated with the requests.
	 */
	while (!list_empty(&ring->active_list)) {
		struct drm_i915_gem_object *obj;

		obj = list_first_entry(&ring->active_list,
				      struct drm_i915_gem_object,
				      ring_list);

2745
		if (!i915_gem_request_completed(obj->last_read_req, true))
2746 2747 2748 2749 2750 2751
			break;

		i915_gem_object_move_to_inactive(obj);
	}


2752
	while (!list_empty(&ring->request_list)) {
2753
		struct drm_i915_gem_request *request;
2754
		struct intel_ringbuffer *ringbuf;
2755

2756
		request = list_first_entry(&ring->request_list,
2757 2758 2759
					   struct drm_i915_gem_request,
					   list);

2760
		if (!i915_gem_request_completed(request, true))
2761 2762
			break;

2763
		trace_i915_gem_request_retire(request);
2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775

		/* This is one of the few common intersection points
		 * between legacy ringbuffer submission and execlists:
		 * we need to tell them apart in order to find the correct
		 * ringbuffer to which the request belongs to.
		 */
		if (i915.enable_execlists) {
			struct intel_context *ctx = request->ctx;
			ringbuf = ctx->engine[ring->id].ringbuf;
		} else
			ringbuf = ring->buffer;

2776 2777 2778 2779 2780
		/* We know the GPU must have read the request to have
		 * sent us the seqno + interrupt, so use the position
		 * of tail of the request to update the last known position
		 * of the GPU head.
		 */
2781
		ringbuf->last_retired_head = request->tail;
2782

2783
		i915_gem_free_request(request);
2784
	}
2785

2786 2787
	if (unlikely(ring->trace_irq_req &&
		     i915_gem_request_completed(ring->trace_irq_req, true))) {
2788
		ring->irq_put(ring);
2789
		i915_gem_request_assign(&ring->trace_irq_req, NULL);
2790
	}
2791

C
Chris Wilson 已提交
2792
	WARN_ON(i915_verify_lists(ring->dev));
2793 2794
}

2795
bool
2796 2797
i915_gem_retire_requests(struct drm_device *dev)
{
2798
	struct drm_i915_private *dev_priv = dev->dev_private;
2799
	struct intel_engine_cs *ring;
2800
	bool idle = true;
2801
	int i;
2802

2803
	for_each_ring(ring, dev_priv, i) {
2804
		i915_gem_retire_requests_ring(ring);
2805
		idle &= list_empty(&ring->request_list);
2806 2807 2808 2809 2810 2811 2812 2813 2814
		if (i915.enable_execlists) {
			unsigned long flags;

			spin_lock_irqsave(&ring->execlist_lock, flags);
			idle &= list_empty(&ring->execlist_queue);
			spin_unlock_irqrestore(&ring->execlist_lock, flags);

			intel_execlists_retire_requests(ring);
		}
2815 2816 2817 2818 2819 2820 2821 2822
	}

	if (idle)
		mod_delayed_work(dev_priv->wq,
				   &dev_priv->mm.idle_work,
				   msecs_to_jiffies(100));

	return idle;
2823 2824
}

2825
static void
2826 2827
i915_gem_retire_work_handler(struct work_struct *work)
{
2828 2829 2830
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), mm.retire_work.work);
	struct drm_device *dev = dev_priv->dev;
2831
	bool idle;
2832

2833
	/* Come back later if the device is busy... */
2834 2835 2836 2837
	idle = false;
	if (mutex_trylock(&dev->struct_mutex)) {
		idle = i915_gem_retire_requests(dev);
		mutex_unlock(&dev->struct_mutex);
2838
	}
2839
	if (!idle)
2840 2841
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
				   round_jiffies_up_relative(HZ));
2842
}
2843

2844 2845 2846 2847 2848 2849 2850
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), mm.idle_work.work);

	intel_mark_idle(dev_priv->dev);
2851 2852
}

2853 2854 2855 2856 2857 2858 2859 2860
/**
 * Ensures that an object will eventually get non-busy by flushing any required
 * write domains, emitting any outstanding lazy request and retiring and
 * completed requests.
 */
static int
i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
{
2861
	struct intel_engine_cs *ring;
2862 2863 2864
	int ret;

	if (obj->active) {
2865 2866
		ring = i915_gem_request_get_ring(obj->last_read_req);

2867
		ret = i915_gem_check_olr(obj->last_read_req);
2868 2869 2870
		if (ret)
			return ret;

2871
		i915_gem_retire_requests_ring(ring);
2872 2873 2874 2875 2876
	}

	return 0;
}

2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
 * @DRM_IOCTL_ARGS: standard ioctl arguments
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
2902
	struct drm_i915_private *dev_priv = dev->dev_private;
2903 2904
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
2905
	struct drm_i915_gem_request *req;
2906
	unsigned reset_counter;
2907 2908
	int ret = 0;

2909 2910 2911
	if (args->flags != 0)
		return -EINVAL;

2912 2913 2914 2915 2916 2917 2918 2919 2920 2921
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
	if (&obj->base == NULL) {
		mutex_unlock(&dev->struct_mutex);
		return -ENOENT;
	}

2922 2923
	/* Need to make sure the object gets inactive eventually. */
	ret = i915_gem_object_flush_active(obj);
2924 2925 2926
	if (ret)
		goto out;

2927 2928
	if (!obj->active || !obj->last_read_req)
		goto out;
2929

2930
	req = obj->last_read_req;
2931 2932

	/* Do this after OLR check to make sure we make forward progress polling
2933
	 * on this IOCTL with a timeout <=0 (like busy ioctl)
2934
	 */
2935
	if (args->timeout_ns <= 0) {
2936 2937 2938 2939 2940
		ret = -ETIME;
		goto out;
	}

	drm_gem_object_unreference(&obj->base);
2941
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2942
	i915_gem_request_reference(req);
2943 2944
	mutex_unlock(&dev->struct_mutex);

2945 2946
	ret = __i915_wait_request(req, reset_counter, true, &args->timeout_ns,
				  file->driver_priv);
2947 2948 2949 2950
	mutex_lock(&dev->struct_mutex);
	i915_gem_request_unreference(req);
	mutex_unlock(&dev->struct_mutex);
	return ret;
2951 2952 2953 2954 2955 2956 2957

out:
	drm_gem_object_unreference(&obj->base);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969
/**
 * i915_gem_object_sync - sync an object to a ring.
 *
 * @obj: object which may be in use on another ring.
 * @to: ring we wish to use the object on. May be NULL.
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Calling with NULL implies synchronizing the object with the CPU
 * rather than a particular GPU ring.
 *
 * Returns 0 if successful, else propagates up the lower layer error.
 */
2970 2971
int
i915_gem_object_sync(struct drm_i915_gem_object *obj,
2972
		     struct intel_engine_cs *to)
2973
{
2974
	struct intel_engine_cs *from;
2975 2976 2977
	u32 seqno;
	int ret, idx;

2978 2979
	from = i915_gem_request_get_ring(obj->last_read_req);

2980 2981 2982
	if (from == NULL || to == from)
		return 0;

2983
	if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2984
		return i915_gem_object_wait_rendering(obj, false);
2985 2986 2987

	idx = intel_ring_sync_index(from, to);

2988
	seqno = i915_gem_request_get_seqno(obj->last_read_req);
R
Rodrigo Vivi 已提交
2989 2990
	/* Optimization: Avoid semaphore sync when we are sure we already
	 * waited for an object with higher seqno */
2991
	if (seqno <= from->semaphore.sync_seqno[idx])
2992 2993
		return 0;

2994
	ret = i915_gem_check_olr(obj->last_read_req);
2995 2996
	if (ret)
		return ret;
2997

2998
	trace_i915_gem_ring_sync_to(from, to, obj->last_read_req);
2999
	ret = to->semaphore.sync_to(to, from, seqno);
3000
	if (!ret)
3001
		/* We use last_read_req because sync_to()
3002 3003 3004
		 * might have just caused seqno wrap under
		 * the radar.
		 */
3005 3006
		from->semaphore.sync_seqno[idx] =
				i915_gem_request_get_seqno(obj->last_read_req);
3007

3008
	return ret;
3009 3010
}

3011 3012 3013 3014 3015 3016 3017
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
{
	u32 old_write_domain, old_read_domains;

	/* Force a pagefault for domain tracking on next user access */
	i915_gem_release_mmap(obj);

3018 3019 3020
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		return;

3021 3022 3023
	/* Wait for any direct GTT access to complete */
	mb();

3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034
	old_read_domains = obj->base.read_domains;
	old_write_domain = obj->base.write_domain;

	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);
}

3035
int i915_vma_unbind(struct i915_vma *vma)
3036
{
3037
	struct drm_i915_gem_object *obj = vma->obj;
3038
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3039
	int ret;
3040

3041
	if (list_empty(&vma->vma_link))
3042 3043
		return 0;

3044 3045 3046 3047
	if (!drm_mm_node_allocated(&vma->node)) {
		i915_gem_vma_destroy(vma);
		return 0;
	}
3048

B
Ben Widawsky 已提交
3049
	if (vma->pin_count)
3050
		return -EBUSY;
3051

3052 3053
	BUG_ON(obj->pages == NULL);

3054
	ret = i915_gem_object_finish_gpu(obj);
3055
	if (ret)
3056 3057 3058 3059 3060 3061
		return ret;
	/* Continue on if we fail due to EIO, the GPU is hung so we
	 * should be safe and we need to cleanup or else we might
	 * cause memory corruption through use-after-free.
	 */

3062 3063
	if (i915_is_ggtt(vma->vm) &&
	    vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3064
		i915_gem_object_finish_gtt(obj);
3065

3066 3067 3068 3069 3070
		/* release the fence reg _after_ flushing */
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			return ret;
	}
3071

3072
	trace_i915_vma_unbind(vma);
C
Chris Wilson 已提交
3073

3074 3075
	vma->unbind_vma(vma);

3076
	list_del_init(&vma->mm_list);
3077 3078 3079 3080 3081 3082 3083 3084 3085
	if (i915_is_ggtt(vma->vm)) {
		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
			obj->map_and_fenceable = false;
		} else if (vma->ggtt_view.pages) {
			sg_free_table(vma->ggtt_view.pages);
			kfree(vma->ggtt_view.pages);
			vma->ggtt_view.pages = NULL;
		}
	}
3086

B
Ben Widawsky 已提交
3087 3088 3089 3090
	drm_mm_remove_node(&vma->node);
	i915_gem_vma_destroy(vma);

	/* Since the unbound list is global, only move to that list if
3091
	 * no more VMAs exist. */
3092
	if (list_empty(&obj->vma_list)) {
3093 3094 3095 3096
		/* Throw away the active reference before
		 * moving to the unbound list. */
		i915_gem_object_retire(obj);

3097
		i915_gem_gtt_finish_object(obj);
B
Ben Widawsky 已提交
3098
		list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3099
	}
3100

3101 3102 3103 3104 3105 3106
	/* And finally now the object is completely decoupled from this vma,
	 * we can drop its hold on the backing storage and allow it to be
	 * reaped by the shrinker.
	 */
	i915_gem_object_unpin_pages(obj);

3107
	return 0;
3108 3109
}

3110
int i915_gpu_idle(struct drm_device *dev)
3111
{
3112
	struct drm_i915_private *dev_priv = dev->dev_private;
3113
	struct intel_engine_cs *ring;
3114
	int ret, i;
3115 3116

	/* Flush everything onto the inactive list. */
3117
	for_each_ring(ring, dev_priv, i) {
3118 3119 3120 3121 3122
		if (!i915.enable_execlists) {
			ret = i915_switch_context(ring, ring->default_context);
			if (ret)
				return ret;
		}
3123

3124
		ret = intel_ring_idle(ring);
3125 3126 3127
		if (ret)
			return ret;
	}
3128

3129
	return 0;
3130 3131
}

3132 3133
static void i965_write_fence_reg(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
3134
{
3135
	struct drm_i915_private *dev_priv = dev->dev_private;
3136 3137
	int fence_reg;
	int fence_pitch_shift;
3138

3139 3140 3141 3142 3143 3144 3145 3146
	if (INTEL_INFO(dev)->gen >= 6) {
		fence_reg = FENCE_REG_SANDYBRIDGE_0;
		fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
	} else {
		fence_reg = FENCE_REG_965_0;
		fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
	}

3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160
	fence_reg += reg * 8;

	/* To w/a incoherency with non-atomic 64-bit register updates,
	 * we split the 64-bit update into two 32-bit writes. In order
	 * for a partial fence not to be evaluated between writes, we
	 * precede the update with write to turn off the fence register,
	 * and only enable the fence as the last step.
	 *
	 * For extra levels of paranoia, we make sure each step lands
	 * before applying the next step.
	 */
	I915_WRITE(fence_reg, 0);
	POSTING_READ(fence_reg);

3161
	if (obj) {
3162
		u32 size = i915_gem_obj_ggtt_size(obj);
3163
		uint64_t val;
3164

3165
		val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
3166
				 0xfffff000) << 32;
3167
		val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
3168
		val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
3169 3170 3171
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
		val |= I965_FENCE_REG_VALID;
3172

3173 3174 3175 3176 3177 3178 3179 3180 3181
		I915_WRITE(fence_reg + 4, val >> 32);
		POSTING_READ(fence_reg + 4);

		I915_WRITE(fence_reg + 0, val);
		POSTING_READ(fence_reg);
	} else {
		I915_WRITE(fence_reg + 4, 0);
		POSTING_READ(fence_reg + 4);
	}
3182 3183
}

3184 3185
static void i915_write_fence_reg(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
3186
{
3187
	struct drm_i915_private *dev_priv = dev->dev_private;
3188
	u32 val;
3189

3190
	if (obj) {
3191
		u32 size = i915_gem_obj_ggtt_size(obj);
3192 3193
		int pitch_val;
		int tile_width;
3194

3195
		WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
3196
		     (size & -size) != size ||
3197 3198 3199
		     (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
		     "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
		     i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
3200

3201 3202 3203 3204 3205 3206 3207 3208 3209
		if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
			tile_width = 128;
		else
			tile_width = 512;

		/* Note: pitch better be a power of two tile widths */
		pitch_val = obj->stride / tile_width;
		pitch_val = ffs(pitch_val) - 1;

3210
		val = i915_gem_obj_ggtt_offset(obj);
3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
		val |= I915_FENCE_SIZE_BITS(size);
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
		val |= I830_FENCE_REG_VALID;
	} else
		val = 0;

	if (reg < 8)
		reg = FENCE_REG_830_0 + reg * 4;
	else
		reg = FENCE_REG_945_8 + (reg - 8) * 4;

	I915_WRITE(reg, val);
	POSTING_READ(reg);
3226 3227
}

3228 3229
static void i830_write_fence_reg(struct drm_device *dev, int reg,
				struct drm_i915_gem_object *obj)
3230
{
3231
	struct drm_i915_private *dev_priv = dev->dev_private;
3232 3233
	uint32_t val;

3234
	if (obj) {
3235
		u32 size = i915_gem_obj_ggtt_size(obj);
3236
		uint32_t pitch_val;
3237

3238
		WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3239
		     (size & -size) != size ||
3240 3241 3242
		     (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
		     "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
		     i915_gem_obj_ggtt_offset(obj), size);
3243

3244 3245
		pitch_val = obj->stride / 128;
		pitch_val = ffs(pitch_val) - 1;
3246

3247
		val = i915_gem_obj_ggtt_offset(obj);
3248 3249 3250 3251 3252 3253 3254
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
		val |= I830_FENCE_SIZE_BITS(size);
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
		val |= I830_FENCE_REG_VALID;
	} else
		val = 0;
3255

3256 3257 3258 3259
	I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
	POSTING_READ(FENCE_REG_830_0 + reg * 4);
}

3260 3261 3262 3263 3264
inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
{
	return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
}

3265 3266 3267
static void i915_gem_write_fence(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
{
3268 3269 3270 3271 3272 3273 3274 3275
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* Ensure that all CPU reads are completed before installing a fence
	 * and all writes before removing the fence.
	 */
	if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
		mb();

3276 3277 3278 3279
	WARN(obj && (!obj->stride || !obj->tiling_mode),
	     "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
	     obj->stride, obj->tiling_mode);

3280
	switch (INTEL_INFO(dev)->gen) {
3281
	case 9:
3282
	case 8:
3283
	case 7:
3284
	case 6:
3285 3286 3287 3288
	case 5:
	case 4: i965_write_fence_reg(dev, reg, obj); break;
	case 3: i915_write_fence_reg(dev, reg, obj); break;
	case 2: i830_write_fence_reg(dev, reg, obj); break;
3289
	default: BUG();
3290
	}
3291 3292 3293 3294 3295 3296

	/* And similarly be paranoid that no direct access to this region
	 * is reordered to before the fence is installed.
	 */
	if (i915_gem_object_needs_mb(obj))
		mb();
3297 3298
}

3299 3300 3301 3302 3303 3304 3305 3306 3307 3308
static inline int fence_number(struct drm_i915_private *dev_priv,
			       struct drm_i915_fence_reg *fence)
{
	return fence - dev_priv->fence_regs;
}

static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
					 struct drm_i915_fence_reg *fence,
					 bool enable)
{
3309
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3310 3311 3312
	int reg = fence_number(dev_priv, fence);

	i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3313 3314

	if (enable) {
3315
		obj->fence_reg = reg;
3316 3317 3318 3319 3320 3321 3322
		fence->obj = obj;
		list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
	} else {
		obj->fence_reg = I915_FENCE_REG_NONE;
		fence->obj = NULL;
		list_del_init(&fence->lru_list);
	}
3323
	obj->fence_dirty = false;
3324 3325
}

3326
static int
3327
i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3328
{
3329
	if (obj->last_fenced_req) {
3330
		int ret = i915_wait_request(obj->last_fenced_req);
3331 3332
		if (ret)
			return ret;
3333

3334
		i915_gem_request_assign(&obj->last_fenced_req, NULL);
3335 3336 3337 3338 3339 3340 3341 3342
	}

	return 0;
}

int
i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
{
3343
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3344
	struct drm_i915_fence_reg *fence;
3345 3346
	int ret;

3347
	ret = i915_gem_object_wait_fence(obj);
3348 3349 3350
	if (ret)
		return ret;

3351 3352
	if (obj->fence_reg == I915_FENCE_REG_NONE)
		return 0;
3353

3354 3355
	fence = &dev_priv->fence_regs[obj->fence_reg];

3356 3357 3358
	if (WARN_ON(fence->pin_count))
		return -EBUSY;

3359
	i915_gem_object_fence_lost(obj);
3360
	i915_gem_object_update_fence(obj, fence, false);
3361 3362 3363 3364 3365

	return 0;
}

static struct drm_i915_fence_reg *
C
Chris Wilson 已提交
3366
i915_find_fence_reg(struct drm_device *dev)
3367 3368
{
	struct drm_i915_private *dev_priv = dev->dev_private;
C
Chris Wilson 已提交
3369
	struct drm_i915_fence_reg *reg, *avail;
3370
	int i;
3371 3372

	/* First try to find a free reg */
3373
	avail = NULL;
3374 3375 3376
	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
		reg = &dev_priv->fence_regs[i];
		if (!reg->obj)
3377
			return reg;
3378

3379
		if (!reg->pin_count)
3380
			avail = reg;
3381 3382
	}

3383
	if (avail == NULL)
3384
		goto deadlock;
3385 3386

	/* None available, try to steal one or wait for a user to finish */
3387
	list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3388
		if (reg->pin_count)
3389 3390
			continue;

C
Chris Wilson 已提交
3391
		return reg;
3392 3393
	}

3394 3395 3396 3397 3398 3399
deadlock:
	/* Wait for completion of pending flips which consume fences */
	if (intel_has_pending_fb_unpin(dev))
		return ERR_PTR(-EAGAIN);

	return ERR_PTR(-EDEADLK);
3400 3401
}

3402
/**
3403
 * i915_gem_object_get_fence - set up fencing for an object
3404 3405 3406 3407 3408 3409 3410 3411 3412
 * @obj: object to map through a fence reg
 *
 * When mapping objects through the GTT, userspace wants to be able to write
 * to them without having to worry about swizzling if the object is tiled.
 * This function walks the fence regs looking for a free one for @obj,
 * stealing one if it can't find any.
 *
 * It then sets up the reg based on the object's properties: address, pitch
 * and tiling format.
3413 3414
 *
 * For an untiled surface, this removes any existing fence.
3415
 */
3416
int
3417
i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3418
{
3419
	struct drm_device *dev = obj->base.dev;
J
Jesse Barnes 已提交
3420
	struct drm_i915_private *dev_priv = dev->dev_private;
3421
	bool enable = obj->tiling_mode != I915_TILING_NONE;
3422
	struct drm_i915_fence_reg *reg;
3423
	int ret;
3424

3425 3426 3427
	/* Have we updated the tiling parameters upon the object and so
	 * will need to serialise the write to the associated fence register?
	 */
3428
	if (obj->fence_dirty) {
3429
		ret = i915_gem_object_wait_fence(obj);
3430 3431 3432
		if (ret)
			return ret;
	}
3433

3434
	/* Just update our place in the LRU if our fence is getting reused. */
3435 3436
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		reg = &dev_priv->fence_regs[obj->fence_reg];
3437
		if (!obj->fence_dirty) {
3438 3439 3440 3441 3442
			list_move_tail(&reg->lru_list,
				       &dev_priv->mm.fence_list);
			return 0;
		}
	} else if (enable) {
3443 3444 3445
		if (WARN_ON(!obj->map_and_fenceable))
			return -EINVAL;

3446
		reg = i915_find_fence_reg(dev);
3447 3448
		if (IS_ERR(reg))
			return PTR_ERR(reg);
3449

3450 3451 3452
		if (reg->obj) {
			struct drm_i915_gem_object *old = reg->obj;

3453
			ret = i915_gem_object_wait_fence(old);
3454 3455 3456
			if (ret)
				return ret;

3457
			i915_gem_object_fence_lost(old);
3458
		}
3459
	} else
3460 3461
		return 0;

3462 3463
	i915_gem_object_update_fence(obj, reg, enable);

3464
	return 0;
3465 3466
}

3467
static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3468 3469
				     unsigned long cache_level)
{
3470
	struct drm_mm_node *gtt_space = &vma->node;
3471 3472
	struct drm_mm_node *other;

3473 3474 3475 3476 3477 3478
	/*
	 * On some machines we have to be careful when putting differing types
	 * of snoopable memory together to avoid the prefetcher crossing memory
	 * domains and dying. During vm initialisation, we decide whether or not
	 * these constraints apply and set the drm_mm.color_adjust
	 * appropriately.
3479
	 */
3480
	if (vma->vm->mm.color_adjust == NULL)
3481 3482
		return true;

3483
	if (!drm_mm_node_allocated(gtt_space))
3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499
		return true;

	if (list_empty(&gtt_space->node_list))
		return true;

	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
	if (other->allocated && !other->hole_follows && other->color != cache_level)
		return false;

	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
		return false;

	return true;
}

3500 3501 3502
/**
 * Finds free space in the GTT aperture and binds the object there.
 */
3503
static struct i915_vma *
3504 3505 3506
i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
			   struct i915_address_space *vm,
			   unsigned alignment,
3507 3508
			   uint64_t flags,
			   const struct i915_ggtt_view *view)
3509
{
3510
	struct drm_device *dev = obj->base.dev;
3511
	struct drm_i915_private *dev_priv = dev->dev_private;
3512
	u32 size, fence_size, fence_alignment, unfenced_alignment;
3513 3514 3515
	unsigned long start =
		flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
	unsigned long end =
3516
		flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
B
Ben Widawsky 已提交
3517
	struct i915_vma *vma;
3518
	int ret;
3519

3520 3521 3522 3523 3524
	fence_size = i915_gem_get_gtt_size(dev,
					   obj->base.size,
					   obj->tiling_mode);
	fence_alignment = i915_gem_get_gtt_alignment(dev,
						     obj->base.size,
3525
						     obj->tiling_mode, true);
3526
	unfenced_alignment =
3527
		i915_gem_get_gtt_alignment(dev,
3528 3529
					   obj->base.size,
					   obj->tiling_mode, false);
3530

3531
	if (alignment == 0)
3532
		alignment = flags & PIN_MAPPABLE ? fence_alignment :
3533
						unfenced_alignment;
3534
	if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3535
		DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
3536
		return ERR_PTR(-EINVAL);
3537 3538
	}

3539
	size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3540

3541 3542 3543
	/* If the object is bigger than the entire aperture, reject it early
	 * before evicting everything in a vain attempt to find space.
	 */
3544 3545
	if (obj->base.size > end) {
		DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n",
3546
			  obj->base.size,
3547
			  flags & PIN_MAPPABLE ? "mappable" : "total",
3548
			  end);
3549
		return ERR_PTR(-E2BIG);
3550 3551
	}

3552
	ret = i915_gem_object_get_pages(obj);
C
Chris Wilson 已提交
3553
	if (ret)
3554
		return ERR_PTR(ret);
C
Chris Wilson 已提交
3555

3556 3557
	i915_gem_object_pin_pages(obj);

3558
	vma = i915_gem_obj_lookup_or_create_vma_view(obj, vm, view);
3559
	if (IS_ERR(vma))
3560
		goto err_unpin;
B
Ben Widawsky 已提交
3561

3562
search_free:
3563
	ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3564
						  size, alignment,
3565 3566
						  obj->cache_level,
						  start, end,
3567 3568
						  DRM_MM_SEARCH_DEFAULT,
						  DRM_MM_CREATE_DEFAULT);
3569
	if (ret) {
3570
		ret = i915_gem_evict_something(dev, vm, size, alignment,
3571 3572 3573
					       obj->cache_level,
					       start, end,
					       flags);
3574 3575
		if (ret == 0)
			goto search_free;
3576

3577
		goto err_free_vma;
3578
	}
3579
	if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
B
Ben Widawsky 已提交
3580
		ret = -EINVAL;
3581
		goto err_remove_node;
3582 3583
	}

3584
	ret = i915_gem_gtt_prepare_object(obj);
B
Ben Widawsky 已提交
3585
	if (ret)
3586
		goto err_remove_node;
3587

3588 3589 3590 3591 3592 3593
	trace_i915_vma_bind(vma, flags);
	ret = i915_vma_bind(vma, obj->cache_level,
			    flags & PIN_GLOBAL ? GLOBAL_BIND : 0);
	if (ret)
		goto err_finish_gtt;

3594
	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
B
Ben Widawsky 已提交
3595
	list_add_tail(&vma->mm_list, &vm->inactive_list);
3596

3597
	return vma;
B
Ben Widawsky 已提交
3598

3599 3600
err_finish_gtt:
	i915_gem_gtt_finish_object(obj);
3601
err_remove_node:
3602
	drm_mm_remove_node(&vma->node);
3603
err_free_vma:
B
Ben Widawsky 已提交
3604
	i915_gem_vma_destroy(vma);
3605
	vma = ERR_PTR(ret);
3606
err_unpin:
B
Ben Widawsky 已提交
3607
	i915_gem_object_unpin_pages(obj);
3608
	return vma;
3609 3610
}

3611
bool
3612 3613
i915_gem_clflush_object(struct drm_i915_gem_object *obj,
			bool force)
3614 3615 3616 3617 3618
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
3619
	if (obj->pages == NULL)
3620
		return false;
3621

3622 3623 3624 3625
	/*
	 * Stolen memory is always coherent with the GPU as it is explicitly
	 * marked as wc by the system, or the system is cache-coherent.
	 */
3626
	if (obj->stolen || obj->phys_handle)
3627
		return false;
3628

3629 3630 3631 3632 3633 3634 3635 3636
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
3637
	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3638
		return false;
3639

C
Chris Wilson 已提交
3640
	trace_i915_gem_object_clflush(obj);
3641
	drm_clflush_sg(obj->pages);
3642 3643

	return true;
3644 3645 3646 3647
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
3648
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3649
{
C
Chris Wilson 已提交
3650 3651
	uint32_t old_write_domain;

3652
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3653 3654
		return;

3655
	/* No actual flushing is required for the GTT write domain.  Writes
3656 3657
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
3658 3659 3660 3661
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
3662
	 */
3663 3664
	wmb();

3665 3666
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3667

3668 3669
	intel_fb_obj_flush(obj, false);

C
Chris Wilson 已提交
3670
	trace_i915_gem_object_change_domain(obj,
3671
					    obj->base.read_domains,
C
Chris Wilson 已提交
3672
					    old_write_domain);
3673 3674 3675 3676
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
3677 3678
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
				       bool force)
3679
{
C
Chris Wilson 已提交
3680
	uint32_t old_write_domain;
3681

3682
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3683 3684
		return;

3685 3686 3687
	if (i915_gem_clflush_object(obj, force))
		i915_gem_chipset_flush(obj->base.dev);

3688 3689
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3690

3691 3692
	intel_fb_obj_flush(obj, false);

C
Chris Wilson 已提交
3693
	trace_i915_gem_object_change_domain(obj,
3694
					    obj->base.read_domains,
C
Chris Wilson 已提交
3695
					    old_write_domain);
3696 3697
}

3698 3699 3700 3701 3702 3703
/**
 * Moves a single object to the GTT read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3704
int
3705
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3706
{
3707
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3708
	struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
C
Chris Wilson 已提交
3709
	uint32_t old_write_domain, old_read_domains;
3710
	int ret;
3711

3712
	/* Not valid to be called on unbound objects. */
3713
	if (vma == NULL)
3714 3715
		return -EINVAL;

3716 3717 3718
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3719
	ret = i915_gem_object_wait_rendering(obj, !write);
3720 3721 3722
	if (ret)
		return ret;

3723
	i915_gem_object_retire(obj);
3724
	i915_gem_object_flush_cpu_write_domain(obj, false);
C
Chris Wilson 已提交
3725

3726 3727 3728 3729 3730 3731 3732
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3733 3734
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3735

3736 3737 3738
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3739 3740
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3741
	if (write) {
3742 3743 3744
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
3745 3746
	}

3747 3748 3749
	if (write)
		intel_fb_obj_invalidate(obj, NULL);

C
Chris Wilson 已提交
3750 3751 3752 3753
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3754
	/* And bump the LRU for this access */
3755 3756 3757
	if (i915_gem_object_is_inactive(obj))
		list_move_tail(&vma->mm_list,
			       &dev_priv->gtt.base.inactive_list);
3758

3759 3760 3761
	return 0;
}

3762 3763 3764
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3765
	struct drm_device *dev = obj->base.dev;
3766
	struct i915_vma *vma, *next;
3767 3768 3769 3770 3771
	int ret;

	if (obj->cache_level == cache_level)
		return 0;

B
Ben Widawsky 已提交
3772
	if (i915_gem_obj_is_pinned(obj)) {
3773 3774 3775 3776
		DRM_DEBUG("can not change the cache level of pinned objects\n");
		return -EBUSY;
	}

3777
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3778
		if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3779
			ret = i915_vma_unbind(vma);
3780 3781 3782
			if (ret)
				return ret;
		}
3783 3784
	}

3785
	if (i915_gem_obj_bound_any(obj)) {
3786 3787 3788 3789 3790 3791 3792 3793 3794 3795
		ret = i915_gem_object_finish_gpu(obj);
		if (ret)
			return ret;

		i915_gem_object_finish_gtt(obj);

		/* Before SandyBridge, you could not use tiling or fence
		 * registers with snooped memory, so relinquish any fences
		 * currently pointing to our region in the aperture.
		 */
3796
		if (INTEL_INFO(dev)->gen < 6) {
3797 3798 3799 3800 3801
			ret = i915_gem_object_put_fence(obj);
			if (ret)
				return ret;
		}

3802
		list_for_each_entry(vma, &obj->vma_list, vma_link)
3803 3804 3805 3806 3807 3808
			if (drm_mm_node_allocated(&vma->node)) {
				ret = i915_vma_bind(vma, cache_level,
						    vma->bound & GLOBAL_BIND);
				if (ret)
					return ret;
			}
3809 3810
	}

3811 3812 3813 3814 3815
	list_for_each_entry(vma, &obj->vma_list, vma_link)
		vma->node.color = cache_level;
	obj->cache_level = cache_level;

	if (cpu_write_needs_clflush(obj)) {
3816 3817 3818 3819 3820 3821 3822 3823
		u32 old_read_domains, old_write_domain;

		/* If we're coming from LLC cached, then we haven't
		 * actually been tracking whether the data is in the
		 * CPU cache or not, since we only allow one bit set
		 * in obj->write_domain and have been skipping the clflushes.
		 * Just set it to the CPU cache for now.
		 */
3824
		i915_gem_object_retire(obj);
3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840
		WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);

		old_read_domains = obj->base.read_domains;
		old_write_domain = obj->base.write_domain;

		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;

		trace_i915_gem_object_change_domain(obj,
						    old_read_domains,
						    old_write_domain);
	}

	return 0;
}

B
Ben Widawsky 已提交
3841 3842
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3843
{
B
Ben Widawsky 已提交
3844
	struct drm_i915_gem_caching *args = data;
3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857
	struct drm_i915_gem_object *obj;
	int ret;

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
	if (&obj->base == NULL) {
		ret = -ENOENT;
		goto unlock;
	}

3858 3859 3860 3861 3862 3863
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3864 3865 3866 3867
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3868 3869 3870 3871
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3872 3873 3874 3875 3876 3877 3878

	drm_gem_object_unreference(&obj->base);
unlock:
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

B
Ben Widawsky 已提交
3879 3880
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3881
{
B
Ben Widawsky 已提交
3882
	struct drm_i915_gem_caching *args = data;
3883 3884 3885 3886
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
	int ret;

B
Ben Widawsky 已提交
3887 3888
	switch (args->caching) {
	case I915_CACHING_NONE:
3889 3890
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3891
	case I915_CACHING_CACHED:
3892 3893
		level = I915_CACHE_LLC;
		break;
3894 3895 3896
	case I915_CACHING_DISPLAY:
		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
		break;
3897 3898 3899 3900
	default:
		return -EINVAL;
	}

B
Ben Widawsky 已提交
3901 3902 3903 3904
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
	if (&obj->base == NULL) {
		ret = -ENOENT;
		goto unlock;
	}

	ret = i915_gem_object_set_cache_level(obj, level);

	drm_gem_object_unreference(&obj->base);
unlock:
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

3919 3920
static bool is_pin_display(struct drm_i915_gem_object *obj)
{
3921 3922 3923 3924 3925 3926
	struct i915_vma *vma;

	vma = i915_gem_obj_to_ggtt(obj);
	if (!vma)
		return false;

D
Daniel Vetter 已提交
3927
	/* There are 2 sources that pin objects:
3928 3929 3930 3931
	 *   1. The display engine (scanouts, sprites, cursors);
	 *   2. Reservations for execbuffer;
	 *
	 * We can ignore reservations as we hold the struct_mutex and
D
Daniel Vetter 已提交
3932
	 * are only called outside of the reservation path.
3933
	 */
D
Daniel Vetter 已提交
3934
	return vma->pin_count;
3935 3936
}

3937
/*
3938 3939 3940
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
3941 3942
 */
int
3943 3944
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3945
				     struct intel_engine_cs *pipelined)
3946
{
3947
	u32 old_read_domains, old_write_domain;
3948
	bool was_pin_display;
3949 3950
	int ret;

3951
	if (pipelined != i915_gem_request_get_ring(obj->last_read_req)) {
3952 3953
		ret = i915_gem_object_sync(obj, pipelined);
		if (ret)
3954 3955 3956
			return ret;
	}

3957 3958 3959
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
3960
	was_pin_display = obj->pin_display;
3961 3962
	obj->pin_display = true;

3963 3964 3965 3966 3967 3968 3969 3970 3971
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
3972 3973
	ret = i915_gem_object_set_cache_level(obj,
					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3974
	if (ret)
3975
		goto err_unpin_display;
3976

3977 3978 3979 3980
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
	 * always use map_and_fenceable for all scanout buffers.
	 */
3981
	ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
3982
	if (ret)
3983
		goto err_unpin_display;
3984

3985
	i915_gem_object_flush_cpu_write_domain(obj, true);
3986

3987
	old_write_domain = obj->base.write_domain;
3988
	old_read_domains = obj->base.read_domains;
3989 3990 3991 3992

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3993
	obj->base.write_domain = 0;
3994
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3995 3996 3997

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
3998
					    old_write_domain);
3999 4000

	return 0;
4001 4002

err_unpin_display:
4003 4004
	WARN_ON(was_pin_display != is_pin_display(obj));
	obj->pin_display = was_pin_display;
4005 4006 4007 4008 4009 4010
	return ret;
}

void
i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
{
B
Ben Widawsky 已提交
4011
	i915_gem_object_ggtt_unpin(obj);
4012
	obj->pin_display = is_pin_display(obj);
4013 4014
}

4015
int
4016
i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
4017
{
4018 4019
	int ret;

4020
	if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
4021 4022
		return 0;

4023
	ret = i915_gem_object_wait_rendering(obj, false);
4024 4025 4026
	if (ret)
		return ret;

4027 4028
	/* Ensure that we invalidate the GPU's caches and TLBs. */
	obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
4029
	return 0;
4030 4031
}

4032 4033 4034 4035 4036 4037
/**
 * Moves a single object to the CPU read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
4038
int
4039
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4040
{
C
Chris Wilson 已提交
4041
	uint32_t old_write_domain, old_read_domains;
4042 4043
	int ret;

4044 4045 4046
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

4047
	ret = i915_gem_object_wait_rendering(obj, !write);
4048 4049 4050
	if (ret)
		return ret;

4051
	i915_gem_object_retire(obj);
4052
	i915_gem_object_flush_gtt_write_domain(obj);
4053

4054 4055
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
4056

4057
	/* Flush the CPU cache if it's still invalid. */
4058
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4059
		i915_gem_clflush_object(obj, false);
4060

4061
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4062 4063 4064 4065 4066
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4067
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4068 4069 4070 4071 4072

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
4073 4074
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4075
	}
4076

4077 4078 4079
	if (write)
		intel_fb_obj_invalidate(obj, NULL);

C
Chris Wilson 已提交
4080 4081 4082 4083
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

4084 4085 4086
	return 0;
}

4087 4088 4089
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
4090 4091 4092 4093
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
4094 4095 4096
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
4097
static int
4098
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4099
{
4100 4101
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_file_private *file_priv = file->driver_priv;
4102
	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
4103
	struct drm_i915_gem_request *request, *target = NULL;
4104
	unsigned reset_counter;
4105
	int ret;
4106

4107 4108 4109 4110 4111 4112 4113
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
	if (ret)
		return ret;

	ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
	if (ret)
		return ret;
4114

4115
	spin_lock(&file_priv->mm.lock);
4116
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4117 4118
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
4119

4120
		target = request;
4121
	}
4122
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4123 4124
	if (target)
		i915_gem_request_reference(target);
4125
	spin_unlock(&file_priv->mm.lock);
4126

4127
	if (target == NULL)
4128
		return 0;
4129

4130
	ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
4131 4132
	if (ret == 0)
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4133

4134 4135 4136 4137
	mutex_lock(&dev->struct_mutex);
	i915_gem_request_unreference(target);
	mutex_unlock(&dev->struct_mutex);

4138 4139 4140
	return ret;
}

4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159
static bool
i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
{
	struct drm_i915_gem_object *obj = vma->obj;

	if (alignment &&
	    vma->node.start & (alignment - 1))
		return true;

	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
		return true;

	if (flags & PIN_OFFSET_BIAS &&
	    vma->node.start < (flags & PIN_OFFSET_MASK))
		return true;

	return false;
}

4160
int
4161 4162 4163 4164 4165
i915_gem_object_pin_view(struct drm_i915_gem_object *obj,
			 struct i915_address_space *vm,
			 uint32_t alignment,
			 uint64_t flags,
			 const struct i915_ggtt_view *view)
4166
{
4167
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4168
	struct i915_vma *vma;
4169
	unsigned bound;
4170 4171
	int ret;

4172 4173 4174
	if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
		return -ENODEV;

4175
	if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4176
		return -EINVAL;
4177

4178 4179 4180
	if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
		return -EINVAL;

4181
	vma = i915_gem_obj_to_vma_view(obj, vm, view);
4182
	if (vma) {
B
Ben Widawsky 已提交
4183 4184 4185
		if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
			return -EBUSY;

4186
		if (i915_vma_misplaced(vma, alignment, flags)) {
B
Ben Widawsky 已提交
4187
			WARN(vma->pin_count,
4188
			     "bo is already pinned with incorrect alignment:"
4189
			     " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
4190
			     " obj->map_and_fenceable=%d\n",
4191 4192
			     i915_gem_obj_offset_view(obj, vm, view->type),
			     alignment,
4193
			     !!(flags & PIN_MAPPABLE),
4194
			     obj->map_and_fenceable);
4195
			ret = i915_vma_unbind(vma);
4196 4197
			if (ret)
				return ret;
4198 4199

			vma = NULL;
4200 4201 4202
		}
	}

4203
	bound = vma ? vma->bound : 0;
4204
	if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4205 4206
		vma = i915_gem_object_bind_to_vm(obj, vm, alignment,
						 flags, view);
4207 4208
		if (IS_ERR(vma))
			return PTR_ERR(vma);
4209
	}
J
Jesse Barnes 已提交
4210

4211 4212 4213 4214 4215
	if (flags & PIN_GLOBAL && !(vma->bound & GLOBAL_BIND)) {
		ret = i915_vma_bind(vma, obj->cache_level, GLOBAL_BIND);
		if (ret)
			return ret;
	}
4216

4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239
	if ((bound ^ vma->bound) & GLOBAL_BIND) {
		bool mappable, fenceable;
		u32 fence_size, fence_alignment;

		fence_size = i915_gem_get_gtt_size(obj->base.dev,
						   obj->base.size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
							     obj->base.size,
							     obj->tiling_mode,
							     true);

		fenceable = (vma->node.size == fence_size &&
			     (vma->node.start & (fence_alignment - 1)) == 0);

		mappable = (vma->node.start + obj->base.size <=
			    dev_priv->gtt.mappable_end);

		obj->map_and_fenceable = mappable && fenceable;
	}

	WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);

4240
	vma->pin_count++;
4241 4242
	if (flags & PIN_MAPPABLE)
		obj->pin_mappable |= true;
4243 4244 4245 4246 4247

	return 0;
}

void
B
Ben Widawsky 已提交
4248
i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
4249
{
B
Ben Widawsky 已提交
4250
	struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
4251

B
Ben Widawsky 已提交
4252 4253 4254 4255 4256
	BUG_ON(!vma);
	BUG_ON(vma->pin_count == 0);
	BUG_ON(!i915_gem_obj_ggtt_bound(obj));

	if (--vma->pin_count == 0)
4257
		obj->pin_mappable = false;
4258 4259
}

4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285
bool
i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
{
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
		struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);

		WARN_ON(!ggtt_vma ||
			dev_priv->fence_regs[obj->fence_reg].pin_count >
			ggtt_vma->pin_count);
		dev_priv->fence_regs[obj->fence_reg].pin_count++;
		return true;
	} else
		return false;
}

void
i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
{
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
		WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
		dev_priv->fence_regs[obj->fence_reg].pin_count--;
	}
}

4286 4287
int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4288
		    struct drm_file *file)
4289 4290
{
	struct drm_i915_gem_busy *args = data;
4291
	struct drm_i915_gem_object *obj;
4292 4293
	int ret;

4294
	ret = i915_mutex_lock_interruptible(dev);
4295
	if (ret)
4296
		return ret;
4297

4298
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4299
	if (&obj->base == NULL) {
4300 4301
		ret = -ENOENT;
		goto unlock;
4302
	}
4303

4304 4305 4306 4307
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
4308
	 */
4309
	ret = i915_gem_object_flush_active(obj);
4310

4311
	args->busy = obj->active;
4312 4313
	if (obj->last_read_req) {
		struct intel_engine_cs *ring;
4314
		BUILD_BUG_ON(I915_NUM_RINGS > 16);
4315 4316
		ring = i915_gem_request_get_ring(obj->last_read_req);
		args->busy |= intel_ring_flag(ring) << 16;
4317
	}
4318

4319
	drm_gem_object_unreference(&obj->base);
4320
unlock:
4321
	mutex_unlock(&dev->struct_mutex);
4322
	return ret;
4323 4324 4325 4326 4327 4328
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
4329
	return i915_gem_ring_throttle(dev, file_priv);
4330 4331
}

4332 4333 4334 4335
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
4336
	struct drm_i915_private *dev_priv = dev->dev_private;
4337
	struct drm_i915_gem_madvise *args = data;
4338
	struct drm_i915_gem_object *obj;
4339
	int ret;
4340 4341 4342 4343 4344 4345 4346 4347 4348

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4349 4350 4351 4352
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

4353
	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4354
	if (&obj->base == NULL) {
4355 4356
		ret = -ENOENT;
		goto unlock;
4357 4358
	}

B
Ben Widawsky 已提交
4359
	if (i915_gem_obj_is_pinned(obj)) {
4360 4361
		ret = -EINVAL;
		goto out;
4362 4363
	}

4364 4365 4366 4367 4368 4369 4370 4371 4372
	if (obj->pages &&
	    obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		if (obj->madv == I915_MADV_WILLNEED)
			i915_gem_object_unpin_pages(obj);
		if (args->madv == I915_MADV_WILLNEED)
			i915_gem_object_pin_pages(obj);
	}

4373 4374
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
4375

C
Chris Wilson 已提交
4376 4377
	/* if the object is no longer attached, discard its backing storage */
	if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
4378 4379
		i915_gem_object_truncate(obj);

4380
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
4381

4382
out:
4383
	drm_gem_object_unreference(&obj->base);
4384
unlock:
4385
	mutex_unlock(&dev->struct_mutex);
4386
	return ret;
4387 4388
}

4389 4390
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4391
{
4392
	INIT_LIST_HEAD(&obj->global_list);
4393
	INIT_LIST_HEAD(&obj->ring_list);
4394
	INIT_LIST_HEAD(&obj->obj_exec_link);
B
Ben Widawsky 已提交
4395
	INIT_LIST_HEAD(&obj->vma_list);
4396

4397 4398
	obj->ops = ops;

4399 4400 4401 4402 4403 4404
	obj->fence_reg = I915_FENCE_REG_NONE;
	obj->madv = I915_MADV_WILLNEED;

	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
}

4405 4406 4407 4408 4409
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
};

4410 4411
struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
						  size_t size)
4412
{
4413
	struct drm_i915_gem_object *obj;
4414
	struct address_space *mapping;
D
Daniel Vetter 已提交
4415
	gfp_t mask;
4416

4417
	obj = i915_gem_object_alloc(dev);
4418 4419
	if (obj == NULL)
		return NULL;
4420

4421
	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4422
		i915_gem_object_free(obj);
4423 4424
		return NULL;
	}
4425

4426 4427 4428 4429 4430 4431 4432
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

A
Al Viro 已提交
4433
	mapping = file_inode(obj->base.filp)->i_mapping;
4434
	mapping_set_gfp_mask(mapping, mask);
4435

4436
	i915_gem_object_init(obj, &i915_gem_object_ops);
4437

4438 4439
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4440

4441 4442
	if (HAS_LLC(dev)) {
		/* On some devices, we can have the GPU use the LLC (the CPU
4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

4458 4459
	trace_i915_gem_object_create(obj);

4460
	return obj;
4461 4462
}

4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

	if (obj->madv != I915_MADV_WILLNEED)
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4487
void i915_gem_free_object(struct drm_gem_object *gem_obj)
4488
{
4489
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4490
	struct drm_device *dev = obj->base.dev;
4491
	struct drm_i915_private *dev_priv = dev->dev_private;
4492
	struct i915_vma *vma, *next;
4493

4494 4495
	intel_runtime_pm_get(dev_priv);

4496 4497
	trace_i915_gem_object_destroy(obj);

4498
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
B
Ben Widawsky 已提交
4499 4500 4501 4502
		int ret;

		vma->pin_count = 0;
		ret = i915_vma_unbind(vma);
4503 4504
		if (WARN_ON(ret == -ERESTARTSYS)) {
			bool was_interruptible;
4505

4506 4507
			was_interruptible = dev_priv->mm.interruptible;
			dev_priv->mm.interruptible = false;
4508

4509
			WARN_ON(i915_vma_unbind(vma));
4510

4511 4512
			dev_priv->mm.interruptible = was_interruptible;
		}
4513 4514
	}

B
Ben Widawsky 已提交
4515 4516 4517 4518 4519
	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
	 * before progressing. */
	if (obj->stolen)
		i915_gem_object_unpin_pages(obj);

4520 4521
	WARN_ON(obj->frontbuffer_bits);

4522 4523 4524 4525 4526
	if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
	    obj->tiling_mode != I915_TILING_NONE)
		i915_gem_object_unpin_pages(obj);

B
Ben Widawsky 已提交
4527 4528
	if (WARN_ON(obj->pages_pin_count))
		obj->pages_pin_count = 0;
4529
	if (discard_backing_storage(obj))
4530
		obj->madv = I915_MADV_DONTNEED;
4531
	i915_gem_object_put_pages(obj);
4532
	i915_gem_object_free_mmap_offset(obj);
4533

4534 4535
	BUG_ON(obj->pages);

4536 4537
	if (obj->base.import_attach)
		drm_prime_gem_destroy(&obj->base, NULL);
4538

4539 4540 4541
	if (obj->ops->release)
		obj->ops->release(obj);

4542 4543
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4544

4545
	kfree(obj->bit_17);
4546
	i915_gem_object_free(obj);
4547 4548

	intel_runtime_pm_put(dev_priv);
4549 4550
}

4551 4552 4553
struct i915_vma *i915_gem_obj_to_vma_view(struct drm_i915_gem_object *obj,
					  struct i915_address_space *vm,
					  const struct i915_ggtt_view *view)
4554 4555 4556
{
	struct i915_vma *vma;
	list_for_each_entry(vma, &obj->vma_list, vma_link)
4557
		if (vma->vm == vm && vma->ggtt_view.type == view->type)
4558 4559 4560 4561 4562
			return vma;

	return NULL;
}

B
Ben Widawsky 已提交
4563 4564
void i915_gem_vma_destroy(struct i915_vma *vma)
{
4565
	struct i915_address_space *vm = NULL;
B
Ben Widawsky 已提交
4566
	WARN_ON(vma->node.allocated);
4567 4568 4569 4570 4571

	/* Keep the vma as a placeholder in the execbuffer reservation lists */
	if (!list_empty(&vma->exec_list))
		return;

4572 4573
	vm = vma->vm;

4574 4575
	if (!i915_is_ggtt(vm))
		i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4576

4577
	list_del(&vma->vma_link);
4578

B
Ben Widawsky 已提交
4579 4580 4581
	kfree(vma);
}

4582 4583 4584 4585
static void
i915_gem_stop_ringbuffers(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4586
	struct intel_engine_cs *ring;
4587 4588 4589
	int i;

	for_each_ring(ring, dev_priv, i)
4590
		dev_priv->gt.stop_ring(ring);
4591 4592
}

4593
int
4594
i915_gem_suspend(struct drm_device *dev)
4595
{
4596
	struct drm_i915_private *dev_priv = dev->dev_private;
4597
	int ret = 0;
4598

4599
	mutex_lock(&dev->struct_mutex);
4600
	ret = i915_gpu_idle(dev);
4601
	if (ret)
4602
		goto err;
4603

4604
	i915_gem_retire_requests(dev);
4605

4606
	/* Under UMS, be paranoid and evict. */
4607
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
C
Chris Wilson 已提交
4608
		i915_gem_evict_everything(dev);
4609

4610
	i915_gem_stop_ringbuffers(dev);
4611 4612 4613
	mutex_unlock(&dev->struct_mutex);

	del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
4614
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4615
	flush_delayed_work(&dev_priv->mm.idle_work);
4616

4617 4618 4619 4620 4621
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
	WARN_ON(dev_priv->mm.busy);

4622
	return 0;
4623 4624 4625 4626

err:
	mutex_unlock(&dev->struct_mutex);
	return ret;
4627 4628
}

4629
int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
B
Ben Widawsky 已提交
4630
{
4631
	struct drm_device *dev = ring->dev;
4632
	struct drm_i915_private *dev_priv = dev->dev_private;
4633 4634
	u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
	u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4635
	int i, ret;
B
Ben Widawsky 已提交
4636

4637
	if (!HAS_L3_DPF(dev) || !remap_info)
4638
		return 0;
B
Ben Widawsky 已提交
4639

4640 4641 4642
	ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
	if (ret)
		return ret;
B
Ben Widawsky 已提交
4643

4644 4645 4646 4647 4648
	/*
	 * Note: We do not worry about the concurrent register cacheline hang
	 * here because no other code should access these registers other than
	 * at initialization time.
	 */
B
Ben Widawsky 已提交
4649
	for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4650 4651 4652
		intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
		intel_ring_emit(ring, reg_base + i);
		intel_ring_emit(ring, remap_info[i/4]);
B
Ben Widawsky 已提交
4653 4654
	}

4655
	intel_ring_advance(ring);
B
Ben Widawsky 已提交
4656

4657
	return ret;
B
Ben Widawsky 已提交
4658 4659
}

4660 4661
void i915_gem_init_swizzling(struct drm_device *dev)
{
4662
	struct drm_i915_private *dev_priv = dev->dev_private;
4663

4664
	if (INTEL_INFO(dev)->gen < 5 ||
4665 4666 4667 4668 4669 4670
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4671 4672 4673
	if (IS_GEN5(dev))
		return;

4674 4675
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
	if (IS_GEN6(dev))
4676
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4677
	else if (IS_GEN7(dev))
4678
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
B
Ben Widawsky 已提交
4679 4680
	else if (IS_GEN8(dev))
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4681 4682
	else
		BUG();
4683
}
D
Daniel Vetter 已提交
4684

4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700
static bool
intel_enable_blt(struct drm_device *dev)
{
	if (!HAS_BLT(dev))
		return false;

	/* The blitter was dysfunctional on early prototypes */
	if (IS_GEN6(dev) && dev->pdev->revision < 8) {
		DRM_INFO("BLT not supported on this pre-production hardware;"
			 " graphics performance will be degraded.\n");
		return false;
	}

	return true;
}

4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727
static void init_unused_ring(struct drm_device *dev, u32 base)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

static void init_unused_rings(struct drm_device *dev)
{
	if (IS_I830(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
		init_unused_ring(dev, SRB2_BASE);
		init_unused_ring(dev, SRB3_BASE);
	} else if (IS_GEN2(dev)) {
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
	} else if (IS_GEN3(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, PRB2_BASE);
	}
}

4728
int i915_gem_init_rings(struct drm_device *dev)
4729
{
4730
	struct drm_i915_private *dev_priv = dev->dev_private;
4731
	int ret;
4732

4733
	ret = intel_init_render_ring_buffer(dev);
4734
	if (ret)
4735
		return ret;
4736 4737

	if (HAS_BSD(dev)) {
4738
		ret = intel_init_bsd_ring_buffer(dev);
4739 4740
		if (ret)
			goto cleanup_render_ring;
4741
	}
4742

4743
	if (intel_enable_blt(dev)) {
4744 4745 4746 4747 4748
		ret = intel_init_blt_ring_buffer(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

B
Ben Widawsky 已提交
4749 4750 4751 4752 4753 4754
	if (HAS_VEBOX(dev)) {
		ret = intel_init_vebox_ring_buffer(dev);
		if (ret)
			goto cleanup_blt_ring;
	}

4755 4756 4757 4758 4759
	if (HAS_BSD2(dev)) {
		ret = intel_init_bsd2_ring_buffer(dev);
		if (ret)
			goto cleanup_vebox_ring;
	}
B
Ben Widawsky 已提交
4760

4761
	ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4762
	if (ret)
4763
		goto cleanup_bsd2_ring;
4764 4765 4766

	return 0;

4767 4768
cleanup_bsd2_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
B
Ben Widawsky 已提交
4769 4770
cleanup_vebox_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783
cleanup_blt_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
cleanup_bsd_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
cleanup_render_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);

	return ret;
}

int
i915_gem_init_hw(struct drm_device *dev)
{
4784
	struct drm_i915_private *dev_priv = dev->dev_private;
D
Daniel Vetter 已提交
4785
	struct intel_engine_cs *ring;
4786
	int ret, i;
4787 4788 4789 4790

	if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
		return -EIO;

B
Ben Widawsky 已提交
4791
	if (dev_priv->ellc_size)
4792
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4793

4794 4795 4796
	if (IS_HASWELL(dev))
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4797

4798
	if (HAS_PCH_NOP(dev)) {
4799 4800 4801 4802 4803 4804 4805 4806 4807
		if (IS_IVYBRIDGE(dev)) {
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
		} else if (INTEL_INFO(dev)->gen >= 7) {
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
4808 4809
	}

4810 4811
	i915_gem_init_swizzling(dev);

4812 4813 4814 4815 4816 4817 4818 4819
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
	init_unused_rings(dev);

D
Daniel Vetter 已提交
4820 4821 4822 4823 4824
	for_each_ring(ring, dev_priv, i) {
		ret = ring->init_hw(ring);
		if (ret)
			return ret;
	}
4825

4826 4827 4828
	for (i = 0; i < NUM_L3_SLICES(dev); i++)
		i915_gem_l3_remap(&dev_priv->ring[RCS], i);

4829
	/*
4830 4831 4832 4833 4834
	 * XXX: Contexts should only be initialized once. Doing a switch to the
	 * default context switch however is something we'd like to do after
	 * reset or thaw (the latter may not actually be necessary for HW, but
	 * goes with our code better). Context switching requires rings (for
	 * the do_switch), but before enabling PPGTT. So don't move this.
4835
	 */
4836
	ret = i915_gem_context_enable(dev_priv);
4837
	if (ret && ret != -EIO) {
4838
		DRM_ERROR("Context enable failed %d\n", ret);
4839
		i915_gem_cleanup_ringbuffer(dev);
4840 4841 4842 4843 4844 4845 4846 4847

		return ret;
	}

	ret = i915_ppgtt_init_hw(dev);
	if (ret && ret != -EIO) {
		DRM_ERROR("PPGTT enable failed %d\n", ret);
		i915_gem_cleanup_ringbuffer(dev);
4848
	}
D
Daniel Vetter 已提交
4849

4850
	return ret;
4851 4852
}

4853 4854 4855 4856 4857
int i915_gem_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

4858 4859 4860
	i915.enable_execlists = intel_sanitize_enable_execlists(dev,
			i915.enable_execlists);

4861
	mutex_lock(&dev->struct_mutex);
4862 4863 4864

	if (IS_VALLEYVIEW(dev)) {
		/* VLVA0 (potential hack), BIOS isn't actually waking us */
4865 4866 4867
		I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
		if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
			      VLV_GTLC_ALLOWWAKEACK), 10))
4868 4869 4870
			DRM_DEBUG_DRIVER("allow wake ack timed out\n");
	}

4871 4872 4873 4874 4875
	if (!i915.enable_execlists) {
		dev_priv->gt.do_execbuf = i915_gem_ringbuffer_submission;
		dev_priv->gt.init_rings = i915_gem_init_rings;
		dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
		dev_priv->gt.stop_ring = intel_stop_ring_buffer;
4876 4877 4878 4879 4880
	} else {
		dev_priv->gt.do_execbuf = intel_execlists_submission;
		dev_priv->gt.init_rings = intel_logical_rings_init;
		dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
		dev_priv->gt.stop_ring = intel_logical_ring_stop;
4881 4882
	}

4883
	ret = i915_gem_init_userptr(dev);
4884 4885
	if (ret)
		goto out_unlock;
4886

4887
	i915_gem_init_global_gtt(dev);
4888

4889
	ret = i915_gem_context_init(dev);
4890 4891
	if (ret)
		goto out_unlock;
4892

D
Daniel Vetter 已提交
4893 4894
	ret = dev_priv->gt.init_rings(dev);
	if (ret)
4895
		goto out_unlock;
D
Daniel Vetter 已提交
4896

4897
	ret = i915_gem_init_hw(dev);
4898 4899 4900 4901 4902 4903 4904 4905
	if (ret == -EIO) {
		/* Allow ring initialisation to fail by marking the GPU as
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
		atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
		ret = 0;
4906
	}
4907 4908

out_unlock:
4909
	mutex_unlock(&dev->struct_mutex);
4910

4911
	return ret;
4912 4913
}

4914 4915 4916
void
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
{
4917
	struct drm_i915_private *dev_priv = dev->dev_private;
4918
	struct intel_engine_cs *ring;
4919
	int i;
4920

4921
	for_each_ring(ring, dev_priv, i)
4922
		dev_priv->gt.cleanup_ring(ring);
4923 4924
}

4925
static void
4926
init_ring_lists(struct intel_engine_cs *ring)
4927 4928 4929 4930 4931
{
	INIT_LIST_HEAD(&ring->active_list);
	INIT_LIST_HEAD(&ring->request_list);
}

4932 4933
void i915_init_vm(struct drm_i915_private *dev_priv,
		  struct i915_address_space *vm)
B
Ben Widawsky 已提交
4934
{
4935 4936
	if (!i915_is_ggtt(vm))
		drm_mm_init(&vm->mm, vm->start, vm->total);
B
Ben Widawsky 已提交
4937 4938 4939 4940
	vm->dev = dev_priv->dev;
	INIT_LIST_HEAD(&vm->active_list);
	INIT_LIST_HEAD(&vm->inactive_list);
	INIT_LIST_HEAD(&vm->global_link);
4941
	list_add_tail(&vm->global_link, &dev_priv->vm_list);
B
Ben Widawsky 已提交
4942 4943
}

4944 4945 4946
void
i915_gem_load(struct drm_device *dev)
{
4947
	struct drm_i915_private *dev_priv = dev->dev_private;
4948 4949 4950 4951 4952 4953 4954
	int i;

	dev_priv->slab =
		kmem_cache_create("i915_gem_object",
				  sizeof(struct drm_i915_gem_object), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
4955

B
Ben Widawsky 已提交
4956 4957 4958
	INIT_LIST_HEAD(&dev_priv->vm_list);
	i915_init_vm(dev_priv, &dev_priv->gtt.base);

4959
	INIT_LIST_HEAD(&dev_priv->context_list);
C
Chris Wilson 已提交
4960 4961
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4962
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4963 4964
	for (i = 0; i < I915_NUM_RINGS; i++)
		init_ring_lists(&dev_priv->ring[i]);
4965
	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4966
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4967 4968
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
4969 4970
	INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
			  i915_gem_idle_work_handler);
4971
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4972

4973
	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4974
	if (!drm_core_check_feature(dev, DRIVER_MODESET) && IS_GEN3(dev)) {
4975 4976
		I915_WRITE(MI_ARB_STATE,
			   _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4977 4978
	}

4979 4980
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

4981
	/* Old X drivers will take 0-2 for front, back, depth buffers */
4982 4983
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
		dev_priv->fence_reg_start = 3;
4984

4985 4986 4987
	if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
		dev_priv->num_fence_regs = 32;
	else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4988 4989 4990 4991
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4992
	/* Initialize fence registers to zero */
4993 4994
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
	i915_gem_restore_fences(dev);
4995

4996
	i915_gem_detect_bit_6_swizzle(dev);
4997
	init_waitqueue_head(&dev_priv->pending_flip_queue);
4998

4999 5000
	dev_priv->mm.interruptible = true;

5001 5002 5003 5004
	dev_priv->mm.shrinker.scan_objects = i915_gem_shrinker_scan;
	dev_priv->mm.shrinker.count_objects = i915_gem_shrinker_count;
	dev_priv->mm.shrinker.seeks = DEFAULT_SEEKS;
	register_shrinker(&dev_priv->mm.shrinker);
5005 5006 5007

	dev_priv->mm.oom_notifier.notifier_call = i915_gem_shrinker_oom;
	register_oom_notifier(&dev_priv->mm.oom_notifier);
5008 5009

	mutex_init(&dev_priv->fb_tracking.lock);
5010
}
5011

5012
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5013
{
5014
	struct drm_i915_file_private *file_priv = file->driver_priv;
5015

5016 5017
	cancel_delayed_work_sync(&file_priv->mm.idle_work);

5018 5019 5020 5021
	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
5022
	spin_lock(&file_priv->mm.lock);
5023 5024 5025 5026 5027 5028 5029 5030 5031
	while (!list_empty(&file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
5032
	spin_unlock(&file_priv->mm.lock);
5033
}
5034

5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046
static void
i915_gem_file_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_file_private *file_priv =
		container_of(work, typeof(*file_priv), mm.idle_work.work);

	atomic_set(&file_priv->rps_wait_boost, false);
}

int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;
5047
	int ret;
5048 5049 5050 5051 5052 5053 5054 5055 5056

	DRM_DEBUG_DRIVER("\n");

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
	file_priv->dev_priv = dev->dev_private;
5057
	file_priv->file = file;
5058 5059 5060 5061 5062 5063

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);
	INIT_DELAYED_WORK(&file_priv->mm.idle_work,
			  i915_gem_file_idle_work_handler);

5064 5065 5066
	ret = i915_gem_context_open(dev, file);
	if (ret)
		kfree(file_priv);
5067

5068
	return ret;
5069 5070
}

5071 5072 5073 5074 5075 5076 5077 5078 5079
/**
 * i915_gem_track_fb - update frontbuffer tracking
 * old: current GEM buffer for the frontbuffer slots
 * new: new GEM buffer for the frontbuffer slots
 * frontbuffer_bits: bitmask of frontbuffer slots
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
	if (old) {
		WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
		WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
		old->frontbuffer_bits &= ~frontbuffer_bits;
	}

	if (new) {
		WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
		WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
		new->frontbuffer_bits |= frontbuffer_bits;
	}
}

5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109
static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
{
	if (!mutex_is_locked(mutex))
		return false;

#if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
	return mutex->owner == task;
#else
	/* Since UP may be pre-empted, we cannot assume that we own the lock */
	return false;
#endif
}

5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125
static bool i915_gem_shrinker_lock(struct drm_device *dev, bool *unlock)
{
	if (!mutex_trylock(&dev->struct_mutex)) {
		if (!mutex_is_locked_by(&dev->struct_mutex, current))
			return false;

		if (to_i915(dev)->mm.shrinker_no_lock_stealing)
			return false;

		*unlock = false;
	} else
		*unlock = true;

	return true;
}

5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137
static int num_vma_bound(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma;
	int count = 0;

	list_for_each_entry(vma, &obj->vma_list, vma_link)
		if (drm_mm_node_allocated(&vma->node))
			count++;

	return count;
}

5138
static unsigned long
5139
i915_gem_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc)
5140
{
5141
	struct drm_i915_private *dev_priv =
5142
		container_of(shrinker, struct drm_i915_private, mm.shrinker);
5143
	struct drm_device *dev = dev_priv->dev;
C
Chris Wilson 已提交
5144
	struct drm_i915_gem_object *obj;
5145
	unsigned long count;
5146
	bool unlock;
5147

5148 5149
	if (!i915_gem_shrinker_lock(dev, &unlock))
		return 0;
5150

5151
	count = 0;
5152
	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
5153
		if (obj->pages_pin_count == 0)
5154
			count += obj->base.size >> PAGE_SHIFT;
5155 5156

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5157 5158
		if (!i915_gem_obj_is_pinned(obj) &&
		    obj->pages_pin_count == num_vma_bound(obj))
5159
			count += obj->base.size >> PAGE_SHIFT;
5160
	}
5161

5162 5163
	if (unlock)
		mutex_unlock(&dev->struct_mutex);
5164

5165
	return count;
5166
}
5167 5168

/* All the new VM stuff */
5169 5170 5171
unsigned long i915_gem_obj_offset_view(struct drm_i915_gem_object *o,
				       struct i915_address_space *vm,
				       enum i915_ggtt_view_type view)
5172 5173 5174 5175
{
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
	struct i915_vma *vma;

5176
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5177 5178

	list_for_each_entry(vma, &o->vma_list, vma_link) {
5179
		if (vma->vm == vm && vma->ggtt_view.type == view)
5180 5181 5182
			return vma->node.start;

	}
5183 5184
	WARN(1, "%s vma for this object not found.\n",
	     i915_is_ggtt(vm) ? "global" : "ppgtt");
5185 5186 5187
	return -1;
}

5188 5189 5190
bool i915_gem_obj_bound_view(struct drm_i915_gem_object *o,
			     struct i915_address_space *vm,
			     enum i915_ggtt_view_type view)
5191 5192 5193 5194
{
	struct i915_vma *vma;

	list_for_each_entry(vma, &o->vma_list, vma_link)
5195 5196 5197
		if (vma->vm == vm &&
		    vma->ggtt_view.type == view &&
		    drm_mm_node_allocated(&vma->node))
5198 5199 5200 5201 5202 5203 5204
			return true;

	return false;
}

bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
{
5205
	struct i915_vma *vma;
5206

5207 5208
	list_for_each_entry(vma, &o->vma_list, vma_link)
		if (drm_mm_node_allocated(&vma->node))
5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219
			return true;

	return false;
}

unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
				struct i915_address_space *vm)
{
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
	struct i915_vma *vma;

5220
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5221 5222 5223 5224 5225 5226 5227 5228 5229 5230

	BUG_ON(list_empty(&o->vma_list));

	list_for_each_entry(vma, &o->vma_list, vma_link)
		if (vma->vm == vm)
			return vma->node.size;

	return 0;
}

5231
static unsigned long
5232
i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc)
5233 5234
{
	struct drm_i915_private *dev_priv =
5235
		container_of(shrinker, struct drm_i915_private, mm.shrinker);
5236 5237
	struct drm_device *dev = dev_priv->dev;
	unsigned long freed;
5238
	bool unlock;
5239

5240 5241
	if (!i915_gem_shrinker_lock(dev, &unlock))
		return SHRINK_STOP;
5242

5243 5244 5245 5246 5247
	freed = i915_gem_shrink(dev_priv,
				sc->nr_to_scan,
				I915_SHRINK_BOUND |
				I915_SHRINK_UNBOUND |
				I915_SHRINK_PURGEABLE);
5248
	if (freed < sc->nr_to_scan)
5249 5250 5251 5252
		freed += i915_gem_shrink(dev_priv,
					 sc->nr_to_scan - freed,
					 I915_SHRINK_BOUND |
					 I915_SHRINK_UNBOUND);
5253 5254
	if (unlock)
		mutex_unlock(&dev->struct_mutex);
5255

5256 5257
	return freed;
}
5258

5259 5260 5261 5262 5263 5264 5265 5266
static int
i915_gem_shrinker_oom(struct notifier_block *nb, unsigned long event, void *ptr)
{
	struct drm_i915_private *dev_priv =
		container_of(nb, struct drm_i915_private, mm.oom_notifier);
	struct drm_device *dev = dev_priv->dev;
	struct drm_i915_gem_object *obj;
	unsigned long timeout = msecs_to_jiffies(5000) + 1;
5267
	unsigned long pinned, bound, unbound, freed_pages;
5268 5269 5270
	bool was_interruptible;
	bool unlock;

5271
	while (!i915_gem_shrinker_lock(dev, &unlock) && --timeout) {
5272
		schedule_timeout_killable(1);
5273 5274 5275
		if (fatal_signal_pending(current))
			return NOTIFY_DONE;
	}
5276 5277 5278 5279 5280 5281 5282 5283
	if (timeout == 0) {
		pr_err("Unable to purge GPU memory due lock contention.\n");
		return NOTIFY_DONE;
	}

	was_interruptible = dev_priv->mm.interruptible;
	dev_priv->mm.interruptible = false;

5284
	freed_pages = i915_gem_shrink_all(dev_priv);
5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314

	dev_priv->mm.interruptible = was_interruptible;

	/* Because we may be allocating inside our own driver, we cannot
	 * assert that there are no objects with pinned pages that are not
	 * being pointed to by hardware.
	 */
	unbound = bound = pinned = 0;
	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
		if (!obj->base.filp) /* not backed by a freeable object */
			continue;

		if (obj->pages_pin_count)
			pinned += obj->base.size;
		else
			unbound += obj->base.size;
	}
	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
		if (!obj->base.filp)
			continue;

		if (obj->pages_pin_count)
			pinned += obj->base.size;
		else
			bound += obj->base.size;
	}

	if (unlock)
		mutex_unlock(&dev->struct_mutex);

5315 5316 5317
	if (freed_pages || unbound || bound)
		pr_info("Purging GPU memory, %lu bytes freed, %lu bytes still pinned.\n",
			freed_pages << PAGE_SHIFT, pinned);
5318 5319 5320 5321 5322
	if (unbound || bound)
		pr_err("%lu and %lu bytes still available in the "
		       "bound and unbound GPU page lists.\n",
		       bound, unbound);

5323
	*(unsigned long *)ptr += freed_pages;
5324 5325 5326
	return NOTIFY_DONE;
}

5327 5328
struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
{
5329
	struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
5330 5331
	struct i915_vma *vma;

5332 5333 5334
	list_for_each_entry(vma, &obj->vma_list, vma_link)
		if (vma->vm == ggtt &&
		    vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
5335
			return vma;
5336

5337
	return NULL;
5338
}