mmu.c 177.3 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
A
Avi Kivity 已提交
2 3 4 5 6 7 8 9 10
/*
 * Kernel-based Virtual Machine driver for Linux
 *
 * This module enables machines with Intel VT-x extensions to run virtual
 * machines without emulation or binary translation.
 *
 * MMU support
 *
 * Copyright (C) 2006 Qumranet, Inc.
N
Nicolas Kaiser 已提交
11
 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
A
Avi Kivity 已提交
12 13 14 15 16
 *
 * Authors:
 *   Yaniv Kamay  <yaniv@qumranet.com>
 *   Avi Kivity   <avi@qumranet.com>
 */
A
Avi Kivity 已提交
17

18
#include "irq.h"
19
#include "ioapic.h"
20
#include "mmu.h"
21
#include "mmu_internal.h"
22
#include "tdp_mmu.h"
23
#include "x86.h"
A
Avi Kivity 已提交
24
#include "kvm_cache_regs.h"
25
#include "kvm_emulate.h"
26
#include "cpuid.h"
27
#include "spte.h"
A
Avi Kivity 已提交
28

29
#include <linux/kvm_host.h>
A
Avi Kivity 已提交
30 31 32 33
#include <linux/types.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/highmem.h>
34 35
#include <linux/moduleparam.h>
#include <linux/export.h>
36
#include <linux/swap.h>
M
Marcelo Tosatti 已提交
37
#include <linux/hugetlb.h>
38
#include <linux/compiler.h>
39
#include <linux/srcu.h>
40
#include <linux/slab.h>
41
#include <linux/sched/signal.h>
42
#include <linux/uaccess.h>
43
#include <linux/hash.h>
44
#include <linux/kern_levels.h>
45
#include <linux/kthread.h>
A
Avi Kivity 已提交
46

A
Avi Kivity 已提交
47
#include <asm/page.h>
48
#include <asm/memtype.h>
A
Avi Kivity 已提交
49
#include <asm/cmpxchg.h>
50
#include <asm/io.h>
51
#include <asm/set_memory.h>
52
#include <asm/vmx.h>
53
#include <asm/kvm_page_track.h>
54
#include "trace.h"
A
Avi Kivity 已提交
55

P
Paolo Bonzini 已提交
56 57
extern bool itlb_multihit_kvm_mitigation;

58
int __read_mostly nx_huge_pages = -1;
59
static uint __read_mostly nx_huge_pages_recovery_period_ms;
60 61 62 63
#ifdef CONFIG_PREEMPT_RT
/* Recovery can cause latency spikes, disable it for PREEMPT_RT.  */
static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
#else
64
static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
65
#endif
P
Paolo Bonzini 已提交
66 67

static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
68
static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp);
P
Paolo Bonzini 已提交
69

70
static const struct kernel_param_ops nx_huge_pages_ops = {
P
Paolo Bonzini 已提交
71 72 73 74
	.set = set_nx_huge_pages,
	.get = param_get_bool,
};

75 76
static const struct kernel_param_ops nx_huge_pages_recovery_param_ops = {
	.set = set_nx_huge_pages_recovery_param,
77 78 79
	.get = param_get_uint,
};

P
Paolo Bonzini 已提交
80 81
module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
__MODULE_PARM_TYPE(nx_huge_pages, "bool");
82
module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_param_ops,
83 84
		&nx_huge_pages_recovery_ratio, 0644);
__MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
85 86 87
module_param_cb(nx_huge_pages_recovery_period_ms, &nx_huge_pages_recovery_param_ops,
		&nx_huge_pages_recovery_period_ms, 0644);
__MODULE_PARM_TYPE(nx_huge_pages_recovery_period_ms, "uint");
P
Paolo Bonzini 已提交
88

89 90 91
static bool __read_mostly force_flush_and_sync_on_reuse;
module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644);

92 93 94 95 96 97 98
/*
 * When setting this variable to true it enables Two-Dimensional-Paging
 * where the hardware walks 2 page tables:
 * 1. the guest-virtual to guest-physical
 * 2. while doing 1. it walks guest-physical to host-physical
 * If the hardware supports that we don't need to do shadow paging.
 */
99
bool tdp_enabled = false;
100

101
static int max_huge_page_level __read_mostly;
102
static int tdp_root_level __read_mostly;
103
static int max_tdp_level __read_mostly;
104

105
#ifdef MMU_DEBUG
106
bool dbg = 0;
107
module_param(dbg, bool, 0644);
108
#endif
A
Avi Kivity 已提交
109

110 111
#define PTE_PREFETCH_NUM		8

112 113
#include <trace/events/kvm.h>

114
/* make pte_list_desc fit well in cache lines */
115
#define PTE_LIST_EXT 14
116

117 118 119 120 121
/*
 * Slight optimization of cacheline layout, by putting `more' and `spte_count'
 * at the start; then accessing it will only use one single cacheline for
 * either full (entries==PTE_LIST_EXT) case or entries<=6.
 */
122 123
struct pte_list_desc {
	struct pte_list_desc *more;
124 125 126 127 128 129
	/*
	 * Stores number of entries stored in the pte_list_desc.  No need to be
	 * u64 but just for easier alignment.  When PTE_LIST_EXT, means full.
	 */
	u64 spte_count;
	u64 *sptes[PTE_LIST_EXT];
130 131
};

132 133 134 135
struct kvm_shadow_walk_iterator {
	u64 addr;
	hpa_t shadow_addr;
	u64 *sptep;
136
	int level;
137 138 139
	unsigned index;
};

140 141 142 143 144 145 146
#define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker)     \
	for (shadow_walk_init_using_root(&(_walker), (_vcpu),              \
					 (_root), (_addr));                \
	     shadow_walk_okay(&(_walker));			           \
	     shadow_walk_next(&(_walker)))

#define for_each_shadow_entry(_vcpu, _addr, _walker)            \
147 148 149 150
	for (shadow_walk_init(&(_walker), _vcpu, _addr);	\
	     shadow_walk_okay(&(_walker));			\
	     shadow_walk_next(&(_walker)))

151 152 153 154 155 156
#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)	\
	for (shadow_walk_init(&(_walker), _vcpu, _addr);		\
	     shadow_walk_okay(&(_walker)) &&				\
		({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });	\
	     __shadow_walk_next(&(_walker), spte))

157
static struct kmem_cache *pte_list_desc_cache;
158
struct kmem_cache *mmu_page_header_cache;
159
static struct percpu_counter kvm_total_used_mmu_pages;
160

161 162
static void mmu_spte_set(u64 *sptep, u64 spte);

163 164 165 166 167 168
struct kvm_mmu_role_regs {
	const unsigned long cr0;
	const unsigned long cr4;
	const u64 efer;
};

169 170 171
#define CREATE_TRACE_POINTS
#include "mmutrace.h"

172 173
/*
 * Yes, lot's of underscores.  They're a hint that you probably shouldn't be
174
 * reading from the role_regs.  Once the root_role is constructed, it becomes
175 176 177
 * the single source of truth for the MMU's state.
 */
#define BUILD_MMU_ROLE_REGS_ACCESSOR(reg, name, flag)			\
178 179
static inline bool __maybe_unused					\
____is_##reg##_##name(const struct kvm_mmu_role_regs *regs)		\
180 181 182 183 184 185 186 187 188 189 190 191 192 193
{									\
	return !!(regs->reg & flag);					\
}
BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, pg, X86_CR0_PG);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, wp, X86_CR0_WP);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pse, X86_CR4_PSE);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pae, X86_CR4_PAE);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smep, X86_CR4_SMEP);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smap, X86_CR4_SMAP);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pke, X86_CR4_PKE);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, la57, X86_CR4_LA57);
BUILD_MMU_ROLE_REGS_ACCESSOR(efer, nx, EFER_NX);
BUILD_MMU_ROLE_REGS_ACCESSOR(efer, lma, EFER_LMA);

194 195 196 197 198 199 200
/*
 * The MMU itself (with a valid role) is the single source of truth for the
 * MMU.  Do not use the regs used to build the MMU/role, nor the vCPU.  The
 * regs don't account for dependencies, e.g. clearing CR4 bits if CR0.PG=1,
 * and the vCPU may be incorrect/irrelevant.
 */
#define BUILD_MMU_ROLE_ACCESSOR(base_or_ext, reg, name)		\
201
static inline bool __maybe_unused is_##reg##_##name(struct kvm_mmu *mmu)	\
202
{								\
203
	return !!(mmu->cpu_role. base_or_ext . reg##_##name);	\
204 205 206 207 208 209 210 211
}
BUILD_MMU_ROLE_ACCESSOR(base, cr0, wp);
BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, pse);
BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, smep);
BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, smap);
BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, pke);
BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, la57);
BUILD_MMU_ROLE_ACCESSOR(base, efer, nx);
212
BUILD_MMU_ROLE_ACCESSOR(ext,  efer, lma);
213

214 215 216 217 218 219 220 221 222 223
static inline bool is_cr0_pg(struct kvm_mmu *mmu)
{
        return mmu->cpu_role.base.level > 0;
}

static inline bool is_cr4_pae(struct kvm_mmu *mmu)
{
        return !mmu->cpu_role.base.has_4_byte_gpte;
}

224 225 226 227 228 229 230 231 232 233
static struct kvm_mmu_role_regs vcpu_to_role_regs(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu_role_regs regs = {
		.cr0 = kvm_read_cr0_bits(vcpu, KVM_MMU_CR0_ROLE_BITS),
		.cr4 = kvm_read_cr4_bits(vcpu, KVM_MMU_CR4_ROLE_BITS),
		.efer = vcpu->arch.efer,
	};

	return regs;
}
234 235 236

static inline bool kvm_available_flush_tlb_with_range(void)
{
237
	return kvm_x86_ops.tlb_remote_flush_with_range;
238 239 240 241 242 243 244
}

static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
		struct kvm_tlb_range *range)
{
	int ret = -ENOTSUPP;

245
	if (range && kvm_x86_ops.tlb_remote_flush_with_range)
246
		ret = static_call(kvm_x86_tlb_remote_flush_with_range)(kvm, range);
247 248 249 250 251

	if (ret)
		kvm_flush_remote_tlbs(kvm);
}

252
void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
253 254 255 256 257 258 259 260 261 262
		u64 start_gfn, u64 pages)
{
	struct kvm_tlb_range range;

	range.start_gfn = start_gfn;
	range.pages = pages;

	kvm_flush_remote_tlbs_with_range(kvm, &range);
}

263 264 265
static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
			   unsigned int access)
{
266
	u64 spte = make_mmio_spte(vcpu, gfn, access);
267

268 269
	trace_mark_mmio_spte(sptep, gfn, spte);
	mmu_spte_set(sptep, spte);
270 271 272 273
}

static gfn_t get_mmio_spte_gfn(u64 spte)
{
274
	u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
275

276
	gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)
277 278 279
	       & shadow_nonpresent_or_rsvd_mask;

	return gpa >> PAGE_SHIFT;
280 281 282 283
}

static unsigned get_mmio_spte_access(u64 spte)
{
284
	return spte & shadow_mmio_access_mask;
285 286
}

287
static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
288
{
289
	u64 kvm_gen, spte_gen, gen;
290

291 292 293
	gen = kvm_vcpu_memslots(vcpu)->generation;
	if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
		return false;
294

295
	kvm_gen = gen & MMIO_SPTE_GEN_MASK;
296 297 298 299
	spte_gen = get_mmio_spte_generation(spte);

	trace_check_mmio_spte(spte, kvm_gen, spte_gen);
	return likely(kvm_gen == spte_gen);
300 301
}

A
Avi Kivity 已提交
302 303 304 305 306
static int is_cpuid_PSE36(void)
{
	return 1;
}

307
#ifdef CONFIG_X86_64
A
Avi Kivity 已提交
308
static void __set_spte(u64 *sptep, u64 spte)
309
{
310
	WRITE_ONCE(*sptep, spte);
311 312
}

313
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
314
{
315
	WRITE_ONCE(*sptep, spte);
316 317 318 319 320 321
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	return xchg(sptep, spte);
}
322 323 324

static u64 __get_spte_lockless(u64 *sptep)
{
325
	return READ_ONCE(*sptep);
326
}
327
#else
328 329 330 331 332 333 334
union split_spte {
	struct {
		u32 spte_low;
		u32 spte_high;
	};
	u64 spte;
};
335

336 337
static void count_spte_clear(u64 *sptep, u64 spte)
{
338
	struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
339 340 341 342 343 344 345 346 347

	if (is_shadow_present_pte(spte))
		return;

	/* Ensure the spte is completely set before we increase the count */
	smp_wmb();
	sp->clear_spte_count++;
}

348 349 350
static void __set_spte(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;
351

352 353 354 355 356 357 358 359 360 361 362 363
	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	ssptep->spte_high = sspte.spte_high;

	/*
	 * If we map the spte from nonpresent to present, We should store
	 * the high bits firstly, then set present bit, so cpu can not
	 * fetch this spte while we are setting the spte.
	 */
	smp_wmb();

364
	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
365 366
}

367 368 369 370 371 372 373
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

374
	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
375 376 377 378 379 380 381 382

	/*
	 * If we map the spte from present to nonpresent, we should clear
	 * present bit firstly to avoid vcpu fetch the old high bits.
	 */
	smp_wmb();

	ssptep->spte_high = sspte.spte_high;
383
	count_spte_clear(sptep, spte);
384 385 386 387 388 389 390 391 392 393 394
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte, orig;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	/* xchg acts as a barrier before the setting of the high bits */
	orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
395 396
	orig.spte_high = ssptep->spte_high;
	ssptep->spte_high = sspte.spte_high;
397
	count_spte_clear(sptep, spte);
398 399 400

	return orig.spte;
}
401 402 403

/*
 * The idea using the light way get the spte on x86_32 guest is from
404
 * gup_get_pte (mm/gup.c).
405 406 407 408 409 410 411 412 413 414 415 416 417 418
 *
 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
 * coalesces them and we are running out of the MMU lock.  Therefore
 * we need to protect against in-progress updates of the spte.
 *
 * Reading the spte while an update is in progress may get the old value
 * for the high part of the spte.  The race is fine for a present->non-present
 * change (because the high part of the spte is ignored for non-present spte),
 * but for a present->present change we must reread the spte.
 *
 * All such changes are done in two steps (present->non-present and
 * non-present->present), hence it is enough to count the number of
 * present->non-present updates: if it changed while reading the spte,
 * we might have hit the race.  This is done using clear_spte_count.
419 420 421
 */
static u64 __get_spte_lockless(u64 *sptep)
{
422
	struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
	union split_spte spte, *orig = (union split_spte *)sptep;
	int count;

retry:
	count = sp->clear_spte_count;
	smp_rmb();

	spte.spte_low = orig->spte_low;
	smp_rmb();

	spte.spte_high = orig->spte_high;
	smp_rmb();

	if (unlikely(spte.spte_low != orig->spte_low ||
	      count != sp->clear_spte_count))
		goto retry;

	return spte.spte;
}
442 443
#endif

444 445 446 447 448 449 450 451 452 453 454 455
/* Rules for using mmu_spte_set:
 * Set the sptep from nonpresent to present.
 * Note: the sptep being assigned *must* be either not present
 * or in a state where the hardware will not attempt to update
 * the spte.
 */
static void mmu_spte_set(u64 *sptep, u64 new_spte)
{
	WARN_ON(is_shadow_present_pte(*sptep));
	__set_spte(sptep, new_spte);
}

456 457 458
/*
 * Update the SPTE (excluding the PFN), but do not track changes in its
 * accessed/dirty status.
459
 */
460
static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
461
{
462
	u64 old_spte = *sptep;
463

464
	WARN_ON(!is_shadow_present_pte(new_spte));
465
	check_spte_writable_invariants(new_spte);
466

467 468
	if (!is_shadow_present_pte(old_spte)) {
		mmu_spte_set(sptep, new_spte);
469
		return old_spte;
470
	}
471

472
	if (!spte_has_volatile_bits(old_spte))
473
		__update_clear_spte_fast(sptep, new_spte);
474
	else
475
		old_spte = __update_clear_spte_slow(sptep, new_spte);
476

477 478
	WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));

479 480 481 482 483 484
	return old_spte;
}

/* Rules for using mmu_spte_update:
 * Update the state bits, it means the mapped pfn is not changed.
 *
485 486 487
 * Whenever an MMU-writable SPTE is overwritten with a read-only SPTE, remote
 * TLBs must be flushed. Otherwise rmap_write_protect will find a read-only
 * spte, even though the writable spte might be cached on a CPU's TLB.
488 489 490 491 492 493 494 495 496 497 498
 *
 * Returns true if the TLB needs to be flushed
 */
static bool mmu_spte_update(u64 *sptep, u64 new_spte)
{
	bool flush = false;
	u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);

	if (!is_shadow_present_pte(old_spte))
		return false;

499 500
	/*
	 * For the spte updated out of mmu-lock is safe, since
501
	 * we always atomically update it, see the comments in
502 503
	 * spte_has_volatile_bits().
	 */
504
	if (is_mmu_writable_spte(old_spte) &&
505
	      !is_writable_pte(new_spte))
506
		flush = true;
507

508
	/*
509
	 * Flush TLB when accessed/dirty states are changed in the page tables,
510 511 512
	 * to guarantee consistency between TLB and page tables.
	 */

513 514
	if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
		flush = true;
515
		kvm_set_pfn_accessed(spte_to_pfn(old_spte));
516 517 518 519
	}

	if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
		flush = true;
520
		kvm_set_pfn_dirty(spte_to_pfn(old_spte));
521
	}
522

523
	return flush;
524 525
}

526 527 528 529
/*
 * Rules for using mmu_spte_clear_track_bits:
 * It sets the sptep from present to nonpresent, and track the
 * state bits, it is used to clear the last level sptep.
530
 * Returns the old PTE.
531
 */
532
static int mmu_spte_clear_track_bits(struct kvm *kvm, u64 *sptep)
533
{
D
Dan Williams 已提交
534
	kvm_pfn_t pfn;
535
	u64 old_spte = *sptep;
536
	int level = sptep_to_sp(sptep)->role.level;
537
	struct page *page;
538

539 540
	if (!is_shadow_present_pte(old_spte) ||
	    !spte_has_volatile_bits(old_spte))
541
		__update_clear_spte_fast(sptep, 0ull);
542
	else
543
		old_spte = __update_clear_spte_slow(sptep, 0ull);
544

545
	if (!is_shadow_present_pte(old_spte))
546
		return old_spte;
547

548 549
	kvm_update_page_stats(kvm, level, -1);

550
	pfn = spte_to_pfn(old_spte);
551 552

	/*
553 554 555 556
	 * KVM doesn't hold a reference to any pages mapped into the guest, and
	 * instead uses the mmu_notifier to ensure that KVM unmaps any pages
	 * before they are reclaimed.  Sanity check that, if the pfn is backed
	 * by a refcounted page, the refcount is elevated.
557
	 */
558 559
	page = kvm_pfn_to_refcounted_page(pfn);
	WARN_ON(page && !page_count(page));
560

561
	if (is_accessed_spte(old_spte))
562
		kvm_set_pfn_accessed(pfn);
563 564

	if (is_dirty_spte(old_spte))
565
		kvm_set_pfn_dirty(pfn);
566

567
	return old_spte;
568 569 570 571 572 573 574 575 576
}

/*
 * Rules for using mmu_spte_clear_no_track:
 * Directly clear spte without caring the state bits of sptep,
 * it is used to set the upper level spte.
 */
static void mmu_spte_clear_no_track(u64 *sptep)
{
577
	__update_clear_spte_fast(sptep, 0ull);
578 579
}

580 581 582 583 584
static u64 mmu_spte_get_lockless(u64 *sptep)
{
	return __get_spte_lockless(sptep);
}

585 586 587 588 589 590 591 592
/* Returns the Accessed status of the PTE and resets it at the same time. */
static bool mmu_spte_age(u64 *sptep)
{
	u64 spte = mmu_spte_get_lockless(sptep);

	if (!is_accessed_spte(spte))
		return false;

593
	if (spte_ad_enabled(spte)) {
594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
		clear_bit((ffs(shadow_accessed_mask) - 1),
			  (unsigned long *)sptep);
	} else {
		/*
		 * Capture the dirty status of the page, so that it doesn't get
		 * lost when the SPTE is marked for access tracking.
		 */
		if (is_writable_pte(spte))
			kvm_set_pfn_dirty(spte_to_pfn(spte));

		spte = mark_spte_for_access_track(spte);
		mmu_spte_update_no_track(sptep, spte);
	}

	return true;
}

611 612
static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
{
613 614 615 616 617 618 619 620
	if (is_tdp_mmu(vcpu->arch.mmu)) {
		kvm_tdp_mmu_walk_lockless_begin();
	} else {
		/*
		 * Prevent page table teardown by making any free-er wait during
		 * kvm_flush_remote_tlbs() IPI to all active vcpus.
		 */
		local_irq_disable();
621

622 623 624 625 626 627
		/*
		 * Make sure a following spte read is not reordered ahead of the write
		 * to vcpu->mode.
		 */
		smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
	}
628 629 630 631
}

static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
{
632 633 634 635 636 637 638 639 640 641 642
	if (is_tdp_mmu(vcpu->arch.mmu)) {
		kvm_tdp_mmu_walk_lockless_end();
	} else {
		/*
		 * Make sure the write to vcpu->mode is not reordered in front of
		 * reads to sptes.  If it does, kvm_mmu_commit_zap_page() can see us
		 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
		 */
		smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
		local_irq_enable();
	}
643 644
}

645
static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect)
646
{
647 648
	int r;

649
	/* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */
650 651
	r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
				       1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM);
652
	if (r)
653
		return r;
654 655
	r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache,
				       PT64_ROOT_MAX_LEVEL);
656
	if (r)
657
		return r;
658
	if (maybe_indirect) {
659 660
		r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_gfn_array_cache,
					       PT64_ROOT_MAX_LEVEL);
661 662 663
		if (r)
			return r;
	}
664 665
	return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
					  PT64_ROOT_MAX_LEVEL);
666 667 668 669
}

static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
{
670 671 672 673
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache);
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache);
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_gfn_array_cache);
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
674 675
}

676
static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
677
{
678
	return kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
679 680
}

681
static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
682
{
683
	kmem_cache_free(pte_list_desc_cache, pte_list_desc);
684 685
}

686 687
static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
{
688 689 690
	if (sp->role.passthrough)
		return sp->gfn;

691 692 693
	if (!sp->role.direct)
		return sp->gfns[index];

694
	return sp->gfn + (index << ((sp->role.level - 1) * SPTE_LEVEL_BITS));
695 696 697 698
}

static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
{
699 700 701 702 703
	if (sp->role.passthrough) {
		WARN_ON_ONCE(gfn != sp->gfn);
		return;
	}

704
	if (!sp->role.direct) {
705
		sp->gfns[index] = gfn;
706 707 708 709 710 711 712 713
		return;
	}

	if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
		pr_err_ratelimited("gfn mismatch under direct page %llx "
				   "(expected %llx, got %llx)\n",
				   sp->gfn,
				   kvm_mmu_page_get_gfn(sp, index), gfn);
714 715
}

M
Marcelo Tosatti 已提交
716
/*
717 718
 * Return the pointer to the large page information for a given gfn,
 * handling slots that are not large page aligned.
M
Marcelo Tosatti 已提交
719
 */
720
static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
721
		const struct kvm_memory_slot *slot, int level)
M
Marcelo Tosatti 已提交
722 723 724
{
	unsigned long idx;

725
	idx = gfn_to_index(gfn, slot->base_gfn, level);
726
	return &slot->arch.lpage_info[level - 2][idx];
M
Marcelo Tosatti 已提交
727 728
}

729
static void update_gfn_disallow_lpage_count(const struct kvm_memory_slot *slot,
730 731 732 733 734
					    gfn_t gfn, int count)
{
	struct kvm_lpage_info *linfo;
	int i;

735
	for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
736 737 738 739 740 741
		linfo = lpage_info_slot(gfn, slot, i);
		linfo->disallow_lpage += count;
		WARN_ON(linfo->disallow_lpage < 0);
	}
}

742
void kvm_mmu_gfn_disallow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn)
743 744 745 746
{
	update_gfn_disallow_lpage_count(slot, gfn, 1);
}

747
void kvm_mmu_gfn_allow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn)
748 749 750 751
{
	update_gfn_disallow_lpage_count(slot, gfn, -1);
}

752
static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
M
Marcelo Tosatti 已提交
753
{
754
	struct kvm_memslots *slots;
755
	struct kvm_memory_slot *slot;
756
	gfn_t gfn;
M
Marcelo Tosatti 已提交
757

758
	kvm->arch.indirect_shadow_pages++;
759
	gfn = sp->gfn;
760 761
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
762 763

	/* the non-leaf shadow pages are keeping readonly. */
764
	if (sp->role.level > PG_LEVEL_4K)
765 766 767
		return kvm_slot_page_track_add_page(kvm, slot, gfn,
						    KVM_PAGE_TRACK_WRITE);

768
	kvm_mmu_gfn_disallow_lpage(slot, gfn);
769 770 771

	if (kvm_mmu_slot_gfn_write_protect(kvm, slot, gfn, PG_LEVEL_4K))
		kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
M
Marcelo Tosatti 已提交
772 773
}

774
void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
P
Paolo Bonzini 已提交
775 776 777 778 779
{
	if (sp->lpage_disallowed)
		return;

	++kvm->stat.nx_lpage_splits;
780 781
	list_add_tail(&sp->lpage_disallowed_link,
		      &kvm->arch.lpage_disallowed_mmu_pages);
P
Paolo Bonzini 已提交
782 783 784
	sp->lpage_disallowed = true;
}

785
static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
M
Marcelo Tosatti 已提交
786
{
787
	struct kvm_memslots *slots;
788
	struct kvm_memory_slot *slot;
789
	gfn_t gfn;
M
Marcelo Tosatti 已提交
790

791
	kvm->arch.indirect_shadow_pages--;
792
	gfn = sp->gfn;
793 794
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
795
	if (sp->role.level > PG_LEVEL_4K)
796 797 798
		return kvm_slot_page_track_remove_page(kvm, slot, gfn,
						       KVM_PAGE_TRACK_WRITE);

799
	kvm_mmu_gfn_allow_lpage(slot, gfn);
M
Marcelo Tosatti 已提交
800 801
}

802
void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
P
Paolo Bonzini 已提交
803 804 805
{
	--kvm->stat.nx_lpage_splits;
	sp->lpage_disallowed = false;
806
	list_del(&sp->lpage_disallowed_link);
P
Paolo Bonzini 已提交
807 808
}

809 810 811
static struct kvm_memory_slot *
gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
			    bool no_dirty_log)
M
Marcelo Tosatti 已提交
812 813
{
	struct kvm_memory_slot *slot;
814

815
	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
816 817
	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
		return NULL;
818
	if (no_dirty_log && kvm_slot_dirty_track_enabled(slot))
819
		return NULL;
820 821 822 823

	return slot;
}

824
/*
825
 * About rmap_head encoding:
826
 *
827 828
 * If the bit zero of rmap_head->val is clear, then it points to the only spte
 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
829
 * pte_list_desc containing more mappings.
830 831 832 833
 */

/*
 * Returns the number of pointers in the rmap chain, not counting the new one.
834
 */
835
static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
836
			struct kvm_rmap_head *rmap_head)
837
{
838
	struct pte_list_desc *desc;
839
	int count = 0;
840

841
	if (!rmap_head->val) {
842
		rmap_printk("%p %llx 0->1\n", spte, *spte);
843 844
		rmap_head->val = (unsigned long)spte;
	} else if (!(rmap_head->val & 1)) {
845
		rmap_printk("%p %llx 1->many\n", spte, *spte);
846
		desc = mmu_alloc_pte_list_desc(vcpu);
847
		desc->sptes[0] = (u64 *)rmap_head->val;
A
Avi Kivity 已提交
848
		desc->sptes[1] = spte;
849
		desc->spte_count = 2;
850
		rmap_head->val = (unsigned long)desc | 1;
851
		++count;
852
	} else {
853
		rmap_printk("%p %llx many->many\n", spte, *spte);
854
		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
855
		while (desc->spte_count == PTE_LIST_EXT) {
856
			count += PTE_LIST_EXT;
857 858 859
			if (!desc->more) {
				desc->more = mmu_alloc_pte_list_desc(vcpu);
				desc = desc->more;
860
				desc->spte_count = 0;
861 862
				break;
			}
863 864
			desc = desc->more;
		}
865 866
		count += desc->spte_count;
		desc->sptes[desc->spte_count++] = spte;
867
	}
868
	return count;
869 870
}

871
static void
872 873 874
pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
			   struct pte_list_desc *desc, int i,
			   struct pte_list_desc *prev_desc)
875
{
876
	int j = desc->spte_count - 1;
877

A
Avi Kivity 已提交
878 879
	desc->sptes[i] = desc->sptes[j];
	desc->sptes[j] = NULL;
880 881
	desc->spte_count--;
	if (desc->spte_count)
882 883
		return;
	if (!prev_desc && !desc->more)
884
		rmap_head->val = 0;
885 886 887 888
	else
		if (prev_desc)
			prev_desc->more = desc->more;
		else
889
			rmap_head->val = (unsigned long)desc->more | 1;
890
	mmu_free_pte_list_desc(desc);
891 892
}

893
static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
894
{
895 896
	struct pte_list_desc *desc;
	struct pte_list_desc *prev_desc;
897 898
	int i;

899
	if (!rmap_head->val) {
900
		pr_err("%s: %p 0->BUG\n", __func__, spte);
901
		BUG();
902
	} else if (!(rmap_head->val & 1)) {
903
		rmap_printk("%p 1->0\n", spte);
904
		if ((u64 *)rmap_head->val != spte) {
905
			pr_err("%s:  %p 1->BUG\n", __func__, spte);
906 907
			BUG();
		}
908
		rmap_head->val = 0;
909
	} else {
910
		rmap_printk("%p many->many\n", spte);
911
		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
912 913
		prev_desc = NULL;
		while (desc) {
914
			for (i = 0; i < desc->spte_count; ++i) {
A
Avi Kivity 已提交
915
				if (desc->sptes[i] == spte) {
916 917
					pte_list_desc_remove_entry(rmap_head,
							desc, i, prev_desc);
918 919
					return;
				}
920
			}
921 922 923
			prev_desc = desc;
			desc = desc->more;
		}
924
		pr_err("%s: %p many->many\n", __func__, spte);
925 926 927 928
		BUG();
	}
}

929 930
static void pte_list_remove(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			    u64 *sptep)
931
{
932
	mmu_spte_clear_track_bits(kvm, sptep);
933 934 935
	__pte_list_remove(sptep, rmap_head);
}

P
Peter Xu 已提交
936
/* Return true if rmap existed, false otherwise */
937
static bool pte_list_destroy(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
P
Peter Xu 已提交
938 939 940 941 942 943 944 945
{
	struct pte_list_desc *desc, *next;
	int i;

	if (!rmap_head->val)
		return false;

	if (!(rmap_head->val & 1)) {
946
		mmu_spte_clear_track_bits(kvm, (u64 *)rmap_head->val);
P
Peter Xu 已提交
947 948 949 950 951 952 953
		goto out;
	}

	desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);

	for (; desc; desc = next) {
		for (i = 0; i < desc->spte_count; i++)
954
			mmu_spte_clear_track_bits(kvm, desc->sptes[i]);
P
Peter Xu 已提交
955 956 957 958 959 960 961 962 963
		next = desc->more;
		mmu_free_pte_list_desc(desc);
	}
out:
	/* rmap_head is meaningless now, remember to reset it */
	rmap_head->val = 0;
	return true;
}

964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983
unsigned int pte_list_count(struct kvm_rmap_head *rmap_head)
{
	struct pte_list_desc *desc;
	unsigned int count = 0;

	if (!rmap_head->val)
		return 0;
	else if (!(rmap_head->val & 1))
		return 1;

	desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);

	while (desc) {
		count += desc->spte_count;
		desc = desc->more;
	}

	return count;
}

984 985
static struct kvm_rmap_head *gfn_to_rmap(gfn_t gfn, int level,
					 const struct kvm_memory_slot *slot)
986
{
987
	unsigned long idx;
988

989
	idx = gfn_to_index(gfn, slot->base_gfn, level);
990
	return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
991 992
}

993 994
static bool rmap_can_add(struct kvm_vcpu *vcpu)
{
995
	struct kvm_mmu_memory_cache *mc;
996

997
	mc = &vcpu->arch.mmu_pte_list_desc_cache;
998
	return kvm_mmu_memory_cache_nr_free_objects(mc);
999 1000
}

1001 1002
static void rmap_remove(struct kvm *kvm, u64 *spte)
{
1003 1004
	struct kvm_memslots *slots;
	struct kvm_memory_slot *slot;
1005 1006
	struct kvm_mmu_page *sp;
	gfn_t gfn;
1007
	struct kvm_rmap_head *rmap_head;
1008

1009
	sp = sptep_to_sp(spte);
1010
	gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1011 1012

	/*
1013 1014 1015
	 * Unlike rmap_add, rmap_remove does not run in the context of a vCPU
	 * so we have to determine which memslots to use based on context
	 * information in sp->role.
1016 1017 1018 1019
	 */
	slots = kvm_memslots_for_spte_role(kvm, sp->role);

	slot = __gfn_to_memslot(slots, gfn);
1020
	rmap_head = gfn_to_rmap(gfn, sp->role.level, slot);
1021

1022
	__pte_list_remove(spte, rmap_head);
1023 1024
}

1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
/*
 * Used by the following functions to iterate through the sptes linked by a
 * rmap.  All fields are private and not assumed to be used outside.
 */
struct rmap_iterator {
	/* private fields */
	struct pte_list_desc *desc;	/* holds the sptep if not NULL */
	int pos;			/* index of the sptep */
};

/*
 * Iteration must be started by this function.  This should also be used after
 * removing/dropping sptes from the rmap link because in such cases the
M
Miaohe Lin 已提交
1038
 * information in the iterator may not be valid.
1039 1040 1041
 *
 * Returns sptep if found, NULL otherwise.
 */
1042 1043
static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
			   struct rmap_iterator *iter)
1044
{
1045 1046
	u64 *sptep;

1047
	if (!rmap_head->val)
1048 1049
		return NULL;

1050
	if (!(rmap_head->val & 1)) {
1051
		iter->desc = NULL;
1052 1053
		sptep = (u64 *)rmap_head->val;
		goto out;
1054 1055
	}

1056
	iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1057
	iter->pos = 0;
1058 1059 1060 1061
	sptep = iter->desc->sptes[iter->pos];
out:
	BUG_ON(!is_shadow_present_pte(*sptep));
	return sptep;
1062 1063 1064 1065 1066 1067 1068 1069 1070
}

/*
 * Must be used with a valid iterator: e.g. after rmap_get_first().
 *
 * Returns sptep if found, NULL otherwise.
 */
static u64 *rmap_get_next(struct rmap_iterator *iter)
{
1071 1072
	u64 *sptep;

1073 1074 1075 1076 1077
	if (iter->desc) {
		if (iter->pos < PTE_LIST_EXT - 1) {
			++iter->pos;
			sptep = iter->desc->sptes[iter->pos];
			if (sptep)
1078
				goto out;
1079 1080 1081 1082 1083 1084 1085
		}

		iter->desc = iter->desc->more;

		if (iter->desc) {
			iter->pos = 0;
			/* desc->sptes[0] cannot be NULL */
1086 1087
			sptep = iter->desc->sptes[iter->pos];
			goto out;
1088 1089 1090 1091
		}
	}

	return NULL;
1092 1093 1094
out:
	BUG_ON(!is_shadow_present_pte(*sptep));
	return sptep;
1095 1096
}

1097 1098
#define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)			\
	for (_spte_ = rmap_get_first(_rmap_head_, _iter_);		\
1099
	     _spte_; _spte_ = rmap_get_next(_iter_))
1100

1101
static void drop_spte(struct kvm *kvm, u64 *sptep)
1102
{
1103
	u64 old_spte = mmu_spte_clear_track_bits(kvm, sptep);
1104 1105

	if (is_shadow_present_pte(old_spte))
1106
		rmap_remove(kvm, sptep);
A
Avi Kivity 已提交
1107 1108
}

1109 1110 1111 1112

static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
{
	if (is_large_pte(*sptep)) {
1113
		WARN_ON(sptep_to_sp(sptep)->role.level == PG_LEVEL_4K);
1114 1115 1116 1117 1118 1119 1120 1121 1122
		drop_spte(kvm, sptep);
		return true;
	}

	return false;
}

static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
{
1123
	if (__drop_large_spte(vcpu->kvm, sptep)) {
1124
		struct kvm_mmu_page *sp = sptep_to_sp(sptep);
1125 1126 1127 1128

		kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
			KVM_PAGES_PER_HPAGE(sp->role.level));
	}
1129 1130 1131
}

/*
1132
 * Write-protect on the specified @sptep, @pt_protect indicates whether
1133
 * spte write-protection is caused by protecting shadow page table.
1134
 *
T
Tiejun Chen 已提交
1135
 * Note: write protection is difference between dirty logging and spte
1136 1137 1138 1139 1140
 * protection:
 * - for dirty logging, the spte can be set to writable at anytime if
 *   its dirty bitmap is properly set.
 * - for spte protection, the spte can be writable only after unsync-ing
 *   shadow page.
1141
 *
1142
 * Return true if tlb need be flushed.
1143
 */
1144
static bool spte_write_protect(u64 *sptep, bool pt_protect)
1145 1146 1147
{
	u64 spte = *sptep;

1148
	if (!is_writable_pte(spte) &&
1149
	    !(pt_protect && is_mmu_writable_spte(spte)))
1150 1151
		return false;

1152
	rmap_printk("spte %p %llx\n", sptep, *sptep);
1153

1154
	if (pt_protect)
1155
		spte &= ~shadow_mmu_writable_mask;
1156
	spte = spte & ~PT_WRITABLE_MASK;
1157

1158
	return mmu_spte_update(sptep, spte);
1159 1160
}

1161 1162
static bool rmap_write_protect(struct kvm_rmap_head *rmap_head,
			       bool pt_protect)
1163
{
1164 1165
	u64 *sptep;
	struct rmap_iterator iter;
1166
	bool flush = false;
1167

1168
	for_each_rmap_spte(rmap_head, &iter, sptep)
1169
		flush |= spte_write_protect(sptep, pt_protect);
1170

1171
	return flush;
1172 1173
}

1174
static bool spte_clear_dirty(u64 *sptep)
1175 1176 1177
{
	u64 spte = *sptep;

1178
	rmap_printk("spte %p %llx\n", sptep, *sptep);
1179

1180
	MMU_WARN_ON(!spte_ad_enabled(spte));
1181 1182 1183 1184
	spte &= ~shadow_dirty_mask;
	return mmu_spte_update(sptep, spte);
}

1185
static bool spte_wrprot_for_clear_dirty(u64 *sptep)
1186 1187 1188
{
	bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
					       (unsigned long *)sptep);
1189
	if (was_writable && !spte_ad_enabled(*sptep))
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
		kvm_set_pfn_dirty(spte_to_pfn(*sptep));

	return was_writable;
}

/*
 * Gets the GFN ready for another round of dirty logging by clearing the
 *	- D bit on ad-enabled SPTEs, and
 *	- W bit on ad-disabled SPTEs.
 * Returns true iff any D or W bits were cleared.
 */
1201
static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1202
			       const struct kvm_memory_slot *slot)
1203 1204 1205 1206 1207
{
	u64 *sptep;
	struct rmap_iterator iter;
	bool flush = false;

1208
	for_each_rmap_spte(rmap_head, &iter, sptep)
1209 1210
		if (spte_ad_need_write_protect(*sptep))
			flush |= spte_wrprot_for_clear_dirty(sptep);
1211
		else
1212
			flush |= spte_clear_dirty(sptep);
1213 1214 1215 1216

	return flush;
}

1217
/**
1218
 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1219 1220 1221 1222 1223
 * @kvm: kvm instance
 * @slot: slot to protect
 * @gfn_offset: start of the BITS_PER_LONG pages we care about
 * @mask: indicates which pages we should protect
 *
1224
 * Used when we do not need to care about huge page mappings.
1225
 */
1226
static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1227 1228
				     struct kvm_memory_slot *slot,
				     gfn_t gfn_offset, unsigned long mask)
1229
{
1230
	struct kvm_rmap_head *rmap_head;
1231

1232
	if (is_tdp_mmu_enabled(kvm))
1233 1234
		kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
				slot->base_gfn + gfn_offset, mask, true);
1235 1236 1237 1238

	if (!kvm_memslots_have_rmaps(kvm))
		return;

1239
	while (mask) {
1240 1241
		rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
					PG_LEVEL_4K, slot);
1242
		rmap_write_protect(rmap_head, false);
M
Marcelo Tosatti 已提交
1243

1244 1245 1246
		/* clear the first set bit */
		mask &= mask - 1;
	}
1247 1248
}

1249
/**
1250 1251
 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
 * protect the page if the D-bit isn't supported.
1252 1253 1254 1255 1256 1257 1258
 * @kvm: kvm instance
 * @slot: slot to clear D-bit
 * @gfn_offset: start of the BITS_PER_LONG pages we care about
 * @mask: indicates which pages we should clear D-bit
 *
 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
 */
1259 1260 1261
static void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
					 struct kvm_memory_slot *slot,
					 gfn_t gfn_offset, unsigned long mask)
1262
{
1263
	struct kvm_rmap_head *rmap_head;
1264

1265
	if (is_tdp_mmu_enabled(kvm))
1266 1267
		kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
				slot->base_gfn + gfn_offset, mask, false);
1268 1269 1270 1271

	if (!kvm_memslots_have_rmaps(kvm))
		return;

1272
	while (mask) {
1273 1274
		rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
					PG_LEVEL_4K, slot);
1275
		__rmap_clear_dirty(kvm, rmap_head, slot);
1276 1277 1278 1279 1280 1281

		/* clear the first set bit */
		mask &= mask - 1;
	}
}

1282 1283 1284 1285 1286 1287 1288
/**
 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
 * PT level pages.
 *
 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
 * enable dirty logging for them.
 *
1289 1290
 * We need to care about huge page mappings: e.g. during dirty logging we may
 * have such mappings.
1291 1292 1293 1294 1295
 */
void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
				struct kvm_memory_slot *slot,
				gfn_t gfn_offset, unsigned long mask)
{
1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
	/*
	 * Huge pages are NOT write protected when we start dirty logging in
	 * initially-all-set mode; must write protect them here so that they
	 * are split to 4K on the first write.
	 *
	 * The gfn_offset is guaranteed to be aligned to 64, but the base_gfn
	 * of memslot has no such restriction, so the range can cross two large
	 * pages.
	 */
	if (kvm_dirty_log_manual_protect_and_init_set(kvm)) {
		gfn_t start = slot->base_gfn + gfn_offset + __ffs(mask);
		gfn_t end = slot->base_gfn + gfn_offset + __fls(mask);

1309 1310 1311
		if (READ_ONCE(eager_page_split))
			kvm_mmu_try_split_huge_pages(kvm, slot, start, end, PG_LEVEL_4K);

1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
		kvm_mmu_slot_gfn_write_protect(kvm, slot, start, PG_LEVEL_2M);

		/* Cross two large pages? */
		if (ALIGN(start << PAGE_SHIFT, PMD_SIZE) !=
		    ALIGN(end << PAGE_SHIFT, PMD_SIZE))
			kvm_mmu_slot_gfn_write_protect(kvm, slot, end,
						       PG_LEVEL_2M);
	}

	/* Now handle 4K PTEs.  */
1322 1323
	if (kvm_x86_ops.cpu_dirty_log_size)
		kvm_mmu_clear_dirty_pt_masked(kvm, slot, gfn_offset, mask);
1324 1325
	else
		kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1326 1327
}

1328 1329
int kvm_cpu_dirty_log_size(void)
{
1330
	return kvm_x86_ops.cpu_dirty_log_size;
1331 1332
}

1333
bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1334 1335
				    struct kvm_memory_slot *slot, u64 gfn,
				    int min_level)
1336
{
1337
	struct kvm_rmap_head *rmap_head;
1338
	int i;
1339
	bool write_protected = false;
1340

1341 1342
	if (kvm_memslots_have_rmaps(kvm)) {
		for (i = min_level; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
1343
			rmap_head = gfn_to_rmap(gfn, i, slot);
1344
			write_protected |= rmap_write_protect(rmap_head, true);
1345
		}
1346 1347
	}

1348
	if (is_tdp_mmu_enabled(kvm))
1349
		write_protected |=
1350
			kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn, min_level);
1351

1352
	return write_protected;
1353 1354
}

1355
static bool kvm_vcpu_write_protect_gfn(struct kvm_vcpu *vcpu, u64 gfn)
1356 1357 1358 1359
{
	struct kvm_memory_slot *slot;

	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1360
	return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn, PG_LEVEL_4K);
1361 1362
}

1363
static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1364
			  const struct kvm_memory_slot *slot)
1365
{
1366
	return pte_list_destroy(kvm, rmap_head);
1367 1368
}

1369 1370 1371
static bool kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			    struct kvm_memory_slot *slot, gfn_t gfn, int level,
			    pte_t unused)
1372
{
1373
	return kvm_zap_rmapp(kvm, rmap_head, slot);
1374 1375
}

1376 1377 1378
static bool kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			      struct kvm_memory_slot *slot, gfn_t gfn, int level,
			      pte_t pte)
1379
{
1380 1381
	u64 *sptep;
	struct rmap_iterator iter;
1382
	bool need_flush = false;
1383
	u64 new_spte;
D
Dan Williams 已提交
1384
	kvm_pfn_t new_pfn;
1385

1386 1387
	WARN_ON(pte_huge(pte));
	new_pfn = pte_pfn(pte);
1388

1389
restart:
1390
	for_each_rmap_spte(rmap_head, &iter, sptep) {
1391
		rmap_printk("spte %p %llx gfn %llx (%d)\n",
1392
			    sptep, *sptep, gfn, level);
1393

1394
		need_flush = true;
1395

1396
		if (pte_write(pte)) {
1397
			pte_list_remove(kvm, rmap_head, sptep);
1398
			goto restart;
1399
		} else {
1400 1401
			new_spte = kvm_mmu_changed_pte_notifier_make_spte(
					*sptep, new_pfn);
1402

1403
			mmu_spte_clear_track_bits(kvm, sptep);
1404
			mmu_spte_set(sptep, new_spte);
1405 1406
		}
	}
1407

1408 1409
	if (need_flush && kvm_available_flush_tlb_with_range()) {
		kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
1410
		return false;
1411 1412
	}

1413
	return need_flush;
1414 1415
}

1416 1417
struct slot_rmap_walk_iterator {
	/* input fields. */
1418
	const struct kvm_memory_slot *slot;
1419 1420 1421 1422 1423 1424 1425
	gfn_t start_gfn;
	gfn_t end_gfn;
	int start_level;
	int end_level;

	/* output fields. */
	gfn_t gfn;
1426
	struct kvm_rmap_head *rmap;
1427 1428 1429
	int level;

	/* private field. */
1430
	struct kvm_rmap_head *end_rmap;
1431 1432 1433 1434 1435 1436 1437
};

static void
rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
{
	iterator->level = level;
	iterator->gfn = iterator->start_gfn;
1438 1439
	iterator->rmap = gfn_to_rmap(iterator->gfn, level, iterator->slot);
	iterator->end_rmap = gfn_to_rmap(iterator->end_gfn, level, iterator->slot);
1440 1441 1442 1443
}

static void
slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1444
		    const struct kvm_memory_slot *slot, int start_level,
1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
		    int end_level, gfn_t start_gfn, gfn_t end_gfn)
{
	iterator->slot = slot;
	iterator->start_level = start_level;
	iterator->end_level = end_level;
	iterator->start_gfn = start_gfn;
	iterator->end_gfn = end_gfn;

	rmap_walk_init_level(iterator, iterator->start_level);
}

static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
{
	return !!iterator->rmap;
}

static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
{
1463
	while (++iterator->rmap <= iterator->end_rmap) {
1464
		iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1465 1466 1467

		if (iterator->rmap->val)
			return;
1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
	}

	if (++iterator->level > iterator->end_level) {
		iterator->rmap = NULL;
		return;
	}

	rmap_walk_init_level(iterator, iterator->level);
}

#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,	\
	   _start_gfn, _end_gfn, _iter_)				\
	for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,		\
				 _end_level_, _start_gfn, _end_gfn);	\
	     slot_rmap_walk_okay(_iter_);				\
	     slot_rmap_walk_next(_iter_))

1485 1486 1487
typedef bool (*rmap_handler_t)(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			       struct kvm_memory_slot *slot, gfn_t gfn,
			       int level, pte_t pte);
1488

1489 1490 1491
static __always_inline bool kvm_handle_gfn_range(struct kvm *kvm,
						 struct kvm_gfn_range *range,
						 rmap_handler_t handler)
1492
{
1493
	struct slot_rmap_walk_iterator iterator;
1494
	bool ret = false;
1495

1496 1497 1498 1499
	for_each_slot_rmap_range(range->slot, PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL,
				 range->start, range->end - 1, &iterator)
		ret |= handler(kvm, iterator.rmap, range->slot, iterator.gfn,
			       iterator.level, range->pte);
1500

1501
	return ret;
1502 1503
}

1504
bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
1505
{
1506
	bool flush = false;
1507

1508 1509
	if (kvm_memslots_have_rmaps(kvm))
		flush = kvm_handle_gfn_range(kvm, range, kvm_unmap_rmapp);
1510

1511
	if (is_tdp_mmu_enabled(kvm))
1512
		flush = kvm_tdp_mmu_unmap_gfn_range(kvm, range, flush);
1513

1514
	return flush;
1515 1516
}

1517
bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1518
{
1519
	bool flush = false;
1520

1521 1522
	if (kvm_memslots_have_rmaps(kvm))
		flush = kvm_handle_gfn_range(kvm, range, kvm_set_pte_rmapp);
1523

1524
	if (is_tdp_mmu_enabled(kvm))
1525
		flush |= kvm_tdp_mmu_set_spte_gfn(kvm, range);
1526

1527
	return flush;
1528 1529
}

1530 1531 1532
static bool kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			  struct kvm_memory_slot *slot, gfn_t gfn, int level,
			  pte_t unused)
1533
{
1534
	u64 *sptep;
1535
	struct rmap_iterator iter;
1536 1537
	int young = 0;

1538 1539
	for_each_rmap_spte(rmap_head, &iter, sptep)
		young |= mmu_spte_age(sptep);
1540

1541 1542 1543
	return young;
}

1544 1545 1546
static bool kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			       struct kvm_memory_slot *slot, gfn_t gfn,
			       int level, pte_t unused)
A
Andrea Arcangeli 已提交
1547
{
1548 1549
	u64 *sptep;
	struct rmap_iterator iter;
A
Andrea Arcangeli 已提交
1550

1551 1552
	for_each_rmap_spte(rmap_head, &iter, sptep)
		if (is_accessed_spte(*sptep))
1553 1554
			return true;
	return false;
A
Andrea Arcangeli 已提交
1555 1556
}

1557 1558
#define RMAP_RECYCLE_THRESHOLD 1000

1559 1560
static void rmap_add(struct kvm_vcpu *vcpu, struct kvm_memory_slot *slot,
		     u64 *spte, gfn_t gfn)
1561
{
1562
	struct kvm_mmu_page *sp;
1563 1564
	struct kvm_rmap_head *rmap_head;
	int rmap_count;
1565

1566
	sp = sptep_to_sp(spte);
1567
	kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1568
	rmap_head = gfn_to_rmap(gfn, sp->role.level, slot);
1569
	rmap_count = pte_list_add(vcpu, spte, rmap_head);
1570

1571 1572 1573 1574 1575
	if (rmap_count > RMAP_RECYCLE_THRESHOLD) {
		kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, __pte(0));
		kvm_flush_remote_tlbs_with_address(
				vcpu->kvm, sp->gfn, KVM_PAGES_PER_HPAGE(sp->role.level));
	}
1576 1577
}

1578
bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1579
{
1580
	bool young = false;
1581

1582 1583
	if (kvm_memslots_have_rmaps(kvm))
		young = kvm_handle_gfn_range(kvm, range, kvm_age_rmapp);
1584

1585
	if (is_tdp_mmu_enabled(kvm))
1586
		young |= kvm_tdp_mmu_age_gfn_range(kvm, range);
1587 1588

	return young;
1589 1590
}

1591
bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
A
Andrea Arcangeli 已提交
1592
{
1593
	bool young = false;
1594

1595 1596
	if (kvm_memslots_have_rmaps(kvm))
		young = kvm_handle_gfn_range(kvm, range, kvm_test_age_rmapp);
1597

1598
	if (is_tdp_mmu_enabled(kvm))
1599
		young |= kvm_tdp_mmu_test_age_gfn(kvm, range);
1600 1601

	return young;
A
Andrea Arcangeli 已提交
1602 1603
}

1604
#ifdef MMU_DEBUG
1605
static int is_empty_shadow_page(u64 *spt)
A
Avi Kivity 已提交
1606
{
1607 1608 1609
	u64 *pos;
	u64 *end;

1610
	for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1611
		if (is_shadow_present_pte(*pos)) {
1612
			printk(KERN_ERR "%s: %p %llx\n", __func__,
1613
			       pos, *pos);
A
Avi Kivity 已提交
1614
			return 0;
1615
		}
A
Avi Kivity 已提交
1616 1617
	return 1;
}
1618
#endif
A
Avi Kivity 已提交
1619

1620 1621 1622 1623 1624 1625
/*
 * This value is the sum of all of the kvm instances's
 * kvm->arch.n_used_mmu_pages values.  We need a global,
 * aggregate version in order to make the slab shrinker
 * faster
 */
1626
static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, long nr)
1627 1628 1629 1630 1631
{
	kvm->arch.n_used_mmu_pages += nr;
	percpu_counter_add(&kvm_total_used_mmu_pages, nr);
}

1632
static void kvm_mmu_free_shadow_page(struct kvm_mmu_page *sp)
1633
{
1634
	MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1635
	hlist_del(&sp->hash_link);
1636 1637
	list_del(&sp->link);
	free_page((unsigned long)sp->spt);
1638 1639
	if (!sp->role.direct)
		free_page((unsigned long)sp->gfns);
1640
	kmem_cache_free(mmu_page_header_cache, sp);
1641 1642
}

1643 1644
static unsigned kvm_page_table_hashfn(gfn_t gfn)
{
1645
	return hash_64(gfn, KVM_MMU_HASH_SHIFT);
1646 1647
}

1648
static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1649
				    struct kvm_mmu_page *sp, u64 *parent_pte)
1650 1651 1652 1653
{
	if (!parent_pte)
		return;

1654
	pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1655 1656
}

1657
static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1658 1659
				       u64 *parent_pte)
{
1660
	__pte_list_remove(parent_pte, &sp->parent_ptes);
1661 1662
}

1663 1664 1665 1666
static void drop_parent_pte(struct kvm_mmu_page *sp,
			    u64 *parent_pte)
{
	mmu_page_remove_parent_pte(sp, parent_pte);
1667
	mmu_spte_clear_no_track(parent_pte);
1668 1669
}

1670
static void mark_unsync(u64 *spte);
1671
static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1672
{
1673 1674 1675 1676 1677 1678
	u64 *sptep;
	struct rmap_iterator iter;

	for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
		mark_unsync(sptep);
	}
1679 1680
}

1681
static void mark_unsync(u64 *spte)
1682
{
1683
	struct kvm_mmu_page *sp;
1684
	unsigned int index;
1685

1686
	sp = sptep_to_sp(spte);
1687 1688
	index = spte - sp->spt;
	if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1689
		return;
1690
	if (sp->unsync_children++)
1691
		return;
1692
	kvm_mmu_mark_parents_unsync(sp);
1693 1694
}

1695
static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1696
			       struct kvm_mmu_page *sp)
1697
{
1698
	return -1;
1699 1700
}

1701 1702 1703 1704 1705 1706 1707 1708 1709 1710
#define KVM_PAGE_ARRAY_NR 16

struct kvm_mmu_pages {
	struct mmu_page_and_offset {
		struct kvm_mmu_page *sp;
		unsigned int idx;
	} page[KVM_PAGE_ARRAY_NR];
	unsigned int nr;
};

1711 1712
static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
			 int idx)
1713
{
1714
	int i;
1715

1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726
	if (sp->unsync)
		for (i=0; i < pvec->nr; i++)
			if (pvec->page[i].sp == sp)
				return 0;

	pvec->page[pvec->nr].sp = sp;
	pvec->page[pvec->nr].idx = idx;
	pvec->nr++;
	return (pvec->nr == KVM_PAGE_ARRAY_NR);
}

1727 1728 1729 1730 1731 1732 1733
static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
{
	--sp->unsync_children;
	WARN_ON((int)sp->unsync_children < 0);
	__clear_bit(idx, sp->unsync_child_bitmap);
}

1734 1735 1736 1737
static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
	int i, ret, nr_unsync_leaf = 0;
1738

1739
	for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1740
		struct kvm_mmu_page *child;
1741 1742
		u64 ent = sp->spt[i];

1743 1744 1745 1746
		if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
			clear_unsync_child_bit(sp, i);
			continue;
		}
1747

1748
		child = to_shadow_page(ent & SPTE_BASE_ADDR_MASK);
1749 1750 1751 1752 1753 1754

		if (child->unsync_children) {
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;

			ret = __mmu_unsync_walk(child, pvec);
1755 1756 1757 1758
			if (!ret) {
				clear_unsync_child_bit(sp, i);
				continue;
			} else if (ret > 0) {
1759
				nr_unsync_leaf += ret;
1760
			} else
1761 1762 1763 1764 1765 1766
				return ret;
		} else if (child->unsync) {
			nr_unsync_leaf++;
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;
		} else
1767
			clear_unsync_child_bit(sp, i);
1768 1769
	}

1770 1771 1772
	return nr_unsync_leaf;
}

1773 1774
#define INVALID_INDEX (-1)

1775 1776 1777
static int mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
P
Paolo Bonzini 已提交
1778
	pvec->nr = 0;
1779 1780 1781
	if (!sp->unsync_children)
		return 0;

1782
	mmu_pages_add(pvec, sp, INVALID_INDEX);
1783
	return __mmu_unsync_walk(sp, pvec);
1784 1785 1786 1787 1788
}

static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
{
	WARN_ON(!sp->unsync);
1789
	trace_kvm_mmu_sync_page(sp);
1790 1791 1792 1793
	sp->unsync = 0;
	--kvm->stat.mmu_unsync;
}

1794 1795
static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				     struct list_head *invalid_list);
1796 1797
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list);
1798

L
Lai Jiangshan 已提交
1799 1800 1801 1802 1803
static bool sp_has_gptes(struct kvm_mmu_page *sp)
{
	if (sp->role.direct)
		return false;

1804 1805 1806
	if (sp->role.passthrough)
		return false;

L
Lai Jiangshan 已提交
1807 1808 1809
	return true;
}

1810 1811
#define for_each_valid_sp(_kvm, _sp, _list)				\
	hlist_for_each_entry(_sp, _list, hash_link)			\
1812
		if (is_obsolete_sp((_kvm), (_sp))) {			\
1813
		} else
1814

L
Lai Jiangshan 已提交
1815
#define for_each_gfn_valid_sp_with_gptes(_kvm, _sp, _gfn)		\
1816 1817
	for_each_valid_sp(_kvm, _sp,					\
	  &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)])	\
L
Lai Jiangshan 已提交
1818
		if ((_sp)->gfn != (_gfn) || !sp_has_gptes(_sp)) {} else
1819

1820
static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1821
			 struct list_head *invalid_list)
1822
{
1823 1824
	int ret = vcpu->arch.mmu->sync_page(vcpu, sp);

1825
	if (ret < 0)
1826
		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1827
	return ret;
1828 1829
}

1830 1831 1832 1833
static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
					struct list_head *invalid_list,
					bool remote_flush)
{
1834
	if (!remote_flush && list_empty(invalid_list))
1835 1836 1837 1838 1839 1840 1841 1842 1843
		return false;

	if (!list_empty(invalid_list))
		kvm_mmu_commit_zap_page(kvm, invalid_list);
	else
		kvm_flush_remote_tlbs(kvm);
	return true;
}

1844 1845
static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
{
1846 1847 1848 1849 1850
	if (sp->role.invalid)
		return true;

	/* TDP MMU pages due not use the MMU generation. */
	return !sp->tdp_mmu_page &&
1851
	       unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1852 1853
}

1854
struct mmu_page_path {
1855 1856
	struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
	unsigned int idx[PT64_ROOT_MAX_LEVEL];
1857 1858
};

1859
#define for_each_sp(pvec, sp, parents, i)			\
P
Paolo Bonzini 已提交
1860
		for (i = mmu_pages_first(&pvec, &parents);	\
1861 1862 1863
			i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});	\
			i = mmu_pages_next(&pvec, &parents, i))

1864 1865 1866
static int mmu_pages_next(struct kvm_mmu_pages *pvec,
			  struct mmu_page_path *parents,
			  int i)
1867 1868 1869 1870 1871
{
	int n;

	for (n = i+1; n < pvec->nr; n++) {
		struct kvm_mmu_page *sp = pvec->page[n].sp;
P
Paolo Bonzini 已提交
1872 1873
		unsigned idx = pvec->page[n].idx;
		int level = sp->role.level;
1874

P
Paolo Bonzini 已提交
1875
		parents->idx[level-1] = idx;
1876
		if (level == PG_LEVEL_4K)
P
Paolo Bonzini 已提交
1877
			break;
1878

P
Paolo Bonzini 已提交
1879
		parents->parent[level-2] = sp;
1880 1881 1882 1883 1884
	}

	return n;
}

P
Paolo Bonzini 已提交
1885 1886 1887 1888 1889 1890 1891 1892 1893
static int mmu_pages_first(struct kvm_mmu_pages *pvec,
			   struct mmu_page_path *parents)
{
	struct kvm_mmu_page *sp;
	int level;

	if (pvec->nr == 0)
		return 0;

1894 1895
	WARN_ON(pvec->page[0].idx != INVALID_INDEX);

P
Paolo Bonzini 已提交
1896 1897
	sp = pvec->page[0].sp;
	level = sp->role.level;
1898
	WARN_ON(level == PG_LEVEL_4K);
P
Paolo Bonzini 已提交
1899 1900 1901 1902 1903 1904 1905 1906 1907 1908

	parents->parent[level-2] = sp;

	/* Also set up a sentinel.  Further entries in pvec are all
	 * children of sp, so this element is never overwritten.
	 */
	parents->parent[level-1] = NULL;
	return mmu_pages_next(pvec, parents, 0);
}

1909
static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1910
{
1911 1912 1913 1914 1915 1916 1917 1918 1919
	struct kvm_mmu_page *sp;
	unsigned int level = 0;

	do {
		unsigned int idx = parents->idx[level];
		sp = parents->parent[level];
		if (!sp)
			return;

1920
		WARN_ON(idx == INVALID_INDEX);
1921
		clear_unsync_child_bit(sp, idx);
1922
		level++;
P
Paolo Bonzini 已提交
1923
	} while (!sp->unsync_children);
1924
}
1925

1926 1927
static int mmu_sync_children(struct kvm_vcpu *vcpu,
			     struct kvm_mmu_page *parent, bool can_yield)
1928 1929 1930 1931 1932
{
	int i;
	struct kvm_mmu_page *sp;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
1933
	LIST_HEAD(invalid_list);
1934
	bool flush = false;
1935 1936

	while (mmu_unsync_walk(parent, &pages)) {
1937
		bool protected = false;
1938 1939

		for_each_sp(pages, sp, parents, i)
1940
			protected |= kvm_vcpu_write_protect_gfn(vcpu, sp->gfn);
1941

1942
		if (protected) {
1943
			kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, true);
1944 1945
			flush = false;
		}
1946

1947
		for_each_sp(pages, sp, parents, i) {
1948
			kvm_unlink_unsync_page(vcpu->kvm, sp);
1949
			flush |= kvm_sync_page(vcpu, sp, &invalid_list) > 0;
1950 1951
			mmu_pages_clear_parents(&parents);
		}
1952
		if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) {
1953
			kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush);
1954 1955 1956 1957 1958
			if (!can_yield) {
				kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
				return -EINTR;
			}

1959
			cond_resched_rwlock_write(&vcpu->kvm->mmu_lock);
1960 1961
			flush = false;
		}
1962
	}
1963

1964
	kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush);
1965
	return 0;
1966 1967
}

1968 1969
static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
{
1970
	atomic_set(&sp->write_flooding_count,  0);
1971 1972 1973 1974
}

static void clear_sp_write_flooding_count(u64 *spte)
{
1975
	__clear_sp_write_flooding_count(sptep_to_sp(spte));
1976 1977
}

1978 1979
static struct kvm_mmu_page *kvm_mmu_find_shadow_page(struct kvm *kvm,
						     struct kvm_vcpu *vcpu,
1980 1981 1982
						     gfn_t gfn,
						     struct hlist_head *sp_list,
						     union kvm_mmu_page_role role)
1983
{
1984
	struct kvm_mmu_page *sp;
1985
	int ret;
1986
	int collisions = 0;
1987
	LIST_HEAD(invalid_list);
1988

1989
	for_each_valid_sp(kvm, sp, sp_list) {
1990 1991 1992 1993 1994
		if (sp->gfn != gfn) {
			collisions++;
			continue;
		}

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004
		if (sp->role.word != role.word) {
			/*
			 * If the guest is creating an upper-level page, zap
			 * unsync pages for the same gfn.  While it's possible
			 * the guest is using recursive page tables, in all
			 * likelihood the guest has stopped using the unsync
			 * page and is installing a completely unrelated page.
			 * Unsync pages must not be left as is, because the new
			 * upper-level page will be write-protected.
			 */
2005
			if (role.level > PG_LEVEL_4K && sp->unsync)
2006
				kvm_mmu_prepare_zap_page(kvm, sp,
2007
							 &invalid_list);
2008
			continue;
2009
		}
2010

2011 2012
		/* unsync and write-flooding only apply to indirect SPs. */
		if (sp->role.direct)
2013
			goto out;
2014

2015
		if (sp->unsync) {
2016
			/*
2017
			 * The page is good, but is stale.  kvm_sync_page does
2018 2019 2020 2021 2022 2023 2024 2025 2026
			 * get the latest guest state, but (unlike mmu_unsync_children)
			 * it doesn't write-protect the page or mark it synchronized!
			 * This way the validity of the mapping is ensured, but the
			 * overhead of write protection is not incurred until the
			 * guest invalidates the TLB mapping.  This allows multiple
			 * SPs for a single gfn to be unsync.
			 *
			 * If the sync fails, the page is zapped.  If so, break
			 * in order to rebuild it.
2027
			 */
2028 2029
			ret = kvm_sync_page(vcpu, sp, &invalid_list);
			if (ret < 0)
2030 2031 2032
				break;

			WARN_ON(!list_empty(&invalid_list));
2033
			if (ret > 0)
2034
				kvm_flush_remote_tlbs(kvm);
2035
		}
2036

2037
		__clear_sp_write_flooding_count(sp);
2038

2039
		goto out;
2040
	}
2041

2042
	sp = NULL;
2043
	++kvm->stat.mmu_cache_miss;
2044

2045
out:
2046
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2047

2048 2049
	if (collisions > kvm->stat.max_mmu_page_hash_collisions)
		kvm->stat.max_mmu_page_hash_collisions = collisions;
2050 2051 2052
	return sp;
}

2053 2054 2055 2056 2057 2058 2059
/* Caches used when allocating a new shadow page. */
struct shadow_page_caches {
	struct kvm_mmu_memory_cache *page_header_cache;
	struct kvm_mmu_memory_cache *shadow_page_cache;
	struct kvm_mmu_memory_cache *gfn_array_cache;
};

2060
static struct kvm_mmu_page *kvm_mmu_alloc_shadow_page(struct kvm *kvm,
2061
						      struct shadow_page_caches *caches,
2062 2063 2064 2065
						      gfn_t gfn,
						      struct hlist_head *sp_list,
						      union kvm_mmu_page_role role)
{
2066 2067
	struct kvm_mmu_page *sp;

2068 2069
	sp = kvm_mmu_memory_cache_alloc(caches->page_header_cache);
	sp->spt = kvm_mmu_memory_cache_alloc(caches->shadow_page_cache);
2070
	if (!role.direct)
2071
		sp->gfns = kvm_mmu_memory_cache_alloc(caches->gfn_array_cache);
2072 2073 2074 2075 2076 2077 2078 2079

	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);

	/*
	 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
	 * depends on valid pages being added to the head of the list.  See
	 * comments in kvm_zap_obsolete_pages().
	 */
2080 2081 2082
	sp->mmu_valid_gen = kvm->arch.mmu_valid_gen;
	list_add(&sp->link, &kvm->arch.active_mmu_pages);
	kvm_mod_used_mmu_pages(kvm, +1);
2083

2084 2085
	sp->gfn = gfn;
	sp->role = role;
2086
	hlist_add_head(&sp->hash_link, sp_list);
2087
	if (sp_has_gptes(sp))
2088
		account_shadowed(kvm, sp);
2089

2090 2091 2092
	return sp;
}

2093 2094
static struct kvm_mmu_page *__kvm_mmu_get_shadow_page(struct kvm *kvm,
						      struct kvm_vcpu *vcpu,
2095 2096 2097
						      struct shadow_page_caches *caches,
						      gfn_t gfn,
						      union kvm_mmu_page_role role)
2098 2099 2100 2101 2102
{
	struct hlist_head *sp_list;
	struct kvm_mmu_page *sp;
	bool created = false;

2103
	sp_list = &kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)];
2104

2105
	sp = kvm_mmu_find_shadow_page(kvm, vcpu, gfn, sp_list, role);
2106 2107
	if (!sp) {
		created = true;
2108
		sp = kvm_mmu_alloc_shadow_page(kvm, caches, gfn, sp_list, role);
2109 2110 2111
	}

	trace_kvm_mmu_get_page(sp, created);
2112
	return sp;
2113 2114
}

2115 2116 2117 2118 2119 2120 2121 2122 2123 2124
static struct kvm_mmu_page *kvm_mmu_get_shadow_page(struct kvm_vcpu *vcpu,
						    gfn_t gfn,
						    union kvm_mmu_page_role role)
{
	struct shadow_page_caches caches = {
		.page_header_cache = &vcpu->arch.mmu_page_header_cache,
		.shadow_page_cache = &vcpu->arch.mmu_shadow_page_cache,
		.gfn_array_cache = &vcpu->arch.mmu_gfn_array_cache,
	};

2125
	return __kvm_mmu_get_shadow_page(vcpu->kvm, vcpu, &caches, gfn, role);
2126 2127
}

2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173
static union kvm_mmu_page_role kvm_mmu_child_role(u64 *sptep, bool direct, unsigned int access)
{
	struct kvm_mmu_page *parent_sp = sptep_to_sp(sptep);
	union kvm_mmu_page_role role;

	role = parent_sp->role;
	role.level--;
	role.access = access;
	role.direct = direct;
	role.passthrough = 0;

	/*
	 * If the guest has 4-byte PTEs then that means it's using 32-bit,
	 * 2-level, non-PAE paging. KVM shadows such guests with PAE paging
	 * (i.e. 8-byte PTEs). The difference in PTE size means that KVM must
	 * shadow each guest page table with multiple shadow page tables, which
	 * requires extra bookkeeping in the role.
	 *
	 * Specifically, to shadow the guest's page directory (which covers a
	 * 4GiB address space), KVM uses 4 PAE page directories, each mapping
	 * 1GiB of the address space. @role.quadrant encodes which quarter of
	 * the address space each maps.
	 *
	 * To shadow the guest's page tables (which each map a 4MiB region), KVM
	 * uses 2 PAE page tables, each mapping a 2MiB region. For these,
	 * @role.quadrant encodes which half of the region they map.
	 *
	 * Note, the 4 PAE page directories are pre-allocated and the quadrant
	 * assigned in mmu_alloc_root(). So only page tables need to be handled
	 * here.
	 */
	if (role.has_4_byte_gpte) {
		WARN_ON_ONCE(role.level != PG_LEVEL_4K);
		role.quadrant = (sptep - parent_sp->spt) % 2;
	}

	return role;
}

static struct kvm_mmu_page *kvm_mmu_get_child_sp(struct kvm_vcpu *vcpu,
						 u64 *sptep, gfn_t gfn,
						 bool direct, unsigned int access)
{
	union kvm_mmu_page_role role;

	role = kvm_mmu_child_role(sptep, direct, access);
2174
	return kvm_mmu_get_shadow_page(vcpu, gfn, role);
2175 2176
}

2177 2178 2179
static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
					struct kvm_vcpu *vcpu, hpa_t root,
					u64 addr)
2180 2181
{
	iterator->addr = addr;
2182
	iterator->shadow_addr = root;
2183
	iterator->level = vcpu->arch.mmu->root_role.level;
2184

2185
	if (iterator->level >= PT64_ROOT_4LEVEL &&
2186
	    vcpu->arch.mmu->cpu_role.base.level < PT64_ROOT_4LEVEL &&
2187
	    !vcpu->arch.mmu->root_role.direct)
2188
		iterator->level = PT32E_ROOT_LEVEL;
2189

2190
	if (iterator->level == PT32E_ROOT_LEVEL) {
2191 2192 2193 2194
		/*
		 * prev_root is currently only used for 64-bit hosts. So only
		 * the active root_hpa is valid here.
		 */
2195
		BUG_ON(root != vcpu->arch.mmu->root.hpa);
2196

2197
		iterator->shadow_addr
2198
			= vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2199
		iterator->shadow_addr &= SPTE_BASE_ADDR_MASK;
2200 2201 2202 2203 2204 2205
		--iterator->level;
		if (!iterator->shadow_addr)
			iterator->level = 0;
	}
}

2206 2207 2208
static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
			     struct kvm_vcpu *vcpu, u64 addr)
{
2209
	shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root.hpa,
2210 2211 2212
				    addr);
}

2213 2214
static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
{
2215
	if (iterator->level < PG_LEVEL_4K)
2216
		return false;
2217

2218
	iterator->index = SPTE_INDEX(iterator->addr, iterator->level);
2219 2220 2221 2222
	iterator->sptep	= ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
	return true;
}

2223 2224
static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
			       u64 spte)
2225
{
2226
	if (!is_shadow_present_pte(spte) || is_last_spte(spte, iterator->level)) {
2227 2228 2229 2230
		iterator->level = 0;
		return;
	}

2231
	iterator->shadow_addr = spte & SPTE_BASE_ADDR_MASK;
2232 2233 2234
	--iterator->level;
}

2235 2236
static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
{
2237
	__shadow_walk_next(iterator, *iterator->sptep);
2238 2239
}

2240 2241 2242 2243 2244 2245 2246 2247 2248
static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
			     struct kvm_mmu_page *sp)
{
	u64 spte;

	BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);

	spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp));

2249
	mmu_spte_set(sptep, spte);
2250 2251 2252 2253 2254

	mmu_page_add_parent_pte(vcpu, sp, sptep);

	if (sp->unsync_children || sp->unsync)
		mark_unsync(sptep);
2255 2256
}

2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269
static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
				   unsigned direct_access)
{
	if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
		struct kvm_mmu_page *child;

		/*
		 * For the direct sp, if the guest pte's dirty bit
		 * changed form clean to dirty, it will corrupt the
		 * sp's access: allow writable in the read-only sp,
		 * so we should update the spte at this point to get
		 * a new sp with the correct access.
		 */
2270
		child = to_shadow_page(*sptep & SPTE_BASE_ADDR_MASK);
2271 2272 2273
		if (child->role.access == direct_access)
			return;

2274
		drop_parent_pte(child, sptep);
2275
		kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
2276 2277 2278
	}
}

2279 2280 2281
/* Returns the number of zapped non-leaf child shadow pages. */
static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
			    u64 *spte, struct list_head *invalid_list)
2282 2283 2284 2285 2286 2287
{
	u64 pte;
	struct kvm_mmu_page *child;

	pte = *spte;
	if (is_shadow_present_pte(pte)) {
X
Xiao Guangrong 已提交
2288
		if (is_last_spte(pte, sp->role.level)) {
2289
			drop_spte(kvm, spte);
X
Xiao Guangrong 已提交
2290
		} else {
2291
			child = to_shadow_page(pte & SPTE_BASE_ADDR_MASK);
2292
			drop_parent_pte(child, spte);
2293 2294 2295 2296 2297 2298 2299 2300 2301 2302

			/*
			 * Recursively zap nested TDP SPs, parentless SPs are
			 * unlikely to be used again in the near future.  This
			 * avoids retaining a large number of stale nested SPs.
			 */
			if (tdp_enabled && invalid_list &&
			    child->role.guest_mode && !child->parent_ptes.val)
				return kvm_mmu_prepare_zap_page(kvm, child,
								invalid_list);
2303
		}
2304
	} else if (is_mmio_spte(pte)) {
2305
		mmu_spte_clear_no_track(spte);
2306
	}
2307
	return 0;
2308 2309
}

2310 2311 2312
static int kvm_mmu_page_unlink_children(struct kvm *kvm,
					struct kvm_mmu_page *sp,
					struct list_head *invalid_list)
2313
{
2314
	int zapped = 0;
2315 2316
	unsigned i;

2317
	for (i = 0; i < SPTE_ENT_PER_PAGE; ++i)
2318 2319 2320
		zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list);

	return zapped;
2321 2322
}

2323
static void kvm_mmu_unlink_parents(struct kvm_mmu_page *sp)
2324
{
2325 2326
	u64 *sptep;
	struct rmap_iterator iter;
2327

2328
	while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2329
		drop_parent_pte(sp, sptep);
2330 2331
}

2332
static int mmu_zap_unsync_children(struct kvm *kvm,
2333 2334
				   struct kvm_mmu_page *parent,
				   struct list_head *invalid_list)
2335
{
2336 2337 2338
	int i, zapped = 0;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
2339

2340
	if (parent->role.level == PG_LEVEL_4K)
2341
		return 0;
2342 2343 2344 2345 2346

	while (mmu_unsync_walk(parent, &pages)) {
		struct kvm_mmu_page *sp;

		for_each_sp(pages, sp, parents, i) {
2347
			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2348
			mmu_pages_clear_parents(&parents);
2349
			zapped++;
2350 2351 2352 2353
		}
	}

	return zapped;
2354 2355
}

2356 2357 2358 2359
static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
				       struct kvm_mmu_page *sp,
				       struct list_head *invalid_list,
				       int *nr_zapped)
2360
{
2361
	bool list_unstable, zapped_root = false;
A
Avi Kivity 已提交
2362

2363
	trace_kvm_mmu_prepare_zap_page(sp);
2364
	++kvm->stat.mmu_shadow_zapped;
2365
	*nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2366
	*nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list);
2367
	kvm_mmu_unlink_parents(sp);
2368

2369 2370 2371
	/* Zapping children means active_mmu_pages has become unstable. */
	list_unstable = *nr_zapped;

L
Lai Jiangshan 已提交
2372
	if (!sp->role.invalid && sp_has_gptes(sp))
2373
		unaccount_shadowed(kvm, sp);
2374

2375 2376
	if (sp->unsync)
		kvm_unlink_unsync_page(kvm, sp);
2377
	if (!sp->root_count) {
2378
		/* Count self */
2379
		(*nr_zapped)++;
2380 2381 2382 2383 2384 2385 2386 2387 2388 2389

		/*
		 * Already invalid pages (previously active roots) are not on
		 * the active page list.  See list_del() in the "else" case of
		 * !sp->root_count.
		 */
		if (sp->role.invalid)
			list_add(&sp->link, invalid_list);
		else
			list_move(&sp->link, invalid_list);
2390
		kvm_mod_used_mmu_pages(kvm, -1);
2391
	} else {
2392 2393 2394 2395 2396
		/*
		 * Remove the active root from the active page list, the root
		 * will be explicitly freed when the root_count hits zero.
		 */
		list_del(&sp->link);
2397

2398 2399 2400 2401 2402
		/*
		 * Obsolete pages cannot be used on any vCPUs, see the comment
		 * in kvm_mmu_zap_all_fast().  Note, is_obsolete_sp() also
		 * treats invalid shadow pages as being obsolete.
		 */
2403
		zapped_root = !is_obsolete_sp(kvm, sp);
2404
	}
2405

P
Paolo Bonzini 已提交
2406 2407 2408
	if (sp->lpage_disallowed)
		unaccount_huge_nx_page(kvm, sp);

2409
	sp->role.invalid = 1;
2410 2411 2412 2413 2414 2415 2416

	/*
	 * Make the request to free obsolete roots after marking the root
	 * invalid, otherwise other vCPUs may not see it as invalid.
	 */
	if (zapped_root)
		kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS);
2417 2418 2419 2420 2421 2422 2423 2424 2425 2426
	return list_unstable;
}

static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				     struct list_head *invalid_list)
{
	int nr_zapped;

	__kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
	return nr_zapped;
2427 2428
}

2429 2430 2431
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list)
{
2432
	struct kvm_mmu_page *sp, *nsp;
2433 2434 2435 2436

	if (list_empty(invalid_list))
		return;

2437
	/*
2438 2439 2440 2441 2442 2443 2444
	 * We need to make sure everyone sees our modifications to
	 * the page tables and see changes to vcpu->mode here. The barrier
	 * in the kvm_flush_remote_tlbs() achieves this. This pairs
	 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
	 *
	 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
	 * guest mode and/or lockless shadow page table walks.
2445 2446
	 */
	kvm_flush_remote_tlbs(kvm);
2447

2448
	list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2449
		WARN_ON(!sp->role.invalid || sp->root_count);
2450
		kvm_mmu_free_shadow_page(sp);
2451
	}
2452 2453
}

2454 2455
static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm,
						  unsigned long nr_to_zap)
2456
{
2457 2458
	unsigned long total_zapped = 0;
	struct kvm_mmu_page *sp, *tmp;
2459
	LIST_HEAD(invalid_list);
2460 2461
	bool unstable;
	int nr_zapped;
2462 2463

	if (list_empty(&kvm->arch.active_mmu_pages))
2464 2465
		return 0;

2466
restart:
2467
	list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) {
2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478
		/*
		 * Don't zap active root pages, the page itself can't be freed
		 * and zapping it will just force vCPUs to realloc and reload.
		 */
		if (sp->root_count)
			continue;

		unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list,
						      &nr_zapped);
		total_zapped += nr_zapped;
		if (total_zapped >= nr_to_zap)
2479 2480
			break;

2481 2482
		if (unstable)
			goto restart;
2483
	}
2484

2485 2486 2487 2488 2489 2490
	kvm_mmu_commit_zap_page(kvm, &invalid_list);

	kvm->stat.mmu_recycled += total_zapped;
	return total_zapped;
}

2491 2492 2493 2494 2495 2496 2497
static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm)
{
	if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
		return kvm->arch.n_max_mmu_pages -
			kvm->arch.n_used_mmu_pages;

	return 0;
2498 2499
}

2500 2501
static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
{
2502
	unsigned long avail = kvm_mmu_available_pages(vcpu->kvm);
2503

2504
	if (likely(avail >= KVM_MIN_FREE_MMU_PAGES))
2505 2506
		return 0;

2507
	kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail);
2508

2509 2510 2511 2512 2513
	/*
	 * Note, this check is intentionally soft, it only guarantees that one
	 * page is available, while the caller may end up allocating as many as
	 * four pages, e.g. for PAE roots or for 5-level paging.  Temporarily
	 * exceeding the (arbitrary by default) limit will not harm the host,
I
Ingo Molnar 已提交
2514
	 * being too aggressive may unnecessarily kill the guest, and getting an
2515 2516 2517
	 * exact count is far more trouble than it's worth, especially in the
	 * page fault paths.
	 */
2518 2519 2520 2521 2522
	if (!kvm_mmu_available_pages(vcpu->kvm))
		return -ENOSPC;
	return 0;
}

2523 2524
/*
 * Changing the number of mmu pages allocated to the vm
2525
 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2526
 */
2527
void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2528
{
2529
	write_lock(&kvm->mmu_lock);
2530

2531
	if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2532 2533
		kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages -
						  goal_nr_mmu_pages);
2534

2535
		goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2536 2537
	}

2538
	kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2539

2540
	write_unlock(&kvm->mmu_lock);
2541 2542
}

2543
int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2544
{
2545
	struct kvm_mmu_page *sp;
2546
	LIST_HEAD(invalid_list);
2547 2548
	int r;

2549
	pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2550
	r = 0;
2551
	write_lock(&kvm->mmu_lock);
L
Lai Jiangshan 已提交
2552
	for_each_gfn_valid_sp_with_gptes(kvm, sp, gfn) {
2553
		pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2554 2555
			 sp->role.word);
		r = 1;
2556
		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2557
	}
2558
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2559
	write_unlock(&kvm->mmu_lock);
2560

2561
	return r;
2562
}
2563 2564 2565 2566 2567 2568

static int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
{
	gpa_t gpa;
	int r;

2569
	if (vcpu->arch.mmu->root_role.direct)
2570 2571 2572 2573 2574 2575 2576 2577
		return 0;

	gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);

	r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);

	return r;
}
2578

2579
static void kvm_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
2580 2581
{
	trace_kvm_mmu_unsync_page(sp);
2582
	++kvm->stat.mmu_unsync;
2583 2584 2585 2586 2587
	sp->unsync = 1;

	kvm_mmu_mark_parents_unsync(sp);
}

2588 2589 2590 2591 2592 2593
/*
 * Attempt to unsync any shadow pages that can be reached by the specified gfn,
 * KVM is creating a writable mapping for said gfn.  Returns 0 if all pages
 * were marked unsync (or if there is no shadow page), -EPERM if the SPTE must
 * be write-protected.
 */
2594
int mmu_try_to_unsync_pages(struct kvm *kvm, const struct kvm_memory_slot *slot,
2595
			    gfn_t gfn, bool can_unsync, bool prefetch)
2596
{
2597
	struct kvm_mmu_page *sp;
2598
	bool locked = false;
2599

2600 2601 2602 2603 2604
	/*
	 * Force write-protection if the page is being tracked.  Note, the page
	 * track machinery is used to write-protect upper-level shadow pages,
	 * i.e. this guards the role.level == 4K assertion below!
	 */
2605
	if (kvm_slot_page_track_is_active(kvm, slot, gfn, KVM_PAGE_TRACK_WRITE))
2606
		return -EPERM;
2607

2608 2609 2610 2611 2612 2613
	/*
	 * The page is not write-tracked, mark existing shadow pages unsync
	 * unless KVM is synchronizing an unsync SP (can_unsync = false).  In
	 * that case, KVM must complete emulation of the guest TLB flush before
	 * allowing shadow pages to become unsync (writable by the guest).
	 */
L
Lai Jiangshan 已提交
2614
	for_each_gfn_valid_sp_with_gptes(kvm, sp, gfn) {
2615
		if (!can_unsync)
2616
			return -EPERM;
2617

2618 2619
		if (sp->unsync)
			continue;
2620

2621
		if (prefetch)
2622 2623
			return -EEXIST;

2624 2625 2626 2627 2628 2629 2630 2631 2632
		/*
		 * TDP MMU page faults require an additional spinlock as they
		 * run with mmu_lock held for read, not write, and the unsync
		 * logic is not thread safe.  Take the spinklock regardless of
		 * the MMU type to avoid extra conditionals/parameters, there's
		 * no meaningful penalty if mmu_lock is held for write.
		 */
		if (!locked) {
			locked = true;
2633
			spin_lock(&kvm->arch.mmu_unsync_pages_lock);
2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646

			/*
			 * Recheck after taking the spinlock, a different vCPU
			 * may have since marked the page unsync.  A false
			 * positive on the unprotected check above is not
			 * possible as clearing sp->unsync _must_ hold mmu_lock
			 * for write, i.e. unsync cannot transition from 0->1
			 * while this CPU holds mmu_lock for read (or write).
			 */
			if (READ_ONCE(sp->unsync))
				continue;
		}

2647
		WARN_ON(sp->role.level != PG_LEVEL_4K);
2648
		kvm_unsync_page(kvm, sp);
2649
	}
2650
	if (locked)
2651
		spin_unlock(&kvm->arch.mmu_unsync_pages_lock);
2652

2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674
	/*
	 * We need to ensure that the marking of unsync pages is visible
	 * before the SPTE is updated to allow writes because
	 * kvm_mmu_sync_roots() checks the unsync flags without holding
	 * the MMU lock and so can race with this. If the SPTE was updated
	 * before the page had been marked as unsync-ed, something like the
	 * following could happen:
	 *
	 * CPU 1                    CPU 2
	 * ---------------------------------------------------------------------
	 * 1.2 Host updates SPTE
	 *     to be writable
	 *                      2.1 Guest writes a GPTE for GVA X.
	 *                          (GPTE being in the guest page table shadowed
	 *                           by the SP from CPU 1.)
	 *                          This reads SPTE during the page table walk.
	 *                          Since SPTE.W is read as 1, there is no
	 *                          fault.
	 *
	 *                      2.2 Guest issues TLB flush.
	 *                          That causes a VM Exit.
	 *
2675 2676
	 *                      2.3 Walking of unsync pages sees sp->unsync is
	 *                          false and skips the page.
2677 2678 2679 2680 2681 2682 2683 2684 2685 2686
	 *
	 *                      2.4 Guest accesses GVA X.
	 *                          Since the mapping in the SP was not updated,
	 *                          so the old mapping for GVA X incorrectly
	 *                          gets used.
	 * 1.1 Host marks SP
	 *     as unsync
	 *     (sp->unsync = true)
	 *
	 * The write barrier below ensures that 1.1 happens before 1.2 and thus
2687 2688
	 * the situation in 2.4 does not arise.  It pairs with the read barrier
	 * in is_unsync_root(), placed between 2.1's load of SPTE.W and 2.3.
2689 2690 2691
	 */
	smp_wmb();

2692
	return 0;
2693 2694
}

2695 2696
static int mmu_set_spte(struct kvm_vcpu *vcpu, struct kvm_memory_slot *slot,
			u64 *sptep, unsigned int pte_access, gfn_t gfn,
2697
			kvm_pfn_t pfn, struct kvm_page_fault *fault)
M
Marcelo Tosatti 已提交
2698
{
2699
	struct kvm_mmu_page *sp = sptep_to_sp(sptep);
2700
	int level = sp->role.level;
M
Marcelo Tosatti 已提交
2701
	int was_rmapped = 0;
2702
	int ret = RET_PF_FIXED;
2703
	bool flush = false;
2704
	bool wrprot;
2705
	u64 spte;
M
Marcelo Tosatti 已提交
2706

2707 2708
	/* Prefetching always gets a writable pfn.  */
	bool host_writable = !fault || fault->map_writable;
2709
	bool prefetch = !fault || fault->prefetch;
2710
	bool write_fault = fault && fault->write;
M
Marcelo Tosatti 已提交
2711

2712 2713
	pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
		 *sptep, write_fault, gfn);
M
Marcelo Tosatti 已提交
2714

2715
	if (unlikely(is_noslot_pfn(pfn))) {
2716
		vcpu->stat.pf_mmio_spte_created++;
2717 2718 2719 2720
		mark_mmio_spte(vcpu, sptep, gfn, pte_access);
		return RET_PF_EMULATE;
	}

2721
	if (is_shadow_present_pte(*sptep)) {
M
Marcelo Tosatti 已提交
2722 2723 2724 2725
		/*
		 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
		 * the parent of the now unreachable PTE.
		 */
2726
		if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) {
M
Marcelo Tosatti 已提交
2727
			struct kvm_mmu_page *child;
A
Avi Kivity 已提交
2728
			u64 pte = *sptep;
M
Marcelo Tosatti 已提交
2729

2730
			child = to_shadow_page(pte & SPTE_BASE_ADDR_MASK);
2731
			drop_parent_pte(child, sptep);
2732
			flush = true;
A
Avi Kivity 已提交
2733
		} else if (pfn != spte_to_pfn(*sptep)) {
2734
			pgprintk("hfn old %llx new %llx\n",
A
Avi Kivity 已提交
2735
				 spte_to_pfn(*sptep), pfn);
2736
			drop_spte(vcpu->kvm, sptep);
2737
			flush = true;
2738 2739
		} else
			was_rmapped = 1;
M
Marcelo Tosatti 已提交
2740
	}
2741

2742
	wrprot = make_spte(vcpu, sp, slot, pte_access, gfn, pfn, *sptep, prefetch,
2743
			   true, host_writable, &spte);
2744 2745 2746 2747 2748

	if (*sptep == spte) {
		ret = RET_PF_SPURIOUS;
	} else {
		flush |= mmu_spte_update(sptep, spte);
2749
		trace_kvm_mmu_set_spte(level, gfn, sptep);
2750 2751
	}

2752
	if (wrprot) {
M
Marcelo Tosatti 已提交
2753
		if (write_fault)
2754
			ret = RET_PF_EMULATE;
2755
	}
2756

2757
	if (flush)
2758 2759
		kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
				KVM_PAGES_PER_HPAGE(level));
M
Marcelo Tosatti 已提交
2760

A
Avi Kivity 已提交
2761
	pgprintk("%s: setting spte %llx\n", __func__, *sptep);
M
Marcelo Tosatti 已提交
2762

2763
	if (!was_rmapped) {
2764
		WARN_ON_ONCE(ret == RET_PF_SPURIOUS);
2765
		kvm_update_page_stats(vcpu->kvm, level, 1);
2766
		rmap_add(vcpu, slot, sptep, gfn);
2767
	}
2768

2769
	return ret;
2770 2771
}

2772 2773 2774 2775 2776
static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
				    struct kvm_mmu_page *sp,
				    u64 *start, u64 *end)
{
	struct page *pages[PTE_PREFETCH_NUM];
2777
	struct kvm_memory_slot *slot;
2778
	unsigned int access = sp->role.access;
2779 2780 2781 2782
	int i, ret;
	gfn_t gfn;

	gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2783 2784
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
	if (!slot)
2785 2786
		return -1;

2787
	ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2788 2789 2790
	if (ret <= 0)
		return -1;

2791
	for (i = 0; i < ret; i++, gfn++, start++) {
2792
		mmu_set_spte(vcpu, slot, start, access, gfn,
2793
			     page_to_pfn(pages[i]), NULL);
2794 2795
		put_page(pages[i]);
	}
2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811

	return 0;
}

static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
				  struct kvm_mmu_page *sp, u64 *sptep)
{
	u64 *spte, *start = NULL;
	int i;

	WARN_ON(!sp->role.direct);

	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
	spte = sp->spt + i;

	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2812
		if (is_shadow_present_pte(*spte) || spte == sptep) {
2813 2814 2815
			if (!start)
				continue;
			if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2816
				return;
2817 2818 2819 2820
			start = NULL;
		} else if (!start)
			start = spte;
	}
2821 2822
	if (start)
		direct_pte_prefetch_many(vcpu, sp, start, spte);
2823 2824 2825 2826 2827 2828
}

static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
{
	struct kvm_mmu_page *sp;

2829
	sp = sptep_to_sp(sptep);
2830

2831
	/*
2832 2833 2834
	 * Without accessed bits, there's no way to distinguish between
	 * actually accessed translations and prefetched, so disable pte
	 * prefetch if accessed bits aren't available.
2835
	 */
2836
	if (sp_ad_disabled(sp))
2837 2838
		return;

2839
	if (sp->role.level > PG_LEVEL_4K)
2840 2841
		return;

2842 2843 2844 2845 2846 2847 2848
	/*
	 * If addresses are being invalidated, skip prefetching to avoid
	 * accidentally prefetching those addresses.
	 */
	if (unlikely(vcpu->kvm->mmu_notifier_count))
		return;

2849 2850 2851
	__direct_pte_prefetch(vcpu, sp, sptep);
}

2852
static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn,
2853
				  const struct kvm_memory_slot *slot)
2854
{
2855
	int level = PG_LEVEL_4K;
2856
	struct page *page;
2857
	unsigned long hva;
2858 2859 2860 2861 2862
	unsigned long flags;
	pgd_t pgd;
	p4d_t p4d;
	pud_t pud;
	pmd_t pmd;
2863

2864 2865 2866 2867 2868 2869 2870 2871
	/*
	 * Note, @slot must be non-NULL, i.e. the caller is responsible for
	 * ensuring @pfn isn't garbage and is backed by a memslot.
	 */
	page = kvm_pfn_to_refcounted_page(pfn);
	if (!page)
		return PG_LEVEL_4K;

2872
	if (!PageCompound(page) && !kvm_is_zone_device_page(page))
2873
		return PG_LEVEL_4K;
2874

2875 2876 2877 2878 2879 2880 2881 2882
	/*
	 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
	 * is not solely for performance, it's also necessary to avoid the
	 * "writable" check in __gfn_to_hva_many(), which will always fail on
	 * read-only memslots due to gfn_to_hva() assuming writes.  Earlier
	 * page fault steps have already verified the guest isn't writing a
	 * read-only memslot.
	 */
2883 2884
	hva = __gfn_to_hva_memslot(slot, gfn);

2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902
	/*
	 * Lookup the mapping level in the current mm.  The information
	 * may become stale soon, but it is safe to use as long as
	 * 1) mmu_notifier_retry was checked after taking mmu_lock, and
	 * 2) mmu_lock is taken now.
	 *
	 * We still need to disable IRQs to prevent concurrent tear down
	 * of page tables.
	 */
	local_irq_save(flags);

	pgd = READ_ONCE(*pgd_offset(kvm->mm, hva));
	if (pgd_none(pgd))
		goto out;

	p4d = READ_ONCE(*p4d_offset(&pgd, hva));
	if (p4d_none(p4d) || !p4d_present(p4d))
		goto out;
2903

2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921
	pud = READ_ONCE(*pud_offset(&p4d, hva));
	if (pud_none(pud) || !pud_present(pud))
		goto out;

	if (pud_large(pud)) {
		level = PG_LEVEL_1G;
		goto out;
	}

	pmd = READ_ONCE(*pmd_offset(&pud, hva));
	if (pmd_none(pmd) || !pmd_present(pmd))
		goto out;

	if (pmd_large(pmd))
		level = PG_LEVEL_2M;

out:
	local_irq_restore(flags);
2922 2923 2924
	return level;
}

2925 2926 2927
int kvm_mmu_max_mapping_level(struct kvm *kvm,
			      const struct kvm_memory_slot *slot, gfn_t gfn,
			      kvm_pfn_t pfn, int max_level)
2928 2929
{
	struct kvm_lpage_info *linfo;
2930
	int host_level;
2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941

	max_level = min(max_level, max_huge_page_level);
	for ( ; max_level > PG_LEVEL_4K; max_level--) {
		linfo = lpage_info_slot(gfn, slot, max_level);
		if (!linfo->disallow_lpage)
			break;
	}

	if (max_level == PG_LEVEL_4K)
		return PG_LEVEL_4K;

2942 2943
	host_level = host_pfn_mapping_level(kvm, gfn, pfn, slot);
	return min(host_level, max_level);
2944 2945
}

2946
void kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
2947
{
2948
	struct kvm_memory_slot *slot = fault->slot;
2949 2950
	kvm_pfn_t mask;

2951
	fault->huge_page_disallowed = fault->exec && fault->nx_huge_page_workaround_enabled;
2952

2953 2954
	if (unlikely(fault->max_level == PG_LEVEL_4K))
		return;
2955

2956
	if (is_error_noslot_pfn(fault->pfn))
2957
		return;
2958

2959
	if (kvm_slot_dirty_track_enabled(slot))
2960
		return;
2961

2962 2963 2964 2965
	/*
	 * Enforce the iTLB multihit workaround after capturing the requested
	 * level, which will be used to do precise, accurate accounting.
	 */
2966 2967 2968 2969 2970
	fault->req_level = kvm_mmu_max_mapping_level(vcpu->kvm, slot,
						     fault->gfn, fault->pfn,
						     fault->max_level);
	if (fault->req_level == PG_LEVEL_4K || fault->huge_page_disallowed)
		return;
2971 2972

	/*
2973 2974
	 * mmu_notifier_retry() was successful and mmu_lock is held, so
	 * the pmd can't be split from under us.
2975
	 */
2976 2977 2978 2979
	fault->goal_level = fault->req_level;
	mask = KVM_PAGES_PER_HPAGE(fault->goal_level) - 1;
	VM_BUG_ON((fault->gfn & mask) != (fault->pfn & mask));
	fault->pfn &= ~mask;
2980 2981
}

2982
void disallowed_hugepage_adjust(struct kvm_page_fault *fault, u64 spte, int cur_level)
P
Paolo Bonzini 已提交
2983
{
2984 2985
	if (cur_level > PG_LEVEL_4K &&
	    cur_level == fault->goal_level &&
P
Paolo Bonzini 已提交
2986 2987 2988 2989 2990 2991 2992 2993 2994
	    is_shadow_present_pte(spte) &&
	    !is_large_pte(spte)) {
		/*
		 * A small SPTE exists for this pfn, but FNAME(fetch)
		 * and __direct_map would like to create a large PTE
		 * instead: just force them to go down another level,
		 * patching back for them into pfn the next 9 bits of
		 * the address.
		 */
2995 2996 2997 2998
		u64 page_mask = KVM_PAGES_PER_HPAGE(cur_level) -
				KVM_PAGES_PER_HPAGE(cur_level - 1);
		fault->pfn |= fault->gfn & page_mask;
		fault->goal_level--;
P
Paolo Bonzini 已提交
2999 3000 3001
	}
}

3002
static int __direct_map(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
3003
{
3004
	struct kvm_shadow_walk_iterator it;
3005
	struct kvm_mmu_page *sp;
3006
	int ret;
3007
	gfn_t base_gfn = fault->gfn;
A
Avi Kivity 已提交
3008

3009
	kvm_mmu_hugepage_adjust(vcpu, fault);
3010

3011
	trace_kvm_mmu_spte_requested(fault);
3012
	for_each_shadow_entry(vcpu, fault->addr, it) {
P
Paolo Bonzini 已提交
3013 3014 3015 3016
		/*
		 * We cannot overwrite existing page tables with an NX
		 * large page, as the leaf could be executable.
		 */
3017
		if (fault->nx_huge_page_workaround_enabled)
3018
			disallowed_hugepage_adjust(fault, *it.sptep, it.level);
P
Paolo Bonzini 已提交
3019

3020
		base_gfn = fault->gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
3021
		if (it.level == fault->goal_level)
3022
			break;
A
Avi Kivity 已提交
3023

3024
		drop_large_spte(vcpu, it.sptep);
3025 3026 3027
		if (is_shadow_present_pte(*it.sptep))
			continue;

3028
		sp = kvm_mmu_get_child_sp(vcpu, it.sptep, base_gfn, true, ACC_ALL);
3029 3030

		link_shadow_page(vcpu, it.sptep, sp);
3031 3032
		if (fault->is_tdp && fault->huge_page_disallowed &&
		    fault->req_level >= it.level)
3033
			account_huge_nx_page(vcpu->kvm, sp);
3034
	}
3035

3036 3037 3038
	if (WARN_ON_ONCE(it.level != fault->goal_level))
		return -EFAULT;

3039
	ret = mmu_set_spte(vcpu, fault->slot, it.sptep, ACC_ALL,
3040
			   base_gfn, fault->pfn, fault);
3041 3042 3043
	if (ret == RET_PF_SPURIOUS)
		return ret;

3044 3045
	direct_pte_prefetch(vcpu, it.sptep);
	return ret;
A
Avi Kivity 已提交
3046 3047
}

H
Huang Ying 已提交
3048
static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
3049
{
3050
	send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
3051 3052
}

D
Dan Williams 已提交
3053
static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
3054
{
X
Xiao Guangrong 已提交
3055 3056 3057 3058 3059 3060
	/*
	 * Do not cache the mmio info caused by writing the readonly gfn
	 * into the spte otherwise read access on readonly gfn also can
	 * caused mmio page fault and treat it as mmio access.
	 */
	if (pfn == KVM_PFN_ERR_RO_FAULT)
3061
		return RET_PF_EMULATE;
X
Xiao Guangrong 已提交
3062

3063
	if (pfn == KVM_PFN_ERR_HWPOISON) {
3064
		kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
3065
		return RET_PF_RETRY;
3066
	}
3067

3068
	return -EFAULT;
3069 3070
}

3071 3072
static int handle_abnormal_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault,
			       unsigned int access)
3073 3074
{
	/* The pfn is invalid, report the error! */
3075 3076
	if (unlikely(is_error_pfn(fault->pfn)))
		return kvm_handle_bad_page(vcpu, fault->gfn, fault->pfn);
3077

3078
	if (unlikely(!fault->slot)) {
3079 3080 3081
		gva_t gva = fault->is_tdp ? 0 : fault->addr;

		vcpu_cache_mmio_info(vcpu, gva, fault->gfn,
3082
				     access & shadow_mmio_access_mask);
3083 3084 3085
		/*
		 * If MMIO caching is disabled, emulate immediately without
		 * touching the shadow page tables as attempting to install an
3086 3087 3088 3089 3090 3091
		 * MMIO SPTE will just be an expensive nop.  Do not cache MMIO
		 * whose gfn is greater than host.MAXPHYADDR, any guest that
		 * generates such gfns is running nested and is being tricked
		 * by L0 userspace (you can observe gfn > L1.MAXPHYADDR if
		 * and only if L1's MAXPHYADDR is inaccurate with respect to
		 * the hardware's).
3092
		 */
3093
		if (unlikely(!enable_mmio_caching) ||
3094 3095
		    unlikely(fault->gfn > kvm_mmu_max_gfn()))
			return RET_PF_EMULATE;
3096
	}
3097

3098
	return RET_PF_CONTINUE;
3099 3100
}

3101
static bool page_fault_can_be_fast(struct kvm_page_fault *fault)
3102
{
3103
	/*
3104 3105 3106 3107
	 * Page faults with reserved bits set, i.e. faults on MMIO SPTEs, only
	 * reach the common page fault handler if the SPTE has an invalid MMIO
	 * generation number.  Refreshing the MMIO generation needs to go down
	 * the slow path.  Note, EPT Misconfigs do NOT set the PRESENT flag!
3108
	 */
3109
	if (fault->rsvd)
3110 3111
		return false;

3112
	/*
3113 3114
	 * #PF can be fast if:
	 *
3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125
	 * 1. The shadow page table entry is not present and A/D bits are
	 *    disabled _by KVM_, which could mean that the fault is potentially
	 *    caused by access tracking (if enabled).  If A/D bits are enabled
	 *    by KVM, but disabled by L1 for L2, KVM is forced to disable A/D
	 *    bits for L2 and employ access tracking, but the fast page fault
	 *    mechanism only supports direct MMUs.
	 * 2. The shadow page table entry is present, the access is a write,
	 *    and no reserved bits are set (MMIO SPTEs cannot be "fixed"), i.e.
	 *    the fault was caused by a write-protection violation.  If the
	 *    SPTE is MMU-writable (determined later), the fault can be fixed
	 *    by setting the Writable bit, which can be done out of mmu_lock.
3126
	 */
3127 3128 3129 3130 3131 3132 3133 3134
	if (!fault->present)
		return !kvm_ad_enabled();

	/*
	 * Note, instruction fetches and writes are mutually exclusive, ignore
	 * the "exec" flag.
	 */
	return fault->write;
3135 3136
}

3137 3138 3139 3140
/*
 * Returns true if the SPTE was fixed successfully. Otherwise,
 * someone else modified the SPTE from its original value.
 */
3141
static bool
3142
fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault,
3143
			u64 *sptep, u64 old_spte, u64 new_spte)
3144
{
3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156
	/*
	 * Theoretically we could also set dirty bit (and flush TLB) here in
	 * order to eliminate unnecessary PML logging. See comments in
	 * set_spte. But fast_page_fault is very unlikely to happen with PML
	 * enabled, so we do not do this. This might result in the same GPA
	 * to be logged in PML buffer again when the write really happens, and
	 * eventually to be called by mark_page_dirty twice. But it's also no
	 * harm. This also avoids the TLB flush needed after setting dirty bit
	 * so non-PML cases won't be impacted.
	 *
	 * Compare with set_spte where instead shadow_dirty_mask is set.
	 */
3157
	if (!try_cmpxchg64(sptep, &old_spte, new_spte))
3158 3159
		return false;

3160 3161
	if (is_writable_pte(new_spte) && !is_writable_pte(old_spte))
		mark_page_dirty_in_slot(vcpu->kvm, fault->slot, fault->gfn);
3162 3163 3164 3165

	return true;
}

3166
static bool is_access_allowed(struct kvm_page_fault *fault, u64 spte)
3167
{
3168
	if (fault->exec)
3169 3170
		return is_executable_pte(spte);

3171
	if (fault->write)
3172 3173 3174 3175 3176 3177
		return is_writable_pte(spte);

	/* Fault was on Read access */
	return spte & PT_PRESENT_MASK;
}

3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200
/*
 * Returns the last level spte pointer of the shadow page walk for the given
 * gpa, and sets *spte to the spte value. This spte may be non-preset. If no
 * walk could be performed, returns NULL and *spte does not contain valid data.
 *
 * Contract:
 *  - Must be called between walk_shadow_page_lockless_{begin,end}.
 *  - The returned sptep must not be used after walk_shadow_page_lockless_end.
 */
static u64 *fast_pf_get_last_sptep(struct kvm_vcpu *vcpu, gpa_t gpa, u64 *spte)
{
	struct kvm_shadow_walk_iterator iterator;
	u64 old_spte;
	u64 *sptep = NULL;

	for_each_shadow_entry_lockless(vcpu, gpa, iterator, old_spte) {
		sptep = iterator.sptep;
		*spte = old_spte;
	}

	return sptep;
}

3201
/*
3202
 * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS.
3203
 */
3204
static int fast_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
3205
{
3206
	struct kvm_mmu_page *sp;
3207
	int ret = RET_PF_INVALID;
3208
	u64 spte = 0ull;
3209
	u64 *sptep = NULL;
3210
	uint retry_count = 0;
3211

3212
	if (!page_fault_can_be_fast(fault))
3213
		return ret;
3214 3215 3216

	walk_shadow_page_lockless_begin(vcpu);

3217
	do {
3218
		u64 new_spte;
3219

3220
		if (is_tdp_mmu(vcpu->arch.mmu))
3221
			sptep = kvm_tdp_mmu_fast_pf_get_last_sptep(vcpu, fault->addr, &spte);
3222
		else
3223
			sptep = fast_pf_get_last_sptep(vcpu, fault->addr, &spte);
3224

3225 3226 3227
		if (!is_shadow_present_pte(spte))
			break;

3228
		sp = sptep_to_sp(sptep);
3229 3230
		if (!is_last_spte(spte, sp->role.level))
			break;
3231

3232
		/*
3233 3234 3235 3236 3237
		 * Check whether the memory access that caused the fault would
		 * still cause it if it were to be performed right now. If not,
		 * then this is a spurious fault caused by TLB lazily flushed,
		 * or some other CPU has already fixed the PTE after the
		 * current CPU took the fault.
3238 3239 3240 3241
		 *
		 * Need not check the access of upper level table entries since
		 * they are always ACC_ALL.
		 */
3242
		if (is_access_allowed(fault, spte)) {
3243
			ret = RET_PF_SPURIOUS;
3244 3245
			break;
		}
3246

3247 3248
		new_spte = spte;

3249 3250 3251 3252 3253 3254 3255
		/*
		 * KVM only supports fixing page faults outside of MMU lock for
		 * direct MMUs, nested MMUs are always indirect, and KVM always
		 * uses A/D bits for non-nested MMUs.  Thus, if A/D bits are
		 * enabled, the SPTE can't be an access-tracked SPTE.
		 */
		if (unlikely(!kvm_ad_enabled()) && is_access_track_spte(spte))
3256 3257 3258
			new_spte = restore_acc_track_spte(new_spte);

		/*
3259 3260 3261 3262 3263 3264 3265 3266 3267
		 * To keep things simple, only SPTEs that are MMU-writable can
		 * be made fully writable outside of mmu_lock, e.g. only SPTEs
		 * that were write-protected for dirty-logging or access
		 * tracking are handled here.  Don't bother checking if the
		 * SPTE is writable to prioritize running with A/D bits enabled.
		 * The is_access_allowed() check above handles the common case
		 * of the fault being spurious, and the SPTE is known to be
		 * shadow-present, i.e. except for access tracking restoration
		 * making the new SPTE writable, the check is wasteful.
3268
		 */
3269
		if (fault->write && is_mmu_writable_spte(spte)) {
3270
			new_spte |= PT_WRITABLE_MASK;
3271 3272

			/*
3273 3274 3275
			 * Do not fix write-permission on the large spte when
			 * dirty logging is enabled. Since we only dirty the
			 * first page into the dirty-bitmap in
3276 3277 3278 3279 3280
			 * fast_pf_fix_direct_spte(), other pages are missed
			 * if its slot has dirty logging enabled.
			 *
			 * Instead, we let the slow page fault path create a
			 * normal spte to fix the access.
3281
			 */
3282 3283
			if (sp->role.level > PG_LEVEL_4K &&
			    kvm_slot_dirty_track_enabled(fault->slot))
3284
				break;
3285
		}
3286

3287
		/* Verify that the fault can be handled in the fast path */
3288
		if (new_spte == spte ||
3289
		    !is_access_allowed(fault, new_spte))
3290 3291 3292 3293 3294
			break;

		/*
		 * Currently, fast page fault only works for direct mapping
		 * since the gfn is not stable for indirect shadow page. See
3295
		 * Documentation/virt/kvm/locking.rst to get more detail.
3296
		 */
3297
		if (fast_pf_fix_direct_spte(vcpu, fault, sptep, spte, new_spte)) {
3298
			ret = RET_PF_FIXED;
3299
			break;
3300
		}
3301 3302 3303 3304 3305 3306 3307 3308

		if (++retry_count > 4) {
			printk_once(KERN_WARNING
				"kvm: Fast #PF retrying more than 4 times.\n");
			break;
		}

	} while (true);
3309

3310
	trace_fast_page_fault(vcpu, fault, sptep, spte, ret);
3311 3312
	walk_shadow_page_lockless_end(vcpu);

3313 3314 3315
	if (ret != RET_PF_INVALID)
		vcpu->stat.pf_fast++;

3316
	return ret;
3317 3318
}

3319 3320
static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
			       struct list_head *invalid_list)
3321
{
3322
	struct kvm_mmu_page *sp;
3323

3324
	if (!VALID_PAGE(*root_hpa))
A
Avi Kivity 已提交
3325
		return;
3326

3327
	sp = to_shadow_page(*root_hpa & SPTE_BASE_ADDR_MASK);
3328 3329
	if (WARN_ON(!sp))
		return;
3330

3331
	if (is_tdp_mmu_page(sp))
3332
		kvm_tdp_mmu_put_root(kvm, sp, false);
3333 3334
	else if (!--sp->root_count && sp->role.invalid)
		kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3335

3336 3337 3338
	*root_hpa = INVALID_PAGE;
}

3339
/* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
3340
void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu,
3341
			ulong roots_to_free)
3342 3343 3344
{
	int i;
	LIST_HEAD(invalid_list);
3345
	bool free_active_root;
3346

3347
	BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3348

3349
	/* Before acquiring the MMU lock, see if we need to do any real work. */
3350 3351 3352 3353
	free_active_root = (roots_to_free & KVM_MMU_ROOT_CURRENT)
		&& VALID_PAGE(mmu->root.hpa);

	if (!free_active_root) {
3354 3355 3356 3357 3358 3359 3360 3361
		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
			if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
			    VALID_PAGE(mmu->prev_roots[i].hpa))
				break;

		if (i == KVM_MMU_NUM_PREV_ROOTS)
			return;
	}
3362

3363
	write_lock(&kvm->mmu_lock);
3364

3365 3366
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
		if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3367
			mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa,
3368
					   &invalid_list);
3369

3370
	if (free_active_root) {
3371
		if (to_shadow_page(mmu->root.hpa)) {
3372
			mmu_free_root_page(kvm, &mmu->root.hpa, &invalid_list);
3373
		} else if (mmu->pae_root) {
3374 3375 3376 3377 3378 3379 3380 3381
			for (i = 0; i < 4; ++i) {
				if (!IS_VALID_PAE_ROOT(mmu->pae_root[i]))
					continue;

				mmu_free_root_page(kvm, &mmu->pae_root[i],
						   &invalid_list);
				mmu->pae_root[i] = INVALID_PAE_ROOT;
			}
3382
		}
3383 3384
		mmu->root.hpa = INVALID_PAGE;
		mmu->root.pgd = 0;
3385
	}
3386

3387
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
3388
	write_unlock(&kvm->mmu_lock);
3389
}
3390
EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3391

3392
void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu)
3393 3394 3395 3396 3397 3398 3399 3400 3401
{
	unsigned long roots_to_free = 0;
	hpa_t root_hpa;
	int i;

	/*
	 * This should not be called while L2 is active, L2 can't invalidate
	 * _only_ its own roots, e.g. INVVPID unconditionally exits.
	 */
3402
	WARN_ON_ONCE(mmu->root_role.guest_mode);
3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413

	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
		root_hpa = mmu->prev_roots[i].hpa;
		if (!VALID_PAGE(root_hpa))
			continue;

		if (!to_shadow_page(root_hpa) ||
			to_shadow_page(root_hpa)->role.guest_mode)
			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
	}

3414
	kvm_mmu_free_roots(kvm, mmu, roots_to_free);
3415 3416 3417 3418
}
EXPORT_SYMBOL_GPL(kvm_mmu_free_guest_mode_roots);


3419 3420 3421 3422
static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
{
	int ret = 0;

3423
	if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) {
3424
		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3425 3426 3427 3428 3429 3430
		ret = 1;
	}

	return ret;
}

3431
static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, int quadrant,
3432
			    u8 level)
3433
{
3434
	union kvm_mmu_page_role role = vcpu->arch.mmu->root_role;
3435
	struct kvm_mmu_page *sp;
3436

3437
	role.level = level;
3438
	role.quadrant = quadrant;
3439

3440 3441
	WARN_ON_ONCE(quadrant && !role.has_4_byte_gpte);
	WARN_ON_ONCE(role.direct && role.has_4_byte_gpte);
3442

3443
	sp = kvm_mmu_get_shadow_page(vcpu, gfn, role);
3444 3445 3446 3447 3448 3449 3450
	++sp->root_count;

	return __pa(sp->spt);
}

static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
{
3451
	struct kvm_mmu *mmu = vcpu->arch.mmu;
3452
	u8 shadow_root_level = mmu->root_role.level;
3453
	hpa_t root;
3454
	unsigned i;
3455 3456 3457 3458 3459 3460
	int r;

	write_lock(&vcpu->kvm->mmu_lock);
	r = make_mmu_pages_available(vcpu);
	if (r < 0)
		goto out_unlock;
3461

3462
	if (is_tdp_mmu_enabled(vcpu->kvm)) {
3463
		root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu);
3464
		mmu->root.hpa = root;
3465
	} else if (shadow_root_level >= PT64_ROOT_4LEVEL) {
3466
		root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level);
3467
		mmu->root.hpa = root;
3468
	} else if (shadow_root_level == PT32E_ROOT_LEVEL) {
3469 3470 3471 3472
		if (WARN_ON_ONCE(!mmu->pae_root)) {
			r = -EIO;
			goto out_unlock;
		}
3473

3474
		for (i = 0; i < 4; ++i) {
3475
			WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3476

3477
			root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT), 0,
3478
					      PT32_ROOT_LEVEL);
3479
			mmu->pae_root[i] = root | PT_PRESENT_MASK |
3480
					   shadow_me_value;
3481
		}
3482
		mmu->root.hpa = __pa(mmu->pae_root);
3483 3484
	} else {
		WARN_ONCE(1, "Bad TDP root level = %d\n", shadow_root_level);
3485 3486
		r = -EIO;
		goto out_unlock;
3487
	}
3488

3489 3490
	/* root.pgd is ignored for direct MMUs. */
	mmu->root.pgd = 0;
3491 3492 3493
out_unlock:
	write_unlock(&vcpu->kvm->mmu_lock);
	return r;
3494 3495
}

3496 3497 3498 3499
static int mmu_first_shadow_root_alloc(struct kvm *kvm)
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *slot;
3500
	int r = 0, i, bkt;
3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524

	/*
	 * Check if this is the first shadow root being allocated before
	 * taking the lock.
	 */
	if (kvm_shadow_root_allocated(kvm))
		return 0;

	mutex_lock(&kvm->slots_arch_lock);

	/* Recheck, under the lock, whether this is the first shadow root. */
	if (kvm_shadow_root_allocated(kvm))
		goto out_unlock;

	/*
	 * Check if anything actually needs to be allocated, e.g. all metadata
	 * will be allocated upfront if TDP is disabled.
	 */
	if (kvm_memslots_have_rmaps(kvm) &&
	    kvm_page_track_write_tracking_enabled(kvm))
		goto out_success;

	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
3525
		kvm_for_each_memslot(slot, bkt, slots) {
3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556
			/*
			 * Both of these functions are no-ops if the target is
			 * already allocated, so unconditionally calling both
			 * is safe.  Intentionally do NOT free allocations on
			 * failure to avoid having to track which allocations
			 * were made now versus when the memslot was created.
			 * The metadata is guaranteed to be freed when the slot
			 * is freed, and will be kept/used if userspace retries
			 * KVM_RUN instead of killing the VM.
			 */
			r = memslot_rmap_alloc(slot, slot->npages);
			if (r)
				goto out_unlock;
			r = kvm_page_track_write_tracking_alloc(slot);
			if (r)
				goto out_unlock;
		}
	}

	/*
	 * Ensure that shadow_root_allocated becomes true strictly after
	 * all the related pointers are set.
	 */
out_success:
	smp_store_release(&kvm->arch.shadow_root_allocated, true);

out_unlock:
	mutex_unlock(&kvm->slots_arch_lock);
	return r;
}

3557
static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3558
{
3559
	struct kvm_mmu *mmu = vcpu->arch.mmu;
3560
	u64 pdptrs[4], pm_mask;
3561
	gfn_t root_gfn, root_pgd;
3562
	int quadrant, i, r;
3563
	hpa_t root;
3564

3565
	root_pgd = mmu->get_guest_pgd(vcpu);
3566
	root_gfn = root_pgd >> PAGE_SHIFT;
3567

3568 3569 3570
	if (mmu_check_root(vcpu, root_gfn))
		return 1;

3571 3572 3573 3574
	/*
	 * On SVM, reading PDPTRs might access guest memory, which might fault
	 * and thus might sleep.  Grab the PDPTRs before acquiring mmu_lock.
	 */
3575
	if (mmu->cpu_role.base.level == PT32E_ROOT_LEVEL) {
3576 3577 3578 3579 3580 3581 3582 3583 3584 3585
		for (i = 0; i < 4; ++i) {
			pdptrs[i] = mmu->get_pdptr(vcpu, i);
			if (!(pdptrs[i] & PT_PRESENT_MASK))
				continue;

			if (mmu_check_root(vcpu, pdptrs[i] >> PAGE_SHIFT))
				return 1;
		}
	}

3586
	r = mmu_first_shadow_root_alloc(vcpu->kvm);
3587 3588 3589
	if (r)
		return r;

3590 3591 3592 3593 3594
	write_lock(&vcpu->kvm->mmu_lock);
	r = make_mmu_pages_available(vcpu);
	if (r < 0)
		goto out_unlock;

3595 3596 3597 3598
	/*
	 * Do we shadow a long mode page table? If so we need to
	 * write-protect the guests page table root.
	 */
3599
	if (mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL) {
3600
		root = mmu_alloc_root(vcpu, root_gfn, 0,
3601
				      mmu->root_role.level);
3602
		mmu->root.hpa = root;
3603
		goto set_root_pgd;
3604
	}
3605

3606 3607 3608 3609
	if (WARN_ON_ONCE(!mmu->pae_root)) {
		r = -EIO;
		goto out_unlock;
	}
3610

3611 3612
	/*
	 * We shadow a 32 bit page table. This may be a legacy 2-level
3613 3614
	 * or a PAE 3-level page table. In either case we need to be aware that
	 * the shadow page table may be a PAE or a long mode page table.
3615
	 */
3616
	pm_mask = PT_PRESENT_MASK | shadow_me_value;
3617
	if (mmu->root_role.level >= PT64_ROOT_4LEVEL) {
3618 3619
		pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;

3620
		if (WARN_ON_ONCE(!mmu->pml4_root)) {
3621 3622 3623
			r = -EIO;
			goto out_unlock;
		}
3624
		mmu->pml4_root[0] = __pa(mmu->pae_root) | pm_mask;
3625

3626
		if (mmu->root_role.level == PT64_ROOT_5LEVEL) {
3627 3628 3629 3630 3631 3632
			if (WARN_ON_ONCE(!mmu->pml5_root)) {
				r = -EIO;
				goto out_unlock;
			}
			mmu->pml5_root[0] = __pa(mmu->pml4_root) | pm_mask;
		}
3633 3634
	}

3635
	for (i = 0; i < 4; ++i) {
3636
		WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3637

3638
		if (mmu->cpu_role.base.level == PT32E_ROOT_LEVEL) {
3639
			if (!(pdptrs[i] & PT_PRESENT_MASK)) {
3640
				mmu->pae_root[i] = INVALID_PAE_ROOT;
A
Avi Kivity 已提交
3641 3642
				continue;
			}
3643
			root_gfn = pdptrs[i] >> PAGE_SHIFT;
3644
		}
3645

3646 3647 3648 3649 3650 3651 3652 3653 3654
		/*
		 * If shadowing 32-bit non-PAE page tables, each PAE page
		 * directory maps one quarter of the guest's non-PAE page
		 * directory. Othwerise each PAE page direct shadows one guest
		 * PAE page directory so that quadrant should be 0.
		 */
		quadrant = (mmu->cpu_role.base.level == PT32_ROOT_LEVEL) ? i : 0;

		root = mmu_alloc_root(vcpu, root_gfn, quadrant, PT32_ROOT_LEVEL);
3655
		mmu->pae_root[i] = root | pm_mask;
3656
	}
3657

3658
	if (mmu->root_role.level == PT64_ROOT_5LEVEL)
3659
		mmu->root.hpa = __pa(mmu->pml5_root);
3660
	else if (mmu->root_role.level == PT64_ROOT_4LEVEL)
3661
		mmu->root.hpa = __pa(mmu->pml4_root);
3662
	else
3663
		mmu->root.hpa = __pa(mmu->pae_root);
3664

3665
set_root_pgd:
3666
	mmu->root.pgd = root_pgd;
3667 3668
out_unlock:
	write_unlock(&vcpu->kvm->mmu_lock);
3669

3670
	return r;
3671 3672
}

3673 3674 3675
static int mmu_alloc_special_roots(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu *mmu = vcpu->arch.mmu;
3676
	bool need_pml5 = mmu->root_role.level > PT64_ROOT_4LEVEL;
3677 3678 3679
	u64 *pml5_root = NULL;
	u64 *pml4_root = NULL;
	u64 *pae_root;
3680 3681

	/*
3682 3683 3684 3685
	 * When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP
	 * tables are allocated and initialized at root creation as there is no
	 * equivalent level in the guest's NPT to shadow.  Allocate the tables
	 * on demand, as running a 32-bit L1 VMM on 64-bit KVM is very rare.
3686
	 */
3687 3688
	if (mmu->root_role.direct ||
	    mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL ||
3689
	    mmu->root_role.level < PT64_ROOT_4LEVEL)
3690
		return 0;
3691

3692 3693 3694 3695 3696 3697 3698 3699
	/*
	 * NPT, the only paging mode that uses this horror, uses a fixed number
	 * of levels for the shadow page tables, e.g. all MMUs are 4-level or
	 * all MMus are 5-level.  Thus, this can safely require that pml5_root
	 * is allocated if the other roots are valid and pml5 is needed, as any
	 * prior MMU would also have required pml5.
	 */
	if (mmu->pae_root && mmu->pml4_root && (!need_pml5 || mmu->pml5_root))
3700
		return 0;
3701

3702 3703 3704 3705
	/*
	 * The special roots should always be allocated in concert.  Yell and
	 * bail if KVM ends up in a state where only one of the roots is valid.
	 */
3706
	if (WARN_ON_ONCE(!tdp_enabled || mmu->pae_root || mmu->pml4_root ||
3707
			 (need_pml5 && mmu->pml5_root)))
3708
		return -EIO;
3709

3710 3711 3712 3713
	/*
	 * Unlike 32-bit NPT, the PDP table doesn't need to be in low mem, and
	 * doesn't need to be decrypted.
	 */
3714 3715 3716
	pae_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
	if (!pae_root)
		return -ENOMEM;
3717

3718
#ifdef CONFIG_X86_64
3719
	pml4_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3720 3721 3722
	if (!pml4_root)
		goto err_pml4;

3723
	if (need_pml5) {
3724 3725 3726
		pml5_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
		if (!pml5_root)
			goto err_pml5;
3727
	}
3728
#endif
3729

3730
	mmu->pae_root = pae_root;
3731
	mmu->pml4_root = pml4_root;
3732
	mmu->pml5_root = pml5_root;
3733

3734
	return 0;
3735 3736 3737 3738 3739 3740 3741 3742

#ifdef CONFIG_X86_64
err_pml5:
	free_page((unsigned long)pml4_root);
err_pml4:
	free_page((unsigned long)pae_root);
	return -ENOMEM;
#endif
3743 3744
}

3745 3746 3747 3748
static bool is_unsync_root(hpa_t root)
{
	struct kvm_mmu_page *sp;

3749 3750 3751
	if (!VALID_PAGE(root))
		return false;

3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765
	/*
	 * The read barrier orders the CPU's read of SPTE.W during the page table
	 * walk before the reads of sp->unsync/sp->unsync_children here.
	 *
	 * Even if another CPU was marking the SP as unsync-ed simultaneously,
	 * any guest page table changes are not guaranteed to be visible anyway
	 * until this VCPU issues a TLB flush strictly after those changes are
	 * made.  We only need to ensure that the other CPU sets these flags
	 * before any actual changes to the page tables are made.  The comments
	 * in mmu_try_to_unsync_pages() describe what could go wrong if this
	 * requirement isn't satisfied.
	 */
	smp_rmb();
	sp = to_shadow_page(root);
3766 3767 3768 3769 3770 3771 3772 3773

	/*
	 * PAE roots (somewhat arbitrarily) aren't backed by shadow pages, the
	 * PDPTEs for a given PAE root need to be synchronized individually.
	 */
	if (WARN_ON_ONCE(!sp))
		return false;

3774 3775 3776 3777 3778 3779
	if (sp->unsync || sp->unsync_children)
		return true;

	return false;
}

3780
void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3781 3782 3783 3784
{
	int i;
	struct kvm_mmu_page *sp;

3785
	if (vcpu->arch.mmu->root_role.direct)
3786 3787
		return;

3788
	if (!VALID_PAGE(vcpu->arch.mmu->root.hpa))
3789
		return;
3790

3791
	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3792

3793
	if (vcpu->arch.mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL) {
3794
		hpa_t root = vcpu->arch.mmu->root.hpa;
3795
		sp = to_shadow_page(root);
3796

3797
		if (!is_unsync_root(root))
3798 3799
			return;

3800
		write_lock(&vcpu->kvm->mmu_lock);
3801
		mmu_sync_children(vcpu, sp, true);
3802
		write_unlock(&vcpu->kvm->mmu_lock);
3803 3804
		return;
	}
3805

3806
	write_lock(&vcpu->kvm->mmu_lock);
3807

3808
	for (i = 0; i < 4; ++i) {
3809
		hpa_t root = vcpu->arch.mmu->pae_root[i];
3810

3811
		if (IS_VALID_PAE_ROOT(root)) {
3812
			root &= SPTE_BASE_ADDR_MASK;
3813
			sp = to_shadow_page(root);
3814
			mmu_sync_children(vcpu, sp, true);
3815 3816 3817
		}
	}

3818
	write_unlock(&vcpu->kvm->mmu_lock);
3819 3820
}

3821 3822 3823 3824 3825 3826 3827 3828 3829 3830
void kvm_mmu_sync_prev_roots(struct kvm_vcpu *vcpu)
{
	unsigned long roots_to_free = 0;
	int i;

	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
		if (is_unsync_root(vcpu->arch.mmu->prev_roots[i].hpa))
			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);

	/* sync prev_roots by simply freeing them */
3831
	kvm_mmu_free_roots(vcpu->kvm, vcpu->arch.mmu, roots_to_free);
3832 3833
}

3834
static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3835
				  gpa_t vaddr, u64 access,
3836
				  struct x86_exception *exception)
A
Avi Kivity 已提交
3837
{
3838 3839
	if (exception)
		exception->error_code = 0;
3840
	return kvm_translate_gpa(vcpu, mmu, vaddr, access, exception);
3841 3842
}

3843
static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3844
{
3845 3846 3847 3848 3849 3850 3851
	/*
	 * A nested guest cannot use the MMIO cache if it is using nested
	 * page tables, because cr2 is a nGPA while the cache stores GPAs.
	 */
	if (mmu_is_nested(vcpu))
		return false;

3852 3853 3854 3855 3856 3857
	if (direct)
		return vcpu_match_mmio_gpa(vcpu, addr);

	return vcpu_match_mmio_gva(vcpu, addr);
}

3858 3859 3860
/*
 * Return the level of the lowest level SPTE added to sptes.
 * That SPTE may be non-present.
3861 3862
 *
 * Must be called between walk_shadow_page_lockless_{begin,end}.
3863
 */
3864
static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level)
3865 3866
{
	struct kvm_shadow_walk_iterator iterator;
3867
	int leaf = -1;
3868
	u64 spte;
3869

3870 3871
	for (shadow_walk_init(&iterator, vcpu, addr),
	     *root_level = iterator.level;
3872 3873
	     shadow_walk_okay(&iterator);
	     __shadow_walk_next(&iterator, spte)) {
3874
		leaf = iterator.level;
3875 3876
		spte = mmu_spte_get_lockless(iterator.sptep);

3877
		sptes[leaf] = spte;
3878 3879 3880 3881 3882
	}

	return leaf;
}

3883
/* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */
3884 3885
static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
{
3886
	u64 sptes[PT64_ROOT_MAX_LEVEL + 1];
3887
	struct rsvd_bits_validate *rsvd_check;
3888
	int root, leaf, level;
3889 3890
	bool reserved = false;

3891 3892
	walk_shadow_page_lockless_begin(vcpu);

3893
	if (is_tdp_mmu(vcpu->arch.mmu))
3894
		leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, &root);
3895
	else
3896
		leaf = get_walk(vcpu, addr, sptes, &root);
3897

3898 3899
	walk_shadow_page_lockless_end(vcpu);

3900 3901 3902 3903 3904
	if (unlikely(leaf < 0)) {
		*sptep = 0ull;
		return reserved;
	}

3905 3906 3907 3908 3909 3910 3911 3912 3913 3914
	*sptep = sptes[leaf];

	/*
	 * Skip reserved bits checks on the terminal leaf if it's not a valid
	 * SPTE.  Note, this also (intentionally) skips MMIO SPTEs, which, by
	 * design, always have reserved bits set.  The purpose of the checks is
	 * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs.
	 */
	if (!is_shadow_present_pte(sptes[leaf]))
		leaf++;
3915 3916 3917

	rsvd_check = &vcpu->arch.mmu->shadow_zero_check;

3918
	for (level = root; level >= leaf; level--)
3919
		reserved |= is_rsvd_spte(rsvd_check, sptes[level], level);
3920 3921

	if (reserved) {
3922
		pr_err("%s: reserved bits set on MMU-present spte, addr 0x%llx, hierarchy:\n",
3923
		       __func__, addr);
3924
		for (level = root; level >= leaf; level--)
3925 3926
			pr_err("------ spte = 0x%llx level = %d, rsvd bits = 0x%llx",
			       sptes[level], level,
3927
			       get_rsvd_bits(rsvd_check, sptes[level], level));
3928
	}
3929

3930
	return reserved;
3931 3932
}

P
Paolo Bonzini 已提交
3933
static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3934 3935
{
	u64 spte;
3936
	bool reserved;
3937

3938
	if (mmio_info_in_cache(vcpu, addr, direct))
3939
		return RET_PF_EMULATE;
3940

3941
	reserved = get_mmio_spte(vcpu, addr, &spte);
3942
	if (WARN_ON(reserved))
3943
		return -EINVAL;
3944 3945 3946

	if (is_mmio_spte(spte)) {
		gfn_t gfn = get_mmio_spte_gfn(spte);
3947
		unsigned int access = get_mmio_spte_access(spte);
3948

3949
		if (!check_mmio_spte(vcpu, spte))
3950
			return RET_PF_INVALID;
3951

3952 3953
		if (direct)
			addr = 0;
X
Xiao Guangrong 已提交
3954 3955

		trace_handle_mmio_page_fault(addr, gfn, access);
3956
		vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3957
		return RET_PF_EMULATE;
3958 3959 3960 3961 3962 3963
	}

	/*
	 * If the page table is zapped by other cpus, let CPU fault again on
	 * the address.
	 */
3964
	return RET_PF_RETRY;
3965 3966
}

3967
static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3968
					 struct kvm_page_fault *fault)
3969
{
3970
	if (unlikely(fault->rsvd))
3971 3972
		return false;

3973
	if (!fault->present || !fault->write)
3974 3975 3976 3977 3978 3979
		return false;

	/*
	 * guest is writing the page which is write tracked which can
	 * not be fixed by page fault handler.
	 */
3980
	if (kvm_slot_page_track_is_active(vcpu->kvm, fault->slot, fault->gfn, KVM_PAGE_TRACK_WRITE))
3981 3982 3983 3984 3985
		return true;

	return false;
}

3986 3987 3988 3989 3990 3991
static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
{
	struct kvm_shadow_walk_iterator iterator;
	u64 spte;

	walk_shadow_page_lockless_begin(vcpu);
3992
	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
3993 3994 3995 3996
		clear_sp_write_flooding_count(iterator.sptep);
	walk_shadow_page_lockless_end(vcpu);
}

3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007
static u32 alloc_apf_token(struct kvm_vcpu *vcpu)
{
	/* make sure the token value is not 0 */
	u32 id = vcpu->arch.apf.id;

	if (id << 12 == 0)
		vcpu->arch.apf.id = 1;

	return (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
}

4008 4009
static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
				    gfn_t gfn)
4010 4011
{
	struct kvm_arch_async_pf arch;
X
Xiao Guangrong 已提交
4012

4013
	arch.token = alloc_apf_token(vcpu);
4014
	arch.gfn = gfn;
4015
	arch.direct_map = vcpu->arch.mmu->root_role.direct;
4016
	arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu);
4017

4018 4019
	return kvm_setup_async_pf(vcpu, cr2_or_gpa,
				  kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
4020 4021
}

4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040
void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
{
	int r;

	if ((vcpu->arch.mmu->root_role.direct != work->arch.direct_map) ||
	      work->wakeup_all)
		return;

	r = kvm_mmu_reload(vcpu);
	if (unlikely(r))
		return;

	if (!vcpu->arch.mmu->root_role.direct &&
	      work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu))
		return;

	kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true);
}

4041
static int kvm_faultin_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
4042
{
4043
	struct kvm_memory_slot *slot = fault->slot;
4044 4045
	bool async;

4046 4047 4048 4049 4050 4051
	/*
	 * Retry the page fault if the gfn hit a memslot that is being deleted
	 * or moved.  This ensures any existing SPTEs for the old memslot will
	 * be zapped before KVM inserts a new MMIO SPTE for the gfn.
	 */
	if (slot && (slot->flags & KVM_MEMSLOT_INVALID))
4052
		return RET_PF_RETRY;
4053

4054 4055 4056
	if (!kvm_is_visible_memslot(slot)) {
		/* Don't expose private memslots to L2. */
		if (is_guest_mode(vcpu)) {
4057
			fault->slot = NULL;
4058 4059
			fault->pfn = KVM_PFN_NOSLOT;
			fault->map_writable = false;
4060
			return RET_PF_CONTINUE;
4061 4062 4063 4064 4065 4066 4067 4068
		}
		/*
		 * If the APIC access page exists but is disabled, go directly
		 * to emulation without caching the MMIO access or creating a
		 * MMIO SPTE.  That way the cache doesn't need to be purged
		 * when the AVIC is re-enabled.
		 */
		if (slot && slot->id == APIC_ACCESS_PAGE_PRIVATE_MEMSLOT &&
4069 4070
		    !kvm_apicv_activated(vcpu->kvm))
			return RET_PF_EMULATE;
4071 4072
	}

4073
	async = false;
4074 4075 4076
	fault->pfn = __gfn_to_pfn_memslot(slot, fault->gfn, false, &async,
					  fault->write, &fault->map_writable,
					  &fault->hva);
4077
	if (!async)
4078
		return RET_PF_CONTINUE; /* *pfn has correct page already */
4079

4080
	if (!fault->prefetch && kvm_can_do_async_pf(vcpu)) {
4081 4082 4083
		trace_kvm_try_async_get_page(fault->addr, fault->gfn);
		if (kvm_find_async_pf_gfn(vcpu, fault->gfn)) {
			trace_kvm_async_pf_doublefault(fault->addr, fault->gfn);
4084
			kvm_make_request(KVM_REQ_APF_HALT, vcpu);
4085 4086 4087 4088
			return RET_PF_RETRY;
		} else if (kvm_arch_setup_async_pf(vcpu, fault->addr, fault->gfn)) {
			return RET_PF_RETRY;
		}
4089 4090
	}

4091 4092 4093
	fault->pfn = __gfn_to_pfn_memslot(slot, fault->gfn, false, NULL,
					  fault->write, &fault->map_writable,
					  &fault->hva);
4094
	return RET_PF_CONTINUE;
4095 4096
}

4097 4098 4099 4100 4101 4102 4103
/*
 * Returns true if the page fault is stale and needs to be retried, i.e. if the
 * root was invalidated by a memslot update or a relevant mmu_notifier fired.
 */
static bool is_page_fault_stale(struct kvm_vcpu *vcpu,
				struct kvm_page_fault *fault, int mmu_seq)
{
4104
	struct kvm_mmu_page *sp = to_shadow_page(vcpu->arch.mmu->root.hpa);
4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117

	/* Special roots, e.g. pae_root, are not backed by shadow pages. */
	if (sp && is_obsolete_sp(vcpu->kvm, sp))
		return true;

	/*
	 * Roots without an associated shadow page are considered invalid if
	 * there is a pending request to free obsolete roots.  The request is
	 * only a hint that the current root _may_ be obsolete and needs to be
	 * reloaded, e.g. if the guest frees a PGD that KVM is tracking as a
	 * previous root, then __kvm_mmu_prepare_zap_page() signals all vCPUs
	 * to reload even if no vCPU is actively using the root.
	 */
4118
	if (!sp && kvm_test_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
4119 4120 4121 4122 4123 4124
		return true;

	return fault->slot &&
	       mmu_notifier_retry_hva(vcpu->kvm, mmu_seq, fault->hva);
}

4125
static int direct_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
A
Avi Kivity 已提交
4126
{
4127
	bool is_tdp_mmu_fault = is_tdp_mmu(vcpu->arch.mmu);
A
Avi Kivity 已提交
4128

4129
	unsigned long mmu_seq;
4130
	int r;
4131

4132
	fault->gfn = fault->addr >> PAGE_SHIFT;
4133 4134
	fault->slot = kvm_vcpu_gfn_to_memslot(vcpu, fault->gfn);

4135
	if (page_fault_handle_page_track(vcpu, fault))
4136
		return RET_PF_EMULATE;
4137

4138
	r = fast_page_fault(vcpu, fault);
4139 4140
	if (r != RET_PF_INVALID)
		return r;
4141

4142
	r = mmu_topup_memory_caches(vcpu, false);
4143 4144
	if (r)
		return r;
4145

4146 4147 4148
	mmu_seq = vcpu->kvm->mmu_notifier_seq;
	smp_rmb();

4149 4150
	r = kvm_faultin_pfn(vcpu, fault);
	if (r != RET_PF_CONTINUE)
4151
		return r;
4152

4153 4154
	r = handle_abnormal_pfn(vcpu, fault, ACC_ALL);
	if (r != RET_PF_CONTINUE)
4155
		return r;
A
Avi Kivity 已提交
4156

4157
	r = RET_PF_RETRY;
4158

4159
	if (is_tdp_mmu_fault)
4160 4161 4162 4163
		read_lock(&vcpu->kvm->mmu_lock);
	else
		write_lock(&vcpu->kvm->mmu_lock);

4164
	if (is_page_fault_stale(vcpu, fault, mmu_seq))
4165
		goto out_unlock;
4166

4167 4168
	r = make_mmu_pages_available(vcpu);
	if (r)
4169
		goto out_unlock;
B
Ben Gardon 已提交
4170

4171
	if (is_tdp_mmu_fault)
4172
		r = kvm_tdp_mmu_map(vcpu, fault);
B
Ben Gardon 已提交
4173
	else
4174
		r = __direct_map(vcpu, fault);
4175

4176
out_unlock:
4177
	if (is_tdp_mmu_fault)
4178 4179 4180
		read_unlock(&vcpu->kvm->mmu_lock);
	else
		write_unlock(&vcpu->kvm->mmu_lock);
4181
	kvm_release_pfn_clean(fault->pfn);
4182
	return r;
A
Avi Kivity 已提交
4183 4184
}

4185 4186
static int nonpaging_page_fault(struct kvm_vcpu *vcpu,
				struct kvm_page_fault *fault)
4187
{
4188
	pgprintk("%s: gva %lx error %x\n", __func__, fault->addr, fault->error_code);
4189 4190

	/* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
4191 4192
	fault->max_level = PG_LEVEL_2M;
	return direct_page_fault(vcpu, fault);
4193 4194
}

4195
int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
4196
				u64 fault_address, char *insn, int insn_len)
4197 4198
{
	int r = 1;
4199
	u32 flags = vcpu->arch.apf.host_apf_flags;
4200

4201 4202 4203 4204 4205 4206
#ifndef CONFIG_X86_64
	/* A 64-bit CR2 should be impossible on 32-bit KVM. */
	if (WARN_ON_ONCE(fault_address >> 32))
		return -EFAULT;
#endif

P
Paolo Bonzini 已提交
4207
	vcpu->arch.l1tf_flush_l1d = true;
4208
	if (!flags) {
4209 4210
		trace_kvm_page_fault(fault_address, error_code);

4211
		if (kvm_event_needs_reinjection(vcpu))
4212 4213 4214
			kvm_mmu_unprotect_page_virt(vcpu, fault_address);
		r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
				insn_len);
4215
	} else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
4216
		vcpu->arch.apf.host_apf_flags = 0;
4217
		local_irq_disable();
4218
		kvm_async_pf_task_wait_schedule(fault_address);
4219
		local_irq_enable();
4220 4221
	} else {
		WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags);
4222
	}
4223

4224 4225 4226 4227
	return r;
}
EXPORT_SYMBOL_GPL(kvm_handle_page_fault);

4228
int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
4229
{
4230 4231 4232
	while (fault->max_level > PG_LEVEL_4K) {
		int page_num = KVM_PAGES_PER_HPAGE(fault->max_level);
		gfn_t base = (fault->addr >> PAGE_SHIFT) & ~(page_num - 1);
4233

4234 4235
		if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
			break;
4236 4237

		--fault->max_level;
4238
	}
4239

4240
	return direct_page_fault(vcpu, fault);
4241 4242
}

4243
static void nonpaging_init_context(struct kvm_mmu *context)
A
Avi Kivity 已提交
4244 4245 4246
{
	context->page_fault = nonpaging_page_fault;
	context->gva_to_gpa = nonpaging_gva_to_gpa;
4247
	context->sync_page = nonpaging_sync_page;
4248
	context->invlpg = NULL;
A
Avi Kivity 已提交
4249 4250
}

4251
static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd,
4252 4253
				  union kvm_mmu_page_role role)
{
4254
	return (role.direct || pgd == root->pgd) &&
4255
	       VALID_PAGE(root->hpa) &&
4256
	       role.word == to_shadow_page(root->hpa)->role.word;
4257 4258
}

4259
/*
4260 4261 4262 4263 4264 4265
 * Find out if a previously cached root matching the new pgd/role is available,
 * and insert the current root as the MRU in the cache.
 * If a matching root is found, it is assigned to kvm_mmu->root and
 * true is returned.
 * If no match is found, kvm_mmu->root is left invalid, the LRU root is
 * evicted to make room for the current root, and false is returned.
4266
 */
4267 4268 4269
static bool cached_root_find_and_keep_current(struct kvm *kvm, struct kvm_mmu *mmu,
					      gpa_t new_pgd,
					      union kvm_mmu_page_role new_role)
4270 4271 4272
{
	uint i;

4273
	if (is_root_usable(&mmu->root, new_pgd, new_role))
4274 4275
		return true;

4276
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
4277 4278 4279 4280 4281 4282 4283 4284
		/*
		 * The swaps end up rotating the cache like this:
		 *   C   0 1 2 3   (on entry to the function)
		 *   0   C 1 2 3
		 *   1   C 0 2 3
		 *   2   C 0 1 3
		 *   3   C 0 1 2   (on exit from the loop)
		 */
4285 4286
		swap(mmu->root, mmu->prev_roots[i]);
		if (is_root_usable(&mmu->root, new_pgd, new_role))
4287
			return true;
4288 4289
	}

4290 4291
	kvm_mmu_free_roots(kvm, mmu, KVM_MMU_ROOT_CURRENT);
	return false;
4292 4293
}

4294 4295 4296 4297 4298 4299 4300 4301 4302 4303
/*
 * Find out if a previously cached root matching the new pgd/role is available.
 * On entry, mmu->root is invalid.
 * If a matching root is found, it is assigned to kvm_mmu->root, the LRU entry
 * of the cache becomes invalid, and true is returned.
 * If no match is found, kvm_mmu->root is left invalid and false is returned.
 */
static bool cached_root_find_without_current(struct kvm *kvm, struct kvm_mmu *mmu,
					     gpa_t new_pgd,
					     union kvm_mmu_page_role new_role)
A
Avi Kivity 已提交
4304
{
4305 4306 4307 4308 4309
	uint i;

	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
		if (is_root_usable(&mmu->prev_roots[i], new_pgd, new_role))
			goto hit;
4310

4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324
	return false;

hit:
	swap(mmu->root, mmu->prev_roots[i]);
	/* Bubble up the remaining roots.  */
	for (; i < KVM_MMU_NUM_PREV_ROOTS - 1; i++)
		mmu->prev_roots[i] = mmu->prev_roots[i + 1];
	mmu->prev_roots[i].hpa = INVALID_PAGE;
	return true;
}

static bool fast_pgd_switch(struct kvm *kvm, struct kvm_mmu *mmu,
			    gpa_t new_pgd, union kvm_mmu_page_role new_role)
{
4325
	/*
4326
	 * For now, limit the caching to 64-bit hosts+VMs in order to avoid
4327 4328 4329
	 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
	 * later if necessary.
	 */
4330 4331
	if (VALID_PAGE(mmu->root.hpa) && !to_shadow_page(mmu->root.hpa))
		kvm_mmu_free_roots(kvm, mmu, KVM_MMU_ROOT_CURRENT);
4332

4333 4334 4335 4336
	if (VALID_PAGE(mmu->root.hpa))
		return cached_root_find_and_keep_current(kvm, mmu, new_pgd, new_role);
	else
		return cached_root_find_without_current(kvm, mmu, new_pgd, new_role);
A
Avi Kivity 已提交
4337 4338
}

4339
void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd)
A
Avi Kivity 已提交
4340
{
4341
	struct kvm_mmu *mmu = vcpu->arch.mmu;
4342
	union kvm_mmu_page_role new_role = mmu->root_role;
4343

4344 4345
	if (!fast_pgd_switch(vcpu->kvm, mmu, new_pgd, new_role)) {
		/* kvm_mmu_ensure_valid_pgd will set up a new root.  */
4346 4347 4348 4349 4350 4351
		return;
	}

	/*
	 * It's possible that the cached previous root page is obsolete because
	 * of a change in the MMU generation number. However, changing the
4352 4353
	 * generation number is accompanied by KVM_REQ_MMU_FREE_OBSOLETE_ROOTS,
	 * which will free the root set here and allocate a new one.
4354 4355 4356
	 */
	kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);

4357
	if (force_flush_and_sync_on_reuse) {
4358 4359
		kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
4360
	}
4361 4362 4363 4364 4365 4366 4367 4368 4369

	/*
	 * The last MMIO access's GVA and GPA are cached in the VCPU. When
	 * switching to a new CR3, that GVA->GPA mapping may no longer be
	 * valid. So clear any cached MMIO info even when we don't need to sync
	 * the shadow page tables.
	 */
	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);

4370 4371 4372 4373 4374 4375
	/*
	 * If this is a direct root page, it doesn't have a write flooding
	 * count. Otherwise, clear the write flooding count.
	 */
	if (!new_role.direct)
		__clear_sp_write_flooding_count(
4376
				to_shadow_page(vcpu->arch.mmu->root.hpa));
A
Avi Kivity 已提交
4377
}
4378
EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd);
4379

4380 4381
static unsigned long get_cr3(struct kvm_vcpu *vcpu)
{
4382
	return kvm_read_cr3(vcpu);
4383 4384
}

4385
static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
4386
			   unsigned int access)
4387 4388 4389 4390 4391 4392 4393
{
	if (unlikely(is_mmio_spte(*sptep))) {
		if (gfn != get_mmio_spte_gfn(*sptep)) {
			mmu_spte_clear_no_track(sptep);
			return true;
		}

4394
		mark_mmio_spte(vcpu, sptep, gfn, access);
4395 4396 4397 4398 4399 4400
		return true;
	}

	return false;
}

4401 4402 4403 4404 4405
#define PTTYPE_EPT 18 /* arbitrary */
#define PTTYPE PTTYPE_EPT
#include "paging_tmpl.h"
#undef PTTYPE

A
Avi Kivity 已提交
4406 4407 4408 4409 4410 4411 4412 4413
#define PTTYPE 64
#include "paging_tmpl.h"
#undef PTTYPE

#define PTTYPE 32
#include "paging_tmpl.h"
#undef PTTYPE

4414
static void
4415
__reset_rsvds_bits_mask(struct rsvd_bits_validate *rsvd_check,
4416
			u64 pa_bits_rsvd, int level, bool nx, bool gbpages,
4417
			bool pse, bool amd)
4418
{
4419
	u64 gbpages_bit_rsvd = 0;
4420
	u64 nonleaf_bit8_rsvd = 0;
4421
	u64 high_bits_rsvd;
4422

4423
	rsvd_check->bad_mt_xwr = 0;
4424

4425
	if (!gbpages)
4426
		gbpages_bit_rsvd = rsvd_bits(7, 7);
4427

4428 4429 4430 4431 4432 4433 4434 4435 4436
	if (level == PT32E_ROOT_LEVEL)
		high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 62);
	else
		high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);

	/* Note, NX doesn't exist in PDPTEs, this is handled below. */
	if (!nx)
		high_bits_rsvd |= rsvd_bits(63, 63);

4437 4438 4439 4440
	/*
	 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
	 * leaf entries) on AMD CPUs only.
	 */
4441
	if (amd)
4442 4443
		nonleaf_bit8_rsvd = rsvd_bits(8, 8);

4444
	switch (level) {
4445 4446
	case PT32_ROOT_LEVEL:
		/* no rsvd bits for 2 level 4K page table entries */
4447 4448 4449 4450
		rsvd_check->rsvd_bits_mask[0][1] = 0;
		rsvd_check->rsvd_bits_mask[0][0] = 0;
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
4451

4452
		if (!pse) {
4453
			rsvd_check->rsvd_bits_mask[1][1] = 0;
4454 4455 4456
			break;
		}

4457 4458
		if (is_cpuid_PSE36())
			/* 36bits PSE 4MB page */
4459
			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4460 4461
		else
			/* 32 bits PSE 4MB page */
4462
			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4463 4464
		break;
	case PT32E_ROOT_LEVEL:
4465 4466 4467 4468 4469 4470 4471 4472
		rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) |
						   high_bits_rsvd |
						   rsvd_bits(5, 8) |
						   rsvd_bits(1, 2);	/* PDPTE */
		rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;	/* PDE */
		rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;	/* PTE */
		rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
						   rsvd_bits(13, 20);	/* large page */
4473 4474
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
4475
		break;
4476
	case PT64_ROOT_5LEVEL:
4477 4478 4479
		rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd |
						   nonleaf_bit8_rsvd |
						   rsvd_bits(7, 7);
4480 4481
		rsvd_check->rsvd_bits_mask[1][4] =
			rsvd_check->rsvd_bits_mask[0][4];
4482
		fallthrough;
4483
	case PT64_ROOT_4LEVEL:
4484 4485 4486 4487 4488 4489 4490
		rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd |
						   nonleaf_bit8_rsvd |
						   rsvd_bits(7, 7);
		rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd |
						   gbpages_bit_rsvd;
		rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;
		rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4491 4492
		rsvd_check->rsvd_bits_mask[1][3] =
			rsvd_check->rsvd_bits_mask[0][3];
4493 4494 4495 4496 4497
		rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd |
						   gbpages_bit_rsvd |
						   rsvd_bits(13, 29);
		rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
						   rsvd_bits(13, 20); /* large page */
4498 4499
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
4500 4501 4502 4503
		break;
	}
}

4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518
static bool guest_can_use_gbpages(struct kvm_vcpu *vcpu)
{
	/*
	 * If TDP is enabled, let the guest use GBPAGES if they're supported in
	 * hardware.  The hardware page walker doesn't let KVM disable GBPAGES,
	 * i.e. won't treat them as reserved, and KVM doesn't redo the GVA->GPA
	 * walk for performance and complexity reasons.  Not to mention KVM
	 * _can't_ solve the problem because GVA->GPA walks aren't visible to
	 * KVM once a TDP translation is installed.  Mimic hardware behavior so
	 * that KVM's is at least consistent, i.e. doesn't randomly inject #PF.
	 */
	return tdp_enabled ? boot_cpu_has(X86_FEATURE_GBPAGES) :
			     guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES);
}

4519 4520
static void reset_guest_rsvds_bits_mask(struct kvm_vcpu *vcpu,
					struct kvm_mmu *context)
4521
{
4522
	__reset_rsvds_bits_mask(&context->guest_rsvd_check,
4523
				vcpu->arch.reserved_gpa_bits,
4524
				context->cpu_role.base.level, is_efer_nx(context),
4525
				guest_can_use_gbpages(vcpu),
4526
				is_cr4_pse(context),
4527
				guest_cpuid_is_amd_or_hygon(vcpu));
4528 4529
}

4530 4531
static void
__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4532
			    u64 pa_bits_rsvd, bool execonly, int huge_page_level)
4533
{
4534
	u64 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
4535
	u64 large_1g_rsvd = 0, large_2m_rsvd = 0;
4536
	u64 bad_mt_xwr;
4537

4538 4539 4540 4541 4542
	if (huge_page_level < PG_LEVEL_1G)
		large_1g_rsvd = rsvd_bits(7, 7);
	if (huge_page_level < PG_LEVEL_2M)
		large_2m_rsvd = rsvd_bits(7, 7);

4543 4544
	rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7);
	rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7);
4545 4546
	rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6) | large_1g_rsvd;
	rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6) | large_2m_rsvd;
4547
	rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4548 4549

	/* large page */
4550
	rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4551
	rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4552 4553
	rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29) | large_1g_rsvd;
	rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20) | large_2m_rsvd;
4554
	rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4555

4556 4557 4558 4559 4560 4561 4562 4563
	bad_mt_xwr = 0xFFull << (2 * 8);	/* bits 3..5 must not be 2 */
	bad_mt_xwr |= 0xFFull << (3 * 8);	/* bits 3..5 must not be 3 */
	bad_mt_xwr |= 0xFFull << (7 * 8);	/* bits 3..5 must not be 7 */
	bad_mt_xwr |= REPEAT_BYTE(1ull << 2);	/* bits 0..2 must not be 010 */
	bad_mt_xwr |= REPEAT_BYTE(1ull << 6);	/* bits 0..2 must not be 110 */
	if (!execonly) {
		/* bits 0..2 must not be 100 unless VMX capabilities allow it */
		bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4564
	}
4565
	rsvd_check->bad_mt_xwr = bad_mt_xwr;
4566 4567
}

4568
static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4569
		struct kvm_mmu *context, bool execonly, int huge_page_level)
4570 4571
{
	__reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4572 4573
				    vcpu->arch.reserved_gpa_bits, execonly,
				    huge_page_level);
4574 4575
}

4576 4577 4578 4579 4580
static inline u64 reserved_hpa_bits(void)
{
	return rsvd_bits(shadow_phys_bits, 63);
}

4581 4582 4583 4584 4585
/*
 * the page table on host is the shadow page table for the page
 * table in guest or amd nested guest, its mmu features completely
 * follow the features in guest.
 */
4586 4587
static void reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
					struct kvm_mmu *context)
4588
{
4589 4590 4591 4592
	/* @amd adds a check on bit of SPTEs, which KVM shouldn't use anyways. */
	bool is_amd = true;
	/* KVM doesn't use 2-level page tables for the shadow MMU. */
	bool is_pse = false;
4593 4594
	struct rsvd_bits_validate *shadow_zero_check;
	int i;
4595

4596
	WARN_ON_ONCE(context->root_role.level < PT32E_ROOT_LEVEL);
4597

4598
	shadow_zero_check = &context->shadow_zero_check;
4599
	__reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(),
4600
				context->root_role.level,
4601
				context->root_role.efer_nx,
4602
				guest_can_use_gbpages(vcpu), is_pse, is_amd);
4603 4604 4605 4606

	if (!shadow_me_mask)
		return;

4607
	for (i = context->root_role.level; --i >= 0;) {
4608 4609 4610 4611 4612 4613 4614 4615 4616 4617
		/*
		 * So far shadow_me_value is a constant during KVM's life
		 * time.  Bits in shadow_me_value are allowed to be set.
		 * Bits in shadow_me_mask but not in shadow_me_value are
		 * not allowed to be set.
		 */
		shadow_zero_check->rsvd_bits_mask[0][i] |= shadow_me_mask;
		shadow_zero_check->rsvd_bits_mask[1][i] |= shadow_me_mask;
		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_value;
		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_value;
4618 4619
	}

4620 4621
}

4622 4623 4624 4625 4626 4627
static inline bool boot_cpu_is_amd(void)
{
	WARN_ON_ONCE(!tdp_enabled);
	return shadow_x_mask == 0;
}

4628 4629 4630 4631 4632
/*
 * the direct page table on host, use as much mmu features as
 * possible, however, kvm currently does not do execution-protection.
 */
static void
4633
reset_tdp_shadow_zero_bits_mask(struct kvm_mmu *context)
4634
{
4635 4636 4637 4638 4639
	struct rsvd_bits_validate *shadow_zero_check;
	int i;

	shadow_zero_check = &context->shadow_zero_check;

4640
	if (boot_cpu_is_amd())
4641
		__reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(),
4642
					context->root_role.level, false,
4643
					boot_cpu_has(X86_FEATURE_GBPAGES),
4644
					false, true);
4645
	else
4646
		__reset_rsvds_bits_mask_ept(shadow_zero_check,
4647 4648
					    reserved_hpa_bits(), false,
					    max_huge_page_level);
4649

4650 4651 4652
	if (!shadow_me_mask)
		return;

4653
	for (i = context->root_role.level; --i >= 0;) {
4654 4655 4656
		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
	}
4657 4658 4659 4660 4661 4662 4663
}

/*
 * as the comments in reset_shadow_zero_bits_mask() except it
 * is the shadow page table for intel nested guest.
 */
static void
4664
reset_ept_shadow_zero_bits_mask(struct kvm_mmu *context, bool execonly)
4665 4666
{
	__reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4667 4668
				    reserved_hpa_bits(), execonly,
				    max_huge_page_level);
4669 4670
}

4671 4672 4673 4674 4675 4676 4677 4678 4679 4680
#define BYTE_MASK(access) \
	((1 & (access) ? 2 : 0) | \
	 (2 & (access) ? 4 : 0) | \
	 (3 & (access) ? 8 : 0) | \
	 (4 & (access) ? 16 : 0) | \
	 (5 & (access) ? 32 : 0) | \
	 (6 & (access) ? 64 : 0) | \
	 (7 & (access) ? 128 : 0))


4681
static void update_permission_bitmask(struct kvm_mmu *mmu, bool ept)
4682
{
4683 4684 4685 4686 4687 4688
	unsigned byte;

	const u8 x = BYTE_MASK(ACC_EXEC_MASK);
	const u8 w = BYTE_MASK(ACC_WRITE_MASK);
	const u8 u = BYTE_MASK(ACC_USER_MASK);

4689 4690 4691
	bool cr4_smep = is_cr4_smep(mmu);
	bool cr4_smap = is_cr4_smap(mmu);
	bool cr0_wp = is_cr0_wp(mmu);
4692
	bool efer_nx = is_efer_nx(mmu);
4693 4694

	for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4695 4696
		unsigned pfec = byte << 1;

F
Feng Wu 已提交
4697
		/*
4698 4699
		 * Each "*f" variable has a 1 bit for each UWX value
		 * that causes a fault with the given PFEC.
F
Feng Wu 已提交
4700
		 */
4701

4702
		/* Faults from writes to non-writable pages */
4703
		u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
4704
		/* Faults from user mode accesses to supervisor pages */
4705
		u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
4706
		/* Faults from fetches of non-executable pages*/
4707
		u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
4708 4709 4710 4711 4712 4713 4714 4715 4716 4717
		/* Faults from kernel mode fetches of user pages */
		u8 smepf = 0;
		/* Faults from kernel mode accesses of user pages */
		u8 smapf = 0;

		if (!ept) {
			/* Faults from kernel mode accesses to user pages */
			u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;

			/* Not really needed: !nx will cause pte.nx to fault */
4718
			if (!efer_nx)
4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732
				ff = 0;

			/* Allow supervisor writes if !cr0.wp */
			if (!cr0_wp)
				wf = (pfec & PFERR_USER_MASK) ? wf : 0;

			/* Disallow supervisor fetches of user code if cr4.smep */
			if (cr4_smep)
				smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;

			/*
			 * SMAP:kernel-mode data accesses from user-mode
			 * mappings should fault. A fault is considered
			 * as a SMAP violation if all of the following
P
Peng Hao 已提交
4733
			 * conditions are true:
4734 4735 4736
			 *   - X86_CR4_SMAP is set in CR4
			 *   - A user page is accessed
			 *   - The access is not a fetch
4737 4738
			 *   - The access is supervisor mode
			 *   - If implicit supervisor access or X86_EFLAGS_AC is clear
4739
			 *
4740 4741
			 * Here, we cover the first four conditions.
			 * The fifth is computed dynamically in permission_fault();
4742 4743 4744 4745 4746
			 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
			 * *not* subject to SMAP restrictions.
			 */
			if (cr4_smap)
				smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4747
		}
4748 4749

		mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4750 4751 4752
	}
}

4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776
/*
* PKU is an additional mechanism by which the paging controls access to
* user-mode addresses based on the value in the PKRU register.  Protection
* key violations are reported through a bit in the page fault error code.
* Unlike other bits of the error code, the PK bit is not known at the
* call site of e.g. gva_to_gpa; it must be computed directly in
* permission_fault based on two bits of PKRU, on some machine state (CR4,
* CR0, EFER, CPL), and on other bits of the error code and the page tables.
*
* In particular the following conditions come from the error code, the
* page tables and the machine state:
* - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
* - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
* - PK is always zero if U=0 in the page tables
* - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
*
* The PKRU bitmask caches the result of these four conditions.  The error
* code (minus the P bit) and the page table's U bit form an index into the
* PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
* with the two bits of the PKRU register corresponding to the protection key.
* For the first three conditions above the bits will be 00, thus masking
* away both AD and WD.  For all reads or if the last condition holds, WD
* only will be masked away.
*/
4777
static void update_pkru_bitmask(struct kvm_mmu *mmu)
4778 4779 4780 4781
{
	unsigned bit;
	bool wp;

4782 4783 4784
	mmu->pkru_mask = 0;

	if (!is_cr4_pke(mmu))
4785 4786
		return;

4787
	wp = is_cr0_wp(mmu);
4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820

	for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
		unsigned pfec, pkey_bits;
		bool check_pkey, check_write, ff, uf, wf, pte_user;

		pfec = bit << 1;
		ff = pfec & PFERR_FETCH_MASK;
		uf = pfec & PFERR_USER_MASK;
		wf = pfec & PFERR_WRITE_MASK;

		/* PFEC.RSVD is replaced by ACC_USER_MASK. */
		pte_user = pfec & PFERR_RSVD_MASK;

		/*
		 * Only need to check the access which is not an
		 * instruction fetch and is to a user page.
		 */
		check_pkey = (!ff && pte_user);
		/*
		 * write access is controlled by PKRU if it is a
		 * user access or CR0.WP = 1.
		 */
		check_write = check_pkey && wf && (uf || wp);

		/* PKRU.AD stops both read and write access. */
		pkey_bits = !!check_pkey;
		/* PKRU.WD stops write access. */
		pkey_bits |= (!!check_write) << 1;

		mmu->pkru_mask |= (pkey_bits & 3) << pfec;
	}
}

4821 4822
static void reset_guest_paging_metadata(struct kvm_vcpu *vcpu,
					struct kvm_mmu *mmu)
A
Avi Kivity 已提交
4823
{
4824 4825
	if (!is_cr0_pg(mmu))
		return;
4826

4827
	reset_guest_rsvds_bits_mask(vcpu, mmu);
4828 4829
	update_permission_bitmask(mmu, false);
	update_pkru_bitmask(mmu);
A
Avi Kivity 已提交
4830 4831
}

4832
static void paging64_init_context(struct kvm_mmu *context)
A
Avi Kivity 已提交
4833 4834 4835
{
	context->page_fault = paging64_page_fault;
	context->gva_to_gpa = paging64_gva_to_gpa;
4836
	context->sync_page = paging64_sync_page;
M
Marcelo Tosatti 已提交
4837
	context->invlpg = paging64_invlpg;
A
Avi Kivity 已提交
4838 4839
}

4840
static void paging32_init_context(struct kvm_mmu *context)
A
Avi Kivity 已提交
4841 4842 4843
{
	context->page_fault = paging32_page_fault;
	context->gva_to_gpa = paging32_gva_to_gpa;
4844
	context->sync_page = paging32_sync_page;
M
Marcelo Tosatti 已提交
4845
	context->invlpg = paging32_invlpg;
A
Avi Kivity 已提交
4846 4847
}

4848
static union kvm_cpu_role
4849 4850
kvm_calc_cpu_role(struct kvm_vcpu *vcpu, const struct kvm_mmu_role_regs *regs)
{
4851
	union kvm_cpu_role role = {0};
4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867

	role.base.access = ACC_ALL;
	role.base.smm = is_smm(vcpu);
	role.base.guest_mode = is_guest_mode(vcpu);
	role.ext.valid = 1;

	if (!____is_cr0_pg(regs)) {
		role.base.direct = 1;
		return role;
	}

	role.base.efer_nx = ____is_efer_nx(regs);
	role.base.cr0_wp = ____is_cr0_wp(regs);
	role.base.smep_andnot_wp = ____is_cr4_smep(regs) && !____is_cr0_wp(regs);
	role.base.smap_andnot_wp = ____is_cr4_smap(regs) && !____is_cr0_wp(regs);
	role.base.has_4_byte_gpte = !____is_cr4_pae(regs);
4868 4869 4870 4871 4872 4873 4874 4875

	if (____is_efer_lma(regs))
		role.base.level = ____is_cr4_la57(regs) ? PT64_ROOT_5LEVEL
							: PT64_ROOT_4LEVEL;
	else if (____is_cr4_pae(regs))
		role.base.level = PT32E_ROOT_LEVEL;
	else
		role.base.level = PT32_ROOT_LEVEL;
4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887

	role.ext.cr4_smep = ____is_cr4_smep(regs);
	role.ext.cr4_smap = ____is_cr4_smap(regs);
	role.ext.cr4_pse = ____is_cr4_pse(regs);

	/* PKEY and LA57 are active iff long mode is active. */
	role.ext.cr4_pke = ____is_efer_lma(regs) && ____is_cr4_pke(regs);
	role.ext.cr4_la57 = ____is_efer_lma(regs) && ____is_cr4_la57(regs);
	role.ext.efer_lma = ____is_efer_lma(regs);
	return role;
}

4888 4889
static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu)
{
4890 4891 4892 4893
	/* tdp_root_level is architecture forced level, use it if nonzero */
	if (tdp_root_level)
		return tdp_root_level;

4894
	/* Use 5-level TDP if and only if it's useful/necessary. */
4895
	if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48)
4896 4897
		return 4;

4898
	return max_tdp_level;
4899 4900
}

4901
static union kvm_mmu_page_role
4902
kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu,
4903
				union kvm_cpu_role cpu_role)
4904
{
4905
	union kvm_mmu_page_role role = {0};
4906

4907 4908 4909 4910 4911
	role.access = ACC_ALL;
	role.cr0_wp = true;
	role.efer_nx = true;
	role.smm = cpu_role.base.smm;
	role.guest_mode = cpu_role.base.guest_mode;
4912
	role.ad_disabled = !kvm_ad_enabled();
4913 4914 4915
	role.level = kvm_mmu_get_tdp_level(vcpu);
	role.direct = true;
	role.has_4_byte_gpte = false;
4916 4917 4918 4919

	return role;
}

4920
static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu,
4921
			     union kvm_cpu_role cpu_role)
4922
{
4923
	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4924
	union kvm_mmu_page_role root_role = kvm_calc_tdp_mmu_root_page_role(vcpu, cpu_role);
4925

4926
	if (cpu_role.as_u64 == context->cpu_role.as_u64 &&
4927
	    root_role.word == context->root_role.word)
4928 4929
		return;

4930
	context->cpu_role.as_u64 = cpu_role.as_u64;
4931
	context->root_role.word = root_role.word;
4932
	context->page_fault = kvm_tdp_page_fault;
4933
	context->sync_page = nonpaging_sync_page;
4934
	context->invlpg = NULL;
4935
	context->get_guest_pgd = get_cr3;
4936
	context->get_pdptr = kvm_pdptr_read;
4937
	context->inject_page_fault = kvm_inject_page_fault;
4938

4939
	if (!is_cr0_pg(context))
4940
		context->gva_to_gpa = nonpaging_gva_to_gpa;
4941
	else if (is_cr4_pae(context))
4942
		context->gva_to_gpa = paging64_gva_to_gpa;
4943
	else
4944
		context->gva_to_gpa = paging32_gva_to_gpa;
4945

4946
	reset_guest_paging_metadata(vcpu, context);
4947
	reset_tdp_shadow_zero_bits_mask(context);
4948 4949
}

4950
static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
4951
				    union kvm_cpu_role cpu_role,
4952
				    union kvm_mmu_page_role root_role)
4953
{
4954
	if (cpu_role.as_u64 == context->cpu_role.as_u64 &&
4955
	    root_role.word == context->root_role.word)
4956
		return;
4957

4958
	context->cpu_role.as_u64 = cpu_role.as_u64;
4959
	context->root_role.word = root_role.word;
4960

4961
	if (!is_cr0_pg(context))
4962
		nonpaging_init_context(context);
4963
	else if (is_cr4_pae(context))
4964
		paging64_init_context(context);
A
Avi Kivity 已提交
4965
	else
4966
		paging32_init_context(context);
4967

4968
	reset_guest_paging_metadata(vcpu, context);
4969
	reset_shadow_zero_bits_mask(vcpu, context);
4970
}
4971

4972
static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu,
4973
				union kvm_cpu_role cpu_role)
4974
{
4975
	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4976
	union kvm_mmu_page_role root_role;
4977

4978
	root_role = cpu_role.base;
4979

4980 4981
	/* KVM uses PAE paging whenever the guest isn't using 64-bit paging. */
	root_role.level = max_t(u32, root_role.level, PT32E_ROOT_LEVEL);
4982

4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994
	/*
	 * KVM forces EFER.NX=1 when TDP is disabled, reflect it in the MMU role.
	 * KVM uses NX when TDP is disabled to handle a variety of scenarios,
	 * notably for huge SPTEs if iTLB multi-hit mitigation is enabled and
	 * to generate correct permissions for CR0.WP=0/CR4.SMEP=1/EFER.NX=0.
	 * The iTLB multi-hit workaround can be toggled at any time, so assume
	 * NX can be used by any non-nested shadow MMU to avoid having to reset
	 * MMU contexts.
	 */
	root_role.efer_nx = true;

	shadow_mmu_init_context(vcpu, context, cpu_role, root_role);
4995 4996
}

4997 4998
void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0,
			     unsigned long cr4, u64 efer, gpa_t nested_cr3)
4999
{
5000
	struct kvm_mmu *context = &vcpu->arch.guest_mmu;
5001 5002
	struct kvm_mmu_role_regs regs = {
		.cr0 = cr0,
5003
		.cr4 = cr4 & ~X86_CR4_PKE,
5004 5005
		.efer = efer,
	};
5006
	union kvm_cpu_role cpu_role = kvm_calc_cpu_role(vcpu, &regs);
5007 5008 5009 5010 5011 5012 5013
	union kvm_mmu_page_role root_role;

	/* NPT requires CR0.PG=1. */
	WARN_ON_ONCE(cpu_role.base.direct);

	root_role = cpu_role.base;
	root_role.level = kvm_mmu_get_tdp_level(vcpu);
5014 5015 5016
	if (root_role.level == PT64_ROOT_5LEVEL &&
	    cpu_role.base.level == PT64_ROOT_4LEVEL)
		root_role.passthrough = 1;
5017

5018
	shadow_mmu_init_context(vcpu, context, cpu_role, root_role);
5019
	kvm_mmu_new_pgd(vcpu, nested_cr3);
5020 5021
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu);
5022

5023
static union kvm_cpu_role
5024
kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
5025
				   bool execonly, u8 level)
5026
{
5027
	union kvm_cpu_role role = {0};
5028

5029 5030 5031 5032 5033
	/*
	 * KVM does not support SMM transfer monitors, and consequently does not
	 * support the "entry to SMM" control either.  role.base.smm is always 0.
	 */
	WARN_ON_ONCE(is_smm(vcpu));
5034
	role.base.level = level;
5035
	role.base.has_4_byte_gpte = false;
5036 5037 5038 5039
	role.base.direct = false;
	role.base.ad_disabled = !accessed_dirty;
	role.base.guest_mode = true;
	role.base.access = ACC_ALL;
5040

5041
	role.ext.word = 0;
5042
	role.ext.execonly = execonly;
5043
	role.ext.valid = 1;
5044 5045 5046 5047

	return role;
}

5048
void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
5049 5050
			     int huge_page_level, bool accessed_dirty,
			     gpa_t new_eptp)
N
Nadav Har'El 已提交
5051
{
5052
	struct kvm_mmu *context = &vcpu->arch.guest_mmu;
5053
	u8 level = vmx_eptp_page_walk_level(new_eptp);
5054
	union kvm_cpu_role new_mode =
5055
		kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
5056
						   execonly, level);
5057

5058 5059 5060
	if (new_mode.as_u64 != context->cpu_role.as_u64) {
		/* EPT, and thus nested EPT, does not consume CR0, CR4, nor EFER. */
		context->cpu_role.as_u64 = new_mode.as_u64;
5061
		context->root_role.word = new_mode.base.word;
5062 5063 5064 5065 5066

		context->page_fault = ept_page_fault;
		context->gva_to_gpa = ept_gva_to_gpa;
		context->sync_page = ept_sync_page;
		context->invlpg = ept_invlpg;
5067

5068 5069 5070 5071 5072
		update_permission_bitmask(context, true);
		context->pkru_mask = 0;
		reset_rsvds_bits_mask_ept(vcpu, context, execonly, huge_page_level);
		reset_ept_shadow_zero_bits_mask(context, execonly);
	}
5073

5074
	kvm_mmu_new_pgd(vcpu, new_eptp);
N
Nadav Har'El 已提交
5075 5076 5077
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);

5078
static void init_kvm_softmmu(struct kvm_vcpu *vcpu,
5079
			     union kvm_cpu_role cpu_role)
5080
{
5081
	struct kvm_mmu *context = &vcpu->arch.root_mmu;
5082

5083
	kvm_init_shadow_mmu(vcpu, cpu_role);
5084

5085
	context->get_guest_pgd     = get_cr3;
5086 5087
	context->get_pdptr         = kvm_pdptr_read;
	context->inject_page_fault = kvm_inject_page_fault;
A
Avi Kivity 已提交
5088 5089
}

5090
static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu,
5091
				union kvm_cpu_role new_mode)
5092 5093 5094
{
	struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;

5095
	if (new_mode.as_u64 == g_context->cpu_role.as_u64)
5096 5097
		return;

5098
	g_context->cpu_role.as_u64   = new_mode.as_u64;
5099
	g_context->get_guest_pgd     = get_cr3;
5100
	g_context->get_pdptr         = kvm_pdptr_read;
5101 5102
	g_context->inject_page_fault = kvm_inject_page_fault;

5103 5104 5105 5106 5107 5108
	/*
	 * L2 page tables are never shadowed, so there is no need to sync
	 * SPTEs.
	 */
	g_context->invlpg            = NULL;

5109
	/*
5110
	 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
5111 5112 5113 5114 5115
	 * L1's nested page tables (e.g. EPT12). The nested translation
	 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
	 * L2's page tables as the first level of translation and L1's
	 * nested page tables as the second level of translation. Basically
	 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
5116
	 */
5117
	if (!is_paging(vcpu))
5118
		g_context->gva_to_gpa = nonpaging_gva_to_gpa;
5119
	else if (is_long_mode(vcpu))
5120
		g_context->gva_to_gpa = paging64_gva_to_gpa;
5121
	else if (is_pae(vcpu))
5122
		g_context->gva_to_gpa = paging64_gva_to_gpa;
5123
	else
5124
		g_context->gva_to_gpa = paging32_gva_to_gpa;
5125

5126
	reset_guest_paging_metadata(vcpu, g_context);
5127 5128
}

5129
void kvm_init_mmu(struct kvm_vcpu *vcpu)
5130
{
5131
	struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
5132
	union kvm_cpu_role cpu_role = kvm_calc_cpu_role(vcpu, &regs);
5133

5134
	if (mmu_is_nested(vcpu))
5135
		init_kvm_nested_mmu(vcpu, cpu_role);
5136
	else if (tdp_enabled)
5137
		init_kvm_tdp_mmu(vcpu, cpu_role);
5138
	else
5139
		init_kvm_softmmu(vcpu, cpu_role);
5140
}
5141
EXPORT_SYMBOL_GPL(kvm_init_mmu);
5142

5143 5144 5145 5146 5147
void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu)
{
	/*
	 * Invalidate all MMU roles to force them to reinitialize as CPUID
	 * information is factored into reserved bit calculations.
5148 5149 5150 5151 5152 5153 5154 5155
	 *
	 * Correctly handling multiple vCPU models with respect to paging and
	 * physical address properties) in a single VM would require tracking
	 * all relevant CPUID information in kvm_mmu_page_role. That is very
	 * undesirable as it would increase the memory requirements for
	 * gfn_track (see struct kvm_mmu_page_role comments).  For now that
	 * problem is swept under the rug; KVM's CPUID API is horrific and
	 * it's all but impossible to solve it without introducing a new API.
5156
	 */
5157 5158 5159
	vcpu->arch.root_mmu.root_role.word = 0;
	vcpu->arch.guest_mmu.root_role.word = 0;
	vcpu->arch.nested_mmu.root_role.word = 0;
5160 5161 5162
	vcpu->arch.root_mmu.cpu_role.ext.valid = 0;
	vcpu->arch.guest_mmu.cpu_role.ext.valid = 0;
	vcpu->arch.nested_mmu.cpu_role.ext.valid = 0;
5163
	kvm_mmu_reset_context(vcpu);
5164 5165

	/*
5166 5167
	 * Changing guest CPUID after KVM_RUN is forbidden, see the comment in
	 * kvm_arch_vcpu_ioctl().
5168
	 */
5169
	KVM_BUG_ON(vcpu->arch.last_vmentry_cpu != -1, vcpu->kvm);
5170 5171
}

5172
void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
5173
{
5174
	kvm_mmu_unload(vcpu);
5175
	kvm_init_mmu(vcpu);
A
Avi Kivity 已提交
5176
}
5177
EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
A
Avi Kivity 已提交
5178 5179

int kvm_mmu_load(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
5180
{
5181 5182
	int r;

5183
	r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->root_role.direct);
A
Avi Kivity 已提交
5184 5185
	if (r)
		goto out;
5186
	r = mmu_alloc_special_roots(vcpu);
A
Avi Kivity 已提交
5187 5188
	if (r)
		goto out;
5189
	if (vcpu->arch.mmu->root_role.direct)
5190 5191 5192
		r = mmu_alloc_direct_roots(vcpu);
	else
		r = mmu_alloc_shadow_roots(vcpu);
5193 5194
	if (r)
		goto out;
5195 5196 5197

	kvm_mmu_sync_roots(vcpu);

5198
	kvm_mmu_load_pgd(vcpu);
5199 5200 5201 5202 5203 5204 5205 5206

	/*
	 * Flush any TLB entries for the new root, the provenance of the root
	 * is unknown.  Even if KVM ensures there are no stale TLB entries
	 * for a freed root, in theory another hypervisor could have left
	 * stale entries.  Flushing on alloc also allows KVM to skip the TLB
	 * flush when freeing a root (see kvm_tdp_mmu_put_root()).
	 */
5207
	static_call(kvm_x86_flush_tlb_current)(vcpu);
5208 5209
out:
	return r;
A
Avi Kivity 已提交
5210
}
A
Avi Kivity 已提交
5211 5212 5213

void kvm_mmu_unload(struct kvm_vcpu *vcpu)
{
5214 5215 5216
	struct kvm *kvm = vcpu->kvm;

	kvm_mmu_free_roots(kvm, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
5217
	WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root.hpa));
5218
	kvm_mmu_free_roots(kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
5219
	WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root.hpa));
5220
	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
A
Avi Kivity 已提交
5221
}
A
Avi Kivity 已提交
5222

5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253
static bool is_obsolete_root(struct kvm *kvm, hpa_t root_hpa)
{
	struct kvm_mmu_page *sp;

	if (!VALID_PAGE(root_hpa))
		return false;

	/*
	 * When freeing obsolete roots, treat roots as obsolete if they don't
	 * have an associated shadow page.  This does mean KVM will get false
	 * positives and free roots that don't strictly need to be freed, but
	 * such false positives are relatively rare:
	 *
	 *  (a) only PAE paging and nested NPT has roots without shadow pages
	 *  (b) remote reloads due to a memslot update obsoletes _all_ roots
	 *  (c) KVM doesn't track previous roots for PAE paging, and the guest
	 *      is unlikely to zap an in-use PGD.
	 */
	sp = to_shadow_page(root_hpa);
	return !sp || is_obsolete_sp(kvm, sp);
}

static void __kvm_mmu_free_obsolete_roots(struct kvm *kvm, struct kvm_mmu *mmu)
{
	unsigned long roots_to_free = 0;
	int i;

	if (is_obsolete_root(kvm, mmu->root.hpa))
		roots_to_free |= KVM_MMU_ROOT_CURRENT;

	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5254
		if (is_obsolete_root(kvm, mmu->prev_roots[i].hpa))
5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267
			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
	}

	if (roots_to_free)
		kvm_mmu_free_roots(kvm, mmu, roots_to_free);
}

void kvm_mmu_free_obsolete_roots(struct kvm_vcpu *vcpu)
{
	__kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.root_mmu);
	__kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.guest_mmu);
}

5268 5269 5270 5271 5272 5273
static bool need_remote_flush(u64 old, u64 new)
{
	if (!is_shadow_present_pte(old))
		return false;
	if (!is_shadow_present_pte(new))
		return true;
5274
	if ((old ^ new) & SPTE_BASE_ADDR_MASK)
5275
		return true;
5276 5277
	old ^= shadow_nx_mask;
	new ^= shadow_nx_mask;
5278
	return (old & ~new & SPTE_PERM_MASK) != 0;
5279 5280
}

5281
static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
5282
				    int *bytes)
5283
{
5284
	u64 gentry = 0;
5285
	int r;
5286 5287 5288

	/*
	 * Assume that the pte write on a page table of the same type
5289 5290
	 * as the current vcpu paging mode since we update the sptes only
	 * when they have the same mode.
5291
	 */
5292
	if (is_pae(vcpu) && *bytes == 4) {
5293
		/* Handle a 32-bit guest writing two halves of a 64-bit gpte */
5294 5295
		*gpa &= ~(gpa_t)7;
		*bytes = 8;
5296 5297
	}

5298 5299 5300 5301
	if (*bytes == 4 || *bytes == 8) {
		r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
		if (r)
			gentry = 0;
5302 5303
	}

5304 5305 5306 5307 5308 5309 5310
	return gentry;
}

/*
 * If we're seeing too many writes to a page, it may no longer be a page table,
 * or we may be forking, in which case it is better to unmap the page.
 */
5311
static bool detect_write_flooding(struct kvm_mmu_page *sp)
5312
{
5313 5314 5315 5316
	/*
	 * Skip write-flooding detected for the sp whose level is 1, because
	 * it can become unsync, then the guest page is not write-protected.
	 */
5317
	if (sp->role.level == PG_LEVEL_4K)
5318
		return false;
5319

5320 5321
	atomic_inc(&sp->write_flooding_count);
	return atomic_read(&sp->write_flooding_count) >= 3;
5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336
}

/*
 * Misaligned accesses are too much trouble to fix up; also, they usually
 * indicate a page is not used as a page table.
 */
static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
				    int bytes)
{
	unsigned offset, pte_size, misaligned;

	pgprintk("misaligned: gpa %llx bytes %d role %x\n",
		 gpa, bytes, sp->role.word);

	offset = offset_in_page(gpa);
5337
	pte_size = sp->role.has_4_byte_gpte ? 4 : 8;
5338 5339 5340 5341 5342 5343 5344 5345

	/*
	 * Sometimes, the OS only writes the last one bytes to update status
	 * bits, for example, in linux, andb instruction is used in clear_bit().
	 */
	if (!(offset & (pte_size - 1)) && bytes == 1)
		return false;

5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360
	misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
	misaligned |= bytes < 4;

	return misaligned;
}

static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
{
	unsigned page_offset, quadrant;
	u64 *spte;
	int level;

	page_offset = offset_in_page(gpa);
	level = sp->role.level;
	*nspte = 1;
5361
	if (sp->role.has_4_byte_gpte) {
5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382
		page_offset <<= 1;	/* 32->64 */
		/*
		 * A 32-bit pde maps 4MB while the shadow pdes map
		 * only 2MB.  So we need to double the offset again
		 * and zap two pdes instead of one.
		 */
		if (level == PT32_ROOT_LEVEL) {
			page_offset &= ~7; /* kill rounding error */
			page_offset <<= 1;
			*nspte = 2;
		}
		quadrant = page_offset >> PAGE_SHIFT;
		page_offset &= ~PAGE_MASK;
		if (quadrant != sp->role.quadrant)
			return NULL;
	}

	spte = &sp->spt[page_offset / sizeof(*spte)];
	return spte;
}

5383
static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
5384 5385
			      const u8 *new, int bytes,
			      struct kvm_page_track_notifier_node *node)
5386 5387 5388 5389 5390 5391
{
	gfn_t gfn = gpa >> PAGE_SHIFT;
	struct kvm_mmu_page *sp;
	LIST_HEAD(invalid_list);
	u64 entry, gentry, *spte;
	int npte;
5392
	bool flush = false;
5393 5394 5395 5396 5397

	/*
	 * If we don't have indirect shadow pages, it means no page is
	 * write-protected, so we can exit simply.
	 */
5398
	if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
5399 5400 5401 5402
		return;

	pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);

5403
	write_lock(&vcpu->kvm->mmu_lock);
5404 5405 5406

	gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);

5407 5408
	++vcpu->kvm->stat.mmu_pte_write;

L
Lai Jiangshan 已提交
5409
	for_each_gfn_valid_sp_with_gptes(vcpu->kvm, sp, gfn) {
5410
		if (detect_write_misaligned(sp, gpa, bytes) ||
5411
		      detect_write_flooding(sp)) {
5412
			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
A
Avi Kivity 已提交
5413
			++vcpu->kvm->stat.mmu_flooded;
5414 5415
			continue;
		}
5416 5417 5418 5419 5420

		spte = get_written_sptes(sp, gpa, &npte);
		if (!spte)
			continue;

5421
		while (npte--) {
5422
			entry = *spte;
5423
			mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL);
5424 5425
			if (gentry && sp->role.level != PG_LEVEL_4K)
				++vcpu->kvm->stat.mmu_pde_zapped;
G
Gleb Natapov 已提交
5426
			if (need_remote_flush(entry, *spte))
5427
				flush = true;
5428
			++spte;
5429 5430
		}
	}
5431
	kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush);
5432
	write_unlock(&vcpu->kvm->mmu_lock);
5433 5434
}

5435
int noinline kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
5436
		       void *insn, int insn_len)
5437
{
5438
	int r, emulation_type = EMULTYPE_PF;
5439
	bool direct = vcpu->arch.mmu->root_role.direct;
5440

5441
	if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root.hpa)))
5442 5443
		return RET_PF_RETRY;

5444
	r = RET_PF_INVALID;
5445
	if (unlikely(error_code & PFERR_RSVD_MASK)) {
5446
		r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
5447
		if (r == RET_PF_EMULATE)
5448 5449
			goto emulate;
	}
5450

5451
	if (r == RET_PF_INVALID) {
5452 5453
		r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
					  lower_32_bits(error_code), false);
5454
		if (KVM_BUG_ON(r == RET_PF_INVALID, vcpu->kvm))
5455
			return -EIO;
5456 5457
	}

5458
	if (r < 0)
5459
		return r;
5460 5461
	if (r != RET_PF_EMULATE)
		return 1;
5462

5463 5464 5465 5466 5467 5468 5469
	/*
	 * Before emulating the instruction, check if the error code
	 * was due to a RO violation while translating the guest page.
	 * This can occur when using nested virtualization with nested
	 * paging in both guests. If true, we simply unprotect the page
	 * and resume the guest.
	 */
5470
	if (vcpu->arch.mmu->root_role.direct &&
5471
	    (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5472
		kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
5473 5474 5475
		return 1;
	}

5476 5477 5478 5479 5480 5481
	/*
	 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
	 * optimistically try to just unprotect the page and let the processor
	 * re-execute the instruction that caused the page fault.  Do not allow
	 * retrying MMIO emulation, as it's not only pointless but could also
	 * cause us to enter an infinite loop because the processor will keep
5482 5483 5484 5485
	 * faulting on the non-existent MMIO address.  Retrying an instruction
	 * from a nested guest is also pointless and dangerous as we are only
	 * explicitly shadowing L1's page tables, i.e. unprotecting something
	 * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5486
	 */
5487
	if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
5488
		emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
5489
emulate:
5490
	return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
5491
				       insn_len);
5492 5493 5494
}
EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);

5495 5496
void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
			    gva_t gva, hpa_t root_hpa)
M
Marcelo Tosatti 已提交
5497
{
5498
	int i;
5499

5500 5501 5502 5503 5504 5505
	/* It's actually a GPA for vcpu->arch.guest_mmu.  */
	if (mmu != &vcpu->arch.guest_mmu) {
		/* INVLPG on a non-canonical address is a NOP according to the SDM.  */
		if (is_noncanonical_address(gva, vcpu))
			return;

5506
		static_call(kvm_x86_flush_tlb_gva)(vcpu, gva);
5507 5508 5509
	}

	if (!mmu->invlpg)
5510 5511
		return;

5512
	if (root_hpa == INVALID_PAGE) {
5513
		mmu->invlpg(vcpu, gva, mmu->root.hpa);
5514

5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532
		/*
		 * INVLPG is required to invalidate any global mappings for the VA,
		 * irrespective of PCID. Since it would take us roughly similar amount
		 * of work to determine whether any of the prev_root mappings of the VA
		 * is marked global, or to just sync it blindly, so we might as well
		 * just always sync it.
		 *
		 * Mappings not reachable via the current cr3 or the prev_roots will be
		 * synced when switching to that cr3, so nothing needs to be done here
		 * for them.
		 */
		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
			if (VALID_PAGE(mmu->prev_roots[i].hpa))
				mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
	} else {
		mmu->invlpg(vcpu, gva, root_hpa);
	}
}
5533

5534 5535
void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
{
5536
	kvm_mmu_invalidate_gva(vcpu, vcpu->arch.walk_mmu, gva, INVALID_PAGE);
M
Marcelo Tosatti 已提交
5537 5538 5539 5540
	++vcpu->stat.invlpg;
}
EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);

5541

5542 5543
void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
{
5544
	struct kvm_mmu *mmu = vcpu->arch.mmu;
5545
	bool tlb_flush = false;
5546
	uint i;
5547 5548

	if (pcid == kvm_get_active_pcid(vcpu)) {
5549 5550
		if (mmu->invlpg)
			mmu->invlpg(vcpu, gva, mmu->root.hpa);
5551
		tlb_flush = true;
5552 5553
	}

5554 5555
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
		if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5556
		    pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) {
5557 5558
			if (mmu->invlpg)
				mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5559 5560
			tlb_flush = true;
		}
5561
	}
5562

5563
	if (tlb_flush)
5564
		static_call(kvm_x86_flush_tlb_gva)(vcpu, gva);
5565

5566 5567 5568
	++vcpu->stat.invlpg;

	/*
5569 5570 5571
	 * Mappings not reachable via the current cr3 or the prev_roots will be
	 * synced when switching to that cr3, so nothing needs to be done here
	 * for them.
5572 5573 5574
	 */
}

5575 5576
void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level,
		       int tdp_max_root_level, int tdp_huge_page_level)
5577
{
5578
	tdp_enabled = enable_tdp;
5579
	tdp_root_level = tdp_forced_root_level;
5580
	max_tdp_level = tdp_max_root_level;
5581 5582

	/*
5583
	 * max_huge_page_level reflects KVM's MMU capabilities irrespective
5584 5585 5586 5587 5588 5589
	 * of kernel support, e.g. KVM may be capable of using 1GB pages when
	 * the kernel is not.  But, KVM never creates a page size greater than
	 * what is used by the kernel for any given HVA, i.e. the kernel's
	 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
	 */
	if (tdp_enabled)
5590
		max_huge_page_level = tdp_huge_page_level;
5591
	else if (boot_cpu_has(X86_FEATURE_GBPAGES))
5592
		max_huge_page_level = PG_LEVEL_1G;
5593
	else
5594
		max_huge_page_level = PG_LEVEL_2M;
5595
}
5596
EXPORT_SYMBOL_GPL(kvm_configure_mmu);
5597 5598

/* The return value indicates if tlb flush on all vcpus is needed. */
5599 5600 5601
typedef bool (*slot_level_handler) (struct kvm *kvm,
				    struct kvm_rmap_head *rmap_head,
				    const struct kvm_memory_slot *slot);
5602 5603 5604

/* The caller should hold mmu-lock before calling this function. */
static __always_inline bool
5605
slot_handle_level_range(struct kvm *kvm, const struct kvm_memory_slot *memslot,
5606
			slot_level_handler fn, int start_level, int end_level,
5607 5608
			gfn_t start_gfn, gfn_t end_gfn, bool flush_on_yield,
			bool flush)
5609 5610 5611 5612 5613 5614
{
	struct slot_rmap_walk_iterator iterator;

	for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
			end_gfn, &iterator) {
		if (iterator.rmap)
5615
			flush |= fn(kvm, iterator.rmap, memslot);
5616

5617
		if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
5618
			if (flush && flush_on_yield) {
5619 5620 5621
				kvm_flush_remote_tlbs_with_address(kvm,
						start_gfn,
						iterator.gfn - start_gfn + 1);
5622 5623
				flush = false;
			}
5624
			cond_resched_rwlock_write(&kvm->mmu_lock);
5625 5626 5627 5628 5629 5630 5631
		}
	}

	return flush;
}

static __always_inline bool
5632
slot_handle_level(struct kvm *kvm, const struct kvm_memory_slot *memslot,
5633
		  slot_level_handler fn, int start_level, int end_level,
5634
		  bool flush_on_yield)
5635 5636 5637 5638
{
	return slot_handle_level_range(kvm, memslot, fn, start_level,
			end_level, memslot->base_gfn,
			memslot->base_gfn + memslot->npages - 1,
5639
			flush_on_yield, false);
5640 5641 5642
}

static __always_inline bool
5643 5644
slot_handle_level_4k(struct kvm *kvm, const struct kvm_memory_slot *memslot,
		     slot_level_handler fn, bool flush_on_yield)
5645
{
5646
	return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
5647
				 PG_LEVEL_4K, flush_on_yield);
5648 5649
}

5650
static void free_mmu_pages(struct kvm_mmu *mmu)
A
Avi Kivity 已提交
5651
{
5652 5653
	if (!tdp_enabled && mmu->pae_root)
		set_memory_encrypted((unsigned long)mmu->pae_root, 1);
5654
	free_page((unsigned long)mmu->pae_root);
5655
	free_page((unsigned long)mmu->pml4_root);
5656
	free_page((unsigned long)mmu->pml5_root);
A
Avi Kivity 已提交
5657 5658
}

5659
static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
A
Avi Kivity 已提交
5660
{
5661
	struct page *page;
A
Avi Kivity 已提交
5662 5663
	int i;

5664 5665
	mmu->root.hpa = INVALID_PAGE;
	mmu->root.pgd = 0;
5666 5667 5668
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
		mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;

5669 5670 5671 5672
	/* vcpu->arch.guest_mmu isn't used when !tdp_enabled. */
	if (!tdp_enabled && mmu == &vcpu->arch.guest_mmu)
		return 0;

5673
	/*
5674 5675 5676 5677
	 * When using PAE paging, the four PDPTEs are treated as 'root' pages,
	 * while the PDP table is a per-vCPU construct that's allocated at MMU
	 * creation.  When emulating 32-bit mode, cr3 is only 32 bits even on
	 * x86_64.  Therefore we need to allocate the PDP table in the first
5678 5679 5680 5681
	 * 4GB of memory, which happens to fit the DMA32 zone.  TDP paging
	 * generally doesn't use PAE paging and can skip allocating the PDP
	 * table.  The main exception, handled here, is SVM's 32-bit NPT.  The
	 * other exception is for shadowing L1's 32-bit or PAE NPT on 64-bit
5682
	 * KVM; that horror is handled on-demand by mmu_alloc_special_roots().
5683
	 */
5684
	if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
5685 5686
		return 0;

5687
	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
5688
	if (!page)
5689 5690
		return -ENOMEM;

5691
	mmu->pae_root = page_address(page);
5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703

	/*
	 * CR3 is only 32 bits when PAE paging is used, thus it's impossible to
	 * get the CPU to treat the PDPTEs as encrypted.  Decrypt the page so
	 * that KVM's writes and the CPU's reads get along.  Note, this is
	 * only necessary when using shadow paging, as 64-bit NPT can get at
	 * the C-bit even when shadowing 32-bit NPT, and SME isn't supported
	 * by 32-bit kernels (when KVM itself uses 32-bit NPT).
	 */
	if (!tdp_enabled)
		set_memory_decrypted((unsigned long)mmu->pae_root, 1);
	else
5704
		WARN_ON_ONCE(shadow_me_value);
5705

5706
	for (i = 0; i < 4; ++i)
5707
		mmu->pae_root[i] = INVALID_PAE_ROOT;
5708

A
Avi Kivity 已提交
5709 5710 5711
	return 0;
}

5712
int kvm_mmu_create(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
5713
{
5714
	int ret;
5715

5716
	vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache;
5717 5718
	vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO;

5719
	vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache;
5720
	vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO;
5721

5722 5723
	vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO;

5724 5725
	vcpu->arch.mmu = &vcpu->arch.root_mmu;
	vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
A
Avi Kivity 已提交
5726

5727
	ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu);
5728 5729 5730
	if (ret)
		return ret;

5731
	ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu);
5732 5733 5734 5735 5736 5737 5738
	if (ret)
		goto fail_allocate_root;

	return ret;
 fail_allocate_root:
	free_mmu_pages(&vcpu->arch.guest_mmu);
	return ret;
A
Avi Kivity 已提交
5739 5740
}

5741
#define BATCH_ZAP_PAGES	10
5742 5743 5744
static void kvm_zap_obsolete_pages(struct kvm *kvm)
{
	struct kvm_mmu_page *sp, *node;
5745
	int nr_zapped, batch = 0;
5746
	bool unstable;
5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758

restart:
	list_for_each_entry_safe_reverse(sp, node,
	      &kvm->arch.active_mmu_pages, link) {
		/*
		 * No obsolete valid page exists before a newly created page
		 * since active_mmu_pages is a FIFO list.
		 */
		if (!is_obsolete_sp(kvm, sp))
			break;

		/*
5759 5760 5761
		 * Invalid pages should never land back on the list of active
		 * pages.  Skip the bogus page, otherwise we'll get stuck in an
		 * infinite loop if the page gets put back on the list (again).
5762
		 */
5763
		if (WARN_ON(sp->role.invalid))
5764 5765
			continue;

5766 5767 5768 5769 5770 5771
		/*
		 * No need to flush the TLB since we're only zapping shadow
		 * pages with an obsolete generation number and all vCPUS have
		 * loaded a new root, i.e. the shadow pages being zapped cannot
		 * be in active use by the guest.
		 */
5772
		if (batch >= BATCH_ZAP_PAGES &&
5773
		    cond_resched_rwlock_write(&kvm->mmu_lock)) {
5774
			batch = 0;
5775 5776 5777
			goto restart;
		}

5778 5779 5780 5781 5782
		unstable = __kvm_mmu_prepare_zap_page(kvm, sp,
				&kvm->arch.zapped_obsolete_pages, &nr_zapped);
		batch += nr_zapped;

		if (unstable)
5783 5784 5785
			goto restart;
	}

5786
	/*
5787 5788 5789 5790 5791 5792 5793
	 * Kick all vCPUs (via remote TLB flush) before freeing the page tables
	 * to ensure KVM is not in the middle of a lockless shadow page table
	 * walk, which may reference the pages.  The remote TLB flush itself is
	 * not required and is simply a convenient way to kick vCPUs as needed.
	 * KVM performs a local TLB flush when allocating a new root (see
	 * kvm_mmu_load()), and the reload in the caller ensure no vCPUs are
	 * running with an obsolete MMU.
5794
	 */
5795
	kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808
}

/*
 * Fast invalidate all shadow pages and use lock-break technique
 * to zap obsolete pages.
 *
 * It's required when memslot is being deleted or VM is being
 * destroyed, in these cases, we should ensure that KVM MMU does
 * not use any resource of the being-deleted slot or all slots
 * after calling the function.
 */
static void kvm_mmu_zap_all_fast(struct kvm *kvm)
{
5809 5810
	lockdep_assert_held(&kvm->slots_lock);

5811
	write_lock(&kvm->mmu_lock);
5812
	trace_kvm_mmu_zap_all_fast(kvm);
5813 5814 5815 5816 5817 5818 5819 5820 5821

	/*
	 * Toggle mmu_valid_gen between '0' and '1'.  Because slots_lock is
	 * held for the entire duration of zapping obsolete pages, it's
	 * impossible for there to be multiple invalid generations associated
	 * with *valid* shadow pages at any given time, i.e. there is exactly
	 * one valid generation and (at most) one invalid generation.
	 */
	kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
5822

5823 5824 5825 5826 5827
	/*
	 * In order to ensure all vCPUs drop their soon-to-be invalid roots,
	 * invalidating TDP MMU roots must be done while holding mmu_lock for
	 * write and in the same critical section as making the reload request,
	 * e.g. before kvm_zap_obsolete_pages() could drop mmu_lock and yield.
5828 5829 5830 5831
	 */
	if (is_tdp_mmu_enabled(kvm))
		kvm_tdp_mmu_invalidate_all_roots(kvm);

5832 5833 5834 5835 5836 5837 5838 5839
	/*
	 * Notify all vcpus to reload its shadow page table and flush TLB.
	 * Then all vcpus will switch to new shadow page table with the new
	 * mmu_valid_gen.
	 *
	 * Note: we need to do this under the protection of mmu_lock,
	 * otherwise, vcpu would purge shadow page but miss tlb flush.
	 */
5840
	kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS);
5841

5842
	kvm_zap_obsolete_pages(kvm);
5843

5844
	write_unlock(&kvm->mmu_lock);
5845

5846 5847 5848 5849 5850 5851 5852 5853
	/*
	 * Zap the invalidated TDP MMU roots, all SPTEs must be dropped before
	 * returning to the caller, e.g. if the zap is in response to a memslot
	 * deletion, mmu_notifier callbacks will be unable to reach the SPTEs
	 * associated with the deleted memslot once the update completes, and
	 * Deferring the zap until the final reference to the root is put would
	 * lead to use-after-free.
	 */
5854
	if (is_tdp_mmu_enabled(kvm))
5855
		kvm_tdp_mmu_zap_invalidated_roots(kvm);
5856 5857
}

5858 5859 5860 5861 5862
static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
{
	return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
}

5863
static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5864 5865
			struct kvm_memory_slot *slot,
			struct kvm_page_track_notifier_node *node)
5866
{
5867
	kvm_mmu_zap_all_fast(kvm);
5868 5869
}

5870
int kvm_mmu_init_vm(struct kvm *kvm)
5871
{
5872
	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5873
	int r;
5874

5875 5876 5877
	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
	INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
	INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages);
5878 5879
	spin_lock_init(&kvm->arch.mmu_unsync_pages_lock);

5880 5881 5882
	r = kvm_mmu_init_tdp_mmu(kvm);
	if (r < 0)
		return r;
5883

5884
	node->track_write = kvm_mmu_pte_write;
5885
	node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5886
	kvm_page_track_register_notifier(kvm, node);
5887
	return 0;
5888 5889
}

5890
void kvm_mmu_uninit_vm(struct kvm *kvm)
5891
{
5892
	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5893

5894
	kvm_page_track_unregister_notifier(kvm, node);
5895 5896

	kvm_mmu_uninit_tdp_mmu(kvm);
5897 5898
}

5899 5900 5901 5902
static bool __kvm_zap_rmaps(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
{
	const struct kvm_memory_slot *memslot;
	struct kvm_memslots *slots;
5903
	struct kvm_memslot_iter iter;
5904 5905
	bool flush = false;
	gfn_t start, end;
5906
	int i;
5907 5908 5909 5910 5911 5912

	if (!kvm_memslots_have_rmaps(kvm))
		return flush;

	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
5913 5914 5915

		kvm_for_each_memslot_in_gfn_range(&iter, slots, gfn_start, gfn_end) {
			memslot = iter.slot;
5916 5917
			start = max(gfn_start, memslot->base_gfn);
			end = min(gfn_end, memslot->base_gfn + memslot->npages);
5918
			if (WARN_ON_ONCE(start >= end))
5919 5920 5921
				continue;

			flush = slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
5922

5923 5924 5925 5926 5927 5928 5929 5930
							PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL,
							start, end - 1, true, flush);
		}
	}

	return flush;
}

5931 5932 5933 5934
/*
 * Invalidate (zap) SPTEs that cover GFNs from gfn_start and up to gfn_end
 * (not including it)
 */
X
Xiao Guangrong 已提交
5935 5936
void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
{
5937
	bool flush;
5938
	int i;
X
Xiao Guangrong 已提交
5939

5940 5941 5942
	if (WARN_ON_ONCE(gfn_end <= gfn_start))
		return;

5943 5944
	write_lock(&kvm->mmu_lock);

5945 5946
	kvm_inc_notifier_count(kvm, gfn_start, gfn_end);

5947
	flush = __kvm_zap_rmaps(kvm, gfn_start, gfn_end);
X
Xiao Guangrong 已提交
5948

5949
	if (is_tdp_mmu_enabled(kvm)) {
5950
		for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
5951 5952
			flush = kvm_tdp_mmu_zap_leafs(kvm, i, gfn_start,
						      gfn_end, true, flush);
5953
	}
5954 5955

	if (flush)
5956 5957
		kvm_flush_remote_tlbs_with_address(kvm, gfn_start,
						   gfn_end - gfn_start);
5958

5959 5960
	kvm_dec_notifier_count(kvm, gfn_start, gfn_end);

5961
	write_unlock(&kvm->mmu_lock);
X
Xiao Guangrong 已提交
5962 5963
}

5964
static bool slot_rmap_write_protect(struct kvm *kvm,
5965
				    struct kvm_rmap_head *rmap_head,
5966
				    const struct kvm_memory_slot *slot)
5967
{
5968
	return rmap_write_protect(rmap_head, false);
5969 5970
}

5971
void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5972
				      const struct kvm_memory_slot *memslot,
5973
				      int start_level)
A
Avi Kivity 已提交
5974
{
5975
	bool flush = false;
A
Avi Kivity 已提交
5976

5977 5978 5979 5980 5981 5982 5983
	if (kvm_memslots_have_rmaps(kvm)) {
		write_lock(&kvm->mmu_lock);
		flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect,
					  start_level, KVM_MAX_HUGEPAGE_LEVEL,
					  false);
		write_unlock(&kvm->mmu_lock);
	}
5984

5985 5986 5987 5988 5989 5990
	if (is_tdp_mmu_enabled(kvm)) {
		read_lock(&kvm->mmu_lock);
		flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, start_level);
		read_unlock(&kvm->mmu_lock);
	}

5991
	/*
5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011
	 * Flush TLBs if any SPTEs had to be write-protected to ensure that
	 * guest writes are reflected in the dirty bitmap before the memslot
	 * update completes, i.e. before enabling dirty logging is visible to
	 * userspace.
	 *
	 * Perform the TLB flush outside the mmu_lock to reduce the amount of
	 * time the lock is held. However, this does mean that another CPU can
	 * now grab mmu_lock and encounter a write-protected SPTE while CPUs
	 * still have a writable mapping for the associated GFN in their TLB.
	 *
	 * This is safe but requires KVM to be careful when making decisions
	 * based on the write-protection status of an SPTE. Specifically, KVM
	 * also write-protects SPTEs to monitor changes to guest page tables
	 * during shadow paging, and must guarantee no CPUs can write to those
	 * page before the lock is dropped. As mentioned in the previous
	 * paragraph, a write-protected SPTE is no guarantee that CPU cannot
	 * perform writes. So to determine if a TLB flush is truly required, KVM
	 * will clear a separate software-only bit (MMU-writable) and skip the
	 * flush if-and-only-if this bit was already clear.
	 *
6012
	 * See is_writable_pte() for more details.
6013
	 */
6014
	if (flush)
6015
		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
A
Avi Kivity 已提交
6016
}
6017

6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033
/* Must be called with the mmu_lock held in write-mode. */
void kvm_mmu_try_split_huge_pages(struct kvm *kvm,
				   const struct kvm_memory_slot *memslot,
				   u64 start, u64 end,
				   int target_level)
{
	if (is_tdp_mmu_enabled(kvm))
		kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end,
						 target_level, false);

	/*
	 * A TLB flush is unnecessary at this point for the same resons as in
	 * kvm_mmu_slot_try_split_huge_pages().
	 */
}

6034
void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm,
6035 6036
					const struct kvm_memory_slot *memslot,
					int target_level)
6037 6038 6039 6040 6041 6042
{
	u64 start = memslot->base_gfn;
	u64 end = start + memslot->npages;

	if (is_tdp_mmu_enabled(kvm)) {
		read_lock(&kvm->mmu_lock);
6043
		kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level, true);
6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057
		read_unlock(&kvm->mmu_lock);
	}

	/*
	 * No TLB flush is necessary here. KVM will flush TLBs after
	 * write-protecting and/or clearing dirty on the newly split SPTEs to
	 * ensure that guest writes are reflected in the dirty log before the
	 * ioctl to enable dirty logging on this memslot completes. Since the
	 * split SPTEs retain the write and dirty bits of the huge SPTE, it is
	 * safe for KVM to decide if a TLB flush is necessary based on the split
	 * SPTEs.
	 */
}

6058
static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
6059
					 struct kvm_rmap_head *rmap_head,
6060
					 const struct kvm_memory_slot *slot)
6061 6062 6063 6064
{
	u64 *sptep;
	struct rmap_iterator iter;
	int need_tlb_flush = 0;
D
Dan Williams 已提交
6065
	kvm_pfn_t pfn;
6066 6067
	struct kvm_mmu_page *sp;

6068
restart:
6069
	for_each_rmap_spte(rmap_head, &iter, sptep) {
6070
		sp = sptep_to_sp(sptep);
6071 6072 6073
		pfn = spte_to_pfn(*sptep);

		/*
6074 6075 6076 6077 6078
		 * We cannot do huge page mapping for indirect shadow pages,
		 * which are found on the last rmap (level = 1) when not using
		 * tdp; such shadow pages are synced with the page table in
		 * the guest, and the guest page table is using 4K page size
		 * mapping if the indirect sp has level = 1.
6079
		 */
6080
		if (sp->role.direct &&
6081 6082
		    sp->role.level < kvm_mmu_max_mapping_level(kvm, slot, sp->gfn,
							       pfn, PG_LEVEL_NUM)) {
6083
			pte_list_remove(kvm, rmap_head, sptep);
6084 6085 6086 6087 6088 6089 6090

			if (kvm_available_flush_tlb_with_range())
				kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
					KVM_PAGES_PER_HPAGE(sp->role.level));
			else
				need_tlb_flush = 1;

6091 6092
			goto restart;
		}
6093 6094 6095 6096 6097 6098
	}

	return need_tlb_flush;
}

void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
6099
				   const struct kvm_memory_slot *slot)
6100
{
6101 6102
	if (kvm_memslots_have_rmaps(kvm)) {
		write_lock(&kvm->mmu_lock);
6103 6104 6105 6106 6107
		/*
		 * Zap only 4k SPTEs since the legacy MMU only supports dirty
		 * logging at a 4k granularity and never creates collapsible
		 * 2m SPTEs during dirty logging.
		 */
6108
		if (slot_handle_level_4k(kvm, slot, kvm_mmu_zap_collapsible_spte, true))
6109 6110 6111
			kvm_arch_flush_remote_tlbs_memslot(kvm, slot);
		write_unlock(&kvm->mmu_lock);
	}
6112 6113 6114

	if (is_tdp_mmu_enabled(kvm)) {
		read_lock(&kvm->mmu_lock);
6115
		kvm_tdp_mmu_zap_collapsible_sptes(kvm, slot);
6116 6117
		read_unlock(&kvm->mmu_lock);
	}
6118 6119
}

6120
void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
6121
					const struct kvm_memory_slot *memslot)
6122 6123
{
	/*
6124
	 * All current use cases for flushing the TLBs for a specific memslot
6125
	 * related to dirty logging, and many do the TLB flush out of mmu_lock.
6126 6127 6128
	 * The interaction between the various operations on memslot must be
	 * serialized by slots_locks to ensure the TLB flush from one operation
	 * is observed by any other operation on the same memslot.
6129 6130
	 */
	lockdep_assert_held(&kvm->slots_lock);
6131 6132
	kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
					   memslot->npages);
6133 6134
}

6135
void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
6136
				   const struct kvm_memory_slot *memslot)
6137
{
6138
	bool flush = false;
6139

6140 6141
	if (kvm_memslots_have_rmaps(kvm)) {
		write_lock(&kvm->mmu_lock);
6142 6143 6144 6145 6146
		/*
		 * Clear dirty bits only on 4k SPTEs since the legacy MMU only
		 * support dirty logging at a 4k granularity.
		 */
		flush = slot_handle_level_4k(kvm, memslot, __rmap_clear_dirty, false);
6147 6148
		write_unlock(&kvm->mmu_lock);
	}
6149

6150 6151 6152 6153 6154 6155
	if (is_tdp_mmu_enabled(kvm)) {
		read_lock(&kvm->mmu_lock);
		flush |= kvm_tdp_mmu_clear_dirty_slot(kvm, memslot);
		read_unlock(&kvm->mmu_lock);
	}

6156 6157 6158 6159 6160 6161 6162
	/*
	 * It's also safe to flush TLBs out of mmu lock here as currently this
	 * function is only used for dirty logging, in which case flushing TLB
	 * out of mmu lock also guarantees no dirty pages will be lost in
	 * dirty_bitmap.
	 */
	if (flush)
6163
		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
6164 6165
}

6166
void kvm_mmu_zap_all(struct kvm *kvm)
6167 6168
{
	struct kvm_mmu_page *sp, *node;
6169
	LIST_HEAD(invalid_list);
6170
	int ign;
6171

6172
	write_lock(&kvm->mmu_lock);
6173
restart:
6174
	list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
6175
		if (WARN_ON(sp->role.invalid))
6176
			continue;
6177
		if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
6178
			goto restart;
6179
		if (cond_resched_rwlock_write(&kvm->mmu_lock))
6180 6181 6182
			goto restart;
	}

6183
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
6184

6185
	if (is_tdp_mmu_enabled(kvm))
6186 6187
		kvm_tdp_mmu_zap_all(kvm);

6188
	write_unlock(&kvm->mmu_lock);
6189 6190
}

6191
void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
6192
{
6193
	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
6194

6195
	gen &= MMIO_SPTE_GEN_MASK;
6196

6197
	/*
6198 6199 6200 6201 6202 6203 6204 6205
	 * Generation numbers are incremented in multiples of the number of
	 * address spaces in order to provide unique generations across all
	 * address spaces.  Strip what is effectively the address space
	 * modifier prior to checking for a wrap of the MMIO generation so
	 * that a wrap in any address space is detected.
	 */
	gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);

6206
	/*
6207
	 * The very rare case: if the MMIO generation number has wrapped,
6208 6209
	 * zap all shadow pages.
	 */
6210
	if (unlikely(gen == 0)) {
6211
		kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
6212
		kvm_mmu_zap_all_fast(kvm);
6213
	}
6214 6215
}

6216 6217
static unsigned long
mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
6218 6219
{
	struct kvm *kvm;
6220
	int nr_to_scan = sc->nr_to_scan;
6221
	unsigned long freed = 0;
6222

J
Junaid Shahid 已提交
6223
	mutex_lock(&kvm_lock);
6224 6225

	list_for_each_entry(kvm, &vm_list, vm_list) {
6226
		int idx;
6227
		LIST_HEAD(invalid_list);
6228

6229 6230 6231 6232 6233 6234 6235 6236
		/*
		 * Never scan more than sc->nr_to_scan VM instances.
		 * Will not hit this condition practically since we do not try
		 * to shrink more than one VM and it is very unlikely to see
		 * !n_used_mmu_pages so many times.
		 */
		if (!nr_to_scan--)
			break;
6237 6238 6239 6240 6241 6242
		/*
		 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
		 * here. We may skip a VM instance errorneosly, but we do not
		 * want to shrink a VM that only started to populate its MMU
		 * anyway.
		 */
6243 6244
		if (!kvm->arch.n_used_mmu_pages &&
		    !kvm_has_zapped_obsolete_pages(kvm))
6245 6246
			continue;

6247
		idx = srcu_read_lock(&kvm->srcu);
6248
		write_lock(&kvm->mmu_lock);
6249

6250 6251 6252 6253 6254 6255
		if (kvm_has_zapped_obsolete_pages(kvm)) {
			kvm_mmu_commit_zap_page(kvm,
			      &kvm->arch.zapped_obsolete_pages);
			goto unlock;
		}

6256
		freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan);
6257

6258
unlock:
6259
		write_unlock(&kvm->mmu_lock);
6260
		srcu_read_unlock(&kvm->srcu, idx);
6261

6262 6263 6264 6265 6266
		/*
		 * unfair on small ones
		 * per-vm shrinkers cry out
		 * sadness comes quickly
		 */
6267 6268
		list_move_tail(&kvm->vm_list, &vm_list);
		break;
6269 6270
	}

J
Junaid Shahid 已提交
6271
	mutex_unlock(&kvm_lock);
6272 6273 6274 6275 6276 6277
	return freed;
}

static unsigned long
mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
{
6278
	return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
6279 6280 6281
}

static struct shrinker mmu_shrinker = {
6282 6283
	.count_objects = mmu_shrink_count,
	.scan_objects = mmu_shrink_scan,
6284 6285 6286
	.seeks = DEFAULT_SEEKS * 10,
};

I
Ingo Molnar 已提交
6287
static void mmu_destroy_caches(void)
6288
{
6289 6290
	kmem_cache_destroy(pte_list_desc_cache);
	kmem_cache_destroy(mmu_page_header_cache);
6291 6292
}

P
Paolo Bonzini 已提交
6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326
static bool get_nx_auto_mode(void)
{
	/* Return true when CPU has the bug, and mitigations are ON */
	return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
}

static void __set_nx_huge_pages(bool val)
{
	nx_huge_pages = itlb_multihit_kvm_mitigation = val;
}

static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
{
	bool old_val = nx_huge_pages;
	bool new_val;

	/* In "auto" mode deploy workaround only if CPU has the bug. */
	if (sysfs_streq(val, "off"))
		new_val = 0;
	else if (sysfs_streq(val, "force"))
		new_val = 1;
	else if (sysfs_streq(val, "auto"))
		new_val = get_nx_auto_mode();
	else if (strtobool(val, &new_val) < 0)
		return -EINVAL;

	__set_nx_huge_pages(new_val);

	if (new_val != old_val) {
		struct kvm *kvm;

		mutex_lock(&kvm_lock);

		list_for_each_entry(kvm, &vm_list, vm_list) {
6327
			mutex_lock(&kvm->slots_lock);
P
Paolo Bonzini 已提交
6328
			kvm_mmu_zap_all_fast(kvm);
6329
			mutex_unlock(&kvm->slots_lock);
6330 6331

			wake_up_process(kvm->arch.nx_lpage_recovery_thread);
P
Paolo Bonzini 已提交
6332 6333 6334 6335 6336 6337 6338
		}
		mutex_unlock(&kvm_lock);
	}

	return 0;
}

6339 6340 6341 6342 6343
/*
 * nx_huge_pages needs to be resolved to true/false when kvm.ko is loaded, as
 * its default value of -1 is technically undefined behavior for a boolean.
 */
void kvm_mmu_x86_module_init(void)
6344
{
P
Paolo Bonzini 已提交
6345 6346
	if (nx_huge_pages == -1)
		__set_nx_huge_pages(get_nx_auto_mode());
6347 6348 6349 6350 6351 6352 6353 6354 6355 6356
}

/*
 * The bulk of the MMU initialization is deferred until the vendor module is
 * loaded as many of the masks/values may be modified by VMX or SVM, i.e. need
 * to be reset when a potentially different vendor module is loaded.
 */
int kvm_mmu_vendor_module_init(void)
{
	int ret = -ENOMEM;
P
Paolo Bonzini 已提交
6357

6358 6359 6360 6361 6362 6363 6364 6365
	/*
	 * MMU roles use union aliasing which is, generally speaking, an
	 * undefined behavior. However, we supposedly know how compilers behave
	 * and the current status quo is unlikely to change. Guardians below are
	 * supposed to let us know if the assumption becomes false.
	 */
	BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
	BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
6366
	BUILD_BUG_ON(sizeof(union kvm_cpu_role) != sizeof(u64));
6367

6368
	kvm_mmu_reset_all_pte_masks();
6369

6370 6371
	pte_list_desc_cache = kmem_cache_create("pte_list_desc",
					    sizeof(struct pte_list_desc),
6372
					    0, SLAB_ACCOUNT, NULL);
6373
	if (!pte_list_desc_cache)
6374
		goto out;
6375

6376 6377
	mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
						  sizeof(struct kvm_mmu_page),
6378
						  0, SLAB_ACCOUNT, NULL);
6379
	if (!mmu_page_header_cache)
6380
		goto out;
6381

6382
	if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
6383
		goto out;
6384

6385 6386 6387
	ret = register_shrinker(&mmu_shrinker);
	if (ret)
		goto out;
6388

6389 6390
	return 0;

6391
out:
6392
	mmu_destroy_caches();
6393
	return ret;
6394 6395
}

6396 6397
void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
{
6398
	kvm_mmu_unload(vcpu);
6399 6400
	free_mmu_pages(&vcpu->arch.root_mmu);
	free_mmu_pages(&vcpu->arch.guest_mmu);
6401
	mmu_free_memory_caches(vcpu);
6402 6403
}

6404
void kvm_mmu_vendor_module_exit(void)
6405 6406 6407 6408
{
	mmu_destroy_caches();
	percpu_counter_destroy(&kvm_total_used_mmu_pages);
	unregister_shrinker(&mmu_shrinker);
6409
}
6410

6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435
/*
 * Calculate the effective recovery period, accounting for '0' meaning "let KVM
 * select a halving time of 1 hour".  Returns true if recovery is enabled.
 */
static bool calc_nx_huge_pages_recovery_period(uint *period)
{
	/*
	 * Use READ_ONCE to get the params, this may be called outside of the
	 * param setters, e.g. by the kthread to compute its next timeout.
	 */
	bool enabled = READ_ONCE(nx_huge_pages);
	uint ratio = READ_ONCE(nx_huge_pages_recovery_ratio);

	if (!enabled || !ratio)
		return false;

	*period = READ_ONCE(nx_huge_pages_recovery_period_ms);
	if (!*period) {
		/* Make sure the period is not less than one second.  */
		ratio = min(ratio, 3600u);
		*period = 60 * 60 * 1000 / ratio;
	}
	return true;
}

6436
static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp)
6437
{
6438 6439
	bool was_recovery_enabled, is_recovery_enabled;
	uint old_period, new_period;
6440 6441
	int err;

6442
	was_recovery_enabled = calc_nx_huge_pages_recovery_period(&old_period);
6443

6444 6445 6446 6447
	err = param_set_uint(val, kp);
	if (err)
		return err;

6448
	is_recovery_enabled = calc_nx_huge_pages_recovery_period(&new_period);
6449

6450
	if (is_recovery_enabled &&
6451
	    (!was_recovery_enabled || old_period > new_period)) {
6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466
		struct kvm *kvm;

		mutex_lock(&kvm_lock);

		list_for_each_entry(kvm, &vm_list, vm_list)
			wake_up_process(kvm->arch.nx_lpage_recovery_thread);

		mutex_unlock(&kvm_lock);
	}

	return err;
}

static void kvm_recover_nx_lpages(struct kvm *kvm)
{
6467
	unsigned long nx_lpage_splits = kvm->stat.nx_lpage_splits;
6468 6469 6470 6471
	int rcu_idx;
	struct kvm_mmu_page *sp;
	unsigned int ratio;
	LIST_HEAD(invalid_list);
6472
	bool flush = false;
6473 6474 6475
	ulong to_zap;

	rcu_idx = srcu_read_lock(&kvm->srcu);
6476
	write_lock(&kvm->mmu_lock);
6477

6478 6479 6480 6481 6482 6483 6484
	/*
	 * Zapping TDP MMU shadow pages, including the remote TLB flush, must
	 * be done under RCU protection, because the pages are freed via RCU
	 * callback.
	 */
	rcu_read_lock();

6485
	ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
6486
	to_zap = ratio ? DIV_ROUND_UP(nx_lpage_splits, ratio) : 0;
6487 6488 6489 6490
	for ( ; to_zap; --to_zap) {
		if (list_empty(&kvm->arch.lpage_disallowed_mmu_pages))
			break;

6491 6492 6493 6494 6495 6496 6497 6498 6499
		/*
		 * We use a separate list instead of just using active_mmu_pages
		 * because the number of lpage_disallowed pages is expected to
		 * be relatively small compared to the total.
		 */
		sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
				      struct kvm_mmu_page,
				      lpage_disallowed_link);
		WARN_ON_ONCE(!sp->lpage_disallowed);
6500
		if (is_tdp_mmu_page(sp)) {
6501
			flush |= kvm_tdp_mmu_zap_sp(kvm, sp);
6502
		} else {
6503 6504 6505
			kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
			WARN_ON_ONCE(sp->lpage_disallowed);
		}
6506

6507
		if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
6508
			kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
6509 6510
			rcu_read_unlock();

6511
			cond_resched_rwlock_write(&kvm->mmu_lock);
6512
			flush = false;
6513 6514

			rcu_read_lock();
6515 6516
		}
	}
6517
	kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
6518

6519 6520
	rcu_read_unlock();

6521
	write_unlock(&kvm->mmu_lock);
6522 6523 6524 6525 6526
	srcu_read_unlock(&kvm->srcu, rcu_idx);
}

static long get_nx_lpage_recovery_timeout(u64 start_time)
{
6527 6528
	bool enabled;
	uint period;
6529

6530
	enabled = calc_nx_huge_pages_recovery_period(&period);
6531

6532 6533
	return enabled ? start_time + msecs_to_jiffies(period) - get_jiffies_64()
		       : MAX_SCHEDULE_TIMEOUT;
6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578
}

static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
{
	u64 start_time;
	long remaining_time;

	while (true) {
		start_time = get_jiffies_64();
		remaining_time = get_nx_lpage_recovery_timeout(start_time);

		set_current_state(TASK_INTERRUPTIBLE);
		while (!kthread_should_stop() && remaining_time > 0) {
			schedule_timeout(remaining_time);
			remaining_time = get_nx_lpage_recovery_timeout(start_time);
			set_current_state(TASK_INTERRUPTIBLE);
		}

		set_current_state(TASK_RUNNING);

		if (kthread_should_stop())
			return 0;

		kvm_recover_nx_lpages(kvm);
	}
}

int kvm_mmu_post_init_vm(struct kvm *kvm)
{
	int err;

	err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
					  "kvm-nx-lpage-recovery",
					  &kvm->arch.nx_lpage_recovery_thread);
	if (!err)
		kthread_unpark(kvm->arch.nx_lpage_recovery_thread);

	return err;
}

void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
{
	if (kvm->arch.nx_lpage_recovery_thread)
		kthread_stop(kvm->arch.nx_lpage_recovery_thread);
}