mmu.c 171.1 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
A
Avi Kivity 已提交
2 3 4 5 6 7 8 9 10
/*
 * Kernel-based Virtual Machine driver for Linux
 *
 * This module enables machines with Intel VT-x extensions to run virtual
 * machines without emulation or binary translation.
 *
 * MMU support
 *
 * Copyright (C) 2006 Qumranet, Inc.
N
Nicolas Kaiser 已提交
11
 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
A
Avi Kivity 已提交
12 13 14 15 16
 *
 * Authors:
 *   Yaniv Kamay  <yaniv@qumranet.com>
 *   Avi Kivity   <avi@qumranet.com>
 */
A
Avi Kivity 已提交
17

18
#include "irq.h"
19
#include "mmu.h"
20
#include "x86.h"
A
Avi Kivity 已提交
21
#include "kvm_cache_regs.h"
22
#include "cpuid.h"
A
Avi Kivity 已提交
23

24
#include <linux/kvm_host.h>
A
Avi Kivity 已提交
25 26 27 28
#include <linux/types.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/highmem.h>
29 30
#include <linux/moduleparam.h>
#include <linux/export.h>
31
#include <linux/swap.h>
M
Marcelo Tosatti 已提交
32
#include <linux/hugetlb.h>
33
#include <linux/compiler.h>
34
#include <linux/srcu.h>
35
#include <linux/slab.h>
36
#include <linux/sched/signal.h>
37
#include <linux/uaccess.h>
38
#include <linux/hash.h>
39
#include <linux/kern_levels.h>
40
#include <linux/kthread.h>
A
Avi Kivity 已提交
41

A
Avi Kivity 已提交
42
#include <asm/page.h>
43
#include <asm/pat.h>
A
Avi Kivity 已提交
44
#include <asm/cmpxchg.h>
45
#include <asm/e820/api.h>
46
#include <asm/io.h>
47
#include <asm/vmx.h>
48
#include <asm/kvm_page_track.h>
49
#include "trace.h"
A
Avi Kivity 已提交
50

P
Paolo Bonzini 已提交
51 52 53
extern bool itlb_multihit_kvm_mitigation;

static int __read_mostly nx_huge_pages = -1;
54 55 56 57
#ifdef CONFIG_PREEMPT_RT
/* Recovery can cause latency spikes, disable it for PREEMPT_RT.  */
static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
#else
58
static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
59
#endif
P
Paolo Bonzini 已提交
60 61

static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
62
static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp);
P
Paolo Bonzini 已提交
63 64 65 66 67 68

static struct kernel_param_ops nx_huge_pages_ops = {
	.set = set_nx_huge_pages,
	.get = param_get_bool,
};

69 70 71 72 73
static struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = {
	.set = set_nx_huge_pages_recovery_ratio,
	.get = param_get_uint,
};

P
Paolo Bonzini 已提交
74 75
module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
__MODULE_PARM_TYPE(nx_huge_pages, "bool");
76 77 78
module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops,
		&nx_huge_pages_recovery_ratio, 0644);
__MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
P
Paolo Bonzini 已提交
79

80 81 82 83 84 85 86
/*
 * When setting this variable to true it enables Two-Dimensional-Paging
 * where the hardware walks 2 page tables:
 * 1. the guest-virtual to guest-physical
 * 2. while doing 1. it walks guest-physical to host-physical
 * If the hardware supports that we don't need to do shadow paging.
 */
87
bool tdp_enabled = false;
88

89 90 91 92
enum {
	AUDIT_PRE_PAGE_FAULT,
	AUDIT_POST_PAGE_FAULT,
	AUDIT_PRE_PTE_WRITE,
93 94 95
	AUDIT_POST_PTE_WRITE,
	AUDIT_PRE_SYNC,
	AUDIT_POST_SYNC
96
};
97

98
#undef MMU_DEBUG
99 100

#ifdef MMU_DEBUG
101 102
static bool dbg = 0;
module_param(dbg, bool, 0644);
103 104 105

#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
106
#define MMU_WARN_ON(x) WARN_ON(x)
107 108 109
#else
#define pgprintk(x...) do { } while (0)
#define rmap_printk(x...) do { } while (0)
110
#define MMU_WARN_ON(x) do { } while (0)
111
#endif
A
Avi Kivity 已提交
112

113 114
#define PTE_PREFETCH_NUM		8

115
#define PT_FIRST_AVAIL_BITS_SHIFT 10
116 117 118 119 120 121 122 123 124
#define PT64_SECOND_AVAIL_BITS_SHIFT 54

/*
 * The mask used to denote special SPTEs, which can be either MMIO SPTEs or
 * Access Tracking SPTEs.
 */
#define SPTE_SPECIAL_MASK (3ULL << 52)
#define SPTE_AD_ENABLED_MASK (0ULL << 52)
#define SPTE_AD_DISABLED_MASK (1ULL << 52)
125
#define SPTE_AD_WRPROT_ONLY_MASK (2ULL << 52)
126
#define SPTE_MMIO_MASK (3ULL << 52)
A
Avi Kivity 已提交
127 128 129 130

#define PT64_LEVEL_BITS 9

#define PT64_LEVEL_SHIFT(level) \
M
Mike Day 已提交
131
		(PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
A
Avi Kivity 已提交
132 133 134 135 136 137 138 139

#define PT64_INDEX(address, level)\
	(((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))


#define PT32_LEVEL_BITS 10

#define PT32_LEVEL_SHIFT(level) \
M
Mike Day 已提交
140
		(PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
A
Avi Kivity 已提交
141

142 143 144
#define PT32_LVL_OFFSET_MASK(level) \
	(PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
145 146 147 148 149

#define PT32_INDEX(address, level)\
	(((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))


150 151 152 153 154
#ifdef CONFIG_DYNAMIC_PHYSICAL_MASK
#define PT64_BASE_ADDR_MASK (physical_mask & ~(u64)(PAGE_SIZE-1))
#else
#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
#endif
155 156 157 158 159 160
#define PT64_LVL_ADDR_MASK(level) \
	(PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT64_LEVEL_BITS))) - 1))
#define PT64_LVL_OFFSET_MASK(level) \
	(PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT64_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
161 162 163 164

#define PT32_BASE_ADDR_MASK PAGE_MASK
#define PT32_DIR_BASE_ADDR_MASK \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
165 166 167
#define PT32_LVL_ADDR_MASK(level) \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
					    * PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
168

169
#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
170
			| shadow_x_mask | shadow_nx_mask | shadow_me_mask)
A
Avi Kivity 已提交
171

172 173 174 175 176
#define ACC_EXEC_MASK    1
#define ACC_WRITE_MASK   PT_WRITABLE_MASK
#define ACC_USER_MASK    PT_USER_MASK
#define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)

177 178 179 180
/* The mask for the R/X bits in EPT PTEs */
#define PT64_EPT_READABLE_MASK			0x1ull
#define PT64_EPT_EXECUTABLE_MASK		0x4ull

181 182
#include <trace/events/kvm.h>

183 184
#define SPTE_HOST_WRITEABLE	(1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
#define SPTE_MMU_WRITEABLE	(1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
185

186 187
#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)

188 189 190
/* make pte_list_desc fit well in cache line */
#define PTE_LIST_EXT 3

191 192 193 194 195 196 197 198 199 200 201 202 203 204
/*
 * Return values of handle_mmio_page_fault and mmu.page_fault:
 * RET_PF_RETRY: let CPU fault again on the address.
 * RET_PF_EMULATE: mmio page fault, emulate the instruction directly.
 *
 * For handle_mmio_page_fault only:
 * RET_PF_INVALID: the spte is invalid, let the real page fault path update it.
 */
enum {
	RET_PF_RETRY = 0,
	RET_PF_EMULATE = 1,
	RET_PF_INVALID = 2,
};

205 206 207
struct pte_list_desc {
	u64 *sptes[PTE_LIST_EXT];
	struct pte_list_desc *more;
208 209
};

210 211 212 213
struct kvm_shadow_walk_iterator {
	u64 addr;
	hpa_t shadow_addr;
	u64 *sptep;
214
	int level;
215 216 217
	unsigned index;
};

218 219
static const union kvm_mmu_page_role mmu_base_role_mask = {
	.cr0_wp = 1,
220
	.gpte_is_8_bytes = 1,
221 222 223 224 225 226 227 228
	.nxe = 1,
	.smep_andnot_wp = 1,
	.smap_andnot_wp = 1,
	.smm = 1,
	.guest_mode = 1,
	.ad_disabled = 1,
};

229 230 231 232 233 234 235
#define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker)     \
	for (shadow_walk_init_using_root(&(_walker), (_vcpu),              \
					 (_root), (_addr));                \
	     shadow_walk_okay(&(_walker));			           \
	     shadow_walk_next(&(_walker)))

#define for_each_shadow_entry(_vcpu, _addr, _walker)            \
236 237 238 239
	for (shadow_walk_init(&(_walker), _vcpu, _addr);	\
	     shadow_walk_okay(&(_walker));			\
	     shadow_walk_next(&(_walker)))

240 241 242 243 244 245
#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)	\
	for (shadow_walk_init(&(_walker), _vcpu, _addr);		\
	     shadow_walk_okay(&(_walker)) &&				\
		({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });	\
	     __shadow_walk_next(&(_walker), spte))

246
static struct kmem_cache *pte_list_desc_cache;
247
static struct kmem_cache *mmu_page_header_cache;
248
static struct percpu_counter kvm_total_used_mmu_pages;
249

S
Sheng Yang 已提交
250 251 252 253 254
static u64 __read_mostly shadow_nx_mask;
static u64 __read_mostly shadow_x_mask;	/* mutual exclusive with nx_mask */
static u64 __read_mostly shadow_user_mask;
static u64 __read_mostly shadow_accessed_mask;
static u64 __read_mostly shadow_dirty_mask;
255
static u64 __read_mostly shadow_mmio_mask;
256
static u64 __read_mostly shadow_mmio_value;
257
static u64 __read_mostly shadow_mmio_access_mask;
258
static u64 __read_mostly shadow_present_mask;
259
static u64 __read_mostly shadow_me_mask;
260

261
/*
262 263 264
 * SPTEs used by MMUs without A/D bits are marked with SPTE_AD_DISABLED_MASK;
 * shadow_acc_track_mask is the set of bits to be cleared in non-accessed
 * pages.
265 266 267 268 269 270 271 272 273 274 275 276 277
 */
static u64 __read_mostly shadow_acc_track_mask;

/*
 * The mask/shift to use for saving the original R/X bits when marking the PTE
 * as not-present for access tracking purposes. We do not save the W bit as the
 * PTEs being access tracked also need to be dirty tracked, so the W bit will be
 * restored only when a write is attempted to the page.
 */
static const u64 shadow_acc_track_saved_bits_mask = PT64_EPT_READABLE_MASK |
						    PT64_EPT_EXECUTABLE_MASK;
static const u64 shadow_acc_track_saved_bits_shift = PT64_SECOND_AVAIL_BITS_SHIFT;

278 279 280 281 282 283 284 285 286 287 288
/*
 * This mask must be set on all non-zero Non-Present or Reserved SPTEs in order
 * to guard against L1TF attacks.
 */
static u64 __read_mostly shadow_nonpresent_or_rsvd_mask;

/*
 * The number of high-order 1 bits to use in the mask above.
 */
static const u64 shadow_nonpresent_or_rsvd_mask_len = 5;

289 290 291 292 293 294 295 296 297 298
/*
 * In some cases, we need to preserve the GFN of a non-present or reserved
 * SPTE when we usurp the upper five bits of the physical address space to
 * defend against L1TF, e.g. for MMIO SPTEs.  To preserve the GFN, we'll
 * shift bits of the GFN that overlap with shadow_nonpresent_or_rsvd_mask
 * left into the reserved bits, i.e. the GFN in the SPTE will be split into
 * high and low parts.  This mask covers the lower bits of the GFN.
 */
static u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask;

299 300 301 302 303
/*
 * The number of non-reserved physical address bits irrespective of features
 * that repurpose legal bits, e.g. MKTME.
 */
static u8 __read_mostly shadow_phys_bits;
304

305
static void mmu_spte_set(u64 *sptep, u64 spte);
306
static bool is_executable_pte(u64 spte);
307 308
static union kvm_mmu_page_role
kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
309

310 311 312
#define CREATE_TRACE_POINTS
#include "mmutrace.h"

313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341

static inline bool kvm_available_flush_tlb_with_range(void)
{
	return kvm_x86_ops->tlb_remote_flush_with_range;
}

static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
		struct kvm_tlb_range *range)
{
	int ret = -ENOTSUPP;

	if (range && kvm_x86_ops->tlb_remote_flush_with_range)
		ret = kvm_x86_ops->tlb_remote_flush_with_range(kvm, range);

	if (ret)
		kvm_flush_remote_tlbs(kvm);
}

static void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
		u64 start_gfn, u64 pages)
{
	struct kvm_tlb_range range;

	range.start_gfn = start_gfn;
	range.pages = pages;

	kvm_flush_remote_tlbs_with_range(kvm, &range);
}

342
void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask, u64 mmio_value, u64 access_mask)
343
{
344
	BUG_ON((u64)(unsigned)access_mask != access_mask);
345
	BUG_ON((mmio_mask & mmio_value) != mmio_value);
346
	shadow_mmio_value = mmio_value | SPTE_MMIO_MASK;
347
	shadow_mmio_mask = mmio_mask | SPTE_SPECIAL_MASK;
348
	shadow_mmio_access_mask = access_mask;
349 350 351
}
EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);

352 353 354 355 356
static bool is_mmio_spte(u64 spte)
{
	return (spte & shadow_mmio_mask) == shadow_mmio_value;
}

357 358 359 360 361
static inline bool sp_ad_disabled(struct kvm_mmu_page *sp)
{
	return sp->role.ad_disabled;
}

362 363 364 365 366 367 368 369 370 371 372
static inline bool kvm_vcpu_ad_need_write_protect(struct kvm_vcpu *vcpu)
{
	/*
	 * When using the EPT page-modification log, the GPAs in the log
	 * would come from L2 rather than L1.  Therefore, we need to rely
	 * on write protection to record dirty pages.  This also bypasses
	 * PML, since writes now result in a vmexit.
	 */
	return vcpu->arch.mmu == &vcpu->arch.guest_mmu;
}

373 374
static inline bool spte_ad_enabled(u64 spte)
{
375
	MMU_WARN_ON(is_mmio_spte(spte));
376 377 378 379 380 381 382
	return (spte & SPTE_SPECIAL_MASK) != SPTE_AD_DISABLED_MASK;
}

static inline bool spte_ad_need_write_protect(u64 spte)
{
	MMU_WARN_ON(is_mmio_spte(spte));
	return (spte & SPTE_SPECIAL_MASK) != SPTE_AD_ENABLED_MASK;
383 384
}

P
Paolo Bonzini 已提交
385 386 387 388 389
static bool is_nx_huge_page_enabled(void)
{
	return READ_ONCE(nx_huge_pages);
}

390 391
static inline u64 spte_shadow_accessed_mask(u64 spte)
{
392
	MMU_WARN_ON(is_mmio_spte(spte));
393 394 395 396 397
	return spte_ad_enabled(spte) ? shadow_accessed_mask : 0;
}

static inline u64 spte_shadow_dirty_mask(u64 spte)
{
398
	MMU_WARN_ON(is_mmio_spte(spte));
399 400 401
	return spte_ad_enabled(spte) ? shadow_dirty_mask : 0;
}

402 403
static inline bool is_access_track_spte(u64 spte)
{
404
	return !spte_ad_enabled(spte) && (spte & shadow_acc_track_mask) == 0;
405 406
}

407
/*
408 409
 * Due to limited space in PTEs, the MMIO generation is a 19 bit subset of
 * the memslots generation and is derived as follows:
410
 *
411 412
 * Bits 0-8 of the MMIO generation are propagated to spte bits 3-11
 * Bits 9-18 of the MMIO generation are propagated to spte bits 52-61
413
 *
414 415 416 417 418 419
 * The KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS flag is intentionally not included in
 * the MMIO generation number, as doing so would require stealing a bit from
 * the "real" generation number and thus effectively halve the maximum number
 * of MMIO generations that can be handled before encountering a wrap (which
 * requires a full MMU zap).  The flag is instead explicitly queried when
 * checking for MMIO spte cache hits.
420
 */
421
#define MMIO_SPTE_GEN_MASK		GENMASK_ULL(18, 0)
422

423 424 425 426
#define MMIO_SPTE_GEN_LOW_START		3
#define MMIO_SPTE_GEN_LOW_END		11
#define MMIO_SPTE_GEN_LOW_MASK		GENMASK_ULL(MMIO_SPTE_GEN_LOW_END, \
						    MMIO_SPTE_GEN_LOW_START)
427

428 429 430 431
#define MMIO_SPTE_GEN_HIGH_START	52
#define MMIO_SPTE_GEN_HIGH_END		61
#define MMIO_SPTE_GEN_HIGH_MASK		GENMASK_ULL(MMIO_SPTE_GEN_HIGH_END, \
						    MMIO_SPTE_GEN_HIGH_START)
432
static u64 generation_mmio_spte_mask(u64 gen)
433 434 435
{
	u64 mask;

436
	WARN_ON(gen & ~MMIO_SPTE_GEN_MASK);
437

438 439
	mask = (gen << MMIO_SPTE_GEN_LOW_START) & MMIO_SPTE_GEN_LOW_MASK;
	mask |= (gen << MMIO_SPTE_GEN_HIGH_START) & MMIO_SPTE_GEN_HIGH_MASK;
440 441 442
	return mask;
}

443
static u64 get_mmio_spte_generation(u64 spte)
444
{
445
	u64 gen;
446 447 448

	spte &= ~shadow_mmio_mask;

449 450
	gen = (spte & MMIO_SPTE_GEN_LOW_MASK) >> MMIO_SPTE_GEN_LOW_START;
	gen |= (spte & MMIO_SPTE_GEN_HIGH_MASK) >> MMIO_SPTE_GEN_HIGH_START;
451 452 453
	return gen;
}

454
static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
455
			   unsigned access)
456
{
457
	u64 gen = kvm_vcpu_memslots(vcpu)->generation & MMIO_SPTE_GEN_MASK;
458
	u64 mask = generation_mmio_spte_mask(gen);
459
	u64 gpa = gfn << PAGE_SHIFT;
460

461
	access &= shadow_mmio_access_mask;
462 463 464 465
	mask |= shadow_mmio_value | access;
	mask |= gpa | shadow_nonpresent_or_rsvd_mask;
	mask |= (gpa & shadow_nonpresent_or_rsvd_mask)
		<< shadow_nonpresent_or_rsvd_mask_len;
466

467
	trace_mark_mmio_spte(sptep, gfn, access, gen);
468
	mmu_spte_set(sptep, mask);
469 470 471 472
}

static gfn_t get_mmio_spte_gfn(u64 spte)
{
473
	u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
474 475 476 477 478

	gpa |= (spte >> shadow_nonpresent_or_rsvd_mask_len)
	       & shadow_nonpresent_or_rsvd_mask;

	return gpa >> PAGE_SHIFT;
479 480 481 482
}

static unsigned get_mmio_spte_access(u64 spte)
{
483
	return spte & shadow_mmio_access_mask;
484 485
}

486
static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
D
Dan Williams 已提交
487
			  kvm_pfn_t pfn, unsigned access)
488 489
{
	if (unlikely(is_noslot_pfn(pfn))) {
490
		mark_mmio_spte(vcpu, sptep, gfn, access);
491 492 493 494 495
		return true;
	}

	return false;
}
496

497
static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
498
{
499
	u64 kvm_gen, spte_gen, gen;
500

501 502 503
	gen = kvm_vcpu_memslots(vcpu)->generation;
	if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
		return false;
504

505
	kvm_gen = gen & MMIO_SPTE_GEN_MASK;
506 507 508 509
	spte_gen = get_mmio_spte_generation(spte);

	trace_check_mmio_spte(spte, kvm_gen, spte_gen);
	return likely(kvm_gen == spte_gen);
510 511
}

512 513 514 515 516 517 518
/*
 * Sets the shadow PTE masks used by the MMU.
 *
 * Assumptions:
 *  - Setting either @accessed_mask or @dirty_mask requires setting both
 *  - At least one of @accessed_mask or @acc_track_mask must be set
 */
S
Sheng Yang 已提交
519
void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
520
		u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask,
521
		u64 acc_track_mask, u64 me_mask)
S
Sheng Yang 已提交
522
{
523 524
	BUG_ON(!dirty_mask != !accessed_mask);
	BUG_ON(!accessed_mask && !acc_track_mask);
525
	BUG_ON(acc_track_mask & SPTE_SPECIAL_MASK);
526

S
Sheng Yang 已提交
527 528 529 530 531
	shadow_user_mask = user_mask;
	shadow_accessed_mask = accessed_mask;
	shadow_dirty_mask = dirty_mask;
	shadow_nx_mask = nx_mask;
	shadow_x_mask = x_mask;
532
	shadow_present_mask = p_mask;
533
	shadow_acc_track_mask = acc_track_mask;
534
	shadow_me_mask = me_mask;
S
Sheng Yang 已提交
535 536 537
}
EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);

538 539 540
static u8 kvm_get_shadow_phys_bits(void)
{
	/*
541 542 543 544
	 * boot_cpu_data.x86_phys_bits is reduced when MKTME or SME are detected
	 * in CPU detection code, but the processor treats those reduced bits as
	 * 'keyID' thus they are not reserved bits. Therefore KVM needs to look at
	 * the physical address bits reported by CPUID.
545
	 */
546 547
	if (likely(boot_cpu_data.extended_cpuid_level >= 0x80000008))
		return cpuid_eax(0x80000008) & 0xff;
548

549 550 551 552 553 554
	/*
	 * Quite weird to have VMX or SVM but not MAXPHYADDR; probably a VM with
	 * custom CPUID.  Proceed with whatever the kernel found since these features
	 * aren't virtualizable (SME/SEV also require CPUIDs higher than 0x80000008).
	 */
	return boot_cpu_data.x86_phys_bits;
555 556
}

557
static void kvm_mmu_reset_all_pte_masks(void)
558
{
559 560
	u8 low_phys_bits;

561 562 563 564 565 566 567 568
	shadow_user_mask = 0;
	shadow_accessed_mask = 0;
	shadow_dirty_mask = 0;
	shadow_nx_mask = 0;
	shadow_x_mask = 0;
	shadow_mmio_mask = 0;
	shadow_present_mask = 0;
	shadow_acc_track_mask = 0;
569

570 571
	shadow_phys_bits = kvm_get_shadow_phys_bits();

572 573 574 575
	/*
	 * If the CPU has 46 or less physical address bits, then set an
	 * appropriate mask to guard against L1TF attacks. Otherwise, it is
	 * assumed that the CPU is not vulnerable to L1TF.
576 577 578 579 580
	 *
	 * Some Intel CPUs address the L1 cache using more PA bits than are
	 * reported by CPUID. Use the PA width of the L1 cache when possible
	 * to achieve more effective mitigation, e.g. if system RAM overlaps
	 * the most significant bits of legal physical address space.
581
	 */
582 583 584
	shadow_nonpresent_or_rsvd_mask = 0;
	low_phys_bits = boot_cpu_data.x86_cache_bits;
	if (boot_cpu_data.x86_cache_bits <
585
	    52 - shadow_nonpresent_or_rsvd_mask_len) {
586
		shadow_nonpresent_or_rsvd_mask =
587
			rsvd_bits(boot_cpu_data.x86_cache_bits -
588
				  shadow_nonpresent_or_rsvd_mask_len,
589
				  boot_cpu_data.x86_cache_bits - 1);
590
		low_phys_bits -= shadow_nonpresent_or_rsvd_mask_len;
591 592 593
	} else
		WARN_ON_ONCE(boot_cpu_has_bug(X86_BUG_L1TF));

594 595
	shadow_nonpresent_or_rsvd_lower_gfn_mask =
		GENMASK_ULL(low_phys_bits - 1, PAGE_SHIFT);
596 597
}

A
Avi Kivity 已提交
598 599 600 601 602
static int is_cpuid_PSE36(void)
{
	return 1;
}

603 604
static int is_nx(struct kvm_vcpu *vcpu)
{
605
	return vcpu->arch.efer & EFER_NX;
606 607
}

608 609
static int is_shadow_present_pte(u64 pte)
{
610
	return (pte != 0) && !is_mmio_spte(pte);
611 612
}

M
Marcelo Tosatti 已提交
613 614 615 616 617
static int is_large_pte(u64 pte)
{
	return pte & PT_PAGE_SIZE_MASK;
}

618 619 620 621
static int is_last_spte(u64 pte, int level)
{
	if (level == PT_PAGE_TABLE_LEVEL)
		return 1;
622
	if (is_large_pte(pte))
623 624 625 626
		return 1;
	return 0;
}

627 628 629 630 631
static bool is_executable_pte(u64 spte)
{
	return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask;
}

D
Dan Williams 已提交
632
static kvm_pfn_t spte_to_pfn(u64 pte)
633
{
634
	return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
635 636
}

637 638 639 640 641 642 643
static gfn_t pse36_gfn_delta(u32 gpte)
{
	int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;

	return (gpte & PT32_DIR_PSE36_MASK) << shift;
}

644
#ifdef CONFIG_X86_64
A
Avi Kivity 已提交
645
static void __set_spte(u64 *sptep, u64 spte)
646
{
647
	WRITE_ONCE(*sptep, spte);
648 649
}

650
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
651
{
652
	WRITE_ONCE(*sptep, spte);
653 654 655 656 657 658
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	return xchg(sptep, spte);
}
659 660 661

static u64 __get_spte_lockless(u64 *sptep)
{
662
	return READ_ONCE(*sptep);
663
}
664
#else
665 666 667 668 669 670 671
union split_spte {
	struct {
		u32 spte_low;
		u32 spte_high;
	};
	u64 spte;
};
672

673 674 675 676 677 678 679 680 681 682 683 684
static void count_spte_clear(u64 *sptep, u64 spte)
{
	struct kvm_mmu_page *sp =  page_header(__pa(sptep));

	if (is_shadow_present_pte(spte))
		return;

	/* Ensure the spte is completely set before we increase the count */
	smp_wmb();
	sp->clear_spte_count++;
}

685 686 687
static void __set_spte(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;
688

689 690 691 692 693 694 695 696 697 698 699 700
	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	ssptep->spte_high = sspte.spte_high;

	/*
	 * If we map the spte from nonpresent to present, We should store
	 * the high bits firstly, then set present bit, so cpu can not
	 * fetch this spte while we are setting the spte.
	 */
	smp_wmb();

701
	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
702 703
}

704 705 706 707 708 709 710
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

711
	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
712 713 714 715 716 717 718 719

	/*
	 * If we map the spte from present to nonpresent, we should clear
	 * present bit firstly to avoid vcpu fetch the old high bits.
	 */
	smp_wmb();

	ssptep->spte_high = sspte.spte_high;
720
	count_spte_clear(sptep, spte);
721 722 723 724 725 726 727 728 729 730 731
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte, orig;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	/* xchg acts as a barrier before the setting of the high bits */
	orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
732 733
	orig.spte_high = ssptep->spte_high;
	ssptep->spte_high = sspte.spte_high;
734
	count_spte_clear(sptep, spte);
735 736 737

	return orig.spte;
}
738 739 740

/*
 * The idea using the light way get the spte on x86_32 guest is from
741
 * gup_get_pte (mm/gup.c).
742 743 744 745 746 747 748 749 750 751 752 753 754 755
 *
 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
 * coalesces them and we are running out of the MMU lock.  Therefore
 * we need to protect against in-progress updates of the spte.
 *
 * Reading the spte while an update is in progress may get the old value
 * for the high part of the spte.  The race is fine for a present->non-present
 * change (because the high part of the spte is ignored for non-present spte),
 * but for a present->present change we must reread the spte.
 *
 * All such changes are done in two steps (present->non-present and
 * non-present->present), hence it is enough to count the number of
 * present->non-present updates: if it changed while reading the spte,
 * we might have hit the race.  This is done using clear_spte_count.
756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778
 */
static u64 __get_spte_lockless(u64 *sptep)
{
	struct kvm_mmu_page *sp =  page_header(__pa(sptep));
	union split_spte spte, *orig = (union split_spte *)sptep;
	int count;

retry:
	count = sp->clear_spte_count;
	smp_rmb();

	spte.spte_low = orig->spte_low;
	smp_rmb();

	spte.spte_high = orig->spte_high;
	smp_rmb();

	if (unlikely(spte.spte_low != orig->spte_low ||
	      count != sp->clear_spte_count))
		goto retry;

	return spte.spte;
}
779 780
#endif

781
static bool spte_can_locklessly_be_made_writable(u64 spte)
782
{
783 784
	return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
		(SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
785 786
}

787 788
static bool spte_has_volatile_bits(u64 spte)
{
789 790 791
	if (!is_shadow_present_pte(spte))
		return false;

792
	/*
793
	 * Always atomically update spte if it can be updated
794 795 796 797
	 * out of mmu-lock, it can ensure dirty bit is not lost,
	 * also, it can help us to get a stable is_writable_pte()
	 * to ensure tlb flush is not missed.
	 */
798 799
	if (spte_can_locklessly_be_made_writable(spte) ||
	    is_access_track_spte(spte))
800 801
		return true;

802
	if (spte_ad_enabled(spte)) {
803 804 805 806
		if ((spte & shadow_accessed_mask) == 0 ||
	    	    (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
			return true;
	}
807

808
	return false;
809 810
}

811
static bool is_accessed_spte(u64 spte)
812
{
813 814 815 816
	u64 accessed_mask = spte_shadow_accessed_mask(spte);

	return accessed_mask ? spte & accessed_mask
			     : !is_access_track_spte(spte);
817 818
}

819
static bool is_dirty_spte(u64 spte)
820
{
821 822 823
	u64 dirty_mask = spte_shadow_dirty_mask(spte);

	return dirty_mask ? spte & dirty_mask : spte & PT_WRITABLE_MASK;
824 825
}

826 827 828 829 830 831 832 833 834 835 836 837
/* Rules for using mmu_spte_set:
 * Set the sptep from nonpresent to present.
 * Note: the sptep being assigned *must* be either not present
 * or in a state where the hardware will not attempt to update
 * the spte.
 */
static void mmu_spte_set(u64 *sptep, u64 new_spte)
{
	WARN_ON(is_shadow_present_pte(*sptep));
	__set_spte(sptep, new_spte);
}

838 839 840
/*
 * Update the SPTE (excluding the PFN), but do not track changes in its
 * accessed/dirty status.
841
 */
842
static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
843
{
844
	u64 old_spte = *sptep;
845

846
	WARN_ON(!is_shadow_present_pte(new_spte));
847

848 849
	if (!is_shadow_present_pte(old_spte)) {
		mmu_spte_set(sptep, new_spte);
850
		return old_spte;
851
	}
852

853
	if (!spte_has_volatile_bits(old_spte))
854
		__update_clear_spte_fast(sptep, new_spte);
855
	else
856
		old_spte = __update_clear_spte_slow(sptep, new_spte);
857

858 859
	WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));

860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881
	return old_spte;
}

/* Rules for using mmu_spte_update:
 * Update the state bits, it means the mapped pfn is not changed.
 *
 * Whenever we overwrite a writable spte with a read-only one we
 * should flush remote TLBs. Otherwise rmap_write_protect
 * will find a read-only spte, even though the writable spte
 * might be cached on a CPU's TLB, the return value indicates this
 * case.
 *
 * Returns true if the TLB needs to be flushed
 */
static bool mmu_spte_update(u64 *sptep, u64 new_spte)
{
	bool flush = false;
	u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);

	if (!is_shadow_present_pte(old_spte))
		return false;

882 883
	/*
	 * For the spte updated out of mmu-lock is safe, since
884
	 * we always atomically update it, see the comments in
885 886
	 * spte_has_volatile_bits().
	 */
887
	if (spte_can_locklessly_be_made_writable(old_spte) &&
888
	      !is_writable_pte(new_spte))
889
		flush = true;
890

891
	/*
892
	 * Flush TLB when accessed/dirty states are changed in the page tables,
893 894 895
	 * to guarantee consistency between TLB and page tables.
	 */

896 897
	if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
		flush = true;
898
		kvm_set_pfn_accessed(spte_to_pfn(old_spte));
899 900 901 902
	}

	if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
		flush = true;
903
		kvm_set_pfn_dirty(spte_to_pfn(old_spte));
904
	}
905

906
	return flush;
907 908
}

909 910 911 912
/*
 * Rules for using mmu_spte_clear_track_bits:
 * It sets the sptep from present to nonpresent, and track the
 * state bits, it is used to clear the last level sptep.
913
 * Returns non-zero if the PTE was previously valid.
914 915 916
 */
static int mmu_spte_clear_track_bits(u64 *sptep)
{
D
Dan Williams 已提交
917
	kvm_pfn_t pfn;
918 919 920
	u64 old_spte = *sptep;

	if (!spte_has_volatile_bits(old_spte))
921
		__update_clear_spte_fast(sptep, 0ull);
922
	else
923
		old_spte = __update_clear_spte_slow(sptep, 0ull);
924

925
	if (!is_shadow_present_pte(old_spte))
926 927 928
		return 0;

	pfn = spte_to_pfn(old_spte);
929 930 931 932 933 934

	/*
	 * KVM does not hold the refcount of the page used by
	 * kvm mmu, before reclaiming the page, we should
	 * unmap it from mmu first.
	 */
935
	WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
936

937
	if (is_accessed_spte(old_spte))
938
		kvm_set_pfn_accessed(pfn);
939 940

	if (is_dirty_spte(old_spte))
941
		kvm_set_pfn_dirty(pfn);
942

943 944 945 946 947 948 949 950 951 952
	return 1;
}

/*
 * Rules for using mmu_spte_clear_no_track:
 * Directly clear spte without caring the state bits of sptep,
 * it is used to set the upper level spte.
 */
static void mmu_spte_clear_no_track(u64 *sptep)
{
953
	__update_clear_spte_fast(sptep, 0ull);
954 955
}

956 957 958 959 960
static u64 mmu_spte_get_lockless(u64 *sptep)
{
	return __get_spte_lockless(sptep);
}

961 962
static u64 mark_spte_for_access_track(u64 spte)
{
963
	if (spte_ad_enabled(spte))
964 965
		return spte & ~shadow_accessed_mask;

966
	if (is_access_track_spte(spte))
967 968 969
		return spte;

	/*
970 971 972
	 * Making an Access Tracking PTE will result in removal of write access
	 * from the PTE. So, verify that we will be able to restore the write
	 * access in the fast page fault path later on.
973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988
	 */
	WARN_ONCE((spte & PT_WRITABLE_MASK) &&
		  !spte_can_locklessly_be_made_writable(spte),
		  "kvm: Writable SPTE is not locklessly dirty-trackable\n");

	WARN_ONCE(spte & (shadow_acc_track_saved_bits_mask <<
			  shadow_acc_track_saved_bits_shift),
		  "kvm: Access Tracking saved bit locations are not zero\n");

	spte |= (spte & shadow_acc_track_saved_bits_mask) <<
		shadow_acc_track_saved_bits_shift;
	spte &= ~shadow_acc_track_mask;

	return spte;
}

989 990 991 992 993 994 995
/* Restore an acc-track PTE back to a regular PTE */
static u64 restore_acc_track_spte(u64 spte)
{
	u64 new_spte = spte;
	u64 saved_bits = (spte >> shadow_acc_track_saved_bits_shift)
			 & shadow_acc_track_saved_bits_mask;

996
	WARN_ON_ONCE(spte_ad_enabled(spte));
997 998 999 1000 1001 1002 1003 1004 1005 1006
	WARN_ON_ONCE(!is_access_track_spte(spte));

	new_spte &= ~shadow_acc_track_mask;
	new_spte &= ~(shadow_acc_track_saved_bits_mask <<
		      shadow_acc_track_saved_bits_shift);
	new_spte |= saved_bits;

	return new_spte;
}

1007 1008 1009 1010 1011 1012 1013 1014
/* Returns the Accessed status of the PTE and resets it at the same time. */
static bool mmu_spte_age(u64 *sptep)
{
	u64 spte = mmu_spte_get_lockless(sptep);

	if (!is_accessed_spte(spte))
		return false;

1015
	if (spte_ad_enabled(spte)) {
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
		clear_bit((ffs(shadow_accessed_mask) - 1),
			  (unsigned long *)sptep);
	} else {
		/*
		 * Capture the dirty status of the page, so that it doesn't get
		 * lost when the SPTE is marked for access tracking.
		 */
		if (is_writable_pte(spte))
			kvm_set_pfn_dirty(spte_to_pfn(spte));

		spte = mark_spte_for_access_track(spte);
		mmu_spte_update_no_track(sptep, spte);
	}

	return true;
}

1033 1034
static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
{
1035 1036 1037 1038 1039
	/*
	 * Prevent page table teardown by making any free-er wait during
	 * kvm_flush_remote_tlbs() IPI to all active vcpus.
	 */
	local_irq_disable();
1040

1041 1042 1043 1044
	/*
	 * Make sure a following spte read is not reordered ahead of the write
	 * to vcpu->mode.
	 */
1045
	smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
1046 1047 1048 1049
}

static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
{
1050 1051
	/*
	 * Make sure the write to vcpu->mode is not reordered in front of
1052
	 * reads to sptes.  If it does, kvm_mmu_commit_zap_page() can see us
1053 1054
	 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
	 */
1055
	smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
1056
	local_irq_enable();
1057 1058
}

1059
static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
1060
				  struct kmem_cache *base_cache, int min)
1061 1062 1063 1064
{
	void *obj;

	if (cache->nobjs >= min)
1065
		return 0;
1066
	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
1067
		obj = kmem_cache_zalloc(base_cache, GFP_KERNEL_ACCOUNT);
1068
		if (!obj)
1069
			return cache->nobjs >= min ? 0 : -ENOMEM;
1070 1071
		cache->objects[cache->nobjs++] = obj;
	}
1072
	return 0;
1073 1074
}

1075 1076 1077 1078 1079
static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
{
	return cache->nobjs;
}

1080 1081
static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
				  struct kmem_cache *cache)
1082 1083
{
	while (mc->nobjs)
1084
		kmem_cache_free(cache, mc->objects[--mc->nobjs]);
1085 1086
}

A
Avi Kivity 已提交
1087
static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
1088
				       int min)
A
Avi Kivity 已提交
1089
{
1090
	void *page;
A
Avi Kivity 已提交
1091 1092 1093 1094

	if (cache->nobjs >= min)
		return 0;
	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
1095
		page = (void *)__get_free_page(GFP_KERNEL_ACCOUNT);
A
Avi Kivity 已提交
1096
		if (!page)
1097
			return cache->nobjs >= min ? 0 : -ENOMEM;
1098
		cache->objects[cache->nobjs++] = page;
A
Avi Kivity 已提交
1099 1100 1101 1102 1103 1104 1105
	}
	return 0;
}

static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
{
	while (mc->nobjs)
1106
		free_page((unsigned long)mc->objects[--mc->nobjs]);
A
Avi Kivity 已提交
1107 1108
}

1109
static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
1110
{
1111 1112
	int r;

1113
	r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
1114
				   pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
1115 1116
	if (r)
		goto out;
1117
	r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
1118 1119
	if (r)
		goto out;
1120
	r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
1121
				   mmu_page_header_cache, 4);
1122 1123
out:
	return r;
1124 1125 1126 1127
}

static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
{
1128 1129
	mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
				pte_list_desc_cache);
1130
	mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
1131 1132
	mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
				mmu_page_header_cache);
1133 1134
}

1135
static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
1136 1137 1138 1139 1140 1141 1142 1143
{
	void *p;

	BUG_ON(!mc->nobjs);
	p = mc->objects[--mc->nobjs];
	return p;
}

1144
static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
1145
{
1146
	return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
1147 1148
}

1149
static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
1150
{
1151
	kmem_cache_free(pte_list_desc_cache, pte_list_desc);
1152 1153
}

1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
{
	if (!sp->role.direct)
		return sp->gfns[index];

	return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
}

static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
{
1164
	if (!sp->role.direct) {
1165
		sp->gfns[index] = gfn;
1166 1167 1168 1169 1170 1171 1172 1173
		return;
	}

	if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
		pr_err_ratelimited("gfn mismatch under direct page %llx "
				   "(expected %llx, got %llx)\n",
				   sp->gfn,
				   kvm_mmu_page_get_gfn(sp, index), gfn);
1174 1175
}

M
Marcelo Tosatti 已提交
1176
/*
1177 1178
 * Return the pointer to the large page information for a given gfn,
 * handling slots that are not large page aligned.
M
Marcelo Tosatti 已提交
1179
 */
1180 1181 1182
static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
					      struct kvm_memory_slot *slot,
					      int level)
M
Marcelo Tosatti 已提交
1183 1184 1185
{
	unsigned long idx;

1186
	idx = gfn_to_index(gfn, slot->base_gfn, level);
1187
	return &slot->arch.lpage_info[level - 2][idx];
M
Marcelo Tosatti 已提交
1188 1189
}

1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
					    gfn_t gfn, int count)
{
	struct kvm_lpage_info *linfo;
	int i;

	for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
		linfo = lpage_info_slot(gfn, slot, i);
		linfo->disallow_lpage += count;
		WARN_ON(linfo->disallow_lpage < 0);
	}
}

void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
{
	update_gfn_disallow_lpage_count(slot, gfn, 1);
}

void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
{
	update_gfn_disallow_lpage_count(slot, gfn, -1);
}

1213
static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
M
Marcelo Tosatti 已提交
1214
{
1215
	struct kvm_memslots *slots;
1216
	struct kvm_memory_slot *slot;
1217
	gfn_t gfn;
M
Marcelo Tosatti 已提交
1218

1219
	kvm->arch.indirect_shadow_pages++;
1220
	gfn = sp->gfn;
1221 1222
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
1223 1224 1225 1226 1227 1228

	/* the non-leaf shadow pages are keeping readonly. */
	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
		return kvm_slot_page_track_add_page(kvm, slot, gfn,
						    KVM_PAGE_TRACK_WRITE);

1229
	kvm_mmu_gfn_disallow_lpage(slot, gfn);
M
Marcelo Tosatti 已提交
1230 1231
}

P
Paolo Bonzini 已提交
1232 1233 1234 1235 1236 1237
static void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
{
	if (sp->lpage_disallowed)
		return;

	++kvm->stat.nx_lpage_splits;
1238 1239
	list_add_tail(&sp->lpage_disallowed_link,
		      &kvm->arch.lpage_disallowed_mmu_pages);
P
Paolo Bonzini 已提交
1240 1241 1242
	sp->lpage_disallowed = true;
}

1243
static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
M
Marcelo Tosatti 已提交
1244
{
1245
	struct kvm_memslots *slots;
1246
	struct kvm_memory_slot *slot;
1247
	gfn_t gfn;
M
Marcelo Tosatti 已提交
1248

1249
	kvm->arch.indirect_shadow_pages--;
1250
	gfn = sp->gfn;
1251 1252
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
1253 1254 1255 1256
	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
		return kvm_slot_page_track_remove_page(kvm, slot, gfn,
						       KVM_PAGE_TRACK_WRITE);

1257
	kvm_mmu_gfn_allow_lpage(slot, gfn);
M
Marcelo Tosatti 已提交
1258 1259
}

P
Paolo Bonzini 已提交
1260 1261 1262 1263
static void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
{
	--kvm->stat.nx_lpage_splits;
	sp->lpage_disallowed = false;
1264
	list_del(&sp->lpage_disallowed_link);
P
Paolo Bonzini 已提交
1265 1266
}

1267 1268
static bool __mmu_gfn_lpage_is_disallowed(gfn_t gfn, int level,
					  struct kvm_memory_slot *slot)
M
Marcelo Tosatti 已提交
1269
{
1270
	struct kvm_lpage_info *linfo;
M
Marcelo Tosatti 已提交
1271 1272

	if (slot) {
1273
		linfo = lpage_info_slot(gfn, slot, level);
1274
		return !!linfo->disallow_lpage;
M
Marcelo Tosatti 已提交
1275 1276
	}

1277
	return true;
M
Marcelo Tosatti 已提交
1278 1279
}

1280 1281
static bool mmu_gfn_lpage_is_disallowed(struct kvm_vcpu *vcpu, gfn_t gfn,
					int level)
1282 1283 1284 1285
{
	struct kvm_memory_slot *slot;

	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1286
	return __mmu_gfn_lpage_is_disallowed(gfn, level, slot);
1287 1288
}

1289
static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
M
Marcelo Tosatti 已提交
1290
{
J
Joerg Roedel 已提交
1291
	unsigned long page_size;
1292
	int i, ret = 0;
M
Marcelo Tosatti 已提交
1293

J
Joerg Roedel 已提交
1294
	page_size = kvm_host_page_size(kvm, gfn);
M
Marcelo Tosatti 已提交
1295

1296
	for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1297 1298 1299 1300 1301 1302
		if (page_size >= KVM_HPAGE_SIZE(i))
			ret = i;
		else
			break;
	}

1303
	return ret;
M
Marcelo Tosatti 已提交
1304 1305
}

1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot,
					  bool no_dirty_log)
{
	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
		return false;
	if (no_dirty_log && slot->dirty_bitmap)
		return false;

	return true;
}

1317 1318 1319
static struct kvm_memory_slot *
gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
			    bool no_dirty_log)
M
Marcelo Tosatti 已提交
1320 1321
{
	struct kvm_memory_slot *slot;
1322

1323
	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1324
	if (!memslot_valid_for_gpte(slot, no_dirty_log))
1325 1326 1327 1328 1329
		slot = NULL;

	return slot;
}

1330 1331
static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn,
			 bool *force_pt_level)
1332 1333
{
	int host_level, level, max_level;
1334 1335
	struct kvm_memory_slot *slot;

1336 1337
	if (unlikely(*force_pt_level))
		return PT_PAGE_TABLE_LEVEL;
M
Marcelo Tosatti 已提交
1338

1339 1340
	slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn);
	*force_pt_level = !memslot_valid_for_gpte(slot, true);
1341 1342 1343
	if (unlikely(*force_pt_level))
		return PT_PAGE_TABLE_LEVEL;

1344 1345 1346 1347 1348
	host_level = host_mapping_level(vcpu->kvm, large_gfn);

	if (host_level == PT_PAGE_TABLE_LEVEL)
		return host_level;

X
Xiao Guangrong 已提交
1349
	max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
1350 1351

	for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
1352
		if (__mmu_gfn_lpage_is_disallowed(large_gfn, level, slot))
1353 1354 1355
			break;

	return level - 1;
M
Marcelo Tosatti 已提交
1356 1357
}

1358
/*
1359
 * About rmap_head encoding:
1360
 *
1361 1362
 * If the bit zero of rmap_head->val is clear, then it points to the only spte
 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
1363
 * pte_list_desc containing more mappings.
1364 1365 1366 1367
 */

/*
 * Returns the number of pointers in the rmap chain, not counting the new one.
1368
 */
1369
static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
1370
			struct kvm_rmap_head *rmap_head)
1371
{
1372
	struct pte_list_desc *desc;
1373
	int i, count = 0;
1374

1375
	if (!rmap_head->val) {
1376
		rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
1377 1378
		rmap_head->val = (unsigned long)spte;
	} else if (!(rmap_head->val & 1)) {
1379 1380
		rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
		desc = mmu_alloc_pte_list_desc(vcpu);
1381
		desc->sptes[0] = (u64 *)rmap_head->val;
A
Avi Kivity 已提交
1382
		desc->sptes[1] = spte;
1383
		rmap_head->val = (unsigned long)desc | 1;
1384
		++count;
1385
	} else {
1386
		rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
1387
		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1388
		while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
1389
			desc = desc->more;
1390
			count += PTE_LIST_EXT;
1391
		}
1392 1393
		if (desc->sptes[PTE_LIST_EXT-1]) {
			desc->more = mmu_alloc_pte_list_desc(vcpu);
1394 1395
			desc = desc->more;
		}
A
Avi Kivity 已提交
1396
		for (i = 0; desc->sptes[i]; ++i)
1397
			++count;
A
Avi Kivity 已提交
1398
		desc->sptes[i] = spte;
1399
	}
1400
	return count;
1401 1402
}

1403
static void
1404 1405 1406
pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
			   struct pte_list_desc *desc, int i,
			   struct pte_list_desc *prev_desc)
1407 1408 1409
{
	int j;

1410
	for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
1411
		;
A
Avi Kivity 已提交
1412 1413
	desc->sptes[i] = desc->sptes[j];
	desc->sptes[j] = NULL;
1414 1415 1416
	if (j != 0)
		return;
	if (!prev_desc && !desc->more)
1417
		rmap_head->val = 0;
1418 1419 1420 1421
	else
		if (prev_desc)
			prev_desc->more = desc->more;
		else
1422
			rmap_head->val = (unsigned long)desc->more | 1;
1423
	mmu_free_pte_list_desc(desc);
1424 1425
}

1426
static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
1427
{
1428 1429
	struct pte_list_desc *desc;
	struct pte_list_desc *prev_desc;
1430 1431
	int i;

1432
	if (!rmap_head->val) {
1433
		pr_err("%s: %p 0->BUG\n", __func__, spte);
1434
		BUG();
1435
	} else if (!(rmap_head->val & 1)) {
1436
		rmap_printk("%s:  %p 1->0\n", __func__, spte);
1437
		if ((u64 *)rmap_head->val != spte) {
1438
			pr_err("%s:  %p 1->BUG\n", __func__, spte);
1439 1440
			BUG();
		}
1441
		rmap_head->val = 0;
1442
	} else {
1443
		rmap_printk("%s:  %p many->many\n", __func__, spte);
1444
		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1445 1446
		prev_desc = NULL;
		while (desc) {
1447
			for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
A
Avi Kivity 已提交
1448
				if (desc->sptes[i] == spte) {
1449 1450
					pte_list_desc_remove_entry(rmap_head,
							desc, i, prev_desc);
1451 1452
					return;
				}
1453
			}
1454 1455 1456
			prev_desc = desc;
			desc = desc->more;
		}
1457
		pr_err("%s: %p many->many\n", __func__, spte);
1458 1459 1460 1461
		BUG();
	}
}

1462 1463 1464 1465 1466 1467
static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep)
{
	mmu_spte_clear_track_bits(sptep);
	__pte_list_remove(sptep, rmap_head);
}

1468 1469
static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
					   struct kvm_memory_slot *slot)
1470
{
1471
	unsigned long idx;
1472

1473
	idx = gfn_to_index(gfn, slot->base_gfn, level);
1474
	return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1475 1476
}

1477 1478
static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
					 struct kvm_mmu_page *sp)
1479
{
1480
	struct kvm_memslots *slots;
1481 1482
	struct kvm_memory_slot *slot;

1483 1484
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
1485
	return __gfn_to_rmap(gfn, sp->role.level, slot);
1486 1487
}

1488 1489 1490 1491 1492 1493 1494 1495
static bool rmap_can_add(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu_memory_cache *cache;

	cache = &vcpu->arch.mmu_pte_list_desc_cache;
	return mmu_memory_cache_free_objects(cache);
}

1496 1497 1498
static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
{
	struct kvm_mmu_page *sp;
1499
	struct kvm_rmap_head *rmap_head;
1500 1501 1502

	sp = page_header(__pa(spte));
	kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1503 1504
	rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
	return pte_list_add(vcpu, spte, rmap_head);
1505 1506 1507 1508 1509 1510
}

static void rmap_remove(struct kvm *kvm, u64 *spte)
{
	struct kvm_mmu_page *sp;
	gfn_t gfn;
1511
	struct kvm_rmap_head *rmap_head;
1512 1513 1514

	sp = page_header(__pa(spte));
	gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1515
	rmap_head = gfn_to_rmap(kvm, gfn, sp);
1516
	__pte_list_remove(spte, rmap_head);
1517 1518
}

1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
/*
 * Used by the following functions to iterate through the sptes linked by a
 * rmap.  All fields are private and not assumed to be used outside.
 */
struct rmap_iterator {
	/* private fields */
	struct pte_list_desc *desc;	/* holds the sptep if not NULL */
	int pos;			/* index of the sptep */
};

/*
 * Iteration must be started by this function.  This should also be used after
 * removing/dropping sptes from the rmap link because in such cases the
M
Miaohe Lin 已提交
1532
 * information in the iterator may not be valid.
1533 1534 1535
 *
 * Returns sptep if found, NULL otherwise.
 */
1536 1537
static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
			   struct rmap_iterator *iter)
1538
{
1539 1540
	u64 *sptep;

1541
	if (!rmap_head->val)
1542 1543
		return NULL;

1544
	if (!(rmap_head->val & 1)) {
1545
		iter->desc = NULL;
1546 1547
		sptep = (u64 *)rmap_head->val;
		goto out;
1548 1549
	}

1550
	iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1551
	iter->pos = 0;
1552 1553 1554 1555
	sptep = iter->desc->sptes[iter->pos];
out:
	BUG_ON(!is_shadow_present_pte(*sptep));
	return sptep;
1556 1557 1558 1559 1560 1561 1562 1563 1564
}

/*
 * Must be used with a valid iterator: e.g. after rmap_get_first().
 *
 * Returns sptep if found, NULL otherwise.
 */
static u64 *rmap_get_next(struct rmap_iterator *iter)
{
1565 1566
	u64 *sptep;

1567 1568 1569 1570 1571
	if (iter->desc) {
		if (iter->pos < PTE_LIST_EXT - 1) {
			++iter->pos;
			sptep = iter->desc->sptes[iter->pos];
			if (sptep)
1572
				goto out;
1573 1574 1575 1576 1577 1578 1579
		}

		iter->desc = iter->desc->more;

		if (iter->desc) {
			iter->pos = 0;
			/* desc->sptes[0] cannot be NULL */
1580 1581
			sptep = iter->desc->sptes[iter->pos];
			goto out;
1582 1583 1584 1585
		}
	}

	return NULL;
1586 1587 1588
out:
	BUG_ON(!is_shadow_present_pte(*sptep));
	return sptep;
1589 1590
}

1591 1592
#define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)			\
	for (_spte_ = rmap_get_first(_rmap_head_, _iter_);		\
1593
	     _spte_; _spte_ = rmap_get_next(_iter_))
1594

1595
static void drop_spte(struct kvm *kvm, u64 *sptep)
1596
{
1597
	if (mmu_spte_clear_track_bits(sptep))
1598
		rmap_remove(kvm, sptep);
A
Avi Kivity 已提交
1599 1600
}

1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616

static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
{
	if (is_large_pte(*sptep)) {
		WARN_ON(page_header(__pa(sptep))->role.level ==
			PT_PAGE_TABLE_LEVEL);
		drop_spte(kvm, sptep);
		--kvm->stat.lpages;
		return true;
	}

	return false;
}

static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
{
1617 1618 1619 1620 1621 1622
	if (__drop_large_spte(vcpu->kvm, sptep)) {
		struct kvm_mmu_page *sp = page_header(__pa(sptep));

		kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
			KVM_PAGES_PER_HPAGE(sp->role.level));
	}
1623 1624 1625
}

/*
1626
 * Write-protect on the specified @sptep, @pt_protect indicates whether
1627
 * spte write-protection is caused by protecting shadow page table.
1628
 *
T
Tiejun Chen 已提交
1629
 * Note: write protection is difference between dirty logging and spte
1630 1631 1632 1633 1634
 * protection:
 * - for dirty logging, the spte can be set to writable at anytime if
 *   its dirty bitmap is properly set.
 * - for spte protection, the spte can be writable only after unsync-ing
 *   shadow page.
1635
 *
1636
 * Return true if tlb need be flushed.
1637
 */
1638
static bool spte_write_protect(u64 *sptep, bool pt_protect)
1639 1640 1641
{
	u64 spte = *sptep;

1642
	if (!is_writable_pte(spte) &&
1643
	      !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1644 1645 1646 1647
		return false;

	rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);

1648 1649
	if (pt_protect)
		spte &= ~SPTE_MMU_WRITEABLE;
1650
	spte = spte & ~PT_WRITABLE_MASK;
1651

1652
	return mmu_spte_update(sptep, spte);
1653 1654
}

1655 1656
static bool __rmap_write_protect(struct kvm *kvm,
				 struct kvm_rmap_head *rmap_head,
1657
				 bool pt_protect)
1658
{
1659 1660
	u64 *sptep;
	struct rmap_iterator iter;
1661
	bool flush = false;
1662

1663
	for_each_rmap_spte(rmap_head, &iter, sptep)
1664
		flush |= spte_write_protect(sptep, pt_protect);
1665

1666
	return flush;
1667 1668
}

1669
static bool spte_clear_dirty(u64 *sptep)
1670 1671 1672 1673 1674
{
	u64 spte = *sptep;

	rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);

1675
	MMU_WARN_ON(!spte_ad_enabled(spte));
1676 1677 1678 1679
	spte &= ~shadow_dirty_mask;
	return mmu_spte_update(sptep, spte);
}

1680
static bool spte_wrprot_for_clear_dirty(u64 *sptep)
1681 1682 1683
{
	bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
					       (unsigned long *)sptep);
1684
	if (was_writable && !spte_ad_enabled(*sptep))
1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
		kvm_set_pfn_dirty(spte_to_pfn(*sptep));

	return was_writable;
}

/*
 * Gets the GFN ready for another round of dirty logging by clearing the
 *	- D bit on ad-enabled SPTEs, and
 *	- W bit on ad-disabled SPTEs.
 * Returns true iff any D or W bits were cleared.
 */
1696
static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1697 1698 1699 1700 1701
{
	u64 *sptep;
	struct rmap_iterator iter;
	bool flush = false;

1702
	for_each_rmap_spte(rmap_head, &iter, sptep)
1703 1704
		if (spte_ad_need_write_protect(*sptep))
			flush |= spte_wrprot_for_clear_dirty(sptep);
1705
		else
1706
			flush |= spte_clear_dirty(sptep);
1707 1708 1709 1710

	return flush;
}

1711
static bool spte_set_dirty(u64 *sptep)
1712 1713 1714 1715 1716
{
	u64 spte = *sptep;

	rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);

1717 1718 1719 1720 1721
	/*
	 * Similar to the !kvm_x86_ops->slot_disable_log_dirty case,
	 * do not bother adding back write access to pages marked
	 * SPTE_AD_WRPROT_ONLY_MASK.
	 */
1722 1723 1724 1725 1726
	spte |= shadow_dirty_mask;

	return mmu_spte_update(sptep, spte);
}

1727
static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1728 1729 1730 1731 1732
{
	u64 *sptep;
	struct rmap_iterator iter;
	bool flush = false;

1733
	for_each_rmap_spte(rmap_head, &iter, sptep)
1734 1735
		if (spte_ad_enabled(*sptep))
			flush |= spte_set_dirty(sptep);
1736 1737 1738 1739

	return flush;
}

1740
/**
1741
 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1742 1743 1744 1745 1746 1747 1748 1749
 * @kvm: kvm instance
 * @slot: slot to protect
 * @gfn_offset: start of the BITS_PER_LONG pages we care about
 * @mask: indicates which pages we should protect
 *
 * Used when we do not need to care about huge page mappings: e.g. during dirty
 * logging we do not have any such mappings.
 */
1750
static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1751 1752
				     struct kvm_memory_slot *slot,
				     gfn_t gfn_offset, unsigned long mask)
1753
{
1754
	struct kvm_rmap_head *rmap_head;
1755

1756
	while (mask) {
1757 1758 1759
		rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
					  PT_PAGE_TABLE_LEVEL, slot);
		__rmap_write_protect(kvm, rmap_head, false);
M
Marcelo Tosatti 已提交
1760

1761 1762 1763
		/* clear the first set bit */
		mask &= mask - 1;
	}
1764 1765
}

1766
/**
1767 1768
 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
 * protect the page if the D-bit isn't supported.
1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779
 * @kvm: kvm instance
 * @slot: slot to clear D-bit
 * @gfn_offset: start of the BITS_PER_LONG pages we care about
 * @mask: indicates which pages we should clear D-bit
 *
 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
 */
void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
				     struct kvm_memory_slot *slot,
				     gfn_t gfn_offset, unsigned long mask)
{
1780
	struct kvm_rmap_head *rmap_head;
1781 1782

	while (mask) {
1783 1784 1785
		rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
					  PT_PAGE_TABLE_LEVEL, slot);
		__rmap_clear_dirty(kvm, rmap_head);
1786 1787 1788 1789 1790 1791 1792

		/* clear the first set bit */
		mask &= mask - 1;
	}
}
EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);

1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806
/**
 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
 * PT level pages.
 *
 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
 * enable dirty logging for them.
 *
 * Used when we do not need to care about huge page mappings: e.g. during dirty
 * logging we do not have any such mappings.
 */
void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
				struct kvm_memory_slot *slot,
				gfn_t gfn_offset, unsigned long mask)
{
1807 1808 1809 1810 1811
	if (kvm_x86_ops->enable_log_dirty_pt_masked)
		kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
				mask);
	else
		kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1812 1813
}

1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828
/**
 * kvm_arch_write_log_dirty - emulate dirty page logging
 * @vcpu: Guest mode vcpu
 *
 * Emulate arch specific page modification logging for the
 * nested hypervisor
 */
int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu)
{
	if (kvm_x86_ops->write_log_dirty)
		return kvm_x86_ops->write_log_dirty(vcpu);

	return 0;
}

1829 1830
bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
				    struct kvm_memory_slot *slot, u64 gfn)
1831
{
1832
	struct kvm_rmap_head *rmap_head;
1833
	int i;
1834
	bool write_protected = false;
1835

1836
	for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1837
		rmap_head = __gfn_to_rmap(gfn, i, slot);
1838
		write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1839 1840 1841
	}

	return write_protected;
1842 1843
}

1844 1845 1846 1847 1848 1849 1850 1851
static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
{
	struct kvm_memory_slot *slot;

	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
	return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
}

1852
static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1853
{
1854 1855
	u64 *sptep;
	struct rmap_iterator iter;
1856
	bool flush = false;
1857

1858
	while ((sptep = rmap_get_first(rmap_head, &iter))) {
1859
		rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1860

1861
		pte_list_remove(rmap_head, sptep);
1862
		flush = true;
1863
	}
1864

1865 1866 1867
	return flush;
}

1868
static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1869 1870 1871
			   struct kvm_memory_slot *slot, gfn_t gfn, int level,
			   unsigned long data)
{
1872
	return kvm_zap_rmapp(kvm, rmap_head);
1873 1874
}

1875
static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1876 1877
			     struct kvm_memory_slot *slot, gfn_t gfn, int level,
			     unsigned long data)
1878
{
1879 1880
	u64 *sptep;
	struct rmap_iterator iter;
1881
	int need_flush = 0;
1882
	u64 new_spte;
1883
	pte_t *ptep = (pte_t *)data;
D
Dan Williams 已提交
1884
	kvm_pfn_t new_pfn;
1885 1886 1887

	WARN_ON(pte_huge(*ptep));
	new_pfn = pte_pfn(*ptep);
1888

1889
restart:
1890
	for_each_rmap_spte(rmap_head, &iter, sptep) {
1891
		rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1892
			    sptep, *sptep, gfn, level);
1893

1894
		need_flush = 1;
1895

1896
		if (pte_write(*ptep)) {
1897
			pte_list_remove(rmap_head, sptep);
1898
			goto restart;
1899
		} else {
1900
			new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1901 1902 1903 1904
			new_spte |= (u64)new_pfn << PAGE_SHIFT;

			new_spte &= ~PT_WRITABLE_MASK;
			new_spte &= ~SPTE_HOST_WRITEABLE;
1905 1906

			new_spte = mark_spte_for_access_track(new_spte);
1907 1908 1909

			mmu_spte_clear_track_bits(sptep);
			mmu_spte_set(sptep, new_spte);
1910 1911
		}
	}
1912

1913 1914 1915 1916 1917
	if (need_flush && kvm_available_flush_tlb_with_range()) {
		kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
		return 0;
	}

1918
	return need_flush;
1919 1920
}

1921 1922 1923 1924 1925 1926 1927 1928 1929 1930
struct slot_rmap_walk_iterator {
	/* input fields. */
	struct kvm_memory_slot *slot;
	gfn_t start_gfn;
	gfn_t end_gfn;
	int start_level;
	int end_level;

	/* output fields. */
	gfn_t gfn;
1931
	struct kvm_rmap_head *rmap;
1932 1933 1934
	int level;

	/* private field. */
1935
	struct kvm_rmap_head *end_rmap;
1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988
};

static void
rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
{
	iterator->level = level;
	iterator->gfn = iterator->start_gfn;
	iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
	iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
					   iterator->slot);
}

static void
slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
		    struct kvm_memory_slot *slot, int start_level,
		    int end_level, gfn_t start_gfn, gfn_t end_gfn)
{
	iterator->slot = slot;
	iterator->start_level = start_level;
	iterator->end_level = end_level;
	iterator->start_gfn = start_gfn;
	iterator->end_gfn = end_gfn;

	rmap_walk_init_level(iterator, iterator->start_level);
}

static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
{
	return !!iterator->rmap;
}

static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
{
	if (++iterator->rmap <= iterator->end_rmap) {
		iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
		return;
	}

	if (++iterator->level > iterator->end_level) {
		iterator->rmap = NULL;
		return;
	}

	rmap_walk_init_level(iterator, iterator->level);
}

#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,	\
	   _start_gfn, _end_gfn, _iter_)				\
	for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,		\
				 _end_level_, _start_gfn, _end_gfn);	\
	     slot_rmap_walk_okay(_iter_);				\
	     slot_rmap_walk_next(_iter_))

1989 1990 1991 1992 1993
static int kvm_handle_hva_range(struct kvm *kvm,
				unsigned long start,
				unsigned long end,
				unsigned long data,
				int (*handler)(struct kvm *kvm,
1994
					       struct kvm_rmap_head *rmap_head,
1995
					       struct kvm_memory_slot *slot,
1996 1997
					       gfn_t gfn,
					       int level,
1998
					       unsigned long data))
1999
{
2000
	struct kvm_memslots *slots;
2001
	struct kvm_memory_slot *memslot;
2002 2003
	struct slot_rmap_walk_iterator iterator;
	int ret = 0;
2004
	int i;
2005

2006 2007 2008 2009 2010
	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
		kvm_for_each_memslot(memslot, slots) {
			unsigned long hva_start, hva_end;
			gfn_t gfn_start, gfn_end;
2011

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
			hva_start = max(start, memslot->userspace_addr);
			hva_end = min(end, memslot->userspace_addr +
				      (memslot->npages << PAGE_SHIFT));
			if (hva_start >= hva_end)
				continue;
			/*
			 * {gfn(page) | page intersects with [hva_start, hva_end)} =
			 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
			 */
			gfn_start = hva_to_gfn_memslot(hva_start, memslot);
			gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);

			for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
						 PT_MAX_HUGEPAGE_LEVEL,
						 gfn_start, gfn_end - 1,
						 &iterator)
				ret |= handler(kvm, iterator.rmap, memslot,
					       iterator.gfn, iterator.level, data);
		}
2031 2032
	}

2033
	return ret;
2034 2035
}

2036 2037
static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
			  unsigned long data,
2038 2039
			  int (*handler)(struct kvm *kvm,
					 struct kvm_rmap_head *rmap_head,
2040
					 struct kvm_memory_slot *slot,
2041
					 gfn_t gfn, int level,
2042 2043 2044
					 unsigned long data))
{
	return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
2045 2046
}

2047 2048 2049 2050 2051
int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
{
	return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
}

2052
int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
2053
{
2054
	return kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
2055 2056
}

2057
static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
2058 2059
			 struct kvm_memory_slot *slot, gfn_t gfn, int level,
			 unsigned long data)
2060
{
2061
	u64 *sptep;
2062
	struct rmap_iterator uninitialized_var(iter);
2063 2064
	int young = 0;

2065 2066
	for_each_rmap_spte(rmap_head, &iter, sptep)
		young |= mmu_spte_age(sptep);
2067

2068
	trace_kvm_age_page(gfn, level, slot, young);
2069 2070 2071
	return young;
}

2072
static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
2073 2074
			      struct kvm_memory_slot *slot, gfn_t gfn,
			      int level, unsigned long data)
A
Andrea Arcangeli 已提交
2075
{
2076 2077
	u64 *sptep;
	struct rmap_iterator iter;
A
Andrea Arcangeli 已提交
2078

2079 2080 2081 2082
	for_each_rmap_spte(rmap_head, &iter, sptep)
		if (is_accessed_spte(*sptep))
			return 1;
	return 0;
A
Andrea Arcangeli 已提交
2083 2084
}

2085 2086
#define RMAP_RECYCLE_THRESHOLD 1000

2087
static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
2088
{
2089
	struct kvm_rmap_head *rmap_head;
2090 2091 2092
	struct kvm_mmu_page *sp;

	sp = page_header(__pa(spte));
2093

2094
	rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
2095

2096
	kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
2097 2098
	kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
			KVM_PAGES_PER_HPAGE(sp->role.level));
2099 2100
}

A
Andres Lagar-Cavilla 已提交
2101
int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
2102
{
A
Andres Lagar-Cavilla 已提交
2103
	return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
2104 2105
}

A
Andrea Arcangeli 已提交
2106 2107 2108 2109 2110
int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
{
	return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
}

2111
#ifdef MMU_DEBUG
2112
static int is_empty_shadow_page(u64 *spt)
A
Avi Kivity 已提交
2113
{
2114 2115 2116
	u64 *pos;
	u64 *end;

2117
	for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
2118
		if (is_shadow_present_pte(*pos)) {
2119
			printk(KERN_ERR "%s: %p %llx\n", __func__,
2120
			       pos, *pos);
A
Avi Kivity 已提交
2121
			return 0;
2122
		}
A
Avi Kivity 已提交
2123 2124
	return 1;
}
2125
#endif
A
Avi Kivity 已提交
2126

2127 2128 2129 2130 2131 2132
/*
 * This value is the sum of all of the kvm instances's
 * kvm->arch.n_used_mmu_pages values.  We need a global,
 * aggregate version in order to make the slab shrinker
 * faster
 */
2133
static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, unsigned long nr)
2134 2135 2136 2137 2138
{
	kvm->arch.n_used_mmu_pages += nr;
	percpu_counter_add(&kvm_total_used_mmu_pages, nr);
}

2139
static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
2140
{
2141
	MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
2142
	hlist_del(&sp->hash_link);
2143 2144
	list_del(&sp->link);
	free_page((unsigned long)sp->spt);
2145 2146
	if (!sp->role.direct)
		free_page((unsigned long)sp->gfns);
2147
	kmem_cache_free(mmu_page_header_cache, sp);
2148 2149
}

2150 2151
static unsigned kvm_page_table_hashfn(gfn_t gfn)
{
2152
	return hash_64(gfn, KVM_MMU_HASH_SHIFT);
2153 2154
}

2155
static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
2156
				    struct kvm_mmu_page *sp, u64 *parent_pte)
2157 2158 2159 2160
{
	if (!parent_pte)
		return;

2161
	pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
2162 2163
}

2164
static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
2165 2166
				       u64 *parent_pte)
{
2167
	__pte_list_remove(parent_pte, &sp->parent_ptes);
2168 2169
}

2170 2171 2172 2173
static void drop_parent_pte(struct kvm_mmu_page *sp,
			    u64 *parent_pte)
{
	mmu_page_remove_parent_pte(sp, parent_pte);
2174
	mmu_spte_clear_no_track(parent_pte);
2175 2176
}

2177
static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
M
Marcelo Tosatti 已提交
2178
{
2179
	struct kvm_mmu_page *sp;
2180

2181 2182
	sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
	sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
2183
	if (!direct)
2184
		sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
2185
	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
2186 2187 2188 2189 2190 2191

	/*
	 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
	 * depends on valid pages being added to the head of the list.  See
	 * comments in kvm_zap_obsolete_pages().
	 */
2192
	sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
2193 2194 2195
	list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
	kvm_mod_used_mmu_pages(vcpu->kvm, +1);
	return sp;
M
Marcelo Tosatti 已提交
2196 2197
}

2198
static void mark_unsync(u64 *spte);
2199
static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
2200
{
2201 2202 2203 2204 2205 2206
	u64 *sptep;
	struct rmap_iterator iter;

	for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
		mark_unsync(sptep);
	}
2207 2208
}

2209
static void mark_unsync(u64 *spte)
2210
{
2211
	struct kvm_mmu_page *sp;
2212
	unsigned int index;
2213

2214
	sp = page_header(__pa(spte));
2215 2216
	index = spte - sp->spt;
	if (__test_and_set_bit(index, sp->unsync_child_bitmap))
2217
		return;
2218
	if (sp->unsync_children++)
2219
		return;
2220
	kvm_mmu_mark_parents_unsync(sp);
2221 2222
}

2223
static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
2224
			       struct kvm_mmu_page *sp)
2225
{
2226
	return 0;
2227 2228
}

2229
static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root)
M
Marcelo Tosatti 已提交
2230 2231 2232
{
}

2233 2234
static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
				 struct kvm_mmu_page *sp, u64 *spte,
2235
				 const void *pte)
2236 2237 2238 2239
{
	WARN_ON(1);
}

2240 2241 2242 2243 2244 2245 2246 2247 2248 2249
#define KVM_PAGE_ARRAY_NR 16

struct kvm_mmu_pages {
	struct mmu_page_and_offset {
		struct kvm_mmu_page *sp;
		unsigned int idx;
	} page[KVM_PAGE_ARRAY_NR];
	unsigned int nr;
};

2250 2251
static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
			 int idx)
2252
{
2253
	int i;
2254

2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265
	if (sp->unsync)
		for (i=0; i < pvec->nr; i++)
			if (pvec->page[i].sp == sp)
				return 0;

	pvec->page[pvec->nr].sp = sp;
	pvec->page[pvec->nr].idx = idx;
	pvec->nr++;
	return (pvec->nr == KVM_PAGE_ARRAY_NR);
}

2266 2267 2268 2269 2270 2271 2272
static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
{
	--sp->unsync_children;
	WARN_ON((int)sp->unsync_children < 0);
	__clear_bit(idx, sp->unsync_child_bitmap);
}

2273 2274 2275 2276
static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
	int i, ret, nr_unsync_leaf = 0;
2277

2278
	for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
2279
		struct kvm_mmu_page *child;
2280 2281
		u64 ent = sp->spt[i];

2282 2283 2284 2285
		if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
			clear_unsync_child_bit(sp, i);
			continue;
		}
2286 2287 2288 2289 2290 2291 2292 2293

		child = page_header(ent & PT64_BASE_ADDR_MASK);

		if (child->unsync_children) {
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;

			ret = __mmu_unsync_walk(child, pvec);
2294 2295 2296 2297
			if (!ret) {
				clear_unsync_child_bit(sp, i);
				continue;
			} else if (ret > 0) {
2298
				nr_unsync_leaf += ret;
2299
			} else
2300 2301 2302 2303 2304 2305
				return ret;
		} else if (child->unsync) {
			nr_unsync_leaf++;
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;
		} else
2306
			clear_unsync_child_bit(sp, i);
2307 2308
	}

2309 2310 2311
	return nr_unsync_leaf;
}

2312 2313
#define INVALID_INDEX (-1)

2314 2315 2316
static int mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
P
Paolo Bonzini 已提交
2317
	pvec->nr = 0;
2318 2319 2320
	if (!sp->unsync_children)
		return 0;

2321
	mmu_pages_add(pvec, sp, INVALID_INDEX);
2322
	return __mmu_unsync_walk(sp, pvec);
2323 2324 2325 2326 2327
}

static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
{
	WARN_ON(!sp->unsync);
2328
	trace_kvm_mmu_sync_page(sp);
2329 2330 2331 2332
	sp->unsync = 0;
	--kvm->stat.mmu_unsync;
}

2333 2334
static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				     struct list_head *invalid_list);
2335 2336
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list);
2337

2338

2339
#define for_each_valid_sp(_kvm, _sp, _gfn)				\
2340 2341
	hlist_for_each_entry(_sp,					\
	  &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
2342
		if (is_obsolete_sp((_kvm), (_sp))) {			\
2343
		} else
2344 2345

#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)			\
2346 2347
	for_each_valid_sp(_kvm, _sp, _gfn)				\
		if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
2348

2349 2350 2351 2352 2353
static inline bool is_ept_sp(struct kvm_mmu_page *sp)
{
	return sp->role.cr0_wp && sp->role.smap_andnot_wp;
}

2354
/* @sp->gfn should be write-protected at the call site */
2355 2356
static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
			    struct list_head *invalid_list)
2357
{
2358 2359
	if ((!is_ept_sp(sp) && sp->role.gpte_is_8_bytes != !!is_pae(vcpu)) ||
	    vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
2360
		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
2361
		return false;
2362 2363
	}

2364
	return true;
2365 2366
}

2367 2368 2369 2370
static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
					struct list_head *invalid_list,
					bool remote_flush)
{
2371
	if (!remote_flush && list_empty(invalid_list))
2372 2373 2374 2375 2376 2377 2378 2379 2380
		return false;

	if (!list_empty(invalid_list))
		kvm_mmu_commit_zap_page(kvm, invalid_list);
	else
		kvm_flush_remote_tlbs(kvm);
	return true;
}

2381 2382 2383
static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
				 struct list_head *invalid_list,
				 bool remote_flush, bool local_flush)
2384
{
2385
	if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush))
2386
		return;
2387

2388
	if (local_flush)
2389
		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2390 2391
}

2392 2393 2394 2395 2396 2397 2398
#ifdef CONFIG_KVM_MMU_AUDIT
#include "mmu_audit.c"
#else
static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
static void mmu_audit_disable(void) { }
#endif

2399 2400
static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
{
2401 2402
	return sp->role.invalid ||
	       unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2403 2404
}

2405
static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2406
			 struct list_head *invalid_list)
2407
{
2408 2409
	kvm_unlink_unsync_page(vcpu->kvm, sp);
	return __kvm_sync_page(vcpu, sp, invalid_list);
2410 2411
}

2412
/* @gfn should be write-protected at the call site */
2413 2414
static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
			   struct list_head *invalid_list)
2415 2416
{
	struct kvm_mmu_page *s;
2417
	bool ret = false;
2418

2419
	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2420
		if (!s->unsync)
2421 2422 2423
			continue;

		WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2424
		ret |= kvm_sync_page(vcpu, s, invalid_list);
2425 2426
	}

2427
	return ret;
2428 2429
}

2430
struct mmu_page_path {
2431 2432
	struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
	unsigned int idx[PT64_ROOT_MAX_LEVEL];
2433 2434
};

2435
#define for_each_sp(pvec, sp, parents, i)			\
P
Paolo Bonzini 已提交
2436
		for (i = mmu_pages_first(&pvec, &parents);	\
2437 2438 2439
			i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});	\
			i = mmu_pages_next(&pvec, &parents, i))

2440 2441 2442
static int mmu_pages_next(struct kvm_mmu_pages *pvec,
			  struct mmu_page_path *parents,
			  int i)
2443 2444 2445 2446 2447
{
	int n;

	for (n = i+1; n < pvec->nr; n++) {
		struct kvm_mmu_page *sp = pvec->page[n].sp;
P
Paolo Bonzini 已提交
2448 2449
		unsigned idx = pvec->page[n].idx;
		int level = sp->role.level;
2450

P
Paolo Bonzini 已提交
2451 2452 2453
		parents->idx[level-1] = idx;
		if (level == PT_PAGE_TABLE_LEVEL)
			break;
2454

P
Paolo Bonzini 已提交
2455
		parents->parent[level-2] = sp;
2456 2457 2458 2459 2460
	}

	return n;
}

P
Paolo Bonzini 已提交
2461 2462 2463 2464 2465 2466 2467 2468 2469
static int mmu_pages_first(struct kvm_mmu_pages *pvec,
			   struct mmu_page_path *parents)
{
	struct kvm_mmu_page *sp;
	int level;

	if (pvec->nr == 0)
		return 0;

2470 2471
	WARN_ON(pvec->page[0].idx != INVALID_INDEX);

P
Paolo Bonzini 已提交
2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484
	sp = pvec->page[0].sp;
	level = sp->role.level;
	WARN_ON(level == PT_PAGE_TABLE_LEVEL);

	parents->parent[level-2] = sp;

	/* Also set up a sentinel.  Further entries in pvec are all
	 * children of sp, so this element is never overwritten.
	 */
	parents->parent[level-1] = NULL;
	return mmu_pages_next(pvec, parents, 0);
}

2485
static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2486
{
2487 2488 2489 2490 2491 2492 2493 2494 2495
	struct kvm_mmu_page *sp;
	unsigned int level = 0;

	do {
		unsigned int idx = parents->idx[level];
		sp = parents->parent[level];
		if (!sp)
			return;

2496
		WARN_ON(idx == INVALID_INDEX);
2497
		clear_unsync_child_bit(sp, idx);
2498
		level++;
P
Paolo Bonzini 已提交
2499
	} while (!sp->unsync_children);
2500
}
2501

2502 2503 2504 2505 2506 2507 2508
static void mmu_sync_children(struct kvm_vcpu *vcpu,
			      struct kvm_mmu_page *parent)
{
	int i;
	struct kvm_mmu_page *sp;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
2509
	LIST_HEAD(invalid_list);
2510
	bool flush = false;
2511 2512

	while (mmu_unsync_walk(parent, &pages)) {
2513
		bool protected = false;
2514 2515

		for_each_sp(pages, sp, parents, i)
2516
			protected |= rmap_write_protect(vcpu, sp->gfn);
2517

2518
		if (protected) {
2519
			kvm_flush_remote_tlbs(vcpu->kvm);
2520 2521
			flush = false;
		}
2522

2523
		for_each_sp(pages, sp, parents, i) {
2524
			flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2525 2526
			mmu_pages_clear_parents(&parents);
		}
2527 2528 2529 2530 2531
		if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
			kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
			cond_resched_lock(&vcpu->kvm->mmu_lock);
			flush = false;
		}
2532
	}
2533 2534

	kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2535 2536
}

2537 2538
static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
{
2539
	atomic_set(&sp->write_flooding_count,  0);
2540 2541 2542 2543 2544 2545 2546 2547 2548
}

static void clear_sp_write_flooding_count(u64 *spte)
{
	struct kvm_mmu_page *sp =  page_header(__pa(spte));

	__clear_sp_write_flooding_count(sp);
}

2549 2550 2551 2552
static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
					     gfn_t gfn,
					     gva_t gaddr,
					     unsigned level,
2553
					     int direct,
2554
					     unsigned access)
2555 2556 2557
{
	union kvm_mmu_page_role role;
	unsigned quadrant;
2558 2559
	struct kvm_mmu_page *sp;
	bool need_sync = false;
2560
	bool flush = false;
2561
	int collisions = 0;
2562
	LIST_HEAD(invalid_list);
2563

2564
	role = vcpu->arch.mmu->mmu_role.base;
2565
	role.level = level;
2566
	role.direct = direct;
2567
	if (role.direct)
2568
		role.gpte_is_8_bytes = true;
2569
	role.access = access;
2570 2571
	if (!vcpu->arch.mmu->direct_map
	    && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
2572 2573 2574 2575
		quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
		quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
		role.quadrant = quadrant;
	}
2576 2577 2578 2579 2580 2581
	for_each_valid_sp(vcpu->kvm, sp, gfn) {
		if (sp->gfn != gfn) {
			collisions++;
			continue;
		}

2582 2583
		if (!need_sync && sp->unsync)
			need_sync = true;
2584

2585 2586
		if (sp->role.word != role.word)
			continue;
2587

2588 2589 2590 2591 2592 2593 2594 2595 2596 2597
		if (sp->unsync) {
			/* The page is good, but __kvm_sync_page might still end
			 * up zapping it.  If so, break in order to rebuild it.
			 */
			if (!__kvm_sync_page(vcpu, sp, &invalid_list))
				break;

			WARN_ON(!list_empty(&invalid_list));
			kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
		}
2598

2599
		if (sp->unsync_children)
2600
			kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2601

2602
		__clear_sp_write_flooding_count(sp);
2603
		trace_kvm_mmu_get_page(sp, false);
2604
		goto out;
2605
	}
2606

A
Avi Kivity 已提交
2607
	++vcpu->kvm->stat.mmu_cache_miss;
2608 2609 2610

	sp = kvm_mmu_alloc_page(vcpu, direct);

2611 2612
	sp->gfn = gfn;
	sp->role = role;
2613 2614
	hlist_add_head(&sp->hash_link,
		&vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
2615
	if (!direct) {
2616 2617 2618 2619 2620 2621 2622 2623
		/*
		 * we should do write protection before syncing pages
		 * otherwise the content of the synced shadow page may
		 * be inconsistent with guest page table.
		 */
		account_shadowed(vcpu->kvm, sp);
		if (level == PT_PAGE_TABLE_LEVEL &&
		      rmap_write_protect(vcpu, gfn))
2624
			kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
2625 2626

		if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2627
			flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
2628
	}
2629
	clear_page(sp->spt);
A
Avi Kivity 已提交
2630
	trace_kvm_mmu_get_page(sp, true);
2631 2632

	kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2633 2634 2635
out:
	if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
		vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2636
	return sp;
2637 2638
}

2639 2640 2641
static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
					struct kvm_vcpu *vcpu, hpa_t root,
					u64 addr)
2642 2643
{
	iterator->addr = addr;
2644
	iterator->shadow_addr = root;
2645
	iterator->level = vcpu->arch.mmu->shadow_root_level;
2646

2647
	if (iterator->level == PT64_ROOT_4LEVEL &&
2648 2649
	    vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
	    !vcpu->arch.mmu->direct_map)
2650 2651
		--iterator->level;

2652
	if (iterator->level == PT32E_ROOT_LEVEL) {
2653 2654 2655 2656
		/*
		 * prev_root is currently only used for 64-bit hosts. So only
		 * the active root_hpa is valid here.
		 */
2657
		BUG_ON(root != vcpu->arch.mmu->root_hpa);
2658

2659
		iterator->shadow_addr
2660
			= vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2661 2662 2663 2664 2665 2666 2667
		iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
		--iterator->level;
		if (!iterator->shadow_addr)
			iterator->level = 0;
	}
}

2668 2669 2670
static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
			     struct kvm_vcpu *vcpu, u64 addr)
{
2671
	shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
2672 2673 2674
				    addr);
}

2675 2676 2677 2678
static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
{
	if (iterator->level < PT_PAGE_TABLE_LEVEL)
		return false;
2679

2680 2681 2682 2683 2684
	iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
	iterator->sptep	= ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
	return true;
}

2685 2686
static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
			       u64 spte)
2687
{
2688
	if (is_last_spte(spte, iterator->level)) {
2689 2690 2691 2692
		iterator->level = 0;
		return;
	}

2693
	iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2694 2695 2696
	--iterator->level;
}

2697 2698
static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
{
2699
	__shadow_walk_next(iterator, *iterator->sptep);
2700 2701
}

2702 2703
static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
			     struct kvm_mmu_page *sp)
2704 2705 2706
{
	u64 spte;

2707
	BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2708

2709
	spte = __pa(sp->spt) | shadow_present_mask | PT_WRITABLE_MASK |
2710
	       shadow_user_mask | shadow_x_mask | shadow_me_mask;
2711 2712

	if (sp_ad_disabled(sp))
2713
		spte |= SPTE_AD_DISABLED_MASK;
2714 2715
	else
		spte |= shadow_accessed_mask;
X
Xiao Guangrong 已提交
2716

2717
	mmu_spte_set(sptep, spte);
2718 2719 2720 2721 2722

	mmu_page_add_parent_pte(vcpu, sp, sptep);

	if (sp->unsync_children || sp->unsync)
		mark_unsync(sptep);
2723 2724
}

2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741
static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
				   unsigned direct_access)
{
	if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
		struct kvm_mmu_page *child;

		/*
		 * For the direct sp, if the guest pte's dirty bit
		 * changed form clean to dirty, it will corrupt the
		 * sp's access: allow writable in the read-only sp,
		 * so we should update the spte at this point to get
		 * a new sp with the correct access.
		 */
		child = page_header(*sptep & PT64_BASE_ADDR_MASK);
		if (child->role.access == direct_access)
			return;

2742
		drop_parent_pte(child, sptep);
2743
		kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
2744 2745 2746
	}
}

X
Xiao Guangrong 已提交
2747
static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2748 2749 2750 2751 2752 2753 2754
			     u64 *spte)
{
	u64 pte;
	struct kvm_mmu_page *child;

	pte = *spte;
	if (is_shadow_present_pte(pte)) {
X
Xiao Guangrong 已提交
2755
		if (is_last_spte(pte, sp->role.level)) {
2756
			drop_spte(kvm, spte);
X
Xiao Guangrong 已提交
2757 2758 2759
			if (is_large_pte(pte))
				--kvm->stat.lpages;
		} else {
2760
			child = page_header(pte & PT64_BASE_ADDR_MASK);
2761
			drop_parent_pte(child, spte);
2762
		}
X
Xiao Guangrong 已提交
2763 2764 2765 2766
		return true;
	}

	if (is_mmio_spte(pte))
2767
		mmu_spte_clear_no_track(spte);
2768

X
Xiao Guangrong 已提交
2769
	return false;
2770 2771
}

2772
static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2773
					 struct kvm_mmu_page *sp)
2774
{
2775 2776
	unsigned i;

2777 2778
	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
		mmu_page_zap_pte(kvm, sp, sp->spt + i);
2779 2780
}

2781
static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2782
{
2783 2784
	u64 *sptep;
	struct rmap_iterator iter;
2785

2786
	while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2787
		drop_parent_pte(sp, sptep);
2788 2789
}

2790
static int mmu_zap_unsync_children(struct kvm *kvm,
2791 2792
				   struct kvm_mmu_page *parent,
				   struct list_head *invalid_list)
2793
{
2794 2795 2796
	int i, zapped = 0;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
2797

2798
	if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2799
		return 0;
2800 2801 2802 2803 2804

	while (mmu_unsync_walk(parent, &pages)) {
		struct kvm_mmu_page *sp;

		for_each_sp(pages, sp, parents, i) {
2805
			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2806
			mmu_pages_clear_parents(&parents);
2807
			zapped++;
2808 2809 2810 2811
		}
	}

	return zapped;
2812 2813
}

2814 2815 2816 2817
static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
				       struct kvm_mmu_page *sp,
				       struct list_head *invalid_list,
				       int *nr_zapped)
2818
{
2819
	bool list_unstable;
A
Avi Kivity 已提交
2820

2821
	trace_kvm_mmu_prepare_zap_page(sp);
2822
	++kvm->stat.mmu_shadow_zapped;
2823
	*nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2824
	kvm_mmu_page_unlink_children(kvm, sp);
2825
	kvm_mmu_unlink_parents(kvm, sp);
2826

2827 2828 2829
	/* Zapping children means active_mmu_pages has become unstable. */
	list_unstable = *nr_zapped;

2830
	if (!sp->role.invalid && !sp->role.direct)
2831
		unaccount_shadowed(kvm, sp);
2832

2833 2834
	if (sp->unsync)
		kvm_unlink_unsync_page(kvm, sp);
2835
	if (!sp->root_count) {
2836
		/* Count self */
2837
		(*nr_zapped)++;
2838
		list_move(&sp->link, invalid_list);
2839
		kvm_mod_used_mmu_pages(kvm, -1);
2840
	} else {
A
Avi Kivity 已提交
2841
		list_move(&sp->link, &kvm->arch.active_mmu_pages);
2842

2843 2844 2845 2846 2847 2848
		/*
		 * Obsolete pages cannot be used on any vCPUs, see the comment
		 * in kvm_mmu_zap_all_fast().  Note, is_obsolete_sp() also
		 * treats invalid shadow pages as being obsolete.
		 */
		if (!is_obsolete_sp(kvm, sp))
2849
			kvm_reload_remote_mmus(kvm);
2850
	}
2851

P
Paolo Bonzini 已提交
2852 2853 2854
	if (sp->lpage_disallowed)
		unaccount_huge_nx_page(kvm, sp);

2855
	sp->role.invalid = 1;
2856 2857 2858 2859 2860 2861 2862 2863 2864 2865
	return list_unstable;
}

static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				     struct list_head *invalid_list)
{
	int nr_zapped;

	__kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
	return nr_zapped;
2866 2867
}

2868 2869 2870
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list)
{
2871
	struct kvm_mmu_page *sp, *nsp;
2872 2873 2874 2875

	if (list_empty(invalid_list))
		return;

2876
	/*
2877 2878 2879 2880 2881 2882 2883
	 * We need to make sure everyone sees our modifications to
	 * the page tables and see changes to vcpu->mode here. The barrier
	 * in the kvm_flush_remote_tlbs() achieves this. This pairs
	 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
	 *
	 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
	 * guest mode and/or lockless shadow page table walks.
2884 2885
	 */
	kvm_flush_remote_tlbs(kvm);
2886

2887
	list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2888
		WARN_ON(!sp->role.invalid || sp->root_count);
2889
		kvm_mmu_free_page(sp);
2890
	}
2891 2892
}

2893 2894 2895 2896 2897 2898 2899 2900
static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
					struct list_head *invalid_list)
{
	struct kvm_mmu_page *sp;

	if (list_empty(&kvm->arch.active_mmu_pages))
		return false;

G
Geliang Tang 已提交
2901 2902
	sp = list_last_entry(&kvm->arch.active_mmu_pages,
			     struct kvm_mmu_page, link);
2903
	return kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2904 2905
}

2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925
static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
{
	LIST_HEAD(invalid_list);

	if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
		return 0;

	while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
		if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
			break;

		++vcpu->kvm->stat.mmu_recycled;
	}
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);

	if (!kvm_mmu_available_pages(vcpu->kvm))
		return -ENOSPC;
	return 0;
}

2926 2927
/*
 * Changing the number of mmu pages allocated to the vm
2928
 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2929
 */
2930
void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2931
{
2932
	LIST_HEAD(invalid_list);
2933

2934 2935
	spin_lock(&kvm->mmu_lock);

2936
	if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2937 2938 2939 2940
		/* Need to free some mmu pages to achieve the goal. */
		while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
			if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
				break;
2941

2942
		kvm_mmu_commit_zap_page(kvm, &invalid_list);
2943
		goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2944 2945
	}

2946
	kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2947 2948

	spin_unlock(&kvm->mmu_lock);
2949 2950
}

2951
int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2952
{
2953
	struct kvm_mmu_page *sp;
2954
	LIST_HEAD(invalid_list);
2955 2956
	int r;

2957
	pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2958
	r = 0;
2959
	spin_lock(&kvm->mmu_lock);
2960
	for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2961
		pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2962 2963
			 sp->role.word);
		r = 1;
2964
		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2965
	}
2966
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2967 2968
	spin_unlock(&kvm->mmu_lock);

2969
	return r;
2970
}
2971
EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2972

2973
static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2974 2975 2976 2977 2978 2979 2980 2981
{
	trace_kvm_mmu_unsync_page(sp);
	++vcpu->kvm->stat.mmu_unsync;
	sp->unsync = 1;

	kvm_mmu_mark_parents_unsync(sp);
}

2982 2983
static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
				   bool can_unsync)
2984
{
2985
	struct kvm_mmu_page *sp;
2986

2987 2988
	if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
		return true;
2989

2990
	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2991
		if (!can_unsync)
2992
			return true;
2993

2994 2995
		if (sp->unsync)
			continue;
2996

2997 2998
		WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
		kvm_unsync_page(vcpu, sp);
2999
	}
3000

3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039
	/*
	 * We need to ensure that the marking of unsync pages is visible
	 * before the SPTE is updated to allow writes because
	 * kvm_mmu_sync_roots() checks the unsync flags without holding
	 * the MMU lock and so can race with this. If the SPTE was updated
	 * before the page had been marked as unsync-ed, something like the
	 * following could happen:
	 *
	 * CPU 1                    CPU 2
	 * ---------------------------------------------------------------------
	 * 1.2 Host updates SPTE
	 *     to be writable
	 *                      2.1 Guest writes a GPTE for GVA X.
	 *                          (GPTE being in the guest page table shadowed
	 *                           by the SP from CPU 1.)
	 *                          This reads SPTE during the page table walk.
	 *                          Since SPTE.W is read as 1, there is no
	 *                          fault.
	 *
	 *                      2.2 Guest issues TLB flush.
	 *                          That causes a VM Exit.
	 *
	 *                      2.3 kvm_mmu_sync_pages() reads sp->unsync.
	 *                          Since it is false, so it just returns.
	 *
	 *                      2.4 Guest accesses GVA X.
	 *                          Since the mapping in the SP was not updated,
	 *                          so the old mapping for GVA X incorrectly
	 *                          gets used.
	 * 1.1 Host marks SP
	 *     as unsync
	 *     (sp->unsync = true)
	 *
	 * The write barrier below ensures that 1.1 happens before 1.2 and thus
	 * the situation in 2.4 does not arise. The implicit barrier in 2.2
	 * pairs with this write barrier.
	 */
	smp_wmb();

3040
	return false;
3041 3042
}

D
Dan Williams 已提交
3043
static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
3044 3045
{
	if (pfn_valid(pfn))
3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057
		return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)) &&
			/*
			 * Some reserved pages, such as those from NVDIMM
			 * DAX devices, are not for MMIO, and can be mapped
			 * with cached memory type for better performance.
			 * However, the above check misconceives those pages
			 * as MMIO, and results in KVM mapping them with UC
			 * memory type, which would hurt the performance.
			 * Therefore, we check the host memory type in addition
			 * and only treat UC/UC-/WC pages as MMIO.
			 */
			(!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn));
3058

3059 3060 3061
	return !e820__mapped_raw_any(pfn_to_hpa(pfn),
				     pfn_to_hpa(pfn + 1) - 1,
				     E820_TYPE_RAM);
3062 3063
}

3064 3065 3066 3067
/* Bits which may be returned by set_spte() */
#define SET_SPTE_WRITE_PROTECTED_PT	BIT(0)
#define SET_SPTE_NEED_REMOTE_TLB_FLUSH	BIT(1)

A
Avi Kivity 已提交
3068
static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
3069
		    unsigned pte_access, int level,
D
Dan Williams 已提交
3070
		    gfn_t gfn, kvm_pfn_t pfn, bool speculative,
3071
		    bool can_unsync, bool host_writable)
3072
{
3073
	u64 spte = 0;
M
Marcelo Tosatti 已提交
3074
	int ret = 0;
3075
	struct kvm_mmu_page *sp;
S
Sheng Yang 已提交
3076

3077
	if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
3078 3079
		return 0;

3080 3081
	sp = page_header(__pa(sptep));
	if (sp_ad_disabled(sp))
3082
		spte |= SPTE_AD_DISABLED_MASK;
3083 3084
	else if (kvm_vcpu_ad_need_write_protect(vcpu))
		spte |= SPTE_AD_WRPROT_ONLY_MASK;
3085

3086 3087 3088 3089 3090 3091
	/*
	 * For the EPT case, shadow_present_mask is 0 if hardware
	 * supports exec-only page table entries.  In that case,
	 * ACC_USER_MASK and shadow_user_mask are used to represent
	 * read access.  See FNAME(gpte_access) in paging_tmpl.h.
	 */
3092
	spte |= shadow_present_mask;
3093
	if (!speculative)
3094
		spte |= spte_shadow_accessed_mask(spte);
3095

P
Paolo Bonzini 已提交
3096 3097 3098 3099 3100
	if (level > PT_PAGE_TABLE_LEVEL && (pte_access & ACC_EXEC_MASK) &&
	    is_nx_huge_page_enabled()) {
		pte_access &= ~ACC_EXEC_MASK;
	}

S
Sheng Yang 已提交
3101 3102 3103 3104
	if (pte_access & ACC_EXEC_MASK)
		spte |= shadow_x_mask;
	else
		spte |= shadow_nx_mask;
3105

3106
	if (pte_access & ACC_USER_MASK)
S
Sheng Yang 已提交
3107
		spte |= shadow_user_mask;
3108

3109
	if (level > PT_PAGE_TABLE_LEVEL)
M
Marcelo Tosatti 已提交
3110
		spte |= PT_PAGE_SIZE_MASK;
3111
	if (tdp_enabled)
3112
		spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
3113
			kvm_is_mmio_pfn(pfn));
3114

3115
	if (host_writable)
3116
		spte |= SPTE_HOST_WRITEABLE;
3117 3118
	else
		pte_access &= ~ACC_WRITE_MASK;
3119

3120 3121 3122
	if (!kvm_is_mmio_pfn(pfn))
		spte |= shadow_me_mask;

3123
	spte |= (u64)pfn << PAGE_SHIFT;
3124

3125
	if (pte_access & ACC_WRITE_MASK) {
3126

X
Xiao Guangrong 已提交
3127
		/*
3128 3129 3130 3131
		 * Other vcpu creates new sp in the window between
		 * mapping_level() and acquiring mmu-lock. We can
		 * allow guest to retry the access, the mapping can
		 * be fixed if guest refault.
X
Xiao Guangrong 已提交
3132
		 */
3133
		if (level > PT_PAGE_TABLE_LEVEL &&
3134
		    mmu_gfn_lpage_is_disallowed(vcpu, gfn, level))
A
Avi Kivity 已提交
3135
			goto done;
3136

3137
		spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
3138

3139 3140 3141 3142 3143 3144
		/*
		 * Optimization: for pte sync, if spte was writable the hash
		 * lookup is unnecessary (and expensive). Write protection
		 * is responsibility of mmu_get_page / kvm_sync_page.
		 * Same reasoning can be applied to dirty page accounting.
		 */
3145
		if (!can_unsync && is_writable_pte(*sptep))
3146 3147
			goto set_pte;

3148
		if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
3149
			pgprintk("%s: found shadow page for %llx, marking ro\n",
3150
				 __func__, gfn);
3151
			ret |= SET_SPTE_WRITE_PROTECTED_PT;
3152
			pte_access &= ~ACC_WRITE_MASK;
3153
			spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
3154 3155 3156
		}
	}

3157
	if (pte_access & ACC_WRITE_MASK) {
3158
		kvm_vcpu_mark_page_dirty(vcpu, gfn);
3159
		spte |= spte_shadow_dirty_mask(spte);
3160
	}
3161

3162 3163 3164
	if (speculative)
		spte = mark_spte_for_access_track(spte);

3165
set_pte:
3166
	if (mmu_spte_update(sptep, spte))
3167
		ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
A
Avi Kivity 已提交
3168
done:
M
Marcelo Tosatti 已提交
3169 3170 3171
	return ret;
}

3172 3173 3174
static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned pte_access,
			int write_fault, int level, gfn_t gfn, kvm_pfn_t pfn,
		       	bool speculative, bool host_writable)
M
Marcelo Tosatti 已提交
3175 3176
{
	int was_rmapped = 0;
3177
	int rmap_count;
3178
	int set_spte_ret;
3179
	int ret = RET_PF_RETRY;
3180
	bool flush = false;
M
Marcelo Tosatti 已提交
3181

3182 3183
	pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
		 *sptep, write_fault, gfn);
M
Marcelo Tosatti 已提交
3184

3185
	if (is_shadow_present_pte(*sptep)) {
M
Marcelo Tosatti 已提交
3186 3187 3188 3189
		/*
		 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
		 * the parent of the now unreachable PTE.
		 */
3190 3191
		if (level > PT_PAGE_TABLE_LEVEL &&
		    !is_large_pte(*sptep)) {
M
Marcelo Tosatti 已提交
3192
			struct kvm_mmu_page *child;
A
Avi Kivity 已提交
3193
			u64 pte = *sptep;
M
Marcelo Tosatti 已提交
3194 3195

			child = page_header(pte & PT64_BASE_ADDR_MASK);
3196
			drop_parent_pte(child, sptep);
3197
			flush = true;
A
Avi Kivity 已提交
3198
		} else if (pfn != spte_to_pfn(*sptep)) {
3199
			pgprintk("hfn old %llx new %llx\n",
A
Avi Kivity 已提交
3200
				 spte_to_pfn(*sptep), pfn);
3201
			drop_spte(vcpu->kvm, sptep);
3202
			flush = true;
3203 3204
		} else
			was_rmapped = 1;
M
Marcelo Tosatti 已提交
3205
	}
3206

3207 3208 3209
	set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
				speculative, true, host_writable);
	if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
M
Marcelo Tosatti 已提交
3210
		if (write_fault)
3211
			ret = RET_PF_EMULATE;
3212
		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3213
	}
3214

3215
	if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
3216 3217
		kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
				KVM_PAGES_PER_HPAGE(level));
M
Marcelo Tosatti 已提交
3218

3219
	if (unlikely(is_mmio_spte(*sptep)))
3220
		ret = RET_PF_EMULATE;
3221

A
Avi Kivity 已提交
3222
	pgprintk("%s: setting spte %llx\n", __func__, *sptep);
3223
	trace_kvm_mmu_set_spte(level, gfn, sptep);
A
Avi Kivity 已提交
3224
	if (!was_rmapped && is_large_pte(*sptep))
M
Marcelo Tosatti 已提交
3225 3226
		++vcpu->kvm->stat.lpages;

3227 3228 3229 3230 3231 3232
	if (is_shadow_present_pte(*sptep)) {
		if (!was_rmapped) {
			rmap_count = rmap_add(vcpu, sptep, gfn);
			if (rmap_count > RMAP_RECYCLE_THRESHOLD)
				rmap_recycle(vcpu, sptep, gfn);
		}
3233
	}
3234

3235
	return ret;
3236 3237
}

D
Dan Williams 已提交
3238
static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
3239 3240 3241 3242
				     bool no_dirty_log)
{
	struct kvm_memory_slot *slot;

3243
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
3244
	if (!slot)
3245
		return KVM_PFN_ERR_FAULT;
3246

3247
	return gfn_to_pfn_memslot_atomic(slot, gfn);
3248 3249 3250 3251 3252 3253 3254
}

static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
				    struct kvm_mmu_page *sp,
				    u64 *start, u64 *end)
{
	struct page *pages[PTE_PREFETCH_NUM];
3255
	struct kvm_memory_slot *slot;
3256 3257 3258 3259 3260
	unsigned access = sp->role.access;
	int i, ret;
	gfn_t gfn;

	gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
3261 3262
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
	if (!slot)
3263 3264
		return -1;

3265
	ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
3266 3267 3268
	if (ret <= 0)
		return -1;

3269
	for (i = 0; i < ret; i++, gfn++, start++) {
3270 3271
		mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
			     page_to_pfn(pages[i]), true, true);
3272 3273
		put_page(pages[i]);
	}
3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289

	return 0;
}

static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
				  struct kvm_mmu_page *sp, u64 *sptep)
{
	u64 *spte, *start = NULL;
	int i;

	WARN_ON(!sp->role.direct);

	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
	spte = sp->spt + i;

	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
3290
		if (is_shadow_present_pte(*spte) || spte == sptep) {
3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304
			if (!start)
				continue;
			if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
				break;
			start = NULL;
		} else if (!start)
			start = spte;
	}
}

static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
{
	struct kvm_mmu_page *sp;

3305 3306
	sp = page_header(__pa(sptep));

3307
	/*
3308 3309 3310
	 * Without accessed bits, there's no way to distinguish between
	 * actually accessed translations and prefetched, so disable pte
	 * prefetch if accessed bits aren't available.
3311
	 */
3312
	if (sp_ad_disabled(sp))
3313 3314 3315 3316 3317 3318 3319 3320
		return;

	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
		return;

	__direct_pte_prefetch(vcpu, sp, sptep);
}

P
Paolo Bonzini 已提交
3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343
static void disallowed_hugepage_adjust(struct kvm_shadow_walk_iterator it,
				       gfn_t gfn, kvm_pfn_t *pfnp, int *levelp)
{
	int level = *levelp;
	u64 spte = *it.sptep;

	if (it.level == level && level > PT_PAGE_TABLE_LEVEL &&
	    is_nx_huge_page_enabled() &&
	    is_shadow_present_pte(spte) &&
	    !is_large_pte(spte)) {
		/*
		 * A small SPTE exists for this pfn, but FNAME(fetch)
		 * and __direct_map would like to create a large PTE
		 * instead: just force them to go down another level,
		 * patching back for them into pfn the next 9 bits of
		 * the address.
		 */
		u64 page_mask = KVM_PAGES_PER_HPAGE(level) - KVM_PAGES_PER_HPAGE(level - 1);
		*pfnp |= gfn & page_mask;
		(*levelp)--;
	}
}

3344 3345
static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, int write,
			int map_writable, int level, kvm_pfn_t pfn,
P
Paolo Bonzini 已提交
3346
			bool prefault, bool lpage_disallowed)
3347
{
3348
	struct kvm_shadow_walk_iterator it;
3349
	struct kvm_mmu_page *sp;
3350 3351 3352
	int ret;
	gfn_t gfn = gpa >> PAGE_SHIFT;
	gfn_t base_gfn = gfn;
A
Avi Kivity 已提交
3353

3354
	if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3355
		return RET_PF_RETRY;
3356

3357
	trace_kvm_mmu_spte_requested(gpa, level, pfn);
3358
	for_each_shadow_entry(vcpu, gpa, it) {
P
Paolo Bonzini 已提交
3359 3360 3361 3362 3363 3364
		/*
		 * We cannot overwrite existing page tables with an NX
		 * large page, as the leaf could be executable.
		 */
		disallowed_hugepage_adjust(it, gfn, &pfn, &level);

3365 3366
		base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
		if (it.level == level)
3367
			break;
A
Avi Kivity 已提交
3368

3369 3370 3371 3372
		drop_large_spte(vcpu, it.sptep);
		if (!is_shadow_present_pte(*it.sptep)) {
			sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
					      it.level - 1, true, ACC_ALL);
3373

3374
			link_shadow_page(vcpu, it.sptep, sp);
P
Paolo Bonzini 已提交
3375 3376
			if (lpage_disallowed)
				account_huge_nx_page(vcpu->kvm, sp);
3377 3378
		}
	}
3379 3380 3381 3382 3383 3384 3385

	ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL,
			   write, level, base_gfn, pfn, prefault,
			   map_writable);
	direct_pte_prefetch(vcpu, it.sptep);
	++vcpu->stat.pf_fixed;
	return ret;
A
Avi Kivity 已提交
3386 3387
}

H
Huang Ying 已提交
3388
static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
3389
{
3390
	send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
3391 3392
}

D
Dan Williams 已提交
3393
static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
3394
{
X
Xiao Guangrong 已提交
3395 3396 3397 3398 3399 3400
	/*
	 * Do not cache the mmio info caused by writing the readonly gfn
	 * into the spte otherwise read access on readonly gfn also can
	 * caused mmio page fault and treat it as mmio access.
	 */
	if (pfn == KVM_PFN_ERR_RO_FAULT)
3401
		return RET_PF_EMULATE;
X
Xiao Guangrong 已提交
3402

3403
	if (pfn == KVM_PFN_ERR_HWPOISON) {
3404
		kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
3405
		return RET_PF_RETRY;
3406
	}
3407

3408
	return -EFAULT;
3409 3410
}

3411
static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
3412
					gfn_t gfn, kvm_pfn_t *pfnp,
D
Dan Williams 已提交
3413
					int *levelp)
3414
{
D
Dan Williams 已提交
3415
	kvm_pfn_t pfn = *pfnp;
3416 3417 3418 3419 3420 3421 3422 3423
	int level = *levelp;

	/*
	 * Check if it's a transparent hugepage. If this would be an
	 * hugetlbfs page, level wouldn't be set to
	 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
	 * here.
	 */
3424
	if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
3425
	    !kvm_is_zone_device_pfn(pfn) && level == PT_PAGE_TABLE_LEVEL &&
3426
	    PageTransCompoundMap(pfn_to_page(pfn)) &&
3427
	    !mmu_gfn_lpage_is_disallowed(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443
		unsigned long mask;
		/*
		 * mmu_notifier_retry was successful and we hold the
		 * mmu_lock here, so the pmd can't become splitting
		 * from under us, and in turn
		 * __split_huge_page_refcount() can't run from under
		 * us and we can safely transfer the refcount from
		 * PG_tail to PG_head as we switch the pfn to tail to
		 * head.
		 */
		*levelp = level = PT_DIRECTORY_LEVEL;
		mask = KVM_PAGES_PER_HPAGE(level) - 1;
		VM_BUG_ON((gfn & mask) != (pfn & mask));
		if (pfn & mask) {
			kvm_release_pfn_clean(pfn);
			pfn &= ~mask;
3444
			kvm_get_pfn(pfn);
3445 3446 3447 3448 3449
			*pfnp = pfn;
		}
	}
}

3450
static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
D
Dan Williams 已提交
3451
				kvm_pfn_t pfn, unsigned access, int *ret_val)
3452 3453
{
	/* The pfn is invalid, report the error! */
3454
	if (unlikely(is_error_pfn(pfn))) {
3455
		*ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
3456
		return true;
3457 3458
	}

3459
	if (unlikely(is_noslot_pfn(pfn)))
3460 3461
		vcpu_cache_mmio_info(vcpu, gva, gfn,
				     access & shadow_mmio_access_mask);
3462

3463
	return false;
3464 3465
}

3466
static bool page_fault_can_be_fast(u32 error_code)
3467
{
3468 3469 3470 3471 3472 3473 3474
	/*
	 * Do not fix the mmio spte with invalid generation number which
	 * need to be updated by slow page fault path.
	 */
	if (unlikely(error_code & PFERR_RSVD_MASK))
		return false;

3475 3476 3477 3478 3479
	/* See if the page fault is due to an NX violation */
	if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
		      == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
		return false;

3480
	/*
3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491
	 * #PF can be fast if:
	 * 1. The shadow page table entry is not present, which could mean that
	 *    the fault is potentially caused by access tracking (if enabled).
	 * 2. The shadow page table entry is present and the fault
	 *    is caused by write-protect, that means we just need change the W
	 *    bit of the spte which can be done out of mmu-lock.
	 *
	 * However, if access tracking is disabled we know that a non-present
	 * page must be a genuine page fault where we have to create a new SPTE.
	 * So, if access tracking is disabled, we return true only for write
	 * accesses to a present page.
3492 3493
	 */

3494 3495 3496
	return shadow_acc_track_mask != 0 ||
	       ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
		== (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
3497 3498
}

3499 3500 3501 3502
/*
 * Returns true if the SPTE was fixed successfully. Otherwise,
 * someone else modified the SPTE from its original value.
 */
3503
static bool
3504
fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
3505
			u64 *sptep, u64 old_spte, u64 new_spte)
3506 3507 3508 3509 3510
{
	gfn_t gfn;

	WARN_ON(!sp->role.direct);

3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522
	/*
	 * Theoretically we could also set dirty bit (and flush TLB) here in
	 * order to eliminate unnecessary PML logging. See comments in
	 * set_spte. But fast_page_fault is very unlikely to happen with PML
	 * enabled, so we do not do this. This might result in the same GPA
	 * to be logged in PML buffer again when the write really happens, and
	 * eventually to be called by mark_page_dirty twice. But it's also no
	 * harm. This also avoids the TLB flush needed after setting dirty bit
	 * so non-PML cases won't be impacted.
	 *
	 * Compare with set_spte where instead shadow_dirty_mask is set.
	 */
3523
	if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3524 3525
		return false;

3526
	if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
3527 3528 3529 3530 3531 3532 3533
		/*
		 * The gfn of direct spte is stable since it is
		 * calculated by sp->gfn.
		 */
		gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
		kvm_vcpu_mark_page_dirty(vcpu, gfn);
	}
3534 3535 3536 3537

	return true;
}

3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549
static bool is_access_allowed(u32 fault_err_code, u64 spte)
{
	if (fault_err_code & PFERR_FETCH_MASK)
		return is_executable_pte(spte);

	if (fault_err_code & PFERR_WRITE_MASK)
		return is_writable_pte(spte);

	/* Fault was on Read access */
	return spte & PT_PRESENT_MASK;
}

3550 3551 3552 3553 3554
/*
 * Return value:
 * - true: let the vcpu to access on the same address again.
 * - false: let the real page fault path to fix it.
 */
3555
static bool fast_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, int level,
3556 3557 3558
			    u32 error_code)
{
	struct kvm_shadow_walk_iterator iterator;
3559
	struct kvm_mmu_page *sp;
3560
	bool fault_handled = false;
3561
	u64 spte = 0ull;
3562
	uint retry_count = 0;
3563

3564
	if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3565 3566
		return false;

3567
	if (!page_fault_can_be_fast(error_code))
3568 3569 3570 3571
		return false;

	walk_shadow_page_lockless_begin(vcpu);

3572
	do {
3573
		u64 new_spte;
3574

3575
		for_each_shadow_entry_lockless(vcpu, cr2_or_gpa, iterator, spte)
3576 3577 3578 3579
			if (!is_shadow_present_pte(spte) ||
			    iterator.level < level)
				break;

3580 3581 3582
		sp = page_header(__pa(iterator.sptep));
		if (!is_last_spte(spte, sp->role.level))
			break;
3583

3584
		/*
3585 3586 3587 3588 3589
		 * Check whether the memory access that caused the fault would
		 * still cause it if it were to be performed right now. If not,
		 * then this is a spurious fault caused by TLB lazily flushed,
		 * or some other CPU has already fixed the PTE after the
		 * current CPU took the fault.
3590 3591 3592 3593
		 *
		 * Need not check the access of upper level table entries since
		 * they are always ACC_ALL.
		 */
3594 3595 3596 3597
		if (is_access_allowed(error_code, spte)) {
			fault_handled = true;
			break;
		}
3598

3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612
		new_spte = spte;

		if (is_access_track_spte(spte))
			new_spte = restore_acc_track_spte(new_spte);

		/*
		 * Currently, to simplify the code, write-protection can
		 * be removed in the fast path only if the SPTE was
		 * write-protected for dirty-logging or access tracking.
		 */
		if ((error_code & PFERR_WRITE_MASK) &&
		    spte_can_locklessly_be_made_writable(spte))
		{
			new_spte |= PT_WRITABLE_MASK;
3613 3614

			/*
3615 3616 3617 3618 3619 3620 3621 3622 3623
			 * Do not fix write-permission on the large spte.  Since
			 * we only dirty the first page into the dirty-bitmap in
			 * fast_pf_fix_direct_spte(), other pages are missed
			 * if its slot has dirty logging enabled.
			 *
			 * Instead, we let the slow page fault path create a
			 * normal spte to fix the access.
			 *
			 * See the comments in kvm_arch_commit_memory_region().
3624
			 */
3625
			if (sp->role.level > PT_PAGE_TABLE_LEVEL)
3626
				break;
3627
		}
3628

3629
		/* Verify that the fault can be handled in the fast path */
3630 3631
		if (new_spte == spte ||
		    !is_access_allowed(error_code, new_spte))
3632 3633 3634 3635 3636
			break;

		/*
		 * Currently, fast page fault only works for direct mapping
		 * since the gfn is not stable for indirect shadow page. See
3637
		 * Documentation/virt/kvm/locking.txt to get more detail.
3638 3639
		 */
		fault_handled = fast_pf_fix_direct_spte(vcpu, sp,
3640
							iterator.sptep, spte,
3641
							new_spte);
3642 3643 3644 3645 3646 3647 3648 3649 3650 3651
		if (fault_handled)
			break;

		if (++retry_count > 4) {
			printk_once(KERN_WARNING
				"kvm: Fast #PF retrying more than 4 times.\n");
			break;
		}

	} while (true);
3652

3653
	trace_fast_page_fault(vcpu, cr2_or_gpa, error_code, iterator.sptep,
3654
			      spte, fault_handled);
3655 3656
	walk_shadow_page_lockless_end(vcpu);

3657
	return fault_handled;
3658 3659
}

3660
static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3661 3662
			 gpa_t cr2_or_gpa, kvm_pfn_t *pfn, bool write,
			 bool *writable);
3663

3664
static int nonpaging_map(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
3665
			 gfn_t gfn, bool prefault)
3666 3667
{
	int r;
3668
	int level;
P
Paolo Bonzini 已提交
3669
	bool force_pt_level;
D
Dan Williams 已提交
3670
	kvm_pfn_t pfn;
3671
	unsigned long mmu_seq;
3672
	bool map_writable, write = error_code & PFERR_WRITE_MASK;
P
Paolo Bonzini 已提交
3673 3674
	bool lpage_disallowed = (error_code & PFERR_FETCH_MASK) &&
				is_nx_huge_page_enabled();
3675

P
Paolo Bonzini 已提交
3676
	force_pt_level = lpage_disallowed;
3677
	level = mapping_level(vcpu, gfn, &force_pt_level);
3678 3679 3680 3681 3682 3683 3684 3685
	if (likely(!force_pt_level)) {
		/*
		 * This path builds a PAE pagetable - so we can map
		 * 2mb pages at maximum. Therefore check if the level
		 * is larger than that.
		 */
		if (level > PT_DIRECTORY_LEVEL)
			level = PT_DIRECTORY_LEVEL;
3686

3687
		gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3688
	}
M
Marcelo Tosatti 已提交
3689

3690
	if (fast_page_fault(vcpu, gpa, level, error_code))
3691
		return RET_PF_RETRY;
3692

3693
	mmu_seq = vcpu->kvm->mmu_notifier_seq;
3694
	smp_rmb();
3695

3696
	if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3697
		return RET_PF_RETRY;
3698

3699
	if (handle_abnormal_pfn(vcpu, gpa, gfn, pfn, ACC_ALL, &r))
3700
		return r;
3701

3702
	r = RET_PF_RETRY;
3703
	spin_lock(&vcpu->kvm->mmu_lock);
3704
	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3705
		goto out_unlock;
3706 3707
	if (make_mmu_pages_available(vcpu) < 0)
		goto out_unlock;
3708
	if (likely(!force_pt_level))
3709
		transparent_hugepage_adjust(vcpu, gfn, &pfn, &level);
3710
	r = __direct_map(vcpu, gpa, write, map_writable, level, pfn,
P
Paolo Bonzini 已提交
3711
			 prefault, false);
3712 3713 3714
out_unlock:
	spin_unlock(&vcpu->kvm->mmu_lock);
	kvm_release_pfn_clean(pfn);
3715
	return r;
3716 3717
}

3718 3719
static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
			       struct list_head *invalid_list)
3720
{
3721
	struct kvm_mmu_page *sp;
3722

3723
	if (!VALID_PAGE(*root_hpa))
A
Avi Kivity 已提交
3724
		return;
3725

3726 3727 3728 3729
	sp = page_header(*root_hpa & PT64_BASE_ADDR_MASK);
	--sp->root_count;
	if (!sp->root_count && sp->role.invalid)
		kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3730

3731 3732 3733
	*root_hpa = INVALID_PAGE;
}

3734
/* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
3735 3736
void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
			ulong roots_to_free)
3737 3738 3739
{
	int i;
	LIST_HEAD(invalid_list);
3740
	bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
3741

3742
	BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3743

3744
	/* Before acquiring the MMU lock, see if we need to do any real work. */
3745 3746 3747 3748 3749 3750 3751 3752 3753
	if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
			if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
			    VALID_PAGE(mmu->prev_roots[i].hpa))
				break;

		if (i == KVM_MMU_NUM_PREV_ROOTS)
			return;
	}
3754 3755

	spin_lock(&vcpu->kvm->mmu_lock);
3756

3757 3758 3759 3760
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
		if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
			mmu_free_root_page(vcpu->kvm, &mmu->prev_roots[i].hpa,
					   &invalid_list);
3761

3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774
	if (free_active_root) {
		if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
		    (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
			mmu_free_root_page(vcpu->kvm, &mmu->root_hpa,
					   &invalid_list);
		} else {
			for (i = 0; i < 4; ++i)
				if (mmu->pae_root[i] != 0)
					mmu_free_root_page(vcpu->kvm,
							   &mmu->pae_root[i],
							   &invalid_list);
			mmu->root_hpa = INVALID_PAGE;
		}
3775
		mmu->root_cr3 = 0;
3776
	}
3777

3778
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3779
	spin_unlock(&vcpu->kvm->mmu_lock);
3780
}
3781
EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3782

3783 3784 3785 3786 3787
static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
{
	int ret = 0;

	if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3788
		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3789 3790 3791 3792 3793 3794
		ret = 1;
	}

	return ret;
}

3795 3796 3797
static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu_page *sp;
3798
	unsigned i;
3799

3800
	if (vcpu->arch.mmu->shadow_root_level >= PT64_ROOT_4LEVEL) {
3801
		spin_lock(&vcpu->kvm->mmu_lock);
3802 3803
		if(make_mmu_pages_available(vcpu) < 0) {
			spin_unlock(&vcpu->kvm->mmu_lock);
3804
			return -ENOSPC;
3805
		}
3806
		sp = kvm_mmu_get_page(vcpu, 0, 0,
3807
				vcpu->arch.mmu->shadow_root_level, 1, ACC_ALL);
3808 3809
		++sp->root_count;
		spin_unlock(&vcpu->kvm->mmu_lock);
3810 3811
		vcpu->arch.mmu->root_hpa = __pa(sp->spt);
	} else if (vcpu->arch.mmu->shadow_root_level == PT32E_ROOT_LEVEL) {
3812
		for (i = 0; i < 4; ++i) {
3813
			hpa_t root = vcpu->arch.mmu->pae_root[i];
3814

3815
			MMU_WARN_ON(VALID_PAGE(root));
3816
			spin_lock(&vcpu->kvm->mmu_lock);
3817 3818
			if (make_mmu_pages_available(vcpu) < 0) {
				spin_unlock(&vcpu->kvm->mmu_lock);
3819
				return -ENOSPC;
3820
			}
3821
			sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3822
					i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL);
3823 3824 3825
			root = __pa(sp->spt);
			++sp->root_count;
			spin_unlock(&vcpu->kvm->mmu_lock);
3826
			vcpu->arch.mmu->pae_root[i] = root | PT_PRESENT_MASK;
3827
		}
3828
		vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3829 3830
	} else
		BUG();
3831
	vcpu->arch.mmu->root_cr3 = vcpu->arch.mmu->get_cr3(vcpu);
3832 3833 3834 3835 3836

	return 0;
}

static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3837
{
3838
	struct kvm_mmu_page *sp;
3839
	u64 pdptr, pm_mask;
3840
	gfn_t root_gfn, root_cr3;
3841
	int i;
3842

3843 3844
	root_cr3 = vcpu->arch.mmu->get_cr3(vcpu);
	root_gfn = root_cr3 >> PAGE_SHIFT;
3845

3846 3847 3848 3849 3850 3851 3852
	if (mmu_check_root(vcpu, root_gfn))
		return 1;

	/*
	 * Do we shadow a long mode page table? If so we need to
	 * write-protect the guests page table root.
	 */
3853 3854
	if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
		hpa_t root = vcpu->arch.mmu->root_hpa;
3855

3856
		MMU_WARN_ON(VALID_PAGE(root));
3857

3858
		spin_lock(&vcpu->kvm->mmu_lock);
3859 3860
		if (make_mmu_pages_available(vcpu) < 0) {
			spin_unlock(&vcpu->kvm->mmu_lock);
3861
			return -ENOSPC;
3862
		}
3863
		sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
3864
				vcpu->arch.mmu->shadow_root_level, 0, ACC_ALL);
3865 3866
		root = __pa(sp->spt);
		++sp->root_count;
3867
		spin_unlock(&vcpu->kvm->mmu_lock);
3868
		vcpu->arch.mmu->root_hpa = root;
3869
		goto set_root_cr3;
3870
	}
3871

3872 3873
	/*
	 * We shadow a 32 bit page table. This may be a legacy 2-level
3874 3875
	 * or a PAE 3-level page table. In either case we need to be aware that
	 * the shadow page table may be a PAE or a long mode page table.
3876
	 */
3877
	pm_mask = PT_PRESENT_MASK;
3878
	if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL)
3879 3880
		pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;

3881
	for (i = 0; i < 4; ++i) {
3882
		hpa_t root = vcpu->arch.mmu->pae_root[i];
3883

3884
		MMU_WARN_ON(VALID_PAGE(root));
3885 3886
		if (vcpu->arch.mmu->root_level == PT32E_ROOT_LEVEL) {
			pdptr = vcpu->arch.mmu->get_pdptr(vcpu, i);
B
Bandan Das 已提交
3887
			if (!(pdptr & PT_PRESENT_MASK)) {
3888
				vcpu->arch.mmu->pae_root[i] = 0;
A
Avi Kivity 已提交
3889 3890
				continue;
			}
A
Avi Kivity 已提交
3891
			root_gfn = pdptr >> PAGE_SHIFT;
3892 3893
			if (mmu_check_root(vcpu, root_gfn))
				return 1;
3894
		}
3895
		spin_lock(&vcpu->kvm->mmu_lock);
3896 3897
		if (make_mmu_pages_available(vcpu) < 0) {
			spin_unlock(&vcpu->kvm->mmu_lock);
3898
			return -ENOSPC;
3899
		}
3900 3901
		sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL,
				      0, ACC_ALL);
3902 3903
		root = __pa(sp->spt);
		++sp->root_count;
3904 3905
		spin_unlock(&vcpu->kvm->mmu_lock);

3906
		vcpu->arch.mmu->pae_root[i] = root | pm_mask;
3907
	}
3908
	vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3909 3910 3911 3912 3913

	/*
	 * If we shadow a 32 bit page table with a long mode page
	 * table we enter this path.
	 */
3914 3915
	if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
		if (vcpu->arch.mmu->lm_root == NULL) {
3916 3917 3918 3919 3920 3921 3922
			/*
			 * The additional page necessary for this is only
			 * allocated on demand.
			 */

			u64 *lm_root;

3923
			lm_root = (void*)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3924 3925 3926
			if (lm_root == NULL)
				return 1;

3927
			lm_root[0] = __pa(vcpu->arch.mmu->pae_root) | pm_mask;
3928

3929
			vcpu->arch.mmu->lm_root = lm_root;
3930 3931
		}

3932
		vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->lm_root);
3933 3934
	}

3935 3936 3937
set_root_cr3:
	vcpu->arch.mmu->root_cr3 = root_cr3;

3938
	return 0;
3939 3940
}

3941 3942
static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
{
3943
	if (vcpu->arch.mmu->direct_map)
3944 3945 3946 3947 3948
		return mmu_alloc_direct_roots(vcpu);
	else
		return mmu_alloc_shadow_roots(vcpu);
}

3949
void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3950 3951 3952 3953
{
	int i;
	struct kvm_mmu_page *sp;

3954
	if (vcpu->arch.mmu->direct_map)
3955 3956
		return;

3957
	if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3958
		return;
3959

3960
	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3961

3962 3963
	if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
		hpa_t root = vcpu->arch.mmu->root_hpa;
3964
		sp = page_header(root);
3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982

		/*
		 * Even if another CPU was marking the SP as unsync-ed
		 * simultaneously, any guest page table changes are not
		 * guaranteed to be visible anyway until this VCPU issues a TLB
		 * flush strictly after those changes are made. We only need to
		 * ensure that the other CPU sets these flags before any actual
		 * changes to the page tables are made. The comments in
		 * mmu_need_write_protect() describe what could go wrong if this
		 * requirement isn't satisfied.
		 */
		if (!smp_load_acquire(&sp->unsync) &&
		    !smp_load_acquire(&sp->unsync_children))
			return;

		spin_lock(&vcpu->kvm->mmu_lock);
		kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);

3983
		mmu_sync_children(vcpu, sp);
3984

3985
		kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3986
		spin_unlock(&vcpu->kvm->mmu_lock);
3987 3988
		return;
	}
3989 3990 3991 3992

	spin_lock(&vcpu->kvm->mmu_lock);
	kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);

3993
	for (i = 0; i < 4; ++i) {
3994
		hpa_t root = vcpu->arch.mmu->pae_root[i];
3995

3996
		if (root && VALID_PAGE(root)) {
3997 3998 3999 4000 4001 4002
			root &= PT64_BASE_ADDR_MASK;
			sp = page_header(root);
			mmu_sync_children(vcpu, sp);
		}
	}

4003
	kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
4004
	spin_unlock(&vcpu->kvm->mmu_lock);
4005
}
N
Nadav Har'El 已提交
4006
EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
4007

4008
static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr,
4009
				  u32 access, struct x86_exception *exception)
A
Avi Kivity 已提交
4010
{
4011 4012
	if (exception)
		exception->error_code = 0;
A
Avi Kivity 已提交
4013 4014 4015
	return vaddr;
}

4016
static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr,
4017 4018
					 u32 access,
					 struct x86_exception *exception)
4019
{
4020 4021
	if (exception)
		exception->error_code = 0;
4022
	return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
4023 4024
}

4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043
static bool
__is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
{
	int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;

	return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
		((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
}

static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
{
	return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
}

static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
{
	return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
}

4044
static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
4045
{
4046 4047 4048 4049 4050 4051 4052
	/*
	 * A nested guest cannot use the MMIO cache if it is using nested
	 * page tables, because cr2 is a nGPA while the cache stores GPAs.
	 */
	if (mmu_is_nested(vcpu))
		return false;

4053 4054 4055 4056 4057 4058
	if (direct)
		return vcpu_match_mmio_gpa(vcpu, addr);

	return vcpu_match_mmio_gva(vcpu, addr);
}

4059 4060 4061
/* return true if reserved bit is detected on spte. */
static bool
walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
4062 4063
{
	struct kvm_shadow_walk_iterator iterator;
4064
	u64 sptes[PT64_ROOT_MAX_LEVEL], spte = 0ull;
4065 4066
	int root, leaf;
	bool reserved = false;
4067

4068
	if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
4069
		goto exit;
4070

4071
	walk_shadow_page_lockless_begin(vcpu);
4072

4073 4074
	for (shadow_walk_init(&iterator, vcpu, addr),
		 leaf = root = iterator.level;
4075 4076 4077 4078 4079
	     shadow_walk_okay(&iterator);
	     __shadow_walk_next(&iterator, spte)) {
		spte = mmu_spte_get_lockless(iterator.sptep);

		sptes[leaf - 1] = spte;
4080
		leaf--;
4081

4082 4083
		if (!is_shadow_present_pte(spte))
			break;
4084

4085
		reserved |= is_shadow_zero_bits_set(vcpu->arch.mmu, spte,
4086
						    iterator.level);
4087 4088
	}

4089 4090
	walk_shadow_page_lockless_end(vcpu);

4091 4092 4093
	if (reserved) {
		pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
		       __func__, addr);
4094
		while (root > leaf) {
4095 4096 4097 4098 4099 4100 4101 4102
			pr_err("------ spte 0x%llx level %d.\n",
			       sptes[root - 1], root);
			root--;
		}
	}
exit:
	*sptep = spte;
	return reserved;
4103 4104
}

P
Paolo Bonzini 已提交
4105
static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
4106 4107
{
	u64 spte;
4108
	bool reserved;
4109

4110
	if (mmio_info_in_cache(vcpu, addr, direct))
4111
		return RET_PF_EMULATE;
4112

4113
	reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
4114
	if (WARN_ON(reserved))
4115
		return -EINVAL;
4116 4117 4118 4119 4120

	if (is_mmio_spte(spte)) {
		gfn_t gfn = get_mmio_spte_gfn(spte);
		unsigned access = get_mmio_spte_access(spte);

4121
		if (!check_mmio_spte(vcpu, spte))
4122
			return RET_PF_INVALID;
4123

4124 4125
		if (direct)
			addr = 0;
X
Xiao Guangrong 已提交
4126 4127

		trace_handle_mmio_page_fault(addr, gfn, access);
4128
		vcpu_cache_mmio_info(vcpu, addr, gfn, access);
4129
		return RET_PF_EMULATE;
4130 4131 4132 4133 4134 4135
	}

	/*
	 * If the page table is zapped by other cpus, let CPU fault again on
	 * the address.
	 */
4136
	return RET_PF_RETRY;
4137 4138
}

4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158
static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
					 u32 error_code, gfn_t gfn)
{
	if (unlikely(error_code & PFERR_RSVD_MASK))
		return false;

	if (!(error_code & PFERR_PRESENT_MASK) ||
	      !(error_code & PFERR_WRITE_MASK))
		return false;

	/*
	 * guest is writing the page which is write tracked which can
	 * not be fixed by page fault handler.
	 */
	if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
		return true;

	return false;
}

4159 4160 4161 4162 4163
static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
{
	struct kvm_shadow_walk_iterator iterator;
	u64 spte;

4164
	if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175
		return;

	walk_shadow_page_lockless_begin(vcpu);
	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
		clear_sp_write_flooding_count(iterator.sptep);
		if (!is_shadow_present_pte(spte))
			break;
	}
	walk_shadow_page_lockless_end(vcpu);
}

4176
static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa,
4177
				u32 error_code, bool prefault)
A
Avi Kivity 已提交
4178
{
4179
	gfn_t gfn = gpa >> PAGE_SHIFT;
4180
	int r;
A
Avi Kivity 已提交
4181

4182 4183
	/* Note, paging is disabled, ergo gva == gpa. */
	pgprintk("%s: gva %lx error %x\n", __func__, gpa, error_code);
4184

4185
	if (page_fault_handle_page_track(vcpu, error_code, gfn))
4186
		return RET_PF_EMULATE;
4187

4188 4189 4190
	r = mmu_topup_memory_caches(vcpu);
	if (r)
		return r;
4191

4192
	MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa));
A
Avi Kivity 已提交
4193 4194


4195
	return nonpaging_map(vcpu, gpa & PAGE_MASK,
4196
			     error_code, gfn, prefault);
A
Avi Kivity 已提交
4197 4198
}

4199 4200
static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
				   gfn_t gfn)
4201 4202
{
	struct kvm_arch_async_pf arch;
X
Xiao Guangrong 已提交
4203

4204
	arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
4205
	arch.gfn = gfn;
4206 4207
	arch.direct_map = vcpu->arch.mmu->direct_map;
	arch.cr3 = vcpu->arch.mmu->get_cr3(vcpu);
4208

4209 4210
	return kvm_setup_async_pf(vcpu, cr2_or_gpa,
				  kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
4211 4212
}

4213
static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
4214 4215
			 gpa_t cr2_or_gpa, kvm_pfn_t *pfn, bool write,
			 bool *writable)
4216
{
4217
	struct kvm_memory_slot *slot;
4218 4219
	bool async;

4220 4221 4222 4223 4224 4225 4226 4227
	/*
	 * Don't expose private memslots to L2.
	 */
	if (is_guest_mode(vcpu) && !kvm_is_visible_gfn(vcpu->kvm, gfn)) {
		*pfn = KVM_PFN_NOSLOT;
		return false;
	}

4228
	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
4229 4230
	async = false;
	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
4231 4232 4233
	if (!async)
		return false; /* *pfn has correct page already */

4234
	if (!prefault && kvm_can_do_async_pf(vcpu)) {
4235
		trace_kvm_try_async_get_page(cr2_or_gpa, gfn);
4236
		if (kvm_find_async_pf_gfn(vcpu, gfn)) {
4237
			trace_kvm_async_pf_doublefault(cr2_or_gpa, gfn);
4238 4239
			kvm_make_request(KVM_REQ_APF_HALT, vcpu);
			return true;
4240
		} else if (kvm_arch_setup_async_pf(vcpu, cr2_or_gpa, gfn))
4241 4242 4243
			return true;
	}

4244
	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
4245 4246 4247
	return false;
}

4248
int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
4249
				u64 fault_address, char *insn, int insn_len)
4250 4251 4252
{
	int r = 1;

4253 4254 4255 4256 4257 4258
#ifndef CONFIG_X86_64
	/* A 64-bit CR2 should be impossible on 32-bit KVM. */
	if (WARN_ON_ONCE(fault_address >> 32))
		return -EFAULT;
#endif

P
Paolo Bonzini 已提交
4259
	vcpu->arch.l1tf_flush_l1d = true;
4260 4261 4262 4263
	switch (vcpu->arch.apf.host_apf_reason) {
	default:
		trace_kvm_page_fault(fault_address, error_code);

4264
		if (kvm_event_needs_reinjection(vcpu))
4265 4266 4267 4268 4269 4270 4271
			kvm_mmu_unprotect_page_virt(vcpu, fault_address);
		r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
				insn_len);
		break;
	case KVM_PV_REASON_PAGE_NOT_PRESENT:
		vcpu->arch.apf.host_apf_reason = 0;
		local_irq_disable();
4272
		kvm_async_pf_task_wait(fault_address, 0);
4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285
		local_irq_enable();
		break;
	case KVM_PV_REASON_PAGE_READY:
		vcpu->arch.apf.host_apf_reason = 0;
		local_irq_disable();
		kvm_async_pf_task_wake(fault_address);
		local_irq_enable();
		break;
	}
	return r;
}
EXPORT_SYMBOL_GPL(kvm_handle_page_fault);

4286 4287 4288 4289 4290 4291 4292 4293 4294 4295
static bool
check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
{
	int page_num = KVM_PAGES_PER_HPAGE(level);

	gfn &= ~(page_num - 1);

	return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
}

4296
static int tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
4297
			  bool prefault)
4298
{
D
Dan Williams 已提交
4299
	kvm_pfn_t pfn;
4300
	int r;
4301
	int level;
4302
	bool force_pt_level;
M
Marcelo Tosatti 已提交
4303
	gfn_t gfn = gpa >> PAGE_SHIFT;
4304
	unsigned long mmu_seq;
4305 4306
	int write = error_code & PFERR_WRITE_MASK;
	bool map_writable;
P
Paolo Bonzini 已提交
4307 4308
	bool lpage_disallowed = (error_code & PFERR_FETCH_MASK) &&
				is_nx_huge_page_enabled();
4309

4310
	MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa));
4311

4312
	if (page_fault_handle_page_track(vcpu, error_code, gfn))
4313
		return RET_PF_EMULATE;
4314

4315 4316 4317 4318
	r = mmu_topup_memory_caches(vcpu);
	if (r)
		return r;

P
Paolo Bonzini 已提交
4319 4320 4321
	force_pt_level =
		lpage_disallowed ||
		!check_hugepage_cache_consistency(vcpu, gfn, PT_DIRECTORY_LEVEL);
4322
	level = mapping_level(vcpu, gfn, &force_pt_level);
4323
	if (likely(!force_pt_level)) {
4324 4325 4326
		if (level > PT_DIRECTORY_LEVEL &&
		    !check_hugepage_cache_consistency(vcpu, gfn, level))
			level = PT_DIRECTORY_LEVEL;
4327
		gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
4328
	}
4329

4330
	if (fast_page_fault(vcpu, gpa, level, error_code))
4331
		return RET_PF_RETRY;
4332

4333
	mmu_seq = vcpu->kvm->mmu_notifier_seq;
4334
	smp_rmb();
4335

4336
	if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
4337
		return RET_PF_RETRY;
4338

4339 4340 4341
	if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
		return r;

4342
	r = RET_PF_RETRY;
4343
	spin_lock(&vcpu->kvm->mmu_lock);
4344
	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
4345
		goto out_unlock;
4346 4347
	if (make_mmu_pages_available(vcpu) < 0)
		goto out_unlock;
4348
	if (likely(!force_pt_level))
4349
		transparent_hugepage_adjust(vcpu, gfn, &pfn, &level);
P
Paolo Bonzini 已提交
4350 4351
	r = __direct_map(vcpu, gpa, write, map_writable, level, pfn,
			 prefault, lpage_disallowed);
4352 4353 4354
out_unlock:
	spin_unlock(&vcpu->kvm->mmu_lock);
	kvm_release_pfn_clean(pfn);
4355
	return r;
4356 4357
}

4358 4359
static void nonpaging_init_context(struct kvm_vcpu *vcpu,
				   struct kvm_mmu *context)
A
Avi Kivity 已提交
4360 4361 4362
{
	context->page_fault = nonpaging_page_fault;
	context->gva_to_gpa = nonpaging_gva_to_gpa;
4363
	context->sync_page = nonpaging_sync_page;
M
Marcelo Tosatti 已提交
4364
	context->invlpg = nonpaging_invlpg;
4365
	context->update_pte = nonpaging_update_pte;
4366
	context->root_level = 0;
A
Avi Kivity 已提交
4367
	context->shadow_root_level = PT32E_ROOT_LEVEL;
4368
	context->direct_map = true;
4369
	context->nx = false;
A
Avi Kivity 已提交
4370 4371
}

4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384
/*
 * Find out if a previously cached root matching the new CR3/role is available.
 * The current root is also inserted into the cache.
 * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
 * returned.
 * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
 * false is returned. This root should now be freed by the caller.
 */
static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_cr3,
				  union kvm_mmu_page_role new_role)
{
	uint i;
	struct kvm_mmu_root_info root;
4385
	struct kvm_mmu *mmu = vcpu->arch.mmu;
4386

4387
	root.cr3 = mmu->root_cr3;
4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399
	root.hpa = mmu->root_hpa;

	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
		swap(root, mmu->prev_roots[i]);

		if (new_cr3 == root.cr3 && VALID_PAGE(root.hpa) &&
		    page_header(root.hpa) != NULL &&
		    new_role.word == page_header(root.hpa)->role.word)
			break;
	}

	mmu->root_hpa = root.hpa;
4400
	mmu->root_cr3 = root.cr3;
4401 4402 4403 4404

	return i < KVM_MMU_NUM_PREV_ROOTS;
}

4405
static bool fast_cr3_switch(struct kvm_vcpu *vcpu, gpa_t new_cr3,
4406 4407
			    union kvm_mmu_page_role new_role,
			    bool skip_tlb_flush)
A
Avi Kivity 已提交
4408
{
4409
	struct kvm_mmu *mmu = vcpu->arch.mmu;
4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420

	/*
	 * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
	 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
	 * later if necessary.
	 */
	if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
	    mmu->root_level >= PT64_ROOT_4LEVEL) {
		if (mmu_check_root(vcpu, new_cr3 >> PAGE_SHIFT))
			return false;

4421
		if (cached_root_available(vcpu, new_cr3, new_role)) {
4422 4423 4424 4425 4426 4427 4428
			/*
			 * It is possible that the cached previous root page is
			 * obsolete because of a change in the MMU generation
			 * number. However, changing the generation number is
			 * accompanied by KVM_REQ_MMU_RELOAD, which will free
			 * the root set here and allocate a new one.
			 */
4429
			kvm_make_request(KVM_REQ_LOAD_CR3, vcpu);
4430 4431
			if (!skip_tlb_flush) {
				kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
4432
				kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4433 4434 4435 4436 4437 4438 4439 4440 4441 4442
			}

			/*
			 * The last MMIO access's GVA and GPA are cached in the
			 * VCPU. When switching to a new CR3, that GVA->GPA
			 * mapping may no longer be valid. So clear any cached
			 * MMIO info even when we don't need to sync the shadow
			 * page tables.
			 */
			vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
4443

4444 4445 4446 4447 4448 4449 4450 4451
			__clear_sp_write_flooding_count(
				page_header(mmu->root_hpa));

			return true;
		}
	}

	return false;
A
Avi Kivity 已提交
4452 4453
}

4454
static void __kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3,
4455 4456
			      union kvm_mmu_page_role new_role,
			      bool skip_tlb_flush)
A
Avi Kivity 已提交
4457
{
4458
	if (!fast_cr3_switch(vcpu, new_cr3, new_role, skip_tlb_flush))
4459 4460
		kvm_mmu_free_roots(vcpu, vcpu->arch.mmu,
				   KVM_MMU_ROOT_CURRENT);
A
Avi Kivity 已提交
4461 4462
}

4463
void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3, bool skip_tlb_flush)
4464
{
4465 4466
	__kvm_mmu_new_cr3(vcpu, new_cr3, kvm_mmu_calc_root_page_role(vcpu),
			  skip_tlb_flush);
4467
}
4468
EXPORT_SYMBOL_GPL(kvm_mmu_new_cr3);
4469

4470 4471
static unsigned long get_cr3(struct kvm_vcpu *vcpu)
{
4472
	return kvm_read_cr3(vcpu);
4473 4474
}

4475 4476
static void inject_page_fault(struct kvm_vcpu *vcpu,
			      struct x86_exception *fault)
A
Avi Kivity 已提交
4477
{
4478
	vcpu->arch.mmu->inject_page_fault(vcpu, fault);
A
Avi Kivity 已提交
4479 4480
}

4481
static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
4482
			   unsigned access, int *nr_present)
4483 4484 4485 4486 4487 4488 4489 4490
{
	if (unlikely(is_mmio_spte(*sptep))) {
		if (gfn != get_mmio_spte_gfn(*sptep)) {
			mmu_spte_clear_no_track(sptep);
			return true;
		}

		(*nr_present)++;
4491
		mark_mmio_spte(vcpu, sptep, gfn, access);
4492 4493 4494 4495 4496 4497
		return true;
	}

	return false;
}

4498 4499
static inline bool is_last_gpte(struct kvm_mmu *mmu,
				unsigned level, unsigned gpte)
A
Avi Kivity 已提交
4500
{
4501 4502 4503 4504 4505 4506 4507
	/*
	 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
	 * If it is clear, there are no large pages at this level, so clear
	 * PT_PAGE_SIZE_MASK in gpte if that is the case.
	 */
	gpte &= level - mmu->last_nonleaf_level;

4508 4509 4510 4511 4512 4513 4514
	/*
	 * PT_PAGE_TABLE_LEVEL always terminates.  The RHS has bit 7 set
	 * iff level <= PT_PAGE_TABLE_LEVEL, which for our purpose means
	 * level == PT_PAGE_TABLE_LEVEL; set PT_PAGE_SIZE_MASK in gpte then.
	 */
	gpte |= level - PT_PAGE_TABLE_LEVEL - 1;

4515
	return gpte & PT_PAGE_SIZE_MASK;
A
Avi Kivity 已提交
4516 4517
}

4518 4519 4520 4521 4522
#define PTTYPE_EPT 18 /* arbitrary */
#define PTTYPE PTTYPE_EPT
#include "paging_tmpl.h"
#undef PTTYPE

A
Avi Kivity 已提交
4523 4524 4525 4526 4527 4528 4529 4530
#define PTTYPE 64
#include "paging_tmpl.h"
#undef PTTYPE

#define PTTYPE 32
#include "paging_tmpl.h"
#undef PTTYPE

4531 4532 4533 4534
static void
__reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
			struct rsvd_bits_validate *rsvd_check,
			int maxphyaddr, int level, bool nx, bool gbpages,
4535
			bool pse, bool amd)
4536 4537
{
	u64 exb_bit_rsvd = 0;
4538
	u64 gbpages_bit_rsvd = 0;
4539
	u64 nonleaf_bit8_rsvd = 0;
4540

4541
	rsvd_check->bad_mt_xwr = 0;
4542

4543
	if (!nx)
4544
		exb_bit_rsvd = rsvd_bits(63, 63);
4545
	if (!gbpages)
4546
		gbpages_bit_rsvd = rsvd_bits(7, 7);
4547 4548 4549 4550 4551

	/*
	 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
	 * leaf entries) on AMD CPUs only.
	 */
4552
	if (amd)
4553 4554
		nonleaf_bit8_rsvd = rsvd_bits(8, 8);

4555
	switch (level) {
4556 4557
	case PT32_ROOT_LEVEL:
		/* no rsvd bits for 2 level 4K page table entries */
4558 4559 4560 4561
		rsvd_check->rsvd_bits_mask[0][1] = 0;
		rsvd_check->rsvd_bits_mask[0][0] = 0;
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
4562

4563
		if (!pse) {
4564
			rsvd_check->rsvd_bits_mask[1][1] = 0;
4565 4566 4567
			break;
		}

4568 4569
		if (is_cpuid_PSE36())
			/* 36bits PSE 4MB page */
4570
			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4571 4572
		else
			/* 32 bits PSE 4MB page */
4573
			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4574 4575
		break;
	case PT32E_ROOT_LEVEL:
4576
		rsvd_check->rsvd_bits_mask[0][2] =
4577
			rsvd_bits(maxphyaddr, 63) |
4578
			rsvd_bits(5, 8) | rsvd_bits(1, 2);	/* PDPTE */
4579
		rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4580
			rsvd_bits(maxphyaddr, 62);	/* PDE */
4581
		rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4582
			rsvd_bits(maxphyaddr, 62); 	/* PTE */
4583
		rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4584 4585
			rsvd_bits(maxphyaddr, 62) |
			rsvd_bits(13, 20);		/* large page */
4586 4587
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
4588
		break;
4589 4590 4591 4592 4593 4594
	case PT64_ROOT_5LEVEL:
		rsvd_check->rsvd_bits_mask[0][4] = exb_bit_rsvd |
			nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
			rsvd_bits(maxphyaddr, 51);
		rsvd_check->rsvd_bits_mask[1][4] =
			rsvd_check->rsvd_bits_mask[0][4];
4595
		/* fall through */
4596
	case PT64_ROOT_4LEVEL:
4597 4598
		rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
			nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4599
			rsvd_bits(maxphyaddr, 51);
4600 4601
		rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
			nonleaf_bit8_rsvd | gbpages_bit_rsvd |
4602
			rsvd_bits(maxphyaddr, 51);
4603 4604 4605 4606 4607 4608 4609
		rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
			rsvd_bits(maxphyaddr, 51);
		rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
			rsvd_bits(maxphyaddr, 51);
		rsvd_check->rsvd_bits_mask[1][3] =
			rsvd_check->rsvd_bits_mask[0][3];
		rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
4610
			gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
4611
			rsvd_bits(13, 29);
4612
		rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4613 4614
			rsvd_bits(maxphyaddr, 51) |
			rsvd_bits(13, 20);		/* large page */
4615 4616
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
4617 4618 4619 4620
		break;
	}
}

4621 4622 4623 4624 4625
static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
{
	__reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
				cpuid_maxphyaddr(vcpu), context->root_level,
4626 4627
				context->nx,
				guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4628
				is_pse(vcpu), guest_cpuid_is_amd(vcpu));
4629 4630
}

4631 4632 4633
static void
__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
			    int maxphyaddr, bool execonly)
4634
{
4635
	u64 bad_mt_xwr;
4636

4637 4638
	rsvd_check->rsvd_bits_mask[0][4] =
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4639
	rsvd_check->rsvd_bits_mask[0][3] =
4640
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4641
	rsvd_check->rsvd_bits_mask[0][2] =
4642
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4643
	rsvd_check->rsvd_bits_mask[0][1] =
4644
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4645
	rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
4646 4647

	/* large page */
4648
	rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4649 4650
	rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
	rsvd_check->rsvd_bits_mask[1][2] =
4651
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
4652
	rsvd_check->rsvd_bits_mask[1][1] =
4653
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
4654
	rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4655

4656 4657 4658 4659 4660 4661 4662 4663
	bad_mt_xwr = 0xFFull << (2 * 8);	/* bits 3..5 must not be 2 */
	bad_mt_xwr |= 0xFFull << (3 * 8);	/* bits 3..5 must not be 3 */
	bad_mt_xwr |= 0xFFull << (7 * 8);	/* bits 3..5 must not be 7 */
	bad_mt_xwr |= REPEAT_BYTE(1ull << 2);	/* bits 0..2 must not be 010 */
	bad_mt_xwr |= REPEAT_BYTE(1ull << 6);	/* bits 0..2 must not be 110 */
	if (!execonly) {
		/* bits 0..2 must not be 100 unless VMX capabilities allow it */
		bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4664
	}
4665
	rsvd_check->bad_mt_xwr = bad_mt_xwr;
4666 4667
}

4668 4669 4670 4671 4672 4673 4674
static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
		struct kvm_mmu *context, bool execonly)
{
	__reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
				    cpuid_maxphyaddr(vcpu), execonly);
}

4675 4676 4677 4678 4679 4680 4681 4682
/*
 * the page table on host is the shadow page table for the page
 * table in guest or amd nested guest, its mmu features completely
 * follow the features in guest.
 */
void
reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
{
4683 4684
	bool uses_nx = context->nx ||
		context->mmu_role.base.smep_andnot_wp;
4685 4686
	struct rsvd_bits_validate *shadow_zero_check;
	int i;
4687

4688 4689 4690 4691
	/*
	 * Passing "true" to the last argument is okay; it adds a check
	 * on bit 8 of the SPTEs which KVM doesn't use anyway.
	 */
4692 4693
	shadow_zero_check = &context->shadow_zero_check;
	__reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4694
				shadow_phys_bits,
4695
				context->shadow_root_level, uses_nx,
4696 4697
				guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
				is_pse(vcpu), true);
4698 4699 4700 4701 4702 4703 4704 4705 4706

	if (!shadow_me_mask)
		return;

	for (i = context->shadow_root_level; --i >= 0;) {
		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
	}

4707 4708 4709
}
EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);

4710 4711 4712 4713 4714 4715
static inline bool boot_cpu_is_amd(void)
{
	WARN_ON_ONCE(!tdp_enabled);
	return shadow_x_mask == 0;
}

4716 4717 4718 4719 4720 4721 4722 4723
/*
 * the direct page table on host, use as much mmu features as
 * possible, however, kvm currently does not do execution-protection.
 */
static void
reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
				struct kvm_mmu *context)
{
4724 4725 4726 4727 4728
	struct rsvd_bits_validate *shadow_zero_check;
	int i;

	shadow_zero_check = &context->shadow_zero_check;

4729
	if (boot_cpu_is_amd())
4730
		__reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4731
					shadow_phys_bits,
4732
					context->shadow_root_level, false,
4733 4734
					boot_cpu_has(X86_FEATURE_GBPAGES),
					true, true);
4735
	else
4736
		__reset_rsvds_bits_mask_ept(shadow_zero_check,
4737
					    shadow_phys_bits,
4738 4739
					    false);

4740 4741 4742 4743 4744 4745 4746
	if (!shadow_me_mask)
		return;

	for (i = context->shadow_root_level; --i >= 0;) {
		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
	}
4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757
}

/*
 * as the comments in reset_shadow_zero_bits_mask() except it
 * is the shadow page table for intel nested guest.
 */
static void
reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
				struct kvm_mmu *context, bool execonly)
{
	__reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4758
				    shadow_phys_bits, execonly);
4759 4760
}

4761 4762 4763 4764 4765 4766 4767 4768 4769 4770
#define BYTE_MASK(access) \
	((1 & (access) ? 2 : 0) | \
	 (2 & (access) ? 4 : 0) | \
	 (3 & (access) ? 8 : 0) | \
	 (4 & (access) ? 16 : 0) | \
	 (5 & (access) ? 32 : 0) | \
	 (6 & (access) ? 64 : 0) | \
	 (7 & (access) ? 128 : 0))


4771 4772
static void update_permission_bitmask(struct kvm_vcpu *vcpu,
				      struct kvm_mmu *mmu, bool ept)
4773
{
4774 4775 4776 4777 4778 4779 4780 4781 4782
	unsigned byte;

	const u8 x = BYTE_MASK(ACC_EXEC_MASK);
	const u8 w = BYTE_MASK(ACC_WRITE_MASK);
	const u8 u = BYTE_MASK(ACC_USER_MASK);

	bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
	bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
	bool cr0_wp = is_write_protection(vcpu);
4783 4784

	for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4785 4786
		unsigned pfec = byte << 1;

F
Feng Wu 已提交
4787
		/*
4788 4789
		 * Each "*f" variable has a 1 bit for each UWX value
		 * that causes a fault with the given PFEC.
F
Feng Wu 已提交
4790
		 */
4791

4792
		/* Faults from writes to non-writable pages */
4793
		u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
4794
		/* Faults from user mode accesses to supervisor pages */
4795
		u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
4796
		/* Faults from fetches of non-executable pages*/
4797
		u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822
		/* Faults from kernel mode fetches of user pages */
		u8 smepf = 0;
		/* Faults from kernel mode accesses of user pages */
		u8 smapf = 0;

		if (!ept) {
			/* Faults from kernel mode accesses to user pages */
			u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;

			/* Not really needed: !nx will cause pte.nx to fault */
			if (!mmu->nx)
				ff = 0;

			/* Allow supervisor writes if !cr0.wp */
			if (!cr0_wp)
				wf = (pfec & PFERR_USER_MASK) ? wf : 0;

			/* Disallow supervisor fetches of user code if cr4.smep */
			if (cr4_smep)
				smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;

			/*
			 * SMAP:kernel-mode data accesses from user-mode
			 * mappings should fault. A fault is considered
			 * as a SMAP violation if all of the following
P
Peng Hao 已提交
4823
			 * conditions are true:
4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836
			 *   - X86_CR4_SMAP is set in CR4
			 *   - A user page is accessed
			 *   - The access is not a fetch
			 *   - Page fault in kernel mode
			 *   - if CPL = 3 or X86_EFLAGS_AC is clear
			 *
			 * Here, we cover the first three conditions.
			 * The fourth is computed dynamically in permission_fault();
			 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
			 * *not* subject to SMAP restrictions.
			 */
			if (cr4_smap)
				smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4837
		}
4838 4839

		mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4840 4841 4842
	}
}

4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917
/*
* PKU is an additional mechanism by which the paging controls access to
* user-mode addresses based on the value in the PKRU register.  Protection
* key violations are reported through a bit in the page fault error code.
* Unlike other bits of the error code, the PK bit is not known at the
* call site of e.g. gva_to_gpa; it must be computed directly in
* permission_fault based on two bits of PKRU, on some machine state (CR4,
* CR0, EFER, CPL), and on other bits of the error code and the page tables.
*
* In particular the following conditions come from the error code, the
* page tables and the machine state:
* - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
* - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
* - PK is always zero if U=0 in the page tables
* - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
*
* The PKRU bitmask caches the result of these four conditions.  The error
* code (minus the P bit) and the page table's U bit form an index into the
* PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
* with the two bits of the PKRU register corresponding to the protection key.
* For the first three conditions above the bits will be 00, thus masking
* away both AD and WD.  For all reads or if the last condition holds, WD
* only will be masked away.
*/
static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
				bool ept)
{
	unsigned bit;
	bool wp;

	if (ept) {
		mmu->pkru_mask = 0;
		return;
	}

	/* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
	if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
		mmu->pkru_mask = 0;
		return;
	}

	wp = is_write_protection(vcpu);

	for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
		unsigned pfec, pkey_bits;
		bool check_pkey, check_write, ff, uf, wf, pte_user;

		pfec = bit << 1;
		ff = pfec & PFERR_FETCH_MASK;
		uf = pfec & PFERR_USER_MASK;
		wf = pfec & PFERR_WRITE_MASK;

		/* PFEC.RSVD is replaced by ACC_USER_MASK. */
		pte_user = pfec & PFERR_RSVD_MASK;

		/*
		 * Only need to check the access which is not an
		 * instruction fetch and is to a user page.
		 */
		check_pkey = (!ff && pte_user);
		/*
		 * write access is controlled by PKRU if it is a
		 * user access or CR0.WP = 1.
		 */
		check_write = check_pkey && wf && (uf || wp);

		/* PKRU.AD stops both read and write access. */
		pkey_bits = !!check_pkey;
		/* PKRU.WD stops write access. */
		pkey_bits |= (!!check_write) << 1;

		mmu->pkru_mask |= (pkey_bits & 3) << pfec;
	}
}

4918
static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
A
Avi Kivity 已提交
4919
{
4920 4921 4922 4923 4924
	unsigned root_level = mmu->root_level;

	mmu->last_nonleaf_level = root_level;
	if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
		mmu->last_nonleaf_level++;
A
Avi Kivity 已提交
4925 4926
}

4927 4928 4929
static void paging64_init_context_common(struct kvm_vcpu *vcpu,
					 struct kvm_mmu *context,
					 int level)
A
Avi Kivity 已提交
4930
{
4931
	context->nx = is_nx(vcpu);
4932
	context->root_level = level;
4933

4934
	reset_rsvds_bits_mask(vcpu, context);
4935
	update_permission_bitmask(vcpu, context, false);
4936
	update_pkru_bitmask(vcpu, context, false);
4937
	update_last_nonleaf_level(vcpu, context);
A
Avi Kivity 已提交
4938

4939
	MMU_WARN_ON(!is_pae(vcpu));
A
Avi Kivity 已提交
4940 4941
	context->page_fault = paging64_page_fault;
	context->gva_to_gpa = paging64_gva_to_gpa;
4942
	context->sync_page = paging64_sync_page;
M
Marcelo Tosatti 已提交
4943
	context->invlpg = paging64_invlpg;
4944
	context->update_pte = paging64_update_pte;
4945
	context->shadow_root_level = level;
4946
	context->direct_map = false;
A
Avi Kivity 已提交
4947 4948
}

4949 4950
static void paging64_init_context(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
4951
{
4952 4953 4954 4955
	int root_level = is_la57_mode(vcpu) ?
			 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;

	paging64_init_context_common(vcpu, context, root_level);
4956 4957
}

4958 4959
static void paging32_init_context(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
A
Avi Kivity 已提交
4960
{
4961
	context->nx = false;
4962
	context->root_level = PT32_ROOT_LEVEL;
4963

4964
	reset_rsvds_bits_mask(vcpu, context);
4965
	update_permission_bitmask(vcpu, context, false);
4966
	update_pkru_bitmask(vcpu, context, false);
4967
	update_last_nonleaf_level(vcpu, context);
A
Avi Kivity 已提交
4968 4969 4970

	context->page_fault = paging32_page_fault;
	context->gva_to_gpa = paging32_gva_to_gpa;
4971
	context->sync_page = paging32_sync_page;
M
Marcelo Tosatti 已提交
4972
	context->invlpg = paging32_invlpg;
4973
	context->update_pte = paging32_update_pte;
A
Avi Kivity 已提交
4974
	context->shadow_root_level = PT32E_ROOT_LEVEL;
4975
	context->direct_map = false;
A
Avi Kivity 已提交
4976 4977
}

4978 4979
static void paging32E_init_context(struct kvm_vcpu *vcpu,
				   struct kvm_mmu *context)
A
Avi Kivity 已提交
4980
{
4981
	paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
A
Avi Kivity 已提交
4982 4983
}

4984 4985 4986 4987
static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu)
{
	union kvm_mmu_extended_role ext = {0};

4988
	ext.cr0_pg = !!is_paging(vcpu);
4989
	ext.cr4_pae = !!is_pae(vcpu);
4990 4991 4992 4993
	ext.cr4_smep = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
	ext.cr4_smap = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
	ext.cr4_pse = !!is_pse(vcpu);
	ext.cr4_pke = !!kvm_read_cr4_bits(vcpu, X86_CR4_PKE);
4994
	ext.cr4_la57 = !!kvm_read_cr4_bits(vcpu, X86_CR4_LA57);
4995
	ext.maxphyaddr = cpuid_maxphyaddr(vcpu);
4996 4997 4998 4999 5000 5001

	ext.valid = 1;

	return ext;
}

5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022
static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
						   bool base_only)
{
	union kvm_mmu_role role = {0};

	role.base.access = ACC_ALL;
	role.base.nxe = !!is_nx(vcpu);
	role.base.cr0_wp = is_write_protection(vcpu);
	role.base.smm = is_smm(vcpu);
	role.base.guest_mode = is_guest_mode(vcpu);

	if (base_only)
		return role;

	role.ext = kvm_calc_mmu_role_ext(vcpu);

	return role;
}

static union kvm_mmu_role
kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
5023
{
5024
	union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
5025

5026 5027 5028
	role.base.ad_disabled = (shadow_accessed_mask == 0);
	role.base.level = kvm_x86_ops->get_tdp_level(vcpu);
	role.base.direct = true;
5029
	role.base.gpte_is_8_bytes = true;
5030 5031 5032 5033

	return role;
}

5034
static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
5035
{
5036
	struct kvm_mmu *context = vcpu->arch.mmu;
5037 5038
	union kvm_mmu_role new_role =
		kvm_calc_tdp_mmu_root_page_role(vcpu, false);
5039

5040 5041 5042 5043 5044
	new_role.base.word &= mmu_base_role_mask.word;
	if (new_role.as_u64 == context->mmu_role.as_u64)
		return;

	context->mmu_role.as_u64 = new_role.as_u64;
5045
	context->page_fault = tdp_page_fault;
5046
	context->sync_page = nonpaging_sync_page;
M
Marcelo Tosatti 已提交
5047
	context->invlpg = nonpaging_invlpg;
5048
	context->update_pte = nonpaging_update_pte;
5049
	context->shadow_root_level = kvm_x86_ops->get_tdp_level(vcpu);
5050
	context->direct_map = true;
5051
	context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
5052
	context->get_cr3 = get_cr3;
5053
	context->get_pdptr = kvm_pdptr_read;
5054
	context->inject_page_fault = kvm_inject_page_fault;
5055 5056

	if (!is_paging(vcpu)) {
5057
		context->nx = false;
5058 5059 5060
		context->gva_to_gpa = nonpaging_gva_to_gpa;
		context->root_level = 0;
	} else if (is_long_mode(vcpu)) {
5061
		context->nx = is_nx(vcpu);
5062 5063
		context->root_level = is_la57_mode(vcpu) ?
				PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
5064 5065
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging64_gva_to_gpa;
5066
	} else if (is_pae(vcpu)) {
5067
		context->nx = is_nx(vcpu);
5068
		context->root_level = PT32E_ROOT_LEVEL;
5069 5070
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging64_gva_to_gpa;
5071
	} else {
5072
		context->nx = false;
5073
		context->root_level = PT32_ROOT_LEVEL;
5074 5075
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging32_gva_to_gpa;
5076 5077
	}

5078
	update_permission_bitmask(vcpu, context, false);
5079
	update_pkru_bitmask(vcpu, context, false);
5080
	update_last_nonleaf_level(vcpu, context);
5081
	reset_tdp_shadow_zero_bits_mask(vcpu, context);
5082 5083
}

5084 5085 5086 5087 5088 5089 5090 5091 5092 5093
static union kvm_mmu_role
kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
{
	union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);

	role.base.smep_andnot_wp = role.ext.cr4_smep &&
		!is_write_protection(vcpu);
	role.base.smap_andnot_wp = role.ext.cr4_smap &&
		!is_write_protection(vcpu);
	role.base.direct = !is_paging(vcpu);
5094
	role.base.gpte_is_8_bytes = !!is_pae(vcpu);
5095 5096

	if (!is_long_mode(vcpu))
5097
		role.base.level = PT32E_ROOT_LEVEL;
5098
	else if (is_la57_mode(vcpu))
5099
		role.base.level = PT64_ROOT_5LEVEL;
5100
	else
5101
		role.base.level = PT64_ROOT_4LEVEL;
5102 5103 5104 5105 5106 5107

	return role;
}

void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
{
5108
	struct kvm_mmu *context = vcpu->arch.mmu;
5109 5110 5111 5112 5113 5114
	union kvm_mmu_role new_role =
		kvm_calc_shadow_mmu_root_page_role(vcpu, false);

	new_role.base.word &= mmu_base_role_mask.word;
	if (new_role.as_u64 == context->mmu_role.as_u64)
		return;
A
Avi Kivity 已提交
5115 5116

	if (!is_paging(vcpu))
5117
		nonpaging_init_context(vcpu, context);
A
Avi Kivity 已提交
5118
	else if (is_long_mode(vcpu))
5119
		paging64_init_context(vcpu, context);
A
Avi Kivity 已提交
5120
	else if (is_pae(vcpu))
5121
		paging32E_init_context(vcpu, context);
A
Avi Kivity 已提交
5122
	else
5123
		paging32_init_context(vcpu, context);
5124

5125
	context->mmu_role.as_u64 = new_role.as_u64;
5126
	reset_shadow_zero_bits_mask(vcpu, context);
5127 5128 5129
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);

5130 5131 5132
static union kvm_mmu_role
kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
				   bool execonly)
5133
{
5134
	union kvm_mmu_role role = {0};
5135

5136 5137
	/* SMM flag is inherited from root_mmu */
	role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
5138

5139
	role.base.level = PT64_ROOT_4LEVEL;
5140
	role.base.gpte_is_8_bytes = true;
5141 5142 5143 5144
	role.base.direct = false;
	role.base.ad_disabled = !accessed_dirty;
	role.base.guest_mode = true;
	role.base.access = ACC_ALL;
5145

5146 5147 5148 5149 5150 5151 5152
	/*
	 * WP=1 and NOT_WP=1 is an impossible combination, use WP and the
	 * SMAP variation to denote shadow EPT entries.
	 */
	role.base.cr0_wp = true;
	role.base.smap_andnot_wp = true;

5153
	role.ext = kvm_calc_mmu_role_ext(vcpu);
5154
	role.ext.execonly = execonly;
5155 5156 5157 5158

	return role;
}

5159
void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
5160
			     bool accessed_dirty, gpa_t new_eptp)
N
Nadav Har'El 已提交
5161
{
5162
	struct kvm_mmu *context = vcpu->arch.mmu;
5163 5164 5165 5166 5167 5168 5169 5170 5171
	union kvm_mmu_role new_role =
		kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
						   execonly);

	__kvm_mmu_new_cr3(vcpu, new_eptp, new_role.base, false);

	new_role.base.word &= mmu_base_role_mask.word;
	if (new_role.as_u64 == context->mmu_role.as_u64)
		return;
5172

5173
	context->shadow_root_level = PT64_ROOT_4LEVEL;
N
Nadav Har'El 已提交
5174 5175

	context->nx = true;
5176
	context->ept_ad = accessed_dirty;
N
Nadav Har'El 已提交
5177 5178 5179 5180 5181
	context->page_fault = ept_page_fault;
	context->gva_to_gpa = ept_gva_to_gpa;
	context->sync_page = ept_sync_page;
	context->invlpg = ept_invlpg;
	context->update_pte = ept_update_pte;
5182
	context->root_level = PT64_ROOT_4LEVEL;
N
Nadav Har'El 已提交
5183
	context->direct_map = false;
5184
	context->mmu_role.as_u64 = new_role.as_u64;
5185

N
Nadav Har'El 已提交
5186
	update_permission_bitmask(vcpu, context, true);
5187
	update_pkru_bitmask(vcpu, context, true);
5188
	update_last_nonleaf_level(vcpu, context);
N
Nadav Har'El 已提交
5189
	reset_rsvds_bits_mask_ept(vcpu, context, execonly);
5190
	reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
N
Nadav Har'El 已提交
5191 5192 5193
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);

5194
static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
5195
{
5196
	struct kvm_mmu *context = vcpu->arch.mmu;
5197 5198 5199 5200 5201 5202

	kvm_init_shadow_mmu(vcpu);
	context->set_cr3           = kvm_x86_ops->set_cr3;
	context->get_cr3           = get_cr3;
	context->get_pdptr         = kvm_pdptr_read;
	context->inject_page_fault = kvm_inject_page_fault;
A
Avi Kivity 已提交
5203 5204
}

5205
static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
5206
{
5207
	union kvm_mmu_role new_role = kvm_calc_mmu_role_common(vcpu, false);
5208 5209
	struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;

5210 5211 5212 5213 5214
	new_role.base.word &= mmu_base_role_mask.word;
	if (new_role.as_u64 == g_context->mmu_role.as_u64)
		return;

	g_context->mmu_role.as_u64 = new_role.as_u64;
5215
	g_context->get_cr3           = get_cr3;
5216
	g_context->get_pdptr         = kvm_pdptr_read;
5217 5218 5219
	g_context->inject_page_fault = kvm_inject_page_fault;

	/*
5220
	 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
5221 5222 5223 5224 5225
	 * L1's nested page tables (e.g. EPT12). The nested translation
	 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
	 * L2's page tables as the first level of translation and L1's
	 * nested page tables as the second level of translation. Basically
	 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
5226 5227
	 */
	if (!is_paging(vcpu)) {
5228
		g_context->nx = false;
5229 5230 5231
		g_context->root_level = 0;
		g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
	} else if (is_long_mode(vcpu)) {
5232
		g_context->nx = is_nx(vcpu);
5233 5234
		g_context->root_level = is_la57_mode(vcpu) ?
					PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
5235
		reset_rsvds_bits_mask(vcpu, g_context);
5236 5237
		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
	} else if (is_pae(vcpu)) {
5238
		g_context->nx = is_nx(vcpu);
5239
		g_context->root_level = PT32E_ROOT_LEVEL;
5240
		reset_rsvds_bits_mask(vcpu, g_context);
5241 5242
		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
	} else {
5243
		g_context->nx = false;
5244
		g_context->root_level = PT32_ROOT_LEVEL;
5245
		reset_rsvds_bits_mask(vcpu, g_context);
5246 5247 5248
		g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
	}

5249
	update_permission_bitmask(vcpu, g_context, false);
5250
	update_pkru_bitmask(vcpu, g_context, false);
5251
	update_last_nonleaf_level(vcpu, g_context);
5252 5253
}

5254
void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots)
5255
{
5256
	if (reset_roots) {
5257 5258
		uint i;

5259
		vcpu->arch.mmu->root_hpa = INVALID_PAGE;
5260 5261

		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5262
			vcpu->arch.mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5263 5264
	}

5265
	if (mmu_is_nested(vcpu))
5266
		init_kvm_nested_mmu(vcpu);
5267
	else if (tdp_enabled)
5268
		init_kvm_tdp_mmu(vcpu);
5269
	else
5270
		init_kvm_softmmu(vcpu);
5271
}
5272
EXPORT_SYMBOL_GPL(kvm_init_mmu);
5273

5274 5275 5276
static union kvm_mmu_page_role
kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
{
5277 5278
	union kvm_mmu_role role;

5279
	if (tdp_enabled)
5280
		role = kvm_calc_tdp_mmu_root_page_role(vcpu, true);
5281
	else
5282 5283 5284
		role = kvm_calc_shadow_mmu_root_page_role(vcpu, true);

	return role.base;
5285
}
5286

5287
void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
5288
{
5289
	kvm_mmu_unload(vcpu);
5290
	kvm_init_mmu(vcpu, true);
A
Avi Kivity 已提交
5291
}
5292
EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
A
Avi Kivity 已提交
5293 5294

int kvm_mmu_load(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
5295
{
5296 5297
	int r;

5298
	r = mmu_topup_memory_caches(vcpu);
A
Avi Kivity 已提交
5299 5300
	if (r)
		goto out;
5301
	r = mmu_alloc_roots(vcpu);
5302
	kvm_mmu_sync_roots(vcpu);
5303 5304
	if (r)
		goto out;
5305
	kvm_mmu_load_cr3(vcpu);
5306
	kvm_x86_ops->tlb_flush(vcpu, true);
5307 5308
out:
	return r;
A
Avi Kivity 已提交
5309
}
A
Avi Kivity 已提交
5310 5311 5312 5313
EXPORT_SYMBOL_GPL(kvm_mmu_load);

void kvm_mmu_unload(struct kvm_vcpu *vcpu)
{
5314 5315 5316 5317
	kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
	WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
	kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
	WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
A
Avi Kivity 已提交
5318
}
5319
EXPORT_SYMBOL_GPL(kvm_mmu_unload);
A
Avi Kivity 已提交
5320

5321
static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
5322 5323
				  struct kvm_mmu_page *sp, u64 *spte,
				  const void *new)
5324
{
5325
	if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
5326 5327
		++vcpu->kvm->stat.mmu_pde_zapped;
		return;
5328
        }
5329

A
Avi Kivity 已提交
5330
	++vcpu->kvm->stat.mmu_pte_updated;
5331
	vcpu->arch.mmu->update_pte(vcpu, sp, spte, new);
5332 5333
}

5334 5335 5336 5337 5338 5339 5340 5341
static bool need_remote_flush(u64 old, u64 new)
{
	if (!is_shadow_present_pte(old))
		return false;
	if (!is_shadow_present_pte(new))
		return true;
	if ((old ^ new) & PT64_BASE_ADDR_MASK)
		return true;
5342 5343
	old ^= shadow_nx_mask;
	new ^= shadow_nx_mask;
5344 5345 5346
	return (old & ~new & PT64_PERM_MASK) != 0;
}

5347
static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
5348
				    int *bytes)
5349
{
5350
	u64 gentry = 0;
5351
	int r;
5352 5353 5354

	/*
	 * Assume that the pte write on a page table of the same type
5355 5356
	 * as the current vcpu paging mode since we update the sptes only
	 * when they have the same mode.
5357
	 */
5358
	if (is_pae(vcpu) && *bytes == 4) {
5359
		/* Handle a 32-bit guest writing two halves of a 64-bit gpte */
5360 5361
		*gpa &= ~(gpa_t)7;
		*bytes = 8;
5362 5363
	}

5364 5365 5366 5367
	if (*bytes == 4 || *bytes == 8) {
		r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
		if (r)
			gentry = 0;
5368 5369
	}

5370 5371 5372 5373 5374 5375 5376
	return gentry;
}

/*
 * If we're seeing too many writes to a page, it may no longer be a page table,
 * or we may be forking, in which case it is better to unmap the page.
 */
5377
static bool detect_write_flooding(struct kvm_mmu_page *sp)
5378
{
5379 5380 5381 5382
	/*
	 * Skip write-flooding detected for the sp whose level is 1, because
	 * it can become unsync, then the guest page is not write-protected.
	 */
5383
	if (sp->role.level == PT_PAGE_TABLE_LEVEL)
5384
		return false;
5385

5386 5387
	atomic_inc(&sp->write_flooding_count);
	return atomic_read(&sp->write_flooding_count) >= 3;
5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402
}

/*
 * Misaligned accesses are too much trouble to fix up; also, they usually
 * indicate a page is not used as a page table.
 */
static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
				    int bytes)
{
	unsigned offset, pte_size, misaligned;

	pgprintk("misaligned: gpa %llx bytes %d role %x\n",
		 gpa, bytes, sp->role.word);

	offset = offset_in_page(gpa);
5403
	pte_size = sp->role.gpte_is_8_bytes ? 8 : 4;
5404 5405 5406 5407 5408 5409 5410 5411

	/*
	 * Sometimes, the OS only writes the last one bytes to update status
	 * bits, for example, in linux, andb instruction is used in clear_bit().
	 */
	if (!(offset & (pte_size - 1)) && bytes == 1)
		return false;

5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426
	misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
	misaligned |= bytes < 4;

	return misaligned;
}

static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
{
	unsigned page_offset, quadrant;
	u64 *spte;
	int level;

	page_offset = offset_in_page(gpa);
	level = sp->role.level;
	*nspte = 1;
5427
	if (!sp->role.gpte_is_8_bytes) {
5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448
		page_offset <<= 1;	/* 32->64 */
		/*
		 * A 32-bit pde maps 4MB while the shadow pdes map
		 * only 2MB.  So we need to double the offset again
		 * and zap two pdes instead of one.
		 */
		if (level == PT32_ROOT_LEVEL) {
			page_offset &= ~7; /* kill rounding error */
			page_offset <<= 1;
			*nspte = 2;
		}
		quadrant = page_offset >> PAGE_SHIFT;
		page_offset &= ~PAGE_MASK;
		if (quadrant != sp->role.quadrant)
			return NULL;
	}

	spte = &sp->spt[page_offset / sizeof(*spte)];
	return spte;
}

5449
static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
5450 5451
			      const u8 *new, int bytes,
			      struct kvm_page_track_notifier_node *node)
5452 5453 5454 5455 5456 5457
{
	gfn_t gfn = gpa >> PAGE_SHIFT;
	struct kvm_mmu_page *sp;
	LIST_HEAD(invalid_list);
	u64 entry, gentry, *spte;
	int npte;
5458
	bool remote_flush, local_flush;
5459 5460 5461 5462 5463

	/*
	 * If we don't have indirect shadow pages, it means no page is
	 * write-protected, so we can exit simply.
	 */
5464
	if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
5465 5466
		return;

5467
	remote_flush = local_flush = false;
5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478

	pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);

	/*
	 * No need to care whether allocation memory is successful
	 * or not since pte prefetch is skiped if it does not have
	 * enough objects in the cache.
	 */
	mmu_topup_memory_caches(vcpu);

	spin_lock(&vcpu->kvm->mmu_lock);
5479 5480 5481

	gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);

5482
	++vcpu->kvm->stat.mmu_pte_write;
5483
	kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
5484

5485
	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
5486
		if (detect_write_misaligned(sp, gpa, bytes) ||
5487
		      detect_write_flooding(sp)) {
5488
			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
A
Avi Kivity 已提交
5489
			++vcpu->kvm->stat.mmu_flooded;
5490 5491
			continue;
		}
5492 5493 5494 5495 5496

		spte = get_written_sptes(sp, gpa, &npte);
		if (!spte)
			continue;

5497
		local_flush = true;
5498
		while (npte--) {
5499 5500
			u32 base_role = vcpu->arch.mmu->mmu_role.base.word;

5501
			entry = *spte;
5502
			mmu_page_zap_pte(vcpu->kvm, sp, spte);
5503
			if (gentry &&
5504
			      !((sp->role.word ^ base_role)
5505
			      & mmu_base_role_mask.word) && rmap_can_add(vcpu))
5506
				mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
G
Gleb Natapov 已提交
5507
			if (need_remote_flush(entry, *spte))
5508
				remote_flush = true;
5509
			++spte;
5510 5511
		}
	}
5512
	kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
5513
	kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
5514
	spin_unlock(&vcpu->kvm->mmu_lock);
5515 5516
}

5517 5518
int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
{
5519 5520
	gpa_t gpa;
	int r;
5521

5522
	if (vcpu->arch.mmu->direct_map)
5523 5524
		return 0;

5525
	gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
5526 5527

	r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
5528

5529
	return r;
5530
}
5531
EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
5532

5533
int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
5534
		       void *insn, int insn_len)
5535
{
5536
	int r, emulation_type = 0;
5537
	bool direct = vcpu->arch.mmu->direct_map;
5538

5539
	/* With shadow page tables, fault_address contains a GVA or nGPA.  */
5540
	if (vcpu->arch.mmu->direct_map) {
5541
		vcpu->arch.gpa_available = true;
5542
		vcpu->arch.gpa_val = cr2_or_gpa;
5543
	}
5544

5545
	r = RET_PF_INVALID;
5546
	if (unlikely(error_code & PFERR_RSVD_MASK)) {
5547
		r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
5548
		if (r == RET_PF_EMULATE)
5549 5550
			goto emulate;
	}
5551

5552
	if (r == RET_PF_INVALID) {
5553
		r = vcpu->arch.mmu->page_fault(vcpu, cr2_or_gpa,
5554 5555
					       lower_32_bits(error_code),
					       false);
5556 5557 5558 5559 5560
		WARN_ON(r == RET_PF_INVALID);
	}

	if (r == RET_PF_RETRY)
		return 1;
5561
	if (r < 0)
5562
		return r;
5563

5564 5565 5566 5567 5568 5569 5570
	/*
	 * Before emulating the instruction, check if the error code
	 * was due to a RO violation while translating the guest page.
	 * This can occur when using nested virtualization with nested
	 * paging in both guests. If true, we simply unprotect the page
	 * and resume the guest.
	 */
5571
	if (vcpu->arch.mmu->direct_map &&
5572
	    (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5573
		kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
5574 5575 5576
		return 1;
	}

5577 5578 5579 5580 5581 5582
	/*
	 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
	 * optimistically try to just unprotect the page and let the processor
	 * re-execute the instruction that caused the page fault.  Do not allow
	 * retrying MMIO emulation, as it's not only pointless but could also
	 * cause us to enter an infinite loop because the processor will keep
5583 5584 5585 5586
	 * faulting on the non-existent MMIO address.  Retrying an instruction
	 * from a nested guest is also pointless and dangerous as we are only
	 * explicitly shadowing L1's page tables, i.e. unprotecting something
	 * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5587
	 */
5588
	if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
5589
		emulation_type = EMULTYPE_ALLOW_RETRY;
5590
emulate:
5591 5592 5593 5594 5595
	/*
	 * On AMD platforms, under certain conditions insn_len may be zero on #NPF.
	 * This can happen if a guest gets a page-fault on data access but the HW
	 * table walker is not able to read the instruction page (e.g instruction
	 * page is not present in memory). In those cases we simply restart the
5596
	 * guest, with the exception of AMD Erratum 1096 which is unrecoverable.
5597
	 */
5598 5599 5600 5601
	if (unlikely(insn && !insn_len)) {
		if (!kvm_x86_ops->need_emulation_on_page_fault(vcpu))
			return 1;
	}
5602

5603
	return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
5604
				       insn_len);
5605 5606 5607
}
EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);

M
Marcelo Tosatti 已提交
5608 5609
void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
{
5610
	struct kvm_mmu *mmu = vcpu->arch.mmu;
5611
	int i;
5612

5613 5614 5615 5616
	/* INVLPG on a * non-canonical address is a NOP according to the SDM.  */
	if (is_noncanonical_address(gva, vcpu))
		return;

5617
	mmu->invlpg(vcpu, gva, mmu->root_hpa);
5618 5619 5620 5621

	/*
	 * INVLPG is required to invalidate any global mappings for the VA,
	 * irrespective of PCID. Since it would take us roughly similar amount
5622 5623 5624
	 * of work to determine whether any of the prev_root mappings of the VA
	 * is marked global, or to just sync it blindly, so we might as well
	 * just always sync it.
5625
	 *
5626 5627 5628
	 * Mappings not reachable via the current cr3 or the prev_roots will be
	 * synced when switching to that cr3, so nothing needs to be done here
	 * for them.
5629
	 */
5630 5631 5632
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
		if (VALID_PAGE(mmu->prev_roots[i].hpa))
			mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5633

5634
	kvm_x86_ops->tlb_flush_gva(vcpu, gva);
M
Marcelo Tosatti 已提交
5635 5636 5637 5638
	++vcpu->stat.invlpg;
}
EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);

5639 5640
void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
{
5641
	struct kvm_mmu *mmu = vcpu->arch.mmu;
5642
	bool tlb_flush = false;
5643
	uint i;
5644 5645

	if (pcid == kvm_get_active_pcid(vcpu)) {
5646
		mmu->invlpg(vcpu, gva, mmu->root_hpa);
5647
		tlb_flush = true;
5648 5649
	}

5650 5651 5652 5653 5654 5655
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
		if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
		    pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].cr3)) {
			mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
			tlb_flush = true;
		}
5656
	}
5657

5658 5659 5660
	if (tlb_flush)
		kvm_x86_ops->tlb_flush_gva(vcpu, gva);

5661 5662 5663
	++vcpu->stat.invlpg;

	/*
5664 5665 5666
	 * Mappings not reachable via the current cr3 or the prev_roots will be
	 * synced when switching to that cr3, so nothing needs to be done here
	 * for them.
5667 5668 5669 5670
	 */
}
EXPORT_SYMBOL_GPL(kvm_mmu_invpcid_gva);

5671 5672 5673 5674 5675 5676
void kvm_enable_tdp(void)
{
	tdp_enabled = true;
}
EXPORT_SYMBOL_GPL(kvm_enable_tdp);

5677 5678 5679 5680 5681 5682
void kvm_disable_tdp(void)
{
	tdp_enabled = false;
}
EXPORT_SYMBOL_GPL(kvm_disable_tdp);

5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702

/* The return value indicates if tlb flush on all vcpus is needed. */
typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);

/* The caller should hold mmu-lock before calling this function. */
static __always_inline bool
slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
			slot_level_handler fn, int start_level, int end_level,
			gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
{
	struct slot_rmap_walk_iterator iterator;
	bool flush = false;

	for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
			end_gfn, &iterator) {
		if (iterator.rmap)
			flush |= fn(kvm, iterator.rmap);

		if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
			if (flush && lock_flush_tlb) {
5703 5704 5705
				kvm_flush_remote_tlbs_with_address(kvm,
						start_gfn,
						iterator.gfn - start_gfn + 1);
5706 5707 5708 5709 5710 5711 5712
				flush = false;
			}
			cond_resched_lock(&kvm->mmu_lock);
		}
	}

	if (flush && lock_flush_tlb) {
5713 5714
		kvm_flush_remote_tlbs_with_address(kvm, start_gfn,
						   end_gfn - start_gfn + 1);
5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755
		flush = false;
	}

	return flush;
}

static __always_inline bool
slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
		  slot_level_handler fn, int start_level, int end_level,
		  bool lock_flush_tlb)
{
	return slot_handle_level_range(kvm, memslot, fn, start_level,
			end_level, memslot->base_gfn,
			memslot->base_gfn + memslot->npages - 1,
			lock_flush_tlb);
}

static __always_inline bool
slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
		      slot_level_handler fn, bool lock_flush_tlb)
{
	return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
				 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
}

static __always_inline bool
slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
			slot_level_handler fn, bool lock_flush_tlb)
{
	return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
				 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
}

static __always_inline bool
slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
		 slot_level_handler fn, bool lock_flush_tlb)
{
	return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
				 PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
}

5756
static void free_mmu_pages(struct kvm_mmu *mmu)
A
Avi Kivity 已提交
5757
{
5758 5759
	free_page((unsigned long)mmu->pae_root);
	free_page((unsigned long)mmu->lm_root);
A
Avi Kivity 已提交
5760 5761
}

5762
static int alloc_mmu_pages(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
A
Avi Kivity 已提交
5763
{
5764
	struct page *page;
A
Avi Kivity 已提交
5765 5766
	int i;

5767
	/*
5768 5769 5770 5771 5772 5773 5774
	 * When using PAE paging, the four PDPTEs are treated as 'root' pages,
	 * while the PDP table is a per-vCPU construct that's allocated at MMU
	 * creation.  When emulating 32-bit mode, cr3 is only 32 bits even on
	 * x86_64.  Therefore we need to allocate the PDP table in the first
	 * 4GB of memory, which happens to fit the DMA32 zone.  Except for
	 * SVM's 32-bit NPT support, TDP paging doesn't use PAE paging and can
	 * skip allocating the PDP table.
5775
	 */
5776 5777 5778
	if (tdp_enabled && kvm_x86_ops->get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
		return 0;

5779
	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
5780
	if (!page)
5781 5782
		return -ENOMEM;

5783
	mmu->pae_root = page_address(page);
5784
	for (i = 0; i < 4; ++i)
5785
		mmu->pae_root[i] = INVALID_PAGE;
5786

A
Avi Kivity 已提交
5787 5788 5789
	return 0;
}

5790
int kvm_mmu_create(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
5791
{
5792
	uint i;
5793
	int ret;
5794

5795 5796
	vcpu->arch.mmu = &vcpu->arch.root_mmu;
	vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
A
Avi Kivity 已提交
5797

5798
	vcpu->arch.root_mmu.root_hpa = INVALID_PAGE;
5799
	vcpu->arch.root_mmu.root_cr3 = 0;
5800
	vcpu->arch.root_mmu.translate_gpa = translate_gpa;
5801
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5802
		vcpu->arch.root_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
A
Avi Kivity 已提交
5803

5804
	vcpu->arch.guest_mmu.root_hpa = INVALID_PAGE;
5805
	vcpu->arch.guest_mmu.root_cr3 = 0;
5806 5807 5808
	vcpu->arch.guest_mmu.translate_gpa = translate_gpa;
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
		vcpu->arch.guest_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5809

5810
	vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823

	ret = alloc_mmu_pages(vcpu, &vcpu->arch.guest_mmu);
	if (ret)
		return ret;

	ret = alloc_mmu_pages(vcpu, &vcpu->arch.root_mmu);
	if (ret)
		goto fail_allocate_root;

	return ret;
 fail_allocate_root:
	free_mmu_pages(&vcpu->arch.guest_mmu);
	return ret;
A
Avi Kivity 已提交
5824 5825
}

5826
#define BATCH_ZAP_PAGES	10
5827 5828 5829
static void kvm_zap_obsolete_pages(struct kvm *kvm)
{
	struct kvm_mmu_page *sp, *node;
5830
	int nr_zapped, batch = 0;
5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842

restart:
	list_for_each_entry_safe_reverse(sp, node,
	      &kvm->arch.active_mmu_pages, link) {
		/*
		 * No obsolete valid page exists before a newly created page
		 * since active_mmu_pages is a FIFO list.
		 */
		if (!is_obsolete_sp(kvm, sp))
			break;

		/*
5843 5844 5845 5846
		 * Skip invalid pages with a non-zero root count, zapping pages
		 * with a non-zero root count will never succeed, i.e. the page
		 * will get thrown back on active_mmu_pages and we'll get stuck
		 * in an infinite loop.
5847
		 */
5848
		if (sp->role.invalid && sp->root_count)
5849 5850
			continue;

5851 5852 5853 5854 5855 5856
		/*
		 * No need to flush the TLB since we're only zapping shadow
		 * pages with an obsolete generation number and all vCPUS have
		 * loaded a new root, i.e. the shadow pages being zapped cannot
		 * be in active use by the guest.
		 */
5857
		if (batch >= BATCH_ZAP_PAGES &&
5858
		    cond_resched_lock(&kvm->mmu_lock)) {
5859
			batch = 0;
5860 5861 5862
			goto restart;
		}

5863 5864
		if (__kvm_mmu_prepare_zap_page(kvm, sp,
				&kvm->arch.zapped_obsolete_pages, &nr_zapped)) {
5865
			batch += nr_zapped;
5866
			goto restart;
5867
		}
5868 5869
	}

5870 5871 5872 5873 5874
	/*
	 * Trigger a remote TLB flush before freeing the page tables to ensure
	 * KVM is not in the middle of a lockless shadow page table walk, which
	 * may reference the pages.
	 */
5875
	kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888
}

/*
 * Fast invalidate all shadow pages and use lock-break technique
 * to zap obsolete pages.
 *
 * It's required when memslot is being deleted or VM is being
 * destroyed, in these cases, we should ensure that KVM MMU does
 * not use any resource of the being-deleted slot or all slots
 * after calling the function.
 */
static void kvm_mmu_zap_all_fast(struct kvm *kvm)
{
5889 5890
	lockdep_assert_held(&kvm->slots_lock);

5891
	spin_lock(&kvm->mmu_lock);
5892
	trace_kvm_mmu_zap_all_fast(kvm);
5893 5894 5895 5896 5897 5898 5899 5900 5901

	/*
	 * Toggle mmu_valid_gen between '0' and '1'.  Because slots_lock is
	 * held for the entire duration of zapping obsolete pages, it's
	 * impossible for there to be multiple invalid generations associated
	 * with *valid* shadow pages at any given time, i.e. there is exactly
	 * one valid generation and (at most) one invalid generation.
	 */
	kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
5902

5903 5904 5905 5906 5907 5908 5909 5910 5911 5912
	/*
	 * Notify all vcpus to reload its shadow page table and flush TLB.
	 * Then all vcpus will switch to new shadow page table with the new
	 * mmu_valid_gen.
	 *
	 * Note: we need to do this under the protection of mmu_lock,
	 * otherwise, vcpu would purge shadow page but miss tlb flush.
	 */
	kvm_reload_remote_mmus(kvm);

5913 5914 5915 5916
	kvm_zap_obsolete_pages(kvm);
	spin_unlock(&kvm->mmu_lock);
}

5917 5918 5919 5920 5921
static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
{
	return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
}

5922
static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5923 5924
			struct kvm_memory_slot *slot,
			struct kvm_page_track_notifier_node *node)
5925
{
5926
	kvm_mmu_zap_all_fast(kvm);
5927 5928
}

5929
void kvm_mmu_init_vm(struct kvm *kvm)
5930
{
5931
	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5932

5933
	node->track_write = kvm_mmu_pte_write;
5934
	node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5935
	kvm_page_track_register_notifier(kvm, node);
5936 5937
}

5938
void kvm_mmu_uninit_vm(struct kvm *kvm)
5939
{
5940
	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5941

5942
	kvm_page_track_unregister_notifier(kvm, node);
5943 5944
}

X
Xiao Guangrong 已提交
5945 5946 5947 5948
void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;
5949
	int i;
X
Xiao Guangrong 已提交
5950 5951

	spin_lock(&kvm->mmu_lock);
5952 5953 5954 5955 5956 5957 5958 5959 5960
	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
		kvm_for_each_memslot(memslot, slots) {
			gfn_t start, end;

			start = max(gfn_start, memslot->base_gfn);
			end = min(gfn_end, memslot->base_gfn + memslot->npages);
			if (start >= end)
				continue;
X
Xiao Guangrong 已提交
5961

5962 5963 5964
			slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
						PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
						start, end - 1, true);
5965
		}
X
Xiao Guangrong 已提交
5966 5967 5968 5969 5970
	}

	spin_unlock(&kvm->mmu_lock);
}

5971 5972
static bool slot_rmap_write_protect(struct kvm *kvm,
				    struct kvm_rmap_head *rmap_head)
5973
{
5974
	return __rmap_write_protect(kvm, rmap_head, false);
5975 5976
}

5977 5978
void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
				      struct kvm_memory_slot *memslot)
A
Avi Kivity 已提交
5979
{
5980
	bool flush;
A
Avi Kivity 已提交
5981

5982
	spin_lock(&kvm->mmu_lock);
5983 5984
	flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
				      false);
5985
	spin_unlock(&kvm->mmu_lock);
5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000

	/*
	 * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
	 * which do tlb flush out of mmu-lock should be serialized by
	 * kvm->slots_lock otherwise tlb flush would be missed.
	 */
	lockdep_assert_held(&kvm->slots_lock);

	/*
	 * We can flush all the TLBs out of the mmu lock without TLB
	 * corruption since we just change the spte from writable to
	 * readonly so that we only need to care the case of changing
	 * spte from present to present (changing the spte from present
	 * to nonpresent will flush all the TLBs immediately), in other
	 * words, the only case we care is mmu_spte_update() where we
W
Wei Yang 已提交
6001
	 * have checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
6002 6003 6004
	 * instead of PT_WRITABLE_MASK, that means it does not depend
	 * on PT_WRITABLE_MASK anymore.
	 */
6005
	if (flush)
6006 6007
		kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
			memslot->npages);
A
Avi Kivity 已提交
6008
}
6009

6010
static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
6011
					 struct kvm_rmap_head *rmap_head)
6012 6013 6014 6015
{
	u64 *sptep;
	struct rmap_iterator iter;
	int need_tlb_flush = 0;
D
Dan Williams 已提交
6016
	kvm_pfn_t pfn;
6017 6018
	struct kvm_mmu_page *sp;

6019
restart:
6020
	for_each_rmap_spte(rmap_head, &iter, sptep) {
6021 6022 6023 6024
		sp = page_header(__pa(sptep));
		pfn = spte_to_pfn(*sptep);

		/*
6025 6026 6027 6028 6029
		 * We cannot do huge page mapping for indirect shadow pages,
		 * which are found on the last rmap (level = 1) when not using
		 * tdp; such shadow pages are synced with the page table in
		 * the guest, and the guest page table is using 4K page size
		 * mapping if the indirect sp has level = 1.
6030
		 */
6031 6032 6033
		if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
		    !kvm_is_zone_device_pfn(pfn) &&
		    PageTransCompoundMap(pfn_to_page(pfn))) {
6034
			pte_list_remove(rmap_head, sptep);
6035 6036 6037 6038 6039 6040 6041

			if (kvm_available_flush_tlb_with_range())
				kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
					KVM_PAGES_PER_HPAGE(sp->role.level));
			else
				need_tlb_flush = 1;

6042 6043
			goto restart;
		}
6044 6045 6046 6047 6048 6049
	}

	return need_tlb_flush;
}

void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
6050
				   const struct kvm_memory_slot *memslot)
6051
{
6052
	/* FIXME: const-ify all uses of struct kvm_memory_slot.  */
6053
	spin_lock(&kvm->mmu_lock);
6054 6055
	slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
			 kvm_mmu_zap_collapsible_spte, true);
6056 6057 6058
	spin_unlock(&kvm->mmu_lock);
}

6059 6060 6061
void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
				   struct kvm_memory_slot *memslot)
{
6062
	bool flush;
6063 6064

	spin_lock(&kvm->mmu_lock);
6065
	flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076
	spin_unlock(&kvm->mmu_lock);

	lockdep_assert_held(&kvm->slots_lock);

	/*
	 * It's also safe to flush TLBs out of mmu lock here as currently this
	 * function is only used for dirty logging, in which case flushing TLB
	 * out of mmu lock also guarantees no dirty pages will be lost in
	 * dirty_bitmap.
	 */
	if (flush)
6077 6078
		kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
				memslot->npages);
6079 6080 6081 6082 6083 6084
}
EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);

void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
					struct kvm_memory_slot *memslot)
{
6085
	bool flush;
6086 6087

	spin_lock(&kvm->mmu_lock);
6088 6089
	flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
					false);
6090 6091 6092 6093 6094 6095
	spin_unlock(&kvm->mmu_lock);

	/* see kvm_mmu_slot_remove_write_access */
	lockdep_assert_held(&kvm->slots_lock);

	if (flush)
6096 6097
		kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
				memslot->npages);
6098 6099 6100 6101 6102 6103
}
EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);

void kvm_mmu_slot_set_dirty(struct kvm *kvm,
			    struct kvm_memory_slot *memslot)
{
6104
	bool flush;
6105 6106

	spin_lock(&kvm->mmu_lock);
6107
	flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
6108 6109 6110 6111 6112 6113
	spin_unlock(&kvm->mmu_lock);

	lockdep_assert_held(&kvm->slots_lock);

	/* see kvm_mmu_slot_leaf_clear_dirty */
	if (flush)
6114 6115
		kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
				memslot->npages);
6116 6117 6118
}
EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);

6119
void kvm_mmu_zap_all(struct kvm *kvm)
6120 6121
{
	struct kvm_mmu_page *sp, *node;
6122
	LIST_HEAD(invalid_list);
6123
	int ign;
6124

6125
	spin_lock(&kvm->mmu_lock);
6126
restart:
6127
	list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
6128
		if (sp->role.invalid && sp->root_count)
6129
			continue;
6130
		if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
6131
			goto restart;
6132
		if (cond_resched_lock(&kvm->mmu_lock))
6133 6134 6135
			goto restart;
	}

6136
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
6137 6138 6139
	spin_unlock(&kvm->mmu_lock);
}

6140
void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
6141
{
6142
	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
6143

6144
	gen &= MMIO_SPTE_GEN_MASK;
6145

6146
	/*
6147 6148 6149 6150 6151 6152 6153 6154
	 * Generation numbers are incremented in multiples of the number of
	 * address spaces in order to provide unique generations across all
	 * address spaces.  Strip what is effectively the address space
	 * modifier prior to checking for a wrap of the MMIO generation so
	 * that a wrap in any address space is detected.
	 */
	gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);

6155
	/*
6156
	 * The very rare case: if the MMIO generation number has wrapped,
6157 6158
	 * zap all shadow pages.
	 */
6159
	if (unlikely(gen == 0)) {
6160
		kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
6161
		kvm_mmu_zap_all_fast(kvm);
6162
	}
6163 6164
}

6165 6166
static unsigned long
mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
6167 6168
{
	struct kvm *kvm;
6169
	int nr_to_scan = sc->nr_to_scan;
6170
	unsigned long freed = 0;
6171

J
Junaid Shahid 已提交
6172
	mutex_lock(&kvm_lock);
6173 6174

	list_for_each_entry(kvm, &vm_list, vm_list) {
6175
		int idx;
6176
		LIST_HEAD(invalid_list);
6177

6178 6179 6180 6181 6182 6183 6184 6185
		/*
		 * Never scan more than sc->nr_to_scan VM instances.
		 * Will not hit this condition practically since we do not try
		 * to shrink more than one VM and it is very unlikely to see
		 * !n_used_mmu_pages so many times.
		 */
		if (!nr_to_scan--)
			break;
6186 6187 6188 6189 6190 6191
		/*
		 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
		 * here. We may skip a VM instance errorneosly, but we do not
		 * want to shrink a VM that only started to populate its MMU
		 * anyway.
		 */
6192 6193
		if (!kvm->arch.n_used_mmu_pages &&
		    !kvm_has_zapped_obsolete_pages(kvm))
6194 6195
			continue;

6196
		idx = srcu_read_lock(&kvm->srcu);
6197 6198
		spin_lock(&kvm->mmu_lock);

6199 6200 6201 6202 6203 6204
		if (kvm_has_zapped_obsolete_pages(kvm)) {
			kvm_mmu_commit_zap_page(kvm,
			      &kvm->arch.zapped_obsolete_pages);
			goto unlock;
		}

6205 6206
		if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
			freed++;
6207
		kvm_mmu_commit_zap_page(kvm, &invalid_list);
6208

6209
unlock:
6210
		spin_unlock(&kvm->mmu_lock);
6211
		srcu_read_unlock(&kvm->srcu, idx);
6212

6213 6214 6215 6216 6217
		/*
		 * unfair on small ones
		 * per-vm shrinkers cry out
		 * sadness comes quickly
		 */
6218 6219
		list_move_tail(&kvm->vm_list, &vm_list);
		break;
6220 6221
	}

J
Junaid Shahid 已提交
6222
	mutex_unlock(&kvm_lock);
6223 6224 6225 6226 6227 6228
	return freed;
}

static unsigned long
mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
{
6229
	return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
6230 6231 6232
}

static struct shrinker mmu_shrinker = {
6233 6234
	.count_objects = mmu_shrink_count,
	.scan_objects = mmu_shrink_scan,
6235 6236 6237
	.seeks = DEFAULT_SEEKS * 10,
};

I
Ingo Molnar 已提交
6238
static void mmu_destroy_caches(void)
6239
{
6240 6241
	kmem_cache_destroy(pte_list_desc_cache);
	kmem_cache_destroy(mmu_page_header_cache);
6242 6243
}

6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265
static void kvm_set_mmio_spte_mask(void)
{
	u64 mask;

	/*
	 * Set the reserved bits and the present bit of an paging-structure
	 * entry to generate page fault with PFER.RSV = 1.
	 */

	/*
	 * Mask the uppermost physical address bit, which would be reserved as
	 * long as the supported physical address width is less than 52.
	 */
	mask = 1ull << 51;

	/* Set the present bit. */
	mask |= 1ull;

	/*
	 * If reserved bit is not supported, clear the present bit to disable
	 * mmio page fault.
	 */
6266
	if (IS_ENABLED(CONFIG_X86_64) && shadow_phys_bits == 52)
6267 6268
		mask &= ~1ull;

6269
	kvm_mmu_set_mmio_spte_mask(mask, mask, ACC_WRITE_MASK | ACC_USER_MASK);
6270 6271
}

P
Paolo Bonzini 已提交
6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305
static bool get_nx_auto_mode(void)
{
	/* Return true when CPU has the bug, and mitigations are ON */
	return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
}

static void __set_nx_huge_pages(bool val)
{
	nx_huge_pages = itlb_multihit_kvm_mitigation = val;
}

static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
{
	bool old_val = nx_huge_pages;
	bool new_val;

	/* In "auto" mode deploy workaround only if CPU has the bug. */
	if (sysfs_streq(val, "off"))
		new_val = 0;
	else if (sysfs_streq(val, "force"))
		new_val = 1;
	else if (sysfs_streq(val, "auto"))
		new_val = get_nx_auto_mode();
	else if (strtobool(val, &new_val) < 0)
		return -EINVAL;

	__set_nx_huge_pages(new_val);

	if (new_val != old_val) {
		struct kvm *kvm;

		mutex_lock(&kvm_lock);

		list_for_each_entry(kvm, &vm_list, vm_list) {
6306
			mutex_lock(&kvm->slots_lock);
P
Paolo Bonzini 已提交
6307
			kvm_mmu_zap_all_fast(kvm);
6308
			mutex_unlock(&kvm->slots_lock);
6309 6310

			wake_up_process(kvm->arch.nx_lpage_recovery_thread);
P
Paolo Bonzini 已提交
6311 6312 6313 6314 6315 6316 6317
		}
		mutex_unlock(&kvm_lock);
	}

	return 0;
}

6318 6319
int kvm_mmu_module_init(void)
{
6320 6321
	int ret = -ENOMEM;

P
Paolo Bonzini 已提交
6322 6323 6324
	if (nx_huge_pages == -1)
		__set_nx_huge_pages(get_nx_auto_mode());

6325 6326 6327 6328 6329 6330 6331 6332 6333 6334
	/*
	 * MMU roles use union aliasing which is, generally speaking, an
	 * undefined behavior. However, we supposedly know how compilers behave
	 * and the current status quo is unlikely to change. Guardians below are
	 * supposed to let us know if the assumption becomes false.
	 */
	BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
	BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
	BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));

6335
	kvm_mmu_reset_all_pte_masks();
6336

6337 6338
	kvm_set_mmio_spte_mask();

6339 6340
	pte_list_desc_cache = kmem_cache_create("pte_list_desc",
					    sizeof(struct pte_list_desc),
6341
					    0, SLAB_ACCOUNT, NULL);
6342
	if (!pte_list_desc_cache)
6343
		goto out;
6344

6345 6346
	mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
						  sizeof(struct kvm_mmu_page),
6347
						  0, SLAB_ACCOUNT, NULL);
6348
	if (!mmu_page_header_cache)
6349
		goto out;
6350

6351
	if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
6352
		goto out;
6353

6354 6355 6356
	ret = register_shrinker(&mmu_shrinker);
	if (ret)
		goto out;
6357

6358 6359
	return 0;

6360
out:
6361
	mmu_destroy_caches();
6362
	return ret;
6363 6364
}

6365
/*
P
Peng Hao 已提交
6366
 * Calculate mmu pages needed for kvm.
6367
 */
6368
unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm)
6369
{
6370 6371
	unsigned long nr_mmu_pages;
	unsigned long nr_pages = 0;
6372
	struct kvm_memslots *slots;
6373
	struct kvm_memory_slot *memslot;
6374
	int i;
6375

6376 6377
	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
6378

6379 6380 6381
		kvm_for_each_memslot(memslot, slots)
			nr_pages += memslot->npages;
	}
6382 6383

	nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
6384
	nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
6385 6386 6387 6388

	return nr_mmu_pages;
}

6389 6390
void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
{
6391
	kvm_mmu_unload(vcpu);
6392 6393
	free_mmu_pages(&vcpu->arch.root_mmu);
	free_mmu_pages(&vcpu->arch.guest_mmu);
6394
	mmu_free_memory_caches(vcpu);
6395 6396 6397 6398 6399 6400 6401
}

void kvm_mmu_module_exit(void)
{
	mmu_destroy_caches();
	percpu_counter_destroy(&kvm_total_used_mmu_pages);
	unregister_shrinker(&mmu_shrinker);
6402 6403
	mmu_audit_disable();
}
6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516

static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp)
{
	unsigned int old_val;
	int err;

	old_val = nx_huge_pages_recovery_ratio;
	err = param_set_uint(val, kp);
	if (err)
		return err;

	if (READ_ONCE(nx_huge_pages) &&
	    !old_val && nx_huge_pages_recovery_ratio) {
		struct kvm *kvm;

		mutex_lock(&kvm_lock);

		list_for_each_entry(kvm, &vm_list, vm_list)
			wake_up_process(kvm->arch.nx_lpage_recovery_thread);

		mutex_unlock(&kvm_lock);
	}

	return err;
}

static void kvm_recover_nx_lpages(struct kvm *kvm)
{
	int rcu_idx;
	struct kvm_mmu_page *sp;
	unsigned int ratio;
	LIST_HEAD(invalid_list);
	ulong to_zap;

	rcu_idx = srcu_read_lock(&kvm->srcu);
	spin_lock(&kvm->mmu_lock);

	ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
	to_zap = ratio ? DIV_ROUND_UP(kvm->stat.nx_lpage_splits, ratio) : 0;
	while (to_zap && !list_empty(&kvm->arch.lpage_disallowed_mmu_pages)) {
		/*
		 * We use a separate list instead of just using active_mmu_pages
		 * because the number of lpage_disallowed pages is expected to
		 * be relatively small compared to the total.
		 */
		sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
				      struct kvm_mmu_page,
				      lpage_disallowed_link);
		WARN_ON_ONCE(!sp->lpage_disallowed);
		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
		WARN_ON_ONCE(sp->lpage_disallowed);

		if (!--to_zap || need_resched() || spin_needbreak(&kvm->mmu_lock)) {
			kvm_mmu_commit_zap_page(kvm, &invalid_list);
			if (to_zap)
				cond_resched_lock(&kvm->mmu_lock);
		}
	}

	spin_unlock(&kvm->mmu_lock);
	srcu_read_unlock(&kvm->srcu, rcu_idx);
}

static long get_nx_lpage_recovery_timeout(u64 start_time)
{
	return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio)
		? start_time + 60 * HZ - get_jiffies_64()
		: MAX_SCHEDULE_TIMEOUT;
}

static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
{
	u64 start_time;
	long remaining_time;

	while (true) {
		start_time = get_jiffies_64();
		remaining_time = get_nx_lpage_recovery_timeout(start_time);

		set_current_state(TASK_INTERRUPTIBLE);
		while (!kthread_should_stop() && remaining_time > 0) {
			schedule_timeout(remaining_time);
			remaining_time = get_nx_lpage_recovery_timeout(start_time);
			set_current_state(TASK_INTERRUPTIBLE);
		}

		set_current_state(TASK_RUNNING);

		if (kthread_should_stop())
			return 0;

		kvm_recover_nx_lpages(kvm);
	}
}

int kvm_mmu_post_init_vm(struct kvm *kvm)
{
	int err;

	err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
					  "kvm-nx-lpage-recovery",
					  &kvm->arch.nx_lpage_recovery_thread);
	if (!err)
		kthread_unpark(kvm->arch.nx_lpage_recovery_thread);

	return err;
}

void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
{
	if (kvm->arch.nx_lpage_recovery_thread)
		kthread_stop(kvm->arch.nx_lpage_recovery_thread);
}