mmu.c 167.5 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
A
Avi Kivity 已提交
2 3 4 5 6 7 8 9 10
/*
 * Kernel-based Virtual Machine driver for Linux
 *
 * This module enables machines with Intel VT-x extensions to run virtual
 * machines without emulation or binary translation.
 *
 * MMU support
 *
 * Copyright (C) 2006 Qumranet, Inc.
N
Nicolas Kaiser 已提交
11
 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
A
Avi Kivity 已提交
12 13 14 15 16
 *
 * Authors:
 *   Yaniv Kamay  <yaniv@qumranet.com>
 *   Avi Kivity   <avi@qumranet.com>
 */
A
Avi Kivity 已提交
17

18
#include "irq.h"
19
#include "ioapic.h"
20
#include "mmu.h"
21
#include "mmu_internal.h"
22
#include "tdp_mmu.h"
23
#include "x86.h"
A
Avi Kivity 已提交
24
#include "kvm_cache_regs.h"
25
#include "kvm_emulate.h"
26
#include "cpuid.h"
27
#include "spte.h"
A
Avi Kivity 已提交
28

29
#include <linux/kvm_host.h>
A
Avi Kivity 已提交
30 31 32 33
#include <linux/types.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/highmem.h>
34 35
#include <linux/moduleparam.h>
#include <linux/export.h>
36
#include <linux/swap.h>
M
Marcelo Tosatti 已提交
37
#include <linux/hugetlb.h>
38
#include <linux/compiler.h>
39
#include <linux/srcu.h>
40
#include <linux/slab.h>
41
#include <linux/sched/signal.h>
42
#include <linux/uaccess.h>
43
#include <linux/hash.h>
44
#include <linux/kern_levels.h>
45
#include <linux/kthread.h>
A
Avi Kivity 已提交
46

A
Avi Kivity 已提交
47
#include <asm/page.h>
48
#include <asm/memtype.h>
A
Avi Kivity 已提交
49
#include <asm/cmpxchg.h>
50
#include <asm/io.h>
51
#include <asm/set_memory.h>
52
#include <asm/vmx.h>
53
#include <asm/kvm_page_track.h>
54
#include "trace.h"
A
Avi Kivity 已提交
55

56 57
#include "paging.h"

P
Paolo Bonzini 已提交
58 59
extern bool itlb_multihit_kvm_mitigation;

60
int __read_mostly nx_huge_pages = -1;
61
static uint __read_mostly nx_huge_pages_recovery_period_ms;
62 63 64 65
#ifdef CONFIG_PREEMPT_RT
/* Recovery can cause latency spikes, disable it for PREEMPT_RT.  */
static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
#else
66
static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
67
#endif
P
Paolo Bonzini 已提交
68 69

static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
70
static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp);
P
Paolo Bonzini 已提交
71

72
static const struct kernel_param_ops nx_huge_pages_ops = {
P
Paolo Bonzini 已提交
73 74 75 76
	.set = set_nx_huge_pages,
	.get = param_get_bool,
};

77 78
static const struct kernel_param_ops nx_huge_pages_recovery_param_ops = {
	.set = set_nx_huge_pages_recovery_param,
79 80 81
	.get = param_get_uint,
};

P
Paolo Bonzini 已提交
82 83
module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
__MODULE_PARM_TYPE(nx_huge_pages, "bool");
84
module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_param_ops,
85 86
		&nx_huge_pages_recovery_ratio, 0644);
__MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
87 88 89
module_param_cb(nx_huge_pages_recovery_period_ms, &nx_huge_pages_recovery_param_ops,
		&nx_huge_pages_recovery_period_ms, 0644);
__MODULE_PARM_TYPE(nx_huge_pages_recovery_period_ms, "uint");
P
Paolo Bonzini 已提交
90

91 92 93
static bool __read_mostly force_flush_and_sync_on_reuse;
module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644);

94 95 96 97 98 99 100
/*
 * When setting this variable to true it enables Two-Dimensional-Paging
 * where the hardware walks 2 page tables:
 * 1. the guest-virtual to guest-physical
 * 2. while doing 1. it walks guest-physical to host-physical
 * If the hardware supports that we don't need to do shadow paging.
 */
101
bool tdp_enabled = false;
102

103
static int max_huge_page_level __read_mostly;
104
static int tdp_root_level __read_mostly;
105
static int max_tdp_level __read_mostly;
106

107 108 109 110
enum {
	AUDIT_PRE_PAGE_FAULT,
	AUDIT_POST_PAGE_FAULT,
	AUDIT_PRE_PTE_WRITE,
111 112 113
	AUDIT_POST_PTE_WRITE,
	AUDIT_PRE_SYNC,
	AUDIT_POST_SYNC
114
};
115 116

#ifdef MMU_DEBUG
117
bool dbg = 0;
118
module_param(dbg, bool, 0644);
119
#endif
A
Avi Kivity 已提交
120

121 122
#define PTE_PREFETCH_NUM		8

A
Avi Kivity 已提交
123 124 125
#define PT32_LEVEL_BITS 10

#define PT32_LEVEL_SHIFT(level) \
M
Mike Day 已提交
126
		(PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
A
Avi Kivity 已提交
127

128 129 130
#define PT32_LVL_OFFSET_MASK(level) \
	(PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
131 132 133 134 135 136 137 138

#define PT32_INDEX(address, level)\
	(((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))


#define PT32_BASE_ADDR_MASK PAGE_MASK
#define PT32_DIR_BASE_ADDR_MASK \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
139 140 141
#define PT32_LVL_ADDR_MASK(level) \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
					    * PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
142

143 144
#include <trace/events/kvm.h>

145
/* make pte_list_desc fit well in cache lines */
146
#define PTE_LIST_EXT 14
147

148 149 150 151 152
/*
 * Slight optimization of cacheline layout, by putting `more' and `spte_count'
 * at the start; then accessing it will only use one single cacheline for
 * either full (entries==PTE_LIST_EXT) case or entries<=6.
 */
153 154
struct pte_list_desc {
	struct pte_list_desc *more;
155 156 157 158 159 160
	/*
	 * Stores number of entries stored in the pte_list_desc.  No need to be
	 * u64 but just for easier alignment.  When PTE_LIST_EXT, means full.
	 */
	u64 spte_count;
	u64 *sptes[PTE_LIST_EXT];
161 162
};

163 164 165 166
struct kvm_shadow_walk_iterator {
	u64 addr;
	hpa_t shadow_addr;
	u64 *sptep;
167
	int level;
168 169 170
	unsigned index;
};

171 172 173 174 175 176 177
#define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker)     \
	for (shadow_walk_init_using_root(&(_walker), (_vcpu),              \
					 (_root), (_addr));                \
	     shadow_walk_okay(&(_walker));			           \
	     shadow_walk_next(&(_walker)))

#define for_each_shadow_entry(_vcpu, _addr, _walker)            \
178 179 180 181
	for (shadow_walk_init(&(_walker), _vcpu, _addr);	\
	     shadow_walk_okay(&(_walker));			\
	     shadow_walk_next(&(_walker)))

182 183 184 185 186 187
#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)	\
	for (shadow_walk_init(&(_walker), _vcpu, _addr);		\
	     shadow_walk_okay(&(_walker)) &&				\
		({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });	\
	     __shadow_walk_next(&(_walker), spte))

188
static struct kmem_cache *pte_list_desc_cache;
189
struct kmem_cache *mmu_page_header_cache;
190
static struct percpu_counter kvm_total_used_mmu_pages;
191

192
static void mmu_spte_set(u64 *sptep, u64 spte);
193 194
static union kvm_mmu_page_role
kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
195

196 197 198 199 200 201
struct kvm_mmu_role_regs {
	const unsigned long cr0;
	const unsigned long cr4;
	const u64 efer;
};

202 203 204
#define CREATE_TRACE_POINTS
#include "mmutrace.h"

205 206 207 208 209 210
/*
 * Yes, lot's of underscores.  They're a hint that you probably shouldn't be
 * reading from the role_regs.  Once the mmu_role is constructed, it becomes
 * the single source of truth for the MMU's state.
 */
#define BUILD_MMU_ROLE_REGS_ACCESSOR(reg, name, flag)			\
211
static inline bool __maybe_unused ____is_##reg##_##name(struct kvm_mmu_role_regs *regs)\
212 213 214 215 216 217 218 219 220 221 222 223 224 225
{									\
	return !!(regs->reg & flag);					\
}
BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, pg, X86_CR0_PG);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, wp, X86_CR0_WP);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pse, X86_CR4_PSE);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pae, X86_CR4_PAE);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smep, X86_CR4_SMEP);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smap, X86_CR4_SMAP);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pke, X86_CR4_PKE);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, la57, X86_CR4_LA57);
BUILD_MMU_ROLE_REGS_ACCESSOR(efer, nx, EFER_NX);
BUILD_MMU_ROLE_REGS_ACCESSOR(efer, lma, EFER_LMA);

226 227 228 229 230 231 232
/*
 * The MMU itself (with a valid role) is the single source of truth for the
 * MMU.  Do not use the regs used to build the MMU/role, nor the vCPU.  The
 * regs don't account for dependencies, e.g. clearing CR4 bits if CR0.PG=1,
 * and the vCPU may be incorrect/irrelevant.
 */
#define BUILD_MMU_ROLE_ACCESSOR(base_or_ext, reg, name)		\
233
static inline bool __maybe_unused is_##reg##_##name(struct kvm_mmu *mmu)	\
234 235 236 237 238 239 240 241 242 243 244 245 246
{								\
	return !!(mmu->mmu_role. base_or_ext . reg##_##name);	\
}
BUILD_MMU_ROLE_ACCESSOR(ext,  cr0, pg);
BUILD_MMU_ROLE_ACCESSOR(base, cr0, wp);
BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, pse);
BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, pae);
BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, smep);
BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, smap);
BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, pke);
BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, la57);
BUILD_MMU_ROLE_ACCESSOR(base, efer, nx);

247 248 249 250 251 252 253 254 255 256
static struct kvm_mmu_role_regs vcpu_to_role_regs(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu_role_regs regs = {
		.cr0 = kvm_read_cr0_bits(vcpu, KVM_MMU_CR0_ROLE_BITS),
		.cr4 = kvm_read_cr4_bits(vcpu, KVM_MMU_CR4_ROLE_BITS),
		.efer = vcpu->arch.efer,
	};

	return regs;
}
257

258 259 260 261 262 263 264 265 266 267 268 269
static int role_regs_to_root_level(struct kvm_mmu_role_regs *regs)
{
	if (!____is_cr0_pg(regs))
		return 0;
	else if (____is_efer_lma(regs))
		return ____is_cr4_la57(regs) ? PT64_ROOT_5LEVEL :
					       PT64_ROOT_4LEVEL;
	else if (____is_cr4_pae(regs))
		return PT32E_ROOT_LEVEL;
	else
		return PT32_ROOT_LEVEL;
}
270 271 272

static inline bool kvm_available_flush_tlb_with_range(void)
{
273
	return kvm_x86_ops.tlb_remote_flush_with_range;
274 275 276 277 278 279 280
}

static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
		struct kvm_tlb_range *range)
{
	int ret = -ENOTSUPP;

281
	if (range && kvm_x86_ops.tlb_remote_flush_with_range)
282
		ret = static_call(kvm_x86_tlb_remote_flush_with_range)(kvm, range);
283 284 285 286 287

	if (ret)
		kvm_flush_remote_tlbs(kvm);
}

288
void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
289 290 291 292 293 294 295 296 297 298
		u64 start_gfn, u64 pages)
{
	struct kvm_tlb_range range;

	range.start_gfn = start_gfn;
	range.pages = pages;

	kvm_flush_remote_tlbs_with_range(kvm, &range);
}

299 300 301
static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
			   unsigned int access)
{
302
	u64 spte = make_mmio_spte(vcpu, gfn, access);
303

304 305
	trace_mark_mmio_spte(sptep, gfn, spte);
	mmu_spte_set(sptep, spte);
306 307 308 309
}

static gfn_t get_mmio_spte_gfn(u64 spte)
{
310
	u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
311

312
	gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)
313 314 315
	       & shadow_nonpresent_or_rsvd_mask;

	return gpa >> PAGE_SHIFT;
316 317 318 319
}

static unsigned get_mmio_spte_access(u64 spte)
{
320
	return spte & shadow_mmio_access_mask;
321 322
}

323
static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
324
{
325
	u64 kvm_gen, spte_gen, gen;
326

327 328 329
	gen = kvm_vcpu_memslots(vcpu)->generation;
	if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
		return false;
330

331
	kvm_gen = gen & MMIO_SPTE_GEN_MASK;
332 333 334 335
	spte_gen = get_mmio_spte_generation(spte);

	trace_check_mmio_spte(spte, kvm_gen, spte_gen);
	return likely(kvm_gen == spte_gen);
336 337
}

338 339 340 341 342 343
static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
                                  struct x86_exception *exception)
{
        return gpa;
}

A
Avi Kivity 已提交
344 345 346 347 348
static int is_cpuid_PSE36(void)
{
	return 1;
}

349 350 351 352 353 354 355
static gfn_t pse36_gfn_delta(u32 gpte)
{
	int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;

	return (gpte & PT32_DIR_PSE36_MASK) << shift;
}

356
#ifdef CONFIG_X86_64
A
Avi Kivity 已提交
357
static void __set_spte(u64 *sptep, u64 spte)
358
{
359
	WRITE_ONCE(*sptep, spte);
360 361
}

362
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
363
{
364
	WRITE_ONCE(*sptep, spte);
365 366 367 368 369 370
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	return xchg(sptep, spte);
}
371 372 373

static u64 __get_spte_lockless(u64 *sptep)
{
374
	return READ_ONCE(*sptep);
375
}
376
#else
377 378 379 380 381 382 383
union split_spte {
	struct {
		u32 spte_low;
		u32 spte_high;
	};
	u64 spte;
};
384

385 386
static void count_spte_clear(u64 *sptep, u64 spte)
{
387
	struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
388 389 390 391 392 393 394 395 396

	if (is_shadow_present_pte(spte))
		return;

	/* Ensure the spte is completely set before we increase the count */
	smp_wmb();
	sp->clear_spte_count++;
}

397 398 399
static void __set_spte(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;
400

401 402 403 404 405 406 407 408 409 410 411 412
	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	ssptep->spte_high = sspte.spte_high;

	/*
	 * If we map the spte from nonpresent to present, We should store
	 * the high bits firstly, then set present bit, so cpu can not
	 * fetch this spte while we are setting the spte.
	 */
	smp_wmb();

413
	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
414 415
}

416 417 418 419 420 421 422
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

423
	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
424 425 426 427 428 429 430 431

	/*
	 * If we map the spte from present to nonpresent, we should clear
	 * present bit firstly to avoid vcpu fetch the old high bits.
	 */
	smp_wmb();

	ssptep->spte_high = sspte.spte_high;
432
	count_spte_clear(sptep, spte);
433 434 435 436 437 438 439 440 441 442 443
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte, orig;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	/* xchg acts as a barrier before the setting of the high bits */
	orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
444 445
	orig.spte_high = ssptep->spte_high;
	ssptep->spte_high = sspte.spte_high;
446
	count_spte_clear(sptep, spte);
447 448 449

	return orig.spte;
}
450 451 452

/*
 * The idea using the light way get the spte on x86_32 guest is from
453
 * gup_get_pte (mm/gup.c).
454 455 456 457 458 459 460 461 462 463 464 465 466 467
 *
 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
 * coalesces them and we are running out of the MMU lock.  Therefore
 * we need to protect against in-progress updates of the spte.
 *
 * Reading the spte while an update is in progress may get the old value
 * for the high part of the spte.  The race is fine for a present->non-present
 * change (because the high part of the spte is ignored for non-present spte),
 * but for a present->present change we must reread the spte.
 *
 * All such changes are done in two steps (present->non-present and
 * non-present->present), hence it is enough to count the number of
 * present->non-present updates: if it changed while reading the spte,
 * we might have hit the race.  This is done using clear_spte_count.
468 469 470
 */
static u64 __get_spte_lockless(u64 *sptep)
{
471
	struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
	union split_spte spte, *orig = (union split_spte *)sptep;
	int count;

retry:
	count = sp->clear_spte_count;
	smp_rmb();

	spte.spte_low = orig->spte_low;
	smp_rmb();

	spte.spte_high = orig->spte_high;
	smp_rmb();

	if (unlikely(spte.spte_low != orig->spte_low ||
	      count != sp->clear_spte_count))
		goto retry;

	return spte.spte;
}
491 492
#endif

493 494
static bool spte_has_volatile_bits(u64 spte)
{
495 496 497
	if (!is_shadow_present_pte(spte))
		return false;

498
	/*
499
	 * Always atomically update spte if it can be updated
500 501 502 503
	 * out of mmu-lock, it can ensure dirty bit is not lost,
	 * also, it can help us to get a stable is_writable_pte()
	 * to ensure tlb flush is not missed.
	 */
504 505
	if (spte_can_locklessly_be_made_writable(spte) ||
	    is_access_track_spte(spte))
506 507
		return true;

508
	if (spte_ad_enabled(spte)) {
509 510 511 512
		if ((spte & shadow_accessed_mask) == 0 ||
	    	    (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
			return true;
	}
513

514
	return false;
515 516
}

517 518 519 520 521 522 523 524 525 526 527 528
/* Rules for using mmu_spte_set:
 * Set the sptep from nonpresent to present.
 * Note: the sptep being assigned *must* be either not present
 * or in a state where the hardware will not attempt to update
 * the spte.
 */
static void mmu_spte_set(u64 *sptep, u64 new_spte)
{
	WARN_ON(is_shadow_present_pte(*sptep));
	__set_spte(sptep, new_spte);
}

529 530 531
/*
 * Update the SPTE (excluding the PFN), but do not track changes in its
 * accessed/dirty status.
532
 */
533
static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
534
{
535
	u64 old_spte = *sptep;
536

537
	WARN_ON(!is_shadow_present_pte(new_spte));
538

539 540
	if (!is_shadow_present_pte(old_spte)) {
		mmu_spte_set(sptep, new_spte);
541
		return old_spte;
542
	}
543

544
	if (!spte_has_volatile_bits(old_spte))
545
		__update_clear_spte_fast(sptep, new_spte);
546
	else
547
		old_spte = __update_clear_spte_slow(sptep, new_spte);
548

549 550
	WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));

551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
	return old_spte;
}

/* Rules for using mmu_spte_update:
 * Update the state bits, it means the mapped pfn is not changed.
 *
 * Whenever we overwrite a writable spte with a read-only one we
 * should flush remote TLBs. Otherwise rmap_write_protect
 * will find a read-only spte, even though the writable spte
 * might be cached on a CPU's TLB, the return value indicates this
 * case.
 *
 * Returns true if the TLB needs to be flushed
 */
static bool mmu_spte_update(u64 *sptep, u64 new_spte)
{
	bool flush = false;
	u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);

	if (!is_shadow_present_pte(old_spte))
		return false;

573 574
	/*
	 * For the spte updated out of mmu-lock is safe, since
575
	 * we always atomically update it, see the comments in
576 577
	 * spte_has_volatile_bits().
	 */
578
	if (spte_can_locklessly_be_made_writable(old_spte) &&
579
	      !is_writable_pte(new_spte))
580
		flush = true;
581

582
	/*
583
	 * Flush TLB when accessed/dirty states are changed in the page tables,
584 585 586
	 * to guarantee consistency between TLB and page tables.
	 */

587 588
	if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
		flush = true;
589
		kvm_set_pfn_accessed(spte_to_pfn(old_spte));
590 591 592 593
	}

	if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
		flush = true;
594
		kvm_set_pfn_dirty(spte_to_pfn(old_spte));
595
	}
596

597
	return flush;
598 599
}

600 601 602 603
/*
 * Rules for using mmu_spte_clear_track_bits:
 * It sets the sptep from present to nonpresent, and track the
 * state bits, it is used to clear the last level sptep.
604
 * Returns the old PTE.
605
 */
606
static int mmu_spte_clear_track_bits(struct kvm *kvm, u64 *sptep)
607
{
D
Dan Williams 已提交
608
	kvm_pfn_t pfn;
609
	u64 old_spte = *sptep;
610
	int level = sptep_to_sp(sptep)->role.level;
611 612

	if (!spte_has_volatile_bits(old_spte))
613
		__update_clear_spte_fast(sptep, 0ull);
614
	else
615
		old_spte = __update_clear_spte_slow(sptep, 0ull);
616

617
	if (!is_shadow_present_pte(old_spte))
618
		return old_spte;
619

620 621
	kvm_update_page_stats(kvm, level, -1);

622
	pfn = spte_to_pfn(old_spte);
623 624 625 626 627 628

	/*
	 * KVM does not hold the refcount of the page used by
	 * kvm mmu, before reclaiming the page, we should
	 * unmap it from mmu first.
	 */
629
	WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
630

631
	if (is_accessed_spte(old_spte))
632
		kvm_set_pfn_accessed(pfn);
633 634

	if (is_dirty_spte(old_spte))
635
		kvm_set_pfn_dirty(pfn);
636

637
	return old_spte;
638 639 640 641 642 643 644 645 646
}

/*
 * Rules for using mmu_spte_clear_no_track:
 * Directly clear spte without caring the state bits of sptep,
 * it is used to set the upper level spte.
 */
static void mmu_spte_clear_no_track(u64 *sptep)
{
647
	__update_clear_spte_fast(sptep, 0ull);
648 649
}

650 651 652 653 654
static u64 mmu_spte_get_lockless(u64 *sptep)
{
	return __get_spte_lockless(sptep);
}

655 656 657 658
/* Restore an acc-track PTE back to a regular PTE */
static u64 restore_acc_track_spte(u64 spte)
{
	u64 new_spte = spte;
659 660
	u64 saved_bits = (spte >> SHADOW_ACC_TRACK_SAVED_BITS_SHIFT)
			 & SHADOW_ACC_TRACK_SAVED_BITS_MASK;
661

662
	WARN_ON_ONCE(spte_ad_enabled(spte));
663 664 665
	WARN_ON_ONCE(!is_access_track_spte(spte));

	new_spte &= ~shadow_acc_track_mask;
666 667
	new_spte &= ~(SHADOW_ACC_TRACK_SAVED_BITS_MASK <<
		      SHADOW_ACC_TRACK_SAVED_BITS_SHIFT);
668 669 670 671 672
	new_spte |= saved_bits;

	return new_spte;
}

673 674 675 676 677 678 679 680
/* Returns the Accessed status of the PTE and resets it at the same time. */
static bool mmu_spte_age(u64 *sptep)
{
	u64 spte = mmu_spte_get_lockless(sptep);

	if (!is_accessed_spte(spte))
		return false;

681
	if (spte_ad_enabled(spte)) {
682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
		clear_bit((ffs(shadow_accessed_mask) - 1),
			  (unsigned long *)sptep);
	} else {
		/*
		 * Capture the dirty status of the page, so that it doesn't get
		 * lost when the SPTE is marked for access tracking.
		 */
		if (is_writable_pte(spte))
			kvm_set_pfn_dirty(spte_to_pfn(spte));

		spte = mark_spte_for_access_track(spte);
		mmu_spte_update_no_track(sptep, spte);
	}

	return true;
}

699 700
static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
{
701 702 703 704 705 706 707 708
	if (is_tdp_mmu(vcpu->arch.mmu)) {
		kvm_tdp_mmu_walk_lockless_begin();
	} else {
		/*
		 * Prevent page table teardown by making any free-er wait during
		 * kvm_flush_remote_tlbs() IPI to all active vcpus.
		 */
		local_irq_disable();
709

710 711 712 713 714 715
		/*
		 * Make sure a following spte read is not reordered ahead of the write
		 * to vcpu->mode.
		 */
		smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
	}
716 717 718 719
}

static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
{
720 721 722 723 724 725 726 727 728 729 730
	if (is_tdp_mmu(vcpu->arch.mmu)) {
		kvm_tdp_mmu_walk_lockless_end();
	} else {
		/*
		 * Make sure the write to vcpu->mode is not reordered in front of
		 * reads to sptes.  If it does, kvm_mmu_commit_zap_page() can see us
		 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
		 */
		smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
		local_irq_enable();
	}
731 732
}

733
static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect)
734
{
735 736
	int r;

737
	/* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */
738 739
	r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
				       1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM);
740
	if (r)
741
		return r;
742 743
	r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache,
				       PT64_ROOT_MAX_LEVEL);
744
	if (r)
745
		return r;
746
	if (maybe_indirect) {
747 748
		r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_gfn_array_cache,
					       PT64_ROOT_MAX_LEVEL);
749 750 751
		if (r)
			return r;
	}
752 753
	return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
					  PT64_ROOT_MAX_LEVEL);
754 755 756 757
}

static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
{
758 759 760 761
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache);
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache);
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_gfn_array_cache);
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
762 763
}

764
static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
765
{
766
	return kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
767 768
}

769
static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
770
{
771
	kmem_cache_free(pte_list_desc_cache, pte_list_desc);
772 773
}

774 775 776 777 778 779 780 781 782 783
static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
{
	if (!sp->role.direct)
		return sp->gfns[index];

	return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
}

static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
{
784
	if (!sp->role.direct) {
785
		sp->gfns[index] = gfn;
786 787 788 789 790 791 792 793
		return;
	}

	if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
		pr_err_ratelimited("gfn mismatch under direct page %llx "
				   "(expected %llx, got %llx)\n",
				   sp->gfn,
				   kvm_mmu_page_get_gfn(sp, index), gfn);
794 795
}

M
Marcelo Tosatti 已提交
796
/*
797 798
 * Return the pointer to the large page information for a given gfn,
 * handling slots that are not large page aligned.
M
Marcelo Tosatti 已提交
799
 */
800
static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
801
		const struct kvm_memory_slot *slot, int level)
M
Marcelo Tosatti 已提交
802 803 804
{
	unsigned long idx;

805
	idx = gfn_to_index(gfn, slot->base_gfn, level);
806
	return &slot->arch.lpage_info[level - 2][idx];
M
Marcelo Tosatti 已提交
807 808
}

809
static void update_gfn_disallow_lpage_count(const struct kvm_memory_slot *slot,
810 811 812 813 814
					    gfn_t gfn, int count)
{
	struct kvm_lpage_info *linfo;
	int i;

815
	for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
816 817 818 819 820 821
		linfo = lpage_info_slot(gfn, slot, i);
		linfo->disallow_lpage += count;
		WARN_ON(linfo->disallow_lpage < 0);
	}
}

822
void kvm_mmu_gfn_disallow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn)
823 824 825 826
{
	update_gfn_disallow_lpage_count(slot, gfn, 1);
}

827
void kvm_mmu_gfn_allow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn)
828 829 830 831
{
	update_gfn_disallow_lpage_count(slot, gfn, -1);
}

832
static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
M
Marcelo Tosatti 已提交
833
{
834
	struct kvm_memslots *slots;
835
	struct kvm_memory_slot *slot;
836
	gfn_t gfn;
M
Marcelo Tosatti 已提交
837

838
	kvm->arch.indirect_shadow_pages++;
839
	gfn = sp->gfn;
840 841
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
842 843

	/* the non-leaf shadow pages are keeping readonly. */
844
	if (sp->role.level > PG_LEVEL_4K)
845 846 847
		return kvm_slot_page_track_add_page(kvm, slot, gfn,
						    KVM_PAGE_TRACK_WRITE);

848
	kvm_mmu_gfn_disallow_lpage(slot, gfn);
M
Marcelo Tosatti 已提交
849 850
}

851
void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
P
Paolo Bonzini 已提交
852 853 854 855 856
{
	if (sp->lpage_disallowed)
		return;

	++kvm->stat.nx_lpage_splits;
857 858
	list_add_tail(&sp->lpage_disallowed_link,
		      &kvm->arch.lpage_disallowed_mmu_pages);
P
Paolo Bonzini 已提交
859 860 861
	sp->lpage_disallowed = true;
}

862
static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
M
Marcelo Tosatti 已提交
863
{
864
	struct kvm_memslots *slots;
865
	struct kvm_memory_slot *slot;
866
	gfn_t gfn;
M
Marcelo Tosatti 已提交
867

868
	kvm->arch.indirect_shadow_pages--;
869
	gfn = sp->gfn;
870 871
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
872
	if (sp->role.level > PG_LEVEL_4K)
873 874 875
		return kvm_slot_page_track_remove_page(kvm, slot, gfn,
						       KVM_PAGE_TRACK_WRITE);

876
	kvm_mmu_gfn_allow_lpage(slot, gfn);
M
Marcelo Tosatti 已提交
877 878
}

879
void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
P
Paolo Bonzini 已提交
880 881 882
{
	--kvm->stat.nx_lpage_splits;
	sp->lpage_disallowed = false;
883
	list_del(&sp->lpage_disallowed_link);
P
Paolo Bonzini 已提交
884 885
}

886 887 888
static struct kvm_memory_slot *
gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
			    bool no_dirty_log)
M
Marcelo Tosatti 已提交
889 890
{
	struct kvm_memory_slot *slot;
891

892
	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
893 894
	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
		return NULL;
895
	if (no_dirty_log && kvm_slot_dirty_track_enabled(slot))
896
		return NULL;
897 898 899 900

	return slot;
}

901
/*
902
 * About rmap_head encoding:
903
 *
904 905
 * If the bit zero of rmap_head->val is clear, then it points to the only spte
 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
906
 * pte_list_desc containing more mappings.
907 908 909 910
 */

/*
 * Returns the number of pointers in the rmap chain, not counting the new one.
911
 */
912
static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
913
			struct kvm_rmap_head *rmap_head)
914
{
915
	struct pte_list_desc *desc;
916
	int count = 0;
917

918
	if (!rmap_head->val) {
919
		rmap_printk("%p %llx 0->1\n", spte, *spte);
920 921
		rmap_head->val = (unsigned long)spte;
	} else if (!(rmap_head->val & 1)) {
922
		rmap_printk("%p %llx 1->many\n", spte, *spte);
923
		desc = mmu_alloc_pte_list_desc(vcpu);
924
		desc->sptes[0] = (u64 *)rmap_head->val;
A
Avi Kivity 已提交
925
		desc->sptes[1] = spte;
926
		desc->spte_count = 2;
927
		rmap_head->val = (unsigned long)desc | 1;
928
		++count;
929
	} else {
930
		rmap_printk("%p %llx many->many\n", spte, *spte);
931
		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
932
		while (desc->spte_count == PTE_LIST_EXT) {
933
			count += PTE_LIST_EXT;
934 935 936
			if (!desc->more) {
				desc->more = mmu_alloc_pte_list_desc(vcpu);
				desc = desc->more;
937
				desc->spte_count = 0;
938 939
				break;
			}
940 941
			desc = desc->more;
		}
942 943
		count += desc->spte_count;
		desc->sptes[desc->spte_count++] = spte;
944
	}
945
	return count;
946 947
}

948
static void
949 950 951
pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
			   struct pte_list_desc *desc, int i,
			   struct pte_list_desc *prev_desc)
952
{
953
	int j = desc->spte_count - 1;
954

A
Avi Kivity 已提交
955 956
	desc->sptes[i] = desc->sptes[j];
	desc->sptes[j] = NULL;
957 958
	desc->spte_count--;
	if (desc->spte_count)
959 960
		return;
	if (!prev_desc && !desc->more)
961
		rmap_head->val = 0;
962 963 964 965
	else
		if (prev_desc)
			prev_desc->more = desc->more;
		else
966
			rmap_head->val = (unsigned long)desc->more | 1;
967
	mmu_free_pte_list_desc(desc);
968 969
}

970
static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
971
{
972 973
	struct pte_list_desc *desc;
	struct pte_list_desc *prev_desc;
974 975
	int i;

976
	if (!rmap_head->val) {
977
		pr_err("%s: %p 0->BUG\n", __func__, spte);
978
		BUG();
979
	} else if (!(rmap_head->val & 1)) {
980
		rmap_printk("%p 1->0\n", spte);
981
		if ((u64 *)rmap_head->val != spte) {
982
			pr_err("%s:  %p 1->BUG\n", __func__, spte);
983 984
			BUG();
		}
985
		rmap_head->val = 0;
986
	} else {
987
		rmap_printk("%p many->many\n", spte);
988
		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
989 990
		prev_desc = NULL;
		while (desc) {
991
			for (i = 0; i < desc->spte_count; ++i) {
A
Avi Kivity 已提交
992
				if (desc->sptes[i] == spte) {
993 994
					pte_list_desc_remove_entry(rmap_head,
							desc, i, prev_desc);
995 996
					return;
				}
997
			}
998 999 1000
			prev_desc = desc;
			desc = desc->more;
		}
1001
		pr_err("%s: %p many->many\n", __func__, spte);
1002 1003 1004 1005
		BUG();
	}
}

1006 1007
static void pte_list_remove(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			    u64 *sptep)
1008
{
1009
	mmu_spte_clear_track_bits(kvm, sptep);
1010 1011 1012
	__pte_list_remove(sptep, rmap_head);
}

P
Peter Xu 已提交
1013
/* Return true if rmap existed, false otherwise */
1014
static bool pte_list_destroy(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
P
Peter Xu 已提交
1015 1016 1017 1018 1019 1020 1021 1022
{
	struct pte_list_desc *desc, *next;
	int i;

	if (!rmap_head->val)
		return false;

	if (!(rmap_head->val & 1)) {
1023
		mmu_spte_clear_track_bits(kvm, (u64 *)rmap_head->val);
P
Peter Xu 已提交
1024 1025 1026 1027 1028 1029 1030
		goto out;
	}

	desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);

	for (; desc; desc = next) {
		for (i = 0; i < desc->spte_count; i++)
1031
			mmu_spte_clear_track_bits(kvm, desc->sptes[i]);
P
Peter Xu 已提交
1032 1033 1034 1035 1036 1037 1038 1039 1040
		next = desc->more;
		mmu_free_pte_list_desc(desc);
	}
out:
	/* rmap_head is meaningless now, remember to reset it */
	rmap_head->val = 0;
	return true;
}

1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
unsigned int pte_list_count(struct kvm_rmap_head *rmap_head)
{
	struct pte_list_desc *desc;
	unsigned int count = 0;

	if (!rmap_head->val)
		return 0;
	else if (!(rmap_head->val & 1))
		return 1;

	desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);

	while (desc) {
		count += desc->spte_count;
		desc = desc->more;
	}

	return count;
}

1061 1062
static struct kvm_rmap_head *gfn_to_rmap(gfn_t gfn, int level,
					 const struct kvm_memory_slot *slot)
1063
{
1064
	unsigned long idx;
1065

1066
	idx = gfn_to_index(gfn, slot->base_gfn, level);
1067
	return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
1068 1069
}

1070 1071
static bool rmap_can_add(struct kvm_vcpu *vcpu)
{
1072
	struct kvm_mmu_memory_cache *mc;
1073

1074
	mc = &vcpu->arch.mmu_pte_list_desc_cache;
1075
	return kvm_mmu_memory_cache_nr_free_objects(mc);
1076 1077
}

1078 1079
static void rmap_remove(struct kvm *kvm, u64 *spte)
{
1080 1081
	struct kvm_memslots *slots;
	struct kvm_memory_slot *slot;
1082 1083
	struct kvm_mmu_page *sp;
	gfn_t gfn;
1084
	struct kvm_rmap_head *rmap_head;
1085

1086
	sp = sptep_to_sp(spte);
1087
	gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1088 1089

	/*
1090 1091 1092
	 * Unlike rmap_add, rmap_remove does not run in the context of a vCPU
	 * so we have to determine which memslots to use based on context
	 * information in sp->role.
1093 1094 1095 1096
	 */
	slots = kvm_memslots_for_spte_role(kvm, sp->role);

	slot = __gfn_to_memslot(slots, gfn);
1097
	rmap_head = gfn_to_rmap(gfn, sp->role.level, slot);
1098

1099
	__pte_list_remove(spte, rmap_head);
1100 1101
}

1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
/*
 * Used by the following functions to iterate through the sptes linked by a
 * rmap.  All fields are private and not assumed to be used outside.
 */
struct rmap_iterator {
	/* private fields */
	struct pte_list_desc *desc;	/* holds the sptep if not NULL */
	int pos;			/* index of the sptep */
};

/*
 * Iteration must be started by this function.  This should also be used after
 * removing/dropping sptes from the rmap link because in such cases the
M
Miaohe Lin 已提交
1115
 * information in the iterator may not be valid.
1116 1117 1118
 *
 * Returns sptep if found, NULL otherwise.
 */
1119 1120
static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
			   struct rmap_iterator *iter)
1121
{
1122 1123
	u64 *sptep;

1124
	if (!rmap_head->val)
1125 1126
		return NULL;

1127
	if (!(rmap_head->val & 1)) {
1128
		iter->desc = NULL;
1129 1130
		sptep = (u64 *)rmap_head->val;
		goto out;
1131 1132
	}

1133
	iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1134
	iter->pos = 0;
1135 1136 1137 1138
	sptep = iter->desc->sptes[iter->pos];
out:
	BUG_ON(!is_shadow_present_pte(*sptep));
	return sptep;
1139 1140 1141 1142 1143 1144 1145 1146 1147
}

/*
 * Must be used with a valid iterator: e.g. after rmap_get_first().
 *
 * Returns sptep if found, NULL otherwise.
 */
static u64 *rmap_get_next(struct rmap_iterator *iter)
{
1148 1149
	u64 *sptep;

1150 1151 1152 1153 1154
	if (iter->desc) {
		if (iter->pos < PTE_LIST_EXT - 1) {
			++iter->pos;
			sptep = iter->desc->sptes[iter->pos];
			if (sptep)
1155
				goto out;
1156 1157 1158 1159 1160 1161 1162
		}

		iter->desc = iter->desc->more;

		if (iter->desc) {
			iter->pos = 0;
			/* desc->sptes[0] cannot be NULL */
1163 1164
			sptep = iter->desc->sptes[iter->pos];
			goto out;
1165 1166 1167 1168
		}
	}

	return NULL;
1169 1170 1171
out:
	BUG_ON(!is_shadow_present_pte(*sptep));
	return sptep;
1172 1173
}

1174 1175
#define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)			\
	for (_spte_ = rmap_get_first(_rmap_head_, _iter_);		\
1176
	     _spte_; _spte_ = rmap_get_next(_iter_))
1177

1178
static void drop_spte(struct kvm *kvm, u64 *sptep)
1179
{
1180
	u64 old_spte = mmu_spte_clear_track_bits(kvm, sptep);
1181 1182

	if (is_shadow_present_pte(old_spte))
1183
		rmap_remove(kvm, sptep);
A
Avi Kivity 已提交
1184 1185
}

1186 1187 1188 1189

static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
{
	if (is_large_pte(*sptep)) {
1190
		WARN_ON(sptep_to_sp(sptep)->role.level == PG_LEVEL_4K);
1191 1192 1193 1194 1195 1196 1197 1198 1199
		drop_spte(kvm, sptep);
		return true;
	}

	return false;
}

static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
{
1200
	if (__drop_large_spte(vcpu->kvm, sptep)) {
1201
		struct kvm_mmu_page *sp = sptep_to_sp(sptep);
1202 1203 1204 1205

		kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
			KVM_PAGES_PER_HPAGE(sp->role.level));
	}
1206 1207 1208
}

/*
1209
 * Write-protect on the specified @sptep, @pt_protect indicates whether
1210
 * spte write-protection is caused by protecting shadow page table.
1211
 *
T
Tiejun Chen 已提交
1212
 * Note: write protection is difference between dirty logging and spte
1213 1214 1215 1216 1217
 * protection:
 * - for dirty logging, the spte can be set to writable at anytime if
 *   its dirty bitmap is properly set.
 * - for spte protection, the spte can be writable only after unsync-ing
 *   shadow page.
1218
 *
1219
 * Return true if tlb need be flushed.
1220
 */
1221
static bool spte_write_protect(u64 *sptep, bool pt_protect)
1222 1223 1224
{
	u64 spte = *sptep;

1225
	if (!is_writable_pte(spte) &&
1226
	      !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1227 1228
		return false;

1229
	rmap_printk("spte %p %llx\n", sptep, *sptep);
1230

1231
	if (pt_protect)
1232
		spte &= ~shadow_mmu_writable_mask;
1233
	spte = spte & ~PT_WRITABLE_MASK;
1234

1235
	return mmu_spte_update(sptep, spte);
1236 1237
}

1238 1239
static bool __rmap_write_protect(struct kvm *kvm,
				 struct kvm_rmap_head *rmap_head,
1240
				 bool pt_protect)
1241
{
1242 1243
	u64 *sptep;
	struct rmap_iterator iter;
1244
	bool flush = false;
1245

1246
	for_each_rmap_spte(rmap_head, &iter, sptep)
1247
		flush |= spte_write_protect(sptep, pt_protect);
1248

1249
	return flush;
1250 1251
}

1252
static bool spte_clear_dirty(u64 *sptep)
1253 1254 1255
{
	u64 spte = *sptep;

1256
	rmap_printk("spte %p %llx\n", sptep, *sptep);
1257

1258
	MMU_WARN_ON(!spte_ad_enabled(spte));
1259 1260 1261 1262
	spte &= ~shadow_dirty_mask;
	return mmu_spte_update(sptep, spte);
}

1263
static bool spte_wrprot_for_clear_dirty(u64 *sptep)
1264 1265 1266
{
	bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
					       (unsigned long *)sptep);
1267
	if (was_writable && !spte_ad_enabled(*sptep))
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
		kvm_set_pfn_dirty(spte_to_pfn(*sptep));

	return was_writable;
}

/*
 * Gets the GFN ready for another round of dirty logging by clearing the
 *	- D bit on ad-enabled SPTEs, and
 *	- W bit on ad-disabled SPTEs.
 * Returns true iff any D or W bits were cleared.
 */
1279
static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1280
			       const struct kvm_memory_slot *slot)
1281 1282 1283 1284 1285
{
	u64 *sptep;
	struct rmap_iterator iter;
	bool flush = false;

1286
	for_each_rmap_spte(rmap_head, &iter, sptep)
1287 1288
		if (spte_ad_need_write_protect(*sptep))
			flush |= spte_wrprot_for_clear_dirty(sptep);
1289
		else
1290
			flush |= spte_clear_dirty(sptep);
1291 1292 1293 1294

	return flush;
}

1295
/**
1296
 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1297 1298 1299 1300 1301
 * @kvm: kvm instance
 * @slot: slot to protect
 * @gfn_offset: start of the BITS_PER_LONG pages we care about
 * @mask: indicates which pages we should protect
 *
1302
 * Used when we do not need to care about huge page mappings.
1303
 */
1304
static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1305 1306
				     struct kvm_memory_slot *slot,
				     gfn_t gfn_offset, unsigned long mask)
1307
{
1308
	struct kvm_rmap_head *rmap_head;
1309

1310
	if (is_tdp_mmu_enabled(kvm))
1311 1312
		kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
				slot->base_gfn + gfn_offset, mask, true);
1313 1314 1315 1316

	if (!kvm_memslots_have_rmaps(kvm))
		return;

1317
	while (mask) {
1318 1319
		rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
					PG_LEVEL_4K, slot);
1320
		__rmap_write_protect(kvm, rmap_head, false);
M
Marcelo Tosatti 已提交
1321

1322 1323 1324
		/* clear the first set bit */
		mask &= mask - 1;
	}
1325 1326
}

1327
/**
1328 1329
 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
 * protect the page if the D-bit isn't supported.
1330 1331 1332 1333 1334 1335 1336
 * @kvm: kvm instance
 * @slot: slot to clear D-bit
 * @gfn_offset: start of the BITS_PER_LONG pages we care about
 * @mask: indicates which pages we should clear D-bit
 *
 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
 */
1337 1338 1339
static void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
					 struct kvm_memory_slot *slot,
					 gfn_t gfn_offset, unsigned long mask)
1340
{
1341
	struct kvm_rmap_head *rmap_head;
1342

1343
	if (is_tdp_mmu_enabled(kvm))
1344 1345
		kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
				slot->base_gfn + gfn_offset, mask, false);
1346 1347 1348 1349

	if (!kvm_memslots_have_rmaps(kvm))
		return;

1350
	while (mask) {
1351 1352
		rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
					PG_LEVEL_4K, slot);
1353
		__rmap_clear_dirty(kvm, rmap_head, slot);
1354 1355 1356 1357 1358 1359

		/* clear the first set bit */
		mask &= mask - 1;
	}
}

1360 1361 1362 1363 1364 1365 1366
/**
 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
 * PT level pages.
 *
 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
 * enable dirty logging for them.
 *
1367 1368
 * We need to care about huge page mappings: e.g. during dirty logging we may
 * have such mappings.
1369 1370 1371 1372 1373
 */
void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
				struct kvm_memory_slot *slot,
				gfn_t gfn_offset, unsigned long mask)
{
1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
	/*
	 * Huge pages are NOT write protected when we start dirty logging in
	 * initially-all-set mode; must write protect them here so that they
	 * are split to 4K on the first write.
	 *
	 * The gfn_offset is guaranteed to be aligned to 64, but the base_gfn
	 * of memslot has no such restriction, so the range can cross two large
	 * pages.
	 */
	if (kvm_dirty_log_manual_protect_and_init_set(kvm)) {
		gfn_t start = slot->base_gfn + gfn_offset + __ffs(mask);
		gfn_t end = slot->base_gfn + gfn_offset + __fls(mask);

		kvm_mmu_slot_gfn_write_protect(kvm, slot, start, PG_LEVEL_2M);

		/* Cross two large pages? */
		if (ALIGN(start << PAGE_SHIFT, PMD_SIZE) !=
		    ALIGN(end << PAGE_SHIFT, PMD_SIZE))
			kvm_mmu_slot_gfn_write_protect(kvm, slot, end,
						       PG_LEVEL_2M);
	}

	/* Now handle 4K PTEs.  */
1397 1398
	if (kvm_x86_ops.cpu_dirty_log_size)
		kvm_mmu_clear_dirty_pt_masked(kvm, slot, gfn_offset, mask);
1399 1400
	else
		kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1401 1402
}

1403 1404
int kvm_cpu_dirty_log_size(void)
{
1405
	return kvm_x86_ops.cpu_dirty_log_size;
1406 1407
}

1408
bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1409 1410
				    struct kvm_memory_slot *slot, u64 gfn,
				    int min_level)
1411
{
1412
	struct kvm_rmap_head *rmap_head;
1413
	int i;
1414
	bool write_protected = false;
1415

1416 1417
	if (kvm_memslots_have_rmaps(kvm)) {
		for (i = min_level; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
1418
			rmap_head = gfn_to_rmap(gfn, i, slot);
1419 1420
			write_protected |= __rmap_write_protect(kvm, rmap_head, true);
		}
1421 1422
	}

1423
	if (is_tdp_mmu_enabled(kvm))
1424
		write_protected |=
1425
			kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn, min_level);
1426

1427
	return write_protected;
1428 1429
}

1430 1431 1432 1433 1434
static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
{
	struct kvm_memory_slot *slot;

	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1435
	return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn, PG_LEVEL_4K);
1436 1437
}

1438
static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1439
			  const struct kvm_memory_slot *slot)
1440
{
1441
	return pte_list_destroy(kvm, rmap_head);
1442 1443
}

1444 1445 1446
static bool kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			    struct kvm_memory_slot *slot, gfn_t gfn, int level,
			    pte_t unused)
1447
{
1448
	return kvm_zap_rmapp(kvm, rmap_head, slot);
1449 1450
}

1451 1452 1453
static bool kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			      struct kvm_memory_slot *slot, gfn_t gfn, int level,
			      pte_t pte)
1454
{
1455 1456
	u64 *sptep;
	struct rmap_iterator iter;
1457
	int need_flush = 0;
1458
	u64 new_spte;
D
Dan Williams 已提交
1459
	kvm_pfn_t new_pfn;
1460

1461 1462
	WARN_ON(pte_huge(pte));
	new_pfn = pte_pfn(pte);
1463

1464
restart:
1465
	for_each_rmap_spte(rmap_head, &iter, sptep) {
1466
		rmap_printk("spte %p %llx gfn %llx (%d)\n",
1467
			    sptep, *sptep, gfn, level);
1468

1469
		need_flush = 1;
1470

1471
		if (pte_write(pte)) {
1472
			pte_list_remove(kvm, rmap_head, sptep);
1473
			goto restart;
1474
		} else {
1475 1476
			new_spte = kvm_mmu_changed_pte_notifier_make_spte(
					*sptep, new_pfn);
1477

1478
			mmu_spte_clear_track_bits(kvm, sptep);
1479
			mmu_spte_set(sptep, new_spte);
1480 1481
		}
	}
1482

1483 1484 1485 1486 1487
	if (need_flush && kvm_available_flush_tlb_with_range()) {
		kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
		return 0;
	}

1488
	return need_flush;
1489 1490
}

1491 1492
struct slot_rmap_walk_iterator {
	/* input fields. */
1493
	const struct kvm_memory_slot *slot;
1494 1495 1496 1497 1498 1499 1500
	gfn_t start_gfn;
	gfn_t end_gfn;
	int start_level;
	int end_level;

	/* output fields. */
	gfn_t gfn;
1501
	struct kvm_rmap_head *rmap;
1502 1503 1504
	int level;

	/* private field. */
1505
	struct kvm_rmap_head *end_rmap;
1506 1507 1508 1509 1510 1511 1512
};

static void
rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
{
	iterator->level = level;
	iterator->gfn = iterator->start_gfn;
1513 1514
	iterator->rmap = gfn_to_rmap(iterator->gfn, level, iterator->slot);
	iterator->end_rmap = gfn_to_rmap(iterator->end_gfn, level, iterator->slot);
1515 1516 1517 1518
}

static void
slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1519
		    const struct kvm_memory_slot *slot, int start_level,
1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
		    int end_level, gfn_t start_gfn, gfn_t end_gfn)
{
	iterator->slot = slot;
	iterator->start_level = start_level;
	iterator->end_level = end_level;
	iterator->start_gfn = start_gfn;
	iterator->end_gfn = end_gfn;

	rmap_walk_init_level(iterator, iterator->start_level);
}

static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
{
	return !!iterator->rmap;
}

static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
{
	if (++iterator->rmap <= iterator->end_rmap) {
		iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
		return;
	}

	if (++iterator->level > iterator->end_level) {
		iterator->rmap = NULL;
		return;
	}

	rmap_walk_init_level(iterator, iterator->level);
}

#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,	\
	   _start_gfn, _end_gfn, _iter_)				\
	for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,		\
				 _end_level_, _start_gfn, _end_gfn);	\
	     slot_rmap_walk_okay(_iter_);				\
	     slot_rmap_walk_next(_iter_))

1558 1559 1560
typedef bool (*rmap_handler_t)(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			       struct kvm_memory_slot *slot, gfn_t gfn,
			       int level, pte_t pte);
1561

1562 1563 1564
static __always_inline bool kvm_handle_gfn_range(struct kvm *kvm,
						 struct kvm_gfn_range *range,
						 rmap_handler_t handler)
1565
{
1566
	struct slot_rmap_walk_iterator iterator;
1567
	bool ret = false;
1568

1569 1570 1571 1572
	for_each_slot_rmap_range(range->slot, PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL,
				 range->start, range->end - 1, &iterator)
		ret |= handler(kvm, iterator.rmap, range->slot, iterator.gfn,
			       iterator.level, range->pte);
1573

1574
	return ret;
1575 1576
}

1577
bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
1578
{
1579
	bool flush = false;
1580

1581 1582
	if (kvm_memslots_have_rmaps(kvm))
		flush = kvm_handle_gfn_range(kvm, range, kvm_unmap_rmapp);
1583

1584
	if (is_tdp_mmu_enabled(kvm))
1585
		flush |= kvm_tdp_mmu_unmap_gfn_range(kvm, range, flush);
1586

1587
	return flush;
1588 1589
}

1590
bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1591
{
1592
	bool flush = false;
1593

1594 1595
	if (kvm_memslots_have_rmaps(kvm))
		flush = kvm_handle_gfn_range(kvm, range, kvm_set_pte_rmapp);
1596

1597
	if (is_tdp_mmu_enabled(kvm))
1598
		flush |= kvm_tdp_mmu_set_spte_gfn(kvm, range);
1599

1600
	return flush;
1601 1602
}

1603 1604 1605
static bool kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			  struct kvm_memory_slot *slot, gfn_t gfn, int level,
			  pte_t unused)
1606
{
1607
	u64 *sptep;
1608
	struct rmap_iterator iter;
1609 1610
	int young = 0;

1611 1612
	for_each_rmap_spte(rmap_head, &iter, sptep)
		young |= mmu_spte_age(sptep);
1613

1614 1615 1616
	return young;
}

1617 1618 1619
static bool kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			       struct kvm_memory_slot *slot, gfn_t gfn,
			       int level, pte_t unused)
A
Andrea Arcangeli 已提交
1620
{
1621 1622
	u64 *sptep;
	struct rmap_iterator iter;
A
Andrea Arcangeli 已提交
1623

1624 1625 1626 1627
	for_each_rmap_spte(rmap_head, &iter, sptep)
		if (is_accessed_spte(*sptep))
			return 1;
	return 0;
A
Andrea Arcangeli 已提交
1628 1629
}

1630 1631
#define RMAP_RECYCLE_THRESHOLD 1000

1632 1633
static void rmap_add(struct kvm_vcpu *vcpu, struct kvm_memory_slot *slot,
		     u64 *spte, gfn_t gfn)
1634
{
1635
	struct kvm_mmu_page *sp;
1636 1637
	struct kvm_rmap_head *rmap_head;
	int rmap_count;
1638

1639
	sp = sptep_to_sp(spte);
1640
	kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1641
	rmap_head = gfn_to_rmap(gfn, sp->role.level, slot);
1642
	rmap_count = pte_list_add(vcpu, spte, rmap_head);
1643

1644 1645 1646 1647 1648
	if (rmap_count > RMAP_RECYCLE_THRESHOLD) {
		kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, __pte(0));
		kvm_flush_remote_tlbs_with_address(
				vcpu->kvm, sp->gfn, KVM_PAGES_PER_HPAGE(sp->role.level));
	}
1649 1650
}

1651
bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1652
{
1653
	bool young = false;
1654

1655 1656
	if (kvm_memslots_have_rmaps(kvm))
		young = kvm_handle_gfn_range(kvm, range, kvm_age_rmapp);
1657

1658
	if (is_tdp_mmu_enabled(kvm))
1659
		young |= kvm_tdp_mmu_age_gfn_range(kvm, range);
1660 1661

	return young;
1662 1663
}

1664
bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
A
Andrea Arcangeli 已提交
1665
{
1666
	bool young = false;
1667

1668 1669
	if (kvm_memslots_have_rmaps(kvm))
		young = kvm_handle_gfn_range(kvm, range, kvm_test_age_rmapp);
1670

1671
	if (is_tdp_mmu_enabled(kvm))
1672
		young |= kvm_tdp_mmu_test_age_gfn(kvm, range);
1673 1674

	return young;
A
Andrea Arcangeli 已提交
1675 1676
}

1677
#ifdef MMU_DEBUG
1678
static int is_empty_shadow_page(u64 *spt)
A
Avi Kivity 已提交
1679
{
1680 1681 1682
	u64 *pos;
	u64 *end;

1683
	for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1684
		if (is_shadow_present_pte(*pos)) {
1685
			printk(KERN_ERR "%s: %p %llx\n", __func__,
1686
			       pos, *pos);
A
Avi Kivity 已提交
1687
			return 0;
1688
		}
A
Avi Kivity 已提交
1689 1690
	return 1;
}
1691
#endif
A
Avi Kivity 已提交
1692

1693 1694 1695 1696 1697 1698
/*
 * This value is the sum of all of the kvm instances's
 * kvm->arch.n_used_mmu_pages values.  We need a global,
 * aggregate version in order to make the slab shrinker
 * faster
 */
1699
static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, long nr)
1700 1701 1702 1703 1704
{
	kvm->arch.n_used_mmu_pages += nr;
	percpu_counter_add(&kvm_total_used_mmu_pages, nr);
}

1705
static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1706
{
1707
	MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1708
	hlist_del(&sp->hash_link);
1709 1710
	list_del(&sp->link);
	free_page((unsigned long)sp->spt);
1711 1712
	if (!sp->role.direct)
		free_page((unsigned long)sp->gfns);
1713
	kmem_cache_free(mmu_page_header_cache, sp);
1714 1715
}

1716 1717
static unsigned kvm_page_table_hashfn(gfn_t gfn)
{
1718
	return hash_64(gfn, KVM_MMU_HASH_SHIFT);
1719 1720
}

1721
static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1722
				    struct kvm_mmu_page *sp, u64 *parent_pte)
1723 1724 1725 1726
{
	if (!parent_pte)
		return;

1727
	pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1728 1729
}

1730
static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1731 1732
				       u64 *parent_pte)
{
1733
	__pte_list_remove(parent_pte, &sp->parent_ptes);
1734 1735
}

1736 1737 1738 1739
static void drop_parent_pte(struct kvm_mmu_page *sp,
			    u64 *parent_pte)
{
	mmu_page_remove_parent_pte(sp, parent_pte);
1740
	mmu_spte_clear_no_track(parent_pte);
1741 1742
}

1743
static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
M
Marcelo Tosatti 已提交
1744
{
1745
	struct kvm_mmu_page *sp;
1746

1747 1748
	sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
	sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache);
1749
	if (!direct)
1750
		sp->gfns = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_gfn_array_cache);
1751
	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1752 1753 1754 1755 1756 1757

	/*
	 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
	 * depends on valid pages being added to the head of the list.  See
	 * comments in kvm_zap_obsolete_pages().
	 */
1758
	sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
1759 1760 1761
	list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
	kvm_mod_used_mmu_pages(vcpu->kvm, +1);
	return sp;
M
Marcelo Tosatti 已提交
1762 1763
}

1764
static void mark_unsync(u64 *spte);
1765
static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1766
{
1767 1768 1769 1770 1771 1772
	u64 *sptep;
	struct rmap_iterator iter;

	for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
		mark_unsync(sptep);
	}
1773 1774
}

1775
static void mark_unsync(u64 *spte)
1776
{
1777
	struct kvm_mmu_page *sp;
1778
	unsigned int index;
1779

1780
	sp = sptep_to_sp(spte);
1781 1782
	index = spte - sp->spt;
	if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1783
		return;
1784
	if (sp->unsync_children++)
1785
		return;
1786
	kvm_mmu_mark_parents_unsync(sp);
1787 1788
}

1789
static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1790
			       struct kvm_mmu_page *sp)
1791
{
1792
	return -1;
1793 1794
}

1795 1796 1797 1798 1799 1800 1801 1802 1803 1804
#define KVM_PAGE_ARRAY_NR 16

struct kvm_mmu_pages {
	struct mmu_page_and_offset {
		struct kvm_mmu_page *sp;
		unsigned int idx;
	} page[KVM_PAGE_ARRAY_NR];
	unsigned int nr;
};

1805 1806
static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
			 int idx)
1807
{
1808
	int i;
1809

1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820
	if (sp->unsync)
		for (i=0; i < pvec->nr; i++)
			if (pvec->page[i].sp == sp)
				return 0;

	pvec->page[pvec->nr].sp = sp;
	pvec->page[pvec->nr].idx = idx;
	pvec->nr++;
	return (pvec->nr == KVM_PAGE_ARRAY_NR);
}

1821 1822 1823 1824 1825 1826 1827
static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
{
	--sp->unsync_children;
	WARN_ON((int)sp->unsync_children < 0);
	__clear_bit(idx, sp->unsync_child_bitmap);
}

1828 1829 1830 1831
static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
	int i, ret, nr_unsync_leaf = 0;
1832

1833
	for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1834
		struct kvm_mmu_page *child;
1835 1836
		u64 ent = sp->spt[i];

1837 1838 1839 1840
		if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
			clear_unsync_child_bit(sp, i);
			continue;
		}
1841

1842
		child = to_shadow_page(ent & PT64_BASE_ADDR_MASK);
1843 1844 1845 1846 1847 1848

		if (child->unsync_children) {
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;

			ret = __mmu_unsync_walk(child, pvec);
1849 1850 1851 1852
			if (!ret) {
				clear_unsync_child_bit(sp, i);
				continue;
			} else if (ret > 0) {
1853
				nr_unsync_leaf += ret;
1854
			} else
1855 1856 1857 1858 1859 1860
				return ret;
		} else if (child->unsync) {
			nr_unsync_leaf++;
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;
		} else
1861
			clear_unsync_child_bit(sp, i);
1862 1863
	}

1864 1865 1866
	return nr_unsync_leaf;
}

1867 1868
#define INVALID_INDEX (-1)

1869 1870 1871
static int mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
P
Paolo Bonzini 已提交
1872
	pvec->nr = 0;
1873 1874 1875
	if (!sp->unsync_children)
		return 0;

1876
	mmu_pages_add(pvec, sp, INVALID_INDEX);
1877
	return __mmu_unsync_walk(sp, pvec);
1878 1879 1880 1881 1882
}

static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
{
	WARN_ON(!sp->unsync);
1883
	trace_kvm_mmu_sync_page(sp);
1884 1885 1886 1887
	sp->unsync = 0;
	--kvm->stat.mmu_unsync;
}

1888 1889
static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				     struct list_head *invalid_list);
1890 1891
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list);
1892

1893 1894
#define for_each_valid_sp(_kvm, _sp, _list)				\
	hlist_for_each_entry(_sp, _list, hash_link)			\
1895
		if (is_obsolete_sp((_kvm), (_sp))) {			\
1896
		} else
1897 1898

#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)			\
1899 1900
	for_each_valid_sp(_kvm, _sp,					\
	  &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)])	\
1901
		if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
1902

1903 1904
static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
			 struct list_head *invalid_list)
1905
{
1906 1907 1908
	int ret = vcpu->arch.mmu->sync_page(vcpu, sp);

	if (ret < 0) {
1909
		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1910
		return false;
1911 1912
	}

1913
	return !!ret;
1914 1915
}

1916 1917 1918 1919
static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
					struct list_head *invalid_list,
					bool remote_flush)
{
1920
	if (!remote_flush && list_empty(invalid_list))
1921 1922 1923 1924 1925 1926 1927 1928 1929
		return false;

	if (!list_empty(invalid_list))
		kvm_mmu_commit_zap_page(kvm, invalid_list);
	else
		kvm_flush_remote_tlbs(kvm);
	return true;
}

1930 1931 1932 1933 1934 1935 1936
#ifdef CONFIG_KVM_MMU_AUDIT
#include "mmu_audit.c"
#else
static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
static void mmu_audit_disable(void) { }
#endif

1937 1938
static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
{
1939 1940
	return sp->role.invalid ||
	       unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1941 1942
}

1943
struct mmu_page_path {
1944 1945
	struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
	unsigned int idx[PT64_ROOT_MAX_LEVEL];
1946 1947
};

1948
#define for_each_sp(pvec, sp, parents, i)			\
P
Paolo Bonzini 已提交
1949
		for (i = mmu_pages_first(&pvec, &parents);	\
1950 1951 1952
			i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});	\
			i = mmu_pages_next(&pvec, &parents, i))

1953 1954 1955
static int mmu_pages_next(struct kvm_mmu_pages *pvec,
			  struct mmu_page_path *parents,
			  int i)
1956 1957 1958 1959 1960
{
	int n;

	for (n = i+1; n < pvec->nr; n++) {
		struct kvm_mmu_page *sp = pvec->page[n].sp;
P
Paolo Bonzini 已提交
1961 1962
		unsigned idx = pvec->page[n].idx;
		int level = sp->role.level;
1963

P
Paolo Bonzini 已提交
1964
		parents->idx[level-1] = idx;
1965
		if (level == PG_LEVEL_4K)
P
Paolo Bonzini 已提交
1966
			break;
1967

P
Paolo Bonzini 已提交
1968
		parents->parent[level-2] = sp;
1969 1970 1971 1972 1973
	}

	return n;
}

P
Paolo Bonzini 已提交
1974 1975 1976 1977 1978 1979 1980 1981 1982
static int mmu_pages_first(struct kvm_mmu_pages *pvec,
			   struct mmu_page_path *parents)
{
	struct kvm_mmu_page *sp;
	int level;

	if (pvec->nr == 0)
		return 0;

1983 1984
	WARN_ON(pvec->page[0].idx != INVALID_INDEX);

P
Paolo Bonzini 已提交
1985 1986
	sp = pvec->page[0].sp;
	level = sp->role.level;
1987
	WARN_ON(level == PG_LEVEL_4K);
P
Paolo Bonzini 已提交
1988 1989 1990 1991 1992 1993 1994 1995 1996 1997

	parents->parent[level-2] = sp;

	/* Also set up a sentinel.  Further entries in pvec are all
	 * children of sp, so this element is never overwritten.
	 */
	parents->parent[level-1] = NULL;
	return mmu_pages_next(pvec, parents, 0);
}

1998
static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1999
{
2000 2001 2002 2003 2004 2005 2006 2007 2008
	struct kvm_mmu_page *sp;
	unsigned int level = 0;

	do {
		unsigned int idx = parents->idx[level];
		sp = parents->parent[level];
		if (!sp)
			return;

2009
		WARN_ON(idx == INVALID_INDEX);
2010
		clear_unsync_child_bit(sp, idx);
2011
		level++;
P
Paolo Bonzini 已提交
2012
	} while (!sp->unsync_children);
2013
}
2014

2015 2016
static int mmu_sync_children(struct kvm_vcpu *vcpu,
			     struct kvm_mmu_page *parent, bool can_yield)
2017 2018 2019 2020 2021
{
	int i;
	struct kvm_mmu_page *sp;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
2022
	LIST_HEAD(invalid_list);
2023
	bool flush = false;
2024 2025

	while (mmu_unsync_walk(parent, &pages)) {
2026
		bool protected = false;
2027 2028

		for_each_sp(pages, sp, parents, i)
2029
			protected |= rmap_write_protect(vcpu, sp->gfn);
2030

2031
		if (protected) {
2032
			kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, true);
2033
			flush = false;
2034
		}
2035

2036
		for_each_sp(pages, sp, parents, i) {
2037
			kvm_unlink_unsync_page(vcpu->kvm, sp);
2038
			flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2039 2040
			mmu_pages_clear_parents(&parents);
		}
2041
		if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) {
2042
			kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush);
2043 2044 2045 2046 2047
			if (!can_yield) {
				kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
				return -EINTR;
			}

2048
			cond_resched_rwlock_write(&vcpu->kvm->mmu_lock);
2049
			flush = false;
2050
		}
2051
	}
2052

2053
	kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush);
2054
	return 0;
2055 2056
}

2057 2058
static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
{
2059
	atomic_set(&sp->write_flooding_count,  0);
2060 2061 2062 2063
}

static void clear_sp_write_flooding_count(u64 *spte)
{
2064
	__clear_sp_write_flooding_count(sptep_to_sp(spte));
2065 2066
}

2067 2068 2069 2070
static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
					     gfn_t gfn,
					     gva_t gaddr,
					     unsigned level,
2071
					     int direct,
2072
					     unsigned int access)
2073
{
2074
	bool direct_mmu = vcpu->arch.mmu->direct_map;
2075
	union kvm_mmu_page_role role;
2076
	struct hlist_head *sp_list;
2077
	unsigned quadrant;
2078
	struct kvm_mmu_page *sp;
2079
	int collisions = 0;
2080
	LIST_HEAD(invalid_list);
2081

2082
	role = vcpu->arch.mmu->mmu_role.base;
2083
	role.level = level;
2084
	role.direct = direct;
2085
	if (role.direct)
2086
		role.gpte_is_8_bytes = true;
2087
	role.access = access;
2088
	if (!direct_mmu && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
2089 2090 2091 2092
		quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
		quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
		role.quadrant = quadrant;
	}
2093 2094 2095

	sp_list = &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)];
	for_each_valid_sp(vcpu->kvm, sp, sp_list) {
2096 2097 2098 2099 2100
		if (sp->gfn != gfn) {
			collisions++;
			continue;
		}

2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113
		if (sp->role.word != role.word) {
			/*
			 * If the guest is creating an upper-level page, zap
			 * unsync pages for the same gfn.  While it's possible
			 * the guest is using recursive page tables, in all
			 * likelihood the guest has stopped using the unsync
			 * page and is installing a completely unrelated page.
			 * Unsync pages must not be left as is, because the new
			 * upper-level page will be write-protected.
			 */
			if (level > PG_LEVEL_4K && sp->unsync)
				kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
							 &invalid_list);
2114
			continue;
2115
		}
2116

2117 2118 2119
		if (direct_mmu)
			goto trace_get_page;

2120
		if (sp->unsync) {
2121
			/*
2122
			 * The page is good, but is stale.  kvm_sync_page does
2123 2124 2125 2126 2127 2128 2129 2130 2131
			 * get the latest guest state, but (unlike mmu_unsync_children)
			 * it doesn't write-protect the page or mark it synchronized!
			 * This way the validity of the mapping is ensured, but the
			 * overhead of write protection is not incurred until the
			 * guest invalidates the TLB mapping.  This allows multiple
			 * SPs for a single gfn to be unsync.
			 *
			 * If the sync fails, the page is zapped.  If so, break
			 * in order to rebuild it.
2132
			 */
2133
			if (!kvm_sync_page(vcpu, sp, &invalid_list))
2134 2135 2136
				break;

			WARN_ON(!list_empty(&invalid_list));
2137
			kvm_flush_remote_tlbs(vcpu->kvm);
2138
		}
2139

2140
		__clear_sp_write_flooding_count(sp);
2141 2142

trace_get_page:
2143
		trace_kvm_mmu_get_page(sp, false);
2144
		goto out;
2145
	}
2146

A
Avi Kivity 已提交
2147
	++vcpu->kvm->stat.mmu_cache_miss;
2148 2149 2150

	sp = kvm_mmu_alloc_page(vcpu, direct);

2151 2152
	sp->gfn = gfn;
	sp->role = role;
2153
	hlist_add_head(&sp->hash_link, sp_list);
2154
	if (!direct) {
2155
		account_shadowed(vcpu->kvm, sp);
2156
		if (level == PG_LEVEL_4K && rmap_write_protect(vcpu, gfn))
2157
			kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
2158
	}
A
Avi Kivity 已提交
2159
	trace_kvm_mmu_get_page(sp, true);
2160
out:
2161 2162
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);

2163 2164
	if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
		vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2165
	return sp;
2166 2167
}

2168 2169 2170
static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
					struct kvm_vcpu *vcpu, hpa_t root,
					u64 addr)
2171 2172
{
	iterator->addr = addr;
2173
	iterator->shadow_addr = root;
2174
	iterator->level = vcpu->arch.mmu->shadow_root_level;
2175

2176
	if (iterator->level == PT64_ROOT_4LEVEL &&
2177 2178
	    vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
	    !vcpu->arch.mmu->direct_map)
2179 2180
		--iterator->level;

2181
	if (iterator->level == PT32E_ROOT_LEVEL) {
2182 2183 2184 2185
		/*
		 * prev_root is currently only used for 64-bit hosts. So only
		 * the active root_hpa is valid here.
		 */
2186
		BUG_ON(root != vcpu->arch.mmu->root_hpa);
2187

2188
		iterator->shadow_addr
2189
			= vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2190 2191 2192 2193 2194 2195 2196
		iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
		--iterator->level;
		if (!iterator->shadow_addr)
			iterator->level = 0;
	}
}

2197 2198 2199
static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
			     struct kvm_vcpu *vcpu, u64 addr)
{
2200
	shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
2201 2202 2203
				    addr);
}

2204 2205
static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
{
2206
	if (iterator->level < PG_LEVEL_4K)
2207
		return false;
2208

2209 2210 2211 2212 2213
	iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
	iterator->sptep	= ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
	return true;
}

2214 2215
static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
			       u64 spte)
2216
{
2217
	if (!is_shadow_present_pte(spte) || is_last_spte(spte, iterator->level)) {
2218 2219 2220 2221
		iterator->level = 0;
		return;
	}

2222
	iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2223 2224 2225
	--iterator->level;
}

2226 2227
static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
{
2228
	__shadow_walk_next(iterator, *iterator->sptep);
2229 2230
}

2231 2232 2233 2234 2235 2236 2237 2238 2239
static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
			     struct kvm_mmu_page *sp)
{
	u64 spte;

	BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);

	spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp));

2240
	mmu_spte_set(sptep, spte);
2241 2242 2243 2244 2245

	mmu_page_add_parent_pte(vcpu, sp, sptep);

	if (sp->unsync_children || sp->unsync)
		mark_unsync(sptep);
2246 2247
}

2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260
static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
				   unsigned direct_access)
{
	if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
		struct kvm_mmu_page *child;

		/*
		 * For the direct sp, if the guest pte's dirty bit
		 * changed form clean to dirty, it will corrupt the
		 * sp's access: allow writable in the read-only sp,
		 * so we should update the spte at this point to get
		 * a new sp with the correct access.
		 */
2261
		child = to_shadow_page(*sptep & PT64_BASE_ADDR_MASK);
2262 2263 2264
		if (child->role.access == direct_access)
			return;

2265
		drop_parent_pte(child, sptep);
2266
		kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
2267 2268 2269
	}
}

2270 2271 2272
/* Returns the number of zapped non-leaf child shadow pages. */
static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
			    u64 *spte, struct list_head *invalid_list)
2273 2274 2275 2276 2277 2278
{
	u64 pte;
	struct kvm_mmu_page *child;

	pte = *spte;
	if (is_shadow_present_pte(pte)) {
X
Xiao Guangrong 已提交
2279
		if (is_last_spte(pte, sp->role.level)) {
2280
			drop_spte(kvm, spte);
X
Xiao Guangrong 已提交
2281
		} else {
2282
			child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2283
			drop_parent_pte(child, spte);
2284 2285 2286 2287 2288 2289 2290 2291 2292 2293

			/*
			 * Recursively zap nested TDP SPs, parentless SPs are
			 * unlikely to be used again in the near future.  This
			 * avoids retaining a large number of stale nested SPs.
			 */
			if (tdp_enabled && invalid_list &&
			    child->role.guest_mode && !child->parent_ptes.val)
				return kvm_mmu_prepare_zap_page(kvm, child,
								invalid_list);
2294
		}
2295
	} else if (is_mmio_spte(pte)) {
2296
		mmu_spte_clear_no_track(spte);
2297
	}
2298
	return 0;
2299 2300
}

2301 2302 2303
static int kvm_mmu_page_unlink_children(struct kvm *kvm,
					struct kvm_mmu_page *sp,
					struct list_head *invalid_list)
2304
{
2305
	int zapped = 0;
2306 2307
	unsigned i;

2308
	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2309 2310 2311
		zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list);

	return zapped;
2312 2313
}

2314
static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2315
{
2316 2317
	u64 *sptep;
	struct rmap_iterator iter;
2318

2319
	while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2320
		drop_parent_pte(sp, sptep);
2321 2322
}

2323
static int mmu_zap_unsync_children(struct kvm *kvm,
2324 2325
				   struct kvm_mmu_page *parent,
				   struct list_head *invalid_list)
2326
{
2327 2328 2329
	int i, zapped = 0;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
2330

2331
	if (parent->role.level == PG_LEVEL_4K)
2332
		return 0;
2333 2334 2335 2336 2337

	while (mmu_unsync_walk(parent, &pages)) {
		struct kvm_mmu_page *sp;

		for_each_sp(pages, sp, parents, i) {
2338
			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2339
			mmu_pages_clear_parents(&parents);
2340
			zapped++;
2341 2342 2343 2344
		}
	}

	return zapped;
2345 2346
}

2347 2348 2349 2350
static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
				       struct kvm_mmu_page *sp,
				       struct list_head *invalid_list,
				       int *nr_zapped)
2351
{
2352
	bool list_unstable;
A
Avi Kivity 已提交
2353

2354
	trace_kvm_mmu_prepare_zap_page(sp);
2355
	++kvm->stat.mmu_shadow_zapped;
2356
	*nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2357
	*nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list);
2358
	kvm_mmu_unlink_parents(kvm, sp);
2359

2360 2361 2362
	/* Zapping children means active_mmu_pages has become unstable. */
	list_unstable = *nr_zapped;

2363
	if (!sp->role.invalid && !sp->role.direct)
2364
		unaccount_shadowed(kvm, sp);
2365

2366 2367
	if (sp->unsync)
		kvm_unlink_unsync_page(kvm, sp);
2368
	if (!sp->root_count) {
2369
		/* Count self */
2370
		(*nr_zapped)++;
2371 2372 2373 2374 2375 2376 2377 2378 2379 2380

		/*
		 * Already invalid pages (previously active roots) are not on
		 * the active page list.  See list_del() in the "else" case of
		 * !sp->root_count.
		 */
		if (sp->role.invalid)
			list_add(&sp->link, invalid_list);
		else
			list_move(&sp->link, invalid_list);
2381
		kvm_mod_used_mmu_pages(kvm, -1);
2382
	} else {
2383 2384 2385 2386 2387
		/*
		 * Remove the active root from the active page list, the root
		 * will be explicitly freed when the root_count hits zero.
		 */
		list_del(&sp->link);
2388

2389 2390 2391 2392 2393 2394
		/*
		 * Obsolete pages cannot be used on any vCPUs, see the comment
		 * in kvm_mmu_zap_all_fast().  Note, is_obsolete_sp() also
		 * treats invalid shadow pages as being obsolete.
		 */
		if (!is_obsolete_sp(kvm, sp))
2395
			kvm_reload_remote_mmus(kvm);
2396
	}
2397

P
Paolo Bonzini 已提交
2398 2399 2400
	if (sp->lpage_disallowed)
		unaccount_huge_nx_page(kvm, sp);

2401
	sp->role.invalid = 1;
2402 2403 2404 2405 2406 2407 2408 2409 2410 2411
	return list_unstable;
}

static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				     struct list_head *invalid_list)
{
	int nr_zapped;

	__kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
	return nr_zapped;
2412 2413
}

2414 2415 2416
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list)
{
2417
	struct kvm_mmu_page *sp, *nsp;
2418 2419 2420 2421

	if (list_empty(invalid_list))
		return;

2422
	/*
2423 2424 2425 2426 2427 2428 2429
	 * We need to make sure everyone sees our modifications to
	 * the page tables and see changes to vcpu->mode here. The barrier
	 * in the kvm_flush_remote_tlbs() achieves this. This pairs
	 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
	 *
	 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
	 * guest mode and/or lockless shadow page table walks.
2430 2431
	 */
	kvm_flush_remote_tlbs(kvm);
2432

2433
	list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2434
		WARN_ON(!sp->role.invalid || sp->root_count);
2435
		kvm_mmu_free_page(sp);
2436
	}
2437 2438
}

2439 2440
static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm,
						  unsigned long nr_to_zap)
2441
{
2442 2443
	unsigned long total_zapped = 0;
	struct kvm_mmu_page *sp, *tmp;
2444
	LIST_HEAD(invalid_list);
2445 2446
	bool unstable;
	int nr_zapped;
2447 2448

	if (list_empty(&kvm->arch.active_mmu_pages))
2449 2450
		return 0;

2451
restart:
2452
	list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) {
2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
		/*
		 * Don't zap active root pages, the page itself can't be freed
		 * and zapping it will just force vCPUs to realloc and reload.
		 */
		if (sp->root_count)
			continue;

		unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list,
						      &nr_zapped);
		total_zapped += nr_zapped;
		if (total_zapped >= nr_to_zap)
2464 2465
			break;

2466 2467
		if (unstable)
			goto restart;
2468
	}
2469

2470 2471 2472 2473 2474 2475
	kvm_mmu_commit_zap_page(kvm, &invalid_list);

	kvm->stat.mmu_recycled += total_zapped;
	return total_zapped;
}

2476 2477 2478 2479 2480 2481 2482
static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm)
{
	if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
		return kvm->arch.n_max_mmu_pages -
			kvm->arch.n_used_mmu_pages;

	return 0;
2483 2484
}

2485 2486
static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
{
2487
	unsigned long avail = kvm_mmu_available_pages(vcpu->kvm);
2488

2489
	if (likely(avail >= KVM_MIN_FREE_MMU_PAGES))
2490 2491
		return 0;

2492
	kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail);
2493

2494 2495 2496 2497 2498
	/*
	 * Note, this check is intentionally soft, it only guarantees that one
	 * page is available, while the caller may end up allocating as many as
	 * four pages, e.g. for PAE roots or for 5-level paging.  Temporarily
	 * exceeding the (arbitrary by default) limit will not harm the host,
I
Ingo Molnar 已提交
2499
	 * being too aggressive may unnecessarily kill the guest, and getting an
2500 2501 2502
	 * exact count is far more trouble than it's worth, especially in the
	 * page fault paths.
	 */
2503 2504 2505 2506 2507
	if (!kvm_mmu_available_pages(vcpu->kvm))
		return -ENOSPC;
	return 0;
}

2508 2509
/*
 * Changing the number of mmu pages allocated to the vm
2510
 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2511
 */
2512
void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2513
{
2514
	write_lock(&kvm->mmu_lock);
2515

2516
	if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2517 2518
		kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages -
						  goal_nr_mmu_pages);
2519

2520
		goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2521 2522
	}

2523
	kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2524

2525
	write_unlock(&kvm->mmu_lock);
2526 2527
}

2528
int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2529
{
2530
	struct kvm_mmu_page *sp;
2531
	LIST_HEAD(invalid_list);
2532 2533
	int r;

2534
	pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2535
	r = 0;
2536
	write_lock(&kvm->mmu_lock);
2537
	for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2538
		pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2539 2540
			 sp->role.word);
		r = 1;
2541
		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2542
	}
2543
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2544
	write_unlock(&kvm->mmu_lock);
2545

2546
	return r;
2547
}
2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562

static int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
{
	gpa_t gpa;
	int r;

	if (vcpu->arch.mmu->direct_map)
		return 0;

	gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);

	r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);

	return r;
}
2563

2564
static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2565 2566 2567 2568 2569 2570 2571 2572
{
	trace_kvm_mmu_unsync_page(sp);
	++vcpu->kvm->stat.mmu_unsync;
	sp->unsync = 1;

	kvm_mmu_mark_parents_unsync(sp);
}

2573 2574 2575 2576 2577 2578
/*
 * Attempt to unsync any shadow pages that can be reached by the specified gfn,
 * KVM is creating a writable mapping for said gfn.  Returns 0 if all pages
 * were marked unsync (or if there is no shadow page), -EPERM if the SPTE must
 * be write-protected.
 */
2579
int mmu_try_to_unsync_pages(struct kvm_vcpu *vcpu, struct kvm_memory_slot *slot,
2580
			    gfn_t gfn, bool can_unsync, bool prefetch)
2581
{
2582
	struct kvm_mmu_page *sp;
2583
	bool locked = false;
2584

2585 2586 2587 2588 2589
	/*
	 * Force write-protection if the page is being tracked.  Note, the page
	 * track machinery is used to write-protect upper-level shadow pages,
	 * i.e. this guards the role.level == 4K assertion below!
	 */
2590
	if (kvm_slot_page_track_is_active(vcpu, slot, gfn, KVM_PAGE_TRACK_WRITE))
2591
		return -EPERM;
2592

2593 2594 2595 2596 2597 2598
	/*
	 * The page is not write-tracked, mark existing shadow pages unsync
	 * unless KVM is synchronizing an unsync SP (can_unsync = false).  In
	 * that case, KVM must complete emulation of the guest TLB flush before
	 * allowing shadow pages to become unsync (writable by the guest).
	 */
2599
	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2600
		if (!can_unsync)
2601
			return -EPERM;
2602

2603 2604
		if (sp->unsync)
			continue;
2605

2606
		if (prefetch)
2607 2608
			return -EEXIST;

2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631
		/*
		 * TDP MMU page faults require an additional spinlock as they
		 * run with mmu_lock held for read, not write, and the unsync
		 * logic is not thread safe.  Take the spinklock regardless of
		 * the MMU type to avoid extra conditionals/parameters, there's
		 * no meaningful penalty if mmu_lock is held for write.
		 */
		if (!locked) {
			locked = true;
			spin_lock(&vcpu->kvm->arch.mmu_unsync_pages_lock);

			/*
			 * Recheck after taking the spinlock, a different vCPU
			 * may have since marked the page unsync.  A false
			 * positive on the unprotected check above is not
			 * possible as clearing sp->unsync _must_ hold mmu_lock
			 * for write, i.e. unsync cannot transition from 0->1
			 * while this CPU holds mmu_lock for read (or write).
			 */
			if (READ_ONCE(sp->unsync))
				continue;
		}

2632
		WARN_ON(sp->role.level != PG_LEVEL_4K);
2633
		kvm_unsync_page(vcpu, sp);
2634
	}
2635 2636
	if (locked)
		spin_unlock(&vcpu->kvm->arch.mmu_unsync_pages_lock);
2637

2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659
	/*
	 * We need to ensure that the marking of unsync pages is visible
	 * before the SPTE is updated to allow writes because
	 * kvm_mmu_sync_roots() checks the unsync flags without holding
	 * the MMU lock and so can race with this. If the SPTE was updated
	 * before the page had been marked as unsync-ed, something like the
	 * following could happen:
	 *
	 * CPU 1                    CPU 2
	 * ---------------------------------------------------------------------
	 * 1.2 Host updates SPTE
	 *     to be writable
	 *                      2.1 Guest writes a GPTE for GVA X.
	 *                          (GPTE being in the guest page table shadowed
	 *                           by the SP from CPU 1.)
	 *                          This reads SPTE during the page table walk.
	 *                          Since SPTE.W is read as 1, there is no
	 *                          fault.
	 *
	 *                      2.2 Guest issues TLB flush.
	 *                          That causes a VM Exit.
	 *
2660 2661
	 *                      2.3 Walking of unsync pages sees sp->unsync is
	 *                          false and skips the page.
2662 2663 2664 2665 2666 2667 2668 2669 2670 2671
	 *
	 *                      2.4 Guest accesses GVA X.
	 *                          Since the mapping in the SP was not updated,
	 *                          so the old mapping for GVA X incorrectly
	 *                          gets used.
	 * 1.1 Host marks SP
	 *     as unsync
	 *     (sp->unsync = true)
	 *
	 * The write barrier below ensures that 1.1 happens before 1.2 and thus
2672 2673
	 * the situation in 2.4 does not arise.  It pairs with the read barrier
	 * in is_unsync_root(), placed between 2.1's load of SPTE.W and 2.3.
2674 2675 2676
	 */
	smp_wmb();

2677
	return 0;
2678 2679
}

2680 2681
static int mmu_set_spte(struct kvm_vcpu *vcpu, struct kvm_memory_slot *slot,
			u64 *sptep, unsigned int pte_access, gfn_t gfn,
2682
			kvm_pfn_t pfn, struct kvm_page_fault *fault)
M
Marcelo Tosatti 已提交
2683
{
2684
	struct kvm_mmu_page *sp = sptep_to_sp(sptep);
2685
	int level = sp->role.level;
M
Marcelo Tosatti 已提交
2686
	int was_rmapped = 0;
2687
	int ret = RET_PF_FIXED;
2688
	bool flush = false;
2689
	bool wrprot;
2690
	u64 spte;
M
Marcelo Tosatti 已提交
2691

2692 2693
	/* Prefetching always gets a writable pfn.  */
	bool host_writable = !fault || fault->map_writable;
2694
	bool prefetch = !fault || fault->prefetch;
2695 2696
	bool write_fault = fault && fault->write;

2697 2698
	pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
		 *sptep, write_fault, gfn);
M
Marcelo Tosatti 已提交
2699

2700 2701 2702 2703 2704
	if (unlikely(is_noslot_pfn(pfn))) {
		mark_mmio_spte(vcpu, sptep, gfn, pte_access);
		return RET_PF_EMULATE;
	}

2705
	if (is_shadow_present_pte(*sptep)) {
M
Marcelo Tosatti 已提交
2706 2707 2708 2709
		/*
		 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
		 * the parent of the now unreachable PTE.
		 */
2710
		if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) {
M
Marcelo Tosatti 已提交
2711
			struct kvm_mmu_page *child;
A
Avi Kivity 已提交
2712
			u64 pte = *sptep;
M
Marcelo Tosatti 已提交
2713

2714
			child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2715
			drop_parent_pte(child, sptep);
2716
			flush = true;
A
Avi Kivity 已提交
2717
		} else if (pfn != spte_to_pfn(*sptep)) {
2718
			pgprintk("hfn old %llx new %llx\n",
A
Avi Kivity 已提交
2719
				 spte_to_pfn(*sptep), pfn);
2720
			drop_spte(vcpu->kvm, sptep);
2721
			flush = true;
2722 2723
		} else
			was_rmapped = 1;
M
Marcelo Tosatti 已提交
2724
	}
2725

2726
	wrprot = make_spte(vcpu, sp, slot, pte_access, gfn, pfn, *sptep, prefetch,
2727
			   true, host_writable, &spte);
2728 2729 2730 2731 2732 2733 2734 2735

	if (*sptep == spte) {
		ret = RET_PF_SPURIOUS;
	} else {
		trace_kvm_mmu_set_spte(level, gfn, sptep);
		flush |= mmu_spte_update(sptep, spte);
	}

2736
	if (wrprot) {
M
Marcelo Tosatti 已提交
2737
		if (write_fault)
2738
			ret = RET_PF_EMULATE;
2739
	}
2740

2741
	if (flush)
2742 2743
		kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
				KVM_PAGES_PER_HPAGE(level));
M
Marcelo Tosatti 已提交
2744

A
Avi Kivity 已提交
2745
	pgprintk("%s: setting spte %llx\n", __func__, *sptep);
M
Marcelo Tosatti 已提交
2746

2747
	if (!was_rmapped) {
2748
		WARN_ON_ONCE(ret == RET_PF_SPURIOUS);
2749
		kvm_update_page_stats(vcpu->kvm, level, 1);
2750
		rmap_add(vcpu, slot, sptep, gfn);
2751
	}
2752

2753
	return ret;
2754 2755
}

2756 2757 2758 2759 2760
static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
				    struct kvm_mmu_page *sp,
				    u64 *start, u64 *end)
{
	struct page *pages[PTE_PREFETCH_NUM];
2761
	struct kvm_memory_slot *slot;
2762
	unsigned int access = sp->role.access;
2763 2764 2765 2766
	int i, ret;
	gfn_t gfn;

	gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2767 2768
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
	if (!slot)
2769 2770
		return -1;

2771
	ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2772 2773 2774
	if (ret <= 0)
		return -1;

2775
	for (i = 0; i < ret; i++, gfn++, start++) {
2776
		mmu_set_spte(vcpu, slot, start, access, gfn,
2777
			     page_to_pfn(pages[i]), NULL);
2778 2779
		put_page(pages[i]);
	}
2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795

	return 0;
}

static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
				  struct kvm_mmu_page *sp, u64 *sptep)
{
	u64 *spte, *start = NULL;
	int i;

	WARN_ON(!sp->role.direct);

	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
	spte = sp->spt + i;

	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2796
		if (is_shadow_present_pte(*spte) || spte == sptep) {
2797 2798 2799
			if (!start)
				continue;
			if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2800
				return;
2801 2802 2803 2804
			start = NULL;
		} else if (!start)
			start = spte;
	}
2805 2806
	if (start)
		direct_pte_prefetch_many(vcpu, sp, start, spte);
2807 2808 2809 2810 2811 2812
}

static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
{
	struct kvm_mmu_page *sp;

2813
	sp = sptep_to_sp(sptep);
2814

2815
	/*
2816 2817 2818
	 * Without accessed bits, there's no way to distinguish between
	 * actually accessed translations and prefetched, so disable pte
	 * prefetch if accessed bits aren't available.
2819
	 */
2820
	if (sp_ad_disabled(sp))
2821 2822
		return;

2823
	if (sp->role.level > PG_LEVEL_4K)
2824 2825
		return;

2826 2827 2828 2829 2830 2831 2832
	/*
	 * If addresses are being invalidated, skip prefetching to avoid
	 * accidentally prefetching those addresses.
	 */
	if (unlikely(vcpu->kvm->mmu_notifier_count))
		return;

2833 2834 2835
	__direct_pte_prefetch(vcpu, sp, sptep);
}

2836
static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn,
2837
				  const struct kvm_memory_slot *slot)
2838 2839 2840 2841 2842
{
	unsigned long hva;
	pte_t *pte;
	int level;

2843
	if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn))
2844
		return PG_LEVEL_4K;
2845

2846 2847 2848 2849 2850 2851 2852 2853
	/*
	 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
	 * is not solely for performance, it's also necessary to avoid the
	 * "writable" check in __gfn_to_hva_many(), which will always fail on
	 * read-only memslots due to gfn_to_hva() assuming writes.  Earlier
	 * page fault steps have already verified the guest isn't writing a
	 * read-only memslot.
	 */
2854 2855
	hva = __gfn_to_hva_memslot(slot, gfn);

2856
	pte = lookup_address_in_mm(kvm->mm, hva, &level);
2857
	if (unlikely(!pte))
2858
		return PG_LEVEL_4K;
2859 2860 2861 2862

	return level;
}

2863 2864 2865
int kvm_mmu_max_mapping_level(struct kvm *kvm,
			      const struct kvm_memory_slot *slot, gfn_t gfn,
			      kvm_pfn_t pfn, int max_level)
2866 2867
{
	struct kvm_lpage_info *linfo;
2868
	int host_level;
2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879

	max_level = min(max_level, max_huge_page_level);
	for ( ; max_level > PG_LEVEL_4K; max_level--) {
		linfo = lpage_info_slot(gfn, slot, max_level);
		if (!linfo->disallow_lpage)
			break;
	}

	if (max_level == PG_LEVEL_4K)
		return PG_LEVEL_4K;

2880 2881
	host_level = host_pfn_mapping_level(kvm, gfn, pfn, slot);
	return min(host_level, max_level);
2882 2883
}

2884
void kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
2885
{
2886
	struct kvm_memory_slot *slot = fault->slot;
2887 2888
	kvm_pfn_t mask;

2889
	fault->huge_page_disallowed = fault->exec && fault->nx_huge_page_workaround_enabled;
2890

2891 2892
	if (unlikely(fault->max_level == PG_LEVEL_4K))
		return;
2893

2894 2895
	if (is_error_noslot_pfn(fault->pfn) || kvm_is_reserved_pfn(fault->pfn))
		return;
2896

2897
	if (kvm_slot_dirty_track_enabled(slot))
2898
		return;
2899

2900 2901 2902 2903
	/*
	 * Enforce the iTLB multihit workaround after capturing the requested
	 * level, which will be used to do precise, accurate accounting.
	 */
2904 2905 2906 2907 2908
	fault->req_level = kvm_mmu_max_mapping_level(vcpu->kvm, slot,
						     fault->gfn, fault->pfn,
						     fault->max_level);
	if (fault->req_level == PG_LEVEL_4K || fault->huge_page_disallowed)
		return;
2909 2910

	/*
2911 2912
	 * mmu_notifier_retry() was successful and mmu_lock is held, so
	 * the pmd can't be split from under us.
2913
	 */
2914 2915 2916 2917
	fault->goal_level = fault->req_level;
	mask = KVM_PAGES_PER_HPAGE(fault->goal_level) - 1;
	VM_BUG_ON((fault->gfn & mask) != (fault->pfn & mask));
	fault->pfn &= ~mask;
2918 2919
}

2920
void disallowed_hugepage_adjust(struct kvm_page_fault *fault, u64 spte, int cur_level)
P
Paolo Bonzini 已提交
2921
{
2922 2923
	if (cur_level > PG_LEVEL_4K &&
	    cur_level == fault->goal_level &&
P
Paolo Bonzini 已提交
2924 2925 2926 2927 2928 2929 2930 2931 2932
	    is_shadow_present_pte(spte) &&
	    !is_large_pte(spte)) {
		/*
		 * A small SPTE exists for this pfn, but FNAME(fetch)
		 * and __direct_map would like to create a large PTE
		 * instead: just force them to go down another level,
		 * patching back for them into pfn the next 9 bits of
		 * the address.
		 */
2933 2934 2935 2936
		u64 page_mask = KVM_PAGES_PER_HPAGE(cur_level) -
				KVM_PAGES_PER_HPAGE(cur_level - 1);
		fault->pfn |= fault->gfn & page_mask;
		fault->goal_level--;
P
Paolo Bonzini 已提交
2937 2938 2939
	}
}

2940
static int __direct_map(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
2941
{
2942
	struct kvm_shadow_walk_iterator it;
2943
	struct kvm_mmu_page *sp;
2944
	int ret;
2945
	gfn_t base_gfn = fault->gfn;
A
Avi Kivity 已提交
2946

2947
	kvm_mmu_hugepage_adjust(vcpu, fault);
2948

2949
	trace_kvm_mmu_spte_requested(fault);
2950
	for_each_shadow_entry(vcpu, fault->addr, it) {
P
Paolo Bonzini 已提交
2951 2952 2953 2954
		/*
		 * We cannot overwrite existing page tables with an NX
		 * large page, as the leaf could be executable.
		 */
2955
		if (fault->nx_huge_page_workaround_enabled)
2956
			disallowed_hugepage_adjust(fault, *it.sptep, it.level);
P
Paolo Bonzini 已提交
2957

2958
		base_gfn = fault->gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
2959
		if (it.level == fault->goal_level)
2960
			break;
A
Avi Kivity 已提交
2961

2962
		drop_large_spte(vcpu, it.sptep);
2963 2964 2965 2966 2967 2968 2969
		if (is_shadow_present_pte(*it.sptep))
			continue;

		sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
				      it.level - 1, true, ACC_ALL);

		link_shadow_page(vcpu, it.sptep, sp);
2970 2971
		if (fault->is_tdp && fault->huge_page_disallowed &&
		    fault->req_level >= it.level)
2972
			account_huge_nx_page(vcpu->kvm, sp);
2973
	}
2974

2975 2976 2977
	if (WARN_ON_ONCE(it.level != fault->goal_level))
		return -EFAULT;

2978
	ret = mmu_set_spte(vcpu, fault->slot, it.sptep, ACC_ALL,
2979
			   base_gfn, fault->pfn, fault);
2980 2981 2982
	if (ret == RET_PF_SPURIOUS)
		return ret;

2983 2984 2985
	direct_pte_prefetch(vcpu, it.sptep);
	++vcpu->stat.pf_fixed;
	return ret;
A
Avi Kivity 已提交
2986 2987
}

H
Huang Ying 已提交
2988
static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2989
{
2990
	send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
2991 2992
}

D
Dan Williams 已提交
2993
static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
2994
{
X
Xiao Guangrong 已提交
2995 2996 2997 2998 2999 3000
	/*
	 * Do not cache the mmio info caused by writing the readonly gfn
	 * into the spte otherwise read access on readonly gfn also can
	 * caused mmio page fault and treat it as mmio access.
	 */
	if (pfn == KVM_PFN_ERR_RO_FAULT)
3001
		return RET_PF_EMULATE;
X
Xiao Guangrong 已提交
3002

3003
	if (pfn == KVM_PFN_ERR_HWPOISON) {
3004
		kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
3005
		return RET_PF_RETRY;
3006
	}
3007

3008
	return -EFAULT;
3009 3010
}

3011 3012
static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault,
				unsigned int access, int *ret_val)
3013 3014
{
	/* The pfn is invalid, report the error! */
3015 3016
	if (unlikely(is_error_pfn(fault->pfn))) {
		*ret_val = kvm_handle_bad_page(vcpu, fault->gfn, fault->pfn);
3017
		return true;
3018 3019
	}

3020
	if (unlikely(!fault->slot)) {
3021 3022 3023
		gva_t gva = fault->is_tdp ? 0 : fault->addr;

		vcpu_cache_mmio_info(vcpu, gva, fault->gfn,
3024
				     access & shadow_mmio_access_mask);
3025 3026 3027 3028 3029 3030 3031 3032 3033 3034
		/*
		 * If MMIO caching is disabled, emulate immediately without
		 * touching the shadow page tables as attempting to install an
		 * MMIO SPTE will just be an expensive nop.
		 */
		if (unlikely(!shadow_mmio_value)) {
			*ret_val = RET_PF_EMULATE;
			return true;
		}
	}
3035

3036
	return false;
3037 3038
}

3039
static bool page_fault_can_be_fast(struct kvm_page_fault *fault)
3040
{
3041 3042 3043 3044
	/*
	 * Do not fix the mmio spte with invalid generation number which
	 * need to be updated by slow page fault path.
	 */
3045
	if (fault->rsvd)
3046 3047
		return false;

3048
	/* See if the page fault is due to an NX violation */
3049
	if (unlikely(fault->exec && fault->present))
3050 3051
		return false;

3052
	/*
3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063
	 * #PF can be fast if:
	 * 1. The shadow page table entry is not present, which could mean that
	 *    the fault is potentially caused by access tracking (if enabled).
	 * 2. The shadow page table entry is present and the fault
	 *    is caused by write-protect, that means we just need change the W
	 *    bit of the spte which can be done out of mmu-lock.
	 *
	 * However, if access tracking is disabled we know that a non-present
	 * page must be a genuine page fault where we have to create a new SPTE.
	 * So, if access tracking is disabled, we return true only for write
	 * accesses to a present page.
3064 3065
	 */

3066
	return shadow_acc_track_mask != 0 || (fault->write && fault->present);
3067 3068
}

3069 3070 3071 3072
/*
 * Returns true if the SPTE was fixed successfully. Otherwise,
 * someone else modified the SPTE from its original value.
 */
3073
static bool
3074
fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault,
3075
			u64 *sptep, u64 old_spte, u64 new_spte)
3076
{
3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088
	/*
	 * Theoretically we could also set dirty bit (and flush TLB) here in
	 * order to eliminate unnecessary PML logging. See comments in
	 * set_spte. But fast_page_fault is very unlikely to happen with PML
	 * enabled, so we do not do this. This might result in the same GPA
	 * to be logged in PML buffer again when the write really happens, and
	 * eventually to be called by mark_page_dirty twice. But it's also no
	 * harm. This also avoids the TLB flush needed after setting dirty bit
	 * so non-PML cases won't be impacted.
	 *
	 * Compare with set_spte where instead shadow_dirty_mask is set.
	 */
3089
	if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3090 3091
		return false;

3092 3093
	if (is_writable_pte(new_spte) && !is_writable_pte(old_spte))
		mark_page_dirty_in_slot(vcpu->kvm, fault->slot, fault->gfn);
3094 3095 3096 3097

	return true;
}

3098
static bool is_access_allowed(struct kvm_page_fault *fault, u64 spte)
3099
{
3100
	if (fault->exec)
3101 3102
		return is_executable_pte(spte);

3103
	if (fault->write)
3104 3105 3106 3107 3108 3109
		return is_writable_pte(spte);

	/* Fault was on Read access */
	return spte & PT_PRESENT_MASK;
}

3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132
/*
 * Returns the last level spte pointer of the shadow page walk for the given
 * gpa, and sets *spte to the spte value. This spte may be non-preset. If no
 * walk could be performed, returns NULL and *spte does not contain valid data.
 *
 * Contract:
 *  - Must be called between walk_shadow_page_lockless_{begin,end}.
 *  - The returned sptep must not be used after walk_shadow_page_lockless_end.
 */
static u64 *fast_pf_get_last_sptep(struct kvm_vcpu *vcpu, gpa_t gpa, u64 *spte)
{
	struct kvm_shadow_walk_iterator iterator;
	u64 old_spte;
	u64 *sptep = NULL;

	for_each_shadow_entry_lockless(vcpu, gpa, iterator, old_spte) {
		sptep = iterator.sptep;
		*spte = old_spte;
	}

	return sptep;
}

3133
/*
3134
 * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS.
3135
 */
3136
static int fast_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
3137
{
3138
	struct kvm_mmu_page *sp;
3139
	int ret = RET_PF_INVALID;
3140
	u64 spte = 0ull;
3141
	u64 *sptep = NULL;
3142
	uint retry_count = 0;
3143

3144
	if (!page_fault_can_be_fast(fault))
3145
		return ret;
3146 3147 3148

	walk_shadow_page_lockless_begin(vcpu);

3149
	do {
3150
		u64 new_spte;
3151

3152
		if (is_tdp_mmu(vcpu->arch.mmu))
3153
			sptep = kvm_tdp_mmu_fast_pf_get_last_sptep(vcpu, fault->addr, &spte);
3154
		else
3155
			sptep = fast_pf_get_last_sptep(vcpu, fault->addr, &spte);
3156

3157 3158 3159
		if (!is_shadow_present_pte(spte))
			break;

3160
		sp = sptep_to_sp(sptep);
3161 3162
		if (!is_last_spte(spte, sp->role.level))
			break;
3163

3164
		/*
3165 3166 3167 3168 3169
		 * Check whether the memory access that caused the fault would
		 * still cause it if it were to be performed right now. If not,
		 * then this is a spurious fault caused by TLB lazily flushed,
		 * or some other CPU has already fixed the PTE after the
		 * current CPU took the fault.
3170 3171 3172 3173
		 *
		 * Need not check the access of upper level table entries since
		 * they are always ACC_ALL.
		 */
3174
		if (is_access_allowed(fault, spte)) {
3175
			ret = RET_PF_SPURIOUS;
3176 3177
			break;
		}
3178

3179 3180 3181 3182 3183 3184 3185 3186 3187 3188
		new_spte = spte;

		if (is_access_track_spte(spte))
			new_spte = restore_acc_track_spte(new_spte);

		/*
		 * Currently, to simplify the code, write-protection can
		 * be removed in the fast path only if the SPTE was
		 * write-protected for dirty-logging or access tracking.
		 */
3189
		if (fault->write &&
3190
		    spte_can_locklessly_be_made_writable(spte)) {
3191
			new_spte |= PT_WRITABLE_MASK;
3192 3193

			/*
3194 3195 3196 3197 3198 3199 3200 3201 3202
			 * Do not fix write-permission on the large spte.  Since
			 * we only dirty the first page into the dirty-bitmap in
			 * fast_pf_fix_direct_spte(), other pages are missed
			 * if its slot has dirty logging enabled.
			 *
			 * Instead, we let the slow page fault path create a
			 * normal spte to fix the access.
			 *
			 * See the comments in kvm_arch_commit_memory_region().
3203
			 */
3204
			if (sp->role.level > PG_LEVEL_4K)
3205
				break;
3206
		}
3207

3208
		/* Verify that the fault can be handled in the fast path */
3209
		if (new_spte == spte ||
3210
		    !is_access_allowed(fault, new_spte))
3211 3212 3213 3214 3215
			break;

		/*
		 * Currently, fast page fault only works for direct mapping
		 * since the gfn is not stable for indirect shadow page. See
3216
		 * Documentation/virt/kvm/locking.rst to get more detail.
3217
		 */
3218
		if (fast_pf_fix_direct_spte(vcpu, fault, sptep, spte, new_spte)) {
3219
			ret = RET_PF_FIXED;
3220
			break;
3221
		}
3222 3223 3224 3225 3226 3227 3228 3229

		if (++retry_count > 4) {
			printk_once(KERN_WARNING
				"kvm: Fast #PF retrying more than 4 times.\n");
			break;
		}

	} while (true);
3230

3231
	trace_fast_page_fault(vcpu, fault, sptep, spte, ret);
3232 3233
	walk_shadow_page_lockless_end(vcpu);

3234
	return ret;
3235 3236
}

3237 3238
static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
			       struct list_head *invalid_list)
3239
{
3240
	struct kvm_mmu_page *sp;
3241

3242
	if (!VALID_PAGE(*root_hpa))
A
Avi Kivity 已提交
3243
		return;
3244

3245
	sp = to_shadow_page(*root_hpa & PT64_BASE_ADDR_MASK);
3246

3247
	if (is_tdp_mmu_page(sp))
3248
		kvm_tdp_mmu_put_root(kvm, sp, false);
3249 3250
	else if (!--sp->root_count && sp->role.invalid)
		kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3251

3252 3253 3254
	*root_hpa = INVALID_PAGE;
}

3255
/* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
3256 3257
void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
			ulong roots_to_free)
3258
{
3259
	struct kvm *kvm = vcpu->kvm;
3260 3261
	int i;
	LIST_HEAD(invalid_list);
3262
	bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
3263

3264
	BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3265

3266
	/* Before acquiring the MMU lock, see if we need to do any real work. */
3267 3268 3269 3270 3271 3272 3273 3274 3275
	if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
			if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
			    VALID_PAGE(mmu->prev_roots[i].hpa))
				break;

		if (i == KVM_MMU_NUM_PREV_ROOTS)
			return;
	}
3276

3277
	write_lock(&kvm->mmu_lock);
3278

3279 3280
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
		if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3281
			mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa,
3282
					   &invalid_list);
3283

3284 3285 3286
	if (free_active_root) {
		if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
		    (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3287
			mmu_free_root_page(kvm, &mmu->root_hpa, &invalid_list);
3288
		} else if (mmu->pae_root) {
3289 3290 3291 3292 3293 3294 3295 3296
			for (i = 0; i < 4; ++i) {
				if (!IS_VALID_PAE_ROOT(mmu->pae_root[i]))
					continue;

				mmu_free_root_page(kvm, &mmu->pae_root[i],
						   &invalid_list);
				mmu->pae_root[i] = INVALID_PAE_ROOT;
			}
3297
		}
3298
		mmu->root_hpa = INVALID_PAGE;
3299
		mmu->root_pgd = 0;
3300
	}
3301

3302
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
3303
	write_unlock(&kvm->mmu_lock);
3304
}
3305
EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3306

3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333
void kvm_mmu_free_guest_mode_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
{
	unsigned long roots_to_free = 0;
	hpa_t root_hpa;
	int i;

	/*
	 * This should not be called while L2 is active, L2 can't invalidate
	 * _only_ its own roots, e.g. INVVPID unconditionally exits.
	 */
	WARN_ON_ONCE(mmu->mmu_role.base.guest_mode);

	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
		root_hpa = mmu->prev_roots[i].hpa;
		if (!VALID_PAGE(root_hpa))
			continue;

		if (!to_shadow_page(root_hpa) ||
			to_shadow_page(root_hpa)->role.guest_mode)
			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
	}

	kvm_mmu_free_roots(vcpu, mmu, roots_to_free);
}
EXPORT_SYMBOL_GPL(kvm_mmu_free_guest_mode_roots);


3334 3335 3336 3337
static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
{
	int ret = 0;

3338
	if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) {
3339
		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3340 3341 3342 3343 3344 3345
		ret = 1;
	}

	return ret;
}

3346 3347
static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, gva_t gva,
			    u8 level, bool direct)
3348 3349
{
	struct kvm_mmu_page *sp;
3350 3351 3352 3353 3354 3355 3356 3357 3358

	sp = kvm_mmu_get_page(vcpu, gfn, gva, level, direct, ACC_ALL);
	++sp->root_count;

	return __pa(sp->spt);
}

static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
{
3359 3360
	struct kvm_mmu *mmu = vcpu->arch.mmu;
	u8 shadow_root_level = mmu->shadow_root_level;
3361
	hpa_t root;
3362
	unsigned i;
3363 3364 3365 3366 3367 3368
	int r;

	write_lock(&vcpu->kvm->mmu_lock);
	r = make_mmu_pages_available(vcpu);
	if (r < 0)
		goto out_unlock;
3369

3370
	if (is_tdp_mmu_enabled(vcpu->kvm)) {
3371
		root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu);
3372
		mmu->root_hpa = root;
3373
	} else if (shadow_root_level >= PT64_ROOT_4LEVEL) {
3374
		root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level, true);
3375
		mmu->root_hpa = root;
3376
	} else if (shadow_root_level == PT32E_ROOT_LEVEL) {
3377 3378 3379 3380
		if (WARN_ON_ONCE(!mmu->pae_root)) {
			r = -EIO;
			goto out_unlock;
		}
3381

3382
		for (i = 0; i < 4; ++i) {
3383
			WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3384

3385 3386
			root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT),
					      i << 30, PT32_ROOT_LEVEL, true);
3387 3388
			mmu->pae_root[i] = root | PT_PRESENT_MASK |
					   shadow_me_mask;
3389
		}
3390
		mmu->root_hpa = __pa(mmu->pae_root);
3391 3392
	} else {
		WARN_ONCE(1, "Bad TDP root level = %d\n", shadow_root_level);
3393 3394
		r = -EIO;
		goto out_unlock;
3395
	}
3396

3397
	/* root_pgd is ignored for direct MMUs. */
3398
	mmu->root_pgd = 0;
3399 3400 3401
out_unlock:
	write_unlock(&vcpu->kvm->mmu_lock);
	return r;
3402 3403
}

3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464
static int mmu_first_shadow_root_alloc(struct kvm *kvm)
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *slot;
	int r = 0, i;

	/*
	 * Check if this is the first shadow root being allocated before
	 * taking the lock.
	 */
	if (kvm_shadow_root_allocated(kvm))
		return 0;

	mutex_lock(&kvm->slots_arch_lock);

	/* Recheck, under the lock, whether this is the first shadow root. */
	if (kvm_shadow_root_allocated(kvm))
		goto out_unlock;

	/*
	 * Check if anything actually needs to be allocated, e.g. all metadata
	 * will be allocated upfront if TDP is disabled.
	 */
	if (kvm_memslots_have_rmaps(kvm) &&
	    kvm_page_track_write_tracking_enabled(kvm))
		goto out_success;

	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
		kvm_for_each_memslot(slot, slots) {
			/*
			 * Both of these functions are no-ops if the target is
			 * already allocated, so unconditionally calling both
			 * is safe.  Intentionally do NOT free allocations on
			 * failure to avoid having to track which allocations
			 * were made now versus when the memslot was created.
			 * The metadata is guaranteed to be freed when the slot
			 * is freed, and will be kept/used if userspace retries
			 * KVM_RUN instead of killing the VM.
			 */
			r = memslot_rmap_alloc(slot, slot->npages);
			if (r)
				goto out_unlock;
			r = kvm_page_track_write_tracking_alloc(slot);
			if (r)
				goto out_unlock;
		}
	}

	/*
	 * Ensure that shadow_root_allocated becomes true strictly after
	 * all the related pointers are set.
	 */
out_success:
	smp_store_release(&kvm->arch.shadow_root_allocated, true);

out_unlock:
	mutex_unlock(&kvm->slots_arch_lock);
	return r;
}

3465
static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3466
{
3467
	struct kvm_mmu *mmu = vcpu->arch.mmu;
3468
	u64 pdptrs[4], pm_mask;
3469
	gfn_t root_gfn, root_pgd;
3470
	hpa_t root;
3471 3472
	unsigned i;
	int r;
3473

3474
	root_pgd = mmu->get_guest_pgd(vcpu);
3475
	root_gfn = root_pgd >> PAGE_SHIFT;
3476

3477 3478 3479
	if (mmu_check_root(vcpu, root_gfn))
		return 1;

3480 3481 3482 3483
	/*
	 * On SVM, reading PDPTRs might access guest memory, which might fault
	 * and thus might sleep.  Grab the PDPTRs before acquiring mmu_lock.
	 */
3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494
	if (mmu->root_level == PT32E_ROOT_LEVEL) {
		for (i = 0; i < 4; ++i) {
			pdptrs[i] = mmu->get_pdptr(vcpu, i);
			if (!(pdptrs[i] & PT_PRESENT_MASK))
				continue;

			if (mmu_check_root(vcpu, pdptrs[i] >> PAGE_SHIFT))
				return 1;
		}
	}

3495
	r = mmu_first_shadow_root_alloc(vcpu->kvm);
3496 3497 3498
	if (r)
		return r;

3499 3500 3501 3502 3503
	write_lock(&vcpu->kvm->mmu_lock);
	r = make_mmu_pages_available(vcpu);
	if (r < 0)
		goto out_unlock;

3504 3505 3506 3507
	/*
	 * Do we shadow a long mode page table? If so we need to
	 * write-protect the guests page table root.
	 */
3508
	if (mmu->root_level >= PT64_ROOT_4LEVEL) {
3509
		root = mmu_alloc_root(vcpu, root_gfn, 0,
3510 3511
				      mmu->shadow_root_level, false);
		mmu->root_hpa = root;
3512
		goto set_root_pgd;
3513
	}
3514

3515 3516 3517 3518
	if (WARN_ON_ONCE(!mmu->pae_root)) {
		r = -EIO;
		goto out_unlock;
	}
3519

3520 3521
	/*
	 * We shadow a 32 bit page table. This may be a legacy 2-level
3522 3523
	 * or a PAE 3-level page table. In either case we need to be aware that
	 * the shadow page table may be a PAE or a long mode page table.
3524
	 */
3525
	pm_mask = PT_PRESENT_MASK | shadow_me_mask;
3526
	if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL) {
3527 3528
		pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;

3529
		if (WARN_ON_ONCE(!mmu->pml4_root)) {
3530 3531 3532
			r = -EIO;
			goto out_unlock;
		}
3533
		mmu->pml4_root[0] = __pa(mmu->pae_root) | pm_mask;
3534 3535 3536 3537 3538 3539 3540 3541

		if (mmu->shadow_root_level == PT64_ROOT_5LEVEL) {
			if (WARN_ON_ONCE(!mmu->pml5_root)) {
				r = -EIO;
				goto out_unlock;
			}
			mmu->pml5_root[0] = __pa(mmu->pml4_root) | pm_mask;
		}
3542 3543
	}

3544
	for (i = 0; i < 4; ++i) {
3545
		WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3546

3547
		if (mmu->root_level == PT32E_ROOT_LEVEL) {
3548
			if (!(pdptrs[i] & PT_PRESENT_MASK)) {
3549
				mmu->pae_root[i] = INVALID_PAE_ROOT;
A
Avi Kivity 已提交
3550 3551
				continue;
			}
3552
			root_gfn = pdptrs[i] >> PAGE_SHIFT;
3553
		}
3554

3555 3556
		root = mmu_alloc_root(vcpu, root_gfn, i << 30,
				      PT32_ROOT_LEVEL, false);
3557
		mmu->pae_root[i] = root | pm_mask;
3558
	}
3559

3560 3561 3562
	if (mmu->shadow_root_level == PT64_ROOT_5LEVEL)
		mmu->root_hpa = __pa(mmu->pml5_root);
	else if (mmu->shadow_root_level == PT64_ROOT_4LEVEL)
3563
		mmu->root_hpa = __pa(mmu->pml4_root);
3564 3565
	else
		mmu->root_hpa = __pa(mmu->pae_root);
3566

3567
set_root_pgd:
3568
	mmu->root_pgd = root_pgd;
3569 3570
out_unlock:
	write_unlock(&vcpu->kvm->mmu_lock);
3571

3572
	return 0;
3573 3574
}

3575 3576 3577
static int mmu_alloc_special_roots(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu *mmu = vcpu->arch.mmu;
3578
	bool need_pml5 = mmu->shadow_root_level > PT64_ROOT_4LEVEL;
3579 3580 3581
	u64 *pml5_root = NULL;
	u64 *pml4_root = NULL;
	u64 *pae_root;
3582 3583

	/*
3584 3585 3586 3587
	 * When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP
	 * tables are allocated and initialized at root creation as there is no
	 * equivalent level in the guest's NPT to shadow.  Allocate the tables
	 * on demand, as running a 32-bit L1 VMM on 64-bit KVM is very rare.
3588
	 */
3589 3590 3591
	if (mmu->direct_map || mmu->root_level >= PT64_ROOT_4LEVEL ||
	    mmu->shadow_root_level < PT64_ROOT_4LEVEL)
		return 0;
3592

3593 3594 3595 3596 3597 3598 3599 3600
	/*
	 * NPT, the only paging mode that uses this horror, uses a fixed number
	 * of levels for the shadow page tables, e.g. all MMUs are 4-level or
	 * all MMus are 5-level.  Thus, this can safely require that pml5_root
	 * is allocated if the other roots are valid and pml5 is needed, as any
	 * prior MMU would also have required pml5.
	 */
	if (mmu->pae_root && mmu->pml4_root && (!need_pml5 || mmu->pml5_root))
3601
		return 0;
3602

3603 3604 3605 3606
	/*
	 * The special roots should always be allocated in concert.  Yell and
	 * bail if KVM ends up in a state where only one of the roots is valid.
	 */
3607
	if (WARN_ON_ONCE(!tdp_enabled || mmu->pae_root || mmu->pml4_root ||
3608
			 (need_pml5 && mmu->pml5_root)))
3609
		return -EIO;
3610

3611 3612 3613 3614
	/*
	 * Unlike 32-bit NPT, the PDP table doesn't need to be in low mem, and
	 * doesn't need to be decrypted.
	 */
3615 3616 3617
	pae_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
	if (!pae_root)
		return -ENOMEM;
3618

3619
#ifdef CONFIG_X86_64
3620
	pml4_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3621 3622 3623
	if (!pml4_root)
		goto err_pml4;

3624
	if (need_pml5) {
3625 3626 3627
		pml5_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
		if (!pml5_root)
			goto err_pml5;
3628
	}
3629
#endif
3630

3631
	mmu->pae_root = pae_root;
3632
	mmu->pml4_root = pml4_root;
3633
	mmu->pml5_root = pml5_root;
3634

3635
	return 0;
3636 3637 3638 3639 3640 3641 3642 3643

#ifdef CONFIG_X86_64
err_pml5:
	free_page((unsigned long)pml4_root);
err_pml4:
	free_page((unsigned long)pae_root);
	return -ENOMEM;
#endif
3644 3645
}

3646 3647 3648 3649
static bool is_unsync_root(hpa_t root)
{
	struct kvm_mmu_page *sp;

3650 3651 3652
	if (!VALID_PAGE(root))
		return false;

3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672
	/*
	 * The read barrier orders the CPU's read of SPTE.W during the page table
	 * walk before the reads of sp->unsync/sp->unsync_children here.
	 *
	 * Even if another CPU was marking the SP as unsync-ed simultaneously,
	 * any guest page table changes are not guaranteed to be visible anyway
	 * until this VCPU issues a TLB flush strictly after those changes are
	 * made.  We only need to ensure that the other CPU sets these flags
	 * before any actual changes to the page tables are made.  The comments
	 * in mmu_try_to_unsync_pages() describe what could go wrong if this
	 * requirement isn't satisfied.
	 */
	smp_rmb();
	sp = to_shadow_page(root);
	if (sp->unsync || sp->unsync_children)
		return true;

	return false;
}

3673
void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3674 3675 3676 3677
{
	int i;
	struct kvm_mmu_page *sp;

3678
	if (vcpu->arch.mmu->direct_map)
3679 3680
		return;

3681
	if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3682
		return;
3683

3684
	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3685

3686 3687
	if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
		hpa_t root = vcpu->arch.mmu->root_hpa;
3688
		sp = to_shadow_page(root);
3689

3690
		if (!is_unsync_root(root))
3691 3692
			return;

3693
		write_lock(&vcpu->kvm->mmu_lock);
3694 3695
		kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);

3696
		mmu_sync_children(vcpu, sp, true);
3697

3698
		kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3699
		write_unlock(&vcpu->kvm->mmu_lock);
3700 3701
		return;
	}
3702

3703
	write_lock(&vcpu->kvm->mmu_lock);
3704 3705
	kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);

3706
	for (i = 0; i < 4; ++i) {
3707
		hpa_t root = vcpu->arch.mmu->pae_root[i];
3708

3709
		if (IS_VALID_PAE_ROOT(root)) {
3710
			root &= PT64_BASE_ADDR_MASK;
3711
			sp = to_shadow_page(root);
3712
			mmu_sync_children(vcpu, sp, true);
3713 3714 3715
		}
	}

3716
	kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3717
	write_unlock(&vcpu->kvm->mmu_lock);
3718 3719
}

3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732
void kvm_mmu_sync_prev_roots(struct kvm_vcpu *vcpu)
{
	unsigned long roots_to_free = 0;
	int i;

	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
		if (is_unsync_root(vcpu->arch.mmu->prev_roots[i].hpa))
			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);

	/* sync prev_roots by simply freeing them */
	kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, roots_to_free);
}

3733
static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr,
3734
				  u32 access, struct x86_exception *exception)
A
Avi Kivity 已提交
3735
{
3736 3737
	if (exception)
		exception->error_code = 0;
A
Avi Kivity 已提交
3738 3739 3740
	return vaddr;
}

3741
static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr,
3742 3743
					 u32 access,
					 struct x86_exception *exception)
3744
{
3745 3746
	if (exception)
		exception->error_code = 0;
3747
	return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3748 3749
}

3750
static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3751
{
3752 3753 3754 3755 3756 3757 3758
	/*
	 * A nested guest cannot use the MMIO cache if it is using nested
	 * page tables, because cr2 is a nGPA while the cache stores GPAs.
	 */
	if (mmu_is_nested(vcpu))
		return false;

3759 3760 3761 3762 3763 3764
	if (direct)
		return vcpu_match_mmio_gpa(vcpu, addr);

	return vcpu_match_mmio_gva(vcpu, addr);
}

3765 3766 3767
/*
 * Return the level of the lowest level SPTE added to sptes.
 * That SPTE may be non-present.
3768 3769
 *
 * Must be called between walk_shadow_page_lockless_{begin,end}.
3770
 */
3771
static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level)
3772 3773
{
	struct kvm_shadow_walk_iterator iterator;
3774
	int leaf = -1;
3775
	u64 spte;
3776

3777 3778
	for (shadow_walk_init(&iterator, vcpu, addr),
	     *root_level = iterator.level;
3779 3780
	     shadow_walk_okay(&iterator);
	     __shadow_walk_next(&iterator, spte)) {
3781
		leaf = iterator.level;
3782 3783
		spte = mmu_spte_get_lockless(iterator.sptep);

3784
		sptes[leaf] = spte;
3785 3786 3787 3788 3789
	}

	return leaf;
}

3790
/* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */
3791 3792
static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
{
3793
	u64 sptes[PT64_ROOT_MAX_LEVEL + 1];
3794
	struct rsvd_bits_validate *rsvd_check;
3795
	int root, leaf, level;
3796 3797
	bool reserved = false;

3798 3799
	walk_shadow_page_lockless_begin(vcpu);

3800
	if (is_tdp_mmu(vcpu->arch.mmu))
3801
		leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, &root);
3802
	else
3803
		leaf = get_walk(vcpu, addr, sptes, &root);
3804

3805 3806
	walk_shadow_page_lockless_end(vcpu);

3807 3808 3809 3810 3811
	if (unlikely(leaf < 0)) {
		*sptep = 0ull;
		return reserved;
	}

3812 3813 3814 3815 3816 3817 3818 3819 3820 3821
	*sptep = sptes[leaf];

	/*
	 * Skip reserved bits checks on the terminal leaf if it's not a valid
	 * SPTE.  Note, this also (intentionally) skips MMIO SPTEs, which, by
	 * design, always have reserved bits set.  The purpose of the checks is
	 * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs.
	 */
	if (!is_shadow_present_pte(sptes[leaf]))
		leaf++;
3822 3823 3824

	rsvd_check = &vcpu->arch.mmu->shadow_zero_check;

3825
	for (level = root; level >= leaf; level--)
3826
		reserved |= is_rsvd_spte(rsvd_check, sptes[level], level);
3827 3828

	if (reserved) {
3829
		pr_err("%s: reserved bits set on MMU-present spte, addr 0x%llx, hierarchy:\n",
3830
		       __func__, addr);
3831
		for (level = root; level >= leaf; level--)
3832 3833
			pr_err("------ spte = 0x%llx level = %d, rsvd bits = 0x%llx",
			       sptes[level], level,
3834
			       get_rsvd_bits(rsvd_check, sptes[level], level));
3835
	}
3836

3837
	return reserved;
3838 3839
}

P
Paolo Bonzini 已提交
3840
static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3841 3842
{
	u64 spte;
3843
	bool reserved;
3844

3845
	if (mmio_info_in_cache(vcpu, addr, direct))
3846
		return RET_PF_EMULATE;
3847

3848
	reserved = get_mmio_spte(vcpu, addr, &spte);
3849
	if (WARN_ON(reserved))
3850
		return -EINVAL;
3851 3852 3853

	if (is_mmio_spte(spte)) {
		gfn_t gfn = get_mmio_spte_gfn(spte);
3854
		unsigned int access = get_mmio_spte_access(spte);
3855

3856
		if (!check_mmio_spte(vcpu, spte))
3857
			return RET_PF_INVALID;
3858

3859 3860
		if (direct)
			addr = 0;
X
Xiao Guangrong 已提交
3861 3862

		trace_handle_mmio_page_fault(addr, gfn, access);
3863
		vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3864
		return RET_PF_EMULATE;
3865 3866 3867 3868 3869 3870
	}

	/*
	 * If the page table is zapped by other cpus, let CPU fault again on
	 * the address.
	 */
3871
	return RET_PF_RETRY;
3872 3873
}

3874
static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3875
					 struct kvm_page_fault *fault)
3876
{
3877
	if (unlikely(fault->rsvd))
3878 3879
		return false;

3880
	if (!fault->present || !fault->write)
3881 3882 3883 3884 3885 3886
		return false;

	/*
	 * guest is writing the page which is write tracked which can
	 * not be fixed by page fault handler.
	 */
3887
	if (kvm_slot_page_track_is_active(vcpu, fault->slot, fault->gfn, KVM_PAGE_TRACK_WRITE))
3888 3889 3890 3891 3892
		return true;

	return false;
}

3893 3894 3895 3896 3897 3898
static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
{
	struct kvm_shadow_walk_iterator iterator;
	u64 spte;

	walk_shadow_page_lockless_begin(vcpu);
3899
	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
3900 3901 3902 3903
		clear_sp_write_flooding_count(iterator.sptep);
	walk_shadow_page_lockless_end(vcpu);
}

3904 3905
static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
				    gfn_t gfn)
3906 3907
{
	struct kvm_arch_async_pf arch;
X
Xiao Guangrong 已提交
3908

3909
	arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3910
	arch.gfn = gfn;
3911
	arch.direct_map = vcpu->arch.mmu->direct_map;
3912
	arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu);
3913

3914 3915
	return kvm_setup_async_pf(vcpu, cr2_or_gpa,
				  kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3916 3917
}

3918
static bool kvm_faultin_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault, int *r)
3919
{
3920
	struct kvm_memory_slot *slot = fault->slot;
3921 3922
	bool async;

3923 3924 3925 3926 3927 3928
	/*
	 * Retry the page fault if the gfn hit a memslot that is being deleted
	 * or moved.  This ensures any existing SPTEs for the old memslot will
	 * be zapped before KVM inserts a new MMIO SPTE for the gfn.
	 */
	if (slot && (slot->flags & KVM_MEMSLOT_INVALID))
3929
		goto out_retry;
3930

3931 3932 3933
	if (!kvm_is_visible_memslot(slot)) {
		/* Don't expose private memslots to L2. */
		if (is_guest_mode(vcpu)) {
3934
			fault->slot = NULL;
3935 3936
			fault->pfn = KVM_PFN_NOSLOT;
			fault->map_writable = false;
3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949
			return false;
		}
		/*
		 * If the APIC access page exists but is disabled, go directly
		 * to emulation without caching the MMIO access or creating a
		 * MMIO SPTE.  That way the cache doesn't need to be purged
		 * when the AVIC is re-enabled.
		 */
		if (slot && slot->id == APIC_ACCESS_PAGE_PRIVATE_MEMSLOT &&
		    !kvm_apicv_activated(vcpu->kvm)) {
			*r = RET_PF_EMULATE;
			return true;
		}
3950 3951
	}

3952
	async = false;
3953 3954 3955
	fault->pfn = __gfn_to_pfn_memslot(slot, fault->gfn, false, &async,
					  fault->write, &fault->map_writable,
					  &fault->hva);
3956 3957 3958
	if (!async)
		return false; /* *pfn has correct page already */

3959
	if (!fault->prefetch && kvm_can_do_async_pf(vcpu)) {
3960 3961 3962
		trace_kvm_try_async_get_page(fault->addr, fault->gfn);
		if (kvm_find_async_pf_gfn(vcpu, fault->gfn)) {
			trace_kvm_async_pf_doublefault(fault->addr, fault->gfn);
3963
			kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3964
			goto out_retry;
3965
		} else if (kvm_arch_setup_async_pf(vcpu, fault->addr, fault->gfn))
3966
			goto out_retry;
3967 3968
	}

3969 3970 3971
	fault->pfn = __gfn_to_pfn_memslot(slot, fault->gfn, false, NULL,
					  fault->write, &fault->map_writable,
					  &fault->hva);
3972
	return false;
3973 3974 3975 3976

out_retry:
	*r = RET_PF_RETRY;
	return true;
3977 3978
}

3979
static int direct_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
A
Avi Kivity 已提交
3980
{
3981
	bool is_tdp_mmu_fault = is_tdp_mmu(vcpu->arch.mmu);
A
Avi Kivity 已提交
3982

3983
	unsigned long mmu_seq;
3984
	int r;
3985

3986
	fault->gfn = fault->addr >> PAGE_SHIFT;
3987 3988
	fault->slot = kvm_vcpu_gfn_to_memslot(vcpu, fault->gfn);

3989
	if (page_fault_handle_page_track(vcpu, fault))
3990
		return RET_PF_EMULATE;
3991

3992
	r = fast_page_fault(vcpu, fault);
3993 3994
	if (r != RET_PF_INVALID)
		return r;
3995

3996
	r = mmu_topup_memory_caches(vcpu, false);
3997 3998
	if (r)
		return r;
3999

4000 4001 4002
	mmu_seq = vcpu->kvm->mmu_notifier_seq;
	smp_rmb();

4003
	if (kvm_faultin_pfn(vcpu, fault, &r))
4004
		return r;
4005

4006
	if (handle_abnormal_pfn(vcpu, fault, ACC_ALL, &r))
4007
		return r;
A
Avi Kivity 已提交
4008

4009
	r = RET_PF_RETRY;
4010

4011
	if (is_tdp_mmu_fault)
4012 4013 4014 4015
		read_lock(&vcpu->kvm->mmu_lock);
	else
		write_lock(&vcpu->kvm->mmu_lock);

4016
	if (fault->slot && mmu_notifier_retry_hva(vcpu->kvm, mmu_seq, fault->hva))
4017
		goto out_unlock;
4018 4019
	r = make_mmu_pages_available(vcpu);
	if (r)
4020
		goto out_unlock;
B
Ben Gardon 已提交
4021

4022
	if (is_tdp_mmu_fault)
4023
		r = kvm_tdp_mmu_map(vcpu, fault);
B
Ben Gardon 已提交
4024
	else
4025
		r = __direct_map(vcpu, fault);
4026

4027
out_unlock:
4028
	if (is_tdp_mmu_fault)
4029 4030 4031
		read_unlock(&vcpu->kvm->mmu_lock);
	else
		write_unlock(&vcpu->kvm->mmu_lock);
4032
	kvm_release_pfn_clean(fault->pfn);
4033
	return r;
A
Avi Kivity 已提交
4034 4035
}

4036 4037
static int nonpaging_page_fault(struct kvm_vcpu *vcpu,
				struct kvm_page_fault *fault)
4038
{
4039
	pgprintk("%s: gva %lx error %x\n", __func__, fault->addr, fault->error_code);
4040 4041

	/* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
4042 4043
	fault->max_level = PG_LEVEL_2M;
	return direct_page_fault(vcpu, fault);
4044 4045
}

4046
int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
4047
				u64 fault_address, char *insn, int insn_len)
4048 4049
{
	int r = 1;
4050
	u32 flags = vcpu->arch.apf.host_apf_flags;
4051

4052 4053 4054 4055 4056 4057
#ifndef CONFIG_X86_64
	/* A 64-bit CR2 should be impossible on 32-bit KVM. */
	if (WARN_ON_ONCE(fault_address >> 32))
		return -EFAULT;
#endif

P
Paolo Bonzini 已提交
4058
	vcpu->arch.l1tf_flush_l1d = true;
4059
	if (!flags) {
4060 4061
		trace_kvm_page_fault(fault_address, error_code);

4062
		if (kvm_event_needs_reinjection(vcpu))
4063 4064 4065
			kvm_mmu_unprotect_page_virt(vcpu, fault_address);
		r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
				insn_len);
4066
	} else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
4067
		vcpu->arch.apf.host_apf_flags = 0;
4068
		local_irq_disable();
4069
		kvm_async_pf_task_wait_schedule(fault_address);
4070
		local_irq_enable();
4071 4072
	} else {
		WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags);
4073
	}
4074

4075 4076 4077 4078
	return r;
}
EXPORT_SYMBOL_GPL(kvm_handle_page_fault);

4079
int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
4080
{
4081 4082 4083
	while (fault->max_level > PG_LEVEL_4K) {
		int page_num = KVM_PAGES_PER_HPAGE(fault->max_level);
		gfn_t base = (fault->addr >> PAGE_SHIFT) & ~(page_num - 1);
4084

4085 4086
		if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
			break;
4087 4088

		--fault->max_level;
4089
	}
4090

4091
	return direct_page_fault(vcpu, fault);
4092 4093
}

4094
static void nonpaging_init_context(struct kvm_mmu *context)
A
Avi Kivity 已提交
4095 4096 4097
{
	context->page_fault = nonpaging_page_fault;
	context->gva_to_gpa = nonpaging_gva_to_gpa;
4098
	context->sync_page = nonpaging_sync_page;
4099
	context->invlpg = NULL;
4100
	context->direct_map = true;
A
Avi Kivity 已提交
4101 4102
}

4103
static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd,
4104 4105
				  union kvm_mmu_page_role role)
{
4106
	return (role.direct || pgd == root->pgd) &&
4107 4108
	       VALID_PAGE(root->hpa) && to_shadow_page(root->hpa) &&
	       role.word == to_shadow_page(root->hpa)->role.word;
4109 4110
}

4111
/*
4112
 * Find out if a previously cached root matching the new pgd/role is available.
4113 4114 4115 4116 4117 4118
 * The current root is also inserted into the cache.
 * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
 * returned.
 * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
 * false is returned. This root should now be freed by the caller.
 */
4119
static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_pgd,
4120 4121 4122 4123
				  union kvm_mmu_page_role new_role)
{
	uint i;
	struct kvm_mmu_root_info root;
4124
	struct kvm_mmu *mmu = vcpu->arch.mmu;
4125

4126
	root.pgd = mmu->root_pgd;
4127 4128
	root.hpa = mmu->root_hpa;

4129
	if (is_root_usable(&root, new_pgd, new_role))
4130 4131
		return true;

4132 4133 4134
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
		swap(root, mmu->prev_roots[i]);

4135
		if (is_root_usable(&root, new_pgd, new_role))
4136 4137 4138 4139
			break;
	}

	mmu->root_hpa = root.hpa;
4140
	mmu->root_pgd = root.pgd;
4141 4142 4143 4144

	return i < KVM_MMU_NUM_PREV_ROOTS;
}

4145
static bool fast_pgd_switch(struct kvm_vcpu *vcpu, gpa_t new_pgd,
4146
			    union kvm_mmu_page_role new_role)
A
Avi Kivity 已提交
4147
{
4148
	struct kvm_mmu *mmu = vcpu->arch.mmu;
4149 4150 4151 4152 4153 4154 4155

	/*
	 * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
	 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
	 * later if necessary.
	 */
	if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
4156
	    mmu->root_level >= PT64_ROOT_4LEVEL)
4157
		return cached_root_available(vcpu, new_pgd, new_role);
4158 4159

	return false;
A
Avi Kivity 已提交
4160 4161
}

4162
static void __kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd,
4163
			      union kvm_mmu_page_role new_role)
A
Avi Kivity 已提交
4164
{
4165
	if (!fast_pgd_switch(vcpu, new_pgd, new_role)) {
4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177
		kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, KVM_MMU_ROOT_CURRENT);
		return;
	}

	/*
	 * It's possible that the cached previous root page is obsolete because
	 * of a change in the MMU generation number. However, changing the
	 * generation number is accompanied by KVM_REQ_MMU_RELOAD, which will
	 * free the root set here and allocate a new one.
	 */
	kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);

4178
	if (force_flush_and_sync_on_reuse) {
4179 4180
		kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
4181
	}
4182 4183 4184 4185 4186 4187 4188 4189 4190

	/*
	 * The last MMIO access's GVA and GPA are cached in the VCPU. When
	 * switching to a new CR3, that GVA->GPA mapping may no longer be
	 * valid. So clear any cached MMIO info even when we don't need to sync
	 * the shadow page tables.
	 */
	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);

4191 4192 4193 4194 4195 4196 4197
	/*
	 * If this is a direct root page, it doesn't have a write flooding
	 * count. Otherwise, clear the write flooding count.
	 */
	if (!new_role.direct)
		__clear_sp_write_flooding_count(
				to_shadow_page(vcpu->arch.mmu->root_hpa));
A
Avi Kivity 已提交
4198 4199
}

4200
void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd)
4201
{
4202
	__kvm_mmu_new_pgd(vcpu, new_pgd, kvm_mmu_calc_root_page_role(vcpu));
4203
}
4204
EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd);
4205

4206 4207
static unsigned long get_cr3(struct kvm_vcpu *vcpu)
{
4208
	return kvm_read_cr3(vcpu);
4209 4210
}

4211
static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
4212
			   unsigned int access)
4213 4214 4215 4216 4217 4218 4219
{
	if (unlikely(is_mmio_spte(*sptep))) {
		if (gfn != get_mmio_spte_gfn(*sptep)) {
			mmu_spte_clear_no_track(sptep);
			return true;
		}

4220
		mark_mmio_spte(vcpu, sptep, gfn, access);
4221 4222 4223 4224 4225 4226
		return true;
	}

	return false;
}

4227 4228 4229 4230 4231
#define PTTYPE_EPT 18 /* arbitrary */
#define PTTYPE PTTYPE_EPT
#include "paging_tmpl.h"
#undef PTTYPE

A
Avi Kivity 已提交
4232 4233 4234 4235 4236 4237 4238 4239
#define PTTYPE 64
#include "paging_tmpl.h"
#undef PTTYPE

#define PTTYPE 32
#include "paging_tmpl.h"
#undef PTTYPE

4240
static void
4241
__reset_rsvds_bits_mask(struct rsvd_bits_validate *rsvd_check,
4242
			u64 pa_bits_rsvd, int level, bool nx, bool gbpages,
4243
			bool pse, bool amd)
4244
{
4245
	u64 gbpages_bit_rsvd = 0;
4246
	u64 nonleaf_bit8_rsvd = 0;
4247
	u64 high_bits_rsvd;
4248

4249
	rsvd_check->bad_mt_xwr = 0;
4250

4251
	if (!gbpages)
4252
		gbpages_bit_rsvd = rsvd_bits(7, 7);
4253

4254 4255 4256 4257 4258 4259 4260 4261 4262
	if (level == PT32E_ROOT_LEVEL)
		high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 62);
	else
		high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);

	/* Note, NX doesn't exist in PDPTEs, this is handled below. */
	if (!nx)
		high_bits_rsvd |= rsvd_bits(63, 63);

4263 4264 4265 4266
	/*
	 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
	 * leaf entries) on AMD CPUs only.
	 */
4267
	if (amd)
4268 4269
		nonleaf_bit8_rsvd = rsvd_bits(8, 8);

4270
	switch (level) {
4271 4272
	case PT32_ROOT_LEVEL:
		/* no rsvd bits for 2 level 4K page table entries */
4273 4274 4275 4276
		rsvd_check->rsvd_bits_mask[0][1] = 0;
		rsvd_check->rsvd_bits_mask[0][0] = 0;
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
4277

4278
		if (!pse) {
4279
			rsvd_check->rsvd_bits_mask[1][1] = 0;
4280 4281 4282
			break;
		}

4283 4284
		if (is_cpuid_PSE36())
			/* 36bits PSE 4MB page */
4285
			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4286 4287
		else
			/* 32 bits PSE 4MB page */
4288
			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4289 4290
		break;
	case PT32E_ROOT_LEVEL:
4291 4292 4293 4294 4295 4296 4297 4298
		rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) |
						   high_bits_rsvd |
						   rsvd_bits(5, 8) |
						   rsvd_bits(1, 2);	/* PDPTE */
		rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;	/* PDE */
		rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;	/* PTE */
		rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
						   rsvd_bits(13, 20);	/* large page */
4299 4300
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
4301
		break;
4302
	case PT64_ROOT_5LEVEL:
4303 4304 4305
		rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd |
						   nonleaf_bit8_rsvd |
						   rsvd_bits(7, 7);
4306 4307
		rsvd_check->rsvd_bits_mask[1][4] =
			rsvd_check->rsvd_bits_mask[0][4];
4308
		fallthrough;
4309
	case PT64_ROOT_4LEVEL:
4310 4311 4312 4313 4314 4315 4316
		rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd |
						   nonleaf_bit8_rsvd |
						   rsvd_bits(7, 7);
		rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd |
						   gbpages_bit_rsvd;
		rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;
		rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4317 4318
		rsvd_check->rsvd_bits_mask[1][3] =
			rsvd_check->rsvd_bits_mask[0][3];
4319 4320 4321 4322 4323
		rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd |
						   gbpages_bit_rsvd |
						   rsvd_bits(13, 29);
		rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
						   rsvd_bits(13, 20); /* large page */
4324 4325
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
4326 4327 4328 4329
		break;
	}
}

4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344
static bool guest_can_use_gbpages(struct kvm_vcpu *vcpu)
{
	/*
	 * If TDP is enabled, let the guest use GBPAGES if they're supported in
	 * hardware.  The hardware page walker doesn't let KVM disable GBPAGES,
	 * i.e. won't treat them as reserved, and KVM doesn't redo the GVA->GPA
	 * walk for performance and complexity reasons.  Not to mention KVM
	 * _can't_ solve the problem because GVA->GPA walks aren't visible to
	 * KVM once a TDP translation is installed.  Mimic hardware behavior so
	 * that KVM's is at least consistent, i.e. doesn't randomly inject #PF.
	 */
	return tdp_enabled ? boot_cpu_has(X86_FEATURE_GBPAGES) :
			     guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES);
}

4345 4346 4347
static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
{
4348
	__reset_rsvds_bits_mask(&context->guest_rsvd_check,
4349
				vcpu->arch.reserved_gpa_bits,
4350
				context->root_level, is_efer_nx(context),
4351
				guest_can_use_gbpages(vcpu),
4352
				is_cr4_pse(context),
4353
				guest_cpuid_is_amd_or_hygon(vcpu));
4354 4355
}

4356 4357
static void
__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4358
			    u64 pa_bits_rsvd, bool execonly)
4359
{
4360
	u64 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
4361
	u64 bad_mt_xwr;
4362

4363 4364 4365 4366 4367
	rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7);
	rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7);
	rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6);
	rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6);
	rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4368 4369

	/* large page */
4370
	rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4371
	rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4372 4373
	rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29);
	rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20);
4374
	rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4375

4376 4377 4378 4379 4380 4381 4382 4383
	bad_mt_xwr = 0xFFull << (2 * 8);	/* bits 3..5 must not be 2 */
	bad_mt_xwr |= 0xFFull << (3 * 8);	/* bits 3..5 must not be 3 */
	bad_mt_xwr |= 0xFFull << (7 * 8);	/* bits 3..5 must not be 7 */
	bad_mt_xwr |= REPEAT_BYTE(1ull << 2);	/* bits 0..2 must not be 010 */
	bad_mt_xwr |= REPEAT_BYTE(1ull << 6);	/* bits 0..2 must not be 110 */
	if (!execonly) {
		/* bits 0..2 must not be 100 unless VMX capabilities allow it */
		bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4384
	}
4385
	rsvd_check->bad_mt_xwr = bad_mt_xwr;
4386 4387
}

4388 4389 4390 4391
static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
		struct kvm_mmu *context, bool execonly)
{
	__reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4392
				    vcpu->arch.reserved_gpa_bits, execonly);
4393 4394
}

4395 4396 4397 4398 4399
static inline u64 reserved_hpa_bits(void)
{
	return rsvd_bits(shadow_phys_bits, 63);
}

4400 4401 4402 4403 4404
/*
 * the page table on host is the shadow page table for the page
 * table in guest or amd nested guest, its mmu features completely
 * follow the features in guest.
 */
4405 4406
static void reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
					struct kvm_mmu *context)
4407
{
4408 4409 4410 4411 4412 4413 4414 4415
	/*
	 * KVM uses NX when TDP is disabled to handle a variety of scenarios,
	 * notably for huge SPTEs if iTLB multi-hit mitigation is enabled and
	 * to generate correct permissions for CR0.WP=0/CR4.SMEP=1/EFER.NX=0.
	 * The iTLB multi-hit workaround can be toggled at any time, so assume
	 * NX can be used by any non-nested shadow MMU to avoid having to reset
	 * MMU contexts.  Note, KVM forces EFER.NX=1 when TDP is disabled.
	 */
4416
	bool uses_nx = is_efer_nx(context) || !tdp_enabled;
4417 4418 4419 4420 4421

	/* @amd adds a check on bit of SPTEs, which KVM shouldn't use anyways. */
	bool is_amd = true;
	/* KVM doesn't use 2-level page tables for the shadow MMU. */
	bool is_pse = false;
4422 4423
	struct rsvd_bits_validate *shadow_zero_check;
	int i;
4424

4425 4426
	WARN_ON_ONCE(context->shadow_root_level < PT32E_ROOT_LEVEL);

4427
	shadow_zero_check = &context->shadow_zero_check;
4428
	__reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(),
4429
				context->shadow_root_level, uses_nx,
4430
				guest_can_use_gbpages(vcpu), is_pse, is_amd);
4431 4432 4433 4434 4435 4436 4437 4438 4439

	if (!shadow_me_mask)
		return;

	for (i = context->shadow_root_level; --i >= 0;) {
		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
	}

4440 4441
}

4442 4443 4444 4445 4446 4447
static inline bool boot_cpu_is_amd(void)
{
	WARN_ON_ONCE(!tdp_enabled);
	return shadow_x_mask == 0;
}

4448 4449 4450 4451 4452 4453 4454 4455
/*
 * the direct page table on host, use as much mmu features as
 * possible, however, kvm currently does not do execution-protection.
 */
static void
reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
				struct kvm_mmu *context)
{
4456 4457 4458 4459 4460
	struct rsvd_bits_validate *shadow_zero_check;
	int i;

	shadow_zero_check = &context->shadow_zero_check;

4461
	if (boot_cpu_is_amd())
4462
		__reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(),
4463
					context->shadow_root_level, false,
4464
					boot_cpu_has(X86_FEATURE_GBPAGES),
4465
					false, true);
4466
	else
4467
		__reset_rsvds_bits_mask_ept(shadow_zero_check,
4468
					    reserved_hpa_bits(), false);
4469

4470 4471 4472 4473 4474 4475 4476
	if (!shadow_me_mask)
		return;

	for (i = context->shadow_root_level; --i >= 0;) {
		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
	}
4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487
}

/*
 * as the comments in reset_shadow_zero_bits_mask() except it
 * is the shadow page table for intel nested guest.
 */
static void
reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
				struct kvm_mmu *context, bool execonly)
{
	__reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4488
				    reserved_hpa_bits(), execonly);
4489 4490
}

4491 4492 4493 4494 4495 4496 4497 4498 4499 4500
#define BYTE_MASK(access) \
	((1 & (access) ? 2 : 0) | \
	 (2 & (access) ? 4 : 0) | \
	 (3 & (access) ? 8 : 0) | \
	 (4 & (access) ? 16 : 0) | \
	 (5 & (access) ? 32 : 0) | \
	 (6 & (access) ? 64 : 0) | \
	 (7 & (access) ? 128 : 0))


4501
static void update_permission_bitmask(struct kvm_mmu *mmu, bool ept)
4502
{
4503 4504 4505 4506 4507 4508
	unsigned byte;

	const u8 x = BYTE_MASK(ACC_EXEC_MASK);
	const u8 w = BYTE_MASK(ACC_WRITE_MASK);
	const u8 u = BYTE_MASK(ACC_USER_MASK);

4509 4510 4511
	bool cr4_smep = is_cr4_smep(mmu);
	bool cr4_smap = is_cr4_smap(mmu);
	bool cr0_wp = is_cr0_wp(mmu);
4512
	bool efer_nx = is_efer_nx(mmu);
4513 4514

	for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4515 4516
		unsigned pfec = byte << 1;

F
Feng Wu 已提交
4517
		/*
4518 4519
		 * Each "*f" variable has a 1 bit for each UWX value
		 * that causes a fault with the given PFEC.
F
Feng Wu 已提交
4520
		 */
4521

4522
		/* Faults from writes to non-writable pages */
4523
		u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
4524
		/* Faults from user mode accesses to supervisor pages */
4525
		u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
4526
		/* Faults from fetches of non-executable pages*/
4527
		u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
4528 4529 4530 4531 4532 4533 4534 4535 4536 4537
		/* Faults from kernel mode fetches of user pages */
		u8 smepf = 0;
		/* Faults from kernel mode accesses of user pages */
		u8 smapf = 0;

		if (!ept) {
			/* Faults from kernel mode accesses to user pages */
			u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;

			/* Not really needed: !nx will cause pte.nx to fault */
4538
			if (!efer_nx)
4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552
				ff = 0;

			/* Allow supervisor writes if !cr0.wp */
			if (!cr0_wp)
				wf = (pfec & PFERR_USER_MASK) ? wf : 0;

			/* Disallow supervisor fetches of user code if cr4.smep */
			if (cr4_smep)
				smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;

			/*
			 * SMAP:kernel-mode data accesses from user-mode
			 * mappings should fault. A fault is considered
			 * as a SMAP violation if all of the following
P
Peng Hao 已提交
4553
			 * conditions are true:
4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566
			 *   - X86_CR4_SMAP is set in CR4
			 *   - A user page is accessed
			 *   - The access is not a fetch
			 *   - Page fault in kernel mode
			 *   - if CPL = 3 or X86_EFLAGS_AC is clear
			 *
			 * Here, we cover the first three conditions.
			 * The fourth is computed dynamically in permission_fault();
			 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
			 * *not* subject to SMAP restrictions.
			 */
			if (cr4_smap)
				smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4567
		}
4568 4569

		mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4570 4571 4572
	}
}

4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596
/*
* PKU is an additional mechanism by which the paging controls access to
* user-mode addresses based on the value in the PKRU register.  Protection
* key violations are reported through a bit in the page fault error code.
* Unlike other bits of the error code, the PK bit is not known at the
* call site of e.g. gva_to_gpa; it must be computed directly in
* permission_fault based on two bits of PKRU, on some machine state (CR4,
* CR0, EFER, CPL), and on other bits of the error code and the page tables.
*
* In particular the following conditions come from the error code, the
* page tables and the machine state:
* - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
* - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
* - PK is always zero if U=0 in the page tables
* - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
*
* The PKRU bitmask caches the result of these four conditions.  The error
* code (minus the P bit) and the page table's U bit form an index into the
* PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
* with the two bits of the PKRU register corresponding to the protection key.
* For the first three conditions above the bits will be 00, thus masking
* away both AD and WD.  For all reads or if the last condition holds, WD
* only will be masked away.
*/
4597
static void update_pkru_bitmask(struct kvm_mmu *mmu)
4598 4599 4600 4601
{
	unsigned bit;
	bool wp;

4602
	if (!is_cr4_pke(mmu)) {
4603 4604 4605 4606
		mmu->pkru_mask = 0;
		return;
	}

4607
	wp = is_cr0_wp(mmu);
4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640

	for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
		unsigned pfec, pkey_bits;
		bool check_pkey, check_write, ff, uf, wf, pte_user;

		pfec = bit << 1;
		ff = pfec & PFERR_FETCH_MASK;
		uf = pfec & PFERR_USER_MASK;
		wf = pfec & PFERR_WRITE_MASK;

		/* PFEC.RSVD is replaced by ACC_USER_MASK. */
		pte_user = pfec & PFERR_RSVD_MASK;

		/*
		 * Only need to check the access which is not an
		 * instruction fetch and is to a user page.
		 */
		check_pkey = (!ff && pte_user);
		/*
		 * write access is controlled by PKRU if it is a
		 * user access or CR0.WP = 1.
		 */
		check_write = check_pkey && wf && (uf || wp);

		/* PKRU.AD stops both read and write access. */
		pkey_bits = !!check_pkey;
		/* PKRU.WD stops write access. */
		pkey_bits |= (!!check_write) << 1;

		mmu->pkru_mask |= (pkey_bits & 3) << pfec;
	}
}

4641 4642
static void reset_guest_paging_metadata(struct kvm_vcpu *vcpu,
					struct kvm_mmu *mmu)
A
Avi Kivity 已提交
4643
{
4644 4645
	if (!is_cr0_pg(mmu))
		return;
4646

4647 4648 4649
	reset_rsvds_bits_mask(vcpu, mmu);
	update_permission_bitmask(mmu, false);
	update_pkru_bitmask(mmu);
A
Avi Kivity 已提交
4650 4651
}

4652
static void paging64_init_context(struct kvm_mmu *context)
A
Avi Kivity 已提交
4653 4654 4655
{
	context->page_fault = paging64_page_fault;
	context->gva_to_gpa = paging64_gva_to_gpa;
4656
	context->sync_page = paging64_sync_page;
M
Marcelo Tosatti 已提交
4657
	context->invlpg = paging64_invlpg;
4658
	context->direct_map = false;
A
Avi Kivity 已提交
4659 4660
}

4661
static void paging32_init_context(struct kvm_mmu *context)
A
Avi Kivity 已提交
4662 4663 4664
{
	context->page_fault = paging32_page_fault;
	context->gva_to_gpa = paging32_gva_to_gpa;
4665
	context->sync_page = paging32_sync_page;
M
Marcelo Tosatti 已提交
4666
	context->invlpg = paging32_invlpg;
4667
	context->direct_map = false;
A
Avi Kivity 已提交
4668 4669
}

4670 4671
static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu,
							 struct kvm_mmu_role_regs *regs)
4672 4673 4674
{
	union kvm_mmu_extended_role ext = {0};

4675 4676 4677 4678 4679 4680
	if (____is_cr0_pg(regs)) {
		ext.cr0_pg = 1;
		ext.cr4_pae = ____is_cr4_pae(regs);
		ext.cr4_smep = ____is_cr4_smep(regs);
		ext.cr4_smap = ____is_cr4_smap(regs);
		ext.cr4_pse = ____is_cr4_pse(regs);
4681 4682 4683 4684

		/* PKEY and LA57 are active iff long mode is active. */
		ext.cr4_pke = ____is_efer_lma(regs) && ____is_cr4_pke(regs);
		ext.cr4_la57 = ____is_efer_lma(regs) && ____is_cr4_la57(regs);
4685
	}
4686 4687 4688 4689 4690 4691

	ext.valid = 1;

	return ext;
}

4692
static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
4693
						   struct kvm_mmu_role_regs *regs,
4694 4695 4696 4697 4698
						   bool base_only)
{
	union kvm_mmu_role role = {0};

	role.base.access = ACC_ALL;
4699 4700 4701 4702
	if (____is_cr0_pg(regs)) {
		role.base.efer_nx = ____is_efer_nx(regs);
		role.base.cr0_wp = ____is_cr0_wp(regs);
	}
4703 4704 4705 4706 4707 4708
	role.base.smm = is_smm(vcpu);
	role.base.guest_mode = is_guest_mode(vcpu);

	if (base_only)
		return role;

4709
	role.ext = kvm_calc_mmu_role_ext(vcpu, regs);
4710 4711 4712 4713

	return role;
}

4714 4715
static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu)
{
4716 4717 4718 4719
	/* tdp_root_level is architecture forced level, use it if nonzero */
	if (tdp_root_level)
		return tdp_root_level;

4720
	/* Use 5-level TDP if and only if it's useful/necessary. */
4721
	if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48)
4722 4723
		return 4;

4724
	return max_tdp_level;
4725 4726
}

4727
static union kvm_mmu_role
4728 4729
kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu,
				struct kvm_mmu_role_regs *regs, bool base_only)
4730
{
4731
	union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, regs, base_only);
4732

4733
	role.base.ad_disabled = (shadow_accessed_mask == 0);
4734
	role.base.level = kvm_mmu_get_tdp_level(vcpu);
4735
	role.base.direct = true;
4736
	role.base.gpte_is_8_bytes = true;
4737 4738 4739 4740

	return role;
}

4741
static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4742
{
4743
	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4744
	struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
4745
	union kvm_mmu_role new_role =
4746
		kvm_calc_tdp_mmu_root_page_role(vcpu, &regs, false);
4747

4748 4749 4750 4751
	if (new_role.as_u64 == context->mmu_role.as_u64)
		return;

	context->mmu_role.as_u64 = new_role.as_u64;
4752
	context->page_fault = kvm_tdp_page_fault;
4753
	context->sync_page = nonpaging_sync_page;
4754
	context->invlpg = NULL;
4755
	context->shadow_root_level = kvm_mmu_get_tdp_level(vcpu);
4756
	context->direct_map = true;
4757
	context->get_guest_pgd = get_cr3;
4758
	context->get_pdptr = kvm_pdptr_read;
4759
	context->inject_page_fault = kvm_inject_page_fault;
4760
	context->root_level = role_regs_to_root_level(&regs);
4761

4762
	if (!is_cr0_pg(context))
4763
		context->gva_to_gpa = nonpaging_gva_to_gpa;
4764
	else if (is_cr4_pae(context))
4765
		context->gva_to_gpa = paging64_gva_to_gpa;
4766
	else
4767
		context->gva_to_gpa = paging32_gva_to_gpa;
4768

4769
	reset_guest_paging_metadata(vcpu, context);
4770
	reset_tdp_shadow_zero_bits_mask(vcpu, context);
4771 4772
}

4773
static union kvm_mmu_role
4774 4775
kvm_calc_shadow_root_page_role_common(struct kvm_vcpu *vcpu,
				      struct kvm_mmu_role_regs *regs, bool base_only)
4776
{
4777
	union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, regs, base_only);
4778

4779 4780
	role.base.smep_andnot_wp = role.ext.cr4_smep && !____is_cr0_wp(regs);
	role.base.smap_andnot_wp = role.ext.cr4_smap && !____is_cr0_wp(regs);
4781
	role.base.gpte_is_8_bytes = ____is_cr0_pg(regs) && ____is_cr4_pae(regs);
4782

4783 4784 4785 4786
	return role;
}

static union kvm_mmu_role
4787 4788
kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu,
				   struct kvm_mmu_role_regs *regs, bool base_only)
4789 4790
{
	union kvm_mmu_role role =
4791
		kvm_calc_shadow_root_page_role_common(vcpu, regs, base_only);
4792

4793
	role.base.direct = !____is_cr0_pg(regs);
4794

4795
	if (!____is_efer_lma(regs))
4796
		role.base.level = PT32E_ROOT_LEVEL;
4797
	else if (____is_cr4_la57(regs))
4798
		role.base.level = PT64_ROOT_5LEVEL;
4799
	else
4800
		role.base.level = PT64_ROOT_4LEVEL;
4801 4802 4803 4804

	return role;
}

4805
static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
4806
				    struct kvm_mmu_role_regs *regs,
4807
				    union kvm_mmu_role new_role)
4808
{
4809 4810
	if (new_role.as_u64 == context->mmu_role.as_u64)
		return;
4811

4812
	context->mmu_role.as_u64 = new_role.as_u64;
4813

4814
	if (!is_cr0_pg(context))
4815
		nonpaging_init_context(context);
4816
	else if (is_cr4_pae(context))
4817
		paging64_init_context(context);
A
Avi Kivity 已提交
4818
	else
4819
		paging32_init_context(context);
4820
	context->root_level = role_regs_to_root_level(regs);
4821

4822
	reset_guest_paging_metadata(vcpu, context);
4823 4824
	context->shadow_root_level = new_role.base.level;

4825
	reset_shadow_zero_bits_mask(vcpu, context);
4826
}
4827

4828 4829
static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu,
				struct kvm_mmu_role_regs *regs)
4830
{
4831
	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4832
	union kvm_mmu_role new_role =
4833
		kvm_calc_shadow_mmu_root_page_role(vcpu, regs, false);
4834

4835
	shadow_mmu_init_context(vcpu, context, regs, new_role);
4836 4837
}

4838
static union kvm_mmu_role
4839 4840
kvm_calc_shadow_npt_root_page_role(struct kvm_vcpu *vcpu,
				   struct kvm_mmu_role_regs *regs)
4841 4842
{
	union kvm_mmu_role role =
4843
		kvm_calc_shadow_root_page_role_common(vcpu, regs, false);
4844 4845

	role.base.direct = false;
4846
	role.base.level = kvm_mmu_get_tdp_level(vcpu);
4847 4848 4849 4850

	return role;
}

4851 4852
void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0,
			     unsigned long cr4, u64 efer, gpa_t nested_cr3)
4853
{
4854
	struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4855 4856 4857 4858 4859
	struct kvm_mmu_role_regs regs = {
		.cr0 = cr0,
		.cr4 = cr4,
		.efer = efer,
	};
4860
	union kvm_mmu_role new_role;
4861

4862
	new_role = kvm_calc_shadow_npt_root_page_role(vcpu, &regs);
4863

4864
	__kvm_mmu_new_pgd(vcpu, nested_cr3, new_role.base);
4865

4866
	shadow_mmu_init_context(vcpu, context, &regs, new_role);
4867 4868
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu);
4869

4870 4871
static union kvm_mmu_role
kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
4872
				   bool execonly, u8 level)
4873
{
4874
	union kvm_mmu_role role = {0};
4875

4876 4877
	/* SMM flag is inherited from root_mmu */
	role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
4878

4879
	role.base.level = level;
4880
	role.base.gpte_is_8_bytes = true;
4881 4882 4883 4884
	role.base.direct = false;
	role.base.ad_disabled = !accessed_dirty;
	role.base.guest_mode = true;
	role.base.access = ACC_ALL;
4885

4886 4887
	/* EPT, and thus nested EPT, does not consume CR0, CR4, nor EFER. */
	role.ext.word = 0;
4888
	role.ext.execonly = execonly;
4889
	role.ext.valid = 1;
4890 4891 4892 4893

	return role;
}

4894
void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
4895
			     bool accessed_dirty, gpa_t new_eptp)
N
Nadav Har'El 已提交
4896
{
4897
	struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4898
	u8 level = vmx_eptp_page_walk_level(new_eptp);
4899 4900
	union kvm_mmu_role new_role =
		kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
4901
						   execonly, level);
4902

4903
	__kvm_mmu_new_pgd(vcpu, new_eptp, new_role.base);
4904 4905 4906

	if (new_role.as_u64 == context->mmu_role.as_u64)
		return;
4907

4908 4909
	context->mmu_role.as_u64 = new_role.as_u64;

4910
	context->shadow_root_level = level;
N
Nadav Har'El 已提交
4911

4912
	context->ept_ad = accessed_dirty;
N
Nadav Har'El 已提交
4913 4914 4915 4916
	context->page_fault = ept_page_fault;
	context->gva_to_gpa = ept_gva_to_gpa;
	context->sync_page = ept_sync_page;
	context->invlpg = ept_invlpg;
4917
	context->root_level = level;
N
Nadav Har'El 已提交
4918
	context->direct_map = false;
4919

4920
	update_permission_bitmask(context, true);
4921
	update_pkru_bitmask(context);
N
Nadav Har'El 已提交
4922
	reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4923
	reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
N
Nadav Har'El 已提交
4924 4925 4926
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);

4927
static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4928
{
4929
	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4930
	struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
4931

4932
	kvm_init_shadow_mmu(vcpu, &regs);
4933

4934
	context->get_guest_pgd     = get_cr3;
4935 4936
	context->get_pdptr         = kvm_pdptr_read;
	context->inject_page_fault = kvm_inject_page_fault;
A
Avi Kivity 已提交
4937 4938
}

4939 4940
static union kvm_mmu_role
kvm_calc_nested_mmu_role(struct kvm_vcpu *vcpu, struct kvm_mmu_role_regs *regs)
4941
{
4942 4943 4944
	union kvm_mmu_role role;

	role = kvm_calc_shadow_root_page_role_common(vcpu, regs, false);
4945 4946 4947 4948 4949 4950 4951

	/*
	 * Nested MMUs are used only for walking L2's gva->gpa, they never have
	 * shadow pages of their own and so "direct" has no meaning.   Set it
	 * to "true" to try to detect bogus usage of the nested MMU.
	 */
	role.base.direct = true;
4952
	role.base.level = role_regs_to_root_level(regs);
4953 4954 4955
	return role;
}

4956
static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4957
{
4958 4959
	struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
	union kvm_mmu_role new_role = kvm_calc_nested_mmu_role(vcpu, &regs);
4960 4961
	struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;

4962 4963 4964 4965
	if (new_role.as_u64 == g_context->mmu_role.as_u64)
		return;

	g_context->mmu_role.as_u64 = new_role.as_u64;
4966
	g_context->get_guest_pgd     = get_cr3;
4967
	g_context->get_pdptr         = kvm_pdptr_read;
4968
	g_context->inject_page_fault = kvm_inject_page_fault;
4969
	g_context->root_level        = new_role.base.level;
4970

4971 4972 4973 4974 4975 4976
	/*
	 * L2 page tables are never shadowed, so there is no need to sync
	 * SPTEs.
	 */
	g_context->invlpg            = NULL;

4977
	/*
4978
	 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
4979 4980 4981 4982 4983
	 * L1's nested page tables (e.g. EPT12). The nested translation
	 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
	 * L2's page tables as the first level of translation and L1's
	 * nested page tables as the second level of translation. Basically
	 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
4984
	 */
4985
	if (!is_paging(vcpu))
4986
		g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4987
	else if (is_long_mode(vcpu))
4988
		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4989
	else if (is_pae(vcpu))
4990
		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4991
	else
4992 4993
		g_context->gva_to_gpa = paging32_gva_to_gpa_nested;

4994
	reset_guest_paging_metadata(vcpu, g_context);
4995 4996
}

4997
void kvm_init_mmu(struct kvm_vcpu *vcpu)
4998
{
4999
	if (mmu_is_nested(vcpu))
5000
		init_kvm_nested_mmu(vcpu);
5001
	else if (tdp_enabled)
5002
		init_kvm_tdp_mmu(vcpu);
5003
	else
5004
		init_kvm_softmmu(vcpu);
5005
}
5006
EXPORT_SYMBOL_GPL(kvm_init_mmu);
5007

5008 5009 5010
static union kvm_mmu_page_role
kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
{
5011
	struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
5012 5013
	union kvm_mmu_role role;

5014
	if (tdp_enabled)
5015
		role = kvm_calc_tdp_mmu_root_page_role(vcpu, &regs, true);
5016
	else
5017
		role = kvm_calc_shadow_mmu_root_page_role(vcpu, &regs, true);
5018 5019

	return role.base;
5020
}
5021

5022 5023 5024 5025 5026 5027 5028 5029 5030 5031
void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu)
{
	/*
	 * Invalidate all MMU roles to force them to reinitialize as CPUID
	 * information is factored into reserved bit calculations.
	 */
	vcpu->arch.root_mmu.mmu_role.ext.valid = 0;
	vcpu->arch.guest_mmu.mmu_role.ext.valid = 0;
	vcpu->arch.nested_mmu.mmu_role.ext.valid = 0;
	kvm_mmu_reset_context(vcpu);
5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051

	/*
	 * KVM does not correctly handle changing guest CPUID after KVM_RUN, as
	 * MAXPHYADDR, GBPAGES support, AMD reserved bit behavior, etc.. aren't
	 * tracked in kvm_mmu_page_role.  As a result, KVM may miss guest page
	 * faults due to reusing SPs/SPTEs.  Alert userspace, but otherwise
	 * sweep the problem under the rug.
	 *
	 * KVM's horrific CPUID ABI makes the problem all but impossible to
	 * solve, as correctly handling multiple vCPU models (with respect to
	 * paging and physical address properties) in a single VM would require
	 * tracking all relevant CPUID information in kvm_mmu_page_role.  That
	 * is very undesirable as it would double the memory requirements for
	 * gfn_track (see struct kvm_mmu_page_role comments), and in practice
	 * no sane VMM mucks with the core vCPU model on the fly.
	 */
	if (vcpu->arch.last_vmentry_cpu != -1) {
		pr_warn_ratelimited("KVM: KVM_SET_CPUID{,2} after KVM_RUN may cause guest instability\n");
		pr_warn_ratelimited("KVM: KVM_SET_CPUID{,2} will fail after KVM_RUN starting with Linux 5.16\n");
	}
5052 5053
}

5054
void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
5055
{
5056
	kvm_mmu_unload(vcpu);
5057
	kvm_init_mmu(vcpu);
A
Avi Kivity 已提交
5058
}
5059
EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
A
Avi Kivity 已提交
5060 5061

int kvm_mmu_load(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
5062
{
5063 5064
	int r;

5065
	r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->direct_map);
A
Avi Kivity 已提交
5066 5067
	if (r)
		goto out;
5068
	r = mmu_alloc_special_roots(vcpu);
A
Avi Kivity 已提交
5069 5070
	if (r)
		goto out;
5071
	if (vcpu->arch.mmu->direct_map)
5072 5073 5074
		r = mmu_alloc_direct_roots(vcpu);
	else
		r = mmu_alloc_shadow_roots(vcpu);
5075 5076
	if (r)
		goto out;
5077 5078 5079

	kvm_mmu_sync_roots(vcpu);

5080
	kvm_mmu_load_pgd(vcpu);
5081
	static_call(kvm_x86_tlb_flush_current)(vcpu);
5082 5083
out:
	return r;
A
Avi Kivity 已提交
5084
}
A
Avi Kivity 已提交
5085 5086 5087

void kvm_mmu_unload(struct kvm_vcpu *vcpu)
{
5088 5089 5090 5091
	kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
	WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
	kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
	WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
A
Avi Kivity 已提交
5092
}
A
Avi Kivity 已提交
5093

5094 5095 5096 5097 5098 5099 5100 5101
static bool need_remote_flush(u64 old, u64 new)
{
	if (!is_shadow_present_pte(old))
		return false;
	if (!is_shadow_present_pte(new))
		return true;
	if ((old ^ new) & PT64_BASE_ADDR_MASK)
		return true;
5102 5103
	old ^= shadow_nx_mask;
	new ^= shadow_nx_mask;
5104 5105 5106
	return (old & ~new & PT64_PERM_MASK) != 0;
}

5107
static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
5108
				    int *bytes)
5109
{
5110
	u64 gentry = 0;
5111
	int r;
5112 5113 5114

	/*
	 * Assume that the pte write on a page table of the same type
5115 5116
	 * as the current vcpu paging mode since we update the sptes only
	 * when they have the same mode.
5117
	 */
5118
	if (is_pae(vcpu) && *bytes == 4) {
5119
		/* Handle a 32-bit guest writing two halves of a 64-bit gpte */
5120 5121
		*gpa &= ~(gpa_t)7;
		*bytes = 8;
5122 5123
	}

5124 5125 5126 5127
	if (*bytes == 4 || *bytes == 8) {
		r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
		if (r)
			gentry = 0;
5128 5129
	}

5130 5131 5132 5133 5134 5135 5136
	return gentry;
}

/*
 * If we're seeing too many writes to a page, it may no longer be a page table,
 * or we may be forking, in which case it is better to unmap the page.
 */
5137
static bool detect_write_flooding(struct kvm_mmu_page *sp)
5138
{
5139 5140 5141 5142
	/*
	 * Skip write-flooding detected for the sp whose level is 1, because
	 * it can become unsync, then the guest page is not write-protected.
	 */
5143
	if (sp->role.level == PG_LEVEL_4K)
5144
		return false;
5145

5146 5147
	atomic_inc(&sp->write_flooding_count);
	return atomic_read(&sp->write_flooding_count) >= 3;
5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162
}

/*
 * Misaligned accesses are too much trouble to fix up; also, they usually
 * indicate a page is not used as a page table.
 */
static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
				    int bytes)
{
	unsigned offset, pte_size, misaligned;

	pgprintk("misaligned: gpa %llx bytes %d role %x\n",
		 gpa, bytes, sp->role.word);

	offset = offset_in_page(gpa);
5163
	pte_size = sp->role.gpte_is_8_bytes ? 8 : 4;
5164 5165 5166 5167 5168 5169 5170 5171

	/*
	 * Sometimes, the OS only writes the last one bytes to update status
	 * bits, for example, in linux, andb instruction is used in clear_bit().
	 */
	if (!(offset & (pte_size - 1)) && bytes == 1)
		return false;

5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186
	misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
	misaligned |= bytes < 4;

	return misaligned;
}

static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
{
	unsigned page_offset, quadrant;
	u64 *spte;
	int level;

	page_offset = offset_in_page(gpa);
	level = sp->role.level;
	*nspte = 1;
5187
	if (!sp->role.gpte_is_8_bytes) {
5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208
		page_offset <<= 1;	/* 32->64 */
		/*
		 * A 32-bit pde maps 4MB while the shadow pdes map
		 * only 2MB.  So we need to double the offset again
		 * and zap two pdes instead of one.
		 */
		if (level == PT32_ROOT_LEVEL) {
			page_offset &= ~7; /* kill rounding error */
			page_offset <<= 1;
			*nspte = 2;
		}
		quadrant = page_offset >> PAGE_SHIFT;
		page_offset &= ~PAGE_MASK;
		if (quadrant != sp->role.quadrant)
			return NULL;
	}

	spte = &sp->spt[page_offset / sizeof(*spte)];
	return spte;
}

5209
static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
5210 5211
			      const u8 *new, int bytes,
			      struct kvm_page_track_notifier_node *node)
5212 5213 5214 5215 5216 5217
{
	gfn_t gfn = gpa >> PAGE_SHIFT;
	struct kvm_mmu_page *sp;
	LIST_HEAD(invalid_list);
	u64 entry, gentry, *spte;
	int npte;
5218
	bool flush = false;
5219 5220 5221 5222 5223

	/*
	 * If we don't have indirect shadow pages, it means no page is
	 * write-protected, so we can exit simply.
	 */
5224
	if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
5225 5226 5227 5228 5229 5230
		return;

	pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);

	/*
	 * No need to care whether allocation memory is successful
I
Ingo Molnar 已提交
5231
	 * or not since pte prefetch is skipped if it does not have
5232 5233
	 * enough objects in the cache.
	 */
5234
	mmu_topup_memory_caches(vcpu, true);
5235

5236
	write_lock(&vcpu->kvm->mmu_lock);
5237 5238 5239

	gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);

5240
	++vcpu->kvm->stat.mmu_pte_write;
5241
	kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
5242

5243
	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
5244
		if (detect_write_misaligned(sp, gpa, bytes) ||
5245
		      detect_write_flooding(sp)) {
5246
			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
A
Avi Kivity 已提交
5247
			++vcpu->kvm->stat.mmu_flooded;
5248 5249
			continue;
		}
5250 5251 5252 5253 5254

		spte = get_written_sptes(sp, gpa, &npte);
		if (!spte)
			continue;

5255
		while (npte--) {
5256
			entry = *spte;
5257
			mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL);
5258 5259
			if (gentry && sp->role.level != PG_LEVEL_4K)
				++vcpu->kvm->stat.mmu_pde_zapped;
G
Gleb Natapov 已提交
5260
			if (need_remote_flush(entry, *spte))
5261
				flush = true;
5262
			++spte;
5263 5264
		}
	}
5265
	kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush);
5266
	kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
5267
	write_unlock(&vcpu->kvm->mmu_lock);
5268 5269
}

5270
int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
5271
		       void *insn, int insn_len)
5272
{
5273
	int r, emulation_type = EMULTYPE_PF;
5274
	bool direct = vcpu->arch.mmu->direct_map;
5275

5276
	if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
5277 5278
		return RET_PF_RETRY;

5279
	r = RET_PF_INVALID;
5280
	if (unlikely(error_code & PFERR_RSVD_MASK)) {
5281
		r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
5282
		if (r == RET_PF_EMULATE)
5283 5284
			goto emulate;
	}
5285

5286
	if (r == RET_PF_INVALID) {
5287 5288
		r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
					  lower_32_bits(error_code), false);
5289
		if (KVM_BUG_ON(r == RET_PF_INVALID, vcpu->kvm))
5290
			return -EIO;
5291 5292
	}

5293
	if (r < 0)
5294
		return r;
5295 5296
	if (r != RET_PF_EMULATE)
		return 1;
5297

5298 5299 5300 5301 5302 5303 5304
	/*
	 * Before emulating the instruction, check if the error code
	 * was due to a RO violation while translating the guest page.
	 * This can occur when using nested virtualization with nested
	 * paging in both guests. If true, we simply unprotect the page
	 * and resume the guest.
	 */
5305
	if (vcpu->arch.mmu->direct_map &&
5306
	    (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5307
		kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
5308 5309 5310
		return 1;
	}

5311 5312 5313 5314 5315 5316
	/*
	 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
	 * optimistically try to just unprotect the page and let the processor
	 * re-execute the instruction that caused the page fault.  Do not allow
	 * retrying MMIO emulation, as it's not only pointless but could also
	 * cause us to enter an infinite loop because the processor will keep
5317 5318 5319 5320
	 * faulting on the non-existent MMIO address.  Retrying an instruction
	 * from a nested guest is also pointless and dangerous as we are only
	 * explicitly shadowing L1's page tables, i.e. unprotecting something
	 * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5321
	 */
5322
	if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
5323
		emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
5324
emulate:
5325
	return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
5326
				       insn_len);
5327 5328 5329
}
EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);

5330 5331
void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
			    gva_t gva, hpa_t root_hpa)
M
Marcelo Tosatti 已提交
5332
{
5333
	int i;
5334

5335 5336 5337 5338 5339 5340
	/* It's actually a GPA for vcpu->arch.guest_mmu.  */
	if (mmu != &vcpu->arch.guest_mmu) {
		/* INVLPG on a non-canonical address is a NOP according to the SDM.  */
		if (is_noncanonical_address(gva, vcpu))
			return;

5341
		static_call(kvm_x86_tlb_flush_gva)(vcpu, gva);
5342 5343 5344
	}

	if (!mmu->invlpg)
5345 5346
		return;

5347 5348
	if (root_hpa == INVALID_PAGE) {
		mmu->invlpg(vcpu, gva, mmu->root_hpa);
5349

5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367
		/*
		 * INVLPG is required to invalidate any global mappings for the VA,
		 * irrespective of PCID. Since it would take us roughly similar amount
		 * of work to determine whether any of the prev_root mappings of the VA
		 * is marked global, or to just sync it blindly, so we might as well
		 * just always sync it.
		 *
		 * Mappings not reachable via the current cr3 or the prev_roots will be
		 * synced when switching to that cr3, so nothing needs to be done here
		 * for them.
		 */
		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
			if (VALID_PAGE(mmu->prev_roots[i].hpa))
				mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
	} else {
		mmu->invlpg(vcpu, gva, root_hpa);
	}
}
5368

5369 5370 5371
void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
{
	kvm_mmu_invalidate_gva(vcpu, vcpu->arch.mmu, gva, INVALID_PAGE);
M
Marcelo Tosatti 已提交
5372 5373 5374 5375
	++vcpu->stat.invlpg;
}
EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);

5376

5377 5378
void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
{
5379
	struct kvm_mmu *mmu = vcpu->arch.mmu;
5380
	bool tlb_flush = false;
5381
	uint i;
5382 5383

	if (pcid == kvm_get_active_pcid(vcpu)) {
5384
		mmu->invlpg(vcpu, gva, mmu->root_hpa);
5385
		tlb_flush = true;
5386 5387
	}

5388 5389
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
		if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5390
		    pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) {
5391 5392 5393
			mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
			tlb_flush = true;
		}
5394
	}
5395

5396
	if (tlb_flush)
5397
		static_call(kvm_x86_tlb_flush_gva)(vcpu, gva);
5398

5399 5400 5401
	++vcpu->stat.invlpg;

	/*
5402 5403 5404
	 * Mappings not reachable via the current cr3 or the prev_roots will be
	 * synced when switching to that cr3, so nothing needs to be done here
	 * for them.
5405 5406 5407
	 */
}

5408 5409
void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level,
		       int tdp_max_root_level, int tdp_huge_page_level)
5410
{
5411
	tdp_enabled = enable_tdp;
5412
	tdp_root_level = tdp_forced_root_level;
5413
	max_tdp_level = tdp_max_root_level;
5414 5415

	/*
5416
	 * max_huge_page_level reflects KVM's MMU capabilities irrespective
5417 5418 5419 5420 5421 5422
	 * of kernel support, e.g. KVM may be capable of using 1GB pages when
	 * the kernel is not.  But, KVM never creates a page size greater than
	 * what is used by the kernel for any given HVA, i.e. the kernel's
	 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
	 */
	if (tdp_enabled)
5423
		max_huge_page_level = tdp_huge_page_level;
5424
	else if (boot_cpu_has(X86_FEATURE_GBPAGES))
5425
		max_huge_page_level = PG_LEVEL_1G;
5426
	else
5427
		max_huge_page_level = PG_LEVEL_2M;
5428
}
5429
EXPORT_SYMBOL_GPL(kvm_configure_mmu);
5430 5431

/* The return value indicates if tlb flush on all vcpus is needed. */
5432 5433 5434
typedef bool (*slot_level_handler) (struct kvm *kvm,
				    struct kvm_rmap_head *rmap_head,
				    const struct kvm_memory_slot *slot);
5435 5436 5437

/* The caller should hold mmu-lock before calling this function. */
static __always_inline bool
5438
slot_handle_level_range(struct kvm *kvm, const struct kvm_memory_slot *memslot,
5439
			slot_level_handler fn, int start_level, int end_level,
5440 5441
			gfn_t start_gfn, gfn_t end_gfn, bool flush_on_yield,
			bool flush)
5442 5443 5444 5445 5446 5447
{
	struct slot_rmap_walk_iterator iterator;

	for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
			end_gfn, &iterator) {
		if (iterator.rmap)
5448
			flush |= fn(kvm, iterator.rmap, memslot);
5449

5450
		if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
5451
			if (flush && flush_on_yield) {
5452 5453 5454
				kvm_flush_remote_tlbs_with_address(kvm,
						start_gfn,
						iterator.gfn - start_gfn + 1);
5455 5456
				flush = false;
			}
5457
			cond_resched_rwlock_write(&kvm->mmu_lock);
5458 5459 5460 5461 5462 5463 5464
		}
	}

	return flush;
}

static __always_inline bool
5465
slot_handle_level(struct kvm *kvm, const struct kvm_memory_slot *memslot,
5466
		  slot_level_handler fn, int start_level, int end_level,
5467
		  bool flush_on_yield)
5468 5469 5470 5471
{
	return slot_handle_level_range(kvm, memslot, fn, start_level,
			end_level, memslot->base_gfn,
			memslot->base_gfn + memslot->npages - 1,
5472
			flush_on_yield, false);
5473 5474 5475
}

static __always_inline bool
5476 5477
slot_handle_level_4k(struct kvm *kvm, const struct kvm_memory_slot *memslot,
		     slot_level_handler fn, bool flush_on_yield)
5478
{
5479
	return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
5480
				 PG_LEVEL_4K, flush_on_yield);
5481 5482
}

5483
static void free_mmu_pages(struct kvm_mmu *mmu)
A
Avi Kivity 已提交
5484
{
5485 5486
	if (!tdp_enabled && mmu->pae_root)
		set_memory_encrypted((unsigned long)mmu->pae_root, 1);
5487
	free_page((unsigned long)mmu->pae_root);
5488
	free_page((unsigned long)mmu->pml4_root);
5489
	free_page((unsigned long)mmu->pml5_root);
A
Avi Kivity 已提交
5490 5491
}

5492
static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
A
Avi Kivity 已提交
5493
{
5494
	struct page *page;
A
Avi Kivity 已提交
5495 5496
	int i;

5497 5498 5499 5500 5501 5502
	mmu->root_hpa = INVALID_PAGE;
	mmu->root_pgd = 0;
	mmu->translate_gpa = translate_gpa;
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
		mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;

5503
	/*
5504 5505 5506 5507
	 * When using PAE paging, the four PDPTEs are treated as 'root' pages,
	 * while the PDP table is a per-vCPU construct that's allocated at MMU
	 * creation.  When emulating 32-bit mode, cr3 is only 32 bits even on
	 * x86_64.  Therefore we need to allocate the PDP table in the first
5508 5509 5510 5511 5512
	 * 4GB of memory, which happens to fit the DMA32 zone.  TDP paging
	 * generally doesn't use PAE paging and can skip allocating the PDP
	 * table.  The main exception, handled here, is SVM's 32-bit NPT.  The
	 * other exception is for shadowing L1's 32-bit or PAE NPT on 64-bit
	 * KVM; that horror is handled on-demand by mmu_alloc_shadow_roots().
5513
	 */
5514
	if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
5515 5516
		return 0;

5517
	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
5518
	if (!page)
5519 5520
		return -ENOMEM;

5521
	mmu->pae_root = page_address(page);
5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535

	/*
	 * CR3 is only 32 bits when PAE paging is used, thus it's impossible to
	 * get the CPU to treat the PDPTEs as encrypted.  Decrypt the page so
	 * that KVM's writes and the CPU's reads get along.  Note, this is
	 * only necessary when using shadow paging, as 64-bit NPT can get at
	 * the C-bit even when shadowing 32-bit NPT, and SME isn't supported
	 * by 32-bit kernels (when KVM itself uses 32-bit NPT).
	 */
	if (!tdp_enabled)
		set_memory_decrypted((unsigned long)mmu->pae_root, 1);
	else
		WARN_ON_ONCE(shadow_me_mask);

5536
	for (i = 0; i < 4; ++i)
5537
		mmu->pae_root[i] = INVALID_PAE_ROOT;
5538

A
Avi Kivity 已提交
5539 5540 5541
	return 0;
}

5542
int kvm_mmu_create(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
5543
{
5544
	int ret;
5545

5546
	vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache;
5547 5548
	vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO;

5549
	vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache;
5550
	vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO;
5551

5552 5553
	vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO;

5554 5555
	vcpu->arch.mmu = &vcpu->arch.root_mmu;
	vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
A
Avi Kivity 已提交
5556

5557
	vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5558

5559
	ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu);
5560 5561 5562
	if (ret)
		return ret;

5563
	ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu);
5564 5565 5566 5567 5568 5569 5570
	if (ret)
		goto fail_allocate_root;

	return ret;
 fail_allocate_root:
	free_mmu_pages(&vcpu->arch.guest_mmu);
	return ret;
A
Avi Kivity 已提交
5571 5572
}

5573
#define BATCH_ZAP_PAGES	10
5574 5575 5576
static void kvm_zap_obsolete_pages(struct kvm *kvm)
{
	struct kvm_mmu_page *sp, *node;
5577
	int nr_zapped, batch = 0;
5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589

restart:
	list_for_each_entry_safe_reverse(sp, node,
	      &kvm->arch.active_mmu_pages, link) {
		/*
		 * No obsolete valid page exists before a newly created page
		 * since active_mmu_pages is a FIFO list.
		 */
		if (!is_obsolete_sp(kvm, sp))
			break;

		/*
5590 5591 5592
		 * Invalid pages should never land back on the list of active
		 * pages.  Skip the bogus page, otherwise we'll get stuck in an
		 * infinite loop if the page gets put back on the list (again).
5593
		 */
5594
		if (WARN_ON(sp->role.invalid))
5595 5596
			continue;

5597 5598 5599 5600 5601 5602
		/*
		 * No need to flush the TLB since we're only zapping shadow
		 * pages with an obsolete generation number and all vCPUS have
		 * loaded a new root, i.e. the shadow pages being zapped cannot
		 * be in active use by the guest.
		 */
5603
		if (batch >= BATCH_ZAP_PAGES &&
5604
		    cond_resched_rwlock_write(&kvm->mmu_lock)) {
5605
			batch = 0;
5606 5607 5608
			goto restart;
		}

5609 5610
		if (__kvm_mmu_prepare_zap_page(kvm, sp,
				&kvm->arch.zapped_obsolete_pages, &nr_zapped)) {
5611
			batch += nr_zapped;
5612
			goto restart;
5613
		}
5614 5615
	}

5616 5617 5618 5619 5620
	/*
	 * Trigger a remote TLB flush before freeing the page tables to ensure
	 * KVM is not in the middle of a lockless shadow page table walk, which
	 * may reference the pages.
	 */
5621
	kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634
}

/*
 * Fast invalidate all shadow pages and use lock-break technique
 * to zap obsolete pages.
 *
 * It's required when memslot is being deleted or VM is being
 * destroyed, in these cases, we should ensure that KVM MMU does
 * not use any resource of the being-deleted slot or all slots
 * after calling the function.
 */
static void kvm_mmu_zap_all_fast(struct kvm *kvm)
{
5635 5636
	lockdep_assert_held(&kvm->slots_lock);

5637
	write_lock(&kvm->mmu_lock);
5638
	trace_kvm_mmu_zap_all_fast(kvm);
5639 5640 5641 5642 5643 5644 5645 5646 5647

	/*
	 * Toggle mmu_valid_gen between '0' and '1'.  Because slots_lock is
	 * held for the entire duration of zapping obsolete pages, it's
	 * impossible for there to be multiple invalid generations associated
	 * with *valid* shadow pages at any given time, i.e. there is exactly
	 * one valid generation and (at most) one invalid generation.
	 */
	kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
5648

5649 5650 5651 5652 5653 5654 5655 5656 5657
	/* In order to ensure all threads see this change when
	 * handling the MMU reload signal, this must happen in the
	 * same critical section as kvm_reload_remote_mmus, and
	 * before kvm_zap_obsolete_pages as kvm_zap_obsolete_pages
	 * could drop the MMU lock and yield.
	 */
	if (is_tdp_mmu_enabled(kvm))
		kvm_tdp_mmu_invalidate_all_roots(kvm);

5658 5659 5660 5661 5662 5663 5664 5665 5666 5667
	/*
	 * Notify all vcpus to reload its shadow page table and flush TLB.
	 * Then all vcpus will switch to new shadow page table with the new
	 * mmu_valid_gen.
	 *
	 * Note: we need to do this under the protection of mmu_lock,
	 * otherwise, vcpu would purge shadow page but miss tlb flush.
	 */
	kvm_reload_remote_mmus(kvm);

5668
	kvm_zap_obsolete_pages(kvm);
5669

5670
	write_unlock(&kvm->mmu_lock);
5671 5672 5673 5674 5675 5676

	if (is_tdp_mmu_enabled(kvm)) {
		read_lock(&kvm->mmu_lock);
		kvm_tdp_mmu_zap_invalidated_roots(kvm);
		read_unlock(&kvm->mmu_lock);
	}
5677 5678
}

5679 5680 5681 5682 5683
static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
{
	return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
}

5684
static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5685 5686
			struct kvm_memory_slot *slot,
			struct kvm_page_track_notifier_node *node)
5687
{
5688
	kvm_mmu_zap_all_fast(kvm);
5689 5690
}

5691
void kvm_mmu_init_vm(struct kvm *kvm)
5692
{
5693
	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5694

5695 5696
	spin_lock_init(&kvm->arch.mmu_unsync_pages_lock);

5697
	kvm_mmu_init_tdp_mmu(kvm);
5698

5699
	node->track_write = kvm_mmu_pte_write;
5700
	node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5701
	kvm_page_track_register_notifier(kvm, node);
5702 5703
}

5704
void kvm_mmu_uninit_vm(struct kvm *kvm)
5705
{
5706
	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5707

5708
	kvm_page_track_unregister_notifier(kvm, node);
5709 5710

	kvm_mmu_uninit_tdp_mmu(kvm);
5711 5712
}

5713 5714 5715 5716
/*
 * Invalidate (zap) SPTEs that cover GFNs from gfn_start and up to gfn_end
 * (not including it)
 */
X
Xiao Guangrong 已提交
5717 5718 5719 5720
void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;
5721
	int i;
5722
	bool flush = false;
X
Xiao Guangrong 已提交
5723

5724 5725
	write_lock(&kvm->mmu_lock);

5726 5727
	kvm_inc_notifier_count(kvm, gfn_start, gfn_end);

5728 5729 5730 5731 5732 5733 5734 5735 5736 5737
	if (kvm_memslots_have_rmaps(kvm)) {
		for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
			slots = __kvm_memslots(kvm, i);
			kvm_for_each_memslot(memslot, slots) {
				gfn_t start, end;

				start = max(gfn_start, memslot->base_gfn);
				end = min(gfn_end, memslot->base_gfn + memslot->npages);
				if (start >= end)
					continue;
X
Xiao Guangrong 已提交
5738

5739 5740
				flush = slot_handle_level_range(kvm,
						(const struct kvm_memory_slot *) memslot,
5741 5742 5743 5744
						kvm_zap_rmapp, PG_LEVEL_4K,
						KVM_MAX_HUGEPAGE_LEVEL, start,
						end - 1, true, flush);
			}
5745
		}
X
Xiao Guangrong 已提交
5746 5747
	}

5748
	if (is_tdp_mmu_enabled(kvm)) {
5749 5750
		for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
			flush = kvm_tdp_mmu_zap_gfn_range(kvm, i, gfn_start,
5751
							  gfn_end, flush);
5752
	}
5753 5754

	if (flush)
5755 5756
		kvm_flush_remote_tlbs_with_address(kvm, gfn_start,
						   gfn_end - gfn_start);
5757

5758 5759
	kvm_dec_notifier_count(kvm, gfn_start, gfn_end);

5760
	write_unlock(&kvm->mmu_lock);
X
Xiao Guangrong 已提交
5761 5762
}

5763
static bool slot_rmap_write_protect(struct kvm *kvm,
5764
				    struct kvm_rmap_head *rmap_head,
5765
				    const struct kvm_memory_slot *slot)
5766
{
5767
	return __rmap_write_protect(kvm, rmap_head, false);
5768 5769
}

5770
void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5771
				      const struct kvm_memory_slot *memslot,
5772
				      int start_level)
A
Avi Kivity 已提交
5773
{
5774
	bool flush = false;
A
Avi Kivity 已提交
5775

5776 5777 5778 5779 5780 5781 5782
	if (kvm_memslots_have_rmaps(kvm)) {
		write_lock(&kvm->mmu_lock);
		flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect,
					  start_level, KVM_MAX_HUGEPAGE_LEVEL,
					  false);
		write_unlock(&kvm->mmu_lock);
	}
5783

5784 5785 5786 5787 5788 5789
	if (is_tdp_mmu_enabled(kvm)) {
		read_lock(&kvm->mmu_lock);
		flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, start_level);
		read_unlock(&kvm->mmu_lock);
	}

5790 5791 5792 5793 5794 5795 5796
	/*
	 * We can flush all the TLBs out of the mmu lock without TLB
	 * corruption since we just change the spte from writable to
	 * readonly so that we only need to care the case of changing
	 * spte from present to present (changing the spte from present
	 * to nonpresent will flush all the TLBs immediately), in other
	 * words, the only case we care is mmu_spte_update() where we
5797 5798 5799
	 * have checked Host-writable | MMU-writable instead of
	 * PT_WRITABLE_MASK, that means it does not depend on PT_WRITABLE_MASK
	 * anymore.
5800
	 */
5801
	if (flush)
5802
		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
A
Avi Kivity 已提交
5803
}
5804

5805
static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5806
					 struct kvm_rmap_head *rmap_head,
5807
					 const struct kvm_memory_slot *slot)
5808 5809 5810 5811
{
	u64 *sptep;
	struct rmap_iterator iter;
	int need_tlb_flush = 0;
D
Dan Williams 已提交
5812
	kvm_pfn_t pfn;
5813 5814
	struct kvm_mmu_page *sp;

5815
restart:
5816
	for_each_rmap_spte(rmap_head, &iter, sptep) {
5817
		sp = sptep_to_sp(sptep);
5818 5819 5820
		pfn = spte_to_pfn(*sptep);

		/*
5821 5822 5823 5824 5825
		 * We cannot do huge page mapping for indirect shadow pages,
		 * which are found on the last rmap (level = 1) when not using
		 * tdp; such shadow pages are synced with the page table in
		 * the guest, and the guest page table is using 4K page size
		 * mapping if the indirect sp has level = 1.
5826
		 */
5827
		if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
5828 5829
		    sp->role.level < kvm_mmu_max_mapping_level(kvm, slot, sp->gfn,
							       pfn, PG_LEVEL_NUM)) {
5830
			pte_list_remove(kvm, rmap_head, sptep);
5831 5832 5833 5834 5835 5836 5837

			if (kvm_available_flush_tlb_with_range())
				kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
					KVM_PAGES_PER_HPAGE(sp->role.level));
			else
				need_tlb_flush = 1;

5838 5839
			goto restart;
		}
5840 5841 5842 5843 5844 5845
	}

	return need_tlb_flush;
}

void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5846
				   const struct kvm_memory_slot *slot)
5847
{
5848
	bool flush = false;
5849

5850 5851
	if (kvm_memslots_have_rmaps(kvm)) {
		write_lock(&kvm->mmu_lock);
5852 5853 5854 5855 5856 5857
		/*
		 * Zap only 4k SPTEs since the legacy MMU only supports dirty
		 * logging at a 4k granularity and never creates collapsible
		 * 2m SPTEs during dirty logging.
		 */
		flush = slot_handle_level_4k(kvm, slot, kvm_mmu_zap_collapsible_spte, true);
5858 5859 5860 5861
		if (flush)
			kvm_arch_flush_remote_tlbs_memslot(kvm, slot);
		write_unlock(&kvm->mmu_lock);
	}
5862 5863 5864 5865 5866 5867 5868 5869

	if (is_tdp_mmu_enabled(kvm)) {
		read_lock(&kvm->mmu_lock);
		flush = kvm_tdp_mmu_zap_collapsible_sptes(kvm, slot, flush);
		if (flush)
			kvm_arch_flush_remote_tlbs_memslot(kvm, slot);
		read_unlock(&kvm->mmu_lock);
	}
5870 5871
}

5872
void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
5873
					const struct kvm_memory_slot *memslot)
5874 5875
{
	/*
5876
	 * All current use cases for flushing the TLBs for a specific memslot
5877
	 * related to dirty logging, and many do the TLB flush out of mmu_lock.
5878 5879 5880
	 * The interaction between the various operations on memslot must be
	 * serialized by slots_locks to ensure the TLB flush from one operation
	 * is observed by any other operation on the same memslot.
5881 5882
	 */
	lockdep_assert_held(&kvm->slots_lock);
5883 5884
	kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
					   memslot->npages);
5885 5886
}

5887
void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5888
				   const struct kvm_memory_slot *memslot)
5889
{
5890
	bool flush = false;
5891

5892 5893
	if (kvm_memslots_have_rmaps(kvm)) {
		write_lock(&kvm->mmu_lock);
5894 5895 5896 5897 5898
		/*
		 * Clear dirty bits only on 4k SPTEs since the legacy MMU only
		 * support dirty logging at a 4k granularity.
		 */
		flush = slot_handle_level_4k(kvm, memslot, __rmap_clear_dirty, false);
5899 5900
		write_unlock(&kvm->mmu_lock);
	}
5901

5902 5903 5904 5905 5906 5907
	if (is_tdp_mmu_enabled(kvm)) {
		read_lock(&kvm->mmu_lock);
		flush |= kvm_tdp_mmu_clear_dirty_slot(kvm, memslot);
		read_unlock(&kvm->mmu_lock);
	}

5908 5909 5910 5911 5912 5913 5914
	/*
	 * It's also safe to flush TLBs out of mmu lock here as currently this
	 * function is only used for dirty logging, in which case flushing TLB
	 * out of mmu lock also guarantees no dirty pages will be lost in
	 * dirty_bitmap.
	 */
	if (flush)
5915
		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5916 5917
}

5918
void kvm_mmu_zap_all(struct kvm *kvm)
5919 5920
{
	struct kvm_mmu_page *sp, *node;
5921
	LIST_HEAD(invalid_list);
5922
	int ign;
5923

5924
	write_lock(&kvm->mmu_lock);
5925
restart:
5926
	list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
5927
		if (WARN_ON(sp->role.invalid))
5928
			continue;
5929
		if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
5930
			goto restart;
5931
		if (cond_resched_rwlock_write(&kvm->mmu_lock))
5932 5933 5934
			goto restart;
	}

5935
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
5936

5937
	if (is_tdp_mmu_enabled(kvm))
5938 5939
		kvm_tdp_mmu_zap_all(kvm);

5940
	write_unlock(&kvm->mmu_lock);
5941 5942
}

5943
void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
5944
{
5945
	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
5946

5947
	gen &= MMIO_SPTE_GEN_MASK;
5948

5949
	/*
5950 5951 5952 5953 5954 5955 5956 5957
	 * Generation numbers are incremented in multiples of the number of
	 * address spaces in order to provide unique generations across all
	 * address spaces.  Strip what is effectively the address space
	 * modifier prior to checking for a wrap of the MMIO generation so
	 * that a wrap in any address space is detected.
	 */
	gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);

5958
	/*
5959
	 * The very rare case: if the MMIO generation number has wrapped,
5960 5961
	 * zap all shadow pages.
	 */
5962
	if (unlikely(gen == 0)) {
5963
		kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
5964
		kvm_mmu_zap_all_fast(kvm);
5965
	}
5966 5967
}

5968 5969
static unsigned long
mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
5970 5971
{
	struct kvm *kvm;
5972
	int nr_to_scan = sc->nr_to_scan;
5973
	unsigned long freed = 0;
5974

J
Junaid Shahid 已提交
5975
	mutex_lock(&kvm_lock);
5976 5977

	list_for_each_entry(kvm, &vm_list, vm_list) {
5978
		int idx;
5979
		LIST_HEAD(invalid_list);
5980

5981 5982 5983 5984 5985 5986 5987 5988
		/*
		 * Never scan more than sc->nr_to_scan VM instances.
		 * Will not hit this condition practically since we do not try
		 * to shrink more than one VM and it is very unlikely to see
		 * !n_used_mmu_pages so many times.
		 */
		if (!nr_to_scan--)
			break;
5989 5990 5991 5992 5993 5994
		/*
		 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
		 * here. We may skip a VM instance errorneosly, but we do not
		 * want to shrink a VM that only started to populate its MMU
		 * anyway.
		 */
5995 5996
		if (!kvm->arch.n_used_mmu_pages &&
		    !kvm_has_zapped_obsolete_pages(kvm))
5997 5998
			continue;

5999
		idx = srcu_read_lock(&kvm->srcu);
6000
		write_lock(&kvm->mmu_lock);
6001

6002 6003 6004 6005 6006 6007
		if (kvm_has_zapped_obsolete_pages(kvm)) {
			kvm_mmu_commit_zap_page(kvm,
			      &kvm->arch.zapped_obsolete_pages);
			goto unlock;
		}

6008
		freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan);
6009

6010
unlock:
6011
		write_unlock(&kvm->mmu_lock);
6012
		srcu_read_unlock(&kvm->srcu, idx);
6013

6014 6015 6016 6017 6018
		/*
		 * unfair on small ones
		 * per-vm shrinkers cry out
		 * sadness comes quickly
		 */
6019 6020
		list_move_tail(&kvm->vm_list, &vm_list);
		break;
6021 6022
	}

J
Junaid Shahid 已提交
6023
	mutex_unlock(&kvm_lock);
6024 6025 6026 6027 6028 6029
	return freed;
}

static unsigned long
mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
{
6030
	return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
6031 6032 6033
}

static struct shrinker mmu_shrinker = {
6034 6035
	.count_objects = mmu_shrink_count,
	.scan_objects = mmu_shrink_scan,
6036 6037 6038
	.seeks = DEFAULT_SEEKS * 10,
};

I
Ingo Molnar 已提交
6039
static void mmu_destroy_caches(void)
6040
{
6041 6042
	kmem_cache_destroy(pte_list_desc_cache);
	kmem_cache_destroy(mmu_page_header_cache);
6043 6044
}

P
Paolo Bonzini 已提交
6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078
static bool get_nx_auto_mode(void)
{
	/* Return true when CPU has the bug, and mitigations are ON */
	return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
}

static void __set_nx_huge_pages(bool val)
{
	nx_huge_pages = itlb_multihit_kvm_mitigation = val;
}

static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
{
	bool old_val = nx_huge_pages;
	bool new_val;

	/* In "auto" mode deploy workaround only if CPU has the bug. */
	if (sysfs_streq(val, "off"))
		new_val = 0;
	else if (sysfs_streq(val, "force"))
		new_val = 1;
	else if (sysfs_streq(val, "auto"))
		new_val = get_nx_auto_mode();
	else if (strtobool(val, &new_val) < 0)
		return -EINVAL;

	__set_nx_huge_pages(new_val);

	if (new_val != old_val) {
		struct kvm *kvm;

		mutex_lock(&kvm_lock);

		list_for_each_entry(kvm, &vm_list, vm_list) {
6079
			mutex_lock(&kvm->slots_lock);
P
Paolo Bonzini 已提交
6080
			kvm_mmu_zap_all_fast(kvm);
6081
			mutex_unlock(&kvm->slots_lock);
6082 6083

			wake_up_process(kvm->arch.nx_lpage_recovery_thread);
P
Paolo Bonzini 已提交
6084 6085 6086 6087 6088 6089 6090
		}
		mutex_unlock(&kvm_lock);
	}

	return 0;
}

6091 6092
int kvm_mmu_module_init(void)
{
6093 6094
	int ret = -ENOMEM;

P
Paolo Bonzini 已提交
6095 6096 6097
	if (nx_huge_pages == -1)
		__set_nx_huge_pages(get_nx_auto_mode());

6098 6099 6100 6101 6102 6103 6104 6105 6106 6107
	/*
	 * MMU roles use union aliasing which is, generally speaking, an
	 * undefined behavior. However, we supposedly know how compilers behave
	 * and the current status quo is unlikely to change. Guardians below are
	 * supposed to let us know if the assumption becomes false.
	 */
	BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
	BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
	BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));

6108
	kvm_mmu_reset_all_pte_masks();
6109

6110 6111
	pte_list_desc_cache = kmem_cache_create("pte_list_desc",
					    sizeof(struct pte_list_desc),
6112
					    0, SLAB_ACCOUNT, NULL);
6113
	if (!pte_list_desc_cache)
6114
		goto out;
6115

6116 6117
	mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
						  sizeof(struct kvm_mmu_page),
6118
						  0, SLAB_ACCOUNT, NULL);
6119
	if (!mmu_page_header_cache)
6120
		goto out;
6121

6122
	if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
6123
		goto out;
6124

6125 6126 6127
	ret = register_shrinker(&mmu_shrinker);
	if (ret)
		goto out;
6128

6129 6130
	return 0;

6131
out:
6132
	mmu_destroy_caches();
6133
	return ret;
6134 6135
}

6136
/*
P
Peng Hao 已提交
6137
 * Calculate mmu pages needed for kvm.
6138
 */
6139
unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm)
6140
{
6141 6142
	unsigned long nr_mmu_pages;
	unsigned long nr_pages = 0;
6143
	struct kvm_memslots *slots;
6144
	struct kvm_memory_slot *memslot;
6145
	int i;
6146

6147 6148
	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
6149

6150 6151 6152
		kvm_for_each_memslot(memslot, slots)
			nr_pages += memslot->npages;
	}
6153 6154

	nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
6155
	nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
6156 6157 6158 6159

	return nr_mmu_pages;
}

6160 6161
void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
{
6162
	kvm_mmu_unload(vcpu);
6163 6164
	free_mmu_pages(&vcpu->arch.root_mmu);
	free_mmu_pages(&vcpu->arch.guest_mmu);
6165
	mmu_free_memory_caches(vcpu);
6166 6167 6168 6169 6170 6171 6172
}

void kvm_mmu_module_exit(void)
{
	mmu_destroy_caches();
	percpu_counter_destroy(&kvm_total_used_mmu_pages);
	unregister_shrinker(&mmu_shrinker);
6173 6174
	mmu_audit_disable();
}
6175

6176
static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp)
6177
{
6178 6179
	bool was_recovery_enabled, is_recovery_enabled;
	uint old_period, new_period;
6180 6181
	int err;

6182 6183 6184
	was_recovery_enabled = nx_huge_pages_recovery_ratio;
	old_period = nx_huge_pages_recovery_period_ms;

6185 6186 6187 6188
	err = param_set_uint(val, kp);
	if (err)
		return err;

6189 6190 6191 6192 6193
	is_recovery_enabled = nx_huge_pages_recovery_ratio;
	new_period = nx_huge_pages_recovery_period_ms;

	if (READ_ONCE(nx_huge_pages) && is_recovery_enabled &&
	    (!was_recovery_enabled || old_period > new_period)) {
6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208
		struct kvm *kvm;

		mutex_lock(&kvm_lock);

		list_for_each_entry(kvm, &vm_list, vm_list)
			wake_up_process(kvm->arch.nx_lpage_recovery_thread);

		mutex_unlock(&kvm_lock);
	}

	return err;
}

static void kvm_recover_nx_lpages(struct kvm *kvm)
{
6209
	unsigned long nx_lpage_splits = kvm->stat.nx_lpage_splits;
6210 6211 6212 6213
	int rcu_idx;
	struct kvm_mmu_page *sp;
	unsigned int ratio;
	LIST_HEAD(invalid_list);
6214
	bool flush = false;
6215 6216 6217
	ulong to_zap;

	rcu_idx = srcu_read_lock(&kvm->srcu);
6218
	write_lock(&kvm->mmu_lock);
6219 6220

	ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
6221
	to_zap = ratio ? DIV_ROUND_UP(nx_lpage_splits, ratio) : 0;
6222 6223 6224 6225
	for ( ; to_zap; --to_zap) {
		if (list_empty(&kvm->arch.lpage_disallowed_mmu_pages))
			break;

6226 6227 6228 6229 6230 6231 6232 6233 6234
		/*
		 * We use a separate list instead of just using active_mmu_pages
		 * because the number of lpage_disallowed pages is expected to
		 * be relatively small compared to the total.
		 */
		sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
				      struct kvm_mmu_page,
				      lpage_disallowed_link);
		WARN_ON_ONCE(!sp->lpage_disallowed);
6235
		if (is_tdp_mmu_page(sp)) {
6236
			flush |= kvm_tdp_mmu_zap_sp(kvm, sp);
6237
		} else {
6238 6239 6240
			kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
			WARN_ON_ONCE(sp->lpage_disallowed);
		}
6241

6242
		if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
6243
			kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
6244
			cond_resched_rwlock_write(&kvm->mmu_lock);
6245
			flush = false;
6246 6247
		}
	}
6248
	kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
6249

6250
	write_unlock(&kvm->mmu_lock);
6251 6252 6253 6254 6255
	srcu_read_unlock(&kvm->srcu, rcu_idx);
}

static long get_nx_lpage_recovery_timeout(u64 start_time)
{
6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266
	uint ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
	uint period = READ_ONCE(nx_huge_pages_recovery_period_ms);

	if (!period && ratio) {
		/* Make sure the period is not less than one second.  */
		ratio = min(ratio, 3600u);
		period = 60 * 60 * 1000 / ratio;
	}

	return READ_ONCE(nx_huge_pages) && ratio
		? start_time + msecs_to_jiffies(period) - get_jiffies_64()
6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312
		: MAX_SCHEDULE_TIMEOUT;
}

static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
{
	u64 start_time;
	long remaining_time;

	while (true) {
		start_time = get_jiffies_64();
		remaining_time = get_nx_lpage_recovery_timeout(start_time);

		set_current_state(TASK_INTERRUPTIBLE);
		while (!kthread_should_stop() && remaining_time > 0) {
			schedule_timeout(remaining_time);
			remaining_time = get_nx_lpage_recovery_timeout(start_time);
			set_current_state(TASK_INTERRUPTIBLE);
		}

		set_current_state(TASK_RUNNING);

		if (kthread_should_stop())
			return 0;

		kvm_recover_nx_lpages(kvm);
	}
}

int kvm_mmu_post_init_vm(struct kvm *kvm)
{
	int err;

	err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
					  "kvm-nx-lpage-recovery",
					  &kvm->arch.nx_lpage_recovery_thread);
	if (!err)
		kthread_unpark(kvm->arch.nx_lpage_recovery_thread);

	return err;
}

void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
{
	if (kvm->arch.nx_lpage_recovery_thread)
		kthread_stop(kvm->arch.nx_lpage_recovery_thread);
}