mmu.c 173.5 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
A
Avi Kivity 已提交
2 3 4 5 6 7 8 9 10
/*
 * Kernel-based Virtual Machine driver for Linux
 *
 * This module enables machines with Intel VT-x extensions to run virtual
 * machines without emulation or binary translation.
 *
 * MMU support
 *
 * Copyright (C) 2006 Qumranet, Inc.
N
Nicolas Kaiser 已提交
11
 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
A
Avi Kivity 已提交
12 13 14 15 16
 *
 * Authors:
 *   Yaniv Kamay  <yaniv@qumranet.com>
 *   Avi Kivity   <avi@qumranet.com>
 */
A
Avi Kivity 已提交
17

18
#include "irq.h"
19
#include "ioapic.h"
20
#include "mmu.h"
21
#include "mmu_internal.h"
22
#include "tdp_mmu.h"
23
#include "x86.h"
A
Avi Kivity 已提交
24
#include "kvm_cache_regs.h"
25
#include "kvm_emulate.h"
26
#include "cpuid.h"
27
#include "spte.h"
A
Avi Kivity 已提交
28

29
#include <linux/kvm_host.h>
A
Avi Kivity 已提交
30 31 32 33
#include <linux/types.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/highmem.h>
34 35
#include <linux/moduleparam.h>
#include <linux/export.h>
36
#include <linux/swap.h>
M
Marcelo Tosatti 已提交
37
#include <linux/hugetlb.h>
38
#include <linux/compiler.h>
39
#include <linux/srcu.h>
40
#include <linux/slab.h>
41
#include <linux/sched/signal.h>
42
#include <linux/uaccess.h>
43
#include <linux/hash.h>
44
#include <linux/kern_levels.h>
45
#include <linux/kthread.h>
A
Avi Kivity 已提交
46

A
Avi Kivity 已提交
47
#include <asm/page.h>
48
#include <asm/memtype.h>
A
Avi Kivity 已提交
49
#include <asm/cmpxchg.h>
50
#include <asm/io.h>
51
#include <asm/set_memory.h>
52
#include <asm/vmx.h>
53
#include <asm/kvm_page_track.h>
54
#include "trace.h"
A
Avi Kivity 已提交
55

56 57
#include "paging.h"

P
Paolo Bonzini 已提交
58 59
extern bool itlb_multihit_kvm_mitigation;

60
int __read_mostly nx_huge_pages = -1;
61
static uint __read_mostly nx_huge_pages_recovery_period_ms;
62 63 64 65
#ifdef CONFIG_PREEMPT_RT
/* Recovery can cause latency spikes, disable it for PREEMPT_RT.  */
static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
#else
66
static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
67
#endif
P
Paolo Bonzini 已提交
68 69

static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
70
static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp);
P
Paolo Bonzini 已提交
71

72
static const struct kernel_param_ops nx_huge_pages_ops = {
P
Paolo Bonzini 已提交
73 74 75 76
	.set = set_nx_huge_pages,
	.get = param_get_bool,
};

77 78
static const struct kernel_param_ops nx_huge_pages_recovery_param_ops = {
	.set = set_nx_huge_pages_recovery_param,
79 80 81
	.get = param_get_uint,
};

P
Paolo Bonzini 已提交
82 83
module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
__MODULE_PARM_TYPE(nx_huge_pages, "bool");
84
module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_param_ops,
85 86
		&nx_huge_pages_recovery_ratio, 0644);
__MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
87 88 89
module_param_cb(nx_huge_pages_recovery_period_ms, &nx_huge_pages_recovery_param_ops,
		&nx_huge_pages_recovery_period_ms, 0644);
__MODULE_PARM_TYPE(nx_huge_pages_recovery_period_ms, "uint");
P
Paolo Bonzini 已提交
90

91 92 93
static bool __read_mostly force_flush_and_sync_on_reuse;
module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644);

94 95 96 97 98 99 100
/*
 * When setting this variable to true it enables Two-Dimensional-Paging
 * where the hardware walks 2 page tables:
 * 1. the guest-virtual to guest-physical
 * 2. while doing 1. it walks guest-physical to host-physical
 * If the hardware supports that we don't need to do shadow paging.
 */
101
bool tdp_enabled = false;
102

103
static int max_huge_page_level __read_mostly;
104
static int tdp_root_level __read_mostly;
105
static int max_tdp_level __read_mostly;
106

107
#ifdef MMU_DEBUG
108
bool dbg = 0;
109
module_param(dbg, bool, 0644);
110
#endif
A
Avi Kivity 已提交
111

112 113
#define PTE_PREFETCH_NUM		8

A
Avi Kivity 已提交
114 115 116
#define PT32_LEVEL_BITS 10

#define PT32_LEVEL_SHIFT(level) \
M
Mike Day 已提交
117
		(PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
A
Avi Kivity 已提交
118

119 120 121
#define PT32_LVL_OFFSET_MASK(level) \
	(PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
122 123 124 125 126 127 128 129

#define PT32_INDEX(address, level)\
	(((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))


#define PT32_BASE_ADDR_MASK PAGE_MASK
#define PT32_DIR_BASE_ADDR_MASK \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
130 131 132
#define PT32_LVL_ADDR_MASK(level) \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
					    * PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
133

134 135
#include <trace/events/kvm.h>

136
/* make pte_list_desc fit well in cache lines */
137
#define PTE_LIST_EXT 14
138

139 140 141 142 143
/*
 * Slight optimization of cacheline layout, by putting `more' and `spte_count'
 * at the start; then accessing it will only use one single cacheline for
 * either full (entries==PTE_LIST_EXT) case or entries<=6.
 */
144 145
struct pte_list_desc {
	struct pte_list_desc *more;
146 147 148 149 150 151
	/*
	 * Stores number of entries stored in the pte_list_desc.  No need to be
	 * u64 but just for easier alignment.  When PTE_LIST_EXT, means full.
	 */
	u64 spte_count;
	u64 *sptes[PTE_LIST_EXT];
152 153
};

154 155 156 157
struct kvm_shadow_walk_iterator {
	u64 addr;
	hpa_t shadow_addr;
	u64 *sptep;
158
	int level;
159 160 161
	unsigned index;
};

162 163 164 165 166 167 168
#define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker)     \
	for (shadow_walk_init_using_root(&(_walker), (_vcpu),              \
					 (_root), (_addr));                \
	     shadow_walk_okay(&(_walker));			           \
	     shadow_walk_next(&(_walker)))

#define for_each_shadow_entry(_vcpu, _addr, _walker)            \
169 170 171 172
	for (shadow_walk_init(&(_walker), _vcpu, _addr);	\
	     shadow_walk_okay(&(_walker));			\
	     shadow_walk_next(&(_walker)))

173 174 175 176 177 178
#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)	\
	for (shadow_walk_init(&(_walker), _vcpu, _addr);		\
	     shadow_walk_okay(&(_walker)) &&				\
		({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });	\
	     __shadow_walk_next(&(_walker), spte))

179
static struct kmem_cache *pte_list_desc_cache;
180
struct kmem_cache *mmu_page_header_cache;
181
static struct percpu_counter kvm_total_used_mmu_pages;
182

183 184
static void mmu_spte_set(u64 *sptep, u64 spte);

185 186 187 188 189 190
struct kvm_mmu_role_regs {
	const unsigned long cr0;
	const unsigned long cr4;
	const u64 efer;
};

191 192 193
#define CREATE_TRACE_POINTS
#include "mmutrace.h"

194 195
/*
 * Yes, lot's of underscores.  They're a hint that you probably shouldn't be
196
 * reading from the role_regs.  Once the root_role is constructed, it becomes
197 198 199
 * the single source of truth for the MMU's state.
 */
#define BUILD_MMU_ROLE_REGS_ACCESSOR(reg, name, flag)			\
200 201
static inline bool __maybe_unused					\
____is_##reg##_##name(const struct kvm_mmu_role_regs *regs)		\
202 203 204 205 206 207 208 209 210 211 212 213 214 215
{									\
	return !!(regs->reg & flag);					\
}
BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, pg, X86_CR0_PG);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, wp, X86_CR0_WP);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pse, X86_CR4_PSE);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pae, X86_CR4_PAE);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smep, X86_CR4_SMEP);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smap, X86_CR4_SMAP);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pke, X86_CR4_PKE);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, la57, X86_CR4_LA57);
BUILD_MMU_ROLE_REGS_ACCESSOR(efer, nx, EFER_NX);
BUILD_MMU_ROLE_REGS_ACCESSOR(efer, lma, EFER_LMA);

216 217 218 219 220 221 222
/*
 * The MMU itself (with a valid role) is the single source of truth for the
 * MMU.  Do not use the regs used to build the MMU/role, nor the vCPU.  The
 * regs don't account for dependencies, e.g. clearing CR4 bits if CR0.PG=1,
 * and the vCPU may be incorrect/irrelevant.
 */
#define BUILD_MMU_ROLE_ACCESSOR(base_or_ext, reg, name)		\
223
static inline bool __maybe_unused is_##reg##_##name(struct kvm_mmu *mmu)	\
224
{								\
225
	return !!(mmu->cpu_role. base_or_ext . reg##_##name);	\
226 227 228 229 230 231 232 233
}
BUILD_MMU_ROLE_ACCESSOR(base, cr0, wp);
BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, pse);
BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, smep);
BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, smap);
BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, pke);
BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, la57);
BUILD_MMU_ROLE_ACCESSOR(base, efer, nx);
234
BUILD_MMU_ROLE_ACCESSOR(ext,  efer, lma);
235

236 237 238 239 240 241 242 243 244 245
static inline bool is_cr0_pg(struct kvm_mmu *mmu)
{
        return mmu->cpu_role.base.level > 0;
}

static inline bool is_cr4_pae(struct kvm_mmu *mmu)
{
        return !mmu->cpu_role.base.has_4_byte_gpte;
}

246 247 248 249 250 251 252 253 254 255
static struct kvm_mmu_role_regs vcpu_to_role_regs(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu_role_regs regs = {
		.cr0 = kvm_read_cr0_bits(vcpu, KVM_MMU_CR0_ROLE_BITS),
		.cr4 = kvm_read_cr4_bits(vcpu, KVM_MMU_CR4_ROLE_BITS),
		.efer = vcpu->arch.efer,
	};

	return regs;
}
256 257 258

static inline bool kvm_available_flush_tlb_with_range(void)
{
259
	return kvm_x86_ops.tlb_remote_flush_with_range;
260 261 262 263 264 265 266
}

static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
		struct kvm_tlb_range *range)
{
	int ret = -ENOTSUPP;

267
	if (range && kvm_x86_ops.tlb_remote_flush_with_range)
268
		ret = static_call(kvm_x86_tlb_remote_flush_with_range)(kvm, range);
269 270 271 272 273

	if (ret)
		kvm_flush_remote_tlbs(kvm);
}

274
void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
275 276 277 278 279 280 281 282 283 284
		u64 start_gfn, u64 pages)
{
	struct kvm_tlb_range range;

	range.start_gfn = start_gfn;
	range.pages = pages;

	kvm_flush_remote_tlbs_with_range(kvm, &range);
}

285 286 287
static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
			   unsigned int access)
{
288
	u64 spte = make_mmio_spte(vcpu, gfn, access);
289

290 291
	trace_mark_mmio_spte(sptep, gfn, spte);
	mmu_spte_set(sptep, spte);
292 293 294 295
}

static gfn_t get_mmio_spte_gfn(u64 spte)
{
296
	u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
297

298
	gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)
299 300 301
	       & shadow_nonpresent_or_rsvd_mask;

	return gpa >> PAGE_SHIFT;
302 303 304 305
}

static unsigned get_mmio_spte_access(u64 spte)
{
306
	return spte & shadow_mmio_access_mask;
307 308
}

309
static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
310
{
311
	u64 kvm_gen, spte_gen, gen;
312

313 314 315
	gen = kvm_vcpu_memslots(vcpu)->generation;
	if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
		return false;
316

317
	kvm_gen = gen & MMIO_SPTE_GEN_MASK;
318 319 320 321
	spte_gen = get_mmio_spte_generation(spte);

	trace_check_mmio_spte(spte, kvm_gen, spte_gen);
	return likely(kvm_gen == spte_gen);
322 323
}

A
Avi Kivity 已提交
324 325 326 327 328
static int is_cpuid_PSE36(void)
{
	return 1;
}

329 330 331 332 333 334 335
static gfn_t pse36_gfn_delta(u32 gpte)
{
	int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;

	return (gpte & PT32_DIR_PSE36_MASK) << shift;
}

336
#ifdef CONFIG_X86_64
A
Avi Kivity 已提交
337
static void __set_spte(u64 *sptep, u64 spte)
338
{
339
	WRITE_ONCE(*sptep, spte);
340 341
}

342
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
343
{
344
	WRITE_ONCE(*sptep, spte);
345 346 347 348 349 350
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	return xchg(sptep, spte);
}
351 352 353

static u64 __get_spte_lockless(u64 *sptep)
{
354
	return READ_ONCE(*sptep);
355
}
356
#else
357 358 359 360 361 362 363
union split_spte {
	struct {
		u32 spte_low;
		u32 spte_high;
	};
	u64 spte;
};
364

365 366
static void count_spte_clear(u64 *sptep, u64 spte)
{
367
	struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
368 369 370 371 372 373 374 375 376

	if (is_shadow_present_pte(spte))
		return;

	/* Ensure the spte is completely set before we increase the count */
	smp_wmb();
	sp->clear_spte_count++;
}

377 378 379
static void __set_spte(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;
380

381 382 383 384 385 386 387 388 389 390 391 392
	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	ssptep->spte_high = sspte.spte_high;

	/*
	 * If we map the spte from nonpresent to present, We should store
	 * the high bits firstly, then set present bit, so cpu can not
	 * fetch this spte while we are setting the spte.
	 */
	smp_wmb();

393
	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
394 395
}

396 397 398 399 400 401 402
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

403
	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
404 405 406 407 408 409 410 411

	/*
	 * If we map the spte from present to nonpresent, we should clear
	 * present bit firstly to avoid vcpu fetch the old high bits.
	 */
	smp_wmb();

	ssptep->spte_high = sspte.spte_high;
412
	count_spte_clear(sptep, spte);
413 414 415 416 417 418 419 420 421 422 423
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte, orig;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	/* xchg acts as a barrier before the setting of the high bits */
	orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
424 425
	orig.spte_high = ssptep->spte_high;
	ssptep->spte_high = sspte.spte_high;
426
	count_spte_clear(sptep, spte);
427 428 429

	return orig.spte;
}
430 431 432

/*
 * The idea using the light way get the spte on x86_32 guest is from
433
 * gup_get_pte (mm/gup.c).
434 435 436 437 438 439 440 441 442 443 444 445 446 447
 *
 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
 * coalesces them and we are running out of the MMU lock.  Therefore
 * we need to protect against in-progress updates of the spte.
 *
 * Reading the spte while an update is in progress may get the old value
 * for the high part of the spte.  The race is fine for a present->non-present
 * change (because the high part of the spte is ignored for non-present spte),
 * but for a present->present change we must reread the spte.
 *
 * All such changes are done in two steps (present->non-present and
 * non-present->present), hence it is enough to count the number of
 * present->non-present updates: if it changed while reading the spte,
 * we might have hit the race.  This is done using clear_spte_count.
448 449 450
 */
static u64 __get_spte_lockless(u64 *sptep)
{
451
	struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
	union split_spte spte, *orig = (union split_spte *)sptep;
	int count;

retry:
	count = sp->clear_spte_count;
	smp_rmb();

	spte.spte_low = orig->spte_low;
	smp_rmb();

	spte.spte_high = orig->spte_high;
	smp_rmb();

	if (unlikely(spte.spte_low != orig->spte_low ||
	      count != sp->clear_spte_count))
		goto retry;

	return spte.spte;
}
471 472
#endif

473 474
static bool spte_has_volatile_bits(u64 spte)
{
475 476 477
	if (!is_shadow_present_pte(spte))
		return false;

478
	/*
479
	 * Always atomically update spte if it can be updated
480 481 482 483
	 * out of mmu-lock, it can ensure dirty bit is not lost,
	 * also, it can help us to get a stable is_writable_pte()
	 * to ensure tlb flush is not missed.
	 */
484 485
	if (spte_can_locklessly_be_made_writable(spte) ||
	    is_access_track_spte(spte))
486 487
		return true;

488
	if (spte_ad_enabled(spte)) {
489 490 491 492
		if ((spte & shadow_accessed_mask) == 0 ||
	    	    (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
			return true;
	}
493

494
	return false;
495 496
}

497 498 499 500 501 502 503 504 505 506 507 508
/* Rules for using mmu_spte_set:
 * Set the sptep from nonpresent to present.
 * Note: the sptep being assigned *must* be either not present
 * or in a state where the hardware will not attempt to update
 * the spte.
 */
static void mmu_spte_set(u64 *sptep, u64 new_spte)
{
	WARN_ON(is_shadow_present_pte(*sptep));
	__set_spte(sptep, new_spte);
}

509 510 511
/*
 * Update the SPTE (excluding the PFN), but do not track changes in its
 * accessed/dirty status.
512
 */
513
static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
514
{
515
	u64 old_spte = *sptep;
516

517
	WARN_ON(!is_shadow_present_pte(new_spte));
518
	check_spte_writable_invariants(new_spte);
519

520 521
	if (!is_shadow_present_pte(old_spte)) {
		mmu_spte_set(sptep, new_spte);
522
		return old_spte;
523
	}
524

525
	if (!spte_has_volatile_bits(old_spte))
526
		__update_clear_spte_fast(sptep, new_spte);
527
	else
528
		old_spte = __update_clear_spte_slow(sptep, new_spte);
529

530 531
	WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));

532 533 534 535 536 537
	return old_spte;
}

/* Rules for using mmu_spte_update:
 * Update the state bits, it means the mapped pfn is not changed.
 *
538 539 540
 * Whenever an MMU-writable SPTE is overwritten with a read-only SPTE, remote
 * TLBs must be flushed. Otherwise rmap_write_protect will find a read-only
 * spte, even though the writable spte might be cached on a CPU's TLB.
541 542 543 544 545 546 547 548 549 550 551
 *
 * Returns true if the TLB needs to be flushed
 */
static bool mmu_spte_update(u64 *sptep, u64 new_spte)
{
	bool flush = false;
	u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);

	if (!is_shadow_present_pte(old_spte))
		return false;

552 553
	/*
	 * For the spte updated out of mmu-lock is safe, since
554
	 * we always atomically update it, see the comments in
555 556
	 * spte_has_volatile_bits().
	 */
557
	if (spte_can_locklessly_be_made_writable(old_spte) &&
558
	      !is_writable_pte(new_spte))
559
		flush = true;
560

561
	/*
562
	 * Flush TLB when accessed/dirty states are changed in the page tables,
563 564 565
	 * to guarantee consistency between TLB and page tables.
	 */

566 567
	if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
		flush = true;
568
		kvm_set_pfn_accessed(spte_to_pfn(old_spte));
569 570 571 572
	}

	if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
		flush = true;
573
		kvm_set_pfn_dirty(spte_to_pfn(old_spte));
574
	}
575

576
	return flush;
577 578
}

579 580 581 582
/*
 * Rules for using mmu_spte_clear_track_bits:
 * It sets the sptep from present to nonpresent, and track the
 * state bits, it is used to clear the last level sptep.
583
 * Returns the old PTE.
584
 */
585
static int mmu_spte_clear_track_bits(struct kvm *kvm, u64 *sptep)
586
{
D
Dan Williams 已提交
587
	kvm_pfn_t pfn;
588
	u64 old_spte = *sptep;
589
	int level = sptep_to_sp(sptep)->role.level;
590 591

	if (!spte_has_volatile_bits(old_spte))
592
		__update_clear_spte_fast(sptep, 0ull);
593
	else
594
		old_spte = __update_clear_spte_slow(sptep, 0ull);
595

596
	if (!is_shadow_present_pte(old_spte))
597
		return old_spte;
598

599 600
	kvm_update_page_stats(kvm, level, -1);

601
	pfn = spte_to_pfn(old_spte);
602 603 604 605 606 607

	/*
	 * KVM does not hold the refcount of the page used by
	 * kvm mmu, before reclaiming the page, we should
	 * unmap it from mmu first.
	 */
608
	WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
609

610
	if (is_accessed_spte(old_spte))
611
		kvm_set_pfn_accessed(pfn);
612 613

	if (is_dirty_spte(old_spte))
614
		kvm_set_pfn_dirty(pfn);
615

616
	return old_spte;
617 618 619 620 621 622 623 624 625
}

/*
 * Rules for using mmu_spte_clear_no_track:
 * Directly clear spte without caring the state bits of sptep,
 * it is used to set the upper level spte.
 */
static void mmu_spte_clear_no_track(u64 *sptep)
{
626
	__update_clear_spte_fast(sptep, 0ull);
627 628
}

629 630 631 632 633
static u64 mmu_spte_get_lockless(u64 *sptep)
{
	return __get_spte_lockless(sptep);
}

634 635 636 637 638 639 640 641
/* Returns the Accessed status of the PTE and resets it at the same time. */
static bool mmu_spte_age(u64 *sptep)
{
	u64 spte = mmu_spte_get_lockless(sptep);

	if (!is_accessed_spte(spte))
		return false;

642
	if (spte_ad_enabled(spte)) {
643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
		clear_bit((ffs(shadow_accessed_mask) - 1),
			  (unsigned long *)sptep);
	} else {
		/*
		 * Capture the dirty status of the page, so that it doesn't get
		 * lost when the SPTE is marked for access tracking.
		 */
		if (is_writable_pte(spte))
			kvm_set_pfn_dirty(spte_to_pfn(spte));

		spte = mark_spte_for_access_track(spte);
		mmu_spte_update_no_track(sptep, spte);
	}

	return true;
}

660 661
static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
{
662 663 664 665 666 667 668 669
	if (is_tdp_mmu(vcpu->arch.mmu)) {
		kvm_tdp_mmu_walk_lockless_begin();
	} else {
		/*
		 * Prevent page table teardown by making any free-er wait during
		 * kvm_flush_remote_tlbs() IPI to all active vcpus.
		 */
		local_irq_disable();
670

671 672 673 674 675 676
		/*
		 * Make sure a following spte read is not reordered ahead of the write
		 * to vcpu->mode.
		 */
		smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
	}
677 678 679 680
}

static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
{
681 682 683 684 685 686 687 688 689 690 691
	if (is_tdp_mmu(vcpu->arch.mmu)) {
		kvm_tdp_mmu_walk_lockless_end();
	} else {
		/*
		 * Make sure the write to vcpu->mode is not reordered in front of
		 * reads to sptes.  If it does, kvm_mmu_commit_zap_page() can see us
		 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
		 */
		smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
		local_irq_enable();
	}
692 693
}

694
static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect)
695
{
696 697
	int r;

698
	/* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */
699 700
	r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
				       1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM);
701
	if (r)
702
		return r;
703 704
	r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache,
				       PT64_ROOT_MAX_LEVEL);
705
	if (r)
706
		return r;
707
	if (maybe_indirect) {
708 709
		r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_gfn_array_cache,
					       PT64_ROOT_MAX_LEVEL);
710 711 712
		if (r)
			return r;
	}
713 714
	return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
					  PT64_ROOT_MAX_LEVEL);
715 716 717 718
}

static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
{
719 720 721 722
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache);
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache);
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_gfn_array_cache);
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
723 724
}

725
static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
726
{
727
	return kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
728 729
}

730
static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
731
{
732
	kmem_cache_free(pte_list_desc_cache, pte_list_desc);
733 734
}

735 736 737 738 739 740 741 742 743 744
static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
{
	if (!sp->role.direct)
		return sp->gfns[index];

	return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
}

static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
{
745
	if (!sp->role.direct) {
746
		sp->gfns[index] = gfn;
747 748 749 750 751 752 753 754
		return;
	}

	if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
		pr_err_ratelimited("gfn mismatch under direct page %llx "
				   "(expected %llx, got %llx)\n",
				   sp->gfn,
				   kvm_mmu_page_get_gfn(sp, index), gfn);
755 756
}

M
Marcelo Tosatti 已提交
757
/*
758 759
 * Return the pointer to the large page information for a given gfn,
 * handling slots that are not large page aligned.
M
Marcelo Tosatti 已提交
760
 */
761
static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
762
		const struct kvm_memory_slot *slot, int level)
M
Marcelo Tosatti 已提交
763 764 765
{
	unsigned long idx;

766
	idx = gfn_to_index(gfn, slot->base_gfn, level);
767
	return &slot->arch.lpage_info[level - 2][idx];
M
Marcelo Tosatti 已提交
768 769
}

770
static void update_gfn_disallow_lpage_count(const struct kvm_memory_slot *slot,
771 772 773 774 775
					    gfn_t gfn, int count)
{
	struct kvm_lpage_info *linfo;
	int i;

776
	for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
777 778 779 780 781 782
		linfo = lpage_info_slot(gfn, slot, i);
		linfo->disallow_lpage += count;
		WARN_ON(linfo->disallow_lpage < 0);
	}
}

783
void kvm_mmu_gfn_disallow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn)
784 785 786 787
{
	update_gfn_disallow_lpage_count(slot, gfn, 1);
}

788
void kvm_mmu_gfn_allow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn)
789 790 791 792
{
	update_gfn_disallow_lpage_count(slot, gfn, -1);
}

793
static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
M
Marcelo Tosatti 已提交
794
{
795
	struct kvm_memslots *slots;
796
	struct kvm_memory_slot *slot;
797
	gfn_t gfn;
M
Marcelo Tosatti 已提交
798

799
	kvm->arch.indirect_shadow_pages++;
800
	gfn = sp->gfn;
801 802
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
803 804

	/* the non-leaf shadow pages are keeping readonly. */
805
	if (sp->role.level > PG_LEVEL_4K)
806 807 808
		return kvm_slot_page_track_add_page(kvm, slot, gfn,
						    KVM_PAGE_TRACK_WRITE);

809
	kvm_mmu_gfn_disallow_lpage(slot, gfn);
M
Marcelo Tosatti 已提交
810 811
}

812
void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
P
Paolo Bonzini 已提交
813 814 815 816 817
{
	if (sp->lpage_disallowed)
		return;

	++kvm->stat.nx_lpage_splits;
818 819
	list_add_tail(&sp->lpage_disallowed_link,
		      &kvm->arch.lpage_disallowed_mmu_pages);
P
Paolo Bonzini 已提交
820 821 822
	sp->lpage_disallowed = true;
}

823
static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
M
Marcelo Tosatti 已提交
824
{
825
	struct kvm_memslots *slots;
826
	struct kvm_memory_slot *slot;
827
	gfn_t gfn;
M
Marcelo Tosatti 已提交
828

829
	kvm->arch.indirect_shadow_pages--;
830
	gfn = sp->gfn;
831 832
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
833
	if (sp->role.level > PG_LEVEL_4K)
834 835 836
		return kvm_slot_page_track_remove_page(kvm, slot, gfn,
						       KVM_PAGE_TRACK_WRITE);

837
	kvm_mmu_gfn_allow_lpage(slot, gfn);
M
Marcelo Tosatti 已提交
838 839
}

840
void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
P
Paolo Bonzini 已提交
841 842 843
{
	--kvm->stat.nx_lpage_splits;
	sp->lpage_disallowed = false;
844
	list_del(&sp->lpage_disallowed_link);
P
Paolo Bonzini 已提交
845 846
}

847 848 849
static struct kvm_memory_slot *
gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
			    bool no_dirty_log)
M
Marcelo Tosatti 已提交
850 851
{
	struct kvm_memory_slot *slot;
852

853
	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
854 855
	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
		return NULL;
856
	if (no_dirty_log && kvm_slot_dirty_track_enabled(slot))
857
		return NULL;
858 859 860 861

	return slot;
}

862
/*
863
 * About rmap_head encoding:
864
 *
865 866
 * If the bit zero of rmap_head->val is clear, then it points to the only spte
 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
867
 * pte_list_desc containing more mappings.
868 869 870 871
 */

/*
 * Returns the number of pointers in the rmap chain, not counting the new one.
872
 */
873
static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
874
			struct kvm_rmap_head *rmap_head)
875
{
876
	struct pte_list_desc *desc;
877
	int count = 0;
878

879
	if (!rmap_head->val) {
880
		rmap_printk("%p %llx 0->1\n", spte, *spte);
881 882
		rmap_head->val = (unsigned long)spte;
	} else if (!(rmap_head->val & 1)) {
883
		rmap_printk("%p %llx 1->many\n", spte, *spte);
884
		desc = mmu_alloc_pte_list_desc(vcpu);
885
		desc->sptes[0] = (u64 *)rmap_head->val;
A
Avi Kivity 已提交
886
		desc->sptes[1] = spte;
887
		desc->spte_count = 2;
888
		rmap_head->val = (unsigned long)desc | 1;
889
		++count;
890
	} else {
891
		rmap_printk("%p %llx many->many\n", spte, *spte);
892
		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
893
		while (desc->spte_count == PTE_LIST_EXT) {
894
			count += PTE_LIST_EXT;
895 896 897
			if (!desc->more) {
				desc->more = mmu_alloc_pte_list_desc(vcpu);
				desc = desc->more;
898
				desc->spte_count = 0;
899 900
				break;
			}
901 902
			desc = desc->more;
		}
903 904
		count += desc->spte_count;
		desc->sptes[desc->spte_count++] = spte;
905
	}
906
	return count;
907 908
}

909
static void
910 911 912
pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
			   struct pte_list_desc *desc, int i,
			   struct pte_list_desc *prev_desc)
913
{
914
	int j = desc->spte_count - 1;
915

A
Avi Kivity 已提交
916 917
	desc->sptes[i] = desc->sptes[j];
	desc->sptes[j] = NULL;
918 919
	desc->spte_count--;
	if (desc->spte_count)
920 921
		return;
	if (!prev_desc && !desc->more)
922
		rmap_head->val = 0;
923 924 925 926
	else
		if (prev_desc)
			prev_desc->more = desc->more;
		else
927
			rmap_head->val = (unsigned long)desc->more | 1;
928
	mmu_free_pte_list_desc(desc);
929 930
}

931
static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
932
{
933 934
	struct pte_list_desc *desc;
	struct pte_list_desc *prev_desc;
935 936
	int i;

937
	if (!rmap_head->val) {
938
		pr_err("%s: %p 0->BUG\n", __func__, spte);
939
		BUG();
940
	} else if (!(rmap_head->val & 1)) {
941
		rmap_printk("%p 1->0\n", spte);
942
		if ((u64 *)rmap_head->val != spte) {
943
			pr_err("%s:  %p 1->BUG\n", __func__, spte);
944 945
			BUG();
		}
946
		rmap_head->val = 0;
947
	} else {
948
		rmap_printk("%p many->many\n", spte);
949
		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
950 951
		prev_desc = NULL;
		while (desc) {
952
			for (i = 0; i < desc->spte_count; ++i) {
A
Avi Kivity 已提交
953
				if (desc->sptes[i] == spte) {
954 955
					pte_list_desc_remove_entry(rmap_head,
							desc, i, prev_desc);
956 957
					return;
				}
958
			}
959 960 961
			prev_desc = desc;
			desc = desc->more;
		}
962
		pr_err("%s: %p many->many\n", __func__, spte);
963 964 965 966
		BUG();
	}
}

967 968
static void pte_list_remove(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			    u64 *sptep)
969
{
970
	mmu_spte_clear_track_bits(kvm, sptep);
971 972 973
	__pte_list_remove(sptep, rmap_head);
}

P
Peter Xu 已提交
974
/* Return true if rmap existed, false otherwise */
975
static bool pte_list_destroy(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
P
Peter Xu 已提交
976 977 978 979 980 981 982 983
{
	struct pte_list_desc *desc, *next;
	int i;

	if (!rmap_head->val)
		return false;

	if (!(rmap_head->val & 1)) {
984
		mmu_spte_clear_track_bits(kvm, (u64 *)rmap_head->val);
P
Peter Xu 已提交
985 986 987 988 989 990 991
		goto out;
	}

	desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);

	for (; desc; desc = next) {
		for (i = 0; i < desc->spte_count; i++)
992
			mmu_spte_clear_track_bits(kvm, desc->sptes[i]);
P
Peter Xu 已提交
993 994 995 996 997 998 999 1000 1001
		next = desc->more;
		mmu_free_pte_list_desc(desc);
	}
out:
	/* rmap_head is meaningless now, remember to reset it */
	rmap_head->val = 0;
	return true;
}

1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
unsigned int pte_list_count(struct kvm_rmap_head *rmap_head)
{
	struct pte_list_desc *desc;
	unsigned int count = 0;

	if (!rmap_head->val)
		return 0;
	else if (!(rmap_head->val & 1))
		return 1;

	desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);

	while (desc) {
		count += desc->spte_count;
		desc = desc->more;
	}

	return count;
}

1022 1023
static struct kvm_rmap_head *gfn_to_rmap(gfn_t gfn, int level,
					 const struct kvm_memory_slot *slot)
1024
{
1025
	unsigned long idx;
1026

1027
	idx = gfn_to_index(gfn, slot->base_gfn, level);
1028
	return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
1029 1030
}

1031 1032
static bool rmap_can_add(struct kvm_vcpu *vcpu)
{
1033
	struct kvm_mmu_memory_cache *mc;
1034

1035
	mc = &vcpu->arch.mmu_pte_list_desc_cache;
1036
	return kvm_mmu_memory_cache_nr_free_objects(mc);
1037 1038
}

1039 1040
static void rmap_remove(struct kvm *kvm, u64 *spte)
{
1041 1042
	struct kvm_memslots *slots;
	struct kvm_memory_slot *slot;
1043 1044
	struct kvm_mmu_page *sp;
	gfn_t gfn;
1045
	struct kvm_rmap_head *rmap_head;
1046

1047
	sp = sptep_to_sp(spte);
1048
	gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1049 1050

	/*
1051 1052 1053
	 * Unlike rmap_add, rmap_remove does not run in the context of a vCPU
	 * so we have to determine which memslots to use based on context
	 * information in sp->role.
1054 1055 1056 1057
	 */
	slots = kvm_memslots_for_spte_role(kvm, sp->role);

	slot = __gfn_to_memslot(slots, gfn);
1058
	rmap_head = gfn_to_rmap(gfn, sp->role.level, slot);
1059

1060
	__pte_list_remove(spte, rmap_head);
1061 1062
}

1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
/*
 * Used by the following functions to iterate through the sptes linked by a
 * rmap.  All fields are private and not assumed to be used outside.
 */
struct rmap_iterator {
	/* private fields */
	struct pte_list_desc *desc;	/* holds the sptep if not NULL */
	int pos;			/* index of the sptep */
};

/*
 * Iteration must be started by this function.  This should also be used after
 * removing/dropping sptes from the rmap link because in such cases the
M
Miaohe Lin 已提交
1076
 * information in the iterator may not be valid.
1077 1078 1079
 *
 * Returns sptep if found, NULL otherwise.
 */
1080 1081
static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
			   struct rmap_iterator *iter)
1082
{
1083 1084
	u64 *sptep;

1085
	if (!rmap_head->val)
1086 1087
		return NULL;

1088
	if (!(rmap_head->val & 1)) {
1089
		iter->desc = NULL;
1090 1091
		sptep = (u64 *)rmap_head->val;
		goto out;
1092 1093
	}

1094
	iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1095
	iter->pos = 0;
1096 1097 1098 1099
	sptep = iter->desc->sptes[iter->pos];
out:
	BUG_ON(!is_shadow_present_pte(*sptep));
	return sptep;
1100 1101 1102 1103 1104 1105 1106 1107 1108
}

/*
 * Must be used with a valid iterator: e.g. after rmap_get_first().
 *
 * Returns sptep if found, NULL otherwise.
 */
static u64 *rmap_get_next(struct rmap_iterator *iter)
{
1109 1110
	u64 *sptep;

1111 1112 1113 1114 1115
	if (iter->desc) {
		if (iter->pos < PTE_LIST_EXT - 1) {
			++iter->pos;
			sptep = iter->desc->sptes[iter->pos];
			if (sptep)
1116
				goto out;
1117 1118 1119 1120 1121 1122 1123
		}

		iter->desc = iter->desc->more;

		if (iter->desc) {
			iter->pos = 0;
			/* desc->sptes[0] cannot be NULL */
1124 1125
			sptep = iter->desc->sptes[iter->pos];
			goto out;
1126 1127 1128 1129
		}
	}

	return NULL;
1130 1131 1132
out:
	BUG_ON(!is_shadow_present_pte(*sptep));
	return sptep;
1133 1134
}

1135 1136
#define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)			\
	for (_spte_ = rmap_get_first(_rmap_head_, _iter_);		\
1137
	     _spte_; _spte_ = rmap_get_next(_iter_))
1138

1139
static void drop_spte(struct kvm *kvm, u64 *sptep)
1140
{
1141
	u64 old_spte = mmu_spte_clear_track_bits(kvm, sptep);
1142 1143

	if (is_shadow_present_pte(old_spte))
1144
		rmap_remove(kvm, sptep);
A
Avi Kivity 已提交
1145 1146
}

1147 1148 1149 1150

static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
{
	if (is_large_pte(*sptep)) {
1151
		WARN_ON(sptep_to_sp(sptep)->role.level == PG_LEVEL_4K);
1152 1153 1154 1155 1156 1157 1158 1159 1160
		drop_spte(kvm, sptep);
		return true;
	}

	return false;
}

static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
{
1161
	if (__drop_large_spte(vcpu->kvm, sptep)) {
1162
		struct kvm_mmu_page *sp = sptep_to_sp(sptep);
1163 1164 1165 1166

		kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
			KVM_PAGES_PER_HPAGE(sp->role.level));
	}
1167 1168 1169
}

/*
1170
 * Write-protect on the specified @sptep, @pt_protect indicates whether
1171
 * spte write-protection is caused by protecting shadow page table.
1172
 *
T
Tiejun Chen 已提交
1173
 * Note: write protection is difference between dirty logging and spte
1174 1175 1176 1177 1178
 * protection:
 * - for dirty logging, the spte can be set to writable at anytime if
 *   its dirty bitmap is properly set.
 * - for spte protection, the spte can be writable only after unsync-ing
 *   shadow page.
1179
 *
1180
 * Return true if tlb need be flushed.
1181
 */
1182
static bool spte_write_protect(u64 *sptep, bool pt_protect)
1183 1184 1185
{
	u64 spte = *sptep;

1186
	if (!is_writable_pte(spte) &&
1187
	      !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1188 1189
		return false;

1190
	rmap_printk("spte %p %llx\n", sptep, *sptep);
1191

1192
	if (pt_protect)
1193
		spte &= ~shadow_mmu_writable_mask;
1194
	spte = spte & ~PT_WRITABLE_MASK;
1195

1196
	return mmu_spte_update(sptep, spte);
1197 1198
}

1199 1200
static bool rmap_write_protect(struct kvm_rmap_head *rmap_head,
			       bool pt_protect)
1201
{
1202 1203
	u64 *sptep;
	struct rmap_iterator iter;
1204
	bool flush = false;
1205

1206
	for_each_rmap_spte(rmap_head, &iter, sptep)
1207
		flush |= spte_write_protect(sptep, pt_protect);
1208

1209
	return flush;
1210 1211
}

1212
static bool spte_clear_dirty(u64 *sptep)
1213 1214 1215
{
	u64 spte = *sptep;

1216
	rmap_printk("spte %p %llx\n", sptep, *sptep);
1217

1218
	MMU_WARN_ON(!spte_ad_enabled(spte));
1219 1220 1221 1222
	spte &= ~shadow_dirty_mask;
	return mmu_spte_update(sptep, spte);
}

1223
static bool spte_wrprot_for_clear_dirty(u64 *sptep)
1224 1225 1226
{
	bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
					       (unsigned long *)sptep);
1227
	if (was_writable && !spte_ad_enabled(*sptep))
1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
		kvm_set_pfn_dirty(spte_to_pfn(*sptep));

	return was_writable;
}

/*
 * Gets the GFN ready for another round of dirty logging by clearing the
 *	- D bit on ad-enabled SPTEs, and
 *	- W bit on ad-disabled SPTEs.
 * Returns true iff any D or W bits were cleared.
 */
1239
static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1240
			       const struct kvm_memory_slot *slot)
1241 1242 1243 1244 1245
{
	u64 *sptep;
	struct rmap_iterator iter;
	bool flush = false;

1246
	for_each_rmap_spte(rmap_head, &iter, sptep)
1247 1248
		if (spte_ad_need_write_protect(*sptep))
			flush |= spte_wrprot_for_clear_dirty(sptep);
1249
		else
1250
			flush |= spte_clear_dirty(sptep);
1251 1252 1253 1254

	return flush;
}

1255
/**
1256
 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1257 1258 1259 1260 1261
 * @kvm: kvm instance
 * @slot: slot to protect
 * @gfn_offset: start of the BITS_PER_LONG pages we care about
 * @mask: indicates which pages we should protect
 *
1262
 * Used when we do not need to care about huge page mappings.
1263
 */
1264
static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1265 1266
				     struct kvm_memory_slot *slot,
				     gfn_t gfn_offset, unsigned long mask)
1267
{
1268
	struct kvm_rmap_head *rmap_head;
1269

1270
	if (is_tdp_mmu_enabled(kvm))
1271 1272
		kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
				slot->base_gfn + gfn_offset, mask, true);
1273 1274 1275 1276

	if (!kvm_memslots_have_rmaps(kvm))
		return;

1277
	while (mask) {
1278 1279
		rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
					PG_LEVEL_4K, slot);
1280
		rmap_write_protect(rmap_head, false);
M
Marcelo Tosatti 已提交
1281

1282 1283 1284
		/* clear the first set bit */
		mask &= mask - 1;
	}
1285 1286
}

1287
/**
1288 1289
 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
 * protect the page if the D-bit isn't supported.
1290 1291 1292 1293 1294 1295 1296
 * @kvm: kvm instance
 * @slot: slot to clear D-bit
 * @gfn_offset: start of the BITS_PER_LONG pages we care about
 * @mask: indicates which pages we should clear D-bit
 *
 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
 */
1297 1298 1299
static void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
					 struct kvm_memory_slot *slot,
					 gfn_t gfn_offset, unsigned long mask)
1300
{
1301
	struct kvm_rmap_head *rmap_head;
1302

1303
	if (is_tdp_mmu_enabled(kvm))
1304 1305
		kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
				slot->base_gfn + gfn_offset, mask, false);
1306 1307 1308 1309

	if (!kvm_memslots_have_rmaps(kvm))
		return;

1310
	while (mask) {
1311 1312
		rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
					PG_LEVEL_4K, slot);
1313
		__rmap_clear_dirty(kvm, rmap_head, slot);
1314 1315 1316 1317 1318 1319

		/* clear the first set bit */
		mask &= mask - 1;
	}
}

1320 1321 1322 1323 1324 1325 1326
/**
 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
 * PT level pages.
 *
 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
 * enable dirty logging for them.
 *
1327 1328
 * We need to care about huge page mappings: e.g. during dirty logging we may
 * have such mappings.
1329 1330 1331 1332 1333
 */
void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
				struct kvm_memory_slot *slot,
				gfn_t gfn_offset, unsigned long mask)
{
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
	/*
	 * Huge pages are NOT write protected when we start dirty logging in
	 * initially-all-set mode; must write protect them here so that they
	 * are split to 4K on the first write.
	 *
	 * The gfn_offset is guaranteed to be aligned to 64, but the base_gfn
	 * of memslot has no such restriction, so the range can cross two large
	 * pages.
	 */
	if (kvm_dirty_log_manual_protect_and_init_set(kvm)) {
		gfn_t start = slot->base_gfn + gfn_offset + __ffs(mask);
		gfn_t end = slot->base_gfn + gfn_offset + __fls(mask);

1347 1348 1349
		if (READ_ONCE(eager_page_split))
			kvm_mmu_try_split_huge_pages(kvm, slot, start, end, PG_LEVEL_4K);

1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
		kvm_mmu_slot_gfn_write_protect(kvm, slot, start, PG_LEVEL_2M);

		/* Cross two large pages? */
		if (ALIGN(start << PAGE_SHIFT, PMD_SIZE) !=
		    ALIGN(end << PAGE_SHIFT, PMD_SIZE))
			kvm_mmu_slot_gfn_write_protect(kvm, slot, end,
						       PG_LEVEL_2M);
	}

	/* Now handle 4K PTEs.  */
1360 1361
	if (kvm_x86_ops.cpu_dirty_log_size)
		kvm_mmu_clear_dirty_pt_masked(kvm, slot, gfn_offset, mask);
1362 1363
	else
		kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1364 1365
}

1366 1367
int kvm_cpu_dirty_log_size(void)
{
1368
	return kvm_x86_ops.cpu_dirty_log_size;
1369 1370
}

1371
bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1372 1373
				    struct kvm_memory_slot *slot, u64 gfn,
				    int min_level)
1374
{
1375
	struct kvm_rmap_head *rmap_head;
1376
	int i;
1377
	bool write_protected = false;
1378

1379 1380
	if (kvm_memslots_have_rmaps(kvm)) {
		for (i = min_level; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
1381
			rmap_head = gfn_to_rmap(gfn, i, slot);
1382
			write_protected |= rmap_write_protect(rmap_head, true);
1383
		}
1384 1385
	}

1386
	if (is_tdp_mmu_enabled(kvm))
1387
		write_protected |=
1388
			kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn, min_level);
1389

1390
	return write_protected;
1391 1392
}

1393
static bool kvm_vcpu_write_protect_gfn(struct kvm_vcpu *vcpu, u64 gfn)
1394 1395 1396 1397
{
	struct kvm_memory_slot *slot;

	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1398
	return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn, PG_LEVEL_4K);
1399 1400
}

1401
static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1402
			  const struct kvm_memory_slot *slot)
1403
{
1404
	return pte_list_destroy(kvm, rmap_head);
1405 1406
}

1407 1408 1409
static bool kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			    struct kvm_memory_slot *slot, gfn_t gfn, int level,
			    pte_t unused)
1410
{
1411
	return kvm_zap_rmapp(kvm, rmap_head, slot);
1412 1413
}

1414 1415 1416
static bool kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			      struct kvm_memory_slot *slot, gfn_t gfn, int level,
			      pte_t pte)
1417
{
1418 1419
	u64 *sptep;
	struct rmap_iterator iter;
1420
	bool need_flush = false;
1421
	u64 new_spte;
D
Dan Williams 已提交
1422
	kvm_pfn_t new_pfn;
1423

1424 1425
	WARN_ON(pte_huge(pte));
	new_pfn = pte_pfn(pte);
1426

1427
restart:
1428
	for_each_rmap_spte(rmap_head, &iter, sptep) {
1429
		rmap_printk("spte %p %llx gfn %llx (%d)\n",
1430
			    sptep, *sptep, gfn, level);
1431

1432
		need_flush = true;
1433

1434
		if (pte_write(pte)) {
1435
			pte_list_remove(kvm, rmap_head, sptep);
1436
			goto restart;
1437
		} else {
1438 1439
			new_spte = kvm_mmu_changed_pte_notifier_make_spte(
					*sptep, new_pfn);
1440

1441
			mmu_spte_clear_track_bits(kvm, sptep);
1442
			mmu_spte_set(sptep, new_spte);
1443 1444
		}
	}
1445

1446 1447
	if (need_flush && kvm_available_flush_tlb_with_range()) {
		kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
1448
		return false;
1449 1450
	}

1451
	return need_flush;
1452 1453
}

1454 1455
struct slot_rmap_walk_iterator {
	/* input fields. */
1456
	const struct kvm_memory_slot *slot;
1457 1458 1459 1460 1461 1462 1463
	gfn_t start_gfn;
	gfn_t end_gfn;
	int start_level;
	int end_level;

	/* output fields. */
	gfn_t gfn;
1464
	struct kvm_rmap_head *rmap;
1465 1466 1467
	int level;

	/* private field. */
1468
	struct kvm_rmap_head *end_rmap;
1469 1470 1471 1472 1473 1474 1475
};

static void
rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
{
	iterator->level = level;
	iterator->gfn = iterator->start_gfn;
1476 1477
	iterator->rmap = gfn_to_rmap(iterator->gfn, level, iterator->slot);
	iterator->end_rmap = gfn_to_rmap(iterator->end_gfn, level, iterator->slot);
1478 1479 1480 1481
}

static void
slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1482
		    const struct kvm_memory_slot *slot, int start_level,
1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520
		    int end_level, gfn_t start_gfn, gfn_t end_gfn)
{
	iterator->slot = slot;
	iterator->start_level = start_level;
	iterator->end_level = end_level;
	iterator->start_gfn = start_gfn;
	iterator->end_gfn = end_gfn;

	rmap_walk_init_level(iterator, iterator->start_level);
}

static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
{
	return !!iterator->rmap;
}

static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
{
	if (++iterator->rmap <= iterator->end_rmap) {
		iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
		return;
	}

	if (++iterator->level > iterator->end_level) {
		iterator->rmap = NULL;
		return;
	}

	rmap_walk_init_level(iterator, iterator->level);
}

#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,	\
	   _start_gfn, _end_gfn, _iter_)				\
	for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,		\
				 _end_level_, _start_gfn, _end_gfn);	\
	     slot_rmap_walk_okay(_iter_);				\
	     slot_rmap_walk_next(_iter_))

1521 1522 1523
typedef bool (*rmap_handler_t)(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			       struct kvm_memory_slot *slot, gfn_t gfn,
			       int level, pte_t pte);
1524

1525 1526 1527
static __always_inline bool kvm_handle_gfn_range(struct kvm *kvm,
						 struct kvm_gfn_range *range,
						 rmap_handler_t handler)
1528
{
1529
	struct slot_rmap_walk_iterator iterator;
1530
	bool ret = false;
1531

1532 1533 1534 1535
	for_each_slot_rmap_range(range->slot, PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL,
				 range->start, range->end - 1, &iterator)
		ret |= handler(kvm, iterator.rmap, range->slot, iterator.gfn,
			       iterator.level, range->pte);
1536

1537
	return ret;
1538 1539
}

1540
bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
1541
{
1542
	bool flush = false;
1543

1544 1545
	if (kvm_memslots_have_rmaps(kvm))
		flush = kvm_handle_gfn_range(kvm, range, kvm_unmap_rmapp);
1546

1547
	if (is_tdp_mmu_enabled(kvm))
1548
		flush = kvm_tdp_mmu_unmap_gfn_range(kvm, range, flush);
1549

1550
	return flush;
1551 1552
}

1553
bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1554
{
1555
	bool flush = false;
1556

1557 1558
	if (kvm_memslots_have_rmaps(kvm))
		flush = kvm_handle_gfn_range(kvm, range, kvm_set_pte_rmapp);
1559

1560
	if (is_tdp_mmu_enabled(kvm))
1561
		flush |= kvm_tdp_mmu_set_spte_gfn(kvm, range);
1562

1563
	return flush;
1564 1565
}

1566 1567 1568
static bool kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			  struct kvm_memory_slot *slot, gfn_t gfn, int level,
			  pte_t unused)
1569
{
1570
	u64 *sptep;
1571
	struct rmap_iterator iter;
1572 1573
	int young = 0;

1574 1575
	for_each_rmap_spte(rmap_head, &iter, sptep)
		young |= mmu_spte_age(sptep);
1576

1577 1578 1579
	return young;
}

1580 1581 1582
static bool kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			       struct kvm_memory_slot *slot, gfn_t gfn,
			       int level, pte_t unused)
A
Andrea Arcangeli 已提交
1583
{
1584 1585
	u64 *sptep;
	struct rmap_iterator iter;
A
Andrea Arcangeli 已提交
1586

1587 1588
	for_each_rmap_spte(rmap_head, &iter, sptep)
		if (is_accessed_spte(*sptep))
1589 1590
			return true;
	return false;
A
Andrea Arcangeli 已提交
1591 1592
}

1593 1594
#define RMAP_RECYCLE_THRESHOLD 1000

1595 1596
static void rmap_add(struct kvm_vcpu *vcpu, struct kvm_memory_slot *slot,
		     u64 *spte, gfn_t gfn)
1597
{
1598
	struct kvm_mmu_page *sp;
1599 1600
	struct kvm_rmap_head *rmap_head;
	int rmap_count;
1601

1602
	sp = sptep_to_sp(spte);
1603
	kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1604
	rmap_head = gfn_to_rmap(gfn, sp->role.level, slot);
1605
	rmap_count = pte_list_add(vcpu, spte, rmap_head);
1606

1607 1608 1609 1610 1611
	if (rmap_count > RMAP_RECYCLE_THRESHOLD) {
		kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, __pte(0));
		kvm_flush_remote_tlbs_with_address(
				vcpu->kvm, sp->gfn, KVM_PAGES_PER_HPAGE(sp->role.level));
	}
1612 1613
}

1614
bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1615
{
1616
	bool young = false;
1617

1618 1619
	if (kvm_memslots_have_rmaps(kvm))
		young = kvm_handle_gfn_range(kvm, range, kvm_age_rmapp);
1620

1621
	if (is_tdp_mmu_enabled(kvm))
1622
		young |= kvm_tdp_mmu_age_gfn_range(kvm, range);
1623 1624

	return young;
1625 1626
}

1627
bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
A
Andrea Arcangeli 已提交
1628
{
1629
	bool young = false;
1630

1631 1632
	if (kvm_memslots_have_rmaps(kvm))
		young = kvm_handle_gfn_range(kvm, range, kvm_test_age_rmapp);
1633

1634
	if (is_tdp_mmu_enabled(kvm))
1635
		young |= kvm_tdp_mmu_test_age_gfn(kvm, range);
1636 1637

	return young;
A
Andrea Arcangeli 已提交
1638 1639
}

1640
#ifdef MMU_DEBUG
1641
static int is_empty_shadow_page(u64 *spt)
A
Avi Kivity 已提交
1642
{
1643 1644 1645
	u64 *pos;
	u64 *end;

1646
	for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1647
		if (is_shadow_present_pte(*pos)) {
1648
			printk(KERN_ERR "%s: %p %llx\n", __func__,
1649
			       pos, *pos);
A
Avi Kivity 已提交
1650
			return 0;
1651
		}
A
Avi Kivity 已提交
1652 1653
	return 1;
}
1654
#endif
A
Avi Kivity 已提交
1655

1656 1657 1658 1659 1660 1661
/*
 * This value is the sum of all of the kvm instances's
 * kvm->arch.n_used_mmu_pages values.  We need a global,
 * aggregate version in order to make the slab shrinker
 * faster
 */
1662
static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, long nr)
1663 1664 1665 1666 1667
{
	kvm->arch.n_used_mmu_pages += nr;
	percpu_counter_add(&kvm_total_used_mmu_pages, nr);
}

1668
static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1669
{
1670
	MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1671
	hlist_del(&sp->hash_link);
1672 1673
	list_del(&sp->link);
	free_page((unsigned long)sp->spt);
1674 1675
	if (!sp->role.direct)
		free_page((unsigned long)sp->gfns);
1676
	kmem_cache_free(mmu_page_header_cache, sp);
1677 1678
}

1679 1680
static unsigned kvm_page_table_hashfn(gfn_t gfn)
{
1681
	return hash_64(gfn, KVM_MMU_HASH_SHIFT);
1682 1683
}

1684
static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1685
				    struct kvm_mmu_page *sp, u64 *parent_pte)
1686 1687 1688 1689
{
	if (!parent_pte)
		return;

1690
	pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1691 1692
}

1693
static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1694 1695
				       u64 *parent_pte)
{
1696
	__pte_list_remove(parent_pte, &sp->parent_ptes);
1697 1698
}

1699 1700 1701 1702
static void drop_parent_pte(struct kvm_mmu_page *sp,
			    u64 *parent_pte)
{
	mmu_page_remove_parent_pte(sp, parent_pte);
1703
	mmu_spte_clear_no_track(parent_pte);
1704 1705
}

1706
static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
M
Marcelo Tosatti 已提交
1707
{
1708
	struct kvm_mmu_page *sp;
1709

1710 1711
	sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
	sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache);
1712
	if (!direct)
1713
		sp->gfns = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_gfn_array_cache);
1714
	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1715 1716 1717 1718 1719 1720

	/*
	 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
	 * depends on valid pages being added to the head of the list.  See
	 * comments in kvm_zap_obsolete_pages().
	 */
1721
	sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
1722 1723 1724
	list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
	kvm_mod_used_mmu_pages(vcpu->kvm, +1);
	return sp;
M
Marcelo Tosatti 已提交
1725 1726
}

1727
static void mark_unsync(u64 *spte);
1728
static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1729
{
1730 1731 1732 1733 1734 1735
	u64 *sptep;
	struct rmap_iterator iter;

	for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
		mark_unsync(sptep);
	}
1736 1737
}

1738
static void mark_unsync(u64 *spte)
1739
{
1740
	struct kvm_mmu_page *sp;
1741
	unsigned int index;
1742

1743
	sp = sptep_to_sp(spte);
1744 1745
	index = spte - sp->spt;
	if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1746
		return;
1747
	if (sp->unsync_children++)
1748
		return;
1749
	kvm_mmu_mark_parents_unsync(sp);
1750 1751
}

1752
static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1753
			       struct kvm_mmu_page *sp)
1754
{
1755
	return -1;
1756 1757
}

1758 1759 1760 1761 1762 1763 1764 1765 1766 1767
#define KVM_PAGE_ARRAY_NR 16

struct kvm_mmu_pages {
	struct mmu_page_and_offset {
		struct kvm_mmu_page *sp;
		unsigned int idx;
	} page[KVM_PAGE_ARRAY_NR];
	unsigned int nr;
};

1768 1769
static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
			 int idx)
1770
{
1771
	int i;
1772

1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783
	if (sp->unsync)
		for (i=0; i < pvec->nr; i++)
			if (pvec->page[i].sp == sp)
				return 0;

	pvec->page[pvec->nr].sp = sp;
	pvec->page[pvec->nr].idx = idx;
	pvec->nr++;
	return (pvec->nr == KVM_PAGE_ARRAY_NR);
}

1784 1785 1786 1787 1788 1789 1790
static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
{
	--sp->unsync_children;
	WARN_ON((int)sp->unsync_children < 0);
	__clear_bit(idx, sp->unsync_child_bitmap);
}

1791 1792 1793 1794
static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
	int i, ret, nr_unsync_leaf = 0;
1795

1796
	for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1797
		struct kvm_mmu_page *child;
1798 1799
		u64 ent = sp->spt[i];

1800 1801 1802 1803
		if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
			clear_unsync_child_bit(sp, i);
			continue;
		}
1804

1805
		child = to_shadow_page(ent & PT64_BASE_ADDR_MASK);
1806 1807 1808 1809 1810 1811

		if (child->unsync_children) {
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;

			ret = __mmu_unsync_walk(child, pvec);
1812 1813 1814 1815
			if (!ret) {
				clear_unsync_child_bit(sp, i);
				continue;
			} else if (ret > 0) {
1816
				nr_unsync_leaf += ret;
1817
			} else
1818 1819 1820 1821 1822 1823
				return ret;
		} else if (child->unsync) {
			nr_unsync_leaf++;
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;
		} else
1824
			clear_unsync_child_bit(sp, i);
1825 1826
	}

1827 1828 1829
	return nr_unsync_leaf;
}

1830 1831
#define INVALID_INDEX (-1)

1832 1833 1834
static int mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
P
Paolo Bonzini 已提交
1835
	pvec->nr = 0;
1836 1837 1838
	if (!sp->unsync_children)
		return 0;

1839
	mmu_pages_add(pvec, sp, INVALID_INDEX);
1840
	return __mmu_unsync_walk(sp, pvec);
1841 1842 1843 1844 1845
}

static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
{
	WARN_ON(!sp->unsync);
1846
	trace_kvm_mmu_sync_page(sp);
1847 1848 1849 1850
	sp->unsync = 0;
	--kvm->stat.mmu_unsync;
}

1851 1852
static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				     struct list_head *invalid_list);
1853 1854
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list);
1855

1856 1857
#define for_each_valid_sp(_kvm, _sp, _list)				\
	hlist_for_each_entry(_sp, _list, hash_link)			\
1858
		if (is_obsolete_sp((_kvm), (_sp))) {			\
1859
		} else
1860 1861

#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)			\
1862 1863
	for_each_valid_sp(_kvm, _sp,					\
	  &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)])	\
1864
		if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
1865

1866
static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1867
			 struct list_head *invalid_list)
1868
{
1869 1870
	int ret = vcpu->arch.mmu->sync_page(vcpu, sp);

1871
	if (ret < 0)
1872
		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1873
	return ret;
1874 1875
}

1876 1877 1878 1879
static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
					struct list_head *invalid_list,
					bool remote_flush)
{
1880
	if (!remote_flush && list_empty(invalid_list))
1881 1882 1883 1884 1885 1886 1887 1888 1889
		return false;

	if (!list_empty(invalid_list))
		kvm_mmu_commit_zap_page(kvm, invalid_list);
	else
		kvm_flush_remote_tlbs(kvm);
	return true;
}

1890 1891
static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
{
1892 1893 1894 1895 1896
	if (sp->role.invalid)
		return true;

	/* TDP MMU pages due not use the MMU generation. */
	return !sp->tdp_mmu_page &&
1897
	       unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1898 1899
}

1900
struct mmu_page_path {
1901 1902
	struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
	unsigned int idx[PT64_ROOT_MAX_LEVEL];
1903 1904
};

1905
#define for_each_sp(pvec, sp, parents, i)			\
P
Paolo Bonzini 已提交
1906
		for (i = mmu_pages_first(&pvec, &parents);	\
1907 1908 1909
			i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});	\
			i = mmu_pages_next(&pvec, &parents, i))

1910 1911 1912
static int mmu_pages_next(struct kvm_mmu_pages *pvec,
			  struct mmu_page_path *parents,
			  int i)
1913 1914 1915 1916 1917
{
	int n;

	for (n = i+1; n < pvec->nr; n++) {
		struct kvm_mmu_page *sp = pvec->page[n].sp;
P
Paolo Bonzini 已提交
1918 1919
		unsigned idx = pvec->page[n].idx;
		int level = sp->role.level;
1920

P
Paolo Bonzini 已提交
1921
		parents->idx[level-1] = idx;
1922
		if (level == PG_LEVEL_4K)
P
Paolo Bonzini 已提交
1923
			break;
1924

P
Paolo Bonzini 已提交
1925
		parents->parent[level-2] = sp;
1926 1927 1928 1929 1930
	}

	return n;
}

P
Paolo Bonzini 已提交
1931 1932 1933 1934 1935 1936 1937 1938 1939
static int mmu_pages_first(struct kvm_mmu_pages *pvec,
			   struct mmu_page_path *parents)
{
	struct kvm_mmu_page *sp;
	int level;

	if (pvec->nr == 0)
		return 0;

1940 1941
	WARN_ON(pvec->page[0].idx != INVALID_INDEX);

P
Paolo Bonzini 已提交
1942 1943
	sp = pvec->page[0].sp;
	level = sp->role.level;
1944
	WARN_ON(level == PG_LEVEL_4K);
P
Paolo Bonzini 已提交
1945 1946 1947 1948 1949 1950 1951 1952 1953 1954

	parents->parent[level-2] = sp;

	/* Also set up a sentinel.  Further entries in pvec are all
	 * children of sp, so this element is never overwritten.
	 */
	parents->parent[level-1] = NULL;
	return mmu_pages_next(pvec, parents, 0);
}

1955
static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1956
{
1957 1958 1959 1960 1961 1962 1963 1964 1965
	struct kvm_mmu_page *sp;
	unsigned int level = 0;

	do {
		unsigned int idx = parents->idx[level];
		sp = parents->parent[level];
		if (!sp)
			return;

1966
		WARN_ON(idx == INVALID_INDEX);
1967
		clear_unsync_child_bit(sp, idx);
1968
		level++;
P
Paolo Bonzini 已提交
1969
	} while (!sp->unsync_children);
1970
}
1971

1972 1973
static int mmu_sync_children(struct kvm_vcpu *vcpu,
			     struct kvm_mmu_page *parent, bool can_yield)
1974 1975 1976 1977 1978
{
	int i;
	struct kvm_mmu_page *sp;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
1979
	LIST_HEAD(invalid_list);
1980
	bool flush = false;
1981 1982

	while (mmu_unsync_walk(parent, &pages)) {
1983
		bool protected = false;
1984 1985

		for_each_sp(pages, sp, parents, i)
1986
			protected |= kvm_vcpu_write_protect_gfn(vcpu, sp->gfn);
1987

1988
		if (protected) {
1989
			kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, true);
1990 1991
			flush = false;
		}
1992

1993
		for_each_sp(pages, sp, parents, i) {
1994
			kvm_unlink_unsync_page(vcpu->kvm, sp);
1995
			flush |= kvm_sync_page(vcpu, sp, &invalid_list) > 0;
1996 1997
			mmu_pages_clear_parents(&parents);
		}
1998
		if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) {
1999
			kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush);
2000 2001 2002 2003 2004
			if (!can_yield) {
				kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
				return -EINTR;
			}

2005
			cond_resched_rwlock_write(&vcpu->kvm->mmu_lock);
2006 2007
			flush = false;
		}
2008
	}
2009

2010
	kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush);
2011
	return 0;
2012 2013
}

2014 2015
static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
{
2016
	atomic_set(&sp->write_flooding_count,  0);
2017 2018 2019 2020
}

static void clear_sp_write_flooding_count(u64 *spte)
{
2021
	__clear_sp_write_flooding_count(sptep_to_sp(spte));
2022 2023
}

2024 2025 2026 2027
static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
					     gfn_t gfn,
					     gva_t gaddr,
					     unsigned level,
2028
					     int direct,
2029
					     unsigned int access)
2030
{
2031
	bool direct_mmu = vcpu->arch.mmu->direct_map;
2032
	union kvm_mmu_page_role role;
2033
	struct hlist_head *sp_list;
2034
	unsigned quadrant;
2035
	struct kvm_mmu_page *sp;
2036
	int ret;
2037
	int collisions = 0;
2038
	LIST_HEAD(invalid_list);
2039

2040
	role = vcpu->arch.mmu->root_role;
2041
	role.level = level;
2042
	role.direct = direct;
2043
	role.access = access;
2044
	if (role.has_4_byte_gpte) {
2045 2046 2047 2048
		quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
		quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
		role.quadrant = quadrant;
	}
2049 2050 2051

	sp_list = &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)];
	for_each_valid_sp(vcpu->kvm, sp, sp_list) {
2052 2053 2054 2055 2056
		if (sp->gfn != gfn) {
			collisions++;
			continue;
		}

2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069
		if (sp->role.word != role.word) {
			/*
			 * If the guest is creating an upper-level page, zap
			 * unsync pages for the same gfn.  While it's possible
			 * the guest is using recursive page tables, in all
			 * likelihood the guest has stopped using the unsync
			 * page and is installing a completely unrelated page.
			 * Unsync pages must not be left as is, because the new
			 * upper-level page will be write-protected.
			 */
			if (level > PG_LEVEL_4K && sp->unsync)
				kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
							 &invalid_list);
2070
			continue;
2071
		}
2072

2073 2074 2075
		if (direct_mmu)
			goto trace_get_page;

2076
		if (sp->unsync) {
2077
			/*
2078
			 * The page is good, but is stale.  kvm_sync_page does
2079 2080 2081 2082 2083 2084 2085 2086 2087
			 * get the latest guest state, but (unlike mmu_unsync_children)
			 * it doesn't write-protect the page or mark it synchronized!
			 * This way the validity of the mapping is ensured, but the
			 * overhead of write protection is not incurred until the
			 * guest invalidates the TLB mapping.  This allows multiple
			 * SPs for a single gfn to be unsync.
			 *
			 * If the sync fails, the page is zapped.  If so, break
			 * in order to rebuild it.
2088
			 */
2089 2090
			ret = kvm_sync_page(vcpu, sp, &invalid_list);
			if (ret < 0)
2091 2092 2093
				break;

			WARN_ON(!list_empty(&invalid_list));
2094 2095
			if (ret > 0)
				kvm_flush_remote_tlbs(vcpu->kvm);
2096
		}
2097

2098
		__clear_sp_write_flooding_count(sp);
2099 2100

trace_get_page:
2101
		trace_kvm_mmu_get_page(sp, false);
2102
		goto out;
2103
	}
2104

A
Avi Kivity 已提交
2105
	++vcpu->kvm->stat.mmu_cache_miss;
2106 2107 2108

	sp = kvm_mmu_alloc_page(vcpu, direct);

2109 2110
	sp->gfn = gfn;
	sp->role = role;
2111
	hlist_add_head(&sp->hash_link, sp_list);
2112
	if (!direct) {
2113
		account_shadowed(vcpu->kvm, sp);
2114
		if (level == PG_LEVEL_4K && kvm_vcpu_write_protect_gfn(vcpu, gfn))
2115
			kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
2116
	}
A
Avi Kivity 已提交
2117
	trace_kvm_mmu_get_page(sp, true);
2118
out:
2119 2120
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);

2121 2122
	if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
		vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2123
	return sp;
2124 2125
}

2126 2127 2128
static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
					struct kvm_vcpu *vcpu, hpa_t root,
					u64 addr)
2129 2130
{
	iterator->addr = addr;
2131
	iterator->shadow_addr = root;
2132
	iterator->level = vcpu->arch.mmu->root_role.level;
2133

2134
	if (iterator->level >= PT64_ROOT_4LEVEL &&
2135
	    vcpu->arch.mmu->cpu_role.base.level < PT64_ROOT_4LEVEL &&
2136
	    !vcpu->arch.mmu->direct_map)
2137
		iterator->level = PT32E_ROOT_LEVEL;
2138

2139
	if (iterator->level == PT32E_ROOT_LEVEL) {
2140 2141 2142 2143
		/*
		 * prev_root is currently only used for 64-bit hosts. So only
		 * the active root_hpa is valid here.
		 */
2144
		BUG_ON(root != vcpu->arch.mmu->root.hpa);
2145

2146
		iterator->shadow_addr
2147
			= vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2148 2149 2150 2151 2152 2153 2154
		iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
		--iterator->level;
		if (!iterator->shadow_addr)
			iterator->level = 0;
	}
}

2155 2156 2157
static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
			     struct kvm_vcpu *vcpu, u64 addr)
{
2158
	shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root.hpa,
2159 2160 2161
				    addr);
}

2162 2163
static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
{
2164
	if (iterator->level < PG_LEVEL_4K)
2165
		return false;
2166

2167 2168 2169 2170 2171
	iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
	iterator->sptep	= ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
	return true;
}

2172 2173
static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
			       u64 spte)
2174
{
2175
	if (!is_shadow_present_pte(spte) || is_last_spte(spte, iterator->level)) {
2176 2177 2178 2179
		iterator->level = 0;
		return;
	}

2180
	iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2181 2182 2183
	--iterator->level;
}

2184 2185
static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
{
2186
	__shadow_walk_next(iterator, *iterator->sptep);
2187 2188
}

2189 2190 2191 2192 2193 2194 2195 2196 2197
static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
			     struct kvm_mmu_page *sp)
{
	u64 spte;

	BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);

	spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp));

2198
	mmu_spte_set(sptep, spte);
2199 2200 2201 2202 2203

	mmu_page_add_parent_pte(vcpu, sp, sptep);

	if (sp->unsync_children || sp->unsync)
		mark_unsync(sptep);
2204 2205
}

2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218
static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
				   unsigned direct_access)
{
	if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
		struct kvm_mmu_page *child;

		/*
		 * For the direct sp, if the guest pte's dirty bit
		 * changed form clean to dirty, it will corrupt the
		 * sp's access: allow writable in the read-only sp,
		 * so we should update the spte at this point to get
		 * a new sp with the correct access.
		 */
2219
		child = to_shadow_page(*sptep & PT64_BASE_ADDR_MASK);
2220 2221 2222
		if (child->role.access == direct_access)
			return;

2223
		drop_parent_pte(child, sptep);
2224
		kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
2225 2226 2227
	}
}

2228 2229 2230
/* Returns the number of zapped non-leaf child shadow pages. */
static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
			    u64 *spte, struct list_head *invalid_list)
2231 2232 2233 2234 2235 2236
{
	u64 pte;
	struct kvm_mmu_page *child;

	pte = *spte;
	if (is_shadow_present_pte(pte)) {
X
Xiao Guangrong 已提交
2237
		if (is_last_spte(pte, sp->role.level)) {
2238
			drop_spte(kvm, spte);
X
Xiao Guangrong 已提交
2239
		} else {
2240
			child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2241
			drop_parent_pte(child, spte);
2242 2243 2244 2245 2246 2247 2248 2249 2250 2251

			/*
			 * Recursively zap nested TDP SPs, parentless SPs are
			 * unlikely to be used again in the near future.  This
			 * avoids retaining a large number of stale nested SPs.
			 */
			if (tdp_enabled && invalid_list &&
			    child->role.guest_mode && !child->parent_ptes.val)
				return kvm_mmu_prepare_zap_page(kvm, child,
								invalid_list);
2252
		}
2253
	} else if (is_mmio_spte(pte)) {
2254
		mmu_spte_clear_no_track(spte);
2255
	}
2256
	return 0;
2257 2258
}

2259 2260 2261
static int kvm_mmu_page_unlink_children(struct kvm *kvm,
					struct kvm_mmu_page *sp,
					struct list_head *invalid_list)
2262
{
2263
	int zapped = 0;
2264 2265
	unsigned i;

2266
	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2267 2268 2269
		zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list);

	return zapped;
2270 2271
}

2272
static void kvm_mmu_unlink_parents(struct kvm_mmu_page *sp)
2273
{
2274 2275
	u64 *sptep;
	struct rmap_iterator iter;
2276

2277
	while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2278
		drop_parent_pte(sp, sptep);
2279 2280
}

2281
static int mmu_zap_unsync_children(struct kvm *kvm,
2282 2283
				   struct kvm_mmu_page *parent,
				   struct list_head *invalid_list)
2284
{
2285 2286 2287
	int i, zapped = 0;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
2288

2289
	if (parent->role.level == PG_LEVEL_4K)
2290
		return 0;
2291 2292 2293 2294 2295

	while (mmu_unsync_walk(parent, &pages)) {
		struct kvm_mmu_page *sp;

		for_each_sp(pages, sp, parents, i) {
2296
			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2297
			mmu_pages_clear_parents(&parents);
2298
			zapped++;
2299 2300 2301 2302
		}
	}

	return zapped;
2303 2304
}

2305 2306 2307 2308
static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
				       struct kvm_mmu_page *sp,
				       struct list_head *invalid_list,
				       int *nr_zapped)
2309
{
2310
	bool list_unstable, zapped_root = false;
A
Avi Kivity 已提交
2311

2312
	trace_kvm_mmu_prepare_zap_page(sp);
2313
	++kvm->stat.mmu_shadow_zapped;
2314
	*nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2315
	*nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list);
2316
	kvm_mmu_unlink_parents(sp);
2317

2318 2319 2320
	/* Zapping children means active_mmu_pages has become unstable. */
	list_unstable = *nr_zapped;

2321
	if (!sp->role.invalid && !sp->role.direct)
2322
		unaccount_shadowed(kvm, sp);
2323

2324 2325
	if (sp->unsync)
		kvm_unlink_unsync_page(kvm, sp);
2326
	if (!sp->root_count) {
2327
		/* Count self */
2328
		(*nr_zapped)++;
2329 2330 2331 2332 2333 2334 2335 2336 2337 2338

		/*
		 * Already invalid pages (previously active roots) are not on
		 * the active page list.  See list_del() in the "else" case of
		 * !sp->root_count.
		 */
		if (sp->role.invalid)
			list_add(&sp->link, invalid_list);
		else
			list_move(&sp->link, invalid_list);
2339
		kvm_mod_used_mmu_pages(kvm, -1);
2340
	} else {
2341 2342 2343 2344 2345
		/*
		 * Remove the active root from the active page list, the root
		 * will be explicitly freed when the root_count hits zero.
		 */
		list_del(&sp->link);
2346

2347 2348 2349 2350 2351
		/*
		 * Obsolete pages cannot be used on any vCPUs, see the comment
		 * in kvm_mmu_zap_all_fast().  Note, is_obsolete_sp() also
		 * treats invalid shadow pages as being obsolete.
		 */
2352
		zapped_root = !is_obsolete_sp(kvm, sp);
2353
	}
2354

P
Paolo Bonzini 已提交
2355 2356 2357
	if (sp->lpage_disallowed)
		unaccount_huge_nx_page(kvm, sp);

2358
	sp->role.invalid = 1;
2359 2360 2361 2362 2363 2364 2365

	/*
	 * Make the request to free obsolete roots after marking the root
	 * invalid, otherwise other vCPUs may not see it as invalid.
	 */
	if (zapped_root)
		kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS);
2366 2367 2368 2369 2370 2371 2372 2373 2374 2375
	return list_unstable;
}

static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				     struct list_head *invalid_list)
{
	int nr_zapped;

	__kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
	return nr_zapped;
2376 2377
}

2378 2379 2380
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list)
{
2381
	struct kvm_mmu_page *sp, *nsp;
2382 2383 2384 2385

	if (list_empty(invalid_list))
		return;

2386
	/*
2387 2388 2389 2390 2391 2392 2393
	 * We need to make sure everyone sees our modifications to
	 * the page tables and see changes to vcpu->mode here. The barrier
	 * in the kvm_flush_remote_tlbs() achieves this. This pairs
	 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
	 *
	 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
	 * guest mode and/or lockless shadow page table walks.
2394 2395
	 */
	kvm_flush_remote_tlbs(kvm);
2396

2397
	list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2398
		WARN_ON(!sp->role.invalid || sp->root_count);
2399
		kvm_mmu_free_page(sp);
2400
	}
2401 2402
}

2403 2404
static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm,
						  unsigned long nr_to_zap)
2405
{
2406 2407
	unsigned long total_zapped = 0;
	struct kvm_mmu_page *sp, *tmp;
2408
	LIST_HEAD(invalid_list);
2409 2410
	bool unstable;
	int nr_zapped;
2411 2412

	if (list_empty(&kvm->arch.active_mmu_pages))
2413 2414
		return 0;

2415
restart:
2416
	list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) {
2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427
		/*
		 * Don't zap active root pages, the page itself can't be freed
		 * and zapping it will just force vCPUs to realloc and reload.
		 */
		if (sp->root_count)
			continue;

		unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list,
						      &nr_zapped);
		total_zapped += nr_zapped;
		if (total_zapped >= nr_to_zap)
2428 2429
			break;

2430 2431
		if (unstable)
			goto restart;
2432
	}
2433

2434 2435 2436 2437 2438 2439
	kvm_mmu_commit_zap_page(kvm, &invalid_list);

	kvm->stat.mmu_recycled += total_zapped;
	return total_zapped;
}

2440 2441 2442 2443 2444 2445 2446
static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm)
{
	if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
		return kvm->arch.n_max_mmu_pages -
			kvm->arch.n_used_mmu_pages;

	return 0;
2447 2448
}

2449 2450
static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
{
2451
	unsigned long avail = kvm_mmu_available_pages(vcpu->kvm);
2452

2453
	if (likely(avail >= KVM_MIN_FREE_MMU_PAGES))
2454 2455
		return 0;

2456
	kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail);
2457

2458 2459 2460 2461 2462
	/*
	 * Note, this check is intentionally soft, it only guarantees that one
	 * page is available, while the caller may end up allocating as many as
	 * four pages, e.g. for PAE roots or for 5-level paging.  Temporarily
	 * exceeding the (arbitrary by default) limit will not harm the host,
I
Ingo Molnar 已提交
2463
	 * being too aggressive may unnecessarily kill the guest, and getting an
2464 2465 2466
	 * exact count is far more trouble than it's worth, especially in the
	 * page fault paths.
	 */
2467 2468 2469 2470 2471
	if (!kvm_mmu_available_pages(vcpu->kvm))
		return -ENOSPC;
	return 0;
}

2472 2473
/*
 * Changing the number of mmu pages allocated to the vm
2474
 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2475
 */
2476
void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2477
{
2478
	write_lock(&kvm->mmu_lock);
2479

2480
	if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2481 2482
		kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages -
						  goal_nr_mmu_pages);
2483

2484
		goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2485 2486
	}

2487
	kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2488

2489
	write_unlock(&kvm->mmu_lock);
2490 2491
}

2492
int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2493
{
2494
	struct kvm_mmu_page *sp;
2495
	LIST_HEAD(invalid_list);
2496 2497
	int r;

2498
	pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2499
	r = 0;
2500
	write_lock(&kvm->mmu_lock);
2501
	for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2502
		pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2503 2504
			 sp->role.word);
		r = 1;
2505
		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2506
	}
2507
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2508
	write_unlock(&kvm->mmu_lock);
2509

2510
	return r;
2511
}
2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526

static int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
{
	gpa_t gpa;
	int r;

	if (vcpu->arch.mmu->direct_map)
		return 0;

	gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);

	r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);

	return r;
}
2527

2528
static void kvm_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
2529 2530
{
	trace_kvm_mmu_unsync_page(sp);
2531
	++kvm->stat.mmu_unsync;
2532 2533 2534 2535 2536
	sp->unsync = 1;

	kvm_mmu_mark_parents_unsync(sp);
}

2537 2538 2539 2540 2541 2542
/*
 * Attempt to unsync any shadow pages that can be reached by the specified gfn,
 * KVM is creating a writable mapping for said gfn.  Returns 0 if all pages
 * were marked unsync (or if there is no shadow page), -EPERM if the SPTE must
 * be write-protected.
 */
2543
int mmu_try_to_unsync_pages(struct kvm *kvm, const struct kvm_memory_slot *slot,
2544
			    gfn_t gfn, bool can_unsync, bool prefetch)
2545
{
2546
	struct kvm_mmu_page *sp;
2547
	bool locked = false;
2548

2549 2550 2551 2552 2553
	/*
	 * Force write-protection if the page is being tracked.  Note, the page
	 * track machinery is used to write-protect upper-level shadow pages,
	 * i.e. this guards the role.level == 4K assertion below!
	 */
2554
	if (kvm_slot_page_track_is_active(kvm, slot, gfn, KVM_PAGE_TRACK_WRITE))
2555
		return -EPERM;
2556

2557 2558 2559 2560 2561 2562
	/*
	 * The page is not write-tracked, mark existing shadow pages unsync
	 * unless KVM is synchronizing an unsync SP (can_unsync = false).  In
	 * that case, KVM must complete emulation of the guest TLB flush before
	 * allowing shadow pages to become unsync (writable by the guest).
	 */
2563
	for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2564
		if (!can_unsync)
2565
			return -EPERM;
2566

2567 2568
		if (sp->unsync)
			continue;
2569

2570
		if (prefetch)
2571 2572
			return -EEXIST;

2573 2574 2575 2576 2577 2578 2579 2580 2581
		/*
		 * TDP MMU page faults require an additional spinlock as they
		 * run with mmu_lock held for read, not write, and the unsync
		 * logic is not thread safe.  Take the spinklock regardless of
		 * the MMU type to avoid extra conditionals/parameters, there's
		 * no meaningful penalty if mmu_lock is held for write.
		 */
		if (!locked) {
			locked = true;
2582
			spin_lock(&kvm->arch.mmu_unsync_pages_lock);
2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595

			/*
			 * Recheck after taking the spinlock, a different vCPU
			 * may have since marked the page unsync.  A false
			 * positive on the unprotected check above is not
			 * possible as clearing sp->unsync _must_ hold mmu_lock
			 * for write, i.e. unsync cannot transition from 0->1
			 * while this CPU holds mmu_lock for read (or write).
			 */
			if (READ_ONCE(sp->unsync))
				continue;
		}

2596
		WARN_ON(sp->role.level != PG_LEVEL_4K);
2597
		kvm_unsync_page(kvm, sp);
2598
	}
2599
	if (locked)
2600
		spin_unlock(&kvm->arch.mmu_unsync_pages_lock);
2601

2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623
	/*
	 * We need to ensure that the marking of unsync pages is visible
	 * before the SPTE is updated to allow writes because
	 * kvm_mmu_sync_roots() checks the unsync flags without holding
	 * the MMU lock and so can race with this. If the SPTE was updated
	 * before the page had been marked as unsync-ed, something like the
	 * following could happen:
	 *
	 * CPU 1                    CPU 2
	 * ---------------------------------------------------------------------
	 * 1.2 Host updates SPTE
	 *     to be writable
	 *                      2.1 Guest writes a GPTE for GVA X.
	 *                          (GPTE being in the guest page table shadowed
	 *                           by the SP from CPU 1.)
	 *                          This reads SPTE during the page table walk.
	 *                          Since SPTE.W is read as 1, there is no
	 *                          fault.
	 *
	 *                      2.2 Guest issues TLB flush.
	 *                          That causes a VM Exit.
	 *
2624 2625
	 *                      2.3 Walking of unsync pages sees sp->unsync is
	 *                          false and skips the page.
2626 2627 2628 2629 2630 2631 2632 2633 2634 2635
	 *
	 *                      2.4 Guest accesses GVA X.
	 *                          Since the mapping in the SP was not updated,
	 *                          so the old mapping for GVA X incorrectly
	 *                          gets used.
	 * 1.1 Host marks SP
	 *     as unsync
	 *     (sp->unsync = true)
	 *
	 * The write barrier below ensures that 1.1 happens before 1.2 and thus
2636 2637
	 * the situation in 2.4 does not arise.  It pairs with the read barrier
	 * in is_unsync_root(), placed between 2.1's load of SPTE.W and 2.3.
2638 2639 2640
	 */
	smp_wmb();

2641
	return 0;
2642 2643
}

2644 2645
static int mmu_set_spte(struct kvm_vcpu *vcpu, struct kvm_memory_slot *slot,
			u64 *sptep, unsigned int pte_access, gfn_t gfn,
2646
			kvm_pfn_t pfn, struct kvm_page_fault *fault)
M
Marcelo Tosatti 已提交
2647
{
2648
	struct kvm_mmu_page *sp = sptep_to_sp(sptep);
2649
	int level = sp->role.level;
M
Marcelo Tosatti 已提交
2650
	int was_rmapped = 0;
2651
	int ret = RET_PF_FIXED;
2652
	bool flush = false;
2653
	bool wrprot;
2654
	u64 spte;
M
Marcelo Tosatti 已提交
2655

2656 2657
	/* Prefetching always gets a writable pfn.  */
	bool host_writable = !fault || fault->map_writable;
2658
	bool prefetch = !fault || fault->prefetch;
2659
	bool write_fault = fault && fault->write;
M
Marcelo Tosatti 已提交
2660

2661 2662
	pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
		 *sptep, write_fault, gfn);
M
Marcelo Tosatti 已提交
2663

2664 2665 2666 2667 2668
	if (unlikely(is_noslot_pfn(pfn))) {
		mark_mmio_spte(vcpu, sptep, gfn, pte_access);
		return RET_PF_EMULATE;
	}

2669
	if (is_shadow_present_pte(*sptep)) {
M
Marcelo Tosatti 已提交
2670 2671 2672 2673
		/*
		 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
		 * the parent of the now unreachable PTE.
		 */
2674
		if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) {
M
Marcelo Tosatti 已提交
2675
			struct kvm_mmu_page *child;
A
Avi Kivity 已提交
2676
			u64 pte = *sptep;
M
Marcelo Tosatti 已提交
2677

2678
			child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2679
			drop_parent_pte(child, sptep);
2680
			flush = true;
A
Avi Kivity 已提交
2681
		} else if (pfn != spte_to_pfn(*sptep)) {
2682
			pgprintk("hfn old %llx new %llx\n",
A
Avi Kivity 已提交
2683
				 spte_to_pfn(*sptep), pfn);
2684
			drop_spte(vcpu->kvm, sptep);
2685
			flush = true;
2686 2687
		} else
			was_rmapped = 1;
M
Marcelo Tosatti 已提交
2688
	}
2689

2690
	wrprot = make_spte(vcpu, sp, slot, pte_access, gfn, pfn, *sptep, prefetch,
2691
			   true, host_writable, &spte);
2692 2693 2694 2695 2696

	if (*sptep == spte) {
		ret = RET_PF_SPURIOUS;
	} else {
		flush |= mmu_spte_update(sptep, spte);
2697
		trace_kvm_mmu_set_spte(level, gfn, sptep);
2698 2699
	}

2700
	if (wrprot) {
M
Marcelo Tosatti 已提交
2701
		if (write_fault)
2702
			ret = RET_PF_EMULATE;
2703
	}
2704

2705
	if (flush)
2706 2707
		kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
				KVM_PAGES_PER_HPAGE(level));
M
Marcelo Tosatti 已提交
2708

A
Avi Kivity 已提交
2709
	pgprintk("%s: setting spte %llx\n", __func__, *sptep);
M
Marcelo Tosatti 已提交
2710

2711
	if (!was_rmapped) {
2712
		WARN_ON_ONCE(ret == RET_PF_SPURIOUS);
2713
		kvm_update_page_stats(vcpu->kvm, level, 1);
2714
		rmap_add(vcpu, slot, sptep, gfn);
2715
	}
2716

2717
	return ret;
2718 2719
}

2720 2721 2722 2723 2724
static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
				    struct kvm_mmu_page *sp,
				    u64 *start, u64 *end)
{
	struct page *pages[PTE_PREFETCH_NUM];
2725
	struct kvm_memory_slot *slot;
2726
	unsigned int access = sp->role.access;
2727 2728 2729 2730
	int i, ret;
	gfn_t gfn;

	gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2731 2732
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
	if (!slot)
2733 2734
		return -1;

2735
	ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2736 2737 2738
	if (ret <= 0)
		return -1;

2739
	for (i = 0; i < ret; i++, gfn++, start++) {
2740
		mmu_set_spte(vcpu, slot, start, access, gfn,
2741
			     page_to_pfn(pages[i]), NULL);
2742 2743
		put_page(pages[i]);
	}
2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759

	return 0;
}

static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
				  struct kvm_mmu_page *sp, u64 *sptep)
{
	u64 *spte, *start = NULL;
	int i;

	WARN_ON(!sp->role.direct);

	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
	spte = sp->spt + i;

	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2760
		if (is_shadow_present_pte(*spte) || spte == sptep) {
2761 2762 2763
			if (!start)
				continue;
			if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2764
				return;
2765 2766 2767 2768
			start = NULL;
		} else if (!start)
			start = spte;
	}
2769 2770
	if (start)
		direct_pte_prefetch_many(vcpu, sp, start, spte);
2771 2772 2773 2774 2775 2776
}

static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
{
	struct kvm_mmu_page *sp;

2777
	sp = sptep_to_sp(sptep);
2778

2779
	/*
2780 2781 2782
	 * Without accessed bits, there's no way to distinguish between
	 * actually accessed translations and prefetched, so disable pte
	 * prefetch if accessed bits aren't available.
2783
	 */
2784
	if (sp_ad_disabled(sp))
2785 2786
		return;

2787
	if (sp->role.level > PG_LEVEL_4K)
2788 2789
		return;

2790 2791 2792 2793 2794 2795 2796
	/*
	 * If addresses are being invalidated, skip prefetching to avoid
	 * accidentally prefetching those addresses.
	 */
	if (unlikely(vcpu->kvm->mmu_notifier_count))
		return;

2797 2798 2799
	__direct_pte_prefetch(vcpu, sp, sptep);
}

2800
static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn,
2801
				  const struct kvm_memory_slot *slot)
2802 2803
{
	unsigned long hva;
2804 2805 2806 2807 2808 2809
	unsigned long flags;
	int level = PG_LEVEL_4K;
	pgd_t pgd;
	p4d_t p4d;
	pud_t pud;
	pmd_t pmd;
2810

2811
	if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn))
2812
		return PG_LEVEL_4K;
2813

2814 2815 2816 2817 2818 2819 2820 2821
	/*
	 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
	 * is not solely for performance, it's also necessary to avoid the
	 * "writable" check in __gfn_to_hva_many(), which will always fail on
	 * read-only memslots due to gfn_to_hva() assuming writes.  Earlier
	 * page fault steps have already verified the guest isn't writing a
	 * read-only memslot.
	 */
2822 2823
	hva = __gfn_to_hva_memslot(slot, gfn);

2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841
	/*
	 * Lookup the mapping level in the current mm.  The information
	 * may become stale soon, but it is safe to use as long as
	 * 1) mmu_notifier_retry was checked after taking mmu_lock, and
	 * 2) mmu_lock is taken now.
	 *
	 * We still need to disable IRQs to prevent concurrent tear down
	 * of page tables.
	 */
	local_irq_save(flags);

	pgd = READ_ONCE(*pgd_offset(kvm->mm, hva));
	if (pgd_none(pgd))
		goto out;

	p4d = READ_ONCE(*p4d_offset(&pgd, hva));
	if (p4d_none(p4d) || !p4d_present(p4d))
		goto out;
2842

2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860
	pud = READ_ONCE(*pud_offset(&p4d, hva));
	if (pud_none(pud) || !pud_present(pud))
		goto out;

	if (pud_large(pud)) {
		level = PG_LEVEL_1G;
		goto out;
	}

	pmd = READ_ONCE(*pmd_offset(&pud, hva));
	if (pmd_none(pmd) || !pmd_present(pmd))
		goto out;

	if (pmd_large(pmd))
		level = PG_LEVEL_2M;

out:
	local_irq_restore(flags);
2861 2862 2863
	return level;
}

2864 2865 2866
int kvm_mmu_max_mapping_level(struct kvm *kvm,
			      const struct kvm_memory_slot *slot, gfn_t gfn,
			      kvm_pfn_t pfn, int max_level)
2867 2868
{
	struct kvm_lpage_info *linfo;
2869
	int host_level;
2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880

	max_level = min(max_level, max_huge_page_level);
	for ( ; max_level > PG_LEVEL_4K; max_level--) {
		linfo = lpage_info_slot(gfn, slot, max_level);
		if (!linfo->disallow_lpage)
			break;
	}

	if (max_level == PG_LEVEL_4K)
		return PG_LEVEL_4K;

2881 2882
	host_level = host_pfn_mapping_level(kvm, gfn, pfn, slot);
	return min(host_level, max_level);
2883 2884
}

2885
void kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
2886
{
2887
	struct kvm_memory_slot *slot = fault->slot;
2888 2889
	kvm_pfn_t mask;

2890
	fault->huge_page_disallowed = fault->exec && fault->nx_huge_page_workaround_enabled;
2891

2892 2893
	if (unlikely(fault->max_level == PG_LEVEL_4K))
		return;
2894

2895 2896
	if (is_error_noslot_pfn(fault->pfn) || kvm_is_reserved_pfn(fault->pfn))
		return;
2897

2898
	if (kvm_slot_dirty_track_enabled(slot))
2899
		return;
2900

2901 2902 2903 2904
	/*
	 * Enforce the iTLB multihit workaround after capturing the requested
	 * level, which will be used to do precise, accurate accounting.
	 */
2905 2906 2907 2908 2909
	fault->req_level = kvm_mmu_max_mapping_level(vcpu->kvm, slot,
						     fault->gfn, fault->pfn,
						     fault->max_level);
	if (fault->req_level == PG_LEVEL_4K || fault->huge_page_disallowed)
		return;
2910 2911

	/*
2912 2913
	 * mmu_notifier_retry() was successful and mmu_lock is held, so
	 * the pmd can't be split from under us.
2914
	 */
2915 2916 2917 2918
	fault->goal_level = fault->req_level;
	mask = KVM_PAGES_PER_HPAGE(fault->goal_level) - 1;
	VM_BUG_ON((fault->gfn & mask) != (fault->pfn & mask));
	fault->pfn &= ~mask;
2919 2920
}

2921
void disallowed_hugepage_adjust(struct kvm_page_fault *fault, u64 spte, int cur_level)
P
Paolo Bonzini 已提交
2922
{
2923 2924
	if (cur_level > PG_LEVEL_4K &&
	    cur_level == fault->goal_level &&
P
Paolo Bonzini 已提交
2925 2926 2927 2928 2929 2930 2931 2932 2933
	    is_shadow_present_pte(spte) &&
	    !is_large_pte(spte)) {
		/*
		 * A small SPTE exists for this pfn, but FNAME(fetch)
		 * and __direct_map would like to create a large PTE
		 * instead: just force them to go down another level,
		 * patching back for them into pfn the next 9 bits of
		 * the address.
		 */
2934 2935 2936 2937
		u64 page_mask = KVM_PAGES_PER_HPAGE(cur_level) -
				KVM_PAGES_PER_HPAGE(cur_level - 1);
		fault->pfn |= fault->gfn & page_mask;
		fault->goal_level--;
P
Paolo Bonzini 已提交
2938 2939 2940
	}
}

2941
static int __direct_map(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
2942
{
2943
	struct kvm_shadow_walk_iterator it;
2944
	struct kvm_mmu_page *sp;
2945
	int ret;
2946
	gfn_t base_gfn = fault->gfn;
A
Avi Kivity 已提交
2947

2948
	kvm_mmu_hugepage_adjust(vcpu, fault);
2949

2950
	trace_kvm_mmu_spte_requested(fault);
2951
	for_each_shadow_entry(vcpu, fault->addr, it) {
P
Paolo Bonzini 已提交
2952 2953 2954 2955
		/*
		 * We cannot overwrite existing page tables with an NX
		 * large page, as the leaf could be executable.
		 */
2956
		if (fault->nx_huge_page_workaround_enabled)
2957
			disallowed_hugepage_adjust(fault, *it.sptep, it.level);
P
Paolo Bonzini 已提交
2958

2959
		base_gfn = fault->gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
2960
		if (it.level == fault->goal_level)
2961
			break;
A
Avi Kivity 已提交
2962

2963
		drop_large_spte(vcpu, it.sptep);
2964 2965 2966 2967 2968 2969 2970
		if (is_shadow_present_pte(*it.sptep))
			continue;

		sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
				      it.level - 1, true, ACC_ALL);

		link_shadow_page(vcpu, it.sptep, sp);
2971 2972
		if (fault->is_tdp && fault->huge_page_disallowed &&
		    fault->req_level >= it.level)
2973
			account_huge_nx_page(vcpu->kvm, sp);
2974
	}
2975

2976 2977 2978
	if (WARN_ON_ONCE(it.level != fault->goal_level))
		return -EFAULT;

2979
	ret = mmu_set_spte(vcpu, fault->slot, it.sptep, ACC_ALL,
2980
			   base_gfn, fault->pfn, fault);
2981 2982 2983
	if (ret == RET_PF_SPURIOUS)
		return ret;

2984 2985 2986
	direct_pte_prefetch(vcpu, it.sptep);
	++vcpu->stat.pf_fixed;
	return ret;
A
Avi Kivity 已提交
2987 2988
}

H
Huang Ying 已提交
2989
static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2990
{
2991
	send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
2992 2993
}

D
Dan Williams 已提交
2994
static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
2995
{
X
Xiao Guangrong 已提交
2996 2997 2998 2999 3000 3001
	/*
	 * Do not cache the mmio info caused by writing the readonly gfn
	 * into the spte otherwise read access on readonly gfn also can
	 * caused mmio page fault and treat it as mmio access.
	 */
	if (pfn == KVM_PFN_ERR_RO_FAULT)
3002
		return RET_PF_EMULATE;
X
Xiao Guangrong 已提交
3003

3004
	if (pfn == KVM_PFN_ERR_HWPOISON) {
3005
		kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
3006
		return RET_PF_RETRY;
3007
	}
3008

3009
	return -EFAULT;
3010 3011
}

3012 3013
static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault,
				unsigned int access, int *ret_val)
3014 3015
{
	/* The pfn is invalid, report the error! */
3016 3017
	if (unlikely(is_error_pfn(fault->pfn))) {
		*ret_val = kvm_handle_bad_page(vcpu, fault->gfn, fault->pfn);
3018
		return true;
3019 3020
	}

3021
	if (unlikely(!fault->slot)) {
3022 3023 3024
		gva_t gva = fault->is_tdp ? 0 : fault->addr;

		vcpu_cache_mmio_info(vcpu, gva, fault->gfn,
3025
				     access & shadow_mmio_access_mask);
3026 3027 3028
		/*
		 * If MMIO caching is disabled, emulate immediately without
		 * touching the shadow page tables as attempting to install an
3029 3030 3031 3032 3033 3034
		 * MMIO SPTE will just be an expensive nop.  Do not cache MMIO
		 * whose gfn is greater than host.MAXPHYADDR, any guest that
		 * generates such gfns is running nested and is being tricked
		 * by L0 userspace (you can observe gfn > L1.MAXPHYADDR if
		 * and only if L1's MAXPHYADDR is inaccurate with respect to
		 * the hardware's).
3035
		 */
3036
		if (unlikely(!enable_mmio_caching) ||
3037
		    unlikely(fault->gfn > kvm_mmu_max_gfn())) {
3038 3039 3040 3041
			*ret_val = RET_PF_EMULATE;
			return true;
		}
	}
3042

3043
	return false;
3044 3045
}

3046
static bool page_fault_can_be_fast(struct kvm_page_fault *fault)
3047
{
3048 3049 3050 3051
	/*
	 * Do not fix the mmio spte with invalid generation number which
	 * need to be updated by slow page fault path.
	 */
3052
	if (fault->rsvd)
3053 3054
		return false;

3055
	/* See if the page fault is due to an NX violation */
3056
	if (unlikely(fault->exec && fault->present))
3057 3058
		return false;

3059
	/*
3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070
	 * #PF can be fast if:
	 * 1. The shadow page table entry is not present, which could mean that
	 *    the fault is potentially caused by access tracking (if enabled).
	 * 2. The shadow page table entry is present and the fault
	 *    is caused by write-protect, that means we just need change the W
	 *    bit of the spte which can be done out of mmu-lock.
	 *
	 * However, if access tracking is disabled we know that a non-present
	 * page must be a genuine page fault where we have to create a new SPTE.
	 * So, if access tracking is disabled, we return true only for write
	 * accesses to a present page.
3071 3072
	 */

3073
	return shadow_acc_track_mask != 0 || (fault->write && fault->present);
3074 3075
}

3076 3077 3078 3079
/*
 * Returns true if the SPTE was fixed successfully. Otherwise,
 * someone else modified the SPTE from its original value.
 */
3080
static bool
3081
fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault,
3082
			u64 *sptep, u64 old_spte, u64 new_spte)
3083
{
3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095
	/*
	 * Theoretically we could also set dirty bit (and flush TLB) here in
	 * order to eliminate unnecessary PML logging. See comments in
	 * set_spte. But fast_page_fault is very unlikely to happen with PML
	 * enabled, so we do not do this. This might result in the same GPA
	 * to be logged in PML buffer again when the write really happens, and
	 * eventually to be called by mark_page_dirty twice. But it's also no
	 * harm. This also avoids the TLB flush needed after setting dirty bit
	 * so non-PML cases won't be impacted.
	 *
	 * Compare with set_spte where instead shadow_dirty_mask is set.
	 */
3096
	if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3097 3098
		return false;

3099 3100
	if (is_writable_pte(new_spte) && !is_writable_pte(old_spte))
		mark_page_dirty_in_slot(vcpu->kvm, fault->slot, fault->gfn);
3101 3102 3103 3104

	return true;
}

3105
static bool is_access_allowed(struct kvm_page_fault *fault, u64 spte)
3106
{
3107
	if (fault->exec)
3108 3109
		return is_executable_pte(spte);

3110
	if (fault->write)
3111 3112 3113 3114 3115 3116
		return is_writable_pte(spte);

	/* Fault was on Read access */
	return spte & PT_PRESENT_MASK;
}

3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139
/*
 * Returns the last level spte pointer of the shadow page walk for the given
 * gpa, and sets *spte to the spte value. This spte may be non-preset. If no
 * walk could be performed, returns NULL and *spte does not contain valid data.
 *
 * Contract:
 *  - Must be called between walk_shadow_page_lockless_{begin,end}.
 *  - The returned sptep must not be used after walk_shadow_page_lockless_end.
 */
static u64 *fast_pf_get_last_sptep(struct kvm_vcpu *vcpu, gpa_t gpa, u64 *spte)
{
	struct kvm_shadow_walk_iterator iterator;
	u64 old_spte;
	u64 *sptep = NULL;

	for_each_shadow_entry_lockless(vcpu, gpa, iterator, old_spte) {
		sptep = iterator.sptep;
		*spte = old_spte;
	}

	return sptep;
}

3140
/*
3141
 * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS.
3142
 */
3143
static int fast_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
3144
{
3145
	struct kvm_mmu_page *sp;
3146
	int ret = RET_PF_INVALID;
3147
	u64 spte = 0ull;
3148
	u64 *sptep = NULL;
3149
	uint retry_count = 0;
3150

3151
	if (!page_fault_can_be_fast(fault))
3152
		return ret;
3153 3154 3155

	walk_shadow_page_lockless_begin(vcpu);

3156
	do {
3157
		u64 new_spte;
3158

3159
		if (is_tdp_mmu(vcpu->arch.mmu))
3160
			sptep = kvm_tdp_mmu_fast_pf_get_last_sptep(vcpu, fault->addr, &spte);
3161
		else
3162
			sptep = fast_pf_get_last_sptep(vcpu, fault->addr, &spte);
3163

3164 3165 3166
		if (!is_shadow_present_pte(spte))
			break;

3167
		sp = sptep_to_sp(sptep);
3168 3169
		if (!is_last_spte(spte, sp->role.level))
			break;
3170

3171
		/*
3172 3173 3174 3175 3176
		 * Check whether the memory access that caused the fault would
		 * still cause it if it were to be performed right now. If not,
		 * then this is a spurious fault caused by TLB lazily flushed,
		 * or some other CPU has already fixed the PTE after the
		 * current CPU took the fault.
3177 3178 3179 3180
		 *
		 * Need not check the access of upper level table entries since
		 * they are always ACC_ALL.
		 */
3181
		if (is_access_allowed(fault, spte)) {
3182
			ret = RET_PF_SPURIOUS;
3183 3184
			break;
		}
3185

3186 3187 3188 3189 3190 3191 3192 3193 3194 3195
		new_spte = spte;

		if (is_access_track_spte(spte))
			new_spte = restore_acc_track_spte(new_spte);

		/*
		 * Currently, to simplify the code, write-protection can
		 * be removed in the fast path only if the SPTE was
		 * write-protected for dirty-logging or access tracking.
		 */
3196
		if (fault->write &&
3197
		    spte_can_locklessly_be_made_writable(spte)) {
3198
			new_spte |= PT_WRITABLE_MASK;
3199 3200

			/*
3201 3202 3203
			 * Do not fix write-permission on the large spte when
			 * dirty logging is enabled. Since we only dirty the
			 * first page into the dirty-bitmap in
3204 3205 3206 3207 3208
			 * fast_pf_fix_direct_spte(), other pages are missed
			 * if its slot has dirty logging enabled.
			 *
			 * Instead, we let the slow page fault path create a
			 * normal spte to fix the access.
3209
			 */
3210 3211
			if (sp->role.level > PG_LEVEL_4K &&
			    kvm_slot_dirty_track_enabled(fault->slot))
3212
				break;
3213
		}
3214

3215
		/* Verify that the fault can be handled in the fast path */
3216
		if (new_spte == spte ||
3217
		    !is_access_allowed(fault, new_spte))
3218 3219 3220 3221 3222
			break;

		/*
		 * Currently, fast page fault only works for direct mapping
		 * since the gfn is not stable for indirect shadow page. See
3223
		 * Documentation/virt/kvm/locking.rst to get more detail.
3224
		 */
3225
		if (fast_pf_fix_direct_spte(vcpu, fault, sptep, spte, new_spte)) {
3226
			ret = RET_PF_FIXED;
3227
			break;
3228
		}
3229 3230 3231 3232 3233 3234 3235 3236

		if (++retry_count > 4) {
			printk_once(KERN_WARNING
				"kvm: Fast #PF retrying more than 4 times.\n");
			break;
		}

	} while (true);
3237

3238
	trace_fast_page_fault(vcpu, fault, sptep, spte, ret);
3239 3240
	walk_shadow_page_lockless_end(vcpu);

3241
	return ret;
3242 3243
}

3244 3245
static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
			       struct list_head *invalid_list)
3246
{
3247
	struct kvm_mmu_page *sp;
3248

3249
	if (!VALID_PAGE(*root_hpa))
A
Avi Kivity 已提交
3250
		return;
3251

3252
	sp = to_shadow_page(*root_hpa & PT64_BASE_ADDR_MASK);
3253 3254
	if (WARN_ON(!sp))
		return;
3255

3256
	if (is_tdp_mmu_page(sp))
3257
		kvm_tdp_mmu_put_root(kvm, sp, false);
3258 3259
	else if (!--sp->root_count && sp->role.invalid)
		kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3260

3261 3262 3263
	*root_hpa = INVALID_PAGE;
}

3264
/* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
3265
void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu,
3266
			ulong roots_to_free)
3267 3268 3269
{
	int i;
	LIST_HEAD(invalid_list);
3270
	bool free_active_root;
3271

3272
	BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3273

3274
	/* Before acquiring the MMU lock, see if we need to do any real work. */
3275 3276 3277 3278
	free_active_root = (roots_to_free & KVM_MMU_ROOT_CURRENT)
		&& VALID_PAGE(mmu->root.hpa);

	if (!free_active_root) {
3279 3280 3281 3282 3283 3284 3285 3286
		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
			if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
			    VALID_PAGE(mmu->prev_roots[i].hpa))
				break;

		if (i == KVM_MMU_NUM_PREV_ROOTS)
			return;
	}
3287

3288
	write_lock(&kvm->mmu_lock);
3289

3290 3291
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
		if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3292
			mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa,
3293
					   &invalid_list);
3294

3295
	if (free_active_root) {
3296
		if (to_shadow_page(mmu->root.hpa)) {
3297
			mmu_free_root_page(kvm, &mmu->root.hpa, &invalid_list);
3298
		} else if (mmu->pae_root) {
3299 3300 3301 3302 3303 3304 3305 3306
			for (i = 0; i < 4; ++i) {
				if (!IS_VALID_PAE_ROOT(mmu->pae_root[i]))
					continue;

				mmu_free_root_page(kvm, &mmu->pae_root[i],
						   &invalid_list);
				mmu->pae_root[i] = INVALID_PAE_ROOT;
			}
3307
		}
3308 3309
		mmu->root.hpa = INVALID_PAGE;
		mmu->root.pgd = 0;
3310
	}
3311

3312
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
3313
	write_unlock(&kvm->mmu_lock);
3314
}
3315
EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3316

3317
void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu)
3318 3319 3320 3321 3322 3323 3324 3325 3326
{
	unsigned long roots_to_free = 0;
	hpa_t root_hpa;
	int i;

	/*
	 * This should not be called while L2 is active, L2 can't invalidate
	 * _only_ its own roots, e.g. INVVPID unconditionally exits.
	 */
3327
	WARN_ON_ONCE(mmu->root_role.guest_mode);
3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338

	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
		root_hpa = mmu->prev_roots[i].hpa;
		if (!VALID_PAGE(root_hpa))
			continue;

		if (!to_shadow_page(root_hpa) ||
			to_shadow_page(root_hpa)->role.guest_mode)
			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
	}

3339
	kvm_mmu_free_roots(kvm, mmu, roots_to_free);
3340 3341 3342 3343
}
EXPORT_SYMBOL_GPL(kvm_mmu_free_guest_mode_roots);


3344 3345 3346 3347
static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
{
	int ret = 0;

3348
	if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) {
3349
		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3350 3351 3352 3353 3354 3355
		ret = 1;
	}

	return ret;
}

3356 3357
static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, gva_t gva,
			    u8 level, bool direct)
3358 3359
{
	struct kvm_mmu_page *sp;
3360 3361 3362 3363 3364 3365 3366 3367 3368

	sp = kvm_mmu_get_page(vcpu, gfn, gva, level, direct, ACC_ALL);
	++sp->root_count;

	return __pa(sp->spt);
}

static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
{
3369
	struct kvm_mmu *mmu = vcpu->arch.mmu;
3370
	u8 shadow_root_level = mmu->root_role.level;
3371
	hpa_t root;
3372
	unsigned i;
3373 3374 3375 3376 3377 3378
	int r;

	write_lock(&vcpu->kvm->mmu_lock);
	r = make_mmu_pages_available(vcpu);
	if (r < 0)
		goto out_unlock;
3379

3380
	if (is_tdp_mmu_enabled(vcpu->kvm)) {
3381
		root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu);
3382
		mmu->root.hpa = root;
3383
	} else if (shadow_root_level >= PT64_ROOT_4LEVEL) {
3384
		root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level, true);
3385
		mmu->root.hpa = root;
3386
	} else if (shadow_root_level == PT32E_ROOT_LEVEL) {
3387 3388 3389 3390
		if (WARN_ON_ONCE(!mmu->pae_root)) {
			r = -EIO;
			goto out_unlock;
		}
3391

3392
		for (i = 0; i < 4; ++i) {
3393
			WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3394

3395 3396
			root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT),
					      i << 30, PT32_ROOT_LEVEL, true);
3397 3398
			mmu->pae_root[i] = root | PT_PRESENT_MASK |
					   shadow_me_mask;
3399
		}
3400
		mmu->root.hpa = __pa(mmu->pae_root);
3401 3402
	} else {
		WARN_ONCE(1, "Bad TDP root level = %d\n", shadow_root_level);
3403 3404
		r = -EIO;
		goto out_unlock;
3405
	}
3406

3407 3408
	/* root.pgd is ignored for direct MMUs. */
	mmu->root.pgd = 0;
3409 3410 3411
out_unlock:
	write_unlock(&vcpu->kvm->mmu_lock);
	return r;
3412 3413
}

3414 3415 3416 3417
static int mmu_first_shadow_root_alloc(struct kvm *kvm)
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *slot;
3418
	int r = 0, i, bkt;
3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442

	/*
	 * Check if this is the first shadow root being allocated before
	 * taking the lock.
	 */
	if (kvm_shadow_root_allocated(kvm))
		return 0;

	mutex_lock(&kvm->slots_arch_lock);

	/* Recheck, under the lock, whether this is the first shadow root. */
	if (kvm_shadow_root_allocated(kvm))
		goto out_unlock;

	/*
	 * Check if anything actually needs to be allocated, e.g. all metadata
	 * will be allocated upfront if TDP is disabled.
	 */
	if (kvm_memslots_have_rmaps(kvm) &&
	    kvm_page_track_write_tracking_enabled(kvm))
		goto out_success;

	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
3443
		kvm_for_each_memslot(slot, bkt, slots) {
3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474
			/*
			 * Both of these functions are no-ops if the target is
			 * already allocated, so unconditionally calling both
			 * is safe.  Intentionally do NOT free allocations on
			 * failure to avoid having to track which allocations
			 * were made now versus when the memslot was created.
			 * The metadata is guaranteed to be freed when the slot
			 * is freed, and will be kept/used if userspace retries
			 * KVM_RUN instead of killing the VM.
			 */
			r = memslot_rmap_alloc(slot, slot->npages);
			if (r)
				goto out_unlock;
			r = kvm_page_track_write_tracking_alloc(slot);
			if (r)
				goto out_unlock;
		}
	}

	/*
	 * Ensure that shadow_root_allocated becomes true strictly after
	 * all the related pointers are set.
	 */
out_success:
	smp_store_release(&kvm->arch.shadow_root_allocated, true);

out_unlock:
	mutex_unlock(&kvm->slots_arch_lock);
	return r;
}

3475
static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3476
{
3477
	struct kvm_mmu *mmu = vcpu->arch.mmu;
3478
	u64 pdptrs[4], pm_mask;
3479
	gfn_t root_gfn, root_pgd;
3480
	hpa_t root;
3481 3482
	unsigned i;
	int r;
3483

3484
	root_pgd = mmu->get_guest_pgd(vcpu);
3485
	root_gfn = root_pgd >> PAGE_SHIFT;
3486

3487 3488 3489
	if (mmu_check_root(vcpu, root_gfn))
		return 1;

3490 3491 3492 3493
	/*
	 * On SVM, reading PDPTRs might access guest memory, which might fault
	 * and thus might sleep.  Grab the PDPTRs before acquiring mmu_lock.
	 */
3494
	if (mmu->cpu_role.base.level == PT32E_ROOT_LEVEL) {
3495 3496 3497 3498 3499 3500 3501 3502 3503 3504
		for (i = 0; i < 4; ++i) {
			pdptrs[i] = mmu->get_pdptr(vcpu, i);
			if (!(pdptrs[i] & PT_PRESENT_MASK))
				continue;

			if (mmu_check_root(vcpu, pdptrs[i] >> PAGE_SHIFT))
				return 1;
		}
	}

3505
	r = mmu_first_shadow_root_alloc(vcpu->kvm);
3506 3507 3508
	if (r)
		return r;

3509 3510 3511 3512 3513
	write_lock(&vcpu->kvm->mmu_lock);
	r = make_mmu_pages_available(vcpu);
	if (r < 0)
		goto out_unlock;

3514 3515 3516 3517
	/*
	 * Do we shadow a long mode page table? If so we need to
	 * write-protect the guests page table root.
	 */
3518
	if (mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL) {
3519
		root = mmu_alloc_root(vcpu, root_gfn, 0,
3520
				      mmu->root_role.level, false);
3521
		mmu->root.hpa = root;
3522
		goto set_root_pgd;
3523
	}
3524

3525 3526 3527 3528
	if (WARN_ON_ONCE(!mmu->pae_root)) {
		r = -EIO;
		goto out_unlock;
	}
3529

3530 3531
	/*
	 * We shadow a 32 bit page table. This may be a legacy 2-level
3532 3533
	 * or a PAE 3-level page table. In either case we need to be aware that
	 * the shadow page table may be a PAE or a long mode page table.
3534
	 */
3535
	pm_mask = PT_PRESENT_MASK | shadow_me_mask;
3536
	if (mmu->root_role.level >= PT64_ROOT_4LEVEL) {
3537 3538
		pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;

3539
		if (WARN_ON_ONCE(!mmu->pml4_root)) {
3540 3541 3542
			r = -EIO;
			goto out_unlock;
		}
3543
		mmu->pml4_root[0] = __pa(mmu->pae_root) | pm_mask;
3544

3545
		if (mmu->root_role.level == PT64_ROOT_5LEVEL) {
3546 3547 3548 3549 3550 3551
			if (WARN_ON_ONCE(!mmu->pml5_root)) {
				r = -EIO;
				goto out_unlock;
			}
			mmu->pml5_root[0] = __pa(mmu->pml4_root) | pm_mask;
		}
3552 3553
	}

3554
	for (i = 0; i < 4; ++i) {
3555
		WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3556

3557
		if (mmu->cpu_role.base.level == PT32E_ROOT_LEVEL) {
3558
			if (!(pdptrs[i] & PT_PRESENT_MASK)) {
3559
				mmu->pae_root[i] = INVALID_PAE_ROOT;
A
Avi Kivity 已提交
3560 3561
				continue;
			}
3562
			root_gfn = pdptrs[i] >> PAGE_SHIFT;
3563
		}
3564

3565 3566
		root = mmu_alloc_root(vcpu, root_gfn, i << 30,
				      PT32_ROOT_LEVEL, false);
3567
		mmu->pae_root[i] = root | pm_mask;
3568
	}
3569

3570
	if (mmu->root_role.level == PT64_ROOT_5LEVEL)
3571
		mmu->root.hpa = __pa(mmu->pml5_root);
3572
	else if (mmu->root_role.level == PT64_ROOT_4LEVEL)
3573
		mmu->root.hpa = __pa(mmu->pml4_root);
3574
	else
3575
		mmu->root.hpa = __pa(mmu->pae_root);
3576

3577
set_root_pgd:
3578
	mmu->root.pgd = root_pgd;
3579 3580
out_unlock:
	write_unlock(&vcpu->kvm->mmu_lock);
3581

3582
	return r;
3583 3584
}

3585 3586 3587
static int mmu_alloc_special_roots(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu *mmu = vcpu->arch.mmu;
3588
	bool need_pml5 = mmu->root_role.level > PT64_ROOT_4LEVEL;
3589 3590 3591
	u64 *pml5_root = NULL;
	u64 *pml4_root = NULL;
	u64 *pae_root;
3592 3593

	/*
3594 3595 3596 3597
	 * When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP
	 * tables are allocated and initialized at root creation as there is no
	 * equivalent level in the guest's NPT to shadow.  Allocate the tables
	 * on demand, as running a 32-bit L1 VMM on 64-bit KVM is very rare.
3598
	 */
3599
	if (mmu->direct_map || mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL ||
3600
	    mmu->root_role.level < PT64_ROOT_4LEVEL)
3601
		return 0;
3602

3603 3604 3605 3606 3607 3608 3609 3610
	/*
	 * NPT, the only paging mode that uses this horror, uses a fixed number
	 * of levels for the shadow page tables, e.g. all MMUs are 4-level or
	 * all MMus are 5-level.  Thus, this can safely require that pml5_root
	 * is allocated if the other roots are valid and pml5 is needed, as any
	 * prior MMU would also have required pml5.
	 */
	if (mmu->pae_root && mmu->pml4_root && (!need_pml5 || mmu->pml5_root))
3611
		return 0;
3612

3613 3614 3615 3616
	/*
	 * The special roots should always be allocated in concert.  Yell and
	 * bail if KVM ends up in a state where only one of the roots is valid.
	 */
3617
	if (WARN_ON_ONCE(!tdp_enabled || mmu->pae_root || mmu->pml4_root ||
3618
			 (need_pml5 && mmu->pml5_root)))
3619
		return -EIO;
3620

3621 3622 3623 3624
	/*
	 * Unlike 32-bit NPT, the PDP table doesn't need to be in low mem, and
	 * doesn't need to be decrypted.
	 */
3625 3626 3627
	pae_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
	if (!pae_root)
		return -ENOMEM;
3628

3629
#ifdef CONFIG_X86_64
3630
	pml4_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3631 3632 3633
	if (!pml4_root)
		goto err_pml4;

3634
	if (need_pml5) {
3635 3636 3637
		pml5_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
		if (!pml5_root)
			goto err_pml5;
3638
	}
3639
#endif
3640

3641
	mmu->pae_root = pae_root;
3642
	mmu->pml4_root = pml4_root;
3643
	mmu->pml5_root = pml5_root;
3644

3645
	return 0;
3646 3647 3648 3649 3650 3651 3652 3653

#ifdef CONFIG_X86_64
err_pml5:
	free_page((unsigned long)pml4_root);
err_pml4:
	free_page((unsigned long)pae_root);
	return -ENOMEM;
#endif
3654 3655
}

3656 3657 3658 3659
static bool is_unsync_root(hpa_t root)
{
	struct kvm_mmu_page *sp;

3660 3661 3662
	if (!VALID_PAGE(root))
		return false;

3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676
	/*
	 * The read barrier orders the CPU's read of SPTE.W during the page table
	 * walk before the reads of sp->unsync/sp->unsync_children here.
	 *
	 * Even if another CPU was marking the SP as unsync-ed simultaneously,
	 * any guest page table changes are not guaranteed to be visible anyway
	 * until this VCPU issues a TLB flush strictly after those changes are
	 * made.  We only need to ensure that the other CPU sets these flags
	 * before any actual changes to the page tables are made.  The comments
	 * in mmu_try_to_unsync_pages() describe what could go wrong if this
	 * requirement isn't satisfied.
	 */
	smp_rmb();
	sp = to_shadow_page(root);
3677 3678 3679 3680 3681 3682 3683 3684

	/*
	 * PAE roots (somewhat arbitrarily) aren't backed by shadow pages, the
	 * PDPTEs for a given PAE root need to be synchronized individually.
	 */
	if (WARN_ON_ONCE(!sp))
		return false;

3685 3686 3687 3688 3689 3690
	if (sp->unsync || sp->unsync_children)
		return true;

	return false;
}

3691
void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3692 3693 3694 3695
{
	int i;
	struct kvm_mmu_page *sp;

3696
	if (vcpu->arch.mmu->direct_map)
3697 3698
		return;

3699
	if (!VALID_PAGE(vcpu->arch.mmu->root.hpa))
3700
		return;
3701

3702
	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3703

3704
	if (vcpu->arch.mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL) {
3705
		hpa_t root = vcpu->arch.mmu->root.hpa;
3706
		sp = to_shadow_page(root);
3707

3708
		if (!is_unsync_root(root))
3709 3710
			return;

3711
		write_lock(&vcpu->kvm->mmu_lock);
3712
		mmu_sync_children(vcpu, sp, true);
3713
		write_unlock(&vcpu->kvm->mmu_lock);
3714 3715
		return;
	}
3716

3717
	write_lock(&vcpu->kvm->mmu_lock);
3718

3719
	for (i = 0; i < 4; ++i) {
3720
		hpa_t root = vcpu->arch.mmu->pae_root[i];
3721

3722
		if (IS_VALID_PAE_ROOT(root)) {
3723
			root &= PT64_BASE_ADDR_MASK;
3724
			sp = to_shadow_page(root);
3725
			mmu_sync_children(vcpu, sp, true);
3726 3727 3728
		}
	}

3729
	write_unlock(&vcpu->kvm->mmu_lock);
3730 3731
}

3732 3733 3734 3735 3736 3737 3738 3739 3740 3741
void kvm_mmu_sync_prev_roots(struct kvm_vcpu *vcpu)
{
	unsigned long roots_to_free = 0;
	int i;

	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
		if (is_unsync_root(vcpu->arch.mmu->prev_roots[i].hpa))
			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);

	/* sync prev_roots by simply freeing them */
3742
	kvm_mmu_free_roots(vcpu->kvm, vcpu->arch.mmu, roots_to_free);
3743 3744
}

3745
static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3746
				  gpa_t vaddr, u64 access,
3747
				  struct x86_exception *exception)
A
Avi Kivity 已提交
3748
{
3749 3750
	if (exception)
		exception->error_code = 0;
3751
	return kvm_translate_gpa(vcpu, mmu, vaddr, access, exception);
3752 3753
}

3754
static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3755
{
3756 3757 3758 3759 3760 3761 3762
	/*
	 * A nested guest cannot use the MMIO cache if it is using nested
	 * page tables, because cr2 is a nGPA while the cache stores GPAs.
	 */
	if (mmu_is_nested(vcpu))
		return false;

3763 3764 3765 3766 3767 3768
	if (direct)
		return vcpu_match_mmio_gpa(vcpu, addr);

	return vcpu_match_mmio_gva(vcpu, addr);
}

3769 3770 3771
/*
 * Return the level of the lowest level SPTE added to sptes.
 * That SPTE may be non-present.
3772 3773
 *
 * Must be called between walk_shadow_page_lockless_{begin,end}.
3774
 */
3775
static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level)
3776 3777
{
	struct kvm_shadow_walk_iterator iterator;
3778
	int leaf = -1;
3779
	u64 spte;
3780

3781 3782
	for (shadow_walk_init(&iterator, vcpu, addr),
	     *root_level = iterator.level;
3783 3784
	     shadow_walk_okay(&iterator);
	     __shadow_walk_next(&iterator, spte)) {
3785
		leaf = iterator.level;
3786 3787
		spte = mmu_spte_get_lockless(iterator.sptep);

3788
		sptes[leaf] = spte;
3789 3790 3791 3792 3793
	}

	return leaf;
}

3794
/* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */
3795 3796
static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
{
3797
	u64 sptes[PT64_ROOT_MAX_LEVEL + 1];
3798
	struct rsvd_bits_validate *rsvd_check;
3799
	int root, leaf, level;
3800 3801
	bool reserved = false;

3802 3803
	walk_shadow_page_lockless_begin(vcpu);

3804
	if (is_tdp_mmu(vcpu->arch.mmu))
3805
		leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, &root);
3806
	else
3807
		leaf = get_walk(vcpu, addr, sptes, &root);
3808

3809 3810
	walk_shadow_page_lockless_end(vcpu);

3811 3812 3813 3814 3815
	if (unlikely(leaf < 0)) {
		*sptep = 0ull;
		return reserved;
	}

3816 3817 3818 3819 3820 3821 3822 3823 3824 3825
	*sptep = sptes[leaf];

	/*
	 * Skip reserved bits checks on the terminal leaf if it's not a valid
	 * SPTE.  Note, this also (intentionally) skips MMIO SPTEs, which, by
	 * design, always have reserved bits set.  The purpose of the checks is
	 * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs.
	 */
	if (!is_shadow_present_pte(sptes[leaf]))
		leaf++;
3826 3827 3828

	rsvd_check = &vcpu->arch.mmu->shadow_zero_check;

3829
	for (level = root; level >= leaf; level--)
3830
		reserved |= is_rsvd_spte(rsvd_check, sptes[level], level);
3831 3832

	if (reserved) {
3833
		pr_err("%s: reserved bits set on MMU-present spte, addr 0x%llx, hierarchy:\n",
3834
		       __func__, addr);
3835
		for (level = root; level >= leaf; level--)
3836 3837
			pr_err("------ spte = 0x%llx level = %d, rsvd bits = 0x%llx",
			       sptes[level], level,
3838
			       get_rsvd_bits(rsvd_check, sptes[level], level));
3839
	}
3840

3841
	return reserved;
3842 3843
}

P
Paolo Bonzini 已提交
3844
static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3845 3846
{
	u64 spte;
3847
	bool reserved;
3848

3849
	if (mmio_info_in_cache(vcpu, addr, direct))
3850
		return RET_PF_EMULATE;
3851

3852
	reserved = get_mmio_spte(vcpu, addr, &spte);
3853
	if (WARN_ON(reserved))
3854
		return -EINVAL;
3855 3856 3857

	if (is_mmio_spte(spte)) {
		gfn_t gfn = get_mmio_spte_gfn(spte);
3858
		unsigned int access = get_mmio_spte_access(spte);
3859

3860
		if (!check_mmio_spte(vcpu, spte))
3861
			return RET_PF_INVALID;
3862

3863 3864
		if (direct)
			addr = 0;
X
Xiao Guangrong 已提交
3865 3866

		trace_handle_mmio_page_fault(addr, gfn, access);
3867
		vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3868
		return RET_PF_EMULATE;
3869 3870 3871 3872 3873 3874
	}

	/*
	 * If the page table is zapped by other cpus, let CPU fault again on
	 * the address.
	 */
3875
	return RET_PF_RETRY;
3876 3877
}

3878
static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3879
					 struct kvm_page_fault *fault)
3880
{
3881
	if (unlikely(fault->rsvd))
3882 3883
		return false;

3884
	if (!fault->present || !fault->write)
3885 3886 3887 3888 3889 3890
		return false;

	/*
	 * guest is writing the page which is write tracked which can
	 * not be fixed by page fault handler.
	 */
3891
	if (kvm_slot_page_track_is_active(vcpu->kvm, fault->slot, fault->gfn, KVM_PAGE_TRACK_WRITE))
3892 3893 3894 3895 3896
		return true;

	return false;
}

3897 3898 3899 3900 3901 3902
static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
{
	struct kvm_shadow_walk_iterator iterator;
	u64 spte;

	walk_shadow_page_lockless_begin(vcpu);
3903
	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
3904 3905 3906 3907
		clear_sp_write_flooding_count(iterator.sptep);
	walk_shadow_page_lockless_end(vcpu);
}

3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918
static u32 alloc_apf_token(struct kvm_vcpu *vcpu)
{
	/* make sure the token value is not 0 */
	u32 id = vcpu->arch.apf.id;

	if (id << 12 == 0)
		vcpu->arch.apf.id = 1;

	return (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
}

3919 3920
static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
				    gfn_t gfn)
3921 3922
{
	struct kvm_arch_async_pf arch;
X
Xiao Guangrong 已提交
3923

3924
	arch.token = alloc_apf_token(vcpu);
3925
	arch.gfn = gfn;
3926
	arch.direct_map = vcpu->arch.mmu->direct_map;
3927
	arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu);
3928

3929 3930
	return kvm_setup_async_pf(vcpu, cr2_or_gpa,
				  kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3931 3932
}

3933
static bool kvm_faultin_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault, int *r)
3934
{
3935
	struct kvm_memory_slot *slot = fault->slot;
3936 3937
	bool async;

3938 3939 3940 3941 3942 3943
	/*
	 * Retry the page fault if the gfn hit a memslot that is being deleted
	 * or moved.  This ensures any existing SPTEs for the old memslot will
	 * be zapped before KVM inserts a new MMIO SPTE for the gfn.
	 */
	if (slot && (slot->flags & KVM_MEMSLOT_INVALID))
3944
		goto out_retry;
3945

3946 3947 3948
	if (!kvm_is_visible_memslot(slot)) {
		/* Don't expose private memslots to L2. */
		if (is_guest_mode(vcpu)) {
3949
			fault->slot = NULL;
3950 3951
			fault->pfn = KVM_PFN_NOSLOT;
			fault->map_writable = false;
3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964
			return false;
		}
		/*
		 * If the APIC access page exists but is disabled, go directly
		 * to emulation without caching the MMIO access or creating a
		 * MMIO SPTE.  That way the cache doesn't need to be purged
		 * when the AVIC is re-enabled.
		 */
		if (slot && slot->id == APIC_ACCESS_PAGE_PRIVATE_MEMSLOT &&
		    !kvm_apicv_activated(vcpu->kvm)) {
			*r = RET_PF_EMULATE;
			return true;
		}
3965 3966
	}

3967
	async = false;
3968 3969 3970
	fault->pfn = __gfn_to_pfn_memslot(slot, fault->gfn, false, &async,
					  fault->write, &fault->map_writable,
					  &fault->hva);
3971 3972 3973
	if (!async)
		return false; /* *pfn has correct page already */

3974
	if (!fault->prefetch && kvm_can_do_async_pf(vcpu)) {
3975 3976 3977
		trace_kvm_try_async_get_page(fault->addr, fault->gfn);
		if (kvm_find_async_pf_gfn(vcpu, fault->gfn)) {
			trace_kvm_async_pf_doublefault(fault->addr, fault->gfn);
3978
			kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3979
			goto out_retry;
3980
		} else if (kvm_arch_setup_async_pf(vcpu, fault->addr, fault->gfn))
3981
			goto out_retry;
3982 3983
	}

3984 3985 3986
	fault->pfn = __gfn_to_pfn_memslot(slot, fault->gfn, false, NULL,
					  fault->write, &fault->map_writable,
					  &fault->hva);
3987
	return false;
3988 3989 3990 3991

out_retry:
	*r = RET_PF_RETRY;
	return true;
3992 3993
}

3994 3995 3996 3997 3998 3999 4000
/*
 * Returns true if the page fault is stale and needs to be retried, i.e. if the
 * root was invalidated by a memslot update or a relevant mmu_notifier fired.
 */
static bool is_page_fault_stale(struct kvm_vcpu *vcpu,
				struct kvm_page_fault *fault, int mmu_seq)
{
4001
	struct kvm_mmu_page *sp = to_shadow_page(vcpu->arch.mmu->root.hpa);
4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014

	/* Special roots, e.g. pae_root, are not backed by shadow pages. */
	if (sp && is_obsolete_sp(vcpu->kvm, sp))
		return true;

	/*
	 * Roots without an associated shadow page are considered invalid if
	 * there is a pending request to free obsolete roots.  The request is
	 * only a hint that the current root _may_ be obsolete and needs to be
	 * reloaded, e.g. if the guest frees a PGD that KVM is tracking as a
	 * previous root, then __kvm_mmu_prepare_zap_page() signals all vCPUs
	 * to reload even if no vCPU is actively using the root.
	 */
4015
	if (!sp && kvm_test_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
4016 4017 4018 4019 4020 4021
		return true;

	return fault->slot &&
	       mmu_notifier_retry_hva(vcpu->kvm, mmu_seq, fault->hva);
}

4022
static int direct_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
A
Avi Kivity 已提交
4023
{
4024
	bool is_tdp_mmu_fault = is_tdp_mmu(vcpu->arch.mmu);
A
Avi Kivity 已提交
4025

4026
	unsigned long mmu_seq;
4027
	int r;
4028

4029
	fault->gfn = fault->addr >> PAGE_SHIFT;
4030 4031
	fault->slot = kvm_vcpu_gfn_to_memslot(vcpu, fault->gfn);

4032
	if (page_fault_handle_page_track(vcpu, fault))
4033
		return RET_PF_EMULATE;
4034

4035
	r = fast_page_fault(vcpu, fault);
4036 4037
	if (r != RET_PF_INVALID)
		return r;
4038

4039
	r = mmu_topup_memory_caches(vcpu, false);
4040 4041
	if (r)
		return r;
4042

4043 4044 4045
	mmu_seq = vcpu->kvm->mmu_notifier_seq;
	smp_rmb();

4046
	if (kvm_faultin_pfn(vcpu, fault, &r))
4047
		return r;
4048

4049
	if (handle_abnormal_pfn(vcpu, fault, ACC_ALL, &r))
4050
		return r;
A
Avi Kivity 已提交
4051

4052
	r = RET_PF_RETRY;
4053

4054
	if (is_tdp_mmu_fault)
4055 4056 4057 4058
		read_lock(&vcpu->kvm->mmu_lock);
	else
		write_lock(&vcpu->kvm->mmu_lock);

4059
	if (is_page_fault_stale(vcpu, fault, mmu_seq))
4060
		goto out_unlock;
4061

4062 4063
	r = make_mmu_pages_available(vcpu);
	if (r)
4064
		goto out_unlock;
B
Ben Gardon 已提交
4065

4066
	if (is_tdp_mmu_fault)
4067
		r = kvm_tdp_mmu_map(vcpu, fault);
B
Ben Gardon 已提交
4068
	else
4069
		r = __direct_map(vcpu, fault);
4070

4071
out_unlock:
4072
	if (is_tdp_mmu_fault)
4073 4074 4075
		read_unlock(&vcpu->kvm->mmu_lock);
	else
		write_unlock(&vcpu->kvm->mmu_lock);
4076
	kvm_release_pfn_clean(fault->pfn);
4077
	return r;
A
Avi Kivity 已提交
4078 4079
}

4080 4081
static int nonpaging_page_fault(struct kvm_vcpu *vcpu,
				struct kvm_page_fault *fault)
4082
{
4083
	pgprintk("%s: gva %lx error %x\n", __func__, fault->addr, fault->error_code);
4084 4085

	/* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
4086 4087
	fault->max_level = PG_LEVEL_2M;
	return direct_page_fault(vcpu, fault);
4088 4089
}

4090
int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
4091
				u64 fault_address, char *insn, int insn_len)
4092 4093
{
	int r = 1;
4094
	u32 flags = vcpu->arch.apf.host_apf_flags;
4095

4096 4097 4098 4099 4100 4101
#ifndef CONFIG_X86_64
	/* A 64-bit CR2 should be impossible on 32-bit KVM. */
	if (WARN_ON_ONCE(fault_address >> 32))
		return -EFAULT;
#endif

P
Paolo Bonzini 已提交
4102
	vcpu->arch.l1tf_flush_l1d = true;
4103
	if (!flags) {
4104 4105
		trace_kvm_page_fault(fault_address, error_code);

4106
		if (kvm_event_needs_reinjection(vcpu))
4107 4108 4109
			kvm_mmu_unprotect_page_virt(vcpu, fault_address);
		r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
				insn_len);
4110
	} else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
4111
		vcpu->arch.apf.host_apf_flags = 0;
4112
		local_irq_disable();
4113
		kvm_async_pf_task_wait_schedule(fault_address);
4114
		local_irq_enable();
4115 4116
	} else {
		WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags);
4117
	}
4118

4119 4120 4121 4122
	return r;
}
EXPORT_SYMBOL_GPL(kvm_handle_page_fault);

4123
int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
4124
{
4125 4126 4127
	while (fault->max_level > PG_LEVEL_4K) {
		int page_num = KVM_PAGES_PER_HPAGE(fault->max_level);
		gfn_t base = (fault->addr >> PAGE_SHIFT) & ~(page_num - 1);
4128

4129 4130
		if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
			break;
4131 4132

		--fault->max_level;
4133
	}
4134

4135
	return direct_page_fault(vcpu, fault);
4136 4137
}

4138
static void nonpaging_init_context(struct kvm_mmu *context)
A
Avi Kivity 已提交
4139 4140 4141
{
	context->page_fault = nonpaging_page_fault;
	context->gva_to_gpa = nonpaging_gva_to_gpa;
4142
	context->sync_page = nonpaging_sync_page;
4143
	context->invlpg = NULL;
4144
	context->direct_map = true;
A
Avi Kivity 已提交
4145 4146
}

4147
static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd,
4148 4149
				  union kvm_mmu_page_role role)
{
4150
	return (role.direct || pgd == root->pgd) &&
4151
	       VALID_PAGE(root->hpa) &&
4152
	       role.word == to_shadow_page(root->hpa)->role.word;
4153 4154
}

4155
/*
4156 4157 4158 4159 4160 4161
 * Find out if a previously cached root matching the new pgd/role is available,
 * and insert the current root as the MRU in the cache.
 * If a matching root is found, it is assigned to kvm_mmu->root and
 * true is returned.
 * If no match is found, kvm_mmu->root is left invalid, the LRU root is
 * evicted to make room for the current root, and false is returned.
4162
 */
4163 4164 4165
static bool cached_root_find_and_keep_current(struct kvm *kvm, struct kvm_mmu *mmu,
					      gpa_t new_pgd,
					      union kvm_mmu_page_role new_role)
4166 4167 4168
{
	uint i;

4169
	if (is_root_usable(&mmu->root, new_pgd, new_role))
4170 4171
		return true;

4172
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
4173 4174 4175 4176 4177 4178 4179 4180
		/*
		 * The swaps end up rotating the cache like this:
		 *   C   0 1 2 3   (on entry to the function)
		 *   0   C 1 2 3
		 *   1   C 0 2 3
		 *   2   C 0 1 3
		 *   3   C 0 1 2   (on exit from the loop)
		 */
4181 4182
		swap(mmu->root, mmu->prev_roots[i]);
		if (is_root_usable(&mmu->root, new_pgd, new_role))
4183
			return true;
4184 4185
	}

4186 4187
	kvm_mmu_free_roots(kvm, mmu, KVM_MMU_ROOT_CURRENT);
	return false;
4188 4189
}

4190 4191 4192 4193 4194 4195 4196 4197 4198 4199
/*
 * Find out if a previously cached root matching the new pgd/role is available.
 * On entry, mmu->root is invalid.
 * If a matching root is found, it is assigned to kvm_mmu->root, the LRU entry
 * of the cache becomes invalid, and true is returned.
 * If no match is found, kvm_mmu->root is left invalid and false is returned.
 */
static bool cached_root_find_without_current(struct kvm *kvm, struct kvm_mmu *mmu,
					     gpa_t new_pgd,
					     union kvm_mmu_page_role new_role)
A
Avi Kivity 已提交
4200
{
4201 4202 4203 4204 4205
	uint i;

	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
		if (is_root_usable(&mmu->prev_roots[i], new_pgd, new_role))
			goto hit;
4206

4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220
	return false;

hit:
	swap(mmu->root, mmu->prev_roots[i]);
	/* Bubble up the remaining roots.  */
	for (; i < KVM_MMU_NUM_PREV_ROOTS - 1; i++)
		mmu->prev_roots[i] = mmu->prev_roots[i + 1];
	mmu->prev_roots[i].hpa = INVALID_PAGE;
	return true;
}

static bool fast_pgd_switch(struct kvm *kvm, struct kvm_mmu *mmu,
			    gpa_t new_pgd, union kvm_mmu_page_role new_role)
{
4221
	/*
4222
	 * For now, limit the caching to 64-bit hosts+VMs in order to avoid
4223 4224 4225
	 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
	 * later if necessary.
	 */
4226 4227
	if (VALID_PAGE(mmu->root.hpa) && !to_shadow_page(mmu->root.hpa))
		kvm_mmu_free_roots(kvm, mmu, KVM_MMU_ROOT_CURRENT);
4228

4229 4230 4231 4232
	if (VALID_PAGE(mmu->root.hpa))
		return cached_root_find_and_keep_current(kvm, mmu, new_pgd, new_role);
	else
		return cached_root_find_without_current(kvm, mmu, new_pgd, new_role);
A
Avi Kivity 已提交
4233 4234
}

4235
void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd)
A
Avi Kivity 已提交
4236
{
4237
	struct kvm_mmu *mmu = vcpu->arch.mmu;
4238
	union kvm_mmu_page_role new_role = mmu->root_role;
4239

4240 4241
	if (!fast_pgd_switch(vcpu->kvm, mmu, new_pgd, new_role)) {
		/* kvm_mmu_ensure_valid_pgd will set up a new root.  */
4242 4243 4244 4245 4246 4247
		return;
	}

	/*
	 * It's possible that the cached previous root page is obsolete because
	 * of a change in the MMU generation number. However, changing the
4248 4249
	 * generation number is accompanied by KVM_REQ_MMU_FREE_OBSOLETE_ROOTS,
	 * which will free the root set here and allocate a new one.
4250 4251 4252
	 */
	kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);

4253
	if (force_flush_and_sync_on_reuse) {
4254 4255
		kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
4256
	}
4257 4258 4259 4260 4261 4262 4263 4264 4265

	/*
	 * The last MMIO access's GVA and GPA are cached in the VCPU. When
	 * switching to a new CR3, that GVA->GPA mapping may no longer be
	 * valid. So clear any cached MMIO info even when we don't need to sync
	 * the shadow page tables.
	 */
	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);

4266 4267 4268 4269 4270 4271
	/*
	 * If this is a direct root page, it doesn't have a write flooding
	 * count. Otherwise, clear the write flooding count.
	 */
	if (!new_role.direct)
		__clear_sp_write_flooding_count(
4272
				to_shadow_page(vcpu->arch.mmu->root.hpa));
A
Avi Kivity 已提交
4273
}
4274
EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd);
4275

4276 4277
static unsigned long get_cr3(struct kvm_vcpu *vcpu)
{
4278
	return kvm_read_cr3(vcpu);
4279 4280
}

4281
static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
4282
			   unsigned int access)
4283 4284 4285 4286 4287 4288 4289
{
	if (unlikely(is_mmio_spte(*sptep))) {
		if (gfn != get_mmio_spte_gfn(*sptep)) {
			mmu_spte_clear_no_track(sptep);
			return true;
		}

4290
		mark_mmio_spte(vcpu, sptep, gfn, access);
4291 4292 4293 4294 4295 4296
		return true;
	}

	return false;
}

4297 4298 4299 4300 4301
#define PTTYPE_EPT 18 /* arbitrary */
#define PTTYPE PTTYPE_EPT
#include "paging_tmpl.h"
#undef PTTYPE

A
Avi Kivity 已提交
4302 4303 4304 4305 4306 4307 4308 4309
#define PTTYPE 64
#include "paging_tmpl.h"
#undef PTTYPE

#define PTTYPE 32
#include "paging_tmpl.h"
#undef PTTYPE

4310
static void
4311
__reset_rsvds_bits_mask(struct rsvd_bits_validate *rsvd_check,
4312
			u64 pa_bits_rsvd, int level, bool nx, bool gbpages,
4313
			bool pse, bool amd)
4314
{
4315
	u64 gbpages_bit_rsvd = 0;
4316
	u64 nonleaf_bit8_rsvd = 0;
4317
	u64 high_bits_rsvd;
4318

4319
	rsvd_check->bad_mt_xwr = 0;
4320

4321
	if (!gbpages)
4322
		gbpages_bit_rsvd = rsvd_bits(7, 7);
4323

4324 4325 4326 4327 4328 4329 4330 4331 4332
	if (level == PT32E_ROOT_LEVEL)
		high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 62);
	else
		high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);

	/* Note, NX doesn't exist in PDPTEs, this is handled below. */
	if (!nx)
		high_bits_rsvd |= rsvd_bits(63, 63);

4333 4334 4335 4336
	/*
	 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
	 * leaf entries) on AMD CPUs only.
	 */
4337
	if (amd)
4338 4339
		nonleaf_bit8_rsvd = rsvd_bits(8, 8);

4340
	switch (level) {
4341 4342
	case PT32_ROOT_LEVEL:
		/* no rsvd bits for 2 level 4K page table entries */
4343 4344 4345 4346
		rsvd_check->rsvd_bits_mask[0][1] = 0;
		rsvd_check->rsvd_bits_mask[0][0] = 0;
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
4347

4348
		if (!pse) {
4349
			rsvd_check->rsvd_bits_mask[1][1] = 0;
4350 4351 4352
			break;
		}

4353 4354
		if (is_cpuid_PSE36())
			/* 36bits PSE 4MB page */
4355
			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4356 4357
		else
			/* 32 bits PSE 4MB page */
4358
			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4359 4360
		break;
	case PT32E_ROOT_LEVEL:
4361 4362 4363 4364 4365 4366 4367 4368
		rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) |
						   high_bits_rsvd |
						   rsvd_bits(5, 8) |
						   rsvd_bits(1, 2);	/* PDPTE */
		rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;	/* PDE */
		rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;	/* PTE */
		rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
						   rsvd_bits(13, 20);	/* large page */
4369 4370
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
4371
		break;
4372
	case PT64_ROOT_5LEVEL:
4373 4374 4375
		rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd |
						   nonleaf_bit8_rsvd |
						   rsvd_bits(7, 7);
4376 4377
		rsvd_check->rsvd_bits_mask[1][4] =
			rsvd_check->rsvd_bits_mask[0][4];
4378
		fallthrough;
4379
	case PT64_ROOT_4LEVEL:
4380 4381 4382 4383 4384 4385 4386
		rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd |
						   nonleaf_bit8_rsvd |
						   rsvd_bits(7, 7);
		rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd |
						   gbpages_bit_rsvd;
		rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;
		rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4387 4388
		rsvd_check->rsvd_bits_mask[1][3] =
			rsvd_check->rsvd_bits_mask[0][3];
4389 4390 4391 4392 4393
		rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd |
						   gbpages_bit_rsvd |
						   rsvd_bits(13, 29);
		rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
						   rsvd_bits(13, 20); /* large page */
4394 4395
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
4396 4397 4398 4399
		break;
	}
}

4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414
static bool guest_can_use_gbpages(struct kvm_vcpu *vcpu)
{
	/*
	 * If TDP is enabled, let the guest use GBPAGES if they're supported in
	 * hardware.  The hardware page walker doesn't let KVM disable GBPAGES,
	 * i.e. won't treat them as reserved, and KVM doesn't redo the GVA->GPA
	 * walk for performance and complexity reasons.  Not to mention KVM
	 * _can't_ solve the problem because GVA->GPA walks aren't visible to
	 * KVM once a TDP translation is installed.  Mimic hardware behavior so
	 * that KVM's is at least consistent, i.e. doesn't randomly inject #PF.
	 */
	return tdp_enabled ? boot_cpu_has(X86_FEATURE_GBPAGES) :
			     guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES);
}

4415 4416 4417
static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
{
4418
	__reset_rsvds_bits_mask(&context->guest_rsvd_check,
4419
				vcpu->arch.reserved_gpa_bits,
4420
				context->cpu_role.base.level, is_efer_nx(context),
4421
				guest_can_use_gbpages(vcpu),
4422
				is_cr4_pse(context),
4423
				guest_cpuid_is_amd_or_hygon(vcpu));
4424 4425
}

4426 4427
static void
__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4428
			    u64 pa_bits_rsvd, bool execonly, int huge_page_level)
4429
{
4430
	u64 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
4431
	u64 large_1g_rsvd = 0, large_2m_rsvd = 0;
4432
	u64 bad_mt_xwr;
4433

4434 4435 4436 4437 4438
	if (huge_page_level < PG_LEVEL_1G)
		large_1g_rsvd = rsvd_bits(7, 7);
	if (huge_page_level < PG_LEVEL_2M)
		large_2m_rsvd = rsvd_bits(7, 7);

4439 4440
	rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7);
	rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7);
4441 4442
	rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6) | large_1g_rsvd;
	rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6) | large_2m_rsvd;
4443
	rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4444 4445

	/* large page */
4446
	rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4447
	rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4448 4449
	rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29) | large_1g_rsvd;
	rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20) | large_2m_rsvd;
4450
	rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4451

4452 4453 4454 4455 4456 4457 4458 4459
	bad_mt_xwr = 0xFFull << (2 * 8);	/* bits 3..5 must not be 2 */
	bad_mt_xwr |= 0xFFull << (3 * 8);	/* bits 3..5 must not be 3 */
	bad_mt_xwr |= 0xFFull << (7 * 8);	/* bits 3..5 must not be 7 */
	bad_mt_xwr |= REPEAT_BYTE(1ull << 2);	/* bits 0..2 must not be 010 */
	bad_mt_xwr |= REPEAT_BYTE(1ull << 6);	/* bits 0..2 must not be 110 */
	if (!execonly) {
		/* bits 0..2 must not be 100 unless VMX capabilities allow it */
		bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4460
	}
4461
	rsvd_check->bad_mt_xwr = bad_mt_xwr;
4462 4463
}

4464
static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4465
		struct kvm_mmu *context, bool execonly, int huge_page_level)
4466 4467
{
	__reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4468 4469
				    vcpu->arch.reserved_gpa_bits, execonly,
				    huge_page_level);
4470 4471
}

4472 4473 4474 4475 4476
static inline u64 reserved_hpa_bits(void)
{
	return rsvd_bits(shadow_phys_bits, 63);
}

4477 4478 4479 4480 4481
/*
 * the page table on host is the shadow page table for the page
 * table in guest or amd nested guest, its mmu features completely
 * follow the features in guest.
 */
4482 4483
static void reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
					struct kvm_mmu *context)
4484
{
4485 4486 4487 4488
	/* @amd adds a check on bit of SPTEs, which KVM shouldn't use anyways. */
	bool is_amd = true;
	/* KVM doesn't use 2-level page tables for the shadow MMU. */
	bool is_pse = false;
4489 4490
	struct rsvd_bits_validate *shadow_zero_check;
	int i;
4491

4492
	WARN_ON_ONCE(context->root_role.level < PT32E_ROOT_LEVEL);
4493

4494
	shadow_zero_check = &context->shadow_zero_check;
4495
	__reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(),
4496
				context->root_role.level,
4497
				context->root_role.efer_nx,
4498
				guest_can_use_gbpages(vcpu), is_pse, is_amd);
4499 4500 4501 4502

	if (!shadow_me_mask)
		return;

4503
	for (i = context->root_role.level; --i >= 0;) {
4504 4505 4506 4507
		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
	}

4508 4509
}

4510 4511 4512 4513 4514 4515
static inline bool boot_cpu_is_amd(void)
{
	WARN_ON_ONCE(!tdp_enabled);
	return shadow_x_mask == 0;
}

4516 4517 4518 4519 4520
/*
 * the direct page table on host, use as much mmu features as
 * possible, however, kvm currently does not do execution-protection.
 */
static void
4521
reset_tdp_shadow_zero_bits_mask(struct kvm_mmu *context)
4522
{
4523 4524 4525 4526 4527
	struct rsvd_bits_validate *shadow_zero_check;
	int i;

	shadow_zero_check = &context->shadow_zero_check;

4528
	if (boot_cpu_is_amd())
4529
		__reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(),
4530
					context->root_role.level, false,
4531
					boot_cpu_has(X86_FEATURE_GBPAGES),
4532
					false, true);
4533
	else
4534
		__reset_rsvds_bits_mask_ept(shadow_zero_check,
4535 4536
					    reserved_hpa_bits(), false,
					    max_huge_page_level);
4537

4538 4539 4540
	if (!shadow_me_mask)
		return;

4541
	for (i = context->root_role.level; --i >= 0;) {
4542 4543 4544
		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
	}
4545 4546 4547 4548 4549 4550 4551
}

/*
 * as the comments in reset_shadow_zero_bits_mask() except it
 * is the shadow page table for intel nested guest.
 */
static void
4552
reset_ept_shadow_zero_bits_mask(struct kvm_mmu *context, bool execonly)
4553 4554
{
	__reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4555 4556
				    reserved_hpa_bits(), execonly,
				    max_huge_page_level);
4557 4558
}

4559 4560 4561 4562 4563 4564 4565 4566 4567 4568
#define BYTE_MASK(access) \
	((1 & (access) ? 2 : 0) | \
	 (2 & (access) ? 4 : 0) | \
	 (3 & (access) ? 8 : 0) | \
	 (4 & (access) ? 16 : 0) | \
	 (5 & (access) ? 32 : 0) | \
	 (6 & (access) ? 64 : 0) | \
	 (7 & (access) ? 128 : 0))


4569
static void update_permission_bitmask(struct kvm_mmu *mmu, bool ept)
4570
{
4571 4572 4573 4574 4575 4576
	unsigned byte;

	const u8 x = BYTE_MASK(ACC_EXEC_MASK);
	const u8 w = BYTE_MASK(ACC_WRITE_MASK);
	const u8 u = BYTE_MASK(ACC_USER_MASK);

4577 4578 4579
	bool cr4_smep = is_cr4_smep(mmu);
	bool cr4_smap = is_cr4_smap(mmu);
	bool cr0_wp = is_cr0_wp(mmu);
4580
	bool efer_nx = is_efer_nx(mmu);
4581 4582

	for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4583 4584
		unsigned pfec = byte << 1;

F
Feng Wu 已提交
4585
		/*
4586 4587
		 * Each "*f" variable has a 1 bit for each UWX value
		 * that causes a fault with the given PFEC.
F
Feng Wu 已提交
4588
		 */
4589

4590
		/* Faults from writes to non-writable pages */
4591
		u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
4592
		/* Faults from user mode accesses to supervisor pages */
4593
		u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
4594
		/* Faults from fetches of non-executable pages*/
4595
		u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
4596 4597 4598 4599 4600 4601 4602 4603 4604 4605
		/* Faults from kernel mode fetches of user pages */
		u8 smepf = 0;
		/* Faults from kernel mode accesses of user pages */
		u8 smapf = 0;

		if (!ept) {
			/* Faults from kernel mode accesses to user pages */
			u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;

			/* Not really needed: !nx will cause pte.nx to fault */
4606
			if (!efer_nx)
4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620
				ff = 0;

			/* Allow supervisor writes if !cr0.wp */
			if (!cr0_wp)
				wf = (pfec & PFERR_USER_MASK) ? wf : 0;

			/* Disallow supervisor fetches of user code if cr4.smep */
			if (cr4_smep)
				smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;

			/*
			 * SMAP:kernel-mode data accesses from user-mode
			 * mappings should fault. A fault is considered
			 * as a SMAP violation if all of the following
P
Peng Hao 已提交
4621
			 * conditions are true:
4622 4623 4624
			 *   - X86_CR4_SMAP is set in CR4
			 *   - A user page is accessed
			 *   - The access is not a fetch
4625 4626
			 *   - The access is supervisor mode
			 *   - If implicit supervisor access or X86_EFLAGS_AC is clear
4627
			 *
4628 4629
			 * Here, we cover the first four conditions.
			 * The fifth is computed dynamically in permission_fault();
4630 4631 4632 4633 4634
			 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
			 * *not* subject to SMAP restrictions.
			 */
			if (cr4_smap)
				smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4635
		}
4636 4637

		mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4638 4639 4640
	}
}

4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664
/*
* PKU is an additional mechanism by which the paging controls access to
* user-mode addresses based on the value in the PKRU register.  Protection
* key violations are reported through a bit in the page fault error code.
* Unlike other bits of the error code, the PK bit is not known at the
* call site of e.g. gva_to_gpa; it must be computed directly in
* permission_fault based on two bits of PKRU, on some machine state (CR4,
* CR0, EFER, CPL), and on other bits of the error code and the page tables.
*
* In particular the following conditions come from the error code, the
* page tables and the machine state:
* - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
* - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
* - PK is always zero if U=0 in the page tables
* - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
*
* The PKRU bitmask caches the result of these four conditions.  The error
* code (minus the P bit) and the page table's U bit form an index into the
* PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
* with the two bits of the PKRU register corresponding to the protection key.
* For the first three conditions above the bits will be 00, thus masking
* away both AD and WD.  For all reads or if the last condition holds, WD
* only will be masked away.
*/
4665
static void update_pkru_bitmask(struct kvm_mmu *mmu)
4666 4667 4668 4669
{
	unsigned bit;
	bool wp;

4670 4671 4672
	mmu->pkru_mask = 0;

	if (!is_cr4_pke(mmu))
4673 4674
		return;

4675
	wp = is_cr0_wp(mmu);
4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708

	for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
		unsigned pfec, pkey_bits;
		bool check_pkey, check_write, ff, uf, wf, pte_user;

		pfec = bit << 1;
		ff = pfec & PFERR_FETCH_MASK;
		uf = pfec & PFERR_USER_MASK;
		wf = pfec & PFERR_WRITE_MASK;

		/* PFEC.RSVD is replaced by ACC_USER_MASK. */
		pte_user = pfec & PFERR_RSVD_MASK;

		/*
		 * Only need to check the access which is not an
		 * instruction fetch and is to a user page.
		 */
		check_pkey = (!ff && pte_user);
		/*
		 * write access is controlled by PKRU if it is a
		 * user access or CR0.WP = 1.
		 */
		check_write = check_pkey && wf && (uf || wp);

		/* PKRU.AD stops both read and write access. */
		pkey_bits = !!check_pkey;
		/* PKRU.WD stops write access. */
		pkey_bits |= (!!check_write) << 1;

		mmu->pkru_mask |= (pkey_bits & 3) << pfec;
	}
}

4709 4710
static void reset_guest_paging_metadata(struct kvm_vcpu *vcpu,
					struct kvm_mmu *mmu)
A
Avi Kivity 已提交
4711
{
4712 4713
	if (!is_cr0_pg(mmu))
		return;
4714

4715 4716 4717
	reset_rsvds_bits_mask(vcpu, mmu);
	update_permission_bitmask(mmu, false);
	update_pkru_bitmask(mmu);
A
Avi Kivity 已提交
4718 4719
}

4720
static void paging64_init_context(struct kvm_mmu *context)
A
Avi Kivity 已提交
4721 4722 4723
{
	context->page_fault = paging64_page_fault;
	context->gva_to_gpa = paging64_gva_to_gpa;
4724
	context->sync_page = paging64_sync_page;
M
Marcelo Tosatti 已提交
4725
	context->invlpg = paging64_invlpg;
4726
	context->direct_map = false;
A
Avi Kivity 已提交
4727 4728
}

4729
static void paging32_init_context(struct kvm_mmu *context)
A
Avi Kivity 已提交
4730 4731 4732
{
	context->page_fault = paging32_page_fault;
	context->gva_to_gpa = paging32_gva_to_gpa;
4733
	context->sync_page = paging32_sync_page;
M
Marcelo Tosatti 已提交
4734
	context->invlpg = paging32_invlpg;
4735
	context->direct_map = false;
A
Avi Kivity 已提交
4736 4737
}

4738
static union kvm_cpu_role
4739 4740
kvm_calc_cpu_role(struct kvm_vcpu *vcpu, const struct kvm_mmu_role_regs *regs)
{
4741
	union kvm_cpu_role role = {0};
4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757

	role.base.access = ACC_ALL;
	role.base.smm = is_smm(vcpu);
	role.base.guest_mode = is_guest_mode(vcpu);
	role.ext.valid = 1;

	if (!____is_cr0_pg(regs)) {
		role.base.direct = 1;
		return role;
	}

	role.base.efer_nx = ____is_efer_nx(regs);
	role.base.cr0_wp = ____is_cr0_wp(regs);
	role.base.smep_andnot_wp = ____is_cr4_smep(regs) && !____is_cr0_wp(regs);
	role.base.smap_andnot_wp = ____is_cr4_smap(regs) && !____is_cr0_wp(regs);
	role.base.has_4_byte_gpte = !____is_cr4_pae(regs);
4758 4759 4760 4761 4762 4763 4764 4765

	if (____is_efer_lma(regs))
		role.base.level = ____is_cr4_la57(regs) ? PT64_ROOT_5LEVEL
							: PT64_ROOT_4LEVEL;
	else if (____is_cr4_pae(regs))
		role.base.level = PT32E_ROOT_LEVEL;
	else
		role.base.level = PT32_ROOT_LEVEL;
4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777

	role.ext.cr4_smep = ____is_cr4_smep(regs);
	role.ext.cr4_smap = ____is_cr4_smap(regs);
	role.ext.cr4_pse = ____is_cr4_pse(regs);

	/* PKEY and LA57 are active iff long mode is active. */
	role.ext.cr4_pke = ____is_efer_lma(regs) && ____is_cr4_pke(regs);
	role.ext.cr4_la57 = ____is_efer_lma(regs) && ____is_cr4_la57(regs);
	role.ext.efer_lma = ____is_efer_lma(regs);
	return role;
}

4778 4779
static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu)
{
4780 4781 4782 4783
	/* tdp_root_level is architecture forced level, use it if nonzero */
	if (tdp_root_level)
		return tdp_root_level;

4784
	/* Use 5-level TDP if and only if it's useful/necessary. */
4785
	if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48)
4786 4787
		return 4;

4788
	return max_tdp_level;
4789 4790
}

4791
static union kvm_mmu_page_role
4792
kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu,
4793
				union kvm_cpu_role cpu_role)
4794
{
4795
	union kvm_mmu_page_role role = {0};
4796

4797 4798 4799 4800 4801 4802 4803 4804 4805
	role.access = ACC_ALL;
	role.cr0_wp = true;
	role.efer_nx = true;
	role.smm = cpu_role.base.smm;
	role.guest_mode = cpu_role.base.guest_mode;
	role.ad_disabled = (shadow_accessed_mask == 0);
	role.level = kvm_mmu_get_tdp_level(vcpu);
	role.direct = true;
	role.has_4_byte_gpte = false;
4806 4807 4808 4809

	return role;
}

4810
static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu,
4811
			     union kvm_cpu_role cpu_role)
4812
{
4813
	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4814
	union kvm_mmu_page_role root_role = kvm_calc_tdp_mmu_root_page_role(vcpu, cpu_role);
4815

4816
	if (cpu_role.as_u64 == context->cpu_role.as_u64 &&
4817
	    root_role.word == context->root_role.word)
4818 4819
		return;

4820
	context->cpu_role.as_u64 = cpu_role.as_u64;
4821
	context->root_role.word = root_role.word;
4822
	context->page_fault = kvm_tdp_page_fault;
4823
	context->sync_page = nonpaging_sync_page;
4824
	context->invlpg = NULL;
4825
	context->direct_map = true;
4826
	context->get_guest_pgd = get_cr3;
4827
	context->get_pdptr = kvm_pdptr_read;
4828
	context->inject_page_fault = kvm_inject_page_fault;
4829

4830
	if (!is_cr0_pg(context))
4831
		context->gva_to_gpa = nonpaging_gva_to_gpa;
4832
	else if (is_cr4_pae(context))
4833
		context->gva_to_gpa = paging64_gva_to_gpa;
4834
	else
4835
		context->gva_to_gpa = paging32_gva_to_gpa;
4836

4837
	reset_guest_paging_metadata(vcpu, context);
4838
	reset_tdp_shadow_zero_bits_mask(context);
4839 4840
}

4841
static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
4842
				    union kvm_cpu_role cpu_role,
4843
				    union kvm_mmu_page_role root_role)
4844
{
4845
	if (cpu_role.as_u64 == context->cpu_role.as_u64 &&
4846
	    root_role.word == context->root_role.word)
4847
		return;
4848

4849
	context->cpu_role.as_u64 = cpu_role.as_u64;
4850
	context->root_role.word = root_role.word;
4851

4852
	if (!is_cr0_pg(context))
4853
		nonpaging_init_context(context);
4854
	else if (is_cr4_pae(context))
4855
		paging64_init_context(context);
A
Avi Kivity 已提交
4856
	else
4857
		paging32_init_context(context);
4858

4859
	reset_guest_paging_metadata(vcpu, context);
4860
	reset_shadow_zero_bits_mask(vcpu, context);
4861
}
4862

4863
static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu,
4864
				union kvm_cpu_role cpu_role)
4865
{
4866
	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4867
	union kvm_mmu_page_role root_role;
4868

4869
	root_role = cpu_role.base;
4870

4871 4872
	/* KVM uses PAE paging whenever the guest isn't using 64-bit paging. */
	root_role.level = max_t(u32, root_role.level, PT32E_ROOT_LEVEL);
4873

4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885
	/*
	 * KVM forces EFER.NX=1 when TDP is disabled, reflect it in the MMU role.
	 * KVM uses NX when TDP is disabled to handle a variety of scenarios,
	 * notably for huge SPTEs if iTLB multi-hit mitigation is enabled and
	 * to generate correct permissions for CR0.WP=0/CR4.SMEP=1/EFER.NX=0.
	 * The iTLB multi-hit workaround can be toggled at any time, so assume
	 * NX can be used by any non-nested shadow MMU to avoid having to reset
	 * MMU contexts.
	 */
	root_role.efer_nx = true;

	shadow_mmu_init_context(vcpu, context, cpu_role, root_role);
4886 4887
}

4888 4889
void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0,
			     unsigned long cr4, u64 efer, gpa_t nested_cr3)
4890
{
4891
	struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4892 4893
	struct kvm_mmu_role_regs regs = {
		.cr0 = cr0,
4894
		.cr4 = cr4 & ~X86_CR4_PKE,
4895 4896
		.efer = efer,
	};
4897
	union kvm_cpu_role cpu_role = kvm_calc_cpu_role(vcpu, &regs);
4898 4899 4900 4901 4902 4903 4904
	union kvm_mmu_page_role root_role;

	/* NPT requires CR0.PG=1. */
	WARN_ON_ONCE(cpu_role.base.direct);

	root_role = cpu_role.base;
	root_role.level = kvm_mmu_get_tdp_level(vcpu);
4905

4906
	shadow_mmu_init_context(vcpu, context, cpu_role, root_role);
4907
	kvm_mmu_new_pgd(vcpu, nested_cr3);
4908 4909
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu);
4910

4911
static union kvm_cpu_role
4912
kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
4913
				   bool execonly, u8 level)
4914
{
4915
	union kvm_cpu_role role = {0};
4916

4917 4918 4919 4920 4921
	/*
	 * KVM does not support SMM transfer monitors, and consequently does not
	 * support the "entry to SMM" control either.  role.base.smm is always 0.
	 */
	WARN_ON_ONCE(is_smm(vcpu));
4922
	role.base.level = level;
4923
	role.base.has_4_byte_gpte = false;
4924 4925 4926 4927
	role.base.direct = false;
	role.base.ad_disabled = !accessed_dirty;
	role.base.guest_mode = true;
	role.base.access = ACC_ALL;
4928

4929
	role.ext.word = 0;
4930
	role.ext.execonly = execonly;
4931
	role.ext.valid = 1;
4932 4933 4934 4935

	return role;
}

4936
void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
4937 4938
			     int huge_page_level, bool accessed_dirty,
			     gpa_t new_eptp)
N
Nadav Har'El 已提交
4939
{
4940
	struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4941
	u8 level = vmx_eptp_page_walk_level(new_eptp);
4942
	union kvm_cpu_role new_mode =
4943
		kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
4944
						   execonly, level);
4945

4946 4947 4948
	if (new_mode.as_u64 != context->cpu_role.as_u64) {
		/* EPT, and thus nested EPT, does not consume CR0, CR4, nor EFER. */
		context->cpu_role.as_u64 = new_mode.as_u64;
4949
		context->root_role.word = new_mode.base.word;
4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960

		context->page_fault = ept_page_fault;
		context->gva_to_gpa = ept_gva_to_gpa;
		context->sync_page = ept_sync_page;
		context->invlpg = ept_invlpg;
		context->direct_map = false;
		update_permission_bitmask(context, true);
		context->pkru_mask = 0;
		reset_rsvds_bits_mask_ept(vcpu, context, execonly, huge_page_level);
		reset_ept_shadow_zero_bits_mask(context, execonly);
	}
4961

4962
	kvm_mmu_new_pgd(vcpu, new_eptp);
N
Nadav Har'El 已提交
4963 4964 4965
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);

4966
static void init_kvm_softmmu(struct kvm_vcpu *vcpu,
4967
			     union kvm_cpu_role cpu_role)
4968
{
4969
	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4970

4971
	kvm_init_shadow_mmu(vcpu, cpu_role);
4972

4973
	context->get_guest_pgd     = get_cr3;
4974 4975
	context->get_pdptr         = kvm_pdptr_read;
	context->inject_page_fault = kvm_inject_page_fault;
A
Avi Kivity 已提交
4976 4977
}

4978
static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu,
4979
				union kvm_cpu_role new_mode)
4980 4981 4982
{
	struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;

4983
	if (new_mode.as_u64 == g_context->cpu_role.as_u64)
4984 4985
		return;

4986
	g_context->cpu_role.as_u64   = new_mode.as_u64;
4987
	g_context->get_guest_pgd     = get_cr3;
4988
	g_context->get_pdptr         = kvm_pdptr_read;
4989 4990
	g_context->inject_page_fault = kvm_inject_page_fault;

4991 4992 4993 4994 4995 4996
	/*
	 * L2 page tables are never shadowed, so there is no need to sync
	 * SPTEs.
	 */
	g_context->invlpg            = NULL;

4997
	/*
4998
	 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
4999 5000 5001 5002 5003
	 * L1's nested page tables (e.g. EPT12). The nested translation
	 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
	 * L2's page tables as the first level of translation and L1's
	 * nested page tables as the second level of translation. Basically
	 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
5004
	 */
5005
	if (!is_paging(vcpu))
5006
		g_context->gva_to_gpa = nonpaging_gva_to_gpa;
5007
	else if (is_long_mode(vcpu))
5008
		g_context->gva_to_gpa = paging64_gva_to_gpa;
5009
	else if (is_pae(vcpu))
5010
		g_context->gva_to_gpa = paging64_gva_to_gpa;
5011
	else
5012
		g_context->gva_to_gpa = paging32_gva_to_gpa;
5013

5014
	reset_guest_paging_metadata(vcpu, g_context);
5015 5016
}

5017
void kvm_init_mmu(struct kvm_vcpu *vcpu)
5018
{
5019
	struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
5020
	union kvm_cpu_role cpu_role = kvm_calc_cpu_role(vcpu, &regs);
5021

5022
	if (mmu_is_nested(vcpu))
5023
		init_kvm_nested_mmu(vcpu, cpu_role);
5024
	else if (tdp_enabled)
5025
		init_kvm_tdp_mmu(vcpu, cpu_role);
5026
	else
5027
		init_kvm_softmmu(vcpu, cpu_role);
5028
}
5029
EXPORT_SYMBOL_GPL(kvm_init_mmu);
5030

5031 5032 5033 5034 5035
void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu)
{
	/*
	 * Invalidate all MMU roles to force them to reinitialize as CPUID
	 * information is factored into reserved bit calculations.
5036 5037 5038 5039 5040 5041 5042 5043
	 *
	 * Correctly handling multiple vCPU models with respect to paging and
	 * physical address properties) in a single VM would require tracking
	 * all relevant CPUID information in kvm_mmu_page_role. That is very
	 * undesirable as it would increase the memory requirements for
	 * gfn_track (see struct kvm_mmu_page_role comments).  For now that
	 * problem is swept under the rug; KVM's CPUID API is horrific and
	 * it's all but impossible to solve it without introducing a new API.
5044
	 */
5045 5046 5047
	vcpu->arch.root_mmu.root_role.word = 0;
	vcpu->arch.guest_mmu.root_role.word = 0;
	vcpu->arch.nested_mmu.root_role.word = 0;
5048 5049 5050
	vcpu->arch.root_mmu.cpu_role.ext.valid = 0;
	vcpu->arch.guest_mmu.cpu_role.ext.valid = 0;
	vcpu->arch.nested_mmu.cpu_role.ext.valid = 0;
5051
	kvm_mmu_reset_context(vcpu);
5052 5053

	/*
5054 5055
	 * Changing guest CPUID after KVM_RUN is forbidden, see the comment in
	 * kvm_arch_vcpu_ioctl().
5056
	 */
5057
	KVM_BUG_ON(vcpu->arch.last_vmentry_cpu != -1, vcpu->kvm);
5058 5059
}

5060
void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
5061
{
5062
	kvm_mmu_unload(vcpu);
5063
	kvm_init_mmu(vcpu);
A
Avi Kivity 已提交
5064
}
5065
EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
A
Avi Kivity 已提交
5066 5067

int kvm_mmu_load(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
5068
{
5069 5070
	int r;

5071
	r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->direct_map);
A
Avi Kivity 已提交
5072 5073
	if (r)
		goto out;
5074
	r = mmu_alloc_special_roots(vcpu);
A
Avi Kivity 已提交
5075 5076
	if (r)
		goto out;
5077
	if (vcpu->arch.mmu->direct_map)
5078 5079 5080
		r = mmu_alloc_direct_roots(vcpu);
	else
		r = mmu_alloc_shadow_roots(vcpu);
5081 5082
	if (r)
		goto out;
5083 5084 5085

	kvm_mmu_sync_roots(vcpu);

5086
	kvm_mmu_load_pgd(vcpu);
5087 5088 5089 5090 5091 5092 5093 5094

	/*
	 * Flush any TLB entries for the new root, the provenance of the root
	 * is unknown.  Even if KVM ensures there are no stale TLB entries
	 * for a freed root, in theory another hypervisor could have left
	 * stale entries.  Flushing on alloc also allows KVM to skip the TLB
	 * flush when freeing a root (see kvm_tdp_mmu_put_root()).
	 */
5095
	static_call(kvm_x86_flush_tlb_current)(vcpu);
5096 5097
out:
	return r;
A
Avi Kivity 已提交
5098
}
A
Avi Kivity 已提交
5099 5100 5101

void kvm_mmu_unload(struct kvm_vcpu *vcpu)
{
5102 5103 5104
	struct kvm *kvm = vcpu->kvm;

	kvm_mmu_free_roots(kvm, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
5105
	WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root.hpa));
5106
	kvm_mmu_free_roots(kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
5107
	WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root.hpa));
5108
	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
A
Avi Kivity 已提交
5109
}
A
Avi Kivity 已提交
5110

5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155
static bool is_obsolete_root(struct kvm *kvm, hpa_t root_hpa)
{
	struct kvm_mmu_page *sp;

	if (!VALID_PAGE(root_hpa))
		return false;

	/*
	 * When freeing obsolete roots, treat roots as obsolete if they don't
	 * have an associated shadow page.  This does mean KVM will get false
	 * positives and free roots that don't strictly need to be freed, but
	 * such false positives are relatively rare:
	 *
	 *  (a) only PAE paging and nested NPT has roots without shadow pages
	 *  (b) remote reloads due to a memslot update obsoletes _all_ roots
	 *  (c) KVM doesn't track previous roots for PAE paging, and the guest
	 *      is unlikely to zap an in-use PGD.
	 */
	sp = to_shadow_page(root_hpa);
	return !sp || is_obsolete_sp(kvm, sp);
}

static void __kvm_mmu_free_obsolete_roots(struct kvm *kvm, struct kvm_mmu *mmu)
{
	unsigned long roots_to_free = 0;
	int i;

	if (is_obsolete_root(kvm, mmu->root.hpa))
		roots_to_free |= KVM_MMU_ROOT_CURRENT;

	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
		if (is_obsolete_root(kvm, mmu->root.hpa))
			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
	}

	if (roots_to_free)
		kvm_mmu_free_roots(kvm, mmu, roots_to_free);
}

void kvm_mmu_free_obsolete_roots(struct kvm_vcpu *vcpu)
{
	__kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.root_mmu);
	__kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.guest_mmu);
}

5156 5157 5158 5159 5160 5161 5162 5163
static bool need_remote_flush(u64 old, u64 new)
{
	if (!is_shadow_present_pte(old))
		return false;
	if (!is_shadow_present_pte(new))
		return true;
	if ((old ^ new) & PT64_BASE_ADDR_MASK)
		return true;
5164 5165
	old ^= shadow_nx_mask;
	new ^= shadow_nx_mask;
5166 5167 5168
	return (old & ~new & PT64_PERM_MASK) != 0;
}

5169
static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
5170
				    int *bytes)
5171
{
5172
	u64 gentry = 0;
5173
	int r;
5174 5175 5176

	/*
	 * Assume that the pte write on a page table of the same type
5177 5178
	 * as the current vcpu paging mode since we update the sptes only
	 * when they have the same mode.
5179
	 */
5180
	if (is_pae(vcpu) && *bytes == 4) {
5181
		/* Handle a 32-bit guest writing two halves of a 64-bit gpte */
5182 5183
		*gpa &= ~(gpa_t)7;
		*bytes = 8;
5184 5185
	}

5186 5187 5188 5189
	if (*bytes == 4 || *bytes == 8) {
		r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
		if (r)
			gentry = 0;
5190 5191
	}

5192 5193 5194 5195 5196 5197 5198
	return gentry;
}

/*
 * If we're seeing too many writes to a page, it may no longer be a page table,
 * or we may be forking, in which case it is better to unmap the page.
 */
5199
static bool detect_write_flooding(struct kvm_mmu_page *sp)
5200
{
5201 5202 5203 5204
	/*
	 * Skip write-flooding detected for the sp whose level is 1, because
	 * it can become unsync, then the guest page is not write-protected.
	 */
5205
	if (sp->role.level == PG_LEVEL_4K)
5206
		return false;
5207

5208 5209
	atomic_inc(&sp->write_flooding_count);
	return atomic_read(&sp->write_flooding_count) >= 3;
5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224
}

/*
 * Misaligned accesses are too much trouble to fix up; also, they usually
 * indicate a page is not used as a page table.
 */
static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
				    int bytes)
{
	unsigned offset, pte_size, misaligned;

	pgprintk("misaligned: gpa %llx bytes %d role %x\n",
		 gpa, bytes, sp->role.word);

	offset = offset_in_page(gpa);
5225
	pte_size = sp->role.has_4_byte_gpte ? 4 : 8;
5226 5227 5228 5229 5230 5231 5232 5233

	/*
	 * Sometimes, the OS only writes the last one bytes to update status
	 * bits, for example, in linux, andb instruction is used in clear_bit().
	 */
	if (!(offset & (pte_size - 1)) && bytes == 1)
		return false;

5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248
	misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
	misaligned |= bytes < 4;

	return misaligned;
}

static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
{
	unsigned page_offset, quadrant;
	u64 *spte;
	int level;

	page_offset = offset_in_page(gpa);
	level = sp->role.level;
	*nspte = 1;
5249
	if (sp->role.has_4_byte_gpte) {
5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270
		page_offset <<= 1;	/* 32->64 */
		/*
		 * A 32-bit pde maps 4MB while the shadow pdes map
		 * only 2MB.  So we need to double the offset again
		 * and zap two pdes instead of one.
		 */
		if (level == PT32_ROOT_LEVEL) {
			page_offset &= ~7; /* kill rounding error */
			page_offset <<= 1;
			*nspte = 2;
		}
		quadrant = page_offset >> PAGE_SHIFT;
		page_offset &= ~PAGE_MASK;
		if (quadrant != sp->role.quadrant)
			return NULL;
	}

	spte = &sp->spt[page_offset / sizeof(*spte)];
	return spte;
}

5271
static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
5272 5273
			      const u8 *new, int bytes,
			      struct kvm_page_track_notifier_node *node)
5274 5275 5276 5277 5278 5279
{
	gfn_t gfn = gpa >> PAGE_SHIFT;
	struct kvm_mmu_page *sp;
	LIST_HEAD(invalid_list);
	u64 entry, gentry, *spte;
	int npte;
5280
	bool flush = false;
5281 5282 5283 5284 5285

	/*
	 * If we don't have indirect shadow pages, it means no page is
	 * write-protected, so we can exit simply.
	 */
5286
	if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
5287 5288 5289 5290 5291 5292
		return;

	pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);

	/*
	 * No need to care whether allocation memory is successful
I
Ingo Molnar 已提交
5293
	 * or not since pte prefetch is skipped if it does not have
5294 5295
	 * enough objects in the cache.
	 */
5296
	mmu_topup_memory_caches(vcpu, true);
5297

5298
	write_lock(&vcpu->kvm->mmu_lock);
5299 5300 5301

	gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);

5302 5303
	++vcpu->kvm->stat.mmu_pte_write;

5304
	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
5305
		if (detect_write_misaligned(sp, gpa, bytes) ||
5306
		      detect_write_flooding(sp)) {
5307
			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
A
Avi Kivity 已提交
5308
			++vcpu->kvm->stat.mmu_flooded;
5309 5310
			continue;
		}
5311 5312 5313 5314 5315

		spte = get_written_sptes(sp, gpa, &npte);
		if (!spte)
			continue;

5316
		while (npte--) {
5317
			entry = *spte;
5318
			mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL);
5319 5320
			if (gentry && sp->role.level != PG_LEVEL_4K)
				++vcpu->kvm->stat.mmu_pde_zapped;
G
Gleb Natapov 已提交
5321
			if (need_remote_flush(entry, *spte))
5322
				flush = true;
5323
			++spte;
5324 5325
		}
	}
5326
	kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush);
5327
	write_unlock(&vcpu->kvm->mmu_lock);
5328 5329
}

5330
int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
5331
		       void *insn, int insn_len)
5332
{
5333
	int r, emulation_type = EMULTYPE_PF;
5334
	bool direct = vcpu->arch.mmu->direct_map;
5335

5336
	if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root.hpa)))
5337 5338
		return RET_PF_RETRY;

5339
	r = RET_PF_INVALID;
5340
	if (unlikely(error_code & PFERR_RSVD_MASK)) {
5341
		r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
5342
		if (r == RET_PF_EMULATE)
5343 5344
			goto emulate;
	}
5345

5346
	if (r == RET_PF_INVALID) {
5347 5348
		r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
					  lower_32_bits(error_code), false);
5349
		if (KVM_BUG_ON(r == RET_PF_INVALID, vcpu->kvm))
5350
			return -EIO;
5351 5352
	}

5353
	if (r < 0)
5354
		return r;
5355 5356
	if (r != RET_PF_EMULATE)
		return 1;
5357

5358 5359 5360 5361 5362 5363 5364
	/*
	 * Before emulating the instruction, check if the error code
	 * was due to a RO violation while translating the guest page.
	 * This can occur when using nested virtualization with nested
	 * paging in both guests. If true, we simply unprotect the page
	 * and resume the guest.
	 */
5365
	if (vcpu->arch.mmu->direct_map &&
5366
	    (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5367
		kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
5368 5369 5370
		return 1;
	}

5371 5372 5373 5374 5375 5376
	/*
	 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
	 * optimistically try to just unprotect the page and let the processor
	 * re-execute the instruction that caused the page fault.  Do not allow
	 * retrying MMIO emulation, as it's not only pointless but could also
	 * cause us to enter an infinite loop because the processor will keep
5377 5378 5379 5380
	 * faulting on the non-existent MMIO address.  Retrying an instruction
	 * from a nested guest is also pointless and dangerous as we are only
	 * explicitly shadowing L1's page tables, i.e. unprotecting something
	 * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5381
	 */
5382
	if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
5383
		emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
5384
emulate:
5385
	return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
5386
				       insn_len);
5387 5388 5389
}
EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);

5390 5391
void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
			    gva_t gva, hpa_t root_hpa)
M
Marcelo Tosatti 已提交
5392
{
5393
	int i;
5394

5395 5396 5397 5398 5399 5400
	/* It's actually a GPA for vcpu->arch.guest_mmu.  */
	if (mmu != &vcpu->arch.guest_mmu) {
		/* INVLPG on a non-canonical address is a NOP according to the SDM.  */
		if (is_noncanonical_address(gva, vcpu))
			return;

5401
		static_call(kvm_x86_flush_tlb_gva)(vcpu, gva);
5402 5403 5404
	}

	if (!mmu->invlpg)
5405 5406
		return;

5407
	if (root_hpa == INVALID_PAGE) {
5408
		mmu->invlpg(vcpu, gva, mmu->root.hpa);
5409

5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427
		/*
		 * INVLPG is required to invalidate any global mappings for the VA,
		 * irrespective of PCID. Since it would take us roughly similar amount
		 * of work to determine whether any of the prev_root mappings of the VA
		 * is marked global, or to just sync it blindly, so we might as well
		 * just always sync it.
		 *
		 * Mappings not reachable via the current cr3 or the prev_roots will be
		 * synced when switching to that cr3, so nothing needs to be done here
		 * for them.
		 */
		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
			if (VALID_PAGE(mmu->prev_roots[i].hpa))
				mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
	} else {
		mmu->invlpg(vcpu, gva, root_hpa);
	}
}
5428

5429 5430
void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
{
5431
	kvm_mmu_invalidate_gva(vcpu, vcpu->arch.walk_mmu, gva, INVALID_PAGE);
M
Marcelo Tosatti 已提交
5432 5433 5434 5435
	++vcpu->stat.invlpg;
}
EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);

5436

5437 5438
void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
{
5439
	struct kvm_mmu *mmu = vcpu->arch.mmu;
5440
	bool tlb_flush = false;
5441
	uint i;
5442 5443

	if (pcid == kvm_get_active_pcid(vcpu)) {
5444
		mmu->invlpg(vcpu, gva, mmu->root.hpa);
5445
		tlb_flush = true;
5446 5447
	}

5448 5449
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
		if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5450
		    pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) {
5451 5452 5453
			mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
			tlb_flush = true;
		}
5454
	}
5455

5456
	if (tlb_flush)
5457
		static_call(kvm_x86_flush_tlb_gva)(vcpu, gva);
5458

5459 5460 5461
	++vcpu->stat.invlpg;

	/*
5462 5463 5464
	 * Mappings not reachable via the current cr3 or the prev_roots will be
	 * synced when switching to that cr3, so nothing needs to be done here
	 * for them.
5465 5466 5467
	 */
}

5468 5469
void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level,
		       int tdp_max_root_level, int tdp_huge_page_level)
5470
{
5471
	tdp_enabled = enable_tdp;
5472
	tdp_root_level = tdp_forced_root_level;
5473
	max_tdp_level = tdp_max_root_level;
5474 5475

	/*
5476
	 * max_huge_page_level reflects KVM's MMU capabilities irrespective
5477 5478 5479 5480 5481 5482
	 * of kernel support, e.g. KVM may be capable of using 1GB pages when
	 * the kernel is not.  But, KVM never creates a page size greater than
	 * what is used by the kernel for any given HVA, i.e. the kernel's
	 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
	 */
	if (tdp_enabled)
5483
		max_huge_page_level = tdp_huge_page_level;
5484
	else if (boot_cpu_has(X86_FEATURE_GBPAGES))
5485
		max_huge_page_level = PG_LEVEL_1G;
5486
	else
5487
		max_huge_page_level = PG_LEVEL_2M;
5488
}
5489
EXPORT_SYMBOL_GPL(kvm_configure_mmu);
5490 5491

/* The return value indicates if tlb flush on all vcpus is needed. */
5492 5493 5494
typedef bool (*slot_level_handler) (struct kvm *kvm,
				    struct kvm_rmap_head *rmap_head,
				    const struct kvm_memory_slot *slot);
5495 5496 5497

/* The caller should hold mmu-lock before calling this function. */
static __always_inline bool
5498
slot_handle_level_range(struct kvm *kvm, const struct kvm_memory_slot *memslot,
5499
			slot_level_handler fn, int start_level, int end_level,
5500 5501
			gfn_t start_gfn, gfn_t end_gfn, bool flush_on_yield,
			bool flush)
5502 5503 5504 5505 5506 5507
{
	struct slot_rmap_walk_iterator iterator;

	for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
			end_gfn, &iterator) {
		if (iterator.rmap)
5508
			flush |= fn(kvm, iterator.rmap, memslot);
5509

5510
		if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
5511
			if (flush && flush_on_yield) {
5512 5513 5514
				kvm_flush_remote_tlbs_with_address(kvm,
						start_gfn,
						iterator.gfn - start_gfn + 1);
5515 5516
				flush = false;
			}
5517
			cond_resched_rwlock_write(&kvm->mmu_lock);
5518 5519 5520 5521 5522 5523 5524
		}
	}

	return flush;
}

static __always_inline bool
5525
slot_handle_level(struct kvm *kvm, const struct kvm_memory_slot *memslot,
5526
		  slot_level_handler fn, int start_level, int end_level,
5527
		  bool flush_on_yield)
5528 5529 5530 5531
{
	return slot_handle_level_range(kvm, memslot, fn, start_level,
			end_level, memslot->base_gfn,
			memslot->base_gfn + memslot->npages - 1,
5532
			flush_on_yield, false);
5533 5534 5535
}

static __always_inline bool
5536 5537
slot_handle_level_4k(struct kvm *kvm, const struct kvm_memory_slot *memslot,
		     slot_level_handler fn, bool flush_on_yield)
5538
{
5539
	return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
5540
				 PG_LEVEL_4K, flush_on_yield);
5541 5542
}

5543
static void free_mmu_pages(struct kvm_mmu *mmu)
A
Avi Kivity 已提交
5544
{
5545 5546
	if (!tdp_enabled && mmu->pae_root)
		set_memory_encrypted((unsigned long)mmu->pae_root, 1);
5547
	free_page((unsigned long)mmu->pae_root);
5548
	free_page((unsigned long)mmu->pml4_root);
5549
	free_page((unsigned long)mmu->pml5_root);
A
Avi Kivity 已提交
5550 5551
}

5552
static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
A
Avi Kivity 已提交
5553
{
5554
	struct page *page;
A
Avi Kivity 已提交
5555 5556
	int i;

5557 5558
	mmu->root.hpa = INVALID_PAGE;
	mmu->root.pgd = 0;
5559 5560 5561
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
		mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;

5562 5563 5564 5565
	/* vcpu->arch.guest_mmu isn't used when !tdp_enabled. */
	if (!tdp_enabled && mmu == &vcpu->arch.guest_mmu)
		return 0;

5566
	/*
5567 5568 5569 5570
	 * When using PAE paging, the four PDPTEs are treated as 'root' pages,
	 * while the PDP table is a per-vCPU construct that's allocated at MMU
	 * creation.  When emulating 32-bit mode, cr3 is only 32 bits even on
	 * x86_64.  Therefore we need to allocate the PDP table in the first
5571 5572 5573 5574
	 * 4GB of memory, which happens to fit the DMA32 zone.  TDP paging
	 * generally doesn't use PAE paging and can skip allocating the PDP
	 * table.  The main exception, handled here, is SVM's 32-bit NPT.  The
	 * other exception is for shadowing L1's 32-bit or PAE NPT on 64-bit
5575
	 * KVM; that horror is handled on-demand by mmu_alloc_special_roots().
5576
	 */
5577
	if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
5578 5579
		return 0;

5580
	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
5581
	if (!page)
5582 5583
		return -ENOMEM;

5584
	mmu->pae_root = page_address(page);
5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598

	/*
	 * CR3 is only 32 bits when PAE paging is used, thus it's impossible to
	 * get the CPU to treat the PDPTEs as encrypted.  Decrypt the page so
	 * that KVM's writes and the CPU's reads get along.  Note, this is
	 * only necessary when using shadow paging, as 64-bit NPT can get at
	 * the C-bit even when shadowing 32-bit NPT, and SME isn't supported
	 * by 32-bit kernels (when KVM itself uses 32-bit NPT).
	 */
	if (!tdp_enabled)
		set_memory_decrypted((unsigned long)mmu->pae_root, 1);
	else
		WARN_ON_ONCE(shadow_me_mask);

5599
	for (i = 0; i < 4; ++i)
5600
		mmu->pae_root[i] = INVALID_PAE_ROOT;
5601

A
Avi Kivity 已提交
5602 5603 5604
	return 0;
}

5605
int kvm_mmu_create(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
5606
{
5607
	int ret;
5608

5609
	vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache;
5610 5611
	vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO;

5612
	vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache;
5613
	vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO;
5614

5615 5616
	vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO;

5617 5618
	vcpu->arch.mmu = &vcpu->arch.root_mmu;
	vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
A
Avi Kivity 已提交
5619

5620
	ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu);
5621 5622 5623
	if (ret)
		return ret;

5624
	ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu);
5625 5626 5627 5628 5629 5630 5631
	if (ret)
		goto fail_allocate_root;

	return ret;
 fail_allocate_root:
	free_mmu_pages(&vcpu->arch.guest_mmu);
	return ret;
A
Avi Kivity 已提交
5632 5633
}

5634
#define BATCH_ZAP_PAGES	10
5635 5636 5637
static void kvm_zap_obsolete_pages(struct kvm *kvm)
{
	struct kvm_mmu_page *sp, *node;
5638
	int nr_zapped, batch = 0;
5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650

restart:
	list_for_each_entry_safe_reverse(sp, node,
	      &kvm->arch.active_mmu_pages, link) {
		/*
		 * No obsolete valid page exists before a newly created page
		 * since active_mmu_pages is a FIFO list.
		 */
		if (!is_obsolete_sp(kvm, sp))
			break;

		/*
5651 5652 5653
		 * Invalid pages should never land back on the list of active
		 * pages.  Skip the bogus page, otherwise we'll get stuck in an
		 * infinite loop if the page gets put back on the list (again).
5654
		 */
5655
		if (WARN_ON(sp->role.invalid))
5656 5657
			continue;

5658 5659 5660 5661 5662 5663
		/*
		 * No need to flush the TLB since we're only zapping shadow
		 * pages with an obsolete generation number and all vCPUS have
		 * loaded a new root, i.e. the shadow pages being zapped cannot
		 * be in active use by the guest.
		 */
5664
		if (batch >= BATCH_ZAP_PAGES &&
5665
		    cond_resched_rwlock_write(&kvm->mmu_lock)) {
5666
			batch = 0;
5667 5668 5669
			goto restart;
		}

5670 5671
		if (__kvm_mmu_prepare_zap_page(kvm, sp,
				&kvm->arch.zapped_obsolete_pages, &nr_zapped)) {
5672
			batch += nr_zapped;
5673
			goto restart;
5674
		}
5675 5676
	}

5677
	/*
5678 5679 5680 5681 5682 5683 5684
	 * Kick all vCPUs (via remote TLB flush) before freeing the page tables
	 * to ensure KVM is not in the middle of a lockless shadow page table
	 * walk, which may reference the pages.  The remote TLB flush itself is
	 * not required and is simply a convenient way to kick vCPUs as needed.
	 * KVM performs a local TLB flush when allocating a new root (see
	 * kvm_mmu_load()), and the reload in the caller ensure no vCPUs are
	 * running with an obsolete MMU.
5685
	 */
5686
	kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699
}

/*
 * Fast invalidate all shadow pages and use lock-break technique
 * to zap obsolete pages.
 *
 * It's required when memslot is being deleted or VM is being
 * destroyed, in these cases, we should ensure that KVM MMU does
 * not use any resource of the being-deleted slot or all slots
 * after calling the function.
 */
static void kvm_mmu_zap_all_fast(struct kvm *kvm)
{
5700 5701
	lockdep_assert_held(&kvm->slots_lock);

5702
	write_lock(&kvm->mmu_lock);
5703
	trace_kvm_mmu_zap_all_fast(kvm);
5704 5705 5706 5707 5708 5709 5710 5711 5712

	/*
	 * Toggle mmu_valid_gen between '0' and '1'.  Because slots_lock is
	 * held for the entire duration of zapping obsolete pages, it's
	 * impossible for there to be multiple invalid generations associated
	 * with *valid* shadow pages at any given time, i.e. there is exactly
	 * one valid generation and (at most) one invalid generation.
	 */
	kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
5713

5714 5715 5716 5717 5718
	/*
	 * In order to ensure all vCPUs drop their soon-to-be invalid roots,
	 * invalidating TDP MMU roots must be done while holding mmu_lock for
	 * write and in the same critical section as making the reload request,
	 * e.g. before kvm_zap_obsolete_pages() could drop mmu_lock and yield.
5719 5720 5721 5722
	 */
	if (is_tdp_mmu_enabled(kvm))
		kvm_tdp_mmu_invalidate_all_roots(kvm);

5723 5724 5725 5726 5727 5728 5729 5730
	/*
	 * Notify all vcpus to reload its shadow page table and flush TLB.
	 * Then all vcpus will switch to new shadow page table with the new
	 * mmu_valid_gen.
	 *
	 * Note: we need to do this under the protection of mmu_lock,
	 * otherwise, vcpu would purge shadow page but miss tlb flush.
	 */
5731
	kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS);
5732

5733
	kvm_zap_obsolete_pages(kvm);
5734

5735
	write_unlock(&kvm->mmu_lock);
5736

5737 5738 5739 5740 5741 5742 5743 5744
	/*
	 * Zap the invalidated TDP MMU roots, all SPTEs must be dropped before
	 * returning to the caller, e.g. if the zap is in response to a memslot
	 * deletion, mmu_notifier callbacks will be unable to reach the SPTEs
	 * associated with the deleted memslot once the update completes, and
	 * Deferring the zap until the final reference to the root is put would
	 * lead to use-after-free.
	 */
5745
	if (is_tdp_mmu_enabled(kvm))
5746
		kvm_tdp_mmu_zap_invalidated_roots(kvm);
5747 5748
}

5749 5750 5751 5752 5753
static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
{
	return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
}

5754
static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5755 5756
			struct kvm_memory_slot *slot,
			struct kvm_page_track_notifier_node *node)
5757
{
5758
	kvm_mmu_zap_all_fast(kvm);
5759 5760
}

5761
int kvm_mmu_init_vm(struct kvm *kvm)
5762
{
5763
	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5764
	int r;
5765

5766 5767 5768
	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
	INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
	INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages);
5769 5770
	spin_lock_init(&kvm->arch.mmu_unsync_pages_lock);

5771 5772 5773
	r = kvm_mmu_init_tdp_mmu(kvm);
	if (r < 0)
		return r;
5774

5775
	node->track_write = kvm_mmu_pte_write;
5776
	node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5777
	kvm_page_track_register_notifier(kvm, node);
5778
	return 0;
5779 5780
}

5781
void kvm_mmu_uninit_vm(struct kvm *kvm)
5782
{
5783
	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5784

5785
	kvm_page_track_unregister_notifier(kvm, node);
5786 5787

	kvm_mmu_uninit_tdp_mmu(kvm);
5788 5789
}

5790 5791 5792 5793
static bool __kvm_zap_rmaps(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
{
	const struct kvm_memory_slot *memslot;
	struct kvm_memslots *slots;
5794
	struct kvm_memslot_iter iter;
5795 5796
	bool flush = false;
	gfn_t start, end;
5797
	int i;
5798 5799 5800 5801 5802 5803

	if (!kvm_memslots_have_rmaps(kvm))
		return flush;

	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
5804 5805 5806

		kvm_for_each_memslot_in_gfn_range(&iter, slots, gfn_start, gfn_end) {
			memslot = iter.slot;
5807 5808
			start = max(gfn_start, memslot->base_gfn);
			end = min(gfn_end, memslot->base_gfn + memslot->npages);
5809
			if (WARN_ON_ONCE(start >= end))
5810 5811 5812
				continue;

			flush = slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
5813

5814 5815 5816 5817 5818 5819 5820 5821
							PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL,
							start, end - 1, true, flush);
		}
	}

	return flush;
}

5822 5823 5824 5825
/*
 * Invalidate (zap) SPTEs that cover GFNs from gfn_start and up to gfn_end
 * (not including it)
 */
X
Xiao Guangrong 已提交
5826 5827
void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
{
5828
	bool flush;
5829
	int i;
X
Xiao Guangrong 已提交
5830

5831 5832 5833
	if (WARN_ON_ONCE(gfn_end <= gfn_start))
		return;

5834 5835
	write_lock(&kvm->mmu_lock);

5836 5837
	kvm_inc_notifier_count(kvm, gfn_start, gfn_end);

5838
	flush = __kvm_zap_rmaps(kvm, gfn_start, gfn_end);
X
Xiao Guangrong 已提交
5839

5840
	if (is_tdp_mmu_enabled(kvm)) {
5841
		for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
5842 5843
			flush = kvm_tdp_mmu_zap_leafs(kvm, i, gfn_start,
						      gfn_end, true, flush);
5844
	}
5845 5846

	if (flush)
5847 5848
		kvm_flush_remote_tlbs_with_address(kvm, gfn_start,
						   gfn_end - gfn_start);
5849

5850 5851
	kvm_dec_notifier_count(kvm, gfn_start, gfn_end);

5852
	write_unlock(&kvm->mmu_lock);
X
Xiao Guangrong 已提交
5853 5854
}

5855
static bool slot_rmap_write_protect(struct kvm *kvm,
5856
				    struct kvm_rmap_head *rmap_head,
5857
				    const struct kvm_memory_slot *slot)
5858
{
5859
	return rmap_write_protect(rmap_head, false);
5860 5861
}

5862
void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5863
				      const struct kvm_memory_slot *memslot,
5864
				      int start_level)
A
Avi Kivity 已提交
5865
{
5866
	bool flush = false;
A
Avi Kivity 已提交
5867

5868 5869 5870 5871 5872 5873 5874
	if (kvm_memslots_have_rmaps(kvm)) {
		write_lock(&kvm->mmu_lock);
		flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect,
					  start_level, KVM_MAX_HUGEPAGE_LEVEL,
					  false);
		write_unlock(&kvm->mmu_lock);
	}
5875

5876 5877 5878 5879 5880 5881
	if (is_tdp_mmu_enabled(kvm)) {
		read_lock(&kvm->mmu_lock);
		flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, start_level);
		read_unlock(&kvm->mmu_lock);
	}

5882
	/*
5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902
	 * Flush TLBs if any SPTEs had to be write-protected to ensure that
	 * guest writes are reflected in the dirty bitmap before the memslot
	 * update completes, i.e. before enabling dirty logging is visible to
	 * userspace.
	 *
	 * Perform the TLB flush outside the mmu_lock to reduce the amount of
	 * time the lock is held. However, this does mean that another CPU can
	 * now grab mmu_lock and encounter a write-protected SPTE while CPUs
	 * still have a writable mapping for the associated GFN in their TLB.
	 *
	 * This is safe but requires KVM to be careful when making decisions
	 * based on the write-protection status of an SPTE. Specifically, KVM
	 * also write-protects SPTEs to monitor changes to guest page tables
	 * during shadow paging, and must guarantee no CPUs can write to those
	 * page before the lock is dropped. As mentioned in the previous
	 * paragraph, a write-protected SPTE is no guarantee that CPU cannot
	 * perform writes. So to determine if a TLB flush is truly required, KVM
	 * will clear a separate software-only bit (MMU-writable) and skip the
	 * flush if-and-only-if this bit was already clear.
	 *
5903
	 * See is_writable_pte() for more details.
5904
	 */
5905
	if (flush)
5906
		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
A
Avi Kivity 已提交
5907
}
5908

5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924
/* Must be called with the mmu_lock held in write-mode. */
void kvm_mmu_try_split_huge_pages(struct kvm *kvm,
				   const struct kvm_memory_slot *memslot,
				   u64 start, u64 end,
				   int target_level)
{
	if (is_tdp_mmu_enabled(kvm))
		kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end,
						 target_level, false);

	/*
	 * A TLB flush is unnecessary at this point for the same resons as in
	 * kvm_mmu_slot_try_split_huge_pages().
	 */
}

5925
void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm,
5926 5927
					const struct kvm_memory_slot *memslot,
					int target_level)
5928 5929 5930 5931 5932 5933
{
	u64 start = memslot->base_gfn;
	u64 end = start + memslot->npages;

	if (is_tdp_mmu_enabled(kvm)) {
		read_lock(&kvm->mmu_lock);
5934
		kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level, true);
5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948
		read_unlock(&kvm->mmu_lock);
	}

	/*
	 * No TLB flush is necessary here. KVM will flush TLBs after
	 * write-protecting and/or clearing dirty on the newly split SPTEs to
	 * ensure that guest writes are reflected in the dirty log before the
	 * ioctl to enable dirty logging on this memslot completes. Since the
	 * split SPTEs retain the write and dirty bits of the huge SPTE, it is
	 * safe for KVM to decide if a TLB flush is necessary based on the split
	 * SPTEs.
	 */
}

5949
static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5950
					 struct kvm_rmap_head *rmap_head,
5951
					 const struct kvm_memory_slot *slot)
5952 5953 5954 5955
{
	u64 *sptep;
	struct rmap_iterator iter;
	int need_tlb_flush = 0;
D
Dan Williams 已提交
5956
	kvm_pfn_t pfn;
5957 5958
	struct kvm_mmu_page *sp;

5959
restart:
5960
	for_each_rmap_spte(rmap_head, &iter, sptep) {
5961
		sp = sptep_to_sp(sptep);
5962 5963 5964
		pfn = spte_to_pfn(*sptep);

		/*
5965 5966 5967 5968 5969
		 * We cannot do huge page mapping for indirect shadow pages,
		 * which are found on the last rmap (level = 1) when not using
		 * tdp; such shadow pages are synced with the page table in
		 * the guest, and the guest page table is using 4K page size
		 * mapping if the indirect sp has level = 1.
5970
		 */
5971
		if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
5972 5973
		    sp->role.level < kvm_mmu_max_mapping_level(kvm, slot, sp->gfn,
							       pfn, PG_LEVEL_NUM)) {
5974
			pte_list_remove(kvm, rmap_head, sptep);
5975 5976 5977 5978 5979 5980 5981

			if (kvm_available_flush_tlb_with_range())
				kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
					KVM_PAGES_PER_HPAGE(sp->role.level));
			else
				need_tlb_flush = 1;

5982 5983
			goto restart;
		}
5984 5985 5986 5987 5988 5989
	}

	return need_tlb_flush;
}

void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5990
				   const struct kvm_memory_slot *slot)
5991
{
5992 5993
	if (kvm_memslots_have_rmaps(kvm)) {
		write_lock(&kvm->mmu_lock);
5994 5995 5996 5997 5998
		/*
		 * Zap only 4k SPTEs since the legacy MMU only supports dirty
		 * logging at a 4k granularity and never creates collapsible
		 * 2m SPTEs during dirty logging.
		 */
5999
		if (slot_handle_level_4k(kvm, slot, kvm_mmu_zap_collapsible_spte, true))
6000 6001 6002
			kvm_arch_flush_remote_tlbs_memslot(kvm, slot);
		write_unlock(&kvm->mmu_lock);
	}
6003 6004 6005

	if (is_tdp_mmu_enabled(kvm)) {
		read_lock(&kvm->mmu_lock);
6006
		kvm_tdp_mmu_zap_collapsible_sptes(kvm, slot);
6007 6008
		read_unlock(&kvm->mmu_lock);
	}
6009 6010
}

6011
void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
6012
					const struct kvm_memory_slot *memslot)
6013 6014
{
	/*
6015
	 * All current use cases for flushing the TLBs for a specific memslot
6016
	 * related to dirty logging, and many do the TLB flush out of mmu_lock.
6017 6018 6019
	 * The interaction between the various operations on memslot must be
	 * serialized by slots_locks to ensure the TLB flush from one operation
	 * is observed by any other operation on the same memslot.
6020 6021
	 */
	lockdep_assert_held(&kvm->slots_lock);
6022 6023
	kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
					   memslot->npages);
6024 6025
}

6026
void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
6027
				   const struct kvm_memory_slot *memslot)
6028
{
6029
	bool flush = false;
6030

6031 6032
	if (kvm_memslots_have_rmaps(kvm)) {
		write_lock(&kvm->mmu_lock);
6033 6034 6035 6036 6037
		/*
		 * Clear dirty bits only on 4k SPTEs since the legacy MMU only
		 * support dirty logging at a 4k granularity.
		 */
		flush = slot_handle_level_4k(kvm, memslot, __rmap_clear_dirty, false);
6038 6039
		write_unlock(&kvm->mmu_lock);
	}
6040

6041 6042 6043 6044 6045 6046
	if (is_tdp_mmu_enabled(kvm)) {
		read_lock(&kvm->mmu_lock);
		flush |= kvm_tdp_mmu_clear_dirty_slot(kvm, memslot);
		read_unlock(&kvm->mmu_lock);
	}

6047 6048 6049 6050 6051 6052 6053
	/*
	 * It's also safe to flush TLBs out of mmu lock here as currently this
	 * function is only used for dirty logging, in which case flushing TLB
	 * out of mmu lock also guarantees no dirty pages will be lost in
	 * dirty_bitmap.
	 */
	if (flush)
6054
		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
6055 6056
}

6057
void kvm_mmu_zap_all(struct kvm *kvm)
6058 6059
{
	struct kvm_mmu_page *sp, *node;
6060
	LIST_HEAD(invalid_list);
6061
	int ign;
6062

6063
	write_lock(&kvm->mmu_lock);
6064
restart:
6065
	list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
6066
		if (WARN_ON(sp->role.invalid))
6067
			continue;
6068
		if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
6069
			goto restart;
6070
		if (cond_resched_rwlock_write(&kvm->mmu_lock))
6071 6072 6073
			goto restart;
	}

6074
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
6075

6076
	if (is_tdp_mmu_enabled(kvm))
6077 6078
		kvm_tdp_mmu_zap_all(kvm);

6079
	write_unlock(&kvm->mmu_lock);
6080 6081
}

6082
void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
6083
{
6084
	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
6085

6086
	gen &= MMIO_SPTE_GEN_MASK;
6087

6088
	/*
6089 6090 6091 6092 6093 6094 6095 6096
	 * Generation numbers are incremented in multiples of the number of
	 * address spaces in order to provide unique generations across all
	 * address spaces.  Strip what is effectively the address space
	 * modifier prior to checking for a wrap of the MMIO generation so
	 * that a wrap in any address space is detected.
	 */
	gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);

6097
	/*
6098
	 * The very rare case: if the MMIO generation number has wrapped,
6099 6100
	 * zap all shadow pages.
	 */
6101
	if (unlikely(gen == 0)) {
6102
		kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
6103
		kvm_mmu_zap_all_fast(kvm);
6104
	}
6105 6106
}

6107 6108
static unsigned long
mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
6109 6110
{
	struct kvm *kvm;
6111
	int nr_to_scan = sc->nr_to_scan;
6112
	unsigned long freed = 0;
6113

J
Junaid Shahid 已提交
6114
	mutex_lock(&kvm_lock);
6115 6116

	list_for_each_entry(kvm, &vm_list, vm_list) {
6117
		int idx;
6118
		LIST_HEAD(invalid_list);
6119

6120 6121 6122 6123 6124 6125 6126 6127
		/*
		 * Never scan more than sc->nr_to_scan VM instances.
		 * Will not hit this condition practically since we do not try
		 * to shrink more than one VM and it is very unlikely to see
		 * !n_used_mmu_pages so many times.
		 */
		if (!nr_to_scan--)
			break;
6128 6129 6130 6131 6132 6133
		/*
		 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
		 * here. We may skip a VM instance errorneosly, but we do not
		 * want to shrink a VM that only started to populate its MMU
		 * anyway.
		 */
6134 6135
		if (!kvm->arch.n_used_mmu_pages &&
		    !kvm_has_zapped_obsolete_pages(kvm))
6136 6137
			continue;

6138
		idx = srcu_read_lock(&kvm->srcu);
6139
		write_lock(&kvm->mmu_lock);
6140

6141 6142 6143 6144 6145 6146
		if (kvm_has_zapped_obsolete_pages(kvm)) {
			kvm_mmu_commit_zap_page(kvm,
			      &kvm->arch.zapped_obsolete_pages);
			goto unlock;
		}

6147
		freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan);
6148

6149
unlock:
6150
		write_unlock(&kvm->mmu_lock);
6151
		srcu_read_unlock(&kvm->srcu, idx);
6152

6153 6154 6155 6156 6157
		/*
		 * unfair on small ones
		 * per-vm shrinkers cry out
		 * sadness comes quickly
		 */
6158 6159
		list_move_tail(&kvm->vm_list, &vm_list);
		break;
6160 6161
	}

J
Junaid Shahid 已提交
6162
	mutex_unlock(&kvm_lock);
6163 6164 6165 6166 6167 6168
	return freed;
}

static unsigned long
mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
{
6169
	return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
6170 6171 6172
}

static struct shrinker mmu_shrinker = {
6173 6174
	.count_objects = mmu_shrink_count,
	.scan_objects = mmu_shrink_scan,
6175 6176 6177
	.seeks = DEFAULT_SEEKS * 10,
};

I
Ingo Molnar 已提交
6178
static void mmu_destroy_caches(void)
6179
{
6180 6181
	kmem_cache_destroy(pte_list_desc_cache);
	kmem_cache_destroy(mmu_page_header_cache);
6182 6183
}

P
Paolo Bonzini 已提交
6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217
static bool get_nx_auto_mode(void)
{
	/* Return true when CPU has the bug, and mitigations are ON */
	return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
}

static void __set_nx_huge_pages(bool val)
{
	nx_huge_pages = itlb_multihit_kvm_mitigation = val;
}

static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
{
	bool old_val = nx_huge_pages;
	bool new_val;

	/* In "auto" mode deploy workaround only if CPU has the bug. */
	if (sysfs_streq(val, "off"))
		new_val = 0;
	else if (sysfs_streq(val, "force"))
		new_val = 1;
	else if (sysfs_streq(val, "auto"))
		new_val = get_nx_auto_mode();
	else if (strtobool(val, &new_val) < 0)
		return -EINVAL;

	__set_nx_huge_pages(new_val);

	if (new_val != old_val) {
		struct kvm *kvm;

		mutex_lock(&kvm_lock);

		list_for_each_entry(kvm, &vm_list, vm_list) {
6218
			mutex_lock(&kvm->slots_lock);
P
Paolo Bonzini 已提交
6219
			kvm_mmu_zap_all_fast(kvm);
6220
			mutex_unlock(&kvm->slots_lock);
6221 6222

			wake_up_process(kvm->arch.nx_lpage_recovery_thread);
P
Paolo Bonzini 已提交
6223 6224 6225 6226 6227 6228 6229
		}
		mutex_unlock(&kvm_lock);
	}

	return 0;
}

6230 6231 6232 6233 6234
/*
 * nx_huge_pages needs to be resolved to true/false when kvm.ko is loaded, as
 * its default value of -1 is technically undefined behavior for a boolean.
 */
void kvm_mmu_x86_module_init(void)
6235
{
P
Paolo Bonzini 已提交
6236 6237
	if (nx_huge_pages == -1)
		__set_nx_huge_pages(get_nx_auto_mode());
6238 6239 6240 6241 6242 6243 6244 6245 6246 6247
}

/*
 * The bulk of the MMU initialization is deferred until the vendor module is
 * loaded as many of the masks/values may be modified by VMX or SVM, i.e. need
 * to be reset when a potentially different vendor module is loaded.
 */
int kvm_mmu_vendor_module_init(void)
{
	int ret = -ENOMEM;
P
Paolo Bonzini 已提交
6248

6249 6250 6251 6252 6253 6254 6255 6256
	/*
	 * MMU roles use union aliasing which is, generally speaking, an
	 * undefined behavior. However, we supposedly know how compilers behave
	 * and the current status quo is unlikely to change. Guardians below are
	 * supposed to let us know if the assumption becomes false.
	 */
	BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
	BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
6257
	BUILD_BUG_ON(sizeof(union kvm_cpu_role) != sizeof(u64));
6258

6259
	kvm_mmu_reset_all_pte_masks();
6260

6261 6262
	pte_list_desc_cache = kmem_cache_create("pte_list_desc",
					    sizeof(struct pte_list_desc),
6263
					    0, SLAB_ACCOUNT, NULL);
6264
	if (!pte_list_desc_cache)
6265
		goto out;
6266

6267 6268
	mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
						  sizeof(struct kvm_mmu_page),
6269
						  0, SLAB_ACCOUNT, NULL);
6270
	if (!mmu_page_header_cache)
6271
		goto out;
6272

6273
	if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
6274
		goto out;
6275

6276 6277 6278
	ret = register_shrinker(&mmu_shrinker);
	if (ret)
		goto out;
6279

6280 6281
	return 0;

6282
out:
6283
	mmu_destroy_caches();
6284
	return ret;
6285 6286
}

6287 6288
void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
{
6289
	kvm_mmu_unload(vcpu);
6290 6291
	free_mmu_pages(&vcpu->arch.root_mmu);
	free_mmu_pages(&vcpu->arch.guest_mmu);
6292
	mmu_free_memory_caches(vcpu);
6293 6294
}

6295
void kvm_mmu_vendor_module_exit(void)
6296 6297 6298 6299
{
	mmu_destroy_caches();
	percpu_counter_destroy(&kvm_total_used_mmu_pages);
	unregister_shrinker(&mmu_shrinker);
6300
}
6301

6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326
/*
 * Calculate the effective recovery period, accounting for '0' meaning "let KVM
 * select a halving time of 1 hour".  Returns true if recovery is enabled.
 */
static bool calc_nx_huge_pages_recovery_period(uint *period)
{
	/*
	 * Use READ_ONCE to get the params, this may be called outside of the
	 * param setters, e.g. by the kthread to compute its next timeout.
	 */
	bool enabled = READ_ONCE(nx_huge_pages);
	uint ratio = READ_ONCE(nx_huge_pages_recovery_ratio);

	if (!enabled || !ratio)
		return false;

	*period = READ_ONCE(nx_huge_pages_recovery_period_ms);
	if (!*period) {
		/* Make sure the period is not less than one second.  */
		ratio = min(ratio, 3600u);
		*period = 60 * 60 * 1000 / ratio;
	}
	return true;
}

6327
static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp)
6328
{
6329 6330
	bool was_recovery_enabled, is_recovery_enabled;
	uint old_period, new_period;
6331 6332
	int err;

6333
	was_recovery_enabled = calc_nx_huge_pages_recovery_period(&old_period);
6334

6335 6336 6337 6338
	err = param_set_uint(val, kp);
	if (err)
		return err;

6339
	is_recovery_enabled = calc_nx_huge_pages_recovery_period(&new_period);
6340

6341
	if (is_recovery_enabled &&
6342
	    (!was_recovery_enabled || old_period > new_period)) {
6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357
		struct kvm *kvm;

		mutex_lock(&kvm_lock);

		list_for_each_entry(kvm, &vm_list, vm_list)
			wake_up_process(kvm->arch.nx_lpage_recovery_thread);

		mutex_unlock(&kvm_lock);
	}

	return err;
}

static void kvm_recover_nx_lpages(struct kvm *kvm)
{
6358
	unsigned long nx_lpage_splits = kvm->stat.nx_lpage_splits;
6359 6360 6361 6362
	int rcu_idx;
	struct kvm_mmu_page *sp;
	unsigned int ratio;
	LIST_HEAD(invalid_list);
6363
	bool flush = false;
6364 6365 6366
	ulong to_zap;

	rcu_idx = srcu_read_lock(&kvm->srcu);
6367
	write_lock(&kvm->mmu_lock);
6368

6369 6370 6371 6372 6373 6374 6375
	/*
	 * Zapping TDP MMU shadow pages, including the remote TLB flush, must
	 * be done under RCU protection, because the pages are freed via RCU
	 * callback.
	 */
	rcu_read_lock();

6376
	ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
6377
	to_zap = ratio ? DIV_ROUND_UP(nx_lpage_splits, ratio) : 0;
6378 6379 6380 6381
	for ( ; to_zap; --to_zap) {
		if (list_empty(&kvm->arch.lpage_disallowed_mmu_pages))
			break;

6382 6383 6384 6385 6386 6387 6388 6389 6390
		/*
		 * We use a separate list instead of just using active_mmu_pages
		 * because the number of lpage_disallowed pages is expected to
		 * be relatively small compared to the total.
		 */
		sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
				      struct kvm_mmu_page,
				      lpage_disallowed_link);
		WARN_ON_ONCE(!sp->lpage_disallowed);
6391
		if (is_tdp_mmu_page(sp)) {
6392
			flush |= kvm_tdp_mmu_zap_sp(kvm, sp);
6393
		} else {
6394 6395 6396
			kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
			WARN_ON_ONCE(sp->lpage_disallowed);
		}
6397

6398
		if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
6399
			kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
6400 6401
			rcu_read_unlock();

6402
			cond_resched_rwlock_write(&kvm->mmu_lock);
6403
			flush = false;
6404 6405

			rcu_read_lock();
6406 6407
		}
	}
6408
	kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
6409

6410 6411
	rcu_read_unlock();

6412
	write_unlock(&kvm->mmu_lock);
6413 6414 6415 6416 6417
	srcu_read_unlock(&kvm->srcu, rcu_idx);
}

static long get_nx_lpage_recovery_timeout(u64 start_time)
{
6418 6419
	bool enabled;
	uint period;
6420

6421
	enabled = calc_nx_huge_pages_recovery_period(&period);
6422

6423 6424
	return enabled ? start_time + msecs_to_jiffies(period) - get_jiffies_64()
		       : MAX_SCHEDULE_TIMEOUT;
6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469
}

static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
{
	u64 start_time;
	long remaining_time;

	while (true) {
		start_time = get_jiffies_64();
		remaining_time = get_nx_lpage_recovery_timeout(start_time);

		set_current_state(TASK_INTERRUPTIBLE);
		while (!kthread_should_stop() && remaining_time > 0) {
			schedule_timeout(remaining_time);
			remaining_time = get_nx_lpage_recovery_timeout(start_time);
			set_current_state(TASK_INTERRUPTIBLE);
		}

		set_current_state(TASK_RUNNING);

		if (kthread_should_stop())
			return 0;

		kvm_recover_nx_lpages(kvm);
	}
}

int kvm_mmu_post_init_vm(struct kvm *kvm)
{
	int err;

	err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
					  "kvm-nx-lpage-recovery",
					  &kvm->arch.nx_lpage_recovery_thread);
	if (!err)
		kthread_unpark(kvm->arch.nx_lpage_recovery_thread);

	return err;
}

void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
{
	if (kvm->arch.nx_lpage_recovery_thread)
		kthread_stop(kvm->arch.nx_lpage_recovery_thread);
}