mmu.c 169.4 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
A
Avi Kivity 已提交
2 3 4 5 6 7 8 9 10
/*
 * Kernel-based Virtual Machine driver for Linux
 *
 * This module enables machines with Intel VT-x extensions to run virtual
 * machines without emulation or binary translation.
 *
 * MMU support
 *
 * Copyright (C) 2006 Qumranet, Inc.
N
Nicolas Kaiser 已提交
11
 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
A
Avi Kivity 已提交
12 13 14 15 16
 *
 * Authors:
 *   Yaniv Kamay  <yaniv@qumranet.com>
 *   Avi Kivity   <avi@qumranet.com>
 */
A
Avi Kivity 已提交
17

18
#include "irq.h"
19
#include "ioapic.h"
20
#include "mmu.h"
21
#include "mmu_internal.h"
22
#include "x86.h"
A
Avi Kivity 已提交
23
#include "kvm_cache_regs.h"
24
#include "kvm_emulate.h"
25
#include "cpuid.h"
A
Avi Kivity 已提交
26

27
#include <linux/kvm_host.h>
A
Avi Kivity 已提交
28 29 30 31
#include <linux/types.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/highmem.h>
32 33
#include <linux/moduleparam.h>
#include <linux/export.h>
34
#include <linux/swap.h>
M
Marcelo Tosatti 已提交
35
#include <linux/hugetlb.h>
36
#include <linux/compiler.h>
37
#include <linux/srcu.h>
38
#include <linux/slab.h>
39
#include <linux/sched/signal.h>
40
#include <linux/uaccess.h>
41
#include <linux/hash.h>
42
#include <linux/kern_levels.h>
43
#include <linux/kthread.h>
A
Avi Kivity 已提交
44

A
Avi Kivity 已提交
45
#include <asm/page.h>
46
#include <asm/memtype.h>
A
Avi Kivity 已提交
47
#include <asm/cmpxchg.h>
48
#include <asm/e820/api.h>
49
#include <asm/io.h>
50
#include <asm/vmx.h>
51
#include <asm/kvm_page_track.h>
52
#include "trace.h"
A
Avi Kivity 已提交
53

P
Paolo Bonzini 已提交
54 55 56
extern bool itlb_multihit_kvm_mitigation;

static int __read_mostly nx_huge_pages = -1;
57 58 59 60
#ifdef CONFIG_PREEMPT_RT
/* Recovery can cause latency spikes, disable it for PREEMPT_RT.  */
static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
#else
61
static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
62
#endif
P
Paolo Bonzini 已提交
63 64

static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
65
static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp);
P
Paolo Bonzini 已提交
66 67 68 69 70 71

static struct kernel_param_ops nx_huge_pages_ops = {
	.set = set_nx_huge_pages,
	.get = param_get_bool,
};

72 73 74 75 76
static struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = {
	.set = set_nx_huge_pages_recovery_ratio,
	.get = param_get_uint,
};

P
Paolo Bonzini 已提交
77 78
module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
__MODULE_PARM_TYPE(nx_huge_pages, "bool");
79 80 81
module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops,
		&nx_huge_pages_recovery_ratio, 0644);
__MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
P
Paolo Bonzini 已提交
82

83 84 85
static bool __read_mostly force_flush_and_sync_on_reuse;
module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644);

86 87 88 89 90 91 92
/*
 * When setting this variable to true it enables Two-Dimensional-Paging
 * where the hardware walks 2 page tables:
 * 1. the guest-virtual to guest-physical
 * 2. while doing 1. it walks guest-physical to host-physical
 * If the hardware supports that we don't need to do shadow paging.
 */
93
bool tdp_enabled = false;
94

95 96
static int max_page_level __read_mostly;

97 98 99 100
enum {
	AUDIT_PRE_PAGE_FAULT,
	AUDIT_POST_PAGE_FAULT,
	AUDIT_PRE_PTE_WRITE,
101 102 103
	AUDIT_POST_PTE_WRITE,
	AUDIT_PRE_SYNC,
	AUDIT_POST_SYNC
104
};
105

106
#undef MMU_DEBUG
107 108

#ifdef MMU_DEBUG
109 110
static bool dbg = 0;
module_param(dbg, bool, 0644);
111 112 113

#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
114
#define MMU_WARN_ON(x) WARN_ON(x)
115 116 117
#else
#define pgprintk(x...) do { } while (0)
#define rmap_printk(x...) do { } while (0)
118
#define MMU_WARN_ON(x) do { } while (0)
119
#endif
A
Avi Kivity 已提交
120

121 122
#define PTE_PREFETCH_NUM		8

123
#define PT_FIRST_AVAIL_BITS_SHIFT 10
124 125 126 127 128 129 130 131 132
#define PT64_SECOND_AVAIL_BITS_SHIFT 54

/*
 * The mask used to denote special SPTEs, which can be either MMIO SPTEs or
 * Access Tracking SPTEs.
 */
#define SPTE_SPECIAL_MASK (3ULL << 52)
#define SPTE_AD_ENABLED_MASK (0ULL << 52)
#define SPTE_AD_DISABLED_MASK (1ULL << 52)
133
#define SPTE_AD_WRPROT_ONLY_MASK (2ULL << 52)
134
#define SPTE_MMIO_MASK (3ULL << 52)
A
Avi Kivity 已提交
135 136 137 138

#define PT64_LEVEL_BITS 9

#define PT64_LEVEL_SHIFT(level) \
M
Mike Day 已提交
139
		(PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
A
Avi Kivity 已提交
140 141 142 143 144 145 146 147

#define PT64_INDEX(address, level)\
	(((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))


#define PT32_LEVEL_BITS 10

#define PT32_LEVEL_SHIFT(level) \
M
Mike Day 已提交
148
		(PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
A
Avi Kivity 已提交
149

150 151 152
#define PT32_LVL_OFFSET_MASK(level) \
	(PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
153 154 155 156 157

#define PT32_INDEX(address, level)\
	(((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))


158 159 160 161 162
#ifdef CONFIG_DYNAMIC_PHYSICAL_MASK
#define PT64_BASE_ADDR_MASK (physical_mask & ~(u64)(PAGE_SIZE-1))
#else
#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
#endif
163 164 165 166 167 168
#define PT64_LVL_ADDR_MASK(level) \
	(PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT64_LEVEL_BITS))) - 1))
#define PT64_LVL_OFFSET_MASK(level) \
	(PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT64_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
169 170 171 172

#define PT32_BASE_ADDR_MASK PAGE_MASK
#define PT32_DIR_BASE_ADDR_MASK \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
173 174 175
#define PT32_LVL_ADDR_MASK(level) \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
					    * PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
176

177
#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
178
			| shadow_x_mask | shadow_nx_mask | shadow_me_mask)
A
Avi Kivity 已提交
179

180 181 182 183 184
#define ACC_EXEC_MASK    1
#define ACC_WRITE_MASK   PT_WRITABLE_MASK
#define ACC_USER_MASK    PT_USER_MASK
#define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)

185 186 187 188
/* The mask for the R/X bits in EPT PTEs */
#define PT64_EPT_READABLE_MASK			0x1ull
#define PT64_EPT_EXECUTABLE_MASK		0x4ull

189 190
#include <trace/events/kvm.h>

191 192
#define SPTE_HOST_WRITEABLE	(1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
#define SPTE_MMU_WRITEABLE	(1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
193

194 195
#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)

196 197 198
/* make pte_list_desc fit well in cache line */
#define PTE_LIST_EXT 3

199 200 201 202 203 204 205 206 207 208 209 210 211 212
/*
 * Return values of handle_mmio_page_fault and mmu.page_fault:
 * RET_PF_RETRY: let CPU fault again on the address.
 * RET_PF_EMULATE: mmio page fault, emulate the instruction directly.
 *
 * For handle_mmio_page_fault only:
 * RET_PF_INVALID: the spte is invalid, let the real page fault path update it.
 */
enum {
	RET_PF_RETRY = 0,
	RET_PF_EMULATE = 1,
	RET_PF_INVALID = 2,
};

213 214 215
struct pte_list_desc {
	u64 *sptes[PTE_LIST_EXT];
	struct pte_list_desc *more;
216 217
};

218 219 220 221
struct kvm_shadow_walk_iterator {
	u64 addr;
	hpa_t shadow_addr;
	u64 *sptep;
222
	int level;
223 224 225
	unsigned index;
};

226 227 228 229 230 231 232
#define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker)     \
	for (shadow_walk_init_using_root(&(_walker), (_vcpu),              \
					 (_root), (_addr));                \
	     shadow_walk_okay(&(_walker));			           \
	     shadow_walk_next(&(_walker)))

#define for_each_shadow_entry(_vcpu, _addr, _walker)            \
233 234 235 236
	for (shadow_walk_init(&(_walker), _vcpu, _addr);	\
	     shadow_walk_okay(&(_walker));			\
	     shadow_walk_next(&(_walker)))

237 238 239 240 241 242
#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)	\
	for (shadow_walk_init(&(_walker), _vcpu, _addr);		\
	     shadow_walk_okay(&(_walker)) &&				\
		({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });	\
	     __shadow_walk_next(&(_walker), spte))

243
static struct kmem_cache *pte_list_desc_cache;
244
static struct kmem_cache *mmu_page_header_cache;
245
static struct percpu_counter kvm_total_used_mmu_pages;
246

S
Sheng Yang 已提交
247 248 249 250 251
static u64 __read_mostly shadow_nx_mask;
static u64 __read_mostly shadow_x_mask;	/* mutual exclusive with nx_mask */
static u64 __read_mostly shadow_user_mask;
static u64 __read_mostly shadow_accessed_mask;
static u64 __read_mostly shadow_dirty_mask;
252
static u64 __read_mostly shadow_mmio_value;
253
static u64 __read_mostly shadow_mmio_access_mask;
254
static u64 __read_mostly shadow_present_mask;
255
static u64 __read_mostly shadow_me_mask;
256

257
/*
258 259 260
 * SPTEs used by MMUs without A/D bits are marked with SPTE_AD_DISABLED_MASK;
 * shadow_acc_track_mask is the set of bits to be cleared in non-accessed
 * pages.
261 262 263 264 265 266 267 268 269 270 271 272 273
 */
static u64 __read_mostly shadow_acc_track_mask;

/*
 * The mask/shift to use for saving the original R/X bits when marking the PTE
 * as not-present for access tracking purposes. We do not save the W bit as the
 * PTEs being access tracked also need to be dirty tracked, so the W bit will be
 * restored only when a write is attempted to the page.
 */
static const u64 shadow_acc_track_saved_bits_mask = PT64_EPT_READABLE_MASK |
						    PT64_EPT_EXECUTABLE_MASK;
static const u64 shadow_acc_track_saved_bits_shift = PT64_SECOND_AVAIL_BITS_SHIFT;

274 275 276 277 278 279 280 281 282 283 284
/*
 * This mask must be set on all non-zero Non-Present or Reserved SPTEs in order
 * to guard against L1TF attacks.
 */
static u64 __read_mostly shadow_nonpresent_or_rsvd_mask;

/*
 * The number of high-order 1 bits to use in the mask above.
 */
static const u64 shadow_nonpresent_or_rsvd_mask_len = 5;

285 286 287 288 289 290 291 292 293 294
/*
 * In some cases, we need to preserve the GFN of a non-present or reserved
 * SPTE when we usurp the upper five bits of the physical address space to
 * defend against L1TF, e.g. for MMIO SPTEs.  To preserve the GFN, we'll
 * shift bits of the GFN that overlap with shadow_nonpresent_or_rsvd_mask
 * left into the reserved bits, i.e. the GFN in the SPTE will be split into
 * high and low parts.  This mask covers the lower bits of the GFN.
 */
static u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask;

295 296 297 298 299
/*
 * The number of non-reserved physical address bits irrespective of features
 * that repurpose legal bits, e.g. MKTME.
 */
static u8 __read_mostly shadow_phys_bits;
300

301
static void mmu_spte_set(u64 *sptep, u64 spte);
302
static bool is_executable_pte(u64 spte);
303 304
static union kvm_mmu_page_role
kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
305

306 307 308
#define CREATE_TRACE_POINTS
#include "mmutrace.h"

309 310 311

static inline bool kvm_available_flush_tlb_with_range(void)
{
312
	return kvm_x86_ops.tlb_remote_flush_with_range;
313 314 315 316 317 318 319
}

static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
		struct kvm_tlb_range *range)
{
	int ret = -ENOTSUPP;

320 321
	if (range && kvm_x86_ops.tlb_remote_flush_with_range)
		ret = kvm_x86_ops.tlb_remote_flush_with_range(kvm, range);
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337

	if (ret)
		kvm_flush_remote_tlbs(kvm);
}

static void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
		u64 start_gfn, u64 pages)
{
	struct kvm_tlb_range range;

	range.start_gfn = start_gfn;
	range.pages = pages;

	kvm_flush_remote_tlbs_with_range(kvm, &range);
}

P
Paolo Bonzini 已提交
338
void kvm_mmu_set_mmio_spte_mask(u64 mmio_value, u64 access_mask)
339
{
340
	BUG_ON((u64)(unsigned)access_mask != access_mask);
341 342
	WARN_ON(mmio_value & (shadow_nonpresent_or_rsvd_mask << shadow_nonpresent_or_rsvd_mask_len));
	WARN_ON(mmio_value & shadow_nonpresent_or_rsvd_lower_gfn_mask);
343
	shadow_mmio_value = mmio_value | SPTE_MMIO_MASK;
344
	shadow_mmio_access_mask = access_mask;
345 346 347
}
EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);

348 349
static bool is_mmio_spte(u64 spte)
{
P
Paolo Bonzini 已提交
350
	return (spte & SPTE_SPECIAL_MASK) == SPTE_MMIO_MASK;
351 352
}

353 354 355 356 357
static inline bool sp_ad_disabled(struct kvm_mmu_page *sp)
{
	return sp->role.ad_disabled;
}

358 359 360 361 362 363 364 365 366 367 368
static inline bool kvm_vcpu_ad_need_write_protect(struct kvm_vcpu *vcpu)
{
	/*
	 * When using the EPT page-modification log, the GPAs in the log
	 * would come from L2 rather than L1.  Therefore, we need to rely
	 * on write protection to record dirty pages.  This also bypasses
	 * PML, since writes now result in a vmexit.
	 */
	return vcpu->arch.mmu == &vcpu->arch.guest_mmu;
}

369 370
static inline bool spte_ad_enabled(u64 spte)
{
371
	MMU_WARN_ON(is_mmio_spte(spte));
372 373 374 375 376 377 378
	return (spte & SPTE_SPECIAL_MASK) != SPTE_AD_DISABLED_MASK;
}

static inline bool spte_ad_need_write_protect(u64 spte)
{
	MMU_WARN_ON(is_mmio_spte(spte));
	return (spte & SPTE_SPECIAL_MASK) != SPTE_AD_ENABLED_MASK;
379 380
}

P
Paolo Bonzini 已提交
381 382 383 384 385
static bool is_nx_huge_page_enabled(void)
{
	return READ_ONCE(nx_huge_pages);
}

386 387
static inline u64 spte_shadow_accessed_mask(u64 spte)
{
388
	MMU_WARN_ON(is_mmio_spte(spte));
389 390 391 392 393
	return spte_ad_enabled(spte) ? shadow_accessed_mask : 0;
}

static inline u64 spte_shadow_dirty_mask(u64 spte)
{
394
	MMU_WARN_ON(is_mmio_spte(spte));
395 396 397
	return spte_ad_enabled(spte) ? shadow_dirty_mask : 0;
}

398 399
static inline bool is_access_track_spte(u64 spte)
{
400
	return !spte_ad_enabled(spte) && (spte & shadow_acc_track_mask) == 0;
401 402
}

403
/*
404 405
 * Due to limited space in PTEs, the MMIO generation is a 19 bit subset of
 * the memslots generation and is derived as follows:
406
 *
407 408
 * Bits 0-8 of the MMIO generation are propagated to spte bits 3-11
 * Bits 9-18 of the MMIO generation are propagated to spte bits 52-61
409
 *
410 411 412 413 414 415
 * The KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS flag is intentionally not included in
 * the MMIO generation number, as doing so would require stealing a bit from
 * the "real" generation number and thus effectively halve the maximum number
 * of MMIO generations that can be handled before encountering a wrap (which
 * requires a full MMU zap).  The flag is instead explicitly queried when
 * checking for MMIO spte cache hits.
416
 */
417
#define MMIO_SPTE_GEN_MASK		GENMASK_ULL(17, 0)
418

419 420 421 422
#define MMIO_SPTE_GEN_LOW_START		3
#define MMIO_SPTE_GEN_LOW_END		11
#define MMIO_SPTE_GEN_LOW_MASK		GENMASK_ULL(MMIO_SPTE_GEN_LOW_END, \
						    MMIO_SPTE_GEN_LOW_START)
423

424 425
#define MMIO_SPTE_GEN_HIGH_START	PT64_SECOND_AVAIL_BITS_SHIFT
#define MMIO_SPTE_GEN_HIGH_END		62
426 427
#define MMIO_SPTE_GEN_HIGH_MASK		GENMASK_ULL(MMIO_SPTE_GEN_HIGH_END, \
						    MMIO_SPTE_GEN_HIGH_START)
428

429
static u64 generation_mmio_spte_mask(u64 gen)
430 431 432
{
	u64 mask;

433
	WARN_ON(gen & ~MMIO_SPTE_GEN_MASK);
434
	BUILD_BUG_ON((MMIO_SPTE_GEN_HIGH_MASK | MMIO_SPTE_GEN_LOW_MASK) & SPTE_SPECIAL_MASK);
435

436 437
	mask = (gen << MMIO_SPTE_GEN_LOW_START) & MMIO_SPTE_GEN_LOW_MASK;
	mask |= (gen << MMIO_SPTE_GEN_HIGH_START) & MMIO_SPTE_GEN_HIGH_MASK;
438 439 440
	return mask;
}

441
static u64 get_mmio_spte_generation(u64 spte)
442
{
443
	u64 gen;
444

445 446
	gen = (spte & MMIO_SPTE_GEN_LOW_MASK) >> MMIO_SPTE_GEN_LOW_START;
	gen |= (spte & MMIO_SPTE_GEN_HIGH_MASK) >> MMIO_SPTE_GEN_HIGH_START;
447 448 449
	return gen;
}

450
static u64 make_mmio_spte(struct kvm_vcpu *vcpu, u64 gfn, unsigned int access)
451
{
452

453
	u64 gen = kvm_vcpu_memslots(vcpu)->generation & MMIO_SPTE_GEN_MASK;
454
	u64 mask = generation_mmio_spte_mask(gen);
455
	u64 gpa = gfn << PAGE_SHIFT;
456

457
	access &= shadow_mmio_access_mask;
458 459 460 461
	mask |= shadow_mmio_value | access;
	mask |= gpa | shadow_nonpresent_or_rsvd_mask;
	mask |= (gpa & shadow_nonpresent_or_rsvd_mask)
		<< shadow_nonpresent_or_rsvd_mask_len;
462

463 464 465 466 467 468 469 470 471 472 473
	return mask;
}

static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
			   unsigned int access)
{
	u64 mask = make_mmio_spte(vcpu, gfn, access);
	unsigned int gen = get_mmio_spte_generation(mask);

	access = mask & ACC_ALL;

474
	trace_mark_mmio_spte(sptep, gfn, access, gen);
475
	mmu_spte_set(sptep, mask);
476 477 478 479
}

static gfn_t get_mmio_spte_gfn(u64 spte)
{
480
	u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
481 482 483 484 485

	gpa |= (spte >> shadow_nonpresent_or_rsvd_mask_len)
	       & shadow_nonpresent_or_rsvd_mask;

	return gpa >> PAGE_SHIFT;
486 487 488 489
}

static unsigned get_mmio_spte_access(u64 spte)
{
490
	return spte & shadow_mmio_access_mask;
491 492
}

493
static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
494
			  kvm_pfn_t pfn, unsigned int access)
495 496
{
	if (unlikely(is_noslot_pfn(pfn))) {
497
		mark_mmio_spte(vcpu, sptep, gfn, access);
498 499 500 501 502
		return true;
	}

	return false;
}
503

504
static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
505
{
506
	u64 kvm_gen, spte_gen, gen;
507

508 509 510
	gen = kvm_vcpu_memslots(vcpu)->generation;
	if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
		return false;
511

512
	kvm_gen = gen & MMIO_SPTE_GEN_MASK;
513 514 515 516
	spte_gen = get_mmio_spte_generation(spte);

	trace_check_mmio_spte(spte, kvm_gen, spte_gen);
	return likely(kvm_gen == spte_gen);
517 518
}

519 520 521 522 523 524 525
/*
 * Sets the shadow PTE masks used by the MMU.
 *
 * Assumptions:
 *  - Setting either @accessed_mask or @dirty_mask requires setting both
 *  - At least one of @accessed_mask or @acc_track_mask must be set
 */
S
Sheng Yang 已提交
526
void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
527
		u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask,
528
		u64 acc_track_mask, u64 me_mask)
S
Sheng Yang 已提交
529
{
530 531
	BUG_ON(!dirty_mask != !accessed_mask);
	BUG_ON(!accessed_mask && !acc_track_mask);
532
	BUG_ON(acc_track_mask & SPTE_SPECIAL_MASK);
533

S
Sheng Yang 已提交
534 535 536 537 538
	shadow_user_mask = user_mask;
	shadow_accessed_mask = accessed_mask;
	shadow_dirty_mask = dirty_mask;
	shadow_nx_mask = nx_mask;
	shadow_x_mask = x_mask;
539
	shadow_present_mask = p_mask;
540
	shadow_acc_track_mask = acc_track_mask;
541
	shadow_me_mask = me_mask;
S
Sheng Yang 已提交
542 543 544
}
EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);

545 546 547
static u8 kvm_get_shadow_phys_bits(void)
{
	/*
548 549 550 551
	 * boot_cpu_data.x86_phys_bits is reduced when MKTME or SME are detected
	 * in CPU detection code, but the processor treats those reduced bits as
	 * 'keyID' thus they are not reserved bits. Therefore KVM needs to look at
	 * the physical address bits reported by CPUID.
552
	 */
553 554
	if (likely(boot_cpu_data.extended_cpuid_level >= 0x80000008))
		return cpuid_eax(0x80000008) & 0xff;
555

556 557 558 559 560 561
	/*
	 * Quite weird to have VMX or SVM but not MAXPHYADDR; probably a VM with
	 * custom CPUID.  Proceed with whatever the kernel found since these features
	 * aren't virtualizable (SME/SEV also require CPUIDs higher than 0x80000008).
	 */
	return boot_cpu_data.x86_phys_bits;
562 563
}

564
static void kvm_mmu_reset_all_pte_masks(void)
565
{
566 567
	u8 low_phys_bits;

568 569 570 571 572 573 574
	shadow_user_mask = 0;
	shadow_accessed_mask = 0;
	shadow_dirty_mask = 0;
	shadow_nx_mask = 0;
	shadow_x_mask = 0;
	shadow_present_mask = 0;
	shadow_acc_track_mask = 0;
575

576 577
	shadow_phys_bits = kvm_get_shadow_phys_bits();

578 579 580 581
	/*
	 * If the CPU has 46 or less physical address bits, then set an
	 * appropriate mask to guard against L1TF attacks. Otherwise, it is
	 * assumed that the CPU is not vulnerable to L1TF.
582 583 584 585 586
	 *
	 * Some Intel CPUs address the L1 cache using more PA bits than are
	 * reported by CPUID. Use the PA width of the L1 cache when possible
	 * to achieve more effective mitigation, e.g. if system RAM overlaps
	 * the most significant bits of legal physical address space.
587
	 */
588
	shadow_nonpresent_or_rsvd_mask = 0;
589 590 591 592 593 594
	low_phys_bits = boot_cpu_data.x86_phys_bits;
	if (boot_cpu_has_bug(X86_BUG_L1TF) &&
	    !WARN_ON_ONCE(boot_cpu_data.x86_cache_bits >=
			  52 - shadow_nonpresent_or_rsvd_mask_len)) {
		low_phys_bits = boot_cpu_data.x86_cache_bits
			- shadow_nonpresent_or_rsvd_mask_len;
595
		shadow_nonpresent_or_rsvd_mask =
596 597
			rsvd_bits(low_phys_bits, boot_cpu_data.x86_cache_bits - 1);
	}
598

599 600
	shadow_nonpresent_or_rsvd_lower_gfn_mask =
		GENMASK_ULL(low_phys_bits - 1, PAGE_SHIFT);
601 602
}

A
Avi Kivity 已提交
603 604 605 606 607
static int is_cpuid_PSE36(void)
{
	return 1;
}

608 609
static int is_nx(struct kvm_vcpu *vcpu)
{
610
	return vcpu->arch.efer & EFER_NX;
611 612
}

613 614
static int is_shadow_present_pte(u64 pte)
{
615
	return (pte != 0) && !is_mmio_spte(pte);
616 617
}

M
Marcelo Tosatti 已提交
618 619 620 621 622
static int is_large_pte(u64 pte)
{
	return pte & PT_PAGE_SIZE_MASK;
}

623 624
static int is_last_spte(u64 pte, int level)
{
625
	if (level == PG_LEVEL_4K)
626
		return 1;
627
	if (is_large_pte(pte))
628 629 630 631
		return 1;
	return 0;
}

632 633 634 635 636
static bool is_executable_pte(u64 spte)
{
	return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask;
}

D
Dan Williams 已提交
637
static kvm_pfn_t spte_to_pfn(u64 pte)
638
{
639
	return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
640 641
}

642 643 644 645 646 647 648
static gfn_t pse36_gfn_delta(u32 gpte)
{
	int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;

	return (gpte & PT32_DIR_PSE36_MASK) << shift;
}

649
#ifdef CONFIG_X86_64
A
Avi Kivity 已提交
650
static void __set_spte(u64 *sptep, u64 spte)
651
{
652
	WRITE_ONCE(*sptep, spte);
653 654
}

655
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
656
{
657
	WRITE_ONCE(*sptep, spte);
658 659 660 661 662 663
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	return xchg(sptep, spte);
}
664 665 666

static u64 __get_spte_lockless(u64 *sptep)
{
667
	return READ_ONCE(*sptep);
668
}
669
#else
670 671 672 673 674 675 676
union split_spte {
	struct {
		u32 spte_low;
		u32 spte_high;
	};
	u64 spte;
};
677

678 679
static void count_spte_clear(u64 *sptep, u64 spte)
{
680
	struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
681 682 683 684 685 686 687 688 689

	if (is_shadow_present_pte(spte))
		return;

	/* Ensure the spte is completely set before we increase the count */
	smp_wmb();
	sp->clear_spte_count++;
}

690 691 692
static void __set_spte(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;
693

694 695 696 697 698 699 700 701 702 703 704 705
	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	ssptep->spte_high = sspte.spte_high;

	/*
	 * If we map the spte from nonpresent to present, We should store
	 * the high bits firstly, then set present bit, so cpu can not
	 * fetch this spte while we are setting the spte.
	 */
	smp_wmb();

706
	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
707 708
}

709 710 711 712 713 714 715
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

716
	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
717 718 719 720 721 722 723 724

	/*
	 * If we map the spte from present to nonpresent, we should clear
	 * present bit firstly to avoid vcpu fetch the old high bits.
	 */
	smp_wmb();

	ssptep->spte_high = sspte.spte_high;
725
	count_spte_clear(sptep, spte);
726 727 728 729 730 731 732 733 734 735 736
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte, orig;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	/* xchg acts as a barrier before the setting of the high bits */
	orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
737 738
	orig.spte_high = ssptep->spte_high;
	ssptep->spte_high = sspte.spte_high;
739
	count_spte_clear(sptep, spte);
740 741 742

	return orig.spte;
}
743 744 745

/*
 * The idea using the light way get the spte on x86_32 guest is from
746
 * gup_get_pte (mm/gup.c).
747 748 749 750 751 752 753 754 755 756 757 758 759 760
 *
 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
 * coalesces them and we are running out of the MMU lock.  Therefore
 * we need to protect against in-progress updates of the spte.
 *
 * Reading the spte while an update is in progress may get the old value
 * for the high part of the spte.  The race is fine for a present->non-present
 * change (because the high part of the spte is ignored for non-present spte),
 * but for a present->present change we must reread the spte.
 *
 * All such changes are done in two steps (present->non-present and
 * non-present->present), hence it is enough to count the number of
 * present->non-present updates: if it changed while reading the spte,
 * we might have hit the race.  This is done using clear_spte_count.
761 762 763
 */
static u64 __get_spte_lockless(u64 *sptep)
{
764
	struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783
	union split_spte spte, *orig = (union split_spte *)sptep;
	int count;

retry:
	count = sp->clear_spte_count;
	smp_rmb();

	spte.spte_low = orig->spte_low;
	smp_rmb();

	spte.spte_high = orig->spte_high;
	smp_rmb();

	if (unlikely(spte.spte_low != orig->spte_low ||
	      count != sp->clear_spte_count))
		goto retry;

	return spte.spte;
}
784 785
#endif

786
static bool spte_can_locklessly_be_made_writable(u64 spte)
787
{
788 789
	return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
		(SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
790 791
}

792 793
static bool spte_has_volatile_bits(u64 spte)
{
794 795 796
	if (!is_shadow_present_pte(spte))
		return false;

797
	/*
798
	 * Always atomically update spte if it can be updated
799 800 801 802
	 * out of mmu-lock, it can ensure dirty bit is not lost,
	 * also, it can help us to get a stable is_writable_pte()
	 * to ensure tlb flush is not missed.
	 */
803 804
	if (spte_can_locklessly_be_made_writable(spte) ||
	    is_access_track_spte(spte))
805 806
		return true;

807
	if (spte_ad_enabled(spte)) {
808 809 810 811
		if ((spte & shadow_accessed_mask) == 0 ||
	    	    (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
			return true;
	}
812

813
	return false;
814 815
}

816
static bool is_accessed_spte(u64 spte)
817
{
818 819 820 821
	u64 accessed_mask = spte_shadow_accessed_mask(spte);

	return accessed_mask ? spte & accessed_mask
			     : !is_access_track_spte(spte);
822 823
}

824
static bool is_dirty_spte(u64 spte)
825
{
826 827 828
	u64 dirty_mask = spte_shadow_dirty_mask(spte);

	return dirty_mask ? spte & dirty_mask : spte & PT_WRITABLE_MASK;
829 830
}

831 832 833 834 835 836 837 838 839 840 841 842
/* Rules for using mmu_spte_set:
 * Set the sptep from nonpresent to present.
 * Note: the sptep being assigned *must* be either not present
 * or in a state where the hardware will not attempt to update
 * the spte.
 */
static void mmu_spte_set(u64 *sptep, u64 new_spte)
{
	WARN_ON(is_shadow_present_pte(*sptep));
	__set_spte(sptep, new_spte);
}

843 844 845
/*
 * Update the SPTE (excluding the PFN), but do not track changes in its
 * accessed/dirty status.
846
 */
847
static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
848
{
849
	u64 old_spte = *sptep;
850

851
	WARN_ON(!is_shadow_present_pte(new_spte));
852

853 854
	if (!is_shadow_present_pte(old_spte)) {
		mmu_spte_set(sptep, new_spte);
855
		return old_spte;
856
	}
857

858
	if (!spte_has_volatile_bits(old_spte))
859
		__update_clear_spte_fast(sptep, new_spte);
860
	else
861
		old_spte = __update_clear_spte_slow(sptep, new_spte);
862

863 864
	WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));

865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886
	return old_spte;
}

/* Rules for using mmu_spte_update:
 * Update the state bits, it means the mapped pfn is not changed.
 *
 * Whenever we overwrite a writable spte with a read-only one we
 * should flush remote TLBs. Otherwise rmap_write_protect
 * will find a read-only spte, even though the writable spte
 * might be cached on a CPU's TLB, the return value indicates this
 * case.
 *
 * Returns true if the TLB needs to be flushed
 */
static bool mmu_spte_update(u64 *sptep, u64 new_spte)
{
	bool flush = false;
	u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);

	if (!is_shadow_present_pte(old_spte))
		return false;

887 888
	/*
	 * For the spte updated out of mmu-lock is safe, since
889
	 * we always atomically update it, see the comments in
890 891
	 * spte_has_volatile_bits().
	 */
892
	if (spte_can_locklessly_be_made_writable(old_spte) &&
893
	      !is_writable_pte(new_spte))
894
		flush = true;
895

896
	/*
897
	 * Flush TLB when accessed/dirty states are changed in the page tables,
898 899 900
	 * to guarantee consistency between TLB and page tables.
	 */

901 902
	if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
		flush = true;
903
		kvm_set_pfn_accessed(spte_to_pfn(old_spte));
904 905 906 907
	}

	if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
		flush = true;
908
		kvm_set_pfn_dirty(spte_to_pfn(old_spte));
909
	}
910

911
	return flush;
912 913
}

914 915 916 917
/*
 * Rules for using mmu_spte_clear_track_bits:
 * It sets the sptep from present to nonpresent, and track the
 * state bits, it is used to clear the last level sptep.
918
 * Returns non-zero if the PTE was previously valid.
919 920 921
 */
static int mmu_spte_clear_track_bits(u64 *sptep)
{
D
Dan Williams 已提交
922
	kvm_pfn_t pfn;
923 924 925
	u64 old_spte = *sptep;

	if (!spte_has_volatile_bits(old_spte))
926
		__update_clear_spte_fast(sptep, 0ull);
927
	else
928
		old_spte = __update_clear_spte_slow(sptep, 0ull);
929

930
	if (!is_shadow_present_pte(old_spte))
931 932 933
		return 0;

	pfn = spte_to_pfn(old_spte);
934 935 936 937 938 939

	/*
	 * KVM does not hold the refcount of the page used by
	 * kvm mmu, before reclaiming the page, we should
	 * unmap it from mmu first.
	 */
940
	WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
941

942
	if (is_accessed_spte(old_spte))
943
		kvm_set_pfn_accessed(pfn);
944 945

	if (is_dirty_spte(old_spte))
946
		kvm_set_pfn_dirty(pfn);
947

948 949 950 951 952 953 954 955 956 957
	return 1;
}

/*
 * Rules for using mmu_spte_clear_no_track:
 * Directly clear spte without caring the state bits of sptep,
 * it is used to set the upper level spte.
 */
static void mmu_spte_clear_no_track(u64 *sptep)
{
958
	__update_clear_spte_fast(sptep, 0ull);
959 960
}

961 962 963 964 965
static u64 mmu_spte_get_lockless(u64 *sptep)
{
	return __get_spte_lockless(sptep);
}

966 967
static u64 mark_spte_for_access_track(u64 spte)
{
968
	if (spte_ad_enabled(spte))
969 970
		return spte & ~shadow_accessed_mask;

971
	if (is_access_track_spte(spte))
972 973 974
		return spte;

	/*
975 976 977
	 * Making an Access Tracking PTE will result in removal of write access
	 * from the PTE. So, verify that we will be able to restore the write
	 * access in the fast page fault path later on.
978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993
	 */
	WARN_ONCE((spte & PT_WRITABLE_MASK) &&
		  !spte_can_locklessly_be_made_writable(spte),
		  "kvm: Writable SPTE is not locklessly dirty-trackable\n");

	WARN_ONCE(spte & (shadow_acc_track_saved_bits_mask <<
			  shadow_acc_track_saved_bits_shift),
		  "kvm: Access Tracking saved bit locations are not zero\n");

	spte |= (spte & shadow_acc_track_saved_bits_mask) <<
		shadow_acc_track_saved_bits_shift;
	spte &= ~shadow_acc_track_mask;

	return spte;
}

994 995 996 997 998 999 1000
/* Restore an acc-track PTE back to a regular PTE */
static u64 restore_acc_track_spte(u64 spte)
{
	u64 new_spte = spte;
	u64 saved_bits = (spte >> shadow_acc_track_saved_bits_shift)
			 & shadow_acc_track_saved_bits_mask;

1001
	WARN_ON_ONCE(spte_ad_enabled(spte));
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
	WARN_ON_ONCE(!is_access_track_spte(spte));

	new_spte &= ~shadow_acc_track_mask;
	new_spte &= ~(shadow_acc_track_saved_bits_mask <<
		      shadow_acc_track_saved_bits_shift);
	new_spte |= saved_bits;

	return new_spte;
}

1012 1013 1014 1015 1016 1017 1018 1019
/* Returns the Accessed status of the PTE and resets it at the same time. */
static bool mmu_spte_age(u64 *sptep)
{
	u64 spte = mmu_spte_get_lockless(sptep);

	if (!is_accessed_spte(spte))
		return false;

1020
	if (spte_ad_enabled(spte)) {
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
		clear_bit((ffs(shadow_accessed_mask) - 1),
			  (unsigned long *)sptep);
	} else {
		/*
		 * Capture the dirty status of the page, so that it doesn't get
		 * lost when the SPTE is marked for access tracking.
		 */
		if (is_writable_pte(spte))
			kvm_set_pfn_dirty(spte_to_pfn(spte));

		spte = mark_spte_for_access_track(spte);
		mmu_spte_update_no_track(sptep, spte);
	}

	return true;
}

1038 1039
static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
{
1040 1041 1042 1043 1044
	/*
	 * Prevent page table teardown by making any free-er wait during
	 * kvm_flush_remote_tlbs() IPI to all active vcpus.
	 */
	local_irq_disable();
1045

1046 1047 1048 1049
	/*
	 * Make sure a following spte read is not reordered ahead of the write
	 * to vcpu->mode.
	 */
1050
	smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
1051 1052 1053 1054
}

static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
{
1055 1056
	/*
	 * Make sure the write to vcpu->mode is not reordered in front of
1057
	 * reads to sptes.  If it does, kvm_mmu_commit_zap_page() can see us
1058 1059
	 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
	 */
1060
	smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
1061
	local_irq_enable();
1062 1063
}

1064 1065 1066
static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
					       gfp_t gfp_flags)
{
1067 1068
	gfp_flags |= mc->gfp_zero;

1069
	if (mc->kmem_cache)
1070
		return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
1071 1072 1073 1074
	else
		return (void *)__get_free_page(gfp_flags);
}

1075
static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
1076 1077 1078
{
	void *obj;

1079
	if (mc->nobjs >= min)
1080
		return 0;
1081
	while (mc->nobjs < ARRAY_SIZE(mc->objects)) {
1082
		obj = mmu_memory_cache_alloc_obj(mc, GFP_KERNEL_ACCOUNT);
1083
		if (!obj)
1084 1085
			return mc->nobjs >= min ? 0 : -ENOMEM;
		mc->objects[mc->nobjs++] = obj;
1086
	}
1087
	return 0;
1088 1089
}

1090
static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *mc)
1091
{
1092
	return mc->nobjs;
1093 1094
}

1095
static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
1096
{
1097 1098 1099 1100 1101
	while (mc->nobjs) {
		if (mc->kmem_cache)
			kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
		else
			free_page((unsigned long)mc->objects[--mc->nobjs]);
A
Avi Kivity 已提交
1102 1103 1104
	}
}

1105
static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
1106
{
1107 1108
	int r;

1109
	/* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */
1110
	r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
1111
				   1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM);
1112
	if (r)
1113
		return r;
1114 1115 1116 1117 1118 1119
	r = mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache,
				   PT64_ROOT_MAX_LEVEL);
	if (r)
		return r;
	r = mmu_topup_memory_cache(&vcpu->arch.mmu_gfn_array_cache,
				   PT64_ROOT_MAX_LEVEL);
1120
	if (r)
1121
		return r;
1122 1123
	return mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
				      PT64_ROOT_MAX_LEVEL);
1124 1125 1126 1127
}

static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
{
1128
	mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache);
1129 1130
	mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache);
	mmu_free_memory_cache(&vcpu->arch.mmu_gfn_array_cache);
1131
	mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
1132 1133
}

1134
static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
1135 1136 1137
{
	void *p;

1138 1139 1140 1141 1142
	if (WARN_ON(!mc->nobjs))
		p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
	else
		p = mc->objects[--mc->nobjs];
	BUG_ON(!p);
1143 1144 1145
	return p;
}

1146
static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
1147
{
1148
	return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
1149 1150
}

1151
static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
1152
{
1153
	kmem_cache_free(pte_list_desc_cache, pte_list_desc);
1154 1155
}

1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
{
	if (!sp->role.direct)
		return sp->gfns[index];

	return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
}

static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
{
1166
	if (!sp->role.direct) {
1167
		sp->gfns[index] = gfn;
1168 1169 1170 1171 1172 1173 1174 1175
		return;
	}

	if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
		pr_err_ratelimited("gfn mismatch under direct page %llx "
				   "(expected %llx, got %llx)\n",
				   sp->gfn,
				   kvm_mmu_page_get_gfn(sp, index), gfn);
1176 1177
}

M
Marcelo Tosatti 已提交
1178
/*
1179 1180
 * Return the pointer to the large page information for a given gfn,
 * handling slots that are not large page aligned.
M
Marcelo Tosatti 已提交
1181
 */
1182 1183 1184
static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
					      struct kvm_memory_slot *slot,
					      int level)
M
Marcelo Tosatti 已提交
1185 1186 1187
{
	unsigned long idx;

1188
	idx = gfn_to_index(gfn, slot->base_gfn, level);
1189
	return &slot->arch.lpage_info[level - 2][idx];
M
Marcelo Tosatti 已提交
1190 1191
}

1192 1193 1194 1195 1196 1197
static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
					    gfn_t gfn, int count)
{
	struct kvm_lpage_info *linfo;
	int i;

1198
	for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
		linfo = lpage_info_slot(gfn, slot, i);
		linfo->disallow_lpage += count;
		WARN_ON(linfo->disallow_lpage < 0);
	}
}

void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
{
	update_gfn_disallow_lpage_count(slot, gfn, 1);
}

void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
{
	update_gfn_disallow_lpage_count(slot, gfn, -1);
}

1215
static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
M
Marcelo Tosatti 已提交
1216
{
1217
	struct kvm_memslots *slots;
1218
	struct kvm_memory_slot *slot;
1219
	gfn_t gfn;
M
Marcelo Tosatti 已提交
1220

1221
	kvm->arch.indirect_shadow_pages++;
1222
	gfn = sp->gfn;
1223 1224
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
1225 1226

	/* the non-leaf shadow pages are keeping readonly. */
1227
	if (sp->role.level > PG_LEVEL_4K)
1228 1229 1230
		return kvm_slot_page_track_add_page(kvm, slot, gfn,
						    KVM_PAGE_TRACK_WRITE);

1231
	kvm_mmu_gfn_disallow_lpage(slot, gfn);
M
Marcelo Tosatti 已提交
1232 1233
}

P
Paolo Bonzini 已提交
1234 1235 1236 1237 1238 1239
static void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
{
	if (sp->lpage_disallowed)
		return;

	++kvm->stat.nx_lpage_splits;
1240 1241
	list_add_tail(&sp->lpage_disallowed_link,
		      &kvm->arch.lpage_disallowed_mmu_pages);
P
Paolo Bonzini 已提交
1242 1243 1244
	sp->lpage_disallowed = true;
}

1245
static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
M
Marcelo Tosatti 已提交
1246
{
1247
	struct kvm_memslots *slots;
1248
	struct kvm_memory_slot *slot;
1249
	gfn_t gfn;
M
Marcelo Tosatti 已提交
1250

1251
	kvm->arch.indirect_shadow_pages--;
1252
	gfn = sp->gfn;
1253 1254
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
1255
	if (sp->role.level > PG_LEVEL_4K)
1256 1257 1258
		return kvm_slot_page_track_remove_page(kvm, slot, gfn,
						       KVM_PAGE_TRACK_WRITE);

1259
	kvm_mmu_gfn_allow_lpage(slot, gfn);
M
Marcelo Tosatti 已提交
1260 1261
}

P
Paolo Bonzini 已提交
1262 1263 1264 1265
static void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
{
	--kvm->stat.nx_lpage_splits;
	sp->lpage_disallowed = false;
1266
	list_del(&sp->lpage_disallowed_link);
P
Paolo Bonzini 已提交
1267 1268
}

1269 1270 1271
static struct kvm_memory_slot *
gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
			    bool no_dirty_log)
M
Marcelo Tosatti 已提交
1272 1273
{
	struct kvm_memory_slot *slot;
1274

1275
	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1276 1277 1278 1279
	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
		return NULL;
	if (no_dirty_log && slot->dirty_bitmap)
		return NULL;
1280 1281 1282 1283

	return slot;
}

1284
/*
1285
 * About rmap_head encoding:
1286
 *
1287 1288
 * If the bit zero of rmap_head->val is clear, then it points to the only spte
 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
1289
 * pte_list_desc containing more mappings.
1290 1291 1292 1293
 */

/*
 * Returns the number of pointers in the rmap chain, not counting the new one.
1294
 */
1295
static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
1296
			struct kvm_rmap_head *rmap_head)
1297
{
1298
	struct pte_list_desc *desc;
1299
	int i, count = 0;
1300

1301
	if (!rmap_head->val) {
1302
		rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
1303 1304
		rmap_head->val = (unsigned long)spte;
	} else if (!(rmap_head->val & 1)) {
1305 1306
		rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
		desc = mmu_alloc_pte_list_desc(vcpu);
1307
		desc->sptes[0] = (u64 *)rmap_head->val;
A
Avi Kivity 已提交
1308
		desc->sptes[1] = spte;
1309
		rmap_head->val = (unsigned long)desc | 1;
1310
		++count;
1311
	} else {
1312
		rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
1313
		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1314
		while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
1315
			desc = desc->more;
1316
			count += PTE_LIST_EXT;
1317
		}
1318 1319
		if (desc->sptes[PTE_LIST_EXT-1]) {
			desc->more = mmu_alloc_pte_list_desc(vcpu);
1320 1321
			desc = desc->more;
		}
A
Avi Kivity 已提交
1322
		for (i = 0; desc->sptes[i]; ++i)
1323
			++count;
A
Avi Kivity 已提交
1324
		desc->sptes[i] = spte;
1325
	}
1326
	return count;
1327 1328
}

1329
static void
1330 1331 1332
pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
			   struct pte_list_desc *desc, int i,
			   struct pte_list_desc *prev_desc)
1333 1334 1335
{
	int j;

1336
	for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
1337
		;
A
Avi Kivity 已提交
1338 1339
	desc->sptes[i] = desc->sptes[j];
	desc->sptes[j] = NULL;
1340 1341 1342
	if (j != 0)
		return;
	if (!prev_desc && !desc->more)
1343
		rmap_head->val = 0;
1344 1345 1346 1347
	else
		if (prev_desc)
			prev_desc->more = desc->more;
		else
1348
			rmap_head->val = (unsigned long)desc->more | 1;
1349
	mmu_free_pte_list_desc(desc);
1350 1351
}

1352
static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
1353
{
1354 1355
	struct pte_list_desc *desc;
	struct pte_list_desc *prev_desc;
1356 1357
	int i;

1358
	if (!rmap_head->val) {
1359
		pr_err("%s: %p 0->BUG\n", __func__, spte);
1360
		BUG();
1361
	} else if (!(rmap_head->val & 1)) {
1362
		rmap_printk("%s:  %p 1->0\n", __func__, spte);
1363
		if ((u64 *)rmap_head->val != spte) {
1364
			pr_err("%s:  %p 1->BUG\n", __func__, spte);
1365 1366
			BUG();
		}
1367
		rmap_head->val = 0;
1368
	} else {
1369
		rmap_printk("%s:  %p many->many\n", __func__, spte);
1370
		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1371 1372
		prev_desc = NULL;
		while (desc) {
1373
			for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
A
Avi Kivity 已提交
1374
				if (desc->sptes[i] == spte) {
1375 1376
					pte_list_desc_remove_entry(rmap_head,
							desc, i, prev_desc);
1377 1378
					return;
				}
1379
			}
1380 1381 1382
			prev_desc = desc;
			desc = desc->more;
		}
1383
		pr_err("%s: %p many->many\n", __func__, spte);
1384 1385 1386 1387
		BUG();
	}
}

1388 1389 1390 1391 1392 1393
static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep)
{
	mmu_spte_clear_track_bits(sptep);
	__pte_list_remove(sptep, rmap_head);
}

1394 1395
static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
					   struct kvm_memory_slot *slot)
1396
{
1397
	unsigned long idx;
1398

1399
	idx = gfn_to_index(gfn, slot->base_gfn, level);
1400
	return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
1401 1402
}

1403 1404
static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
					 struct kvm_mmu_page *sp)
1405
{
1406
	struct kvm_memslots *slots;
1407 1408
	struct kvm_memory_slot *slot;

1409 1410
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
1411
	return __gfn_to_rmap(gfn, sp->role.level, slot);
1412 1413
}

1414 1415
static bool rmap_can_add(struct kvm_vcpu *vcpu)
{
1416
	struct kvm_mmu_memory_cache *mc;
1417

1418 1419
	mc = &vcpu->arch.mmu_pte_list_desc_cache;
	return mmu_memory_cache_free_objects(mc);
1420 1421
}

1422 1423 1424
static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
{
	struct kvm_mmu_page *sp;
1425
	struct kvm_rmap_head *rmap_head;
1426

1427
	sp = sptep_to_sp(spte);
1428
	kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1429 1430
	rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
	return pte_list_add(vcpu, spte, rmap_head);
1431 1432 1433 1434 1435 1436
}

static void rmap_remove(struct kvm *kvm, u64 *spte)
{
	struct kvm_mmu_page *sp;
	gfn_t gfn;
1437
	struct kvm_rmap_head *rmap_head;
1438

1439
	sp = sptep_to_sp(spte);
1440
	gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1441
	rmap_head = gfn_to_rmap(kvm, gfn, sp);
1442
	__pte_list_remove(spte, rmap_head);
1443 1444
}

1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
/*
 * Used by the following functions to iterate through the sptes linked by a
 * rmap.  All fields are private and not assumed to be used outside.
 */
struct rmap_iterator {
	/* private fields */
	struct pte_list_desc *desc;	/* holds the sptep if not NULL */
	int pos;			/* index of the sptep */
};

/*
 * Iteration must be started by this function.  This should also be used after
 * removing/dropping sptes from the rmap link because in such cases the
M
Miaohe Lin 已提交
1458
 * information in the iterator may not be valid.
1459 1460 1461
 *
 * Returns sptep if found, NULL otherwise.
 */
1462 1463
static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
			   struct rmap_iterator *iter)
1464
{
1465 1466
	u64 *sptep;

1467
	if (!rmap_head->val)
1468 1469
		return NULL;

1470
	if (!(rmap_head->val & 1)) {
1471
		iter->desc = NULL;
1472 1473
		sptep = (u64 *)rmap_head->val;
		goto out;
1474 1475
	}

1476
	iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1477
	iter->pos = 0;
1478 1479 1480 1481
	sptep = iter->desc->sptes[iter->pos];
out:
	BUG_ON(!is_shadow_present_pte(*sptep));
	return sptep;
1482 1483 1484 1485 1486 1487 1488 1489 1490
}

/*
 * Must be used with a valid iterator: e.g. after rmap_get_first().
 *
 * Returns sptep if found, NULL otherwise.
 */
static u64 *rmap_get_next(struct rmap_iterator *iter)
{
1491 1492
	u64 *sptep;

1493 1494 1495 1496 1497
	if (iter->desc) {
		if (iter->pos < PTE_LIST_EXT - 1) {
			++iter->pos;
			sptep = iter->desc->sptes[iter->pos];
			if (sptep)
1498
				goto out;
1499 1500 1501 1502 1503 1504 1505
		}

		iter->desc = iter->desc->more;

		if (iter->desc) {
			iter->pos = 0;
			/* desc->sptes[0] cannot be NULL */
1506 1507
			sptep = iter->desc->sptes[iter->pos];
			goto out;
1508 1509 1510 1511
		}
	}

	return NULL;
1512 1513 1514
out:
	BUG_ON(!is_shadow_present_pte(*sptep));
	return sptep;
1515 1516
}

1517 1518
#define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)			\
	for (_spte_ = rmap_get_first(_rmap_head_, _iter_);		\
1519
	     _spte_; _spte_ = rmap_get_next(_iter_))
1520

1521
static void drop_spte(struct kvm *kvm, u64 *sptep)
1522
{
1523
	if (mmu_spte_clear_track_bits(sptep))
1524
		rmap_remove(kvm, sptep);
A
Avi Kivity 已提交
1525 1526
}

1527 1528 1529 1530

static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
{
	if (is_large_pte(*sptep)) {
1531
		WARN_ON(sptep_to_sp(sptep)->role.level == PG_LEVEL_4K);
1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
		drop_spte(kvm, sptep);
		--kvm->stat.lpages;
		return true;
	}

	return false;
}

static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
{
1542
	if (__drop_large_spte(vcpu->kvm, sptep)) {
1543
		struct kvm_mmu_page *sp = sptep_to_sp(sptep);
1544 1545 1546 1547

		kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
			KVM_PAGES_PER_HPAGE(sp->role.level));
	}
1548 1549 1550
}

/*
1551
 * Write-protect on the specified @sptep, @pt_protect indicates whether
1552
 * spte write-protection is caused by protecting shadow page table.
1553
 *
T
Tiejun Chen 已提交
1554
 * Note: write protection is difference between dirty logging and spte
1555 1556 1557 1558 1559
 * protection:
 * - for dirty logging, the spte can be set to writable at anytime if
 *   its dirty bitmap is properly set.
 * - for spte protection, the spte can be writable only after unsync-ing
 *   shadow page.
1560
 *
1561
 * Return true if tlb need be flushed.
1562
 */
1563
static bool spte_write_protect(u64 *sptep, bool pt_protect)
1564 1565 1566
{
	u64 spte = *sptep;

1567
	if (!is_writable_pte(spte) &&
1568
	      !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1569 1570 1571 1572
		return false;

	rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);

1573 1574
	if (pt_protect)
		spte &= ~SPTE_MMU_WRITEABLE;
1575
	spte = spte & ~PT_WRITABLE_MASK;
1576

1577
	return mmu_spte_update(sptep, spte);
1578 1579
}

1580 1581
static bool __rmap_write_protect(struct kvm *kvm,
				 struct kvm_rmap_head *rmap_head,
1582
				 bool pt_protect)
1583
{
1584 1585
	u64 *sptep;
	struct rmap_iterator iter;
1586
	bool flush = false;
1587

1588
	for_each_rmap_spte(rmap_head, &iter, sptep)
1589
		flush |= spte_write_protect(sptep, pt_protect);
1590

1591
	return flush;
1592 1593
}

1594
static bool spte_clear_dirty(u64 *sptep)
1595 1596 1597 1598 1599
{
	u64 spte = *sptep;

	rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);

1600
	MMU_WARN_ON(!spte_ad_enabled(spte));
1601 1602 1603 1604
	spte &= ~shadow_dirty_mask;
	return mmu_spte_update(sptep, spte);
}

1605
static bool spte_wrprot_for_clear_dirty(u64 *sptep)
1606 1607 1608
{
	bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
					       (unsigned long *)sptep);
1609
	if (was_writable && !spte_ad_enabled(*sptep))
1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620
		kvm_set_pfn_dirty(spte_to_pfn(*sptep));

	return was_writable;
}

/*
 * Gets the GFN ready for another round of dirty logging by clearing the
 *	- D bit on ad-enabled SPTEs, and
 *	- W bit on ad-disabled SPTEs.
 * Returns true iff any D or W bits were cleared.
 */
1621
static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1622 1623 1624 1625 1626
{
	u64 *sptep;
	struct rmap_iterator iter;
	bool flush = false;

1627
	for_each_rmap_spte(rmap_head, &iter, sptep)
1628 1629
		if (spte_ad_need_write_protect(*sptep))
			flush |= spte_wrprot_for_clear_dirty(sptep);
1630
		else
1631
			flush |= spte_clear_dirty(sptep);
1632 1633 1634 1635

	return flush;
}

1636
static bool spte_set_dirty(u64 *sptep)
1637 1638 1639 1640 1641
{
	u64 spte = *sptep;

	rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);

1642
	/*
1643
	 * Similar to the !kvm_x86_ops.slot_disable_log_dirty case,
1644 1645 1646
	 * do not bother adding back write access to pages marked
	 * SPTE_AD_WRPROT_ONLY_MASK.
	 */
1647 1648 1649 1650 1651
	spte |= shadow_dirty_mask;

	return mmu_spte_update(sptep, spte);
}

1652
static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1653 1654 1655 1656 1657
{
	u64 *sptep;
	struct rmap_iterator iter;
	bool flush = false;

1658
	for_each_rmap_spte(rmap_head, &iter, sptep)
1659 1660
		if (spte_ad_enabled(*sptep))
			flush |= spte_set_dirty(sptep);
1661 1662 1663 1664

	return flush;
}

1665
/**
1666
 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1667 1668 1669 1670 1671 1672 1673 1674
 * @kvm: kvm instance
 * @slot: slot to protect
 * @gfn_offset: start of the BITS_PER_LONG pages we care about
 * @mask: indicates which pages we should protect
 *
 * Used when we do not need to care about huge page mappings: e.g. during dirty
 * logging we do not have any such mappings.
 */
1675
static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1676 1677
				     struct kvm_memory_slot *slot,
				     gfn_t gfn_offset, unsigned long mask)
1678
{
1679
	struct kvm_rmap_head *rmap_head;
1680

1681
	while (mask) {
1682
		rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1683
					  PG_LEVEL_4K, slot);
1684
		__rmap_write_protect(kvm, rmap_head, false);
M
Marcelo Tosatti 已提交
1685

1686 1687 1688
		/* clear the first set bit */
		mask &= mask - 1;
	}
1689 1690
}

1691
/**
1692 1693
 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
 * protect the page if the D-bit isn't supported.
1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
 * @kvm: kvm instance
 * @slot: slot to clear D-bit
 * @gfn_offset: start of the BITS_PER_LONG pages we care about
 * @mask: indicates which pages we should clear D-bit
 *
 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
 */
void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
				     struct kvm_memory_slot *slot,
				     gfn_t gfn_offset, unsigned long mask)
{
1705
	struct kvm_rmap_head *rmap_head;
1706 1707

	while (mask) {
1708
		rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1709
					  PG_LEVEL_4K, slot);
1710
		__rmap_clear_dirty(kvm, rmap_head);
1711 1712 1713 1714 1715 1716 1717

		/* clear the first set bit */
		mask &= mask - 1;
	}
}
EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);

1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731
/**
 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
 * PT level pages.
 *
 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
 * enable dirty logging for them.
 *
 * Used when we do not need to care about huge page mappings: e.g. during dirty
 * logging we do not have any such mappings.
 */
void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
				struct kvm_memory_slot *slot,
				gfn_t gfn_offset, unsigned long mask)
{
1732 1733
	if (kvm_x86_ops.enable_log_dirty_pt_masked)
		kvm_x86_ops.enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1734 1735 1736
				mask);
	else
		kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1737 1738
}

1739 1740
bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
				    struct kvm_memory_slot *slot, u64 gfn)
1741
{
1742
	struct kvm_rmap_head *rmap_head;
1743
	int i;
1744
	bool write_protected = false;
1745

1746
	for (i = PG_LEVEL_4K; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
1747
		rmap_head = __gfn_to_rmap(gfn, i, slot);
1748
		write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1749 1750 1751
	}

	return write_protected;
1752 1753
}

1754 1755 1756 1757 1758 1759 1760 1761
static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
{
	struct kvm_memory_slot *slot;

	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
	return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
}

1762
static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1763
{
1764 1765
	u64 *sptep;
	struct rmap_iterator iter;
1766
	bool flush = false;
1767

1768
	while ((sptep = rmap_get_first(rmap_head, &iter))) {
1769
		rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1770

1771
		pte_list_remove(rmap_head, sptep);
1772
		flush = true;
1773
	}
1774

1775 1776 1777
	return flush;
}

1778
static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1779 1780 1781
			   struct kvm_memory_slot *slot, gfn_t gfn, int level,
			   unsigned long data)
{
1782
	return kvm_zap_rmapp(kvm, rmap_head);
1783 1784
}

1785
static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1786 1787
			     struct kvm_memory_slot *slot, gfn_t gfn, int level,
			     unsigned long data)
1788
{
1789 1790
	u64 *sptep;
	struct rmap_iterator iter;
1791
	int need_flush = 0;
1792
	u64 new_spte;
1793
	pte_t *ptep = (pte_t *)data;
D
Dan Williams 已提交
1794
	kvm_pfn_t new_pfn;
1795 1796 1797

	WARN_ON(pte_huge(*ptep));
	new_pfn = pte_pfn(*ptep);
1798

1799
restart:
1800
	for_each_rmap_spte(rmap_head, &iter, sptep) {
1801
		rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1802
			    sptep, *sptep, gfn, level);
1803

1804
		need_flush = 1;
1805

1806
		if (pte_write(*ptep)) {
1807
			pte_list_remove(rmap_head, sptep);
1808
			goto restart;
1809
		} else {
1810
			new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1811 1812 1813 1814
			new_spte |= (u64)new_pfn << PAGE_SHIFT;

			new_spte &= ~PT_WRITABLE_MASK;
			new_spte &= ~SPTE_HOST_WRITEABLE;
1815 1816

			new_spte = mark_spte_for_access_track(new_spte);
1817 1818 1819

			mmu_spte_clear_track_bits(sptep);
			mmu_spte_set(sptep, new_spte);
1820 1821
		}
	}
1822

1823 1824 1825 1826 1827
	if (need_flush && kvm_available_flush_tlb_with_range()) {
		kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
		return 0;
	}

1828
	return need_flush;
1829 1830
}

1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
struct slot_rmap_walk_iterator {
	/* input fields. */
	struct kvm_memory_slot *slot;
	gfn_t start_gfn;
	gfn_t end_gfn;
	int start_level;
	int end_level;

	/* output fields. */
	gfn_t gfn;
1841
	struct kvm_rmap_head *rmap;
1842 1843 1844
	int level;

	/* private field. */
1845
	struct kvm_rmap_head *end_rmap;
1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898
};

static void
rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
{
	iterator->level = level;
	iterator->gfn = iterator->start_gfn;
	iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
	iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
					   iterator->slot);
}

static void
slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
		    struct kvm_memory_slot *slot, int start_level,
		    int end_level, gfn_t start_gfn, gfn_t end_gfn)
{
	iterator->slot = slot;
	iterator->start_level = start_level;
	iterator->end_level = end_level;
	iterator->start_gfn = start_gfn;
	iterator->end_gfn = end_gfn;

	rmap_walk_init_level(iterator, iterator->start_level);
}

static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
{
	return !!iterator->rmap;
}

static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
{
	if (++iterator->rmap <= iterator->end_rmap) {
		iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
		return;
	}

	if (++iterator->level > iterator->end_level) {
		iterator->rmap = NULL;
		return;
	}

	rmap_walk_init_level(iterator, iterator->level);
}

#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,	\
	   _start_gfn, _end_gfn, _iter_)				\
	for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,		\
				 _end_level_, _start_gfn, _end_gfn);	\
	     slot_rmap_walk_okay(_iter_);				\
	     slot_rmap_walk_next(_iter_))

1899 1900 1901 1902 1903
static int kvm_handle_hva_range(struct kvm *kvm,
				unsigned long start,
				unsigned long end,
				unsigned long data,
				int (*handler)(struct kvm *kvm,
1904
					       struct kvm_rmap_head *rmap_head,
1905
					       struct kvm_memory_slot *slot,
1906 1907
					       gfn_t gfn,
					       int level,
1908
					       unsigned long data))
1909
{
1910
	struct kvm_memslots *slots;
1911
	struct kvm_memory_slot *memslot;
1912 1913
	struct slot_rmap_walk_iterator iterator;
	int ret = 0;
1914
	int i;
1915

1916 1917 1918 1919 1920
	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
		kvm_for_each_memslot(memslot, slots) {
			unsigned long hva_start, hva_end;
			gfn_t gfn_start, gfn_end;
1921

1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933
			hva_start = max(start, memslot->userspace_addr);
			hva_end = min(end, memslot->userspace_addr +
				      (memslot->npages << PAGE_SHIFT));
			if (hva_start >= hva_end)
				continue;
			/*
			 * {gfn(page) | page intersects with [hva_start, hva_end)} =
			 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
			 */
			gfn_start = hva_to_gfn_memslot(hva_start, memslot);
			gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);

1934
			for_each_slot_rmap_range(memslot, PG_LEVEL_4K,
1935
						 KVM_MAX_HUGEPAGE_LEVEL,
1936 1937 1938 1939 1940
						 gfn_start, gfn_end - 1,
						 &iterator)
				ret |= handler(kvm, iterator.rmap, memslot,
					       iterator.gfn, iterator.level, data);
		}
1941 1942
	}

1943
	return ret;
1944 1945
}

1946 1947
static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
			  unsigned long data,
1948 1949
			  int (*handler)(struct kvm *kvm,
					 struct kvm_rmap_head *rmap_head,
1950
					 struct kvm_memory_slot *slot,
1951
					 gfn_t gfn, int level,
1952 1953 1954
					 unsigned long data))
{
	return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1955 1956
}

1957 1958 1959 1960 1961
int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
{
	return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
}

1962
int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1963
{
1964
	return kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1965 1966
}

1967
static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1968 1969
			 struct kvm_memory_slot *slot, gfn_t gfn, int level,
			 unsigned long data)
1970
{
1971
	u64 *sptep;
1972
	struct rmap_iterator uninitialized_var(iter);
1973 1974
	int young = 0;

1975 1976
	for_each_rmap_spte(rmap_head, &iter, sptep)
		young |= mmu_spte_age(sptep);
1977

1978
	trace_kvm_age_page(gfn, level, slot, young);
1979 1980 1981
	return young;
}

1982
static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1983 1984
			      struct kvm_memory_slot *slot, gfn_t gfn,
			      int level, unsigned long data)
A
Andrea Arcangeli 已提交
1985
{
1986 1987
	u64 *sptep;
	struct rmap_iterator iter;
A
Andrea Arcangeli 已提交
1988

1989 1990 1991 1992
	for_each_rmap_spte(rmap_head, &iter, sptep)
		if (is_accessed_spte(*sptep))
			return 1;
	return 0;
A
Andrea Arcangeli 已提交
1993 1994
}

1995 1996
#define RMAP_RECYCLE_THRESHOLD 1000

1997
static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1998
{
1999
	struct kvm_rmap_head *rmap_head;
2000 2001
	struct kvm_mmu_page *sp;

2002
	sp = sptep_to_sp(spte);
2003

2004
	rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
2005

2006
	kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
2007 2008
	kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
			KVM_PAGES_PER_HPAGE(sp->role.level));
2009 2010
}

A
Andres Lagar-Cavilla 已提交
2011
int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
2012
{
A
Andres Lagar-Cavilla 已提交
2013
	return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
2014 2015
}

A
Andrea Arcangeli 已提交
2016 2017 2018 2019 2020
int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
{
	return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
}

2021
#ifdef MMU_DEBUG
2022
static int is_empty_shadow_page(u64 *spt)
A
Avi Kivity 已提交
2023
{
2024 2025 2026
	u64 *pos;
	u64 *end;

2027
	for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
2028
		if (is_shadow_present_pte(*pos)) {
2029
			printk(KERN_ERR "%s: %p %llx\n", __func__,
2030
			       pos, *pos);
A
Avi Kivity 已提交
2031
			return 0;
2032
		}
A
Avi Kivity 已提交
2033 2034
	return 1;
}
2035
#endif
A
Avi Kivity 已提交
2036

2037 2038 2039 2040 2041 2042
/*
 * This value is the sum of all of the kvm instances's
 * kvm->arch.n_used_mmu_pages values.  We need a global,
 * aggregate version in order to make the slab shrinker
 * faster
 */
2043
static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, unsigned long nr)
2044 2045 2046 2047 2048
{
	kvm->arch.n_used_mmu_pages += nr;
	percpu_counter_add(&kvm_total_used_mmu_pages, nr);
}

2049
static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
2050
{
2051
	MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
2052
	hlist_del(&sp->hash_link);
2053 2054
	list_del(&sp->link);
	free_page((unsigned long)sp->spt);
2055 2056
	if (!sp->role.direct)
		free_page((unsigned long)sp->gfns);
2057
	kmem_cache_free(mmu_page_header_cache, sp);
2058 2059
}

2060 2061
static unsigned kvm_page_table_hashfn(gfn_t gfn)
{
2062
	return hash_64(gfn, KVM_MMU_HASH_SHIFT);
2063 2064
}

2065
static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
2066
				    struct kvm_mmu_page *sp, u64 *parent_pte)
2067 2068 2069 2070
{
	if (!parent_pte)
		return;

2071
	pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
2072 2073
}

2074
static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
2075 2076
				       u64 *parent_pte)
{
2077
	__pte_list_remove(parent_pte, &sp->parent_ptes);
2078 2079
}

2080 2081 2082 2083
static void drop_parent_pte(struct kvm_mmu_page *sp,
			    u64 *parent_pte)
{
	mmu_page_remove_parent_pte(sp, parent_pte);
2084
	mmu_spte_clear_no_track(parent_pte);
2085 2086
}

2087
static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
M
Marcelo Tosatti 已提交
2088
{
2089
	struct kvm_mmu_page *sp;
2090

2091
	sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
2092
	sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache);
2093
	if (!direct)
2094
		sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_gfn_array_cache);
2095
	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
2096 2097 2098 2099 2100 2101

	/*
	 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
	 * depends on valid pages being added to the head of the list.  See
	 * comments in kvm_zap_obsolete_pages().
	 */
2102
	sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
2103 2104 2105
	list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
	kvm_mod_used_mmu_pages(vcpu->kvm, +1);
	return sp;
M
Marcelo Tosatti 已提交
2106 2107
}

2108
static void mark_unsync(u64 *spte);
2109
static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
2110
{
2111 2112 2113 2114 2115 2116
	u64 *sptep;
	struct rmap_iterator iter;

	for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
		mark_unsync(sptep);
	}
2117 2118
}

2119
static void mark_unsync(u64 *spte)
2120
{
2121
	struct kvm_mmu_page *sp;
2122
	unsigned int index;
2123

2124
	sp = sptep_to_sp(spte);
2125 2126
	index = spte - sp->spt;
	if (__test_and_set_bit(index, sp->unsync_child_bitmap))
2127
		return;
2128
	if (sp->unsync_children++)
2129
		return;
2130
	kvm_mmu_mark_parents_unsync(sp);
2131 2132
}

2133
static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
2134
			       struct kvm_mmu_page *sp)
2135
{
2136
	return 0;
2137 2138
}

2139 2140
static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
				 struct kvm_mmu_page *sp, u64 *spte,
2141
				 const void *pte)
2142 2143 2144 2145
{
	WARN_ON(1);
}

2146 2147 2148 2149 2150 2151 2152 2153 2154 2155
#define KVM_PAGE_ARRAY_NR 16

struct kvm_mmu_pages {
	struct mmu_page_and_offset {
		struct kvm_mmu_page *sp;
		unsigned int idx;
	} page[KVM_PAGE_ARRAY_NR];
	unsigned int nr;
};

2156 2157
static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
			 int idx)
2158
{
2159
	int i;
2160

2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171
	if (sp->unsync)
		for (i=0; i < pvec->nr; i++)
			if (pvec->page[i].sp == sp)
				return 0;

	pvec->page[pvec->nr].sp = sp;
	pvec->page[pvec->nr].idx = idx;
	pvec->nr++;
	return (pvec->nr == KVM_PAGE_ARRAY_NR);
}

2172 2173 2174 2175 2176 2177 2178
static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
{
	--sp->unsync_children;
	WARN_ON((int)sp->unsync_children < 0);
	__clear_bit(idx, sp->unsync_child_bitmap);
}

2179 2180 2181 2182
static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
	int i, ret, nr_unsync_leaf = 0;
2183

2184
	for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
2185
		struct kvm_mmu_page *child;
2186 2187
		u64 ent = sp->spt[i];

2188 2189 2190 2191
		if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
			clear_unsync_child_bit(sp, i);
			continue;
		}
2192

2193
		child = to_shadow_page(ent & PT64_BASE_ADDR_MASK);
2194 2195 2196 2197 2198 2199

		if (child->unsync_children) {
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;

			ret = __mmu_unsync_walk(child, pvec);
2200 2201 2202 2203
			if (!ret) {
				clear_unsync_child_bit(sp, i);
				continue;
			} else if (ret > 0) {
2204
				nr_unsync_leaf += ret;
2205
			} else
2206 2207 2208 2209 2210 2211
				return ret;
		} else if (child->unsync) {
			nr_unsync_leaf++;
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;
		} else
2212
			clear_unsync_child_bit(sp, i);
2213 2214
	}

2215 2216 2217
	return nr_unsync_leaf;
}

2218 2219
#define INVALID_INDEX (-1)

2220 2221 2222
static int mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
P
Paolo Bonzini 已提交
2223
	pvec->nr = 0;
2224 2225 2226
	if (!sp->unsync_children)
		return 0;

2227
	mmu_pages_add(pvec, sp, INVALID_INDEX);
2228
	return __mmu_unsync_walk(sp, pvec);
2229 2230 2231 2232 2233
}

static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
{
	WARN_ON(!sp->unsync);
2234
	trace_kvm_mmu_sync_page(sp);
2235 2236 2237 2238
	sp->unsync = 0;
	--kvm->stat.mmu_unsync;
}

2239 2240
static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				     struct list_head *invalid_list);
2241 2242
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list);
2243

2244 2245
#define for_each_valid_sp(_kvm, _sp, _list)				\
	hlist_for_each_entry(_sp, _list, hash_link)			\
2246
		if (is_obsolete_sp((_kvm), (_sp))) {			\
2247
		} else
2248 2249

#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)			\
2250 2251
	for_each_valid_sp(_kvm, _sp,					\
	  &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)])	\
2252
		if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
2253

2254 2255 2256 2257 2258
static inline bool is_ept_sp(struct kvm_mmu_page *sp)
{
	return sp->role.cr0_wp && sp->role.smap_andnot_wp;
}

2259
/* @sp->gfn should be write-protected at the call site */
2260 2261
static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
			    struct list_head *invalid_list)
2262
{
2263 2264
	if ((!is_ept_sp(sp) && sp->role.gpte_is_8_bytes != !!is_pae(vcpu)) ||
	    vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
2265
		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
2266
		return false;
2267 2268
	}

2269
	return true;
2270 2271
}

2272 2273 2274 2275
static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
					struct list_head *invalid_list,
					bool remote_flush)
{
2276
	if (!remote_flush && list_empty(invalid_list))
2277 2278 2279 2280 2281 2282 2283 2284 2285
		return false;

	if (!list_empty(invalid_list))
		kvm_mmu_commit_zap_page(kvm, invalid_list);
	else
		kvm_flush_remote_tlbs(kvm);
	return true;
}

2286 2287 2288
static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
				 struct list_head *invalid_list,
				 bool remote_flush, bool local_flush)
2289
{
2290
	if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush))
2291
		return;
2292

2293
	if (local_flush)
2294
		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2295 2296
}

2297 2298 2299 2300 2301 2302 2303
#ifdef CONFIG_KVM_MMU_AUDIT
#include "mmu_audit.c"
#else
static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
static void mmu_audit_disable(void) { }
#endif

2304 2305
static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
{
2306 2307
	return sp->role.invalid ||
	       unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2308 2309
}

2310
static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2311
			 struct list_head *invalid_list)
2312
{
2313 2314
	kvm_unlink_unsync_page(vcpu->kvm, sp);
	return __kvm_sync_page(vcpu, sp, invalid_list);
2315 2316
}

2317
/* @gfn should be write-protected at the call site */
2318 2319
static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
			   struct list_head *invalid_list)
2320 2321
{
	struct kvm_mmu_page *s;
2322
	bool ret = false;
2323

2324
	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2325
		if (!s->unsync)
2326 2327
			continue;

2328
		WARN_ON(s->role.level != PG_LEVEL_4K);
2329
		ret |= kvm_sync_page(vcpu, s, invalid_list);
2330 2331
	}

2332
	return ret;
2333 2334
}

2335
struct mmu_page_path {
2336 2337
	struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
	unsigned int idx[PT64_ROOT_MAX_LEVEL];
2338 2339
};

2340
#define for_each_sp(pvec, sp, parents, i)			\
P
Paolo Bonzini 已提交
2341
		for (i = mmu_pages_first(&pvec, &parents);	\
2342 2343 2344
			i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});	\
			i = mmu_pages_next(&pvec, &parents, i))

2345 2346 2347
static int mmu_pages_next(struct kvm_mmu_pages *pvec,
			  struct mmu_page_path *parents,
			  int i)
2348 2349 2350 2351 2352
{
	int n;

	for (n = i+1; n < pvec->nr; n++) {
		struct kvm_mmu_page *sp = pvec->page[n].sp;
P
Paolo Bonzini 已提交
2353 2354
		unsigned idx = pvec->page[n].idx;
		int level = sp->role.level;
2355

P
Paolo Bonzini 已提交
2356
		parents->idx[level-1] = idx;
2357
		if (level == PG_LEVEL_4K)
P
Paolo Bonzini 已提交
2358
			break;
2359

P
Paolo Bonzini 已提交
2360
		parents->parent[level-2] = sp;
2361 2362 2363 2364 2365
	}

	return n;
}

P
Paolo Bonzini 已提交
2366 2367 2368 2369 2370 2371 2372 2373 2374
static int mmu_pages_first(struct kvm_mmu_pages *pvec,
			   struct mmu_page_path *parents)
{
	struct kvm_mmu_page *sp;
	int level;

	if (pvec->nr == 0)
		return 0;

2375 2376
	WARN_ON(pvec->page[0].idx != INVALID_INDEX);

P
Paolo Bonzini 已提交
2377 2378
	sp = pvec->page[0].sp;
	level = sp->role.level;
2379
	WARN_ON(level == PG_LEVEL_4K);
P
Paolo Bonzini 已提交
2380 2381 2382 2383 2384 2385 2386 2387 2388 2389

	parents->parent[level-2] = sp;

	/* Also set up a sentinel.  Further entries in pvec are all
	 * children of sp, so this element is never overwritten.
	 */
	parents->parent[level-1] = NULL;
	return mmu_pages_next(pvec, parents, 0);
}

2390
static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2391
{
2392 2393 2394 2395 2396 2397 2398 2399 2400
	struct kvm_mmu_page *sp;
	unsigned int level = 0;

	do {
		unsigned int idx = parents->idx[level];
		sp = parents->parent[level];
		if (!sp)
			return;

2401
		WARN_ON(idx == INVALID_INDEX);
2402
		clear_unsync_child_bit(sp, idx);
2403
		level++;
P
Paolo Bonzini 已提交
2404
	} while (!sp->unsync_children);
2405
}
2406

2407 2408 2409 2410 2411 2412 2413
static void mmu_sync_children(struct kvm_vcpu *vcpu,
			      struct kvm_mmu_page *parent)
{
	int i;
	struct kvm_mmu_page *sp;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
2414
	LIST_HEAD(invalid_list);
2415
	bool flush = false;
2416 2417

	while (mmu_unsync_walk(parent, &pages)) {
2418
		bool protected = false;
2419 2420

		for_each_sp(pages, sp, parents, i)
2421
			protected |= rmap_write_protect(vcpu, sp->gfn);
2422

2423
		if (protected) {
2424
			kvm_flush_remote_tlbs(vcpu->kvm);
2425 2426
			flush = false;
		}
2427

2428
		for_each_sp(pages, sp, parents, i) {
2429
			flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2430 2431
			mmu_pages_clear_parents(&parents);
		}
2432 2433 2434 2435 2436
		if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
			kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
			cond_resched_lock(&vcpu->kvm->mmu_lock);
			flush = false;
		}
2437
	}
2438 2439

	kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2440 2441
}

2442 2443
static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
{
2444
	atomic_set(&sp->write_flooding_count,  0);
2445 2446 2447 2448
}

static void clear_sp_write_flooding_count(u64 *spte)
{
2449
	__clear_sp_write_flooding_count(sptep_to_sp(spte));
2450 2451
}

2452 2453 2454 2455
static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
					     gfn_t gfn,
					     gva_t gaddr,
					     unsigned level,
2456
					     int direct,
2457
					     unsigned int access)
2458
{
2459
	bool direct_mmu = vcpu->arch.mmu->direct_map;
2460
	union kvm_mmu_page_role role;
2461
	struct hlist_head *sp_list;
2462
	unsigned quadrant;
2463 2464
	struct kvm_mmu_page *sp;
	bool need_sync = false;
2465
	bool flush = false;
2466
	int collisions = 0;
2467
	LIST_HEAD(invalid_list);
2468

2469
	role = vcpu->arch.mmu->mmu_role.base;
2470
	role.level = level;
2471
	role.direct = direct;
2472
	if (role.direct)
2473
		role.gpte_is_8_bytes = true;
2474
	role.access = access;
2475
	if (!direct_mmu && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
2476 2477 2478 2479
		quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
		quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
		role.quadrant = quadrant;
	}
2480 2481 2482

	sp_list = &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)];
	for_each_valid_sp(vcpu->kvm, sp, sp_list) {
2483 2484 2485 2486 2487
		if (sp->gfn != gfn) {
			collisions++;
			continue;
		}

2488 2489
		if (!need_sync && sp->unsync)
			need_sync = true;
2490

2491 2492
		if (sp->role.word != role.word)
			continue;
2493

2494 2495 2496
		if (direct_mmu)
			goto trace_get_page;

2497 2498 2499 2500 2501 2502 2503 2504
		if (sp->unsync) {
			/* The page is good, but __kvm_sync_page might still end
			 * up zapping it.  If so, break in order to rebuild it.
			 */
			if (!__kvm_sync_page(vcpu, sp, &invalid_list))
				break;

			WARN_ON(!list_empty(&invalid_list));
2505
			kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2506
		}
2507

2508
		if (sp->unsync_children)
2509
			kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2510

2511
		__clear_sp_write_flooding_count(sp);
2512 2513

trace_get_page:
2514
		trace_kvm_mmu_get_page(sp, false);
2515
		goto out;
2516
	}
2517

A
Avi Kivity 已提交
2518
	++vcpu->kvm->stat.mmu_cache_miss;
2519 2520 2521

	sp = kvm_mmu_alloc_page(vcpu, direct);

2522 2523
	sp->gfn = gfn;
	sp->role = role;
2524
	hlist_add_head(&sp->hash_link, sp_list);
2525
	if (!direct) {
2526 2527 2528 2529 2530 2531
		/*
		 * we should do write protection before syncing pages
		 * otherwise the content of the synced shadow page may
		 * be inconsistent with guest page table.
		 */
		account_shadowed(vcpu->kvm, sp);
2532
		if (level == PG_LEVEL_4K && rmap_write_protect(vcpu, gfn))
2533
			kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
2534

2535
		if (level > PG_LEVEL_4K && need_sync)
2536
			flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
2537
	}
A
Avi Kivity 已提交
2538
	trace_kvm_mmu_get_page(sp, true);
2539 2540

	kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2541 2542 2543
out:
	if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
		vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2544
	return sp;
2545 2546
}

2547 2548 2549
static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
					struct kvm_vcpu *vcpu, hpa_t root,
					u64 addr)
2550 2551
{
	iterator->addr = addr;
2552
	iterator->shadow_addr = root;
2553
	iterator->level = vcpu->arch.mmu->shadow_root_level;
2554

2555
	if (iterator->level == PT64_ROOT_4LEVEL &&
2556 2557
	    vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
	    !vcpu->arch.mmu->direct_map)
2558 2559
		--iterator->level;

2560
	if (iterator->level == PT32E_ROOT_LEVEL) {
2561 2562 2563 2564
		/*
		 * prev_root is currently only used for 64-bit hosts. So only
		 * the active root_hpa is valid here.
		 */
2565
		BUG_ON(root != vcpu->arch.mmu->root_hpa);
2566

2567
		iterator->shadow_addr
2568
			= vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2569 2570 2571 2572 2573 2574 2575
		iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
		--iterator->level;
		if (!iterator->shadow_addr)
			iterator->level = 0;
	}
}

2576 2577 2578
static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
			     struct kvm_vcpu *vcpu, u64 addr)
{
2579
	shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
2580 2581 2582
				    addr);
}

2583 2584
static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
{
2585
	if (iterator->level < PG_LEVEL_4K)
2586
		return false;
2587

2588 2589 2590 2591 2592
	iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
	iterator->sptep	= ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
	return true;
}

2593 2594
static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
			       u64 spte)
2595
{
2596
	if (is_last_spte(spte, iterator->level)) {
2597 2598 2599 2600
		iterator->level = 0;
		return;
	}

2601
	iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2602 2603 2604
	--iterator->level;
}

2605 2606
static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
{
2607
	__shadow_walk_next(iterator, *iterator->sptep);
2608 2609
}

2610 2611
static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
			     struct kvm_mmu_page *sp)
2612 2613 2614
{
	u64 spte;

2615
	BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2616

2617
	spte = __pa(sp->spt) | shadow_present_mask | PT_WRITABLE_MASK |
2618
	       shadow_user_mask | shadow_x_mask | shadow_me_mask;
2619 2620

	if (sp_ad_disabled(sp))
2621
		spte |= SPTE_AD_DISABLED_MASK;
2622 2623
	else
		spte |= shadow_accessed_mask;
X
Xiao Guangrong 已提交
2624

2625
	mmu_spte_set(sptep, spte);
2626 2627 2628 2629 2630

	mmu_page_add_parent_pte(vcpu, sp, sptep);

	if (sp->unsync_children || sp->unsync)
		mark_unsync(sptep);
2631 2632
}

2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645
static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
				   unsigned direct_access)
{
	if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
		struct kvm_mmu_page *child;

		/*
		 * For the direct sp, if the guest pte's dirty bit
		 * changed form clean to dirty, it will corrupt the
		 * sp's access: allow writable in the read-only sp,
		 * so we should update the spte at this point to get
		 * a new sp with the correct access.
		 */
2646
		child = to_shadow_page(*sptep & PT64_BASE_ADDR_MASK);
2647 2648 2649
		if (child->role.access == direct_access)
			return;

2650
		drop_parent_pte(child, sptep);
2651
		kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
2652 2653 2654
	}
}

X
Xiao Guangrong 已提交
2655
static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2656 2657 2658 2659 2660 2661 2662
			     u64 *spte)
{
	u64 pte;
	struct kvm_mmu_page *child;

	pte = *spte;
	if (is_shadow_present_pte(pte)) {
X
Xiao Guangrong 已提交
2663
		if (is_last_spte(pte, sp->role.level)) {
2664
			drop_spte(kvm, spte);
X
Xiao Guangrong 已提交
2665 2666 2667
			if (is_large_pte(pte))
				--kvm->stat.lpages;
		} else {
2668
			child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2669
			drop_parent_pte(child, spte);
2670
		}
X
Xiao Guangrong 已提交
2671 2672 2673 2674
		return true;
	}

	if (is_mmio_spte(pte))
2675
		mmu_spte_clear_no_track(spte);
2676

X
Xiao Guangrong 已提交
2677
	return false;
2678 2679
}

2680
static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2681
					 struct kvm_mmu_page *sp)
2682
{
2683 2684
	unsigned i;

2685 2686
	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
		mmu_page_zap_pte(kvm, sp, sp->spt + i);
2687 2688
}

2689
static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2690
{
2691 2692
	u64 *sptep;
	struct rmap_iterator iter;
2693

2694
	while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2695
		drop_parent_pte(sp, sptep);
2696 2697
}

2698
static int mmu_zap_unsync_children(struct kvm *kvm,
2699 2700
				   struct kvm_mmu_page *parent,
				   struct list_head *invalid_list)
2701
{
2702 2703 2704
	int i, zapped = 0;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
2705

2706
	if (parent->role.level == PG_LEVEL_4K)
2707
		return 0;
2708 2709 2710 2711 2712

	while (mmu_unsync_walk(parent, &pages)) {
		struct kvm_mmu_page *sp;

		for_each_sp(pages, sp, parents, i) {
2713
			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2714
			mmu_pages_clear_parents(&parents);
2715
			zapped++;
2716 2717 2718 2719
		}
	}

	return zapped;
2720 2721
}

2722 2723 2724 2725
static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
				       struct kvm_mmu_page *sp,
				       struct list_head *invalid_list,
				       int *nr_zapped)
2726
{
2727
	bool list_unstable;
A
Avi Kivity 已提交
2728

2729
	trace_kvm_mmu_prepare_zap_page(sp);
2730
	++kvm->stat.mmu_shadow_zapped;
2731
	*nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2732
	kvm_mmu_page_unlink_children(kvm, sp);
2733
	kvm_mmu_unlink_parents(kvm, sp);
2734

2735 2736 2737
	/* Zapping children means active_mmu_pages has become unstable. */
	list_unstable = *nr_zapped;

2738
	if (!sp->role.invalid && !sp->role.direct)
2739
		unaccount_shadowed(kvm, sp);
2740

2741 2742
	if (sp->unsync)
		kvm_unlink_unsync_page(kvm, sp);
2743
	if (!sp->root_count) {
2744
		/* Count self */
2745
		(*nr_zapped)++;
2746 2747 2748 2749 2750 2751 2752 2753 2754 2755

		/*
		 * Already invalid pages (previously active roots) are not on
		 * the active page list.  See list_del() in the "else" case of
		 * !sp->root_count.
		 */
		if (sp->role.invalid)
			list_add(&sp->link, invalid_list);
		else
			list_move(&sp->link, invalid_list);
2756
		kvm_mod_used_mmu_pages(kvm, -1);
2757
	} else {
2758 2759 2760 2761 2762
		/*
		 * Remove the active root from the active page list, the root
		 * will be explicitly freed when the root_count hits zero.
		 */
		list_del(&sp->link);
2763

2764 2765 2766 2767 2768 2769
		/*
		 * Obsolete pages cannot be used on any vCPUs, see the comment
		 * in kvm_mmu_zap_all_fast().  Note, is_obsolete_sp() also
		 * treats invalid shadow pages as being obsolete.
		 */
		if (!is_obsolete_sp(kvm, sp))
2770
			kvm_reload_remote_mmus(kvm);
2771
	}
2772

P
Paolo Bonzini 已提交
2773 2774 2775
	if (sp->lpage_disallowed)
		unaccount_huge_nx_page(kvm, sp);

2776
	sp->role.invalid = 1;
2777 2778 2779 2780 2781 2782 2783 2784 2785 2786
	return list_unstable;
}

static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				     struct list_head *invalid_list)
{
	int nr_zapped;

	__kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
	return nr_zapped;
2787 2788
}

2789 2790 2791
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list)
{
2792
	struct kvm_mmu_page *sp, *nsp;
2793 2794 2795 2796

	if (list_empty(invalid_list))
		return;

2797
	/*
2798 2799 2800 2801 2802 2803 2804
	 * We need to make sure everyone sees our modifications to
	 * the page tables and see changes to vcpu->mode here. The barrier
	 * in the kvm_flush_remote_tlbs() achieves this. This pairs
	 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
	 *
	 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
	 * guest mode and/or lockless shadow page table walks.
2805 2806
	 */
	kvm_flush_remote_tlbs(kvm);
2807

2808
	list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2809
		WARN_ON(!sp->role.invalid || sp->root_count);
2810
		kvm_mmu_free_page(sp);
2811
	}
2812 2813
}

2814 2815
static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm,
						  unsigned long nr_to_zap)
2816
{
2817 2818
	unsigned long total_zapped = 0;
	struct kvm_mmu_page *sp, *tmp;
2819
	LIST_HEAD(invalid_list);
2820 2821
	bool unstable;
	int nr_zapped;
2822

2823
	if (list_empty(&kvm->arch.active_mmu_pages))
2824 2825
		return 0;

2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838
restart:
	list_for_each_entry_safe(sp, tmp, &kvm->arch.active_mmu_pages, link) {
		/*
		 * Don't zap active root pages, the page itself can't be freed
		 * and zapping it will just force vCPUs to realloc and reload.
		 */
		if (sp->root_count)
			continue;

		unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list,
						      &nr_zapped);
		total_zapped += nr_zapped;
		if (total_zapped >= nr_to_zap)
2839 2840
			break;

2841 2842
		if (unstable)
			goto restart;
2843
	}
2844 2845 2846 2847 2848 2849 2850

	kvm_mmu_commit_zap_page(kvm, &invalid_list);

	kvm->stat.mmu_recycled += total_zapped;
	return total_zapped;
}

2851 2852 2853 2854 2855 2856 2857 2858 2859
static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm)
{
	if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
		return kvm->arch.n_max_mmu_pages -
			kvm->arch.n_used_mmu_pages;

	return 0;
}

2860 2861 2862 2863 2864 2865 2866 2867
static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
{
	unsigned long avail = kvm_mmu_available_pages(vcpu->kvm);

	if (likely(avail >= KVM_MIN_FREE_MMU_PAGES))
		return 0;

	kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail);
2868 2869 2870 2871 2872 2873

	if (!kvm_mmu_available_pages(vcpu->kvm))
		return -ENOSPC;
	return 0;
}

2874 2875
/*
 * Changing the number of mmu pages allocated to the vm
2876
 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2877
 */
2878
void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2879
{
2880 2881
	spin_lock(&kvm->mmu_lock);

2882
	if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2883 2884
		kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages -
						  goal_nr_mmu_pages);
2885

2886
		goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2887 2888
	}

2889
	kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2890 2891

	spin_unlock(&kvm->mmu_lock);
2892 2893
}

2894
int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2895
{
2896
	struct kvm_mmu_page *sp;
2897
	LIST_HEAD(invalid_list);
2898 2899
	int r;

2900
	pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2901
	r = 0;
2902
	spin_lock(&kvm->mmu_lock);
2903
	for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2904
		pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2905 2906
			 sp->role.word);
		r = 1;
2907
		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2908
	}
2909
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2910 2911
	spin_unlock(&kvm->mmu_lock);

2912
	return r;
2913
}
2914
EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2915

2916
static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2917 2918 2919 2920 2921 2922 2923 2924
{
	trace_kvm_mmu_unsync_page(sp);
	++vcpu->kvm->stat.mmu_unsync;
	sp->unsync = 1;

	kvm_mmu_mark_parents_unsync(sp);
}

2925 2926
static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
				   bool can_unsync)
2927
{
2928
	struct kvm_mmu_page *sp;
2929

2930 2931
	if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
		return true;
2932

2933
	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2934
		if (!can_unsync)
2935
			return true;
2936

2937 2938
		if (sp->unsync)
			continue;
2939

2940
		WARN_ON(sp->role.level != PG_LEVEL_4K);
2941
		kvm_unsync_page(vcpu, sp);
2942
	}
2943

2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982
	/*
	 * We need to ensure that the marking of unsync pages is visible
	 * before the SPTE is updated to allow writes because
	 * kvm_mmu_sync_roots() checks the unsync flags without holding
	 * the MMU lock and so can race with this. If the SPTE was updated
	 * before the page had been marked as unsync-ed, something like the
	 * following could happen:
	 *
	 * CPU 1                    CPU 2
	 * ---------------------------------------------------------------------
	 * 1.2 Host updates SPTE
	 *     to be writable
	 *                      2.1 Guest writes a GPTE for GVA X.
	 *                          (GPTE being in the guest page table shadowed
	 *                           by the SP from CPU 1.)
	 *                          This reads SPTE during the page table walk.
	 *                          Since SPTE.W is read as 1, there is no
	 *                          fault.
	 *
	 *                      2.2 Guest issues TLB flush.
	 *                          That causes a VM Exit.
	 *
	 *                      2.3 kvm_mmu_sync_pages() reads sp->unsync.
	 *                          Since it is false, so it just returns.
	 *
	 *                      2.4 Guest accesses GVA X.
	 *                          Since the mapping in the SP was not updated,
	 *                          so the old mapping for GVA X incorrectly
	 *                          gets used.
	 * 1.1 Host marks SP
	 *     as unsync
	 *     (sp->unsync = true)
	 *
	 * The write barrier below ensures that 1.1 happens before 1.2 and thus
	 * the situation in 2.4 does not arise. The implicit barrier in 2.2
	 * pairs with this write barrier.
	 */
	smp_wmb();

2983
	return false;
2984 2985
}

D
Dan Williams 已提交
2986
static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
2987 2988
{
	if (pfn_valid(pfn))
2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000
		return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)) &&
			/*
			 * Some reserved pages, such as those from NVDIMM
			 * DAX devices, are not for MMIO, and can be mapped
			 * with cached memory type for better performance.
			 * However, the above check misconceives those pages
			 * as MMIO, and results in KVM mapping them with UC
			 * memory type, which would hurt the performance.
			 * Therefore, we check the host memory type in addition
			 * and only treat UC/UC-/WC pages as MMIO.
			 */
			(!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn));
3001

3002 3003 3004
	return !e820__mapped_raw_any(pfn_to_hpa(pfn),
				     pfn_to_hpa(pfn + 1) - 1,
				     E820_TYPE_RAM);
3005 3006
}

3007 3008 3009 3010
/* Bits which may be returned by set_spte() */
#define SET_SPTE_WRITE_PROTECTED_PT	BIT(0)
#define SET_SPTE_NEED_REMOTE_TLB_FLUSH	BIT(1)

A
Avi Kivity 已提交
3011
static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
3012
		    unsigned int pte_access, int level,
D
Dan Williams 已提交
3013
		    gfn_t gfn, kvm_pfn_t pfn, bool speculative,
3014
		    bool can_unsync, bool host_writable)
3015
{
3016
	u64 spte = 0;
M
Marcelo Tosatti 已提交
3017
	int ret = 0;
3018
	struct kvm_mmu_page *sp;
S
Sheng Yang 已提交
3019

3020
	if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
3021 3022
		return 0;

3023
	sp = sptep_to_sp(sptep);
3024
	if (sp_ad_disabled(sp))
3025
		spte |= SPTE_AD_DISABLED_MASK;
3026 3027
	else if (kvm_vcpu_ad_need_write_protect(vcpu))
		spte |= SPTE_AD_WRPROT_ONLY_MASK;
3028

3029 3030 3031 3032 3033 3034
	/*
	 * For the EPT case, shadow_present_mask is 0 if hardware
	 * supports exec-only page table entries.  In that case,
	 * ACC_USER_MASK and shadow_user_mask are used to represent
	 * read access.  See FNAME(gpte_access) in paging_tmpl.h.
	 */
3035
	spte |= shadow_present_mask;
3036
	if (!speculative)
3037
		spte |= spte_shadow_accessed_mask(spte);
3038

3039
	if (level > PG_LEVEL_4K && (pte_access & ACC_EXEC_MASK) &&
P
Paolo Bonzini 已提交
3040 3041 3042 3043
	    is_nx_huge_page_enabled()) {
		pte_access &= ~ACC_EXEC_MASK;
	}

S
Sheng Yang 已提交
3044 3045 3046 3047
	if (pte_access & ACC_EXEC_MASK)
		spte |= shadow_x_mask;
	else
		spte |= shadow_nx_mask;
3048

3049
	if (pte_access & ACC_USER_MASK)
S
Sheng Yang 已提交
3050
		spte |= shadow_user_mask;
3051

3052
	if (level > PG_LEVEL_4K)
M
Marcelo Tosatti 已提交
3053
		spte |= PT_PAGE_SIZE_MASK;
3054
	if (tdp_enabled)
3055
		spte |= kvm_x86_ops.get_mt_mask(vcpu, gfn,
3056
			kvm_is_mmio_pfn(pfn));
3057

3058
	if (host_writable)
3059
		spte |= SPTE_HOST_WRITEABLE;
3060 3061
	else
		pte_access &= ~ACC_WRITE_MASK;
3062

3063 3064 3065
	if (!kvm_is_mmio_pfn(pfn))
		spte |= shadow_me_mask;

3066
	spte |= (u64)pfn << PAGE_SHIFT;
3067

3068
	if (pte_access & ACC_WRITE_MASK) {
3069
		spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
3070

3071 3072 3073 3074 3075 3076
		/*
		 * Optimization: for pte sync, if spte was writable the hash
		 * lookup is unnecessary (and expensive). Write protection
		 * is responsibility of mmu_get_page / kvm_sync_page.
		 * Same reasoning can be applied to dirty page accounting.
		 */
3077
		if (!can_unsync && is_writable_pte(*sptep))
3078 3079
			goto set_pte;

3080
		if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
3081
			pgprintk("%s: found shadow page for %llx, marking ro\n",
3082
				 __func__, gfn);
3083
			ret |= SET_SPTE_WRITE_PROTECTED_PT;
3084
			pte_access &= ~ACC_WRITE_MASK;
3085
			spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
3086 3087 3088
		}
	}

3089
	if (pte_access & ACC_WRITE_MASK) {
3090
		kvm_vcpu_mark_page_dirty(vcpu, gfn);
3091
		spte |= spte_shadow_dirty_mask(spte);
3092
	}
3093

3094 3095 3096
	if (speculative)
		spte = mark_spte_for_access_track(spte);

3097
set_pte:
3098
	if (mmu_spte_update(sptep, spte))
3099
		ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
M
Marcelo Tosatti 已提交
3100 3101 3102
	return ret;
}

3103 3104 3105 3106
static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
			unsigned int pte_access, int write_fault, int level,
			gfn_t gfn, kvm_pfn_t pfn, bool speculative,
			bool host_writable)
M
Marcelo Tosatti 已提交
3107 3108
{
	int was_rmapped = 0;
3109
	int rmap_count;
3110
	int set_spte_ret;
3111
	int ret = RET_PF_RETRY;
3112
	bool flush = false;
M
Marcelo Tosatti 已提交
3113

3114 3115
	pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
		 *sptep, write_fault, gfn);
M
Marcelo Tosatti 已提交
3116

3117
	if (is_shadow_present_pte(*sptep)) {
M
Marcelo Tosatti 已提交
3118 3119 3120 3121
		/*
		 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
		 * the parent of the now unreachable PTE.
		 */
3122
		if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) {
M
Marcelo Tosatti 已提交
3123
			struct kvm_mmu_page *child;
A
Avi Kivity 已提交
3124
			u64 pte = *sptep;
M
Marcelo Tosatti 已提交
3125

3126
			child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
3127
			drop_parent_pte(child, sptep);
3128
			flush = true;
A
Avi Kivity 已提交
3129
		} else if (pfn != spte_to_pfn(*sptep)) {
3130
			pgprintk("hfn old %llx new %llx\n",
A
Avi Kivity 已提交
3131
				 spte_to_pfn(*sptep), pfn);
3132
			drop_spte(vcpu->kvm, sptep);
3133
			flush = true;
3134 3135
		} else
			was_rmapped = 1;
M
Marcelo Tosatti 已提交
3136
	}
3137

3138 3139 3140
	set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
				speculative, true, host_writable);
	if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
M
Marcelo Tosatti 已提交
3141
		if (write_fault)
3142
			ret = RET_PF_EMULATE;
3143
		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
3144
	}
3145

3146
	if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
3147 3148
		kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
				KVM_PAGES_PER_HPAGE(level));
M
Marcelo Tosatti 已提交
3149

3150
	if (unlikely(is_mmio_spte(*sptep)))
3151
		ret = RET_PF_EMULATE;
3152

A
Avi Kivity 已提交
3153
	pgprintk("%s: setting spte %llx\n", __func__, *sptep);
3154
	trace_kvm_mmu_set_spte(level, gfn, sptep);
A
Avi Kivity 已提交
3155
	if (!was_rmapped && is_large_pte(*sptep))
M
Marcelo Tosatti 已提交
3156 3157
		++vcpu->kvm->stat.lpages;

3158 3159 3160 3161 3162 3163
	if (is_shadow_present_pte(*sptep)) {
		if (!was_rmapped) {
			rmap_count = rmap_add(vcpu, sptep, gfn);
			if (rmap_count > RMAP_RECYCLE_THRESHOLD)
				rmap_recycle(vcpu, sptep, gfn);
		}
3164
	}
3165

3166
	return ret;
3167 3168
}

D
Dan Williams 已提交
3169
static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
3170 3171 3172 3173
				     bool no_dirty_log)
{
	struct kvm_memory_slot *slot;

3174
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
3175
	if (!slot)
3176
		return KVM_PFN_ERR_FAULT;
3177

3178
	return gfn_to_pfn_memslot_atomic(slot, gfn);
3179 3180 3181 3182 3183 3184 3185
}

static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
				    struct kvm_mmu_page *sp,
				    u64 *start, u64 *end)
{
	struct page *pages[PTE_PREFETCH_NUM];
3186
	struct kvm_memory_slot *slot;
3187
	unsigned int access = sp->role.access;
3188 3189 3190 3191
	int i, ret;
	gfn_t gfn;

	gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
3192 3193
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
	if (!slot)
3194 3195
		return -1;

3196
	ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
3197 3198 3199
	if (ret <= 0)
		return -1;

3200
	for (i = 0; i < ret; i++, gfn++, start++) {
3201 3202
		mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
			     page_to_pfn(pages[i]), true, true);
3203 3204
		put_page(pages[i]);
	}
3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220

	return 0;
}

static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
				  struct kvm_mmu_page *sp, u64 *sptep)
{
	u64 *spte, *start = NULL;
	int i;

	WARN_ON(!sp->role.direct);

	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
	spte = sp->spt + i;

	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
3221
		if (is_shadow_present_pte(*spte) || spte == sptep) {
3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235
			if (!start)
				continue;
			if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
				break;
			start = NULL;
		} else if (!start)
			start = spte;
	}
}

static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
{
	struct kvm_mmu_page *sp;

3236
	sp = sptep_to_sp(sptep);
3237

3238
	/*
3239 3240 3241
	 * Without accessed bits, there's no way to distinguish between
	 * actually accessed translations and prefetched, so disable pte
	 * prefetch if accessed bits aren't available.
3242
	 */
3243
	if (sp_ad_disabled(sp))
3244 3245
		return;

3246
	if (sp->role.level > PG_LEVEL_4K)
3247 3248 3249 3250 3251
		return;

	__direct_pte_prefetch(vcpu, sp, sptep);
}

3252
static int host_pfn_mapping_level(struct kvm_vcpu *vcpu, gfn_t gfn,
3253
				  kvm_pfn_t pfn, struct kvm_memory_slot *slot)
3254 3255 3256 3257 3258
{
	unsigned long hva;
	pte_t *pte;
	int level;

3259
	if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn))
3260
		return PG_LEVEL_4K;
3261

3262 3263 3264 3265 3266 3267 3268 3269
	/*
	 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
	 * is not solely for performance, it's also necessary to avoid the
	 * "writable" check in __gfn_to_hva_many(), which will always fail on
	 * read-only memslots due to gfn_to_hva() assuming writes.  Earlier
	 * page fault steps have already verified the guest isn't writing a
	 * read-only memslot.
	 */
3270 3271 3272 3273
	hva = __gfn_to_hva_memslot(slot, gfn);

	pte = lookup_address_in_mm(vcpu->kvm->mm, hva, &level);
	if (unlikely(!pte))
3274
		return PG_LEVEL_4K;
3275 3276 3277 3278

	return level;
}

3279 3280
static int kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, gfn_t gfn,
				   int max_level, kvm_pfn_t *pfnp)
3281
{
3282
	struct kvm_memory_slot *slot;
3283
	struct kvm_lpage_info *linfo;
3284
	kvm_pfn_t pfn = *pfnp;
3285
	kvm_pfn_t mask;
3286
	int level;
3287

3288 3289
	if (unlikely(max_level == PG_LEVEL_4K))
		return PG_LEVEL_4K;
3290

3291
	if (is_error_noslot_pfn(pfn) || kvm_is_reserved_pfn(pfn))
3292
		return PG_LEVEL_4K;
3293

3294 3295
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, true);
	if (!slot)
3296
		return PG_LEVEL_4K;
3297

3298
	max_level = min(max_level, max_page_level);
3299
	for ( ; max_level > PG_LEVEL_4K; max_level--) {
3300 3301
		linfo = lpage_info_slot(gfn, slot, max_level);
		if (!linfo->disallow_lpage)
3302 3303 3304
			break;
	}

3305 3306
	if (max_level == PG_LEVEL_4K)
		return PG_LEVEL_4K;
3307 3308

	level = host_pfn_mapping_level(vcpu, gfn, pfn, slot);
3309
	if (level == PG_LEVEL_4K)
3310
		return level;
3311

3312
	level = min(level, max_level);
3313 3314

	/*
3315 3316
	 * mmu_notifier_retry() was successful and mmu_lock is held, so
	 * the pmd can't be split from under us.
3317
	 */
3318 3319 3320
	mask = KVM_PAGES_PER_HPAGE(level) - 1;
	VM_BUG_ON((gfn & mask) != (pfn & mask));
	*pfnp = pfn & ~mask;
3321 3322

	return level;
3323 3324
}

P
Paolo Bonzini 已提交
3325 3326 3327 3328 3329 3330
static void disallowed_hugepage_adjust(struct kvm_shadow_walk_iterator it,
				       gfn_t gfn, kvm_pfn_t *pfnp, int *levelp)
{
	int level = *levelp;
	u64 spte = *it.sptep;

3331
	if (it.level == level && level > PG_LEVEL_4K &&
P
Paolo Bonzini 已提交
3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347
	    is_nx_huge_page_enabled() &&
	    is_shadow_present_pte(spte) &&
	    !is_large_pte(spte)) {
		/*
		 * A small SPTE exists for this pfn, but FNAME(fetch)
		 * and __direct_map would like to create a large PTE
		 * instead: just force them to go down another level,
		 * patching back for them into pfn the next 9 bits of
		 * the address.
		 */
		u64 page_mask = KVM_PAGES_PER_HPAGE(level) - KVM_PAGES_PER_HPAGE(level - 1);
		*pfnp |= gfn & page_mask;
		(*levelp)--;
	}
}

3348
static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, int write,
3349 3350
			int map_writable, int max_level, kvm_pfn_t pfn,
			bool prefault, bool account_disallowed_nx_lpage)
3351
{
3352
	struct kvm_shadow_walk_iterator it;
3353
	struct kvm_mmu_page *sp;
3354
	int level, ret;
3355 3356
	gfn_t gfn = gpa >> PAGE_SHIFT;
	gfn_t base_gfn = gfn;
A
Avi Kivity 已提交
3357

3358
	if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
3359
		return RET_PF_RETRY;
3360

3361
	level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn);
3362

3363
	trace_kvm_mmu_spte_requested(gpa, level, pfn);
3364
	for_each_shadow_entry(vcpu, gpa, it) {
P
Paolo Bonzini 已提交
3365 3366 3367 3368 3369 3370
		/*
		 * We cannot overwrite existing page tables with an NX
		 * large page, as the leaf could be executable.
		 */
		disallowed_hugepage_adjust(it, gfn, &pfn, &level);

3371 3372
		base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
		if (it.level == level)
3373
			break;
A
Avi Kivity 已提交
3374

3375 3376 3377 3378
		drop_large_spte(vcpu, it.sptep);
		if (!is_shadow_present_pte(*it.sptep)) {
			sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
					      it.level - 1, true, ACC_ALL);
3379

3380
			link_shadow_page(vcpu, it.sptep, sp);
3381
			if (account_disallowed_nx_lpage)
P
Paolo Bonzini 已提交
3382
				account_huge_nx_page(vcpu->kvm, sp);
3383 3384
		}
	}
3385 3386 3387 3388 3389 3390 3391

	ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL,
			   write, level, base_gfn, pfn, prefault,
			   map_writable);
	direct_pte_prefetch(vcpu, it.sptep);
	++vcpu->stat.pf_fixed;
	return ret;
A
Avi Kivity 已提交
3392 3393
}

H
Huang Ying 已提交
3394
static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
3395
{
3396
	send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
3397 3398
}

D
Dan Williams 已提交
3399
static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
3400
{
X
Xiao Guangrong 已提交
3401 3402 3403 3404 3405 3406
	/*
	 * Do not cache the mmio info caused by writing the readonly gfn
	 * into the spte otherwise read access on readonly gfn also can
	 * caused mmio page fault and treat it as mmio access.
	 */
	if (pfn == KVM_PFN_ERR_RO_FAULT)
3407
		return RET_PF_EMULATE;
X
Xiao Guangrong 已提交
3408

3409
	if (pfn == KVM_PFN_ERR_HWPOISON) {
3410
		kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
3411
		return RET_PF_RETRY;
3412
	}
3413

3414
	return -EFAULT;
3415 3416
}

3417
static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
3418 3419
				kvm_pfn_t pfn, unsigned int access,
				int *ret_val)
3420 3421
{
	/* The pfn is invalid, report the error! */
3422
	if (unlikely(is_error_pfn(pfn))) {
3423
		*ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
3424
		return true;
3425 3426
	}

3427
	if (unlikely(is_noslot_pfn(pfn)))
3428 3429
		vcpu_cache_mmio_info(vcpu, gva, gfn,
				     access & shadow_mmio_access_mask);
3430

3431
	return false;
3432 3433
}

3434
static bool page_fault_can_be_fast(u32 error_code)
3435
{
3436 3437 3438 3439 3440 3441 3442
	/*
	 * Do not fix the mmio spte with invalid generation number which
	 * need to be updated by slow page fault path.
	 */
	if (unlikely(error_code & PFERR_RSVD_MASK))
		return false;

3443 3444 3445 3446 3447
	/* See if the page fault is due to an NX violation */
	if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
		      == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
		return false;

3448
	/*
3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459
	 * #PF can be fast if:
	 * 1. The shadow page table entry is not present, which could mean that
	 *    the fault is potentially caused by access tracking (if enabled).
	 * 2. The shadow page table entry is present and the fault
	 *    is caused by write-protect, that means we just need change the W
	 *    bit of the spte which can be done out of mmu-lock.
	 *
	 * However, if access tracking is disabled we know that a non-present
	 * page must be a genuine page fault where we have to create a new SPTE.
	 * So, if access tracking is disabled, we return true only for write
	 * accesses to a present page.
3460 3461
	 */

3462 3463 3464
	return shadow_acc_track_mask != 0 ||
	       ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
		== (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
3465 3466
}

3467 3468 3469 3470
/*
 * Returns true if the SPTE was fixed successfully. Otherwise,
 * someone else modified the SPTE from its original value.
 */
3471
static bool
3472
fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
3473
			u64 *sptep, u64 old_spte, u64 new_spte)
3474 3475 3476 3477 3478
{
	gfn_t gfn;

	WARN_ON(!sp->role.direct);

3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490
	/*
	 * Theoretically we could also set dirty bit (and flush TLB) here in
	 * order to eliminate unnecessary PML logging. See comments in
	 * set_spte. But fast_page_fault is very unlikely to happen with PML
	 * enabled, so we do not do this. This might result in the same GPA
	 * to be logged in PML buffer again when the write really happens, and
	 * eventually to be called by mark_page_dirty twice. But it's also no
	 * harm. This also avoids the TLB flush needed after setting dirty bit
	 * so non-PML cases won't be impacted.
	 *
	 * Compare with set_spte where instead shadow_dirty_mask is set.
	 */
3491
	if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3492 3493
		return false;

3494
	if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
3495 3496 3497 3498 3499 3500 3501
		/*
		 * The gfn of direct spte is stable since it is
		 * calculated by sp->gfn.
		 */
		gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
		kvm_vcpu_mark_page_dirty(vcpu, gfn);
	}
3502 3503 3504 3505

	return true;
}

3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517
static bool is_access_allowed(u32 fault_err_code, u64 spte)
{
	if (fault_err_code & PFERR_FETCH_MASK)
		return is_executable_pte(spte);

	if (fault_err_code & PFERR_WRITE_MASK)
		return is_writable_pte(spte);

	/* Fault was on Read access */
	return spte & PT_PRESENT_MASK;
}

3518 3519 3520 3521 3522
/*
 * Return value:
 * - true: let the vcpu to access on the same address again.
 * - false: let the real page fault path to fix it.
 */
3523
static bool fast_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3524 3525 3526
			    u32 error_code)
{
	struct kvm_shadow_walk_iterator iterator;
3527
	struct kvm_mmu_page *sp;
3528
	bool fault_handled = false;
3529
	u64 spte = 0ull;
3530
	uint retry_count = 0;
3531

3532
	if (!page_fault_can_be_fast(error_code))
3533 3534 3535 3536
		return false;

	walk_shadow_page_lockless_begin(vcpu);

3537
	do {
3538
		u64 new_spte;
3539

3540
		for_each_shadow_entry_lockless(vcpu, cr2_or_gpa, iterator, spte)
3541
			if (!is_shadow_present_pte(spte))
3542 3543
				break;

3544
		sp = sptep_to_sp(iterator.sptep);
3545 3546
		if (!is_last_spte(spte, sp->role.level))
			break;
3547

3548
		/*
3549 3550 3551 3552 3553
		 * Check whether the memory access that caused the fault would
		 * still cause it if it were to be performed right now. If not,
		 * then this is a spurious fault caused by TLB lazily flushed,
		 * or some other CPU has already fixed the PTE after the
		 * current CPU took the fault.
3554 3555 3556 3557
		 *
		 * Need not check the access of upper level table entries since
		 * they are always ACC_ALL.
		 */
3558 3559 3560 3561
		if (is_access_allowed(error_code, spte)) {
			fault_handled = true;
			break;
		}
3562

3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573
		new_spte = spte;

		if (is_access_track_spte(spte))
			new_spte = restore_acc_track_spte(new_spte);

		/*
		 * Currently, to simplify the code, write-protection can
		 * be removed in the fast path only if the SPTE was
		 * write-protected for dirty-logging or access tracking.
		 */
		if ((error_code & PFERR_WRITE_MASK) &&
3574
		    spte_can_locklessly_be_made_writable(spte)) {
3575
			new_spte |= PT_WRITABLE_MASK;
3576 3577

			/*
3578 3579 3580 3581 3582 3583 3584 3585 3586
			 * Do not fix write-permission on the large spte.  Since
			 * we only dirty the first page into the dirty-bitmap in
			 * fast_pf_fix_direct_spte(), other pages are missed
			 * if its slot has dirty logging enabled.
			 *
			 * Instead, we let the slow page fault path create a
			 * normal spte to fix the access.
			 *
			 * See the comments in kvm_arch_commit_memory_region().
3587
			 */
3588
			if (sp->role.level > PG_LEVEL_4K)
3589
				break;
3590
		}
3591

3592
		/* Verify that the fault can be handled in the fast path */
3593 3594
		if (new_spte == spte ||
		    !is_access_allowed(error_code, new_spte))
3595 3596 3597 3598 3599
			break;

		/*
		 * Currently, fast page fault only works for direct mapping
		 * since the gfn is not stable for indirect shadow page. See
3600
		 * Documentation/virt/kvm/locking.rst to get more detail.
3601 3602
		 */
		fault_handled = fast_pf_fix_direct_spte(vcpu, sp,
3603
							iterator.sptep, spte,
3604
							new_spte);
3605 3606 3607 3608 3609 3610 3611 3612 3613 3614
		if (fault_handled)
			break;

		if (++retry_count > 4) {
			printk_once(KERN_WARNING
				"kvm: Fast #PF retrying more than 4 times.\n");
			break;
		}

	} while (true);
3615

3616
	trace_fast_page_fault(vcpu, cr2_or_gpa, error_code, iterator.sptep,
3617
			      spte, fault_handled);
3618 3619
	walk_shadow_page_lockless_end(vcpu);

3620
	return fault_handled;
3621 3622
}

3623 3624
static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
			       struct list_head *invalid_list)
3625
{
3626
	struct kvm_mmu_page *sp;
3627

3628
	if (!VALID_PAGE(*root_hpa))
A
Avi Kivity 已提交
3629
		return;
3630

3631
	sp = to_shadow_page(*root_hpa & PT64_BASE_ADDR_MASK);
3632 3633 3634
	--sp->root_count;
	if (!sp->root_count && sp->role.invalid)
		kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3635

3636 3637 3638
	*root_hpa = INVALID_PAGE;
}

3639
/* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
3640 3641
void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
			ulong roots_to_free)
3642 3643 3644
{
	int i;
	LIST_HEAD(invalid_list);
3645
	bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
3646

3647
	BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3648

3649
	/* Before acquiring the MMU lock, see if we need to do any real work. */
3650 3651 3652 3653 3654 3655 3656 3657 3658
	if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
			if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
			    VALID_PAGE(mmu->prev_roots[i].hpa))
				break;

		if (i == KVM_MMU_NUM_PREV_ROOTS)
			return;
	}
3659 3660

	spin_lock(&vcpu->kvm->mmu_lock);
3661

3662 3663 3664 3665
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
		if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
			mmu_free_root_page(vcpu->kvm, &mmu->prev_roots[i].hpa,
					   &invalid_list);
3666

3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679
	if (free_active_root) {
		if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
		    (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
			mmu_free_root_page(vcpu->kvm, &mmu->root_hpa,
					   &invalid_list);
		} else {
			for (i = 0; i < 4; ++i)
				if (mmu->pae_root[i] != 0)
					mmu_free_root_page(vcpu->kvm,
							   &mmu->pae_root[i],
							   &invalid_list);
			mmu->root_hpa = INVALID_PAGE;
		}
3680
		mmu->root_pgd = 0;
3681
	}
3682

3683
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3684
	spin_unlock(&vcpu->kvm->mmu_lock);
3685
}
3686
EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3687

3688 3689 3690 3691
static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
{
	int ret = 0;

3692
	if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) {
3693
		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3694 3695 3696 3697 3698 3699
		ret = 1;
	}

	return ret;
}

3700 3701
static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, gva_t gva,
			    u8 level, bool direct)
3702 3703
{
	struct kvm_mmu_page *sp;
3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721

	spin_lock(&vcpu->kvm->mmu_lock);

	if (make_mmu_pages_available(vcpu)) {
		spin_unlock(&vcpu->kvm->mmu_lock);
		return INVALID_PAGE;
	}
	sp = kvm_mmu_get_page(vcpu, gfn, gva, level, direct, ACC_ALL);
	++sp->root_count;

	spin_unlock(&vcpu->kvm->mmu_lock);
	return __pa(sp->spt);
}

static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
{
	u8 shadow_root_level = vcpu->arch.mmu->shadow_root_level;
	hpa_t root;
3722
	unsigned i;
3723

3724 3725 3726
	if (shadow_root_level >= PT64_ROOT_4LEVEL) {
		root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level, true);
		if (!VALID_PAGE(root))
3727
			return -ENOSPC;
3728 3729
		vcpu->arch.mmu->root_hpa = root;
	} else if (shadow_root_level == PT32E_ROOT_LEVEL) {
3730
		for (i = 0; i < 4; ++i) {
3731
			MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->pae_root[i]));
3732

3733 3734 3735
			root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT),
					      i << 30, PT32_ROOT_LEVEL, true);
			if (!VALID_PAGE(root))
3736
				return -ENOSPC;
3737
			vcpu->arch.mmu->pae_root[i] = root | PT_PRESENT_MASK;
3738
		}
3739
		vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3740 3741
	} else
		BUG();
3742

3743 3744
	/* root_pgd is ignored for direct MMUs. */
	vcpu->arch.mmu->root_pgd = 0;
3745 3746 3747 3748 3749

	return 0;
}

static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3750
{
3751
	u64 pdptr, pm_mask;
3752
	gfn_t root_gfn, root_pgd;
3753
	hpa_t root;
3754
	int i;
3755

3756 3757
	root_pgd = vcpu->arch.mmu->get_guest_pgd(vcpu);
	root_gfn = root_pgd >> PAGE_SHIFT;
3758

3759 3760 3761 3762 3763 3764 3765
	if (mmu_check_root(vcpu, root_gfn))
		return 1;

	/*
	 * Do we shadow a long mode page table? If so we need to
	 * write-protect the guests page table root.
	 */
3766
	if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3767
		MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->root_hpa));
3768

3769 3770 3771
		root = mmu_alloc_root(vcpu, root_gfn, 0,
				      vcpu->arch.mmu->shadow_root_level, false);
		if (!VALID_PAGE(root))
3772
			return -ENOSPC;
3773
		vcpu->arch.mmu->root_hpa = root;
3774
		goto set_root_pgd;
3775
	}
3776

3777 3778
	/*
	 * We shadow a 32 bit page table. This may be a legacy 2-level
3779 3780
	 * or a PAE 3-level page table. In either case we need to be aware that
	 * the shadow page table may be a PAE or a long mode page table.
3781
	 */
3782
	pm_mask = PT_PRESENT_MASK;
3783
	if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL)
3784 3785
		pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;

3786
	for (i = 0; i < 4; ++i) {
3787
		MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->pae_root[i]));
3788 3789
		if (vcpu->arch.mmu->root_level == PT32E_ROOT_LEVEL) {
			pdptr = vcpu->arch.mmu->get_pdptr(vcpu, i);
B
Bandan Das 已提交
3790
			if (!(pdptr & PT_PRESENT_MASK)) {
3791
				vcpu->arch.mmu->pae_root[i] = 0;
A
Avi Kivity 已提交
3792 3793
				continue;
			}
A
Avi Kivity 已提交
3794
			root_gfn = pdptr >> PAGE_SHIFT;
3795 3796
			if (mmu_check_root(vcpu, root_gfn))
				return 1;
3797
		}
3798

3799 3800 3801 3802
		root = mmu_alloc_root(vcpu, root_gfn, i << 30,
				      PT32_ROOT_LEVEL, false);
		if (!VALID_PAGE(root))
			return -ENOSPC;
3803
		vcpu->arch.mmu->pae_root[i] = root | pm_mask;
3804
	}
3805
	vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3806 3807 3808 3809 3810

	/*
	 * If we shadow a 32 bit page table with a long mode page
	 * table we enter this path.
	 */
3811 3812
	if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
		if (vcpu->arch.mmu->lm_root == NULL) {
3813 3814 3815 3816 3817 3818 3819
			/*
			 * The additional page necessary for this is only
			 * allocated on demand.
			 */

			u64 *lm_root;

3820
			lm_root = (void*)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3821 3822 3823
			if (lm_root == NULL)
				return 1;

3824
			lm_root[0] = __pa(vcpu->arch.mmu->pae_root) | pm_mask;
3825

3826
			vcpu->arch.mmu->lm_root = lm_root;
3827 3828
		}

3829
		vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->lm_root);
3830 3831
	}

3832 3833
set_root_pgd:
	vcpu->arch.mmu->root_pgd = root_pgd;
3834

3835
	return 0;
3836 3837
}

3838 3839
static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
{
3840
	if (vcpu->arch.mmu->direct_map)
3841 3842 3843 3844 3845
		return mmu_alloc_direct_roots(vcpu);
	else
		return mmu_alloc_shadow_roots(vcpu);
}

3846
void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3847 3848 3849 3850
{
	int i;
	struct kvm_mmu_page *sp;

3851
	if (vcpu->arch.mmu->direct_map)
3852 3853
		return;

3854
	if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3855
		return;
3856

3857
	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3858

3859 3860
	if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
		hpa_t root = vcpu->arch.mmu->root_hpa;
3861
		sp = to_shadow_page(root);
3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879

		/*
		 * Even if another CPU was marking the SP as unsync-ed
		 * simultaneously, any guest page table changes are not
		 * guaranteed to be visible anyway until this VCPU issues a TLB
		 * flush strictly after those changes are made. We only need to
		 * ensure that the other CPU sets these flags before any actual
		 * changes to the page tables are made. The comments in
		 * mmu_need_write_protect() describe what could go wrong if this
		 * requirement isn't satisfied.
		 */
		if (!smp_load_acquire(&sp->unsync) &&
		    !smp_load_acquire(&sp->unsync_children))
			return;

		spin_lock(&vcpu->kvm->mmu_lock);
		kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);

3880
		mmu_sync_children(vcpu, sp);
3881

3882
		kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3883
		spin_unlock(&vcpu->kvm->mmu_lock);
3884 3885
		return;
	}
3886 3887 3888 3889

	spin_lock(&vcpu->kvm->mmu_lock);
	kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);

3890
	for (i = 0; i < 4; ++i) {
3891
		hpa_t root = vcpu->arch.mmu->pae_root[i];
3892

3893
		if (root && VALID_PAGE(root)) {
3894
			root &= PT64_BASE_ADDR_MASK;
3895
			sp = to_shadow_page(root);
3896 3897 3898 3899
			mmu_sync_children(vcpu, sp);
		}
	}

3900
	kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3901
	spin_unlock(&vcpu->kvm->mmu_lock);
3902
}
N
Nadav Har'El 已提交
3903
EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3904

3905
static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr,
3906
				  u32 access, struct x86_exception *exception)
A
Avi Kivity 已提交
3907
{
3908 3909
	if (exception)
		exception->error_code = 0;
A
Avi Kivity 已提交
3910 3911 3912
	return vaddr;
}

3913
static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr,
3914 3915
					 u32 access,
					 struct x86_exception *exception)
3916
{
3917 3918
	if (exception)
		exception->error_code = 0;
3919
	return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3920 3921
}

3922 3923 3924
static bool
__is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
{
3925
	int bit7 = (pte >> 7) & 1;
3926

3927
	return pte & rsvd_check->rsvd_bits_mask[bit7][level-1];
3928 3929
}

3930
static bool __is_bad_mt_xwr(struct rsvd_bits_validate *rsvd_check, u64 pte)
3931
{
3932
	return rsvd_check->bad_mt_xwr & BIT_ULL(pte & 0x3f);
3933 3934
}

3935
static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3936
{
3937 3938 3939 3940 3941 3942 3943
	/*
	 * A nested guest cannot use the MMIO cache if it is using nested
	 * page tables, because cr2 is a nGPA while the cache stores GPAs.
	 */
	if (mmu_is_nested(vcpu))
		return false;

3944 3945 3946 3947 3948 3949
	if (direct)
		return vcpu_match_mmio_gpa(vcpu, addr);

	return vcpu_match_mmio_gva(vcpu, addr);
}

3950 3951 3952
/* return true if reserved bit is detected on spte. */
static bool
walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3953 3954
{
	struct kvm_shadow_walk_iterator iterator;
3955
	u64 sptes[PT64_ROOT_MAX_LEVEL], spte = 0ull;
3956
	struct rsvd_bits_validate *rsvd_check;
3957 3958
	int root, leaf;
	bool reserved = false;
3959

3960
	rsvd_check = &vcpu->arch.mmu->shadow_zero_check;
3961

3962
	walk_shadow_page_lockless_begin(vcpu);
3963

3964 3965
	for (shadow_walk_init(&iterator, vcpu, addr),
		 leaf = root = iterator.level;
3966 3967 3968 3969 3970
	     shadow_walk_okay(&iterator);
	     __shadow_walk_next(&iterator, spte)) {
		spte = mmu_spte_get_lockless(iterator.sptep);

		sptes[leaf - 1] = spte;
3971
		leaf--;
3972

3973 3974
		if (!is_shadow_present_pte(spte))
			break;
3975

3976 3977 3978 3979 3980 3981 3982
		/*
		 * Use a bitwise-OR instead of a logical-OR to aggregate the
		 * reserved bit and EPT's invalid memtype/XWR checks to avoid
		 * adding a Jcc in the loop.
		 */
		reserved |= __is_bad_mt_xwr(rsvd_check, spte) |
			    __is_rsvd_bits_set(rsvd_check, spte, iterator.level);
3983 3984
	}

3985 3986
	walk_shadow_page_lockless_end(vcpu);

3987 3988 3989
	if (reserved) {
		pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
		       __func__, addr);
3990
		while (root > leaf) {
3991 3992 3993 3994 3995
			pr_err("------ spte 0x%llx level %d.\n",
			       sptes[root - 1], root);
			root--;
		}
	}
3996

3997 3998
	*sptep = spte;
	return reserved;
3999 4000
}

P
Paolo Bonzini 已提交
4001
static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
4002 4003
{
	u64 spte;
4004
	bool reserved;
4005

4006
	if (mmio_info_in_cache(vcpu, addr, direct))
4007
		return RET_PF_EMULATE;
4008

4009
	reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
4010
	if (WARN_ON(reserved))
4011
		return -EINVAL;
4012 4013 4014

	if (is_mmio_spte(spte)) {
		gfn_t gfn = get_mmio_spte_gfn(spte);
4015
		unsigned int access = get_mmio_spte_access(spte);
4016

4017
		if (!check_mmio_spte(vcpu, spte))
4018
			return RET_PF_INVALID;
4019

4020 4021
		if (direct)
			addr = 0;
X
Xiao Guangrong 已提交
4022 4023

		trace_handle_mmio_page_fault(addr, gfn, access);
4024
		vcpu_cache_mmio_info(vcpu, addr, gfn, access);
4025
		return RET_PF_EMULATE;
4026 4027 4028 4029 4030 4031
	}

	/*
	 * If the page table is zapped by other cpus, let CPU fault again on
	 * the address.
	 */
4032
	return RET_PF_RETRY;
4033 4034
}

4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054
static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
					 u32 error_code, gfn_t gfn)
{
	if (unlikely(error_code & PFERR_RSVD_MASK))
		return false;

	if (!(error_code & PFERR_PRESENT_MASK) ||
	      !(error_code & PFERR_WRITE_MASK))
		return false;

	/*
	 * guest is writing the page which is write tracked which can
	 * not be fixed by page fault handler.
	 */
	if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
		return true;

	return false;
}

4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068
static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
{
	struct kvm_shadow_walk_iterator iterator;
	u64 spte;

	walk_shadow_page_lockless_begin(vcpu);
	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
		clear_sp_write_flooding_count(iterator.sptep);
		if (!is_shadow_present_pte(spte))
			break;
	}
	walk_shadow_page_lockless_end(vcpu);
}

4069 4070
static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
				    gfn_t gfn)
4071 4072
{
	struct kvm_arch_async_pf arch;
X
Xiao Guangrong 已提交
4073

4074
	arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
4075
	arch.gfn = gfn;
4076
	arch.direct_map = vcpu->arch.mmu->direct_map;
4077
	arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu);
4078

4079 4080
	return kvm_setup_async_pf(vcpu, cr2_or_gpa,
				  kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
4081 4082
}

4083
static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
4084 4085
			 gpa_t cr2_or_gpa, kvm_pfn_t *pfn, bool write,
			 bool *writable)
4086
{
4087
	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
4088 4089
	bool async;

4090 4091
	/* Don't expose private memslots to L2. */
	if (is_guest_mode(vcpu) && !kvm_is_visible_memslot(slot)) {
4092
		*pfn = KVM_PFN_NOSLOT;
4093
		*writable = false;
4094 4095 4096
		return false;
	}

4097 4098
	async = false;
	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
4099 4100 4101
	if (!async)
		return false; /* *pfn has correct page already */

4102
	if (!prefault && kvm_can_do_async_pf(vcpu)) {
4103
		trace_kvm_try_async_get_page(cr2_or_gpa, gfn);
4104
		if (kvm_find_async_pf_gfn(vcpu, gfn)) {
4105
			trace_kvm_async_pf_doublefault(cr2_or_gpa, gfn);
4106 4107
			kvm_make_request(KVM_REQ_APF_HALT, vcpu);
			return true;
4108
		} else if (kvm_arch_setup_async_pf(vcpu, cr2_or_gpa, gfn))
4109 4110 4111
			return true;
	}

4112
	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
4113 4114 4115
	return false;
}

4116 4117
static int direct_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
			     bool prefault, int max_level, bool is_tdp)
A
Avi Kivity 已提交
4118
{
4119 4120 4121
	bool write = error_code & PFERR_WRITE_MASK;
	bool exec = error_code & PFERR_FETCH_MASK;
	bool lpage_disallowed = exec && is_nx_huge_page_enabled();
4122
	bool map_writable;
A
Avi Kivity 已提交
4123

4124 4125 4126
	gfn_t gfn = gpa >> PAGE_SHIFT;
	unsigned long mmu_seq;
	kvm_pfn_t pfn;
4127
	int r;
4128

4129
	if (page_fault_handle_page_track(vcpu, error_code, gfn))
4130
		return RET_PF_EMULATE;
4131

4132 4133 4134
	if (fast_page_fault(vcpu, gpa, error_code))
		return RET_PF_RETRY;

4135 4136 4137
	r = mmu_topup_memory_caches(vcpu);
	if (r)
		return r;
4138

4139
	if (lpage_disallowed)
4140
		max_level = PG_LEVEL_4K;
4141 4142 4143 4144 4145 4146 4147

	mmu_seq = vcpu->kvm->mmu_notifier_seq;
	smp_rmb();

	if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
		return RET_PF_RETRY;

4148
	if (handle_abnormal_pfn(vcpu, is_tdp ? 0 : gpa, gfn, pfn, ACC_ALL, &r))
4149
		return r;
A
Avi Kivity 已提交
4150

4151 4152 4153 4154
	r = RET_PF_RETRY;
	spin_lock(&vcpu->kvm->mmu_lock);
	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
		goto out_unlock;
4155 4156
	r = make_mmu_pages_available(vcpu);
	if (r)
4157
		goto out_unlock;
4158
	r = __direct_map(vcpu, gpa, write, map_writable, max_level, pfn,
4159
			 prefault, is_tdp && lpage_disallowed);
4160

4161 4162 4163 4164
out_unlock:
	spin_unlock(&vcpu->kvm->mmu_lock);
	kvm_release_pfn_clean(pfn);
	return r;
A
Avi Kivity 已提交
4165 4166
}

4167 4168 4169 4170 4171 4172 4173
static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa,
				u32 error_code, bool prefault)
{
	pgprintk("%s: gva %lx error %x\n", __func__, gpa, error_code);

	/* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
	return direct_page_fault(vcpu, gpa & PAGE_MASK, error_code, prefault,
4174
				 PG_LEVEL_2M, false);
4175 4176
}

4177
int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
4178
				u64 fault_address, char *insn, int insn_len)
4179 4180
{
	int r = 1;
4181
	u32 flags = vcpu->arch.apf.host_apf_flags;
4182

4183 4184 4185 4186 4187 4188
#ifndef CONFIG_X86_64
	/* A 64-bit CR2 should be impossible on 32-bit KVM. */
	if (WARN_ON_ONCE(fault_address >> 32))
		return -EFAULT;
#endif

P
Paolo Bonzini 已提交
4189
	vcpu->arch.l1tf_flush_l1d = true;
4190
	if (!flags) {
4191 4192
		trace_kvm_page_fault(fault_address, error_code);

4193
		if (kvm_event_needs_reinjection(vcpu))
4194 4195 4196
			kvm_mmu_unprotect_page_virt(vcpu, fault_address);
		r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
				insn_len);
4197
	} else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
4198
		vcpu->arch.apf.host_apf_flags = 0;
4199
		local_irq_disable();
4200
		kvm_async_pf_task_wait_schedule(fault_address);
4201
		local_irq_enable();
4202 4203
	} else {
		WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags);
4204
	}
4205

4206 4207 4208 4209
	return r;
}
EXPORT_SYMBOL_GPL(kvm_handle_page_fault);

4210 4211
int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
		       bool prefault)
4212
{
4213
	int max_level;
4214

4215
	for (max_level = KVM_MAX_HUGEPAGE_LEVEL;
4216
	     max_level > PG_LEVEL_4K;
4217 4218
	     max_level--) {
		int page_num = KVM_PAGES_PER_HPAGE(max_level);
4219
		gfn_t base = (gpa >> PAGE_SHIFT) & ~(page_num - 1);
4220

4221 4222
		if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
			break;
4223
	}
4224

4225 4226
	return direct_page_fault(vcpu, gpa, error_code, prefault,
				 max_level, true);
4227 4228
}

4229 4230
static void nonpaging_init_context(struct kvm_vcpu *vcpu,
				   struct kvm_mmu *context)
A
Avi Kivity 已提交
4231 4232 4233
{
	context->page_fault = nonpaging_page_fault;
	context->gva_to_gpa = nonpaging_gva_to_gpa;
4234
	context->sync_page = nonpaging_sync_page;
4235
	context->invlpg = NULL;
4236
	context->update_pte = nonpaging_update_pte;
4237
	context->root_level = 0;
A
Avi Kivity 已提交
4238
	context->shadow_root_level = PT32E_ROOT_LEVEL;
4239
	context->direct_map = true;
4240
	context->nx = false;
A
Avi Kivity 已提交
4241 4242
}

4243
static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd,
4244 4245
				  union kvm_mmu_page_role role)
{
4246
	return (role.direct || pgd == root->pgd) &&
4247 4248
	       VALID_PAGE(root->hpa) && to_shadow_page(root->hpa) &&
	       role.word == to_shadow_page(root->hpa)->role.word;
4249 4250
}

4251
/*
4252
 * Find out if a previously cached root matching the new pgd/role is available.
4253 4254 4255 4256 4257 4258
 * The current root is also inserted into the cache.
 * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
 * returned.
 * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
 * false is returned. This root should now be freed by the caller.
 */
4259
static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_pgd,
4260 4261 4262 4263
				  union kvm_mmu_page_role new_role)
{
	uint i;
	struct kvm_mmu_root_info root;
4264
	struct kvm_mmu *mmu = vcpu->arch.mmu;
4265

4266
	root.pgd = mmu->root_pgd;
4267 4268
	root.hpa = mmu->root_hpa;

4269
	if (is_root_usable(&root, new_pgd, new_role))
4270 4271
		return true;

4272 4273 4274
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
		swap(root, mmu->prev_roots[i]);

4275
		if (is_root_usable(&root, new_pgd, new_role))
4276 4277 4278 4279
			break;
	}

	mmu->root_hpa = root.hpa;
4280
	mmu->root_pgd = root.pgd;
4281 4282 4283 4284

	return i < KVM_MMU_NUM_PREV_ROOTS;
}

4285
static bool fast_pgd_switch(struct kvm_vcpu *vcpu, gpa_t new_pgd,
4286
			    union kvm_mmu_page_role new_role)
A
Avi Kivity 已提交
4287
{
4288
	struct kvm_mmu *mmu = vcpu->arch.mmu;
4289 4290 4291 4292 4293 4294 4295

	/*
	 * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
	 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
	 * later if necessary.
	 */
	if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
4296
	    mmu->root_level >= PT64_ROOT_4LEVEL)
4297 4298
		return !mmu_check_root(vcpu, new_pgd >> PAGE_SHIFT) &&
		       cached_root_available(vcpu, new_pgd, new_role);
4299 4300

	return false;
A
Avi Kivity 已提交
4301 4302
}

4303
static void __kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd,
4304
			      union kvm_mmu_page_role new_role,
4305
			      bool skip_tlb_flush, bool skip_mmu_sync)
A
Avi Kivity 已提交
4306
{
4307
	if (!fast_pgd_switch(vcpu, new_pgd, new_role)) {
4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319
		kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, KVM_MMU_ROOT_CURRENT);
		return;
	}

	/*
	 * It's possible that the cached previous root page is obsolete because
	 * of a change in the MMU generation number. However, changing the
	 * generation number is accompanied by KVM_REQ_MMU_RELOAD, which will
	 * free the root set here and allocate a new one.
	 */
	kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);

4320
	if (!skip_mmu_sync || force_flush_and_sync_on_reuse)
4321
		kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
4322
	if (!skip_tlb_flush || force_flush_and_sync_on_reuse)
4323 4324 4325 4326 4327 4328 4329 4330 4331 4332
		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);

	/*
	 * The last MMIO access's GVA and GPA are cached in the VCPU. When
	 * switching to a new CR3, that GVA->GPA mapping may no longer be
	 * valid. So clear any cached MMIO info even when we don't need to sync
	 * the shadow page tables.
	 */
	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);

4333
	__clear_sp_write_flooding_count(to_shadow_page(vcpu->arch.mmu->root_hpa));
A
Avi Kivity 已提交
4334 4335
}

4336
void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd, bool skip_tlb_flush,
4337
		     bool skip_mmu_sync)
4338
{
4339
	__kvm_mmu_new_pgd(vcpu, new_pgd, kvm_mmu_calc_root_page_role(vcpu),
4340
			  skip_tlb_flush, skip_mmu_sync);
4341
}
4342
EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd);
4343

4344 4345
static unsigned long get_cr3(struct kvm_vcpu *vcpu)
{
4346
	return kvm_read_cr3(vcpu);
4347 4348
}

4349
static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
4350
			   unsigned int access, int *nr_present)
4351 4352 4353 4354 4355 4356 4357 4358
{
	if (unlikely(is_mmio_spte(*sptep))) {
		if (gfn != get_mmio_spte_gfn(*sptep)) {
			mmu_spte_clear_no_track(sptep);
			return true;
		}

		(*nr_present)++;
4359
		mark_mmio_spte(vcpu, sptep, gfn, access);
4360 4361 4362 4363 4364 4365
		return true;
	}

	return false;
}

4366 4367
static inline bool is_last_gpte(struct kvm_mmu *mmu,
				unsigned level, unsigned gpte)
A
Avi Kivity 已提交
4368
{
4369 4370 4371 4372 4373 4374 4375
	/*
	 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
	 * If it is clear, there are no large pages at this level, so clear
	 * PT_PAGE_SIZE_MASK in gpte if that is the case.
	 */
	gpte &= level - mmu->last_nonleaf_level;

4376
	/*
4377 4378 4379
	 * PG_LEVEL_4K always terminates.  The RHS has bit 7 set
	 * iff level <= PG_LEVEL_4K, which for our purpose means
	 * level == PG_LEVEL_4K; set PT_PAGE_SIZE_MASK in gpte then.
4380
	 */
4381
	gpte |= level - PG_LEVEL_4K - 1;
4382

4383
	return gpte & PT_PAGE_SIZE_MASK;
A
Avi Kivity 已提交
4384 4385
}

4386 4387 4388 4389 4390
#define PTTYPE_EPT 18 /* arbitrary */
#define PTTYPE PTTYPE_EPT
#include "paging_tmpl.h"
#undef PTTYPE

A
Avi Kivity 已提交
4391 4392 4393 4394 4395 4396 4397 4398
#define PTTYPE 64
#include "paging_tmpl.h"
#undef PTTYPE

#define PTTYPE 32
#include "paging_tmpl.h"
#undef PTTYPE

4399 4400 4401 4402
static void
__reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
			struct rsvd_bits_validate *rsvd_check,
			int maxphyaddr, int level, bool nx, bool gbpages,
4403
			bool pse, bool amd)
4404 4405
{
	u64 exb_bit_rsvd = 0;
4406
	u64 gbpages_bit_rsvd = 0;
4407
	u64 nonleaf_bit8_rsvd = 0;
4408

4409
	rsvd_check->bad_mt_xwr = 0;
4410

4411
	if (!nx)
4412
		exb_bit_rsvd = rsvd_bits(63, 63);
4413
	if (!gbpages)
4414
		gbpages_bit_rsvd = rsvd_bits(7, 7);
4415 4416 4417 4418 4419

	/*
	 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
	 * leaf entries) on AMD CPUs only.
	 */
4420
	if (amd)
4421 4422
		nonleaf_bit8_rsvd = rsvd_bits(8, 8);

4423
	switch (level) {
4424 4425
	case PT32_ROOT_LEVEL:
		/* no rsvd bits for 2 level 4K page table entries */
4426 4427 4428 4429
		rsvd_check->rsvd_bits_mask[0][1] = 0;
		rsvd_check->rsvd_bits_mask[0][0] = 0;
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
4430

4431
		if (!pse) {
4432
			rsvd_check->rsvd_bits_mask[1][1] = 0;
4433 4434 4435
			break;
		}

4436 4437
		if (is_cpuid_PSE36())
			/* 36bits PSE 4MB page */
4438
			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4439 4440
		else
			/* 32 bits PSE 4MB page */
4441
			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4442 4443
		break;
	case PT32E_ROOT_LEVEL:
4444
		rsvd_check->rsvd_bits_mask[0][2] =
4445
			rsvd_bits(maxphyaddr, 63) |
4446
			rsvd_bits(5, 8) | rsvd_bits(1, 2);	/* PDPTE */
4447
		rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4448
			rsvd_bits(maxphyaddr, 62);	/* PDE */
4449
		rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4450
			rsvd_bits(maxphyaddr, 62); 	/* PTE */
4451
		rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4452 4453
			rsvd_bits(maxphyaddr, 62) |
			rsvd_bits(13, 20);		/* large page */
4454 4455
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
4456
		break;
4457 4458 4459 4460 4461 4462
	case PT64_ROOT_5LEVEL:
		rsvd_check->rsvd_bits_mask[0][4] = exb_bit_rsvd |
			nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
			rsvd_bits(maxphyaddr, 51);
		rsvd_check->rsvd_bits_mask[1][4] =
			rsvd_check->rsvd_bits_mask[0][4];
4463
		/* fall through */
4464
	case PT64_ROOT_4LEVEL:
4465 4466
		rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
			nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4467
			rsvd_bits(maxphyaddr, 51);
4468
		rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
4469
			gbpages_bit_rsvd |
4470
			rsvd_bits(maxphyaddr, 51);
4471 4472 4473 4474 4475 4476 4477
		rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
			rsvd_bits(maxphyaddr, 51);
		rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
			rsvd_bits(maxphyaddr, 51);
		rsvd_check->rsvd_bits_mask[1][3] =
			rsvd_check->rsvd_bits_mask[0][3];
		rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
4478
			gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
4479
			rsvd_bits(13, 29);
4480
		rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4481 4482
			rsvd_bits(maxphyaddr, 51) |
			rsvd_bits(13, 20);		/* large page */
4483 4484
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
4485 4486 4487 4488
		break;
	}
}

4489 4490 4491 4492 4493
static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
{
	__reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
				cpuid_maxphyaddr(vcpu), context->root_level,
4494 4495
				context->nx,
				guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4496 4497
				is_pse(vcpu),
				guest_cpuid_is_amd_or_hygon(vcpu));
4498 4499
}

4500 4501 4502
static void
__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
			    int maxphyaddr, bool execonly)
4503
{
4504
	u64 bad_mt_xwr;
4505

4506 4507
	rsvd_check->rsvd_bits_mask[0][4] =
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4508
	rsvd_check->rsvd_bits_mask[0][3] =
4509
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4510
	rsvd_check->rsvd_bits_mask[0][2] =
4511
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4512
	rsvd_check->rsvd_bits_mask[0][1] =
4513
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4514
	rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
4515 4516

	/* large page */
4517
	rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4518 4519
	rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
	rsvd_check->rsvd_bits_mask[1][2] =
4520
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
4521
	rsvd_check->rsvd_bits_mask[1][1] =
4522
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
4523
	rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4524

4525 4526 4527 4528 4529 4530 4531 4532
	bad_mt_xwr = 0xFFull << (2 * 8);	/* bits 3..5 must not be 2 */
	bad_mt_xwr |= 0xFFull << (3 * 8);	/* bits 3..5 must not be 3 */
	bad_mt_xwr |= 0xFFull << (7 * 8);	/* bits 3..5 must not be 7 */
	bad_mt_xwr |= REPEAT_BYTE(1ull << 2);	/* bits 0..2 must not be 010 */
	bad_mt_xwr |= REPEAT_BYTE(1ull << 6);	/* bits 0..2 must not be 110 */
	if (!execonly) {
		/* bits 0..2 must not be 100 unless VMX capabilities allow it */
		bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4533
	}
4534
	rsvd_check->bad_mt_xwr = bad_mt_xwr;
4535 4536
}

4537 4538 4539 4540 4541 4542 4543
static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
		struct kvm_mmu *context, bool execonly)
{
	__reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
				    cpuid_maxphyaddr(vcpu), execonly);
}

4544 4545 4546 4547 4548 4549 4550 4551
/*
 * the page table on host is the shadow page table for the page
 * table in guest or amd nested guest, its mmu features completely
 * follow the features in guest.
 */
void
reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
{
4552 4553
	bool uses_nx = context->nx ||
		context->mmu_role.base.smep_andnot_wp;
4554 4555
	struct rsvd_bits_validate *shadow_zero_check;
	int i;
4556

4557 4558 4559 4560
	/*
	 * Passing "true" to the last argument is okay; it adds a check
	 * on bit 8 of the SPTEs which KVM doesn't use anyway.
	 */
4561 4562
	shadow_zero_check = &context->shadow_zero_check;
	__reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4563
				shadow_phys_bits,
4564
				context->shadow_root_level, uses_nx,
4565 4566
				guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
				is_pse(vcpu), true);
4567 4568 4569 4570 4571 4572 4573 4574 4575

	if (!shadow_me_mask)
		return;

	for (i = context->shadow_root_level; --i >= 0;) {
		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
	}

4576 4577 4578
}
EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);

4579 4580 4581 4582 4583 4584
static inline bool boot_cpu_is_amd(void)
{
	WARN_ON_ONCE(!tdp_enabled);
	return shadow_x_mask == 0;
}

4585 4586 4587 4588 4589 4590 4591 4592
/*
 * the direct page table on host, use as much mmu features as
 * possible, however, kvm currently does not do execution-protection.
 */
static void
reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
				struct kvm_mmu *context)
{
4593 4594 4595 4596 4597
	struct rsvd_bits_validate *shadow_zero_check;
	int i;

	shadow_zero_check = &context->shadow_zero_check;

4598
	if (boot_cpu_is_amd())
4599
		__reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4600
					shadow_phys_bits,
4601
					context->shadow_root_level, false,
4602 4603
					boot_cpu_has(X86_FEATURE_GBPAGES),
					true, true);
4604
	else
4605
		__reset_rsvds_bits_mask_ept(shadow_zero_check,
4606
					    shadow_phys_bits,
4607 4608
					    false);

4609 4610 4611 4612 4613 4614 4615
	if (!shadow_me_mask)
		return;

	for (i = context->shadow_root_level; --i >= 0;) {
		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
	}
4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626
}

/*
 * as the comments in reset_shadow_zero_bits_mask() except it
 * is the shadow page table for intel nested guest.
 */
static void
reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
				struct kvm_mmu *context, bool execonly)
{
	__reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4627
				    shadow_phys_bits, execonly);
4628 4629
}

4630 4631 4632 4633 4634 4635 4636 4637 4638 4639
#define BYTE_MASK(access) \
	((1 & (access) ? 2 : 0) | \
	 (2 & (access) ? 4 : 0) | \
	 (3 & (access) ? 8 : 0) | \
	 (4 & (access) ? 16 : 0) | \
	 (5 & (access) ? 32 : 0) | \
	 (6 & (access) ? 64 : 0) | \
	 (7 & (access) ? 128 : 0))


4640 4641
static void update_permission_bitmask(struct kvm_vcpu *vcpu,
				      struct kvm_mmu *mmu, bool ept)
4642
{
4643 4644 4645 4646 4647 4648 4649 4650 4651
	unsigned byte;

	const u8 x = BYTE_MASK(ACC_EXEC_MASK);
	const u8 w = BYTE_MASK(ACC_WRITE_MASK);
	const u8 u = BYTE_MASK(ACC_USER_MASK);

	bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
	bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
	bool cr0_wp = is_write_protection(vcpu);
4652 4653

	for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4654 4655
		unsigned pfec = byte << 1;

F
Feng Wu 已提交
4656
		/*
4657 4658
		 * Each "*f" variable has a 1 bit for each UWX value
		 * that causes a fault with the given PFEC.
F
Feng Wu 已提交
4659
		 */
4660

4661
		/* Faults from writes to non-writable pages */
4662
		u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
4663
		/* Faults from user mode accesses to supervisor pages */
4664
		u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
4665
		/* Faults from fetches of non-executable pages*/
4666
		u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691
		/* Faults from kernel mode fetches of user pages */
		u8 smepf = 0;
		/* Faults from kernel mode accesses of user pages */
		u8 smapf = 0;

		if (!ept) {
			/* Faults from kernel mode accesses to user pages */
			u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;

			/* Not really needed: !nx will cause pte.nx to fault */
			if (!mmu->nx)
				ff = 0;

			/* Allow supervisor writes if !cr0.wp */
			if (!cr0_wp)
				wf = (pfec & PFERR_USER_MASK) ? wf : 0;

			/* Disallow supervisor fetches of user code if cr4.smep */
			if (cr4_smep)
				smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;

			/*
			 * SMAP:kernel-mode data accesses from user-mode
			 * mappings should fault. A fault is considered
			 * as a SMAP violation if all of the following
P
Peng Hao 已提交
4692
			 * conditions are true:
4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705
			 *   - X86_CR4_SMAP is set in CR4
			 *   - A user page is accessed
			 *   - The access is not a fetch
			 *   - Page fault in kernel mode
			 *   - if CPL = 3 or X86_EFLAGS_AC is clear
			 *
			 * Here, we cover the first three conditions.
			 * The fourth is computed dynamically in permission_fault();
			 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
			 * *not* subject to SMAP restrictions.
			 */
			if (cr4_smap)
				smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4706
		}
4707 4708

		mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4709 4710 4711
	}
}

4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786
/*
* PKU is an additional mechanism by which the paging controls access to
* user-mode addresses based on the value in the PKRU register.  Protection
* key violations are reported through a bit in the page fault error code.
* Unlike other bits of the error code, the PK bit is not known at the
* call site of e.g. gva_to_gpa; it must be computed directly in
* permission_fault based on two bits of PKRU, on some machine state (CR4,
* CR0, EFER, CPL), and on other bits of the error code and the page tables.
*
* In particular the following conditions come from the error code, the
* page tables and the machine state:
* - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
* - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
* - PK is always zero if U=0 in the page tables
* - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
*
* The PKRU bitmask caches the result of these four conditions.  The error
* code (minus the P bit) and the page table's U bit form an index into the
* PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
* with the two bits of the PKRU register corresponding to the protection key.
* For the first three conditions above the bits will be 00, thus masking
* away both AD and WD.  For all reads or if the last condition holds, WD
* only will be masked away.
*/
static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
				bool ept)
{
	unsigned bit;
	bool wp;

	if (ept) {
		mmu->pkru_mask = 0;
		return;
	}

	/* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
	if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
		mmu->pkru_mask = 0;
		return;
	}

	wp = is_write_protection(vcpu);

	for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
		unsigned pfec, pkey_bits;
		bool check_pkey, check_write, ff, uf, wf, pte_user;

		pfec = bit << 1;
		ff = pfec & PFERR_FETCH_MASK;
		uf = pfec & PFERR_USER_MASK;
		wf = pfec & PFERR_WRITE_MASK;

		/* PFEC.RSVD is replaced by ACC_USER_MASK. */
		pte_user = pfec & PFERR_RSVD_MASK;

		/*
		 * Only need to check the access which is not an
		 * instruction fetch and is to a user page.
		 */
		check_pkey = (!ff && pte_user);
		/*
		 * write access is controlled by PKRU if it is a
		 * user access or CR0.WP = 1.
		 */
		check_write = check_pkey && wf && (uf || wp);

		/* PKRU.AD stops both read and write access. */
		pkey_bits = !!check_pkey;
		/* PKRU.WD stops write access. */
		pkey_bits |= (!!check_write) << 1;

		mmu->pkru_mask |= (pkey_bits & 3) << pfec;
	}
}

4787
static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
A
Avi Kivity 已提交
4788
{
4789 4790 4791 4792 4793
	unsigned root_level = mmu->root_level;

	mmu->last_nonleaf_level = root_level;
	if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
		mmu->last_nonleaf_level++;
A
Avi Kivity 已提交
4794 4795
}

4796 4797 4798
static void paging64_init_context_common(struct kvm_vcpu *vcpu,
					 struct kvm_mmu *context,
					 int level)
A
Avi Kivity 已提交
4799
{
4800
	context->nx = is_nx(vcpu);
4801
	context->root_level = level;
4802

4803
	reset_rsvds_bits_mask(vcpu, context);
4804
	update_permission_bitmask(vcpu, context, false);
4805
	update_pkru_bitmask(vcpu, context, false);
4806
	update_last_nonleaf_level(vcpu, context);
A
Avi Kivity 已提交
4807

4808
	MMU_WARN_ON(!is_pae(vcpu));
A
Avi Kivity 已提交
4809 4810
	context->page_fault = paging64_page_fault;
	context->gva_to_gpa = paging64_gva_to_gpa;
4811
	context->sync_page = paging64_sync_page;
M
Marcelo Tosatti 已提交
4812
	context->invlpg = paging64_invlpg;
4813
	context->update_pte = paging64_update_pte;
4814
	context->shadow_root_level = level;
4815
	context->direct_map = false;
A
Avi Kivity 已提交
4816 4817
}

4818 4819
static void paging64_init_context(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
4820
{
4821 4822 4823 4824
	int root_level = is_la57_mode(vcpu) ?
			 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;

	paging64_init_context_common(vcpu, context, root_level);
4825 4826
}

4827 4828
static void paging32_init_context(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
A
Avi Kivity 已提交
4829
{
4830
	context->nx = false;
4831
	context->root_level = PT32_ROOT_LEVEL;
4832

4833
	reset_rsvds_bits_mask(vcpu, context);
4834
	update_permission_bitmask(vcpu, context, false);
4835
	update_pkru_bitmask(vcpu, context, false);
4836
	update_last_nonleaf_level(vcpu, context);
A
Avi Kivity 已提交
4837 4838 4839

	context->page_fault = paging32_page_fault;
	context->gva_to_gpa = paging32_gva_to_gpa;
4840
	context->sync_page = paging32_sync_page;
M
Marcelo Tosatti 已提交
4841
	context->invlpg = paging32_invlpg;
4842
	context->update_pte = paging32_update_pte;
A
Avi Kivity 已提交
4843
	context->shadow_root_level = PT32E_ROOT_LEVEL;
4844
	context->direct_map = false;
A
Avi Kivity 已提交
4845 4846
}

4847 4848
static void paging32E_init_context(struct kvm_vcpu *vcpu,
				   struct kvm_mmu *context)
A
Avi Kivity 已提交
4849
{
4850
	paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
A
Avi Kivity 已提交
4851 4852
}

4853 4854 4855 4856
static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu)
{
	union kvm_mmu_extended_role ext = {0};

4857
	ext.cr0_pg = !!is_paging(vcpu);
4858
	ext.cr4_pae = !!is_pae(vcpu);
4859 4860 4861 4862
	ext.cr4_smep = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
	ext.cr4_smap = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
	ext.cr4_pse = !!is_pse(vcpu);
	ext.cr4_pke = !!kvm_read_cr4_bits(vcpu, X86_CR4_PKE);
4863
	ext.maxphyaddr = cpuid_maxphyaddr(vcpu);
4864 4865 4866 4867 4868 4869

	ext.valid = 1;

	return ext;
}

4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890
static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
						   bool base_only)
{
	union kvm_mmu_role role = {0};

	role.base.access = ACC_ALL;
	role.base.nxe = !!is_nx(vcpu);
	role.base.cr0_wp = is_write_protection(vcpu);
	role.base.smm = is_smm(vcpu);
	role.base.guest_mode = is_guest_mode(vcpu);

	if (base_only)
		return role;

	role.ext = kvm_calc_mmu_role_ext(vcpu);

	return role;
}

static union kvm_mmu_role
kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4891
{
4892
	union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4893

4894
	role.base.ad_disabled = (shadow_accessed_mask == 0);
4895
	role.base.level = vcpu->arch.tdp_level;
4896
	role.base.direct = true;
4897
	role.base.gpte_is_8_bytes = true;
4898 4899 4900 4901

	return role;
}

4902
static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4903
{
4904
	struct kvm_mmu *context = vcpu->arch.mmu;
4905 4906
	union kvm_mmu_role new_role =
		kvm_calc_tdp_mmu_root_page_role(vcpu, false);
4907

4908 4909 4910 4911
	if (new_role.as_u64 == context->mmu_role.as_u64)
		return;

	context->mmu_role.as_u64 = new_role.as_u64;
4912
	context->page_fault = kvm_tdp_page_fault;
4913
	context->sync_page = nonpaging_sync_page;
4914
	context->invlpg = NULL;
4915
	context->update_pte = nonpaging_update_pte;
4916
	context->shadow_root_level = vcpu->arch.tdp_level;
4917
	context->direct_map = true;
4918
	context->get_guest_pgd = get_cr3;
4919
	context->get_pdptr = kvm_pdptr_read;
4920
	context->inject_page_fault = kvm_inject_page_fault;
4921 4922

	if (!is_paging(vcpu)) {
4923
		context->nx = false;
4924 4925 4926
		context->gva_to_gpa = nonpaging_gva_to_gpa;
		context->root_level = 0;
	} else if (is_long_mode(vcpu)) {
4927
		context->nx = is_nx(vcpu);
4928 4929
		context->root_level = is_la57_mode(vcpu) ?
				PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4930 4931
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging64_gva_to_gpa;
4932
	} else if (is_pae(vcpu)) {
4933
		context->nx = is_nx(vcpu);
4934
		context->root_level = PT32E_ROOT_LEVEL;
4935 4936
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging64_gva_to_gpa;
4937
	} else {
4938
		context->nx = false;
4939
		context->root_level = PT32_ROOT_LEVEL;
4940 4941
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging32_gva_to_gpa;
4942 4943
	}

4944
	update_permission_bitmask(vcpu, context, false);
4945
	update_pkru_bitmask(vcpu, context, false);
4946
	update_last_nonleaf_level(vcpu, context);
4947
	reset_tdp_shadow_zero_bits_mask(vcpu, context);
4948 4949
}

4950 4951 4952 4953 4954 4955 4956 4957 4958 4959
static union kvm_mmu_role
kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
{
	union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);

	role.base.smep_andnot_wp = role.ext.cr4_smep &&
		!is_write_protection(vcpu);
	role.base.smap_andnot_wp = role.ext.cr4_smap &&
		!is_write_protection(vcpu);
	role.base.direct = !is_paging(vcpu);
4960
	role.base.gpte_is_8_bytes = !!is_pae(vcpu);
4961 4962

	if (!is_long_mode(vcpu))
4963
		role.base.level = PT32E_ROOT_LEVEL;
4964
	else if (is_la57_mode(vcpu))
4965
		role.base.level = PT64_ROOT_5LEVEL;
4966
	else
4967
		role.base.level = PT64_ROOT_4LEVEL;
4968 4969 4970 4971

	return role;
}

4972
void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer)
4973
{
4974
	struct kvm_mmu *context = vcpu->arch.mmu;
4975 4976 4977 4978 4979
	union kvm_mmu_role new_role =
		kvm_calc_shadow_mmu_root_page_role(vcpu, false);

	if (new_role.as_u64 == context->mmu_role.as_u64)
		return;
A
Avi Kivity 已提交
4980

4981
	if (!(cr0 & X86_CR0_PG))
4982
		nonpaging_init_context(vcpu, context);
4983
	else if (efer & EFER_LMA)
4984
		paging64_init_context(vcpu, context);
4985
	else if (cr4 & X86_CR4_PAE)
4986
		paging32E_init_context(vcpu, context);
A
Avi Kivity 已提交
4987
	else
4988
		paging32_init_context(vcpu, context);
4989

4990
	context->mmu_role.as_u64 = new_role.as_u64;
4991
	reset_shadow_zero_bits_mask(vcpu, context);
4992 4993 4994
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);

4995 4996
static union kvm_mmu_role
kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
4997
				   bool execonly, u8 level)
4998
{
4999
	union kvm_mmu_role role = {0};
5000

5001 5002
	/* SMM flag is inherited from root_mmu */
	role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
5003

5004
	role.base.level = level;
5005
	role.base.gpte_is_8_bytes = true;
5006 5007 5008 5009
	role.base.direct = false;
	role.base.ad_disabled = !accessed_dirty;
	role.base.guest_mode = true;
	role.base.access = ACC_ALL;
5010

5011 5012 5013 5014 5015 5016 5017
	/*
	 * WP=1 and NOT_WP=1 is an impossible combination, use WP and the
	 * SMAP variation to denote shadow EPT entries.
	 */
	role.base.cr0_wp = true;
	role.base.smap_andnot_wp = true;

5018
	role.ext = kvm_calc_mmu_role_ext(vcpu);
5019
	role.ext.execonly = execonly;
5020 5021 5022 5023

	return role;
}

5024
void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
5025
			     bool accessed_dirty, gpa_t new_eptp)
N
Nadav Har'El 已提交
5026
{
5027
	struct kvm_mmu *context = vcpu->arch.mmu;
5028
	u8 level = vmx_eptp_page_walk_level(new_eptp);
5029 5030
	union kvm_mmu_role new_role =
		kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
5031
						   execonly, level);
5032

5033
	__kvm_mmu_new_pgd(vcpu, new_eptp, new_role.base, true, true);
5034 5035 5036

	if (new_role.as_u64 == context->mmu_role.as_u64)
		return;
5037

5038
	context->shadow_root_level = level;
N
Nadav Har'El 已提交
5039 5040

	context->nx = true;
5041
	context->ept_ad = accessed_dirty;
N
Nadav Har'El 已提交
5042 5043 5044 5045 5046
	context->page_fault = ept_page_fault;
	context->gva_to_gpa = ept_gva_to_gpa;
	context->sync_page = ept_sync_page;
	context->invlpg = ept_invlpg;
	context->update_pte = ept_update_pte;
5047
	context->root_level = level;
N
Nadav Har'El 已提交
5048
	context->direct_map = false;
5049
	context->mmu_role.as_u64 = new_role.as_u64;
5050

N
Nadav Har'El 已提交
5051
	update_permission_bitmask(vcpu, context, true);
5052
	update_pkru_bitmask(vcpu, context, true);
5053
	update_last_nonleaf_level(vcpu, context);
N
Nadav Har'El 已提交
5054
	reset_rsvds_bits_mask_ept(vcpu, context, execonly);
5055
	reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
N
Nadav Har'El 已提交
5056 5057 5058
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);

5059
static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
5060
{
5061
	struct kvm_mmu *context = vcpu->arch.mmu;
5062

5063 5064 5065 5066 5067
	kvm_init_shadow_mmu(vcpu,
			    kvm_read_cr0_bits(vcpu, X86_CR0_PG),
			    kvm_read_cr4_bits(vcpu, X86_CR4_PAE),
			    vcpu->arch.efer);

5068
	context->get_guest_pgd     = get_cr3;
5069 5070
	context->get_pdptr         = kvm_pdptr_read;
	context->inject_page_fault = kvm_inject_page_fault;
A
Avi Kivity 已提交
5071 5072
}

5073
static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
5074
{
5075
	union kvm_mmu_role new_role = kvm_calc_mmu_role_common(vcpu, false);
5076 5077
	struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;

5078 5079 5080 5081
	if (new_role.as_u64 == g_context->mmu_role.as_u64)
		return;

	g_context->mmu_role.as_u64 = new_role.as_u64;
5082
	g_context->get_guest_pgd     = get_cr3;
5083
	g_context->get_pdptr         = kvm_pdptr_read;
5084 5085
	g_context->inject_page_fault = kvm_inject_page_fault;

5086 5087 5088 5089 5090 5091
	/*
	 * L2 page tables are never shadowed, so there is no need to sync
	 * SPTEs.
	 */
	g_context->invlpg            = NULL;

5092
	/*
5093
	 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
5094 5095 5096 5097 5098
	 * L1's nested page tables (e.g. EPT12). The nested translation
	 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
	 * L2's page tables as the first level of translation and L1's
	 * nested page tables as the second level of translation. Basically
	 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
5099 5100
	 */
	if (!is_paging(vcpu)) {
5101
		g_context->nx = false;
5102 5103 5104
		g_context->root_level = 0;
		g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
	} else if (is_long_mode(vcpu)) {
5105
		g_context->nx = is_nx(vcpu);
5106 5107
		g_context->root_level = is_la57_mode(vcpu) ?
					PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
5108
		reset_rsvds_bits_mask(vcpu, g_context);
5109 5110
		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
	} else if (is_pae(vcpu)) {
5111
		g_context->nx = is_nx(vcpu);
5112
		g_context->root_level = PT32E_ROOT_LEVEL;
5113
		reset_rsvds_bits_mask(vcpu, g_context);
5114 5115
		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
	} else {
5116
		g_context->nx = false;
5117
		g_context->root_level = PT32_ROOT_LEVEL;
5118
		reset_rsvds_bits_mask(vcpu, g_context);
5119 5120 5121
		g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
	}

5122
	update_permission_bitmask(vcpu, g_context, false);
5123
	update_pkru_bitmask(vcpu, g_context, false);
5124
	update_last_nonleaf_level(vcpu, g_context);
5125 5126
}

5127
void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots)
5128
{
5129
	if (reset_roots) {
5130 5131
		uint i;

5132
		vcpu->arch.mmu->root_hpa = INVALID_PAGE;
5133 5134

		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5135
			vcpu->arch.mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5136 5137
	}

5138
	if (mmu_is_nested(vcpu))
5139
		init_kvm_nested_mmu(vcpu);
5140
	else if (tdp_enabled)
5141
		init_kvm_tdp_mmu(vcpu);
5142
	else
5143
		init_kvm_softmmu(vcpu);
5144
}
5145
EXPORT_SYMBOL_GPL(kvm_init_mmu);
5146

5147 5148 5149
static union kvm_mmu_page_role
kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
{
5150 5151
	union kvm_mmu_role role;

5152
	if (tdp_enabled)
5153
		role = kvm_calc_tdp_mmu_root_page_role(vcpu, true);
5154
	else
5155 5156 5157
		role = kvm_calc_shadow_mmu_root_page_role(vcpu, true);

	return role.base;
5158
}
5159

5160
void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
5161
{
5162
	kvm_mmu_unload(vcpu);
5163
	kvm_init_mmu(vcpu, true);
A
Avi Kivity 已提交
5164
}
5165
EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
A
Avi Kivity 已提交
5166 5167

int kvm_mmu_load(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
5168
{
5169 5170
	int r;

5171
	r = mmu_topup_memory_caches(vcpu);
A
Avi Kivity 已提交
5172 5173
	if (r)
		goto out;
5174
	r = mmu_alloc_roots(vcpu);
5175
	kvm_mmu_sync_roots(vcpu);
5176 5177
	if (r)
		goto out;
5178
	kvm_mmu_load_pgd(vcpu);
5179
	kvm_x86_ops.tlb_flush_current(vcpu);
5180 5181
out:
	return r;
A
Avi Kivity 已提交
5182
}
A
Avi Kivity 已提交
5183 5184 5185 5186
EXPORT_SYMBOL_GPL(kvm_mmu_load);

void kvm_mmu_unload(struct kvm_vcpu *vcpu)
{
5187 5188 5189 5190
	kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
	WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
	kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
	WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
A
Avi Kivity 已提交
5191
}
5192
EXPORT_SYMBOL_GPL(kvm_mmu_unload);
A
Avi Kivity 已提交
5193

5194
static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
5195 5196
				  struct kvm_mmu_page *sp, u64 *spte,
				  const void *new)
5197
{
5198
	if (sp->role.level != PG_LEVEL_4K) {
5199 5200
		++vcpu->kvm->stat.mmu_pde_zapped;
		return;
5201
        }
5202

A
Avi Kivity 已提交
5203
	++vcpu->kvm->stat.mmu_pte_updated;
5204
	vcpu->arch.mmu->update_pte(vcpu, sp, spte, new);
5205 5206
}

5207 5208 5209 5210 5211 5212 5213 5214
static bool need_remote_flush(u64 old, u64 new)
{
	if (!is_shadow_present_pte(old))
		return false;
	if (!is_shadow_present_pte(new))
		return true;
	if ((old ^ new) & PT64_BASE_ADDR_MASK)
		return true;
5215 5216
	old ^= shadow_nx_mask;
	new ^= shadow_nx_mask;
5217 5218 5219
	return (old & ~new & PT64_PERM_MASK) != 0;
}

5220
static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
5221
				    int *bytes)
5222
{
5223
	u64 gentry = 0;
5224
	int r;
5225 5226 5227

	/*
	 * Assume that the pte write on a page table of the same type
5228 5229
	 * as the current vcpu paging mode since we update the sptes only
	 * when they have the same mode.
5230
	 */
5231
	if (is_pae(vcpu) && *bytes == 4) {
5232
		/* Handle a 32-bit guest writing two halves of a 64-bit gpte */
5233 5234
		*gpa &= ~(gpa_t)7;
		*bytes = 8;
5235 5236
	}

5237 5238 5239 5240
	if (*bytes == 4 || *bytes == 8) {
		r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
		if (r)
			gentry = 0;
5241 5242
	}

5243 5244 5245 5246 5247 5248 5249
	return gentry;
}

/*
 * If we're seeing too many writes to a page, it may no longer be a page table,
 * or we may be forking, in which case it is better to unmap the page.
 */
5250
static bool detect_write_flooding(struct kvm_mmu_page *sp)
5251
{
5252 5253 5254 5255
	/*
	 * Skip write-flooding detected for the sp whose level is 1, because
	 * it can become unsync, then the guest page is not write-protected.
	 */
5256
	if (sp->role.level == PG_LEVEL_4K)
5257
		return false;
5258

5259 5260
	atomic_inc(&sp->write_flooding_count);
	return atomic_read(&sp->write_flooding_count) >= 3;
5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275
}

/*
 * Misaligned accesses are too much trouble to fix up; also, they usually
 * indicate a page is not used as a page table.
 */
static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
				    int bytes)
{
	unsigned offset, pte_size, misaligned;

	pgprintk("misaligned: gpa %llx bytes %d role %x\n",
		 gpa, bytes, sp->role.word);

	offset = offset_in_page(gpa);
5276
	pte_size = sp->role.gpte_is_8_bytes ? 8 : 4;
5277 5278 5279 5280 5281 5282 5283 5284

	/*
	 * Sometimes, the OS only writes the last one bytes to update status
	 * bits, for example, in linux, andb instruction is used in clear_bit().
	 */
	if (!(offset & (pte_size - 1)) && bytes == 1)
		return false;

5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299
	misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
	misaligned |= bytes < 4;

	return misaligned;
}

static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
{
	unsigned page_offset, quadrant;
	u64 *spte;
	int level;

	page_offset = offset_in_page(gpa);
	level = sp->role.level;
	*nspte = 1;
5300
	if (!sp->role.gpte_is_8_bytes) {
5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321
		page_offset <<= 1;	/* 32->64 */
		/*
		 * A 32-bit pde maps 4MB while the shadow pdes map
		 * only 2MB.  So we need to double the offset again
		 * and zap two pdes instead of one.
		 */
		if (level == PT32_ROOT_LEVEL) {
			page_offset &= ~7; /* kill rounding error */
			page_offset <<= 1;
			*nspte = 2;
		}
		quadrant = page_offset >> PAGE_SHIFT;
		page_offset &= ~PAGE_MASK;
		if (quadrant != sp->role.quadrant)
			return NULL;
	}

	spte = &sp->spt[page_offset / sizeof(*spte)];
	return spte;
}

5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337
/*
 * Ignore various flags when determining if a SPTE can be immediately
 * overwritten for the current MMU.
 *  - level: explicitly checked in mmu_pte_write_new_pte(), and will never
 *    match the current MMU role, as MMU's level tracks the root level.
 *  - access: updated based on the new guest PTE
 *  - quadrant: handled by get_written_sptes()
 *  - invalid: always false (loop only walks valid shadow pages)
 */
static const union kvm_mmu_page_role role_ign = {
	.level = 0xf,
	.access = 0x7,
	.quadrant = 0x3,
	.invalid = 0x1,
};

5338
static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
5339 5340
			      const u8 *new, int bytes,
			      struct kvm_page_track_notifier_node *node)
5341 5342 5343 5344 5345 5346
{
	gfn_t gfn = gpa >> PAGE_SHIFT;
	struct kvm_mmu_page *sp;
	LIST_HEAD(invalid_list);
	u64 entry, gentry, *spte;
	int npte;
5347
	bool remote_flush, local_flush;
5348 5349 5350 5351 5352

	/*
	 * If we don't have indirect shadow pages, it means no page is
	 * write-protected, so we can exit simply.
	 */
5353
	if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
5354 5355
		return;

5356
	remote_flush = local_flush = false;
5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367

	pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);

	/*
	 * No need to care whether allocation memory is successful
	 * or not since pte prefetch is skiped if it does not have
	 * enough objects in the cache.
	 */
	mmu_topup_memory_caches(vcpu);

	spin_lock(&vcpu->kvm->mmu_lock);
5368 5369 5370

	gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);

5371
	++vcpu->kvm->stat.mmu_pte_write;
5372
	kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
5373

5374
	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
5375
		if (detect_write_misaligned(sp, gpa, bytes) ||
5376
		      detect_write_flooding(sp)) {
5377
			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
A
Avi Kivity 已提交
5378
			++vcpu->kvm->stat.mmu_flooded;
5379 5380
			continue;
		}
5381 5382 5383 5384 5385

		spte = get_written_sptes(sp, gpa, &npte);
		if (!spte)
			continue;

5386
		local_flush = true;
5387
		while (npte--) {
5388 5389
			u32 base_role = vcpu->arch.mmu->mmu_role.base.word;

5390
			entry = *spte;
5391
			mmu_page_zap_pte(vcpu->kvm, sp, spte);
5392
			if (gentry &&
5393 5394
			    !((sp->role.word ^ base_role) & ~role_ign.word) &&
			    rmap_can_add(vcpu))
5395
				mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
G
Gleb Natapov 已提交
5396
			if (need_remote_flush(entry, *spte))
5397
				remote_flush = true;
5398
			++spte;
5399 5400
		}
	}
5401
	kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
5402
	kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
5403
	spin_unlock(&vcpu->kvm->mmu_lock);
5404 5405
}

5406 5407
int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
{
5408 5409
	gpa_t gpa;
	int r;
5410

5411
	if (vcpu->arch.mmu->direct_map)
5412 5413
		return 0;

5414
	gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
5415 5416

	r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
5417

5418
	return r;
5419
}
5420
EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
5421

5422
int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
5423
		       void *insn, int insn_len)
5424
{
5425
	int r, emulation_type = EMULTYPE_PF;
5426
	bool direct = vcpu->arch.mmu->direct_map;
5427

5428
	if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
5429 5430
		return RET_PF_RETRY;

5431
	r = RET_PF_INVALID;
5432
	if (unlikely(error_code & PFERR_RSVD_MASK)) {
5433
		r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
5434
		if (r == RET_PF_EMULATE)
5435 5436
			goto emulate;
	}
5437

5438
	if (r == RET_PF_INVALID) {
5439 5440
		r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
					  lower_32_bits(error_code), false);
5441 5442 5443 5444 5445
		WARN_ON(r == RET_PF_INVALID);
	}

	if (r == RET_PF_RETRY)
		return 1;
5446
	if (r < 0)
5447
		return r;
5448

5449 5450 5451 5452 5453 5454 5455
	/*
	 * Before emulating the instruction, check if the error code
	 * was due to a RO violation while translating the guest page.
	 * This can occur when using nested virtualization with nested
	 * paging in both guests. If true, we simply unprotect the page
	 * and resume the guest.
	 */
5456
	if (vcpu->arch.mmu->direct_map &&
5457
	    (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5458
		kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
5459 5460 5461
		return 1;
	}

5462 5463 5464 5465 5466 5467
	/*
	 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
	 * optimistically try to just unprotect the page and let the processor
	 * re-execute the instruction that caused the page fault.  Do not allow
	 * retrying MMIO emulation, as it's not only pointless but could also
	 * cause us to enter an infinite loop because the processor will keep
5468 5469 5470 5471
	 * faulting on the non-existent MMIO address.  Retrying an instruction
	 * from a nested guest is also pointless and dangerous as we are only
	 * explicitly shadowing L1's page tables, i.e. unprotecting something
	 * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5472
	 */
5473
	if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
5474
		emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
5475
emulate:
5476 5477 5478 5479 5480
	/*
	 * On AMD platforms, under certain conditions insn_len may be zero on #NPF.
	 * This can happen if a guest gets a page-fault on data access but the HW
	 * table walker is not able to read the instruction page (e.g instruction
	 * page is not present in memory). In those cases we simply restart the
5481
	 * guest, with the exception of AMD Erratum 1096 which is unrecoverable.
5482
	 */
5483
	if (unlikely(insn && !insn_len)) {
5484
		if (!kvm_x86_ops.need_emulation_on_page_fault(vcpu))
5485 5486
			return 1;
	}
5487

5488
	return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
5489
				       insn_len);
5490 5491 5492
}
EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);

5493 5494
void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
			    gva_t gva, hpa_t root_hpa)
M
Marcelo Tosatti 已提交
5495
{
5496
	int i;
5497

5498 5499 5500 5501 5502 5503 5504 5505 5506 5507
	/* It's actually a GPA for vcpu->arch.guest_mmu.  */
	if (mmu != &vcpu->arch.guest_mmu) {
		/* INVLPG on a non-canonical address is a NOP according to the SDM.  */
		if (is_noncanonical_address(gva, vcpu))
			return;

		kvm_x86_ops.tlb_flush_gva(vcpu, gva);
	}

	if (!mmu->invlpg)
5508 5509
		return;

5510 5511
	if (root_hpa == INVALID_PAGE) {
		mmu->invlpg(vcpu, gva, mmu->root_hpa);
5512

5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531
		/*
		 * INVLPG is required to invalidate any global mappings for the VA,
		 * irrespective of PCID. Since it would take us roughly similar amount
		 * of work to determine whether any of the prev_root mappings of the VA
		 * is marked global, or to just sync it blindly, so we might as well
		 * just always sync it.
		 *
		 * Mappings not reachable via the current cr3 or the prev_roots will be
		 * synced when switching to that cr3, so nothing needs to be done here
		 * for them.
		 */
		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
			if (VALID_PAGE(mmu->prev_roots[i].hpa))
				mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
	} else {
		mmu->invlpg(vcpu, gva, root_hpa);
	}
}
EXPORT_SYMBOL_GPL(kvm_mmu_invalidate_gva);
5532

5533 5534 5535
void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
{
	kvm_mmu_invalidate_gva(vcpu, vcpu->arch.mmu, gva, INVALID_PAGE);
M
Marcelo Tosatti 已提交
5536 5537 5538 5539
	++vcpu->stat.invlpg;
}
EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);

5540

5541 5542
void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
{
5543
	struct kvm_mmu *mmu = vcpu->arch.mmu;
5544
	bool tlb_flush = false;
5545
	uint i;
5546 5547

	if (pcid == kvm_get_active_pcid(vcpu)) {
5548
		mmu->invlpg(vcpu, gva, mmu->root_hpa);
5549
		tlb_flush = true;
5550 5551
	}

5552 5553
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
		if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5554
		    pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) {
5555 5556 5557
			mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
			tlb_flush = true;
		}
5558
	}
5559

5560
	if (tlb_flush)
5561
		kvm_x86_ops.tlb_flush_gva(vcpu, gva);
5562

5563 5564 5565
	++vcpu->stat.invlpg;

	/*
5566 5567 5568
	 * Mappings not reachable via the current cr3 or the prev_roots will be
	 * synced when switching to that cr3, so nothing needs to be done here
	 * for them.
5569 5570 5571 5572
	 */
}
EXPORT_SYMBOL_GPL(kvm_mmu_invpcid_gva);

5573
void kvm_configure_mmu(bool enable_tdp, int tdp_page_level)
5574
{
5575
	tdp_enabled = enable_tdp;
5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586

	/*
	 * max_page_level reflects the capabilities of KVM's MMU irrespective
	 * of kernel support, e.g. KVM may be capable of using 1GB pages when
	 * the kernel is not.  But, KVM never creates a page size greater than
	 * what is used by the kernel for any given HVA, i.e. the kernel's
	 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
	 */
	if (tdp_enabled)
		max_page_level = tdp_page_level;
	else if (boot_cpu_has(X86_FEATURE_GBPAGES))
5587
		max_page_level = PG_LEVEL_1G;
5588
	else
5589
		max_page_level = PG_LEVEL_2M;
5590
}
5591
EXPORT_SYMBOL_GPL(kvm_configure_mmu);
5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611

/* The return value indicates if tlb flush on all vcpus is needed. */
typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);

/* The caller should hold mmu-lock before calling this function. */
static __always_inline bool
slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
			slot_level_handler fn, int start_level, int end_level,
			gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
{
	struct slot_rmap_walk_iterator iterator;
	bool flush = false;

	for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
			end_gfn, &iterator) {
		if (iterator.rmap)
			flush |= fn(kvm, iterator.rmap);

		if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
			if (flush && lock_flush_tlb) {
5612 5613 5614
				kvm_flush_remote_tlbs_with_address(kvm,
						start_gfn,
						iterator.gfn - start_gfn + 1);
5615 5616 5617 5618 5619 5620 5621
				flush = false;
			}
			cond_resched_lock(&kvm->mmu_lock);
		}
	}

	if (flush && lock_flush_tlb) {
5622 5623
		kvm_flush_remote_tlbs_with_address(kvm, start_gfn,
						   end_gfn - start_gfn + 1);
5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644
		flush = false;
	}

	return flush;
}

static __always_inline bool
slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
		  slot_level_handler fn, int start_level, int end_level,
		  bool lock_flush_tlb)
{
	return slot_handle_level_range(kvm, memslot, fn, start_level,
			end_level, memslot->base_gfn,
			memslot->base_gfn + memslot->npages - 1,
			lock_flush_tlb);
}

static __always_inline bool
slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
		      slot_level_handler fn, bool lock_flush_tlb)
{
5645
	return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
5646
				 KVM_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5647 5648 5649 5650 5651 5652
}

static __always_inline bool
slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
			slot_level_handler fn, bool lock_flush_tlb)
{
5653
	return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K + 1,
5654
				 KVM_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5655 5656 5657 5658 5659 5660
}

static __always_inline bool
slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
		 slot_level_handler fn, bool lock_flush_tlb)
{
5661 5662
	return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
				 PG_LEVEL_4K, lock_flush_tlb);
5663 5664
}

5665
static void free_mmu_pages(struct kvm_mmu *mmu)
A
Avi Kivity 已提交
5666
{
5667 5668
	free_page((unsigned long)mmu->pae_root);
	free_page((unsigned long)mmu->lm_root);
A
Avi Kivity 已提交
5669 5670
}

5671
static int alloc_mmu_pages(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
A
Avi Kivity 已提交
5672
{
5673
	struct page *page;
A
Avi Kivity 已提交
5674 5675
	int i;

5676
	/*
5677 5678 5679 5680 5681 5682 5683
	 * When using PAE paging, the four PDPTEs are treated as 'root' pages,
	 * while the PDP table is a per-vCPU construct that's allocated at MMU
	 * creation.  When emulating 32-bit mode, cr3 is only 32 bits even on
	 * x86_64.  Therefore we need to allocate the PDP table in the first
	 * 4GB of memory, which happens to fit the DMA32 zone.  Except for
	 * SVM's 32-bit NPT support, TDP paging doesn't use PAE paging and can
	 * skip allocating the PDP table.
5684
	 */
5685
	if (tdp_enabled && vcpu->arch.tdp_level > PT32E_ROOT_LEVEL)
5686 5687
		return 0;

5688
	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
5689
	if (!page)
5690 5691
		return -ENOMEM;

5692
	mmu->pae_root = page_address(page);
5693
	for (i = 0; i < 4; ++i)
5694
		mmu->pae_root[i] = INVALID_PAGE;
5695

A
Avi Kivity 已提交
5696 5697 5698
	return 0;
}

5699
int kvm_mmu_create(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
5700
{
5701
	uint i;
5702
	int ret;
5703

5704
	vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache;
5705 5706
	vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO;

5707
	vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache;
5708
	vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO;
5709

5710 5711
	vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO;

5712 5713
	vcpu->arch.mmu = &vcpu->arch.root_mmu;
	vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
A
Avi Kivity 已提交
5714

5715
	vcpu->arch.root_mmu.root_hpa = INVALID_PAGE;
5716
	vcpu->arch.root_mmu.root_pgd = 0;
5717
	vcpu->arch.root_mmu.translate_gpa = translate_gpa;
5718
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5719
		vcpu->arch.root_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
A
Avi Kivity 已提交
5720

5721
	vcpu->arch.guest_mmu.root_hpa = INVALID_PAGE;
5722
	vcpu->arch.guest_mmu.root_pgd = 0;
5723 5724 5725
	vcpu->arch.guest_mmu.translate_gpa = translate_gpa;
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
		vcpu->arch.guest_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5726

5727
	vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740

	ret = alloc_mmu_pages(vcpu, &vcpu->arch.guest_mmu);
	if (ret)
		return ret;

	ret = alloc_mmu_pages(vcpu, &vcpu->arch.root_mmu);
	if (ret)
		goto fail_allocate_root;

	return ret;
 fail_allocate_root:
	free_mmu_pages(&vcpu->arch.guest_mmu);
	return ret;
A
Avi Kivity 已提交
5741 5742
}

5743
#define BATCH_ZAP_PAGES	10
5744 5745 5746
static void kvm_zap_obsolete_pages(struct kvm *kvm)
{
	struct kvm_mmu_page *sp, *node;
5747
	int nr_zapped, batch = 0;
5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759

restart:
	list_for_each_entry_safe_reverse(sp, node,
	      &kvm->arch.active_mmu_pages, link) {
		/*
		 * No obsolete valid page exists before a newly created page
		 * since active_mmu_pages is a FIFO list.
		 */
		if (!is_obsolete_sp(kvm, sp))
			break;

		/*
5760 5761 5762
		 * Invalid pages should never land back on the list of active
		 * pages.  Skip the bogus page, otherwise we'll get stuck in an
		 * infinite loop if the page gets put back on the list (again).
5763
		 */
5764
		if (WARN_ON(sp->role.invalid))
5765 5766
			continue;

5767 5768 5769 5770 5771 5772
		/*
		 * No need to flush the TLB since we're only zapping shadow
		 * pages with an obsolete generation number and all vCPUS have
		 * loaded a new root, i.e. the shadow pages being zapped cannot
		 * be in active use by the guest.
		 */
5773
		if (batch >= BATCH_ZAP_PAGES &&
5774
		    cond_resched_lock(&kvm->mmu_lock)) {
5775
			batch = 0;
5776 5777 5778
			goto restart;
		}

5779 5780
		if (__kvm_mmu_prepare_zap_page(kvm, sp,
				&kvm->arch.zapped_obsolete_pages, &nr_zapped)) {
5781
			batch += nr_zapped;
5782
			goto restart;
5783
		}
5784 5785
	}

5786 5787 5788 5789 5790
	/*
	 * Trigger a remote TLB flush before freeing the page tables to ensure
	 * KVM is not in the middle of a lockless shadow page table walk, which
	 * may reference the pages.
	 */
5791
	kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804
}

/*
 * Fast invalidate all shadow pages and use lock-break technique
 * to zap obsolete pages.
 *
 * It's required when memslot is being deleted or VM is being
 * destroyed, in these cases, we should ensure that KVM MMU does
 * not use any resource of the being-deleted slot or all slots
 * after calling the function.
 */
static void kvm_mmu_zap_all_fast(struct kvm *kvm)
{
5805 5806
	lockdep_assert_held(&kvm->slots_lock);

5807
	spin_lock(&kvm->mmu_lock);
5808
	trace_kvm_mmu_zap_all_fast(kvm);
5809 5810 5811 5812 5813 5814 5815 5816 5817

	/*
	 * Toggle mmu_valid_gen between '0' and '1'.  Because slots_lock is
	 * held for the entire duration of zapping obsolete pages, it's
	 * impossible for there to be multiple invalid generations associated
	 * with *valid* shadow pages at any given time, i.e. there is exactly
	 * one valid generation and (at most) one invalid generation.
	 */
	kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
5818

5819 5820 5821 5822 5823 5824 5825 5826 5827 5828
	/*
	 * Notify all vcpus to reload its shadow page table and flush TLB.
	 * Then all vcpus will switch to new shadow page table with the new
	 * mmu_valid_gen.
	 *
	 * Note: we need to do this under the protection of mmu_lock,
	 * otherwise, vcpu would purge shadow page but miss tlb flush.
	 */
	kvm_reload_remote_mmus(kvm);

5829 5830 5831 5832
	kvm_zap_obsolete_pages(kvm);
	spin_unlock(&kvm->mmu_lock);
}

5833 5834 5835 5836 5837
static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
{
	return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
}

5838
static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5839 5840
			struct kvm_memory_slot *slot,
			struct kvm_page_track_notifier_node *node)
5841
{
5842
	kvm_mmu_zap_all_fast(kvm);
5843 5844
}

5845
void kvm_mmu_init_vm(struct kvm *kvm)
5846
{
5847
	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5848

5849
	node->track_write = kvm_mmu_pte_write;
5850
	node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5851
	kvm_page_track_register_notifier(kvm, node);
5852 5853
}

5854
void kvm_mmu_uninit_vm(struct kvm *kvm)
5855
{
5856
	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5857

5858
	kvm_page_track_unregister_notifier(kvm, node);
5859 5860
}

X
Xiao Guangrong 已提交
5861 5862 5863 5864
void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;
5865
	int i;
X
Xiao Guangrong 已提交
5866 5867

	spin_lock(&kvm->mmu_lock);
5868 5869 5870 5871 5872 5873 5874 5875 5876
	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
		kvm_for_each_memslot(memslot, slots) {
			gfn_t start, end;

			start = max(gfn_start, memslot->base_gfn);
			end = min(gfn_end, memslot->base_gfn + memslot->npages);
			if (start >= end)
				continue;
X
Xiao Guangrong 已提交
5877

5878
			slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
5879
						PG_LEVEL_4K,
5880
						KVM_MAX_HUGEPAGE_LEVEL,
5881
						start, end - 1, true);
5882
		}
X
Xiao Guangrong 已提交
5883 5884 5885 5886 5887
	}

	spin_unlock(&kvm->mmu_lock);
}

5888 5889
static bool slot_rmap_write_protect(struct kvm *kvm,
				    struct kvm_rmap_head *rmap_head)
5890
{
5891
	return __rmap_write_protect(kvm, rmap_head, false);
5892 5893
}

5894
void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5895 5896
				      struct kvm_memory_slot *memslot,
				      int start_level)
A
Avi Kivity 已提交
5897
{
5898
	bool flush;
A
Avi Kivity 已提交
5899

5900
	spin_lock(&kvm->mmu_lock);
5901
	flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect,
5902
				start_level, KVM_MAX_HUGEPAGE_LEVEL, false);
5903
	spin_unlock(&kvm->mmu_lock);
5904 5905 5906 5907 5908 5909 5910 5911

	/*
	 * We can flush all the TLBs out of the mmu lock without TLB
	 * corruption since we just change the spte from writable to
	 * readonly so that we only need to care the case of changing
	 * spte from present to present (changing the spte from present
	 * to nonpresent will flush all the TLBs immediately), in other
	 * words, the only case we care is mmu_spte_update() where we
W
Wei Yang 已提交
5912
	 * have checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
5913 5914 5915
	 * instead of PT_WRITABLE_MASK, that means it does not depend
	 * on PT_WRITABLE_MASK anymore.
	 */
5916
	if (flush)
5917
		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
A
Avi Kivity 已提交
5918
}
5919

5920
static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5921
					 struct kvm_rmap_head *rmap_head)
5922 5923 5924 5925
{
	u64 *sptep;
	struct rmap_iterator iter;
	int need_tlb_flush = 0;
D
Dan Williams 已提交
5926
	kvm_pfn_t pfn;
5927 5928
	struct kvm_mmu_page *sp;

5929
restart:
5930
	for_each_rmap_spte(rmap_head, &iter, sptep) {
5931
		sp = sptep_to_sp(sptep);
5932 5933 5934
		pfn = spte_to_pfn(*sptep);

		/*
5935 5936 5937 5938 5939
		 * We cannot do huge page mapping for indirect shadow pages,
		 * which are found on the last rmap (level = 1) when not using
		 * tdp; such shadow pages are synced with the page table in
		 * the guest, and the guest page table is using 4K page size
		 * mapping if the indirect sp has level = 1.
5940
		 */
5941
		if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
5942 5943
		    (kvm_is_zone_device_pfn(pfn) ||
		     PageCompound(pfn_to_page(pfn)))) {
5944
			pte_list_remove(rmap_head, sptep);
5945 5946 5947 5948 5949 5950 5951

			if (kvm_available_flush_tlb_with_range())
				kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
					KVM_PAGES_PER_HPAGE(sp->role.level));
			else
				need_tlb_flush = 1;

5952 5953
			goto restart;
		}
5954 5955 5956 5957 5958 5959
	}

	return need_tlb_flush;
}

void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5960
				   const struct kvm_memory_slot *memslot)
5961
{
5962
	/* FIXME: const-ify all uses of struct kvm_memory_slot.  */
5963
	spin_lock(&kvm->mmu_lock);
5964 5965
	slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
			 kvm_mmu_zap_collapsible_spte, true);
5966 5967 5968
	spin_unlock(&kvm->mmu_lock);
}

5969 5970 5971 5972
void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
					struct kvm_memory_slot *memslot)
{
	/*
5973 5974 5975 5976 5977
	 * All current use cases for flushing the TLBs for a specific memslot
	 * are related to dirty logging, and do the TLB flush out of mmu_lock.
	 * The interaction between the various operations on memslot must be
	 * serialized by slots_locks to ensure the TLB flush from one operation
	 * is observed by any other operation on the same memslot.
5978 5979
	 */
	lockdep_assert_held(&kvm->slots_lock);
5980 5981
	kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
					   memslot->npages);
5982 5983
}

5984 5985 5986
void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
				   struct kvm_memory_slot *memslot)
{
5987
	bool flush;
5988 5989

	spin_lock(&kvm->mmu_lock);
5990
	flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
5991 5992 5993 5994 5995 5996 5997 5998 5999
	spin_unlock(&kvm->mmu_lock);

	/*
	 * It's also safe to flush TLBs out of mmu lock here as currently this
	 * function is only used for dirty logging, in which case flushing TLB
	 * out of mmu lock also guarantees no dirty pages will be lost in
	 * dirty_bitmap.
	 */
	if (flush)
6000
		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
6001 6002 6003 6004 6005 6006
}
EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);

void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
					struct kvm_memory_slot *memslot)
{
6007
	bool flush;
6008 6009

	spin_lock(&kvm->mmu_lock);
6010 6011
	flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
					false);
6012 6013 6014
	spin_unlock(&kvm->mmu_lock);

	if (flush)
6015
		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
6016 6017 6018 6019 6020 6021
}
EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);

void kvm_mmu_slot_set_dirty(struct kvm *kvm,
			    struct kvm_memory_slot *memslot)
{
6022
	bool flush;
6023 6024

	spin_lock(&kvm->mmu_lock);
6025
	flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
6026 6027 6028
	spin_unlock(&kvm->mmu_lock);

	if (flush)
6029
		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
6030 6031 6032
}
EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);

6033
void kvm_mmu_zap_all(struct kvm *kvm)
6034 6035
{
	struct kvm_mmu_page *sp, *node;
6036
	LIST_HEAD(invalid_list);
6037
	int ign;
6038

6039
	spin_lock(&kvm->mmu_lock);
6040
restart:
6041
	list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
6042
		if (WARN_ON(sp->role.invalid))
6043
			continue;
6044
		if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
6045
			goto restart;
6046
		if (cond_resched_lock(&kvm->mmu_lock))
6047 6048 6049
			goto restart;
	}

6050
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
6051 6052 6053
	spin_unlock(&kvm->mmu_lock);
}

6054
void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
6055
{
6056
	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
6057

6058
	gen &= MMIO_SPTE_GEN_MASK;
6059

6060
	/*
6061 6062 6063 6064 6065 6066 6067 6068
	 * Generation numbers are incremented in multiples of the number of
	 * address spaces in order to provide unique generations across all
	 * address spaces.  Strip what is effectively the address space
	 * modifier prior to checking for a wrap of the MMIO generation so
	 * that a wrap in any address space is detected.
	 */
	gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);

6069
	/*
6070
	 * The very rare case: if the MMIO generation number has wrapped,
6071 6072
	 * zap all shadow pages.
	 */
6073
	if (unlikely(gen == 0)) {
6074
		kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
6075
		kvm_mmu_zap_all_fast(kvm);
6076
	}
6077 6078
}

6079 6080
static unsigned long
mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
6081 6082
{
	struct kvm *kvm;
6083
	int nr_to_scan = sc->nr_to_scan;
6084
	unsigned long freed = 0;
6085

J
Junaid Shahid 已提交
6086
	mutex_lock(&kvm_lock);
6087 6088

	list_for_each_entry(kvm, &vm_list, vm_list) {
6089
		int idx;
6090
		LIST_HEAD(invalid_list);
6091

6092 6093 6094 6095 6096 6097 6098 6099
		/*
		 * Never scan more than sc->nr_to_scan VM instances.
		 * Will not hit this condition practically since we do not try
		 * to shrink more than one VM and it is very unlikely to see
		 * !n_used_mmu_pages so many times.
		 */
		if (!nr_to_scan--)
			break;
6100 6101 6102 6103 6104 6105
		/*
		 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
		 * here. We may skip a VM instance errorneosly, but we do not
		 * want to shrink a VM that only started to populate its MMU
		 * anyway.
		 */
6106 6107
		if (!kvm->arch.n_used_mmu_pages &&
		    !kvm_has_zapped_obsolete_pages(kvm))
6108 6109
			continue;

6110
		idx = srcu_read_lock(&kvm->srcu);
6111 6112
		spin_lock(&kvm->mmu_lock);

6113 6114 6115 6116 6117 6118
		if (kvm_has_zapped_obsolete_pages(kvm)) {
			kvm_mmu_commit_zap_page(kvm,
			      &kvm->arch.zapped_obsolete_pages);
			goto unlock;
		}

6119
		freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan);
6120

6121
unlock:
6122
		spin_unlock(&kvm->mmu_lock);
6123
		srcu_read_unlock(&kvm->srcu, idx);
6124

6125 6126 6127 6128 6129
		/*
		 * unfair on small ones
		 * per-vm shrinkers cry out
		 * sadness comes quickly
		 */
6130 6131
		list_move_tail(&kvm->vm_list, &vm_list);
		break;
6132 6133
	}

J
Junaid Shahid 已提交
6134
	mutex_unlock(&kvm_lock);
6135 6136 6137 6138 6139 6140
	return freed;
}

static unsigned long
mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
{
6141
	return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
6142 6143 6144
}

static struct shrinker mmu_shrinker = {
6145 6146
	.count_objects = mmu_shrink_count,
	.scan_objects = mmu_shrink_scan,
6147 6148 6149
	.seeks = DEFAULT_SEEKS * 10,
};

I
Ingo Molnar 已提交
6150
static void mmu_destroy_caches(void)
6151
{
6152 6153
	kmem_cache_destroy(pte_list_desc_cache);
	kmem_cache_destroy(mmu_page_header_cache);
6154 6155
}

6156 6157 6158 6159 6160
static void kvm_set_mmio_spte_mask(void)
{
	u64 mask;

	/*
6161 6162 6163 6164 6165
	 * Set a reserved PA bit in MMIO SPTEs to generate page faults with
	 * PFEC.RSVD=1 on MMIO accesses.  64-bit PTEs (PAE, x86-64, and EPT
	 * paging) support a maximum of 52 bits of PA, i.e. if the CPU supports
	 * 52-bit physical addresses then there are no reserved PA bits in the
	 * PTEs and so the reserved PA approach must be disabled.
6166
	 */
6167 6168 6169 6170
	if (shadow_phys_bits < 52)
		mask = BIT_ULL(51) | PT_PRESENT_MASK;
	else
		mask = 0;
6171

P
Paolo Bonzini 已提交
6172
	kvm_mmu_set_mmio_spte_mask(mask, ACC_WRITE_MASK | ACC_USER_MASK);
6173 6174
}

P
Paolo Bonzini 已提交
6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208
static bool get_nx_auto_mode(void)
{
	/* Return true when CPU has the bug, and mitigations are ON */
	return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
}

static void __set_nx_huge_pages(bool val)
{
	nx_huge_pages = itlb_multihit_kvm_mitigation = val;
}

static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
{
	bool old_val = nx_huge_pages;
	bool new_val;

	/* In "auto" mode deploy workaround only if CPU has the bug. */
	if (sysfs_streq(val, "off"))
		new_val = 0;
	else if (sysfs_streq(val, "force"))
		new_val = 1;
	else if (sysfs_streq(val, "auto"))
		new_val = get_nx_auto_mode();
	else if (strtobool(val, &new_val) < 0)
		return -EINVAL;

	__set_nx_huge_pages(new_val);

	if (new_val != old_val) {
		struct kvm *kvm;

		mutex_lock(&kvm_lock);

		list_for_each_entry(kvm, &vm_list, vm_list) {
6209
			mutex_lock(&kvm->slots_lock);
P
Paolo Bonzini 已提交
6210
			kvm_mmu_zap_all_fast(kvm);
6211
			mutex_unlock(&kvm->slots_lock);
6212 6213

			wake_up_process(kvm->arch.nx_lpage_recovery_thread);
P
Paolo Bonzini 已提交
6214 6215 6216 6217 6218 6219 6220
		}
		mutex_unlock(&kvm_lock);
	}

	return 0;
}

6221 6222
int kvm_mmu_module_init(void)
{
6223 6224
	int ret = -ENOMEM;

P
Paolo Bonzini 已提交
6225 6226 6227
	if (nx_huge_pages == -1)
		__set_nx_huge_pages(get_nx_auto_mode());

6228 6229 6230 6231 6232 6233 6234 6235 6236 6237
	/*
	 * MMU roles use union aliasing which is, generally speaking, an
	 * undefined behavior. However, we supposedly know how compilers behave
	 * and the current status quo is unlikely to change. Guardians below are
	 * supposed to let us know if the assumption becomes false.
	 */
	BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
	BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
	BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));

6238
	kvm_mmu_reset_all_pte_masks();
6239

6240 6241
	kvm_set_mmio_spte_mask();

6242 6243
	pte_list_desc_cache = kmem_cache_create("pte_list_desc",
					    sizeof(struct pte_list_desc),
6244
					    0, SLAB_ACCOUNT, NULL);
6245
	if (!pte_list_desc_cache)
6246
		goto out;
6247

6248 6249
	mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
						  sizeof(struct kvm_mmu_page),
6250
						  0, SLAB_ACCOUNT, NULL);
6251
	if (!mmu_page_header_cache)
6252
		goto out;
6253

6254
	if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
6255
		goto out;
6256

6257 6258 6259
	ret = register_shrinker(&mmu_shrinker);
	if (ret)
		goto out;
6260

6261 6262
	return 0;

6263
out:
6264
	mmu_destroy_caches();
6265
	return ret;
6266 6267
}

6268
/*
P
Peng Hao 已提交
6269
 * Calculate mmu pages needed for kvm.
6270
 */
6271
unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm)
6272
{
6273 6274
	unsigned long nr_mmu_pages;
	unsigned long nr_pages = 0;
6275
	struct kvm_memslots *slots;
6276
	struct kvm_memory_slot *memslot;
6277
	int i;
6278

6279 6280
	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
6281

6282 6283 6284
		kvm_for_each_memslot(memslot, slots)
			nr_pages += memslot->npages;
	}
6285 6286

	nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
6287
	nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
6288 6289 6290 6291

	return nr_mmu_pages;
}

6292 6293
void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
{
6294
	kvm_mmu_unload(vcpu);
6295 6296
	free_mmu_pages(&vcpu->arch.root_mmu);
	free_mmu_pages(&vcpu->arch.guest_mmu);
6297
	mmu_free_memory_caches(vcpu);
6298 6299 6300 6301 6302 6303 6304
}

void kvm_mmu_module_exit(void)
{
	mmu_destroy_caches();
	percpu_counter_destroy(&kvm_total_used_mmu_pages);
	unregister_shrinker(&mmu_shrinker);
6305 6306
	mmu_audit_disable();
}
6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419

static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp)
{
	unsigned int old_val;
	int err;

	old_val = nx_huge_pages_recovery_ratio;
	err = param_set_uint(val, kp);
	if (err)
		return err;

	if (READ_ONCE(nx_huge_pages) &&
	    !old_val && nx_huge_pages_recovery_ratio) {
		struct kvm *kvm;

		mutex_lock(&kvm_lock);

		list_for_each_entry(kvm, &vm_list, vm_list)
			wake_up_process(kvm->arch.nx_lpage_recovery_thread);

		mutex_unlock(&kvm_lock);
	}

	return err;
}

static void kvm_recover_nx_lpages(struct kvm *kvm)
{
	int rcu_idx;
	struct kvm_mmu_page *sp;
	unsigned int ratio;
	LIST_HEAD(invalid_list);
	ulong to_zap;

	rcu_idx = srcu_read_lock(&kvm->srcu);
	spin_lock(&kvm->mmu_lock);

	ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
	to_zap = ratio ? DIV_ROUND_UP(kvm->stat.nx_lpage_splits, ratio) : 0;
	while (to_zap && !list_empty(&kvm->arch.lpage_disallowed_mmu_pages)) {
		/*
		 * We use a separate list instead of just using active_mmu_pages
		 * because the number of lpage_disallowed pages is expected to
		 * be relatively small compared to the total.
		 */
		sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
				      struct kvm_mmu_page,
				      lpage_disallowed_link);
		WARN_ON_ONCE(!sp->lpage_disallowed);
		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
		WARN_ON_ONCE(sp->lpage_disallowed);

		if (!--to_zap || need_resched() || spin_needbreak(&kvm->mmu_lock)) {
			kvm_mmu_commit_zap_page(kvm, &invalid_list);
			if (to_zap)
				cond_resched_lock(&kvm->mmu_lock);
		}
	}

	spin_unlock(&kvm->mmu_lock);
	srcu_read_unlock(&kvm->srcu, rcu_idx);
}

static long get_nx_lpage_recovery_timeout(u64 start_time)
{
	return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio)
		? start_time + 60 * HZ - get_jiffies_64()
		: MAX_SCHEDULE_TIMEOUT;
}

static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
{
	u64 start_time;
	long remaining_time;

	while (true) {
		start_time = get_jiffies_64();
		remaining_time = get_nx_lpage_recovery_timeout(start_time);

		set_current_state(TASK_INTERRUPTIBLE);
		while (!kthread_should_stop() && remaining_time > 0) {
			schedule_timeout(remaining_time);
			remaining_time = get_nx_lpage_recovery_timeout(start_time);
			set_current_state(TASK_INTERRUPTIBLE);
		}

		set_current_state(TASK_RUNNING);

		if (kthread_should_stop())
			return 0;

		kvm_recover_nx_lpages(kvm);
	}
}

int kvm_mmu_post_init_vm(struct kvm *kvm)
{
	int err;

	err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
					  "kvm-nx-lpage-recovery",
					  &kvm->arch.nx_lpage_recovery_thread);
	if (!err)
		kthread_unpark(kvm->arch.nx_lpage_recovery_thread);

	return err;
}

void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
{
	if (kvm->arch.nx_lpage_recovery_thread)
		kthread_stop(kvm->arch.nx_lpage_recovery_thread);
}