mmu.c 157.9 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
A
Avi Kivity 已提交
2 3 4 5 6 7 8 9 10
/*
 * Kernel-based Virtual Machine driver for Linux
 *
 * This module enables machines with Intel VT-x extensions to run virtual
 * machines without emulation or binary translation.
 *
 * MMU support
 *
 * Copyright (C) 2006 Qumranet, Inc.
N
Nicolas Kaiser 已提交
11
 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
A
Avi Kivity 已提交
12 13 14 15 16
 *
 * Authors:
 *   Yaniv Kamay  <yaniv@qumranet.com>
 *   Avi Kivity   <avi@qumranet.com>
 */
A
Avi Kivity 已提交
17

18
#include "irq.h"
19
#include "ioapic.h"
20
#include "mmu.h"
21
#include "mmu_internal.h"
22
#include "tdp_mmu.h"
23
#include "x86.h"
A
Avi Kivity 已提交
24
#include "kvm_cache_regs.h"
25
#include "kvm_emulate.h"
26
#include "cpuid.h"
27
#include "spte.h"
A
Avi Kivity 已提交
28

29
#include <linux/kvm_host.h>
A
Avi Kivity 已提交
30 31 32 33
#include <linux/types.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/highmem.h>
34 35
#include <linux/moduleparam.h>
#include <linux/export.h>
36
#include <linux/swap.h>
M
Marcelo Tosatti 已提交
37
#include <linux/hugetlb.h>
38
#include <linux/compiler.h>
39
#include <linux/srcu.h>
40
#include <linux/slab.h>
41
#include <linux/sched/signal.h>
42
#include <linux/uaccess.h>
43
#include <linux/hash.h>
44
#include <linux/kern_levels.h>
45
#include <linux/kthread.h>
A
Avi Kivity 已提交
46

A
Avi Kivity 已提交
47
#include <asm/page.h>
48
#include <asm/memtype.h>
A
Avi Kivity 已提交
49
#include <asm/cmpxchg.h>
50
#include <asm/io.h>
51
#include <asm/vmx.h>
52
#include <asm/kvm_page_track.h>
53
#include "trace.h"
A
Avi Kivity 已提交
54

P
Paolo Bonzini 已提交
55 56 57
extern bool itlb_multihit_kvm_mitigation;

static int __read_mostly nx_huge_pages = -1;
58 59 60 61
#ifdef CONFIG_PREEMPT_RT
/* Recovery can cause latency spikes, disable it for PREEMPT_RT.  */
static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
#else
62
static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
63
#endif
P
Paolo Bonzini 已提交
64 65

static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
66
static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp);
P
Paolo Bonzini 已提交
67

68
static const struct kernel_param_ops nx_huge_pages_ops = {
P
Paolo Bonzini 已提交
69 70 71 72
	.set = set_nx_huge_pages,
	.get = param_get_bool,
};

73
static const struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = {
74 75 76 77
	.set = set_nx_huge_pages_recovery_ratio,
	.get = param_get_uint,
};

P
Paolo Bonzini 已提交
78 79
module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
__MODULE_PARM_TYPE(nx_huge_pages, "bool");
80 81 82
module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops,
		&nx_huge_pages_recovery_ratio, 0644);
__MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
P
Paolo Bonzini 已提交
83

84 85 86
static bool __read_mostly force_flush_and_sync_on_reuse;
module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644);

87 88 89 90 91 92 93
/*
 * When setting this variable to true it enables Two-Dimensional-Paging
 * where the hardware walks 2 page tables:
 * 1. the guest-virtual to guest-physical
 * 2. while doing 1. it walks guest-physical to host-physical
 * If the hardware supports that we don't need to do shadow paging.
 */
94
bool tdp_enabled = false;
95

96
static int max_huge_page_level __read_mostly;
97
static int max_tdp_level __read_mostly;
98

99 100 101 102
enum {
	AUDIT_PRE_PAGE_FAULT,
	AUDIT_POST_PAGE_FAULT,
	AUDIT_PRE_PTE_WRITE,
103 104 105
	AUDIT_POST_PTE_WRITE,
	AUDIT_PRE_SYNC,
	AUDIT_POST_SYNC
106
};
107 108

#ifdef MMU_DEBUG
109
bool dbg = 0;
110
module_param(dbg, bool, 0644);
111
#endif
A
Avi Kivity 已提交
112

113 114
#define PTE_PREFETCH_NUM		8

A
Avi Kivity 已提交
115 116 117
#define PT32_LEVEL_BITS 10

#define PT32_LEVEL_SHIFT(level) \
M
Mike Day 已提交
118
		(PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
A
Avi Kivity 已提交
119

120 121 122
#define PT32_LVL_OFFSET_MASK(level) \
	(PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
123 124 125 126 127 128 129 130

#define PT32_INDEX(address, level)\
	(((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))


#define PT32_BASE_ADDR_MASK PAGE_MASK
#define PT32_DIR_BASE_ADDR_MASK \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
131 132 133
#define PT32_LVL_ADDR_MASK(level) \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
					    * PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
134

135 136
#include <trace/events/kvm.h>

137 138 139
/* make pte_list_desc fit well in cache line */
#define PTE_LIST_EXT 3

140 141 142
struct pte_list_desc {
	u64 *sptes[PTE_LIST_EXT];
	struct pte_list_desc *more;
143 144
};

145 146 147 148
struct kvm_shadow_walk_iterator {
	u64 addr;
	hpa_t shadow_addr;
	u64 *sptep;
149
	int level;
150 151 152
	unsigned index;
};

153 154 155 156 157 158 159
#define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker)     \
	for (shadow_walk_init_using_root(&(_walker), (_vcpu),              \
					 (_root), (_addr));                \
	     shadow_walk_okay(&(_walker));			           \
	     shadow_walk_next(&(_walker)))

#define for_each_shadow_entry(_vcpu, _addr, _walker)            \
160 161 162 163
	for (shadow_walk_init(&(_walker), _vcpu, _addr);	\
	     shadow_walk_okay(&(_walker));			\
	     shadow_walk_next(&(_walker)))

164 165 166 167 168 169
#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)	\
	for (shadow_walk_init(&(_walker), _vcpu, _addr);		\
	     shadow_walk_okay(&(_walker)) &&				\
		({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });	\
	     __shadow_walk_next(&(_walker), spte))

170
static struct kmem_cache *pte_list_desc_cache;
171
struct kmem_cache *mmu_page_header_cache;
172
static struct percpu_counter kvm_total_used_mmu_pages;
173

174
static void mmu_spte_set(u64 *sptep, u64 spte);
175 176
static union kvm_mmu_page_role
kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
177

178 179 180
#define CREATE_TRACE_POINTS
#include "mmutrace.h"

181 182 183

static inline bool kvm_available_flush_tlb_with_range(void)
{
184
	return kvm_x86_ops.tlb_remote_flush_with_range;
185 186 187 188 189 190 191
}

static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
		struct kvm_tlb_range *range)
{
	int ret = -ENOTSUPP;

192 193
	if (range && kvm_x86_ops.tlb_remote_flush_with_range)
		ret = kvm_x86_ops.tlb_remote_flush_with_range(kvm, range);
194 195 196 197 198

	if (ret)
		kvm_flush_remote_tlbs(kvm);
}

199
void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
200 201 202 203 204 205 206 207 208 209
		u64 start_gfn, u64 pages)
{
	struct kvm_tlb_range range;

	range.start_gfn = start_gfn;
	range.pages = pages;

	kvm_flush_remote_tlbs_with_range(kvm, &range);
}

210
bool is_nx_huge_page_enabled(void)
P
Paolo Bonzini 已提交
211 212 213 214
{
	return READ_ONCE(nx_huge_pages);
}

215 216 217 218 219
static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
			   unsigned int access)
{
	u64 mask = make_mmio_spte(vcpu, gfn, access);

B
Ben Gardon 已提交
220
	trace_mark_mmio_spte(sptep, gfn, mask);
221
	mmu_spte_set(sptep, mask);
222 223 224 225
}

static gfn_t get_mmio_spte_gfn(u64 spte)
{
226
	u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
227

228
	gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)
229 230 231
	       & shadow_nonpresent_or_rsvd_mask;

	return gpa >> PAGE_SHIFT;
232 233 234 235
}

static unsigned get_mmio_spte_access(u64 spte)
{
236
	return spte & shadow_mmio_access_mask;
237 238
}

239
static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
240
			  kvm_pfn_t pfn, unsigned int access)
241 242
{
	if (unlikely(is_noslot_pfn(pfn))) {
243
		mark_mmio_spte(vcpu, sptep, gfn, access);
244 245 246 247 248
		return true;
	}

	return false;
}
249

250
static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
251
{
252
	u64 kvm_gen, spte_gen, gen;
253

254 255 256
	gen = kvm_vcpu_memslots(vcpu)->generation;
	if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
		return false;
257

258
	kvm_gen = gen & MMIO_SPTE_GEN_MASK;
259 260 261 262
	spte_gen = get_mmio_spte_generation(spte);

	trace_check_mmio_spte(spte, kvm_gen, spte_gen);
	return likely(kvm_gen == spte_gen);
263 264
}

265 266 267
static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
                                  struct x86_exception *exception)
{
268
	/* Check if guest physical address doesn't exceed guest maximum */
269
	if (kvm_vcpu_is_illegal_gpa(vcpu, gpa)) {
270 271 272 273
		exception->error_code |= PFERR_RSVD_MASK;
		return UNMAPPED_GVA;
	}

274 275 276
        return gpa;
}

A
Avi Kivity 已提交
277 278 279 280 281
static int is_cpuid_PSE36(void)
{
	return 1;
}

282 283
static int is_nx(struct kvm_vcpu *vcpu)
{
284
	return vcpu->arch.efer & EFER_NX;
285 286
}

287 288 289 290 291 292 293
static gfn_t pse36_gfn_delta(u32 gpte)
{
	int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;

	return (gpte & PT32_DIR_PSE36_MASK) << shift;
}

294
#ifdef CONFIG_X86_64
A
Avi Kivity 已提交
295
static void __set_spte(u64 *sptep, u64 spte)
296
{
297
	WRITE_ONCE(*sptep, spte);
298 299
}

300
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
301
{
302
	WRITE_ONCE(*sptep, spte);
303 304 305 306 307 308
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	return xchg(sptep, spte);
}
309 310 311

static u64 __get_spte_lockless(u64 *sptep)
{
312
	return READ_ONCE(*sptep);
313
}
314
#else
315 316 317 318 319 320 321
union split_spte {
	struct {
		u32 spte_low;
		u32 spte_high;
	};
	u64 spte;
};
322

323 324
static void count_spte_clear(u64 *sptep, u64 spte)
{
325
	struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
326 327 328 329 330 331 332 333 334

	if (is_shadow_present_pte(spte))
		return;

	/* Ensure the spte is completely set before we increase the count */
	smp_wmb();
	sp->clear_spte_count++;
}

335 336 337
static void __set_spte(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;
338

339 340 341 342 343 344 345 346 347 348 349 350
	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	ssptep->spte_high = sspte.spte_high;

	/*
	 * If we map the spte from nonpresent to present, We should store
	 * the high bits firstly, then set present bit, so cpu can not
	 * fetch this spte while we are setting the spte.
	 */
	smp_wmb();

351
	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
352 353
}

354 355 356 357 358 359 360
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

361
	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
362 363 364 365 366 367 368 369

	/*
	 * If we map the spte from present to nonpresent, we should clear
	 * present bit firstly to avoid vcpu fetch the old high bits.
	 */
	smp_wmb();

	ssptep->spte_high = sspte.spte_high;
370
	count_spte_clear(sptep, spte);
371 372 373 374 375 376 377 378 379 380 381
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte, orig;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	/* xchg acts as a barrier before the setting of the high bits */
	orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
382 383
	orig.spte_high = ssptep->spte_high;
	ssptep->spte_high = sspte.spte_high;
384
	count_spte_clear(sptep, spte);
385 386 387

	return orig.spte;
}
388 389 390

/*
 * The idea using the light way get the spte on x86_32 guest is from
391
 * gup_get_pte (mm/gup.c).
392 393 394 395 396 397 398 399 400 401 402 403 404 405
 *
 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
 * coalesces them and we are running out of the MMU lock.  Therefore
 * we need to protect against in-progress updates of the spte.
 *
 * Reading the spte while an update is in progress may get the old value
 * for the high part of the spte.  The race is fine for a present->non-present
 * change (because the high part of the spte is ignored for non-present spte),
 * but for a present->present change we must reread the spte.
 *
 * All such changes are done in two steps (present->non-present and
 * non-present->present), hence it is enough to count the number of
 * present->non-present updates: if it changed while reading the spte,
 * we might have hit the race.  This is done using clear_spte_count.
406 407 408
 */
static u64 __get_spte_lockless(u64 *sptep)
{
409
	struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
	union split_spte spte, *orig = (union split_spte *)sptep;
	int count;

retry:
	count = sp->clear_spte_count;
	smp_rmb();

	spte.spte_low = orig->spte_low;
	smp_rmb();

	spte.spte_high = orig->spte_high;
	smp_rmb();

	if (unlikely(spte.spte_low != orig->spte_low ||
	      count != sp->clear_spte_count))
		goto retry;

	return spte.spte;
}
429 430
#endif

431 432
static bool spte_has_volatile_bits(u64 spte)
{
433 434 435
	if (!is_shadow_present_pte(spte))
		return false;

436
	/*
437
	 * Always atomically update spte if it can be updated
438 439 440 441
	 * out of mmu-lock, it can ensure dirty bit is not lost,
	 * also, it can help us to get a stable is_writable_pte()
	 * to ensure tlb flush is not missed.
	 */
442 443
	if (spte_can_locklessly_be_made_writable(spte) ||
	    is_access_track_spte(spte))
444 445
		return true;

446
	if (spte_ad_enabled(spte)) {
447 448 449 450
		if ((spte & shadow_accessed_mask) == 0 ||
	    	    (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
			return true;
	}
451

452
	return false;
453 454
}

455 456 457 458 459 460 461 462 463 464 465 466
/* Rules for using mmu_spte_set:
 * Set the sptep from nonpresent to present.
 * Note: the sptep being assigned *must* be either not present
 * or in a state where the hardware will not attempt to update
 * the spte.
 */
static void mmu_spte_set(u64 *sptep, u64 new_spte)
{
	WARN_ON(is_shadow_present_pte(*sptep));
	__set_spte(sptep, new_spte);
}

467 468 469
/*
 * Update the SPTE (excluding the PFN), but do not track changes in its
 * accessed/dirty status.
470
 */
471
static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
472
{
473
	u64 old_spte = *sptep;
474

475
	WARN_ON(!is_shadow_present_pte(new_spte));
476

477 478
	if (!is_shadow_present_pte(old_spte)) {
		mmu_spte_set(sptep, new_spte);
479
		return old_spte;
480
	}
481

482
	if (!spte_has_volatile_bits(old_spte))
483
		__update_clear_spte_fast(sptep, new_spte);
484
	else
485
		old_spte = __update_clear_spte_slow(sptep, new_spte);
486

487 488
	WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));

489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
	return old_spte;
}

/* Rules for using mmu_spte_update:
 * Update the state bits, it means the mapped pfn is not changed.
 *
 * Whenever we overwrite a writable spte with a read-only one we
 * should flush remote TLBs. Otherwise rmap_write_protect
 * will find a read-only spte, even though the writable spte
 * might be cached on a CPU's TLB, the return value indicates this
 * case.
 *
 * Returns true if the TLB needs to be flushed
 */
static bool mmu_spte_update(u64 *sptep, u64 new_spte)
{
	bool flush = false;
	u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);

	if (!is_shadow_present_pte(old_spte))
		return false;

511 512
	/*
	 * For the spte updated out of mmu-lock is safe, since
513
	 * we always atomically update it, see the comments in
514 515
	 * spte_has_volatile_bits().
	 */
516
	if (spte_can_locklessly_be_made_writable(old_spte) &&
517
	      !is_writable_pte(new_spte))
518
		flush = true;
519

520
	/*
521
	 * Flush TLB when accessed/dirty states are changed in the page tables,
522 523 524
	 * to guarantee consistency between TLB and page tables.
	 */

525 526
	if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
		flush = true;
527
		kvm_set_pfn_accessed(spte_to_pfn(old_spte));
528 529 530 531
	}

	if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
		flush = true;
532
		kvm_set_pfn_dirty(spte_to_pfn(old_spte));
533
	}
534

535
	return flush;
536 537
}

538 539 540 541
/*
 * Rules for using mmu_spte_clear_track_bits:
 * It sets the sptep from present to nonpresent, and track the
 * state bits, it is used to clear the last level sptep.
542
 * Returns non-zero if the PTE was previously valid.
543 544 545
 */
static int mmu_spte_clear_track_bits(u64 *sptep)
{
D
Dan Williams 已提交
546
	kvm_pfn_t pfn;
547 548 549
	u64 old_spte = *sptep;

	if (!spte_has_volatile_bits(old_spte))
550
		__update_clear_spte_fast(sptep, 0ull);
551
	else
552
		old_spte = __update_clear_spte_slow(sptep, 0ull);
553

554
	if (!is_shadow_present_pte(old_spte))
555 556 557
		return 0;

	pfn = spte_to_pfn(old_spte);
558 559 560 561 562 563

	/*
	 * KVM does not hold the refcount of the page used by
	 * kvm mmu, before reclaiming the page, we should
	 * unmap it from mmu first.
	 */
564
	WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
565

566
	if (is_accessed_spte(old_spte))
567
		kvm_set_pfn_accessed(pfn);
568 569

	if (is_dirty_spte(old_spte))
570
		kvm_set_pfn_dirty(pfn);
571

572 573 574 575 576 577 578 579 580 581
	return 1;
}

/*
 * Rules for using mmu_spte_clear_no_track:
 * Directly clear spte without caring the state bits of sptep,
 * it is used to set the upper level spte.
 */
static void mmu_spte_clear_no_track(u64 *sptep)
{
582
	__update_clear_spte_fast(sptep, 0ull);
583 584
}

585 586 587 588 589
static u64 mmu_spte_get_lockless(u64 *sptep)
{
	return __get_spte_lockless(sptep);
}

590 591 592 593
/* Restore an acc-track PTE back to a regular PTE */
static u64 restore_acc_track_spte(u64 spte)
{
	u64 new_spte = spte;
594 595
	u64 saved_bits = (spte >> SHADOW_ACC_TRACK_SAVED_BITS_SHIFT)
			 & SHADOW_ACC_TRACK_SAVED_BITS_MASK;
596

597
	WARN_ON_ONCE(spte_ad_enabled(spte));
598 599 600
	WARN_ON_ONCE(!is_access_track_spte(spte));

	new_spte &= ~shadow_acc_track_mask;
601 602
	new_spte &= ~(SHADOW_ACC_TRACK_SAVED_BITS_MASK <<
		      SHADOW_ACC_TRACK_SAVED_BITS_SHIFT);
603 604 605 606 607
	new_spte |= saved_bits;

	return new_spte;
}

608 609 610 611 612 613 614 615
/* Returns the Accessed status of the PTE and resets it at the same time. */
static bool mmu_spte_age(u64 *sptep)
{
	u64 spte = mmu_spte_get_lockless(sptep);

	if (!is_accessed_spte(spte))
		return false;

616
	if (spte_ad_enabled(spte)) {
617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
		clear_bit((ffs(shadow_accessed_mask) - 1),
			  (unsigned long *)sptep);
	} else {
		/*
		 * Capture the dirty status of the page, so that it doesn't get
		 * lost when the SPTE is marked for access tracking.
		 */
		if (is_writable_pte(spte))
			kvm_set_pfn_dirty(spte_to_pfn(spte));

		spte = mark_spte_for_access_track(spte);
		mmu_spte_update_no_track(sptep, spte);
	}

	return true;
}

634 635
static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
{
636 637 638 639 640
	/*
	 * Prevent page table teardown by making any free-er wait during
	 * kvm_flush_remote_tlbs() IPI to all active vcpus.
	 */
	local_irq_disable();
641

642 643 644 645
	/*
	 * Make sure a following spte read is not reordered ahead of the write
	 * to vcpu->mode.
	 */
646
	smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
647 648 649 650
}

static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
{
651 652
	/*
	 * Make sure the write to vcpu->mode is not reordered in front of
653
	 * reads to sptes.  If it does, kvm_mmu_commit_zap_page() can see us
654 655
	 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
	 */
656
	smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
657
	local_irq_enable();
658 659
}

660
static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect)
661
{
662 663
	int r;

664
	/* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */
665 666
	r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
				       1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM);
667
	if (r)
668
		return r;
669 670
	r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache,
				       PT64_ROOT_MAX_LEVEL);
671
	if (r)
672
		return r;
673
	if (maybe_indirect) {
674 675
		r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_gfn_array_cache,
					       PT64_ROOT_MAX_LEVEL);
676 677 678
		if (r)
			return r;
	}
679 680
	return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
					  PT64_ROOT_MAX_LEVEL);
681 682 683 684
}

static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
{
685 686 687 688
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache);
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache);
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_gfn_array_cache);
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
689 690
}

691
static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
692
{
693
	return kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
694 695
}

696
static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
697
{
698
	kmem_cache_free(pte_list_desc_cache, pte_list_desc);
699 700
}

701 702 703 704 705 706 707 708 709 710
static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
{
	if (!sp->role.direct)
		return sp->gfns[index];

	return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
}

static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
{
711
	if (!sp->role.direct) {
712
		sp->gfns[index] = gfn;
713 714 715 716 717 718 719 720
		return;
	}

	if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
		pr_err_ratelimited("gfn mismatch under direct page %llx "
				   "(expected %llx, got %llx)\n",
				   sp->gfn,
				   kvm_mmu_page_get_gfn(sp, index), gfn);
721 722
}

M
Marcelo Tosatti 已提交
723
/*
724 725
 * Return the pointer to the large page information for a given gfn,
 * handling slots that are not large page aligned.
M
Marcelo Tosatti 已提交
726
 */
727 728 729
static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
					      struct kvm_memory_slot *slot,
					      int level)
M
Marcelo Tosatti 已提交
730 731 732
{
	unsigned long idx;

733
	idx = gfn_to_index(gfn, slot->base_gfn, level);
734
	return &slot->arch.lpage_info[level - 2][idx];
M
Marcelo Tosatti 已提交
735 736
}

737 738 739 740 741 742
static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
					    gfn_t gfn, int count)
{
	struct kvm_lpage_info *linfo;
	int i;

743
	for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
		linfo = lpage_info_slot(gfn, slot, i);
		linfo->disallow_lpage += count;
		WARN_ON(linfo->disallow_lpage < 0);
	}
}

void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
{
	update_gfn_disallow_lpage_count(slot, gfn, 1);
}

void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
{
	update_gfn_disallow_lpage_count(slot, gfn, -1);
}

760
static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
M
Marcelo Tosatti 已提交
761
{
762
	struct kvm_memslots *slots;
763
	struct kvm_memory_slot *slot;
764
	gfn_t gfn;
M
Marcelo Tosatti 已提交
765

766
	kvm->arch.indirect_shadow_pages++;
767
	gfn = sp->gfn;
768 769
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
770 771

	/* the non-leaf shadow pages are keeping readonly. */
772
	if (sp->role.level > PG_LEVEL_4K)
773 774 775
		return kvm_slot_page_track_add_page(kvm, slot, gfn,
						    KVM_PAGE_TRACK_WRITE);

776
	kvm_mmu_gfn_disallow_lpage(slot, gfn);
M
Marcelo Tosatti 已提交
777 778
}

779
void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
P
Paolo Bonzini 已提交
780 781 782 783 784
{
	if (sp->lpage_disallowed)
		return;

	++kvm->stat.nx_lpage_splits;
785 786
	list_add_tail(&sp->lpage_disallowed_link,
		      &kvm->arch.lpage_disallowed_mmu_pages);
P
Paolo Bonzini 已提交
787 788 789
	sp->lpage_disallowed = true;
}

790
static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
M
Marcelo Tosatti 已提交
791
{
792
	struct kvm_memslots *slots;
793
	struct kvm_memory_slot *slot;
794
	gfn_t gfn;
M
Marcelo Tosatti 已提交
795

796
	kvm->arch.indirect_shadow_pages--;
797
	gfn = sp->gfn;
798 799
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
800
	if (sp->role.level > PG_LEVEL_4K)
801 802 803
		return kvm_slot_page_track_remove_page(kvm, slot, gfn,
						       KVM_PAGE_TRACK_WRITE);

804
	kvm_mmu_gfn_allow_lpage(slot, gfn);
M
Marcelo Tosatti 已提交
805 806
}

807
void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
P
Paolo Bonzini 已提交
808 809 810
{
	--kvm->stat.nx_lpage_splits;
	sp->lpage_disallowed = false;
811
	list_del(&sp->lpage_disallowed_link);
P
Paolo Bonzini 已提交
812 813
}

814 815 816
static struct kvm_memory_slot *
gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
			    bool no_dirty_log)
M
Marcelo Tosatti 已提交
817 818
{
	struct kvm_memory_slot *slot;
819

820
	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
821 822 823 824
	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
		return NULL;
	if (no_dirty_log && slot->dirty_bitmap)
		return NULL;
825 826 827 828

	return slot;
}

829
/*
830
 * About rmap_head encoding:
831
 *
832 833
 * If the bit zero of rmap_head->val is clear, then it points to the only spte
 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
834
 * pte_list_desc containing more mappings.
835 836 837 838
 */

/*
 * Returns the number of pointers in the rmap chain, not counting the new one.
839
 */
840
static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
841
			struct kvm_rmap_head *rmap_head)
842
{
843
	struct pte_list_desc *desc;
844
	int i, count = 0;
845

846
	if (!rmap_head->val) {
847
		rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
848 849
		rmap_head->val = (unsigned long)spte;
	} else if (!(rmap_head->val & 1)) {
850 851
		rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
		desc = mmu_alloc_pte_list_desc(vcpu);
852
		desc->sptes[0] = (u64 *)rmap_head->val;
A
Avi Kivity 已提交
853
		desc->sptes[1] = spte;
854
		rmap_head->val = (unsigned long)desc | 1;
855
		++count;
856
	} else {
857
		rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
858
		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
859
		while (desc->sptes[PTE_LIST_EXT-1]) {
860
			count += PTE_LIST_EXT;
861 862 863 864 865 866

			if (!desc->more) {
				desc->more = mmu_alloc_pte_list_desc(vcpu);
				desc = desc->more;
				break;
			}
867 868
			desc = desc->more;
		}
A
Avi Kivity 已提交
869
		for (i = 0; desc->sptes[i]; ++i)
870
			++count;
A
Avi Kivity 已提交
871
		desc->sptes[i] = spte;
872
	}
873
	return count;
874 875
}

876
static void
877 878 879
pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
			   struct pte_list_desc *desc, int i,
			   struct pte_list_desc *prev_desc)
880 881 882
{
	int j;

883
	for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
884
		;
A
Avi Kivity 已提交
885 886
	desc->sptes[i] = desc->sptes[j];
	desc->sptes[j] = NULL;
887 888 889
	if (j != 0)
		return;
	if (!prev_desc && !desc->more)
890
		rmap_head->val = 0;
891 892 893 894
	else
		if (prev_desc)
			prev_desc->more = desc->more;
		else
895
			rmap_head->val = (unsigned long)desc->more | 1;
896
	mmu_free_pte_list_desc(desc);
897 898
}

899
static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
900
{
901 902
	struct pte_list_desc *desc;
	struct pte_list_desc *prev_desc;
903 904
	int i;

905
	if (!rmap_head->val) {
906
		pr_err("%s: %p 0->BUG\n", __func__, spte);
907
		BUG();
908
	} else if (!(rmap_head->val & 1)) {
909
		rmap_printk("%s:  %p 1->0\n", __func__, spte);
910
		if ((u64 *)rmap_head->val != spte) {
911
			pr_err("%s:  %p 1->BUG\n", __func__, spte);
912 913
			BUG();
		}
914
		rmap_head->val = 0;
915
	} else {
916
		rmap_printk("%s:  %p many->many\n", __func__, spte);
917
		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
918 919
		prev_desc = NULL;
		while (desc) {
920
			for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
A
Avi Kivity 已提交
921
				if (desc->sptes[i] == spte) {
922 923
					pte_list_desc_remove_entry(rmap_head,
							desc, i, prev_desc);
924 925
					return;
				}
926
			}
927 928 929
			prev_desc = desc;
			desc = desc->more;
		}
930
		pr_err("%s: %p many->many\n", __func__, spte);
931 932 933 934
		BUG();
	}
}

935 936 937 938 939 940
static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep)
{
	mmu_spte_clear_track_bits(sptep);
	__pte_list_remove(sptep, rmap_head);
}

941 942
static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
					   struct kvm_memory_slot *slot)
943
{
944
	unsigned long idx;
945

946
	idx = gfn_to_index(gfn, slot->base_gfn, level);
947
	return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
948 949
}

950 951
static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
					 struct kvm_mmu_page *sp)
952
{
953
	struct kvm_memslots *slots;
954 955
	struct kvm_memory_slot *slot;

956 957
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
958
	return __gfn_to_rmap(gfn, sp->role.level, slot);
959 960
}

961 962
static bool rmap_can_add(struct kvm_vcpu *vcpu)
{
963
	struct kvm_mmu_memory_cache *mc;
964

965
	mc = &vcpu->arch.mmu_pte_list_desc_cache;
966
	return kvm_mmu_memory_cache_nr_free_objects(mc);
967 968
}

969 970 971
static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
{
	struct kvm_mmu_page *sp;
972
	struct kvm_rmap_head *rmap_head;
973

974
	sp = sptep_to_sp(spte);
975
	kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
976 977
	rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
	return pte_list_add(vcpu, spte, rmap_head);
978 979 980 981 982 983
}

static void rmap_remove(struct kvm *kvm, u64 *spte)
{
	struct kvm_mmu_page *sp;
	gfn_t gfn;
984
	struct kvm_rmap_head *rmap_head;
985

986
	sp = sptep_to_sp(spte);
987
	gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
988
	rmap_head = gfn_to_rmap(kvm, gfn, sp);
989
	__pte_list_remove(spte, rmap_head);
990 991
}

992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004
/*
 * Used by the following functions to iterate through the sptes linked by a
 * rmap.  All fields are private and not assumed to be used outside.
 */
struct rmap_iterator {
	/* private fields */
	struct pte_list_desc *desc;	/* holds the sptep if not NULL */
	int pos;			/* index of the sptep */
};

/*
 * Iteration must be started by this function.  This should also be used after
 * removing/dropping sptes from the rmap link because in such cases the
M
Miaohe Lin 已提交
1005
 * information in the iterator may not be valid.
1006 1007 1008
 *
 * Returns sptep if found, NULL otherwise.
 */
1009 1010
static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
			   struct rmap_iterator *iter)
1011
{
1012 1013
	u64 *sptep;

1014
	if (!rmap_head->val)
1015 1016
		return NULL;

1017
	if (!(rmap_head->val & 1)) {
1018
		iter->desc = NULL;
1019 1020
		sptep = (u64 *)rmap_head->val;
		goto out;
1021 1022
	}

1023
	iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1024
	iter->pos = 0;
1025 1026 1027 1028
	sptep = iter->desc->sptes[iter->pos];
out:
	BUG_ON(!is_shadow_present_pte(*sptep));
	return sptep;
1029 1030 1031 1032 1033 1034 1035 1036 1037
}

/*
 * Must be used with a valid iterator: e.g. after rmap_get_first().
 *
 * Returns sptep if found, NULL otherwise.
 */
static u64 *rmap_get_next(struct rmap_iterator *iter)
{
1038 1039
	u64 *sptep;

1040 1041 1042 1043 1044
	if (iter->desc) {
		if (iter->pos < PTE_LIST_EXT - 1) {
			++iter->pos;
			sptep = iter->desc->sptes[iter->pos];
			if (sptep)
1045
				goto out;
1046 1047 1048 1049 1050 1051 1052
		}

		iter->desc = iter->desc->more;

		if (iter->desc) {
			iter->pos = 0;
			/* desc->sptes[0] cannot be NULL */
1053 1054
			sptep = iter->desc->sptes[iter->pos];
			goto out;
1055 1056 1057 1058
		}
	}

	return NULL;
1059 1060 1061
out:
	BUG_ON(!is_shadow_present_pte(*sptep));
	return sptep;
1062 1063
}

1064 1065
#define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)			\
	for (_spte_ = rmap_get_first(_rmap_head_, _iter_);		\
1066
	     _spte_; _spte_ = rmap_get_next(_iter_))
1067

1068
static void drop_spte(struct kvm *kvm, u64 *sptep)
1069
{
1070
	if (mmu_spte_clear_track_bits(sptep))
1071
		rmap_remove(kvm, sptep);
A
Avi Kivity 已提交
1072 1073
}

1074 1075 1076 1077

static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
{
	if (is_large_pte(*sptep)) {
1078
		WARN_ON(sptep_to_sp(sptep)->role.level == PG_LEVEL_4K);
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
		drop_spte(kvm, sptep);
		--kvm->stat.lpages;
		return true;
	}

	return false;
}

static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
{
1089
	if (__drop_large_spte(vcpu->kvm, sptep)) {
1090
		struct kvm_mmu_page *sp = sptep_to_sp(sptep);
1091 1092 1093 1094

		kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
			KVM_PAGES_PER_HPAGE(sp->role.level));
	}
1095 1096 1097
}

/*
1098
 * Write-protect on the specified @sptep, @pt_protect indicates whether
1099
 * spte write-protection is caused by protecting shadow page table.
1100
 *
T
Tiejun Chen 已提交
1101
 * Note: write protection is difference between dirty logging and spte
1102 1103 1104 1105 1106
 * protection:
 * - for dirty logging, the spte can be set to writable at anytime if
 *   its dirty bitmap is properly set.
 * - for spte protection, the spte can be writable only after unsync-ing
 *   shadow page.
1107
 *
1108
 * Return true if tlb need be flushed.
1109
 */
1110
static bool spte_write_protect(u64 *sptep, bool pt_protect)
1111 1112 1113
{
	u64 spte = *sptep;

1114
	if (!is_writable_pte(spte) &&
1115
	      !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1116 1117 1118 1119
		return false;

	rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);

1120 1121
	if (pt_protect)
		spte &= ~SPTE_MMU_WRITEABLE;
1122
	spte = spte & ~PT_WRITABLE_MASK;
1123

1124
	return mmu_spte_update(sptep, spte);
1125 1126
}

1127 1128
static bool __rmap_write_protect(struct kvm *kvm,
				 struct kvm_rmap_head *rmap_head,
1129
				 bool pt_protect)
1130
{
1131 1132
	u64 *sptep;
	struct rmap_iterator iter;
1133
	bool flush = false;
1134

1135
	for_each_rmap_spte(rmap_head, &iter, sptep)
1136
		flush |= spte_write_protect(sptep, pt_protect);
1137

1138
	return flush;
1139 1140
}

1141
static bool spte_clear_dirty(u64 *sptep)
1142 1143 1144 1145 1146
{
	u64 spte = *sptep;

	rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);

1147
	MMU_WARN_ON(!spte_ad_enabled(spte));
1148 1149 1150 1151
	spte &= ~shadow_dirty_mask;
	return mmu_spte_update(sptep, spte);
}

1152
static bool spte_wrprot_for_clear_dirty(u64 *sptep)
1153 1154 1155
{
	bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
					       (unsigned long *)sptep);
1156
	if (was_writable && !spte_ad_enabled(*sptep))
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
		kvm_set_pfn_dirty(spte_to_pfn(*sptep));

	return was_writable;
}

/*
 * Gets the GFN ready for another round of dirty logging by clearing the
 *	- D bit on ad-enabled SPTEs, and
 *	- W bit on ad-disabled SPTEs.
 * Returns true iff any D or W bits were cleared.
 */
1168
static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1169 1170 1171 1172 1173
{
	u64 *sptep;
	struct rmap_iterator iter;
	bool flush = false;

1174
	for_each_rmap_spte(rmap_head, &iter, sptep)
1175 1176
		if (spte_ad_need_write_protect(*sptep))
			flush |= spte_wrprot_for_clear_dirty(sptep);
1177
		else
1178
			flush |= spte_clear_dirty(sptep);
1179 1180 1181 1182

	return flush;
}

1183
static bool spte_set_dirty(u64 *sptep)
1184 1185 1186 1187 1188
{
	u64 spte = *sptep;

	rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);

1189
	/*
1190
	 * Similar to the !kvm_x86_ops.slot_disable_log_dirty case,
1191 1192 1193
	 * do not bother adding back write access to pages marked
	 * SPTE_AD_WRPROT_ONLY_MASK.
	 */
1194 1195 1196 1197 1198
	spte |= shadow_dirty_mask;

	return mmu_spte_update(sptep, spte);
}

1199
static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1200 1201 1202 1203 1204
{
	u64 *sptep;
	struct rmap_iterator iter;
	bool flush = false;

1205
	for_each_rmap_spte(rmap_head, &iter, sptep)
1206 1207
		if (spte_ad_enabled(*sptep))
			flush |= spte_set_dirty(sptep);
1208 1209 1210 1211

	return flush;
}

1212
/**
1213
 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1214 1215 1216 1217 1218 1219 1220 1221
 * @kvm: kvm instance
 * @slot: slot to protect
 * @gfn_offset: start of the BITS_PER_LONG pages we care about
 * @mask: indicates which pages we should protect
 *
 * Used when we do not need to care about huge page mappings: e.g. during dirty
 * logging we do not have any such mappings.
 */
1222
static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1223 1224
				     struct kvm_memory_slot *slot,
				     gfn_t gfn_offset, unsigned long mask)
1225
{
1226
	struct kvm_rmap_head *rmap_head;
1227

1228 1229 1230
	if (kvm->arch.tdp_mmu_enabled)
		kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
				slot->base_gfn + gfn_offset, mask, true);
1231
	while (mask) {
1232
		rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1233
					  PG_LEVEL_4K, slot);
1234
		__rmap_write_protect(kvm, rmap_head, false);
M
Marcelo Tosatti 已提交
1235

1236 1237 1238
		/* clear the first set bit */
		mask &= mask - 1;
	}
1239 1240
}

1241
/**
1242 1243
 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
 * protect the page if the D-bit isn't supported.
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
 * @kvm: kvm instance
 * @slot: slot to clear D-bit
 * @gfn_offset: start of the BITS_PER_LONG pages we care about
 * @mask: indicates which pages we should clear D-bit
 *
 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
 */
void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
				     struct kvm_memory_slot *slot,
				     gfn_t gfn_offset, unsigned long mask)
{
1255
	struct kvm_rmap_head *rmap_head;
1256

1257 1258 1259
	if (kvm->arch.tdp_mmu_enabled)
		kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
				slot->base_gfn + gfn_offset, mask, false);
1260
	while (mask) {
1261
		rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1262
					  PG_LEVEL_4K, slot);
1263
		__rmap_clear_dirty(kvm, rmap_head);
1264 1265 1266 1267 1268 1269 1270

		/* clear the first set bit */
		mask &= mask - 1;
	}
}
EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);

1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
/**
 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
 * PT level pages.
 *
 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
 * enable dirty logging for them.
 *
 * Used when we do not need to care about huge page mappings: e.g. during dirty
 * logging we do not have any such mappings.
 */
void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
				struct kvm_memory_slot *slot,
				gfn_t gfn_offset, unsigned long mask)
{
1285 1286
	if (kvm_x86_ops.enable_log_dirty_pt_masked)
		kvm_x86_ops.enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1287 1288 1289
				mask);
	else
		kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1290 1291
}

1292 1293
bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
				    struct kvm_memory_slot *slot, u64 gfn)
1294
{
1295
	struct kvm_rmap_head *rmap_head;
1296
	int i;
1297
	bool write_protected = false;
1298

1299
	for (i = PG_LEVEL_4K; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
1300
		rmap_head = __gfn_to_rmap(gfn, i, slot);
1301
		write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1302 1303
	}

1304 1305 1306 1307
	if (kvm->arch.tdp_mmu_enabled)
		write_protected |=
			kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn);

1308
	return write_protected;
1309 1310
}

1311 1312 1313 1314 1315 1316 1317 1318
static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
{
	struct kvm_memory_slot *slot;

	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
	return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
}

1319
static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1320
{
1321 1322
	u64 *sptep;
	struct rmap_iterator iter;
1323
	bool flush = false;
1324

1325
	while ((sptep = rmap_get_first(rmap_head, &iter))) {
1326
		rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1327

1328
		pte_list_remove(rmap_head, sptep);
1329
		flush = true;
1330
	}
1331

1332 1333 1334
	return flush;
}

1335
static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1336 1337 1338
			   struct kvm_memory_slot *slot, gfn_t gfn, int level,
			   unsigned long data)
{
1339
	return kvm_zap_rmapp(kvm, rmap_head);
1340 1341
}

1342
static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1343 1344
			     struct kvm_memory_slot *slot, gfn_t gfn, int level,
			     unsigned long data)
1345
{
1346 1347
	u64 *sptep;
	struct rmap_iterator iter;
1348
	int need_flush = 0;
1349
	u64 new_spte;
1350
	pte_t *ptep = (pte_t *)data;
D
Dan Williams 已提交
1351
	kvm_pfn_t new_pfn;
1352 1353 1354

	WARN_ON(pte_huge(*ptep));
	new_pfn = pte_pfn(*ptep);
1355

1356
restart:
1357
	for_each_rmap_spte(rmap_head, &iter, sptep) {
1358
		rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1359
			    sptep, *sptep, gfn, level);
1360

1361
		need_flush = 1;
1362

1363
		if (pte_write(*ptep)) {
1364
			pte_list_remove(rmap_head, sptep);
1365
			goto restart;
1366
		} else {
1367 1368
			new_spte = kvm_mmu_changed_pte_notifier_make_spte(
					*sptep, new_pfn);
1369 1370 1371

			mmu_spte_clear_track_bits(sptep);
			mmu_spte_set(sptep, new_spte);
1372 1373
		}
	}
1374

1375 1376 1377 1378 1379
	if (need_flush && kvm_available_flush_tlb_with_range()) {
		kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
		return 0;
	}

1380
	return need_flush;
1381 1382
}

1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
struct slot_rmap_walk_iterator {
	/* input fields. */
	struct kvm_memory_slot *slot;
	gfn_t start_gfn;
	gfn_t end_gfn;
	int start_level;
	int end_level;

	/* output fields. */
	gfn_t gfn;
1393
	struct kvm_rmap_head *rmap;
1394 1395 1396
	int level;

	/* private field. */
1397
	struct kvm_rmap_head *end_rmap;
1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
};

static void
rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
{
	iterator->level = level;
	iterator->gfn = iterator->start_gfn;
	iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
	iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
					   iterator->slot);
}

static void
slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
		    struct kvm_memory_slot *slot, int start_level,
		    int end_level, gfn_t start_gfn, gfn_t end_gfn)
{
	iterator->slot = slot;
	iterator->start_level = start_level;
	iterator->end_level = end_level;
	iterator->start_gfn = start_gfn;
	iterator->end_gfn = end_gfn;

	rmap_walk_init_level(iterator, iterator->start_level);
}

static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
{
	return !!iterator->rmap;
}

static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
{
	if (++iterator->rmap <= iterator->end_rmap) {
		iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
		return;
	}

	if (++iterator->level > iterator->end_level) {
		iterator->rmap = NULL;
		return;
	}

	rmap_walk_init_level(iterator, iterator->level);
}

#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,	\
	   _start_gfn, _end_gfn, _iter_)				\
	for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,		\
				 _end_level_, _start_gfn, _end_gfn);	\
	     slot_rmap_walk_okay(_iter_);				\
	     slot_rmap_walk_next(_iter_))

1451 1452 1453 1454 1455
static int kvm_handle_hva_range(struct kvm *kvm,
				unsigned long start,
				unsigned long end,
				unsigned long data,
				int (*handler)(struct kvm *kvm,
1456
					       struct kvm_rmap_head *rmap_head,
1457
					       struct kvm_memory_slot *slot,
1458 1459
					       gfn_t gfn,
					       int level,
1460
					       unsigned long data))
1461
{
1462
	struct kvm_memslots *slots;
1463
	struct kvm_memory_slot *memslot;
1464 1465
	struct slot_rmap_walk_iterator iterator;
	int ret = 0;
1466
	int i;
1467

1468 1469 1470 1471 1472
	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
		kvm_for_each_memslot(memslot, slots) {
			unsigned long hva_start, hva_end;
			gfn_t gfn_start, gfn_end;
1473

1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
			hva_start = max(start, memslot->userspace_addr);
			hva_end = min(end, memslot->userspace_addr +
				      (memslot->npages << PAGE_SHIFT));
			if (hva_start >= hva_end)
				continue;
			/*
			 * {gfn(page) | page intersects with [hva_start, hva_end)} =
			 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
			 */
			gfn_start = hva_to_gfn_memslot(hva_start, memslot);
			gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);

1486
			for_each_slot_rmap_range(memslot, PG_LEVEL_4K,
1487
						 KVM_MAX_HUGEPAGE_LEVEL,
1488 1489 1490 1491 1492
						 gfn_start, gfn_end - 1,
						 &iterator)
				ret |= handler(kvm, iterator.rmap, memslot,
					       iterator.gfn, iterator.level, data);
		}
1493 1494
	}

1495
	return ret;
1496 1497
}

1498 1499
static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
			  unsigned long data,
1500 1501
			  int (*handler)(struct kvm *kvm,
					 struct kvm_rmap_head *rmap_head,
1502
					 struct kvm_memory_slot *slot,
1503
					 gfn_t gfn, int level,
1504 1505 1506
					 unsigned long data))
{
	return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1507 1508
}

1509 1510
int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end,
			unsigned flags)
1511
{
1512 1513 1514 1515 1516 1517 1518 1519
	int r;

	r = kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);

	if (kvm->arch.tdp_mmu_enabled)
		r |= kvm_tdp_mmu_zap_hva_range(kvm, start, end);

	return r;
1520 1521
}

1522
int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1523
{
1524 1525 1526 1527 1528 1529 1530 1531
	int r;

	r = kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);

	if (kvm->arch.tdp_mmu_enabled)
		r |= kvm_tdp_mmu_set_spte_hva(kvm, hva, &pte);

	return r;
1532 1533
}

1534
static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1535 1536
			 struct kvm_memory_slot *slot, gfn_t gfn, int level,
			 unsigned long data)
1537
{
1538
	u64 *sptep;
1539
	struct rmap_iterator iter;
1540 1541
	int young = 0;

1542 1543
	for_each_rmap_spte(rmap_head, &iter, sptep)
		young |= mmu_spte_age(sptep);
1544

1545
	trace_kvm_age_page(gfn, level, slot, young);
1546 1547 1548
	return young;
}

1549
static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1550 1551
			      struct kvm_memory_slot *slot, gfn_t gfn,
			      int level, unsigned long data)
A
Andrea Arcangeli 已提交
1552
{
1553 1554
	u64 *sptep;
	struct rmap_iterator iter;
A
Andrea Arcangeli 已提交
1555

1556 1557 1558 1559
	for_each_rmap_spte(rmap_head, &iter, sptep)
		if (is_accessed_spte(*sptep))
			return 1;
	return 0;
A
Andrea Arcangeli 已提交
1560 1561
}

1562 1563
#define RMAP_RECYCLE_THRESHOLD 1000

1564
static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1565
{
1566
	struct kvm_rmap_head *rmap_head;
1567 1568
	struct kvm_mmu_page *sp;

1569
	sp = sptep_to_sp(spte);
1570

1571
	rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1572

1573
	kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
1574 1575
	kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
			KVM_PAGES_PER_HPAGE(sp->role.level));
1576 1577
}

A
Andres Lagar-Cavilla 已提交
1578
int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1579
{
1580 1581 1582 1583 1584 1585 1586
	int young = false;

	young = kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
	if (kvm->arch.tdp_mmu_enabled)
		young |= kvm_tdp_mmu_age_hva_range(kvm, start, end);

	return young;
1587 1588
}

A
Andrea Arcangeli 已提交
1589 1590
int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
{
1591 1592 1593 1594 1595 1596 1597
	int young = false;

	young = kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
	if (kvm->arch.tdp_mmu_enabled)
		young |= kvm_tdp_mmu_test_age_hva(kvm, hva);

	return young;
A
Andrea Arcangeli 已提交
1598 1599
}

1600
#ifdef MMU_DEBUG
1601
static int is_empty_shadow_page(u64 *spt)
A
Avi Kivity 已提交
1602
{
1603 1604 1605
	u64 *pos;
	u64 *end;

1606
	for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1607
		if (is_shadow_present_pte(*pos)) {
1608
			printk(KERN_ERR "%s: %p %llx\n", __func__,
1609
			       pos, *pos);
A
Avi Kivity 已提交
1610
			return 0;
1611
		}
A
Avi Kivity 已提交
1612 1613
	return 1;
}
1614
#endif
A
Avi Kivity 已提交
1615

1616 1617 1618 1619 1620 1621
/*
 * This value is the sum of all of the kvm instances's
 * kvm->arch.n_used_mmu_pages values.  We need a global,
 * aggregate version in order to make the slab shrinker
 * faster
 */
1622
static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, unsigned long nr)
1623 1624 1625 1626 1627
{
	kvm->arch.n_used_mmu_pages += nr;
	percpu_counter_add(&kvm_total_used_mmu_pages, nr);
}

1628
static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1629
{
1630
	MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1631
	hlist_del(&sp->hash_link);
1632 1633
	list_del(&sp->link);
	free_page((unsigned long)sp->spt);
1634 1635
	if (!sp->role.direct)
		free_page((unsigned long)sp->gfns);
1636
	kmem_cache_free(mmu_page_header_cache, sp);
1637 1638
}

1639 1640
static unsigned kvm_page_table_hashfn(gfn_t gfn)
{
1641
	return hash_64(gfn, KVM_MMU_HASH_SHIFT);
1642 1643
}

1644
static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1645
				    struct kvm_mmu_page *sp, u64 *parent_pte)
1646 1647 1648 1649
{
	if (!parent_pte)
		return;

1650
	pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1651 1652
}

1653
static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1654 1655
				       u64 *parent_pte)
{
1656
	__pte_list_remove(parent_pte, &sp->parent_ptes);
1657 1658
}

1659 1660 1661 1662
static void drop_parent_pte(struct kvm_mmu_page *sp,
			    u64 *parent_pte)
{
	mmu_page_remove_parent_pte(sp, parent_pte);
1663
	mmu_spte_clear_no_track(parent_pte);
1664 1665
}

1666
static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
M
Marcelo Tosatti 已提交
1667
{
1668
	struct kvm_mmu_page *sp;
1669

1670 1671
	sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
	sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache);
1672
	if (!direct)
1673
		sp->gfns = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_gfn_array_cache);
1674
	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1675 1676 1677 1678 1679 1680

	/*
	 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
	 * depends on valid pages being added to the head of the list.  See
	 * comments in kvm_zap_obsolete_pages().
	 */
1681
	sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
1682 1683 1684
	list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
	kvm_mod_used_mmu_pages(vcpu->kvm, +1);
	return sp;
M
Marcelo Tosatti 已提交
1685 1686
}

1687
static void mark_unsync(u64 *spte);
1688
static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1689
{
1690 1691 1692 1693 1694 1695
	u64 *sptep;
	struct rmap_iterator iter;

	for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
		mark_unsync(sptep);
	}
1696 1697
}

1698
static void mark_unsync(u64 *spte)
1699
{
1700
	struct kvm_mmu_page *sp;
1701
	unsigned int index;
1702

1703
	sp = sptep_to_sp(spte);
1704 1705
	index = spte - sp->spt;
	if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1706
		return;
1707
	if (sp->unsync_children++)
1708
		return;
1709
	kvm_mmu_mark_parents_unsync(sp);
1710 1711
}

1712
static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1713
			       struct kvm_mmu_page *sp)
1714
{
1715
	return 0;
1716 1717
}

1718 1719
static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
				 struct kvm_mmu_page *sp, u64 *spte,
1720
				 const void *pte)
1721 1722 1723 1724
{
	WARN_ON(1);
}

1725 1726 1727 1728 1729 1730 1731 1732 1733 1734
#define KVM_PAGE_ARRAY_NR 16

struct kvm_mmu_pages {
	struct mmu_page_and_offset {
		struct kvm_mmu_page *sp;
		unsigned int idx;
	} page[KVM_PAGE_ARRAY_NR];
	unsigned int nr;
};

1735 1736
static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
			 int idx)
1737
{
1738
	int i;
1739

1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750
	if (sp->unsync)
		for (i=0; i < pvec->nr; i++)
			if (pvec->page[i].sp == sp)
				return 0;

	pvec->page[pvec->nr].sp = sp;
	pvec->page[pvec->nr].idx = idx;
	pvec->nr++;
	return (pvec->nr == KVM_PAGE_ARRAY_NR);
}

1751 1752 1753 1754 1755 1756 1757
static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
{
	--sp->unsync_children;
	WARN_ON((int)sp->unsync_children < 0);
	__clear_bit(idx, sp->unsync_child_bitmap);
}

1758 1759 1760 1761
static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
	int i, ret, nr_unsync_leaf = 0;
1762

1763
	for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1764
		struct kvm_mmu_page *child;
1765 1766
		u64 ent = sp->spt[i];

1767 1768 1769 1770
		if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
			clear_unsync_child_bit(sp, i);
			continue;
		}
1771

1772
		child = to_shadow_page(ent & PT64_BASE_ADDR_MASK);
1773 1774 1775 1776 1777 1778

		if (child->unsync_children) {
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;

			ret = __mmu_unsync_walk(child, pvec);
1779 1780 1781 1782
			if (!ret) {
				clear_unsync_child_bit(sp, i);
				continue;
			} else if (ret > 0) {
1783
				nr_unsync_leaf += ret;
1784
			} else
1785 1786 1787 1788 1789 1790
				return ret;
		} else if (child->unsync) {
			nr_unsync_leaf++;
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;
		} else
1791
			clear_unsync_child_bit(sp, i);
1792 1793
	}

1794 1795 1796
	return nr_unsync_leaf;
}

1797 1798
#define INVALID_INDEX (-1)

1799 1800 1801
static int mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
P
Paolo Bonzini 已提交
1802
	pvec->nr = 0;
1803 1804 1805
	if (!sp->unsync_children)
		return 0;

1806
	mmu_pages_add(pvec, sp, INVALID_INDEX);
1807
	return __mmu_unsync_walk(sp, pvec);
1808 1809 1810 1811 1812
}

static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
{
	WARN_ON(!sp->unsync);
1813
	trace_kvm_mmu_sync_page(sp);
1814 1815 1816 1817
	sp->unsync = 0;
	--kvm->stat.mmu_unsync;
}

1818 1819
static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				     struct list_head *invalid_list);
1820 1821
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list);
1822

1823 1824
#define for_each_valid_sp(_kvm, _sp, _list)				\
	hlist_for_each_entry(_sp, _list, hash_link)			\
1825
		if (is_obsolete_sp((_kvm), (_sp))) {			\
1826
		} else
1827 1828

#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)			\
1829 1830
	for_each_valid_sp(_kvm, _sp,					\
	  &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)])	\
1831
		if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
1832

1833 1834 1835 1836 1837
static inline bool is_ept_sp(struct kvm_mmu_page *sp)
{
	return sp->role.cr0_wp && sp->role.smap_andnot_wp;
}

1838
/* @sp->gfn should be write-protected at the call site */
1839 1840
static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
			    struct list_head *invalid_list)
1841
{
1842 1843
	if ((!is_ept_sp(sp) && sp->role.gpte_is_8_bytes != !!is_pae(vcpu)) ||
	    vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
1844
		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1845
		return false;
1846 1847
	}

1848
	return true;
1849 1850
}

1851 1852 1853 1854
static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
					struct list_head *invalid_list,
					bool remote_flush)
{
1855
	if (!remote_flush && list_empty(invalid_list))
1856 1857 1858 1859 1860 1861 1862 1863 1864
		return false;

	if (!list_empty(invalid_list))
		kvm_mmu_commit_zap_page(kvm, invalid_list);
	else
		kvm_flush_remote_tlbs(kvm);
	return true;
}

1865 1866 1867
static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
				 struct list_head *invalid_list,
				 bool remote_flush, bool local_flush)
1868
{
1869
	if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush))
1870
		return;
1871

1872
	if (local_flush)
1873
		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1874 1875
}

1876 1877 1878 1879 1880 1881 1882
#ifdef CONFIG_KVM_MMU_AUDIT
#include "mmu_audit.c"
#else
static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
static void mmu_audit_disable(void) { }
#endif

1883 1884
static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
{
1885 1886
	return sp->role.invalid ||
	       unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1887 1888
}

1889
static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1890
			 struct list_head *invalid_list)
1891
{
1892 1893
	kvm_unlink_unsync_page(vcpu->kvm, sp);
	return __kvm_sync_page(vcpu, sp, invalid_list);
1894 1895
}

1896
/* @gfn should be write-protected at the call site */
1897 1898
static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
			   struct list_head *invalid_list)
1899 1900
{
	struct kvm_mmu_page *s;
1901
	bool ret = false;
1902

1903
	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1904
		if (!s->unsync)
1905 1906
			continue;

1907
		WARN_ON(s->role.level != PG_LEVEL_4K);
1908
		ret |= kvm_sync_page(vcpu, s, invalid_list);
1909 1910
	}

1911
	return ret;
1912 1913
}

1914
struct mmu_page_path {
1915 1916
	struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
	unsigned int idx[PT64_ROOT_MAX_LEVEL];
1917 1918
};

1919
#define for_each_sp(pvec, sp, parents, i)			\
P
Paolo Bonzini 已提交
1920
		for (i = mmu_pages_first(&pvec, &parents);	\
1921 1922 1923
			i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});	\
			i = mmu_pages_next(&pvec, &parents, i))

1924 1925 1926
static int mmu_pages_next(struct kvm_mmu_pages *pvec,
			  struct mmu_page_path *parents,
			  int i)
1927 1928 1929 1930 1931
{
	int n;

	for (n = i+1; n < pvec->nr; n++) {
		struct kvm_mmu_page *sp = pvec->page[n].sp;
P
Paolo Bonzini 已提交
1932 1933
		unsigned idx = pvec->page[n].idx;
		int level = sp->role.level;
1934

P
Paolo Bonzini 已提交
1935
		parents->idx[level-1] = idx;
1936
		if (level == PG_LEVEL_4K)
P
Paolo Bonzini 已提交
1937
			break;
1938

P
Paolo Bonzini 已提交
1939
		parents->parent[level-2] = sp;
1940 1941 1942 1943 1944
	}

	return n;
}

P
Paolo Bonzini 已提交
1945 1946 1947 1948 1949 1950 1951 1952 1953
static int mmu_pages_first(struct kvm_mmu_pages *pvec,
			   struct mmu_page_path *parents)
{
	struct kvm_mmu_page *sp;
	int level;

	if (pvec->nr == 0)
		return 0;

1954 1955
	WARN_ON(pvec->page[0].idx != INVALID_INDEX);

P
Paolo Bonzini 已提交
1956 1957
	sp = pvec->page[0].sp;
	level = sp->role.level;
1958
	WARN_ON(level == PG_LEVEL_4K);
P
Paolo Bonzini 已提交
1959 1960 1961 1962 1963 1964 1965 1966 1967 1968

	parents->parent[level-2] = sp;

	/* Also set up a sentinel.  Further entries in pvec are all
	 * children of sp, so this element is never overwritten.
	 */
	parents->parent[level-1] = NULL;
	return mmu_pages_next(pvec, parents, 0);
}

1969
static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1970
{
1971 1972 1973 1974 1975 1976 1977 1978 1979
	struct kvm_mmu_page *sp;
	unsigned int level = 0;

	do {
		unsigned int idx = parents->idx[level];
		sp = parents->parent[level];
		if (!sp)
			return;

1980
		WARN_ON(idx == INVALID_INDEX);
1981
		clear_unsync_child_bit(sp, idx);
1982
		level++;
P
Paolo Bonzini 已提交
1983
	} while (!sp->unsync_children);
1984
}
1985

1986 1987 1988 1989 1990 1991 1992
static void mmu_sync_children(struct kvm_vcpu *vcpu,
			      struct kvm_mmu_page *parent)
{
	int i;
	struct kvm_mmu_page *sp;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
1993
	LIST_HEAD(invalid_list);
1994
	bool flush = false;
1995 1996

	while (mmu_unsync_walk(parent, &pages)) {
1997
		bool protected = false;
1998 1999

		for_each_sp(pages, sp, parents, i)
2000
			protected |= rmap_write_protect(vcpu, sp->gfn);
2001

2002
		if (protected) {
2003
			kvm_flush_remote_tlbs(vcpu->kvm);
2004 2005
			flush = false;
		}
2006

2007
		for_each_sp(pages, sp, parents, i) {
2008
			flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2009 2010
			mmu_pages_clear_parents(&parents);
		}
2011 2012 2013 2014 2015
		if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
			kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
			cond_resched_lock(&vcpu->kvm->mmu_lock);
			flush = false;
		}
2016
	}
2017 2018

	kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2019 2020
}

2021 2022
static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
{
2023
	atomic_set(&sp->write_flooding_count,  0);
2024 2025 2026 2027
}

static void clear_sp_write_flooding_count(u64 *spte)
{
2028
	__clear_sp_write_flooding_count(sptep_to_sp(spte));
2029 2030
}

2031 2032 2033 2034
static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
					     gfn_t gfn,
					     gva_t gaddr,
					     unsigned level,
2035
					     int direct,
2036
					     unsigned int access)
2037
{
2038
	bool direct_mmu = vcpu->arch.mmu->direct_map;
2039
	union kvm_mmu_page_role role;
2040
	struct hlist_head *sp_list;
2041
	unsigned quadrant;
2042 2043
	struct kvm_mmu_page *sp;
	bool need_sync = false;
2044
	bool flush = false;
2045
	int collisions = 0;
2046
	LIST_HEAD(invalid_list);
2047

2048
	role = vcpu->arch.mmu->mmu_role.base;
2049
	role.level = level;
2050
	role.direct = direct;
2051
	if (role.direct)
2052
		role.gpte_is_8_bytes = true;
2053
	role.access = access;
2054
	if (!direct_mmu && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
2055 2056 2057 2058
		quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
		quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
		role.quadrant = quadrant;
	}
2059 2060 2061

	sp_list = &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)];
	for_each_valid_sp(vcpu->kvm, sp, sp_list) {
2062 2063 2064 2065 2066
		if (sp->gfn != gfn) {
			collisions++;
			continue;
		}

2067 2068
		if (!need_sync && sp->unsync)
			need_sync = true;
2069

2070 2071
		if (sp->role.word != role.word)
			continue;
2072

2073 2074 2075
		if (direct_mmu)
			goto trace_get_page;

2076 2077 2078 2079 2080 2081 2082 2083
		if (sp->unsync) {
			/* The page is good, but __kvm_sync_page might still end
			 * up zapping it.  If so, break in order to rebuild it.
			 */
			if (!__kvm_sync_page(vcpu, sp, &invalid_list))
				break;

			WARN_ON(!list_empty(&invalid_list));
2084
			kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2085
		}
2086

2087
		if (sp->unsync_children)
2088
			kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2089

2090
		__clear_sp_write_flooding_count(sp);
2091 2092

trace_get_page:
2093
		trace_kvm_mmu_get_page(sp, false);
2094
		goto out;
2095
	}
2096

A
Avi Kivity 已提交
2097
	++vcpu->kvm->stat.mmu_cache_miss;
2098 2099 2100

	sp = kvm_mmu_alloc_page(vcpu, direct);

2101 2102
	sp->gfn = gfn;
	sp->role = role;
2103
	hlist_add_head(&sp->hash_link, sp_list);
2104
	if (!direct) {
2105 2106 2107 2108 2109 2110
		/*
		 * we should do write protection before syncing pages
		 * otherwise the content of the synced shadow page may
		 * be inconsistent with guest page table.
		 */
		account_shadowed(vcpu->kvm, sp);
2111
		if (level == PG_LEVEL_4K && rmap_write_protect(vcpu, gfn))
2112
			kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
2113

2114
		if (level > PG_LEVEL_4K && need_sync)
2115
			flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
2116
	}
A
Avi Kivity 已提交
2117
	trace_kvm_mmu_get_page(sp, true);
2118 2119

	kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2120 2121 2122
out:
	if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
		vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2123
	return sp;
2124 2125
}

2126 2127 2128
static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
					struct kvm_vcpu *vcpu, hpa_t root,
					u64 addr)
2129 2130
{
	iterator->addr = addr;
2131
	iterator->shadow_addr = root;
2132
	iterator->level = vcpu->arch.mmu->shadow_root_level;
2133

2134
	if (iterator->level == PT64_ROOT_4LEVEL &&
2135 2136
	    vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
	    !vcpu->arch.mmu->direct_map)
2137 2138
		--iterator->level;

2139
	if (iterator->level == PT32E_ROOT_LEVEL) {
2140 2141 2142 2143
		/*
		 * prev_root is currently only used for 64-bit hosts. So only
		 * the active root_hpa is valid here.
		 */
2144
		BUG_ON(root != vcpu->arch.mmu->root_hpa);
2145

2146
		iterator->shadow_addr
2147
			= vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2148 2149 2150 2151 2152 2153 2154
		iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
		--iterator->level;
		if (!iterator->shadow_addr)
			iterator->level = 0;
	}
}

2155 2156 2157
static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
			     struct kvm_vcpu *vcpu, u64 addr)
{
2158
	shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
2159 2160 2161
				    addr);
}

2162 2163
static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
{
2164
	if (iterator->level < PG_LEVEL_4K)
2165
		return false;
2166

2167 2168 2169 2170 2171
	iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
	iterator->sptep	= ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
	return true;
}

2172 2173
static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
			       u64 spte)
2174
{
2175
	if (is_last_spte(spte, iterator->level)) {
2176 2177 2178 2179
		iterator->level = 0;
		return;
	}

2180
	iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2181 2182 2183
	--iterator->level;
}

2184 2185
static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
{
2186
	__shadow_walk_next(iterator, *iterator->sptep);
2187 2188
}

2189 2190 2191 2192 2193 2194 2195 2196 2197
static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
			     struct kvm_mmu_page *sp)
{
	u64 spte;

	BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);

	spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp));

2198
	mmu_spte_set(sptep, spte);
2199 2200 2201 2202 2203

	mmu_page_add_parent_pte(vcpu, sp, sptep);

	if (sp->unsync_children || sp->unsync)
		mark_unsync(sptep);
2204 2205
}

2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218
static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
				   unsigned direct_access)
{
	if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
		struct kvm_mmu_page *child;

		/*
		 * For the direct sp, if the guest pte's dirty bit
		 * changed form clean to dirty, it will corrupt the
		 * sp's access: allow writable in the read-only sp,
		 * so we should update the spte at this point to get
		 * a new sp with the correct access.
		 */
2219
		child = to_shadow_page(*sptep & PT64_BASE_ADDR_MASK);
2220 2221 2222
		if (child->role.access == direct_access)
			return;

2223
		drop_parent_pte(child, sptep);
2224
		kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
2225 2226 2227
	}
}

2228 2229 2230
/* Returns the number of zapped non-leaf child shadow pages. */
static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
			    u64 *spte, struct list_head *invalid_list)
2231 2232 2233 2234 2235 2236
{
	u64 pte;
	struct kvm_mmu_page *child;

	pte = *spte;
	if (is_shadow_present_pte(pte)) {
X
Xiao Guangrong 已提交
2237
		if (is_last_spte(pte, sp->role.level)) {
2238
			drop_spte(kvm, spte);
X
Xiao Guangrong 已提交
2239 2240 2241
			if (is_large_pte(pte))
				--kvm->stat.lpages;
		} else {
2242
			child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2243
			drop_parent_pte(child, spte);
2244 2245 2246 2247 2248 2249 2250 2251 2252 2253

			/*
			 * Recursively zap nested TDP SPs, parentless SPs are
			 * unlikely to be used again in the near future.  This
			 * avoids retaining a large number of stale nested SPs.
			 */
			if (tdp_enabled && invalid_list &&
			    child->role.guest_mode && !child->parent_ptes.val)
				return kvm_mmu_prepare_zap_page(kvm, child,
								invalid_list);
2254
		}
2255
	} else if (is_mmio_spte(pte)) {
2256
		mmu_spte_clear_no_track(spte);
2257
	}
2258
	return 0;
2259 2260
}

2261 2262 2263
static int kvm_mmu_page_unlink_children(struct kvm *kvm,
					struct kvm_mmu_page *sp,
					struct list_head *invalid_list)
2264
{
2265
	int zapped = 0;
2266 2267
	unsigned i;

2268
	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2269 2270 2271
		zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list);

	return zapped;
2272 2273
}

2274
static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2275
{
2276 2277
	u64 *sptep;
	struct rmap_iterator iter;
2278

2279
	while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2280
		drop_parent_pte(sp, sptep);
2281 2282
}

2283
static int mmu_zap_unsync_children(struct kvm *kvm,
2284 2285
				   struct kvm_mmu_page *parent,
				   struct list_head *invalid_list)
2286
{
2287 2288 2289
	int i, zapped = 0;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
2290

2291
	if (parent->role.level == PG_LEVEL_4K)
2292
		return 0;
2293 2294 2295 2296 2297

	while (mmu_unsync_walk(parent, &pages)) {
		struct kvm_mmu_page *sp;

		for_each_sp(pages, sp, parents, i) {
2298
			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2299
			mmu_pages_clear_parents(&parents);
2300
			zapped++;
2301 2302 2303 2304
		}
	}

	return zapped;
2305 2306
}

2307 2308 2309 2310
static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
				       struct kvm_mmu_page *sp,
				       struct list_head *invalid_list,
				       int *nr_zapped)
2311
{
2312
	bool list_unstable;
A
Avi Kivity 已提交
2313

2314
	trace_kvm_mmu_prepare_zap_page(sp);
2315
	++kvm->stat.mmu_shadow_zapped;
2316
	*nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2317
	*nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list);
2318
	kvm_mmu_unlink_parents(kvm, sp);
2319

2320 2321 2322
	/* Zapping children means active_mmu_pages has become unstable. */
	list_unstable = *nr_zapped;

2323
	if (!sp->role.invalid && !sp->role.direct)
2324
		unaccount_shadowed(kvm, sp);
2325

2326 2327
	if (sp->unsync)
		kvm_unlink_unsync_page(kvm, sp);
2328
	if (!sp->root_count) {
2329
		/* Count self */
2330
		(*nr_zapped)++;
2331 2332 2333 2334 2335 2336 2337 2338 2339 2340

		/*
		 * Already invalid pages (previously active roots) are not on
		 * the active page list.  See list_del() in the "else" case of
		 * !sp->root_count.
		 */
		if (sp->role.invalid)
			list_add(&sp->link, invalid_list);
		else
			list_move(&sp->link, invalid_list);
2341
		kvm_mod_used_mmu_pages(kvm, -1);
2342
	} else {
2343 2344 2345 2346 2347
		/*
		 * Remove the active root from the active page list, the root
		 * will be explicitly freed when the root_count hits zero.
		 */
		list_del(&sp->link);
2348

2349 2350 2351 2352 2353 2354
		/*
		 * Obsolete pages cannot be used on any vCPUs, see the comment
		 * in kvm_mmu_zap_all_fast().  Note, is_obsolete_sp() also
		 * treats invalid shadow pages as being obsolete.
		 */
		if (!is_obsolete_sp(kvm, sp))
2355
			kvm_reload_remote_mmus(kvm);
2356
	}
2357

P
Paolo Bonzini 已提交
2358 2359 2360
	if (sp->lpage_disallowed)
		unaccount_huge_nx_page(kvm, sp);

2361
	sp->role.invalid = 1;
2362 2363 2364 2365 2366 2367 2368 2369 2370 2371
	return list_unstable;
}

static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				     struct list_head *invalid_list)
{
	int nr_zapped;

	__kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
	return nr_zapped;
2372 2373
}

2374 2375 2376
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list)
{
2377
	struct kvm_mmu_page *sp, *nsp;
2378 2379 2380 2381

	if (list_empty(invalid_list))
		return;

2382
	/*
2383 2384 2385 2386 2387 2388 2389
	 * We need to make sure everyone sees our modifications to
	 * the page tables and see changes to vcpu->mode here. The barrier
	 * in the kvm_flush_remote_tlbs() achieves this. This pairs
	 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
	 *
	 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
	 * guest mode and/or lockless shadow page table walks.
2390 2391
	 */
	kvm_flush_remote_tlbs(kvm);
2392

2393
	list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2394
		WARN_ON(!sp->role.invalid || sp->root_count);
2395
		kvm_mmu_free_page(sp);
2396
	}
2397 2398
}

2399 2400
static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm,
						  unsigned long nr_to_zap)
2401
{
2402 2403
	unsigned long total_zapped = 0;
	struct kvm_mmu_page *sp, *tmp;
2404
	LIST_HEAD(invalid_list);
2405 2406
	bool unstable;
	int nr_zapped;
2407 2408

	if (list_empty(&kvm->arch.active_mmu_pages))
2409 2410
		return 0;

2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423
restart:
	list_for_each_entry_safe(sp, tmp, &kvm->arch.active_mmu_pages, link) {
		/*
		 * Don't zap active root pages, the page itself can't be freed
		 * and zapping it will just force vCPUs to realloc and reload.
		 */
		if (sp->root_count)
			continue;

		unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list,
						      &nr_zapped);
		total_zapped += nr_zapped;
		if (total_zapped >= nr_to_zap)
2424 2425
			break;

2426 2427
		if (unstable)
			goto restart;
2428
	}
2429

2430 2431 2432 2433 2434 2435
	kvm_mmu_commit_zap_page(kvm, &invalid_list);

	kvm->stat.mmu_recycled += total_zapped;
	return total_zapped;
}

2436 2437 2438 2439 2440 2441 2442
static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm)
{
	if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
		return kvm->arch.n_max_mmu_pages -
			kvm->arch.n_used_mmu_pages;

	return 0;
2443 2444
}

2445 2446
static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
{
2447
	unsigned long avail = kvm_mmu_available_pages(vcpu->kvm);
2448

2449
	if (likely(avail >= KVM_MIN_FREE_MMU_PAGES))
2450 2451
		return 0;

2452
	kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail);
2453 2454 2455 2456 2457 2458

	if (!kvm_mmu_available_pages(vcpu->kvm))
		return -ENOSPC;
	return 0;
}

2459 2460
/*
 * Changing the number of mmu pages allocated to the vm
2461
 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2462
 */
2463
void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2464
{
2465 2466
	spin_lock(&kvm->mmu_lock);

2467
	if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2468 2469
		kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages -
						  goal_nr_mmu_pages);
2470

2471
		goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2472 2473
	}

2474
	kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2475 2476

	spin_unlock(&kvm->mmu_lock);
2477 2478
}

2479
int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2480
{
2481
	struct kvm_mmu_page *sp;
2482
	LIST_HEAD(invalid_list);
2483 2484
	int r;

2485
	pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2486
	r = 0;
2487
	spin_lock(&kvm->mmu_lock);
2488
	for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2489
		pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2490 2491
			 sp->role.word);
		r = 1;
2492
		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2493
	}
2494
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2495 2496
	spin_unlock(&kvm->mmu_lock);

2497
	return r;
2498
}
2499
EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2500

2501
static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2502 2503 2504 2505 2506 2507 2508 2509
{
	trace_kvm_mmu_unsync_page(sp);
	++vcpu->kvm->stat.mmu_unsync;
	sp->unsync = 1;

	kvm_mmu_mark_parents_unsync(sp);
}

2510 2511
bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
			    bool can_unsync)
2512
{
2513
	struct kvm_mmu_page *sp;
2514

2515 2516
	if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
		return true;
2517

2518
	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2519
		if (!can_unsync)
2520
			return true;
2521

2522 2523
		if (sp->unsync)
			continue;
2524

2525
		WARN_ON(sp->role.level != PG_LEVEL_4K);
2526
		kvm_unsync_page(vcpu, sp);
2527
	}
2528

2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567
	/*
	 * We need to ensure that the marking of unsync pages is visible
	 * before the SPTE is updated to allow writes because
	 * kvm_mmu_sync_roots() checks the unsync flags without holding
	 * the MMU lock and so can race with this. If the SPTE was updated
	 * before the page had been marked as unsync-ed, something like the
	 * following could happen:
	 *
	 * CPU 1                    CPU 2
	 * ---------------------------------------------------------------------
	 * 1.2 Host updates SPTE
	 *     to be writable
	 *                      2.1 Guest writes a GPTE for GVA X.
	 *                          (GPTE being in the guest page table shadowed
	 *                           by the SP from CPU 1.)
	 *                          This reads SPTE during the page table walk.
	 *                          Since SPTE.W is read as 1, there is no
	 *                          fault.
	 *
	 *                      2.2 Guest issues TLB flush.
	 *                          That causes a VM Exit.
	 *
	 *                      2.3 kvm_mmu_sync_pages() reads sp->unsync.
	 *                          Since it is false, so it just returns.
	 *
	 *                      2.4 Guest accesses GVA X.
	 *                          Since the mapping in the SP was not updated,
	 *                          so the old mapping for GVA X incorrectly
	 *                          gets used.
	 * 1.1 Host marks SP
	 *     as unsync
	 *     (sp->unsync = true)
	 *
	 * The write barrier below ensures that 1.1 happens before 1.2 and thus
	 * the situation in 2.4 does not arise. The implicit barrier in 2.2
	 * pairs with this write barrier.
	 */
	smp_wmb();

2568
	return false;
2569 2570
}

2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590
static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
		    unsigned int pte_access, int level,
		    gfn_t gfn, kvm_pfn_t pfn, bool speculative,
		    bool can_unsync, bool host_writable)
{
	u64 spte;
	struct kvm_mmu_page *sp;
	int ret;

	if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
		return 0;

	sp = sptep_to_sp(sptep);

	ret = make_spte(vcpu, pte_access, level, gfn, pfn, *sptep, speculative,
			can_unsync, host_writable, sp_ad_disabled(sp), &spte);

	if (spte & PT_WRITABLE_MASK)
		kvm_vcpu_mark_page_dirty(vcpu, gfn);

2591 2592 2593
	if (*sptep == spte)
		ret |= SET_SPTE_SPURIOUS;
	else if (mmu_spte_update(sptep, spte))
2594
		ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
M
Marcelo Tosatti 已提交
2595 2596 2597
	return ret;
}

2598
static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2599
			unsigned int pte_access, bool write_fault, int level,
2600 2601
			gfn_t gfn, kvm_pfn_t pfn, bool speculative,
			bool host_writable)
M
Marcelo Tosatti 已提交
2602 2603
{
	int was_rmapped = 0;
2604
	int rmap_count;
2605
	int set_spte_ret;
2606
	int ret = RET_PF_FIXED;
2607
	bool flush = false;
M
Marcelo Tosatti 已提交
2608

2609 2610
	pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
		 *sptep, write_fault, gfn);
M
Marcelo Tosatti 已提交
2611

2612
	if (is_shadow_present_pte(*sptep)) {
M
Marcelo Tosatti 已提交
2613 2614 2615 2616
		/*
		 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
		 * the parent of the now unreachable PTE.
		 */
2617
		if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) {
M
Marcelo Tosatti 已提交
2618
			struct kvm_mmu_page *child;
A
Avi Kivity 已提交
2619
			u64 pte = *sptep;
M
Marcelo Tosatti 已提交
2620

2621
			child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2622
			drop_parent_pte(child, sptep);
2623
			flush = true;
A
Avi Kivity 已提交
2624
		} else if (pfn != spte_to_pfn(*sptep)) {
2625
			pgprintk("hfn old %llx new %llx\n",
A
Avi Kivity 已提交
2626
				 spte_to_pfn(*sptep), pfn);
2627
			drop_spte(vcpu->kvm, sptep);
2628
			flush = true;
2629 2630
		} else
			was_rmapped = 1;
M
Marcelo Tosatti 已提交
2631
	}
2632

2633 2634 2635
	set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
				speculative, true, host_writable);
	if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
M
Marcelo Tosatti 已提交
2636
		if (write_fault)
2637
			ret = RET_PF_EMULATE;
2638
		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2639
	}
2640

2641
	if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
2642 2643
		kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
				KVM_PAGES_PER_HPAGE(level));
M
Marcelo Tosatti 已提交
2644

2645
	if (unlikely(is_mmio_spte(*sptep)))
2646
		ret = RET_PF_EMULATE;
2647

2648 2649 2650 2651 2652 2653 2654 2655 2656
	/*
	 * The fault is fully spurious if and only if the new SPTE and old SPTE
	 * are identical, and emulation is not required.
	 */
	if ((set_spte_ret & SET_SPTE_SPURIOUS) && ret == RET_PF_FIXED) {
		WARN_ON_ONCE(!was_rmapped);
		return RET_PF_SPURIOUS;
	}

A
Avi Kivity 已提交
2657
	pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2658
	trace_kvm_mmu_set_spte(level, gfn, sptep);
A
Avi Kivity 已提交
2659
	if (!was_rmapped && is_large_pte(*sptep))
M
Marcelo Tosatti 已提交
2660 2661
		++vcpu->kvm->stat.lpages;

2662 2663 2664 2665 2666 2667
	if (is_shadow_present_pte(*sptep)) {
		if (!was_rmapped) {
			rmap_count = rmap_add(vcpu, sptep, gfn);
			if (rmap_count > RMAP_RECYCLE_THRESHOLD)
				rmap_recycle(vcpu, sptep, gfn);
		}
2668
	}
2669

2670
	return ret;
2671 2672
}

D
Dan Williams 已提交
2673
static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2674 2675 2676 2677
				     bool no_dirty_log)
{
	struct kvm_memory_slot *slot;

2678
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2679
	if (!slot)
2680
		return KVM_PFN_ERR_FAULT;
2681

2682
	return gfn_to_pfn_memslot_atomic(slot, gfn);
2683 2684 2685 2686 2687 2688 2689
}

static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
				    struct kvm_mmu_page *sp,
				    u64 *start, u64 *end)
{
	struct page *pages[PTE_PREFETCH_NUM];
2690
	struct kvm_memory_slot *slot;
2691
	unsigned int access = sp->role.access;
2692 2693 2694 2695
	int i, ret;
	gfn_t gfn;

	gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2696 2697
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
	if (!slot)
2698 2699
		return -1;

2700
	ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2701 2702 2703
	if (ret <= 0)
		return -1;

2704
	for (i = 0; i < ret; i++, gfn++, start++) {
2705
		mmu_set_spte(vcpu, start, access, false, sp->role.level, gfn,
2706
			     page_to_pfn(pages[i]), true, true);
2707 2708
		put_page(pages[i]);
	}
2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724

	return 0;
}

static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
				  struct kvm_mmu_page *sp, u64 *sptep)
{
	u64 *spte, *start = NULL;
	int i;

	WARN_ON(!sp->role.direct);

	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
	spte = sp->spt + i;

	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2725
		if (is_shadow_present_pte(*spte) || spte == sptep) {
2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739
			if (!start)
				continue;
			if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
				break;
			start = NULL;
		} else if (!start)
			start = spte;
	}
}

static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
{
	struct kvm_mmu_page *sp;

2740
	sp = sptep_to_sp(sptep);
2741

2742
	/*
2743 2744 2745
	 * Without accessed bits, there's no way to distinguish between
	 * actually accessed translations and prefetched, so disable pte
	 * prefetch if accessed bits aren't available.
2746
	 */
2747
	if (sp_ad_disabled(sp))
2748 2749
		return;

2750
	if (sp->role.level > PG_LEVEL_4K)
2751 2752 2753 2754 2755
		return;

	__direct_pte_prefetch(vcpu, sp, sptep);
}

2756
static int host_pfn_mapping_level(struct kvm_vcpu *vcpu, gfn_t gfn,
2757
				  kvm_pfn_t pfn, struct kvm_memory_slot *slot)
2758 2759 2760 2761 2762
{
	unsigned long hva;
	pte_t *pte;
	int level;

2763
	if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn))
2764
		return PG_LEVEL_4K;
2765

2766 2767 2768 2769 2770 2771 2772 2773
	/*
	 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
	 * is not solely for performance, it's also necessary to avoid the
	 * "writable" check in __gfn_to_hva_many(), which will always fail on
	 * read-only memslots due to gfn_to_hva() assuming writes.  Earlier
	 * page fault steps have already verified the guest isn't writing a
	 * read-only memslot.
	 */
2774 2775 2776 2777
	hva = __gfn_to_hva_memslot(slot, gfn);

	pte = lookup_address_in_mm(vcpu->kvm->mm, hva, &level);
	if (unlikely(!pte))
2778
		return PG_LEVEL_4K;
2779 2780 2781 2782

	return level;
}

B
Ben Gardon 已提交
2783 2784 2785
int kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, gfn_t gfn,
			    int max_level, kvm_pfn_t *pfnp,
			    bool huge_page_disallowed, int *req_level)
2786
{
2787
	struct kvm_memory_slot *slot;
2788
	struct kvm_lpage_info *linfo;
2789
	kvm_pfn_t pfn = *pfnp;
2790
	kvm_pfn_t mask;
2791
	int level;
2792

2793 2794
	*req_level = PG_LEVEL_4K;

2795 2796
	if (unlikely(max_level == PG_LEVEL_4K))
		return PG_LEVEL_4K;
2797

2798
	if (is_error_noslot_pfn(pfn) || kvm_is_reserved_pfn(pfn))
2799
		return PG_LEVEL_4K;
2800

2801 2802
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, true);
	if (!slot)
2803
		return PG_LEVEL_4K;
2804

2805
	max_level = min(max_level, max_huge_page_level);
2806
	for ( ; max_level > PG_LEVEL_4K; max_level--) {
2807 2808
		linfo = lpage_info_slot(gfn, slot, max_level);
		if (!linfo->disallow_lpage)
2809 2810 2811
			break;
	}

2812 2813
	if (max_level == PG_LEVEL_4K)
		return PG_LEVEL_4K;
2814 2815

	level = host_pfn_mapping_level(vcpu, gfn, pfn, slot);
2816
	if (level == PG_LEVEL_4K)
2817
		return level;
2818

2819 2820 2821 2822 2823 2824 2825 2826
	*req_level = level = min(level, max_level);

	/*
	 * Enforce the iTLB multihit workaround after capturing the requested
	 * level, which will be used to do precise, accurate accounting.
	 */
	if (huge_page_disallowed)
		return PG_LEVEL_4K;
2827 2828

	/*
2829 2830
	 * mmu_notifier_retry() was successful and mmu_lock is held, so
	 * the pmd can't be split from under us.
2831
	 */
2832 2833 2834
	mask = KVM_PAGES_PER_HPAGE(level) - 1;
	VM_BUG_ON((gfn & mask) != (pfn & mask));
	*pfnp = pfn & ~mask;
2835 2836

	return level;
2837 2838
}

B
Ben Gardon 已提交
2839 2840
void disallowed_hugepage_adjust(u64 spte, gfn_t gfn, int cur_level,
				kvm_pfn_t *pfnp, int *goal_levelp)
P
Paolo Bonzini 已提交
2841
{
B
Ben Gardon 已提交
2842
	int level = *goal_levelp;
P
Paolo Bonzini 已提交
2843

2844
	if (cur_level == level && level > PG_LEVEL_4K &&
P
Paolo Bonzini 已提交
2845 2846 2847 2848 2849 2850 2851 2852 2853
	    is_shadow_present_pte(spte) &&
	    !is_large_pte(spte)) {
		/*
		 * A small SPTE exists for this pfn, but FNAME(fetch)
		 * and __direct_map would like to create a large PTE
		 * instead: just force them to go down another level,
		 * patching back for them into pfn the next 9 bits of
		 * the address.
		 */
2854 2855
		u64 page_mask = KVM_PAGES_PER_HPAGE(level) -
				KVM_PAGES_PER_HPAGE(level - 1);
P
Paolo Bonzini 已提交
2856
		*pfnp |= gfn & page_mask;
B
Ben Gardon 已提交
2857
		(*goal_levelp)--;
P
Paolo Bonzini 已提交
2858 2859 2860
	}
}

2861
static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
2862
			int map_writable, int max_level, kvm_pfn_t pfn,
2863
			bool prefault, bool is_tdp)
2864
{
2865 2866 2867 2868
	bool nx_huge_page_workaround_enabled = is_nx_huge_page_enabled();
	bool write = error_code & PFERR_WRITE_MASK;
	bool exec = error_code & PFERR_FETCH_MASK;
	bool huge_page_disallowed = exec && nx_huge_page_workaround_enabled;
2869
	struct kvm_shadow_walk_iterator it;
2870
	struct kvm_mmu_page *sp;
2871
	int level, req_level, ret;
2872 2873
	gfn_t gfn = gpa >> PAGE_SHIFT;
	gfn_t base_gfn = gfn;
A
Avi Kivity 已提交
2874

2875
	if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
2876
		return RET_PF_RETRY;
2877

2878 2879
	level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn,
					huge_page_disallowed, &req_level);
2880

2881
	trace_kvm_mmu_spte_requested(gpa, level, pfn);
2882
	for_each_shadow_entry(vcpu, gpa, it) {
P
Paolo Bonzini 已提交
2883 2884 2885 2886
		/*
		 * We cannot overwrite existing page tables with an NX
		 * large page, as the leaf could be executable.
		 */
2887
		if (nx_huge_page_workaround_enabled)
2888 2889
			disallowed_hugepage_adjust(*it.sptep, gfn, it.level,
						   &pfn, &level);
P
Paolo Bonzini 已提交
2890

2891 2892
		base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
		if (it.level == level)
2893
			break;
A
Avi Kivity 已提交
2894

2895 2896 2897 2898
		drop_large_spte(vcpu, it.sptep);
		if (!is_shadow_present_pte(*it.sptep)) {
			sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
					      it.level - 1, true, ACC_ALL);
2899

2900
			link_shadow_page(vcpu, it.sptep, sp);
2901 2902
			if (is_tdp && huge_page_disallowed &&
			    req_level >= it.level)
P
Paolo Bonzini 已提交
2903
				account_huge_nx_page(vcpu->kvm, sp);
2904 2905
		}
	}
2906 2907 2908 2909

	ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL,
			   write, level, base_gfn, pfn, prefault,
			   map_writable);
2910 2911 2912
	if (ret == RET_PF_SPURIOUS)
		return ret;

2913 2914 2915
	direct_pte_prefetch(vcpu, it.sptep);
	++vcpu->stat.pf_fixed;
	return ret;
A
Avi Kivity 已提交
2916 2917
}

H
Huang Ying 已提交
2918
static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2919
{
2920
	send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
2921 2922
}

D
Dan Williams 已提交
2923
static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
2924
{
X
Xiao Guangrong 已提交
2925 2926 2927 2928 2929 2930
	/*
	 * Do not cache the mmio info caused by writing the readonly gfn
	 * into the spte otherwise read access on readonly gfn also can
	 * caused mmio page fault and treat it as mmio access.
	 */
	if (pfn == KVM_PFN_ERR_RO_FAULT)
2931
		return RET_PF_EMULATE;
X
Xiao Guangrong 已提交
2932

2933
	if (pfn == KVM_PFN_ERR_HWPOISON) {
2934
		kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
2935
		return RET_PF_RETRY;
2936
	}
2937

2938
	return -EFAULT;
2939 2940
}

2941
static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2942 2943
				kvm_pfn_t pfn, unsigned int access,
				int *ret_val)
2944 2945
{
	/* The pfn is invalid, report the error! */
2946
	if (unlikely(is_error_pfn(pfn))) {
2947
		*ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2948
		return true;
2949 2950
	}

2951
	if (unlikely(is_noslot_pfn(pfn)))
2952 2953
		vcpu_cache_mmio_info(vcpu, gva, gfn,
				     access & shadow_mmio_access_mask);
2954

2955
	return false;
2956 2957
}

2958
static bool page_fault_can_be_fast(u32 error_code)
2959
{
2960 2961 2962 2963 2964 2965 2966
	/*
	 * Do not fix the mmio spte with invalid generation number which
	 * need to be updated by slow page fault path.
	 */
	if (unlikely(error_code & PFERR_RSVD_MASK))
		return false;

2967 2968 2969 2970 2971
	/* See if the page fault is due to an NX violation */
	if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
		      == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
		return false;

2972
	/*
2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983
	 * #PF can be fast if:
	 * 1. The shadow page table entry is not present, which could mean that
	 *    the fault is potentially caused by access tracking (if enabled).
	 * 2. The shadow page table entry is present and the fault
	 *    is caused by write-protect, that means we just need change the W
	 *    bit of the spte which can be done out of mmu-lock.
	 *
	 * However, if access tracking is disabled we know that a non-present
	 * page must be a genuine page fault where we have to create a new SPTE.
	 * So, if access tracking is disabled, we return true only for write
	 * accesses to a present page.
2984 2985
	 */

2986 2987 2988
	return shadow_acc_track_mask != 0 ||
	       ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
		== (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
2989 2990
}

2991 2992 2993 2994
/*
 * Returns true if the SPTE was fixed successfully. Otherwise,
 * someone else modified the SPTE from its original value.
 */
2995
static bool
2996
fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2997
			u64 *sptep, u64 old_spte, u64 new_spte)
2998 2999 3000 3001 3002
{
	gfn_t gfn;

	WARN_ON(!sp->role.direct);

3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014
	/*
	 * Theoretically we could also set dirty bit (and flush TLB) here in
	 * order to eliminate unnecessary PML logging. See comments in
	 * set_spte. But fast_page_fault is very unlikely to happen with PML
	 * enabled, so we do not do this. This might result in the same GPA
	 * to be logged in PML buffer again when the write really happens, and
	 * eventually to be called by mark_page_dirty twice. But it's also no
	 * harm. This also avoids the TLB flush needed after setting dirty bit
	 * so non-PML cases won't be impacted.
	 *
	 * Compare with set_spte where instead shadow_dirty_mask is set.
	 */
3015
	if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3016 3017
		return false;

3018
	if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
3019 3020 3021 3022 3023 3024 3025
		/*
		 * The gfn of direct spte is stable since it is
		 * calculated by sp->gfn.
		 */
		gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
		kvm_vcpu_mark_page_dirty(vcpu, gfn);
	}
3026 3027 3028 3029

	return true;
}

3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041
static bool is_access_allowed(u32 fault_err_code, u64 spte)
{
	if (fault_err_code & PFERR_FETCH_MASK)
		return is_executable_pte(spte);

	if (fault_err_code & PFERR_WRITE_MASK)
		return is_writable_pte(spte);

	/* Fault was on Read access */
	return spte & PT_PRESENT_MASK;
}

3042
/*
3043
 * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS.
3044
 */
3045 3046
static int fast_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
			   u32 error_code)
3047 3048
{
	struct kvm_shadow_walk_iterator iterator;
3049
	struct kvm_mmu_page *sp;
3050
	int ret = RET_PF_INVALID;
3051
	u64 spte = 0ull;
3052
	uint retry_count = 0;
3053

3054
	if (!page_fault_can_be_fast(error_code))
3055
		return ret;
3056 3057 3058

	walk_shadow_page_lockless_begin(vcpu);

3059
	do {
3060
		u64 new_spte;
3061

3062
		for_each_shadow_entry_lockless(vcpu, cr2_or_gpa, iterator, spte)
3063
			if (!is_shadow_present_pte(spte))
3064 3065
				break;

3066
		sp = sptep_to_sp(iterator.sptep);
3067 3068
		if (!is_last_spte(spte, sp->role.level))
			break;
3069

3070
		/*
3071 3072 3073 3074 3075
		 * Check whether the memory access that caused the fault would
		 * still cause it if it were to be performed right now. If not,
		 * then this is a spurious fault caused by TLB lazily flushed,
		 * or some other CPU has already fixed the PTE after the
		 * current CPU took the fault.
3076 3077 3078 3079
		 *
		 * Need not check the access of upper level table entries since
		 * they are always ACC_ALL.
		 */
3080
		if (is_access_allowed(error_code, spte)) {
3081
			ret = RET_PF_SPURIOUS;
3082 3083
			break;
		}
3084

3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095
		new_spte = spte;

		if (is_access_track_spte(spte))
			new_spte = restore_acc_track_spte(new_spte);

		/*
		 * Currently, to simplify the code, write-protection can
		 * be removed in the fast path only if the SPTE was
		 * write-protected for dirty-logging or access tracking.
		 */
		if ((error_code & PFERR_WRITE_MASK) &&
3096
		    spte_can_locklessly_be_made_writable(spte)) {
3097
			new_spte |= PT_WRITABLE_MASK;
3098 3099

			/*
3100 3101 3102 3103 3104 3105 3106 3107 3108
			 * Do not fix write-permission on the large spte.  Since
			 * we only dirty the first page into the dirty-bitmap in
			 * fast_pf_fix_direct_spte(), other pages are missed
			 * if its slot has dirty logging enabled.
			 *
			 * Instead, we let the slow page fault path create a
			 * normal spte to fix the access.
			 *
			 * See the comments in kvm_arch_commit_memory_region().
3109
			 */
3110
			if (sp->role.level > PG_LEVEL_4K)
3111
				break;
3112
		}
3113

3114
		/* Verify that the fault can be handled in the fast path */
3115 3116
		if (new_spte == spte ||
		    !is_access_allowed(error_code, new_spte))
3117 3118 3119 3120 3121
			break;

		/*
		 * Currently, fast page fault only works for direct mapping
		 * since the gfn is not stable for indirect shadow page. See
3122
		 * Documentation/virt/kvm/locking.rst to get more detail.
3123
		 */
3124 3125 3126
		if (fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte,
					    new_spte)) {
			ret = RET_PF_FIXED;
3127
			break;
3128
		}
3129 3130 3131 3132 3133 3134 3135 3136

		if (++retry_count > 4) {
			printk_once(KERN_WARNING
				"kvm: Fast #PF retrying more than 4 times.\n");
			break;
		}

	} while (true);
3137

3138
	trace_fast_page_fault(vcpu, cr2_or_gpa, error_code, iterator.sptep,
3139
			      spte, ret);
3140 3141
	walk_shadow_page_lockless_end(vcpu);

3142
	return ret;
3143 3144
}

3145 3146
static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
			       struct list_head *invalid_list)
3147
{
3148
	struct kvm_mmu_page *sp;
3149

3150
	if (!VALID_PAGE(*root_hpa))
A
Avi Kivity 已提交
3151
		return;
3152

3153
	sp = to_shadow_page(*root_hpa & PT64_BASE_ADDR_MASK);
3154 3155 3156 3157 3158 3159 3160

	if (kvm_mmu_put_root(kvm, sp)) {
		if (sp->tdp_mmu_page)
			kvm_tdp_mmu_free_root(kvm, sp);
		else if (sp->role.invalid)
			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
	}
3161

3162 3163 3164
	*root_hpa = INVALID_PAGE;
}

3165
/* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
3166 3167
void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
			ulong roots_to_free)
3168
{
3169
	struct kvm *kvm = vcpu->kvm;
3170 3171
	int i;
	LIST_HEAD(invalid_list);
3172
	bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
3173

3174
	BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3175

3176
	/* Before acquiring the MMU lock, see if we need to do any real work. */
3177 3178 3179 3180 3181 3182 3183 3184 3185
	if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
			if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
			    VALID_PAGE(mmu->prev_roots[i].hpa))
				break;

		if (i == KVM_MMU_NUM_PREV_ROOTS)
			return;
	}
3186

3187
	spin_lock(&kvm->mmu_lock);
3188

3189 3190
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
		if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3191
			mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa,
3192
					   &invalid_list);
3193

3194 3195 3196
	if (free_active_root) {
		if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
		    (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3197
			mmu_free_root_page(kvm, &mmu->root_hpa, &invalid_list);
3198 3199 3200
		} else {
			for (i = 0; i < 4; ++i)
				if (mmu->pae_root[i] != 0)
3201
					mmu_free_root_page(kvm,
3202 3203 3204 3205
							   &mmu->pae_root[i],
							   &invalid_list);
			mmu->root_hpa = INVALID_PAGE;
		}
3206
		mmu->root_pgd = 0;
3207
	}
3208

3209 3210
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
	spin_unlock(&kvm->mmu_lock);
3211
}
3212
EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3213

3214 3215 3216 3217
static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
{
	int ret = 0;

3218
	if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) {
3219
		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3220 3221 3222 3223 3224 3225
		ret = 1;
	}

	return ret;
}

3226 3227
static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, gva_t gva,
			    u8 level, bool direct)
3228 3229
{
	struct kvm_mmu_page *sp;
3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247

	spin_lock(&vcpu->kvm->mmu_lock);

	if (make_mmu_pages_available(vcpu)) {
		spin_unlock(&vcpu->kvm->mmu_lock);
		return INVALID_PAGE;
	}
	sp = kvm_mmu_get_page(vcpu, gfn, gva, level, direct, ACC_ALL);
	++sp->root_count;

	spin_unlock(&vcpu->kvm->mmu_lock);
	return __pa(sp->spt);
}

static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
{
	u8 shadow_root_level = vcpu->arch.mmu->shadow_root_level;
	hpa_t root;
3248
	unsigned i;
3249

3250 3251 3252 3253 3254 3255 3256 3257 3258 3259
	if (vcpu->kvm->arch.tdp_mmu_enabled) {
		root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu);

		if (!VALID_PAGE(root))
			return -ENOSPC;
		vcpu->arch.mmu->root_hpa = root;
	} else if (shadow_root_level >= PT64_ROOT_4LEVEL) {
		root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level,
				      true);

3260
		if (!VALID_PAGE(root))
3261
			return -ENOSPC;
3262 3263
		vcpu->arch.mmu->root_hpa = root;
	} else if (shadow_root_level == PT32E_ROOT_LEVEL) {
3264
		for (i = 0; i < 4; ++i) {
3265
			MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->pae_root[i]));
3266

3267 3268 3269
			root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT),
					      i << 30, PT32_ROOT_LEVEL, true);
			if (!VALID_PAGE(root))
3270
				return -ENOSPC;
3271
			vcpu->arch.mmu->pae_root[i] = root | PT_PRESENT_MASK;
3272
		}
3273
		vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3274 3275
	} else
		BUG();
3276

3277 3278
	/* root_pgd is ignored for direct MMUs. */
	vcpu->arch.mmu->root_pgd = 0;
3279 3280 3281 3282 3283

	return 0;
}

static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3284
{
3285
	u64 pdptr, pm_mask;
3286
	gfn_t root_gfn, root_pgd;
3287
	hpa_t root;
3288
	int i;
3289

3290 3291
	root_pgd = vcpu->arch.mmu->get_guest_pgd(vcpu);
	root_gfn = root_pgd >> PAGE_SHIFT;
3292

3293 3294 3295 3296 3297 3298 3299
	if (mmu_check_root(vcpu, root_gfn))
		return 1;

	/*
	 * Do we shadow a long mode page table? If so we need to
	 * write-protect the guests page table root.
	 */
3300
	if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3301
		MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->root_hpa));
3302

3303 3304 3305
		root = mmu_alloc_root(vcpu, root_gfn, 0,
				      vcpu->arch.mmu->shadow_root_level, false);
		if (!VALID_PAGE(root))
3306
			return -ENOSPC;
3307
		vcpu->arch.mmu->root_hpa = root;
3308
		goto set_root_pgd;
3309
	}
3310

3311 3312
	/*
	 * We shadow a 32 bit page table. This may be a legacy 2-level
3313 3314
	 * or a PAE 3-level page table. In either case we need to be aware that
	 * the shadow page table may be a PAE or a long mode page table.
3315
	 */
3316
	pm_mask = PT_PRESENT_MASK;
3317
	if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL)
3318 3319
		pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;

3320
	for (i = 0; i < 4; ++i) {
3321
		MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->pae_root[i]));
3322 3323
		if (vcpu->arch.mmu->root_level == PT32E_ROOT_LEVEL) {
			pdptr = vcpu->arch.mmu->get_pdptr(vcpu, i);
B
Bandan Das 已提交
3324
			if (!(pdptr & PT_PRESENT_MASK)) {
3325
				vcpu->arch.mmu->pae_root[i] = 0;
A
Avi Kivity 已提交
3326 3327
				continue;
			}
A
Avi Kivity 已提交
3328
			root_gfn = pdptr >> PAGE_SHIFT;
3329 3330
			if (mmu_check_root(vcpu, root_gfn))
				return 1;
3331
		}
3332

3333 3334 3335 3336
		root = mmu_alloc_root(vcpu, root_gfn, i << 30,
				      PT32_ROOT_LEVEL, false);
		if (!VALID_PAGE(root))
			return -ENOSPC;
3337
		vcpu->arch.mmu->pae_root[i] = root | pm_mask;
3338
	}
3339
	vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3340 3341 3342 3343 3344

	/*
	 * If we shadow a 32 bit page table with a long mode page
	 * table we enter this path.
	 */
3345 3346
	if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
		if (vcpu->arch.mmu->lm_root == NULL) {
3347 3348 3349 3350 3351 3352 3353
			/*
			 * The additional page necessary for this is only
			 * allocated on demand.
			 */

			u64 *lm_root;

3354
			lm_root = (void*)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3355 3356 3357
			if (lm_root == NULL)
				return 1;

3358
			lm_root[0] = __pa(vcpu->arch.mmu->pae_root) | pm_mask;
3359

3360
			vcpu->arch.mmu->lm_root = lm_root;
3361 3362
		}

3363
		vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->lm_root);
3364 3365
	}

3366 3367
set_root_pgd:
	vcpu->arch.mmu->root_pgd = root_pgd;
3368

3369
	return 0;
3370 3371
}

3372 3373
static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
{
3374
	if (vcpu->arch.mmu->direct_map)
3375 3376 3377 3378 3379
		return mmu_alloc_direct_roots(vcpu);
	else
		return mmu_alloc_shadow_roots(vcpu);
}

3380
void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3381 3382 3383 3384
{
	int i;
	struct kvm_mmu_page *sp;

3385
	if (vcpu->arch.mmu->direct_map)
3386 3387
		return;

3388
	if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3389
		return;
3390

3391
	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3392

3393 3394
	if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
		hpa_t root = vcpu->arch.mmu->root_hpa;
3395
		sp = to_shadow_page(root);
3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413

		/*
		 * Even if another CPU was marking the SP as unsync-ed
		 * simultaneously, any guest page table changes are not
		 * guaranteed to be visible anyway until this VCPU issues a TLB
		 * flush strictly after those changes are made. We only need to
		 * ensure that the other CPU sets these flags before any actual
		 * changes to the page tables are made. The comments in
		 * mmu_need_write_protect() describe what could go wrong if this
		 * requirement isn't satisfied.
		 */
		if (!smp_load_acquire(&sp->unsync) &&
		    !smp_load_acquire(&sp->unsync_children))
			return;

		spin_lock(&vcpu->kvm->mmu_lock);
		kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);

3414
		mmu_sync_children(vcpu, sp);
3415

3416
		kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3417
		spin_unlock(&vcpu->kvm->mmu_lock);
3418 3419
		return;
	}
3420 3421 3422 3423

	spin_lock(&vcpu->kvm->mmu_lock);
	kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);

3424
	for (i = 0; i < 4; ++i) {
3425
		hpa_t root = vcpu->arch.mmu->pae_root[i];
3426

3427
		if (root && VALID_PAGE(root)) {
3428
			root &= PT64_BASE_ADDR_MASK;
3429
			sp = to_shadow_page(root);
3430 3431 3432 3433
			mmu_sync_children(vcpu, sp);
		}
	}

3434
	kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3435
	spin_unlock(&vcpu->kvm->mmu_lock);
3436
}
N
Nadav Har'El 已提交
3437
EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3438

3439
static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr,
3440
				  u32 access, struct x86_exception *exception)
A
Avi Kivity 已提交
3441
{
3442 3443
	if (exception)
		exception->error_code = 0;
A
Avi Kivity 已提交
3444 3445 3446
	return vaddr;
}

3447
static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr,
3448 3449
					 u32 access,
					 struct x86_exception *exception)
3450
{
3451 3452
	if (exception)
		exception->error_code = 0;
3453
	return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3454 3455
}

3456 3457 3458
static bool
__is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
{
3459
	int bit7 = (pte >> 7) & 1;
3460

3461
	return pte & rsvd_check->rsvd_bits_mask[bit7][level-1];
3462 3463
}

3464
static bool __is_bad_mt_xwr(struct rsvd_bits_validate *rsvd_check, u64 pte)
3465
{
3466
	return rsvd_check->bad_mt_xwr & BIT_ULL(pte & 0x3f);
3467 3468
}

3469
static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3470
{
3471 3472 3473 3474 3475 3476 3477
	/*
	 * A nested guest cannot use the MMIO cache if it is using nested
	 * page tables, because cr2 is a nGPA while the cache stores GPAs.
	 */
	if (mmu_is_nested(vcpu))
		return false;

3478 3479 3480 3481 3482 3483
	if (direct)
		return vcpu_match_mmio_gpa(vcpu, addr);

	return vcpu_match_mmio_gva(vcpu, addr);
}

3484 3485 3486 3487 3488
/*
 * Return the level of the lowest level SPTE added to sptes.
 * That SPTE may be non-present.
 */
static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes)
3489 3490
{
	struct kvm_shadow_walk_iterator iterator;
3491 3492
	int leaf = vcpu->arch.mmu->root_level;
	u64 spte;
3493

3494

3495
	walk_shadow_page_lockless_begin(vcpu);
3496

3497
	for (shadow_walk_init(&iterator, vcpu, addr);
3498 3499
	     shadow_walk_okay(&iterator);
	     __shadow_walk_next(&iterator, spte)) {
3500
		leaf = iterator.level;
3501 3502 3503 3504
		spte = mmu_spte_get_lockless(iterator.sptep);

		sptes[leaf - 1] = spte;

3505 3506
		if (!is_shadow_present_pte(spte))
			break;
3507

3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539
	}

	walk_shadow_page_lockless_end(vcpu);

	return leaf;
}

/* return true if reserved bit is detected on spte. */
static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
{
	u64 sptes[PT64_ROOT_MAX_LEVEL];
	struct rsvd_bits_validate *rsvd_check;
	int root = vcpu->arch.mmu->root_level;
	int leaf;
	int level;
	bool reserved = false;

	if (!VALID_PAGE(vcpu->arch.mmu->root_hpa)) {
		*sptep = 0ull;
		return reserved;
	}

	if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa))
		leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes);
	else
		leaf = get_walk(vcpu, addr, sptes);

	rsvd_check = &vcpu->arch.mmu->shadow_zero_check;

	for (level = root; level >= leaf; level--) {
		if (!is_shadow_present_pte(sptes[level - 1]))
			break;
3540 3541 3542 3543 3544
		/*
		 * Use a bitwise-OR instead of a logical-OR to aggregate the
		 * reserved bit and EPT's invalid memtype/XWR checks to avoid
		 * adding a Jcc in the loop.
		 */
3545 3546 3547
		reserved |= __is_bad_mt_xwr(rsvd_check, sptes[level - 1]) |
			    __is_rsvd_bits_set(rsvd_check, sptes[level - 1],
					       level);
3548 3549 3550 3551 3552
	}

	if (reserved) {
		pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
		       __func__, addr);
3553
		for (level = root; level >= leaf; level--)
3554
			pr_err("------ spte 0x%llx level %d.\n",
3555
			       sptes[level - 1], level);
3556
	}
3557

3558 3559
	*sptep = sptes[leaf - 1];

3560
	return reserved;
3561 3562
}

P
Paolo Bonzini 已提交
3563
static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3564 3565
{
	u64 spte;
3566
	bool reserved;
3567

3568
	if (mmio_info_in_cache(vcpu, addr, direct))
3569
		return RET_PF_EMULATE;
3570

3571
	reserved = get_mmio_spte(vcpu, addr, &spte);
3572
	if (WARN_ON(reserved))
3573
		return -EINVAL;
3574 3575 3576

	if (is_mmio_spte(spte)) {
		gfn_t gfn = get_mmio_spte_gfn(spte);
3577
		unsigned int access = get_mmio_spte_access(spte);
3578

3579
		if (!check_mmio_spte(vcpu, spte))
3580
			return RET_PF_INVALID;
3581

3582 3583
		if (direct)
			addr = 0;
X
Xiao Guangrong 已提交
3584 3585

		trace_handle_mmio_page_fault(addr, gfn, access);
3586
		vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3587
		return RET_PF_EMULATE;
3588 3589 3590 3591 3592 3593
	}

	/*
	 * If the page table is zapped by other cpus, let CPU fault again on
	 * the address.
	 */
3594
	return RET_PF_RETRY;
3595 3596
}

3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616
static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
					 u32 error_code, gfn_t gfn)
{
	if (unlikely(error_code & PFERR_RSVD_MASK))
		return false;

	if (!(error_code & PFERR_PRESENT_MASK) ||
	      !(error_code & PFERR_WRITE_MASK))
		return false;

	/*
	 * guest is writing the page which is write tracked which can
	 * not be fixed by page fault handler.
	 */
	if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
		return true;

	return false;
}

3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630
static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
{
	struct kvm_shadow_walk_iterator iterator;
	u64 spte;

	walk_shadow_page_lockless_begin(vcpu);
	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
		clear_sp_write_flooding_count(iterator.sptep);
		if (!is_shadow_present_pte(spte))
			break;
	}
	walk_shadow_page_lockless_end(vcpu);
}

3631 3632
static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
				    gfn_t gfn)
3633 3634
{
	struct kvm_arch_async_pf arch;
X
Xiao Guangrong 已提交
3635

3636
	arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3637
	arch.gfn = gfn;
3638
	arch.direct_map = vcpu->arch.mmu->direct_map;
3639
	arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu);
3640

3641 3642
	return kvm_setup_async_pf(vcpu, cr2_or_gpa,
				  kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3643 3644
}

3645
static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3646 3647
			 gpa_t cr2_or_gpa, kvm_pfn_t *pfn, bool write,
			 bool *writable)
3648
{
3649
	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3650 3651
	bool async;

3652 3653
	/* Don't expose private memslots to L2. */
	if (is_guest_mode(vcpu) && !kvm_is_visible_memslot(slot)) {
3654
		*pfn = KVM_PFN_NOSLOT;
3655
		*writable = false;
3656 3657 3658
		return false;
	}

3659 3660
	async = false;
	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
3661 3662 3663
	if (!async)
		return false; /* *pfn has correct page already */

3664
	if (!prefault && kvm_can_do_async_pf(vcpu)) {
3665
		trace_kvm_try_async_get_page(cr2_or_gpa, gfn);
3666
		if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3667
			trace_kvm_async_pf_doublefault(cr2_or_gpa, gfn);
3668 3669
			kvm_make_request(KVM_REQ_APF_HALT, vcpu);
			return true;
3670
		} else if (kvm_arch_setup_async_pf(vcpu, cr2_or_gpa, gfn))
3671 3672 3673
			return true;
	}

3674
	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
3675 3676 3677
	return false;
}

3678 3679
static int direct_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
			     bool prefault, int max_level, bool is_tdp)
A
Avi Kivity 已提交
3680
{
3681
	bool write = error_code & PFERR_WRITE_MASK;
3682
	bool map_writable;
A
Avi Kivity 已提交
3683

3684 3685 3686
	gfn_t gfn = gpa >> PAGE_SHIFT;
	unsigned long mmu_seq;
	kvm_pfn_t pfn;
3687
	int r;
3688

3689
	if (page_fault_handle_page_track(vcpu, error_code, gfn))
3690
		return RET_PF_EMULATE;
3691

B
Ben Gardon 已提交
3692 3693 3694 3695 3696
	if (!is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa)) {
		r = fast_page_fault(vcpu, gpa, error_code);
		if (r != RET_PF_INVALID)
			return r;
	}
3697

3698
	r = mmu_topup_memory_caches(vcpu, false);
3699 3700
	if (r)
		return r;
3701

3702 3703 3704 3705 3706 3707
	mmu_seq = vcpu->kvm->mmu_notifier_seq;
	smp_rmb();

	if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
		return RET_PF_RETRY;

3708
	if (handle_abnormal_pfn(vcpu, is_tdp ? 0 : gpa, gfn, pfn, ACC_ALL, &r))
3709
		return r;
A
Avi Kivity 已提交
3710

3711 3712 3713 3714
	r = RET_PF_RETRY;
	spin_lock(&vcpu->kvm->mmu_lock);
	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
		goto out_unlock;
3715 3716
	r = make_mmu_pages_available(vcpu);
	if (r)
3717
		goto out_unlock;
B
Ben Gardon 已提交
3718 3719 3720 3721 3722 3723 3724

	if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa))
		r = kvm_tdp_mmu_map(vcpu, gpa, error_code, map_writable, max_level,
				    pfn, prefault);
	else
		r = __direct_map(vcpu, gpa, error_code, map_writable, max_level, pfn,
				 prefault, is_tdp);
3725

3726 3727 3728 3729
out_unlock:
	spin_unlock(&vcpu->kvm->mmu_lock);
	kvm_release_pfn_clean(pfn);
	return r;
A
Avi Kivity 已提交
3730 3731
}

3732 3733 3734 3735 3736 3737 3738
static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa,
				u32 error_code, bool prefault)
{
	pgprintk("%s: gva %lx error %x\n", __func__, gpa, error_code);

	/* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
	return direct_page_fault(vcpu, gpa & PAGE_MASK, error_code, prefault,
3739
				 PG_LEVEL_2M, false);
3740 3741
}

3742
int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
3743
				u64 fault_address, char *insn, int insn_len)
3744 3745
{
	int r = 1;
3746
	u32 flags = vcpu->arch.apf.host_apf_flags;
3747

3748 3749 3750 3751 3752 3753
#ifndef CONFIG_X86_64
	/* A 64-bit CR2 should be impossible on 32-bit KVM. */
	if (WARN_ON_ONCE(fault_address >> 32))
		return -EFAULT;
#endif

P
Paolo Bonzini 已提交
3754
	vcpu->arch.l1tf_flush_l1d = true;
3755
	if (!flags) {
3756 3757
		trace_kvm_page_fault(fault_address, error_code);

3758
		if (kvm_event_needs_reinjection(vcpu))
3759 3760 3761
			kvm_mmu_unprotect_page_virt(vcpu, fault_address);
		r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
				insn_len);
3762
	} else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
3763
		vcpu->arch.apf.host_apf_flags = 0;
3764
		local_irq_disable();
3765
		kvm_async_pf_task_wait_schedule(fault_address);
3766
		local_irq_enable();
3767 3768
	} else {
		WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags);
3769
	}
3770

3771 3772 3773 3774
	return r;
}
EXPORT_SYMBOL_GPL(kvm_handle_page_fault);

3775 3776
int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
		       bool prefault)
3777
{
3778
	int max_level;
3779

3780
	for (max_level = KVM_MAX_HUGEPAGE_LEVEL;
3781
	     max_level > PG_LEVEL_4K;
3782 3783
	     max_level--) {
		int page_num = KVM_PAGES_PER_HPAGE(max_level);
3784
		gfn_t base = (gpa >> PAGE_SHIFT) & ~(page_num - 1);
3785

3786 3787
		if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
			break;
3788
	}
3789

3790 3791
	return direct_page_fault(vcpu, gpa, error_code, prefault,
				 max_level, true);
3792 3793
}

3794 3795
static void nonpaging_init_context(struct kvm_vcpu *vcpu,
				   struct kvm_mmu *context)
A
Avi Kivity 已提交
3796 3797 3798
{
	context->page_fault = nonpaging_page_fault;
	context->gva_to_gpa = nonpaging_gva_to_gpa;
3799
	context->sync_page = nonpaging_sync_page;
3800
	context->invlpg = NULL;
3801
	context->update_pte = nonpaging_update_pte;
3802
	context->root_level = 0;
A
Avi Kivity 已提交
3803
	context->shadow_root_level = PT32E_ROOT_LEVEL;
3804
	context->direct_map = true;
3805
	context->nx = false;
A
Avi Kivity 已提交
3806 3807
}

3808
static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd,
3809 3810
				  union kvm_mmu_page_role role)
{
3811
	return (role.direct || pgd == root->pgd) &&
3812 3813
	       VALID_PAGE(root->hpa) && to_shadow_page(root->hpa) &&
	       role.word == to_shadow_page(root->hpa)->role.word;
3814 3815
}

3816
/*
3817
 * Find out if a previously cached root matching the new pgd/role is available.
3818 3819 3820 3821 3822 3823
 * The current root is also inserted into the cache.
 * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
 * returned.
 * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
 * false is returned. This root should now be freed by the caller.
 */
3824
static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3825 3826 3827 3828
				  union kvm_mmu_page_role new_role)
{
	uint i;
	struct kvm_mmu_root_info root;
3829
	struct kvm_mmu *mmu = vcpu->arch.mmu;
3830

3831
	root.pgd = mmu->root_pgd;
3832 3833
	root.hpa = mmu->root_hpa;

3834
	if (is_root_usable(&root, new_pgd, new_role))
3835 3836
		return true;

3837 3838 3839
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
		swap(root, mmu->prev_roots[i]);

3840
		if (is_root_usable(&root, new_pgd, new_role))
3841 3842 3843 3844
			break;
	}

	mmu->root_hpa = root.hpa;
3845
	mmu->root_pgd = root.pgd;
3846 3847 3848 3849

	return i < KVM_MMU_NUM_PREV_ROOTS;
}

3850
static bool fast_pgd_switch(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3851
			    union kvm_mmu_page_role new_role)
A
Avi Kivity 已提交
3852
{
3853
	struct kvm_mmu *mmu = vcpu->arch.mmu;
3854 3855 3856 3857 3858 3859 3860

	/*
	 * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
	 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
	 * later if necessary.
	 */
	if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3861
	    mmu->root_level >= PT64_ROOT_4LEVEL)
3862
		return cached_root_available(vcpu, new_pgd, new_role);
3863 3864

	return false;
A
Avi Kivity 已提交
3865 3866
}

3867
static void __kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3868
			      union kvm_mmu_page_role new_role,
3869
			      bool skip_tlb_flush, bool skip_mmu_sync)
A
Avi Kivity 已提交
3870
{
3871
	if (!fast_pgd_switch(vcpu, new_pgd, new_role)) {
3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883
		kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, KVM_MMU_ROOT_CURRENT);
		return;
	}

	/*
	 * It's possible that the cached previous root page is obsolete because
	 * of a change in the MMU generation number. However, changing the
	 * generation number is accompanied by KVM_REQ_MMU_RELOAD, which will
	 * free the root set here and allocate a new one.
	 */
	kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);

3884
	if (!skip_mmu_sync || force_flush_and_sync_on_reuse)
3885
		kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
3886
	if (!skip_tlb_flush || force_flush_and_sync_on_reuse)
3887 3888 3889 3890 3891 3892 3893 3894 3895 3896
		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);

	/*
	 * The last MMIO access's GVA and GPA are cached in the VCPU. When
	 * switching to a new CR3, that GVA->GPA mapping may no longer be
	 * valid. So clear any cached MMIO info even when we don't need to sync
	 * the shadow page tables.
	 */
	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);

3897 3898 3899 3900 3901 3902 3903
	/*
	 * If this is a direct root page, it doesn't have a write flooding
	 * count. Otherwise, clear the write flooding count.
	 */
	if (!new_role.direct)
		__clear_sp_write_flooding_count(
				to_shadow_page(vcpu->arch.mmu->root_hpa));
A
Avi Kivity 已提交
3904 3905
}

3906
void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd, bool skip_tlb_flush,
3907
		     bool skip_mmu_sync)
3908
{
3909
	__kvm_mmu_new_pgd(vcpu, new_pgd, kvm_mmu_calc_root_page_role(vcpu),
3910
			  skip_tlb_flush, skip_mmu_sync);
3911
}
3912
EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd);
3913

3914 3915
static unsigned long get_cr3(struct kvm_vcpu *vcpu)
{
3916
	return kvm_read_cr3(vcpu);
3917 3918
}

3919
static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
3920
			   unsigned int access, int *nr_present)
3921 3922 3923 3924 3925 3926 3927 3928
{
	if (unlikely(is_mmio_spte(*sptep))) {
		if (gfn != get_mmio_spte_gfn(*sptep)) {
			mmu_spte_clear_no_track(sptep);
			return true;
		}

		(*nr_present)++;
3929
		mark_mmio_spte(vcpu, sptep, gfn, access);
3930 3931 3932 3933 3934 3935
		return true;
	}

	return false;
}

3936 3937
static inline bool is_last_gpte(struct kvm_mmu *mmu,
				unsigned level, unsigned gpte)
A
Avi Kivity 已提交
3938
{
3939 3940 3941 3942 3943 3944 3945
	/*
	 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
	 * If it is clear, there are no large pages at this level, so clear
	 * PT_PAGE_SIZE_MASK in gpte if that is the case.
	 */
	gpte &= level - mmu->last_nonleaf_level;

3946
	/*
3947 3948 3949
	 * PG_LEVEL_4K always terminates.  The RHS has bit 7 set
	 * iff level <= PG_LEVEL_4K, which for our purpose means
	 * level == PG_LEVEL_4K; set PT_PAGE_SIZE_MASK in gpte then.
3950
	 */
3951
	gpte |= level - PG_LEVEL_4K - 1;
3952

3953
	return gpte & PT_PAGE_SIZE_MASK;
A
Avi Kivity 已提交
3954 3955
}

3956 3957 3958 3959 3960
#define PTTYPE_EPT 18 /* arbitrary */
#define PTTYPE PTTYPE_EPT
#include "paging_tmpl.h"
#undef PTTYPE

A
Avi Kivity 已提交
3961 3962 3963 3964 3965 3966 3967 3968
#define PTTYPE 64
#include "paging_tmpl.h"
#undef PTTYPE

#define PTTYPE 32
#include "paging_tmpl.h"
#undef PTTYPE

3969 3970 3971 3972
static void
__reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
			struct rsvd_bits_validate *rsvd_check,
			int maxphyaddr, int level, bool nx, bool gbpages,
3973
			bool pse, bool amd)
3974 3975
{
	u64 exb_bit_rsvd = 0;
3976
	u64 gbpages_bit_rsvd = 0;
3977
	u64 nonleaf_bit8_rsvd = 0;
3978

3979
	rsvd_check->bad_mt_xwr = 0;
3980

3981
	if (!nx)
3982
		exb_bit_rsvd = rsvd_bits(63, 63);
3983
	if (!gbpages)
3984
		gbpages_bit_rsvd = rsvd_bits(7, 7);
3985 3986 3987 3988 3989

	/*
	 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
	 * leaf entries) on AMD CPUs only.
	 */
3990
	if (amd)
3991 3992
		nonleaf_bit8_rsvd = rsvd_bits(8, 8);

3993
	switch (level) {
3994 3995
	case PT32_ROOT_LEVEL:
		/* no rsvd bits for 2 level 4K page table entries */
3996 3997 3998 3999
		rsvd_check->rsvd_bits_mask[0][1] = 0;
		rsvd_check->rsvd_bits_mask[0][0] = 0;
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
4000

4001
		if (!pse) {
4002
			rsvd_check->rsvd_bits_mask[1][1] = 0;
4003 4004 4005
			break;
		}

4006 4007
		if (is_cpuid_PSE36())
			/* 36bits PSE 4MB page */
4008
			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4009 4010
		else
			/* 32 bits PSE 4MB page */
4011
			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4012 4013
		break;
	case PT32E_ROOT_LEVEL:
4014
		rsvd_check->rsvd_bits_mask[0][2] =
4015
			rsvd_bits(maxphyaddr, 63) |
4016
			rsvd_bits(5, 8) | rsvd_bits(1, 2);	/* PDPTE */
4017
		rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4018
			rsvd_bits(maxphyaddr, 62);	/* PDE */
4019
		rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4020
			rsvd_bits(maxphyaddr, 62); 	/* PTE */
4021
		rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4022 4023
			rsvd_bits(maxphyaddr, 62) |
			rsvd_bits(13, 20);		/* large page */
4024 4025
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
4026
		break;
4027 4028 4029 4030 4031 4032
	case PT64_ROOT_5LEVEL:
		rsvd_check->rsvd_bits_mask[0][4] = exb_bit_rsvd |
			nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
			rsvd_bits(maxphyaddr, 51);
		rsvd_check->rsvd_bits_mask[1][4] =
			rsvd_check->rsvd_bits_mask[0][4];
4033
		fallthrough;
4034
	case PT64_ROOT_4LEVEL:
4035 4036
		rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
			nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4037
			rsvd_bits(maxphyaddr, 51);
4038
		rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
4039
			gbpages_bit_rsvd |
4040
			rsvd_bits(maxphyaddr, 51);
4041 4042 4043 4044 4045 4046 4047
		rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
			rsvd_bits(maxphyaddr, 51);
		rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
			rsvd_bits(maxphyaddr, 51);
		rsvd_check->rsvd_bits_mask[1][3] =
			rsvd_check->rsvd_bits_mask[0][3];
		rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
4048
			gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
4049
			rsvd_bits(13, 29);
4050
		rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4051 4052
			rsvd_bits(maxphyaddr, 51) |
			rsvd_bits(13, 20);		/* large page */
4053 4054
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
4055 4056 4057 4058
		break;
	}
}

4059 4060 4061 4062 4063
static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
{
	__reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
				cpuid_maxphyaddr(vcpu), context->root_level,
4064 4065
				context->nx,
				guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4066 4067
				is_pse(vcpu),
				guest_cpuid_is_amd_or_hygon(vcpu));
4068 4069
}

4070 4071 4072
static void
__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
			    int maxphyaddr, bool execonly)
4073
{
4074
	u64 bad_mt_xwr;
4075

4076 4077
	rsvd_check->rsvd_bits_mask[0][4] =
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4078
	rsvd_check->rsvd_bits_mask[0][3] =
4079
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4080
	rsvd_check->rsvd_bits_mask[0][2] =
4081
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4082
	rsvd_check->rsvd_bits_mask[0][1] =
4083
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4084
	rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
4085 4086

	/* large page */
4087
	rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4088 4089
	rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
	rsvd_check->rsvd_bits_mask[1][2] =
4090
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
4091
	rsvd_check->rsvd_bits_mask[1][1] =
4092
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
4093
	rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4094

4095 4096 4097 4098 4099 4100 4101 4102
	bad_mt_xwr = 0xFFull << (2 * 8);	/* bits 3..5 must not be 2 */
	bad_mt_xwr |= 0xFFull << (3 * 8);	/* bits 3..5 must not be 3 */
	bad_mt_xwr |= 0xFFull << (7 * 8);	/* bits 3..5 must not be 7 */
	bad_mt_xwr |= REPEAT_BYTE(1ull << 2);	/* bits 0..2 must not be 010 */
	bad_mt_xwr |= REPEAT_BYTE(1ull << 6);	/* bits 0..2 must not be 110 */
	if (!execonly) {
		/* bits 0..2 must not be 100 unless VMX capabilities allow it */
		bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4103
	}
4104
	rsvd_check->bad_mt_xwr = bad_mt_xwr;
4105 4106
}

4107 4108 4109 4110 4111 4112 4113
static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
		struct kvm_mmu *context, bool execonly)
{
	__reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
				    cpuid_maxphyaddr(vcpu), execonly);
}

4114 4115 4116 4117 4118 4119 4120 4121
/*
 * the page table on host is the shadow page table for the page
 * table in guest or amd nested guest, its mmu features completely
 * follow the features in guest.
 */
void
reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
{
4122 4123
	bool uses_nx = context->nx ||
		context->mmu_role.base.smep_andnot_wp;
4124 4125
	struct rsvd_bits_validate *shadow_zero_check;
	int i;
4126

4127 4128 4129 4130
	/*
	 * Passing "true" to the last argument is okay; it adds a check
	 * on bit 8 of the SPTEs which KVM doesn't use anyway.
	 */
4131 4132
	shadow_zero_check = &context->shadow_zero_check;
	__reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4133
				shadow_phys_bits,
4134
				context->shadow_root_level, uses_nx,
4135 4136
				guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
				is_pse(vcpu), true);
4137 4138 4139 4140 4141 4142 4143 4144 4145

	if (!shadow_me_mask)
		return;

	for (i = context->shadow_root_level; --i >= 0;) {
		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
	}

4146 4147 4148
}
EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);

4149 4150 4151 4152 4153 4154
static inline bool boot_cpu_is_amd(void)
{
	WARN_ON_ONCE(!tdp_enabled);
	return shadow_x_mask == 0;
}

4155 4156 4157 4158 4159 4160 4161 4162
/*
 * the direct page table on host, use as much mmu features as
 * possible, however, kvm currently does not do execution-protection.
 */
static void
reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
				struct kvm_mmu *context)
{
4163 4164 4165 4166 4167
	struct rsvd_bits_validate *shadow_zero_check;
	int i;

	shadow_zero_check = &context->shadow_zero_check;

4168
	if (boot_cpu_is_amd())
4169
		__reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4170
					shadow_phys_bits,
4171
					context->shadow_root_level, false,
4172 4173
					boot_cpu_has(X86_FEATURE_GBPAGES),
					true, true);
4174
	else
4175
		__reset_rsvds_bits_mask_ept(shadow_zero_check,
4176
					    shadow_phys_bits,
4177 4178
					    false);

4179 4180 4181 4182 4183 4184 4185
	if (!shadow_me_mask)
		return;

	for (i = context->shadow_root_level; --i >= 0;) {
		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
	}
4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196
}

/*
 * as the comments in reset_shadow_zero_bits_mask() except it
 * is the shadow page table for intel nested guest.
 */
static void
reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
				struct kvm_mmu *context, bool execonly)
{
	__reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4197
				    shadow_phys_bits, execonly);
4198 4199
}

4200 4201 4202 4203 4204 4205 4206 4207 4208 4209
#define BYTE_MASK(access) \
	((1 & (access) ? 2 : 0) | \
	 (2 & (access) ? 4 : 0) | \
	 (3 & (access) ? 8 : 0) | \
	 (4 & (access) ? 16 : 0) | \
	 (5 & (access) ? 32 : 0) | \
	 (6 & (access) ? 64 : 0) | \
	 (7 & (access) ? 128 : 0))


4210 4211
static void update_permission_bitmask(struct kvm_vcpu *vcpu,
				      struct kvm_mmu *mmu, bool ept)
4212
{
4213 4214 4215 4216 4217 4218 4219 4220 4221
	unsigned byte;

	const u8 x = BYTE_MASK(ACC_EXEC_MASK);
	const u8 w = BYTE_MASK(ACC_WRITE_MASK);
	const u8 u = BYTE_MASK(ACC_USER_MASK);

	bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
	bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
	bool cr0_wp = is_write_protection(vcpu);
4222 4223

	for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4224 4225
		unsigned pfec = byte << 1;

F
Feng Wu 已提交
4226
		/*
4227 4228
		 * Each "*f" variable has a 1 bit for each UWX value
		 * that causes a fault with the given PFEC.
F
Feng Wu 已提交
4229
		 */
4230

4231
		/* Faults from writes to non-writable pages */
4232
		u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
4233
		/* Faults from user mode accesses to supervisor pages */
4234
		u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
4235
		/* Faults from fetches of non-executable pages*/
4236
		u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261
		/* Faults from kernel mode fetches of user pages */
		u8 smepf = 0;
		/* Faults from kernel mode accesses of user pages */
		u8 smapf = 0;

		if (!ept) {
			/* Faults from kernel mode accesses to user pages */
			u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;

			/* Not really needed: !nx will cause pte.nx to fault */
			if (!mmu->nx)
				ff = 0;

			/* Allow supervisor writes if !cr0.wp */
			if (!cr0_wp)
				wf = (pfec & PFERR_USER_MASK) ? wf : 0;

			/* Disallow supervisor fetches of user code if cr4.smep */
			if (cr4_smep)
				smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;

			/*
			 * SMAP:kernel-mode data accesses from user-mode
			 * mappings should fault. A fault is considered
			 * as a SMAP violation if all of the following
P
Peng Hao 已提交
4262
			 * conditions are true:
4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275
			 *   - X86_CR4_SMAP is set in CR4
			 *   - A user page is accessed
			 *   - The access is not a fetch
			 *   - Page fault in kernel mode
			 *   - if CPL = 3 or X86_EFLAGS_AC is clear
			 *
			 * Here, we cover the first three conditions.
			 * The fourth is computed dynamically in permission_fault();
			 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
			 * *not* subject to SMAP restrictions.
			 */
			if (cr4_smap)
				smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4276
		}
4277 4278

		mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4279 4280 4281
	}
}

4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356
/*
* PKU is an additional mechanism by which the paging controls access to
* user-mode addresses based on the value in the PKRU register.  Protection
* key violations are reported through a bit in the page fault error code.
* Unlike other bits of the error code, the PK bit is not known at the
* call site of e.g. gva_to_gpa; it must be computed directly in
* permission_fault based on two bits of PKRU, on some machine state (CR4,
* CR0, EFER, CPL), and on other bits of the error code and the page tables.
*
* In particular the following conditions come from the error code, the
* page tables and the machine state:
* - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
* - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
* - PK is always zero if U=0 in the page tables
* - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
*
* The PKRU bitmask caches the result of these four conditions.  The error
* code (minus the P bit) and the page table's U bit form an index into the
* PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
* with the two bits of the PKRU register corresponding to the protection key.
* For the first three conditions above the bits will be 00, thus masking
* away both AD and WD.  For all reads or if the last condition holds, WD
* only will be masked away.
*/
static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
				bool ept)
{
	unsigned bit;
	bool wp;

	if (ept) {
		mmu->pkru_mask = 0;
		return;
	}

	/* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
	if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
		mmu->pkru_mask = 0;
		return;
	}

	wp = is_write_protection(vcpu);

	for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
		unsigned pfec, pkey_bits;
		bool check_pkey, check_write, ff, uf, wf, pte_user;

		pfec = bit << 1;
		ff = pfec & PFERR_FETCH_MASK;
		uf = pfec & PFERR_USER_MASK;
		wf = pfec & PFERR_WRITE_MASK;

		/* PFEC.RSVD is replaced by ACC_USER_MASK. */
		pte_user = pfec & PFERR_RSVD_MASK;

		/*
		 * Only need to check the access which is not an
		 * instruction fetch and is to a user page.
		 */
		check_pkey = (!ff && pte_user);
		/*
		 * write access is controlled by PKRU if it is a
		 * user access or CR0.WP = 1.
		 */
		check_write = check_pkey && wf && (uf || wp);

		/* PKRU.AD stops both read and write access. */
		pkey_bits = !!check_pkey;
		/* PKRU.WD stops write access. */
		pkey_bits |= (!!check_write) << 1;

		mmu->pkru_mask |= (pkey_bits & 3) << pfec;
	}
}

4357
static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
A
Avi Kivity 已提交
4358
{
4359 4360 4361 4362 4363
	unsigned root_level = mmu->root_level;

	mmu->last_nonleaf_level = root_level;
	if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
		mmu->last_nonleaf_level++;
A
Avi Kivity 已提交
4364 4365
}

4366 4367 4368
static void paging64_init_context_common(struct kvm_vcpu *vcpu,
					 struct kvm_mmu *context,
					 int level)
A
Avi Kivity 已提交
4369
{
4370
	context->nx = is_nx(vcpu);
4371
	context->root_level = level;
4372

4373
	reset_rsvds_bits_mask(vcpu, context);
4374
	update_permission_bitmask(vcpu, context, false);
4375
	update_pkru_bitmask(vcpu, context, false);
4376
	update_last_nonleaf_level(vcpu, context);
A
Avi Kivity 已提交
4377

4378
	MMU_WARN_ON(!is_pae(vcpu));
A
Avi Kivity 已提交
4379 4380
	context->page_fault = paging64_page_fault;
	context->gva_to_gpa = paging64_gva_to_gpa;
4381
	context->sync_page = paging64_sync_page;
M
Marcelo Tosatti 已提交
4382
	context->invlpg = paging64_invlpg;
4383
	context->update_pte = paging64_update_pte;
4384
	context->shadow_root_level = level;
4385
	context->direct_map = false;
A
Avi Kivity 已提交
4386 4387
}

4388 4389
static void paging64_init_context(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
4390
{
4391 4392 4393 4394
	int root_level = is_la57_mode(vcpu) ?
			 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;

	paging64_init_context_common(vcpu, context, root_level);
4395 4396
}

4397 4398
static void paging32_init_context(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
A
Avi Kivity 已提交
4399
{
4400
	context->nx = false;
4401
	context->root_level = PT32_ROOT_LEVEL;
4402

4403
	reset_rsvds_bits_mask(vcpu, context);
4404
	update_permission_bitmask(vcpu, context, false);
4405
	update_pkru_bitmask(vcpu, context, false);
4406
	update_last_nonleaf_level(vcpu, context);
A
Avi Kivity 已提交
4407 4408 4409

	context->page_fault = paging32_page_fault;
	context->gva_to_gpa = paging32_gva_to_gpa;
4410
	context->sync_page = paging32_sync_page;
M
Marcelo Tosatti 已提交
4411
	context->invlpg = paging32_invlpg;
4412
	context->update_pte = paging32_update_pte;
A
Avi Kivity 已提交
4413
	context->shadow_root_level = PT32E_ROOT_LEVEL;
4414
	context->direct_map = false;
A
Avi Kivity 已提交
4415 4416
}

4417 4418
static void paging32E_init_context(struct kvm_vcpu *vcpu,
				   struct kvm_mmu *context)
A
Avi Kivity 已提交
4419
{
4420
	paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
A
Avi Kivity 已提交
4421 4422
}

4423 4424 4425 4426
static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu)
{
	union kvm_mmu_extended_role ext = {0};

4427
	ext.cr0_pg = !!is_paging(vcpu);
4428
	ext.cr4_pae = !!is_pae(vcpu);
4429 4430 4431 4432
	ext.cr4_smep = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
	ext.cr4_smap = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
	ext.cr4_pse = !!is_pse(vcpu);
	ext.cr4_pke = !!kvm_read_cr4_bits(vcpu, X86_CR4_PKE);
4433
	ext.maxphyaddr = cpuid_maxphyaddr(vcpu);
4434 4435 4436 4437 4438 4439

	ext.valid = 1;

	return ext;
}

4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458
static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
						   bool base_only)
{
	union kvm_mmu_role role = {0};

	role.base.access = ACC_ALL;
	role.base.nxe = !!is_nx(vcpu);
	role.base.cr0_wp = is_write_protection(vcpu);
	role.base.smm = is_smm(vcpu);
	role.base.guest_mode = is_guest_mode(vcpu);

	if (base_only)
		return role;

	role.ext = kvm_calc_mmu_role_ext(vcpu);

	return role;
}

4459 4460 4461
static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu)
{
	/* Use 5-level TDP if and only if it's useful/necessary. */
4462
	if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48)
4463 4464
		return 4;

4465
	return max_tdp_level;
4466 4467
}

4468 4469
static union kvm_mmu_role
kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4470
{
4471
	union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4472

4473
	role.base.ad_disabled = (shadow_accessed_mask == 0);
4474
	role.base.level = kvm_mmu_get_tdp_level(vcpu);
4475
	role.base.direct = true;
4476
	role.base.gpte_is_8_bytes = true;
4477 4478 4479 4480

	return role;
}

4481
static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4482
{
4483
	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4484 4485
	union kvm_mmu_role new_role =
		kvm_calc_tdp_mmu_root_page_role(vcpu, false);
4486

4487 4488 4489 4490
	if (new_role.as_u64 == context->mmu_role.as_u64)
		return;

	context->mmu_role.as_u64 = new_role.as_u64;
4491
	context->page_fault = kvm_tdp_page_fault;
4492
	context->sync_page = nonpaging_sync_page;
4493
	context->invlpg = NULL;
4494
	context->update_pte = nonpaging_update_pte;
4495
	context->shadow_root_level = kvm_mmu_get_tdp_level(vcpu);
4496
	context->direct_map = true;
4497
	context->get_guest_pgd = get_cr3;
4498
	context->get_pdptr = kvm_pdptr_read;
4499
	context->inject_page_fault = kvm_inject_page_fault;
4500 4501

	if (!is_paging(vcpu)) {
4502
		context->nx = false;
4503 4504 4505
		context->gva_to_gpa = nonpaging_gva_to_gpa;
		context->root_level = 0;
	} else if (is_long_mode(vcpu)) {
4506
		context->nx = is_nx(vcpu);
4507 4508
		context->root_level = is_la57_mode(vcpu) ?
				PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4509 4510
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging64_gva_to_gpa;
4511
	} else if (is_pae(vcpu)) {
4512
		context->nx = is_nx(vcpu);
4513
		context->root_level = PT32E_ROOT_LEVEL;
4514 4515
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging64_gva_to_gpa;
4516
	} else {
4517
		context->nx = false;
4518
		context->root_level = PT32_ROOT_LEVEL;
4519 4520
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging32_gva_to_gpa;
4521 4522
	}

4523
	update_permission_bitmask(vcpu, context, false);
4524
	update_pkru_bitmask(vcpu, context, false);
4525
	update_last_nonleaf_level(vcpu, context);
4526
	reset_tdp_shadow_zero_bits_mask(vcpu, context);
4527 4528
}

4529
static union kvm_mmu_role
4530
kvm_calc_shadow_root_page_role_common(struct kvm_vcpu *vcpu, bool base_only)
4531 4532 4533 4534 4535 4536 4537
{
	union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);

	role.base.smep_andnot_wp = role.ext.cr4_smep &&
		!is_write_protection(vcpu);
	role.base.smap_andnot_wp = role.ext.cr4_smap &&
		!is_write_protection(vcpu);
4538
	role.base.gpte_is_8_bytes = !!is_pae(vcpu);
4539

4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550
	return role;
}

static union kvm_mmu_role
kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
{
	union kvm_mmu_role role =
		kvm_calc_shadow_root_page_role_common(vcpu, base_only);

	role.base.direct = !is_paging(vcpu);

4551
	if (!is_long_mode(vcpu))
4552
		role.base.level = PT32E_ROOT_LEVEL;
4553
	else if (is_la57_mode(vcpu))
4554
		role.base.level = PT64_ROOT_5LEVEL;
4555
	else
4556
		role.base.level = PT64_ROOT_4LEVEL;
4557 4558 4559 4560

	return role;
}

4561 4562 4563
static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
				    u32 cr0, u32 cr4, u32 efer,
				    union kvm_mmu_role new_role)
4564
{
4565
	if (!(cr0 & X86_CR0_PG))
4566
		nonpaging_init_context(vcpu, context);
4567
	else if (efer & EFER_LMA)
4568
		paging64_init_context(vcpu, context);
4569
	else if (cr4 & X86_CR4_PAE)
4570
		paging32E_init_context(vcpu, context);
A
Avi Kivity 已提交
4571
	else
4572
		paging32_init_context(vcpu, context);
4573

4574
	context->mmu_role.as_u64 = new_role.as_u64;
4575
	reset_shadow_zero_bits_mask(vcpu, context);
4576
}
4577 4578 4579

static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer)
{
4580
	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4581 4582 4583 4584
	union kvm_mmu_role new_role =
		kvm_calc_shadow_mmu_root_page_role(vcpu, false);

	if (new_role.as_u64 != context->mmu_role.as_u64)
4585
		shadow_mmu_init_context(vcpu, context, cr0, cr4, efer, new_role);
4586 4587
}

4588 4589 4590 4591 4592 4593 4594
static union kvm_mmu_role
kvm_calc_shadow_npt_root_page_role(struct kvm_vcpu *vcpu)
{
	union kvm_mmu_role role =
		kvm_calc_shadow_root_page_role_common(vcpu, false);

	role.base.direct = false;
4595
	role.base.level = kvm_mmu_get_tdp_level(vcpu);
4596 4597 4598 4599

	return role;
}

4600 4601 4602
void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer,
			     gpa_t nested_cr3)
{
4603
	struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4604
	union kvm_mmu_role new_role = kvm_calc_shadow_npt_root_page_role(vcpu);
4605

4606 4607
	context->shadow_root_level = new_role.base.level;

4608 4609
	__kvm_mmu_new_pgd(vcpu, nested_cr3, new_role.base, false, false);

4610
	if (new_role.as_u64 != context->mmu_role.as_u64)
4611
		shadow_mmu_init_context(vcpu, context, cr0, cr4, efer, new_role);
4612 4613
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu);
4614

4615 4616
static union kvm_mmu_role
kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
4617
				   bool execonly, u8 level)
4618
{
4619
	union kvm_mmu_role role = {0};
4620

4621 4622
	/* SMM flag is inherited from root_mmu */
	role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
4623

4624
	role.base.level = level;
4625
	role.base.gpte_is_8_bytes = true;
4626 4627 4628 4629
	role.base.direct = false;
	role.base.ad_disabled = !accessed_dirty;
	role.base.guest_mode = true;
	role.base.access = ACC_ALL;
4630

4631 4632 4633 4634 4635 4636 4637
	/*
	 * WP=1 and NOT_WP=1 is an impossible combination, use WP and the
	 * SMAP variation to denote shadow EPT entries.
	 */
	role.base.cr0_wp = true;
	role.base.smap_andnot_wp = true;

4638
	role.ext = kvm_calc_mmu_role_ext(vcpu);
4639
	role.ext.execonly = execonly;
4640 4641 4642 4643

	return role;
}

4644
void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
4645
			     bool accessed_dirty, gpa_t new_eptp)
N
Nadav Har'El 已提交
4646
{
4647
	struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4648
	u8 level = vmx_eptp_page_walk_level(new_eptp);
4649 4650
	union kvm_mmu_role new_role =
		kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
4651
						   execonly, level);
4652

4653
	__kvm_mmu_new_pgd(vcpu, new_eptp, new_role.base, true, true);
4654 4655 4656

	if (new_role.as_u64 == context->mmu_role.as_u64)
		return;
4657

4658
	context->shadow_root_level = level;
N
Nadav Har'El 已提交
4659 4660

	context->nx = true;
4661
	context->ept_ad = accessed_dirty;
N
Nadav Har'El 已提交
4662 4663 4664 4665 4666
	context->page_fault = ept_page_fault;
	context->gva_to_gpa = ept_gva_to_gpa;
	context->sync_page = ept_sync_page;
	context->invlpg = ept_invlpg;
	context->update_pte = ept_update_pte;
4667
	context->root_level = level;
N
Nadav Har'El 已提交
4668
	context->direct_map = false;
4669
	context->mmu_role.as_u64 = new_role.as_u64;
4670

N
Nadav Har'El 已提交
4671
	update_permission_bitmask(vcpu, context, true);
4672
	update_pkru_bitmask(vcpu, context, true);
4673
	update_last_nonleaf_level(vcpu, context);
N
Nadav Har'El 已提交
4674
	reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4675
	reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
N
Nadav Har'El 已提交
4676 4677 4678
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);

4679
static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4680
{
4681
	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4682

4683 4684 4685 4686 4687
	kvm_init_shadow_mmu(vcpu,
			    kvm_read_cr0_bits(vcpu, X86_CR0_PG),
			    kvm_read_cr4_bits(vcpu, X86_CR4_PAE),
			    vcpu->arch.efer);

4688
	context->get_guest_pgd     = get_cr3;
4689 4690
	context->get_pdptr         = kvm_pdptr_read;
	context->inject_page_fault = kvm_inject_page_fault;
A
Avi Kivity 已提交
4691 4692
}

4693
static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4694
{
4695
	union kvm_mmu_role new_role = kvm_calc_mmu_role_common(vcpu, false);
4696 4697
	struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;

4698 4699 4700 4701
	if (new_role.as_u64 == g_context->mmu_role.as_u64)
		return;

	g_context->mmu_role.as_u64 = new_role.as_u64;
4702
	g_context->get_guest_pgd     = get_cr3;
4703
	g_context->get_pdptr         = kvm_pdptr_read;
4704 4705
	g_context->inject_page_fault = kvm_inject_page_fault;

4706 4707 4708 4709 4710 4711
	/*
	 * L2 page tables are never shadowed, so there is no need to sync
	 * SPTEs.
	 */
	g_context->invlpg            = NULL;

4712
	/*
4713
	 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
4714 4715 4716 4717 4718
	 * L1's nested page tables (e.g. EPT12). The nested translation
	 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
	 * L2's page tables as the first level of translation and L1's
	 * nested page tables as the second level of translation. Basically
	 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
4719 4720
	 */
	if (!is_paging(vcpu)) {
4721
		g_context->nx = false;
4722 4723 4724
		g_context->root_level = 0;
		g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
	} else if (is_long_mode(vcpu)) {
4725
		g_context->nx = is_nx(vcpu);
4726 4727
		g_context->root_level = is_la57_mode(vcpu) ?
					PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4728
		reset_rsvds_bits_mask(vcpu, g_context);
4729 4730
		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
	} else if (is_pae(vcpu)) {
4731
		g_context->nx = is_nx(vcpu);
4732
		g_context->root_level = PT32E_ROOT_LEVEL;
4733
		reset_rsvds_bits_mask(vcpu, g_context);
4734 4735
		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
	} else {
4736
		g_context->nx = false;
4737
		g_context->root_level = PT32_ROOT_LEVEL;
4738
		reset_rsvds_bits_mask(vcpu, g_context);
4739 4740 4741
		g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
	}

4742
	update_permission_bitmask(vcpu, g_context, false);
4743
	update_pkru_bitmask(vcpu, g_context, false);
4744
	update_last_nonleaf_level(vcpu, g_context);
4745 4746
}

4747
void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots)
4748
{
4749
	if (reset_roots) {
4750 4751
		uint i;

4752
		vcpu->arch.mmu->root_hpa = INVALID_PAGE;
4753 4754

		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
4755
			vcpu->arch.mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
4756 4757
	}

4758
	if (mmu_is_nested(vcpu))
4759
		init_kvm_nested_mmu(vcpu);
4760
	else if (tdp_enabled)
4761
		init_kvm_tdp_mmu(vcpu);
4762
	else
4763
		init_kvm_softmmu(vcpu);
4764
}
4765
EXPORT_SYMBOL_GPL(kvm_init_mmu);
4766

4767 4768 4769
static union kvm_mmu_page_role
kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
{
4770 4771
	union kvm_mmu_role role;

4772
	if (tdp_enabled)
4773
		role = kvm_calc_tdp_mmu_root_page_role(vcpu, true);
4774
	else
4775 4776 4777
		role = kvm_calc_shadow_mmu_root_page_role(vcpu, true);

	return role.base;
4778
}
4779

4780
void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4781
{
4782
	kvm_mmu_unload(vcpu);
4783
	kvm_init_mmu(vcpu, true);
A
Avi Kivity 已提交
4784
}
4785
EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
A
Avi Kivity 已提交
4786 4787

int kvm_mmu_load(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4788
{
4789 4790
	int r;

4791
	r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->direct_map);
A
Avi Kivity 已提交
4792 4793
	if (r)
		goto out;
4794
	r = mmu_alloc_roots(vcpu);
4795
	kvm_mmu_sync_roots(vcpu);
4796 4797
	if (r)
		goto out;
4798
	kvm_mmu_load_pgd(vcpu);
4799
	kvm_x86_ops.tlb_flush_current(vcpu);
4800 4801
out:
	return r;
A
Avi Kivity 已提交
4802
}
A
Avi Kivity 已提交
4803 4804 4805 4806
EXPORT_SYMBOL_GPL(kvm_mmu_load);

void kvm_mmu_unload(struct kvm_vcpu *vcpu)
{
4807 4808 4809 4810
	kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
	WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
	kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
	WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
A
Avi Kivity 已提交
4811
}
4812
EXPORT_SYMBOL_GPL(kvm_mmu_unload);
A
Avi Kivity 已提交
4813

4814
static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
4815 4816
				  struct kvm_mmu_page *sp, u64 *spte,
				  const void *new)
4817
{
4818
	if (sp->role.level != PG_LEVEL_4K) {
4819 4820
		++vcpu->kvm->stat.mmu_pde_zapped;
		return;
4821
        }
4822

A
Avi Kivity 已提交
4823
	++vcpu->kvm->stat.mmu_pte_updated;
4824
	vcpu->arch.mmu->update_pte(vcpu, sp, spte, new);
4825 4826
}

4827 4828 4829 4830 4831 4832 4833 4834
static bool need_remote_flush(u64 old, u64 new)
{
	if (!is_shadow_present_pte(old))
		return false;
	if (!is_shadow_present_pte(new))
		return true;
	if ((old ^ new) & PT64_BASE_ADDR_MASK)
		return true;
4835 4836
	old ^= shadow_nx_mask;
	new ^= shadow_nx_mask;
4837 4838 4839
	return (old & ~new & PT64_PERM_MASK) != 0;
}

4840
static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4841
				    int *bytes)
4842
{
4843
	u64 gentry = 0;
4844
	int r;
4845 4846 4847

	/*
	 * Assume that the pte write on a page table of the same type
4848 4849
	 * as the current vcpu paging mode since we update the sptes only
	 * when they have the same mode.
4850
	 */
4851
	if (is_pae(vcpu) && *bytes == 4) {
4852
		/* Handle a 32-bit guest writing two halves of a 64-bit gpte */
4853 4854
		*gpa &= ~(gpa_t)7;
		*bytes = 8;
4855 4856
	}

4857 4858 4859 4860
	if (*bytes == 4 || *bytes == 8) {
		r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
		if (r)
			gentry = 0;
4861 4862
	}

4863 4864 4865 4866 4867 4868 4869
	return gentry;
}

/*
 * If we're seeing too many writes to a page, it may no longer be a page table,
 * or we may be forking, in which case it is better to unmap the page.
 */
4870
static bool detect_write_flooding(struct kvm_mmu_page *sp)
4871
{
4872 4873 4874 4875
	/*
	 * Skip write-flooding detected for the sp whose level is 1, because
	 * it can become unsync, then the guest page is not write-protected.
	 */
4876
	if (sp->role.level == PG_LEVEL_4K)
4877
		return false;
4878

4879 4880
	atomic_inc(&sp->write_flooding_count);
	return atomic_read(&sp->write_flooding_count) >= 3;
4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895
}

/*
 * Misaligned accesses are too much trouble to fix up; also, they usually
 * indicate a page is not used as a page table.
 */
static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
				    int bytes)
{
	unsigned offset, pte_size, misaligned;

	pgprintk("misaligned: gpa %llx bytes %d role %x\n",
		 gpa, bytes, sp->role.word);

	offset = offset_in_page(gpa);
4896
	pte_size = sp->role.gpte_is_8_bytes ? 8 : 4;
4897 4898 4899 4900 4901 4902 4903 4904

	/*
	 * Sometimes, the OS only writes the last one bytes to update status
	 * bits, for example, in linux, andb instruction is used in clear_bit().
	 */
	if (!(offset & (pte_size - 1)) && bytes == 1)
		return false;

4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919
	misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
	misaligned |= bytes < 4;

	return misaligned;
}

static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
{
	unsigned page_offset, quadrant;
	u64 *spte;
	int level;

	page_offset = offset_in_page(gpa);
	level = sp->role.level;
	*nspte = 1;
4920
	if (!sp->role.gpte_is_8_bytes) {
4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941
		page_offset <<= 1;	/* 32->64 */
		/*
		 * A 32-bit pde maps 4MB while the shadow pdes map
		 * only 2MB.  So we need to double the offset again
		 * and zap two pdes instead of one.
		 */
		if (level == PT32_ROOT_LEVEL) {
			page_offset &= ~7; /* kill rounding error */
			page_offset <<= 1;
			*nspte = 2;
		}
		quadrant = page_offset >> PAGE_SHIFT;
		page_offset &= ~PAGE_MASK;
		if (quadrant != sp->role.quadrant)
			return NULL;
	}

	spte = &sp->spt[page_offset / sizeof(*spte)];
	return spte;
}

4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957
/*
 * Ignore various flags when determining if a SPTE can be immediately
 * overwritten for the current MMU.
 *  - level: explicitly checked in mmu_pte_write_new_pte(), and will never
 *    match the current MMU role, as MMU's level tracks the root level.
 *  - access: updated based on the new guest PTE
 *  - quadrant: handled by get_written_sptes()
 *  - invalid: always false (loop only walks valid shadow pages)
 */
static const union kvm_mmu_page_role role_ign = {
	.level = 0xf,
	.access = 0x7,
	.quadrant = 0x3,
	.invalid = 0x1,
};

4958
static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4959 4960
			      const u8 *new, int bytes,
			      struct kvm_page_track_notifier_node *node)
4961 4962 4963 4964 4965 4966
{
	gfn_t gfn = gpa >> PAGE_SHIFT;
	struct kvm_mmu_page *sp;
	LIST_HEAD(invalid_list);
	u64 entry, gentry, *spte;
	int npte;
4967
	bool remote_flush, local_flush;
4968 4969 4970 4971 4972

	/*
	 * If we don't have indirect shadow pages, it means no page is
	 * write-protected, so we can exit simply.
	 */
4973
	if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4974 4975
		return;

4976
	remote_flush = local_flush = false;
4977 4978 4979 4980 4981 4982 4983 4984

	pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);

	/*
	 * No need to care whether allocation memory is successful
	 * or not since pte prefetch is skiped if it does not have
	 * enough objects in the cache.
	 */
4985
	mmu_topup_memory_caches(vcpu, true);
4986 4987

	spin_lock(&vcpu->kvm->mmu_lock);
4988 4989 4990

	gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);

4991
	++vcpu->kvm->stat.mmu_pte_write;
4992
	kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4993

4994
	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
4995
		if (detect_write_misaligned(sp, gpa, bytes) ||
4996
		      detect_write_flooding(sp)) {
4997
			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
A
Avi Kivity 已提交
4998
			++vcpu->kvm->stat.mmu_flooded;
4999 5000
			continue;
		}
5001 5002 5003 5004 5005

		spte = get_written_sptes(sp, gpa, &npte);
		if (!spte)
			continue;

5006
		local_flush = true;
5007
		while (npte--) {
5008 5009
			u32 base_role = vcpu->arch.mmu->mmu_role.base.word;

5010
			entry = *spte;
5011
			mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL);
5012
			if (gentry &&
5013 5014
			    !((sp->role.word ^ base_role) & ~role_ign.word) &&
			    rmap_can_add(vcpu))
5015
				mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
G
Gleb Natapov 已提交
5016
			if (need_remote_flush(entry, *spte))
5017
				remote_flush = true;
5018
			++spte;
5019 5020
		}
	}
5021
	kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
5022
	kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
5023
	spin_unlock(&vcpu->kvm->mmu_lock);
5024 5025
}

5026 5027
int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
{
5028 5029
	gpa_t gpa;
	int r;
5030

5031
	if (vcpu->arch.mmu->direct_map)
5032 5033
		return 0;

5034
	gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
5035 5036

	r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
5037

5038
	return r;
5039
}
5040
EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
5041

5042
int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
5043
		       void *insn, int insn_len)
5044
{
5045
	int r, emulation_type = EMULTYPE_PF;
5046
	bool direct = vcpu->arch.mmu->direct_map;
5047

5048
	if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
5049 5050
		return RET_PF_RETRY;

5051
	r = RET_PF_INVALID;
5052
	if (unlikely(error_code & PFERR_RSVD_MASK)) {
5053
		r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
5054
		if (r == RET_PF_EMULATE)
5055 5056
			goto emulate;
	}
5057

5058
	if (r == RET_PF_INVALID) {
5059 5060
		r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
					  lower_32_bits(error_code), false);
5061 5062
		if (WARN_ON_ONCE(r == RET_PF_INVALID))
			return -EIO;
5063 5064
	}

5065
	if (r < 0)
5066
		return r;
5067 5068
	if (r != RET_PF_EMULATE)
		return 1;
5069

5070 5071 5072 5073 5074 5075 5076
	/*
	 * Before emulating the instruction, check if the error code
	 * was due to a RO violation while translating the guest page.
	 * This can occur when using nested virtualization with nested
	 * paging in both guests. If true, we simply unprotect the page
	 * and resume the guest.
	 */
5077
	if (vcpu->arch.mmu->direct_map &&
5078
	    (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5079
		kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
5080 5081 5082
		return 1;
	}

5083 5084 5085 5086 5087 5088
	/*
	 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
	 * optimistically try to just unprotect the page and let the processor
	 * re-execute the instruction that caused the page fault.  Do not allow
	 * retrying MMIO emulation, as it's not only pointless but could also
	 * cause us to enter an infinite loop because the processor will keep
5089 5090 5091 5092
	 * faulting on the non-existent MMIO address.  Retrying an instruction
	 * from a nested guest is also pointless and dangerous as we are only
	 * explicitly shadowing L1's page tables, i.e. unprotecting something
	 * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5093
	 */
5094
	if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
5095
		emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
5096
emulate:
5097
	return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
5098
				       insn_len);
5099 5100 5101
}
EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);

5102 5103
void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
			    gva_t gva, hpa_t root_hpa)
M
Marcelo Tosatti 已提交
5104
{
5105
	int i;
5106

5107 5108 5109 5110 5111 5112 5113 5114 5115 5116
	/* It's actually a GPA for vcpu->arch.guest_mmu.  */
	if (mmu != &vcpu->arch.guest_mmu) {
		/* INVLPG on a non-canonical address is a NOP according to the SDM.  */
		if (is_noncanonical_address(gva, vcpu))
			return;

		kvm_x86_ops.tlb_flush_gva(vcpu, gva);
	}

	if (!mmu->invlpg)
5117 5118
		return;

5119 5120
	if (root_hpa == INVALID_PAGE) {
		mmu->invlpg(vcpu, gva, mmu->root_hpa);
5121

5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140
		/*
		 * INVLPG is required to invalidate any global mappings for the VA,
		 * irrespective of PCID. Since it would take us roughly similar amount
		 * of work to determine whether any of the prev_root mappings of the VA
		 * is marked global, or to just sync it blindly, so we might as well
		 * just always sync it.
		 *
		 * Mappings not reachable via the current cr3 or the prev_roots will be
		 * synced when switching to that cr3, so nothing needs to be done here
		 * for them.
		 */
		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
			if (VALID_PAGE(mmu->prev_roots[i].hpa))
				mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
	} else {
		mmu->invlpg(vcpu, gva, root_hpa);
	}
}
EXPORT_SYMBOL_GPL(kvm_mmu_invalidate_gva);
5141

5142 5143 5144
void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
{
	kvm_mmu_invalidate_gva(vcpu, vcpu->arch.mmu, gva, INVALID_PAGE);
M
Marcelo Tosatti 已提交
5145 5146 5147 5148
	++vcpu->stat.invlpg;
}
EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);

5149

5150 5151
void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
{
5152
	struct kvm_mmu *mmu = vcpu->arch.mmu;
5153
	bool tlb_flush = false;
5154
	uint i;
5155 5156

	if (pcid == kvm_get_active_pcid(vcpu)) {
5157
		mmu->invlpg(vcpu, gva, mmu->root_hpa);
5158
		tlb_flush = true;
5159 5160
	}

5161 5162
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
		if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5163
		    pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) {
5164 5165 5166
			mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
			tlb_flush = true;
		}
5167
	}
5168

5169
	if (tlb_flush)
5170
		kvm_x86_ops.tlb_flush_gva(vcpu, gva);
5171

5172 5173 5174
	++vcpu->stat.invlpg;

	/*
5175 5176 5177
	 * Mappings not reachable via the current cr3 or the prev_roots will be
	 * synced when switching to that cr3, so nothing needs to be done here
	 * for them.
5178 5179 5180 5181
	 */
}
EXPORT_SYMBOL_GPL(kvm_mmu_invpcid_gva);

5182 5183
void kvm_configure_mmu(bool enable_tdp, int tdp_max_root_level,
		       int tdp_huge_page_level)
5184
{
5185
	tdp_enabled = enable_tdp;
5186
	max_tdp_level = tdp_max_root_level;
5187 5188

	/*
5189
	 * max_huge_page_level reflects KVM's MMU capabilities irrespective
5190 5191 5192 5193 5194 5195
	 * of kernel support, e.g. KVM may be capable of using 1GB pages when
	 * the kernel is not.  But, KVM never creates a page size greater than
	 * what is used by the kernel for any given HVA, i.e. the kernel's
	 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
	 */
	if (tdp_enabled)
5196
		max_huge_page_level = tdp_huge_page_level;
5197
	else if (boot_cpu_has(X86_FEATURE_GBPAGES))
5198
		max_huge_page_level = PG_LEVEL_1G;
5199
	else
5200
		max_huge_page_level = PG_LEVEL_2M;
5201
}
5202
EXPORT_SYMBOL_GPL(kvm_configure_mmu);
5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222

/* The return value indicates if tlb flush on all vcpus is needed. */
typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);

/* The caller should hold mmu-lock before calling this function. */
static __always_inline bool
slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
			slot_level_handler fn, int start_level, int end_level,
			gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
{
	struct slot_rmap_walk_iterator iterator;
	bool flush = false;

	for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
			end_gfn, &iterator) {
		if (iterator.rmap)
			flush |= fn(kvm, iterator.rmap);

		if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
			if (flush && lock_flush_tlb) {
5223 5224 5225
				kvm_flush_remote_tlbs_with_address(kvm,
						start_gfn,
						iterator.gfn - start_gfn + 1);
5226 5227 5228 5229 5230 5231 5232
				flush = false;
			}
			cond_resched_lock(&kvm->mmu_lock);
		}
	}

	if (flush && lock_flush_tlb) {
5233 5234
		kvm_flush_remote_tlbs_with_address(kvm, start_gfn,
						   end_gfn - start_gfn + 1);
5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255
		flush = false;
	}

	return flush;
}

static __always_inline bool
slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
		  slot_level_handler fn, int start_level, int end_level,
		  bool lock_flush_tlb)
{
	return slot_handle_level_range(kvm, memslot, fn, start_level,
			end_level, memslot->base_gfn,
			memslot->base_gfn + memslot->npages - 1,
			lock_flush_tlb);
}

static __always_inline bool
slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
		      slot_level_handler fn, bool lock_flush_tlb)
{
5256
	return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
5257
				 KVM_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5258 5259 5260 5261 5262 5263
}

static __always_inline bool
slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
			slot_level_handler fn, bool lock_flush_tlb)
{
5264
	return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K + 1,
5265
				 KVM_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5266 5267 5268 5269 5270 5271
}

static __always_inline bool
slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
		 slot_level_handler fn, bool lock_flush_tlb)
{
5272 5273
	return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
				 PG_LEVEL_4K, lock_flush_tlb);
5274 5275
}

5276
static void free_mmu_pages(struct kvm_mmu *mmu)
A
Avi Kivity 已提交
5277
{
5278 5279
	free_page((unsigned long)mmu->pae_root);
	free_page((unsigned long)mmu->lm_root);
A
Avi Kivity 已提交
5280 5281
}

5282
static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
A
Avi Kivity 已提交
5283
{
5284
	struct page *page;
A
Avi Kivity 已提交
5285 5286
	int i;

5287 5288 5289 5290 5291 5292
	mmu->root_hpa = INVALID_PAGE;
	mmu->root_pgd = 0;
	mmu->translate_gpa = translate_gpa;
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
		mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;

5293
	/*
5294 5295 5296 5297 5298 5299 5300
	 * When using PAE paging, the four PDPTEs are treated as 'root' pages,
	 * while the PDP table is a per-vCPU construct that's allocated at MMU
	 * creation.  When emulating 32-bit mode, cr3 is only 32 bits even on
	 * x86_64.  Therefore we need to allocate the PDP table in the first
	 * 4GB of memory, which happens to fit the DMA32 zone.  Except for
	 * SVM's 32-bit NPT support, TDP paging doesn't use PAE paging and can
	 * skip allocating the PDP table.
5301
	 */
5302
	if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
5303 5304
		return 0;

5305
	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
5306
	if (!page)
5307 5308
		return -ENOMEM;

5309
	mmu->pae_root = page_address(page);
5310
	for (i = 0; i < 4; ++i)
5311
		mmu->pae_root[i] = INVALID_PAGE;
5312

A
Avi Kivity 已提交
5313 5314 5315
	return 0;
}

5316
int kvm_mmu_create(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
5317
{
5318
	int ret;
5319

5320
	vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache;
5321 5322
	vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO;

5323
	vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache;
5324
	vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO;
5325

5326 5327
	vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO;

5328 5329
	vcpu->arch.mmu = &vcpu->arch.root_mmu;
	vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
A
Avi Kivity 已提交
5330

5331
	vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5332

5333
	ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu);
5334 5335 5336
	if (ret)
		return ret;

5337
	ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu);
5338 5339 5340 5341 5342 5343 5344
	if (ret)
		goto fail_allocate_root;

	return ret;
 fail_allocate_root:
	free_mmu_pages(&vcpu->arch.guest_mmu);
	return ret;
A
Avi Kivity 已提交
5345 5346
}

5347
#define BATCH_ZAP_PAGES	10
5348 5349 5350
static void kvm_zap_obsolete_pages(struct kvm *kvm)
{
	struct kvm_mmu_page *sp, *node;
5351
	int nr_zapped, batch = 0;
5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363

restart:
	list_for_each_entry_safe_reverse(sp, node,
	      &kvm->arch.active_mmu_pages, link) {
		/*
		 * No obsolete valid page exists before a newly created page
		 * since active_mmu_pages is a FIFO list.
		 */
		if (!is_obsolete_sp(kvm, sp))
			break;

		/*
5364 5365 5366
		 * Invalid pages should never land back on the list of active
		 * pages.  Skip the bogus page, otherwise we'll get stuck in an
		 * infinite loop if the page gets put back on the list (again).
5367
		 */
5368
		if (WARN_ON(sp->role.invalid))
5369 5370
			continue;

5371 5372 5373 5374 5375 5376
		/*
		 * No need to flush the TLB since we're only zapping shadow
		 * pages with an obsolete generation number and all vCPUS have
		 * loaded a new root, i.e. the shadow pages being zapped cannot
		 * be in active use by the guest.
		 */
5377
		if (batch >= BATCH_ZAP_PAGES &&
5378
		    cond_resched_lock(&kvm->mmu_lock)) {
5379
			batch = 0;
5380 5381 5382
			goto restart;
		}

5383 5384
		if (__kvm_mmu_prepare_zap_page(kvm, sp,
				&kvm->arch.zapped_obsolete_pages, &nr_zapped)) {
5385
			batch += nr_zapped;
5386
			goto restart;
5387
		}
5388 5389
	}

5390 5391 5392 5393 5394
	/*
	 * Trigger a remote TLB flush before freeing the page tables to ensure
	 * KVM is not in the middle of a lockless shadow page table walk, which
	 * may reference the pages.
	 */
5395
	kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408
}

/*
 * Fast invalidate all shadow pages and use lock-break technique
 * to zap obsolete pages.
 *
 * It's required when memslot is being deleted or VM is being
 * destroyed, in these cases, we should ensure that KVM MMU does
 * not use any resource of the being-deleted slot or all slots
 * after calling the function.
 */
static void kvm_mmu_zap_all_fast(struct kvm *kvm)
{
5409 5410
	lockdep_assert_held(&kvm->slots_lock);

5411
	spin_lock(&kvm->mmu_lock);
5412
	trace_kvm_mmu_zap_all_fast(kvm);
5413 5414 5415 5416 5417 5418 5419 5420 5421

	/*
	 * Toggle mmu_valid_gen between '0' and '1'.  Because slots_lock is
	 * held for the entire duration of zapping obsolete pages, it's
	 * impossible for there to be multiple invalid generations associated
	 * with *valid* shadow pages at any given time, i.e. there is exactly
	 * one valid generation and (at most) one invalid generation.
	 */
	kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
5422

5423 5424 5425 5426 5427 5428 5429 5430 5431 5432
	/*
	 * Notify all vcpus to reload its shadow page table and flush TLB.
	 * Then all vcpus will switch to new shadow page table with the new
	 * mmu_valid_gen.
	 *
	 * Note: we need to do this under the protection of mmu_lock,
	 * otherwise, vcpu would purge shadow page but miss tlb flush.
	 */
	kvm_reload_remote_mmus(kvm);

5433
	kvm_zap_obsolete_pages(kvm);
5434 5435 5436 5437

	if (kvm->arch.tdp_mmu_enabled)
		kvm_tdp_mmu_zap_all(kvm);

5438 5439 5440
	spin_unlock(&kvm->mmu_lock);
}

5441 5442 5443 5444 5445
static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
{
	return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
}

5446
static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5447 5448
			struct kvm_memory_slot *slot,
			struct kvm_page_track_notifier_node *node)
5449
{
5450
	kvm_mmu_zap_all_fast(kvm);
5451 5452
}

5453
void kvm_mmu_init_vm(struct kvm *kvm)
5454
{
5455
	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5456

5457 5458
	kvm_mmu_init_tdp_mmu(kvm);

5459
	node->track_write = kvm_mmu_pte_write;
5460
	node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5461
	kvm_page_track_register_notifier(kvm, node);
5462 5463
}

5464
void kvm_mmu_uninit_vm(struct kvm *kvm)
5465
{
5466
	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5467

5468
	kvm_page_track_unregister_notifier(kvm, node);
5469 5470

	kvm_mmu_uninit_tdp_mmu(kvm);
5471 5472
}

X
Xiao Guangrong 已提交
5473 5474 5475 5476
void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;
5477
	int i;
5478
	bool flush;
X
Xiao Guangrong 已提交
5479 5480

	spin_lock(&kvm->mmu_lock);
5481 5482 5483 5484 5485 5486 5487 5488 5489
	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
		kvm_for_each_memslot(memslot, slots) {
			gfn_t start, end;

			start = max(gfn_start, memslot->base_gfn);
			end = min(gfn_end, memslot->base_gfn + memslot->npages);
			if (start >= end)
				continue;
X
Xiao Guangrong 已提交
5490

5491
			slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
5492
						PG_LEVEL_4K,
5493
						KVM_MAX_HUGEPAGE_LEVEL,
5494
						start, end - 1, true);
5495
		}
X
Xiao Guangrong 已提交
5496 5497
	}

5498 5499 5500 5501 5502 5503
	if (kvm->arch.tdp_mmu_enabled) {
		flush = kvm_tdp_mmu_zap_gfn_range(kvm, gfn_start, gfn_end);
		if (flush)
			kvm_flush_remote_tlbs(kvm);
	}

X
Xiao Guangrong 已提交
5504 5505 5506
	spin_unlock(&kvm->mmu_lock);
}

5507 5508
static bool slot_rmap_write_protect(struct kvm *kvm,
				    struct kvm_rmap_head *rmap_head)
5509
{
5510
	return __rmap_write_protect(kvm, rmap_head, false);
5511 5512
}

5513
void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5514 5515
				      struct kvm_memory_slot *memslot,
				      int start_level)
A
Avi Kivity 已提交
5516
{
5517
	bool flush;
A
Avi Kivity 已提交
5518

5519
	spin_lock(&kvm->mmu_lock);
5520
	flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect,
5521
				start_level, KVM_MAX_HUGEPAGE_LEVEL, false);
5522 5523
	if (kvm->arch.tdp_mmu_enabled)
		flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, PG_LEVEL_4K);
5524
	spin_unlock(&kvm->mmu_lock);
5525 5526 5527 5528 5529 5530 5531 5532

	/*
	 * We can flush all the TLBs out of the mmu lock without TLB
	 * corruption since we just change the spte from writable to
	 * readonly so that we only need to care the case of changing
	 * spte from present to present (changing the spte from present
	 * to nonpresent will flush all the TLBs immediately), in other
	 * words, the only case we care is mmu_spte_update() where we
W
Wei Yang 已提交
5533
	 * have checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
5534 5535 5536
	 * instead of PT_WRITABLE_MASK, that means it does not depend
	 * on PT_WRITABLE_MASK anymore.
	 */
5537
	if (flush)
5538
		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
A
Avi Kivity 已提交
5539
}
5540

5541
static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5542
					 struct kvm_rmap_head *rmap_head)
5543 5544 5545 5546
{
	u64 *sptep;
	struct rmap_iterator iter;
	int need_tlb_flush = 0;
D
Dan Williams 已提交
5547
	kvm_pfn_t pfn;
5548 5549
	struct kvm_mmu_page *sp;

5550
restart:
5551
	for_each_rmap_spte(rmap_head, &iter, sptep) {
5552
		sp = sptep_to_sp(sptep);
5553 5554 5555
		pfn = spte_to_pfn(*sptep);

		/*
5556 5557 5558 5559 5560
		 * We cannot do huge page mapping for indirect shadow pages,
		 * which are found on the last rmap (level = 1) when not using
		 * tdp; such shadow pages are synced with the page table in
		 * the guest, and the guest page table is using 4K page size
		 * mapping if the indirect sp has level = 1.
5561
		 */
5562
		if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
5563 5564
		    (kvm_is_zone_device_pfn(pfn) ||
		     PageCompound(pfn_to_page(pfn)))) {
5565
			pte_list_remove(rmap_head, sptep);
5566 5567 5568 5569 5570 5571 5572

			if (kvm_available_flush_tlb_with_range())
				kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
					KVM_PAGES_PER_HPAGE(sp->role.level));
			else
				need_tlb_flush = 1;

5573 5574
			goto restart;
		}
5575 5576 5577 5578 5579 5580
	}

	return need_tlb_flush;
}

void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5581
				   const struct kvm_memory_slot *memslot)
5582
{
5583
	/* FIXME: const-ify all uses of struct kvm_memory_slot.  */
5584
	spin_lock(&kvm->mmu_lock);
5585 5586
	slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
			 kvm_mmu_zap_collapsible_spte, true);
5587 5588 5589

	if (kvm->arch.tdp_mmu_enabled)
		kvm_tdp_mmu_zap_collapsible_sptes(kvm, memslot);
5590 5591 5592
	spin_unlock(&kvm->mmu_lock);
}

5593 5594 5595 5596
void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
					struct kvm_memory_slot *memslot)
{
	/*
5597 5598 5599 5600 5601
	 * All current use cases for flushing the TLBs for a specific memslot
	 * are related to dirty logging, and do the TLB flush out of mmu_lock.
	 * The interaction between the various operations on memslot must be
	 * serialized by slots_locks to ensure the TLB flush from one operation
	 * is observed by any other operation on the same memslot.
5602 5603
	 */
	lockdep_assert_held(&kvm->slots_lock);
5604 5605
	kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
					   memslot->npages);
5606 5607
}

5608 5609 5610
void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
				   struct kvm_memory_slot *memslot)
{
5611
	bool flush;
5612 5613

	spin_lock(&kvm->mmu_lock);
5614
	flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
5615 5616
	if (kvm->arch.tdp_mmu_enabled)
		flush |= kvm_tdp_mmu_clear_dirty_slot(kvm, memslot);
5617 5618 5619 5620 5621 5622 5623 5624 5625
	spin_unlock(&kvm->mmu_lock);

	/*
	 * It's also safe to flush TLBs out of mmu lock here as currently this
	 * function is only used for dirty logging, in which case flushing TLB
	 * out of mmu lock also guarantees no dirty pages will be lost in
	 * dirty_bitmap.
	 */
	if (flush)
5626
		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5627 5628 5629 5630 5631 5632
}
EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);

void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
					struct kvm_memory_slot *memslot)
{
5633
	bool flush;
5634 5635

	spin_lock(&kvm->mmu_lock);
5636 5637
	flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
					false);
5638 5639
	if (kvm->arch.tdp_mmu_enabled)
		flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, PG_LEVEL_2M);
5640 5641 5642
	spin_unlock(&kvm->mmu_lock);

	if (flush)
5643
		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5644 5645 5646 5647 5648 5649
}
EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);

void kvm_mmu_slot_set_dirty(struct kvm *kvm,
			    struct kvm_memory_slot *memslot)
{
5650
	bool flush;
5651 5652

	spin_lock(&kvm->mmu_lock);
5653
	flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
5654 5655
	if (kvm->arch.tdp_mmu_enabled)
		flush |= kvm_tdp_mmu_slot_set_dirty(kvm, memslot);
5656 5657 5658
	spin_unlock(&kvm->mmu_lock);

	if (flush)
5659
		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5660 5661 5662
}
EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);

5663
void kvm_mmu_zap_all(struct kvm *kvm)
5664 5665
{
	struct kvm_mmu_page *sp, *node;
5666
	LIST_HEAD(invalid_list);
5667
	int ign;
5668

5669
	spin_lock(&kvm->mmu_lock);
5670
restart:
5671
	list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
5672
		if (WARN_ON(sp->role.invalid))
5673
			continue;
5674
		if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
5675
			goto restart;
5676
		if (cond_resched_lock(&kvm->mmu_lock))
5677 5678 5679
			goto restart;
	}

5680
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
5681 5682 5683 5684

	if (kvm->arch.tdp_mmu_enabled)
		kvm_tdp_mmu_zap_all(kvm);

5685 5686 5687
	spin_unlock(&kvm->mmu_lock);
}

5688
void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
5689
{
5690
	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
5691

5692
	gen &= MMIO_SPTE_GEN_MASK;
5693

5694
	/*
5695 5696 5697 5698 5699 5700 5701 5702
	 * Generation numbers are incremented in multiples of the number of
	 * address spaces in order to provide unique generations across all
	 * address spaces.  Strip what is effectively the address space
	 * modifier prior to checking for a wrap of the MMIO generation so
	 * that a wrap in any address space is detected.
	 */
	gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);

5703
	/*
5704
	 * The very rare case: if the MMIO generation number has wrapped,
5705 5706
	 * zap all shadow pages.
	 */
5707
	if (unlikely(gen == 0)) {
5708
		kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
5709
		kvm_mmu_zap_all_fast(kvm);
5710
	}
5711 5712
}

5713 5714
static unsigned long
mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
5715 5716
{
	struct kvm *kvm;
5717
	int nr_to_scan = sc->nr_to_scan;
5718
	unsigned long freed = 0;
5719

J
Junaid Shahid 已提交
5720
	mutex_lock(&kvm_lock);
5721 5722

	list_for_each_entry(kvm, &vm_list, vm_list) {
5723
		int idx;
5724
		LIST_HEAD(invalid_list);
5725

5726 5727 5728 5729 5730 5731 5732 5733
		/*
		 * Never scan more than sc->nr_to_scan VM instances.
		 * Will not hit this condition practically since we do not try
		 * to shrink more than one VM and it is very unlikely to see
		 * !n_used_mmu_pages so many times.
		 */
		if (!nr_to_scan--)
			break;
5734 5735 5736 5737 5738 5739
		/*
		 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
		 * here. We may skip a VM instance errorneosly, but we do not
		 * want to shrink a VM that only started to populate its MMU
		 * anyway.
		 */
5740 5741
		if (!kvm->arch.n_used_mmu_pages &&
		    !kvm_has_zapped_obsolete_pages(kvm))
5742 5743
			continue;

5744
		idx = srcu_read_lock(&kvm->srcu);
5745 5746
		spin_lock(&kvm->mmu_lock);

5747 5748 5749 5750 5751 5752
		if (kvm_has_zapped_obsolete_pages(kvm)) {
			kvm_mmu_commit_zap_page(kvm,
			      &kvm->arch.zapped_obsolete_pages);
			goto unlock;
		}

5753
		freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan);
5754

5755
unlock:
5756
		spin_unlock(&kvm->mmu_lock);
5757
		srcu_read_unlock(&kvm->srcu, idx);
5758

5759 5760 5761 5762 5763
		/*
		 * unfair on small ones
		 * per-vm shrinkers cry out
		 * sadness comes quickly
		 */
5764 5765
		list_move_tail(&kvm->vm_list, &vm_list);
		break;
5766 5767
	}

J
Junaid Shahid 已提交
5768
	mutex_unlock(&kvm_lock);
5769 5770 5771 5772 5773 5774
	return freed;
}

static unsigned long
mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
{
5775
	return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
5776 5777 5778
}

static struct shrinker mmu_shrinker = {
5779 5780
	.count_objects = mmu_shrink_count,
	.scan_objects = mmu_shrink_scan,
5781 5782 5783
	.seeks = DEFAULT_SEEKS * 10,
};

I
Ingo Molnar 已提交
5784
static void mmu_destroy_caches(void)
5785
{
5786 5787
	kmem_cache_destroy(pte_list_desc_cache);
	kmem_cache_destroy(mmu_page_header_cache);
5788 5789
}

5790 5791 5792 5793 5794
static void kvm_set_mmio_spte_mask(void)
{
	u64 mask;

	/*
5795 5796 5797 5798 5799
	 * Set a reserved PA bit in MMIO SPTEs to generate page faults with
	 * PFEC.RSVD=1 on MMIO accesses.  64-bit PTEs (PAE, x86-64, and EPT
	 * paging) support a maximum of 52 bits of PA, i.e. if the CPU supports
	 * 52-bit physical addresses then there are no reserved PA bits in the
	 * PTEs and so the reserved PA approach must be disabled.
5800
	 */
5801 5802 5803 5804
	if (shadow_phys_bits < 52)
		mask = BIT_ULL(51) | PT_PRESENT_MASK;
	else
		mask = 0;
5805

P
Paolo Bonzini 已提交
5806
	kvm_mmu_set_mmio_spte_mask(mask, ACC_WRITE_MASK | ACC_USER_MASK);
5807 5808
}

P
Paolo Bonzini 已提交
5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842
static bool get_nx_auto_mode(void)
{
	/* Return true when CPU has the bug, and mitigations are ON */
	return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
}

static void __set_nx_huge_pages(bool val)
{
	nx_huge_pages = itlb_multihit_kvm_mitigation = val;
}

static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
{
	bool old_val = nx_huge_pages;
	bool new_val;

	/* In "auto" mode deploy workaround only if CPU has the bug. */
	if (sysfs_streq(val, "off"))
		new_val = 0;
	else if (sysfs_streq(val, "force"))
		new_val = 1;
	else if (sysfs_streq(val, "auto"))
		new_val = get_nx_auto_mode();
	else if (strtobool(val, &new_val) < 0)
		return -EINVAL;

	__set_nx_huge_pages(new_val);

	if (new_val != old_val) {
		struct kvm *kvm;

		mutex_lock(&kvm_lock);

		list_for_each_entry(kvm, &vm_list, vm_list) {
5843
			mutex_lock(&kvm->slots_lock);
P
Paolo Bonzini 已提交
5844
			kvm_mmu_zap_all_fast(kvm);
5845
			mutex_unlock(&kvm->slots_lock);
5846 5847

			wake_up_process(kvm->arch.nx_lpage_recovery_thread);
P
Paolo Bonzini 已提交
5848 5849 5850 5851 5852 5853 5854
		}
		mutex_unlock(&kvm_lock);
	}

	return 0;
}

5855 5856
int kvm_mmu_module_init(void)
{
5857 5858
	int ret = -ENOMEM;

P
Paolo Bonzini 已提交
5859 5860 5861
	if (nx_huge_pages == -1)
		__set_nx_huge_pages(get_nx_auto_mode());

5862 5863 5864 5865 5866 5867 5868 5869 5870 5871
	/*
	 * MMU roles use union aliasing which is, generally speaking, an
	 * undefined behavior. However, we supposedly know how compilers behave
	 * and the current status quo is unlikely to change. Guardians below are
	 * supposed to let us know if the assumption becomes false.
	 */
	BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
	BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
	BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));

5872
	kvm_mmu_reset_all_pte_masks();
5873

5874 5875
	kvm_set_mmio_spte_mask();

5876 5877
	pte_list_desc_cache = kmem_cache_create("pte_list_desc",
					    sizeof(struct pte_list_desc),
5878
					    0, SLAB_ACCOUNT, NULL);
5879
	if (!pte_list_desc_cache)
5880
		goto out;
5881

5882 5883
	mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
						  sizeof(struct kvm_mmu_page),
5884
						  0, SLAB_ACCOUNT, NULL);
5885
	if (!mmu_page_header_cache)
5886
		goto out;
5887

5888
	if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
5889
		goto out;
5890

5891 5892 5893
	ret = register_shrinker(&mmu_shrinker);
	if (ret)
		goto out;
5894

5895 5896
	return 0;

5897
out:
5898
	mmu_destroy_caches();
5899
	return ret;
5900 5901
}

5902
/*
P
Peng Hao 已提交
5903
 * Calculate mmu pages needed for kvm.
5904
 */
5905
unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm)
5906
{
5907 5908
	unsigned long nr_mmu_pages;
	unsigned long nr_pages = 0;
5909
	struct kvm_memslots *slots;
5910
	struct kvm_memory_slot *memslot;
5911
	int i;
5912

5913 5914
	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
5915

5916 5917 5918
		kvm_for_each_memslot(memslot, slots)
			nr_pages += memslot->npages;
	}
5919 5920

	nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
5921
	nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
5922 5923 5924 5925

	return nr_mmu_pages;
}

5926 5927
void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
{
5928
	kvm_mmu_unload(vcpu);
5929 5930
	free_mmu_pages(&vcpu->arch.root_mmu);
	free_mmu_pages(&vcpu->arch.guest_mmu);
5931
	mmu_free_memory_caches(vcpu);
5932 5933 5934 5935 5936 5937 5938
}

void kvm_mmu_module_exit(void)
{
	mmu_destroy_caches();
	percpu_counter_destroy(&kvm_total_used_mmu_pages);
	unregister_shrinker(&mmu_shrinker);
5939 5940
	mmu_audit_disable();
}
5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979

static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp)
{
	unsigned int old_val;
	int err;

	old_val = nx_huge_pages_recovery_ratio;
	err = param_set_uint(val, kp);
	if (err)
		return err;

	if (READ_ONCE(nx_huge_pages) &&
	    !old_val && nx_huge_pages_recovery_ratio) {
		struct kvm *kvm;

		mutex_lock(&kvm_lock);

		list_for_each_entry(kvm, &vm_list, vm_list)
			wake_up_process(kvm->arch.nx_lpage_recovery_thread);

		mutex_unlock(&kvm_lock);
	}

	return err;
}

static void kvm_recover_nx_lpages(struct kvm *kvm)
{
	int rcu_idx;
	struct kvm_mmu_page *sp;
	unsigned int ratio;
	LIST_HEAD(invalid_list);
	ulong to_zap;

	rcu_idx = srcu_read_lock(&kvm->srcu);
	spin_lock(&kvm->mmu_lock);

	ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
	to_zap = ratio ? DIV_ROUND_UP(kvm->stat.nx_lpage_splits, ratio) : 0;
5980 5981 5982 5983
	for ( ; to_zap; --to_zap) {
		if (list_empty(&kvm->arch.lpage_disallowed_mmu_pages))
			break;

5984 5985 5986 5987 5988 5989 5990 5991 5992
		/*
		 * We use a separate list instead of just using active_mmu_pages
		 * because the number of lpage_disallowed pages is expected to
		 * be relatively small compared to the total.
		 */
		sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
				      struct kvm_mmu_page,
				      lpage_disallowed_link);
		WARN_ON_ONCE(!sp->lpage_disallowed);
5993 5994 5995 5996 5997 5998 5999
		if (sp->tdp_mmu_page)
			kvm_tdp_mmu_zap_gfn_range(kvm, sp->gfn,
				sp->gfn + KVM_PAGES_PER_HPAGE(sp->role.level));
		else {
			kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
			WARN_ON_ONCE(sp->lpage_disallowed);
		}
6000

6001
		if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
6002
			kvm_mmu_commit_zap_page(kvm, &invalid_list);
6003
			cond_resched_lock(&kvm->mmu_lock);
6004 6005
		}
	}
6006
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061

	spin_unlock(&kvm->mmu_lock);
	srcu_read_unlock(&kvm->srcu, rcu_idx);
}

static long get_nx_lpage_recovery_timeout(u64 start_time)
{
	return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio)
		? start_time + 60 * HZ - get_jiffies_64()
		: MAX_SCHEDULE_TIMEOUT;
}

static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
{
	u64 start_time;
	long remaining_time;

	while (true) {
		start_time = get_jiffies_64();
		remaining_time = get_nx_lpage_recovery_timeout(start_time);

		set_current_state(TASK_INTERRUPTIBLE);
		while (!kthread_should_stop() && remaining_time > 0) {
			schedule_timeout(remaining_time);
			remaining_time = get_nx_lpage_recovery_timeout(start_time);
			set_current_state(TASK_INTERRUPTIBLE);
		}

		set_current_state(TASK_RUNNING);

		if (kthread_should_stop())
			return 0;

		kvm_recover_nx_lpages(kvm);
	}
}

int kvm_mmu_post_init_vm(struct kvm *kvm)
{
	int err;

	err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
					  "kvm-nx-lpage-recovery",
					  &kvm->arch.nx_lpage_recovery_thread);
	if (!err)
		kthread_unpark(kvm->arch.nx_lpage_recovery_thread);

	return err;
}

void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
{
	if (kvm->arch.nx_lpage_recovery_thread)
		kthread_stop(kvm->arch.nx_lpage_recovery_thread);
}