mmu.c 174.7 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
A
Avi Kivity 已提交
2 3 4 5 6 7 8 9 10
/*
 * Kernel-based Virtual Machine driver for Linux
 *
 * This module enables machines with Intel VT-x extensions to run virtual
 * machines without emulation or binary translation.
 *
 * MMU support
 *
 * Copyright (C) 2006 Qumranet, Inc.
N
Nicolas Kaiser 已提交
11
 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
A
Avi Kivity 已提交
12 13 14 15 16
 *
 * Authors:
 *   Yaniv Kamay  <yaniv@qumranet.com>
 *   Avi Kivity   <avi@qumranet.com>
 */
A
Avi Kivity 已提交
17

18
#include "irq.h"
19
#include "ioapic.h"
20
#include "mmu.h"
21
#include "mmu_internal.h"
22
#include "tdp_mmu.h"
23
#include "x86.h"
A
Avi Kivity 已提交
24
#include "kvm_cache_regs.h"
25
#include "kvm_emulate.h"
26
#include "cpuid.h"
27
#include "spte.h"
A
Avi Kivity 已提交
28

29
#include <linux/kvm_host.h>
A
Avi Kivity 已提交
30 31 32 33
#include <linux/types.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/highmem.h>
34 35
#include <linux/moduleparam.h>
#include <linux/export.h>
36
#include <linux/swap.h>
M
Marcelo Tosatti 已提交
37
#include <linux/hugetlb.h>
38
#include <linux/compiler.h>
39
#include <linux/srcu.h>
40
#include <linux/slab.h>
41
#include <linux/sched/signal.h>
42
#include <linux/uaccess.h>
43
#include <linux/hash.h>
44
#include <linux/kern_levels.h>
45
#include <linux/kthread.h>
A
Avi Kivity 已提交
46

A
Avi Kivity 已提交
47
#include <asm/page.h>
48
#include <asm/memtype.h>
A
Avi Kivity 已提交
49
#include <asm/cmpxchg.h>
50
#include <asm/io.h>
51
#include <asm/set_memory.h>
52
#include <asm/vmx.h>
53
#include <asm/kvm_page_track.h>
54
#include "trace.h"
A
Avi Kivity 已提交
55

56 57
#include "paging.h"

P
Paolo Bonzini 已提交
58 59
extern bool itlb_multihit_kvm_mitigation;

60
int __read_mostly nx_huge_pages = -1;
61
static uint __read_mostly nx_huge_pages_recovery_period_ms;
62 63 64 65
#ifdef CONFIG_PREEMPT_RT
/* Recovery can cause latency spikes, disable it for PREEMPT_RT.  */
static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
#else
66
static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
67
#endif
P
Paolo Bonzini 已提交
68 69

static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
70
static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp);
P
Paolo Bonzini 已提交
71

72
static const struct kernel_param_ops nx_huge_pages_ops = {
P
Paolo Bonzini 已提交
73 74 75 76
	.set = set_nx_huge_pages,
	.get = param_get_bool,
};

77 78
static const struct kernel_param_ops nx_huge_pages_recovery_param_ops = {
	.set = set_nx_huge_pages_recovery_param,
79 80 81
	.get = param_get_uint,
};

P
Paolo Bonzini 已提交
82 83
module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
__MODULE_PARM_TYPE(nx_huge_pages, "bool");
84
module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_param_ops,
85 86
		&nx_huge_pages_recovery_ratio, 0644);
__MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
87 88 89
module_param_cb(nx_huge_pages_recovery_period_ms, &nx_huge_pages_recovery_param_ops,
		&nx_huge_pages_recovery_period_ms, 0644);
__MODULE_PARM_TYPE(nx_huge_pages_recovery_period_ms, "uint");
P
Paolo Bonzini 已提交
90

91 92 93
static bool __read_mostly force_flush_and_sync_on_reuse;
module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644);

94 95 96 97 98 99 100
/*
 * When setting this variable to true it enables Two-Dimensional-Paging
 * where the hardware walks 2 page tables:
 * 1. the guest-virtual to guest-physical
 * 2. while doing 1. it walks guest-physical to host-physical
 * If the hardware supports that we don't need to do shadow paging.
 */
101
bool tdp_enabled = false;
102

103
static int max_huge_page_level __read_mostly;
104
static int tdp_root_level __read_mostly;
105
static int max_tdp_level __read_mostly;
106

107
#ifdef MMU_DEBUG
108
bool dbg = 0;
109
module_param(dbg, bool, 0644);
110
#endif
A
Avi Kivity 已提交
111

112 113
#define PTE_PREFETCH_NUM		8

A
Avi Kivity 已提交
114 115 116
#define PT32_LEVEL_BITS 10

#define PT32_LEVEL_SHIFT(level) \
M
Mike Day 已提交
117
		(PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
A
Avi Kivity 已提交
118

119 120 121
#define PT32_LVL_OFFSET_MASK(level) \
	(PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
122 123 124 125 126 127 128 129

#define PT32_INDEX(address, level)\
	(((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))


#define PT32_BASE_ADDR_MASK PAGE_MASK
#define PT32_DIR_BASE_ADDR_MASK \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
130 131 132
#define PT32_LVL_ADDR_MASK(level) \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
					    * PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
133

134 135
#include <trace/events/kvm.h>

136
/* make pte_list_desc fit well in cache lines */
137
#define PTE_LIST_EXT 14
138

139 140 141 142 143
/*
 * Slight optimization of cacheline layout, by putting `more' and `spte_count'
 * at the start; then accessing it will only use one single cacheline for
 * either full (entries==PTE_LIST_EXT) case or entries<=6.
 */
144 145
struct pte_list_desc {
	struct pte_list_desc *more;
146 147 148 149 150 151
	/*
	 * Stores number of entries stored in the pte_list_desc.  No need to be
	 * u64 but just for easier alignment.  When PTE_LIST_EXT, means full.
	 */
	u64 spte_count;
	u64 *sptes[PTE_LIST_EXT];
152 153
};

154 155 156 157
struct kvm_shadow_walk_iterator {
	u64 addr;
	hpa_t shadow_addr;
	u64 *sptep;
158
	int level;
159 160 161
	unsigned index;
};

162 163 164 165 166 167 168
#define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker)     \
	for (shadow_walk_init_using_root(&(_walker), (_vcpu),              \
					 (_root), (_addr));                \
	     shadow_walk_okay(&(_walker));			           \
	     shadow_walk_next(&(_walker)))

#define for_each_shadow_entry(_vcpu, _addr, _walker)            \
169 170 171 172
	for (shadow_walk_init(&(_walker), _vcpu, _addr);	\
	     shadow_walk_okay(&(_walker));			\
	     shadow_walk_next(&(_walker)))

173 174 175 176 177 178
#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)	\
	for (shadow_walk_init(&(_walker), _vcpu, _addr);		\
	     shadow_walk_okay(&(_walker)) &&				\
		({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });	\
	     __shadow_walk_next(&(_walker), spte))

179
static struct kmem_cache *pte_list_desc_cache;
180
struct kmem_cache *mmu_page_header_cache;
181
static struct percpu_counter kvm_total_used_mmu_pages;
182

183 184
static void mmu_spte_set(u64 *sptep, u64 spte);

185 186 187 188 189 190
struct kvm_mmu_role_regs {
	const unsigned long cr0;
	const unsigned long cr4;
	const u64 efer;
};

191 192 193
#define CREATE_TRACE_POINTS
#include "mmutrace.h"

194 195
/*
 * Yes, lot's of underscores.  They're a hint that you probably shouldn't be
196
 * reading from the role_regs.  Once the root_role is constructed, it becomes
197 198 199
 * the single source of truth for the MMU's state.
 */
#define BUILD_MMU_ROLE_REGS_ACCESSOR(reg, name, flag)			\
200 201
static inline bool __maybe_unused					\
____is_##reg##_##name(const struct kvm_mmu_role_regs *regs)		\
202 203 204 205 206 207 208 209 210 211 212 213 214 215
{									\
	return !!(regs->reg & flag);					\
}
BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, pg, X86_CR0_PG);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, wp, X86_CR0_WP);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pse, X86_CR4_PSE);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pae, X86_CR4_PAE);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smep, X86_CR4_SMEP);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smap, X86_CR4_SMAP);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pke, X86_CR4_PKE);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, la57, X86_CR4_LA57);
BUILD_MMU_ROLE_REGS_ACCESSOR(efer, nx, EFER_NX);
BUILD_MMU_ROLE_REGS_ACCESSOR(efer, lma, EFER_LMA);

216 217 218 219 220 221 222
/*
 * The MMU itself (with a valid role) is the single source of truth for the
 * MMU.  Do not use the regs used to build the MMU/role, nor the vCPU.  The
 * regs don't account for dependencies, e.g. clearing CR4 bits if CR0.PG=1,
 * and the vCPU may be incorrect/irrelevant.
 */
#define BUILD_MMU_ROLE_ACCESSOR(base_or_ext, reg, name)		\
223
static inline bool __maybe_unused is_##reg##_##name(struct kvm_mmu *mmu)	\
224
{								\
225
	return !!(mmu->cpu_role. base_or_ext . reg##_##name);	\
226 227 228 229 230 231 232 233
}
BUILD_MMU_ROLE_ACCESSOR(base, cr0, wp);
BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, pse);
BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, smep);
BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, smap);
BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, pke);
BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, la57);
BUILD_MMU_ROLE_ACCESSOR(base, efer, nx);
234
BUILD_MMU_ROLE_ACCESSOR(ext,  efer, lma);
235

236 237 238 239 240 241 242 243 244 245
static inline bool is_cr0_pg(struct kvm_mmu *mmu)
{
        return mmu->cpu_role.base.level > 0;
}

static inline bool is_cr4_pae(struct kvm_mmu *mmu)
{
        return !mmu->cpu_role.base.has_4_byte_gpte;
}

246 247 248 249 250 251 252 253 254 255
static struct kvm_mmu_role_regs vcpu_to_role_regs(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu_role_regs regs = {
		.cr0 = kvm_read_cr0_bits(vcpu, KVM_MMU_CR0_ROLE_BITS),
		.cr4 = kvm_read_cr4_bits(vcpu, KVM_MMU_CR4_ROLE_BITS),
		.efer = vcpu->arch.efer,
	};

	return regs;
}
256 257 258

static inline bool kvm_available_flush_tlb_with_range(void)
{
259
	return kvm_x86_ops.tlb_remote_flush_with_range;
260 261 262 263 264 265 266
}

static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
		struct kvm_tlb_range *range)
{
	int ret = -ENOTSUPP;

267
	if (range && kvm_x86_ops.tlb_remote_flush_with_range)
268
		ret = static_call(kvm_x86_tlb_remote_flush_with_range)(kvm, range);
269 270 271 272 273

	if (ret)
		kvm_flush_remote_tlbs(kvm);
}

274
void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
275 276 277 278 279 280 281 282 283 284
		u64 start_gfn, u64 pages)
{
	struct kvm_tlb_range range;

	range.start_gfn = start_gfn;
	range.pages = pages;

	kvm_flush_remote_tlbs_with_range(kvm, &range);
}

285 286 287
static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
			   unsigned int access)
{
288
	u64 spte = make_mmio_spte(vcpu, gfn, access);
289

290 291
	trace_mark_mmio_spte(sptep, gfn, spte);
	mmu_spte_set(sptep, spte);
292 293 294 295
}

static gfn_t get_mmio_spte_gfn(u64 spte)
{
296
	u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
297

298
	gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)
299 300 301
	       & shadow_nonpresent_or_rsvd_mask;

	return gpa >> PAGE_SHIFT;
302 303 304 305
}

static unsigned get_mmio_spte_access(u64 spte)
{
306
	return spte & shadow_mmio_access_mask;
307 308
}

309
static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
310
{
311
	u64 kvm_gen, spte_gen, gen;
312

313 314 315
	gen = kvm_vcpu_memslots(vcpu)->generation;
	if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
		return false;
316

317
	kvm_gen = gen & MMIO_SPTE_GEN_MASK;
318 319 320 321
	spte_gen = get_mmio_spte_generation(spte);

	trace_check_mmio_spte(spte, kvm_gen, spte_gen);
	return likely(kvm_gen == spte_gen);
322 323
}

A
Avi Kivity 已提交
324 325 326 327 328
static int is_cpuid_PSE36(void)
{
	return 1;
}

329 330 331 332 333 334 335
static gfn_t pse36_gfn_delta(u32 gpte)
{
	int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;

	return (gpte & PT32_DIR_PSE36_MASK) << shift;
}

336
#ifdef CONFIG_X86_64
A
Avi Kivity 已提交
337
static void __set_spte(u64 *sptep, u64 spte)
338
{
339
	WRITE_ONCE(*sptep, spte);
340 341
}

342
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
343
{
344
	WRITE_ONCE(*sptep, spte);
345 346 347 348 349 350
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	return xchg(sptep, spte);
}
351 352 353

static u64 __get_spte_lockless(u64 *sptep)
{
354
	return READ_ONCE(*sptep);
355
}
356
#else
357 358 359 360 361 362 363
union split_spte {
	struct {
		u32 spte_low;
		u32 spte_high;
	};
	u64 spte;
};
364

365 366
static void count_spte_clear(u64 *sptep, u64 spte)
{
367
	struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
368 369 370 371 372 373 374 375 376

	if (is_shadow_present_pte(spte))
		return;

	/* Ensure the spte is completely set before we increase the count */
	smp_wmb();
	sp->clear_spte_count++;
}

377 378 379
static void __set_spte(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;
380

381 382 383 384 385 386 387 388 389 390 391 392
	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	ssptep->spte_high = sspte.spte_high;

	/*
	 * If we map the spte from nonpresent to present, We should store
	 * the high bits firstly, then set present bit, so cpu can not
	 * fetch this spte while we are setting the spte.
	 */
	smp_wmb();

393
	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
394 395
}

396 397 398 399 400 401 402
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

403
	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
404 405 406 407 408 409 410 411

	/*
	 * If we map the spte from present to nonpresent, we should clear
	 * present bit firstly to avoid vcpu fetch the old high bits.
	 */
	smp_wmb();

	ssptep->spte_high = sspte.spte_high;
412
	count_spte_clear(sptep, spte);
413 414 415 416 417 418 419 420 421 422 423
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte, orig;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	/* xchg acts as a barrier before the setting of the high bits */
	orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
424 425
	orig.spte_high = ssptep->spte_high;
	ssptep->spte_high = sspte.spte_high;
426
	count_spte_clear(sptep, spte);
427 428 429

	return orig.spte;
}
430 431 432

/*
 * The idea using the light way get the spte on x86_32 guest is from
433
 * gup_get_pte (mm/gup.c).
434 435 436 437 438 439 440 441 442 443 444 445 446 447
 *
 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
 * coalesces them and we are running out of the MMU lock.  Therefore
 * we need to protect against in-progress updates of the spte.
 *
 * Reading the spte while an update is in progress may get the old value
 * for the high part of the spte.  The race is fine for a present->non-present
 * change (because the high part of the spte is ignored for non-present spte),
 * but for a present->present change we must reread the spte.
 *
 * All such changes are done in two steps (present->non-present and
 * non-present->present), hence it is enough to count the number of
 * present->non-present updates: if it changed while reading the spte,
 * we might have hit the race.  This is done using clear_spte_count.
448 449 450
 */
static u64 __get_spte_lockless(u64 *sptep)
{
451
	struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
	union split_spte spte, *orig = (union split_spte *)sptep;
	int count;

retry:
	count = sp->clear_spte_count;
	smp_rmb();

	spte.spte_low = orig->spte_low;
	smp_rmb();

	spte.spte_high = orig->spte_high;
	smp_rmb();

	if (unlikely(spte.spte_low != orig->spte_low ||
	      count != sp->clear_spte_count))
		goto retry;

	return spte.spte;
}
471 472
#endif

473 474 475 476 477 478 479 480 481 482 483 484
/* Rules for using mmu_spte_set:
 * Set the sptep from nonpresent to present.
 * Note: the sptep being assigned *must* be either not present
 * or in a state where the hardware will not attempt to update
 * the spte.
 */
static void mmu_spte_set(u64 *sptep, u64 new_spte)
{
	WARN_ON(is_shadow_present_pte(*sptep));
	__set_spte(sptep, new_spte);
}

485 486 487
/*
 * Update the SPTE (excluding the PFN), but do not track changes in its
 * accessed/dirty status.
488
 */
489
static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
490
{
491
	u64 old_spte = *sptep;
492

493
	WARN_ON(!is_shadow_present_pte(new_spte));
494
	check_spte_writable_invariants(new_spte);
495

496 497
	if (!is_shadow_present_pte(old_spte)) {
		mmu_spte_set(sptep, new_spte);
498
		return old_spte;
499
	}
500

501
	if (!spte_has_volatile_bits(old_spte))
502
		__update_clear_spte_fast(sptep, new_spte);
503
	else
504
		old_spte = __update_clear_spte_slow(sptep, new_spte);
505

506 507
	WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));

508 509 510 511 512 513
	return old_spte;
}

/* Rules for using mmu_spte_update:
 * Update the state bits, it means the mapped pfn is not changed.
 *
514 515 516
 * Whenever an MMU-writable SPTE is overwritten with a read-only SPTE, remote
 * TLBs must be flushed. Otherwise rmap_write_protect will find a read-only
 * spte, even though the writable spte might be cached on a CPU's TLB.
517 518 519 520 521 522 523 524 525 526 527
 *
 * Returns true if the TLB needs to be flushed
 */
static bool mmu_spte_update(u64 *sptep, u64 new_spte)
{
	bool flush = false;
	u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);

	if (!is_shadow_present_pte(old_spte))
		return false;

528 529
	/*
	 * For the spte updated out of mmu-lock is safe, since
530
	 * we always atomically update it, see the comments in
531 532
	 * spte_has_volatile_bits().
	 */
533
	if (is_mmu_writable_spte(old_spte) &&
534
	      !is_writable_pte(new_spte))
535
		flush = true;
536

537
	/*
538
	 * Flush TLB when accessed/dirty states are changed in the page tables,
539 540 541
	 * to guarantee consistency between TLB and page tables.
	 */

542 543
	if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
		flush = true;
544
		kvm_set_pfn_accessed(spte_to_pfn(old_spte));
545 546 547 548
	}

	if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
		flush = true;
549
		kvm_set_pfn_dirty(spte_to_pfn(old_spte));
550
	}
551

552
	return flush;
553 554
}

555 556 557 558
/*
 * Rules for using mmu_spte_clear_track_bits:
 * It sets the sptep from present to nonpresent, and track the
 * state bits, it is used to clear the last level sptep.
559
 * Returns the old PTE.
560
 */
561
static int mmu_spte_clear_track_bits(struct kvm *kvm, u64 *sptep)
562
{
D
Dan Williams 已提交
563
	kvm_pfn_t pfn;
564
	u64 old_spte = *sptep;
565
	int level = sptep_to_sp(sptep)->role.level;
566

567 568
	if (!is_shadow_present_pte(old_spte) ||
	    !spte_has_volatile_bits(old_spte))
569
		__update_clear_spte_fast(sptep, 0ull);
570
	else
571
		old_spte = __update_clear_spte_slow(sptep, 0ull);
572

573
	if (!is_shadow_present_pte(old_spte))
574
		return old_spte;
575

576 577
	kvm_update_page_stats(kvm, level, -1);

578
	pfn = spte_to_pfn(old_spte);
579 580 581 582 583 584

	/*
	 * KVM does not hold the refcount of the page used by
	 * kvm mmu, before reclaiming the page, we should
	 * unmap it from mmu first.
	 */
585
	WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
586

587
	if (is_accessed_spte(old_spte))
588
		kvm_set_pfn_accessed(pfn);
589 590

	if (is_dirty_spte(old_spte))
591
		kvm_set_pfn_dirty(pfn);
592

593
	return old_spte;
594 595 596 597 598 599 600 601 602
}

/*
 * Rules for using mmu_spte_clear_no_track:
 * Directly clear spte without caring the state bits of sptep,
 * it is used to set the upper level spte.
 */
static void mmu_spte_clear_no_track(u64 *sptep)
{
603
	__update_clear_spte_fast(sptep, 0ull);
604 605
}

606 607 608 609 610
static u64 mmu_spte_get_lockless(u64 *sptep)
{
	return __get_spte_lockless(sptep);
}

611 612 613 614 615 616 617 618
/* Returns the Accessed status of the PTE and resets it at the same time. */
static bool mmu_spte_age(u64 *sptep)
{
	u64 spte = mmu_spte_get_lockless(sptep);

	if (!is_accessed_spte(spte))
		return false;

619
	if (spte_ad_enabled(spte)) {
620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
		clear_bit((ffs(shadow_accessed_mask) - 1),
			  (unsigned long *)sptep);
	} else {
		/*
		 * Capture the dirty status of the page, so that it doesn't get
		 * lost when the SPTE is marked for access tracking.
		 */
		if (is_writable_pte(spte))
			kvm_set_pfn_dirty(spte_to_pfn(spte));

		spte = mark_spte_for_access_track(spte);
		mmu_spte_update_no_track(sptep, spte);
	}

	return true;
}

637 638
static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
{
639 640 641 642 643 644 645 646
	if (is_tdp_mmu(vcpu->arch.mmu)) {
		kvm_tdp_mmu_walk_lockless_begin();
	} else {
		/*
		 * Prevent page table teardown by making any free-er wait during
		 * kvm_flush_remote_tlbs() IPI to all active vcpus.
		 */
		local_irq_disable();
647

648 649 650 651 652 653
		/*
		 * Make sure a following spte read is not reordered ahead of the write
		 * to vcpu->mode.
		 */
		smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
	}
654 655 656 657
}

static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
{
658 659 660 661 662 663 664 665 666 667 668
	if (is_tdp_mmu(vcpu->arch.mmu)) {
		kvm_tdp_mmu_walk_lockless_end();
	} else {
		/*
		 * Make sure the write to vcpu->mode is not reordered in front of
		 * reads to sptes.  If it does, kvm_mmu_commit_zap_page() can see us
		 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
		 */
		smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
		local_irq_enable();
	}
669 670
}

671
static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect)
672
{
673 674
	int r;

675
	/* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */
676 677
	r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
				       1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM);
678
	if (r)
679
		return r;
680 681
	r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache,
				       PT64_ROOT_MAX_LEVEL);
682
	if (r)
683
		return r;
684
	if (maybe_indirect) {
685 686
		r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_gfn_array_cache,
					       PT64_ROOT_MAX_LEVEL);
687 688 689
		if (r)
			return r;
	}
690 691
	return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
					  PT64_ROOT_MAX_LEVEL);
692 693 694 695
}

static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
{
696 697 698 699
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache);
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache);
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_gfn_array_cache);
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
700 701
}

702
static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
703
{
704
	return kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
705 706
}

707
static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
708
{
709
	kmem_cache_free(pte_list_desc_cache, pte_list_desc);
710 711
}

712 713
static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
{
714 715 716
	if (sp->role.passthrough)
		return sp->gfn;

717 718 719 720 721 722 723 724
	if (!sp->role.direct)
		return sp->gfns[index];

	return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
}

static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
{
725 726 727 728 729
	if (sp->role.passthrough) {
		WARN_ON_ONCE(gfn != sp->gfn);
		return;
	}

730
	if (!sp->role.direct) {
731
		sp->gfns[index] = gfn;
732 733 734 735 736 737 738 739
		return;
	}

	if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
		pr_err_ratelimited("gfn mismatch under direct page %llx "
				   "(expected %llx, got %llx)\n",
				   sp->gfn,
				   kvm_mmu_page_get_gfn(sp, index), gfn);
740 741
}

M
Marcelo Tosatti 已提交
742
/*
743 744
 * Return the pointer to the large page information for a given gfn,
 * handling slots that are not large page aligned.
M
Marcelo Tosatti 已提交
745
 */
746
static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
747
		const struct kvm_memory_slot *slot, int level)
M
Marcelo Tosatti 已提交
748 749 750
{
	unsigned long idx;

751
	idx = gfn_to_index(gfn, slot->base_gfn, level);
752
	return &slot->arch.lpage_info[level - 2][idx];
M
Marcelo Tosatti 已提交
753 754
}

755
static void update_gfn_disallow_lpage_count(const struct kvm_memory_slot *slot,
756 757 758 759 760
					    gfn_t gfn, int count)
{
	struct kvm_lpage_info *linfo;
	int i;

761
	for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
762 763 764 765 766 767
		linfo = lpage_info_slot(gfn, slot, i);
		linfo->disallow_lpage += count;
		WARN_ON(linfo->disallow_lpage < 0);
	}
}

768
void kvm_mmu_gfn_disallow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn)
769 770 771 772
{
	update_gfn_disallow_lpage_count(slot, gfn, 1);
}

773
void kvm_mmu_gfn_allow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn)
774 775 776 777
{
	update_gfn_disallow_lpage_count(slot, gfn, -1);
}

778
static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
M
Marcelo Tosatti 已提交
779
{
780
	struct kvm_memslots *slots;
781
	struct kvm_memory_slot *slot;
782
	gfn_t gfn;
M
Marcelo Tosatti 已提交
783

784
	kvm->arch.indirect_shadow_pages++;
785
	gfn = sp->gfn;
786 787
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
788 789

	/* the non-leaf shadow pages are keeping readonly. */
790
	if (sp->role.level > PG_LEVEL_4K)
791 792 793
		return kvm_slot_page_track_add_page(kvm, slot, gfn,
						    KVM_PAGE_TRACK_WRITE);

794
	kvm_mmu_gfn_disallow_lpage(slot, gfn);
M
Marcelo Tosatti 已提交
795 796
}

797
void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
P
Paolo Bonzini 已提交
798 799 800 801 802
{
	if (sp->lpage_disallowed)
		return;

	++kvm->stat.nx_lpage_splits;
803 804
	list_add_tail(&sp->lpage_disallowed_link,
		      &kvm->arch.lpage_disallowed_mmu_pages);
P
Paolo Bonzini 已提交
805 806 807
	sp->lpage_disallowed = true;
}

808
static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
M
Marcelo Tosatti 已提交
809
{
810
	struct kvm_memslots *slots;
811
	struct kvm_memory_slot *slot;
812
	gfn_t gfn;
M
Marcelo Tosatti 已提交
813

814
	kvm->arch.indirect_shadow_pages--;
815
	gfn = sp->gfn;
816 817
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
818
	if (sp->role.level > PG_LEVEL_4K)
819 820 821
		return kvm_slot_page_track_remove_page(kvm, slot, gfn,
						       KVM_PAGE_TRACK_WRITE);

822
	kvm_mmu_gfn_allow_lpage(slot, gfn);
M
Marcelo Tosatti 已提交
823 824
}

825
void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
P
Paolo Bonzini 已提交
826 827 828
{
	--kvm->stat.nx_lpage_splits;
	sp->lpage_disallowed = false;
829
	list_del(&sp->lpage_disallowed_link);
P
Paolo Bonzini 已提交
830 831
}

832 833 834
static struct kvm_memory_slot *
gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
			    bool no_dirty_log)
M
Marcelo Tosatti 已提交
835 836
{
	struct kvm_memory_slot *slot;
837

838
	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
839 840
	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
		return NULL;
841
	if (no_dirty_log && kvm_slot_dirty_track_enabled(slot))
842
		return NULL;
843 844 845 846

	return slot;
}

847
/*
848
 * About rmap_head encoding:
849
 *
850 851
 * If the bit zero of rmap_head->val is clear, then it points to the only spte
 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
852
 * pte_list_desc containing more mappings.
853 854 855 856
 */

/*
 * Returns the number of pointers in the rmap chain, not counting the new one.
857
 */
858
static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
859
			struct kvm_rmap_head *rmap_head)
860
{
861
	struct pte_list_desc *desc;
862
	int count = 0;
863

864
	if (!rmap_head->val) {
865
		rmap_printk("%p %llx 0->1\n", spte, *spte);
866 867
		rmap_head->val = (unsigned long)spte;
	} else if (!(rmap_head->val & 1)) {
868
		rmap_printk("%p %llx 1->many\n", spte, *spte);
869
		desc = mmu_alloc_pte_list_desc(vcpu);
870
		desc->sptes[0] = (u64 *)rmap_head->val;
A
Avi Kivity 已提交
871
		desc->sptes[1] = spte;
872
		desc->spte_count = 2;
873
		rmap_head->val = (unsigned long)desc | 1;
874
		++count;
875
	} else {
876
		rmap_printk("%p %llx many->many\n", spte, *spte);
877
		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
878
		while (desc->spte_count == PTE_LIST_EXT) {
879
			count += PTE_LIST_EXT;
880 881 882
			if (!desc->more) {
				desc->more = mmu_alloc_pte_list_desc(vcpu);
				desc = desc->more;
883
				desc->spte_count = 0;
884 885
				break;
			}
886 887
			desc = desc->more;
		}
888 889
		count += desc->spte_count;
		desc->sptes[desc->spte_count++] = spte;
890
	}
891
	return count;
892 893
}

894
static void
895 896 897
pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
			   struct pte_list_desc *desc, int i,
			   struct pte_list_desc *prev_desc)
898
{
899
	int j = desc->spte_count - 1;
900

A
Avi Kivity 已提交
901 902
	desc->sptes[i] = desc->sptes[j];
	desc->sptes[j] = NULL;
903 904
	desc->spte_count--;
	if (desc->spte_count)
905 906
		return;
	if (!prev_desc && !desc->more)
907
		rmap_head->val = 0;
908 909 910 911
	else
		if (prev_desc)
			prev_desc->more = desc->more;
		else
912
			rmap_head->val = (unsigned long)desc->more | 1;
913
	mmu_free_pte_list_desc(desc);
914 915
}

916
static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
917
{
918 919
	struct pte_list_desc *desc;
	struct pte_list_desc *prev_desc;
920 921
	int i;

922
	if (!rmap_head->val) {
923
		pr_err("%s: %p 0->BUG\n", __func__, spte);
924
		BUG();
925
	} else if (!(rmap_head->val & 1)) {
926
		rmap_printk("%p 1->0\n", spte);
927
		if ((u64 *)rmap_head->val != spte) {
928
			pr_err("%s:  %p 1->BUG\n", __func__, spte);
929 930
			BUG();
		}
931
		rmap_head->val = 0;
932
	} else {
933
		rmap_printk("%p many->many\n", spte);
934
		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
935 936
		prev_desc = NULL;
		while (desc) {
937
			for (i = 0; i < desc->spte_count; ++i) {
A
Avi Kivity 已提交
938
				if (desc->sptes[i] == spte) {
939 940
					pte_list_desc_remove_entry(rmap_head,
							desc, i, prev_desc);
941 942
					return;
				}
943
			}
944 945 946
			prev_desc = desc;
			desc = desc->more;
		}
947
		pr_err("%s: %p many->many\n", __func__, spte);
948 949 950 951
		BUG();
	}
}

952 953
static void pte_list_remove(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			    u64 *sptep)
954
{
955
	mmu_spte_clear_track_bits(kvm, sptep);
956 957 958
	__pte_list_remove(sptep, rmap_head);
}

P
Peter Xu 已提交
959
/* Return true if rmap existed, false otherwise */
960
static bool pte_list_destroy(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
P
Peter Xu 已提交
961 962 963 964 965 966 967 968
{
	struct pte_list_desc *desc, *next;
	int i;

	if (!rmap_head->val)
		return false;

	if (!(rmap_head->val & 1)) {
969
		mmu_spte_clear_track_bits(kvm, (u64 *)rmap_head->val);
P
Peter Xu 已提交
970 971 972 973 974 975 976
		goto out;
	}

	desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);

	for (; desc; desc = next) {
		for (i = 0; i < desc->spte_count; i++)
977
			mmu_spte_clear_track_bits(kvm, desc->sptes[i]);
P
Peter Xu 已提交
978 979 980 981 982 983 984 985 986
		next = desc->more;
		mmu_free_pte_list_desc(desc);
	}
out:
	/* rmap_head is meaningless now, remember to reset it */
	rmap_head->val = 0;
	return true;
}

987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
unsigned int pte_list_count(struct kvm_rmap_head *rmap_head)
{
	struct pte_list_desc *desc;
	unsigned int count = 0;

	if (!rmap_head->val)
		return 0;
	else if (!(rmap_head->val & 1))
		return 1;

	desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);

	while (desc) {
		count += desc->spte_count;
		desc = desc->more;
	}

	return count;
}

1007 1008
static struct kvm_rmap_head *gfn_to_rmap(gfn_t gfn, int level,
					 const struct kvm_memory_slot *slot)
1009
{
1010
	unsigned long idx;
1011

1012
	idx = gfn_to_index(gfn, slot->base_gfn, level);
1013
	return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
1014 1015
}

1016 1017
static bool rmap_can_add(struct kvm_vcpu *vcpu)
{
1018
	struct kvm_mmu_memory_cache *mc;
1019

1020
	mc = &vcpu->arch.mmu_pte_list_desc_cache;
1021
	return kvm_mmu_memory_cache_nr_free_objects(mc);
1022 1023
}

1024 1025
static void rmap_remove(struct kvm *kvm, u64 *spte)
{
1026 1027
	struct kvm_memslots *slots;
	struct kvm_memory_slot *slot;
1028 1029
	struct kvm_mmu_page *sp;
	gfn_t gfn;
1030
	struct kvm_rmap_head *rmap_head;
1031

1032
	sp = sptep_to_sp(spte);
1033
	gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1034 1035

	/*
1036 1037 1038
	 * Unlike rmap_add, rmap_remove does not run in the context of a vCPU
	 * so we have to determine which memslots to use based on context
	 * information in sp->role.
1039 1040 1041 1042
	 */
	slots = kvm_memslots_for_spte_role(kvm, sp->role);

	slot = __gfn_to_memslot(slots, gfn);
1043
	rmap_head = gfn_to_rmap(gfn, sp->role.level, slot);
1044

1045
	__pte_list_remove(spte, rmap_head);
1046 1047
}

1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
/*
 * Used by the following functions to iterate through the sptes linked by a
 * rmap.  All fields are private and not assumed to be used outside.
 */
struct rmap_iterator {
	/* private fields */
	struct pte_list_desc *desc;	/* holds the sptep if not NULL */
	int pos;			/* index of the sptep */
};

/*
 * Iteration must be started by this function.  This should also be used after
 * removing/dropping sptes from the rmap link because in such cases the
M
Miaohe Lin 已提交
1061
 * information in the iterator may not be valid.
1062 1063 1064
 *
 * Returns sptep if found, NULL otherwise.
 */
1065 1066
static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
			   struct rmap_iterator *iter)
1067
{
1068 1069
	u64 *sptep;

1070
	if (!rmap_head->val)
1071 1072
		return NULL;

1073
	if (!(rmap_head->val & 1)) {
1074
		iter->desc = NULL;
1075 1076
		sptep = (u64 *)rmap_head->val;
		goto out;
1077 1078
	}

1079
	iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1080
	iter->pos = 0;
1081 1082 1083 1084
	sptep = iter->desc->sptes[iter->pos];
out:
	BUG_ON(!is_shadow_present_pte(*sptep));
	return sptep;
1085 1086 1087 1088 1089 1090 1091 1092 1093
}

/*
 * Must be used with a valid iterator: e.g. after rmap_get_first().
 *
 * Returns sptep if found, NULL otherwise.
 */
static u64 *rmap_get_next(struct rmap_iterator *iter)
{
1094 1095
	u64 *sptep;

1096 1097 1098 1099 1100
	if (iter->desc) {
		if (iter->pos < PTE_LIST_EXT - 1) {
			++iter->pos;
			sptep = iter->desc->sptes[iter->pos];
			if (sptep)
1101
				goto out;
1102 1103 1104 1105 1106 1107 1108
		}

		iter->desc = iter->desc->more;

		if (iter->desc) {
			iter->pos = 0;
			/* desc->sptes[0] cannot be NULL */
1109 1110
			sptep = iter->desc->sptes[iter->pos];
			goto out;
1111 1112 1113 1114
		}
	}

	return NULL;
1115 1116 1117
out:
	BUG_ON(!is_shadow_present_pte(*sptep));
	return sptep;
1118 1119
}

1120 1121
#define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)			\
	for (_spte_ = rmap_get_first(_rmap_head_, _iter_);		\
1122
	     _spte_; _spte_ = rmap_get_next(_iter_))
1123

1124
static void drop_spte(struct kvm *kvm, u64 *sptep)
1125
{
1126
	u64 old_spte = mmu_spte_clear_track_bits(kvm, sptep);
1127 1128

	if (is_shadow_present_pte(old_spte))
1129
		rmap_remove(kvm, sptep);
A
Avi Kivity 已提交
1130 1131
}

1132 1133 1134 1135

static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
{
	if (is_large_pte(*sptep)) {
1136
		WARN_ON(sptep_to_sp(sptep)->role.level == PG_LEVEL_4K);
1137 1138 1139 1140 1141 1142 1143 1144 1145
		drop_spte(kvm, sptep);
		return true;
	}

	return false;
}

static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
{
1146
	if (__drop_large_spte(vcpu->kvm, sptep)) {
1147
		struct kvm_mmu_page *sp = sptep_to_sp(sptep);
1148 1149 1150 1151

		kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
			KVM_PAGES_PER_HPAGE(sp->role.level));
	}
1152 1153 1154
}

/*
1155
 * Write-protect on the specified @sptep, @pt_protect indicates whether
1156
 * spte write-protection is caused by protecting shadow page table.
1157
 *
T
Tiejun Chen 已提交
1158
 * Note: write protection is difference between dirty logging and spte
1159 1160 1161 1162 1163
 * protection:
 * - for dirty logging, the spte can be set to writable at anytime if
 *   its dirty bitmap is properly set.
 * - for spte protection, the spte can be writable only after unsync-ing
 *   shadow page.
1164
 *
1165
 * Return true if tlb need be flushed.
1166
 */
1167
static bool spte_write_protect(u64 *sptep, bool pt_protect)
1168 1169 1170
{
	u64 spte = *sptep;

1171
	if (!is_writable_pte(spte) &&
1172
	    !(pt_protect && is_mmu_writable_spte(spte)))
1173 1174
		return false;

1175
	rmap_printk("spte %p %llx\n", sptep, *sptep);
1176

1177
	if (pt_protect)
1178
		spte &= ~shadow_mmu_writable_mask;
1179
	spte = spte & ~PT_WRITABLE_MASK;
1180

1181
	return mmu_spte_update(sptep, spte);
1182 1183
}

1184 1185
static bool rmap_write_protect(struct kvm_rmap_head *rmap_head,
			       bool pt_protect)
1186
{
1187 1188
	u64 *sptep;
	struct rmap_iterator iter;
1189
	bool flush = false;
1190

1191
	for_each_rmap_spte(rmap_head, &iter, sptep)
1192
		flush |= spte_write_protect(sptep, pt_protect);
1193

1194
	return flush;
1195 1196
}

1197
static bool spte_clear_dirty(u64 *sptep)
1198 1199 1200
{
	u64 spte = *sptep;

1201
	rmap_printk("spte %p %llx\n", sptep, *sptep);
1202

1203
	MMU_WARN_ON(!spte_ad_enabled(spte));
1204 1205 1206 1207
	spte &= ~shadow_dirty_mask;
	return mmu_spte_update(sptep, spte);
}

1208
static bool spte_wrprot_for_clear_dirty(u64 *sptep)
1209 1210 1211
{
	bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
					       (unsigned long *)sptep);
1212
	if (was_writable && !spte_ad_enabled(*sptep))
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
		kvm_set_pfn_dirty(spte_to_pfn(*sptep));

	return was_writable;
}

/*
 * Gets the GFN ready for another round of dirty logging by clearing the
 *	- D bit on ad-enabled SPTEs, and
 *	- W bit on ad-disabled SPTEs.
 * Returns true iff any D or W bits were cleared.
 */
1224
static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1225
			       const struct kvm_memory_slot *slot)
1226 1227 1228 1229 1230
{
	u64 *sptep;
	struct rmap_iterator iter;
	bool flush = false;

1231
	for_each_rmap_spte(rmap_head, &iter, sptep)
1232 1233
		if (spte_ad_need_write_protect(*sptep))
			flush |= spte_wrprot_for_clear_dirty(sptep);
1234
		else
1235
			flush |= spte_clear_dirty(sptep);
1236 1237 1238 1239

	return flush;
}

1240
/**
1241
 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1242 1243 1244 1245 1246
 * @kvm: kvm instance
 * @slot: slot to protect
 * @gfn_offset: start of the BITS_PER_LONG pages we care about
 * @mask: indicates which pages we should protect
 *
1247
 * Used when we do not need to care about huge page mappings.
1248
 */
1249
static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1250 1251
				     struct kvm_memory_slot *slot,
				     gfn_t gfn_offset, unsigned long mask)
1252
{
1253
	struct kvm_rmap_head *rmap_head;
1254

1255
	if (is_tdp_mmu_enabled(kvm))
1256 1257
		kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
				slot->base_gfn + gfn_offset, mask, true);
1258 1259 1260 1261

	if (!kvm_memslots_have_rmaps(kvm))
		return;

1262
	while (mask) {
1263 1264
		rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
					PG_LEVEL_4K, slot);
1265
		rmap_write_protect(rmap_head, false);
M
Marcelo Tosatti 已提交
1266

1267 1268 1269
		/* clear the first set bit */
		mask &= mask - 1;
	}
1270 1271
}

1272
/**
1273 1274
 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
 * protect the page if the D-bit isn't supported.
1275 1276 1277 1278 1279 1280 1281
 * @kvm: kvm instance
 * @slot: slot to clear D-bit
 * @gfn_offset: start of the BITS_PER_LONG pages we care about
 * @mask: indicates which pages we should clear D-bit
 *
 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
 */
1282 1283 1284
static void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
					 struct kvm_memory_slot *slot,
					 gfn_t gfn_offset, unsigned long mask)
1285
{
1286
	struct kvm_rmap_head *rmap_head;
1287

1288
	if (is_tdp_mmu_enabled(kvm))
1289 1290
		kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
				slot->base_gfn + gfn_offset, mask, false);
1291 1292 1293 1294

	if (!kvm_memslots_have_rmaps(kvm))
		return;

1295
	while (mask) {
1296 1297
		rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
					PG_LEVEL_4K, slot);
1298
		__rmap_clear_dirty(kvm, rmap_head, slot);
1299 1300 1301 1302 1303 1304

		/* clear the first set bit */
		mask &= mask - 1;
	}
}

1305 1306 1307 1308 1309 1310 1311
/**
 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
 * PT level pages.
 *
 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
 * enable dirty logging for them.
 *
1312 1313
 * We need to care about huge page mappings: e.g. during dirty logging we may
 * have such mappings.
1314 1315 1316 1317 1318
 */
void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
				struct kvm_memory_slot *slot,
				gfn_t gfn_offset, unsigned long mask)
{
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
	/*
	 * Huge pages are NOT write protected when we start dirty logging in
	 * initially-all-set mode; must write protect them here so that they
	 * are split to 4K on the first write.
	 *
	 * The gfn_offset is guaranteed to be aligned to 64, but the base_gfn
	 * of memslot has no such restriction, so the range can cross two large
	 * pages.
	 */
	if (kvm_dirty_log_manual_protect_and_init_set(kvm)) {
		gfn_t start = slot->base_gfn + gfn_offset + __ffs(mask);
		gfn_t end = slot->base_gfn + gfn_offset + __fls(mask);

1332 1333 1334
		if (READ_ONCE(eager_page_split))
			kvm_mmu_try_split_huge_pages(kvm, slot, start, end, PG_LEVEL_4K);

1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
		kvm_mmu_slot_gfn_write_protect(kvm, slot, start, PG_LEVEL_2M);

		/* Cross two large pages? */
		if (ALIGN(start << PAGE_SHIFT, PMD_SIZE) !=
		    ALIGN(end << PAGE_SHIFT, PMD_SIZE))
			kvm_mmu_slot_gfn_write_protect(kvm, slot, end,
						       PG_LEVEL_2M);
	}

	/* Now handle 4K PTEs.  */
1345 1346
	if (kvm_x86_ops.cpu_dirty_log_size)
		kvm_mmu_clear_dirty_pt_masked(kvm, slot, gfn_offset, mask);
1347 1348
	else
		kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1349 1350
}

1351 1352
int kvm_cpu_dirty_log_size(void)
{
1353
	return kvm_x86_ops.cpu_dirty_log_size;
1354 1355
}

1356
bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1357 1358
				    struct kvm_memory_slot *slot, u64 gfn,
				    int min_level)
1359
{
1360
	struct kvm_rmap_head *rmap_head;
1361
	int i;
1362
	bool write_protected = false;
1363

1364 1365
	if (kvm_memslots_have_rmaps(kvm)) {
		for (i = min_level; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
1366
			rmap_head = gfn_to_rmap(gfn, i, slot);
1367
			write_protected |= rmap_write_protect(rmap_head, true);
1368
		}
1369 1370
	}

1371
	if (is_tdp_mmu_enabled(kvm))
1372
		write_protected |=
1373
			kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn, min_level);
1374

1375
	return write_protected;
1376 1377
}

1378
static bool kvm_vcpu_write_protect_gfn(struct kvm_vcpu *vcpu, u64 gfn)
1379 1380 1381 1382
{
	struct kvm_memory_slot *slot;

	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1383
	return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn, PG_LEVEL_4K);
1384 1385
}

1386
static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1387
			  const struct kvm_memory_slot *slot)
1388
{
1389
	return pte_list_destroy(kvm, rmap_head);
1390 1391
}

1392 1393 1394
static bool kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			    struct kvm_memory_slot *slot, gfn_t gfn, int level,
			    pte_t unused)
1395
{
1396
	return kvm_zap_rmapp(kvm, rmap_head, slot);
1397 1398
}

1399 1400 1401
static bool kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			      struct kvm_memory_slot *slot, gfn_t gfn, int level,
			      pte_t pte)
1402
{
1403 1404
	u64 *sptep;
	struct rmap_iterator iter;
1405
	bool need_flush = false;
1406
	u64 new_spte;
D
Dan Williams 已提交
1407
	kvm_pfn_t new_pfn;
1408

1409 1410
	WARN_ON(pte_huge(pte));
	new_pfn = pte_pfn(pte);
1411

1412
restart:
1413
	for_each_rmap_spte(rmap_head, &iter, sptep) {
1414
		rmap_printk("spte %p %llx gfn %llx (%d)\n",
1415
			    sptep, *sptep, gfn, level);
1416

1417
		need_flush = true;
1418

1419
		if (pte_write(pte)) {
1420
			pte_list_remove(kvm, rmap_head, sptep);
1421
			goto restart;
1422
		} else {
1423 1424
			new_spte = kvm_mmu_changed_pte_notifier_make_spte(
					*sptep, new_pfn);
1425

1426
			mmu_spte_clear_track_bits(kvm, sptep);
1427
			mmu_spte_set(sptep, new_spte);
1428 1429
		}
	}
1430

1431 1432
	if (need_flush && kvm_available_flush_tlb_with_range()) {
		kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
1433
		return false;
1434 1435
	}

1436
	return need_flush;
1437 1438
}

1439 1440
struct slot_rmap_walk_iterator {
	/* input fields. */
1441
	const struct kvm_memory_slot *slot;
1442 1443 1444 1445 1446 1447 1448
	gfn_t start_gfn;
	gfn_t end_gfn;
	int start_level;
	int end_level;

	/* output fields. */
	gfn_t gfn;
1449
	struct kvm_rmap_head *rmap;
1450 1451 1452
	int level;

	/* private field. */
1453
	struct kvm_rmap_head *end_rmap;
1454 1455 1456 1457 1458 1459 1460
};

static void
rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
{
	iterator->level = level;
	iterator->gfn = iterator->start_gfn;
1461 1462
	iterator->rmap = gfn_to_rmap(iterator->gfn, level, iterator->slot);
	iterator->end_rmap = gfn_to_rmap(iterator->end_gfn, level, iterator->slot);
1463 1464 1465 1466
}

static void
slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1467
		    const struct kvm_memory_slot *slot, int start_level,
1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
		    int end_level, gfn_t start_gfn, gfn_t end_gfn)
{
	iterator->slot = slot;
	iterator->start_level = start_level;
	iterator->end_level = end_level;
	iterator->start_gfn = start_gfn;
	iterator->end_gfn = end_gfn;

	rmap_walk_init_level(iterator, iterator->start_level);
}

static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
{
	return !!iterator->rmap;
}

static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
{
	if (++iterator->rmap <= iterator->end_rmap) {
		iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
		return;
	}

	if (++iterator->level > iterator->end_level) {
		iterator->rmap = NULL;
		return;
	}

	rmap_walk_init_level(iterator, iterator->level);
}

#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,	\
	   _start_gfn, _end_gfn, _iter_)				\
	for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,		\
				 _end_level_, _start_gfn, _end_gfn);	\
	     slot_rmap_walk_okay(_iter_);				\
	     slot_rmap_walk_next(_iter_))

1506 1507 1508
typedef bool (*rmap_handler_t)(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			       struct kvm_memory_slot *slot, gfn_t gfn,
			       int level, pte_t pte);
1509

1510 1511 1512
static __always_inline bool kvm_handle_gfn_range(struct kvm *kvm,
						 struct kvm_gfn_range *range,
						 rmap_handler_t handler)
1513
{
1514
	struct slot_rmap_walk_iterator iterator;
1515
	bool ret = false;
1516

1517 1518 1519 1520
	for_each_slot_rmap_range(range->slot, PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL,
				 range->start, range->end - 1, &iterator)
		ret |= handler(kvm, iterator.rmap, range->slot, iterator.gfn,
			       iterator.level, range->pte);
1521

1522
	return ret;
1523 1524
}

1525
bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
1526
{
1527
	bool flush = false;
1528

1529 1530
	if (kvm_memslots_have_rmaps(kvm))
		flush = kvm_handle_gfn_range(kvm, range, kvm_unmap_rmapp);
1531

1532
	if (is_tdp_mmu_enabled(kvm))
1533
		flush = kvm_tdp_mmu_unmap_gfn_range(kvm, range, flush);
1534

1535
	return flush;
1536 1537
}

1538
bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1539
{
1540
	bool flush = false;
1541

1542 1543
	if (kvm_memslots_have_rmaps(kvm))
		flush = kvm_handle_gfn_range(kvm, range, kvm_set_pte_rmapp);
1544

1545
	if (is_tdp_mmu_enabled(kvm))
1546
		flush |= kvm_tdp_mmu_set_spte_gfn(kvm, range);
1547

1548
	return flush;
1549 1550
}

1551 1552 1553
static bool kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			  struct kvm_memory_slot *slot, gfn_t gfn, int level,
			  pte_t unused)
1554
{
1555
	u64 *sptep;
1556
	struct rmap_iterator iter;
1557 1558
	int young = 0;

1559 1560
	for_each_rmap_spte(rmap_head, &iter, sptep)
		young |= mmu_spte_age(sptep);
1561

1562 1563 1564
	return young;
}

1565 1566 1567
static bool kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			       struct kvm_memory_slot *slot, gfn_t gfn,
			       int level, pte_t unused)
A
Andrea Arcangeli 已提交
1568
{
1569 1570
	u64 *sptep;
	struct rmap_iterator iter;
A
Andrea Arcangeli 已提交
1571

1572 1573
	for_each_rmap_spte(rmap_head, &iter, sptep)
		if (is_accessed_spte(*sptep))
1574 1575
			return true;
	return false;
A
Andrea Arcangeli 已提交
1576 1577
}

1578 1579
#define RMAP_RECYCLE_THRESHOLD 1000

1580 1581
static void rmap_add(struct kvm_vcpu *vcpu, struct kvm_memory_slot *slot,
		     u64 *spte, gfn_t gfn)
1582
{
1583
	struct kvm_mmu_page *sp;
1584 1585
	struct kvm_rmap_head *rmap_head;
	int rmap_count;
1586

1587
	sp = sptep_to_sp(spte);
1588
	kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1589
	rmap_head = gfn_to_rmap(gfn, sp->role.level, slot);
1590
	rmap_count = pte_list_add(vcpu, spte, rmap_head);
1591

1592 1593 1594 1595 1596
	if (rmap_count > RMAP_RECYCLE_THRESHOLD) {
		kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, __pte(0));
		kvm_flush_remote_tlbs_with_address(
				vcpu->kvm, sp->gfn, KVM_PAGES_PER_HPAGE(sp->role.level));
	}
1597 1598
}

1599
bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1600
{
1601
	bool young = false;
1602

1603 1604
	if (kvm_memslots_have_rmaps(kvm))
		young = kvm_handle_gfn_range(kvm, range, kvm_age_rmapp);
1605

1606
	if (is_tdp_mmu_enabled(kvm))
1607
		young |= kvm_tdp_mmu_age_gfn_range(kvm, range);
1608 1609

	return young;
1610 1611
}

1612
bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
A
Andrea Arcangeli 已提交
1613
{
1614
	bool young = false;
1615

1616 1617
	if (kvm_memslots_have_rmaps(kvm))
		young = kvm_handle_gfn_range(kvm, range, kvm_test_age_rmapp);
1618

1619
	if (is_tdp_mmu_enabled(kvm))
1620
		young |= kvm_tdp_mmu_test_age_gfn(kvm, range);
1621 1622

	return young;
A
Andrea Arcangeli 已提交
1623 1624
}

1625
#ifdef MMU_DEBUG
1626
static int is_empty_shadow_page(u64 *spt)
A
Avi Kivity 已提交
1627
{
1628 1629 1630
	u64 *pos;
	u64 *end;

1631
	for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1632
		if (is_shadow_present_pte(*pos)) {
1633
			printk(KERN_ERR "%s: %p %llx\n", __func__,
1634
			       pos, *pos);
A
Avi Kivity 已提交
1635
			return 0;
1636
		}
A
Avi Kivity 已提交
1637 1638
	return 1;
}
1639
#endif
A
Avi Kivity 已提交
1640

1641 1642 1643 1644 1645 1646
/*
 * This value is the sum of all of the kvm instances's
 * kvm->arch.n_used_mmu_pages values.  We need a global,
 * aggregate version in order to make the slab shrinker
 * faster
 */
1647
static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, long nr)
1648 1649 1650 1651 1652
{
	kvm->arch.n_used_mmu_pages += nr;
	percpu_counter_add(&kvm_total_used_mmu_pages, nr);
}

1653
static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1654
{
1655
	MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1656
	hlist_del(&sp->hash_link);
1657 1658
	list_del(&sp->link);
	free_page((unsigned long)sp->spt);
1659 1660
	if (!sp->role.direct)
		free_page((unsigned long)sp->gfns);
1661
	kmem_cache_free(mmu_page_header_cache, sp);
1662 1663
}

1664 1665
static unsigned kvm_page_table_hashfn(gfn_t gfn)
{
1666
	return hash_64(gfn, KVM_MMU_HASH_SHIFT);
1667 1668
}

1669
static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1670
				    struct kvm_mmu_page *sp, u64 *parent_pte)
1671 1672 1673 1674
{
	if (!parent_pte)
		return;

1675
	pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1676 1677
}

1678
static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1679 1680
				       u64 *parent_pte)
{
1681
	__pte_list_remove(parent_pte, &sp->parent_ptes);
1682 1683
}

1684 1685 1686 1687
static void drop_parent_pte(struct kvm_mmu_page *sp,
			    u64 *parent_pte)
{
	mmu_page_remove_parent_pte(sp, parent_pte);
1688
	mmu_spte_clear_no_track(parent_pte);
1689 1690
}

1691
static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
M
Marcelo Tosatti 已提交
1692
{
1693
	struct kvm_mmu_page *sp;
1694

1695 1696
	sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
	sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache);
1697
	if (!direct)
1698
		sp->gfns = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_gfn_array_cache);
1699
	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1700 1701 1702 1703 1704 1705

	/*
	 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
	 * depends on valid pages being added to the head of the list.  See
	 * comments in kvm_zap_obsolete_pages().
	 */
1706
	sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
1707 1708 1709
	list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
	kvm_mod_used_mmu_pages(vcpu->kvm, +1);
	return sp;
M
Marcelo Tosatti 已提交
1710 1711
}

1712
static void mark_unsync(u64 *spte);
1713
static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1714
{
1715 1716 1717 1718 1719 1720
	u64 *sptep;
	struct rmap_iterator iter;

	for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
		mark_unsync(sptep);
	}
1721 1722
}

1723
static void mark_unsync(u64 *spte)
1724
{
1725
	struct kvm_mmu_page *sp;
1726
	unsigned int index;
1727

1728
	sp = sptep_to_sp(spte);
1729 1730
	index = spte - sp->spt;
	if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1731
		return;
1732
	if (sp->unsync_children++)
1733
		return;
1734
	kvm_mmu_mark_parents_unsync(sp);
1735 1736
}

1737
static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1738
			       struct kvm_mmu_page *sp)
1739
{
1740
	return -1;
1741 1742
}

1743 1744 1745 1746 1747 1748 1749 1750 1751 1752
#define KVM_PAGE_ARRAY_NR 16

struct kvm_mmu_pages {
	struct mmu_page_and_offset {
		struct kvm_mmu_page *sp;
		unsigned int idx;
	} page[KVM_PAGE_ARRAY_NR];
	unsigned int nr;
};

1753 1754
static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
			 int idx)
1755
{
1756
	int i;
1757

1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768
	if (sp->unsync)
		for (i=0; i < pvec->nr; i++)
			if (pvec->page[i].sp == sp)
				return 0;

	pvec->page[pvec->nr].sp = sp;
	pvec->page[pvec->nr].idx = idx;
	pvec->nr++;
	return (pvec->nr == KVM_PAGE_ARRAY_NR);
}

1769 1770 1771 1772 1773 1774 1775
static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
{
	--sp->unsync_children;
	WARN_ON((int)sp->unsync_children < 0);
	__clear_bit(idx, sp->unsync_child_bitmap);
}

1776 1777 1778 1779
static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
	int i, ret, nr_unsync_leaf = 0;
1780

1781
	for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1782
		struct kvm_mmu_page *child;
1783 1784
		u64 ent = sp->spt[i];

1785 1786 1787 1788
		if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
			clear_unsync_child_bit(sp, i);
			continue;
		}
1789

1790
		child = to_shadow_page(ent & PT64_BASE_ADDR_MASK);
1791 1792 1793 1794 1795 1796

		if (child->unsync_children) {
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;

			ret = __mmu_unsync_walk(child, pvec);
1797 1798 1799 1800
			if (!ret) {
				clear_unsync_child_bit(sp, i);
				continue;
			} else if (ret > 0) {
1801
				nr_unsync_leaf += ret;
1802
			} else
1803 1804 1805 1806 1807 1808
				return ret;
		} else if (child->unsync) {
			nr_unsync_leaf++;
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;
		} else
1809
			clear_unsync_child_bit(sp, i);
1810 1811
	}

1812 1813 1814
	return nr_unsync_leaf;
}

1815 1816
#define INVALID_INDEX (-1)

1817 1818 1819
static int mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
P
Paolo Bonzini 已提交
1820
	pvec->nr = 0;
1821 1822 1823
	if (!sp->unsync_children)
		return 0;

1824
	mmu_pages_add(pvec, sp, INVALID_INDEX);
1825
	return __mmu_unsync_walk(sp, pvec);
1826 1827 1828 1829 1830
}

static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
{
	WARN_ON(!sp->unsync);
1831
	trace_kvm_mmu_sync_page(sp);
1832 1833 1834 1835
	sp->unsync = 0;
	--kvm->stat.mmu_unsync;
}

1836 1837
static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				     struct list_head *invalid_list);
1838 1839
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list);
1840

L
Lai Jiangshan 已提交
1841 1842 1843 1844 1845
static bool sp_has_gptes(struct kvm_mmu_page *sp)
{
	if (sp->role.direct)
		return false;

1846 1847 1848
	if (sp->role.passthrough)
		return false;

L
Lai Jiangshan 已提交
1849 1850 1851
	return true;
}

1852 1853
#define for_each_valid_sp(_kvm, _sp, _list)				\
	hlist_for_each_entry(_sp, _list, hash_link)			\
1854
		if (is_obsolete_sp((_kvm), (_sp))) {			\
1855
		} else
1856

L
Lai Jiangshan 已提交
1857
#define for_each_gfn_valid_sp_with_gptes(_kvm, _sp, _gfn)		\
1858 1859
	for_each_valid_sp(_kvm, _sp,					\
	  &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)])	\
L
Lai Jiangshan 已提交
1860
		if ((_sp)->gfn != (_gfn) || !sp_has_gptes(_sp)) {} else
1861

1862
static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1863
			 struct list_head *invalid_list)
1864
{
1865 1866
	int ret = vcpu->arch.mmu->sync_page(vcpu, sp);

1867
	if (ret < 0)
1868
		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1869
	return ret;
1870 1871
}

1872 1873 1874 1875
static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
					struct list_head *invalid_list,
					bool remote_flush)
{
1876
	if (!remote_flush && list_empty(invalid_list))
1877 1878 1879 1880 1881 1882 1883 1884 1885
		return false;

	if (!list_empty(invalid_list))
		kvm_mmu_commit_zap_page(kvm, invalid_list);
	else
		kvm_flush_remote_tlbs(kvm);
	return true;
}

1886 1887
static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
{
1888 1889 1890 1891 1892
	if (sp->role.invalid)
		return true;

	/* TDP MMU pages due not use the MMU generation. */
	return !sp->tdp_mmu_page &&
1893
	       unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1894 1895
}

1896
struct mmu_page_path {
1897 1898
	struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
	unsigned int idx[PT64_ROOT_MAX_LEVEL];
1899 1900
};

1901
#define for_each_sp(pvec, sp, parents, i)			\
P
Paolo Bonzini 已提交
1902
		for (i = mmu_pages_first(&pvec, &parents);	\
1903 1904 1905
			i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});	\
			i = mmu_pages_next(&pvec, &parents, i))

1906 1907 1908
static int mmu_pages_next(struct kvm_mmu_pages *pvec,
			  struct mmu_page_path *parents,
			  int i)
1909 1910 1911 1912 1913
{
	int n;

	for (n = i+1; n < pvec->nr; n++) {
		struct kvm_mmu_page *sp = pvec->page[n].sp;
P
Paolo Bonzini 已提交
1914 1915
		unsigned idx = pvec->page[n].idx;
		int level = sp->role.level;
1916

P
Paolo Bonzini 已提交
1917
		parents->idx[level-1] = idx;
1918
		if (level == PG_LEVEL_4K)
P
Paolo Bonzini 已提交
1919
			break;
1920

P
Paolo Bonzini 已提交
1921
		parents->parent[level-2] = sp;
1922 1923 1924 1925 1926
	}

	return n;
}

P
Paolo Bonzini 已提交
1927 1928 1929 1930 1931 1932 1933 1934 1935
static int mmu_pages_first(struct kvm_mmu_pages *pvec,
			   struct mmu_page_path *parents)
{
	struct kvm_mmu_page *sp;
	int level;

	if (pvec->nr == 0)
		return 0;

1936 1937
	WARN_ON(pvec->page[0].idx != INVALID_INDEX);

P
Paolo Bonzini 已提交
1938 1939
	sp = pvec->page[0].sp;
	level = sp->role.level;
1940
	WARN_ON(level == PG_LEVEL_4K);
P
Paolo Bonzini 已提交
1941 1942 1943 1944 1945 1946 1947 1948 1949 1950

	parents->parent[level-2] = sp;

	/* Also set up a sentinel.  Further entries in pvec are all
	 * children of sp, so this element is never overwritten.
	 */
	parents->parent[level-1] = NULL;
	return mmu_pages_next(pvec, parents, 0);
}

1951
static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1952
{
1953 1954 1955 1956 1957 1958 1959 1960 1961
	struct kvm_mmu_page *sp;
	unsigned int level = 0;

	do {
		unsigned int idx = parents->idx[level];
		sp = parents->parent[level];
		if (!sp)
			return;

1962
		WARN_ON(idx == INVALID_INDEX);
1963
		clear_unsync_child_bit(sp, idx);
1964
		level++;
P
Paolo Bonzini 已提交
1965
	} while (!sp->unsync_children);
1966
}
1967

1968 1969
static int mmu_sync_children(struct kvm_vcpu *vcpu,
			     struct kvm_mmu_page *parent, bool can_yield)
1970 1971 1972 1973 1974
{
	int i;
	struct kvm_mmu_page *sp;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
1975
	LIST_HEAD(invalid_list);
1976
	bool flush = false;
1977 1978

	while (mmu_unsync_walk(parent, &pages)) {
1979
		bool protected = false;
1980 1981

		for_each_sp(pages, sp, parents, i)
1982
			protected |= kvm_vcpu_write_protect_gfn(vcpu, sp->gfn);
1983

1984
		if (protected) {
1985
			kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, true);
1986 1987
			flush = false;
		}
1988

1989
		for_each_sp(pages, sp, parents, i) {
1990
			kvm_unlink_unsync_page(vcpu->kvm, sp);
1991
			flush |= kvm_sync_page(vcpu, sp, &invalid_list) > 0;
1992 1993
			mmu_pages_clear_parents(&parents);
		}
1994
		if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) {
1995
			kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush);
1996 1997 1998 1999 2000
			if (!can_yield) {
				kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
				return -EINTR;
			}

2001
			cond_resched_rwlock_write(&vcpu->kvm->mmu_lock);
2002 2003
			flush = false;
		}
2004
	}
2005

2006
	kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush);
2007
	return 0;
2008 2009
}

2010 2011
static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
{
2012
	atomic_set(&sp->write_flooding_count,  0);
2013 2014 2015 2016
}

static void clear_sp_write_flooding_count(u64 *spte)
{
2017
	__clear_sp_write_flooding_count(sptep_to_sp(spte));
2018 2019
}

2020 2021 2022 2023
static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
					     gfn_t gfn,
					     gva_t gaddr,
					     unsigned level,
2024
					     int direct,
2025
					     unsigned int access)
2026
{
2027
	bool direct_mmu = vcpu->arch.mmu->root_role.direct;
2028
	union kvm_mmu_page_role role;
2029
	struct hlist_head *sp_list;
2030
	unsigned quadrant;
2031
	struct kvm_mmu_page *sp;
2032
	int ret;
2033
	int collisions = 0;
2034
	LIST_HEAD(invalid_list);
2035

2036
	role = vcpu->arch.mmu->root_role;
2037
	role.level = level;
2038
	role.direct = direct;
2039
	role.access = access;
2040
	if (role.has_4_byte_gpte) {
2041 2042 2043 2044
		quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
		quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
		role.quadrant = quadrant;
	}
2045 2046
	if (level <= vcpu->arch.mmu->cpu_role.base.level)
		role.passthrough = 0;
2047 2048 2049

	sp_list = &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)];
	for_each_valid_sp(vcpu->kvm, sp, sp_list) {
2050 2051 2052 2053 2054
		if (sp->gfn != gfn) {
			collisions++;
			continue;
		}

2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067
		if (sp->role.word != role.word) {
			/*
			 * If the guest is creating an upper-level page, zap
			 * unsync pages for the same gfn.  While it's possible
			 * the guest is using recursive page tables, in all
			 * likelihood the guest has stopped using the unsync
			 * page and is installing a completely unrelated page.
			 * Unsync pages must not be left as is, because the new
			 * upper-level page will be write-protected.
			 */
			if (level > PG_LEVEL_4K && sp->unsync)
				kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
							 &invalid_list);
2068
			continue;
2069
		}
2070

2071 2072 2073
		if (direct_mmu)
			goto trace_get_page;

2074
		if (sp->unsync) {
2075
			/*
2076
			 * The page is good, but is stale.  kvm_sync_page does
2077 2078 2079 2080 2081 2082 2083 2084 2085
			 * get the latest guest state, but (unlike mmu_unsync_children)
			 * it doesn't write-protect the page or mark it synchronized!
			 * This way the validity of the mapping is ensured, but the
			 * overhead of write protection is not incurred until the
			 * guest invalidates the TLB mapping.  This allows multiple
			 * SPs for a single gfn to be unsync.
			 *
			 * If the sync fails, the page is zapped.  If so, break
			 * in order to rebuild it.
2086
			 */
2087 2088
			ret = kvm_sync_page(vcpu, sp, &invalid_list);
			if (ret < 0)
2089 2090 2091
				break;

			WARN_ON(!list_empty(&invalid_list));
2092 2093
			if (ret > 0)
				kvm_flush_remote_tlbs(vcpu->kvm);
2094
		}
2095

2096
		__clear_sp_write_flooding_count(sp);
2097 2098

trace_get_page:
2099
		trace_kvm_mmu_get_page(sp, false);
2100
		goto out;
2101
	}
2102

A
Avi Kivity 已提交
2103
	++vcpu->kvm->stat.mmu_cache_miss;
2104 2105 2106

	sp = kvm_mmu_alloc_page(vcpu, direct);

2107 2108
	sp->gfn = gfn;
	sp->role = role;
2109
	hlist_add_head(&sp->hash_link, sp_list);
L
Lai Jiangshan 已提交
2110
	if (sp_has_gptes(sp)) {
2111
		account_shadowed(vcpu->kvm, sp);
2112
		if (level == PG_LEVEL_4K && kvm_vcpu_write_protect_gfn(vcpu, gfn))
2113
			kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
2114
	}
A
Avi Kivity 已提交
2115
	trace_kvm_mmu_get_page(sp, true);
2116
out:
2117 2118
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);

2119 2120
	if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
		vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2121
	return sp;
2122 2123
}

2124 2125 2126
static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
					struct kvm_vcpu *vcpu, hpa_t root,
					u64 addr)
2127 2128
{
	iterator->addr = addr;
2129
	iterator->shadow_addr = root;
2130
	iterator->level = vcpu->arch.mmu->root_role.level;
2131

2132
	if (iterator->level >= PT64_ROOT_4LEVEL &&
2133
	    vcpu->arch.mmu->cpu_role.base.level < PT64_ROOT_4LEVEL &&
2134
	    !vcpu->arch.mmu->root_role.direct)
2135
		iterator->level = PT32E_ROOT_LEVEL;
2136

2137
	if (iterator->level == PT32E_ROOT_LEVEL) {
2138 2139 2140 2141
		/*
		 * prev_root is currently only used for 64-bit hosts. So only
		 * the active root_hpa is valid here.
		 */
2142
		BUG_ON(root != vcpu->arch.mmu->root.hpa);
2143

2144
		iterator->shadow_addr
2145
			= vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2146 2147 2148 2149 2150 2151 2152
		iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
		--iterator->level;
		if (!iterator->shadow_addr)
			iterator->level = 0;
	}
}

2153 2154 2155
static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
			     struct kvm_vcpu *vcpu, u64 addr)
{
2156
	shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root.hpa,
2157 2158 2159
				    addr);
}

2160 2161
static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
{
2162
	if (iterator->level < PG_LEVEL_4K)
2163
		return false;
2164

2165 2166 2167 2168 2169
	iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
	iterator->sptep	= ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
	return true;
}

2170 2171
static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
			       u64 spte)
2172
{
2173
	if (!is_shadow_present_pte(spte) || is_last_spte(spte, iterator->level)) {
2174 2175 2176 2177
		iterator->level = 0;
		return;
	}

2178
	iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2179 2180 2181
	--iterator->level;
}

2182 2183
static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
{
2184
	__shadow_walk_next(iterator, *iterator->sptep);
2185 2186
}

2187 2188 2189 2190 2191 2192 2193 2194 2195
static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
			     struct kvm_mmu_page *sp)
{
	u64 spte;

	BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);

	spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp));

2196
	mmu_spte_set(sptep, spte);
2197 2198 2199 2200 2201

	mmu_page_add_parent_pte(vcpu, sp, sptep);

	if (sp->unsync_children || sp->unsync)
		mark_unsync(sptep);
2202 2203
}

2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216
static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
				   unsigned direct_access)
{
	if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
		struct kvm_mmu_page *child;

		/*
		 * For the direct sp, if the guest pte's dirty bit
		 * changed form clean to dirty, it will corrupt the
		 * sp's access: allow writable in the read-only sp,
		 * so we should update the spte at this point to get
		 * a new sp with the correct access.
		 */
2217
		child = to_shadow_page(*sptep & PT64_BASE_ADDR_MASK);
2218 2219 2220
		if (child->role.access == direct_access)
			return;

2221
		drop_parent_pte(child, sptep);
2222
		kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
2223 2224 2225
	}
}

2226 2227 2228
/* Returns the number of zapped non-leaf child shadow pages. */
static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
			    u64 *spte, struct list_head *invalid_list)
2229 2230 2231 2232 2233 2234
{
	u64 pte;
	struct kvm_mmu_page *child;

	pte = *spte;
	if (is_shadow_present_pte(pte)) {
X
Xiao Guangrong 已提交
2235
		if (is_last_spte(pte, sp->role.level)) {
2236
			drop_spte(kvm, spte);
X
Xiao Guangrong 已提交
2237
		} else {
2238
			child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2239
			drop_parent_pte(child, spte);
2240 2241 2242 2243 2244 2245 2246 2247 2248 2249

			/*
			 * Recursively zap nested TDP SPs, parentless SPs are
			 * unlikely to be used again in the near future.  This
			 * avoids retaining a large number of stale nested SPs.
			 */
			if (tdp_enabled && invalid_list &&
			    child->role.guest_mode && !child->parent_ptes.val)
				return kvm_mmu_prepare_zap_page(kvm, child,
								invalid_list);
2250
		}
2251
	} else if (is_mmio_spte(pte)) {
2252
		mmu_spte_clear_no_track(spte);
2253
	}
2254
	return 0;
2255 2256
}

2257 2258 2259
static int kvm_mmu_page_unlink_children(struct kvm *kvm,
					struct kvm_mmu_page *sp,
					struct list_head *invalid_list)
2260
{
2261
	int zapped = 0;
2262 2263
	unsigned i;

2264
	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2265 2266 2267
		zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list);

	return zapped;
2268 2269
}

2270
static void kvm_mmu_unlink_parents(struct kvm_mmu_page *sp)
2271
{
2272 2273
	u64 *sptep;
	struct rmap_iterator iter;
2274

2275
	while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2276
		drop_parent_pte(sp, sptep);
2277 2278
}

2279
static int mmu_zap_unsync_children(struct kvm *kvm,
2280 2281
				   struct kvm_mmu_page *parent,
				   struct list_head *invalid_list)
2282
{
2283 2284 2285
	int i, zapped = 0;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
2286

2287
	if (parent->role.level == PG_LEVEL_4K)
2288
		return 0;
2289 2290 2291 2292 2293

	while (mmu_unsync_walk(parent, &pages)) {
		struct kvm_mmu_page *sp;

		for_each_sp(pages, sp, parents, i) {
2294
			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2295
			mmu_pages_clear_parents(&parents);
2296
			zapped++;
2297 2298 2299 2300
		}
	}

	return zapped;
2301 2302
}

2303 2304 2305 2306
static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
				       struct kvm_mmu_page *sp,
				       struct list_head *invalid_list,
				       int *nr_zapped)
2307
{
2308
	bool list_unstable, zapped_root = false;
A
Avi Kivity 已提交
2309

2310
	trace_kvm_mmu_prepare_zap_page(sp);
2311
	++kvm->stat.mmu_shadow_zapped;
2312
	*nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2313
	*nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list);
2314
	kvm_mmu_unlink_parents(sp);
2315

2316 2317 2318
	/* Zapping children means active_mmu_pages has become unstable. */
	list_unstable = *nr_zapped;

L
Lai Jiangshan 已提交
2319
	if (!sp->role.invalid && sp_has_gptes(sp))
2320
		unaccount_shadowed(kvm, sp);
2321

2322 2323
	if (sp->unsync)
		kvm_unlink_unsync_page(kvm, sp);
2324
	if (!sp->root_count) {
2325
		/* Count self */
2326
		(*nr_zapped)++;
2327 2328 2329 2330 2331 2332 2333 2334 2335 2336

		/*
		 * Already invalid pages (previously active roots) are not on
		 * the active page list.  See list_del() in the "else" case of
		 * !sp->root_count.
		 */
		if (sp->role.invalid)
			list_add(&sp->link, invalid_list);
		else
			list_move(&sp->link, invalid_list);
2337
		kvm_mod_used_mmu_pages(kvm, -1);
2338
	} else {
2339 2340 2341 2342 2343
		/*
		 * Remove the active root from the active page list, the root
		 * will be explicitly freed when the root_count hits zero.
		 */
		list_del(&sp->link);
2344

2345 2346 2347 2348 2349
		/*
		 * Obsolete pages cannot be used on any vCPUs, see the comment
		 * in kvm_mmu_zap_all_fast().  Note, is_obsolete_sp() also
		 * treats invalid shadow pages as being obsolete.
		 */
2350
		zapped_root = !is_obsolete_sp(kvm, sp);
2351
	}
2352

P
Paolo Bonzini 已提交
2353 2354 2355
	if (sp->lpage_disallowed)
		unaccount_huge_nx_page(kvm, sp);

2356
	sp->role.invalid = 1;
2357 2358 2359 2360 2361 2362 2363

	/*
	 * Make the request to free obsolete roots after marking the root
	 * invalid, otherwise other vCPUs may not see it as invalid.
	 */
	if (zapped_root)
		kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS);
2364 2365 2366 2367 2368 2369 2370 2371 2372 2373
	return list_unstable;
}

static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				     struct list_head *invalid_list)
{
	int nr_zapped;

	__kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
	return nr_zapped;
2374 2375
}

2376 2377 2378
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list)
{
2379
	struct kvm_mmu_page *sp, *nsp;
2380 2381 2382 2383

	if (list_empty(invalid_list))
		return;

2384
	/*
2385 2386 2387 2388 2389 2390 2391
	 * We need to make sure everyone sees our modifications to
	 * the page tables and see changes to vcpu->mode here. The barrier
	 * in the kvm_flush_remote_tlbs() achieves this. This pairs
	 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
	 *
	 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
	 * guest mode and/or lockless shadow page table walks.
2392 2393
	 */
	kvm_flush_remote_tlbs(kvm);
2394

2395
	list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2396
		WARN_ON(!sp->role.invalid || sp->root_count);
2397
		kvm_mmu_free_page(sp);
2398
	}
2399 2400
}

2401 2402
static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm,
						  unsigned long nr_to_zap)
2403
{
2404 2405
	unsigned long total_zapped = 0;
	struct kvm_mmu_page *sp, *tmp;
2406
	LIST_HEAD(invalid_list);
2407 2408
	bool unstable;
	int nr_zapped;
2409 2410

	if (list_empty(&kvm->arch.active_mmu_pages))
2411 2412
		return 0;

2413
restart:
2414
	list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) {
2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425
		/*
		 * Don't zap active root pages, the page itself can't be freed
		 * and zapping it will just force vCPUs to realloc and reload.
		 */
		if (sp->root_count)
			continue;

		unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list,
						      &nr_zapped);
		total_zapped += nr_zapped;
		if (total_zapped >= nr_to_zap)
2426 2427
			break;

2428 2429
		if (unstable)
			goto restart;
2430
	}
2431

2432 2433 2434 2435 2436 2437
	kvm_mmu_commit_zap_page(kvm, &invalid_list);

	kvm->stat.mmu_recycled += total_zapped;
	return total_zapped;
}

2438 2439 2440 2441 2442 2443 2444
static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm)
{
	if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
		return kvm->arch.n_max_mmu_pages -
			kvm->arch.n_used_mmu_pages;

	return 0;
2445 2446
}

2447 2448
static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
{
2449
	unsigned long avail = kvm_mmu_available_pages(vcpu->kvm);
2450

2451
	if (likely(avail >= KVM_MIN_FREE_MMU_PAGES))
2452 2453
		return 0;

2454
	kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail);
2455

2456 2457 2458 2459 2460
	/*
	 * Note, this check is intentionally soft, it only guarantees that one
	 * page is available, while the caller may end up allocating as many as
	 * four pages, e.g. for PAE roots or for 5-level paging.  Temporarily
	 * exceeding the (arbitrary by default) limit will not harm the host,
I
Ingo Molnar 已提交
2461
	 * being too aggressive may unnecessarily kill the guest, and getting an
2462 2463 2464
	 * exact count is far more trouble than it's worth, especially in the
	 * page fault paths.
	 */
2465 2466 2467 2468 2469
	if (!kvm_mmu_available_pages(vcpu->kvm))
		return -ENOSPC;
	return 0;
}

2470 2471
/*
 * Changing the number of mmu pages allocated to the vm
2472
 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2473
 */
2474
void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2475
{
2476
	write_lock(&kvm->mmu_lock);
2477

2478
	if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2479 2480
		kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages -
						  goal_nr_mmu_pages);
2481

2482
		goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2483 2484
	}

2485
	kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2486

2487
	write_unlock(&kvm->mmu_lock);
2488 2489
}

2490
int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2491
{
2492
	struct kvm_mmu_page *sp;
2493
	LIST_HEAD(invalid_list);
2494 2495
	int r;

2496
	pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2497
	r = 0;
2498
	write_lock(&kvm->mmu_lock);
L
Lai Jiangshan 已提交
2499
	for_each_gfn_valid_sp_with_gptes(kvm, sp, gfn) {
2500
		pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2501 2502
			 sp->role.word);
		r = 1;
2503
		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2504
	}
2505
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2506
	write_unlock(&kvm->mmu_lock);
2507

2508
	return r;
2509
}
2510 2511 2512 2513 2514 2515

static int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
{
	gpa_t gpa;
	int r;

2516
	if (vcpu->arch.mmu->root_role.direct)
2517 2518 2519 2520 2521 2522 2523 2524
		return 0;

	gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);

	r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);

	return r;
}
2525

2526
static void kvm_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
2527 2528
{
	trace_kvm_mmu_unsync_page(sp);
2529
	++kvm->stat.mmu_unsync;
2530 2531 2532 2533 2534
	sp->unsync = 1;

	kvm_mmu_mark_parents_unsync(sp);
}

2535 2536 2537 2538 2539 2540
/*
 * Attempt to unsync any shadow pages that can be reached by the specified gfn,
 * KVM is creating a writable mapping for said gfn.  Returns 0 if all pages
 * were marked unsync (or if there is no shadow page), -EPERM if the SPTE must
 * be write-protected.
 */
2541
int mmu_try_to_unsync_pages(struct kvm *kvm, const struct kvm_memory_slot *slot,
2542
			    gfn_t gfn, bool can_unsync, bool prefetch)
2543
{
2544
	struct kvm_mmu_page *sp;
2545
	bool locked = false;
2546

2547 2548 2549 2550 2551
	/*
	 * Force write-protection if the page is being tracked.  Note, the page
	 * track machinery is used to write-protect upper-level shadow pages,
	 * i.e. this guards the role.level == 4K assertion below!
	 */
2552
	if (kvm_slot_page_track_is_active(kvm, slot, gfn, KVM_PAGE_TRACK_WRITE))
2553
		return -EPERM;
2554

2555 2556 2557 2558 2559 2560
	/*
	 * The page is not write-tracked, mark existing shadow pages unsync
	 * unless KVM is synchronizing an unsync SP (can_unsync = false).  In
	 * that case, KVM must complete emulation of the guest TLB flush before
	 * allowing shadow pages to become unsync (writable by the guest).
	 */
L
Lai Jiangshan 已提交
2561
	for_each_gfn_valid_sp_with_gptes(kvm, sp, gfn) {
2562
		if (!can_unsync)
2563
			return -EPERM;
2564

2565 2566
		if (sp->unsync)
			continue;
2567

2568
		if (prefetch)
2569 2570
			return -EEXIST;

2571 2572 2573 2574 2575 2576 2577 2578 2579
		/*
		 * TDP MMU page faults require an additional spinlock as they
		 * run with mmu_lock held for read, not write, and the unsync
		 * logic is not thread safe.  Take the spinklock regardless of
		 * the MMU type to avoid extra conditionals/parameters, there's
		 * no meaningful penalty if mmu_lock is held for write.
		 */
		if (!locked) {
			locked = true;
2580
			spin_lock(&kvm->arch.mmu_unsync_pages_lock);
2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593

			/*
			 * Recheck after taking the spinlock, a different vCPU
			 * may have since marked the page unsync.  A false
			 * positive on the unprotected check above is not
			 * possible as clearing sp->unsync _must_ hold mmu_lock
			 * for write, i.e. unsync cannot transition from 0->1
			 * while this CPU holds mmu_lock for read (or write).
			 */
			if (READ_ONCE(sp->unsync))
				continue;
		}

2594
		WARN_ON(sp->role.level != PG_LEVEL_4K);
2595
		kvm_unsync_page(kvm, sp);
2596
	}
2597
	if (locked)
2598
		spin_unlock(&kvm->arch.mmu_unsync_pages_lock);
2599

2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621
	/*
	 * We need to ensure that the marking of unsync pages is visible
	 * before the SPTE is updated to allow writes because
	 * kvm_mmu_sync_roots() checks the unsync flags without holding
	 * the MMU lock and so can race with this. If the SPTE was updated
	 * before the page had been marked as unsync-ed, something like the
	 * following could happen:
	 *
	 * CPU 1                    CPU 2
	 * ---------------------------------------------------------------------
	 * 1.2 Host updates SPTE
	 *     to be writable
	 *                      2.1 Guest writes a GPTE for GVA X.
	 *                          (GPTE being in the guest page table shadowed
	 *                           by the SP from CPU 1.)
	 *                          This reads SPTE during the page table walk.
	 *                          Since SPTE.W is read as 1, there is no
	 *                          fault.
	 *
	 *                      2.2 Guest issues TLB flush.
	 *                          That causes a VM Exit.
	 *
2622 2623
	 *                      2.3 Walking of unsync pages sees sp->unsync is
	 *                          false and skips the page.
2624 2625 2626 2627 2628 2629 2630 2631 2632 2633
	 *
	 *                      2.4 Guest accesses GVA X.
	 *                          Since the mapping in the SP was not updated,
	 *                          so the old mapping for GVA X incorrectly
	 *                          gets used.
	 * 1.1 Host marks SP
	 *     as unsync
	 *     (sp->unsync = true)
	 *
	 * The write barrier below ensures that 1.1 happens before 1.2 and thus
2634 2635
	 * the situation in 2.4 does not arise.  It pairs with the read barrier
	 * in is_unsync_root(), placed between 2.1's load of SPTE.W and 2.3.
2636 2637 2638
	 */
	smp_wmb();

2639
	return 0;
2640 2641
}

2642 2643
static int mmu_set_spte(struct kvm_vcpu *vcpu, struct kvm_memory_slot *slot,
			u64 *sptep, unsigned int pte_access, gfn_t gfn,
2644
			kvm_pfn_t pfn, struct kvm_page_fault *fault)
M
Marcelo Tosatti 已提交
2645
{
2646
	struct kvm_mmu_page *sp = sptep_to_sp(sptep);
2647
	int level = sp->role.level;
M
Marcelo Tosatti 已提交
2648
	int was_rmapped = 0;
2649
	int ret = RET_PF_FIXED;
2650
	bool flush = false;
2651
	bool wrprot;
2652
	u64 spte;
M
Marcelo Tosatti 已提交
2653

2654 2655
	/* Prefetching always gets a writable pfn.  */
	bool host_writable = !fault || fault->map_writable;
2656
	bool prefetch = !fault || fault->prefetch;
2657
	bool write_fault = fault && fault->write;
M
Marcelo Tosatti 已提交
2658

2659 2660
	pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
		 *sptep, write_fault, gfn);
M
Marcelo Tosatti 已提交
2661

2662 2663 2664 2665 2666
	if (unlikely(is_noslot_pfn(pfn))) {
		mark_mmio_spte(vcpu, sptep, gfn, pte_access);
		return RET_PF_EMULATE;
	}

2667
	if (is_shadow_present_pte(*sptep)) {
M
Marcelo Tosatti 已提交
2668 2669 2670 2671
		/*
		 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
		 * the parent of the now unreachable PTE.
		 */
2672
		if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) {
M
Marcelo Tosatti 已提交
2673
			struct kvm_mmu_page *child;
A
Avi Kivity 已提交
2674
			u64 pte = *sptep;
M
Marcelo Tosatti 已提交
2675

2676
			child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2677
			drop_parent_pte(child, sptep);
2678
			flush = true;
A
Avi Kivity 已提交
2679
		} else if (pfn != spte_to_pfn(*sptep)) {
2680
			pgprintk("hfn old %llx new %llx\n",
A
Avi Kivity 已提交
2681
				 spte_to_pfn(*sptep), pfn);
2682
			drop_spte(vcpu->kvm, sptep);
2683
			flush = true;
2684 2685
		} else
			was_rmapped = 1;
M
Marcelo Tosatti 已提交
2686
	}
2687

2688
	wrprot = make_spte(vcpu, sp, slot, pte_access, gfn, pfn, *sptep, prefetch,
2689
			   true, host_writable, &spte);
2690 2691 2692 2693 2694

	if (*sptep == spte) {
		ret = RET_PF_SPURIOUS;
	} else {
		flush |= mmu_spte_update(sptep, spte);
2695
		trace_kvm_mmu_set_spte(level, gfn, sptep);
2696 2697
	}

2698
	if (wrprot) {
M
Marcelo Tosatti 已提交
2699
		if (write_fault)
2700
			ret = RET_PF_EMULATE;
2701
	}
2702

2703
	if (flush)
2704 2705
		kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
				KVM_PAGES_PER_HPAGE(level));
M
Marcelo Tosatti 已提交
2706

A
Avi Kivity 已提交
2707
	pgprintk("%s: setting spte %llx\n", __func__, *sptep);
M
Marcelo Tosatti 已提交
2708

2709
	if (!was_rmapped) {
2710
		WARN_ON_ONCE(ret == RET_PF_SPURIOUS);
2711
		kvm_update_page_stats(vcpu->kvm, level, 1);
2712
		rmap_add(vcpu, slot, sptep, gfn);
2713
	}
2714

2715
	return ret;
2716 2717
}

2718 2719 2720 2721 2722
static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
				    struct kvm_mmu_page *sp,
				    u64 *start, u64 *end)
{
	struct page *pages[PTE_PREFETCH_NUM];
2723
	struct kvm_memory_slot *slot;
2724
	unsigned int access = sp->role.access;
2725 2726 2727 2728
	int i, ret;
	gfn_t gfn;

	gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2729 2730
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
	if (!slot)
2731 2732
		return -1;

2733
	ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2734 2735 2736
	if (ret <= 0)
		return -1;

2737
	for (i = 0; i < ret; i++, gfn++, start++) {
2738
		mmu_set_spte(vcpu, slot, start, access, gfn,
2739
			     page_to_pfn(pages[i]), NULL);
2740 2741
		put_page(pages[i]);
	}
2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757

	return 0;
}

static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
				  struct kvm_mmu_page *sp, u64 *sptep)
{
	u64 *spte, *start = NULL;
	int i;

	WARN_ON(!sp->role.direct);

	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
	spte = sp->spt + i;

	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2758
		if (is_shadow_present_pte(*spte) || spte == sptep) {
2759 2760 2761
			if (!start)
				continue;
			if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2762
				return;
2763 2764 2765 2766
			start = NULL;
		} else if (!start)
			start = spte;
	}
2767 2768
	if (start)
		direct_pte_prefetch_many(vcpu, sp, start, spte);
2769 2770 2771 2772 2773 2774
}

static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
{
	struct kvm_mmu_page *sp;

2775
	sp = sptep_to_sp(sptep);
2776

2777
	/*
2778 2779 2780
	 * Without accessed bits, there's no way to distinguish between
	 * actually accessed translations and prefetched, so disable pte
	 * prefetch if accessed bits aren't available.
2781
	 */
2782
	if (sp_ad_disabled(sp))
2783 2784
		return;

2785
	if (sp->role.level > PG_LEVEL_4K)
2786 2787
		return;

2788 2789 2790 2791 2792 2793 2794
	/*
	 * If addresses are being invalidated, skip prefetching to avoid
	 * accidentally prefetching those addresses.
	 */
	if (unlikely(vcpu->kvm->mmu_notifier_count))
		return;

2795 2796 2797
	__direct_pte_prefetch(vcpu, sp, sptep);
}

2798
static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn,
2799
				  const struct kvm_memory_slot *slot)
2800 2801
{
	unsigned long hva;
2802 2803 2804 2805 2806 2807
	unsigned long flags;
	int level = PG_LEVEL_4K;
	pgd_t pgd;
	p4d_t p4d;
	pud_t pud;
	pmd_t pmd;
2808

2809
	if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn))
2810
		return PG_LEVEL_4K;
2811

2812 2813 2814 2815 2816 2817 2818 2819
	/*
	 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
	 * is not solely for performance, it's also necessary to avoid the
	 * "writable" check in __gfn_to_hva_many(), which will always fail on
	 * read-only memslots due to gfn_to_hva() assuming writes.  Earlier
	 * page fault steps have already verified the guest isn't writing a
	 * read-only memslot.
	 */
2820 2821
	hva = __gfn_to_hva_memslot(slot, gfn);

2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839
	/*
	 * Lookup the mapping level in the current mm.  The information
	 * may become stale soon, but it is safe to use as long as
	 * 1) mmu_notifier_retry was checked after taking mmu_lock, and
	 * 2) mmu_lock is taken now.
	 *
	 * We still need to disable IRQs to prevent concurrent tear down
	 * of page tables.
	 */
	local_irq_save(flags);

	pgd = READ_ONCE(*pgd_offset(kvm->mm, hva));
	if (pgd_none(pgd))
		goto out;

	p4d = READ_ONCE(*p4d_offset(&pgd, hva));
	if (p4d_none(p4d) || !p4d_present(p4d))
		goto out;
2840

2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858
	pud = READ_ONCE(*pud_offset(&p4d, hva));
	if (pud_none(pud) || !pud_present(pud))
		goto out;

	if (pud_large(pud)) {
		level = PG_LEVEL_1G;
		goto out;
	}

	pmd = READ_ONCE(*pmd_offset(&pud, hva));
	if (pmd_none(pmd) || !pmd_present(pmd))
		goto out;

	if (pmd_large(pmd))
		level = PG_LEVEL_2M;

out:
	local_irq_restore(flags);
2859 2860 2861
	return level;
}

2862 2863 2864
int kvm_mmu_max_mapping_level(struct kvm *kvm,
			      const struct kvm_memory_slot *slot, gfn_t gfn,
			      kvm_pfn_t pfn, int max_level)
2865 2866
{
	struct kvm_lpage_info *linfo;
2867
	int host_level;
2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878

	max_level = min(max_level, max_huge_page_level);
	for ( ; max_level > PG_LEVEL_4K; max_level--) {
		linfo = lpage_info_slot(gfn, slot, max_level);
		if (!linfo->disallow_lpage)
			break;
	}

	if (max_level == PG_LEVEL_4K)
		return PG_LEVEL_4K;

2879 2880
	host_level = host_pfn_mapping_level(kvm, gfn, pfn, slot);
	return min(host_level, max_level);
2881 2882
}

2883
void kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
2884
{
2885
	struct kvm_memory_slot *slot = fault->slot;
2886 2887
	kvm_pfn_t mask;

2888
	fault->huge_page_disallowed = fault->exec && fault->nx_huge_page_workaround_enabled;
2889

2890 2891
	if (unlikely(fault->max_level == PG_LEVEL_4K))
		return;
2892

2893 2894
	if (is_error_noslot_pfn(fault->pfn) || kvm_is_reserved_pfn(fault->pfn))
		return;
2895

2896
	if (kvm_slot_dirty_track_enabled(slot))
2897
		return;
2898

2899 2900 2901 2902
	/*
	 * Enforce the iTLB multihit workaround after capturing the requested
	 * level, which will be used to do precise, accurate accounting.
	 */
2903 2904 2905 2906 2907
	fault->req_level = kvm_mmu_max_mapping_level(vcpu->kvm, slot,
						     fault->gfn, fault->pfn,
						     fault->max_level);
	if (fault->req_level == PG_LEVEL_4K || fault->huge_page_disallowed)
		return;
2908 2909

	/*
2910 2911
	 * mmu_notifier_retry() was successful and mmu_lock is held, so
	 * the pmd can't be split from under us.
2912
	 */
2913 2914 2915 2916
	fault->goal_level = fault->req_level;
	mask = KVM_PAGES_PER_HPAGE(fault->goal_level) - 1;
	VM_BUG_ON((fault->gfn & mask) != (fault->pfn & mask));
	fault->pfn &= ~mask;
2917 2918
}

2919
void disallowed_hugepage_adjust(struct kvm_page_fault *fault, u64 spte, int cur_level)
P
Paolo Bonzini 已提交
2920
{
2921 2922
	if (cur_level > PG_LEVEL_4K &&
	    cur_level == fault->goal_level &&
P
Paolo Bonzini 已提交
2923 2924 2925 2926 2927 2928 2929 2930 2931
	    is_shadow_present_pte(spte) &&
	    !is_large_pte(spte)) {
		/*
		 * A small SPTE exists for this pfn, but FNAME(fetch)
		 * and __direct_map would like to create a large PTE
		 * instead: just force them to go down another level,
		 * patching back for them into pfn the next 9 bits of
		 * the address.
		 */
2932 2933 2934 2935
		u64 page_mask = KVM_PAGES_PER_HPAGE(cur_level) -
				KVM_PAGES_PER_HPAGE(cur_level - 1);
		fault->pfn |= fault->gfn & page_mask;
		fault->goal_level--;
P
Paolo Bonzini 已提交
2936 2937 2938
	}
}

2939
static int __direct_map(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
2940
{
2941
	struct kvm_shadow_walk_iterator it;
2942
	struct kvm_mmu_page *sp;
2943
	int ret;
2944
	gfn_t base_gfn = fault->gfn;
A
Avi Kivity 已提交
2945

2946
	kvm_mmu_hugepage_adjust(vcpu, fault);
2947

2948
	trace_kvm_mmu_spte_requested(fault);
2949
	for_each_shadow_entry(vcpu, fault->addr, it) {
P
Paolo Bonzini 已提交
2950 2951 2952 2953
		/*
		 * We cannot overwrite existing page tables with an NX
		 * large page, as the leaf could be executable.
		 */
2954
		if (fault->nx_huge_page_workaround_enabled)
2955
			disallowed_hugepage_adjust(fault, *it.sptep, it.level);
P
Paolo Bonzini 已提交
2956

2957
		base_gfn = fault->gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
2958
		if (it.level == fault->goal_level)
2959
			break;
A
Avi Kivity 已提交
2960

2961
		drop_large_spte(vcpu, it.sptep);
2962 2963 2964 2965 2966 2967 2968
		if (is_shadow_present_pte(*it.sptep))
			continue;

		sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
				      it.level - 1, true, ACC_ALL);

		link_shadow_page(vcpu, it.sptep, sp);
2969 2970
		if (fault->is_tdp && fault->huge_page_disallowed &&
		    fault->req_level >= it.level)
2971
			account_huge_nx_page(vcpu->kvm, sp);
2972
	}
2973

2974 2975 2976
	if (WARN_ON_ONCE(it.level != fault->goal_level))
		return -EFAULT;

2977
	ret = mmu_set_spte(vcpu, fault->slot, it.sptep, ACC_ALL,
2978
			   base_gfn, fault->pfn, fault);
2979 2980 2981
	if (ret == RET_PF_SPURIOUS)
		return ret;

2982 2983 2984
	direct_pte_prefetch(vcpu, it.sptep);
	++vcpu->stat.pf_fixed;
	return ret;
A
Avi Kivity 已提交
2985 2986
}

H
Huang Ying 已提交
2987
static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2988
{
2989
	send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
2990 2991
}

D
Dan Williams 已提交
2992
static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
2993
{
X
Xiao Guangrong 已提交
2994 2995 2996 2997 2998 2999
	/*
	 * Do not cache the mmio info caused by writing the readonly gfn
	 * into the spte otherwise read access on readonly gfn also can
	 * caused mmio page fault and treat it as mmio access.
	 */
	if (pfn == KVM_PFN_ERR_RO_FAULT)
3000
		return RET_PF_EMULATE;
X
Xiao Guangrong 已提交
3001

3002
	if (pfn == KVM_PFN_ERR_HWPOISON) {
3003
		kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
3004
		return RET_PF_RETRY;
3005
	}
3006

3007
	return -EFAULT;
3008 3009
}

3010 3011
static int handle_abnormal_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault,
			       unsigned int access)
3012 3013
{
	/* The pfn is invalid, report the error! */
3014 3015
	if (unlikely(is_error_pfn(fault->pfn)))
		return kvm_handle_bad_page(vcpu, fault->gfn, fault->pfn);
3016

3017
	if (unlikely(!fault->slot)) {
3018 3019 3020
		gva_t gva = fault->is_tdp ? 0 : fault->addr;

		vcpu_cache_mmio_info(vcpu, gva, fault->gfn,
3021
				     access & shadow_mmio_access_mask);
3022 3023 3024
		/*
		 * If MMIO caching is disabled, emulate immediately without
		 * touching the shadow page tables as attempting to install an
3025 3026 3027 3028 3029 3030
		 * MMIO SPTE will just be an expensive nop.  Do not cache MMIO
		 * whose gfn is greater than host.MAXPHYADDR, any guest that
		 * generates such gfns is running nested and is being tricked
		 * by L0 userspace (you can observe gfn > L1.MAXPHYADDR if
		 * and only if L1's MAXPHYADDR is inaccurate with respect to
		 * the hardware's).
3031
		 */
3032
		if (unlikely(!enable_mmio_caching) ||
3033 3034
		    unlikely(fault->gfn > kvm_mmu_max_gfn()))
			return RET_PF_EMULATE;
3035
	}
3036

3037
	return RET_PF_CONTINUE;
3038 3039
}

3040
static bool page_fault_can_be_fast(struct kvm_page_fault *fault)
3041
{
3042
	/*
3043 3044 3045 3046
	 * Page faults with reserved bits set, i.e. faults on MMIO SPTEs, only
	 * reach the common page fault handler if the SPTE has an invalid MMIO
	 * generation number.  Refreshing the MMIO generation needs to go down
	 * the slow path.  Note, EPT Misconfigs do NOT set the PRESENT flag!
3047
	 */
3048
	if (fault->rsvd)
3049 3050
		return false;

3051
	/*
3052 3053
	 * #PF can be fast if:
	 *
3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064
	 * 1. The shadow page table entry is not present and A/D bits are
	 *    disabled _by KVM_, which could mean that the fault is potentially
	 *    caused by access tracking (if enabled).  If A/D bits are enabled
	 *    by KVM, but disabled by L1 for L2, KVM is forced to disable A/D
	 *    bits for L2 and employ access tracking, but the fast page fault
	 *    mechanism only supports direct MMUs.
	 * 2. The shadow page table entry is present, the access is a write,
	 *    and no reserved bits are set (MMIO SPTEs cannot be "fixed"), i.e.
	 *    the fault was caused by a write-protection violation.  If the
	 *    SPTE is MMU-writable (determined later), the fault can be fixed
	 *    by setting the Writable bit, which can be done out of mmu_lock.
3065
	 */
3066 3067 3068 3069 3070 3071 3072 3073
	if (!fault->present)
		return !kvm_ad_enabled();

	/*
	 * Note, instruction fetches and writes are mutually exclusive, ignore
	 * the "exec" flag.
	 */
	return fault->write;
3074 3075
}

3076 3077 3078 3079
/*
 * Returns true if the SPTE was fixed successfully. Otherwise,
 * someone else modified the SPTE from its original value.
 */
3080
static bool
3081
fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault,
3082
			u64 *sptep, u64 old_spte, u64 new_spte)
3083
{
3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095
	/*
	 * Theoretically we could also set dirty bit (and flush TLB) here in
	 * order to eliminate unnecessary PML logging. See comments in
	 * set_spte. But fast_page_fault is very unlikely to happen with PML
	 * enabled, so we do not do this. This might result in the same GPA
	 * to be logged in PML buffer again when the write really happens, and
	 * eventually to be called by mark_page_dirty twice. But it's also no
	 * harm. This also avoids the TLB flush needed after setting dirty bit
	 * so non-PML cases won't be impacted.
	 *
	 * Compare with set_spte where instead shadow_dirty_mask is set.
	 */
3096
	if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3097 3098
		return false;

3099 3100
	if (is_writable_pte(new_spte) && !is_writable_pte(old_spte))
		mark_page_dirty_in_slot(vcpu->kvm, fault->slot, fault->gfn);
3101 3102 3103 3104

	return true;
}

3105
static bool is_access_allowed(struct kvm_page_fault *fault, u64 spte)
3106
{
3107
	if (fault->exec)
3108 3109
		return is_executable_pte(spte);

3110
	if (fault->write)
3111 3112 3113 3114 3115 3116
		return is_writable_pte(spte);

	/* Fault was on Read access */
	return spte & PT_PRESENT_MASK;
}

3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139
/*
 * Returns the last level spte pointer of the shadow page walk for the given
 * gpa, and sets *spte to the spte value. This spte may be non-preset. If no
 * walk could be performed, returns NULL and *spte does not contain valid data.
 *
 * Contract:
 *  - Must be called between walk_shadow_page_lockless_{begin,end}.
 *  - The returned sptep must not be used after walk_shadow_page_lockless_end.
 */
static u64 *fast_pf_get_last_sptep(struct kvm_vcpu *vcpu, gpa_t gpa, u64 *spte)
{
	struct kvm_shadow_walk_iterator iterator;
	u64 old_spte;
	u64 *sptep = NULL;

	for_each_shadow_entry_lockless(vcpu, gpa, iterator, old_spte) {
		sptep = iterator.sptep;
		*spte = old_spte;
	}

	return sptep;
}

3140
/*
3141
 * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS.
3142
 */
3143
static int fast_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
3144
{
3145
	struct kvm_mmu_page *sp;
3146
	int ret = RET_PF_INVALID;
3147
	u64 spte = 0ull;
3148
	u64 *sptep = NULL;
3149
	uint retry_count = 0;
3150

3151
	if (!page_fault_can_be_fast(fault))
3152
		return ret;
3153 3154 3155

	walk_shadow_page_lockless_begin(vcpu);

3156
	do {
3157
		u64 new_spte;
3158

3159
		if (is_tdp_mmu(vcpu->arch.mmu))
3160
			sptep = kvm_tdp_mmu_fast_pf_get_last_sptep(vcpu, fault->addr, &spte);
3161
		else
3162
			sptep = fast_pf_get_last_sptep(vcpu, fault->addr, &spte);
3163

3164 3165 3166
		if (!is_shadow_present_pte(spte))
			break;

3167
		sp = sptep_to_sp(sptep);
3168 3169
		if (!is_last_spte(spte, sp->role.level))
			break;
3170

3171
		/*
3172 3173 3174 3175 3176
		 * Check whether the memory access that caused the fault would
		 * still cause it if it were to be performed right now. If not,
		 * then this is a spurious fault caused by TLB lazily flushed,
		 * or some other CPU has already fixed the PTE after the
		 * current CPU took the fault.
3177 3178 3179 3180
		 *
		 * Need not check the access of upper level table entries since
		 * they are always ACC_ALL.
		 */
3181
		if (is_access_allowed(fault, spte)) {
3182
			ret = RET_PF_SPURIOUS;
3183 3184
			break;
		}
3185

3186 3187
		new_spte = spte;

3188 3189 3190 3191 3192 3193 3194
		/*
		 * KVM only supports fixing page faults outside of MMU lock for
		 * direct MMUs, nested MMUs are always indirect, and KVM always
		 * uses A/D bits for non-nested MMUs.  Thus, if A/D bits are
		 * enabled, the SPTE can't be an access-tracked SPTE.
		 */
		if (unlikely(!kvm_ad_enabled()) && is_access_track_spte(spte))
3195 3196 3197
			new_spte = restore_acc_track_spte(new_spte);

		/*
3198 3199 3200 3201 3202 3203 3204 3205 3206
		 * To keep things simple, only SPTEs that are MMU-writable can
		 * be made fully writable outside of mmu_lock, e.g. only SPTEs
		 * that were write-protected for dirty-logging or access
		 * tracking are handled here.  Don't bother checking if the
		 * SPTE is writable to prioritize running with A/D bits enabled.
		 * The is_access_allowed() check above handles the common case
		 * of the fault being spurious, and the SPTE is known to be
		 * shadow-present, i.e. except for access tracking restoration
		 * making the new SPTE writable, the check is wasteful.
3207
		 */
3208
		if (fault->write && is_mmu_writable_spte(spte)) {
3209
			new_spte |= PT_WRITABLE_MASK;
3210 3211

			/*
3212 3213 3214
			 * Do not fix write-permission on the large spte when
			 * dirty logging is enabled. Since we only dirty the
			 * first page into the dirty-bitmap in
3215 3216 3217 3218 3219
			 * fast_pf_fix_direct_spte(), other pages are missed
			 * if its slot has dirty logging enabled.
			 *
			 * Instead, we let the slow page fault path create a
			 * normal spte to fix the access.
3220
			 */
3221 3222
			if (sp->role.level > PG_LEVEL_4K &&
			    kvm_slot_dirty_track_enabled(fault->slot))
3223
				break;
3224
		}
3225

3226
		/* Verify that the fault can be handled in the fast path */
3227
		if (new_spte == spte ||
3228
		    !is_access_allowed(fault, new_spte))
3229 3230 3231 3232 3233
			break;

		/*
		 * Currently, fast page fault only works for direct mapping
		 * since the gfn is not stable for indirect shadow page. See
3234
		 * Documentation/virt/kvm/locking.rst to get more detail.
3235
		 */
3236
		if (fast_pf_fix_direct_spte(vcpu, fault, sptep, spte, new_spte)) {
3237
			ret = RET_PF_FIXED;
3238
			break;
3239
		}
3240 3241 3242 3243 3244 3245 3246 3247

		if (++retry_count > 4) {
			printk_once(KERN_WARNING
				"kvm: Fast #PF retrying more than 4 times.\n");
			break;
		}

	} while (true);
3248

3249
	trace_fast_page_fault(vcpu, fault, sptep, spte, ret);
3250 3251
	walk_shadow_page_lockless_end(vcpu);

3252
	return ret;
3253 3254
}

3255 3256
static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
			       struct list_head *invalid_list)
3257
{
3258
	struct kvm_mmu_page *sp;
3259

3260
	if (!VALID_PAGE(*root_hpa))
A
Avi Kivity 已提交
3261
		return;
3262

3263
	sp = to_shadow_page(*root_hpa & PT64_BASE_ADDR_MASK);
3264 3265
	if (WARN_ON(!sp))
		return;
3266

3267
	if (is_tdp_mmu_page(sp))
3268
		kvm_tdp_mmu_put_root(kvm, sp, false);
3269 3270
	else if (!--sp->root_count && sp->role.invalid)
		kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3271

3272 3273 3274
	*root_hpa = INVALID_PAGE;
}

3275
/* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
3276
void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu,
3277
			ulong roots_to_free)
3278 3279 3280
{
	int i;
	LIST_HEAD(invalid_list);
3281
	bool free_active_root;
3282

3283
	BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3284

3285
	/* Before acquiring the MMU lock, see if we need to do any real work. */
3286 3287 3288 3289
	free_active_root = (roots_to_free & KVM_MMU_ROOT_CURRENT)
		&& VALID_PAGE(mmu->root.hpa);

	if (!free_active_root) {
3290 3291 3292 3293 3294 3295 3296 3297
		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
			if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
			    VALID_PAGE(mmu->prev_roots[i].hpa))
				break;

		if (i == KVM_MMU_NUM_PREV_ROOTS)
			return;
	}
3298

3299
	write_lock(&kvm->mmu_lock);
3300

3301 3302
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
		if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3303
			mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa,
3304
					   &invalid_list);
3305

3306
	if (free_active_root) {
3307
		if (to_shadow_page(mmu->root.hpa)) {
3308
			mmu_free_root_page(kvm, &mmu->root.hpa, &invalid_list);
3309
		} else if (mmu->pae_root) {
3310 3311 3312 3313 3314 3315 3316 3317
			for (i = 0; i < 4; ++i) {
				if (!IS_VALID_PAE_ROOT(mmu->pae_root[i]))
					continue;

				mmu_free_root_page(kvm, &mmu->pae_root[i],
						   &invalid_list);
				mmu->pae_root[i] = INVALID_PAE_ROOT;
			}
3318
		}
3319 3320
		mmu->root.hpa = INVALID_PAGE;
		mmu->root.pgd = 0;
3321
	}
3322

3323
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
3324
	write_unlock(&kvm->mmu_lock);
3325
}
3326
EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3327

3328
void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu)
3329 3330 3331 3332 3333 3334 3335 3336 3337
{
	unsigned long roots_to_free = 0;
	hpa_t root_hpa;
	int i;

	/*
	 * This should not be called while L2 is active, L2 can't invalidate
	 * _only_ its own roots, e.g. INVVPID unconditionally exits.
	 */
3338
	WARN_ON_ONCE(mmu->root_role.guest_mode);
3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349

	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
		root_hpa = mmu->prev_roots[i].hpa;
		if (!VALID_PAGE(root_hpa))
			continue;

		if (!to_shadow_page(root_hpa) ||
			to_shadow_page(root_hpa)->role.guest_mode)
			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
	}

3350
	kvm_mmu_free_roots(kvm, mmu, roots_to_free);
3351 3352 3353 3354
}
EXPORT_SYMBOL_GPL(kvm_mmu_free_guest_mode_roots);


3355 3356 3357 3358
static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
{
	int ret = 0;

3359
	if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) {
3360
		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3361 3362 3363 3364 3365 3366
		ret = 1;
	}

	return ret;
}

3367 3368
static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, gva_t gva,
			    u8 level, bool direct)
3369 3370
{
	struct kvm_mmu_page *sp;
3371 3372 3373 3374 3375 3376 3377 3378 3379

	sp = kvm_mmu_get_page(vcpu, gfn, gva, level, direct, ACC_ALL);
	++sp->root_count;

	return __pa(sp->spt);
}

static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
{
3380
	struct kvm_mmu *mmu = vcpu->arch.mmu;
3381
	u8 shadow_root_level = mmu->root_role.level;
3382
	hpa_t root;
3383
	unsigned i;
3384 3385 3386 3387 3388 3389
	int r;

	write_lock(&vcpu->kvm->mmu_lock);
	r = make_mmu_pages_available(vcpu);
	if (r < 0)
		goto out_unlock;
3390

3391
	if (is_tdp_mmu_enabled(vcpu->kvm)) {
3392
		root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu);
3393
		mmu->root.hpa = root;
3394
	} else if (shadow_root_level >= PT64_ROOT_4LEVEL) {
3395
		root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level, true);
3396
		mmu->root.hpa = root;
3397
	} else if (shadow_root_level == PT32E_ROOT_LEVEL) {
3398 3399 3400 3401
		if (WARN_ON_ONCE(!mmu->pae_root)) {
			r = -EIO;
			goto out_unlock;
		}
3402

3403
		for (i = 0; i < 4; ++i) {
3404
			WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3405

3406 3407
			root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT),
					      i << 30, PT32_ROOT_LEVEL, true);
3408 3409
			mmu->pae_root[i] = root | PT_PRESENT_MASK |
					   shadow_me_mask;
3410
		}
3411
		mmu->root.hpa = __pa(mmu->pae_root);
3412 3413
	} else {
		WARN_ONCE(1, "Bad TDP root level = %d\n", shadow_root_level);
3414 3415
		r = -EIO;
		goto out_unlock;
3416
	}
3417

3418 3419
	/* root.pgd is ignored for direct MMUs. */
	mmu->root.pgd = 0;
3420 3421 3422
out_unlock:
	write_unlock(&vcpu->kvm->mmu_lock);
	return r;
3423 3424
}

3425 3426 3427 3428
static int mmu_first_shadow_root_alloc(struct kvm *kvm)
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *slot;
3429
	int r = 0, i, bkt;
3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453

	/*
	 * Check if this is the first shadow root being allocated before
	 * taking the lock.
	 */
	if (kvm_shadow_root_allocated(kvm))
		return 0;

	mutex_lock(&kvm->slots_arch_lock);

	/* Recheck, under the lock, whether this is the first shadow root. */
	if (kvm_shadow_root_allocated(kvm))
		goto out_unlock;

	/*
	 * Check if anything actually needs to be allocated, e.g. all metadata
	 * will be allocated upfront if TDP is disabled.
	 */
	if (kvm_memslots_have_rmaps(kvm) &&
	    kvm_page_track_write_tracking_enabled(kvm))
		goto out_success;

	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
3454
		kvm_for_each_memslot(slot, bkt, slots) {
3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485
			/*
			 * Both of these functions are no-ops if the target is
			 * already allocated, so unconditionally calling both
			 * is safe.  Intentionally do NOT free allocations on
			 * failure to avoid having to track which allocations
			 * were made now versus when the memslot was created.
			 * The metadata is guaranteed to be freed when the slot
			 * is freed, and will be kept/used if userspace retries
			 * KVM_RUN instead of killing the VM.
			 */
			r = memslot_rmap_alloc(slot, slot->npages);
			if (r)
				goto out_unlock;
			r = kvm_page_track_write_tracking_alloc(slot);
			if (r)
				goto out_unlock;
		}
	}

	/*
	 * Ensure that shadow_root_allocated becomes true strictly after
	 * all the related pointers are set.
	 */
out_success:
	smp_store_release(&kvm->arch.shadow_root_allocated, true);

out_unlock:
	mutex_unlock(&kvm->slots_arch_lock);
	return r;
}

3486
static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3487
{
3488
	struct kvm_mmu *mmu = vcpu->arch.mmu;
3489
	u64 pdptrs[4], pm_mask;
3490
	gfn_t root_gfn, root_pgd;
3491
	hpa_t root;
3492 3493
	unsigned i;
	int r;
3494

3495
	root_pgd = mmu->get_guest_pgd(vcpu);
3496
	root_gfn = root_pgd >> PAGE_SHIFT;
3497

3498 3499 3500
	if (mmu_check_root(vcpu, root_gfn))
		return 1;

3501 3502 3503 3504
	/*
	 * On SVM, reading PDPTRs might access guest memory, which might fault
	 * and thus might sleep.  Grab the PDPTRs before acquiring mmu_lock.
	 */
3505
	if (mmu->cpu_role.base.level == PT32E_ROOT_LEVEL) {
3506 3507 3508 3509 3510 3511 3512 3513 3514 3515
		for (i = 0; i < 4; ++i) {
			pdptrs[i] = mmu->get_pdptr(vcpu, i);
			if (!(pdptrs[i] & PT_PRESENT_MASK))
				continue;

			if (mmu_check_root(vcpu, pdptrs[i] >> PAGE_SHIFT))
				return 1;
		}
	}

3516
	r = mmu_first_shadow_root_alloc(vcpu->kvm);
3517 3518 3519
	if (r)
		return r;

3520 3521 3522 3523 3524
	write_lock(&vcpu->kvm->mmu_lock);
	r = make_mmu_pages_available(vcpu);
	if (r < 0)
		goto out_unlock;

3525 3526 3527 3528
	/*
	 * Do we shadow a long mode page table? If so we need to
	 * write-protect the guests page table root.
	 */
3529
	if (mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL) {
3530
		root = mmu_alloc_root(vcpu, root_gfn, 0,
3531
				      mmu->root_role.level, false);
3532
		mmu->root.hpa = root;
3533
		goto set_root_pgd;
3534
	}
3535

3536 3537 3538 3539
	if (WARN_ON_ONCE(!mmu->pae_root)) {
		r = -EIO;
		goto out_unlock;
	}
3540

3541 3542
	/*
	 * We shadow a 32 bit page table. This may be a legacy 2-level
3543 3544
	 * or a PAE 3-level page table. In either case we need to be aware that
	 * the shadow page table may be a PAE or a long mode page table.
3545
	 */
3546
	pm_mask = PT_PRESENT_MASK | shadow_me_mask;
3547
	if (mmu->root_role.level >= PT64_ROOT_4LEVEL) {
3548 3549
		pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;

3550
		if (WARN_ON_ONCE(!mmu->pml4_root)) {
3551 3552 3553
			r = -EIO;
			goto out_unlock;
		}
3554
		mmu->pml4_root[0] = __pa(mmu->pae_root) | pm_mask;
3555

3556
		if (mmu->root_role.level == PT64_ROOT_5LEVEL) {
3557 3558 3559 3560 3561 3562
			if (WARN_ON_ONCE(!mmu->pml5_root)) {
				r = -EIO;
				goto out_unlock;
			}
			mmu->pml5_root[0] = __pa(mmu->pml4_root) | pm_mask;
		}
3563 3564
	}

3565
	for (i = 0; i < 4; ++i) {
3566
		WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3567

3568
		if (mmu->cpu_role.base.level == PT32E_ROOT_LEVEL) {
3569
			if (!(pdptrs[i] & PT_PRESENT_MASK)) {
3570
				mmu->pae_root[i] = INVALID_PAE_ROOT;
A
Avi Kivity 已提交
3571 3572
				continue;
			}
3573
			root_gfn = pdptrs[i] >> PAGE_SHIFT;
3574
		}
3575

3576 3577
		root = mmu_alloc_root(vcpu, root_gfn, i << 30,
				      PT32_ROOT_LEVEL, false);
3578
		mmu->pae_root[i] = root | pm_mask;
3579
	}
3580

3581
	if (mmu->root_role.level == PT64_ROOT_5LEVEL)
3582
		mmu->root.hpa = __pa(mmu->pml5_root);
3583
	else if (mmu->root_role.level == PT64_ROOT_4LEVEL)
3584
		mmu->root.hpa = __pa(mmu->pml4_root);
3585
	else
3586
		mmu->root.hpa = __pa(mmu->pae_root);
3587

3588
set_root_pgd:
3589
	mmu->root.pgd = root_pgd;
3590 3591
out_unlock:
	write_unlock(&vcpu->kvm->mmu_lock);
3592

3593
	return r;
3594 3595
}

3596 3597 3598
static int mmu_alloc_special_roots(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu *mmu = vcpu->arch.mmu;
3599
	bool need_pml5 = mmu->root_role.level > PT64_ROOT_4LEVEL;
3600 3601 3602
	u64 *pml5_root = NULL;
	u64 *pml4_root = NULL;
	u64 *pae_root;
3603 3604

	/*
3605 3606 3607 3608
	 * When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP
	 * tables are allocated and initialized at root creation as there is no
	 * equivalent level in the guest's NPT to shadow.  Allocate the tables
	 * on demand, as running a 32-bit L1 VMM on 64-bit KVM is very rare.
3609
	 */
3610 3611
	if (mmu->root_role.direct ||
	    mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL ||
3612
	    mmu->root_role.level < PT64_ROOT_4LEVEL)
3613
		return 0;
3614

3615 3616 3617 3618 3619 3620 3621 3622
	/*
	 * NPT, the only paging mode that uses this horror, uses a fixed number
	 * of levels for the shadow page tables, e.g. all MMUs are 4-level or
	 * all MMus are 5-level.  Thus, this can safely require that pml5_root
	 * is allocated if the other roots are valid and pml5 is needed, as any
	 * prior MMU would also have required pml5.
	 */
	if (mmu->pae_root && mmu->pml4_root && (!need_pml5 || mmu->pml5_root))
3623
		return 0;
3624

3625 3626 3627 3628
	/*
	 * The special roots should always be allocated in concert.  Yell and
	 * bail if KVM ends up in a state where only one of the roots is valid.
	 */
3629
	if (WARN_ON_ONCE(!tdp_enabled || mmu->pae_root || mmu->pml4_root ||
3630
			 (need_pml5 && mmu->pml5_root)))
3631
		return -EIO;
3632

3633 3634 3635 3636
	/*
	 * Unlike 32-bit NPT, the PDP table doesn't need to be in low mem, and
	 * doesn't need to be decrypted.
	 */
3637 3638 3639
	pae_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
	if (!pae_root)
		return -ENOMEM;
3640

3641
#ifdef CONFIG_X86_64
3642
	pml4_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3643 3644 3645
	if (!pml4_root)
		goto err_pml4;

3646
	if (need_pml5) {
3647 3648 3649
		pml5_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
		if (!pml5_root)
			goto err_pml5;
3650
	}
3651
#endif
3652

3653
	mmu->pae_root = pae_root;
3654
	mmu->pml4_root = pml4_root;
3655
	mmu->pml5_root = pml5_root;
3656

3657
	return 0;
3658 3659 3660 3661 3662 3663 3664 3665

#ifdef CONFIG_X86_64
err_pml5:
	free_page((unsigned long)pml4_root);
err_pml4:
	free_page((unsigned long)pae_root);
	return -ENOMEM;
#endif
3666 3667
}

3668 3669 3670 3671
static bool is_unsync_root(hpa_t root)
{
	struct kvm_mmu_page *sp;

3672 3673 3674
	if (!VALID_PAGE(root))
		return false;

3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688
	/*
	 * The read barrier orders the CPU's read of SPTE.W during the page table
	 * walk before the reads of sp->unsync/sp->unsync_children here.
	 *
	 * Even if another CPU was marking the SP as unsync-ed simultaneously,
	 * any guest page table changes are not guaranteed to be visible anyway
	 * until this VCPU issues a TLB flush strictly after those changes are
	 * made.  We only need to ensure that the other CPU sets these flags
	 * before any actual changes to the page tables are made.  The comments
	 * in mmu_try_to_unsync_pages() describe what could go wrong if this
	 * requirement isn't satisfied.
	 */
	smp_rmb();
	sp = to_shadow_page(root);
3689 3690 3691 3692 3693 3694 3695 3696

	/*
	 * PAE roots (somewhat arbitrarily) aren't backed by shadow pages, the
	 * PDPTEs for a given PAE root need to be synchronized individually.
	 */
	if (WARN_ON_ONCE(!sp))
		return false;

3697 3698 3699 3700 3701 3702
	if (sp->unsync || sp->unsync_children)
		return true;

	return false;
}

3703
void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3704 3705 3706 3707
{
	int i;
	struct kvm_mmu_page *sp;

3708
	if (vcpu->arch.mmu->root_role.direct)
3709 3710
		return;

3711
	if (!VALID_PAGE(vcpu->arch.mmu->root.hpa))
3712
		return;
3713

3714
	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3715

3716
	if (vcpu->arch.mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL) {
3717
		hpa_t root = vcpu->arch.mmu->root.hpa;
3718
		sp = to_shadow_page(root);
3719

3720
		if (!is_unsync_root(root))
3721 3722
			return;

3723
		write_lock(&vcpu->kvm->mmu_lock);
3724
		mmu_sync_children(vcpu, sp, true);
3725
		write_unlock(&vcpu->kvm->mmu_lock);
3726 3727
		return;
	}
3728

3729
	write_lock(&vcpu->kvm->mmu_lock);
3730

3731
	for (i = 0; i < 4; ++i) {
3732
		hpa_t root = vcpu->arch.mmu->pae_root[i];
3733

3734
		if (IS_VALID_PAE_ROOT(root)) {
3735
			root &= PT64_BASE_ADDR_MASK;
3736
			sp = to_shadow_page(root);
3737
			mmu_sync_children(vcpu, sp, true);
3738 3739 3740
		}
	}

3741
	write_unlock(&vcpu->kvm->mmu_lock);
3742 3743
}

3744 3745 3746 3747 3748 3749 3750 3751 3752 3753
void kvm_mmu_sync_prev_roots(struct kvm_vcpu *vcpu)
{
	unsigned long roots_to_free = 0;
	int i;

	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
		if (is_unsync_root(vcpu->arch.mmu->prev_roots[i].hpa))
			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);

	/* sync prev_roots by simply freeing them */
3754
	kvm_mmu_free_roots(vcpu->kvm, vcpu->arch.mmu, roots_to_free);
3755 3756
}

3757
static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3758
				  gpa_t vaddr, u64 access,
3759
				  struct x86_exception *exception)
A
Avi Kivity 已提交
3760
{
3761 3762
	if (exception)
		exception->error_code = 0;
3763
	return kvm_translate_gpa(vcpu, mmu, vaddr, access, exception);
3764 3765
}

3766
static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3767
{
3768 3769 3770 3771 3772 3773 3774
	/*
	 * A nested guest cannot use the MMIO cache if it is using nested
	 * page tables, because cr2 is a nGPA while the cache stores GPAs.
	 */
	if (mmu_is_nested(vcpu))
		return false;

3775 3776 3777 3778 3779 3780
	if (direct)
		return vcpu_match_mmio_gpa(vcpu, addr);

	return vcpu_match_mmio_gva(vcpu, addr);
}

3781 3782 3783
/*
 * Return the level of the lowest level SPTE added to sptes.
 * That SPTE may be non-present.
3784 3785
 *
 * Must be called between walk_shadow_page_lockless_{begin,end}.
3786
 */
3787
static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level)
3788 3789
{
	struct kvm_shadow_walk_iterator iterator;
3790
	int leaf = -1;
3791
	u64 spte;
3792

3793 3794
	for (shadow_walk_init(&iterator, vcpu, addr),
	     *root_level = iterator.level;
3795 3796
	     shadow_walk_okay(&iterator);
	     __shadow_walk_next(&iterator, spte)) {
3797
		leaf = iterator.level;
3798 3799
		spte = mmu_spte_get_lockless(iterator.sptep);

3800
		sptes[leaf] = spte;
3801 3802 3803 3804 3805
	}

	return leaf;
}

3806
/* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */
3807 3808
static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
{
3809
	u64 sptes[PT64_ROOT_MAX_LEVEL + 1];
3810
	struct rsvd_bits_validate *rsvd_check;
3811
	int root, leaf, level;
3812 3813
	bool reserved = false;

3814 3815
	walk_shadow_page_lockless_begin(vcpu);

3816
	if (is_tdp_mmu(vcpu->arch.mmu))
3817
		leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, &root);
3818
	else
3819
		leaf = get_walk(vcpu, addr, sptes, &root);
3820

3821 3822
	walk_shadow_page_lockless_end(vcpu);

3823 3824 3825 3826 3827
	if (unlikely(leaf < 0)) {
		*sptep = 0ull;
		return reserved;
	}

3828 3829 3830 3831 3832 3833 3834 3835 3836 3837
	*sptep = sptes[leaf];

	/*
	 * Skip reserved bits checks on the terminal leaf if it's not a valid
	 * SPTE.  Note, this also (intentionally) skips MMIO SPTEs, which, by
	 * design, always have reserved bits set.  The purpose of the checks is
	 * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs.
	 */
	if (!is_shadow_present_pte(sptes[leaf]))
		leaf++;
3838 3839 3840

	rsvd_check = &vcpu->arch.mmu->shadow_zero_check;

3841
	for (level = root; level >= leaf; level--)
3842
		reserved |= is_rsvd_spte(rsvd_check, sptes[level], level);
3843 3844

	if (reserved) {
3845
		pr_err("%s: reserved bits set on MMU-present spte, addr 0x%llx, hierarchy:\n",
3846
		       __func__, addr);
3847
		for (level = root; level >= leaf; level--)
3848 3849
			pr_err("------ spte = 0x%llx level = %d, rsvd bits = 0x%llx",
			       sptes[level], level,
3850
			       get_rsvd_bits(rsvd_check, sptes[level], level));
3851
	}
3852

3853
	return reserved;
3854 3855
}

P
Paolo Bonzini 已提交
3856
static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3857 3858
{
	u64 spte;
3859
	bool reserved;
3860

3861
	if (mmio_info_in_cache(vcpu, addr, direct))
3862
		return RET_PF_EMULATE;
3863

3864
	reserved = get_mmio_spte(vcpu, addr, &spte);
3865
	if (WARN_ON(reserved))
3866
		return -EINVAL;
3867 3868 3869

	if (is_mmio_spte(spte)) {
		gfn_t gfn = get_mmio_spte_gfn(spte);
3870
		unsigned int access = get_mmio_spte_access(spte);
3871

3872
		if (!check_mmio_spte(vcpu, spte))
3873
			return RET_PF_INVALID;
3874

3875 3876
		if (direct)
			addr = 0;
X
Xiao Guangrong 已提交
3877 3878

		trace_handle_mmio_page_fault(addr, gfn, access);
3879
		vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3880
		return RET_PF_EMULATE;
3881 3882 3883 3884 3885 3886
	}

	/*
	 * If the page table is zapped by other cpus, let CPU fault again on
	 * the address.
	 */
3887
	return RET_PF_RETRY;
3888 3889
}

3890
static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3891
					 struct kvm_page_fault *fault)
3892
{
3893
	if (unlikely(fault->rsvd))
3894 3895
		return false;

3896
	if (!fault->present || !fault->write)
3897 3898 3899 3900 3901 3902
		return false;

	/*
	 * guest is writing the page which is write tracked which can
	 * not be fixed by page fault handler.
	 */
3903
	if (kvm_slot_page_track_is_active(vcpu->kvm, fault->slot, fault->gfn, KVM_PAGE_TRACK_WRITE))
3904 3905 3906 3907 3908
		return true;

	return false;
}

3909 3910 3911 3912 3913 3914
static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
{
	struct kvm_shadow_walk_iterator iterator;
	u64 spte;

	walk_shadow_page_lockless_begin(vcpu);
3915
	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
3916 3917 3918 3919
		clear_sp_write_flooding_count(iterator.sptep);
	walk_shadow_page_lockless_end(vcpu);
}

3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930
static u32 alloc_apf_token(struct kvm_vcpu *vcpu)
{
	/* make sure the token value is not 0 */
	u32 id = vcpu->arch.apf.id;

	if (id << 12 == 0)
		vcpu->arch.apf.id = 1;

	return (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
}

3931 3932
static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
				    gfn_t gfn)
3933 3934
{
	struct kvm_arch_async_pf arch;
X
Xiao Guangrong 已提交
3935

3936
	arch.token = alloc_apf_token(vcpu);
3937
	arch.gfn = gfn;
3938
	arch.direct_map = vcpu->arch.mmu->root_role.direct;
3939
	arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu);
3940

3941 3942
	return kvm_setup_async_pf(vcpu, cr2_or_gpa,
				  kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3943 3944
}

3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963
void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
{
	int r;

	if ((vcpu->arch.mmu->root_role.direct != work->arch.direct_map) ||
	      work->wakeup_all)
		return;

	r = kvm_mmu_reload(vcpu);
	if (unlikely(r))
		return;

	if (!vcpu->arch.mmu->root_role.direct &&
	      work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu))
		return;

	kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true);
}

3964
static int kvm_faultin_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
3965
{
3966
	struct kvm_memory_slot *slot = fault->slot;
3967 3968
	bool async;

3969 3970 3971 3972 3973 3974
	/*
	 * Retry the page fault if the gfn hit a memslot that is being deleted
	 * or moved.  This ensures any existing SPTEs for the old memslot will
	 * be zapped before KVM inserts a new MMIO SPTE for the gfn.
	 */
	if (slot && (slot->flags & KVM_MEMSLOT_INVALID))
3975
		return RET_PF_RETRY;
3976

3977 3978 3979
	if (!kvm_is_visible_memslot(slot)) {
		/* Don't expose private memslots to L2. */
		if (is_guest_mode(vcpu)) {
3980
			fault->slot = NULL;
3981 3982
			fault->pfn = KVM_PFN_NOSLOT;
			fault->map_writable = false;
3983
			return RET_PF_CONTINUE;
3984 3985 3986 3987 3988 3989 3990 3991
		}
		/*
		 * If the APIC access page exists but is disabled, go directly
		 * to emulation without caching the MMIO access or creating a
		 * MMIO SPTE.  That way the cache doesn't need to be purged
		 * when the AVIC is re-enabled.
		 */
		if (slot && slot->id == APIC_ACCESS_PAGE_PRIVATE_MEMSLOT &&
3992 3993
		    !kvm_apicv_activated(vcpu->kvm))
			return RET_PF_EMULATE;
3994 3995
	}

3996
	async = false;
3997 3998 3999
	fault->pfn = __gfn_to_pfn_memslot(slot, fault->gfn, false, &async,
					  fault->write, &fault->map_writable,
					  &fault->hva);
4000
	if (!async)
4001
		return RET_PF_CONTINUE; /* *pfn has correct page already */
4002

4003
	if (!fault->prefetch && kvm_can_do_async_pf(vcpu)) {
4004 4005 4006
		trace_kvm_try_async_get_page(fault->addr, fault->gfn);
		if (kvm_find_async_pf_gfn(vcpu, fault->gfn)) {
			trace_kvm_async_pf_doublefault(fault->addr, fault->gfn);
4007
			kvm_make_request(KVM_REQ_APF_HALT, vcpu);
4008 4009 4010 4011
			return RET_PF_RETRY;
		} else if (kvm_arch_setup_async_pf(vcpu, fault->addr, fault->gfn)) {
			return RET_PF_RETRY;
		}
4012 4013
	}

4014 4015 4016
	fault->pfn = __gfn_to_pfn_memslot(slot, fault->gfn, false, NULL,
					  fault->write, &fault->map_writable,
					  &fault->hva);
4017
	return RET_PF_CONTINUE;
4018 4019
}

4020 4021 4022 4023 4024 4025 4026
/*
 * Returns true if the page fault is stale and needs to be retried, i.e. if the
 * root was invalidated by a memslot update or a relevant mmu_notifier fired.
 */
static bool is_page_fault_stale(struct kvm_vcpu *vcpu,
				struct kvm_page_fault *fault, int mmu_seq)
{
4027
	struct kvm_mmu_page *sp = to_shadow_page(vcpu->arch.mmu->root.hpa);
4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040

	/* Special roots, e.g. pae_root, are not backed by shadow pages. */
	if (sp && is_obsolete_sp(vcpu->kvm, sp))
		return true;

	/*
	 * Roots without an associated shadow page are considered invalid if
	 * there is a pending request to free obsolete roots.  The request is
	 * only a hint that the current root _may_ be obsolete and needs to be
	 * reloaded, e.g. if the guest frees a PGD that KVM is tracking as a
	 * previous root, then __kvm_mmu_prepare_zap_page() signals all vCPUs
	 * to reload even if no vCPU is actively using the root.
	 */
4041
	if (!sp && kvm_test_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
4042 4043 4044 4045 4046 4047
		return true;

	return fault->slot &&
	       mmu_notifier_retry_hva(vcpu->kvm, mmu_seq, fault->hva);
}

4048
static int direct_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
A
Avi Kivity 已提交
4049
{
4050
	bool is_tdp_mmu_fault = is_tdp_mmu(vcpu->arch.mmu);
A
Avi Kivity 已提交
4051

4052
	unsigned long mmu_seq;
4053
	int r;
4054

4055
	fault->gfn = fault->addr >> PAGE_SHIFT;
4056 4057
	fault->slot = kvm_vcpu_gfn_to_memslot(vcpu, fault->gfn);

4058
	if (page_fault_handle_page_track(vcpu, fault))
4059
		return RET_PF_EMULATE;
4060

4061
	r = fast_page_fault(vcpu, fault);
4062 4063
	if (r != RET_PF_INVALID)
		return r;
4064

4065
	r = mmu_topup_memory_caches(vcpu, false);
4066 4067
	if (r)
		return r;
4068

4069 4070 4071
	mmu_seq = vcpu->kvm->mmu_notifier_seq;
	smp_rmb();

4072 4073
	r = kvm_faultin_pfn(vcpu, fault);
	if (r != RET_PF_CONTINUE)
4074
		return r;
4075

4076 4077
	r = handle_abnormal_pfn(vcpu, fault, ACC_ALL);
	if (r != RET_PF_CONTINUE)
4078
		return r;
A
Avi Kivity 已提交
4079

4080
	r = RET_PF_RETRY;
4081

4082
	if (is_tdp_mmu_fault)
4083 4084 4085 4086
		read_lock(&vcpu->kvm->mmu_lock);
	else
		write_lock(&vcpu->kvm->mmu_lock);

4087
	if (is_page_fault_stale(vcpu, fault, mmu_seq))
4088
		goto out_unlock;
4089

4090 4091
	r = make_mmu_pages_available(vcpu);
	if (r)
4092
		goto out_unlock;
B
Ben Gardon 已提交
4093

4094
	if (is_tdp_mmu_fault)
4095
		r = kvm_tdp_mmu_map(vcpu, fault);
B
Ben Gardon 已提交
4096
	else
4097
		r = __direct_map(vcpu, fault);
4098

4099
out_unlock:
4100
	if (is_tdp_mmu_fault)
4101 4102 4103
		read_unlock(&vcpu->kvm->mmu_lock);
	else
		write_unlock(&vcpu->kvm->mmu_lock);
4104
	kvm_release_pfn_clean(fault->pfn);
4105
	return r;
A
Avi Kivity 已提交
4106 4107
}

4108 4109
static int nonpaging_page_fault(struct kvm_vcpu *vcpu,
				struct kvm_page_fault *fault)
4110
{
4111
	pgprintk("%s: gva %lx error %x\n", __func__, fault->addr, fault->error_code);
4112 4113

	/* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
4114 4115
	fault->max_level = PG_LEVEL_2M;
	return direct_page_fault(vcpu, fault);
4116 4117
}

4118
int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
4119
				u64 fault_address, char *insn, int insn_len)
4120 4121
{
	int r = 1;
4122
	u32 flags = vcpu->arch.apf.host_apf_flags;
4123

4124 4125 4126 4127 4128 4129
#ifndef CONFIG_X86_64
	/* A 64-bit CR2 should be impossible on 32-bit KVM. */
	if (WARN_ON_ONCE(fault_address >> 32))
		return -EFAULT;
#endif

P
Paolo Bonzini 已提交
4130
	vcpu->arch.l1tf_flush_l1d = true;
4131
	if (!flags) {
4132 4133
		trace_kvm_page_fault(fault_address, error_code);

4134
		if (kvm_event_needs_reinjection(vcpu))
4135 4136 4137
			kvm_mmu_unprotect_page_virt(vcpu, fault_address);
		r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
				insn_len);
4138
	} else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
4139
		vcpu->arch.apf.host_apf_flags = 0;
4140
		local_irq_disable();
4141
		kvm_async_pf_task_wait_schedule(fault_address);
4142
		local_irq_enable();
4143 4144
	} else {
		WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags);
4145
	}
4146

4147 4148 4149 4150
	return r;
}
EXPORT_SYMBOL_GPL(kvm_handle_page_fault);

4151
int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
4152
{
4153 4154 4155
	while (fault->max_level > PG_LEVEL_4K) {
		int page_num = KVM_PAGES_PER_HPAGE(fault->max_level);
		gfn_t base = (fault->addr >> PAGE_SHIFT) & ~(page_num - 1);
4156

4157 4158
		if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
			break;
4159 4160

		--fault->max_level;
4161
	}
4162

4163
	return direct_page_fault(vcpu, fault);
4164 4165
}

4166
static void nonpaging_init_context(struct kvm_mmu *context)
A
Avi Kivity 已提交
4167 4168 4169
{
	context->page_fault = nonpaging_page_fault;
	context->gva_to_gpa = nonpaging_gva_to_gpa;
4170
	context->sync_page = nonpaging_sync_page;
4171
	context->invlpg = NULL;
A
Avi Kivity 已提交
4172 4173
}

4174
static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd,
4175 4176
				  union kvm_mmu_page_role role)
{
4177
	return (role.direct || pgd == root->pgd) &&
4178
	       VALID_PAGE(root->hpa) &&
4179
	       role.word == to_shadow_page(root->hpa)->role.word;
4180 4181
}

4182
/*
4183 4184 4185 4186 4187 4188
 * Find out if a previously cached root matching the new pgd/role is available,
 * and insert the current root as the MRU in the cache.
 * If a matching root is found, it is assigned to kvm_mmu->root and
 * true is returned.
 * If no match is found, kvm_mmu->root is left invalid, the LRU root is
 * evicted to make room for the current root, and false is returned.
4189
 */
4190 4191 4192
static bool cached_root_find_and_keep_current(struct kvm *kvm, struct kvm_mmu *mmu,
					      gpa_t new_pgd,
					      union kvm_mmu_page_role new_role)
4193 4194 4195
{
	uint i;

4196
	if (is_root_usable(&mmu->root, new_pgd, new_role))
4197 4198
		return true;

4199
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
4200 4201 4202 4203 4204 4205 4206 4207
		/*
		 * The swaps end up rotating the cache like this:
		 *   C   0 1 2 3   (on entry to the function)
		 *   0   C 1 2 3
		 *   1   C 0 2 3
		 *   2   C 0 1 3
		 *   3   C 0 1 2   (on exit from the loop)
		 */
4208 4209
		swap(mmu->root, mmu->prev_roots[i]);
		if (is_root_usable(&mmu->root, new_pgd, new_role))
4210
			return true;
4211 4212
	}

4213 4214
	kvm_mmu_free_roots(kvm, mmu, KVM_MMU_ROOT_CURRENT);
	return false;
4215 4216
}

4217 4218 4219 4220 4221 4222 4223 4224 4225 4226
/*
 * Find out if a previously cached root matching the new pgd/role is available.
 * On entry, mmu->root is invalid.
 * If a matching root is found, it is assigned to kvm_mmu->root, the LRU entry
 * of the cache becomes invalid, and true is returned.
 * If no match is found, kvm_mmu->root is left invalid and false is returned.
 */
static bool cached_root_find_without_current(struct kvm *kvm, struct kvm_mmu *mmu,
					     gpa_t new_pgd,
					     union kvm_mmu_page_role new_role)
A
Avi Kivity 已提交
4227
{
4228 4229 4230 4231 4232
	uint i;

	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
		if (is_root_usable(&mmu->prev_roots[i], new_pgd, new_role))
			goto hit;
4233

4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247
	return false;

hit:
	swap(mmu->root, mmu->prev_roots[i]);
	/* Bubble up the remaining roots.  */
	for (; i < KVM_MMU_NUM_PREV_ROOTS - 1; i++)
		mmu->prev_roots[i] = mmu->prev_roots[i + 1];
	mmu->prev_roots[i].hpa = INVALID_PAGE;
	return true;
}

static bool fast_pgd_switch(struct kvm *kvm, struct kvm_mmu *mmu,
			    gpa_t new_pgd, union kvm_mmu_page_role new_role)
{
4248
	/*
4249
	 * For now, limit the caching to 64-bit hosts+VMs in order to avoid
4250 4251 4252
	 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
	 * later if necessary.
	 */
4253 4254
	if (VALID_PAGE(mmu->root.hpa) && !to_shadow_page(mmu->root.hpa))
		kvm_mmu_free_roots(kvm, mmu, KVM_MMU_ROOT_CURRENT);
4255

4256 4257 4258 4259
	if (VALID_PAGE(mmu->root.hpa))
		return cached_root_find_and_keep_current(kvm, mmu, new_pgd, new_role);
	else
		return cached_root_find_without_current(kvm, mmu, new_pgd, new_role);
A
Avi Kivity 已提交
4260 4261
}

4262
void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd)
A
Avi Kivity 已提交
4263
{
4264
	struct kvm_mmu *mmu = vcpu->arch.mmu;
4265
	union kvm_mmu_page_role new_role = mmu->root_role;
4266

4267 4268
	if (!fast_pgd_switch(vcpu->kvm, mmu, new_pgd, new_role)) {
		/* kvm_mmu_ensure_valid_pgd will set up a new root.  */
4269 4270 4271 4272 4273 4274
		return;
	}

	/*
	 * It's possible that the cached previous root page is obsolete because
	 * of a change in the MMU generation number. However, changing the
4275 4276
	 * generation number is accompanied by KVM_REQ_MMU_FREE_OBSOLETE_ROOTS,
	 * which will free the root set here and allocate a new one.
4277 4278 4279
	 */
	kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);

4280
	if (force_flush_and_sync_on_reuse) {
4281 4282
		kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
4283
	}
4284 4285 4286 4287 4288 4289 4290 4291 4292

	/*
	 * The last MMIO access's GVA and GPA are cached in the VCPU. When
	 * switching to a new CR3, that GVA->GPA mapping may no longer be
	 * valid. So clear any cached MMIO info even when we don't need to sync
	 * the shadow page tables.
	 */
	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);

4293 4294 4295 4296 4297 4298
	/*
	 * If this is a direct root page, it doesn't have a write flooding
	 * count. Otherwise, clear the write flooding count.
	 */
	if (!new_role.direct)
		__clear_sp_write_flooding_count(
4299
				to_shadow_page(vcpu->arch.mmu->root.hpa));
A
Avi Kivity 已提交
4300
}
4301
EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd);
4302

4303 4304
static unsigned long get_cr3(struct kvm_vcpu *vcpu)
{
4305
	return kvm_read_cr3(vcpu);
4306 4307
}

4308
static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
4309
			   unsigned int access)
4310 4311 4312 4313 4314 4315 4316
{
	if (unlikely(is_mmio_spte(*sptep))) {
		if (gfn != get_mmio_spte_gfn(*sptep)) {
			mmu_spte_clear_no_track(sptep);
			return true;
		}

4317
		mark_mmio_spte(vcpu, sptep, gfn, access);
4318 4319 4320 4321 4322 4323
		return true;
	}

	return false;
}

4324 4325 4326 4327 4328
#define PTTYPE_EPT 18 /* arbitrary */
#define PTTYPE PTTYPE_EPT
#include "paging_tmpl.h"
#undef PTTYPE

A
Avi Kivity 已提交
4329 4330 4331 4332 4333 4334 4335 4336
#define PTTYPE 64
#include "paging_tmpl.h"
#undef PTTYPE

#define PTTYPE 32
#include "paging_tmpl.h"
#undef PTTYPE

4337
static void
4338
__reset_rsvds_bits_mask(struct rsvd_bits_validate *rsvd_check,
4339
			u64 pa_bits_rsvd, int level, bool nx, bool gbpages,
4340
			bool pse, bool amd)
4341
{
4342
	u64 gbpages_bit_rsvd = 0;
4343
	u64 nonleaf_bit8_rsvd = 0;
4344
	u64 high_bits_rsvd;
4345

4346
	rsvd_check->bad_mt_xwr = 0;
4347

4348
	if (!gbpages)
4349
		gbpages_bit_rsvd = rsvd_bits(7, 7);
4350

4351 4352 4353 4354 4355 4356 4357 4358 4359
	if (level == PT32E_ROOT_LEVEL)
		high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 62);
	else
		high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);

	/* Note, NX doesn't exist in PDPTEs, this is handled below. */
	if (!nx)
		high_bits_rsvd |= rsvd_bits(63, 63);

4360 4361 4362 4363
	/*
	 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
	 * leaf entries) on AMD CPUs only.
	 */
4364
	if (amd)
4365 4366
		nonleaf_bit8_rsvd = rsvd_bits(8, 8);

4367
	switch (level) {
4368 4369
	case PT32_ROOT_LEVEL:
		/* no rsvd bits for 2 level 4K page table entries */
4370 4371 4372 4373
		rsvd_check->rsvd_bits_mask[0][1] = 0;
		rsvd_check->rsvd_bits_mask[0][0] = 0;
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
4374

4375
		if (!pse) {
4376
			rsvd_check->rsvd_bits_mask[1][1] = 0;
4377 4378 4379
			break;
		}

4380 4381
		if (is_cpuid_PSE36())
			/* 36bits PSE 4MB page */
4382
			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4383 4384
		else
			/* 32 bits PSE 4MB page */
4385
			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4386 4387
		break;
	case PT32E_ROOT_LEVEL:
4388 4389 4390 4391 4392 4393 4394 4395
		rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) |
						   high_bits_rsvd |
						   rsvd_bits(5, 8) |
						   rsvd_bits(1, 2);	/* PDPTE */
		rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;	/* PDE */
		rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;	/* PTE */
		rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
						   rsvd_bits(13, 20);	/* large page */
4396 4397
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
4398
		break;
4399
	case PT64_ROOT_5LEVEL:
4400 4401 4402
		rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd |
						   nonleaf_bit8_rsvd |
						   rsvd_bits(7, 7);
4403 4404
		rsvd_check->rsvd_bits_mask[1][4] =
			rsvd_check->rsvd_bits_mask[0][4];
4405
		fallthrough;
4406
	case PT64_ROOT_4LEVEL:
4407 4408 4409 4410 4411 4412 4413
		rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd |
						   nonleaf_bit8_rsvd |
						   rsvd_bits(7, 7);
		rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd |
						   gbpages_bit_rsvd;
		rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;
		rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4414 4415
		rsvd_check->rsvd_bits_mask[1][3] =
			rsvd_check->rsvd_bits_mask[0][3];
4416 4417 4418 4419 4420
		rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd |
						   gbpages_bit_rsvd |
						   rsvd_bits(13, 29);
		rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
						   rsvd_bits(13, 20); /* large page */
4421 4422
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
4423 4424 4425 4426
		break;
	}
}

4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441
static bool guest_can_use_gbpages(struct kvm_vcpu *vcpu)
{
	/*
	 * If TDP is enabled, let the guest use GBPAGES if they're supported in
	 * hardware.  The hardware page walker doesn't let KVM disable GBPAGES,
	 * i.e. won't treat them as reserved, and KVM doesn't redo the GVA->GPA
	 * walk for performance and complexity reasons.  Not to mention KVM
	 * _can't_ solve the problem because GVA->GPA walks aren't visible to
	 * KVM once a TDP translation is installed.  Mimic hardware behavior so
	 * that KVM's is at least consistent, i.e. doesn't randomly inject #PF.
	 */
	return tdp_enabled ? boot_cpu_has(X86_FEATURE_GBPAGES) :
			     guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES);
}

4442 4443 4444
static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
{
4445
	__reset_rsvds_bits_mask(&context->guest_rsvd_check,
4446
				vcpu->arch.reserved_gpa_bits,
4447
				context->cpu_role.base.level, is_efer_nx(context),
4448
				guest_can_use_gbpages(vcpu),
4449
				is_cr4_pse(context),
4450
				guest_cpuid_is_amd_or_hygon(vcpu));
4451 4452
}

4453 4454
static void
__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4455
			    u64 pa_bits_rsvd, bool execonly, int huge_page_level)
4456
{
4457
	u64 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
4458
	u64 large_1g_rsvd = 0, large_2m_rsvd = 0;
4459
	u64 bad_mt_xwr;
4460

4461 4462 4463 4464 4465
	if (huge_page_level < PG_LEVEL_1G)
		large_1g_rsvd = rsvd_bits(7, 7);
	if (huge_page_level < PG_LEVEL_2M)
		large_2m_rsvd = rsvd_bits(7, 7);

4466 4467
	rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7);
	rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7);
4468 4469
	rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6) | large_1g_rsvd;
	rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6) | large_2m_rsvd;
4470
	rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4471 4472

	/* large page */
4473
	rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4474
	rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4475 4476
	rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29) | large_1g_rsvd;
	rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20) | large_2m_rsvd;
4477
	rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4478

4479 4480 4481 4482 4483 4484 4485 4486
	bad_mt_xwr = 0xFFull << (2 * 8);	/* bits 3..5 must not be 2 */
	bad_mt_xwr |= 0xFFull << (3 * 8);	/* bits 3..5 must not be 3 */
	bad_mt_xwr |= 0xFFull << (7 * 8);	/* bits 3..5 must not be 7 */
	bad_mt_xwr |= REPEAT_BYTE(1ull << 2);	/* bits 0..2 must not be 010 */
	bad_mt_xwr |= REPEAT_BYTE(1ull << 6);	/* bits 0..2 must not be 110 */
	if (!execonly) {
		/* bits 0..2 must not be 100 unless VMX capabilities allow it */
		bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4487
	}
4488
	rsvd_check->bad_mt_xwr = bad_mt_xwr;
4489 4490
}

4491
static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4492
		struct kvm_mmu *context, bool execonly, int huge_page_level)
4493 4494
{
	__reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4495 4496
				    vcpu->arch.reserved_gpa_bits, execonly,
				    huge_page_level);
4497 4498
}

4499 4500 4501 4502 4503
static inline u64 reserved_hpa_bits(void)
{
	return rsvd_bits(shadow_phys_bits, 63);
}

4504 4505 4506 4507 4508
/*
 * the page table on host is the shadow page table for the page
 * table in guest or amd nested guest, its mmu features completely
 * follow the features in guest.
 */
4509 4510
static void reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
					struct kvm_mmu *context)
4511
{
4512 4513 4514 4515
	/* @amd adds a check on bit of SPTEs, which KVM shouldn't use anyways. */
	bool is_amd = true;
	/* KVM doesn't use 2-level page tables for the shadow MMU. */
	bool is_pse = false;
4516 4517
	struct rsvd_bits_validate *shadow_zero_check;
	int i;
4518

4519
	WARN_ON_ONCE(context->root_role.level < PT32E_ROOT_LEVEL);
4520

4521
	shadow_zero_check = &context->shadow_zero_check;
4522
	__reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(),
4523
				context->root_role.level,
4524
				context->root_role.efer_nx,
4525
				guest_can_use_gbpages(vcpu), is_pse, is_amd);
4526 4527 4528 4529

	if (!shadow_me_mask)
		return;

4530
	for (i = context->root_role.level; --i >= 0;) {
4531 4532 4533 4534
		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
	}

4535 4536
}

4537 4538 4539 4540 4541 4542
static inline bool boot_cpu_is_amd(void)
{
	WARN_ON_ONCE(!tdp_enabled);
	return shadow_x_mask == 0;
}

4543 4544 4545 4546 4547
/*
 * the direct page table on host, use as much mmu features as
 * possible, however, kvm currently does not do execution-protection.
 */
static void
4548
reset_tdp_shadow_zero_bits_mask(struct kvm_mmu *context)
4549
{
4550 4551 4552 4553 4554
	struct rsvd_bits_validate *shadow_zero_check;
	int i;

	shadow_zero_check = &context->shadow_zero_check;

4555
	if (boot_cpu_is_amd())
4556
		__reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(),
4557
					context->root_role.level, false,
4558
					boot_cpu_has(X86_FEATURE_GBPAGES),
4559
					false, true);
4560
	else
4561
		__reset_rsvds_bits_mask_ept(shadow_zero_check,
4562 4563
					    reserved_hpa_bits(), false,
					    max_huge_page_level);
4564

4565 4566 4567
	if (!shadow_me_mask)
		return;

4568
	for (i = context->root_role.level; --i >= 0;) {
4569 4570 4571
		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
	}
4572 4573 4574 4575 4576 4577 4578
}

/*
 * as the comments in reset_shadow_zero_bits_mask() except it
 * is the shadow page table for intel nested guest.
 */
static void
4579
reset_ept_shadow_zero_bits_mask(struct kvm_mmu *context, bool execonly)
4580 4581
{
	__reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4582 4583
				    reserved_hpa_bits(), execonly,
				    max_huge_page_level);
4584 4585
}

4586 4587 4588 4589 4590 4591 4592 4593 4594 4595
#define BYTE_MASK(access) \
	((1 & (access) ? 2 : 0) | \
	 (2 & (access) ? 4 : 0) | \
	 (3 & (access) ? 8 : 0) | \
	 (4 & (access) ? 16 : 0) | \
	 (5 & (access) ? 32 : 0) | \
	 (6 & (access) ? 64 : 0) | \
	 (7 & (access) ? 128 : 0))


4596
static void update_permission_bitmask(struct kvm_mmu *mmu, bool ept)
4597
{
4598 4599 4600 4601 4602 4603
	unsigned byte;

	const u8 x = BYTE_MASK(ACC_EXEC_MASK);
	const u8 w = BYTE_MASK(ACC_WRITE_MASK);
	const u8 u = BYTE_MASK(ACC_USER_MASK);

4604 4605 4606
	bool cr4_smep = is_cr4_smep(mmu);
	bool cr4_smap = is_cr4_smap(mmu);
	bool cr0_wp = is_cr0_wp(mmu);
4607
	bool efer_nx = is_efer_nx(mmu);
4608 4609

	for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4610 4611
		unsigned pfec = byte << 1;

F
Feng Wu 已提交
4612
		/*
4613 4614
		 * Each "*f" variable has a 1 bit for each UWX value
		 * that causes a fault with the given PFEC.
F
Feng Wu 已提交
4615
		 */
4616

4617
		/* Faults from writes to non-writable pages */
4618
		u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
4619
		/* Faults from user mode accesses to supervisor pages */
4620
		u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
4621
		/* Faults from fetches of non-executable pages*/
4622
		u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
4623 4624 4625 4626 4627 4628 4629 4630 4631 4632
		/* Faults from kernel mode fetches of user pages */
		u8 smepf = 0;
		/* Faults from kernel mode accesses of user pages */
		u8 smapf = 0;

		if (!ept) {
			/* Faults from kernel mode accesses to user pages */
			u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;

			/* Not really needed: !nx will cause pte.nx to fault */
4633
			if (!efer_nx)
4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647
				ff = 0;

			/* Allow supervisor writes if !cr0.wp */
			if (!cr0_wp)
				wf = (pfec & PFERR_USER_MASK) ? wf : 0;

			/* Disallow supervisor fetches of user code if cr4.smep */
			if (cr4_smep)
				smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;

			/*
			 * SMAP:kernel-mode data accesses from user-mode
			 * mappings should fault. A fault is considered
			 * as a SMAP violation if all of the following
P
Peng Hao 已提交
4648
			 * conditions are true:
4649 4650 4651
			 *   - X86_CR4_SMAP is set in CR4
			 *   - A user page is accessed
			 *   - The access is not a fetch
4652 4653
			 *   - The access is supervisor mode
			 *   - If implicit supervisor access or X86_EFLAGS_AC is clear
4654
			 *
4655 4656
			 * Here, we cover the first four conditions.
			 * The fifth is computed dynamically in permission_fault();
4657 4658 4659 4660 4661
			 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
			 * *not* subject to SMAP restrictions.
			 */
			if (cr4_smap)
				smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4662
		}
4663 4664

		mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4665 4666 4667
	}
}

4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691
/*
* PKU is an additional mechanism by which the paging controls access to
* user-mode addresses based on the value in the PKRU register.  Protection
* key violations are reported through a bit in the page fault error code.
* Unlike other bits of the error code, the PK bit is not known at the
* call site of e.g. gva_to_gpa; it must be computed directly in
* permission_fault based on two bits of PKRU, on some machine state (CR4,
* CR0, EFER, CPL), and on other bits of the error code and the page tables.
*
* In particular the following conditions come from the error code, the
* page tables and the machine state:
* - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
* - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
* - PK is always zero if U=0 in the page tables
* - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
*
* The PKRU bitmask caches the result of these four conditions.  The error
* code (minus the P bit) and the page table's U bit form an index into the
* PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
* with the two bits of the PKRU register corresponding to the protection key.
* For the first three conditions above the bits will be 00, thus masking
* away both AD and WD.  For all reads or if the last condition holds, WD
* only will be masked away.
*/
4692
static void update_pkru_bitmask(struct kvm_mmu *mmu)
4693 4694 4695 4696
{
	unsigned bit;
	bool wp;

4697 4698 4699
	mmu->pkru_mask = 0;

	if (!is_cr4_pke(mmu))
4700 4701
		return;

4702
	wp = is_cr0_wp(mmu);
4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735

	for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
		unsigned pfec, pkey_bits;
		bool check_pkey, check_write, ff, uf, wf, pte_user;

		pfec = bit << 1;
		ff = pfec & PFERR_FETCH_MASK;
		uf = pfec & PFERR_USER_MASK;
		wf = pfec & PFERR_WRITE_MASK;

		/* PFEC.RSVD is replaced by ACC_USER_MASK. */
		pte_user = pfec & PFERR_RSVD_MASK;

		/*
		 * Only need to check the access which is not an
		 * instruction fetch and is to a user page.
		 */
		check_pkey = (!ff && pte_user);
		/*
		 * write access is controlled by PKRU if it is a
		 * user access or CR0.WP = 1.
		 */
		check_write = check_pkey && wf && (uf || wp);

		/* PKRU.AD stops both read and write access. */
		pkey_bits = !!check_pkey;
		/* PKRU.WD stops write access. */
		pkey_bits |= (!!check_write) << 1;

		mmu->pkru_mask |= (pkey_bits & 3) << pfec;
	}
}

4736 4737
static void reset_guest_paging_metadata(struct kvm_vcpu *vcpu,
					struct kvm_mmu *mmu)
A
Avi Kivity 已提交
4738
{
4739 4740
	if (!is_cr0_pg(mmu))
		return;
4741

4742 4743 4744
	reset_rsvds_bits_mask(vcpu, mmu);
	update_permission_bitmask(mmu, false);
	update_pkru_bitmask(mmu);
A
Avi Kivity 已提交
4745 4746
}

4747
static void paging64_init_context(struct kvm_mmu *context)
A
Avi Kivity 已提交
4748 4749 4750
{
	context->page_fault = paging64_page_fault;
	context->gva_to_gpa = paging64_gva_to_gpa;
4751
	context->sync_page = paging64_sync_page;
M
Marcelo Tosatti 已提交
4752
	context->invlpg = paging64_invlpg;
A
Avi Kivity 已提交
4753 4754
}

4755
static void paging32_init_context(struct kvm_mmu *context)
A
Avi Kivity 已提交
4756 4757 4758
{
	context->page_fault = paging32_page_fault;
	context->gva_to_gpa = paging32_gva_to_gpa;
4759
	context->sync_page = paging32_sync_page;
M
Marcelo Tosatti 已提交
4760
	context->invlpg = paging32_invlpg;
A
Avi Kivity 已提交
4761 4762
}

4763
static union kvm_cpu_role
4764 4765
kvm_calc_cpu_role(struct kvm_vcpu *vcpu, const struct kvm_mmu_role_regs *regs)
{
4766
	union kvm_cpu_role role = {0};
4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782

	role.base.access = ACC_ALL;
	role.base.smm = is_smm(vcpu);
	role.base.guest_mode = is_guest_mode(vcpu);
	role.ext.valid = 1;

	if (!____is_cr0_pg(regs)) {
		role.base.direct = 1;
		return role;
	}

	role.base.efer_nx = ____is_efer_nx(regs);
	role.base.cr0_wp = ____is_cr0_wp(regs);
	role.base.smep_andnot_wp = ____is_cr4_smep(regs) && !____is_cr0_wp(regs);
	role.base.smap_andnot_wp = ____is_cr4_smap(regs) && !____is_cr0_wp(regs);
	role.base.has_4_byte_gpte = !____is_cr4_pae(regs);
4783 4784 4785 4786 4787 4788 4789 4790

	if (____is_efer_lma(regs))
		role.base.level = ____is_cr4_la57(regs) ? PT64_ROOT_5LEVEL
							: PT64_ROOT_4LEVEL;
	else if (____is_cr4_pae(regs))
		role.base.level = PT32E_ROOT_LEVEL;
	else
		role.base.level = PT32_ROOT_LEVEL;
4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802

	role.ext.cr4_smep = ____is_cr4_smep(regs);
	role.ext.cr4_smap = ____is_cr4_smap(regs);
	role.ext.cr4_pse = ____is_cr4_pse(regs);

	/* PKEY and LA57 are active iff long mode is active. */
	role.ext.cr4_pke = ____is_efer_lma(regs) && ____is_cr4_pke(regs);
	role.ext.cr4_la57 = ____is_efer_lma(regs) && ____is_cr4_la57(regs);
	role.ext.efer_lma = ____is_efer_lma(regs);
	return role;
}

4803 4804
static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu)
{
4805 4806 4807 4808
	/* tdp_root_level is architecture forced level, use it if nonzero */
	if (tdp_root_level)
		return tdp_root_level;

4809
	/* Use 5-level TDP if and only if it's useful/necessary. */
4810
	if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48)
4811 4812
		return 4;

4813
	return max_tdp_level;
4814 4815
}

4816
static union kvm_mmu_page_role
4817
kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu,
4818
				union kvm_cpu_role cpu_role)
4819
{
4820
	union kvm_mmu_page_role role = {0};
4821

4822 4823 4824 4825 4826
	role.access = ACC_ALL;
	role.cr0_wp = true;
	role.efer_nx = true;
	role.smm = cpu_role.base.smm;
	role.guest_mode = cpu_role.base.guest_mode;
4827
	role.ad_disabled = !kvm_ad_enabled();
4828 4829 4830
	role.level = kvm_mmu_get_tdp_level(vcpu);
	role.direct = true;
	role.has_4_byte_gpte = false;
4831 4832 4833 4834

	return role;
}

4835
static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu,
4836
			     union kvm_cpu_role cpu_role)
4837
{
4838
	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4839
	union kvm_mmu_page_role root_role = kvm_calc_tdp_mmu_root_page_role(vcpu, cpu_role);
4840

4841
	if (cpu_role.as_u64 == context->cpu_role.as_u64 &&
4842
	    root_role.word == context->root_role.word)
4843 4844
		return;

4845
	context->cpu_role.as_u64 = cpu_role.as_u64;
4846
	context->root_role.word = root_role.word;
4847
	context->page_fault = kvm_tdp_page_fault;
4848
	context->sync_page = nonpaging_sync_page;
4849
	context->invlpg = NULL;
4850
	context->get_guest_pgd = get_cr3;
4851
	context->get_pdptr = kvm_pdptr_read;
4852
	context->inject_page_fault = kvm_inject_page_fault;
4853

4854
	if (!is_cr0_pg(context))
4855
		context->gva_to_gpa = nonpaging_gva_to_gpa;
4856
	else if (is_cr4_pae(context))
4857
		context->gva_to_gpa = paging64_gva_to_gpa;
4858
	else
4859
		context->gva_to_gpa = paging32_gva_to_gpa;
4860

4861
	reset_guest_paging_metadata(vcpu, context);
4862
	reset_tdp_shadow_zero_bits_mask(context);
4863 4864
}

4865
static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
4866
				    union kvm_cpu_role cpu_role,
4867
				    union kvm_mmu_page_role root_role)
4868
{
4869
	if (cpu_role.as_u64 == context->cpu_role.as_u64 &&
4870
	    root_role.word == context->root_role.word)
4871
		return;
4872

4873
	context->cpu_role.as_u64 = cpu_role.as_u64;
4874
	context->root_role.word = root_role.word;
4875

4876
	if (!is_cr0_pg(context))
4877
		nonpaging_init_context(context);
4878
	else if (is_cr4_pae(context))
4879
		paging64_init_context(context);
A
Avi Kivity 已提交
4880
	else
4881
		paging32_init_context(context);
4882

4883
	reset_guest_paging_metadata(vcpu, context);
4884
	reset_shadow_zero_bits_mask(vcpu, context);
4885
}
4886

4887
static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu,
4888
				union kvm_cpu_role cpu_role)
4889
{
4890
	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4891
	union kvm_mmu_page_role root_role;
4892

4893
	root_role = cpu_role.base;
4894

4895 4896
	/* KVM uses PAE paging whenever the guest isn't using 64-bit paging. */
	root_role.level = max_t(u32, root_role.level, PT32E_ROOT_LEVEL);
4897

4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909
	/*
	 * KVM forces EFER.NX=1 when TDP is disabled, reflect it in the MMU role.
	 * KVM uses NX when TDP is disabled to handle a variety of scenarios,
	 * notably for huge SPTEs if iTLB multi-hit mitigation is enabled and
	 * to generate correct permissions for CR0.WP=0/CR4.SMEP=1/EFER.NX=0.
	 * The iTLB multi-hit workaround can be toggled at any time, so assume
	 * NX can be used by any non-nested shadow MMU to avoid having to reset
	 * MMU contexts.
	 */
	root_role.efer_nx = true;

	shadow_mmu_init_context(vcpu, context, cpu_role, root_role);
4910 4911
}

4912 4913
void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0,
			     unsigned long cr4, u64 efer, gpa_t nested_cr3)
4914
{
4915
	struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4916 4917
	struct kvm_mmu_role_regs regs = {
		.cr0 = cr0,
4918
		.cr4 = cr4 & ~X86_CR4_PKE,
4919 4920
		.efer = efer,
	};
4921
	union kvm_cpu_role cpu_role = kvm_calc_cpu_role(vcpu, &regs);
4922 4923 4924 4925 4926 4927 4928
	union kvm_mmu_page_role root_role;

	/* NPT requires CR0.PG=1. */
	WARN_ON_ONCE(cpu_role.base.direct);

	root_role = cpu_role.base;
	root_role.level = kvm_mmu_get_tdp_level(vcpu);
4929 4930 4931
	if (root_role.level == PT64_ROOT_5LEVEL &&
	    cpu_role.base.level == PT64_ROOT_4LEVEL)
		root_role.passthrough = 1;
4932

4933
	shadow_mmu_init_context(vcpu, context, cpu_role, root_role);
4934
	kvm_mmu_new_pgd(vcpu, nested_cr3);
4935 4936
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu);
4937

4938
static union kvm_cpu_role
4939
kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
4940
				   bool execonly, u8 level)
4941
{
4942
	union kvm_cpu_role role = {0};
4943

4944 4945 4946 4947 4948
	/*
	 * KVM does not support SMM transfer monitors, and consequently does not
	 * support the "entry to SMM" control either.  role.base.smm is always 0.
	 */
	WARN_ON_ONCE(is_smm(vcpu));
4949
	role.base.level = level;
4950
	role.base.has_4_byte_gpte = false;
4951 4952 4953 4954
	role.base.direct = false;
	role.base.ad_disabled = !accessed_dirty;
	role.base.guest_mode = true;
	role.base.access = ACC_ALL;
4955

4956
	role.ext.word = 0;
4957
	role.ext.execonly = execonly;
4958
	role.ext.valid = 1;
4959 4960 4961 4962

	return role;
}

4963
void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
4964 4965
			     int huge_page_level, bool accessed_dirty,
			     gpa_t new_eptp)
N
Nadav Har'El 已提交
4966
{
4967
	struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4968
	u8 level = vmx_eptp_page_walk_level(new_eptp);
4969
	union kvm_cpu_role new_mode =
4970
		kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
4971
						   execonly, level);
4972

4973 4974 4975
	if (new_mode.as_u64 != context->cpu_role.as_u64) {
		/* EPT, and thus nested EPT, does not consume CR0, CR4, nor EFER. */
		context->cpu_role.as_u64 = new_mode.as_u64;
4976
		context->root_role.word = new_mode.base.word;
4977 4978 4979 4980 4981

		context->page_fault = ept_page_fault;
		context->gva_to_gpa = ept_gva_to_gpa;
		context->sync_page = ept_sync_page;
		context->invlpg = ept_invlpg;
4982

4983 4984 4985 4986 4987
		update_permission_bitmask(context, true);
		context->pkru_mask = 0;
		reset_rsvds_bits_mask_ept(vcpu, context, execonly, huge_page_level);
		reset_ept_shadow_zero_bits_mask(context, execonly);
	}
4988

4989
	kvm_mmu_new_pgd(vcpu, new_eptp);
N
Nadav Har'El 已提交
4990 4991 4992
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);

4993
static void init_kvm_softmmu(struct kvm_vcpu *vcpu,
4994
			     union kvm_cpu_role cpu_role)
4995
{
4996
	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4997

4998
	kvm_init_shadow_mmu(vcpu, cpu_role);
4999

5000
	context->get_guest_pgd     = get_cr3;
5001 5002
	context->get_pdptr         = kvm_pdptr_read;
	context->inject_page_fault = kvm_inject_page_fault;
A
Avi Kivity 已提交
5003 5004
}

5005
static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu,
5006
				union kvm_cpu_role new_mode)
5007 5008 5009
{
	struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;

5010
	if (new_mode.as_u64 == g_context->cpu_role.as_u64)
5011 5012
		return;

5013
	g_context->cpu_role.as_u64   = new_mode.as_u64;
5014
	g_context->get_guest_pgd     = get_cr3;
5015
	g_context->get_pdptr         = kvm_pdptr_read;
5016 5017
	g_context->inject_page_fault = kvm_inject_page_fault;

5018 5019 5020 5021 5022 5023
	/*
	 * L2 page tables are never shadowed, so there is no need to sync
	 * SPTEs.
	 */
	g_context->invlpg            = NULL;

5024
	/*
5025
	 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
5026 5027 5028 5029 5030
	 * L1's nested page tables (e.g. EPT12). The nested translation
	 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
	 * L2's page tables as the first level of translation and L1's
	 * nested page tables as the second level of translation. Basically
	 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
5031
	 */
5032
	if (!is_paging(vcpu))
5033
		g_context->gva_to_gpa = nonpaging_gva_to_gpa;
5034
	else if (is_long_mode(vcpu))
5035
		g_context->gva_to_gpa = paging64_gva_to_gpa;
5036
	else if (is_pae(vcpu))
5037
		g_context->gva_to_gpa = paging64_gva_to_gpa;
5038
	else
5039
		g_context->gva_to_gpa = paging32_gva_to_gpa;
5040

5041
	reset_guest_paging_metadata(vcpu, g_context);
5042 5043
}

5044
void kvm_init_mmu(struct kvm_vcpu *vcpu)
5045
{
5046
	struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
5047
	union kvm_cpu_role cpu_role = kvm_calc_cpu_role(vcpu, &regs);
5048

5049
	if (mmu_is_nested(vcpu))
5050
		init_kvm_nested_mmu(vcpu, cpu_role);
5051
	else if (tdp_enabled)
5052
		init_kvm_tdp_mmu(vcpu, cpu_role);
5053
	else
5054
		init_kvm_softmmu(vcpu, cpu_role);
5055
}
5056
EXPORT_SYMBOL_GPL(kvm_init_mmu);
5057

5058 5059 5060 5061 5062
void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu)
{
	/*
	 * Invalidate all MMU roles to force them to reinitialize as CPUID
	 * information is factored into reserved bit calculations.
5063 5064 5065 5066 5067 5068 5069 5070
	 *
	 * Correctly handling multiple vCPU models with respect to paging and
	 * physical address properties) in a single VM would require tracking
	 * all relevant CPUID information in kvm_mmu_page_role. That is very
	 * undesirable as it would increase the memory requirements for
	 * gfn_track (see struct kvm_mmu_page_role comments).  For now that
	 * problem is swept under the rug; KVM's CPUID API is horrific and
	 * it's all but impossible to solve it without introducing a new API.
5071
	 */
5072 5073 5074
	vcpu->arch.root_mmu.root_role.word = 0;
	vcpu->arch.guest_mmu.root_role.word = 0;
	vcpu->arch.nested_mmu.root_role.word = 0;
5075 5076 5077
	vcpu->arch.root_mmu.cpu_role.ext.valid = 0;
	vcpu->arch.guest_mmu.cpu_role.ext.valid = 0;
	vcpu->arch.nested_mmu.cpu_role.ext.valid = 0;
5078
	kvm_mmu_reset_context(vcpu);
5079 5080

	/*
5081 5082
	 * Changing guest CPUID after KVM_RUN is forbidden, see the comment in
	 * kvm_arch_vcpu_ioctl().
5083
	 */
5084
	KVM_BUG_ON(vcpu->arch.last_vmentry_cpu != -1, vcpu->kvm);
5085 5086
}

5087
void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
5088
{
5089
	kvm_mmu_unload(vcpu);
5090
	kvm_init_mmu(vcpu);
A
Avi Kivity 已提交
5091
}
5092
EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
A
Avi Kivity 已提交
5093 5094

int kvm_mmu_load(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
5095
{
5096 5097
	int r;

5098
	r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->root_role.direct);
A
Avi Kivity 已提交
5099 5100
	if (r)
		goto out;
5101
	r = mmu_alloc_special_roots(vcpu);
A
Avi Kivity 已提交
5102 5103
	if (r)
		goto out;
5104
	if (vcpu->arch.mmu->root_role.direct)
5105 5106 5107
		r = mmu_alloc_direct_roots(vcpu);
	else
		r = mmu_alloc_shadow_roots(vcpu);
5108 5109
	if (r)
		goto out;
5110 5111 5112

	kvm_mmu_sync_roots(vcpu);

5113
	kvm_mmu_load_pgd(vcpu);
5114 5115 5116 5117 5118 5119 5120 5121

	/*
	 * Flush any TLB entries for the new root, the provenance of the root
	 * is unknown.  Even if KVM ensures there are no stale TLB entries
	 * for a freed root, in theory another hypervisor could have left
	 * stale entries.  Flushing on alloc also allows KVM to skip the TLB
	 * flush when freeing a root (see kvm_tdp_mmu_put_root()).
	 */
5122
	static_call(kvm_x86_flush_tlb_current)(vcpu);
5123 5124
out:
	return r;
A
Avi Kivity 已提交
5125
}
A
Avi Kivity 已提交
5126 5127 5128

void kvm_mmu_unload(struct kvm_vcpu *vcpu)
{
5129 5130 5131
	struct kvm *kvm = vcpu->kvm;

	kvm_mmu_free_roots(kvm, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
5132
	WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root.hpa));
5133
	kvm_mmu_free_roots(kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
5134
	WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root.hpa));
5135
	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
A
Avi Kivity 已提交
5136
}
A
Avi Kivity 已提交
5137

5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182
static bool is_obsolete_root(struct kvm *kvm, hpa_t root_hpa)
{
	struct kvm_mmu_page *sp;

	if (!VALID_PAGE(root_hpa))
		return false;

	/*
	 * When freeing obsolete roots, treat roots as obsolete if they don't
	 * have an associated shadow page.  This does mean KVM will get false
	 * positives and free roots that don't strictly need to be freed, but
	 * such false positives are relatively rare:
	 *
	 *  (a) only PAE paging and nested NPT has roots without shadow pages
	 *  (b) remote reloads due to a memslot update obsoletes _all_ roots
	 *  (c) KVM doesn't track previous roots for PAE paging, and the guest
	 *      is unlikely to zap an in-use PGD.
	 */
	sp = to_shadow_page(root_hpa);
	return !sp || is_obsolete_sp(kvm, sp);
}

static void __kvm_mmu_free_obsolete_roots(struct kvm *kvm, struct kvm_mmu *mmu)
{
	unsigned long roots_to_free = 0;
	int i;

	if (is_obsolete_root(kvm, mmu->root.hpa))
		roots_to_free |= KVM_MMU_ROOT_CURRENT;

	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
		if (is_obsolete_root(kvm, mmu->root.hpa))
			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
	}

	if (roots_to_free)
		kvm_mmu_free_roots(kvm, mmu, roots_to_free);
}

void kvm_mmu_free_obsolete_roots(struct kvm_vcpu *vcpu)
{
	__kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.root_mmu);
	__kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.guest_mmu);
}

5183 5184 5185 5186 5187 5188 5189 5190
static bool need_remote_flush(u64 old, u64 new)
{
	if (!is_shadow_present_pte(old))
		return false;
	if (!is_shadow_present_pte(new))
		return true;
	if ((old ^ new) & PT64_BASE_ADDR_MASK)
		return true;
5191 5192
	old ^= shadow_nx_mask;
	new ^= shadow_nx_mask;
5193 5194 5195
	return (old & ~new & PT64_PERM_MASK) != 0;
}

5196
static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
5197
				    int *bytes)
5198
{
5199
	u64 gentry = 0;
5200
	int r;
5201 5202 5203

	/*
	 * Assume that the pte write on a page table of the same type
5204 5205
	 * as the current vcpu paging mode since we update the sptes only
	 * when they have the same mode.
5206
	 */
5207
	if (is_pae(vcpu) && *bytes == 4) {
5208
		/* Handle a 32-bit guest writing two halves of a 64-bit gpte */
5209 5210
		*gpa &= ~(gpa_t)7;
		*bytes = 8;
5211 5212
	}

5213 5214 5215 5216
	if (*bytes == 4 || *bytes == 8) {
		r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
		if (r)
			gentry = 0;
5217 5218
	}

5219 5220 5221 5222 5223 5224 5225
	return gentry;
}

/*
 * If we're seeing too many writes to a page, it may no longer be a page table,
 * or we may be forking, in which case it is better to unmap the page.
 */
5226
static bool detect_write_flooding(struct kvm_mmu_page *sp)
5227
{
5228 5229 5230 5231
	/*
	 * Skip write-flooding detected for the sp whose level is 1, because
	 * it can become unsync, then the guest page is not write-protected.
	 */
5232
	if (sp->role.level == PG_LEVEL_4K)
5233
		return false;
5234

5235 5236
	atomic_inc(&sp->write_flooding_count);
	return atomic_read(&sp->write_flooding_count) >= 3;
5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251
}

/*
 * Misaligned accesses are too much trouble to fix up; also, they usually
 * indicate a page is not used as a page table.
 */
static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
				    int bytes)
{
	unsigned offset, pte_size, misaligned;

	pgprintk("misaligned: gpa %llx bytes %d role %x\n",
		 gpa, bytes, sp->role.word);

	offset = offset_in_page(gpa);
5252
	pte_size = sp->role.has_4_byte_gpte ? 4 : 8;
5253 5254 5255 5256 5257 5258 5259 5260

	/*
	 * Sometimes, the OS only writes the last one bytes to update status
	 * bits, for example, in linux, andb instruction is used in clear_bit().
	 */
	if (!(offset & (pte_size - 1)) && bytes == 1)
		return false;

5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275
	misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
	misaligned |= bytes < 4;

	return misaligned;
}

static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
{
	unsigned page_offset, quadrant;
	u64 *spte;
	int level;

	page_offset = offset_in_page(gpa);
	level = sp->role.level;
	*nspte = 1;
5276
	if (sp->role.has_4_byte_gpte) {
5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297
		page_offset <<= 1;	/* 32->64 */
		/*
		 * A 32-bit pde maps 4MB while the shadow pdes map
		 * only 2MB.  So we need to double the offset again
		 * and zap two pdes instead of one.
		 */
		if (level == PT32_ROOT_LEVEL) {
			page_offset &= ~7; /* kill rounding error */
			page_offset <<= 1;
			*nspte = 2;
		}
		quadrant = page_offset >> PAGE_SHIFT;
		page_offset &= ~PAGE_MASK;
		if (quadrant != sp->role.quadrant)
			return NULL;
	}

	spte = &sp->spt[page_offset / sizeof(*spte)];
	return spte;
}

5298
static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
5299 5300
			      const u8 *new, int bytes,
			      struct kvm_page_track_notifier_node *node)
5301 5302 5303 5304 5305 5306
{
	gfn_t gfn = gpa >> PAGE_SHIFT;
	struct kvm_mmu_page *sp;
	LIST_HEAD(invalid_list);
	u64 entry, gentry, *spte;
	int npte;
5307
	bool flush = false;
5308 5309 5310 5311 5312

	/*
	 * If we don't have indirect shadow pages, it means no page is
	 * write-protected, so we can exit simply.
	 */
5313
	if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
5314 5315 5316 5317 5318 5319
		return;

	pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);

	/*
	 * No need to care whether allocation memory is successful
I
Ingo Molnar 已提交
5320
	 * or not since pte prefetch is skipped if it does not have
5321 5322
	 * enough objects in the cache.
	 */
5323
	mmu_topup_memory_caches(vcpu, true);
5324

5325
	write_lock(&vcpu->kvm->mmu_lock);
5326 5327 5328

	gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);

5329 5330
	++vcpu->kvm->stat.mmu_pte_write;

L
Lai Jiangshan 已提交
5331
	for_each_gfn_valid_sp_with_gptes(vcpu->kvm, sp, gfn) {
5332
		if (detect_write_misaligned(sp, gpa, bytes) ||
5333
		      detect_write_flooding(sp)) {
5334
			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
A
Avi Kivity 已提交
5335
			++vcpu->kvm->stat.mmu_flooded;
5336 5337
			continue;
		}
5338 5339 5340 5341 5342

		spte = get_written_sptes(sp, gpa, &npte);
		if (!spte)
			continue;

5343
		while (npte--) {
5344
			entry = *spte;
5345
			mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL);
5346 5347
			if (gentry && sp->role.level != PG_LEVEL_4K)
				++vcpu->kvm->stat.mmu_pde_zapped;
G
Gleb Natapov 已提交
5348
			if (need_remote_flush(entry, *spte))
5349
				flush = true;
5350
			++spte;
5351 5352
		}
	}
5353
	kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush);
5354
	write_unlock(&vcpu->kvm->mmu_lock);
5355 5356
}

5357
int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
5358
		       void *insn, int insn_len)
5359
{
5360
	int r, emulation_type = EMULTYPE_PF;
5361
	bool direct = vcpu->arch.mmu->root_role.direct;
5362

5363
	if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root.hpa)))
5364 5365
		return RET_PF_RETRY;

5366
	r = RET_PF_INVALID;
5367
	if (unlikely(error_code & PFERR_RSVD_MASK)) {
5368
		r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
5369
		if (r == RET_PF_EMULATE)
5370 5371
			goto emulate;
	}
5372

5373
	if (r == RET_PF_INVALID) {
5374 5375
		r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
					  lower_32_bits(error_code), false);
5376
		if (KVM_BUG_ON(r == RET_PF_INVALID, vcpu->kvm))
5377
			return -EIO;
5378 5379
	}

5380
	if (r < 0)
5381
		return r;
5382 5383
	if (r != RET_PF_EMULATE)
		return 1;
5384

5385 5386 5387 5388 5389 5390 5391
	/*
	 * Before emulating the instruction, check if the error code
	 * was due to a RO violation while translating the guest page.
	 * This can occur when using nested virtualization with nested
	 * paging in both guests. If true, we simply unprotect the page
	 * and resume the guest.
	 */
5392
	if (vcpu->arch.mmu->root_role.direct &&
5393
	    (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5394
		kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
5395 5396 5397
		return 1;
	}

5398 5399 5400 5401 5402 5403
	/*
	 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
	 * optimistically try to just unprotect the page and let the processor
	 * re-execute the instruction that caused the page fault.  Do not allow
	 * retrying MMIO emulation, as it's not only pointless but could also
	 * cause us to enter an infinite loop because the processor will keep
5404 5405 5406 5407
	 * faulting on the non-existent MMIO address.  Retrying an instruction
	 * from a nested guest is also pointless and dangerous as we are only
	 * explicitly shadowing L1's page tables, i.e. unprotecting something
	 * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5408
	 */
5409
	if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
5410
		emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
5411
emulate:
5412
	return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
5413
				       insn_len);
5414 5415 5416
}
EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);

5417 5418
void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
			    gva_t gva, hpa_t root_hpa)
M
Marcelo Tosatti 已提交
5419
{
5420
	int i;
5421

5422 5423 5424 5425 5426 5427
	/* It's actually a GPA for vcpu->arch.guest_mmu.  */
	if (mmu != &vcpu->arch.guest_mmu) {
		/* INVLPG on a non-canonical address is a NOP according to the SDM.  */
		if (is_noncanonical_address(gva, vcpu))
			return;

5428
		static_call(kvm_x86_flush_tlb_gva)(vcpu, gva);
5429 5430 5431
	}

	if (!mmu->invlpg)
5432 5433
		return;

5434
	if (root_hpa == INVALID_PAGE) {
5435
		mmu->invlpg(vcpu, gva, mmu->root.hpa);
5436

5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454
		/*
		 * INVLPG is required to invalidate any global mappings for the VA,
		 * irrespective of PCID. Since it would take us roughly similar amount
		 * of work to determine whether any of the prev_root mappings of the VA
		 * is marked global, or to just sync it blindly, so we might as well
		 * just always sync it.
		 *
		 * Mappings not reachable via the current cr3 or the prev_roots will be
		 * synced when switching to that cr3, so nothing needs to be done here
		 * for them.
		 */
		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
			if (VALID_PAGE(mmu->prev_roots[i].hpa))
				mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
	} else {
		mmu->invlpg(vcpu, gva, root_hpa);
	}
}
5455

5456 5457
void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
{
5458
	kvm_mmu_invalidate_gva(vcpu, vcpu->arch.walk_mmu, gva, INVALID_PAGE);
M
Marcelo Tosatti 已提交
5459 5460 5461 5462
	++vcpu->stat.invlpg;
}
EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);

5463

5464 5465
void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
{
5466
	struct kvm_mmu *mmu = vcpu->arch.mmu;
5467
	bool tlb_flush = false;
5468
	uint i;
5469 5470

	if (pcid == kvm_get_active_pcid(vcpu)) {
5471
		mmu->invlpg(vcpu, gva, mmu->root.hpa);
5472
		tlb_flush = true;
5473 5474
	}

5475 5476
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
		if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5477
		    pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) {
5478 5479 5480
			mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
			tlb_flush = true;
		}
5481
	}
5482

5483
	if (tlb_flush)
5484
		static_call(kvm_x86_flush_tlb_gva)(vcpu, gva);
5485

5486 5487 5488
	++vcpu->stat.invlpg;

	/*
5489 5490 5491
	 * Mappings not reachable via the current cr3 or the prev_roots will be
	 * synced when switching to that cr3, so nothing needs to be done here
	 * for them.
5492 5493 5494
	 */
}

5495 5496
void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level,
		       int tdp_max_root_level, int tdp_huge_page_level)
5497
{
5498
	tdp_enabled = enable_tdp;
5499
	tdp_root_level = tdp_forced_root_level;
5500
	max_tdp_level = tdp_max_root_level;
5501 5502

	/*
5503
	 * max_huge_page_level reflects KVM's MMU capabilities irrespective
5504 5505 5506 5507 5508 5509
	 * of kernel support, e.g. KVM may be capable of using 1GB pages when
	 * the kernel is not.  But, KVM never creates a page size greater than
	 * what is used by the kernel for any given HVA, i.e. the kernel's
	 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
	 */
	if (tdp_enabled)
5510
		max_huge_page_level = tdp_huge_page_level;
5511
	else if (boot_cpu_has(X86_FEATURE_GBPAGES))
5512
		max_huge_page_level = PG_LEVEL_1G;
5513
	else
5514
		max_huge_page_level = PG_LEVEL_2M;
5515
}
5516
EXPORT_SYMBOL_GPL(kvm_configure_mmu);
5517 5518

/* The return value indicates if tlb flush on all vcpus is needed. */
5519 5520 5521
typedef bool (*slot_level_handler) (struct kvm *kvm,
				    struct kvm_rmap_head *rmap_head,
				    const struct kvm_memory_slot *slot);
5522 5523 5524

/* The caller should hold mmu-lock before calling this function. */
static __always_inline bool
5525
slot_handle_level_range(struct kvm *kvm, const struct kvm_memory_slot *memslot,
5526
			slot_level_handler fn, int start_level, int end_level,
5527 5528
			gfn_t start_gfn, gfn_t end_gfn, bool flush_on_yield,
			bool flush)
5529 5530 5531 5532 5533 5534
{
	struct slot_rmap_walk_iterator iterator;

	for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
			end_gfn, &iterator) {
		if (iterator.rmap)
5535
			flush |= fn(kvm, iterator.rmap, memslot);
5536

5537
		if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
5538
			if (flush && flush_on_yield) {
5539 5540 5541
				kvm_flush_remote_tlbs_with_address(kvm,
						start_gfn,
						iterator.gfn - start_gfn + 1);
5542 5543
				flush = false;
			}
5544
			cond_resched_rwlock_write(&kvm->mmu_lock);
5545 5546 5547 5548 5549 5550 5551
		}
	}

	return flush;
}

static __always_inline bool
5552
slot_handle_level(struct kvm *kvm, const struct kvm_memory_slot *memslot,
5553
		  slot_level_handler fn, int start_level, int end_level,
5554
		  bool flush_on_yield)
5555 5556 5557 5558
{
	return slot_handle_level_range(kvm, memslot, fn, start_level,
			end_level, memslot->base_gfn,
			memslot->base_gfn + memslot->npages - 1,
5559
			flush_on_yield, false);
5560 5561 5562
}

static __always_inline bool
5563 5564
slot_handle_level_4k(struct kvm *kvm, const struct kvm_memory_slot *memslot,
		     slot_level_handler fn, bool flush_on_yield)
5565
{
5566
	return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
5567
				 PG_LEVEL_4K, flush_on_yield);
5568 5569
}

5570
static void free_mmu_pages(struct kvm_mmu *mmu)
A
Avi Kivity 已提交
5571
{
5572 5573
	if (!tdp_enabled && mmu->pae_root)
		set_memory_encrypted((unsigned long)mmu->pae_root, 1);
5574
	free_page((unsigned long)mmu->pae_root);
5575
	free_page((unsigned long)mmu->pml4_root);
5576
	free_page((unsigned long)mmu->pml5_root);
A
Avi Kivity 已提交
5577 5578
}

5579
static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
A
Avi Kivity 已提交
5580
{
5581
	struct page *page;
A
Avi Kivity 已提交
5582 5583
	int i;

5584 5585
	mmu->root.hpa = INVALID_PAGE;
	mmu->root.pgd = 0;
5586 5587 5588
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
		mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;

5589 5590 5591 5592
	/* vcpu->arch.guest_mmu isn't used when !tdp_enabled. */
	if (!tdp_enabled && mmu == &vcpu->arch.guest_mmu)
		return 0;

5593
	/*
5594 5595 5596 5597
	 * When using PAE paging, the four PDPTEs are treated as 'root' pages,
	 * while the PDP table is a per-vCPU construct that's allocated at MMU
	 * creation.  When emulating 32-bit mode, cr3 is only 32 bits even on
	 * x86_64.  Therefore we need to allocate the PDP table in the first
5598 5599 5600 5601
	 * 4GB of memory, which happens to fit the DMA32 zone.  TDP paging
	 * generally doesn't use PAE paging and can skip allocating the PDP
	 * table.  The main exception, handled here, is SVM's 32-bit NPT.  The
	 * other exception is for shadowing L1's 32-bit or PAE NPT on 64-bit
5602
	 * KVM; that horror is handled on-demand by mmu_alloc_special_roots().
5603
	 */
5604
	if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
5605 5606
		return 0;

5607
	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
5608
	if (!page)
5609 5610
		return -ENOMEM;

5611
	mmu->pae_root = page_address(page);
5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625

	/*
	 * CR3 is only 32 bits when PAE paging is used, thus it's impossible to
	 * get the CPU to treat the PDPTEs as encrypted.  Decrypt the page so
	 * that KVM's writes and the CPU's reads get along.  Note, this is
	 * only necessary when using shadow paging, as 64-bit NPT can get at
	 * the C-bit even when shadowing 32-bit NPT, and SME isn't supported
	 * by 32-bit kernels (when KVM itself uses 32-bit NPT).
	 */
	if (!tdp_enabled)
		set_memory_decrypted((unsigned long)mmu->pae_root, 1);
	else
		WARN_ON_ONCE(shadow_me_mask);

5626
	for (i = 0; i < 4; ++i)
5627
		mmu->pae_root[i] = INVALID_PAE_ROOT;
5628

A
Avi Kivity 已提交
5629 5630 5631
	return 0;
}

5632
int kvm_mmu_create(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
5633
{
5634
	int ret;
5635

5636
	vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache;
5637 5638
	vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO;

5639
	vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache;
5640
	vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO;
5641

5642 5643
	vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO;

5644 5645
	vcpu->arch.mmu = &vcpu->arch.root_mmu;
	vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
A
Avi Kivity 已提交
5646

5647
	ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu);
5648 5649 5650
	if (ret)
		return ret;

5651
	ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu);
5652 5653 5654 5655 5656 5657 5658
	if (ret)
		goto fail_allocate_root;

	return ret;
 fail_allocate_root:
	free_mmu_pages(&vcpu->arch.guest_mmu);
	return ret;
A
Avi Kivity 已提交
5659 5660
}

5661
#define BATCH_ZAP_PAGES	10
5662 5663 5664
static void kvm_zap_obsolete_pages(struct kvm *kvm)
{
	struct kvm_mmu_page *sp, *node;
5665
	int nr_zapped, batch = 0;
5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677

restart:
	list_for_each_entry_safe_reverse(sp, node,
	      &kvm->arch.active_mmu_pages, link) {
		/*
		 * No obsolete valid page exists before a newly created page
		 * since active_mmu_pages is a FIFO list.
		 */
		if (!is_obsolete_sp(kvm, sp))
			break;

		/*
5678 5679 5680
		 * Invalid pages should never land back on the list of active
		 * pages.  Skip the bogus page, otherwise we'll get stuck in an
		 * infinite loop if the page gets put back on the list (again).
5681
		 */
5682
		if (WARN_ON(sp->role.invalid))
5683 5684
			continue;

5685 5686 5687 5688 5689 5690
		/*
		 * No need to flush the TLB since we're only zapping shadow
		 * pages with an obsolete generation number and all vCPUS have
		 * loaded a new root, i.e. the shadow pages being zapped cannot
		 * be in active use by the guest.
		 */
5691
		if (batch >= BATCH_ZAP_PAGES &&
5692
		    cond_resched_rwlock_write(&kvm->mmu_lock)) {
5693
			batch = 0;
5694 5695 5696
			goto restart;
		}

5697 5698
		if (__kvm_mmu_prepare_zap_page(kvm, sp,
				&kvm->arch.zapped_obsolete_pages, &nr_zapped)) {
5699
			batch += nr_zapped;
5700
			goto restart;
5701
		}
5702 5703
	}

5704
	/*
5705 5706 5707 5708 5709 5710 5711
	 * Kick all vCPUs (via remote TLB flush) before freeing the page tables
	 * to ensure KVM is not in the middle of a lockless shadow page table
	 * walk, which may reference the pages.  The remote TLB flush itself is
	 * not required and is simply a convenient way to kick vCPUs as needed.
	 * KVM performs a local TLB flush when allocating a new root (see
	 * kvm_mmu_load()), and the reload in the caller ensure no vCPUs are
	 * running with an obsolete MMU.
5712
	 */
5713
	kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726
}

/*
 * Fast invalidate all shadow pages and use lock-break technique
 * to zap obsolete pages.
 *
 * It's required when memslot is being deleted or VM is being
 * destroyed, in these cases, we should ensure that KVM MMU does
 * not use any resource of the being-deleted slot or all slots
 * after calling the function.
 */
static void kvm_mmu_zap_all_fast(struct kvm *kvm)
{
5727 5728
	lockdep_assert_held(&kvm->slots_lock);

5729
	write_lock(&kvm->mmu_lock);
5730
	trace_kvm_mmu_zap_all_fast(kvm);
5731 5732 5733 5734 5735 5736 5737 5738 5739

	/*
	 * Toggle mmu_valid_gen between '0' and '1'.  Because slots_lock is
	 * held for the entire duration of zapping obsolete pages, it's
	 * impossible for there to be multiple invalid generations associated
	 * with *valid* shadow pages at any given time, i.e. there is exactly
	 * one valid generation and (at most) one invalid generation.
	 */
	kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
5740

5741 5742 5743 5744 5745
	/*
	 * In order to ensure all vCPUs drop their soon-to-be invalid roots,
	 * invalidating TDP MMU roots must be done while holding mmu_lock for
	 * write and in the same critical section as making the reload request,
	 * e.g. before kvm_zap_obsolete_pages() could drop mmu_lock and yield.
5746 5747 5748 5749
	 */
	if (is_tdp_mmu_enabled(kvm))
		kvm_tdp_mmu_invalidate_all_roots(kvm);

5750 5751 5752 5753 5754 5755 5756 5757
	/*
	 * Notify all vcpus to reload its shadow page table and flush TLB.
	 * Then all vcpus will switch to new shadow page table with the new
	 * mmu_valid_gen.
	 *
	 * Note: we need to do this under the protection of mmu_lock,
	 * otherwise, vcpu would purge shadow page but miss tlb flush.
	 */
5758
	kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS);
5759

5760
	kvm_zap_obsolete_pages(kvm);
5761

5762
	write_unlock(&kvm->mmu_lock);
5763

5764 5765 5766 5767 5768 5769 5770 5771
	/*
	 * Zap the invalidated TDP MMU roots, all SPTEs must be dropped before
	 * returning to the caller, e.g. if the zap is in response to a memslot
	 * deletion, mmu_notifier callbacks will be unable to reach the SPTEs
	 * associated with the deleted memslot once the update completes, and
	 * Deferring the zap until the final reference to the root is put would
	 * lead to use-after-free.
	 */
5772
	if (is_tdp_mmu_enabled(kvm))
5773
		kvm_tdp_mmu_zap_invalidated_roots(kvm);
5774 5775
}

5776 5777 5778 5779 5780
static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
{
	return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
}

5781
static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5782 5783
			struct kvm_memory_slot *slot,
			struct kvm_page_track_notifier_node *node)
5784
{
5785
	kvm_mmu_zap_all_fast(kvm);
5786 5787
}

5788
int kvm_mmu_init_vm(struct kvm *kvm)
5789
{
5790
	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5791
	int r;
5792

5793 5794 5795
	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
	INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
	INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages);
5796 5797
	spin_lock_init(&kvm->arch.mmu_unsync_pages_lock);

5798 5799 5800
	r = kvm_mmu_init_tdp_mmu(kvm);
	if (r < 0)
		return r;
5801

5802
	node->track_write = kvm_mmu_pte_write;
5803
	node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5804
	kvm_page_track_register_notifier(kvm, node);
5805
	return 0;
5806 5807
}

5808
void kvm_mmu_uninit_vm(struct kvm *kvm)
5809
{
5810
	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5811

5812
	kvm_page_track_unregister_notifier(kvm, node);
5813 5814

	kvm_mmu_uninit_tdp_mmu(kvm);
5815 5816
}

5817 5818 5819 5820
static bool __kvm_zap_rmaps(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
{
	const struct kvm_memory_slot *memslot;
	struct kvm_memslots *slots;
5821
	struct kvm_memslot_iter iter;
5822 5823
	bool flush = false;
	gfn_t start, end;
5824
	int i;
5825 5826 5827 5828 5829 5830

	if (!kvm_memslots_have_rmaps(kvm))
		return flush;

	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
5831 5832 5833

		kvm_for_each_memslot_in_gfn_range(&iter, slots, gfn_start, gfn_end) {
			memslot = iter.slot;
5834 5835
			start = max(gfn_start, memslot->base_gfn);
			end = min(gfn_end, memslot->base_gfn + memslot->npages);
5836
			if (WARN_ON_ONCE(start >= end))
5837 5838 5839
				continue;

			flush = slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
5840

5841 5842 5843 5844 5845 5846 5847 5848
							PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL,
							start, end - 1, true, flush);
		}
	}

	return flush;
}

5849 5850 5851 5852
/*
 * Invalidate (zap) SPTEs that cover GFNs from gfn_start and up to gfn_end
 * (not including it)
 */
X
Xiao Guangrong 已提交
5853 5854
void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
{
5855
	bool flush;
5856
	int i;
X
Xiao Guangrong 已提交
5857

5858 5859 5860
	if (WARN_ON_ONCE(gfn_end <= gfn_start))
		return;

5861 5862
	write_lock(&kvm->mmu_lock);

5863 5864
	kvm_inc_notifier_count(kvm, gfn_start, gfn_end);

5865
	flush = __kvm_zap_rmaps(kvm, gfn_start, gfn_end);
X
Xiao Guangrong 已提交
5866

5867
	if (is_tdp_mmu_enabled(kvm)) {
5868
		for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
5869 5870
			flush = kvm_tdp_mmu_zap_leafs(kvm, i, gfn_start,
						      gfn_end, true, flush);
5871
	}
5872 5873

	if (flush)
5874 5875
		kvm_flush_remote_tlbs_with_address(kvm, gfn_start,
						   gfn_end - gfn_start);
5876

5877 5878
	kvm_dec_notifier_count(kvm, gfn_start, gfn_end);

5879
	write_unlock(&kvm->mmu_lock);
X
Xiao Guangrong 已提交
5880 5881
}

5882
static bool slot_rmap_write_protect(struct kvm *kvm,
5883
				    struct kvm_rmap_head *rmap_head,
5884
				    const struct kvm_memory_slot *slot)
5885
{
5886
	return rmap_write_protect(rmap_head, false);
5887 5888
}

5889
void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5890
				      const struct kvm_memory_slot *memslot,
5891
				      int start_level)
A
Avi Kivity 已提交
5892
{
5893
	bool flush = false;
A
Avi Kivity 已提交
5894

5895 5896 5897 5898 5899 5900 5901
	if (kvm_memslots_have_rmaps(kvm)) {
		write_lock(&kvm->mmu_lock);
		flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect,
					  start_level, KVM_MAX_HUGEPAGE_LEVEL,
					  false);
		write_unlock(&kvm->mmu_lock);
	}
5902

5903 5904 5905 5906 5907 5908
	if (is_tdp_mmu_enabled(kvm)) {
		read_lock(&kvm->mmu_lock);
		flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, start_level);
		read_unlock(&kvm->mmu_lock);
	}

5909
	/*
5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929
	 * Flush TLBs if any SPTEs had to be write-protected to ensure that
	 * guest writes are reflected in the dirty bitmap before the memslot
	 * update completes, i.e. before enabling dirty logging is visible to
	 * userspace.
	 *
	 * Perform the TLB flush outside the mmu_lock to reduce the amount of
	 * time the lock is held. However, this does mean that another CPU can
	 * now grab mmu_lock and encounter a write-protected SPTE while CPUs
	 * still have a writable mapping for the associated GFN in their TLB.
	 *
	 * This is safe but requires KVM to be careful when making decisions
	 * based on the write-protection status of an SPTE. Specifically, KVM
	 * also write-protects SPTEs to monitor changes to guest page tables
	 * during shadow paging, and must guarantee no CPUs can write to those
	 * page before the lock is dropped. As mentioned in the previous
	 * paragraph, a write-protected SPTE is no guarantee that CPU cannot
	 * perform writes. So to determine if a TLB flush is truly required, KVM
	 * will clear a separate software-only bit (MMU-writable) and skip the
	 * flush if-and-only-if this bit was already clear.
	 *
5930
	 * See is_writable_pte() for more details.
5931
	 */
5932
	if (flush)
5933
		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
A
Avi Kivity 已提交
5934
}
5935

5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951
/* Must be called with the mmu_lock held in write-mode. */
void kvm_mmu_try_split_huge_pages(struct kvm *kvm,
				   const struct kvm_memory_slot *memslot,
				   u64 start, u64 end,
				   int target_level)
{
	if (is_tdp_mmu_enabled(kvm))
		kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end,
						 target_level, false);

	/*
	 * A TLB flush is unnecessary at this point for the same resons as in
	 * kvm_mmu_slot_try_split_huge_pages().
	 */
}

5952
void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm,
5953 5954
					const struct kvm_memory_slot *memslot,
					int target_level)
5955 5956 5957 5958 5959 5960
{
	u64 start = memslot->base_gfn;
	u64 end = start + memslot->npages;

	if (is_tdp_mmu_enabled(kvm)) {
		read_lock(&kvm->mmu_lock);
5961
		kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level, true);
5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975
		read_unlock(&kvm->mmu_lock);
	}

	/*
	 * No TLB flush is necessary here. KVM will flush TLBs after
	 * write-protecting and/or clearing dirty on the newly split SPTEs to
	 * ensure that guest writes are reflected in the dirty log before the
	 * ioctl to enable dirty logging on this memslot completes. Since the
	 * split SPTEs retain the write and dirty bits of the huge SPTE, it is
	 * safe for KVM to decide if a TLB flush is necessary based on the split
	 * SPTEs.
	 */
}

5976
static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5977
					 struct kvm_rmap_head *rmap_head,
5978
					 const struct kvm_memory_slot *slot)
5979 5980 5981 5982
{
	u64 *sptep;
	struct rmap_iterator iter;
	int need_tlb_flush = 0;
D
Dan Williams 已提交
5983
	kvm_pfn_t pfn;
5984 5985
	struct kvm_mmu_page *sp;

5986
restart:
5987
	for_each_rmap_spte(rmap_head, &iter, sptep) {
5988
		sp = sptep_to_sp(sptep);
5989 5990 5991
		pfn = spte_to_pfn(*sptep);

		/*
5992 5993 5994 5995 5996
		 * We cannot do huge page mapping for indirect shadow pages,
		 * which are found on the last rmap (level = 1) when not using
		 * tdp; such shadow pages are synced with the page table in
		 * the guest, and the guest page table is using 4K page size
		 * mapping if the indirect sp has level = 1.
5997
		 */
5998
		if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
5999 6000
		    sp->role.level < kvm_mmu_max_mapping_level(kvm, slot, sp->gfn,
							       pfn, PG_LEVEL_NUM)) {
6001
			pte_list_remove(kvm, rmap_head, sptep);
6002 6003 6004 6005 6006 6007 6008

			if (kvm_available_flush_tlb_with_range())
				kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
					KVM_PAGES_PER_HPAGE(sp->role.level));
			else
				need_tlb_flush = 1;

6009 6010
			goto restart;
		}
6011 6012 6013 6014 6015 6016
	}

	return need_tlb_flush;
}

void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
6017
				   const struct kvm_memory_slot *slot)
6018
{
6019 6020
	if (kvm_memslots_have_rmaps(kvm)) {
		write_lock(&kvm->mmu_lock);
6021 6022 6023 6024 6025
		/*
		 * Zap only 4k SPTEs since the legacy MMU only supports dirty
		 * logging at a 4k granularity and never creates collapsible
		 * 2m SPTEs during dirty logging.
		 */
6026
		if (slot_handle_level_4k(kvm, slot, kvm_mmu_zap_collapsible_spte, true))
6027 6028 6029
			kvm_arch_flush_remote_tlbs_memslot(kvm, slot);
		write_unlock(&kvm->mmu_lock);
	}
6030 6031 6032

	if (is_tdp_mmu_enabled(kvm)) {
		read_lock(&kvm->mmu_lock);
6033
		kvm_tdp_mmu_zap_collapsible_sptes(kvm, slot);
6034 6035
		read_unlock(&kvm->mmu_lock);
	}
6036 6037
}

6038
void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
6039
					const struct kvm_memory_slot *memslot)
6040 6041
{
	/*
6042
	 * All current use cases for flushing the TLBs for a specific memslot
6043
	 * related to dirty logging, and many do the TLB flush out of mmu_lock.
6044 6045 6046
	 * The interaction between the various operations on memslot must be
	 * serialized by slots_locks to ensure the TLB flush from one operation
	 * is observed by any other operation on the same memslot.
6047 6048
	 */
	lockdep_assert_held(&kvm->slots_lock);
6049 6050
	kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
					   memslot->npages);
6051 6052
}

6053
void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
6054
				   const struct kvm_memory_slot *memslot)
6055
{
6056
	bool flush = false;
6057

6058 6059
	if (kvm_memslots_have_rmaps(kvm)) {
		write_lock(&kvm->mmu_lock);
6060 6061 6062 6063 6064
		/*
		 * Clear dirty bits only on 4k SPTEs since the legacy MMU only
		 * support dirty logging at a 4k granularity.
		 */
		flush = slot_handle_level_4k(kvm, memslot, __rmap_clear_dirty, false);
6065 6066
		write_unlock(&kvm->mmu_lock);
	}
6067

6068 6069 6070 6071 6072 6073
	if (is_tdp_mmu_enabled(kvm)) {
		read_lock(&kvm->mmu_lock);
		flush |= kvm_tdp_mmu_clear_dirty_slot(kvm, memslot);
		read_unlock(&kvm->mmu_lock);
	}

6074 6075 6076 6077 6078 6079 6080
	/*
	 * It's also safe to flush TLBs out of mmu lock here as currently this
	 * function is only used for dirty logging, in which case flushing TLB
	 * out of mmu lock also guarantees no dirty pages will be lost in
	 * dirty_bitmap.
	 */
	if (flush)
6081
		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
6082 6083
}

6084
void kvm_mmu_zap_all(struct kvm *kvm)
6085 6086
{
	struct kvm_mmu_page *sp, *node;
6087
	LIST_HEAD(invalid_list);
6088
	int ign;
6089

6090
	write_lock(&kvm->mmu_lock);
6091
restart:
6092
	list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
6093
		if (WARN_ON(sp->role.invalid))
6094
			continue;
6095
		if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
6096
			goto restart;
6097
		if (cond_resched_rwlock_write(&kvm->mmu_lock))
6098 6099 6100
			goto restart;
	}

6101
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
6102

6103
	if (is_tdp_mmu_enabled(kvm))
6104 6105
		kvm_tdp_mmu_zap_all(kvm);

6106
	write_unlock(&kvm->mmu_lock);
6107 6108
}

6109
void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
6110
{
6111
	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
6112

6113
	gen &= MMIO_SPTE_GEN_MASK;
6114

6115
	/*
6116 6117 6118 6119 6120 6121 6122 6123
	 * Generation numbers are incremented in multiples of the number of
	 * address spaces in order to provide unique generations across all
	 * address spaces.  Strip what is effectively the address space
	 * modifier prior to checking for a wrap of the MMIO generation so
	 * that a wrap in any address space is detected.
	 */
	gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);

6124
	/*
6125
	 * The very rare case: if the MMIO generation number has wrapped,
6126 6127
	 * zap all shadow pages.
	 */
6128
	if (unlikely(gen == 0)) {
6129
		kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
6130
		kvm_mmu_zap_all_fast(kvm);
6131
	}
6132 6133
}

6134 6135
static unsigned long
mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
6136 6137
{
	struct kvm *kvm;
6138
	int nr_to_scan = sc->nr_to_scan;
6139
	unsigned long freed = 0;
6140

J
Junaid Shahid 已提交
6141
	mutex_lock(&kvm_lock);
6142 6143

	list_for_each_entry(kvm, &vm_list, vm_list) {
6144
		int idx;
6145
		LIST_HEAD(invalid_list);
6146

6147 6148 6149 6150 6151 6152 6153 6154
		/*
		 * Never scan more than sc->nr_to_scan VM instances.
		 * Will not hit this condition practically since we do not try
		 * to shrink more than one VM and it is very unlikely to see
		 * !n_used_mmu_pages so many times.
		 */
		if (!nr_to_scan--)
			break;
6155 6156 6157 6158 6159 6160
		/*
		 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
		 * here. We may skip a VM instance errorneosly, but we do not
		 * want to shrink a VM that only started to populate its MMU
		 * anyway.
		 */
6161 6162
		if (!kvm->arch.n_used_mmu_pages &&
		    !kvm_has_zapped_obsolete_pages(kvm))
6163 6164
			continue;

6165
		idx = srcu_read_lock(&kvm->srcu);
6166
		write_lock(&kvm->mmu_lock);
6167

6168 6169 6170 6171 6172 6173
		if (kvm_has_zapped_obsolete_pages(kvm)) {
			kvm_mmu_commit_zap_page(kvm,
			      &kvm->arch.zapped_obsolete_pages);
			goto unlock;
		}

6174
		freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan);
6175

6176
unlock:
6177
		write_unlock(&kvm->mmu_lock);
6178
		srcu_read_unlock(&kvm->srcu, idx);
6179

6180 6181 6182 6183 6184
		/*
		 * unfair on small ones
		 * per-vm shrinkers cry out
		 * sadness comes quickly
		 */
6185 6186
		list_move_tail(&kvm->vm_list, &vm_list);
		break;
6187 6188
	}

J
Junaid Shahid 已提交
6189
	mutex_unlock(&kvm_lock);
6190 6191 6192 6193 6194 6195
	return freed;
}

static unsigned long
mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
{
6196
	return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
6197 6198 6199
}

static struct shrinker mmu_shrinker = {
6200 6201
	.count_objects = mmu_shrink_count,
	.scan_objects = mmu_shrink_scan,
6202 6203 6204
	.seeks = DEFAULT_SEEKS * 10,
};

I
Ingo Molnar 已提交
6205
static void mmu_destroy_caches(void)
6206
{
6207 6208
	kmem_cache_destroy(pte_list_desc_cache);
	kmem_cache_destroy(mmu_page_header_cache);
6209 6210
}

P
Paolo Bonzini 已提交
6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244
static bool get_nx_auto_mode(void)
{
	/* Return true when CPU has the bug, and mitigations are ON */
	return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
}

static void __set_nx_huge_pages(bool val)
{
	nx_huge_pages = itlb_multihit_kvm_mitigation = val;
}

static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
{
	bool old_val = nx_huge_pages;
	bool new_val;

	/* In "auto" mode deploy workaround only if CPU has the bug. */
	if (sysfs_streq(val, "off"))
		new_val = 0;
	else if (sysfs_streq(val, "force"))
		new_val = 1;
	else if (sysfs_streq(val, "auto"))
		new_val = get_nx_auto_mode();
	else if (strtobool(val, &new_val) < 0)
		return -EINVAL;

	__set_nx_huge_pages(new_val);

	if (new_val != old_val) {
		struct kvm *kvm;

		mutex_lock(&kvm_lock);

		list_for_each_entry(kvm, &vm_list, vm_list) {
6245
			mutex_lock(&kvm->slots_lock);
P
Paolo Bonzini 已提交
6246
			kvm_mmu_zap_all_fast(kvm);
6247
			mutex_unlock(&kvm->slots_lock);
6248 6249

			wake_up_process(kvm->arch.nx_lpage_recovery_thread);
P
Paolo Bonzini 已提交
6250 6251 6252 6253 6254 6255 6256
		}
		mutex_unlock(&kvm_lock);
	}

	return 0;
}

6257 6258 6259 6260 6261
/*
 * nx_huge_pages needs to be resolved to true/false when kvm.ko is loaded, as
 * its default value of -1 is technically undefined behavior for a boolean.
 */
void kvm_mmu_x86_module_init(void)
6262
{
P
Paolo Bonzini 已提交
6263 6264
	if (nx_huge_pages == -1)
		__set_nx_huge_pages(get_nx_auto_mode());
6265 6266 6267 6268 6269 6270 6271 6272 6273 6274
}

/*
 * The bulk of the MMU initialization is deferred until the vendor module is
 * loaded as many of the masks/values may be modified by VMX or SVM, i.e. need
 * to be reset when a potentially different vendor module is loaded.
 */
int kvm_mmu_vendor_module_init(void)
{
	int ret = -ENOMEM;
P
Paolo Bonzini 已提交
6275

6276 6277 6278 6279 6280 6281 6282 6283
	/*
	 * MMU roles use union aliasing which is, generally speaking, an
	 * undefined behavior. However, we supposedly know how compilers behave
	 * and the current status quo is unlikely to change. Guardians below are
	 * supposed to let us know if the assumption becomes false.
	 */
	BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
	BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
6284
	BUILD_BUG_ON(sizeof(union kvm_cpu_role) != sizeof(u64));
6285

6286
	kvm_mmu_reset_all_pte_masks();
6287

6288 6289
	pte_list_desc_cache = kmem_cache_create("pte_list_desc",
					    sizeof(struct pte_list_desc),
6290
					    0, SLAB_ACCOUNT, NULL);
6291
	if (!pte_list_desc_cache)
6292
		goto out;
6293

6294 6295
	mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
						  sizeof(struct kvm_mmu_page),
6296
						  0, SLAB_ACCOUNT, NULL);
6297
	if (!mmu_page_header_cache)
6298
		goto out;
6299

6300
	if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
6301
		goto out;
6302

6303 6304 6305
	ret = register_shrinker(&mmu_shrinker);
	if (ret)
		goto out;
6306

6307 6308
	return 0;

6309
out:
6310
	mmu_destroy_caches();
6311
	return ret;
6312 6313
}

6314 6315
void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
{
6316
	kvm_mmu_unload(vcpu);
6317 6318
	free_mmu_pages(&vcpu->arch.root_mmu);
	free_mmu_pages(&vcpu->arch.guest_mmu);
6319
	mmu_free_memory_caches(vcpu);
6320 6321
}

6322
void kvm_mmu_vendor_module_exit(void)
6323 6324 6325 6326
{
	mmu_destroy_caches();
	percpu_counter_destroy(&kvm_total_used_mmu_pages);
	unregister_shrinker(&mmu_shrinker);
6327
}
6328

6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353
/*
 * Calculate the effective recovery period, accounting for '0' meaning "let KVM
 * select a halving time of 1 hour".  Returns true if recovery is enabled.
 */
static bool calc_nx_huge_pages_recovery_period(uint *period)
{
	/*
	 * Use READ_ONCE to get the params, this may be called outside of the
	 * param setters, e.g. by the kthread to compute its next timeout.
	 */
	bool enabled = READ_ONCE(nx_huge_pages);
	uint ratio = READ_ONCE(nx_huge_pages_recovery_ratio);

	if (!enabled || !ratio)
		return false;

	*period = READ_ONCE(nx_huge_pages_recovery_period_ms);
	if (!*period) {
		/* Make sure the period is not less than one second.  */
		ratio = min(ratio, 3600u);
		*period = 60 * 60 * 1000 / ratio;
	}
	return true;
}

6354
static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp)
6355
{
6356 6357
	bool was_recovery_enabled, is_recovery_enabled;
	uint old_period, new_period;
6358 6359
	int err;

6360
	was_recovery_enabled = calc_nx_huge_pages_recovery_period(&old_period);
6361

6362 6363 6364 6365
	err = param_set_uint(val, kp);
	if (err)
		return err;

6366
	is_recovery_enabled = calc_nx_huge_pages_recovery_period(&new_period);
6367

6368
	if (is_recovery_enabled &&
6369
	    (!was_recovery_enabled || old_period > new_period)) {
6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384
		struct kvm *kvm;

		mutex_lock(&kvm_lock);

		list_for_each_entry(kvm, &vm_list, vm_list)
			wake_up_process(kvm->arch.nx_lpage_recovery_thread);

		mutex_unlock(&kvm_lock);
	}

	return err;
}

static void kvm_recover_nx_lpages(struct kvm *kvm)
{
6385
	unsigned long nx_lpage_splits = kvm->stat.nx_lpage_splits;
6386 6387 6388 6389
	int rcu_idx;
	struct kvm_mmu_page *sp;
	unsigned int ratio;
	LIST_HEAD(invalid_list);
6390
	bool flush = false;
6391 6392 6393
	ulong to_zap;

	rcu_idx = srcu_read_lock(&kvm->srcu);
6394
	write_lock(&kvm->mmu_lock);
6395

6396 6397 6398 6399 6400 6401 6402
	/*
	 * Zapping TDP MMU shadow pages, including the remote TLB flush, must
	 * be done under RCU protection, because the pages are freed via RCU
	 * callback.
	 */
	rcu_read_lock();

6403
	ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
6404
	to_zap = ratio ? DIV_ROUND_UP(nx_lpage_splits, ratio) : 0;
6405 6406 6407 6408
	for ( ; to_zap; --to_zap) {
		if (list_empty(&kvm->arch.lpage_disallowed_mmu_pages))
			break;

6409 6410 6411 6412 6413 6414 6415 6416 6417
		/*
		 * We use a separate list instead of just using active_mmu_pages
		 * because the number of lpage_disallowed pages is expected to
		 * be relatively small compared to the total.
		 */
		sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
				      struct kvm_mmu_page,
				      lpage_disallowed_link);
		WARN_ON_ONCE(!sp->lpage_disallowed);
6418
		if (is_tdp_mmu_page(sp)) {
6419
			flush |= kvm_tdp_mmu_zap_sp(kvm, sp);
6420
		} else {
6421 6422 6423
			kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
			WARN_ON_ONCE(sp->lpage_disallowed);
		}
6424

6425
		if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
6426
			kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
6427 6428
			rcu_read_unlock();

6429
			cond_resched_rwlock_write(&kvm->mmu_lock);
6430
			flush = false;
6431 6432

			rcu_read_lock();
6433 6434
		}
	}
6435
	kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
6436

6437 6438
	rcu_read_unlock();

6439
	write_unlock(&kvm->mmu_lock);
6440 6441 6442 6443 6444
	srcu_read_unlock(&kvm->srcu, rcu_idx);
}

static long get_nx_lpage_recovery_timeout(u64 start_time)
{
6445 6446
	bool enabled;
	uint period;
6447

6448
	enabled = calc_nx_huge_pages_recovery_period(&period);
6449

6450 6451
	return enabled ? start_time + msecs_to_jiffies(period) - get_jiffies_64()
		       : MAX_SCHEDULE_TIMEOUT;
6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496
}

static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
{
	u64 start_time;
	long remaining_time;

	while (true) {
		start_time = get_jiffies_64();
		remaining_time = get_nx_lpage_recovery_timeout(start_time);

		set_current_state(TASK_INTERRUPTIBLE);
		while (!kthread_should_stop() && remaining_time > 0) {
			schedule_timeout(remaining_time);
			remaining_time = get_nx_lpage_recovery_timeout(start_time);
			set_current_state(TASK_INTERRUPTIBLE);
		}

		set_current_state(TASK_RUNNING);

		if (kthread_should_stop())
			return 0;

		kvm_recover_nx_lpages(kvm);
	}
}

int kvm_mmu_post_init_vm(struct kvm *kvm)
{
	int err;

	err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
					  "kvm-nx-lpage-recovery",
					  &kvm->arch.nx_lpage_recovery_thread);
	if (!err)
		kthread_unpark(kvm->arch.nx_lpage_recovery_thread);

	return err;
}

void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
{
	if (kvm->arch.nx_lpage_recovery_thread)
		kthread_stop(kvm->arch.nx_lpage_recovery_thread);
}