mmu.c 169.2 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
A
Avi Kivity 已提交
2 3 4 5 6 7 8 9 10
/*
 * Kernel-based Virtual Machine driver for Linux
 *
 * This module enables machines with Intel VT-x extensions to run virtual
 * machines without emulation or binary translation.
 *
 * MMU support
 *
 * Copyright (C) 2006 Qumranet, Inc.
N
Nicolas Kaiser 已提交
11
 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
A
Avi Kivity 已提交
12 13 14 15 16
 *
 * Authors:
 *   Yaniv Kamay  <yaniv@qumranet.com>
 *   Avi Kivity   <avi@qumranet.com>
 */
A
Avi Kivity 已提交
17

18
#include "irq.h"
19
#include "ioapic.h"
20
#include "mmu.h"
21
#include "mmu_internal.h"
22
#include "tdp_mmu.h"
23
#include "x86.h"
A
Avi Kivity 已提交
24
#include "kvm_cache_regs.h"
25
#include "kvm_emulate.h"
26
#include "cpuid.h"
27
#include "spte.h"
A
Avi Kivity 已提交
28

29
#include <linux/kvm_host.h>
A
Avi Kivity 已提交
30 31 32 33
#include <linux/types.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/highmem.h>
34 35
#include <linux/moduleparam.h>
#include <linux/export.h>
36
#include <linux/swap.h>
M
Marcelo Tosatti 已提交
37
#include <linux/hugetlb.h>
38
#include <linux/compiler.h>
39
#include <linux/srcu.h>
40
#include <linux/slab.h>
41
#include <linux/sched/signal.h>
42
#include <linux/uaccess.h>
43
#include <linux/hash.h>
44
#include <linux/kern_levels.h>
45
#include <linux/kthread.h>
A
Avi Kivity 已提交
46

A
Avi Kivity 已提交
47
#include <asm/page.h>
48
#include <asm/memtype.h>
A
Avi Kivity 已提交
49
#include <asm/cmpxchg.h>
50
#include <asm/io.h>
51
#include <asm/set_memory.h>
52
#include <asm/vmx.h>
53
#include <asm/kvm_page_track.h>
54
#include "trace.h"
A
Avi Kivity 已提交
55

56 57
#include "paging.h"

P
Paolo Bonzini 已提交
58 59
extern bool itlb_multihit_kvm_mitigation;

60
int __read_mostly nx_huge_pages = -1;
61
static uint __read_mostly nx_huge_pages_recovery_period_ms;
62 63 64 65
#ifdef CONFIG_PREEMPT_RT
/* Recovery can cause latency spikes, disable it for PREEMPT_RT.  */
static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
#else
66
static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
67
#endif
P
Paolo Bonzini 已提交
68 69

static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
70
static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp);
P
Paolo Bonzini 已提交
71

72
static const struct kernel_param_ops nx_huge_pages_ops = {
P
Paolo Bonzini 已提交
73 74 75 76
	.set = set_nx_huge_pages,
	.get = param_get_bool,
};

77 78
static const struct kernel_param_ops nx_huge_pages_recovery_param_ops = {
	.set = set_nx_huge_pages_recovery_param,
79 80 81
	.get = param_get_uint,
};

P
Paolo Bonzini 已提交
82 83
module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
__MODULE_PARM_TYPE(nx_huge_pages, "bool");
84
module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_param_ops,
85 86
		&nx_huge_pages_recovery_ratio, 0644);
__MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
87 88 89
module_param_cb(nx_huge_pages_recovery_period_ms, &nx_huge_pages_recovery_param_ops,
		&nx_huge_pages_recovery_period_ms, 0644);
__MODULE_PARM_TYPE(nx_huge_pages_recovery_period_ms, "uint");
P
Paolo Bonzini 已提交
90

91 92 93
static bool __read_mostly force_flush_and_sync_on_reuse;
module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644);

94 95 96 97 98 99 100
/*
 * When setting this variable to true it enables Two-Dimensional-Paging
 * where the hardware walks 2 page tables:
 * 1. the guest-virtual to guest-physical
 * 2. while doing 1. it walks guest-physical to host-physical
 * If the hardware supports that we don't need to do shadow paging.
 */
101
bool tdp_enabled = false;
102

103
static int max_huge_page_level __read_mostly;
104
static int tdp_root_level __read_mostly;
105
static int max_tdp_level __read_mostly;
106

107
#ifdef MMU_DEBUG
108
bool dbg = 0;
109
module_param(dbg, bool, 0644);
110
#endif
A
Avi Kivity 已提交
111

112 113
#define PTE_PREFETCH_NUM		8

A
Avi Kivity 已提交
114 115 116
#define PT32_LEVEL_BITS 10

#define PT32_LEVEL_SHIFT(level) \
M
Mike Day 已提交
117
		(PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
A
Avi Kivity 已提交
118

119 120 121
#define PT32_LVL_OFFSET_MASK(level) \
	(PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
122 123 124 125 126 127 128 129

#define PT32_INDEX(address, level)\
	(((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))


#define PT32_BASE_ADDR_MASK PAGE_MASK
#define PT32_DIR_BASE_ADDR_MASK \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
130 131 132
#define PT32_LVL_ADDR_MASK(level) \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
					    * PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
133

134 135
#include <trace/events/kvm.h>

136
/* make pte_list_desc fit well in cache lines */
137
#define PTE_LIST_EXT 14
138

139 140 141 142 143
/*
 * Slight optimization of cacheline layout, by putting `more' and `spte_count'
 * at the start; then accessing it will only use one single cacheline for
 * either full (entries==PTE_LIST_EXT) case or entries<=6.
 */
144 145
struct pte_list_desc {
	struct pte_list_desc *more;
146 147 148 149 150 151
	/*
	 * Stores number of entries stored in the pte_list_desc.  No need to be
	 * u64 but just for easier alignment.  When PTE_LIST_EXT, means full.
	 */
	u64 spte_count;
	u64 *sptes[PTE_LIST_EXT];
152 153
};

154 155 156 157
struct kvm_shadow_walk_iterator {
	u64 addr;
	hpa_t shadow_addr;
	u64 *sptep;
158
	int level;
159 160 161
	unsigned index;
};

162 163 164 165 166 167 168
#define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker)     \
	for (shadow_walk_init_using_root(&(_walker), (_vcpu),              \
					 (_root), (_addr));                \
	     shadow_walk_okay(&(_walker));			           \
	     shadow_walk_next(&(_walker)))

#define for_each_shadow_entry(_vcpu, _addr, _walker)            \
169 170 171 172
	for (shadow_walk_init(&(_walker), _vcpu, _addr);	\
	     shadow_walk_okay(&(_walker));			\
	     shadow_walk_next(&(_walker)))

173 174 175 176 177 178
#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)	\
	for (shadow_walk_init(&(_walker), _vcpu, _addr);		\
	     shadow_walk_okay(&(_walker)) &&				\
		({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });	\
	     __shadow_walk_next(&(_walker), spte))

179
static struct kmem_cache *pte_list_desc_cache;
180
struct kmem_cache *mmu_page_header_cache;
181
static struct percpu_counter kvm_total_used_mmu_pages;
182

183
static void mmu_spte_set(u64 *sptep, u64 spte);
184 185
static union kvm_mmu_page_role
kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
186

187 188 189 190 191 192
struct kvm_mmu_role_regs {
	const unsigned long cr0;
	const unsigned long cr4;
	const u64 efer;
};

193 194 195
#define CREATE_TRACE_POINTS
#include "mmutrace.h"

196 197 198 199 200 201
/*
 * Yes, lot's of underscores.  They're a hint that you probably shouldn't be
 * reading from the role_regs.  Once the mmu_role is constructed, it becomes
 * the single source of truth for the MMU's state.
 */
#define BUILD_MMU_ROLE_REGS_ACCESSOR(reg, name, flag)			\
202
static inline bool __maybe_unused ____is_##reg##_##name(struct kvm_mmu_role_regs *regs)\
203 204 205 206 207 208 209 210 211 212 213 214 215 216
{									\
	return !!(regs->reg & flag);					\
}
BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, pg, X86_CR0_PG);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, wp, X86_CR0_WP);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pse, X86_CR4_PSE);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pae, X86_CR4_PAE);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smep, X86_CR4_SMEP);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smap, X86_CR4_SMAP);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pke, X86_CR4_PKE);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, la57, X86_CR4_LA57);
BUILD_MMU_ROLE_REGS_ACCESSOR(efer, nx, EFER_NX);
BUILD_MMU_ROLE_REGS_ACCESSOR(efer, lma, EFER_LMA);

217 218 219 220 221 222 223
/*
 * The MMU itself (with a valid role) is the single source of truth for the
 * MMU.  Do not use the regs used to build the MMU/role, nor the vCPU.  The
 * regs don't account for dependencies, e.g. clearing CR4 bits if CR0.PG=1,
 * and the vCPU may be incorrect/irrelevant.
 */
#define BUILD_MMU_ROLE_ACCESSOR(base_or_ext, reg, name)		\
224
static inline bool __maybe_unused is_##reg##_##name(struct kvm_mmu *mmu)	\
225 226 227 228 229 230 231 232 233 234 235 236 237
{								\
	return !!(mmu->mmu_role. base_or_ext . reg##_##name);	\
}
BUILD_MMU_ROLE_ACCESSOR(ext,  cr0, pg);
BUILD_MMU_ROLE_ACCESSOR(base, cr0, wp);
BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, pse);
BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, pae);
BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, smep);
BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, smap);
BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, pke);
BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, la57);
BUILD_MMU_ROLE_ACCESSOR(base, efer, nx);

238 239 240 241 242 243 244 245 246 247
static struct kvm_mmu_role_regs vcpu_to_role_regs(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu_role_regs regs = {
		.cr0 = kvm_read_cr0_bits(vcpu, KVM_MMU_CR0_ROLE_BITS),
		.cr4 = kvm_read_cr4_bits(vcpu, KVM_MMU_CR4_ROLE_BITS),
		.efer = vcpu->arch.efer,
	};

	return regs;
}
248

249 250 251 252 253 254 255 256 257 258 259 260
static int role_regs_to_root_level(struct kvm_mmu_role_regs *regs)
{
	if (!____is_cr0_pg(regs))
		return 0;
	else if (____is_efer_lma(regs))
		return ____is_cr4_la57(regs) ? PT64_ROOT_5LEVEL :
					       PT64_ROOT_4LEVEL;
	else if (____is_cr4_pae(regs))
		return PT32E_ROOT_LEVEL;
	else
		return PT32_ROOT_LEVEL;
}
261 262 263

static inline bool kvm_available_flush_tlb_with_range(void)
{
264
	return kvm_x86_ops.tlb_remote_flush_with_range;
265 266 267 268 269 270 271
}

static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
		struct kvm_tlb_range *range)
{
	int ret = -ENOTSUPP;

272
	if (range && kvm_x86_ops.tlb_remote_flush_with_range)
273
		ret = static_call(kvm_x86_tlb_remote_flush_with_range)(kvm, range);
274 275 276 277 278

	if (ret)
		kvm_flush_remote_tlbs(kvm);
}

279
void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
280 281 282 283 284 285 286 287 288 289
		u64 start_gfn, u64 pages)
{
	struct kvm_tlb_range range;

	range.start_gfn = start_gfn;
	range.pages = pages;

	kvm_flush_remote_tlbs_with_range(kvm, &range);
}

290 291 292
static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
			   unsigned int access)
{
293
	u64 spte = make_mmio_spte(vcpu, gfn, access);
294

295 296
	trace_mark_mmio_spte(sptep, gfn, spte);
	mmu_spte_set(sptep, spte);
297 298 299 300
}

static gfn_t get_mmio_spte_gfn(u64 spte)
{
301
	u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
302

303
	gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)
304 305 306
	       & shadow_nonpresent_or_rsvd_mask;

	return gpa >> PAGE_SHIFT;
307 308 309 310
}

static unsigned get_mmio_spte_access(u64 spte)
{
311
	return spte & shadow_mmio_access_mask;
312 313
}

314
static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
315
{
316
	u64 kvm_gen, spte_gen, gen;
317

318 319 320
	gen = kvm_vcpu_memslots(vcpu)->generation;
	if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
		return false;
321

322
	kvm_gen = gen & MMIO_SPTE_GEN_MASK;
323 324 325 326
	spte_gen = get_mmio_spte_generation(spte);

	trace_check_mmio_spte(spte, kvm_gen, spte_gen);
	return likely(kvm_gen == spte_gen);
327 328
}

A
Avi Kivity 已提交
329 330 331 332 333
static int is_cpuid_PSE36(void)
{
	return 1;
}

334 335 336 337 338 339 340
static gfn_t pse36_gfn_delta(u32 gpte)
{
	int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;

	return (gpte & PT32_DIR_PSE36_MASK) << shift;
}

341
#ifdef CONFIG_X86_64
A
Avi Kivity 已提交
342
static void __set_spte(u64 *sptep, u64 spte)
343
{
344
	WRITE_ONCE(*sptep, spte);
345 346
}

347
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
348
{
349
	WRITE_ONCE(*sptep, spte);
350 351 352 353 354 355
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	return xchg(sptep, spte);
}
356 357 358

static u64 __get_spte_lockless(u64 *sptep)
{
359
	return READ_ONCE(*sptep);
360
}
361
#else
362 363 364 365 366 367 368
union split_spte {
	struct {
		u32 spte_low;
		u32 spte_high;
	};
	u64 spte;
};
369

370 371
static void count_spte_clear(u64 *sptep, u64 spte)
{
372
	struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
373 374 375 376 377 378 379 380 381

	if (is_shadow_present_pte(spte))
		return;

	/* Ensure the spte is completely set before we increase the count */
	smp_wmb();
	sp->clear_spte_count++;
}

382 383 384
static void __set_spte(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;
385

386 387 388 389 390 391 392 393 394 395 396 397
	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	ssptep->spte_high = sspte.spte_high;

	/*
	 * If we map the spte from nonpresent to present, We should store
	 * the high bits firstly, then set present bit, so cpu can not
	 * fetch this spte while we are setting the spte.
	 */
	smp_wmb();

398
	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
399 400
}

401 402 403 404 405 406 407
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

408
	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
409 410 411 412 413 414 415 416

	/*
	 * If we map the spte from present to nonpresent, we should clear
	 * present bit firstly to avoid vcpu fetch the old high bits.
	 */
	smp_wmb();

	ssptep->spte_high = sspte.spte_high;
417
	count_spte_clear(sptep, spte);
418 419 420 421 422 423 424 425 426 427 428
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte, orig;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	/* xchg acts as a barrier before the setting of the high bits */
	orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
429 430
	orig.spte_high = ssptep->spte_high;
	ssptep->spte_high = sspte.spte_high;
431
	count_spte_clear(sptep, spte);
432 433 434

	return orig.spte;
}
435 436 437

/*
 * The idea using the light way get the spte on x86_32 guest is from
438
 * gup_get_pte (mm/gup.c).
439 440 441 442 443 444 445 446 447 448 449 450 451 452
 *
 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
 * coalesces them and we are running out of the MMU lock.  Therefore
 * we need to protect against in-progress updates of the spte.
 *
 * Reading the spte while an update is in progress may get the old value
 * for the high part of the spte.  The race is fine for a present->non-present
 * change (because the high part of the spte is ignored for non-present spte),
 * but for a present->present change we must reread the spte.
 *
 * All such changes are done in two steps (present->non-present and
 * non-present->present), hence it is enough to count the number of
 * present->non-present updates: if it changed while reading the spte,
 * we might have hit the race.  This is done using clear_spte_count.
453 454 455
 */
static u64 __get_spte_lockless(u64 *sptep)
{
456
	struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
	union split_spte spte, *orig = (union split_spte *)sptep;
	int count;

retry:
	count = sp->clear_spte_count;
	smp_rmb();

	spte.spte_low = orig->spte_low;
	smp_rmb();

	spte.spte_high = orig->spte_high;
	smp_rmb();

	if (unlikely(spte.spte_low != orig->spte_low ||
	      count != sp->clear_spte_count))
		goto retry;

	return spte.spte;
}
476 477
#endif

478 479
static bool spte_has_volatile_bits(u64 spte)
{
480 481 482
	if (!is_shadow_present_pte(spte))
		return false;

483
	/*
484
	 * Always atomically update spte if it can be updated
485 486 487 488
	 * out of mmu-lock, it can ensure dirty bit is not lost,
	 * also, it can help us to get a stable is_writable_pte()
	 * to ensure tlb flush is not missed.
	 */
489 490
	if (spte_can_locklessly_be_made_writable(spte) ||
	    is_access_track_spte(spte))
491 492
		return true;

493
	if (spte_ad_enabled(spte)) {
494 495 496 497
		if ((spte & shadow_accessed_mask) == 0 ||
	    	    (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
			return true;
	}
498

499
	return false;
500 501
}

502 503 504 505 506 507 508 509 510 511 512 513
/* Rules for using mmu_spte_set:
 * Set the sptep from nonpresent to present.
 * Note: the sptep being assigned *must* be either not present
 * or in a state where the hardware will not attempt to update
 * the spte.
 */
static void mmu_spte_set(u64 *sptep, u64 new_spte)
{
	WARN_ON(is_shadow_present_pte(*sptep));
	__set_spte(sptep, new_spte);
}

514 515 516
/*
 * Update the SPTE (excluding the PFN), but do not track changes in its
 * accessed/dirty status.
517
 */
518
static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
519
{
520
	u64 old_spte = *sptep;
521

522
	WARN_ON(!is_shadow_present_pte(new_spte));
523
	check_spte_writable_invariants(new_spte);
524

525 526
	if (!is_shadow_present_pte(old_spte)) {
		mmu_spte_set(sptep, new_spte);
527
		return old_spte;
528
	}
529

530
	if (!spte_has_volatile_bits(old_spte))
531
		__update_clear_spte_fast(sptep, new_spte);
532
	else
533
		old_spte = __update_clear_spte_slow(sptep, new_spte);
534

535 536
	WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));

537 538 539 540 541 542
	return old_spte;
}

/* Rules for using mmu_spte_update:
 * Update the state bits, it means the mapped pfn is not changed.
 *
543 544 545
 * Whenever an MMU-writable SPTE is overwritten with a read-only SPTE, remote
 * TLBs must be flushed. Otherwise rmap_write_protect will find a read-only
 * spte, even though the writable spte might be cached on a CPU's TLB.
546 547 548 549 550 551 552 553 554 555 556
 *
 * Returns true if the TLB needs to be flushed
 */
static bool mmu_spte_update(u64 *sptep, u64 new_spte)
{
	bool flush = false;
	u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);

	if (!is_shadow_present_pte(old_spte))
		return false;

557 558
	/*
	 * For the spte updated out of mmu-lock is safe, since
559
	 * we always atomically update it, see the comments in
560 561
	 * spte_has_volatile_bits().
	 */
562
	if (spte_can_locklessly_be_made_writable(old_spte) &&
563
	      !is_writable_pte(new_spte))
564
		flush = true;
565

566
	/*
567
	 * Flush TLB when accessed/dirty states are changed in the page tables,
568 569 570
	 * to guarantee consistency between TLB and page tables.
	 */

571 572
	if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
		flush = true;
573
		kvm_set_pfn_accessed(spte_to_pfn(old_spte));
574 575 576 577
	}

	if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
		flush = true;
578
		kvm_set_pfn_dirty(spte_to_pfn(old_spte));
579
	}
580

581
	return flush;
582 583
}

584 585 586 587
/*
 * Rules for using mmu_spte_clear_track_bits:
 * It sets the sptep from present to nonpresent, and track the
 * state bits, it is used to clear the last level sptep.
588
 * Returns the old PTE.
589
 */
590
static int mmu_spte_clear_track_bits(struct kvm *kvm, u64 *sptep)
591
{
D
Dan Williams 已提交
592
	kvm_pfn_t pfn;
593
	u64 old_spte = *sptep;
594
	int level = sptep_to_sp(sptep)->role.level;
595 596

	if (!spte_has_volatile_bits(old_spte))
597
		__update_clear_spte_fast(sptep, 0ull);
598
	else
599
		old_spte = __update_clear_spte_slow(sptep, 0ull);
600

601
	if (!is_shadow_present_pte(old_spte))
602
		return old_spte;
603

604 605
	kvm_update_page_stats(kvm, level, -1);

606
	pfn = spte_to_pfn(old_spte);
607 608 609 610 611 612

	/*
	 * KVM does not hold the refcount of the page used by
	 * kvm mmu, before reclaiming the page, we should
	 * unmap it from mmu first.
	 */
613
	WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
614

615
	if (is_accessed_spte(old_spte))
616
		kvm_set_pfn_accessed(pfn);
617 618

	if (is_dirty_spte(old_spte))
619
		kvm_set_pfn_dirty(pfn);
620

621
	return old_spte;
622 623 624 625 626 627 628 629 630
}

/*
 * Rules for using mmu_spte_clear_no_track:
 * Directly clear spte without caring the state bits of sptep,
 * it is used to set the upper level spte.
 */
static void mmu_spte_clear_no_track(u64 *sptep)
{
631
	__update_clear_spte_fast(sptep, 0ull);
632 633
}

634 635 636 637 638
static u64 mmu_spte_get_lockless(u64 *sptep)
{
	return __get_spte_lockless(sptep);
}

639 640 641 642 643 644 645 646
/* Returns the Accessed status of the PTE and resets it at the same time. */
static bool mmu_spte_age(u64 *sptep)
{
	u64 spte = mmu_spte_get_lockless(sptep);

	if (!is_accessed_spte(spte))
		return false;

647
	if (spte_ad_enabled(spte)) {
648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
		clear_bit((ffs(shadow_accessed_mask) - 1),
			  (unsigned long *)sptep);
	} else {
		/*
		 * Capture the dirty status of the page, so that it doesn't get
		 * lost when the SPTE is marked for access tracking.
		 */
		if (is_writable_pte(spte))
			kvm_set_pfn_dirty(spte_to_pfn(spte));

		spte = mark_spte_for_access_track(spte);
		mmu_spte_update_no_track(sptep, spte);
	}

	return true;
}

665 666
static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
{
667 668 669 670 671 672 673 674
	if (is_tdp_mmu(vcpu->arch.mmu)) {
		kvm_tdp_mmu_walk_lockless_begin();
	} else {
		/*
		 * Prevent page table teardown by making any free-er wait during
		 * kvm_flush_remote_tlbs() IPI to all active vcpus.
		 */
		local_irq_disable();
675

676 677 678 679 680 681
		/*
		 * Make sure a following spte read is not reordered ahead of the write
		 * to vcpu->mode.
		 */
		smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
	}
682 683 684 685
}

static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
{
686 687 688 689 690 691 692 693 694 695 696
	if (is_tdp_mmu(vcpu->arch.mmu)) {
		kvm_tdp_mmu_walk_lockless_end();
	} else {
		/*
		 * Make sure the write to vcpu->mode is not reordered in front of
		 * reads to sptes.  If it does, kvm_mmu_commit_zap_page() can see us
		 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
		 */
		smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
		local_irq_enable();
	}
697 698
}

699
static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect)
700
{
701 702
	int r;

703
	/* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */
704 705
	r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
				       1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM);
706
	if (r)
707
		return r;
708 709
	r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache,
				       PT64_ROOT_MAX_LEVEL);
710
	if (r)
711
		return r;
712
	if (maybe_indirect) {
713 714
		r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_gfn_array_cache,
					       PT64_ROOT_MAX_LEVEL);
715 716 717
		if (r)
			return r;
	}
718 719
	return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
					  PT64_ROOT_MAX_LEVEL);
720 721 722 723
}

static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
{
724 725 726 727
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache);
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache);
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_gfn_array_cache);
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
728 729
}

730
static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
731
{
732
	return kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
733 734
}

735
static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
736
{
737
	kmem_cache_free(pte_list_desc_cache, pte_list_desc);
738 739
}

740 741 742 743 744 745 746 747 748 749
static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
{
	if (!sp->role.direct)
		return sp->gfns[index];

	return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
}

static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
{
750
	if (!sp->role.direct) {
751
		sp->gfns[index] = gfn;
752 753 754 755 756 757 758 759
		return;
	}

	if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
		pr_err_ratelimited("gfn mismatch under direct page %llx "
				   "(expected %llx, got %llx)\n",
				   sp->gfn,
				   kvm_mmu_page_get_gfn(sp, index), gfn);
760 761
}

M
Marcelo Tosatti 已提交
762
/*
763 764
 * Return the pointer to the large page information for a given gfn,
 * handling slots that are not large page aligned.
M
Marcelo Tosatti 已提交
765
 */
766
static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
767
		const struct kvm_memory_slot *slot, int level)
M
Marcelo Tosatti 已提交
768 769 770
{
	unsigned long idx;

771
	idx = gfn_to_index(gfn, slot->base_gfn, level);
772
	return &slot->arch.lpage_info[level - 2][idx];
M
Marcelo Tosatti 已提交
773 774
}

775
static void update_gfn_disallow_lpage_count(const struct kvm_memory_slot *slot,
776 777 778 779 780
					    gfn_t gfn, int count)
{
	struct kvm_lpage_info *linfo;
	int i;

781
	for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
782 783 784 785 786 787
		linfo = lpage_info_slot(gfn, slot, i);
		linfo->disallow_lpage += count;
		WARN_ON(linfo->disallow_lpage < 0);
	}
}

788
void kvm_mmu_gfn_disallow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn)
789 790 791 792
{
	update_gfn_disallow_lpage_count(slot, gfn, 1);
}

793
void kvm_mmu_gfn_allow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn)
794 795 796 797
{
	update_gfn_disallow_lpage_count(slot, gfn, -1);
}

798
static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
M
Marcelo Tosatti 已提交
799
{
800
	struct kvm_memslots *slots;
801
	struct kvm_memory_slot *slot;
802
	gfn_t gfn;
M
Marcelo Tosatti 已提交
803

804
	kvm->arch.indirect_shadow_pages++;
805
	gfn = sp->gfn;
806 807
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
808 809

	/* the non-leaf shadow pages are keeping readonly. */
810
	if (sp->role.level > PG_LEVEL_4K)
811 812 813
		return kvm_slot_page_track_add_page(kvm, slot, gfn,
						    KVM_PAGE_TRACK_WRITE);

814
	kvm_mmu_gfn_disallow_lpage(slot, gfn);
M
Marcelo Tosatti 已提交
815 816
}

817
void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
P
Paolo Bonzini 已提交
818 819 820 821 822
{
	if (sp->lpage_disallowed)
		return;

	++kvm->stat.nx_lpage_splits;
823 824
	list_add_tail(&sp->lpage_disallowed_link,
		      &kvm->arch.lpage_disallowed_mmu_pages);
P
Paolo Bonzini 已提交
825 826 827
	sp->lpage_disallowed = true;
}

828
static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
M
Marcelo Tosatti 已提交
829
{
830
	struct kvm_memslots *slots;
831
	struct kvm_memory_slot *slot;
832
	gfn_t gfn;
M
Marcelo Tosatti 已提交
833

834
	kvm->arch.indirect_shadow_pages--;
835
	gfn = sp->gfn;
836 837
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
838
	if (sp->role.level > PG_LEVEL_4K)
839 840 841
		return kvm_slot_page_track_remove_page(kvm, slot, gfn,
						       KVM_PAGE_TRACK_WRITE);

842
	kvm_mmu_gfn_allow_lpage(slot, gfn);
M
Marcelo Tosatti 已提交
843 844
}

845
void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
P
Paolo Bonzini 已提交
846 847 848
{
	--kvm->stat.nx_lpage_splits;
	sp->lpage_disallowed = false;
849
	list_del(&sp->lpage_disallowed_link);
P
Paolo Bonzini 已提交
850 851
}

852 853 854
static struct kvm_memory_slot *
gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
			    bool no_dirty_log)
M
Marcelo Tosatti 已提交
855 856
{
	struct kvm_memory_slot *slot;
857

858
	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
859 860
	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
		return NULL;
861
	if (no_dirty_log && kvm_slot_dirty_track_enabled(slot))
862
		return NULL;
863 864 865 866

	return slot;
}

867
/*
868
 * About rmap_head encoding:
869
 *
870 871
 * If the bit zero of rmap_head->val is clear, then it points to the only spte
 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
872
 * pte_list_desc containing more mappings.
873 874 875 876
 */

/*
 * Returns the number of pointers in the rmap chain, not counting the new one.
877
 */
878
static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
879
			struct kvm_rmap_head *rmap_head)
880
{
881
	struct pte_list_desc *desc;
882
	int count = 0;
883

884
	if (!rmap_head->val) {
885
		rmap_printk("%p %llx 0->1\n", spte, *spte);
886 887
		rmap_head->val = (unsigned long)spte;
	} else if (!(rmap_head->val & 1)) {
888
		rmap_printk("%p %llx 1->many\n", spte, *spte);
889
		desc = mmu_alloc_pte_list_desc(vcpu);
890
		desc->sptes[0] = (u64 *)rmap_head->val;
A
Avi Kivity 已提交
891
		desc->sptes[1] = spte;
892
		desc->spte_count = 2;
893
		rmap_head->val = (unsigned long)desc | 1;
894
		++count;
895
	} else {
896
		rmap_printk("%p %llx many->many\n", spte, *spte);
897
		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
898
		while (desc->spte_count == PTE_LIST_EXT) {
899
			count += PTE_LIST_EXT;
900 901 902
			if (!desc->more) {
				desc->more = mmu_alloc_pte_list_desc(vcpu);
				desc = desc->more;
903
				desc->spte_count = 0;
904 905
				break;
			}
906 907
			desc = desc->more;
		}
908 909
		count += desc->spte_count;
		desc->sptes[desc->spte_count++] = spte;
910
	}
911
	return count;
912 913
}

914
static void
915 916 917
pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
			   struct pte_list_desc *desc, int i,
			   struct pte_list_desc *prev_desc)
918
{
919
	int j = desc->spte_count - 1;
920

A
Avi Kivity 已提交
921 922
	desc->sptes[i] = desc->sptes[j];
	desc->sptes[j] = NULL;
923 924
	desc->spte_count--;
	if (desc->spte_count)
925 926
		return;
	if (!prev_desc && !desc->more)
927
		rmap_head->val = 0;
928 929 930 931
	else
		if (prev_desc)
			prev_desc->more = desc->more;
		else
932
			rmap_head->val = (unsigned long)desc->more | 1;
933
	mmu_free_pte_list_desc(desc);
934 935
}

936
static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
937
{
938 939
	struct pte_list_desc *desc;
	struct pte_list_desc *prev_desc;
940 941
	int i;

942
	if (!rmap_head->val) {
943
		pr_err("%s: %p 0->BUG\n", __func__, spte);
944
		BUG();
945
	} else if (!(rmap_head->val & 1)) {
946
		rmap_printk("%p 1->0\n", spte);
947
		if ((u64 *)rmap_head->val != spte) {
948
			pr_err("%s:  %p 1->BUG\n", __func__, spte);
949 950
			BUG();
		}
951
		rmap_head->val = 0;
952
	} else {
953
		rmap_printk("%p many->many\n", spte);
954
		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
955 956
		prev_desc = NULL;
		while (desc) {
957
			for (i = 0; i < desc->spte_count; ++i) {
A
Avi Kivity 已提交
958
				if (desc->sptes[i] == spte) {
959 960
					pte_list_desc_remove_entry(rmap_head,
							desc, i, prev_desc);
961 962
					return;
				}
963
			}
964 965 966
			prev_desc = desc;
			desc = desc->more;
		}
967
		pr_err("%s: %p many->many\n", __func__, spte);
968 969 970 971
		BUG();
	}
}

972 973
static void pte_list_remove(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			    u64 *sptep)
974
{
975
	mmu_spte_clear_track_bits(kvm, sptep);
976 977 978
	__pte_list_remove(sptep, rmap_head);
}

P
Peter Xu 已提交
979
/* Return true if rmap existed, false otherwise */
980
static bool pte_list_destroy(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
P
Peter Xu 已提交
981 982 983 984 985 986 987 988
{
	struct pte_list_desc *desc, *next;
	int i;

	if (!rmap_head->val)
		return false;

	if (!(rmap_head->val & 1)) {
989
		mmu_spte_clear_track_bits(kvm, (u64 *)rmap_head->val);
P
Peter Xu 已提交
990 991 992 993 994 995 996
		goto out;
	}

	desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);

	for (; desc; desc = next) {
		for (i = 0; i < desc->spte_count; i++)
997
			mmu_spte_clear_track_bits(kvm, desc->sptes[i]);
P
Peter Xu 已提交
998 999 1000 1001 1002 1003 1004 1005 1006
		next = desc->more;
		mmu_free_pte_list_desc(desc);
	}
out:
	/* rmap_head is meaningless now, remember to reset it */
	rmap_head->val = 0;
	return true;
}

1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
unsigned int pte_list_count(struct kvm_rmap_head *rmap_head)
{
	struct pte_list_desc *desc;
	unsigned int count = 0;

	if (!rmap_head->val)
		return 0;
	else if (!(rmap_head->val & 1))
		return 1;

	desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);

	while (desc) {
		count += desc->spte_count;
		desc = desc->more;
	}

	return count;
}

1027 1028
static struct kvm_rmap_head *gfn_to_rmap(gfn_t gfn, int level,
					 const struct kvm_memory_slot *slot)
1029
{
1030
	unsigned long idx;
1031

1032
	idx = gfn_to_index(gfn, slot->base_gfn, level);
1033
	return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
1034 1035
}

1036 1037
static bool rmap_can_add(struct kvm_vcpu *vcpu)
{
1038
	struct kvm_mmu_memory_cache *mc;
1039

1040
	mc = &vcpu->arch.mmu_pte_list_desc_cache;
1041
	return kvm_mmu_memory_cache_nr_free_objects(mc);
1042 1043
}

1044 1045
static void rmap_remove(struct kvm *kvm, u64 *spte)
{
1046 1047
	struct kvm_memslots *slots;
	struct kvm_memory_slot *slot;
1048 1049
	struct kvm_mmu_page *sp;
	gfn_t gfn;
1050
	struct kvm_rmap_head *rmap_head;
1051

1052
	sp = sptep_to_sp(spte);
1053
	gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1054 1055

	/*
1056 1057 1058
	 * Unlike rmap_add, rmap_remove does not run in the context of a vCPU
	 * so we have to determine which memslots to use based on context
	 * information in sp->role.
1059 1060 1061 1062
	 */
	slots = kvm_memslots_for_spte_role(kvm, sp->role);

	slot = __gfn_to_memslot(slots, gfn);
1063
	rmap_head = gfn_to_rmap(gfn, sp->role.level, slot);
1064

1065
	__pte_list_remove(spte, rmap_head);
1066 1067
}

1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
/*
 * Used by the following functions to iterate through the sptes linked by a
 * rmap.  All fields are private and not assumed to be used outside.
 */
struct rmap_iterator {
	/* private fields */
	struct pte_list_desc *desc;	/* holds the sptep if not NULL */
	int pos;			/* index of the sptep */
};

/*
 * Iteration must be started by this function.  This should also be used after
 * removing/dropping sptes from the rmap link because in such cases the
M
Miaohe Lin 已提交
1081
 * information in the iterator may not be valid.
1082 1083 1084
 *
 * Returns sptep if found, NULL otherwise.
 */
1085 1086
static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
			   struct rmap_iterator *iter)
1087
{
1088 1089
	u64 *sptep;

1090
	if (!rmap_head->val)
1091 1092
		return NULL;

1093
	if (!(rmap_head->val & 1)) {
1094
		iter->desc = NULL;
1095 1096
		sptep = (u64 *)rmap_head->val;
		goto out;
1097 1098
	}

1099
	iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1100
	iter->pos = 0;
1101 1102 1103 1104
	sptep = iter->desc->sptes[iter->pos];
out:
	BUG_ON(!is_shadow_present_pte(*sptep));
	return sptep;
1105 1106 1107 1108 1109 1110 1111 1112 1113
}

/*
 * Must be used with a valid iterator: e.g. after rmap_get_first().
 *
 * Returns sptep if found, NULL otherwise.
 */
static u64 *rmap_get_next(struct rmap_iterator *iter)
{
1114 1115
	u64 *sptep;

1116 1117 1118 1119 1120
	if (iter->desc) {
		if (iter->pos < PTE_LIST_EXT - 1) {
			++iter->pos;
			sptep = iter->desc->sptes[iter->pos];
			if (sptep)
1121
				goto out;
1122 1123 1124 1125 1126 1127 1128
		}

		iter->desc = iter->desc->more;

		if (iter->desc) {
			iter->pos = 0;
			/* desc->sptes[0] cannot be NULL */
1129 1130
			sptep = iter->desc->sptes[iter->pos];
			goto out;
1131 1132 1133 1134
		}
	}

	return NULL;
1135 1136 1137
out:
	BUG_ON(!is_shadow_present_pte(*sptep));
	return sptep;
1138 1139
}

1140 1141
#define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)			\
	for (_spte_ = rmap_get_first(_rmap_head_, _iter_);		\
1142
	     _spte_; _spte_ = rmap_get_next(_iter_))
1143

1144
static void drop_spte(struct kvm *kvm, u64 *sptep)
1145
{
1146
	u64 old_spte = mmu_spte_clear_track_bits(kvm, sptep);
1147 1148

	if (is_shadow_present_pte(old_spte))
1149
		rmap_remove(kvm, sptep);
A
Avi Kivity 已提交
1150 1151
}

1152 1153 1154 1155

static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
{
	if (is_large_pte(*sptep)) {
1156
		WARN_ON(sptep_to_sp(sptep)->role.level == PG_LEVEL_4K);
1157 1158 1159 1160 1161 1162 1163 1164 1165
		drop_spte(kvm, sptep);
		return true;
	}

	return false;
}

static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
{
1166
	if (__drop_large_spte(vcpu->kvm, sptep)) {
1167
		struct kvm_mmu_page *sp = sptep_to_sp(sptep);
1168 1169 1170 1171

		kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
			KVM_PAGES_PER_HPAGE(sp->role.level));
	}
1172 1173 1174
}

/*
1175
 * Write-protect on the specified @sptep, @pt_protect indicates whether
1176
 * spte write-protection is caused by protecting shadow page table.
1177
 *
T
Tiejun Chen 已提交
1178
 * Note: write protection is difference between dirty logging and spte
1179 1180 1181 1182 1183
 * protection:
 * - for dirty logging, the spte can be set to writable at anytime if
 *   its dirty bitmap is properly set.
 * - for spte protection, the spte can be writable only after unsync-ing
 *   shadow page.
1184
 *
1185
 * Return true if tlb need be flushed.
1186
 */
1187
static bool spte_write_protect(u64 *sptep, bool pt_protect)
1188 1189 1190
{
	u64 spte = *sptep;

1191
	if (!is_writable_pte(spte) &&
1192
	      !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1193 1194
		return false;

1195
	rmap_printk("spte %p %llx\n", sptep, *sptep);
1196

1197
	if (pt_protect)
1198
		spte &= ~shadow_mmu_writable_mask;
1199
	spte = spte & ~PT_WRITABLE_MASK;
1200

1201
	return mmu_spte_update(sptep, spte);
1202 1203
}

1204 1205
static bool rmap_write_protect(struct kvm_rmap_head *rmap_head,
			       bool pt_protect)
1206
{
1207 1208
	u64 *sptep;
	struct rmap_iterator iter;
1209
	bool flush = false;
1210

1211
	for_each_rmap_spte(rmap_head, &iter, sptep)
1212
		flush |= spte_write_protect(sptep, pt_protect);
1213

1214
	return flush;
1215 1216
}

1217
static bool spte_clear_dirty(u64 *sptep)
1218 1219 1220
{
	u64 spte = *sptep;

1221
	rmap_printk("spte %p %llx\n", sptep, *sptep);
1222

1223
	MMU_WARN_ON(!spte_ad_enabled(spte));
1224 1225 1226 1227
	spte &= ~shadow_dirty_mask;
	return mmu_spte_update(sptep, spte);
}

1228
static bool spte_wrprot_for_clear_dirty(u64 *sptep)
1229 1230 1231
{
	bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
					       (unsigned long *)sptep);
1232
	if (was_writable && !spte_ad_enabled(*sptep))
1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
		kvm_set_pfn_dirty(spte_to_pfn(*sptep));

	return was_writable;
}

/*
 * Gets the GFN ready for another round of dirty logging by clearing the
 *	- D bit on ad-enabled SPTEs, and
 *	- W bit on ad-disabled SPTEs.
 * Returns true iff any D or W bits were cleared.
 */
1244
static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1245
			       const struct kvm_memory_slot *slot)
1246 1247 1248 1249 1250
{
	u64 *sptep;
	struct rmap_iterator iter;
	bool flush = false;

1251
	for_each_rmap_spte(rmap_head, &iter, sptep)
1252 1253
		if (spte_ad_need_write_protect(*sptep))
			flush |= spte_wrprot_for_clear_dirty(sptep);
1254
		else
1255
			flush |= spte_clear_dirty(sptep);
1256 1257 1258 1259

	return flush;
}

1260
/**
1261
 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1262 1263 1264 1265 1266
 * @kvm: kvm instance
 * @slot: slot to protect
 * @gfn_offset: start of the BITS_PER_LONG pages we care about
 * @mask: indicates which pages we should protect
 *
1267
 * Used when we do not need to care about huge page mappings.
1268
 */
1269
static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1270 1271
				     struct kvm_memory_slot *slot,
				     gfn_t gfn_offset, unsigned long mask)
1272
{
1273
	struct kvm_rmap_head *rmap_head;
1274

1275
	if (is_tdp_mmu_enabled(kvm))
1276 1277
		kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
				slot->base_gfn + gfn_offset, mask, true);
1278 1279 1280 1281

	if (!kvm_memslots_have_rmaps(kvm))
		return;

1282
	while (mask) {
1283 1284
		rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
					PG_LEVEL_4K, slot);
1285
		rmap_write_protect(rmap_head, false);
M
Marcelo Tosatti 已提交
1286

1287 1288 1289
		/* clear the first set bit */
		mask &= mask - 1;
	}
1290 1291
}

1292
/**
1293 1294
 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
 * protect the page if the D-bit isn't supported.
1295 1296 1297 1298 1299 1300 1301
 * @kvm: kvm instance
 * @slot: slot to clear D-bit
 * @gfn_offset: start of the BITS_PER_LONG pages we care about
 * @mask: indicates which pages we should clear D-bit
 *
 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
 */
1302 1303 1304
static void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
					 struct kvm_memory_slot *slot,
					 gfn_t gfn_offset, unsigned long mask)
1305
{
1306
	struct kvm_rmap_head *rmap_head;
1307

1308
	if (is_tdp_mmu_enabled(kvm))
1309 1310
		kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
				slot->base_gfn + gfn_offset, mask, false);
1311 1312 1313 1314

	if (!kvm_memslots_have_rmaps(kvm))
		return;

1315
	while (mask) {
1316 1317
		rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
					PG_LEVEL_4K, slot);
1318
		__rmap_clear_dirty(kvm, rmap_head, slot);
1319 1320 1321 1322 1323 1324

		/* clear the first set bit */
		mask &= mask - 1;
	}
}

1325 1326 1327 1328 1329 1330 1331
/**
 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
 * PT level pages.
 *
 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
 * enable dirty logging for them.
 *
1332 1333
 * We need to care about huge page mappings: e.g. during dirty logging we may
 * have such mappings.
1334 1335 1336 1337 1338
 */
void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
				struct kvm_memory_slot *slot,
				gfn_t gfn_offset, unsigned long mask)
{
1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
	/*
	 * Huge pages are NOT write protected when we start dirty logging in
	 * initially-all-set mode; must write protect them here so that they
	 * are split to 4K on the first write.
	 *
	 * The gfn_offset is guaranteed to be aligned to 64, but the base_gfn
	 * of memslot has no such restriction, so the range can cross two large
	 * pages.
	 */
	if (kvm_dirty_log_manual_protect_and_init_set(kvm)) {
		gfn_t start = slot->base_gfn + gfn_offset + __ffs(mask);
		gfn_t end = slot->base_gfn + gfn_offset + __fls(mask);

1352 1353 1354
		if (READ_ONCE(eager_page_split))
			kvm_mmu_try_split_huge_pages(kvm, slot, start, end, PG_LEVEL_4K);

1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
		kvm_mmu_slot_gfn_write_protect(kvm, slot, start, PG_LEVEL_2M);

		/* Cross two large pages? */
		if (ALIGN(start << PAGE_SHIFT, PMD_SIZE) !=
		    ALIGN(end << PAGE_SHIFT, PMD_SIZE))
			kvm_mmu_slot_gfn_write_protect(kvm, slot, end,
						       PG_LEVEL_2M);
	}

	/* Now handle 4K PTEs.  */
1365 1366
	if (kvm_x86_ops.cpu_dirty_log_size)
		kvm_mmu_clear_dirty_pt_masked(kvm, slot, gfn_offset, mask);
1367 1368
	else
		kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1369 1370
}

1371 1372
int kvm_cpu_dirty_log_size(void)
{
1373
	return kvm_x86_ops.cpu_dirty_log_size;
1374 1375
}

1376
bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1377 1378
				    struct kvm_memory_slot *slot, u64 gfn,
				    int min_level)
1379
{
1380
	struct kvm_rmap_head *rmap_head;
1381
	int i;
1382
	bool write_protected = false;
1383

1384 1385
	if (kvm_memslots_have_rmaps(kvm)) {
		for (i = min_level; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
1386
			rmap_head = gfn_to_rmap(gfn, i, slot);
1387
			write_protected |= rmap_write_protect(rmap_head, true);
1388
		}
1389 1390
	}

1391
	if (is_tdp_mmu_enabled(kvm))
1392
		write_protected |=
1393
			kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn, min_level);
1394

1395
	return write_protected;
1396 1397
}

1398
static bool kvm_vcpu_write_protect_gfn(struct kvm_vcpu *vcpu, u64 gfn)
1399 1400 1401 1402
{
	struct kvm_memory_slot *slot;

	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1403
	return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn, PG_LEVEL_4K);
1404 1405
}

1406
static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1407
			  const struct kvm_memory_slot *slot)
1408
{
1409
	return pte_list_destroy(kvm, rmap_head);
1410 1411
}

1412 1413 1414
static bool kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			    struct kvm_memory_slot *slot, gfn_t gfn, int level,
			    pte_t unused)
1415
{
1416
	return kvm_zap_rmapp(kvm, rmap_head, slot);
1417 1418
}

1419 1420 1421
static bool kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			      struct kvm_memory_slot *slot, gfn_t gfn, int level,
			      pte_t pte)
1422
{
1423 1424
	u64 *sptep;
	struct rmap_iterator iter;
1425
	bool need_flush = false;
1426
	u64 new_spte;
D
Dan Williams 已提交
1427
	kvm_pfn_t new_pfn;
1428

1429 1430
	WARN_ON(pte_huge(pte));
	new_pfn = pte_pfn(pte);
1431

1432
restart:
1433
	for_each_rmap_spte(rmap_head, &iter, sptep) {
1434
		rmap_printk("spte %p %llx gfn %llx (%d)\n",
1435
			    sptep, *sptep, gfn, level);
1436

1437
		need_flush = true;
1438

1439
		if (pte_write(pte)) {
1440
			pte_list_remove(kvm, rmap_head, sptep);
1441
			goto restart;
1442
		} else {
1443 1444
			new_spte = kvm_mmu_changed_pte_notifier_make_spte(
					*sptep, new_pfn);
1445

1446
			mmu_spte_clear_track_bits(kvm, sptep);
1447
			mmu_spte_set(sptep, new_spte);
1448 1449
		}
	}
1450

1451 1452
	if (need_flush && kvm_available_flush_tlb_with_range()) {
		kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
1453
		return false;
1454 1455
	}

1456
	return need_flush;
1457 1458
}

1459 1460
struct slot_rmap_walk_iterator {
	/* input fields. */
1461
	const struct kvm_memory_slot *slot;
1462 1463 1464 1465 1466 1467 1468
	gfn_t start_gfn;
	gfn_t end_gfn;
	int start_level;
	int end_level;

	/* output fields. */
	gfn_t gfn;
1469
	struct kvm_rmap_head *rmap;
1470 1471 1472
	int level;

	/* private field. */
1473
	struct kvm_rmap_head *end_rmap;
1474 1475 1476 1477 1478 1479 1480
};

static void
rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
{
	iterator->level = level;
	iterator->gfn = iterator->start_gfn;
1481 1482
	iterator->rmap = gfn_to_rmap(iterator->gfn, level, iterator->slot);
	iterator->end_rmap = gfn_to_rmap(iterator->end_gfn, level, iterator->slot);
1483 1484 1485 1486
}

static void
slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1487
		    const struct kvm_memory_slot *slot, int start_level,
1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525
		    int end_level, gfn_t start_gfn, gfn_t end_gfn)
{
	iterator->slot = slot;
	iterator->start_level = start_level;
	iterator->end_level = end_level;
	iterator->start_gfn = start_gfn;
	iterator->end_gfn = end_gfn;

	rmap_walk_init_level(iterator, iterator->start_level);
}

static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
{
	return !!iterator->rmap;
}

static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
{
	if (++iterator->rmap <= iterator->end_rmap) {
		iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
		return;
	}

	if (++iterator->level > iterator->end_level) {
		iterator->rmap = NULL;
		return;
	}

	rmap_walk_init_level(iterator, iterator->level);
}

#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,	\
	   _start_gfn, _end_gfn, _iter_)				\
	for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,		\
				 _end_level_, _start_gfn, _end_gfn);	\
	     slot_rmap_walk_okay(_iter_);				\
	     slot_rmap_walk_next(_iter_))

1526 1527 1528
typedef bool (*rmap_handler_t)(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			       struct kvm_memory_slot *slot, gfn_t gfn,
			       int level, pte_t pte);
1529

1530 1531 1532
static __always_inline bool kvm_handle_gfn_range(struct kvm *kvm,
						 struct kvm_gfn_range *range,
						 rmap_handler_t handler)
1533
{
1534
	struct slot_rmap_walk_iterator iterator;
1535
	bool ret = false;
1536

1537 1538 1539 1540
	for_each_slot_rmap_range(range->slot, PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL,
				 range->start, range->end - 1, &iterator)
		ret |= handler(kvm, iterator.rmap, range->slot, iterator.gfn,
			       iterator.level, range->pte);
1541

1542
	return ret;
1543 1544
}

1545
bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
1546
{
1547
	bool flush = false;
1548

1549 1550
	if (kvm_memslots_have_rmaps(kvm))
		flush = kvm_handle_gfn_range(kvm, range, kvm_unmap_rmapp);
1551

1552
	if (is_tdp_mmu_enabled(kvm))
1553
		flush = kvm_tdp_mmu_unmap_gfn_range(kvm, range, flush);
1554

1555
	return flush;
1556 1557
}

1558
bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1559
{
1560
	bool flush = false;
1561

1562 1563
	if (kvm_memslots_have_rmaps(kvm))
		flush = kvm_handle_gfn_range(kvm, range, kvm_set_pte_rmapp);
1564

1565
	if (is_tdp_mmu_enabled(kvm))
1566
		flush |= kvm_tdp_mmu_set_spte_gfn(kvm, range);
1567

1568
	return flush;
1569 1570
}

1571 1572 1573
static bool kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			  struct kvm_memory_slot *slot, gfn_t gfn, int level,
			  pte_t unused)
1574
{
1575
	u64 *sptep;
1576
	struct rmap_iterator iter;
1577 1578
	int young = 0;

1579 1580
	for_each_rmap_spte(rmap_head, &iter, sptep)
		young |= mmu_spte_age(sptep);
1581

1582 1583 1584
	return young;
}

1585 1586 1587
static bool kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			       struct kvm_memory_slot *slot, gfn_t gfn,
			       int level, pte_t unused)
A
Andrea Arcangeli 已提交
1588
{
1589 1590
	u64 *sptep;
	struct rmap_iterator iter;
A
Andrea Arcangeli 已提交
1591

1592 1593
	for_each_rmap_spte(rmap_head, &iter, sptep)
		if (is_accessed_spte(*sptep))
1594 1595
			return true;
	return false;
A
Andrea Arcangeli 已提交
1596 1597
}

1598 1599
#define RMAP_RECYCLE_THRESHOLD 1000

1600 1601
static void rmap_add(struct kvm_vcpu *vcpu, struct kvm_memory_slot *slot,
		     u64 *spte, gfn_t gfn)
1602
{
1603
	struct kvm_mmu_page *sp;
1604 1605
	struct kvm_rmap_head *rmap_head;
	int rmap_count;
1606

1607
	sp = sptep_to_sp(spte);
1608
	kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1609
	rmap_head = gfn_to_rmap(gfn, sp->role.level, slot);
1610
	rmap_count = pte_list_add(vcpu, spte, rmap_head);
1611

1612 1613 1614 1615 1616
	if (rmap_count > RMAP_RECYCLE_THRESHOLD) {
		kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, __pte(0));
		kvm_flush_remote_tlbs_with_address(
				vcpu->kvm, sp->gfn, KVM_PAGES_PER_HPAGE(sp->role.level));
	}
1617 1618
}

1619
bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1620
{
1621
	bool young = false;
1622

1623 1624
	if (kvm_memslots_have_rmaps(kvm))
		young = kvm_handle_gfn_range(kvm, range, kvm_age_rmapp);
1625

1626
	if (is_tdp_mmu_enabled(kvm))
1627
		young |= kvm_tdp_mmu_age_gfn_range(kvm, range);
1628 1629

	return young;
1630 1631
}

1632
bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
A
Andrea Arcangeli 已提交
1633
{
1634
	bool young = false;
1635

1636 1637
	if (kvm_memslots_have_rmaps(kvm))
		young = kvm_handle_gfn_range(kvm, range, kvm_test_age_rmapp);
1638

1639
	if (is_tdp_mmu_enabled(kvm))
1640
		young |= kvm_tdp_mmu_test_age_gfn(kvm, range);
1641 1642

	return young;
A
Andrea Arcangeli 已提交
1643 1644
}

1645
#ifdef MMU_DEBUG
1646
static int is_empty_shadow_page(u64 *spt)
A
Avi Kivity 已提交
1647
{
1648 1649 1650
	u64 *pos;
	u64 *end;

1651
	for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1652
		if (is_shadow_present_pte(*pos)) {
1653
			printk(KERN_ERR "%s: %p %llx\n", __func__,
1654
			       pos, *pos);
A
Avi Kivity 已提交
1655
			return 0;
1656
		}
A
Avi Kivity 已提交
1657 1658
	return 1;
}
1659
#endif
A
Avi Kivity 已提交
1660

1661 1662 1663 1664 1665 1666
/*
 * This value is the sum of all of the kvm instances's
 * kvm->arch.n_used_mmu_pages values.  We need a global,
 * aggregate version in order to make the slab shrinker
 * faster
 */
1667
static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, long nr)
1668 1669 1670 1671 1672
{
	kvm->arch.n_used_mmu_pages += nr;
	percpu_counter_add(&kvm_total_used_mmu_pages, nr);
}

1673
static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1674
{
1675
	MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1676
	hlist_del(&sp->hash_link);
1677 1678
	list_del(&sp->link);
	free_page((unsigned long)sp->spt);
1679 1680
	if (!sp->role.direct)
		free_page((unsigned long)sp->gfns);
1681
	kmem_cache_free(mmu_page_header_cache, sp);
1682 1683
}

1684 1685
static unsigned kvm_page_table_hashfn(gfn_t gfn)
{
1686
	return hash_64(gfn, KVM_MMU_HASH_SHIFT);
1687 1688
}

1689
static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1690
				    struct kvm_mmu_page *sp, u64 *parent_pte)
1691 1692 1693 1694
{
	if (!parent_pte)
		return;

1695
	pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1696 1697
}

1698
static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1699 1700
				       u64 *parent_pte)
{
1701
	__pte_list_remove(parent_pte, &sp->parent_ptes);
1702 1703
}

1704 1705 1706 1707
static void drop_parent_pte(struct kvm_mmu_page *sp,
			    u64 *parent_pte)
{
	mmu_page_remove_parent_pte(sp, parent_pte);
1708
	mmu_spte_clear_no_track(parent_pte);
1709 1710
}

1711
static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
M
Marcelo Tosatti 已提交
1712
{
1713
	struct kvm_mmu_page *sp;
1714

1715 1716
	sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
	sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache);
1717
	if (!direct)
1718
		sp->gfns = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_gfn_array_cache);
1719
	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1720 1721 1722 1723 1724 1725

	/*
	 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
	 * depends on valid pages being added to the head of the list.  See
	 * comments in kvm_zap_obsolete_pages().
	 */
1726
	sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
1727 1728 1729
	list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
	kvm_mod_used_mmu_pages(vcpu->kvm, +1);
	return sp;
M
Marcelo Tosatti 已提交
1730 1731
}

1732
static void mark_unsync(u64 *spte);
1733
static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1734
{
1735 1736 1737 1738 1739 1740
	u64 *sptep;
	struct rmap_iterator iter;

	for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
		mark_unsync(sptep);
	}
1741 1742
}

1743
static void mark_unsync(u64 *spte)
1744
{
1745
	struct kvm_mmu_page *sp;
1746
	unsigned int index;
1747

1748
	sp = sptep_to_sp(spte);
1749 1750
	index = spte - sp->spt;
	if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1751
		return;
1752
	if (sp->unsync_children++)
1753
		return;
1754
	kvm_mmu_mark_parents_unsync(sp);
1755 1756
}

1757
static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1758
			       struct kvm_mmu_page *sp)
1759
{
1760
	return -1;
1761 1762
}

1763 1764 1765 1766 1767 1768 1769 1770 1771 1772
#define KVM_PAGE_ARRAY_NR 16

struct kvm_mmu_pages {
	struct mmu_page_and_offset {
		struct kvm_mmu_page *sp;
		unsigned int idx;
	} page[KVM_PAGE_ARRAY_NR];
	unsigned int nr;
};

1773 1774
static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
			 int idx)
1775
{
1776
	int i;
1777

1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788
	if (sp->unsync)
		for (i=0; i < pvec->nr; i++)
			if (pvec->page[i].sp == sp)
				return 0;

	pvec->page[pvec->nr].sp = sp;
	pvec->page[pvec->nr].idx = idx;
	pvec->nr++;
	return (pvec->nr == KVM_PAGE_ARRAY_NR);
}

1789 1790 1791 1792 1793 1794 1795
static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
{
	--sp->unsync_children;
	WARN_ON((int)sp->unsync_children < 0);
	__clear_bit(idx, sp->unsync_child_bitmap);
}

1796 1797 1798 1799
static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
	int i, ret, nr_unsync_leaf = 0;
1800

1801
	for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1802
		struct kvm_mmu_page *child;
1803 1804
		u64 ent = sp->spt[i];

1805 1806 1807 1808
		if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
			clear_unsync_child_bit(sp, i);
			continue;
		}
1809

1810
		child = to_shadow_page(ent & PT64_BASE_ADDR_MASK);
1811 1812 1813 1814 1815 1816

		if (child->unsync_children) {
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;

			ret = __mmu_unsync_walk(child, pvec);
1817 1818 1819 1820
			if (!ret) {
				clear_unsync_child_bit(sp, i);
				continue;
			} else if (ret > 0) {
1821
				nr_unsync_leaf += ret;
1822
			} else
1823 1824 1825 1826 1827 1828
				return ret;
		} else if (child->unsync) {
			nr_unsync_leaf++;
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;
		} else
1829
			clear_unsync_child_bit(sp, i);
1830 1831
	}

1832 1833 1834
	return nr_unsync_leaf;
}

1835 1836
#define INVALID_INDEX (-1)

1837 1838 1839
static int mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
P
Paolo Bonzini 已提交
1840
	pvec->nr = 0;
1841 1842 1843
	if (!sp->unsync_children)
		return 0;

1844
	mmu_pages_add(pvec, sp, INVALID_INDEX);
1845
	return __mmu_unsync_walk(sp, pvec);
1846 1847 1848 1849 1850
}

static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
{
	WARN_ON(!sp->unsync);
1851
	trace_kvm_mmu_sync_page(sp);
1852 1853 1854 1855
	sp->unsync = 0;
	--kvm->stat.mmu_unsync;
}

1856 1857
static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				     struct list_head *invalid_list);
1858 1859
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list);
1860

1861 1862
#define for_each_valid_sp(_kvm, _sp, _list)				\
	hlist_for_each_entry(_sp, _list, hash_link)			\
1863
		if (is_obsolete_sp((_kvm), (_sp))) {			\
1864
		} else
1865 1866

#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)			\
1867 1868
	for_each_valid_sp(_kvm, _sp,					\
	  &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)])	\
1869
		if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
1870

1871 1872
static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
			 struct list_head *invalid_list)
1873
{
1874 1875 1876
	int ret = vcpu->arch.mmu->sync_page(vcpu, sp);

	if (ret < 0) {
1877
		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1878
		return false;
1879 1880
	}

1881
	return !!ret;
1882 1883
}

1884 1885 1886 1887
static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
					struct list_head *invalid_list,
					bool remote_flush)
{
1888
	if (!remote_flush && list_empty(invalid_list))
1889 1890 1891 1892 1893 1894 1895 1896 1897
		return false;

	if (!list_empty(invalid_list))
		kvm_mmu_commit_zap_page(kvm, invalid_list);
	else
		kvm_flush_remote_tlbs(kvm);
	return true;
}

1898 1899
static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
{
1900 1901 1902 1903 1904
	if (sp->role.invalid)
		return true;

	/* TDP MMU pages due not use the MMU generation. */
	return !sp->tdp_mmu_page &&
1905
	       unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1906 1907
}

1908
struct mmu_page_path {
1909 1910
	struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
	unsigned int idx[PT64_ROOT_MAX_LEVEL];
1911 1912
};

1913
#define for_each_sp(pvec, sp, parents, i)			\
P
Paolo Bonzini 已提交
1914
		for (i = mmu_pages_first(&pvec, &parents);	\
1915 1916 1917
			i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});	\
			i = mmu_pages_next(&pvec, &parents, i))

1918 1919 1920
static int mmu_pages_next(struct kvm_mmu_pages *pvec,
			  struct mmu_page_path *parents,
			  int i)
1921 1922 1923 1924 1925
{
	int n;

	for (n = i+1; n < pvec->nr; n++) {
		struct kvm_mmu_page *sp = pvec->page[n].sp;
P
Paolo Bonzini 已提交
1926 1927
		unsigned idx = pvec->page[n].idx;
		int level = sp->role.level;
1928

P
Paolo Bonzini 已提交
1929
		parents->idx[level-1] = idx;
1930
		if (level == PG_LEVEL_4K)
P
Paolo Bonzini 已提交
1931
			break;
1932

P
Paolo Bonzini 已提交
1933
		parents->parent[level-2] = sp;
1934 1935 1936 1937 1938
	}

	return n;
}

P
Paolo Bonzini 已提交
1939 1940 1941 1942 1943 1944 1945 1946 1947
static int mmu_pages_first(struct kvm_mmu_pages *pvec,
			   struct mmu_page_path *parents)
{
	struct kvm_mmu_page *sp;
	int level;

	if (pvec->nr == 0)
		return 0;

1948 1949
	WARN_ON(pvec->page[0].idx != INVALID_INDEX);

P
Paolo Bonzini 已提交
1950 1951
	sp = pvec->page[0].sp;
	level = sp->role.level;
1952
	WARN_ON(level == PG_LEVEL_4K);
P
Paolo Bonzini 已提交
1953 1954 1955 1956 1957 1958 1959 1960 1961 1962

	parents->parent[level-2] = sp;

	/* Also set up a sentinel.  Further entries in pvec are all
	 * children of sp, so this element is never overwritten.
	 */
	parents->parent[level-1] = NULL;
	return mmu_pages_next(pvec, parents, 0);
}

1963
static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1964
{
1965 1966 1967 1968 1969 1970 1971 1972 1973
	struct kvm_mmu_page *sp;
	unsigned int level = 0;

	do {
		unsigned int idx = parents->idx[level];
		sp = parents->parent[level];
		if (!sp)
			return;

1974
		WARN_ON(idx == INVALID_INDEX);
1975
		clear_unsync_child_bit(sp, idx);
1976
		level++;
P
Paolo Bonzini 已提交
1977
	} while (!sp->unsync_children);
1978
}
1979

1980 1981
static int mmu_sync_children(struct kvm_vcpu *vcpu,
			     struct kvm_mmu_page *parent, bool can_yield)
1982 1983 1984 1985 1986
{
	int i;
	struct kvm_mmu_page *sp;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
1987
	LIST_HEAD(invalid_list);
1988
	bool flush = false;
1989 1990

	while (mmu_unsync_walk(parent, &pages)) {
1991
		bool protected = false;
1992 1993

		for_each_sp(pages, sp, parents, i)
1994
			protected |= kvm_vcpu_write_protect_gfn(vcpu, sp->gfn);
1995

1996
		if (protected) {
1997
			kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, true);
1998 1999
			flush = false;
		}
2000

2001
		for_each_sp(pages, sp, parents, i) {
2002
			kvm_unlink_unsync_page(vcpu->kvm, sp);
2003
			flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2004 2005
			mmu_pages_clear_parents(&parents);
		}
2006
		if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) {
2007
			kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush);
2008 2009 2010 2011 2012
			if (!can_yield) {
				kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
				return -EINTR;
			}

2013
			cond_resched_rwlock_write(&vcpu->kvm->mmu_lock);
2014 2015
			flush = false;
		}
2016
	}
2017

2018
	kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush);
2019
	return 0;
2020 2021
}

2022 2023
static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
{
2024
	atomic_set(&sp->write_flooding_count,  0);
2025 2026 2027 2028
}

static void clear_sp_write_flooding_count(u64 *spte)
{
2029
	__clear_sp_write_flooding_count(sptep_to_sp(spte));
2030 2031
}

2032 2033 2034 2035
static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
					     gfn_t gfn,
					     gva_t gaddr,
					     unsigned level,
2036
					     int direct,
2037
					     unsigned int access)
2038
{
2039
	bool direct_mmu = vcpu->arch.mmu->direct_map;
2040
	union kvm_mmu_page_role role;
2041
	struct hlist_head *sp_list;
2042
	unsigned quadrant;
2043
	struct kvm_mmu_page *sp;
2044
	int collisions = 0;
2045
	LIST_HEAD(invalid_list);
2046

2047
	role = vcpu->arch.mmu->mmu_role.base;
2048
	role.level = level;
2049
	role.direct = direct;
2050
	role.access = access;
2051
	if (role.has_4_byte_gpte) {
2052 2053 2054 2055
		quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
		quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
		role.quadrant = quadrant;
	}
2056 2057 2058

	sp_list = &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)];
	for_each_valid_sp(vcpu->kvm, sp, sp_list) {
2059 2060 2061 2062 2063
		if (sp->gfn != gfn) {
			collisions++;
			continue;
		}

2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076
		if (sp->role.word != role.word) {
			/*
			 * If the guest is creating an upper-level page, zap
			 * unsync pages for the same gfn.  While it's possible
			 * the guest is using recursive page tables, in all
			 * likelihood the guest has stopped using the unsync
			 * page and is installing a completely unrelated page.
			 * Unsync pages must not be left as is, because the new
			 * upper-level page will be write-protected.
			 */
			if (level > PG_LEVEL_4K && sp->unsync)
				kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
							 &invalid_list);
2077
			continue;
2078
		}
2079

2080 2081 2082
		if (direct_mmu)
			goto trace_get_page;

2083
		if (sp->unsync) {
2084
			/*
2085
			 * The page is good, but is stale.  kvm_sync_page does
2086 2087 2088 2089 2090 2091 2092 2093 2094
			 * get the latest guest state, but (unlike mmu_unsync_children)
			 * it doesn't write-protect the page or mark it synchronized!
			 * This way the validity of the mapping is ensured, but the
			 * overhead of write protection is not incurred until the
			 * guest invalidates the TLB mapping.  This allows multiple
			 * SPs for a single gfn to be unsync.
			 *
			 * If the sync fails, the page is zapped.  If so, break
			 * in order to rebuild it.
2095
			 */
2096
			if (!kvm_sync_page(vcpu, sp, &invalid_list))
2097 2098 2099
				break;

			WARN_ON(!list_empty(&invalid_list));
2100
			kvm_flush_remote_tlbs(vcpu->kvm);
2101
		}
2102

2103
		__clear_sp_write_flooding_count(sp);
2104 2105

trace_get_page:
2106
		trace_kvm_mmu_get_page(sp, false);
2107
		goto out;
2108
	}
2109

A
Avi Kivity 已提交
2110
	++vcpu->kvm->stat.mmu_cache_miss;
2111 2112 2113

	sp = kvm_mmu_alloc_page(vcpu, direct);

2114 2115
	sp->gfn = gfn;
	sp->role = role;
2116
	hlist_add_head(&sp->hash_link, sp_list);
2117
	if (!direct) {
2118
		account_shadowed(vcpu->kvm, sp);
2119
		if (level == PG_LEVEL_4K && kvm_vcpu_write_protect_gfn(vcpu, gfn))
2120
			kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
2121
	}
A
Avi Kivity 已提交
2122
	trace_kvm_mmu_get_page(sp, true);
2123
out:
2124 2125
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);

2126 2127
	if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
		vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2128
	return sp;
2129 2130
}

2131 2132 2133
static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
					struct kvm_vcpu *vcpu, hpa_t root,
					u64 addr)
2134 2135
{
	iterator->addr = addr;
2136
	iterator->shadow_addr = root;
2137
	iterator->level = vcpu->arch.mmu->shadow_root_level;
2138

2139
	if (iterator->level >= PT64_ROOT_4LEVEL &&
2140 2141
	    vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
	    !vcpu->arch.mmu->direct_map)
2142
		iterator->level = PT32E_ROOT_LEVEL;
2143

2144
	if (iterator->level == PT32E_ROOT_LEVEL) {
2145 2146 2147 2148
		/*
		 * prev_root is currently only used for 64-bit hosts. So only
		 * the active root_hpa is valid here.
		 */
2149
		BUG_ON(root != vcpu->arch.mmu->root_hpa);
2150

2151
		iterator->shadow_addr
2152
			= vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2153 2154 2155 2156 2157 2158 2159
		iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
		--iterator->level;
		if (!iterator->shadow_addr)
			iterator->level = 0;
	}
}

2160 2161 2162
static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
			     struct kvm_vcpu *vcpu, u64 addr)
{
2163
	shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
2164 2165 2166
				    addr);
}

2167 2168
static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
{
2169
	if (iterator->level < PG_LEVEL_4K)
2170
		return false;
2171

2172 2173 2174 2175 2176
	iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
	iterator->sptep	= ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
	return true;
}

2177 2178
static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
			       u64 spte)
2179
{
2180
	if (!is_shadow_present_pte(spte) || is_last_spte(spte, iterator->level)) {
2181 2182 2183 2184
		iterator->level = 0;
		return;
	}

2185
	iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2186 2187 2188
	--iterator->level;
}

2189 2190
static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
{
2191
	__shadow_walk_next(iterator, *iterator->sptep);
2192 2193
}

2194 2195 2196 2197 2198 2199 2200 2201 2202
static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
			     struct kvm_mmu_page *sp)
{
	u64 spte;

	BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);

	spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp));

2203
	mmu_spte_set(sptep, spte);
2204 2205 2206 2207 2208

	mmu_page_add_parent_pte(vcpu, sp, sptep);

	if (sp->unsync_children || sp->unsync)
		mark_unsync(sptep);
2209 2210
}

2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
				   unsigned direct_access)
{
	if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
		struct kvm_mmu_page *child;

		/*
		 * For the direct sp, if the guest pte's dirty bit
		 * changed form clean to dirty, it will corrupt the
		 * sp's access: allow writable in the read-only sp,
		 * so we should update the spte at this point to get
		 * a new sp with the correct access.
		 */
2224
		child = to_shadow_page(*sptep & PT64_BASE_ADDR_MASK);
2225 2226 2227
		if (child->role.access == direct_access)
			return;

2228
		drop_parent_pte(child, sptep);
2229
		kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
2230 2231 2232
	}
}

2233 2234 2235
/* Returns the number of zapped non-leaf child shadow pages. */
static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
			    u64 *spte, struct list_head *invalid_list)
2236 2237 2238 2239 2240 2241
{
	u64 pte;
	struct kvm_mmu_page *child;

	pte = *spte;
	if (is_shadow_present_pte(pte)) {
X
Xiao Guangrong 已提交
2242
		if (is_last_spte(pte, sp->role.level)) {
2243
			drop_spte(kvm, spte);
X
Xiao Guangrong 已提交
2244
		} else {
2245
			child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2246
			drop_parent_pte(child, spte);
2247 2248 2249 2250 2251 2252 2253 2254 2255 2256

			/*
			 * Recursively zap nested TDP SPs, parentless SPs are
			 * unlikely to be used again in the near future.  This
			 * avoids retaining a large number of stale nested SPs.
			 */
			if (tdp_enabled && invalid_list &&
			    child->role.guest_mode && !child->parent_ptes.val)
				return kvm_mmu_prepare_zap_page(kvm, child,
								invalid_list);
2257
		}
2258
	} else if (is_mmio_spte(pte)) {
2259
		mmu_spte_clear_no_track(spte);
2260
	}
2261
	return 0;
2262 2263
}

2264 2265 2266
static int kvm_mmu_page_unlink_children(struct kvm *kvm,
					struct kvm_mmu_page *sp,
					struct list_head *invalid_list)
2267
{
2268
	int zapped = 0;
2269 2270
	unsigned i;

2271
	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2272 2273 2274
		zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list);

	return zapped;
2275 2276
}

2277
static void kvm_mmu_unlink_parents(struct kvm_mmu_page *sp)
2278
{
2279 2280
	u64 *sptep;
	struct rmap_iterator iter;
2281

2282
	while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2283
		drop_parent_pte(sp, sptep);
2284 2285
}

2286
static int mmu_zap_unsync_children(struct kvm *kvm,
2287 2288
				   struct kvm_mmu_page *parent,
				   struct list_head *invalid_list)
2289
{
2290 2291 2292
	int i, zapped = 0;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
2293

2294
	if (parent->role.level == PG_LEVEL_4K)
2295
		return 0;
2296 2297 2298 2299 2300

	while (mmu_unsync_walk(parent, &pages)) {
		struct kvm_mmu_page *sp;

		for_each_sp(pages, sp, parents, i) {
2301
			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2302
			mmu_pages_clear_parents(&parents);
2303
			zapped++;
2304 2305 2306 2307
		}
	}

	return zapped;
2308 2309
}

2310 2311 2312 2313
static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
				       struct kvm_mmu_page *sp,
				       struct list_head *invalid_list,
				       int *nr_zapped)
2314
{
2315
	bool list_unstable;
A
Avi Kivity 已提交
2316

2317
	trace_kvm_mmu_prepare_zap_page(sp);
2318
	++kvm->stat.mmu_shadow_zapped;
2319
	*nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2320
	*nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list);
2321
	kvm_mmu_unlink_parents(sp);
2322

2323 2324 2325
	/* Zapping children means active_mmu_pages has become unstable. */
	list_unstable = *nr_zapped;

2326
	if (!sp->role.invalid && !sp->role.direct)
2327
		unaccount_shadowed(kvm, sp);
2328

2329 2330
	if (sp->unsync)
		kvm_unlink_unsync_page(kvm, sp);
2331
	if (!sp->root_count) {
2332
		/* Count self */
2333
		(*nr_zapped)++;
2334 2335 2336 2337 2338 2339 2340 2341 2342 2343

		/*
		 * Already invalid pages (previously active roots) are not on
		 * the active page list.  See list_del() in the "else" case of
		 * !sp->root_count.
		 */
		if (sp->role.invalid)
			list_add(&sp->link, invalid_list);
		else
			list_move(&sp->link, invalid_list);
2344
		kvm_mod_used_mmu_pages(kvm, -1);
2345
	} else {
2346 2347 2348 2349 2350
		/*
		 * Remove the active root from the active page list, the root
		 * will be explicitly freed when the root_count hits zero.
		 */
		list_del(&sp->link);
2351

2352 2353 2354 2355 2356 2357
		/*
		 * Obsolete pages cannot be used on any vCPUs, see the comment
		 * in kvm_mmu_zap_all_fast().  Note, is_obsolete_sp() also
		 * treats invalid shadow pages as being obsolete.
		 */
		if (!is_obsolete_sp(kvm, sp))
2358
			kvm_reload_remote_mmus(kvm);
2359
	}
2360

P
Paolo Bonzini 已提交
2361 2362 2363
	if (sp->lpage_disallowed)
		unaccount_huge_nx_page(kvm, sp);

2364
	sp->role.invalid = 1;
2365 2366 2367 2368 2369 2370 2371 2372 2373 2374
	return list_unstable;
}

static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				     struct list_head *invalid_list)
{
	int nr_zapped;

	__kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
	return nr_zapped;
2375 2376
}

2377 2378 2379
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list)
{
2380
	struct kvm_mmu_page *sp, *nsp;
2381 2382 2383 2384

	if (list_empty(invalid_list))
		return;

2385
	/*
2386 2387 2388 2389 2390 2391 2392
	 * We need to make sure everyone sees our modifications to
	 * the page tables and see changes to vcpu->mode here. The barrier
	 * in the kvm_flush_remote_tlbs() achieves this. This pairs
	 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
	 *
	 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
	 * guest mode and/or lockless shadow page table walks.
2393 2394
	 */
	kvm_flush_remote_tlbs(kvm);
2395

2396
	list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2397
		WARN_ON(!sp->role.invalid || sp->root_count);
2398
		kvm_mmu_free_page(sp);
2399
	}
2400 2401
}

2402 2403
static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm,
						  unsigned long nr_to_zap)
2404
{
2405 2406
	unsigned long total_zapped = 0;
	struct kvm_mmu_page *sp, *tmp;
2407
	LIST_HEAD(invalid_list);
2408 2409
	bool unstable;
	int nr_zapped;
2410 2411

	if (list_empty(&kvm->arch.active_mmu_pages))
2412 2413
		return 0;

2414
restart:
2415
	list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) {
2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426
		/*
		 * Don't zap active root pages, the page itself can't be freed
		 * and zapping it will just force vCPUs to realloc and reload.
		 */
		if (sp->root_count)
			continue;

		unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list,
						      &nr_zapped);
		total_zapped += nr_zapped;
		if (total_zapped >= nr_to_zap)
2427 2428
			break;

2429 2430
		if (unstable)
			goto restart;
2431
	}
2432

2433 2434 2435 2436 2437 2438
	kvm_mmu_commit_zap_page(kvm, &invalid_list);

	kvm->stat.mmu_recycled += total_zapped;
	return total_zapped;
}

2439 2440 2441 2442 2443 2444 2445
static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm)
{
	if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
		return kvm->arch.n_max_mmu_pages -
			kvm->arch.n_used_mmu_pages;

	return 0;
2446 2447
}

2448 2449
static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
{
2450
	unsigned long avail = kvm_mmu_available_pages(vcpu->kvm);
2451

2452
	if (likely(avail >= KVM_MIN_FREE_MMU_PAGES))
2453 2454
		return 0;

2455
	kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail);
2456

2457 2458 2459 2460 2461
	/*
	 * Note, this check is intentionally soft, it only guarantees that one
	 * page is available, while the caller may end up allocating as many as
	 * four pages, e.g. for PAE roots or for 5-level paging.  Temporarily
	 * exceeding the (arbitrary by default) limit will not harm the host,
I
Ingo Molnar 已提交
2462
	 * being too aggressive may unnecessarily kill the guest, and getting an
2463 2464 2465
	 * exact count is far more trouble than it's worth, especially in the
	 * page fault paths.
	 */
2466 2467 2468 2469 2470
	if (!kvm_mmu_available_pages(vcpu->kvm))
		return -ENOSPC;
	return 0;
}

2471 2472
/*
 * Changing the number of mmu pages allocated to the vm
2473
 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2474
 */
2475
void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2476
{
2477
	write_lock(&kvm->mmu_lock);
2478

2479
	if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2480 2481
		kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages -
						  goal_nr_mmu_pages);
2482

2483
		goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2484 2485
	}

2486
	kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2487

2488
	write_unlock(&kvm->mmu_lock);
2489 2490
}

2491
int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2492
{
2493
	struct kvm_mmu_page *sp;
2494
	LIST_HEAD(invalid_list);
2495 2496
	int r;

2497
	pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2498
	r = 0;
2499
	write_lock(&kvm->mmu_lock);
2500
	for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2501
		pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2502 2503
			 sp->role.word);
		r = 1;
2504
		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2505
	}
2506
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2507
	write_unlock(&kvm->mmu_lock);
2508

2509
	return r;
2510
}
2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525

static int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
{
	gpa_t gpa;
	int r;

	if (vcpu->arch.mmu->direct_map)
		return 0;

	gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);

	r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);

	return r;
}
2526

2527
static void kvm_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
2528 2529
{
	trace_kvm_mmu_unsync_page(sp);
2530
	++kvm->stat.mmu_unsync;
2531 2532 2533 2534 2535
	sp->unsync = 1;

	kvm_mmu_mark_parents_unsync(sp);
}

2536 2537 2538 2539 2540 2541
/*
 * Attempt to unsync any shadow pages that can be reached by the specified gfn,
 * KVM is creating a writable mapping for said gfn.  Returns 0 if all pages
 * were marked unsync (or if there is no shadow page), -EPERM if the SPTE must
 * be write-protected.
 */
2542
int mmu_try_to_unsync_pages(struct kvm *kvm, const struct kvm_memory_slot *slot,
2543
			    gfn_t gfn, bool can_unsync, bool prefetch)
2544
{
2545
	struct kvm_mmu_page *sp;
2546
	bool locked = false;
2547

2548 2549 2550 2551 2552
	/*
	 * Force write-protection if the page is being tracked.  Note, the page
	 * track machinery is used to write-protect upper-level shadow pages,
	 * i.e. this guards the role.level == 4K assertion below!
	 */
2553
	if (kvm_slot_page_track_is_active(kvm, slot, gfn, KVM_PAGE_TRACK_WRITE))
2554
		return -EPERM;
2555

2556 2557 2558 2559 2560 2561
	/*
	 * The page is not write-tracked, mark existing shadow pages unsync
	 * unless KVM is synchronizing an unsync SP (can_unsync = false).  In
	 * that case, KVM must complete emulation of the guest TLB flush before
	 * allowing shadow pages to become unsync (writable by the guest).
	 */
2562
	for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2563
		if (!can_unsync)
2564
			return -EPERM;
2565

2566 2567
		if (sp->unsync)
			continue;
2568

2569
		if (prefetch)
2570 2571
			return -EEXIST;

2572 2573 2574 2575 2576 2577 2578 2579 2580
		/*
		 * TDP MMU page faults require an additional spinlock as they
		 * run with mmu_lock held for read, not write, and the unsync
		 * logic is not thread safe.  Take the spinklock regardless of
		 * the MMU type to avoid extra conditionals/parameters, there's
		 * no meaningful penalty if mmu_lock is held for write.
		 */
		if (!locked) {
			locked = true;
2581
			spin_lock(&kvm->arch.mmu_unsync_pages_lock);
2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594

			/*
			 * Recheck after taking the spinlock, a different vCPU
			 * may have since marked the page unsync.  A false
			 * positive on the unprotected check above is not
			 * possible as clearing sp->unsync _must_ hold mmu_lock
			 * for write, i.e. unsync cannot transition from 0->1
			 * while this CPU holds mmu_lock for read (or write).
			 */
			if (READ_ONCE(sp->unsync))
				continue;
		}

2595
		WARN_ON(sp->role.level != PG_LEVEL_4K);
2596
		kvm_unsync_page(kvm, sp);
2597
	}
2598
	if (locked)
2599
		spin_unlock(&kvm->arch.mmu_unsync_pages_lock);
2600

2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622
	/*
	 * We need to ensure that the marking of unsync pages is visible
	 * before the SPTE is updated to allow writes because
	 * kvm_mmu_sync_roots() checks the unsync flags without holding
	 * the MMU lock and so can race with this. If the SPTE was updated
	 * before the page had been marked as unsync-ed, something like the
	 * following could happen:
	 *
	 * CPU 1                    CPU 2
	 * ---------------------------------------------------------------------
	 * 1.2 Host updates SPTE
	 *     to be writable
	 *                      2.1 Guest writes a GPTE for GVA X.
	 *                          (GPTE being in the guest page table shadowed
	 *                           by the SP from CPU 1.)
	 *                          This reads SPTE during the page table walk.
	 *                          Since SPTE.W is read as 1, there is no
	 *                          fault.
	 *
	 *                      2.2 Guest issues TLB flush.
	 *                          That causes a VM Exit.
	 *
2623 2624
	 *                      2.3 Walking of unsync pages sees sp->unsync is
	 *                          false and skips the page.
2625 2626 2627 2628 2629 2630 2631 2632 2633 2634
	 *
	 *                      2.4 Guest accesses GVA X.
	 *                          Since the mapping in the SP was not updated,
	 *                          so the old mapping for GVA X incorrectly
	 *                          gets used.
	 * 1.1 Host marks SP
	 *     as unsync
	 *     (sp->unsync = true)
	 *
	 * The write barrier below ensures that 1.1 happens before 1.2 and thus
2635 2636
	 * the situation in 2.4 does not arise.  It pairs with the read barrier
	 * in is_unsync_root(), placed between 2.1's load of SPTE.W and 2.3.
2637 2638 2639
	 */
	smp_wmb();

2640
	return 0;
2641 2642
}

2643 2644
static int mmu_set_spte(struct kvm_vcpu *vcpu, struct kvm_memory_slot *slot,
			u64 *sptep, unsigned int pte_access, gfn_t gfn,
2645
			kvm_pfn_t pfn, struct kvm_page_fault *fault)
M
Marcelo Tosatti 已提交
2646
{
2647
	struct kvm_mmu_page *sp = sptep_to_sp(sptep);
2648
	int level = sp->role.level;
M
Marcelo Tosatti 已提交
2649
	int was_rmapped = 0;
2650
	int ret = RET_PF_FIXED;
2651
	bool flush = false;
2652
	bool wrprot;
2653
	u64 spte;
M
Marcelo Tosatti 已提交
2654

2655 2656
	/* Prefetching always gets a writable pfn.  */
	bool host_writable = !fault || fault->map_writable;
2657
	bool prefetch = !fault || fault->prefetch;
2658
	bool write_fault = fault && fault->write;
M
Marcelo Tosatti 已提交
2659

2660 2661
	pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
		 *sptep, write_fault, gfn);
M
Marcelo Tosatti 已提交
2662

2663 2664 2665 2666 2667
	if (unlikely(is_noslot_pfn(pfn))) {
		mark_mmio_spte(vcpu, sptep, gfn, pte_access);
		return RET_PF_EMULATE;
	}

2668
	if (is_shadow_present_pte(*sptep)) {
M
Marcelo Tosatti 已提交
2669 2670 2671 2672
		/*
		 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
		 * the parent of the now unreachable PTE.
		 */
2673
		if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) {
M
Marcelo Tosatti 已提交
2674
			struct kvm_mmu_page *child;
A
Avi Kivity 已提交
2675
			u64 pte = *sptep;
M
Marcelo Tosatti 已提交
2676

2677
			child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2678
			drop_parent_pte(child, sptep);
2679
			flush = true;
A
Avi Kivity 已提交
2680
		} else if (pfn != spte_to_pfn(*sptep)) {
2681
			pgprintk("hfn old %llx new %llx\n",
A
Avi Kivity 已提交
2682
				 spte_to_pfn(*sptep), pfn);
2683
			drop_spte(vcpu->kvm, sptep);
2684
			flush = true;
2685 2686
		} else
			was_rmapped = 1;
M
Marcelo Tosatti 已提交
2687
	}
2688

2689
	wrprot = make_spte(vcpu, sp, slot, pte_access, gfn, pfn, *sptep, prefetch,
2690
			   true, host_writable, &spte);
2691 2692 2693 2694 2695 2696 2697 2698

	if (*sptep == spte) {
		ret = RET_PF_SPURIOUS;
	} else {
		trace_kvm_mmu_set_spte(level, gfn, sptep);
		flush |= mmu_spte_update(sptep, spte);
	}

2699
	if (wrprot) {
M
Marcelo Tosatti 已提交
2700
		if (write_fault)
2701
			ret = RET_PF_EMULATE;
2702
	}
2703

2704
	if (flush)
2705 2706
		kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
				KVM_PAGES_PER_HPAGE(level));
M
Marcelo Tosatti 已提交
2707

A
Avi Kivity 已提交
2708
	pgprintk("%s: setting spte %llx\n", __func__, *sptep);
M
Marcelo Tosatti 已提交
2709

2710
	if (!was_rmapped) {
2711
		WARN_ON_ONCE(ret == RET_PF_SPURIOUS);
2712
		kvm_update_page_stats(vcpu->kvm, level, 1);
2713
		rmap_add(vcpu, slot, sptep, gfn);
2714
	}
2715

2716
	return ret;
2717 2718
}

2719 2720 2721 2722 2723
static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
				    struct kvm_mmu_page *sp,
				    u64 *start, u64 *end)
{
	struct page *pages[PTE_PREFETCH_NUM];
2724
	struct kvm_memory_slot *slot;
2725
	unsigned int access = sp->role.access;
2726 2727 2728 2729
	int i, ret;
	gfn_t gfn;

	gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2730 2731
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
	if (!slot)
2732 2733
		return -1;

2734
	ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2735 2736 2737
	if (ret <= 0)
		return -1;

2738
	for (i = 0; i < ret; i++, gfn++, start++) {
2739
		mmu_set_spte(vcpu, slot, start, access, gfn,
2740
			     page_to_pfn(pages[i]), NULL);
2741 2742
		put_page(pages[i]);
	}
2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758

	return 0;
}

static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
				  struct kvm_mmu_page *sp, u64 *sptep)
{
	u64 *spte, *start = NULL;
	int i;

	WARN_ON(!sp->role.direct);

	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
	spte = sp->spt + i;

	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2759
		if (is_shadow_present_pte(*spte) || spte == sptep) {
2760 2761 2762
			if (!start)
				continue;
			if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2763
				return;
2764 2765 2766 2767
			start = NULL;
		} else if (!start)
			start = spte;
	}
2768 2769
	if (start)
		direct_pte_prefetch_many(vcpu, sp, start, spte);
2770 2771 2772 2773 2774 2775
}

static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
{
	struct kvm_mmu_page *sp;

2776
	sp = sptep_to_sp(sptep);
2777

2778
	/*
2779 2780 2781
	 * Without accessed bits, there's no way to distinguish between
	 * actually accessed translations and prefetched, so disable pte
	 * prefetch if accessed bits aren't available.
2782
	 */
2783
	if (sp_ad_disabled(sp))
2784 2785
		return;

2786
	if (sp->role.level > PG_LEVEL_4K)
2787 2788
		return;

2789 2790 2791 2792 2793 2794 2795
	/*
	 * If addresses are being invalidated, skip prefetching to avoid
	 * accidentally prefetching those addresses.
	 */
	if (unlikely(vcpu->kvm->mmu_notifier_count))
		return;

2796 2797 2798
	__direct_pte_prefetch(vcpu, sp, sptep);
}

2799
static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn,
2800
				  const struct kvm_memory_slot *slot)
2801 2802 2803 2804 2805
{
	unsigned long hva;
	pte_t *pte;
	int level;

2806
	if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn))
2807
		return PG_LEVEL_4K;
2808

2809 2810 2811 2812 2813 2814 2815 2816
	/*
	 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
	 * is not solely for performance, it's also necessary to avoid the
	 * "writable" check in __gfn_to_hva_many(), which will always fail on
	 * read-only memslots due to gfn_to_hva() assuming writes.  Earlier
	 * page fault steps have already verified the guest isn't writing a
	 * read-only memslot.
	 */
2817 2818
	hva = __gfn_to_hva_memslot(slot, gfn);

2819
	pte = lookup_address_in_mm(kvm->mm, hva, &level);
2820
	if (unlikely(!pte))
2821
		return PG_LEVEL_4K;
2822 2823 2824 2825

	return level;
}

2826 2827 2828
int kvm_mmu_max_mapping_level(struct kvm *kvm,
			      const struct kvm_memory_slot *slot, gfn_t gfn,
			      kvm_pfn_t pfn, int max_level)
2829 2830
{
	struct kvm_lpage_info *linfo;
2831
	int host_level;
2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842

	max_level = min(max_level, max_huge_page_level);
	for ( ; max_level > PG_LEVEL_4K; max_level--) {
		linfo = lpage_info_slot(gfn, slot, max_level);
		if (!linfo->disallow_lpage)
			break;
	}

	if (max_level == PG_LEVEL_4K)
		return PG_LEVEL_4K;

2843 2844
	host_level = host_pfn_mapping_level(kvm, gfn, pfn, slot);
	return min(host_level, max_level);
2845 2846
}

2847
void kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
2848
{
2849
	struct kvm_memory_slot *slot = fault->slot;
2850 2851
	kvm_pfn_t mask;

2852
	fault->huge_page_disallowed = fault->exec && fault->nx_huge_page_workaround_enabled;
2853

2854 2855
	if (unlikely(fault->max_level == PG_LEVEL_4K))
		return;
2856

2857 2858
	if (is_error_noslot_pfn(fault->pfn) || kvm_is_reserved_pfn(fault->pfn))
		return;
2859

2860
	if (kvm_slot_dirty_track_enabled(slot))
2861
		return;
2862

2863 2864 2865 2866
	/*
	 * Enforce the iTLB multihit workaround after capturing the requested
	 * level, which will be used to do precise, accurate accounting.
	 */
2867 2868 2869 2870 2871
	fault->req_level = kvm_mmu_max_mapping_level(vcpu->kvm, slot,
						     fault->gfn, fault->pfn,
						     fault->max_level);
	if (fault->req_level == PG_LEVEL_4K || fault->huge_page_disallowed)
		return;
2872 2873

	/*
2874 2875
	 * mmu_notifier_retry() was successful and mmu_lock is held, so
	 * the pmd can't be split from under us.
2876
	 */
2877 2878 2879 2880
	fault->goal_level = fault->req_level;
	mask = KVM_PAGES_PER_HPAGE(fault->goal_level) - 1;
	VM_BUG_ON((fault->gfn & mask) != (fault->pfn & mask));
	fault->pfn &= ~mask;
2881 2882
}

2883
void disallowed_hugepage_adjust(struct kvm_page_fault *fault, u64 spte, int cur_level)
P
Paolo Bonzini 已提交
2884
{
2885 2886
	if (cur_level > PG_LEVEL_4K &&
	    cur_level == fault->goal_level &&
P
Paolo Bonzini 已提交
2887 2888 2889 2890 2891 2892 2893 2894 2895
	    is_shadow_present_pte(spte) &&
	    !is_large_pte(spte)) {
		/*
		 * A small SPTE exists for this pfn, but FNAME(fetch)
		 * and __direct_map would like to create a large PTE
		 * instead: just force them to go down another level,
		 * patching back for them into pfn the next 9 bits of
		 * the address.
		 */
2896 2897 2898 2899
		u64 page_mask = KVM_PAGES_PER_HPAGE(cur_level) -
				KVM_PAGES_PER_HPAGE(cur_level - 1);
		fault->pfn |= fault->gfn & page_mask;
		fault->goal_level--;
P
Paolo Bonzini 已提交
2900 2901 2902
	}
}

2903
static int __direct_map(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
2904
{
2905
	struct kvm_shadow_walk_iterator it;
2906
	struct kvm_mmu_page *sp;
2907
	int ret;
2908
	gfn_t base_gfn = fault->gfn;
A
Avi Kivity 已提交
2909

2910
	kvm_mmu_hugepage_adjust(vcpu, fault);
2911

2912
	trace_kvm_mmu_spte_requested(fault);
2913
	for_each_shadow_entry(vcpu, fault->addr, it) {
P
Paolo Bonzini 已提交
2914 2915 2916 2917
		/*
		 * We cannot overwrite existing page tables with an NX
		 * large page, as the leaf could be executable.
		 */
2918
		if (fault->nx_huge_page_workaround_enabled)
2919
			disallowed_hugepage_adjust(fault, *it.sptep, it.level);
P
Paolo Bonzini 已提交
2920

2921
		base_gfn = fault->gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
2922
		if (it.level == fault->goal_level)
2923
			break;
A
Avi Kivity 已提交
2924

2925
		drop_large_spte(vcpu, it.sptep);
2926 2927 2928 2929 2930 2931 2932
		if (is_shadow_present_pte(*it.sptep))
			continue;

		sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
				      it.level - 1, true, ACC_ALL);

		link_shadow_page(vcpu, it.sptep, sp);
2933 2934
		if (fault->is_tdp && fault->huge_page_disallowed &&
		    fault->req_level >= it.level)
2935
			account_huge_nx_page(vcpu->kvm, sp);
2936
	}
2937

2938 2939 2940
	if (WARN_ON_ONCE(it.level != fault->goal_level))
		return -EFAULT;

2941
	ret = mmu_set_spte(vcpu, fault->slot, it.sptep, ACC_ALL,
2942
			   base_gfn, fault->pfn, fault);
2943 2944 2945
	if (ret == RET_PF_SPURIOUS)
		return ret;

2946 2947 2948
	direct_pte_prefetch(vcpu, it.sptep);
	++vcpu->stat.pf_fixed;
	return ret;
A
Avi Kivity 已提交
2949 2950
}

H
Huang Ying 已提交
2951
static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2952
{
2953
	send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
2954 2955
}

D
Dan Williams 已提交
2956
static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
2957
{
X
Xiao Guangrong 已提交
2958 2959 2960 2961 2962 2963
	/*
	 * Do not cache the mmio info caused by writing the readonly gfn
	 * into the spte otherwise read access on readonly gfn also can
	 * caused mmio page fault and treat it as mmio access.
	 */
	if (pfn == KVM_PFN_ERR_RO_FAULT)
2964
		return RET_PF_EMULATE;
X
Xiao Guangrong 已提交
2965

2966
	if (pfn == KVM_PFN_ERR_HWPOISON) {
2967
		kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
2968
		return RET_PF_RETRY;
2969
	}
2970

2971
	return -EFAULT;
2972 2973
}

2974 2975
static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault,
				unsigned int access, int *ret_val)
2976 2977
{
	/* The pfn is invalid, report the error! */
2978 2979
	if (unlikely(is_error_pfn(fault->pfn))) {
		*ret_val = kvm_handle_bad_page(vcpu, fault->gfn, fault->pfn);
2980
		return true;
2981 2982
	}

2983
	if (unlikely(!fault->slot)) {
2984 2985 2986
		gva_t gva = fault->is_tdp ? 0 : fault->addr;

		vcpu_cache_mmio_info(vcpu, gva, fault->gfn,
2987
				     access & shadow_mmio_access_mask);
2988 2989 2990 2991 2992 2993 2994 2995 2996 2997
		/*
		 * If MMIO caching is disabled, emulate immediately without
		 * touching the shadow page tables as attempting to install an
		 * MMIO SPTE will just be an expensive nop.
		 */
		if (unlikely(!shadow_mmio_value)) {
			*ret_val = RET_PF_EMULATE;
			return true;
		}
	}
2998

2999
	return false;
3000 3001
}

3002
static bool page_fault_can_be_fast(struct kvm_page_fault *fault)
3003
{
3004 3005 3006 3007
	/*
	 * Do not fix the mmio spte with invalid generation number which
	 * need to be updated by slow page fault path.
	 */
3008
	if (fault->rsvd)
3009 3010
		return false;

3011
	/* See if the page fault is due to an NX violation */
3012
	if (unlikely(fault->exec && fault->present))
3013 3014
		return false;

3015
	/*
3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026
	 * #PF can be fast if:
	 * 1. The shadow page table entry is not present, which could mean that
	 *    the fault is potentially caused by access tracking (if enabled).
	 * 2. The shadow page table entry is present and the fault
	 *    is caused by write-protect, that means we just need change the W
	 *    bit of the spte which can be done out of mmu-lock.
	 *
	 * However, if access tracking is disabled we know that a non-present
	 * page must be a genuine page fault where we have to create a new SPTE.
	 * So, if access tracking is disabled, we return true only for write
	 * accesses to a present page.
3027 3028
	 */

3029
	return shadow_acc_track_mask != 0 || (fault->write && fault->present);
3030 3031
}

3032 3033 3034 3035
/*
 * Returns true if the SPTE was fixed successfully. Otherwise,
 * someone else modified the SPTE from its original value.
 */
3036
static bool
3037
fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault,
3038
			u64 *sptep, u64 old_spte, u64 new_spte)
3039
{
3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051
	/*
	 * Theoretically we could also set dirty bit (and flush TLB) here in
	 * order to eliminate unnecessary PML logging. See comments in
	 * set_spte. But fast_page_fault is very unlikely to happen with PML
	 * enabled, so we do not do this. This might result in the same GPA
	 * to be logged in PML buffer again when the write really happens, and
	 * eventually to be called by mark_page_dirty twice. But it's also no
	 * harm. This also avoids the TLB flush needed after setting dirty bit
	 * so non-PML cases won't be impacted.
	 *
	 * Compare with set_spte where instead shadow_dirty_mask is set.
	 */
3052
	if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3053 3054
		return false;

3055 3056
	if (is_writable_pte(new_spte) && !is_writable_pte(old_spte))
		mark_page_dirty_in_slot(vcpu->kvm, fault->slot, fault->gfn);
3057 3058 3059 3060

	return true;
}

3061
static bool is_access_allowed(struct kvm_page_fault *fault, u64 spte)
3062
{
3063
	if (fault->exec)
3064 3065
		return is_executable_pte(spte);

3066
	if (fault->write)
3067 3068 3069 3070 3071 3072
		return is_writable_pte(spte);

	/* Fault was on Read access */
	return spte & PT_PRESENT_MASK;
}

3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095
/*
 * Returns the last level spte pointer of the shadow page walk for the given
 * gpa, and sets *spte to the spte value. This spte may be non-preset. If no
 * walk could be performed, returns NULL and *spte does not contain valid data.
 *
 * Contract:
 *  - Must be called between walk_shadow_page_lockless_{begin,end}.
 *  - The returned sptep must not be used after walk_shadow_page_lockless_end.
 */
static u64 *fast_pf_get_last_sptep(struct kvm_vcpu *vcpu, gpa_t gpa, u64 *spte)
{
	struct kvm_shadow_walk_iterator iterator;
	u64 old_spte;
	u64 *sptep = NULL;

	for_each_shadow_entry_lockless(vcpu, gpa, iterator, old_spte) {
		sptep = iterator.sptep;
		*spte = old_spte;
	}

	return sptep;
}

3096
/*
3097
 * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS.
3098
 */
3099
static int fast_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
3100
{
3101
	struct kvm_mmu_page *sp;
3102
	int ret = RET_PF_INVALID;
3103
	u64 spte = 0ull;
3104
	u64 *sptep = NULL;
3105
	uint retry_count = 0;
3106

3107
	if (!page_fault_can_be_fast(fault))
3108
		return ret;
3109 3110 3111

	walk_shadow_page_lockless_begin(vcpu);

3112
	do {
3113
		u64 new_spte;
3114

3115
		if (is_tdp_mmu(vcpu->arch.mmu))
3116
			sptep = kvm_tdp_mmu_fast_pf_get_last_sptep(vcpu, fault->addr, &spte);
3117
		else
3118
			sptep = fast_pf_get_last_sptep(vcpu, fault->addr, &spte);
3119

3120 3121 3122
		if (!is_shadow_present_pte(spte))
			break;

3123
		sp = sptep_to_sp(sptep);
3124 3125
		if (!is_last_spte(spte, sp->role.level))
			break;
3126

3127
		/*
3128 3129 3130 3131 3132
		 * Check whether the memory access that caused the fault would
		 * still cause it if it were to be performed right now. If not,
		 * then this is a spurious fault caused by TLB lazily flushed,
		 * or some other CPU has already fixed the PTE after the
		 * current CPU took the fault.
3133 3134 3135 3136
		 *
		 * Need not check the access of upper level table entries since
		 * they are always ACC_ALL.
		 */
3137
		if (is_access_allowed(fault, spte)) {
3138
			ret = RET_PF_SPURIOUS;
3139 3140
			break;
		}
3141

3142 3143 3144 3145 3146 3147 3148 3149 3150 3151
		new_spte = spte;

		if (is_access_track_spte(spte))
			new_spte = restore_acc_track_spte(new_spte);

		/*
		 * Currently, to simplify the code, write-protection can
		 * be removed in the fast path only if the SPTE was
		 * write-protected for dirty-logging or access tracking.
		 */
3152
		if (fault->write &&
3153
		    spte_can_locklessly_be_made_writable(spte)) {
3154
			new_spte |= PT_WRITABLE_MASK;
3155 3156

			/*
3157 3158 3159
			 * Do not fix write-permission on the large spte when
			 * dirty logging is enabled. Since we only dirty the
			 * first page into the dirty-bitmap in
3160 3161 3162 3163 3164
			 * fast_pf_fix_direct_spte(), other pages are missed
			 * if its slot has dirty logging enabled.
			 *
			 * Instead, we let the slow page fault path create a
			 * normal spte to fix the access.
3165
			 */
3166 3167
			if (sp->role.level > PG_LEVEL_4K &&
			    kvm_slot_dirty_track_enabled(fault->slot))
3168
				break;
3169
		}
3170

3171
		/* Verify that the fault can be handled in the fast path */
3172
		if (new_spte == spte ||
3173
		    !is_access_allowed(fault, new_spte))
3174 3175 3176 3177 3178
			break;

		/*
		 * Currently, fast page fault only works for direct mapping
		 * since the gfn is not stable for indirect shadow page. See
3179
		 * Documentation/virt/kvm/locking.rst to get more detail.
3180
		 */
3181
		if (fast_pf_fix_direct_spte(vcpu, fault, sptep, spte, new_spte)) {
3182
			ret = RET_PF_FIXED;
3183
			break;
3184
		}
3185 3186 3187 3188 3189 3190 3191 3192

		if (++retry_count > 4) {
			printk_once(KERN_WARNING
				"kvm: Fast #PF retrying more than 4 times.\n");
			break;
		}

	} while (true);
3193

3194
	trace_fast_page_fault(vcpu, fault, sptep, spte, ret);
3195 3196
	walk_shadow_page_lockless_end(vcpu);

3197
	return ret;
3198 3199
}

3200 3201
static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
			       struct list_head *invalid_list)
3202
{
3203
	struct kvm_mmu_page *sp;
3204

3205
	if (!VALID_PAGE(*root_hpa))
A
Avi Kivity 已提交
3206
		return;
3207

3208
	sp = to_shadow_page(*root_hpa & PT64_BASE_ADDR_MASK);
3209

3210
	if (is_tdp_mmu_page(sp))
3211
		kvm_tdp_mmu_put_root(kvm, sp, false);
3212 3213
	else if (!--sp->root_count && sp->role.invalid)
		kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3214

3215 3216 3217
	*root_hpa = INVALID_PAGE;
}

3218
/* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
3219 3220
void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
			ulong roots_to_free)
3221
{
3222
	struct kvm *kvm = vcpu->kvm;
3223 3224
	int i;
	LIST_HEAD(invalid_list);
3225
	bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
3226

3227
	BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3228

3229
	/* Before acquiring the MMU lock, see if we need to do any real work. */
3230 3231 3232 3233 3234 3235 3236 3237 3238
	if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
			if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
			    VALID_PAGE(mmu->prev_roots[i].hpa))
				break;

		if (i == KVM_MMU_NUM_PREV_ROOTS)
			return;
	}
3239

3240
	write_lock(&kvm->mmu_lock);
3241

3242 3243
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
		if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3244
			mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa,
3245
					   &invalid_list);
3246

3247 3248 3249
	if (free_active_root) {
		if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
		    (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3250
			mmu_free_root_page(kvm, &mmu->root_hpa, &invalid_list);
3251
		} else if (mmu->pae_root) {
3252 3253 3254 3255 3256 3257 3258 3259
			for (i = 0; i < 4; ++i) {
				if (!IS_VALID_PAE_ROOT(mmu->pae_root[i]))
					continue;

				mmu_free_root_page(kvm, &mmu->pae_root[i],
						   &invalid_list);
				mmu->pae_root[i] = INVALID_PAE_ROOT;
			}
3260
		}
3261
		mmu->root_hpa = INVALID_PAGE;
3262
		mmu->root_pgd = 0;
3263
	}
3264

3265
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
3266
	write_unlock(&kvm->mmu_lock);
3267
}
3268
EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3269

3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296
void kvm_mmu_free_guest_mode_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
{
	unsigned long roots_to_free = 0;
	hpa_t root_hpa;
	int i;

	/*
	 * This should not be called while L2 is active, L2 can't invalidate
	 * _only_ its own roots, e.g. INVVPID unconditionally exits.
	 */
	WARN_ON_ONCE(mmu->mmu_role.base.guest_mode);

	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
		root_hpa = mmu->prev_roots[i].hpa;
		if (!VALID_PAGE(root_hpa))
			continue;

		if (!to_shadow_page(root_hpa) ||
			to_shadow_page(root_hpa)->role.guest_mode)
			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
	}

	kvm_mmu_free_roots(vcpu, mmu, roots_to_free);
}
EXPORT_SYMBOL_GPL(kvm_mmu_free_guest_mode_roots);


3297 3298 3299 3300
static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
{
	int ret = 0;

3301
	if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) {
3302
		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3303 3304 3305 3306 3307 3308
		ret = 1;
	}

	return ret;
}

3309 3310
static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, gva_t gva,
			    u8 level, bool direct)
3311 3312
{
	struct kvm_mmu_page *sp;
3313 3314 3315 3316 3317 3318 3319 3320 3321

	sp = kvm_mmu_get_page(vcpu, gfn, gva, level, direct, ACC_ALL);
	++sp->root_count;

	return __pa(sp->spt);
}

static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
{
3322 3323
	struct kvm_mmu *mmu = vcpu->arch.mmu;
	u8 shadow_root_level = mmu->shadow_root_level;
3324
	hpa_t root;
3325
	unsigned i;
3326 3327 3328 3329 3330 3331
	int r;

	write_lock(&vcpu->kvm->mmu_lock);
	r = make_mmu_pages_available(vcpu);
	if (r < 0)
		goto out_unlock;
3332

3333
	if (is_tdp_mmu_enabled(vcpu->kvm)) {
3334
		root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu);
3335
		mmu->root_hpa = root;
3336
	} else if (shadow_root_level >= PT64_ROOT_4LEVEL) {
3337
		root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level, true);
3338
		mmu->root_hpa = root;
3339
	} else if (shadow_root_level == PT32E_ROOT_LEVEL) {
3340 3341 3342 3343
		if (WARN_ON_ONCE(!mmu->pae_root)) {
			r = -EIO;
			goto out_unlock;
		}
3344

3345
		for (i = 0; i < 4; ++i) {
3346
			WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3347

3348 3349
			root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT),
					      i << 30, PT32_ROOT_LEVEL, true);
3350 3351
			mmu->pae_root[i] = root | PT_PRESENT_MASK |
					   shadow_me_mask;
3352
		}
3353
		mmu->root_hpa = __pa(mmu->pae_root);
3354 3355
	} else {
		WARN_ONCE(1, "Bad TDP root level = %d\n", shadow_root_level);
3356 3357
		r = -EIO;
		goto out_unlock;
3358
	}
3359

3360
	/* root_pgd is ignored for direct MMUs. */
3361
	mmu->root_pgd = 0;
3362 3363 3364
out_unlock:
	write_unlock(&vcpu->kvm->mmu_lock);
	return r;
3365 3366
}

3367 3368 3369 3370
static int mmu_first_shadow_root_alloc(struct kvm *kvm)
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *slot;
3371
	int r = 0, i, bkt;
3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395

	/*
	 * Check if this is the first shadow root being allocated before
	 * taking the lock.
	 */
	if (kvm_shadow_root_allocated(kvm))
		return 0;

	mutex_lock(&kvm->slots_arch_lock);

	/* Recheck, under the lock, whether this is the first shadow root. */
	if (kvm_shadow_root_allocated(kvm))
		goto out_unlock;

	/*
	 * Check if anything actually needs to be allocated, e.g. all metadata
	 * will be allocated upfront if TDP is disabled.
	 */
	if (kvm_memslots_have_rmaps(kvm) &&
	    kvm_page_track_write_tracking_enabled(kvm))
		goto out_success;

	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
3396
		kvm_for_each_memslot(slot, bkt, slots) {
3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427
			/*
			 * Both of these functions are no-ops if the target is
			 * already allocated, so unconditionally calling both
			 * is safe.  Intentionally do NOT free allocations on
			 * failure to avoid having to track which allocations
			 * were made now versus when the memslot was created.
			 * The metadata is guaranteed to be freed when the slot
			 * is freed, and will be kept/used if userspace retries
			 * KVM_RUN instead of killing the VM.
			 */
			r = memslot_rmap_alloc(slot, slot->npages);
			if (r)
				goto out_unlock;
			r = kvm_page_track_write_tracking_alloc(slot);
			if (r)
				goto out_unlock;
		}
	}

	/*
	 * Ensure that shadow_root_allocated becomes true strictly after
	 * all the related pointers are set.
	 */
out_success:
	smp_store_release(&kvm->arch.shadow_root_allocated, true);

out_unlock:
	mutex_unlock(&kvm->slots_arch_lock);
	return r;
}

3428
static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3429
{
3430
	struct kvm_mmu *mmu = vcpu->arch.mmu;
3431
	u64 pdptrs[4], pm_mask;
3432
	gfn_t root_gfn, root_pgd;
3433
	hpa_t root;
3434 3435
	unsigned i;
	int r;
3436

3437
	root_pgd = mmu->get_guest_pgd(vcpu);
3438
	root_gfn = root_pgd >> PAGE_SHIFT;
3439

3440 3441 3442
	if (mmu_check_root(vcpu, root_gfn))
		return 1;

3443 3444 3445 3446
	/*
	 * On SVM, reading PDPTRs might access guest memory, which might fault
	 * and thus might sleep.  Grab the PDPTRs before acquiring mmu_lock.
	 */
3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457
	if (mmu->root_level == PT32E_ROOT_LEVEL) {
		for (i = 0; i < 4; ++i) {
			pdptrs[i] = mmu->get_pdptr(vcpu, i);
			if (!(pdptrs[i] & PT_PRESENT_MASK))
				continue;

			if (mmu_check_root(vcpu, pdptrs[i] >> PAGE_SHIFT))
				return 1;
		}
	}

3458
	r = mmu_first_shadow_root_alloc(vcpu->kvm);
3459 3460 3461
	if (r)
		return r;

3462 3463 3464 3465 3466
	write_lock(&vcpu->kvm->mmu_lock);
	r = make_mmu_pages_available(vcpu);
	if (r < 0)
		goto out_unlock;

3467 3468 3469 3470
	/*
	 * Do we shadow a long mode page table? If so we need to
	 * write-protect the guests page table root.
	 */
3471
	if (mmu->root_level >= PT64_ROOT_4LEVEL) {
3472
		root = mmu_alloc_root(vcpu, root_gfn, 0,
3473 3474
				      mmu->shadow_root_level, false);
		mmu->root_hpa = root;
3475
		goto set_root_pgd;
3476
	}
3477

3478 3479 3480 3481
	if (WARN_ON_ONCE(!mmu->pae_root)) {
		r = -EIO;
		goto out_unlock;
	}
3482

3483 3484
	/*
	 * We shadow a 32 bit page table. This may be a legacy 2-level
3485 3486
	 * or a PAE 3-level page table. In either case we need to be aware that
	 * the shadow page table may be a PAE or a long mode page table.
3487
	 */
3488
	pm_mask = PT_PRESENT_MASK | shadow_me_mask;
3489
	if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL) {
3490 3491
		pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;

3492
		if (WARN_ON_ONCE(!mmu->pml4_root)) {
3493 3494 3495
			r = -EIO;
			goto out_unlock;
		}
3496
		mmu->pml4_root[0] = __pa(mmu->pae_root) | pm_mask;
3497 3498 3499 3500 3501 3502 3503 3504

		if (mmu->shadow_root_level == PT64_ROOT_5LEVEL) {
			if (WARN_ON_ONCE(!mmu->pml5_root)) {
				r = -EIO;
				goto out_unlock;
			}
			mmu->pml5_root[0] = __pa(mmu->pml4_root) | pm_mask;
		}
3505 3506
	}

3507
	for (i = 0; i < 4; ++i) {
3508
		WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3509

3510
		if (mmu->root_level == PT32E_ROOT_LEVEL) {
3511
			if (!(pdptrs[i] & PT_PRESENT_MASK)) {
3512
				mmu->pae_root[i] = INVALID_PAE_ROOT;
A
Avi Kivity 已提交
3513 3514
				continue;
			}
3515
			root_gfn = pdptrs[i] >> PAGE_SHIFT;
3516
		}
3517

3518 3519
		root = mmu_alloc_root(vcpu, root_gfn, i << 30,
				      PT32_ROOT_LEVEL, false);
3520
		mmu->pae_root[i] = root | pm_mask;
3521
	}
3522

3523 3524 3525
	if (mmu->shadow_root_level == PT64_ROOT_5LEVEL)
		mmu->root_hpa = __pa(mmu->pml5_root);
	else if (mmu->shadow_root_level == PT64_ROOT_4LEVEL)
3526
		mmu->root_hpa = __pa(mmu->pml4_root);
3527 3528
	else
		mmu->root_hpa = __pa(mmu->pae_root);
3529

3530
set_root_pgd:
3531
	mmu->root_pgd = root_pgd;
3532 3533
out_unlock:
	write_unlock(&vcpu->kvm->mmu_lock);
3534

3535
	return 0;
3536 3537
}

3538 3539 3540
static int mmu_alloc_special_roots(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu *mmu = vcpu->arch.mmu;
3541
	bool need_pml5 = mmu->shadow_root_level > PT64_ROOT_4LEVEL;
3542 3543 3544
	u64 *pml5_root = NULL;
	u64 *pml4_root = NULL;
	u64 *pae_root;
3545 3546

	/*
3547 3548 3549 3550
	 * When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP
	 * tables are allocated and initialized at root creation as there is no
	 * equivalent level in the guest's NPT to shadow.  Allocate the tables
	 * on demand, as running a 32-bit L1 VMM on 64-bit KVM is very rare.
3551
	 */
3552 3553 3554
	if (mmu->direct_map || mmu->root_level >= PT64_ROOT_4LEVEL ||
	    mmu->shadow_root_level < PT64_ROOT_4LEVEL)
		return 0;
3555

3556 3557 3558 3559 3560 3561 3562 3563
	/*
	 * NPT, the only paging mode that uses this horror, uses a fixed number
	 * of levels for the shadow page tables, e.g. all MMUs are 4-level or
	 * all MMus are 5-level.  Thus, this can safely require that pml5_root
	 * is allocated if the other roots are valid and pml5 is needed, as any
	 * prior MMU would also have required pml5.
	 */
	if (mmu->pae_root && mmu->pml4_root && (!need_pml5 || mmu->pml5_root))
3564
		return 0;
3565

3566 3567 3568 3569
	/*
	 * The special roots should always be allocated in concert.  Yell and
	 * bail if KVM ends up in a state where only one of the roots is valid.
	 */
3570
	if (WARN_ON_ONCE(!tdp_enabled || mmu->pae_root || mmu->pml4_root ||
3571
			 (need_pml5 && mmu->pml5_root)))
3572
		return -EIO;
3573

3574 3575 3576 3577
	/*
	 * Unlike 32-bit NPT, the PDP table doesn't need to be in low mem, and
	 * doesn't need to be decrypted.
	 */
3578 3579 3580
	pae_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
	if (!pae_root)
		return -ENOMEM;
3581

3582
#ifdef CONFIG_X86_64
3583
	pml4_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3584 3585 3586
	if (!pml4_root)
		goto err_pml4;

3587
	if (need_pml5) {
3588 3589 3590
		pml5_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
		if (!pml5_root)
			goto err_pml5;
3591
	}
3592
#endif
3593

3594
	mmu->pae_root = pae_root;
3595
	mmu->pml4_root = pml4_root;
3596
	mmu->pml5_root = pml5_root;
3597

3598
	return 0;
3599 3600 3601 3602 3603 3604 3605 3606

#ifdef CONFIG_X86_64
err_pml5:
	free_page((unsigned long)pml4_root);
err_pml4:
	free_page((unsigned long)pae_root);
	return -ENOMEM;
#endif
3607 3608
}

3609 3610 3611 3612
static bool is_unsync_root(hpa_t root)
{
	struct kvm_mmu_page *sp;

3613 3614 3615
	if (!VALID_PAGE(root))
		return false;

3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635
	/*
	 * The read barrier orders the CPU's read of SPTE.W during the page table
	 * walk before the reads of sp->unsync/sp->unsync_children here.
	 *
	 * Even if another CPU was marking the SP as unsync-ed simultaneously,
	 * any guest page table changes are not guaranteed to be visible anyway
	 * until this VCPU issues a TLB flush strictly after those changes are
	 * made.  We only need to ensure that the other CPU sets these flags
	 * before any actual changes to the page tables are made.  The comments
	 * in mmu_try_to_unsync_pages() describe what could go wrong if this
	 * requirement isn't satisfied.
	 */
	smp_rmb();
	sp = to_shadow_page(root);
	if (sp->unsync || sp->unsync_children)
		return true;

	return false;
}

3636
void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3637 3638 3639 3640
{
	int i;
	struct kvm_mmu_page *sp;

3641
	if (vcpu->arch.mmu->direct_map)
3642 3643
		return;

3644
	if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3645
		return;
3646

3647
	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3648

3649 3650
	if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
		hpa_t root = vcpu->arch.mmu->root_hpa;
3651
		sp = to_shadow_page(root);
3652

3653
		if (!is_unsync_root(root))
3654 3655
			return;

3656
		write_lock(&vcpu->kvm->mmu_lock);
3657
		mmu_sync_children(vcpu, sp, true);
3658
		write_unlock(&vcpu->kvm->mmu_lock);
3659 3660
		return;
	}
3661

3662
	write_lock(&vcpu->kvm->mmu_lock);
3663

3664
	for (i = 0; i < 4; ++i) {
3665
		hpa_t root = vcpu->arch.mmu->pae_root[i];
3666

3667
		if (IS_VALID_PAE_ROOT(root)) {
3668
			root &= PT64_BASE_ADDR_MASK;
3669
			sp = to_shadow_page(root);
3670
			mmu_sync_children(vcpu, sp, true);
3671 3672 3673
		}
	}

3674
	write_unlock(&vcpu->kvm->mmu_lock);
3675 3676
}

3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689
void kvm_mmu_sync_prev_roots(struct kvm_vcpu *vcpu)
{
	unsigned long roots_to_free = 0;
	int i;

	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
		if (is_unsync_root(vcpu->arch.mmu->prev_roots[i].hpa))
			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);

	/* sync prev_roots by simply freeing them */
	kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, roots_to_free);
}

3690 3691 3692
static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
				  gpa_t vaddr, u32 access,
				  struct x86_exception *exception)
A
Avi Kivity 已提交
3693
{
3694 3695
	if (exception)
		exception->error_code = 0;
3696
	return kvm_translate_gpa(vcpu, mmu, vaddr, access, exception);
3697 3698
}

3699
static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3700
{
3701 3702 3703 3704 3705 3706 3707
	/*
	 * A nested guest cannot use the MMIO cache if it is using nested
	 * page tables, because cr2 is a nGPA while the cache stores GPAs.
	 */
	if (mmu_is_nested(vcpu))
		return false;

3708 3709 3710 3711 3712 3713
	if (direct)
		return vcpu_match_mmio_gpa(vcpu, addr);

	return vcpu_match_mmio_gva(vcpu, addr);
}

3714 3715 3716
/*
 * Return the level of the lowest level SPTE added to sptes.
 * That SPTE may be non-present.
3717 3718
 *
 * Must be called between walk_shadow_page_lockless_{begin,end}.
3719
 */
3720
static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level)
3721 3722
{
	struct kvm_shadow_walk_iterator iterator;
3723
	int leaf = -1;
3724
	u64 spte;
3725

3726 3727
	for (shadow_walk_init(&iterator, vcpu, addr),
	     *root_level = iterator.level;
3728 3729
	     shadow_walk_okay(&iterator);
	     __shadow_walk_next(&iterator, spte)) {
3730
		leaf = iterator.level;
3731 3732
		spte = mmu_spte_get_lockless(iterator.sptep);

3733
		sptes[leaf] = spte;
3734 3735 3736 3737 3738
	}

	return leaf;
}

3739
/* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */
3740 3741
static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
{
3742
	u64 sptes[PT64_ROOT_MAX_LEVEL + 1];
3743
	struct rsvd_bits_validate *rsvd_check;
3744
	int root, leaf, level;
3745 3746
	bool reserved = false;

3747 3748
	walk_shadow_page_lockless_begin(vcpu);

3749
	if (is_tdp_mmu(vcpu->arch.mmu))
3750
		leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, &root);
3751
	else
3752
		leaf = get_walk(vcpu, addr, sptes, &root);
3753

3754 3755
	walk_shadow_page_lockless_end(vcpu);

3756 3757 3758 3759 3760
	if (unlikely(leaf < 0)) {
		*sptep = 0ull;
		return reserved;
	}

3761 3762 3763 3764 3765 3766 3767 3768 3769 3770
	*sptep = sptes[leaf];

	/*
	 * Skip reserved bits checks on the terminal leaf if it's not a valid
	 * SPTE.  Note, this also (intentionally) skips MMIO SPTEs, which, by
	 * design, always have reserved bits set.  The purpose of the checks is
	 * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs.
	 */
	if (!is_shadow_present_pte(sptes[leaf]))
		leaf++;
3771 3772 3773

	rsvd_check = &vcpu->arch.mmu->shadow_zero_check;

3774
	for (level = root; level >= leaf; level--)
3775
		reserved |= is_rsvd_spte(rsvd_check, sptes[level], level);
3776 3777

	if (reserved) {
3778
		pr_err("%s: reserved bits set on MMU-present spte, addr 0x%llx, hierarchy:\n",
3779
		       __func__, addr);
3780
		for (level = root; level >= leaf; level--)
3781 3782
			pr_err("------ spte = 0x%llx level = %d, rsvd bits = 0x%llx",
			       sptes[level], level,
3783
			       get_rsvd_bits(rsvd_check, sptes[level], level));
3784
	}
3785

3786
	return reserved;
3787 3788
}

P
Paolo Bonzini 已提交
3789
static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3790 3791
{
	u64 spte;
3792
	bool reserved;
3793

3794
	if (mmio_info_in_cache(vcpu, addr, direct))
3795
		return RET_PF_EMULATE;
3796

3797
	reserved = get_mmio_spte(vcpu, addr, &spte);
3798
	if (WARN_ON(reserved))
3799
		return -EINVAL;
3800 3801 3802

	if (is_mmio_spte(spte)) {
		gfn_t gfn = get_mmio_spte_gfn(spte);
3803
		unsigned int access = get_mmio_spte_access(spte);
3804

3805
		if (!check_mmio_spte(vcpu, spte))
3806
			return RET_PF_INVALID;
3807

3808 3809
		if (direct)
			addr = 0;
X
Xiao Guangrong 已提交
3810 3811

		trace_handle_mmio_page_fault(addr, gfn, access);
3812
		vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3813
		return RET_PF_EMULATE;
3814 3815 3816 3817 3818 3819
	}

	/*
	 * If the page table is zapped by other cpus, let CPU fault again on
	 * the address.
	 */
3820
	return RET_PF_RETRY;
3821 3822
}

3823
static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3824
					 struct kvm_page_fault *fault)
3825
{
3826
	if (unlikely(fault->rsvd))
3827 3828
		return false;

3829
	if (!fault->present || !fault->write)
3830 3831 3832 3833 3834 3835
		return false;

	/*
	 * guest is writing the page which is write tracked which can
	 * not be fixed by page fault handler.
	 */
3836
	if (kvm_slot_page_track_is_active(vcpu->kvm, fault->slot, fault->gfn, KVM_PAGE_TRACK_WRITE))
3837 3838 3839 3840 3841
		return true;

	return false;
}

3842 3843 3844 3845 3846 3847
static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
{
	struct kvm_shadow_walk_iterator iterator;
	u64 spte;

	walk_shadow_page_lockless_begin(vcpu);
3848
	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
3849 3850 3851 3852
		clear_sp_write_flooding_count(iterator.sptep);
	walk_shadow_page_lockless_end(vcpu);
}

3853 3854
static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
				    gfn_t gfn)
3855 3856
{
	struct kvm_arch_async_pf arch;
X
Xiao Guangrong 已提交
3857

3858
	arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3859
	arch.gfn = gfn;
3860
	arch.direct_map = vcpu->arch.mmu->direct_map;
3861
	arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu);
3862

3863 3864
	return kvm_setup_async_pf(vcpu, cr2_or_gpa,
				  kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3865 3866
}

3867
static bool kvm_faultin_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault, int *r)
3868
{
3869
	struct kvm_memory_slot *slot = fault->slot;
3870 3871
	bool async;

3872 3873 3874 3875 3876 3877
	/*
	 * Retry the page fault if the gfn hit a memslot that is being deleted
	 * or moved.  This ensures any existing SPTEs for the old memslot will
	 * be zapped before KVM inserts a new MMIO SPTE for the gfn.
	 */
	if (slot && (slot->flags & KVM_MEMSLOT_INVALID))
3878
		goto out_retry;
3879

3880 3881 3882
	if (!kvm_is_visible_memslot(slot)) {
		/* Don't expose private memslots to L2. */
		if (is_guest_mode(vcpu)) {
3883
			fault->slot = NULL;
3884 3885
			fault->pfn = KVM_PFN_NOSLOT;
			fault->map_writable = false;
3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898
			return false;
		}
		/*
		 * If the APIC access page exists but is disabled, go directly
		 * to emulation without caching the MMIO access or creating a
		 * MMIO SPTE.  That way the cache doesn't need to be purged
		 * when the AVIC is re-enabled.
		 */
		if (slot && slot->id == APIC_ACCESS_PAGE_PRIVATE_MEMSLOT &&
		    !kvm_apicv_activated(vcpu->kvm)) {
			*r = RET_PF_EMULATE;
			return true;
		}
3899 3900
	}

3901
	async = false;
3902 3903 3904
	fault->pfn = __gfn_to_pfn_memslot(slot, fault->gfn, false, &async,
					  fault->write, &fault->map_writable,
					  &fault->hva);
3905 3906 3907
	if (!async)
		return false; /* *pfn has correct page already */

3908
	if (!fault->prefetch && kvm_can_do_async_pf(vcpu)) {
3909 3910 3911
		trace_kvm_try_async_get_page(fault->addr, fault->gfn);
		if (kvm_find_async_pf_gfn(vcpu, fault->gfn)) {
			trace_kvm_async_pf_doublefault(fault->addr, fault->gfn);
3912
			kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3913
			goto out_retry;
3914
		} else if (kvm_arch_setup_async_pf(vcpu, fault->addr, fault->gfn))
3915
			goto out_retry;
3916 3917
	}

3918 3919 3920
	fault->pfn = __gfn_to_pfn_memslot(slot, fault->gfn, false, NULL,
					  fault->write, &fault->map_writable,
					  &fault->hva);
3921
	return false;
3922 3923 3924 3925

out_retry:
	*r = RET_PF_RETRY;
	return true;
3926 3927
}

3928 3929 3930 3931 3932 3933 3934
/*
 * Returns true if the page fault is stale and needs to be retried, i.e. if the
 * root was invalidated by a memslot update or a relevant mmu_notifier fired.
 */
static bool is_page_fault_stale(struct kvm_vcpu *vcpu,
				struct kvm_page_fault *fault, int mmu_seq)
{
3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949
	struct kvm_mmu_page *sp = to_shadow_page(vcpu->arch.mmu->root_hpa);

	/* Special roots, e.g. pae_root, are not backed by shadow pages. */
	if (sp && is_obsolete_sp(vcpu->kvm, sp))
		return true;

	/*
	 * Roots without an associated shadow page are considered invalid if
	 * there is a pending request to free obsolete roots.  The request is
	 * only a hint that the current root _may_ be obsolete and needs to be
	 * reloaded, e.g. if the guest frees a PGD that KVM is tracking as a
	 * previous root, then __kvm_mmu_prepare_zap_page() signals all vCPUs
	 * to reload even if no vCPU is actively using the root.
	 */
	if (!sp && kvm_test_request(KVM_REQ_MMU_RELOAD, vcpu))
3950 3951 3952 3953 3954 3955
		return true;

	return fault->slot &&
	       mmu_notifier_retry_hva(vcpu->kvm, mmu_seq, fault->hva);
}

3956
static int direct_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
A
Avi Kivity 已提交
3957
{
3958
	bool is_tdp_mmu_fault = is_tdp_mmu(vcpu->arch.mmu);
A
Avi Kivity 已提交
3959

3960
	unsigned long mmu_seq;
3961
	int r;
3962

3963
	fault->gfn = fault->addr >> PAGE_SHIFT;
3964 3965
	fault->slot = kvm_vcpu_gfn_to_memslot(vcpu, fault->gfn);

3966
	if (page_fault_handle_page_track(vcpu, fault))
3967
		return RET_PF_EMULATE;
3968

3969
	r = fast_page_fault(vcpu, fault);
3970 3971
	if (r != RET_PF_INVALID)
		return r;
3972

3973
	r = mmu_topup_memory_caches(vcpu, false);
3974 3975
	if (r)
		return r;
3976

3977 3978 3979
	mmu_seq = vcpu->kvm->mmu_notifier_seq;
	smp_rmb();

3980
	if (kvm_faultin_pfn(vcpu, fault, &r))
3981
		return r;
3982

3983
	if (handle_abnormal_pfn(vcpu, fault, ACC_ALL, &r))
3984
		return r;
A
Avi Kivity 已提交
3985

3986
	r = RET_PF_RETRY;
3987

3988
	if (is_tdp_mmu_fault)
3989 3990 3991 3992
		read_lock(&vcpu->kvm->mmu_lock);
	else
		write_lock(&vcpu->kvm->mmu_lock);

3993
	if (is_page_fault_stale(vcpu, fault, mmu_seq))
3994
		goto out_unlock;
3995

3996 3997
	r = make_mmu_pages_available(vcpu);
	if (r)
3998
		goto out_unlock;
B
Ben Gardon 已提交
3999

4000
	if (is_tdp_mmu_fault)
4001
		r = kvm_tdp_mmu_map(vcpu, fault);
B
Ben Gardon 已提交
4002
	else
4003
		r = __direct_map(vcpu, fault);
4004

4005
out_unlock:
4006
	if (is_tdp_mmu_fault)
4007 4008 4009
		read_unlock(&vcpu->kvm->mmu_lock);
	else
		write_unlock(&vcpu->kvm->mmu_lock);
4010
	kvm_release_pfn_clean(fault->pfn);
4011
	return r;
A
Avi Kivity 已提交
4012 4013
}

4014 4015
static int nonpaging_page_fault(struct kvm_vcpu *vcpu,
				struct kvm_page_fault *fault)
4016
{
4017
	pgprintk("%s: gva %lx error %x\n", __func__, fault->addr, fault->error_code);
4018 4019

	/* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
4020 4021
	fault->max_level = PG_LEVEL_2M;
	return direct_page_fault(vcpu, fault);
4022 4023
}

4024
int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
4025
				u64 fault_address, char *insn, int insn_len)
4026 4027
{
	int r = 1;
4028
	u32 flags = vcpu->arch.apf.host_apf_flags;
4029

4030 4031 4032 4033 4034 4035
#ifndef CONFIG_X86_64
	/* A 64-bit CR2 should be impossible on 32-bit KVM. */
	if (WARN_ON_ONCE(fault_address >> 32))
		return -EFAULT;
#endif

P
Paolo Bonzini 已提交
4036
	vcpu->arch.l1tf_flush_l1d = true;
4037
	if (!flags) {
4038 4039
		trace_kvm_page_fault(fault_address, error_code);

4040
		if (kvm_event_needs_reinjection(vcpu))
4041 4042 4043
			kvm_mmu_unprotect_page_virt(vcpu, fault_address);
		r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
				insn_len);
4044
	} else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
4045
		vcpu->arch.apf.host_apf_flags = 0;
4046
		local_irq_disable();
4047
		kvm_async_pf_task_wait_schedule(fault_address);
4048
		local_irq_enable();
4049 4050
	} else {
		WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags);
4051
	}
4052

4053 4054 4055 4056
	return r;
}
EXPORT_SYMBOL_GPL(kvm_handle_page_fault);

4057
int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
4058
{
4059 4060 4061
	while (fault->max_level > PG_LEVEL_4K) {
		int page_num = KVM_PAGES_PER_HPAGE(fault->max_level);
		gfn_t base = (fault->addr >> PAGE_SHIFT) & ~(page_num - 1);
4062

4063 4064
		if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
			break;
4065 4066

		--fault->max_level;
4067
	}
4068

4069
	return direct_page_fault(vcpu, fault);
4070 4071
}

4072
static void nonpaging_init_context(struct kvm_mmu *context)
A
Avi Kivity 已提交
4073 4074 4075
{
	context->page_fault = nonpaging_page_fault;
	context->gva_to_gpa = nonpaging_gva_to_gpa;
4076
	context->sync_page = nonpaging_sync_page;
4077
	context->invlpg = NULL;
4078
	context->direct_map = true;
A
Avi Kivity 已提交
4079 4080
}

4081
static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd,
4082 4083
				  union kvm_mmu_page_role role)
{
4084
	return (role.direct || pgd == root->pgd) &&
4085 4086
	       VALID_PAGE(root->hpa) && to_shadow_page(root->hpa) &&
	       role.word == to_shadow_page(root->hpa)->role.word;
4087 4088
}

4089
/*
4090
 * Find out if a previously cached root matching the new pgd/role is available.
4091 4092 4093 4094 4095 4096
 * The current root is also inserted into the cache.
 * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
 * returned.
 * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
 * false is returned. This root should now be freed by the caller.
 */
4097
static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_pgd,
4098 4099 4100 4101
				  union kvm_mmu_page_role new_role)
{
	uint i;
	struct kvm_mmu_root_info root;
4102
	struct kvm_mmu *mmu = vcpu->arch.mmu;
4103

4104
	root.pgd = mmu->root_pgd;
4105 4106
	root.hpa = mmu->root_hpa;

4107
	if (is_root_usable(&root, new_pgd, new_role))
4108 4109
		return true;

4110 4111 4112
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
		swap(root, mmu->prev_roots[i]);

4113
		if (is_root_usable(&root, new_pgd, new_role))
4114 4115 4116 4117
			break;
	}

	mmu->root_hpa = root.hpa;
4118
	mmu->root_pgd = root.pgd;
4119 4120 4121 4122

	return i < KVM_MMU_NUM_PREV_ROOTS;
}

4123
static bool fast_pgd_switch(struct kvm_vcpu *vcpu, gpa_t new_pgd,
4124
			    union kvm_mmu_page_role new_role)
A
Avi Kivity 已提交
4125
{
4126
	struct kvm_mmu *mmu = vcpu->arch.mmu;
4127 4128 4129 4130 4131 4132 4133

	/*
	 * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
	 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
	 * later if necessary.
	 */
	if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
4134
	    mmu->root_level >= PT64_ROOT_4LEVEL)
4135
		return cached_root_available(vcpu, new_pgd, new_role);
4136 4137

	return false;
A
Avi Kivity 已提交
4138 4139
}

4140
static void __kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd,
4141
			      union kvm_mmu_page_role new_role)
A
Avi Kivity 已提交
4142
{
4143
	if (!fast_pgd_switch(vcpu, new_pgd, new_role)) {
4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155
		kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, KVM_MMU_ROOT_CURRENT);
		return;
	}

	/*
	 * It's possible that the cached previous root page is obsolete because
	 * of a change in the MMU generation number. However, changing the
	 * generation number is accompanied by KVM_REQ_MMU_RELOAD, which will
	 * free the root set here and allocate a new one.
	 */
	kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);

4156
	if (force_flush_and_sync_on_reuse) {
4157 4158
		kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
4159
	}
4160 4161 4162 4163 4164 4165 4166 4167 4168

	/*
	 * The last MMIO access's GVA and GPA are cached in the VCPU. When
	 * switching to a new CR3, that GVA->GPA mapping may no longer be
	 * valid. So clear any cached MMIO info even when we don't need to sync
	 * the shadow page tables.
	 */
	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);

4169 4170 4171 4172 4173 4174 4175
	/*
	 * If this is a direct root page, it doesn't have a write flooding
	 * count. Otherwise, clear the write flooding count.
	 */
	if (!new_role.direct)
		__clear_sp_write_flooding_count(
				to_shadow_page(vcpu->arch.mmu->root_hpa));
A
Avi Kivity 已提交
4176 4177
}

4178
void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd)
4179
{
4180
	__kvm_mmu_new_pgd(vcpu, new_pgd, kvm_mmu_calc_root_page_role(vcpu));
4181
}
4182
EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd);
4183

4184 4185
static unsigned long get_cr3(struct kvm_vcpu *vcpu)
{
4186
	return kvm_read_cr3(vcpu);
4187 4188
}

4189
static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
4190
			   unsigned int access)
4191 4192 4193 4194 4195 4196 4197
{
	if (unlikely(is_mmio_spte(*sptep))) {
		if (gfn != get_mmio_spte_gfn(*sptep)) {
			mmu_spte_clear_no_track(sptep);
			return true;
		}

4198
		mark_mmio_spte(vcpu, sptep, gfn, access);
4199 4200 4201 4202 4203 4204
		return true;
	}

	return false;
}

4205 4206 4207 4208 4209
#define PTTYPE_EPT 18 /* arbitrary */
#define PTTYPE PTTYPE_EPT
#include "paging_tmpl.h"
#undef PTTYPE

A
Avi Kivity 已提交
4210 4211 4212 4213 4214 4215 4216 4217
#define PTTYPE 64
#include "paging_tmpl.h"
#undef PTTYPE

#define PTTYPE 32
#include "paging_tmpl.h"
#undef PTTYPE

4218
static void
4219
__reset_rsvds_bits_mask(struct rsvd_bits_validate *rsvd_check,
4220
			u64 pa_bits_rsvd, int level, bool nx, bool gbpages,
4221
			bool pse, bool amd)
4222
{
4223
	u64 gbpages_bit_rsvd = 0;
4224
	u64 nonleaf_bit8_rsvd = 0;
4225
	u64 high_bits_rsvd;
4226

4227
	rsvd_check->bad_mt_xwr = 0;
4228

4229
	if (!gbpages)
4230
		gbpages_bit_rsvd = rsvd_bits(7, 7);
4231

4232 4233 4234 4235 4236 4237 4238 4239 4240
	if (level == PT32E_ROOT_LEVEL)
		high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 62);
	else
		high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);

	/* Note, NX doesn't exist in PDPTEs, this is handled below. */
	if (!nx)
		high_bits_rsvd |= rsvd_bits(63, 63);

4241 4242 4243 4244
	/*
	 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
	 * leaf entries) on AMD CPUs only.
	 */
4245
	if (amd)
4246 4247
		nonleaf_bit8_rsvd = rsvd_bits(8, 8);

4248
	switch (level) {
4249 4250
	case PT32_ROOT_LEVEL:
		/* no rsvd bits for 2 level 4K page table entries */
4251 4252 4253 4254
		rsvd_check->rsvd_bits_mask[0][1] = 0;
		rsvd_check->rsvd_bits_mask[0][0] = 0;
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
4255

4256
		if (!pse) {
4257
			rsvd_check->rsvd_bits_mask[1][1] = 0;
4258 4259 4260
			break;
		}

4261 4262
		if (is_cpuid_PSE36())
			/* 36bits PSE 4MB page */
4263
			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4264 4265
		else
			/* 32 bits PSE 4MB page */
4266
			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4267 4268
		break;
	case PT32E_ROOT_LEVEL:
4269 4270 4271 4272 4273 4274 4275 4276
		rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) |
						   high_bits_rsvd |
						   rsvd_bits(5, 8) |
						   rsvd_bits(1, 2);	/* PDPTE */
		rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;	/* PDE */
		rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;	/* PTE */
		rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
						   rsvd_bits(13, 20);	/* large page */
4277 4278
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
4279
		break;
4280
	case PT64_ROOT_5LEVEL:
4281 4282 4283
		rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd |
						   nonleaf_bit8_rsvd |
						   rsvd_bits(7, 7);
4284 4285
		rsvd_check->rsvd_bits_mask[1][4] =
			rsvd_check->rsvd_bits_mask[0][4];
4286
		fallthrough;
4287
	case PT64_ROOT_4LEVEL:
4288 4289 4290 4291 4292 4293 4294
		rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd |
						   nonleaf_bit8_rsvd |
						   rsvd_bits(7, 7);
		rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd |
						   gbpages_bit_rsvd;
		rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;
		rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4295 4296
		rsvd_check->rsvd_bits_mask[1][3] =
			rsvd_check->rsvd_bits_mask[0][3];
4297 4298 4299 4300 4301
		rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd |
						   gbpages_bit_rsvd |
						   rsvd_bits(13, 29);
		rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
						   rsvd_bits(13, 20); /* large page */
4302 4303
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
4304 4305 4306 4307
		break;
	}
}

4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322
static bool guest_can_use_gbpages(struct kvm_vcpu *vcpu)
{
	/*
	 * If TDP is enabled, let the guest use GBPAGES if they're supported in
	 * hardware.  The hardware page walker doesn't let KVM disable GBPAGES,
	 * i.e. won't treat them as reserved, and KVM doesn't redo the GVA->GPA
	 * walk for performance and complexity reasons.  Not to mention KVM
	 * _can't_ solve the problem because GVA->GPA walks aren't visible to
	 * KVM once a TDP translation is installed.  Mimic hardware behavior so
	 * that KVM's is at least consistent, i.e. doesn't randomly inject #PF.
	 */
	return tdp_enabled ? boot_cpu_has(X86_FEATURE_GBPAGES) :
			     guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES);
}

4323 4324 4325
static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
{
4326
	__reset_rsvds_bits_mask(&context->guest_rsvd_check,
4327
				vcpu->arch.reserved_gpa_bits,
4328
				context->root_level, is_efer_nx(context),
4329
				guest_can_use_gbpages(vcpu),
4330
				is_cr4_pse(context),
4331
				guest_cpuid_is_amd_or_hygon(vcpu));
4332 4333
}

4334 4335
static void
__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4336
			    u64 pa_bits_rsvd, bool execonly, int huge_page_level)
4337
{
4338
	u64 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
4339
	u64 large_1g_rsvd = 0, large_2m_rsvd = 0;
4340
	u64 bad_mt_xwr;
4341

4342 4343 4344 4345 4346
	if (huge_page_level < PG_LEVEL_1G)
		large_1g_rsvd = rsvd_bits(7, 7);
	if (huge_page_level < PG_LEVEL_2M)
		large_2m_rsvd = rsvd_bits(7, 7);

4347 4348
	rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7);
	rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7);
4349 4350
	rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6) | large_1g_rsvd;
	rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6) | large_2m_rsvd;
4351
	rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4352 4353

	/* large page */
4354
	rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4355
	rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4356 4357
	rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29) | large_1g_rsvd;
	rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20) | large_2m_rsvd;
4358
	rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4359

4360 4361 4362 4363 4364 4365 4366 4367
	bad_mt_xwr = 0xFFull << (2 * 8);	/* bits 3..5 must not be 2 */
	bad_mt_xwr |= 0xFFull << (3 * 8);	/* bits 3..5 must not be 3 */
	bad_mt_xwr |= 0xFFull << (7 * 8);	/* bits 3..5 must not be 7 */
	bad_mt_xwr |= REPEAT_BYTE(1ull << 2);	/* bits 0..2 must not be 010 */
	bad_mt_xwr |= REPEAT_BYTE(1ull << 6);	/* bits 0..2 must not be 110 */
	if (!execonly) {
		/* bits 0..2 must not be 100 unless VMX capabilities allow it */
		bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4368
	}
4369
	rsvd_check->bad_mt_xwr = bad_mt_xwr;
4370 4371
}

4372
static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4373
		struct kvm_mmu *context, bool execonly, int huge_page_level)
4374 4375
{
	__reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4376 4377
				    vcpu->arch.reserved_gpa_bits, execonly,
				    huge_page_level);
4378 4379
}

4380 4381 4382 4383 4384
static inline u64 reserved_hpa_bits(void)
{
	return rsvd_bits(shadow_phys_bits, 63);
}

4385 4386 4387 4388 4389
/*
 * the page table on host is the shadow page table for the page
 * table in guest or amd nested guest, its mmu features completely
 * follow the features in guest.
 */
4390 4391
static void reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
					struct kvm_mmu *context)
4392
{
4393 4394 4395 4396 4397 4398 4399 4400
	/*
	 * KVM uses NX when TDP is disabled to handle a variety of scenarios,
	 * notably for huge SPTEs if iTLB multi-hit mitigation is enabled and
	 * to generate correct permissions for CR0.WP=0/CR4.SMEP=1/EFER.NX=0.
	 * The iTLB multi-hit workaround can be toggled at any time, so assume
	 * NX can be used by any non-nested shadow MMU to avoid having to reset
	 * MMU contexts.  Note, KVM forces EFER.NX=1 when TDP is disabled.
	 */
4401
	bool uses_nx = is_efer_nx(context) || !tdp_enabled;
4402 4403 4404 4405 4406

	/* @amd adds a check on bit of SPTEs, which KVM shouldn't use anyways. */
	bool is_amd = true;
	/* KVM doesn't use 2-level page tables for the shadow MMU. */
	bool is_pse = false;
4407 4408
	struct rsvd_bits_validate *shadow_zero_check;
	int i;
4409

4410 4411
	WARN_ON_ONCE(context->shadow_root_level < PT32E_ROOT_LEVEL);

4412
	shadow_zero_check = &context->shadow_zero_check;
4413
	__reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(),
4414
				context->shadow_root_level, uses_nx,
4415
				guest_can_use_gbpages(vcpu), is_pse, is_amd);
4416 4417 4418 4419 4420 4421 4422 4423 4424

	if (!shadow_me_mask)
		return;

	for (i = context->shadow_root_level; --i >= 0;) {
		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
	}

4425 4426
}

4427 4428 4429 4430 4431 4432
static inline bool boot_cpu_is_amd(void)
{
	WARN_ON_ONCE(!tdp_enabled);
	return shadow_x_mask == 0;
}

4433 4434 4435 4436 4437
/*
 * the direct page table on host, use as much mmu features as
 * possible, however, kvm currently does not do execution-protection.
 */
static void
4438
reset_tdp_shadow_zero_bits_mask(struct kvm_mmu *context)
4439
{
4440 4441 4442 4443 4444
	struct rsvd_bits_validate *shadow_zero_check;
	int i;

	shadow_zero_check = &context->shadow_zero_check;

4445
	if (boot_cpu_is_amd())
4446
		__reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(),
4447
					context->shadow_root_level, false,
4448
					boot_cpu_has(X86_FEATURE_GBPAGES),
4449
					false, true);
4450
	else
4451
		__reset_rsvds_bits_mask_ept(shadow_zero_check,
4452 4453
					    reserved_hpa_bits(), false,
					    max_huge_page_level);
4454

4455 4456 4457 4458 4459 4460 4461
	if (!shadow_me_mask)
		return;

	for (i = context->shadow_root_level; --i >= 0;) {
		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
	}
4462 4463 4464 4465 4466 4467 4468
}

/*
 * as the comments in reset_shadow_zero_bits_mask() except it
 * is the shadow page table for intel nested guest.
 */
static void
4469
reset_ept_shadow_zero_bits_mask(struct kvm_mmu *context, bool execonly)
4470 4471
{
	__reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4472 4473
				    reserved_hpa_bits(), execonly,
				    max_huge_page_level);
4474 4475
}

4476 4477 4478 4479 4480 4481 4482 4483 4484 4485
#define BYTE_MASK(access) \
	((1 & (access) ? 2 : 0) | \
	 (2 & (access) ? 4 : 0) | \
	 (3 & (access) ? 8 : 0) | \
	 (4 & (access) ? 16 : 0) | \
	 (5 & (access) ? 32 : 0) | \
	 (6 & (access) ? 64 : 0) | \
	 (7 & (access) ? 128 : 0))


4486
static void update_permission_bitmask(struct kvm_mmu *mmu, bool ept)
4487
{
4488 4489 4490 4491 4492 4493
	unsigned byte;

	const u8 x = BYTE_MASK(ACC_EXEC_MASK);
	const u8 w = BYTE_MASK(ACC_WRITE_MASK);
	const u8 u = BYTE_MASK(ACC_USER_MASK);

4494 4495 4496
	bool cr4_smep = is_cr4_smep(mmu);
	bool cr4_smap = is_cr4_smap(mmu);
	bool cr0_wp = is_cr0_wp(mmu);
4497
	bool efer_nx = is_efer_nx(mmu);
4498 4499

	for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4500 4501
		unsigned pfec = byte << 1;

F
Feng Wu 已提交
4502
		/*
4503 4504
		 * Each "*f" variable has a 1 bit for each UWX value
		 * that causes a fault with the given PFEC.
F
Feng Wu 已提交
4505
		 */
4506

4507
		/* Faults from writes to non-writable pages */
4508
		u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
4509
		/* Faults from user mode accesses to supervisor pages */
4510
		u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
4511
		/* Faults from fetches of non-executable pages*/
4512
		u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
4513 4514 4515 4516 4517 4518 4519 4520 4521 4522
		/* Faults from kernel mode fetches of user pages */
		u8 smepf = 0;
		/* Faults from kernel mode accesses of user pages */
		u8 smapf = 0;

		if (!ept) {
			/* Faults from kernel mode accesses to user pages */
			u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;

			/* Not really needed: !nx will cause pte.nx to fault */
4523
			if (!efer_nx)
4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537
				ff = 0;

			/* Allow supervisor writes if !cr0.wp */
			if (!cr0_wp)
				wf = (pfec & PFERR_USER_MASK) ? wf : 0;

			/* Disallow supervisor fetches of user code if cr4.smep */
			if (cr4_smep)
				smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;

			/*
			 * SMAP:kernel-mode data accesses from user-mode
			 * mappings should fault. A fault is considered
			 * as a SMAP violation if all of the following
P
Peng Hao 已提交
4538
			 * conditions are true:
4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551
			 *   - X86_CR4_SMAP is set in CR4
			 *   - A user page is accessed
			 *   - The access is not a fetch
			 *   - Page fault in kernel mode
			 *   - if CPL = 3 or X86_EFLAGS_AC is clear
			 *
			 * Here, we cover the first three conditions.
			 * The fourth is computed dynamically in permission_fault();
			 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
			 * *not* subject to SMAP restrictions.
			 */
			if (cr4_smap)
				smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4552
		}
4553 4554

		mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4555 4556 4557
	}
}

4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581
/*
* PKU is an additional mechanism by which the paging controls access to
* user-mode addresses based on the value in the PKRU register.  Protection
* key violations are reported through a bit in the page fault error code.
* Unlike other bits of the error code, the PK bit is not known at the
* call site of e.g. gva_to_gpa; it must be computed directly in
* permission_fault based on two bits of PKRU, on some machine state (CR4,
* CR0, EFER, CPL), and on other bits of the error code and the page tables.
*
* In particular the following conditions come from the error code, the
* page tables and the machine state:
* - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
* - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
* - PK is always zero if U=0 in the page tables
* - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
*
* The PKRU bitmask caches the result of these four conditions.  The error
* code (minus the P bit) and the page table's U bit form an index into the
* PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
* with the two bits of the PKRU register corresponding to the protection key.
* For the first three conditions above the bits will be 00, thus masking
* away both AD and WD.  For all reads or if the last condition holds, WD
* only will be masked away.
*/
4582
static void update_pkru_bitmask(struct kvm_mmu *mmu)
4583 4584 4585 4586
{
	unsigned bit;
	bool wp;

4587 4588 4589
	mmu->pkru_mask = 0;

	if (!is_cr4_pke(mmu))
4590 4591
		return;

4592
	wp = is_cr0_wp(mmu);
4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625

	for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
		unsigned pfec, pkey_bits;
		bool check_pkey, check_write, ff, uf, wf, pte_user;

		pfec = bit << 1;
		ff = pfec & PFERR_FETCH_MASK;
		uf = pfec & PFERR_USER_MASK;
		wf = pfec & PFERR_WRITE_MASK;

		/* PFEC.RSVD is replaced by ACC_USER_MASK. */
		pte_user = pfec & PFERR_RSVD_MASK;

		/*
		 * Only need to check the access which is not an
		 * instruction fetch and is to a user page.
		 */
		check_pkey = (!ff && pte_user);
		/*
		 * write access is controlled by PKRU if it is a
		 * user access or CR0.WP = 1.
		 */
		check_write = check_pkey && wf && (uf || wp);

		/* PKRU.AD stops both read and write access. */
		pkey_bits = !!check_pkey;
		/* PKRU.WD stops write access. */
		pkey_bits |= (!!check_write) << 1;

		mmu->pkru_mask |= (pkey_bits & 3) << pfec;
	}
}

4626 4627
static void reset_guest_paging_metadata(struct kvm_vcpu *vcpu,
					struct kvm_mmu *mmu)
A
Avi Kivity 已提交
4628
{
4629 4630
	if (!is_cr0_pg(mmu))
		return;
4631

4632 4633 4634
	reset_rsvds_bits_mask(vcpu, mmu);
	update_permission_bitmask(mmu, false);
	update_pkru_bitmask(mmu);
A
Avi Kivity 已提交
4635 4636
}

4637
static void paging64_init_context(struct kvm_mmu *context)
A
Avi Kivity 已提交
4638 4639 4640
{
	context->page_fault = paging64_page_fault;
	context->gva_to_gpa = paging64_gva_to_gpa;
4641
	context->sync_page = paging64_sync_page;
M
Marcelo Tosatti 已提交
4642
	context->invlpg = paging64_invlpg;
4643
	context->direct_map = false;
A
Avi Kivity 已提交
4644 4645
}

4646
static void paging32_init_context(struct kvm_mmu *context)
A
Avi Kivity 已提交
4647 4648 4649
{
	context->page_fault = paging32_page_fault;
	context->gva_to_gpa = paging32_gva_to_gpa;
4650
	context->sync_page = paging32_sync_page;
M
Marcelo Tosatti 已提交
4651
	context->invlpg = paging32_invlpg;
4652
	context->direct_map = false;
A
Avi Kivity 已提交
4653 4654
}

4655 4656
static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu,
							 struct kvm_mmu_role_regs *regs)
4657 4658 4659
{
	union kvm_mmu_extended_role ext = {0};

4660 4661 4662 4663 4664 4665
	if (____is_cr0_pg(regs)) {
		ext.cr0_pg = 1;
		ext.cr4_pae = ____is_cr4_pae(regs);
		ext.cr4_smep = ____is_cr4_smep(regs);
		ext.cr4_smap = ____is_cr4_smap(regs);
		ext.cr4_pse = ____is_cr4_pse(regs);
4666 4667 4668 4669

		/* PKEY and LA57 are active iff long mode is active. */
		ext.cr4_pke = ____is_efer_lma(regs) && ____is_cr4_pke(regs);
		ext.cr4_la57 = ____is_efer_lma(regs) && ____is_cr4_la57(regs);
4670
		ext.efer_lma = ____is_efer_lma(regs);
4671
	}
4672 4673 4674 4675 4676 4677

	ext.valid = 1;

	return ext;
}

4678
static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
4679
						   struct kvm_mmu_role_regs *regs,
4680 4681 4682 4683 4684
						   bool base_only)
{
	union kvm_mmu_role role = {0};

	role.base.access = ACC_ALL;
4685 4686 4687 4688
	if (____is_cr0_pg(regs)) {
		role.base.efer_nx = ____is_efer_nx(regs);
		role.base.cr0_wp = ____is_cr0_wp(regs);
	}
4689 4690 4691 4692 4693 4694
	role.base.smm = is_smm(vcpu);
	role.base.guest_mode = is_guest_mode(vcpu);

	if (base_only)
		return role;

4695
	role.ext = kvm_calc_mmu_role_ext(vcpu, regs);
4696 4697 4698 4699

	return role;
}

4700 4701
static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu)
{
4702 4703 4704 4705
	/* tdp_root_level is architecture forced level, use it if nonzero */
	if (tdp_root_level)
		return tdp_root_level;

4706
	/* Use 5-level TDP if and only if it's useful/necessary. */
4707
	if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48)
4708 4709
		return 4;

4710
	return max_tdp_level;
4711 4712
}

4713
static union kvm_mmu_role
4714 4715
kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu,
				struct kvm_mmu_role_regs *regs, bool base_only)
4716
{
4717
	union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, regs, base_only);
4718

4719
	role.base.ad_disabled = (shadow_accessed_mask == 0);
4720
	role.base.level = kvm_mmu_get_tdp_level(vcpu);
4721
	role.base.direct = true;
4722
	role.base.has_4_byte_gpte = false;
4723 4724 4725 4726

	return role;
}

4727
static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4728
{
4729
	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4730
	struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
4731
	union kvm_mmu_role new_role =
4732
		kvm_calc_tdp_mmu_root_page_role(vcpu, &regs, false);
4733

4734 4735 4736 4737
	if (new_role.as_u64 == context->mmu_role.as_u64)
		return;

	context->mmu_role.as_u64 = new_role.as_u64;
4738
	context->page_fault = kvm_tdp_page_fault;
4739
	context->sync_page = nonpaging_sync_page;
4740
	context->invlpg = NULL;
4741
	context->shadow_root_level = kvm_mmu_get_tdp_level(vcpu);
4742
	context->direct_map = true;
4743
	context->get_guest_pgd = get_cr3;
4744
	context->get_pdptr = kvm_pdptr_read;
4745
	context->inject_page_fault = kvm_inject_page_fault;
4746
	context->root_level = role_regs_to_root_level(&regs);
4747

4748
	if (!is_cr0_pg(context))
4749
		context->gva_to_gpa = nonpaging_gva_to_gpa;
4750
	else if (is_cr4_pae(context))
4751
		context->gva_to_gpa = paging64_gva_to_gpa;
4752
	else
4753
		context->gva_to_gpa = paging32_gva_to_gpa;
4754

4755
	reset_guest_paging_metadata(vcpu, context);
4756
	reset_tdp_shadow_zero_bits_mask(context);
4757 4758
}

4759
static union kvm_mmu_role
4760 4761
kvm_calc_shadow_root_page_role_common(struct kvm_vcpu *vcpu,
				      struct kvm_mmu_role_regs *regs, bool base_only)
4762
{
4763
	union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, regs, base_only);
4764

4765 4766
	role.base.smep_andnot_wp = role.ext.cr4_smep && !____is_cr0_wp(regs);
	role.base.smap_andnot_wp = role.ext.cr4_smap && !____is_cr0_wp(regs);
4767
	role.base.has_4_byte_gpte = ____is_cr0_pg(regs) && !____is_cr4_pae(regs);
4768

4769 4770 4771 4772
	return role;
}

static union kvm_mmu_role
4773 4774
kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu,
				   struct kvm_mmu_role_regs *regs, bool base_only)
4775 4776
{
	union kvm_mmu_role role =
4777
		kvm_calc_shadow_root_page_role_common(vcpu, regs, base_only);
4778

4779
	role.base.direct = !____is_cr0_pg(regs);
4780

4781
	if (!____is_efer_lma(regs))
4782
		role.base.level = PT32E_ROOT_LEVEL;
4783
	else if (____is_cr4_la57(regs))
4784
		role.base.level = PT64_ROOT_5LEVEL;
4785
	else
4786
		role.base.level = PT64_ROOT_4LEVEL;
4787 4788 4789 4790

	return role;
}

4791
static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
4792
				    struct kvm_mmu_role_regs *regs,
4793
				    union kvm_mmu_role new_role)
4794
{
4795 4796
	if (new_role.as_u64 == context->mmu_role.as_u64)
		return;
4797

4798
	context->mmu_role.as_u64 = new_role.as_u64;
4799

4800
	if (!is_cr0_pg(context))
4801
		nonpaging_init_context(context);
4802
	else if (is_cr4_pae(context))
4803
		paging64_init_context(context);
A
Avi Kivity 已提交
4804
	else
4805
		paging32_init_context(context);
4806
	context->root_level = role_regs_to_root_level(regs);
4807

4808
	reset_guest_paging_metadata(vcpu, context);
4809 4810
	context->shadow_root_level = new_role.base.level;

4811
	reset_shadow_zero_bits_mask(vcpu, context);
4812
}
4813

4814 4815
static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu,
				struct kvm_mmu_role_regs *regs)
4816
{
4817
	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4818
	union kvm_mmu_role new_role =
4819
		kvm_calc_shadow_mmu_root_page_role(vcpu, regs, false);
4820

4821
	shadow_mmu_init_context(vcpu, context, regs, new_role);
4822 4823
}

4824
static union kvm_mmu_role
4825 4826
kvm_calc_shadow_npt_root_page_role(struct kvm_vcpu *vcpu,
				   struct kvm_mmu_role_regs *regs)
4827 4828
{
	union kvm_mmu_role role =
4829
		kvm_calc_shadow_root_page_role_common(vcpu, regs, false);
4830 4831

	role.base.direct = false;
4832
	role.base.level = kvm_mmu_get_tdp_level(vcpu);
4833 4834 4835 4836

	return role;
}

4837 4838
void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0,
			     unsigned long cr4, u64 efer, gpa_t nested_cr3)
4839
{
4840
	struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4841 4842
	struct kvm_mmu_role_regs regs = {
		.cr0 = cr0,
4843
		.cr4 = cr4 & ~X86_CR4_PKE,
4844 4845
		.efer = efer,
	};
4846
	union kvm_mmu_role new_role;
4847

4848
	new_role = kvm_calc_shadow_npt_root_page_role(vcpu, &regs);
4849

4850
	__kvm_mmu_new_pgd(vcpu, nested_cr3, new_role.base);
4851

4852
	shadow_mmu_init_context(vcpu, context, &regs, new_role);
4853 4854
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu);
4855

4856 4857
static union kvm_mmu_role
kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
4858
				   bool execonly, u8 level)
4859
{
4860
	union kvm_mmu_role role = {0};
4861

4862 4863
	/* SMM flag is inherited from root_mmu */
	role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
4864

4865
	role.base.level = level;
4866
	role.base.has_4_byte_gpte = false;
4867 4868 4869 4870
	role.base.direct = false;
	role.base.ad_disabled = !accessed_dirty;
	role.base.guest_mode = true;
	role.base.access = ACC_ALL;
4871

4872 4873
	/* EPT, and thus nested EPT, does not consume CR0, CR4, nor EFER. */
	role.ext.word = 0;
4874
	role.ext.execonly = execonly;
4875
	role.ext.valid = 1;
4876 4877 4878 4879

	return role;
}

4880
void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
4881 4882
			     int huge_page_level, bool accessed_dirty,
			     gpa_t new_eptp)
N
Nadav Har'El 已提交
4883
{
4884
	struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4885
	u8 level = vmx_eptp_page_walk_level(new_eptp);
4886 4887
	union kvm_mmu_role new_role =
		kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
4888
						   execonly, level);
4889

4890
	__kvm_mmu_new_pgd(vcpu, new_eptp, new_role.base);
4891 4892 4893

	if (new_role.as_u64 == context->mmu_role.as_u64)
		return;
4894

4895 4896
	context->mmu_role.as_u64 = new_role.as_u64;

4897
	context->shadow_root_level = level;
N
Nadav Har'El 已提交
4898

4899
	context->ept_ad = accessed_dirty;
N
Nadav Har'El 已提交
4900 4901 4902 4903
	context->page_fault = ept_page_fault;
	context->gva_to_gpa = ept_gva_to_gpa;
	context->sync_page = ept_sync_page;
	context->invlpg = ept_invlpg;
4904
	context->root_level = level;
N
Nadav Har'El 已提交
4905
	context->direct_map = false;
4906

4907
	update_permission_bitmask(context, true);
4908
	context->pkru_mask = 0;
4909
	reset_rsvds_bits_mask_ept(vcpu, context, execonly, huge_page_level);
4910
	reset_ept_shadow_zero_bits_mask(context, execonly);
N
Nadav Har'El 已提交
4911 4912 4913
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);

4914
static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4915
{
4916
	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4917
	struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
4918

4919
	kvm_init_shadow_mmu(vcpu, &regs);
4920

4921
	context->get_guest_pgd     = get_cr3;
4922 4923
	context->get_pdptr         = kvm_pdptr_read;
	context->inject_page_fault = kvm_inject_page_fault;
A
Avi Kivity 已提交
4924 4925
}

4926 4927
static union kvm_mmu_role
kvm_calc_nested_mmu_role(struct kvm_vcpu *vcpu, struct kvm_mmu_role_regs *regs)
4928
{
4929 4930 4931
	union kvm_mmu_role role;

	role = kvm_calc_shadow_root_page_role_common(vcpu, regs, false);
4932 4933 4934 4935 4936 4937 4938

	/*
	 * Nested MMUs are used only for walking L2's gva->gpa, they never have
	 * shadow pages of their own and so "direct" has no meaning.   Set it
	 * to "true" to try to detect bogus usage of the nested MMU.
	 */
	role.base.direct = true;
4939
	role.base.level = role_regs_to_root_level(regs);
4940 4941 4942
	return role;
}

4943
static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4944
{
4945 4946
	struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
	union kvm_mmu_role new_role = kvm_calc_nested_mmu_role(vcpu, &regs);
4947 4948
	struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;

4949 4950 4951 4952
	if (new_role.as_u64 == g_context->mmu_role.as_u64)
		return;

	g_context->mmu_role.as_u64 = new_role.as_u64;
4953
	g_context->get_guest_pgd     = get_cr3;
4954
	g_context->get_pdptr         = kvm_pdptr_read;
4955
	g_context->inject_page_fault = kvm_inject_page_fault;
4956
	g_context->root_level        = new_role.base.level;
4957

4958 4959 4960 4961 4962 4963
	/*
	 * L2 page tables are never shadowed, so there is no need to sync
	 * SPTEs.
	 */
	g_context->invlpg            = NULL;

4964
	/*
4965
	 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
4966 4967 4968 4969 4970
	 * L1's nested page tables (e.g. EPT12). The nested translation
	 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
	 * L2's page tables as the first level of translation and L1's
	 * nested page tables as the second level of translation. Basically
	 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
4971
	 */
4972
	if (!is_paging(vcpu))
4973
		g_context->gva_to_gpa = nonpaging_gva_to_gpa;
4974
	else if (is_long_mode(vcpu))
4975
		g_context->gva_to_gpa = paging64_gva_to_gpa;
4976
	else if (is_pae(vcpu))
4977
		g_context->gva_to_gpa = paging64_gva_to_gpa;
4978
	else
4979
		g_context->gva_to_gpa = paging32_gva_to_gpa;
4980

4981
	reset_guest_paging_metadata(vcpu, g_context);
4982 4983
}

4984
void kvm_init_mmu(struct kvm_vcpu *vcpu)
4985
{
4986
	if (mmu_is_nested(vcpu))
4987
		init_kvm_nested_mmu(vcpu);
4988
	else if (tdp_enabled)
4989
		init_kvm_tdp_mmu(vcpu);
4990
	else
4991
		init_kvm_softmmu(vcpu);
4992
}
4993
EXPORT_SYMBOL_GPL(kvm_init_mmu);
4994

4995 4996 4997
static union kvm_mmu_page_role
kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
{
4998
	struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
4999 5000
	union kvm_mmu_role role;

5001
	if (tdp_enabled)
5002
		role = kvm_calc_tdp_mmu_root_page_role(vcpu, &regs, true);
5003
	else
5004
		role = kvm_calc_shadow_mmu_root_page_role(vcpu, &regs, true);
5005 5006

	return role.base;
5007
}
5008

5009 5010 5011 5012 5013
void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu)
{
	/*
	 * Invalidate all MMU roles to force them to reinitialize as CPUID
	 * information is factored into reserved bit calculations.
5014 5015 5016 5017 5018 5019 5020 5021
	 *
	 * Correctly handling multiple vCPU models with respect to paging and
	 * physical address properties) in a single VM would require tracking
	 * all relevant CPUID information in kvm_mmu_page_role. That is very
	 * undesirable as it would increase the memory requirements for
	 * gfn_track (see struct kvm_mmu_page_role comments).  For now that
	 * problem is swept under the rug; KVM's CPUID API is horrific and
	 * it's all but impossible to solve it without introducing a new API.
5022 5023 5024 5025 5026
	 */
	vcpu->arch.root_mmu.mmu_role.ext.valid = 0;
	vcpu->arch.guest_mmu.mmu_role.ext.valid = 0;
	vcpu->arch.nested_mmu.mmu_role.ext.valid = 0;
	kvm_mmu_reset_context(vcpu);
5027 5028

	/*
5029 5030
	 * Changing guest CPUID after KVM_RUN is forbidden, see the comment in
	 * kvm_arch_vcpu_ioctl().
5031
	 */
5032
	KVM_BUG_ON(vcpu->arch.last_vmentry_cpu != -1, vcpu->kvm);
5033 5034
}

5035
void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
5036
{
5037
	kvm_mmu_unload(vcpu);
5038
	kvm_init_mmu(vcpu);
A
Avi Kivity 已提交
5039
}
5040
EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
A
Avi Kivity 已提交
5041 5042

int kvm_mmu_load(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
5043
{
5044 5045
	int r;

5046
	r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->direct_map);
A
Avi Kivity 已提交
5047 5048
	if (r)
		goto out;
5049
	r = mmu_alloc_special_roots(vcpu);
A
Avi Kivity 已提交
5050 5051
	if (r)
		goto out;
5052
	if (vcpu->arch.mmu->direct_map)
5053 5054 5055
		r = mmu_alloc_direct_roots(vcpu);
	else
		r = mmu_alloc_shadow_roots(vcpu);
5056 5057
	if (r)
		goto out;
5058 5059 5060

	kvm_mmu_sync_roots(vcpu);

5061
	kvm_mmu_load_pgd(vcpu);
5062
	static_call(kvm_x86_flush_tlb_current)(vcpu);
5063 5064
out:
	return r;
A
Avi Kivity 已提交
5065
}
A
Avi Kivity 已提交
5066 5067 5068

void kvm_mmu_unload(struct kvm_vcpu *vcpu)
{
5069 5070 5071 5072
	kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
	WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
	kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
	WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
A
Avi Kivity 已提交
5073
}
A
Avi Kivity 已提交
5074

5075 5076 5077 5078 5079 5080 5081 5082
static bool need_remote_flush(u64 old, u64 new)
{
	if (!is_shadow_present_pte(old))
		return false;
	if (!is_shadow_present_pte(new))
		return true;
	if ((old ^ new) & PT64_BASE_ADDR_MASK)
		return true;
5083 5084
	old ^= shadow_nx_mask;
	new ^= shadow_nx_mask;
5085 5086 5087
	return (old & ~new & PT64_PERM_MASK) != 0;
}

5088
static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
5089
				    int *bytes)
5090
{
5091
	u64 gentry = 0;
5092
	int r;
5093 5094 5095

	/*
	 * Assume that the pte write on a page table of the same type
5096 5097
	 * as the current vcpu paging mode since we update the sptes only
	 * when they have the same mode.
5098
	 */
5099
	if (is_pae(vcpu) && *bytes == 4) {
5100
		/* Handle a 32-bit guest writing two halves of a 64-bit gpte */
5101 5102
		*gpa &= ~(gpa_t)7;
		*bytes = 8;
5103 5104
	}

5105 5106 5107 5108
	if (*bytes == 4 || *bytes == 8) {
		r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
		if (r)
			gentry = 0;
5109 5110
	}

5111 5112 5113 5114 5115 5116 5117
	return gentry;
}

/*
 * If we're seeing too many writes to a page, it may no longer be a page table,
 * or we may be forking, in which case it is better to unmap the page.
 */
5118
static bool detect_write_flooding(struct kvm_mmu_page *sp)
5119
{
5120 5121 5122 5123
	/*
	 * Skip write-flooding detected for the sp whose level is 1, because
	 * it can become unsync, then the guest page is not write-protected.
	 */
5124
	if (sp->role.level == PG_LEVEL_4K)
5125
		return false;
5126

5127 5128
	atomic_inc(&sp->write_flooding_count);
	return atomic_read(&sp->write_flooding_count) >= 3;
5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143
}

/*
 * Misaligned accesses are too much trouble to fix up; also, they usually
 * indicate a page is not used as a page table.
 */
static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
				    int bytes)
{
	unsigned offset, pte_size, misaligned;

	pgprintk("misaligned: gpa %llx bytes %d role %x\n",
		 gpa, bytes, sp->role.word);

	offset = offset_in_page(gpa);
5144
	pte_size = sp->role.has_4_byte_gpte ? 4 : 8;
5145 5146 5147 5148 5149 5150 5151 5152

	/*
	 * Sometimes, the OS only writes the last one bytes to update status
	 * bits, for example, in linux, andb instruction is used in clear_bit().
	 */
	if (!(offset & (pte_size - 1)) && bytes == 1)
		return false;

5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167
	misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
	misaligned |= bytes < 4;

	return misaligned;
}

static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
{
	unsigned page_offset, quadrant;
	u64 *spte;
	int level;

	page_offset = offset_in_page(gpa);
	level = sp->role.level;
	*nspte = 1;
5168
	if (sp->role.has_4_byte_gpte) {
5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189
		page_offset <<= 1;	/* 32->64 */
		/*
		 * A 32-bit pde maps 4MB while the shadow pdes map
		 * only 2MB.  So we need to double the offset again
		 * and zap two pdes instead of one.
		 */
		if (level == PT32_ROOT_LEVEL) {
			page_offset &= ~7; /* kill rounding error */
			page_offset <<= 1;
			*nspte = 2;
		}
		quadrant = page_offset >> PAGE_SHIFT;
		page_offset &= ~PAGE_MASK;
		if (quadrant != sp->role.quadrant)
			return NULL;
	}

	spte = &sp->spt[page_offset / sizeof(*spte)];
	return spte;
}

5190
static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
5191 5192
			      const u8 *new, int bytes,
			      struct kvm_page_track_notifier_node *node)
5193 5194 5195 5196 5197 5198
{
	gfn_t gfn = gpa >> PAGE_SHIFT;
	struct kvm_mmu_page *sp;
	LIST_HEAD(invalid_list);
	u64 entry, gentry, *spte;
	int npte;
5199
	bool flush = false;
5200 5201 5202 5203 5204

	/*
	 * If we don't have indirect shadow pages, it means no page is
	 * write-protected, so we can exit simply.
	 */
5205
	if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
5206 5207 5208 5209 5210 5211
		return;

	pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);

	/*
	 * No need to care whether allocation memory is successful
I
Ingo Molnar 已提交
5212
	 * or not since pte prefetch is skipped if it does not have
5213 5214
	 * enough objects in the cache.
	 */
5215
	mmu_topup_memory_caches(vcpu, true);
5216

5217
	write_lock(&vcpu->kvm->mmu_lock);
5218 5219 5220

	gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);

5221 5222
	++vcpu->kvm->stat.mmu_pte_write;

5223
	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
5224
		if (detect_write_misaligned(sp, gpa, bytes) ||
5225
		      detect_write_flooding(sp)) {
5226
			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
A
Avi Kivity 已提交
5227
			++vcpu->kvm->stat.mmu_flooded;
5228 5229
			continue;
		}
5230 5231 5232 5233 5234

		spte = get_written_sptes(sp, gpa, &npte);
		if (!spte)
			continue;

5235
		while (npte--) {
5236
			entry = *spte;
5237
			mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL);
5238 5239
			if (gentry && sp->role.level != PG_LEVEL_4K)
				++vcpu->kvm->stat.mmu_pde_zapped;
G
Gleb Natapov 已提交
5240
			if (need_remote_flush(entry, *spte))
5241
				flush = true;
5242
			++spte;
5243 5244
		}
	}
5245
	kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush);
5246
	write_unlock(&vcpu->kvm->mmu_lock);
5247 5248
}

5249
int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
5250
		       void *insn, int insn_len)
5251
{
5252
	int r, emulation_type = EMULTYPE_PF;
5253
	bool direct = vcpu->arch.mmu->direct_map;
5254

5255
	if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
5256 5257
		return RET_PF_RETRY;

5258
	r = RET_PF_INVALID;
5259
	if (unlikely(error_code & PFERR_RSVD_MASK)) {
5260
		r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
5261
		if (r == RET_PF_EMULATE)
5262 5263
			goto emulate;
	}
5264

5265
	if (r == RET_PF_INVALID) {
5266 5267
		r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
					  lower_32_bits(error_code), false);
5268
		if (KVM_BUG_ON(r == RET_PF_INVALID, vcpu->kvm))
5269
			return -EIO;
5270 5271
	}

5272
	if (r < 0)
5273
		return r;
5274 5275
	if (r != RET_PF_EMULATE)
		return 1;
5276

5277 5278 5279 5280 5281 5282 5283
	/*
	 * Before emulating the instruction, check if the error code
	 * was due to a RO violation while translating the guest page.
	 * This can occur when using nested virtualization with nested
	 * paging in both guests. If true, we simply unprotect the page
	 * and resume the guest.
	 */
5284
	if (vcpu->arch.mmu->direct_map &&
5285
	    (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5286
		kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
5287 5288 5289
		return 1;
	}

5290 5291 5292 5293 5294 5295
	/*
	 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
	 * optimistically try to just unprotect the page and let the processor
	 * re-execute the instruction that caused the page fault.  Do not allow
	 * retrying MMIO emulation, as it's not only pointless but could also
	 * cause us to enter an infinite loop because the processor will keep
5296 5297 5298 5299
	 * faulting on the non-existent MMIO address.  Retrying an instruction
	 * from a nested guest is also pointless and dangerous as we are only
	 * explicitly shadowing L1's page tables, i.e. unprotecting something
	 * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5300
	 */
5301
	if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
5302
		emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
5303
emulate:
5304
	return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
5305
				       insn_len);
5306 5307 5308
}
EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);

5309 5310
void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
			    gva_t gva, hpa_t root_hpa)
M
Marcelo Tosatti 已提交
5311
{
5312
	int i;
5313

5314 5315 5316 5317 5318 5319
	/* It's actually a GPA for vcpu->arch.guest_mmu.  */
	if (mmu != &vcpu->arch.guest_mmu) {
		/* INVLPG on a non-canonical address is a NOP according to the SDM.  */
		if (is_noncanonical_address(gva, vcpu))
			return;

5320
		static_call(kvm_x86_flush_tlb_gva)(vcpu, gva);
5321 5322 5323
	}

	if (!mmu->invlpg)
5324 5325
		return;

5326 5327
	if (root_hpa == INVALID_PAGE) {
		mmu->invlpg(vcpu, gva, mmu->root_hpa);
5328

5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346
		/*
		 * INVLPG is required to invalidate any global mappings for the VA,
		 * irrespective of PCID. Since it would take us roughly similar amount
		 * of work to determine whether any of the prev_root mappings of the VA
		 * is marked global, or to just sync it blindly, so we might as well
		 * just always sync it.
		 *
		 * Mappings not reachable via the current cr3 or the prev_roots will be
		 * synced when switching to that cr3, so nothing needs to be done here
		 * for them.
		 */
		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
			if (VALID_PAGE(mmu->prev_roots[i].hpa))
				mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
	} else {
		mmu->invlpg(vcpu, gva, root_hpa);
	}
}
5347

5348 5349
void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
{
5350
	kvm_mmu_invalidate_gva(vcpu, vcpu->arch.walk_mmu, gva, INVALID_PAGE);
M
Marcelo Tosatti 已提交
5351 5352 5353 5354
	++vcpu->stat.invlpg;
}
EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);

5355

5356 5357
void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
{
5358
	struct kvm_mmu *mmu = vcpu->arch.mmu;
5359
	bool tlb_flush = false;
5360
	uint i;
5361 5362

	if (pcid == kvm_get_active_pcid(vcpu)) {
5363
		mmu->invlpg(vcpu, gva, mmu->root_hpa);
5364
		tlb_flush = true;
5365 5366
	}

5367 5368
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
		if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5369
		    pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) {
5370 5371 5372
			mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
			tlb_flush = true;
		}
5373
	}
5374

5375
	if (tlb_flush)
5376
		static_call(kvm_x86_flush_tlb_gva)(vcpu, gva);
5377

5378 5379 5380
	++vcpu->stat.invlpg;

	/*
5381 5382 5383
	 * Mappings not reachable via the current cr3 or the prev_roots will be
	 * synced when switching to that cr3, so nothing needs to be done here
	 * for them.
5384 5385 5386
	 */
}

5387 5388
void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level,
		       int tdp_max_root_level, int tdp_huge_page_level)
5389
{
5390
	tdp_enabled = enable_tdp;
5391
	tdp_root_level = tdp_forced_root_level;
5392
	max_tdp_level = tdp_max_root_level;
5393 5394

	/*
5395
	 * max_huge_page_level reflects KVM's MMU capabilities irrespective
5396 5397 5398 5399 5400 5401
	 * of kernel support, e.g. KVM may be capable of using 1GB pages when
	 * the kernel is not.  But, KVM never creates a page size greater than
	 * what is used by the kernel for any given HVA, i.e. the kernel's
	 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
	 */
	if (tdp_enabled)
5402
		max_huge_page_level = tdp_huge_page_level;
5403
	else if (boot_cpu_has(X86_FEATURE_GBPAGES))
5404
		max_huge_page_level = PG_LEVEL_1G;
5405
	else
5406
		max_huge_page_level = PG_LEVEL_2M;
5407
}
5408
EXPORT_SYMBOL_GPL(kvm_configure_mmu);
5409 5410

/* The return value indicates if tlb flush on all vcpus is needed. */
5411 5412 5413
typedef bool (*slot_level_handler) (struct kvm *kvm,
				    struct kvm_rmap_head *rmap_head,
				    const struct kvm_memory_slot *slot);
5414 5415 5416

/* The caller should hold mmu-lock before calling this function. */
static __always_inline bool
5417
slot_handle_level_range(struct kvm *kvm, const struct kvm_memory_slot *memslot,
5418
			slot_level_handler fn, int start_level, int end_level,
5419 5420
			gfn_t start_gfn, gfn_t end_gfn, bool flush_on_yield,
			bool flush)
5421 5422 5423 5424 5425 5426
{
	struct slot_rmap_walk_iterator iterator;

	for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
			end_gfn, &iterator) {
		if (iterator.rmap)
5427
			flush |= fn(kvm, iterator.rmap, memslot);
5428

5429
		if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
5430
			if (flush && flush_on_yield) {
5431 5432 5433
				kvm_flush_remote_tlbs_with_address(kvm,
						start_gfn,
						iterator.gfn - start_gfn + 1);
5434 5435
				flush = false;
			}
5436
			cond_resched_rwlock_write(&kvm->mmu_lock);
5437 5438 5439 5440 5441 5442 5443
		}
	}

	return flush;
}

static __always_inline bool
5444
slot_handle_level(struct kvm *kvm, const struct kvm_memory_slot *memslot,
5445
		  slot_level_handler fn, int start_level, int end_level,
5446
		  bool flush_on_yield)
5447 5448 5449 5450
{
	return slot_handle_level_range(kvm, memslot, fn, start_level,
			end_level, memslot->base_gfn,
			memslot->base_gfn + memslot->npages - 1,
5451
			flush_on_yield, false);
5452 5453 5454
}

static __always_inline bool
5455 5456
slot_handle_level_4k(struct kvm *kvm, const struct kvm_memory_slot *memslot,
		     slot_level_handler fn, bool flush_on_yield)
5457
{
5458
	return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
5459
				 PG_LEVEL_4K, flush_on_yield);
5460 5461
}

5462
static void free_mmu_pages(struct kvm_mmu *mmu)
A
Avi Kivity 已提交
5463
{
5464 5465
	if (!tdp_enabled && mmu->pae_root)
		set_memory_encrypted((unsigned long)mmu->pae_root, 1);
5466
	free_page((unsigned long)mmu->pae_root);
5467
	free_page((unsigned long)mmu->pml4_root);
5468
	free_page((unsigned long)mmu->pml5_root);
A
Avi Kivity 已提交
5469 5470
}

5471
static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
A
Avi Kivity 已提交
5472
{
5473
	struct page *page;
A
Avi Kivity 已提交
5474 5475
	int i;

5476 5477 5478 5479 5480
	mmu->root_hpa = INVALID_PAGE;
	mmu->root_pgd = 0;
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
		mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;

5481 5482 5483 5484
	/* vcpu->arch.guest_mmu isn't used when !tdp_enabled. */
	if (!tdp_enabled && mmu == &vcpu->arch.guest_mmu)
		return 0;

5485
	/*
5486 5487 5488 5489
	 * When using PAE paging, the four PDPTEs are treated as 'root' pages,
	 * while the PDP table is a per-vCPU construct that's allocated at MMU
	 * creation.  When emulating 32-bit mode, cr3 is only 32 bits even on
	 * x86_64.  Therefore we need to allocate the PDP table in the first
5490 5491 5492 5493
	 * 4GB of memory, which happens to fit the DMA32 zone.  TDP paging
	 * generally doesn't use PAE paging and can skip allocating the PDP
	 * table.  The main exception, handled here, is SVM's 32-bit NPT.  The
	 * other exception is for shadowing L1's 32-bit or PAE NPT on 64-bit
5494
	 * KVM; that horror is handled on-demand by mmu_alloc_special_roots().
5495
	 */
5496
	if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
5497 5498
		return 0;

5499
	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
5500
	if (!page)
5501 5502
		return -ENOMEM;

5503
	mmu->pae_root = page_address(page);
5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517

	/*
	 * CR3 is only 32 bits when PAE paging is used, thus it's impossible to
	 * get the CPU to treat the PDPTEs as encrypted.  Decrypt the page so
	 * that KVM's writes and the CPU's reads get along.  Note, this is
	 * only necessary when using shadow paging, as 64-bit NPT can get at
	 * the C-bit even when shadowing 32-bit NPT, and SME isn't supported
	 * by 32-bit kernels (when KVM itself uses 32-bit NPT).
	 */
	if (!tdp_enabled)
		set_memory_decrypted((unsigned long)mmu->pae_root, 1);
	else
		WARN_ON_ONCE(shadow_me_mask);

5518
	for (i = 0; i < 4; ++i)
5519
		mmu->pae_root[i] = INVALID_PAE_ROOT;
5520

A
Avi Kivity 已提交
5521 5522 5523
	return 0;
}

5524
int kvm_mmu_create(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
5525
{
5526
	int ret;
5527

5528
	vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache;
5529 5530
	vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO;

5531
	vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache;
5532
	vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO;
5533

5534 5535
	vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO;

5536 5537
	vcpu->arch.mmu = &vcpu->arch.root_mmu;
	vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
A
Avi Kivity 已提交
5538

5539
	ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu);
5540 5541 5542
	if (ret)
		return ret;

5543
	ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu);
5544 5545 5546 5547 5548 5549 5550
	if (ret)
		goto fail_allocate_root;

	return ret;
 fail_allocate_root:
	free_mmu_pages(&vcpu->arch.guest_mmu);
	return ret;
A
Avi Kivity 已提交
5551 5552
}

5553
#define BATCH_ZAP_PAGES	10
5554 5555 5556
static void kvm_zap_obsolete_pages(struct kvm *kvm)
{
	struct kvm_mmu_page *sp, *node;
5557
	int nr_zapped, batch = 0;
5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569

restart:
	list_for_each_entry_safe_reverse(sp, node,
	      &kvm->arch.active_mmu_pages, link) {
		/*
		 * No obsolete valid page exists before a newly created page
		 * since active_mmu_pages is a FIFO list.
		 */
		if (!is_obsolete_sp(kvm, sp))
			break;

		/*
5570 5571 5572
		 * Invalid pages should never land back on the list of active
		 * pages.  Skip the bogus page, otherwise we'll get stuck in an
		 * infinite loop if the page gets put back on the list (again).
5573
		 */
5574
		if (WARN_ON(sp->role.invalid))
5575 5576
			continue;

5577 5578 5579 5580 5581 5582
		/*
		 * No need to flush the TLB since we're only zapping shadow
		 * pages with an obsolete generation number and all vCPUS have
		 * loaded a new root, i.e. the shadow pages being zapped cannot
		 * be in active use by the guest.
		 */
5583
		if (batch >= BATCH_ZAP_PAGES &&
5584
		    cond_resched_rwlock_write(&kvm->mmu_lock)) {
5585
			batch = 0;
5586 5587 5588
			goto restart;
		}

5589 5590
		if (__kvm_mmu_prepare_zap_page(kvm, sp,
				&kvm->arch.zapped_obsolete_pages, &nr_zapped)) {
5591
			batch += nr_zapped;
5592
			goto restart;
5593
		}
5594 5595
	}

5596 5597 5598 5599 5600
	/*
	 * Trigger a remote TLB flush before freeing the page tables to ensure
	 * KVM is not in the middle of a lockless shadow page table walk, which
	 * may reference the pages.
	 */
5601
	kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614
}

/*
 * Fast invalidate all shadow pages and use lock-break technique
 * to zap obsolete pages.
 *
 * It's required when memslot is being deleted or VM is being
 * destroyed, in these cases, we should ensure that KVM MMU does
 * not use any resource of the being-deleted slot or all slots
 * after calling the function.
 */
static void kvm_mmu_zap_all_fast(struct kvm *kvm)
{
5615 5616
	lockdep_assert_held(&kvm->slots_lock);

5617
	write_lock(&kvm->mmu_lock);
5618
	trace_kvm_mmu_zap_all_fast(kvm);
5619 5620 5621 5622 5623 5624 5625 5626 5627

	/*
	 * Toggle mmu_valid_gen between '0' and '1'.  Because slots_lock is
	 * held for the entire duration of zapping obsolete pages, it's
	 * impossible for there to be multiple invalid generations associated
	 * with *valid* shadow pages at any given time, i.e. there is exactly
	 * one valid generation and (at most) one invalid generation.
	 */
	kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
5628

5629 5630 5631 5632 5633 5634 5635 5636 5637
	/* In order to ensure all threads see this change when
	 * handling the MMU reload signal, this must happen in the
	 * same critical section as kvm_reload_remote_mmus, and
	 * before kvm_zap_obsolete_pages as kvm_zap_obsolete_pages
	 * could drop the MMU lock and yield.
	 */
	if (is_tdp_mmu_enabled(kvm))
		kvm_tdp_mmu_invalidate_all_roots(kvm);

5638 5639 5640 5641 5642 5643 5644 5645 5646 5647
	/*
	 * Notify all vcpus to reload its shadow page table and flush TLB.
	 * Then all vcpus will switch to new shadow page table with the new
	 * mmu_valid_gen.
	 *
	 * Note: we need to do this under the protection of mmu_lock,
	 * otherwise, vcpu would purge shadow page but miss tlb flush.
	 */
	kvm_reload_remote_mmus(kvm);

5648
	kvm_zap_obsolete_pages(kvm);
5649

5650
	write_unlock(&kvm->mmu_lock);
5651 5652 5653 5654 5655 5656

	if (is_tdp_mmu_enabled(kvm)) {
		read_lock(&kvm->mmu_lock);
		kvm_tdp_mmu_zap_invalidated_roots(kvm);
		read_unlock(&kvm->mmu_lock);
	}
5657 5658
}

5659 5660 5661 5662 5663
static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
{
	return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
}

5664
static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5665 5666
			struct kvm_memory_slot *slot,
			struct kvm_page_track_notifier_node *node)
5667
{
5668
	kvm_mmu_zap_all_fast(kvm);
5669 5670
}

5671
void kvm_mmu_init_vm(struct kvm *kvm)
5672
{
5673
	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5674

5675 5676
	spin_lock_init(&kvm->arch.mmu_unsync_pages_lock);

5677
	kvm_mmu_init_tdp_mmu(kvm);
5678

5679
	node->track_write = kvm_mmu_pte_write;
5680
	node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5681
	kvm_page_track_register_notifier(kvm, node);
5682 5683
}

5684
void kvm_mmu_uninit_vm(struct kvm *kvm)
5685
{
5686
	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5687

5688
	kvm_page_track_unregister_notifier(kvm, node);
5689 5690

	kvm_mmu_uninit_tdp_mmu(kvm);
5691 5692
}

5693 5694 5695 5696
static bool __kvm_zap_rmaps(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
{
	const struct kvm_memory_slot *memslot;
	struct kvm_memslots *slots;
5697
	struct kvm_memslot_iter iter;
5698 5699
	bool flush = false;
	gfn_t start, end;
5700
	int i;
5701 5702 5703 5704 5705 5706

	if (!kvm_memslots_have_rmaps(kvm))
		return flush;

	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
5707 5708 5709

		kvm_for_each_memslot_in_gfn_range(&iter, slots, gfn_start, gfn_end) {
			memslot = iter.slot;
5710 5711
			start = max(gfn_start, memslot->base_gfn);
			end = min(gfn_end, memslot->base_gfn + memslot->npages);
5712
			if (WARN_ON_ONCE(start >= end))
5713 5714 5715
				continue;

			flush = slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
5716

5717 5718 5719 5720 5721 5722 5723 5724
							PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL,
							start, end - 1, true, flush);
		}
	}

	return flush;
}

5725 5726 5727 5728
/*
 * Invalidate (zap) SPTEs that cover GFNs from gfn_start and up to gfn_end
 * (not including it)
 */
X
Xiao Guangrong 已提交
5729 5730
void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
{
5731
	bool flush;
5732
	int i;
X
Xiao Guangrong 已提交
5733

5734 5735 5736
	if (WARN_ON_ONCE(gfn_end <= gfn_start))
		return;

5737 5738
	write_lock(&kvm->mmu_lock);

5739 5740
	kvm_inc_notifier_count(kvm, gfn_start, gfn_end);

5741
	flush = __kvm_zap_rmaps(kvm, gfn_start, gfn_end);
X
Xiao Guangrong 已提交
5742

5743
	if (is_tdp_mmu_enabled(kvm)) {
5744 5745
		for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
			flush = kvm_tdp_mmu_zap_gfn_range(kvm, i, gfn_start,
5746
							  gfn_end, flush);
5747
	}
5748 5749

	if (flush)
5750 5751
		kvm_flush_remote_tlbs_with_address(kvm, gfn_start,
						   gfn_end - gfn_start);
5752

5753 5754
	kvm_dec_notifier_count(kvm, gfn_start, gfn_end);

5755
	write_unlock(&kvm->mmu_lock);
X
Xiao Guangrong 已提交
5756 5757
}

5758
static bool slot_rmap_write_protect(struct kvm *kvm,
5759
				    struct kvm_rmap_head *rmap_head,
5760
				    const struct kvm_memory_slot *slot)
5761
{
5762
	return rmap_write_protect(rmap_head, false);
5763 5764
}

5765
void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5766
				      const struct kvm_memory_slot *memslot,
5767
				      int start_level)
A
Avi Kivity 已提交
5768
{
5769
	bool flush = false;
A
Avi Kivity 已提交
5770

5771 5772 5773 5774 5775 5776 5777
	if (kvm_memslots_have_rmaps(kvm)) {
		write_lock(&kvm->mmu_lock);
		flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect,
					  start_level, KVM_MAX_HUGEPAGE_LEVEL,
					  false);
		write_unlock(&kvm->mmu_lock);
	}
5778

5779 5780 5781 5782 5783 5784
	if (is_tdp_mmu_enabled(kvm)) {
		read_lock(&kvm->mmu_lock);
		flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, start_level);
		read_unlock(&kvm->mmu_lock);
	}

5785
	/*
5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805
	 * Flush TLBs if any SPTEs had to be write-protected to ensure that
	 * guest writes are reflected in the dirty bitmap before the memslot
	 * update completes, i.e. before enabling dirty logging is visible to
	 * userspace.
	 *
	 * Perform the TLB flush outside the mmu_lock to reduce the amount of
	 * time the lock is held. However, this does mean that another CPU can
	 * now grab mmu_lock and encounter a write-protected SPTE while CPUs
	 * still have a writable mapping for the associated GFN in their TLB.
	 *
	 * This is safe but requires KVM to be careful when making decisions
	 * based on the write-protection status of an SPTE. Specifically, KVM
	 * also write-protects SPTEs to monitor changes to guest page tables
	 * during shadow paging, and must guarantee no CPUs can write to those
	 * page before the lock is dropped. As mentioned in the previous
	 * paragraph, a write-protected SPTE is no guarantee that CPU cannot
	 * perform writes. So to determine if a TLB flush is truly required, KVM
	 * will clear a separate software-only bit (MMU-writable) and skip the
	 * flush if-and-only-if this bit was already clear.
	 *
5806
	 * See is_writable_pte() for more details.
5807
	 */
5808
	if (flush)
5809
		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
A
Avi Kivity 已提交
5810
}
5811

5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827
/* Must be called with the mmu_lock held in write-mode. */
void kvm_mmu_try_split_huge_pages(struct kvm *kvm,
				   const struct kvm_memory_slot *memslot,
				   u64 start, u64 end,
				   int target_level)
{
	if (is_tdp_mmu_enabled(kvm))
		kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end,
						 target_level, false);

	/*
	 * A TLB flush is unnecessary at this point for the same resons as in
	 * kvm_mmu_slot_try_split_huge_pages().
	 */
}

5828
void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm,
5829 5830
					const struct kvm_memory_slot *memslot,
					int target_level)
5831 5832 5833 5834 5835 5836
{
	u64 start = memslot->base_gfn;
	u64 end = start + memslot->npages;

	if (is_tdp_mmu_enabled(kvm)) {
		read_lock(&kvm->mmu_lock);
5837
		kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level, true);
5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851
		read_unlock(&kvm->mmu_lock);
	}

	/*
	 * No TLB flush is necessary here. KVM will flush TLBs after
	 * write-protecting and/or clearing dirty on the newly split SPTEs to
	 * ensure that guest writes are reflected in the dirty log before the
	 * ioctl to enable dirty logging on this memslot completes. Since the
	 * split SPTEs retain the write and dirty bits of the huge SPTE, it is
	 * safe for KVM to decide if a TLB flush is necessary based on the split
	 * SPTEs.
	 */
}

5852
static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5853
					 struct kvm_rmap_head *rmap_head,
5854
					 const struct kvm_memory_slot *slot)
5855 5856 5857 5858
{
	u64 *sptep;
	struct rmap_iterator iter;
	int need_tlb_flush = 0;
D
Dan Williams 已提交
5859
	kvm_pfn_t pfn;
5860 5861
	struct kvm_mmu_page *sp;

5862
restart:
5863
	for_each_rmap_spte(rmap_head, &iter, sptep) {
5864
		sp = sptep_to_sp(sptep);
5865 5866 5867
		pfn = spte_to_pfn(*sptep);

		/*
5868 5869 5870 5871 5872
		 * We cannot do huge page mapping for indirect shadow pages,
		 * which are found on the last rmap (level = 1) when not using
		 * tdp; such shadow pages are synced with the page table in
		 * the guest, and the guest page table is using 4K page size
		 * mapping if the indirect sp has level = 1.
5873
		 */
5874
		if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
5875 5876
		    sp->role.level < kvm_mmu_max_mapping_level(kvm, slot, sp->gfn,
							       pfn, PG_LEVEL_NUM)) {
5877
			pte_list_remove(kvm, rmap_head, sptep);
5878 5879 5880 5881 5882 5883 5884

			if (kvm_available_flush_tlb_with_range())
				kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
					KVM_PAGES_PER_HPAGE(sp->role.level));
			else
				need_tlb_flush = 1;

5885 5886
			goto restart;
		}
5887 5888 5889 5890 5891 5892
	}

	return need_tlb_flush;
}

void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5893
				   const struct kvm_memory_slot *slot)
5894
{
5895 5896
	if (kvm_memslots_have_rmaps(kvm)) {
		write_lock(&kvm->mmu_lock);
5897 5898 5899 5900 5901
		/*
		 * Zap only 4k SPTEs since the legacy MMU only supports dirty
		 * logging at a 4k granularity and never creates collapsible
		 * 2m SPTEs during dirty logging.
		 */
5902
		if (slot_handle_level_4k(kvm, slot, kvm_mmu_zap_collapsible_spte, true))
5903 5904 5905
			kvm_arch_flush_remote_tlbs_memslot(kvm, slot);
		write_unlock(&kvm->mmu_lock);
	}
5906 5907 5908

	if (is_tdp_mmu_enabled(kvm)) {
		read_lock(&kvm->mmu_lock);
5909
		kvm_tdp_mmu_zap_collapsible_sptes(kvm, slot);
5910 5911
		read_unlock(&kvm->mmu_lock);
	}
5912 5913
}

5914
void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
5915
					const struct kvm_memory_slot *memslot)
5916 5917
{
	/*
5918
	 * All current use cases for flushing the TLBs for a specific memslot
5919
	 * related to dirty logging, and many do the TLB flush out of mmu_lock.
5920 5921 5922
	 * The interaction between the various operations on memslot must be
	 * serialized by slots_locks to ensure the TLB flush from one operation
	 * is observed by any other operation on the same memslot.
5923 5924
	 */
	lockdep_assert_held(&kvm->slots_lock);
5925 5926
	kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
					   memslot->npages);
5927 5928
}

5929
void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5930
				   const struct kvm_memory_slot *memslot)
5931
{
5932
	bool flush = false;
5933

5934 5935
	if (kvm_memslots_have_rmaps(kvm)) {
		write_lock(&kvm->mmu_lock);
5936 5937 5938 5939 5940
		/*
		 * Clear dirty bits only on 4k SPTEs since the legacy MMU only
		 * support dirty logging at a 4k granularity.
		 */
		flush = slot_handle_level_4k(kvm, memslot, __rmap_clear_dirty, false);
5941 5942
		write_unlock(&kvm->mmu_lock);
	}
5943

5944 5945 5946 5947 5948 5949
	if (is_tdp_mmu_enabled(kvm)) {
		read_lock(&kvm->mmu_lock);
		flush |= kvm_tdp_mmu_clear_dirty_slot(kvm, memslot);
		read_unlock(&kvm->mmu_lock);
	}

5950 5951 5952 5953 5954 5955 5956
	/*
	 * It's also safe to flush TLBs out of mmu lock here as currently this
	 * function is only used for dirty logging, in which case flushing TLB
	 * out of mmu lock also guarantees no dirty pages will be lost in
	 * dirty_bitmap.
	 */
	if (flush)
5957
		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5958 5959
}

5960
void kvm_mmu_zap_all(struct kvm *kvm)
5961 5962
{
	struct kvm_mmu_page *sp, *node;
5963
	LIST_HEAD(invalid_list);
5964
	int ign;
5965

5966
	write_lock(&kvm->mmu_lock);
5967
restart:
5968
	list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
5969
		if (WARN_ON(sp->role.invalid))
5970
			continue;
5971
		if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
5972
			goto restart;
5973
		if (cond_resched_rwlock_write(&kvm->mmu_lock))
5974 5975 5976
			goto restart;
	}

5977
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
5978

5979
	if (is_tdp_mmu_enabled(kvm))
5980 5981
		kvm_tdp_mmu_zap_all(kvm);

5982
	write_unlock(&kvm->mmu_lock);
5983 5984
}

5985
void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
5986
{
5987
	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
5988

5989
	gen &= MMIO_SPTE_GEN_MASK;
5990

5991
	/*
5992 5993 5994 5995 5996 5997 5998 5999
	 * Generation numbers are incremented in multiples of the number of
	 * address spaces in order to provide unique generations across all
	 * address spaces.  Strip what is effectively the address space
	 * modifier prior to checking for a wrap of the MMIO generation so
	 * that a wrap in any address space is detected.
	 */
	gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);

6000
	/*
6001
	 * The very rare case: if the MMIO generation number has wrapped,
6002 6003
	 * zap all shadow pages.
	 */
6004
	if (unlikely(gen == 0)) {
6005
		kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
6006
		kvm_mmu_zap_all_fast(kvm);
6007
	}
6008 6009
}

6010 6011
static unsigned long
mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
6012 6013
{
	struct kvm *kvm;
6014
	int nr_to_scan = sc->nr_to_scan;
6015
	unsigned long freed = 0;
6016

J
Junaid Shahid 已提交
6017
	mutex_lock(&kvm_lock);
6018 6019

	list_for_each_entry(kvm, &vm_list, vm_list) {
6020
		int idx;
6021
		LIST_HEAD(invalid_list);
6022

6023 6024 6025 6026 6027 6028 6029 6030
		/*
		 * Never scan more than sc->nr_to_scan VM instances.
		 * Will not hit this condition practically since we do not try
		 * to shrink more than one VM and it is very unlikely to see
		 * !n_used_mmu_pages so many times.
		 */
		if (!nr_to_scan--)
			break;
6031 6032 6033 6034 6035 6036
		/*
		 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
		 * here. We may skip a VM instance errorneosly, but we do not
		 * want to shrink a VM that only started to populate its MMU
		 * anyway.
		 */
6037 6038
		if (!kvm->arch.n_used_mmu_pages &&
		    !kvm_has_zapped_obsolete_pages(kvm))
6039 6040
			continue;

6041
		idx = srcu_read_lock(&kvm->srcu);
6042
		write_lock(&kvm->mmu_lock);
6043

6044 6045 6046 6047 6048 6049
		if (kvm_has_zapped_obsolete_pages(kvm)) {
			kvm_mmu_commit_zap_page(kvm,
			      &kvm->arch.zapped_obsolete_pages);
			goto unlock;
		}

6050
		freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan);
6051

6052
unlock:
6053
		write_unlock(&kvm->mmu_lock);
6054
		srcu_read_unlock(&kvm->srcu, idx);
6055

6056 6057 6058 6059 6060
		/*
		 * unfair on small ones
		 * per-vm shrinkers cry out
		 * sadness comes quickly
		 */
6061 6062
		list_move_tail(&kvm->vm_list, &vm_list);
		break;
6063 6064
	}

J
Junaid Shahid 已提交
6065
	mutex_unlock(&kvm_lock);
6066 6067 6068 6069 6070 6071
	return freed;
}

static unsigned long
mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
{
6072
	return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
6073 6074 6075
}

static struct shrinker mmu_shrinker = {
6076 6077
	.count_objects = mmu_shrink_count,
	.scan_objects = mmu_shrink_scan,
6078 6079 6080
	.seeks = DEFAULT_SEEKS * 10,
};

I
Ingo Molnar 已提交
6081
static void mmu_destroy_caches(void)
6082
{
6083 6084
	kmem_cache_destroy(pte_list_desc_cache);
	kmem_cache_destroy(mmu_page_header_cache);
6085 6086
}

P
Paolo Bonzini 已提交
6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120
static bool get_nx_auto_mode(void)
{
	/* Return true when CPU has the bug, and mitigations are ON */
	return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
}

static void __set_nx_huge_pages(bool val)
{
	nx_huge_pages = itlb_multihit_kvm_mitigation = val;
}

static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
{
	bool old_val = nx_huge_pages;
	bool new_val;

	/* In "auto" mode deploy workaround only if CPU has the bug. */
	if (sysfs_streq(val, "off"))
		new_val = 0;
	else if (sysfs_streq(val, "force"))
		new_val = 1;
	else if (sysfs_streq(val, "auto"))
		new_val = get_nx_auto_mode();
	else if (strtobool(val, &new_val) < 0)
		return -EINVAL;

	__set_nx_huge_pages(new_val);

	if (new_val != old_val) {
		struct kvm *kvm;

		mutex_lock(&kvm_lock);

		list_for_each_entry(kvm, &vm_list, vm_list) {
6121
			mutex_lock(&kvm->slots_lock);
P
Paolo Bonzini 已提交
6122
			kvm_mmu_zap_all_fast(kvm);
6123
			mutex_unlock(&kvm->slots_lock);
6124 6125

			wake_up_process(kvm->arch.nx_lpage_recovery_thread);
P
Paolo Bonzini 已提交
6126 6127 6128 6129 6130 6131 6132
		}
		mutex_unlock(&kvm_lock);
	}

	return 0;
}

6133 6134
int kvm_mmu_module_init(void)
{
6135 6136
	int ret = -ENOMEM;

P
Paolo Bonzini 已提交
6137 6138 6139
	if (nx_huge_pages == -1)
		__set_nx_huge_pages(get_nx_auto_mode());

6140 6141 6142 6143 6144 6145 6146 6147 6148 6149
	/*
	 * MMU roles use union aliasing which is, generally speaking, an
	 * undefined behavior. However, we supposedly know how compilers behave
	 * and the current status quo is unlikely to change. Guardians below are
	 * supposed to let us know if the assumption becomes false.
	 */
	BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
	BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
	BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));

6150
	kvm_mmu_reset_all_pte_masks();
6151

6152 6153
	pte_list_desc_cache = kmem_cache_create("pte_list_desc",
					    sizeof(struct pte_list_desc),
6154
					    0, SLAB_ACCOUNT, NULL);
6155
	if (!pte_list_desc_cache)
6156
		goto out;
6157

6158 6159
	mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
						  sizeof(struct kvm_mmu_page),
6160
						  0, SLAB_ACCOUNT, NULL);
6161
	if (!mmu_page_header_cache)
6162
		goto out;
6163

6164
	if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
6165
		goto out;
6166

6167 6168 6169
	ret = register_shrinker(&mmu_shrinker);
	if (ret)
		goto out;
6170

6171 6172
	return 0;

6173
out:
6174
	mmu_destroy_caches();
6175
	return ret;
6176 6177
}

6178 6179
void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
{
6180
	kvm_mmu_unload(vcpu);
6181 6182
	free_mmu_pages(&vcpu->arch.root_mmu);
	free_mmu_pages(&vcpu->arch.guest_mmu);
6183
	mmu_free_memory_caches(vcpu);
6184 6185 6186 6187 6188 6189 6190
}

void kvm_mmu_module_exit(void)
{
	mmu_destroy_caches();
	percpu_counter_destroy(&kvm_total_used_mmu_pages);
	unregister_shrinker(&mmu_shrinker);
6191
}
6192

6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217
/*
 * Calculate the effective recovery period, accounting for '0' meaning "let KVM
 * select a halving time of 1 hour".  Returns true if recovery is enabled.
 */
static bool calc_nx_huge_pages_recovery_period(uint *period)
{
	/*
	 * Use READ_ONCE to get the params, this may be called outside of the
	 * param setters, e.g. by the kthread to compute its next timeout.
	 */
	bool enabled = READ_ONCE(nx_huge_pages);
	uint ratio = READ_ONCE(nx_huge_pages_recovery_ratio);

	if (!enabled || !ratio)
		return false;

	*period = READ_ONCE(nx_huge_pages_recovery_period_ms);
	if (!*period) {
		/* Make sure the period is not less than one second.  */
		ratio = min(ratio, 3600u);
		*period = 60 * 60 * 1000 / ratio;
	}
	return true;
}

6218
static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp)
6219
{
6220 6221
	bool was_recovery_enabled, is_recovery_enabled;
	uint old_period, new_period;
6222 6223
	int err;

6224
	was_recovery_enabled = calc_nx_huge_pages_recovery_period(&old_period);
6225

6226 6227 6228 6229
	err = param_set_uint(val, kp);
	if (err)
		return err;

6230
	is_recovery_enabled = calc_nx_huge_pages_recovery_period(&new_period);
6231

6232
	if (is_recovery_enabled &&
6233
	    (!was_recovery_enabled || old_period > new_period)) {
6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248
		struct kvm *kvm;

		mutex_lock(&kvm_lock);

		list_for_each_entry(kvm, &vm_list, vm_list)
			wake_up_process(kvm->arch.nx_lpage_recovery_thread);

		mutex_unlock(&kvm_lock);
	}

	return err;
}

static void kvm_recover_nx_lpages(struct kvm *kvm)
{
6249
	unsigned long nx_lpage_splits = kvm->stat.nx_lpage_splits;
6250 6251 6252 6253
	int rcu_idx;
	struct kvm_mmu_page *sp;
	unsigned int ratio;
	LIST_HEAD(invalid_list);
6254
	bool flush = false;
6255 6256 6257
	ulong to_zap;

	rcu_idx = srcu_read_lock(&kvm->srcu);
6258
	write_lock(&kvm->mmu_lock);
6259 6260

	ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
6261
	to_zap = ratio ? DIV_ROUND_UP(nx_lpage_splits, ratio) : 0;
6262 6263 6264 6265
	for ( ; to_zap; --to_zap) {
		if (list_empty(&kvm->arch.lpage_disallowed_mmu_pages))
			break;

6266 6267 6268 6269 6270 6271 6272 6273 6274
		/*
		 * We use a separate list instead of just using active_mmu_pages
		 * because the number of lpage_disallowed pages is expected to
		 * be relatively small compared to the total.
		 */
		sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
				      struct kvm_mmu_page,
				      lpage_disallowed_link);
		WARN_ON_ONCE(!sp->lpage_disallowed);
6275
		if (is_tdp_mmu_page(sp)) {
6276
			flush |= kvm_tdp_mmu_zap_sp(kvm, sp);
6277
		} else {
6278 6279 6280
			kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
			WARN_ON_ONCE(sp->lpage_disallowed);
		}
6281

6282
		if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
6283
			kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
6284
			cond_resched_rwlock_write(&kvm->mmu_lock);
6285
			flush = false;
6286 6287
		}
	}
6288
	kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
6289

6290
	write_unlock(&kvm->mmu_lock);
6291 6292 6293 6294 6295
	srcu_read_unlock(&kvm->srcu, rcu_idx);
}

static long get_nx_lpage_recovery_timeout(u64 start_time)
{
6296 6297
	bool enabled;
	uint period;
6298

6299
	enabled = calc_nx_huge_pages_recovery_period(&period);
6300

6301 6302
	return enabled ? start_time + msecs_to_jiffies(period) - get_jiffies_64()
		       : MAX_SCHEDULE_TIMEOUT;
6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347
}

static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
{
	u64 start_time;
	long remaining_time;

	while (true) {
		start_time = get_jiffies_64();
		remaining_time = get_nx_lpage_recovery_timeout(start_time);

		set_current_state(TASK_INTERRUPTIBLE);
		while (!kthread_should_stop() && remaining_time > 0) {
			schedule_timeout(remaining_time);
			remaining_time = get_nx_lpage_recovery_timeout(start_time);
			set_current_state(TASK_INTERRUPTIBLE);
		}

		set_current_state(TASK_RUNNING);

		if (kthread_should_stop())
			return 0;

		kvm_recover_nx_lpages(kvm);
	}
}

int kvm_mmu_post_init_vm(struct kvm *kvm)
{
	int err;

	err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
					  "kvm-nx-lpage-recovery",
					  &kvm->arch.nx_lpage_recovery_thread);
	if (!err)
		kthread_unpark(kvm->arch.nx_lpage_recovery_thread);

	return err;
}

void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
{
	if (kvm->arch.nx_lpage_recovery_thread)
		kthread_stop(kvm->arch.nx_lpage_recovery_thread);
}