mmu.c 169.5 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
A
Avi Kivity 已提交
2 3 4 5 6 7 8 9 10
/*
 * Kernel-based Virtual Machine driver for Linux
 *
 * This module enables machines with Intel VT-x extensions to run virtual
 * machines without emulation or binary translation.
 *
 * MMU support
 *
 * Copyright (C) 2006 Qumranet, Inc.
N
Nicolas Kaiser 已提交
11
 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
A
Avi Kivity 已提交
12 13 14 15 16
 *
 * Authors:
 *   Yaniv Kamay  <yaniv@qumranet.com>
 *   Avi Kivity   <avi@qumranet.com>
 */
A
Avi Kivity 已提交
17

18
#include "irq.h"
19
#include "mmu.h"
20
#include "x86.h"
A
Avi Kivity 已提交
21
#include "kvm_cache_regs.h"
22
#include "kvm_emulate.h"
23
#include "cpuid.h"
A
Avi Kivity 已提交
24

25
#include <linux/kvm_host.h>
A
Avi Kivity 已提交
26 27 28 29
#include <linux/types.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/highmem.h>
30 31
#include <linux/moduleparam.h>
#include <linux/export.h>
32
#include <linux/swap.h>
M
Marcelo Tosatti 已提交
33
#include <linux/hugetlb.h>
34
#include <linux/compiler.h>
35
#include <linux/srcu.h>
36
#include <linux/slab.h>
37
#include <linux/sched/signal.h>
38
#include <linux/uaccess.h>
39
#include <linux/hash.h>
40
#include <linux/kern_levels.h>
41
#include <linux/kthread.h>
A
Avi Kivity 已提交
42

A
Avi Kivity 已提交
43
#include <asm/page.h>
44
#include <asm/memtype.h>
A
Avi Kivity 已提交
45
#include <asm/cmpxchg.h>
46
#include <asm/e820/api.h>
47
#include <asm/io.h>
48
#include <asm/vmx.h>
49
#include <asm/kvm_page_track.h>
50
#include "trace.h"
A
Avi Kivity 已提交
51

P
Paolo Bonzini 已提交
52 53 54
extern bool itlb_multihit_kvm_mitigation;

static int __read_mostly nx_huge_pages = -1;
55 56 57 58
#ifdef CONFIG_PREEMPT_RT
/* Recovery can cause latency spikes, disable it for PREEMPT_RT.  */
static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
#else
59
static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
60
#endif
P
Paolo Bonzini 已提交
61 62

static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
63
static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp);
P
Paolo Bonzini 已提交
64 65 66 67 68 69

static struct kernel_param_ops nx_huge_pages_ops = {
	.set = set_nx_huge_pages,
	.get = param_get_bool,
};

70 71 72 73 74
static struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = {
	.set = set_nx_huge_pages_recovery_ratio,
	.get = param_get_uint,
};

P
Paolo Bonzini 已提交
75 76
module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
__MODULE_PARM_TYPE(nx_huge_pages, "bool");
77 78 79
module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops,
		&nx_huge_pages_recovery_ratio, 0644);
__MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
P
Paolo Bonzini 已提交
80

81 82 83 84 85 86 87
/*
 * When setting this variable to true it enables Two-Dimensional-Paging
 * where the hardware walks 2 page tables:
 * 1. the guest-virtual to guest-physical
 * 2. while doing 1. it walks guest-physical to host-physical
 * If the hardware supports that we don't need to do shadow paging.
 */
88
bool tdp_enabled = false;
89

90 91
static int max_page_level __read_mostly;

92 93 94 95
enum {
	AUDIT_PRE_PAGE_FAULT,
	AUDIT_POST_PAGE_FAULT,
	AUDIT_PRE_PTE_WRITE,
96 97 98
	AUDIT_POST_PTE_WRITE,
	AUDIT_PRE_SYNC,
	AUDIT_POST_SYNC
99
};
100

101
#undef MMU_DEBUG
102 103

#ifdef MMU_DEBUG
104 105
static bool dbg = 0;
module_param(dbg, bool, 0644);
106 107 108

#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
109
#define MMU_WARN_ON(x) WARN_ON(x)
110 111 112
#else
#define pgprintk(x...) do { } while (0)
#define rmap_printk(x...) do { } while (0)
113
#define MMU_WARN_ON(x) do { } while (0)
114
#endif
A
Avi Kivity 已提交
115

116 117
#define PTE_PREFETCH_NUM		8

118
#define PT_FIRST_AVAIL_BITS_SHIFT 10
119 120 121 122 123 124 125 126 127
#define PT64_SECOND_AVAIL_BITS_SHIFT 54

/*
 * The mask used to denote special SPTEs, which can be either MMIO SPTEs or
 * Access Tracking SPTEs.
 */
#define SPTE_SPECIAL_MASK (3ULL << 52)
#define SPTE_AD_ENABLED_MASK (0ULL << 52)
#define SPTE_AD_DISABLED_MASK (1ULL << 52)
128
#define SPTE_AD_WRPROT_ONLY_MASK (2ULL << 52)
129
#define SPTE_MMIO_MASK (3ULL << 52)
A
Avi Kivity 已提交
130 131 132 133

#define PT64_LEVEL_BITS 9

#define PT64_LEVEL_SHIFT(level) \
M
Mike Day 已提交
134
		(PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
A
Avi Kivity 已提交
135 136 137 138 139 140 141 142

#define PT64_INDEX(address, level)\
	(((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))


#define PT32_LEVEL_BITS 10

#define PT32_LEVEL_SHIFT(level) \
M
Mike Day 已提交
143
		(PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
A
Avi Kivity 已提交
144

145 146 147
#define PT32_LVL_OFFSET_MASK(level) \
	(PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
148 149 150 151 152

#define PT32_INDEX(address, level)\
	(((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))


153 154 155 156 157
#ifdef CONFIG_DYNAMIC_PHYSICAL_MASK
#define PT64_BASE_ADDR_MASK (physical_mask & ~(u64)(PAGE_SIZE-1))
#else
#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
#endif
158 159 160 161 162 163
#define PT64_LVL_ADDR_MASK(level) \
	(PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT64_LEVEL_BITS))) - 1))
#define PT64_LVL_OFFSET_MASK(level) \
	(PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT64_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
164 165 166 167

#define PT32_BASE_ADDR_MASK PAGE_MASK
#define PT32_DIR_BASE_ADDR_MASK \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
168 169 170
#define PT32_LVL_ADDR_MASK(level) \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
					    * PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
171

172
#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
173
			| shadow_x_mask | shadow_nx_mask | shadow_me_mask)
A
Avi Kivity 已提交
174

175 176 177 178 179
#define ACC_EXEC_MASK    1
#define ACC_WRITE_MASK   PT_WRITABLE_MASK
#define ACC_USER_MASK    PT_USER_MASK
#define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)

180 181 182 183
/* The mask for the R/X bits in EPT PTEs */
#define PT64_EPT_READABLE_MASK			0x1ull
#define PT64_EPT_EXECUTABLE_MASK		0x4ull

184 185
#include <trace/events/kvm.h>

186 187
#define SPTE_HOST_WRITEABLE	(1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
#define SPTE_MMU_WRITEABLE	(1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
188

189 190
#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)

191 192 193
/* make pte_list_desc fit well in cache line */
#define PTE_LIST_EXT 3

194 195 196 197 198 199 200 201 202 203 204 205 206 207
/*
 * Return values of handle_mmio_page_fault and mmu.page_fault:
 * RET_PF_RETRY: let CPU fault again on the address.
 * RET_PF_EMULATE: mmio page fault, emulate the instruction directly.
 *
 * For handle_mmio_page_fault only:
 * RET_PF_INVALID: the spte is invalid, let the real page fault path update it.
 */
enum {
	RET_PF_RETRY = 0,
	RET_PF_EMULATE = 1,
	RET_PF_INVALID = 2,
};

208 209 210
struct pte_list_desc {
	u64 *sptes[PTE_LIST_EXT];
	struct pte_list_desc *more;
211 212
};

213 214 215 216
struct kvm_shadow_walk_iterator {
	u64 addr;
	hpa_t shadow_addr;
	u64 *sptep;
217
	int level;
218 219 220
	unsigned index;
};

221 222 223 224 225 226 227
#define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker)     \
	for (shadow_walk_init_using_root(&(_walker), (_vcpu),              \
					 (_root), (_addr));                \
	     shadow_walk_okay(&(_walker));			           \
	     shadow_walk_next(&(_walker)))

#define for_each_shadow_entry(_vcpu, _addr, _walker)            \
228 229 230 231
	for (shadow_walk_init(&(_walker), _vcpu, _addr);	\
	     shadow_walk_okay(&(_walker));			\
	     shadow_walk_next(&(_walker)))

232 233 234 235 236 237
#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)	\
	for (shadow_walk_init(&(_walker), _vcpu, _addr);		\
	     shadow_walk_okay(&(_walker)) &&				\
		({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });	\
	     __shadow_walk_next(&(_walker), spte))

238
static struct kmem_cache *pte_list_desc_cache;
239
static struct kmem_cache *mmu_page_header_cache;
240
static struct percpu_counter kvm_total_used_mmu_pages;
241

S
Sheng Yang 已提交
242 243 244 245 246
static u64 __read_mostly shadow_nx_mask;
static u64 __read_mostly shadow_x_mask;	/* mutual exclusive with nx_mask */
static u64 __read_mostly shadow_user_mask;
static u64 __read_mostly shadow_accessed_mask;
static u64 __read_mostly shadow_dirty_mask;
247
static u64 __read_mostly shadow_mmio_mask;
248
static u64 __read_mostly shadow_mmio_value;
249
static u64 __read_mostly shadow_mmio_access_mask;
250
static u64 __read_mostly shadow_present_mask;
251
static u64 __read_mostly shadow_me_mask;
252

253
/*
254 255 256
 * SPTEs used by MMUs without A/D bits are marked with SPTE_AD_DISABLED_MASK;
 * shadow_acc_track_mask is the set of bits to be cleared in non-accessed
 * pages.
257 258 259 260 261 262 263 264 265 266 267 268 269
 */
static u64 __read_mostly shadow_acc_track_mask;

/*
 * The mask/shift to use for saving the original R/X bits when marking the PTE
 * as not-present for access tracking purposes. We do not save the W bit as the
 * PTEs being access tracked also need to be dirty tracked, so the W bit will be
 * restored only when a write is attempted to the page.
 */
static const u64 shadow_acc_track_saved_bits_mask = PT64_EPT_READABLE_MASK |
						    PT64_EPT_EXECUTABLE_MASK;
static const u64 shadow_acc_track_saved_bits_shift = PT64_SECOND_AVAIL_BITS_SHIFT;

270 271 272 273 274 275 276 277 278 279 280
/*
 * This mask must be set on all non-zero Non-Present or Reserved SPTEs in order
 * to guard against L1TF attacks.
 */
static u64 __read_mostly shadow_nonpresent_or_rsvd_mask;

/*
 * The number of high-order 1 bits to use in the mask above.
 */
static const u64 shadow_nonpresent_or_rsvd_mask_len = 5;

281 282 283 284 285 286 287 288 289 290
/*
 * In some cases, we need to preserve the GFN of a non-present or reserved
 * SPTE when we usurp the upper five bits of the physical address space to
 * defend against L1TF, e.g. for MMIO SPTEs.  To preserve the GFN, we'll
 * shift bits of the GFN that overlap with shadow_nonpresent_or_rsvd_mask
 * left into the reserved bits, i.e. the GFN in the SPTE will be split into
 * high and low parts.  This mask covers the lower bits of the GFN.
 */
static u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask;

291 292 293 294 295
/*
 * The number of non-reserved physical address bits irrespective of features
 * that repurpose legal bits, e.g. MKTME.
 */
static u8 __read_mostly shadow_phys_bits;
296

297
static void mmu_spte_set(u64 *sptep, u64 spte);
298
static bool is_executable_pte(u64 spte);
299 300
static union kvm_mmu_page_role
kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
301

302 303 304
#define CREATE_TRACE_POINTS
#include "mmutrace.h"

305 306 307

static inline bool kvm_available_flush_tlb_with_range(void)
{
308
	return kvm_x86_ops.tlb_remote_flush_with_range;
309 310 311 312 313 314 315
}

static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
		struct kvm_tlb_range *range)
{
	int ret = -ENOTSUPP;

316 317
	if (range && kvm_x86_ops.tlb_remote_flush_with_range)
		ret = kvm_x86_ops.tlb_remote_flush_with_range(kvm, range);
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333

	if (ret)
		kvm_flush_remote_tlbs(kvm);
}

static void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
		u64 start_gfn, u64 pages)
{
	struct kvm_tlb_range range;

	range.start_gfn = start_gfn;
	range.pages = pages;

	kvm_flush_remote_tlbs_with_range(kvm, &range);
}

334
void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask, u64 mmio_value, u64 access_mask)
335
{
336
	BUG_ON((u64)(unsigned)access_mask != access_mask);
337
	BUG_ON((mmio_mask & mmio_value) != mmio_value);
338
	shadow_mmio_value = mmio_value | SPTE_MMIO_MASK;
339
	shadow_mmio_mask = mmio_mask | SPTE_SPECIAL_MASK;
340
	shadow_mmio_access_mask = access_mask;
341 342 343
}
EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);

344 345 346 347 348
static bool is_mmio_spte(u64 spte)
{
	return (spte & shadow_mmio_mask) == shadow_mmio_value;
}

349 350 351 352 353
static inline bool sp_ad_disabled(struct kvm_mmu_page *sp)
{
	return sp->role.ad_disabled;
}

354 355 356 357 358 359 360 361 362 363 364
static inline bool kvm_vcpu_ad_need_write_protect(struct kvm_vcpu *vcpu)
{
	/*
	 * When using the EPT page-modification log, the GPAs in the log
	 * would come from L2 rather than L1.  Therefore, we need to rely
	 * on write protection to record dirty pages.  This also bypasses
	 * PML, since writes now result in a vmexit.
	 */
	return vcpu->arch.mmu == &vcpu->arch.guest_mmu;
}

365 366
static inline bool spte_ad_enabled(u64 spte)
{
367
	MMU_WARN_ON(is_mmio_spte(spte));
368 369 370 371 372 373 374
	return (spte & SPTE_SPECIAL_MASK) != SPTE_AD_DISABLED_MASK;
}

static inline bool spte_ad_need_write_protect(u64 spte)
{
	MMU_WARN_ON(is_mmio_spte(spte));
	return (spte & SPTE_SPECIAL_MASK) != SPTE_AD_ENABLED_MASK;
375 376
}

P
Paolo Bonzini 已提交
377 378 379 380 381
static bool is_nx_huge_page_enabled(void)
{
	return READ_ONCE(nx_huge_pages);
}

382 383
static inline u64 spte_shadow_accessed_mask(u64 spte)
{
384
	MMU_WARN_ON(is_mmio_spte(spte));
385 386 387 388 389
	return spte_ad_enabled(spte) ? shadow_accessed_mask : 0;
}

static inline u64 spte_shadow_dirty_mask(u64 spte)
{
390
	MMU_WARN_ON(is_mmio_spte(spte));
391 392 393
	return spte_ad_enabled(spte) ? shadow_dirty_mask : 0;
}

394 395
static inline bool is_access_track_spte(u64 spte)
{
396
	return !spte_ad_enabled(spte) && (spte & shadow_acc_track_mask) == 0;
397 398
}

399
/*
400 401
 * Due to limited space in PTEs, the MMIO generation is a 19 bit subset of
 * the memslots generation and is derived as follows:
402
 *
403 404
 * Bits 0-8 of the MMIO generation are propagated to spte bits 3-11
 * Bits 9-18 of the MMIO generation are propagated to spte bits 52-61
405
 *
406 407 408 409 410 411
 * The KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS flag is intentionally not included in
 * the MMIO generation number, as doing so would require stealing a bit from
 * the "real" generation number and thus effectively halve the maximum number
 * of MMIO generations that can be handled before encountering a wrap (which
 * requires a full MMU zap).  The flag is instead explicitly queried when
 * checking for MMIO spte cache hits.
412
 */
413
#define MMIO_SPTE_GEN_MASK		GENMASK_ULL(17, 0)
414

415 416 417 418
#define MMIO_SPTE_GEN_LOW_START		3
#define MMIO_SPTE_GEN_LOW_END		11
#define MMIO_SPTE_GEN_LOW_MASK		GENMASK_ULL(MMIO_SPTE_GEN_LOW_END, \
						    MMIO_SPTE_GEN_LOW_START)
419

420 421
#define MMIO_SPTE_GEN_HIGH_START	PT64_SECOND_AVAIL_BITS_SHIFT
#define MMIO_SPTE_GEN_HIGH_END		62
422 423
#define MMIO_SPTE_GEN_HIGH_MASK		GENMASK_ULL(MMIO_SPTE_GEN_HIGH_END, \
						    MMIO_SPTE_GEN_HIGH_START)
424

425
static u64 generation_mmio_spte_mask(u64 gen)
426 427 428
{
	u64 mask;

429
	WARN_ON(gen & ~MMIO_SPTE_GEN_MASK);
430
	BUILD_BUG_ON((MMIO_SPTE_GEN_HIGH_MASK | MMIO_SPTE_GEN_LOW_MASK) & SPTE_SPECIAL_MASK);
431

432 433
	mask = (gen << MMIO_SPTE_GEN_LOW_START) & MMIO_SPTE_GEN_LOW_MASK;
	mask |= (gen << MMIO_SPTE_GEN_HIGH_START) & MMIO_SPTE_GEN_HIGH_MASK;
434 435 436
	return mask;
}

437
static u64 get_mmio_spte_generation(u64 spte)
438
{
439
	u64 gen;
440

441 442
	gen = (spte & MMIO_SPTE_GEN_LOW_MASK) >> MMIO_SPTE_GEN_LOW_START;
	gen |= (spte & MMIO_SPTE_GEN_HIGH_MASK) >> MMIO_SPTE_GEN_HIGH_START;
443 444 445
	return gen;
}

446
static u64 make_mmio_spte(struct kvm_vcpu *vcpu, u64 gfn, unsigned int access)
447
{
448

449
	u64 gen = kvm_vcpu_memslots(vcpu)->generation & MMIO_SPTE_GEN_MASK;
450
	u64 mask = generation_mmio_spte_mask(gen);
451
	u64 gpa = gfn << PAGE_SHIFT;
452

453
	access &= shadow_mmio_access_mask;
454 455 456 457
	mask |= shadow_mmio_value | access;
	mask |= gpa | shadow_nonpresent_or_rsvd_mask;
	mask |= (gpa & shadow_nonpresent_or_rsvd_mask)
		<< shadow_nonpresent_or_rsvd_mask_len;
458

459 460 461 462 463 464 465 466 467 468 469
	return mask;
}

static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
			   unsigned int access)
{
	u64 mask = make_mmio_spte(vcpu, gfn, access);
	unsigned int gen = get_mmio_spte_generation(mask);

	access = mask & ACC_ALL;

470
	trace_mark_mmio_spte(sptep, gfn, access, gen);
471
	mmu_spte_set(sptep, mask);
472 473 474 475
}

static gfn_t get_mmio_spte_gfn(u64 spte)
{
476
	u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
477 478 479 480 481

	gpa |= (spte >> shadow_nonpresent_or_rsvd_mask_len)
	       & shadow_nonpresent_or_rsvd_mask;

	return gpa >> PAGE_SHIFT;
482 483 484 485
}

static unsigned get_mmio_spte_access(u64 spte)
{
486
	return spte & shadow_mmio_access_mask;
487 488
}

489
static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
490
			  kvm_pfn_t pfn, unsigned int access)
491 492
{
	if (unlikely(is_noslot_pfn(pfn))) {
493
		mark_mmio_spte(vcpu, sptep, gfn, access);
494 495 496 497 498
		return true;
	}

	return false;
}
499

500
static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
501
{
502
	u64 kvm_gen, spte_gen, gen;
503

504 505 506
	gen = kvm_vcpu_memslots(vcpu)->generation;
	if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
		return false;
507

508
	kvm_gen = gen & MMIO_SPTE_GEN_MASK;
509 510 511 512
	spte_gen = get_mmio_spte_generation(spte);

	trace_check_mmio_spte(spte, kvm_gen, spte_gen);
	return likely(kvm_gen == spte_gen);
513 514
}

515 516 517 518 519 520 521
/*
 * Sets the shadow PTE masks used by the MMU.
 *
 * Assumptions:
 *  - Setting either @accessed_mask or @dirty_mask requires setting both
 *  - At least one of @accessed_mask or @acc_track_mask must be set
 */
S
Sheng Yang 已提交
522
void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
523
		u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask,
524
		u64 acc_track_mask, u64 me_mask)
S
Sheng Yang 已提交
525
{
526 527
	BUG_ON(!dirty_mask != !accessed_mask);
	BUG_ON(!accessed_mask && !acc_track_mask);
528
	BUG_ON(acc_track_mask & SPTE_SPECIAL_MASK);
529

S
Sheng Yang 已提交
530 531 532 533 534
	shadow_user_mask = user_mask;
	shadow_accessed_mask = accessed_mask;
	shadow_dirty_mask = dirty_mask;
	shadow_nx_mask = nx_mask;
	shadow_x_mask = x_mask;
535
	shadow_present_mask = p_mask;
536
	shadow_acc_track_mask = acc_track_mask;
537
	shadow_me_mask = me_mask;
S
Sheng Yang 已提交
538 539 540
}
EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);

541 542 543
static u8 kvm_get_shadow_phys_bits(void)
{
	/*
544 545 546 547
	 * boot_cpu_data.x86_phys_bits is reduced when MKTME or SME are detected
	 * in CPU detection code, but the processor treats those reduced bits as
	 * 'keyID' thus they are not reserved bits. Therefore KVM needs to look at
	 * the physical address bits reported by CPUID.
548
	 */
549 550
	if (likely(boot_cpu_data.extended_cpuid_level >= 0x80000008))
		return cpuid_eax(0x80000008) & 0xff;
551

552 553 554 555 556 557
	/*
	 * Quite weird to have VMX or SVM but not MAXPHYADDR; probably a VM with
	 * custom CPUID.  Proceed with whatever the kernel found since these features
	 * aren't virtualizable (SME/SEV also require CPUIDs higher than 0x80000008).
	 */
	return boot_cpu_data.x86_phys_bits;
558 559
}

560
static void kvm_mmu_reset_all_pte_masks(void)
561
{
562 563
	u8 low_phys_bits;

564 565 566 567 568 569 570 571
	shadow_user_mask = 0;
	shadow_accessed_mask = 0;
	shadow_dirty_mask = 0;
	shadow_nx_mask = 0;
	shadow_x_mask = 0;
	shadow_mmio_mask = 0;
	shadow_present_mask = 0;
	shadow_acc_track_mask = 0;
572

573 574
	shadow_phys_bits = kvm_get_shadow_phys_bits();

575 576 577 578
	/*
	 * If the CPU has 46 or less physical address bits, then set an
	 * appropriate mask to guard against L1TF attacks. Otherwise, it is
	 * assumed that the CPU is not vulnerable to L1TF.
579 580 581 582 583
	 *
	 * Some Intel CPUs address the L1 cache using more PA bits than are
	 * reported by CPUID. Use the PA width of the L1 cache when possible
	 * to achieve more effective mitigation, e.g. if system RAM overlaps
	 * the most significant bits of legal physical address space.
584
	 */
585 586 587
	shadow_nonpresent_or_rsvd_mask = 0;
	low_phys_bits = boot_cpu_data.x86_cache_bits;
	if (boot_cpu_data.x86_cache_bits <
588
	    52 - shadow_nonpresent_or_rsvd_mask_len) {
589
		shadow_nonpresent_or_rsvd_mask =
590
			rsvd_bits(boot_cpu_data.x86_cache_bits -
591
				  shadow_nonpresent_or_rsvd_mask_len,
592
				  boot_cpu_data.x86_cache_bits - 1);
593
		low_phys_bits -= shadow_nonpresent_or_rsvd_mask_len;
594 595 596
	} else
		WARN_ON_ONCE(boot_cpu_has_bug(X86_BUG_L1TF));

597 598
	shadow_nonpresent_or_rsvd_lower_gfn_mask =
		GENMASK_ULL(low_phys_bits - 1, PAGE_SHIFT);
599 600
}

A
Avi Kivity 已提交
601 602 603 604 605
static int is_cpuid_PSE36(void)
{
	return 1;
}

606 607
static int is_nx(struct kvm_vcpu *vcpu)
{
608
	return vcpu->arch.efer & EFER_NX;
609 610
}

611 612
static int is_shadow_present_pte(u64 pte)
{
613
	return (pte != 0) && !is_mmio_spte(pte);
614 615
}

M
Marcelo Tosatti 已提交
616 617 618 619 620
static int is_large_pte(u64 pte)
{
	return pte & PT_PAGE_SIZE_MASK;
}

621 622 623 624
static int is_last_spte(u64 pte, int level)
{
	if (level == PT_PAGE_TABLE_LEVEL)
		return 1;
625
	if (is_large_pte(pte))
626 627 628 629
		return 1;
	return 0;
}

630 631 632 633 634
static bool is_executable_pte(u64 spte)
{
	return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask;
}

D
Dan Williams 已提交
635
static kvm_pfn_t spte_to_pfn(u64 pte)
636
{
637
	return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
638 639
}

640 641 642 643 644 645 646
static gfn_t pse36_gfn_delta(u32 gpte)
{
	int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;

	return (gpte & PT32_DIR_PSE36_MASK) << shift;
}

647
#ifdef CONFIG_X86_64
A
Avi Kivity 已提交
648
static void __set_spte(u64 *sptep, u64 spte)
649
{
650
	WRITE_ONCE(*sptep, spte);
651 652
}

653
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
654
{
655
	WRITE_ONCE(*sptep, spte);
656 657 658 659 660 661
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	return xchg(sptep, spte);
}
662 663 664

static u64 __get_spte_lockless(u64 *sptep)
{
665
	return READ_ONCE(*sptep);
666
}
667
#else
668 669 670 671 672 673 674
union split_spte {
	struct {
		u32 spte_low;
		u32 spte_high;
	};
	u64 spte;
};
675

676 677 678 679 680 681 682 683 684 685 686 687
static void count_spte_clear(u64 *sptep, u64 spte)
{
	struct kvm_mmu_page *sp =  page_header(__pa(sptep));

	if (is_shadow_present_pte(spte))
		return;

	/* Ensure the spte is completely set before we increase the count */
	smp_wmb();
	sp->clear_spte_count++;
}

688 689 690
static void __set_spte(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;
691

692 693 694 695 696 697 698 699 700 701 702 703
	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	ssptep->spte_high = sspte.spte_high;

	/*
	 * If we map the spte from nonpresent to present, We should store
	 * the high bits firstly, then set present bit, so cpu can not
	 * fetch this spte while we are setting the spte.
	 */
	smp_wmb();

704
	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
705 706
}

707 708 709 710 711 712 713
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

714
	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
715 716 717 718 719 720 721 722

	/*
	 * If we map the spte from present to nonpresent, we should clear
	 * present bit firstly to avoid vcpu fetch the old high bits.
	 */
	smp_wmb();

	ssptep->spte_high = sspte.spte_high;
723
	count_spte_clear(sptep, spte);
724 725 726 727 728 729 730 731 732 733 734
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte, orig;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	/* xchg acts as a barrier before the setting of the high bits */
	orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
735 736
	orig.spte_high = ssptep->spte_high;
	ssptep->spte_high = sspte.spte_high;
737
	count_spte_clear(sptep, spte);
738 739 740

	return orig.spte;
}
741 742 743

/*
 * The idea using the light way get the spte on x86_32 guest is from
744
 * gup_get_pte (mm/gup.c).
745 746 747 748 749 750 751 752 753 754 755 756 757 758
 *
 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
 * coalesces them and we are running out of the MMU lock.  Therefore
 * we need to protect against in-progress updates of the spte.
 *
 * Reading the spte while an update is in progress may get the old value
 * for the high part of the spte.  The race is fine for a present->non-present
 * change (because the high part of the spte is ignored for non-present spte),
 * but for a present->present change we must reread the spte.
 *
 * All such changes are done in two steps (present->non-present and
 * non-present->present), hence it is enough to count the number of
 * present->non-present updates: if it changed while reading the spte,
 * we might have hit the race.  This is done using clear_spte_count.
759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
 */
static u64 __get_spte_lockless(u64 *sptep)
{
	struct kvm_mmu_page *sp =  page_header(__pa(sptep));
	union split_spte spte, *orig = (union split_spte *)sptep;
	int count;

retry:
	count = sp->clear_spte_count;
	smp_rmb();

	spte.spte_low = orig->spte_low;
	smp_rmb();

	spte.spte_high = orig->spte_high;
	smp_rmb();

	if (unlikely(spte.spte_low != orig->spte_low ||
	      count != sp->clear_spte_count))
		goto retry;

	return spte.spte;
}
782 783
#endif

784
static bool spte_can_locklessly_be_made_writable(u64 spte)
785
{
786 787
	return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
		(SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
788 789
}

790 791
static bool spte_has_volatile_bits(u64 spte)
{
792 793 794
	if (!is_shadow_present_pte(spte))
		return false;

795
	/*
796
	 * Always atomically update spte if it can be updated
797 798 799 800
	 * out of mmu-lock, it can ensure dirty bit is not lost,
	 * also, it can help us to get a stable is_writable_pte()
	 * to ensure tlb flush is not missed.
	 */
801 802
	if (spte_can_locklessly_be_made_writable(spte) ||
	    is_access_track_spte(spte))
803 804
		return true;

805
	if (spte_ad_enabled(spte)) {
806 807 808 809
		if ((spte & shadow_accessed_mask) == 0 ||
	    	    (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
			return true;
	}
810

811
	return false;
812 813
}

814
static bool is_accessed_spte(u64 spte)
815
{
816 817 818 819
	u64 accessed_mask = spte_shadow_accessed_mask(spte);

	return accessed_mask ? spte & accessed_mask
			     : !is_access_track_spte(spte);
820 821
}

822
static bool is_dirty_spte(u64 spte)
823
{
824 825 826
	u64 dirty_mask = spte_shadow_dirty_mask(spte);

	return dirty_mask ? spte & dirty_mask : spte & PT_WRITABLE_MASK;
827 828
}

829 830 831 832 833 834 835 836 837 838 839 840
/* Rules for using mmu_spte_set:
 * Set the sptep from nonpresent to present.
 * Note: the sptep being assigned *must* be either not present
 * or in a state where the hardware will not attempt to update
 * the spte.
 */
static void mmu_spte_set(u64 *sptep, u64 new_spte)
{
	WARN_ON(is_shadow_present_pte(*sptep));
	__set_spte(sptep, new_spte);
}

841 842 843
/*
 * Update the SPTE (excluding the PFN), but do not track changes in its
 * accessed/dirty status.
844
 */
845
static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
846
{
847
	u64 old_spte = *sptep;
848

849
	WARN_ON(!is_shadow_present_pte(new_spte));
850

851 852
	if (!is_shadow_present_pte(old_spte)) {
		mmu_spte_set(sptep, new_spte);
853
		return old_spte;
854
	}
855

856
	if (!spte_has_volatile_bits(old_spte))
857
		__update_clear_spte_fast(sptep, new_spte);
858
	else
859
		old_spte = __update_clear_spte_slow(sptep, new_spte);
860

861 862
	WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));

863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884
	return old_spte;
}

/* Rules for using mmu_spte_update:
 * Update the state bits, it means the mapped pfn is not changed.
 *
 * Whenever we overwrite a writable spte with a read-only one we
 * should flush remote TLBs. Otherwise rmap_write_protect
 * will find a read-only spte, even though the writable spte
 * might be cached on a CPU's TLB, the return value indicates this
 * case.
 *
 * Returns true if the TLB needs to be flushed
 */
static bool mmu_spte_update(u64 *sptep, u64 new_spte)
{
	bool flush = false;
	u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);

	if (!is_shadow_present_pte(old_spte))
		return false;

885 886
	/*
	 * For the spte updated out of mmu-lock is safe, since
887
	 * we always atomically update it, see the comments in
888 889
	 * spte_has_volatile_bits().
	 */
890
	if (spte_can_locklessly_be_made_writable(old_spte) &&
891
	      !is_writable_pte(new_spte))
892
		flush = true;
893

894
	/*
895
	 * Flush TLB when accessed/dirty states are changed in the page tables,
896 897 898
	 * to guarantee consistency between TLB and page tables.
	 */

899 900
	if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
		flush = true;
901
		kvm_set_pfn_accessed(spte_to_pfn(old_spte));
902 903 904 905
	}

	if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
		flush = true;
906
		kvm_set_pfn_dirty(spte_to_pfn(old_spte));
907
	}
908

909
	return flush;
910 911
}

912 913 914 915
/*
 * Rules for using mmu_spte_clear_track_bits:
 * It sets the sptep from present to nonpresent, and track the
 * state bits, it is used to clear the last level sptep.
916
 * Returns non-zero if the PTE was previously valid.
917 918 919
 */
static int mmu_spte_clear_track_bits(u64 *sptep)
{
D
Dan Williams 已提交
920
	kvm_pfn_t pfn;
921 922 923
	u64 old_spte = *sptep;

	if (!spte_has_volatile_bits(old_spte))
924
		__update_clear_spte_fast(sptep, 0ull);
925
	else
926
		old_spte = __update_clear_spte_slow(sptep, 0ull);
927

928
	if (!is_shadow_present_pte(old_spte))
929 930 931
		return 0;

	pfn = spte_to_pfn(old_spte);
932 933 934 935 936 937

	/*
	 * KVM does not hold the refcount of the page used by
	 * kvm mmu, before reclaiming the page, we should
	 * unmap it from mmu first.
	 */
938
	WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
939

940
	if (is_accessed_spte(old_spte))
941
		kvm_set_pfn_accessed(pfn);
942 943

	if (is_dirty_spte(old_spte))
944
		kvm_set_pfn_dirty(pfn);
945

946 947 948 949 950 951 952 953 954 955
	return 1;
}

/*
 * Rules for using mmu_spte_clear_no_track:
 * Directly clear spte without caring the state bits of sptep,
 * it is used to set the upper level spte.
 */
static void mmu_spte_clear_no_track(u64 *sptep)
{
956
	__update_clear_spte_fast(sptep, 0ull);
957 958
}

959 960 961 962 963
static u64 mmu_spte_get_lockless(u64 *sptep)
{
	return __get_spte_lockless(sptep);
}

964 965
static u64 mark_spte_for_access_track(u64 spte)
{
966
	if (spte_ad_enabled(spte))
967 968
		return spte & ~shadow_accessed_mask;

969
	if (is_access_track_spte(spte))
970 971 972
		return spte;

	/*
973 974 975
	 * Making an Access Tracking PTE will result in removal of write access
	 * from the PTE. So, verify that we will be able to restore the write
	 * access in the fast page fault path later on.
976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991
	 */
	WARN_ONCE((spte & PT_WRITABLE_MASK) &&
		  !spte_can_locklessly_be_made_writable(spte),
		  "kvm: Writable SPTE is not locklessly dirty-trackable\n");

	WARN_ONCE(spte & (shadow_acc_track_saved_bits_mask <<
			  shadow_acc_track_saved_bits_shift),
		  "kvm: Access Tracking saved bit locations are not zero\n");

	spte |= (spte & shadow_acc_track_saved_bits_mask) <<
		shadow_acc_track_saved_bits_shift;
	spte &= ~shadow_acc_track_mask;

	return spte;
}

992 993 994 995 996 997 998
/* Restore an acc-track PTE back to a regular PTE */
static u64 restore_acc_track_spte(u64 spte)
{
	u64 new_spte = spte;
	u64 saved_bits = (spte >> shadow_acc_track_saved_bits_shift)
			 & shadow_acc_track_saved_bits_mask;

999
	WARN_ON_ONCE(spte_ad_enabled(spte));
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
	WARN_ON_ONCE(!is_access_track_spte(spte));

	new_spte &= ~shadow_acc_track_mask;
	new_spte &= ~(shadow_acc_track_saved_bits_mask <<
		      shadow_acc_track_saved_bits_shift);
	new_spte |= saved_bits;

	return new_spte;
}

1010 1011 1012 1013 1014 1015 1016 1017
/* Returns the Accessed status of the PTE and resets it at the same time. */
static bool mmu_spte_age(u64 *sptep)
{
	u64 spte = mmu_spte_get_lockless(sptep);

	if (!is_accessed_spte(spte))
		return false;

1018
	if (spte_ad_enabled(spte)) {
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
		clear_bit((ffs(shadow_accessed_mask) - 1),
			  (unsigned long *)sptep);
	} else {
		/*
		 * Capture the dirty status of the page, so that it doesn't get
		 * lost when the SPTE is marked for access tracking.
		 */
		if (is_writable_pte(spte))
			kvm_set_pfn_dirty(spte_to_pfn(spte));

		spte = mark_spte_for_access_track(spte);
		mmu_spte_update_no_track(sptep, spte);
	}

	return true;
}

1036 1037
static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
{
1038 1039 1040 1041 1042
	/*
	 * Prevent page table teardown by making any free-er wait during
	 * kvm_flush_remote_tlbs() IPI to all active vcpus.
	 */
	local_irq_disable();
1043

1044 1045 1046 1047
	/*
	 * Make sure a following spte read is not reordered ahead of the write
	 * to vcpu->mode.
	 */
1048
	smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
1049 1050 1051 1052
}

static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
{
1053 1054
	/*
	 * Make sure the write to vcpu->mode is not reordered in front of
1055
	 * reads to sptes.  If it does, kvm_mmu_commit_zap_page() can see us
1056 1057
	 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
	 */
1058
	smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
1059
	local_irq_enable();
1060 1061
}

1062
static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
1063
				  struct kmem_cache *base_cache, int min)
1064 1065 1066 1067
{
	void *obj;

	if (cache->nobjs >= min)
1068
		return 0;
1069
	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
1070
		obj = kmem_cache_zalloc(base_cache, GFP_KERNEL_ACCOUNT);
1071
		if (!obj)
1072
			return cache->nobjs >= min ? 0 : -ENOMEM;
1073 1074
		cache->objects[cache->nobjs++] = obj;
	}
1075
	return 0;
1076 1077
}

1078 1079 1080 1081 1082
static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
{
	return cache->nobjs;
}

1083 1084
static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
				  struct kmem_cache *cache)
1085 1086
{
	while (mc->nobjs)
1087
		kmem_cache_free(cache, mc->objects[--mc->nobjs]);
1088 1089
}

A
Avi Kivity 已提交
1090
static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
1091
				       int min)
A
Avi Kivity 已提交
1092
{
1093
	void *page;
A
Avi Kivity 已提交
1094 1095 1096 1097

	if (cache->nobjs >= min)
		return 0;
	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
1098
		page = (void *)__get_free_page(GFP_KERNEL_ACCOUNT);
A
Avi Kivity 已提交
1099
		if (!page)
1100
			return cache->nobjs >= min ? 0 : -ENOMEM;
1101
		cache->objects[cache->nobjs++] = page;
A
Avi Kivity 已提交
1102 1103 1104 1105 1106 1107 1108
	}
	return 0;
}

static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
{
	while (mc->nobjs)
1109
		free_page((unsigned long)mc->objects[--mc->nobjs]);
A
Avi Kivity 已提交
1110 1111
}

1112
static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
1113
{
1114 1115
	int r;

1116
	r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
1117
				   pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
1118 1119
	if (r)
		goto out;
1120
	r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
1121 1122
	if (r)
		goto out;
1123
	r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
1124
				   mmu_page_header_cache, 4);
1125 1126
out:
	return r;
1127 1128 1129 1130
}

static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
{
1131 1132
	mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
				pte_list_desc_cache);
1133
	mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
1134 1135
	mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
				mmu_page_header_cache);
1136 1137
}

1138
static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
1139 1140 1141 1142 1143 1144 1145 1146
{
	void *p;

	BUG_ON(!mc->nobjs);
	p = mc->objects[--mc->nobjs];
	return p;
}

1147
static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
1148
{
1149
	return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
1150 1151
}

1152
static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
1153
{
1154
	kmem_cache_free(pte_list_desc_cache, pte_list_desc);
1155 1156
}

1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
{
	if (!sp->role.direct)
		return sp->gfns[index];

	return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
}

static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
{
1167
	if (!sp->role.direct) {
1168
		sp->gfns[index] = gfn;
1169 1170 1171 1172 1173 1174 1175 1176
		return;
	}

	if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
		pr_err_ratelimited("gfn mismatch under direct page %llx "
				   "(expected %llx, got %llx)\n",
				   sp->gfn,
				   kvm_mmu_page_get_gfn(sp, index), gfn);
1177 1178
}

M
Marcelo Tosatti 已提交
1179
/*
1180 1181
 * Return the pointer to the large page information for a given gfn,
 * handling slots that are not large page aligned.
M
Marcelo Tosatti 已提交
1182
 */
1183 1184 1185
static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
					      struct kvm_memory_slot *slot,
					      int level)
M
Marcelo Tosatti 已提交
1186 1187 1188
{
	unsigned long idx;

1189
	idx = gfn_to_index(gfn, slot->base_gfn, level);
1190
	return &slot->arch.lpage_info[level - 2][idx];
M
Marcelo Tosatti 已提交
1191 1192
}

1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
					    gfn_t gfn, int count)
{
	struct kvm_lpage_info *linfo;
	int i;

	for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
		linfo = lpage_info_slot(gfn, slot, i);
		linfo->disallow_lpage += count;
		WARN_ON(linfo->disallow_lpage < 0);
	}
}

void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
{
	update_gfn_disallow_lpage_count(slot, gfn, 1);
}

void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
{
	update_gfn_disallow_lpage_count(slot, gfn, -1);
}

1216
static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
M
Marcelo Tosatti 已提交
1217
{
1218
	struct kvm_memslots *slots;
1219
	struct kvm_memory_slot *slot;
1220
	gfn_t gfn;
M
Marcelo Tosatti 已提交
1221

1222
	kvm->arch.indirect_shadow_pages++;
1223
	gfn = sp->gfn;
1224 1225
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
1226 1227 1228 1229 1230 1231

	/* the non-leaf shadow pages are keeping readonly. */
	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
		return kvm_slot_page_track_add_page(kvm, slot, gfn,
						    KVM_PAGE_TRACK_WRITE);

1232
	kvm_mmu_gfn_disallow_lpage(slot, gfn);
M
Marcelo Tosatti 已提交
1233 1234
}

P
Paolo Bonzini 已提交
1235 1236 1237 1238 1239 1240
static void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
{
	if (sp->lpage_disallowed)
		return;

	++kvm->stat.nx_lpage_splits;
1241 1242
	list_add_tail(&sp->lpage_disallowed_link,
		      &kvm->arch.lpage_disallowed_mmu_pages);
P
Paolo Bonzini 已提交
1243 1244 1245
	sp->lpage_disallowed = true;
}

1246
static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
M
Marcelo Tosatti 已提交
1247
{
1248
	struct kvm_memslots *slots;
1249
	struct kvm_memory_slot *slot;
1250
	gfn_t gfn;
M
Marcelo Tosatti 已提交
1251

1252
	kvm->arch.indirect_shadow_pages--;
1253
	gfn = sp->gfn;
1254 1255
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
1256 1257 1258 1259
	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
		return kvm_slot_page_track_remove_page(kvm, slot, gfn,
						       KVM_PAGE_TRACK_WRITE);

1260
	kvm_mmu_gfn_allow_lpage(slot, gfn);
M
Marcelo Tosatti 已提交
1261 1262
}

P
Paolo Bonzini 已提交
1263 1264 1265 1266
static void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
{
	--kvm->stat.nx_lpage_splits;
	sp->lpage_disallowed = false;
1267
	list_del(&sp->lpage_disallowed_link);
P
Paolo Bonzini 已提交
1268 1269
}

1270 1271 1272
static struct kvm_memory_slot *
gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
			    bool no_dirty_log)
M
Marcelo Tosatti 已提交
1273 1274
{
	struct kvm_memory_slot *slot;
1275

1276
	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1277 1278 1279 1280
	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
		return NULL;
	if (no_dirty_log && slot->dirty_bitmap)
		return NULL;
1281 1282 1283 1284

	return slot;
}

1285
/*
1286
 * About rmap_head encoding:
1287
 *
1288 1289
 * If the bit zero of rmap_head->val is clear, then it points to the only spte
 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
1290
 * pte_list_desc containing more mappings.
1291 1292 1293 1294
 */

/*
 * Returns the number of pointers in the rmap chain, not counting the new one.
1295
 */
1296
static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
1297
			struct kvm_rmap_head *rmap_head)
1298
{
1299
	struct pte_list_desc *desc;
1300
	int i, count = 0;
1301

1302
	if (!rmap_head->val) {
1303
		rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
1304 1305
		rmap_head->val = (unsigned long)spte;
	} else if (!(rmap_head->val & 1)) {
1306 1307
		rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
		desc = mmu_alloc_pte_list_desc(vcpu);
1308
		desc->sptes[0] = (u64 *)rmap_head->val;
A
Avi Kivity 已提交
1309
		desc->sptes[1] = spte;
1310
		rmap_head->val = (unsigned long)desc | 1;
1311
		++count;
1312
	} else {
1313
		rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
1314
		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1315
		while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
1316
			desc = desc->more;
1317
			count += PTE_LIST_EXT;
1318
		}
1319 1320
		if (desc->sptes[PTE_LIST_EXT-1]) {
			desc->more = mmu_alloc_pte_list_desc(vcpu);
1321 1322
			desc = desc->more;
		}
A
Avi Kivity 已提交
1323
		for (i = 0; desc->sptes[i]; ++i)
1324
			++count;
A
Avi Kivity 已提交
1325
		desc->sptes[i] = spte;
1326
	}
1327
	return count;
1328 1329
}

1330
static void
1331 1332 1333
pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
			   struct pte_list_desc *desc, int i,
			   struct pte_list_desc *prev_desc)
1334 1335 1336
{
	int j;

1337
	for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
1338
		;
A
Avi Kivity 已提交
1339 1340
	desc->sptes[i] = desc->sptes[j];
	desc->sptes[j] = NULL;
1341 1342 1343
	if (j != 0)
		return;
	if (!prev_desc && !desc->more)
1344
		rmap_head->val = 0;
1345 1346 1347 1348
	else
		if (prev_desc)
			prev_desc->more = desc->more;
		else
1349
			rmap_head->val = (unsigned long)desc->more | 1;
1350
	mmu_free_pte_list_desc(desc);
1351 1352
}

1353
static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
1354
{
1355 1356
	struct pte_list_desc *desc;
	struct pte_list_desc *prev_desc;
1357 1358
	int i;

1359
	if (!rmap_head->val) {
1360
		pr_err("%s: %p 0->BUG\n", __func__, spte);
1361
		BUG();
1362
	} else if (!(rmap_head->val & 1)) {
1363
		rmap_printk("%s:  %p 1->0\n", __func__, spte);
1364
		if ((u64 *)rmap_head->val != spte) {
1365
			pr_err("%s:  %p 1->BUG\n", __func__, spte);
1366 1367
			BUG();
		}
1368
		rmap_head->val = 0;
1369
	} else {
1370
		rmap_printk("%s:  %p many->many\n", __func__, spte);
1371
		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1372 1373
		prev_desc = NULL;
		while (desc) {
1374
			for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
A
Avi Kivity 已提交
1375
				if (desc->sptes[i] == spte) {
1376 1377
					pte_list_desc_remove_entry(rmap_head,
							desc, i, prev_desc);
1378 1379
					return;
				}
1380
			}
1381 1382 1383
			prev_desc = desc;
			desc = desc->more;
		}
1384
		pr_err("%s: %p many->many\n", __func__, spte);
1385 1386 1387 1388
		BUG();
	}
}

1389 1390 1391 1392 1393 1394
static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep)
{
	mmu_spte_clear_track_bits(sptep);
	__pte_list_remove(sptep, rmap_head);
}

1395 1396
static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
					   struct kvm_memory_slot *slot)
1397
{
1398
	unsigned long idx;
1399

1400
	idx = gfn_to_index(gfn, slot->base_gfn, level);
1401
	return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1402 1403
}

1404 1405
static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
					 struct kvm_mmu_page *sp)
1406
{
1407
	struct kvm_memslots *slots;
1408 1409
	struct kvm_memory_slot *slot;

1410 1411
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
1412
	return __gfn_to_rmap(gfn, sp->role.level, slot);
1413 1414
}

1415 1416 1417 1418 1419 1420 1421 1422
static bool rmap_can_add(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu_memory_cache *cache;

	cache = &vcpu->arch.mmu_pte_list_desc_cache;
	return mmu_memory_cache_free_objects(cache);
}

1423 1424 1425
static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
{
	struct kvm_mmu_page *sp;
1426
	struct kvm_rmap_head *rmap_head;
1427 1428 1429

	sp = page_header(__pa(spte));
	kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1430 1431
	rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
	return pte_list_add(vcpu, spte, rmap_head);
1432 1433 1434 1435 1436 1437
}

static void rmap_remove(struct kvm *kvm, u64 *spte)
{
	struct kvm_mmu_page *sp;
	gfn_t gfn;
1438
	struct kvm_rmap_head *rmap_head;
1439 1440 1441

	sp = page_header(__pa(spte));
	gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1442
	rmap_head = gfn_to_rmap(kvm, gfn, sp);
1443
	__pte_list_remove(spte, rmap_head);
1444 1445
}

1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
/*
 * Used by the following functions to iterate through the sptes linked by a
 * rmap.  All fields are private and not assumed to be used outside.
 */
struct rmap_iterator {
	/* private fields */
	struct pte_list_desc *desc;	/* holds the sptep if not NULL */
	int pos;			/* index of the sptep */
};

/*
 * Iteration must be started by this function.  This should also be used after
 * removing/dropping sptes from the rmap link because in such cases the
M
Miaohe Lin 已提交
1459
 * information in the iterator may not be valid.
1460 1461 1462
 *
 * Returns sptep if found, NULL otherwise.
 */
1463 1464
static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
			   struct rmap_iterator *iter)
1465
{
1466 1467
	u64 *sptep;

1468
	if (!rmap_head->val)
1469 1470
		return NULL;

1471
	if (!(rmap_head->val & 1)) {
1472
		iter->desc = NULL;
1473 1474
		sptep = (u64 *)rmap_head->val;
		goto out;
1475 1476
	}

1477
	iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1478
	iter->pos = 0;
1479 1480 1481 1482
	sptep = iter->desc->sptes[iter->pos];
out:
	BUG_ON(!is_shadow_present_pte(*sptep));
	return sptep;
1483 1484 1485 1486 1487 1488 1489 1490 1491
}

/*
 * Must be used with a valid iterator: e.g. after rmap_get_first().
 *
 * Returns sptep if found, NULL otherwise.
 */
static u64 *rmap_get_next(struct rmap_iterator *iter)
{
1492 1493
	u64 *sptep;

1494 1495 1496 1497 1498
	if (iter->desc) {
		if (iter->pos < PTE_LIST_EXT - 1) {
			++iter->pos;
			sptep = iter->desc->sptes[iter->pos];
			if (sptep)
1499
				goto out;
1500 1501 1502 1503 1504 1505 1506
		}

		iter->desc = iter->desc->more;

		if (iter->desc) {
			iter->pos = 0;
			/* desc->sptes[0] cannot be NULL */
1507 1508
			sptep = iter->desc->sptes[iter->pos];
			goto out;
1509 1510 1511 1512
		}
	}

	return NULL;
1513 1514 1515
out:
	BUG_ON(!is_shadow_present_pte(*sptep));
	return sptep;
1516 1517
}

1518 1519
#define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)			\
	for (_spte_ = rmap_get_first(_rmap_head_, _iter_);		\
1520
	     _spte_; _spte_ = rmap_get_next(_iter_))
1521

1522
static void drop_spte(struct kvm *kvm, u64 *sptep)
1523
{
1524
	if (mmu_spte_clear_track_bits(sptep))
1525
		rmap_remove(kvm, sptep);
A
Avi Kivity 已提交
1526 1527
}

1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543

static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
{
	if (is_large_pte(*sptep)) {
		WARN_ON(page_header(__pa(sptep))->role.level ==
			PT_PAGE_TABLE_LEVEL);
		drop_spte(kvm, sptep);
		--kvm->stat.lpages;
		return true;
	}

	return false;
}

static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
{
1544 1545 1546 1547 1548 1549
	if (__drop_large_spte(vcpu->kvm, sptep)) {
		struct kvm_mmu_page *sp = page_header(__pa(sptep));

		kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
			KVM_PAGES_PER_HPAGE(sp->role.level));
	}
1550 1551 1552
}

/*
1553
 * Write-protect on the specified @sptep, @pt_protect indicates whether
1554
 * spte write-protection is caused by protecting shadow page table.
1555
 *
T
Tiejun Chen 已提交
1556
 * Note: write protection is difference between dirty logging and spte
1557 1558 1559 1560 1561
 * protection:
 * - for dirty logging, the spte can be set to writable at anytime if
 *   its dirty bitmap is properly set.
 * - for spte protection, the spte can be writable only after unsync-ing
 *   shadow page.
1562
 *
1563
 * Return true if tlb need be flushed.
1564
 */
1565
static bool spte_write_protect(u64 *sptep, bool pt_protect)
1566 1567 1568
{
	u64 spte = *sptep;

1569
	if (!is_writable_pte(spte) &&
1570
	      !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1571 1572 1573 1574
		return false;

	rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);

1575 1576
	if (pt_protect)
		spte &= ~SPTE_MMU_WRITEABLE;
1577
	spte = spte & ~PT_WRITABLE_MASK;
1578

1579
	return mmu_spte_update(sptep, spte);
1580 1581
}

1582 1583
static bool __rmap_write_protect(struct kvm *kvm,
				 struct kvm_rmap_head *rmap_head,
1584
				 bool pt_protect)
1585
{
1586 1587
	u64 *sptep;
	struct rmap_iterator iter;
1588
	bool flush = false;
1589

1590
	for_each_rmap_spte(rmap_head, &iter, sptep)
1591
		flush |= spte_write_protect(sptep, pt_protect);
1592

1593
	return flush;
1594 1595
}

1596
static bool spte_clear_dirty(u64 *sptep)
1597 1598 1599 1600 1601
{
	u64 spte = *sptep;

	rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);

1602
	MMU_WARN_ON(!spte_ad_enabled(spte));
1603 1604 1605 1606
	spte &= ~shadow_dirty_mask;
	return mmu_spte_update(sptep, spte);
}

1607
static bool spte_wrprot_for_clear_dirty(u64 *sptep)
1608 1609 1610
{
	bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
					       (unsigned long *)sptep);
1611
	if (was_writable && !spte_ad_enabled(*sptep))
1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
		kvm_set_pfn_dirty(spte_to_pfn(*sptep));

	return was_writable;
}

/*
 * Gets the GFN ready for another round of dirty logging by clearing the
 *	- D bit on ad-enabled SPTEs, and
 *	- W bit on ad-disabled SPTEs.
 * Returns true iff any D or W bits were cleared.
 */
1623
static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1624 1625 1626 1627 1628
{
	u64 *sptep;
	struct rmap_iterator iter;
	bool flush = false;

1629
	for_each_rmap_spte(rmap_head, &iter, sptep)
1630 1631
		if (spte_ad_need_write_protect(*sptep))
			flush |= spte_wrprot_for_clear_dirty(sptep);
1632
		else
1633
			flush |= spte_clear_dirty(sptep);
1634 1635 1636 1637

	return flush;
}

1638
static bool spte_set_dirty(u64 *sptep)
1639 1640 1641 1642 1643
{
	u64 spte = *sptep;

	rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);

1644
	/*
1645
	 * Similar to the !kvm_x86_ops.slot_disable_log_dirty case,
1646 1647 1648
	 * do not bother adding back write access to pages marked
	 * SPTE_AD_WRPROT_ONLY_MASK.
	 */
1649 1650 1651 1652 1653
	spte |= shadow_dirty_mask;

	return mmu_spte_update(sptep, spte);
}

1654
static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1655 1656 1657 1658 1659
{
	u64 *sptep;
	struct rmap_iterator iter;
	bool flush = false;

1660
	for_each_rmap_spte(rmap_head, &iter, sptep)
1661 1662
		if (spte_ad_enabled(*sptep))
			flush |= spte_set_dirty(sptep);
1663 1664 1665 1666

	return flush;
}

1667
/**
1668
 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1669 1670 1671 1672 1673 1674 1675 1676
 * @kvm: kvm instance
 * @slot: slot to protect
 * @gfn_offset: start of the BITS_PER_LONG pages we care about
 * @mask: indicates which pages we should protect
 *
 * Used when we do not need to care about huge page mappings: e.g. during dirty
 * logging we do not have any such mappings.
 */
1677
static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1678 1679
				     struct kvm_memory_slot *slot,
				     gfn_t gfn_offset, unsigned long mask)
1680
{
1681
	struct kvm_rmap_head *rmap_head;
1682

1683
	while (mask) {
1684 1685 1686
		rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
					  PT_PAGE_TABLE_LEVEL, slot);
		__rmap_write_protect(kvm, rmap_head, false);
M
Marcelo Tosatti 已提交
1687

1688 1689 1690
		/* clear the first set bit */
		mask &= mask - 1;
	}
1691 1692
}

1693
/**
1694 1695
 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
 * protect the page if the D-bit isn't supported.
1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706
 * @kvm: kvm instance
 * @slot: slot to clear D-bit
 * @gfn_offset: start of the BITS_PER_LONG pages we care about
 * @mask: indicates which pages we should clear D-bit
 *
 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
 */
void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
				     struct kvm_memory_slot *slot,
				     gfn_t gfn_offset, unsigned long mask)
{
1707
	struct kvm_rmap_head *rmap_head;
1708 1709

	while (mask) {
1710 1711 1712
		rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
					  PT_PAGE_TABLE_LEVEL, slot);
		__rmap_clear_dirty(kvm, rmap_head);
1713 1714 1715 1716 1717 1718 1719

		/* clear the first set bit */
		mask &= mask - 1;
	}
}
EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);

1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733
/**
 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
 * PT level pages.
 *
 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
 * enable dirty logging for them.
 *
 * Used when we do not need to care about huge page mappings: e.g. during dirty
 * logging we do not have any such mappings.
 */
void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
				struct kvm_memory_slot *slot,
				gfn_t gfn_offset, unsigned long mask)
{
1734 1735
	if (kvm_x86_ops.enable_log_dirty_pt_masked)
		kvm_x86_ops.enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1736 1737 1738
				mask);
	else
		kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1739 1740
}

1741 1742 1743 1744 1745 1746 1747 1748 1749
/**
 * kvm_arch_write_log_dirty - emulate dirty page logging
 * @vcpu: Guest mode vcpu
 *
 * Emulate arch specific page modification logging for the
 * nested hypervisor
 */
int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu)
{
1750 1751
	if (kvm_x86_ops.write_log_dirty)
		return kvm_x86_ops.write_log_dirty(vcpu);
1752 1753 1754 1755

	return 0;
}

1756 1757
bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
				    struct kvm_memory_slot *slot, u64 gfn)
1758
{
1759
	struct kvm_rmap_head *rmap_head;
1760
	int i;
1761
	bool write_protected = false;
1762

1763
	for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1764
		rmap_head = __gfn_to_rmap(gfn, i, slot);
1765
		write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1766 1767 1768
	}

	return write_protected;
1769 1770
}

1771 1772 1773 1774 1775 1776 1777 1778
static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
{
	struct kvm_memory_slot *slot;

	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
	return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
}

1779
static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1780
{
1781 1782
	u64 *sptep;
	struct rmap_iterator iter;
1783
	bool flush = false;
1784

1785
	while ((sptep = rmap_get_first(rmap_head, &iter))) {
1786
		rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1787

1788
		pte_list_remove(rmap_head, sptep);
1789
		flush = true;
1790
	}
1791

1792 1793 1794
	return flush;
}

1795
static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1796 1797 1798
			   struct kvm_memory_slot *slot, gfn_t gfn, int level,
			   unsigned long data)
{
1799
	return kvm_zap_rmapp(kvm, rmap_head);
1800 1801
}

1802
static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1803 1804
			     struct kvm_memory_slot *slot, gfn_t gfn, int level,
			     unsigned long data)
1805
{
1806 1807
	u64 *sptep;
	struct rmap_iterator iter;
1808
	int need_flush = 0;
1809
	u64 new_spte;
1810
	pte_t *ptep = (pte_t *)data;
D
Dan Williams 已提交
1811
	kvm_pfn_t new_pfn;
1812 1813 1814

	WARN_ON(pte_huge(*ptep));
	new_pfn = pte_pfn(*ptep);
1815

1816
restart:
1817
	for_each_rmap_spte(rmap_head, &iter, sptep) {
1818
		rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1819
			    sptep, *sptep, gfn, level);
1820

1821
		need_flush = 1;
1822

1823
		if (pte_write(*ptep)) {
1824
			pte_list_remove(rmap_head, sptep);
1825
			goto restart;
1826
		} else {
1827
			new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1828 1829 1830 1831
			new_spte |= (u64)new_pfn << PAGE_SHIFT;

			new_spte &= ~PT_WRITABLE_MASK;
			new_spte &= ~SPTE_HOST_WRITEABLE;
1832 1833

			new_spte = mark_spte_for_access_track(new_spte);
1834 1835 1836

			mmu_spte_clear_track_bits(sptep);
			mmu_spte_set(sptep, new_spte);
1837 1838
		}
	}
1839

1840 1841 1842 1843 1844
	if (need_flush && kvm_available_flush_tlb_with_range()) {
		kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
		return 0;
	}

1845
	return need_flush;
1846 1847
}

1848 1849 1850 1851 1852 1853 1854 1855 1856 1857
struct slot_rmap_walk_iterator {
	/* input fields. */
	struct kvm_memory_slot *slot;
	gfn_t start_gfn;
	gfn_t end_gfn;
	int start_level;
	int end_level;

	/* output fields. */
	gfn_t gfn;
1858
	struct kvm_rmap_head *rmap;
1859 1860 1861
	int level;

	/* private field. */
1862
	struct kvm_rmap_head *end_rmap;
1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915
};

static void
rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
{
	iterator->level = level;
	iterator->gfn = iterator->start_gfn;
	iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
	iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
					   iterator->slot);
}

static void
slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
		    struct kvm_memory_slot *slot, int start_level,
		    int end_level, gfn_t start_gfn, gfn_t end_gfn)
{
	iterator->slot = slot;
	iterator->start_level = start_level;
	iterator->end_level = end_level;
	iterator->start_gfn = start_gfn;
	iterator->end_gfn = end_gfn;

	rmap_walk_init_level(iterator, iterator->start_level);
}

static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
{
	return !!iterator->rmap;
}

static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
{
	if (++iterator->rmap <= iterator->end_rmap) {
		iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
		return;
	}

	if (++iterator->level > iterator->end_level) {
		iterator->rmap = NULL;
		return;
	}

	rmap_walk_init_level(iterator, iterator->level);
}

#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,	\
	   _start_gfn, _end_gfn, _iter_)				\
	for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,		\
				 _end_level_, _start_gfn, _end_gfn);	\
	     slot_rmap_walk_okay(_iter_);				\
	     slot_rmap_walk_next(_iter_))

1916 1917 1918 1919 1920
static int kvm_handle_hva_range(struct kvm *kvm,
				unsigned long start,
				unsigned long end,
				unsigned long data,
				int (*handler)(struct kvm *kvm,
1921
					       struct kvm_rmap_head *rmap_head,
1922
					       struct kvm_memory_slot *slot,
1923 1924
					       gfn_t gfn,
					       int level,
1925
					       unsigned long data))
1926
{
1927
	struct kvm_memslots *slots;
1928
	struct kvm_memory_slot *memslot;
1929 1930
	struct slot_rmap_walk_iterator iterator;
	int ret = 0;
1931
	int i;
1932

1933 1934 1935 1936 1937
	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
		kvm_for_each_memslot(memslot, slots) {
			unsigned long hva_start, hva_end;
			gfn_t gfn_start, gfn_end;
1938

1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957
			hva_start = max(start, memslot->userspace_addr);
			hva_end = min(end, memslot->userspace_addr +
				      (memslot->npages << PAGE_SHIFT));
			if (hva_start >= hva_end)
				continue;
			/*
			 * {gfn(page) | page intersects with [hva_start, hva_end)} =
			 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
			 */
			gfn_start = hva_to_gfn_memslot(hva_start, memslot);
			gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);

			for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
						 PT_MAX_HUGEPAGE_LEVEL,
						 gfn_start, gfn_end - 1,
						 &iterator)
				ret |= handler(kvm, iterator.rmap, memslot,
					       iterator.gfn, iterator.level, data);
		}
1958 1959
	}

1960
	return ret;
1961 1962
}

1963 1964
static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
			  unsigned long data,
1965 1966
			  int (*handler)(struct kvm *kvm,
					 struct kvm_rmap_head *rmap_head,
1967
					 struct kvm_memory_slot *slot,
1968
					 gfn_t gfn, int level,
1969 1970 1971
					 unsigned long data))
{
	return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1972 1973
}

1974 1975 1976 1977 1978
int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
{
	return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
}

1979
int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1980
{
1981
	return kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1982 1983
}

1984
static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1985 1986
			 struct kvm_memory_slot *slot, gfn_t gfn, int level,
			 unsigned long data)
1987
{
1988
	u64 *sptep;
1989
	struct rmap_iterator uninitialized_var(iter);
1990 1991
	int young = 0;

1992 1993
	for_each_rmap_spte(rmap_head, &iter, sptep)
		young |= mmu_spte_age(sptep);
1994

1995
	trace_kvm_age_page(gfn, level, slot, young);
1996 1997 1998
	return young;
}

1999
static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
2000 2001
			      struct kvm_memory_slot *slot, gfn_t gfn,
			      int level, unsigned long data)
A
Andrea Arcangeli 已提交
2002
{
2003 2004
	u64 *sptep;
	struct rmap_iterator iter;
A
Andrea Arcangeli 已提交
2005

2006 2007 2008 2009
	for_each_rmap_spte(rmap_head, &iter, sptep)
		if (is_accessed_spte(*sptep))
			return 1;
	return 0;
A
Andrea Arcangeli 已提交
2010 2011
}

2012 2013
#define RMAP_RECYCLE_THRESHOLD 1000

2014
static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
2015
{
2016
	struct kvm_rmap_head *rmap_head;
2017 2018 2019
	struct kvm_mmu_page *sp;

	sp = page_header(__pa(spte));
2020

2021
	rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
2022

2023
	kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
2024 2025
	kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
			KVM_PAGES_PER_HPAGE(sp->role.level));
2026 2027
}

A
Andres Lagar-Cavilla 已提交
2028
int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
2029
{
A
Andres Lagar-Cavilla 已提交
2030
	return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
2031 2032
}

A
Andrea Arcangeli 已提交
2033 2034 2035 2036 2037
int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
{
	return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
}

2038
#ifdef MMU_DEBUG
2039
static int is_empty_shadow_page(u64 *spt)
A
Avi Kivity 已提交
2040
{
2041 2042 2043
	u64 *pos;
	u64 *end;

2044
	for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
2045
		if (is_shadow_present_pte(*pos)) {
2046
			printk(KERN_ERR "%s: %p %llx\n", __func__,
2047
			       pos, *pos);
A
Avi Kivity 已提交
2048
			return 0;
2049
		}
A
Avi Kivity 已提交
2050 2051
	return 1;
}
2052
#endif
A
Avi Kivity 已提交
2053

2054 2055 2056 2057 2058 2059
/*
 * This value is the sum of all of the kvm instances's
 * kvm->arch.n_used_mmu_pages values.  We need a global,
 * aggregate version in order to make the slab shrinker
 * faster
 */
2060
static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, unsigned long nr)
2061 2062 2063 2064 2065
{
	kvm->arch.n_used_mmu_pages += nr;
	percpu_counter_add(&kvm_total_used_mmu_pages, nr);
}

2066
static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
2067
{
2068
	MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
2069
	hlist_del(&sp->hash_link);
2070 2071
	list_del(&sp->link);
	free_page((unsigned long)sp->spt);
2072 2073
	if (!sp->role.direct)
		free_page((unsigned long)sp->gfns);
2074
	kmem_cache_free(mmu_page_header_cache, sp);
2075 2076
}

2077 2078
static unsigned kvm_page_table_hashfn(gfn_t gfn)
{
2079
	return hash_64(gfn, KVM_MMU_HASH_SHIFT);
2080 2081
}

2082
static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
2083
				    struct kvm_mmu_page *sp, u64 *parent_pte)
2084 2085 2086 2087
{
	if (!parent_pte)
		return;

2088
	pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
2089 2090
}

2091
static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
2092 2093
				       u64 *parent_pte)
{
2094
	__pte_list_remove(parent_pte, &sp->parent_ptes);
2095 2096
}

2097 2098 2099 2100
static void drop_parent_pte(struct kvm_mmu_page *sp,
			    u64 *parent_pte)
{
	mmu_page_remove_parent_pte(sp, parent_pte);
2101
	mmu_spte_clear_no_track(parent_pte);
2102 2103
}

2104
static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
M
Marcelo Tosatti 已提交
2105
{
2106
	struct kvm_mmu_page *sp;
2107

2108 2109
	sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
	sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
2110
	if (!direct)
2111
		sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
2112
	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
2113 2114 2115 2116 2117 2118

	/*
	 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
	 * depends on valid pages being added to the head of the list.  See
	 * comments in kvm_zap_obsolete_pages().
	 */
2119
	sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
2120 2121 2122
	list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
	kvm_mod_used_mmu_pages(vcpu->kvm, +1);
	return sp;
M
Marcelo Tosatti 已提交
2123 2124
}

2125
static void mark_unsync(u64 *spte);
2126
static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
2127
{
2128 2129 2130 2131 2132 2133
	u64 *sptep;
	struct rmap_iterator iter;

	for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
		mark_unsync(sptep);
	}
2134 2135
}

2136
static void mark_unsync(u64 *spte)
2137
{
2138
	struct kvm_mmu_page *sp;
2139
	unsigned int index;
2140

2141
	sp = page_header(__pa(spte));
2142 2143
	index = spte - sp->spt;
	if (__test_and_set_bit(index, sp->unsync_child_bitmap))
2144
		return;
2145
	if (sp->unsync_children++)
2146
		return;
2147
	kvm_mmu_mark_parents_unsync(sp);
2148 2149
}

2150
static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
2151
			       struct kvm_mmu_page *sp)
2152
{
2153
	return 0;
2154 2155
}

2156 2157
static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
				 struct kvm_mmu_page *sp, u64 *spte,
2158
				 const void *pte)
2159 2160 2161 2162
{
	WARN_ON(1);
}

2163 2164 2165 2166 2167 2168 2169 2170 2171 2172
#define KVM_PAGE_ARRAY_NR 16

struct kvm_mmu_pages {
	struct mmu_page_and_offset {
		struct kvm_mmu_page *sp;
		unsigned int idx;
	} page[KVM_PAGE_ARRAY_NR];
	unsigned int nr;
};

2173 2174
static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
			 int idx)
2175
{
2176
	int i;
2177

2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188
	if (sp->unsync)
		for (i=0; i < pvec->nr; i++)
			if (pvec->page[i].sp == sp)
				return 0;

	pvec->page[pvec->nr].sp = sp;
	pvec->page[pvec->nr].idx = idx;
	pvec->nr++;
	return (pvec->nr == KVM_PAGE_ARRAY_NR);
}

2189 2190 2191 2192 2193 2194 2195
static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
{
	--sp->unsync_children;
	WARN_ON((int)sp->unsync_children < 0);
	__clear_bit(idx, sp->unsync_child_bitmap);
}

2196 2197 2198 2199
static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
	int i, ret, nr_unsync_leaf = 0;
2200

2201
	for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
2202
		struct kvm_mmu_page *child;
2203 2204
		u64 ent = sp->spt[i];

2205 2206 2207 2208
		if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
			clear_unsync_child_bit(sp, i);
			continue;
		}
2209 2210 2211 2212 2213 2214 2215 2216

		child = page_header(ent & PT64_BASE_ADDR_MASK);

		if (child->unsync_children) {
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;

			ret = __mmu_unsync_walk(child, pvec);
2217 2218 2219 2220
			if (!ret) {
				clear_unsync_child_bit(sp, i);
				continue;
			} else if (ret > 0) {
2221
				nr_unsync_leaf += ret;
2222
			} else
2223 2224 2225 2226 2227 2228
				return ret;
		} else if (child->unsync) {
			nr_unsync_leaf++;
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;
		} else
2229
			clear_unsync_child_bit(sp, i);
2230 2231
	}

2232 2233 2234
	return nr_unsync_leaf;
}

2235 2236
#define INVALID_INDEX (-1)

2237 2238 2239
static int mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
P
Paolo Bonzini 已提交
2240
	pvec->nr = 0;
2241 2242 2243
	if (!sp->unsync_children)
		return 0;

2244
	mmu_pages_add(pvec, sp, INVALID_INDEX);
2245
	return __mmu_unsync_walk(sp, pvec);
2246 2247 2248 2249 2250
}

static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
{
	WARN_ON(!sp->unsync);
2251
	trace_kvm_mmu_sync_page(sp);
2252 2253 2254 2255
	sp->unsync = 0;
	--kvm->stat.mmu_unsync;
}

2256 2257
static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				     struct list_head *invalid_list);
2258 2259
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list);
2260

2261

2262
#define for_each_valid_sp(_kvm, _sp, _gfn)				\
2263 2264
	hlist_for_each_entry(_sp,					\
	  &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
2265
		if (is_obsolete_sp((_kvm), (_sp))) {			\
2266
		} else
2267 2268

#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)			\
2269 2270
	for_each_valid_sp(_kvm, _sp, _gfn)				\
		if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
2271

2272 2273 2274 2275 2276
static inline bool is_ept_sp(struct kvm_mmu_page *sp)
{
	return sp->role.cr0_wp && sp->role.smap_andnot_wp;
}

2277
/* @sp->gfn should be write-protected at the call site */
2278 2279
static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
			    struct list_head *invalid_list)
2280
{
2281 2282
	if ((!is_ept_sp(sp) && sp->role.gpte_is_8_bytes != !!is_pae(vcpu)) ||
	    vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
2283
		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
2284
		return false;
2285 2286
	}

2287
	return true;
2288 2289
}

2290 2291 2292 2293
static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
					struct list_head *invalid_list,
					bool remote_flush)
{
2294
	if (!remote_flush && list_empty(invalid_list))
2295 2296 2297 2298 2299 2300 2301 2302 2303
		return false;

	if (!list_empty(invalid_list))
		kvm_mmu_commit_zap_page(kvm, invalid_list);
	else
		kvm_flush_remote_tlbs(kvm);
	return true;
}

2304 2305 2306
static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
				 struct list_head *invalid_list,
				 bool remote_flush, bool local_flush)
2307
{
2308
	if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush))
2309
		return;
2310

2311
	if (local_flush)
2312
		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2313 2314
}

2315 2316 2317 2318 2319 2320 2321
#ifdef CONFIG_KVM_MMU_AUDIT
#include "mmu_audit.c"
#else
static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
static void mmu_audit_disable(void) { }
#endif

2322 2323
static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
{
2324 2325
	return sp->role.invalid ||
	       unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2326 2327
}

2328
static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2329
			 struct list_head *invalid_list)
2330
{
2331 2332
	kvm_unlink_unsync_page(vcpu->kvm, sp);
	return __kvm_sync_page(vcpu, sp, invalid_list);
2333 2334
}

2335
/* @gfn should be write-protected at the call site */
2336 2337
static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
			   struct list_head *invalid_list)
2338 2339
{
	struct kvm_mmu_page *s;
2340
	bool ret = false;
2341

2342
	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2343
		if (!s->unsync)
2344 2345 2346
			continue;

		WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2347
		ret |= kvm_sync_page(vcpu, s, invalid_list);
2348 2349
	}

2350
	return ret;
2351 2352
}

2353
struct mmu_page_path {
2354 2355
	struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
	unsigned int idx[PT64_ROOT_MAX_LEVEL];
2356 2357
};

2358
#define for_each_sp(pvec, sp, parents, i)			\
P
Paolo Bonzini 已提交
2359
		for (i = mmu_pages_first(&pvec, &parents);	\
2360 2361 2362
			i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});	\
			i = mmu_pages_next(&pvec, &parents, i))

2363 2364 2365
static int mmu_pages_next(struct kvm_mmu_pages *pvec,
			  struct mmu_page_path *parents,
			  int i)
2366 2367 2368 2369 2370
{
	int n;

	for (n = i+1; n < pvec->nr; n++) {
		struct kvm_mmu_page *sp = pvec->page[n].sp;
P
Paolo Bonzini 已提交
2371 2372
		unsigned idx = pvec->page[n].idx;
		int level = sp->role.level;
2373

P
Paolo Bonzini 已提交
2374 2375 2376
		parents->idx[level-1] = idx;
		if (level == PT_PAGE_TABLE_LEVEL)
			break;
2377

P
Paolo Bonzini 已提交
2378
		parents->parent[level-2] = sp;
2379 2380 2381 2382 2383
	}

	return n;
}

P
Paolo Bonzini 已提交
2384 2385 2386 2387 2388 2389 2390 2391 2392
static int mmu_pages_first(struct kvm_mmu_pages *pvec,
			   struct mmu_page_path *parents)
{
	struct kvm_mmu_page *sp;
	int level;

	if (pvec->nr == 0)
		return 0;

2393 2394
	WARN_ON(pvec->page[0].idx != INVALID_INDEX);

P
Paolo Bonzini 已提交
2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407
	sp = pvec->page[0].sp;
	level = sp->role.level;
	WARN_ON(level == PT_PAGE_TABLE_LEVEL);

	parents->parent[level-2] = sp;

	/* Also set up a sentinel.  Further entries in pvec are all
	 * children of sp, so this element is never overwritten.
	 */
	parents->parent[level-1] = NULL;
	return mmu_pages_next(pvec, parents, 0);
}

2408
static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2409
{
2410 2411 2412 2413 2414 2415 2416 2417 2418
	struct kvm_mmu_page *sp;
	unsigned int level = 0;

	do {
		unsigned int idx = parents->idx[level];
		sp = parents->parent[level];
		if (!sp)
			return;

2419
		WARN_ON(idx == INVALID_INDEX);
2420
		clear_unsync_child_bit(sp, idx);
2421
		level++;
P
Paolo Bonzini 已提交
2422
	} while (!sp->unsync_children);
2423
}
2424

2425 2426 2427 2428 2429 2430 2431
static void mmu_sync_children(struct kvm_vcpu *vcpu,
			      struct kvm_mmu_page *parent)
{
	int i;
	struct kvm_mmu_page *sp;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
2432
	LIST_HEAD(invalid_list);
2433
	bool flush = false;
2434 2435

	while (mmu_unsync_walk(parent, &pages)) {
2436
		bool protected = false;
2437 2438

		for_each_sp(pages, sp, parents, i)
2439
			protected |= rmap_write_protect(vcpu, sp->gfn);
2440

2441
		if (protected) {
2442
			kvm_flush_remote_tlbs(vcpu->kvm);
2443 2444
			flush = false;
		}
2445

2446
		for_each_sp(pages, sp, parents, i) {
2447
			flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2448 2449
			mmu_pages_clear_parents(&parents);
		}
2450 2451 2452 2453 2454
		if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
			kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
			cond_resched_lock(&vcpu->kvm->mmu_lock);
			flush = false;
		}
2455
	}
2456 2457

	kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2458 2459
}

2460 2461
static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
{
2462
	atomic_set(&sp->write_flooding_count,  0);
2463 2464 2465 2466 2467 2468 2469 2470 2471
}

static void clear_sp_write_flooding_count(u64 *spte)
{
	struct kvm_mmu_page *sp =  page_header(__pa(spte));

	__clear_sp_write_flooding_count(sp);
}

2472 2473 2474 2475
static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
					     gfn_t gfn,
					     gva_t gaddr,
					     unsigned level,
2476
					     int direct,
2477
					     unsigned int access)
2478 2479 2480
{
	union kvm_mmu_page_role role;
	unsigned quadrant;
2481 2482
	struct kvm_mmu_page *sp;
	bool need_sync = false;
2483
	bool flush = false;
2484
	int collisions = 0;
2485
	LIST_HEAD(invalid_list);
2486

2487
	role = vcpu->arch.mmu->mmu_role.base;
2488
	role.level = level;
2489
	role.direct = direct;
2490
	if (role.direct)
2491
		role.gpte_is_8_bytes = true;
2492
	role.access = access;
2493 2494
	if (!vcpu->arch.mmu->direct_map
	    && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
2495 2496 2497 2498
		quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
		quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
		role.quadrant = quadrant;
	}
2499 2500 2501 2502 2503 2504
	for_each_valid_sp(vcpu->kvm, sp, gfn) {
		if (sp->gfn != gfn) {
			collisions++;
			continue;
		}

2505 2506
		if (!need_sync && sp->unsync)
			need_sync = true;
2507

2508 2509
		if (sp->role.word != role.word)
			continue;
2510

2511 2512 2513 2514 2515 2516 2517 2518
		if (sp->unsync) {
			/* The page is good, but __kvm_sync_page might still end
			 * up zapping it.  If so, break in order to rebuild it.
			 */
			if (!__kvm_sync_page(vcpu, sp, &invalid_list))
				break;

			WARN_ON(!list_empty(&invalid_list));
2519
			kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2520
		}
2521

2522
		if (sp->unsync_children)
2523
			kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2524

2525
		__clear_sp_write_flooding_count(sp);
2526
		trace_kvm_mmu_get_page(sp, false);
2527
		goto out;
2528
	}
2529

A
Avi Kivity 已提交
2530
	++vcpu->kvm->stat.mmu_cache_miss;
2531 2532 2533

	sp = kvm_mmu_alloc_page(vcpu, direct);

2534 2535
	sp->gfn = gfn;
	sp->role = role;
2536 2537
	hlist_add_head(&sp->hash_link,
		&vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
2538
	if (!direct) {
2539 2540 2541 2542 2543 2544 2545 2546
		/*
		 * we should do write protection before syncing pages
		 * otherwise the content of the synced shadow page may
		 * be inconsistent with guest page table.
		 */
		account_shadowed(vcpu->kvm, sp);
		if (level == PT_PAGE_TABLE_LEVEL &&
		      rmap_write_protect(vcpu, gfn))
2547
			kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
2548 2549

		if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2550
			flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
2551
	}
2552
	clear_page(sp->spt);
A
Avi Kivity 已提交
2553
	trace_kvm_mmu_get_page(sp, true);
2554 2555

	kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2556 2557 2558
out:
	if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
		vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2559
	return sp;
2560 2561
}

2562 2563 2564
static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
					struct kvm_vcpu *vcpu, hpa_t root,
					u64 addr)
2565 2566
{
	iterator->addr = addr;
2567
	iterator->shadow_addr = root;
2568
	iterator->level = vcpu->arch.mmu->shadow_root_level;
2569

2570
	if (iterator->level == PT64_ROOT_4LEVEL &&
2571 2572
	    vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
	    !vcpu->arch.mmu->direct_map)
2573 2574
		--iterator->level;

2575
	if (iterator->level == PT32E_ROOT_LEVEL) {
2576 2577 2578 2579
		/*
		 * prev_root is currently only used for 64-bit hosts. So only
		 * the active root_hpa is valid here.
		 */
2580
		BUG_ON(root != vcpu->arch.mmu->root_hpa);
2581

2582
		iterator->shadow_addr
2583
			= vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2584 2585 2586 2587 2588 2589 2590
		iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
		--iterator->level;
		if (!iterator->shadow_addr)
			iterator->level = 0;
	}
}

2591 2592 2593
static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
			     struct kvm_vcpu *vcpu, u64 addr)
{
2594
	shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
2595 2596 2597
				    addr);
}

2598 2599 2600 2601
static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
{
	if (iterator->level < PT_PAGE_TABLE_LEVEL)
		return false;
2602

2603 2604 2605 2606 2607
	iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
	iterator->sptep	= ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
	return true;
}

2608 2609
static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
			       u64 spte)
2610
{
2611
	if (is_last_spte(spte, iterator->level)) {
2612 2613 2614 2615
		iterator->level = 0;
		return;
	}

2616
	iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2617 2618 2619
	--iterator->level;
}

2620 2621
static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
{
2622
	__shadow_walk_next(iterator, *iterator->sptep);
2623 2624
}

2625 2626
static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
			     struct kvm_mmu_page *sp)
2627 2628 2629
{
	u64 spte;

2630
	BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2631

2632
	spte = __pa(sp->spt) | shadow_present_mask | PT_WRITABLE_MASK |
2633
	       shadow_user_mask | shadow_x_mask | shadow_me_mask;
2634 2635

	if (sp_ad_disabled(sp))
2636
		spte |= SPTE_AD_DISABLED_MASK;
2637 2638
	else
		spte |= shadow_accessed_mask;
X
Xiao Guangrong 已提交
2639

2640
	mmu_spte_set(sptep, spte);
2641 2642 2643 2644 2645

	mmu_page_add_parent_pte(vcpu, sp, sptep);

	if (sp->unsync_children || sp->unsync)
		mark_unsync(sptep);
2646 2647
}

2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664
static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
				   unsigned direct_access)
{
	if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
		struct kvm_mmu_page *child;

		/*
		 * For the direct sp, if the guest pte's dirty bit
		 * changed form clean to dirty, it will corrupt the
		 * sp's access: allow writable in the read-only sp,
		 * so we should update the spte at this point to get
		 * a new sp with the correct access.
		 */
		child = page_header(*sptep & PT64_BASE_ADDR_MASK);
		if (child->role.access == direct_access)
			return;

2665
		drop_parent_pte(child, sptep);
2666
		kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
2667 2668 2669
	}
}

X
Xiao Guangrong 已提交
2670
static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2671 2672 2673 2674 2675 2676 2677
			     u64 *spte)
{
	u64 pte;
	struct kvm_mmu_page *child;

	pte = *spte;
	if (is_shadow_present_pte(pte)) {
X
Xiao Guangrong 已提交
2678
		if (is_last_spte(pte, sp->role.level)) {
2679
			drop_spte(kvm, spte);
X
Xiao Guangrong 已提交
2680 2681 2682
			if (is_large_pte(pte))
				--kvm->stat.lpages;
		} else {
2683
			child = page_header(pte & PT64_BASE_ADDR_MASK);
2684
			drop_parent_pte(child, spte);
2685
		}
X
Xiao Guangrong 已提交
2686 2687 2688 2689
		return true;
	}

	if (is_mmio_spte(pte))
2690
		mmu_spte_clear_no_track(spte);
2691

X
Xiao Guangrong 已提交
2692
	return false;
2693 2694
}

2695
static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2696
					 struct kvm_mmu_page *sp)
2697
{
2698 2699
	unsigned i;

2700 2701
	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
		mmu_page_zap_pte(kvm, sp, sp->spt + i);
2702 2703
}

2704
static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2705
{
2706 2707
	u64 *sptep;
	struct rmap_iterator iter;
2708

2709
	while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2710
		drop_parent_pte(sp, sptep);
2711 2712
}

2713
static int mmu_zap_unsync_children(struct kvm *kvm,
2714 2715
				   struct kvm_mmu_page *parent,
				   struct list_head *invalid_list)
2716
{
2717 2718 2719
	int i, zapped = 0;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
2720

2721
	if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2722
		return 0;
2723 2724 2725 2726 2727

	while (mmu_unsync_walk(parent, &pages)) {
		struct kvm_mmu_page *sp;

		for_each_sp(pages, sp, parents, i) {
2728
			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2729
			mmu_pages_clear_parents(&parents);
2730
			zapped++;
2731 2732 2733 2734
		}
	}

	return zapped;
2735 2736
}

2737 2738 2739 2740
static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
				       struct kvm_mmu_page *sp,
				       struct list_head *invalid_list,
				       int *nr_zapped)
2741
{
2742
	bool list_unstable;
A
Avi Kivity 已提交
2743

2744
	trace_kvm_mmu_prepare_zap_page(sp);
2745
	++kvm->stat.mmu_shadow_zapped;
2746
	*nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2747
	kvm_mmu_page_unlink_children(kvm, sp);
2748
	kvm_mmu_unlink_parents(kvm, sp);
2749

2750 2751 2752
	/* Zapping children means active_mmu_pages has become unstable. */
	list_unstable = *nr_zapped;

2753
	if (!sp->role.invalid && !sp->role.direct)
2754
		unaccount_shadowed(kvm, sp);
2755

2756 2757
	if (sp->unsync)
		kvm_unlink_unsync_page(kvm, sp);
2758
	if (!sp->root_count) {
2759
		/* Count self */
2760
		(*nr_zapped)++;
2761
		list_move(&sp->link, invalid_list);
2762
		kvm_mod_used_mmu_pages(kvm, -1);
2763
	} else {
A
Avi Kivity 已提交
2764
		list_move(&sp->link, &kvm->arch.active_mmu_pages);
2765

2766 2767 2768 2769 2770 2771
		/*
		 * Obsolete pages cannot be used on any vCPUs, see the comment
		 * in kvm_mmu_zap_all_fast().  Note, is_obsolete_sp() also
		 * treats invalid shadow pages as being obsolete.
		 */
		if (!is_obsolete_sp(kvm, sp))
2772
			kvm_reload_remote_mmus(kvm);
2773
	}
2774

P
Paolo Bonzini 已提交
2775 2776 2777
	if (sp->lpage_disallowed)
		unaccount_huge_nx_page(kvm, sp);

2778
	sp->role.invalid = 1;
2779 2780 2781 2782 2783 2784 2785 2786 2787 2788
	return list_unstable;
}

static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				     struct list_head *invalid_list)
{
	int nr_zapped;

	__kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
	return nr_zapped;
2789 2790
}

2791 2792 2793
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list)
{
2794
	struct kvm_mmu_page *sp, *nsp;
2795 2796 2797 2798

	if (list_empty(invalid_list))
		return;

2799
	/*
2800 2801 2802 2803 2804 2805 2806
	 * We need to make sure everyone sees our modifications to
	 * the page tables and see changes to vcpu->mode here. The barrier
	 * in the kvm_flush_remote_tlbs() achieves this. This pairs
	 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
	 *
	 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
	 * guest mode and/or lockless shadow page table walks.
2807 2808
	 */
	kvm_flush_remote_tlbs(kvm);
2809

2810
	list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2811
		WARN_ON(!sp->role.invalid || sp->root_count);
2812
		kvm_mmu_free_page(sp);
2813
	}
2814 2815
}

2816 2817 2818 2819 2820 2821 2822 2823
static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
					struct list_head *invalid_list)
{
	struct kvm_mmu_page *sp;

	if (list_empty(&kvm->arch.active_mmu_pages))
		return false;

G
Geliang Tang 已提交
2824 2825
	sp = list_last_entry(&kvm->arch.active_mmu_pages,
			     struct kvm_mmu_page, link);
2826
	return kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2827 2828
}

2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848
static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
{
	LIST_HEAD(invalid_list);

	if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
		return 0;

	while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
		if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
			break;

		++vcpu->kvm->stat.mmu_recycled;
	}
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);

	if (!kvm_mmu_available_pages(vcpu->kvm))
		return -ENOSPC;
	return 0;
}

2849 2850
/*
 * Changing the number of mmu pages allocated to the vm
2851
 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2852
 */
2853
void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2854
{
2855
	LIST_HEAD(invalid_list);
2856

2857 2858
	spin_lock(&kvm->mmu_lock);

2859
	if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2860 2861 2862 2863
		/* Need to free some mmu pages to achieve the goal. */
		while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
			if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
				break;
2864

2865
		kvm_mmu_commit_zap_page(kvm, &invalid_list);
2866
		goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2867 2868
	}

2869
	kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2870 2871

	spin_unlock(&kvm->mmu_lock);
2872 2873
}

2874
int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2875
{
2876
	struct kvm_mmu_page *sp;
2877
	LIST_HEAD(invalid_list);
2878 2879
	int r;

2880
	pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2881
	r = 0;
2882
	spin_lock(&kvm->mmu_lock);
2883
	for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2884
		pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2885 2886
			 sp->role.word);
		r = 1;
2887
		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2888
	}
2889
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2890 2891
	spin_unlock(&kvm->mmu_lock);

2892
	return r;
2893
}
2894
EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2895

2896
static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2897 2898 2899 2900 2901 2902 2903 2904
{
	trace_kvm_mmu_unsync_page(sp);
	++vcpu->kvm->stat.mmu_unsync;
	sp->unsync = 1;

	kvm_mmu_mark_parents_unsync(sp);
}

2905 2906
static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
				   bool can_unsync)
2907
{
2908
	struct kvm_mmu_page *sp;
2909

2910 2911
	if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
		return true;
2912

2913
	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2914
		if (!can_unsync)
2915
			return true;
2916

2917 2918
		if (sp->unsync)
			continue;
2919

2920 2921
		WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
		kvm_unsync_page(vcpu, sp);
2922
	}
2923

2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962
	/*
	 * We need to ensure that the marking of unsync pages is visible
	 * before the SPTE is updated to allow writes because
	 * kvm_mmu_sync_roots() checks the unsync flags without holding
	 * the MMU lock and so can race with this. If the SPTE was updated
	 * before the page had been marked as unsync-ed, something like the
	 * following could happen:
	 *
	 * CPU 1                    CPU 2
	 * ---------------------------------------------------------------------
	 * 1.2 Host updates SPTE
	 *     to be writable
	 *                      2.1 Guest writes a GPTE for GVA X.
	 *                          (GPTE being in the guest page table shadowed
	 *                           by the SP from CPU 1.)
	 *                          This reads SPTE during the page table walk.
	 *                          Since SPTE.W is read as 1, there is no
	 *                          fault.
	 *
	 *                      2.2 Guest issues TLB flush.
	 *                          That causes a VM Exit.
	 *
	 *                      2.3 kvm_mmu_sync_pages() reads sp->unsync.
	 *                          Since it is false, so it just returns.
	 *
	 *                      2.4 Guest accesses GVA X.
	 *                          Since the mapping in the SP was not updated,
	 *                          so the old mapping for GVA X incorrectly
	 *                          gets used.
	 * 1.1 Host marks SP
	 *     as unsync
	 *     (sp->unsync = true)
	 *
	 * The write barrier below ensures that 1.1 happens before 1.2 and thus
	 * the situation in 2.4 does not arise. The implicit barrier in 2.2
	 * pairs with this write barrier.
	 */
	smp_wmb();

2963
	return false;
2964 2965
}

D
Dan Williams 已提交
2966
static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
2967 2968
{
	if (pfn_valid(pfn))
2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980
		return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)) &&
			/*
			 * Some reserved pages, such as those from NVDIMM
			 * DAX devices, are not for MMIO, and can be mapped
			 * with cached memory type for better performance.
			 * However, the above check misconceives those pages
			 * as MMIO, and results in KVM mapping them with UC
			 * memory type, which would hurt the performance.
			 * Therefore, we check the host memory type in addition
			 * and only treat UC/UC-/WC pages as MMIO.
			 */
			(!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn));
2981

2982 2983 2984
	return !e820__mapped_raw_any(pfn_to_hpa(pfn),
				     pfn_to_hpa(pfn + 1) - 1,
				     E820_TYPE_RAM);
2985 2986
}

2987 2988 2989 2990
/* Bits which may be returned by set_spte() */
#define SET_SPTE_WRITE_PROTECTED_PT	BIT(0)
#define SET_SPTE_NEED_REMOTE_TLB_FLUSH	BIT(1)

A
Avi Kivity 已提交
2991
static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2992
		    unsigned int pte_access, int level,
D
Dan Williams 已提交
2993
		    gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2994
		    bool can_unsync, bool host_writable)
2995
{
2996
	u64 spte = 0;
M
Marcelo Tosatti 已提交
2997
	int ret = 0;
2998
	struct kvm_mmu_page *sp;
S
Sheng Yang 已提交
2999

3000
	if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
3001 3002
		return 0;

3003 3004
	sp = page_header(__pa(sptep));
	if (sp_ad_disabled(sp))
3005
		spte |= SPTE_AD_DISABLED_MASK;
3006 3007
	else if (kvm_vcpu_ad_need_write_protect(vcpu))
		spte |= SPTE_AD_WRPROT_ONLY_MASK;
3008

3009 3010 3011 3012 3013 3014
	/*
	 * For the EPT case, shadow_present_mask is 0 if hardware
	 * supports exec-only page table entries.  In that case,
	 * ACC_USER_MASK and shadow_user_mask are used to represent
	 * read access.  See FNAME(gpte_access) in paging_tmpl.h.
	 */
3015
	spte |= shadow_present_mask;
3016
	if (!speculative)
3017
		spte |= spte_shadow_accessed_mask(spte);
3018

P
Paolo Bonzini 已提交
3019 3020 3021 3022 3023
	if (level > PT_PAGE_TABLE_LEVEL && (pte_access & ACC_EXEC_MASK) &&
	    is_nx_huge_page_enabled()) {
		pte_access &= ~ACC_EXEC_MASK;
	}

S
Sheng Yang 已提交
3024 3025 3026 3027
	if (pte_access & ACC_EXEC_MASK)
		spte |= shadow_x_mask;
	else
		spte |= shadow_nx_mask;
3028

3029
	if (pte_access & ACC_USER_MASK)
S
Sheng Yang 已提交
3030
		spte |= shadow_user_mask;
3031

3032
	if (level > PT_PAGE_TABLE_LEVEL)
M
Marcelo Tosatti 已提交
3033
		spte |= PT_PAGE_SIZE_MASK;
3034
	if (tdp_enabled)
3035
		spte |= kvm_x86_ops.get_mt_mask(vcpu, gfn,
3036
			kvm_is_mmio_pfn(pfn));
3037

3038
	if (host_writable)
3039
		spte |= SPTE_HOST_WRITEABLE;
3040 3041
	else
		pte_access &= ~ACC_WRITE_MASK;
3042

3043 3044 3045
	if (!kvm_is_mmio_pfn(pfn))
		spte |= shadow_me_mask;

3046
	spte |= (u64)pfn << PAGE_SHIFT;
3047

3048
	if (pte_access & ACC_WRITE_MASK) {
3049
		spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
3050

3051 3052 3053 3054 3055 3056
		/*
		 * Optimization: for pte sync, if spte was writable the hash
		 * lookup is unnecessary (and expensive). Write protection
		 * is responsibility of mmu_get_page / kvm_sync_page.
		 * Same reasoning can be applied to dirty page accounting.
		 */
3057
		if (!can_unsync && is_writable_pte(*sptep))
3058 3059
			goto set_pte;

3060
		if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
3061
			pgprintk("%s: found shadow page for %llx, marking ro\n",
3062
				 __func__, gfn);
3063
			ret |= SET_SPTE_WRITE_PROTECTED_PT;
3064
			pte_access &= ~ACC_WRITE_MASK;
3065
			spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
3066 3067 3068
		}
	}

3069
	if (pte_access & ACC_WRITE_MASK) {
3070
		kvm_vcpu_mark_page_dirty(vcpu, gfn);
3071
		spte |= spte_shadow_dirty_mask(spte);
3072
	}
3073

3074 3075 3076
	if (speculative)
		spte = mark_spte_for_access_track(spte);

3077
set_pte:
3078
	if (mmu_spte_update(sptep, spte))
3079
		ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
M
Marcelo Tosatti 已提交
3080 3081 3082
	return ret;
}

3083 3084 3085 3086
static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
			unsigned int pte_access, int write_fault, int level,
			gfn_t gfn, kvm_pfn_t pfn, bool speculative,
			bool host_writable)
M
Marcelo Tosatti 已提交
3087 3088
{
	int was_rmapped = 0;
3089
	int rmap_count;
3090
	int set_spte_ret;
3091
	int ret = RET_PF_RETRY;
3092
	bool flush = false;
M
Marcelo Tosatti 已提交
3093

3094 3095
	pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
		 *sptep, write_fault, gfn);
M
Marcelo Tosatti 已提交
3096

3097
	if (is_shadow_present_pte(*sptep)) {
M
Marcelo Tosatti 已提交
3098 3099 3100 3101
		/*
		 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
		 * the parent of the now unreachable PTE.
		 */
3102 3103
		if (level > PT_PAGE_TABLE_LEVEL &&
		    !is_large_pte(*sptep)) {
M
Marcelo Tosatti 已提交
3104
			struct kvm_mmu_page *child;
A
Avi Kivity 已提交
3105
			u64 pte = *sptep;
M
Marcelo Tosatti 已提交
3106 3107

			child = page_header(pte & PT64_BASE_ADDR_MASK);
3108
			drop_parent_pte(child, sptep);
3109
			flush = true;
A
Avi Kivity 已提交
3110
		} else if (pfn != spte_to_pfn(*sptep)) {
3111
			pgprintk("hfn old %llx new %llx\n",
A
Avi Kivity 已提交
3112
				 spte_to_pfn(*sptep), pfn);
3113
			drop_spte(vcpu->kvm, sptep);
3114
			flush = true;
3115 3116
		} else
			was_rmapped = 1;
M
Marcelo Tosatti 已提交
3117
	}
3118

3119 3120 3121
	set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
				speculative, true, host_writable);
	if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
M
Marcelo Tosatti 已提交
3122
		if (write_fault)
3123
			ret = RET_PF_EMULATE;
3124
		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
3125
	}
3126

3127
	if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
3128 3129
		kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
				KVM_PAGES_PER_HPAGE(level));
M
Marcelo Tosatti 已提交
3130

3131
	if (unlikely(is_mmio_spte(*sptep)))
3132
		ret = RET_PF_EMULATE;
3133

A
Avi Kivity 已提交
3134
	pgprintk("%s: setting spte %llx\n", __func__, *sptep);
3135
	trace_kvm_mmu_set_spte(level, gfn, sptep);
A
Avi Kivity 已提交
3136
	if (!was_rmapped && is_large_pte(*sptep))
M
Marcelo Tosatti 已提交
3137 3138
		++vcpu->kvm->stat.lpages;

3139 3140 3141 3142 3143 3144
	if (is_shadow_present_pte(*sptep)) {
		if (!was_rmapped) {
			rmap_count = rmap_add(vcpu, sptep, gfn);
			if (rmap_count > RMAP_RECYCLE_THRESHOLD)
				rmap_recycle(vcpu, sptep, gfn);
		}
3145
	}
3146

3147
	return ret;
3148 3149
}

D
Dan Williams 已提交
3150
static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
3151 3152 3153 3154
				     bool no_dirty_log)
{
	struct kvm_memory_slot *slot;

3155
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
3156
	if (!slot)
3157
		return KVM_PFN_ERR_FAULT;
3158

3159
	return gfn_to_pfn_memslot_atomic(slot, gfn);
3160 3161 3162 3163 3164 3165 3166
}

static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
				    struct kvm_mmu_page *sp,
				    u64 *start, u64 *end)
{
	struct page *pages[PTE_PREFETCH_NUM];
3167
	struct kvm_memory_slot *slot;
3168
	unsigned int access = sp->role.access;
3169 3170 3171 3172
	int i, ret;
	gfn_t gfn;

	gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
3173 3174
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
	if (!slot)
3175 3176
		return -1;

3177
	ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
3178 3179 3180
	if (ret <= 0)
		return -1;

3181
	for (i = 0; i < ret; i++, gfn++, start++) {
3182 3183
		mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
			     page_to_pfn(pages[i]), true, true);
3184 3185
		put_page(pages[i]);
	}
3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201

	return 0;
}

static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
				  struct kvm_mmu_page *sp, u64 *sptep)
{
	u64 *spte, *start = NULL;
	int i;

	WARN_ON(!sp->role.direct);

	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
	spte = sp->spt + i;

	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
3202
		if (is_shadow_present_pte(*spte) || spte == sptep) {
3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216
			if (!start)
				continue;
			if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
				break;
			start = NULL;
		} else if (!start)
			start = spte;
	}
}

static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
{
	struct kvm_mmu_page *sp;

3217 3218
	sp = page_header(__pa(sptep));

3219
	/*
3220 3221 3222
	 * Without accessed bits, there's no way to distinguish between
	 * actually accessed translations and prefetched, so disable pte
	 * prefetch if accessed bits aren't available.
3223
	 */
3224
	if (sp_ad_disabled(sp))
3225 3226 3227 3228 3229 3230 3231 3232
		return;

	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
		return;

	__direct_pte_prefetch(vcpu, sp, sptep);
}

3233
static int host_pfn_mapping_level(struct kvm_vcpu *vcpu, gfn_t gfn,
3234
				  kvm_pfn_t pfn, struct kvm_memory_slot *slot)
3235 3236 3237 3238 3239 3240 3241 3242 3243
{
	unsigned long hva;
	pte_t *pte;
	int level;

	BUILD_BUG_ON(PT_PAGE_TABLE_LEVEL != (int)PG_LEVEL_4K ||
		     PT_DIRECTORY_LEVEL != (int)PG_LEVEL_2M ||
		     PT_PDPE_LEVEL != (int)PG_LEVEL_1G);

3244
	if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn))
3245 3246
		return PT_PAGE_TABLE_LEVEL;

3247 3248 3249 3250 3251 3252 3253 3254
	/*
	 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
	 * is not solely for performance, it's also necessary to avoid the
	 * "writable" check in __gfn_to_hva_many(), which will always fail on
	 * read-only memslots due to gfn_to_hva() assuming writes.  Earlier
	 * page fault steps have already verified the guest isn't writing a
	 * read-only memslot.
	 */
3255 3256 3257 3258 3259 3260 3261 3262 3263
	hva = __gfn_to_hva_memslot(slot, gfn);

	pte = lookup_address_in_mm(vcpu->kvm->mm, hva, &level);
	if (unlikely(!pte))
		return PT_PAGE_TABLE_LEVEL;

	return level;
}

3264 3265
static int kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, gfn_t gfn,
				   int max_level, kvm_pfn_t *pfnp)
3266
{
3267
	struct kvm_memory_slot *slot;
3268
	struct kvm_lpage_info *linfo;
3269
	kvm_pfn_t pfn = *pfnp;
3270
	kvm_pfn_t mask;
3271
	int level;
3272

3273
	if (unlikely(max_level == PT_PAGE_TABLE_LEVEL))
3274
		return PT_PAGE_TABLE_LEVEL;
3275

3276
	if (is_error_noslot_pfn(pfn) || kvm_is_reserved_pfn(pfn))
3277
		return PT_PAGE_TABLE_LEVEL;
3278

3279 3280 3281 3282
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, true);
	if (!slot)
		return PT_PAGE_TABLE_LEVEL;

3283
	max_level = min(max_level, max_page_level);
3284
	for ( ; max_level > PT_PAGE_TABLE_LEVEL; max_level--) {
3285 3286
		linfo = lpage_info_slot(gfn, slot, max_level);
		if (!linfo->disallow_lpage)
3287 3288 3289 3290 3291 3292 3293
			break;
	}

	if (max_level == PT_PAGE_TABLE_LEVEL)
		return PT_PAGE_TABLE_LEVEL;

	level = host_pfn_mapping_level(vcpu, gfn, pfn, slot);
3294
	if (level == PT_PAGE_TABLE_LEVEL)
3295
		return level;
3296

3297
	level = min(level, max_level);
3298 3299

	/*
3300 3301
	 * mmu_notifier_retry() was successful and mmu_lock is held, so
	 * the pmd can't be split from under us.
3302
	 */
3303 3304 3305
	mask = KVM_PAGES_PER_HPAGE(level) - 1;
	VM_BUG_ON((gfn & mask) != (pfn & mask));
	*pfnp = pfn & ~mask;
3306 3307

	return level;
3308 3309
}

P
Paolo Bonzini 已提交
3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332
static void disallowed_hugepage_adjust(struct kvm_shadow_walk_iterator it,
				       gfn_t gfn, kvm_pfn_t *pfnp, int *levelp)
{
	int level = *levelp;
	u64 spte = *it.sptep;

	if (it.level == level && level > PT_PAGE_TABLE_LEVEL &&
	    is_nx_huge_page_enabled() &&
	    is_shadow_present_pte(spte) &&
	    !is_large_pte(spte)) {
		/*
		 * A small SPTE exists for this pfn, but FNAME(fetch)
		 * and __direct_map would like to create a large PTE
		 * instead: just force them to go down another level,
		 * patching back for them into pfn the next 9 bits of
		 * the address.
		 */
		u64 page_mask = KVM_PAGES_PER_HPAGE(level) - KVM_PAGES_PER_HPAGE(level - 1);
		*pfnp |= gfn & page_mask;
		(*levelp)--;
	}
}

3333
static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, int write,
3334 3335
			int map_writable, int max_level, kvm_pfn_t pfn,
			bool prefault, bool account_disallowed_nx_lpage)
3336
{
3337
	struct kvm_shadow_walk_iterator it;
3338
	struct kvm_mmu_page *sp;
3339
	int level, ret;
3340 3341
	gfn_t gfn = gpa >> PAGE_SHIFT;
	gfn_t base_gfn = gfn;
A
Avi Kivity 已提交
3342

3343
	if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
3344
		return RET_PF_RETRY;
3345

3346
	level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn);
3347

3348
	trace_kvm_mmu_spte_requested(gpa, level, pfn);
3349
	for_each_shadow_entry(vcpu, gpa, it) {
P
Paolo Bonzini 已提交
3350 3351 3352 3353 3354 3355
		/*
		 * We cannot overwrite existing page tables with an NX
		 * large page, as the leaf could be executable.
		 */
		disallowed_hugepage_adjust(it, gfn, &pfn, &level);

3356 3357
		base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
		if (it.level == level)
3358
			break;
A
Avi Kivity 已提交
3359

3360 3361 3362 3363
		drop_large_spte(vcpu, it.sptep);
		if (!is_shadow_present_pte(*it.sptep)) {
			sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
					      it.level - 1, true, ACC_ALL);
3364

3365
			link_shadow_page(vcpu, it.sptep, sp);
3366
			if (account_disallowed_nx_lpage)
P
Paolo Bonzini 已提交
3367
				account_huge_nx_page(vcpu->kvm, sp);
3368 3369
		}
	}
3370 3371 3372 3373 3374 3375 3376

	ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL,
			   write, level, base_gfn, pfn, prefault,
			   map_writable);
	direct_pte_prefetch(vcpu, it.sptep);
	++vcpu->stat.pf_fixed;
	return ret;
A
Avi Kivity 已提交
3377 3378
}

H
Huang Ying 已提交
3379
static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
3380
{
3381
	send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
3382 3383
}

D
Dan Williams 已提交
3384
static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
3385
{
X
Xiao Guangrong 已提交
3386 3387 3388 3389 3390 3391
	/*
	 * Do not cache the mmio info caused by writing the readonly gfn
	 * into the spte otherwise read access on readonly gfn also can
	 * caused mmio page fault and treat it as mmio access.
	 */
	if (pfn == KVM_PFN_ERR_RO_FAULT)
3392
		return RET_PF_EMULATE;
X
Xiao Guangrong 已提交
3393

3394
	if (pfn == KVM_PFN_ERR_HWPOISON) {
3395
		kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
3396
		return RET_PF_RETRY;
3397
	}
3398

3399
	return -EFAULT;
3400 3401
}

3402
static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
3403 3404
				kvm_pfn_t pfn, unsigned int access,
				int *ret_val)
3405 3406
{
	/* The pfn is invalid, report the error! */
3407
	if (unlikely(is_error_pfn(pfn))) {
3408
		*ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
3409
		return true;
3410 3411
	}

3412
	if (unlikely(is_noslot_pfn(pfn)))
3413 3414
		vcpu_cache_mmio_info(vcpu, gva, gfn,
				     access & shadow_mmio_access_mask);
3415

3416
	return false;
3417 3418
}

3419
static bool page_fault_can_be_fast(u32 error_code)
3420
{
3421 3422 3423 3424 3425 3426 3427
	/*
	 * Do not fix the mmio spte with invalid generation number which
	 * need to be updated by slow page fault path.
	 */
	if (unlikely(error_code & PFERR_RSVD_MASK))
		return false;

3428 3429 3430 3431 3432
	/* See if the page fault is due to an NX violation */
	if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
		      == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
		return false;

3433
	/*
3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444
	 * #PF can be fast if:
	 * 1. The shadow page table entry is not present, which could mean that
	 *    the fault is potentially caused by access tracking (if enabled).
	 * 2. The shadow page table entry is present and the fault
	 *    is caused by write-protect, that means we just need change the W
	 *    bit of the spte which can be done out of mmu-lock.
	 *
	 * However, if access tracking is disabled we know that a non-present
	 * page must be a genuine page fault where we have to create a new SPTE.
	 * So, if access tracking is disabled, we return true only for write
	 * accesses to a present page.
3445 3446
	 */

3447 3448 3449
	return shadow_acc_track_mask != 0 ||
	       ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
		== (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
3450 3451
}

3452 3453 3454 3455
/*
 * Returns true if the SPTE was fixed successfully. Otherwise,
 * someone else modified the SPTE from its original value.
 */
3456
static bool
3457
fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
3458
			u64 *sptep, u64 old_spte, u64 new_spte)
3459 3460 3461 3462 3463
{
	gfn_t gfn;

	WARN_ON(!sp->role.direct);

3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475
	/*
	 * Theoretically we could also set dirty bit (and flush TLB) here in
	 * order to eliminate unnecessary PML logging. See comments in
	 * set_spte. But fast_page_fault is very unlikely to happen with PML
	 * enabled, so we do not do this. This might result in the same GPA
	 * to be logged in PML buffer again when the write really happens, and
	 * eventually to be called by mark_page_dirty twice. But it's also no
	 * harm. This also avoids the TLB flush needed after setting dirty bit
	 * so non-PML cases won't be impacted.
	 *
	 * Compare with set_spte where instead shadow_dirty_mask is set.
	 */
3476
	if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3477 3478
		return false;

3479
	if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
3480 3481 3482 3483 3484 3485 3486
		/*
		 * The gfn of direct spte is stable since it is
		 * calculated by sp->gfn.
		 */
		gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
		kvm_vcpu_mark_page_dirty(vcpu, gfn);
	}
3487 3488 3489 3490

	return true;
}

3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502
static bool is_access_allowed(u32 fault_err_code, u64 spte)
{
	if (fault_err_code & PFERR_FETCH_MASK)
		return is_executable_pte(spte);

	if (fault_err_code & PFERR_WRITE_MASK)
		return is_writable_pte(spte);

	/* Fault was on Read access */
	return spte & PT_PRESENT_MASK;
}

3503 3504 3505 3506 3507
/*
 * Return value:
 * - true: let the vcpu to access on the same address again.
 * - false: let the real page fault path to fix it.
 */
3508
static bool fast_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3509 3510 3511
			    u32 error_code)
{
	struct kvm_shadow_walk_iterator iterator;
3512
	struct kvm_mmu_page *sp;
3513
	bool fault_handled = false;
3514
	u64 spte = 0ull;
3515
	uint retry_count = 0;
3516

3517
	if (!page_fault_can_be_fast(error_code))
3518 3519 3520 3521
		return false;

	walk_shadow_page_lockless_begin(vcpu);

3522
	do {
3523
		u64 new_spte;
3524

3525
		for_each_shadow_entry_lockless(vcpu, cr2_or_gpa, iterator, spte)
3526
			if (!is_shadow_present_pte(spte))
3527 3528
				break;

3529 3530 3531
		sp = page_header(__pa(iterator.sptep));
		if (!is_last_spte(spte, sp->role.level))
			break;
3532

3533
		/*
3534 3535 3536 3537 3538
		 * Check whether the memory access that caused the fault would
		 * still cause it if it were to be performed right now. If not,
		 * then this is a spurious fault caused by TLB lazily flushed,
		 * or some other CPU has already fixed the PTE after the
		 * current CPU took the fault.
3539 3540 3541 3542
		 *
		 * Need not check the access of upper level table entries since
		 * they are always ACC_ALL.
		 */
3543 3544 3545 3546
		if (is_access_allowed(error_code, spte)) {
			fault_handled = true;
			break;
		}
3547

3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558
		new_spte = spte;

		if (is_access_track_spte(spte))
			new_spte = restore_acc_track_spte(new_spte);

		/*
		 * Currently, to simplify the code, write-protection can
		 * be removed in the fast path only if the SPTE was
		 * write-protected for dirty-logging or access tracking.
		 */
		if ((error_code & PFERR_WRITE_MASK) &&
3559
		    spte_can_locklessly_be_made_writable(spte)) {
3560
			new_spte |= PT_WRITABLE_MASK;
3561 3562

			/*
3563 3564 3565 3566 3567 3568 3569 3570 3571
			 * Do not fix write-permission on the large spte.  Since
			 * we only dirty the first page into the dirty-bitmap in
			 * fast_pf_fix_direct_spte(), other pages are missed
			 * if its slot has dirty logging enabled.
			 *
			 * Instead, we let the slow page fault path create a
			 * normal spte to fix the access.
			 *
			 * See the comments in kvm_arch_commit_memory_region().
3572
			 */
3573
			if (sp->role.level > PT_PAGE_TABLE_LEVEL)
3574
				break;
3575
		}
3576

3577
		/* Verify that the fault can be handled in the fast path */
3578 3579
		if (new_spte == spte ||
		    !is_access_allowed(error_code, new_spte))
3580 3581 3582 3583 3584
			break;

		/*
		 * Currently, fast page fault only works for direct mapping
		 * since the gfn is not stable for indirect shadow page. See
3585
		 * Documentation/virt/kvm/locking.txt to get more detail.
3586 3587
		 */
		fault_handled = fast_pf_fix_direct_spte(vcpu, sp,
3588
							iterator.sptep, spte,
3589
							new_spte);
3590 3591 3592 3593 3594 3595 3596 3597 3598 3599
		if (fault_handled)
			break;

		if (++retry_count > 4) {
			printk_once(KERN_WARNING
				"kvm: Fast #PF retrying more than 4 times.\n");
			break;
		}

	} while (true);
3600

3601
	trace_fast_page_fault(vcpu, cr2_or_gpa, error_code, iterator.sptep,
3602
			      spte, fault_handled);
3603 3604
	walk_shadow_page_lockless_end(vcpu);

3605
	return fault_handled;
3606 3607
}

3608 3609
static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
			       struct list_head *invalid_list)
3610
{
3611
	struct kvm_mmu_page *sp;
3612

3613
	if (!VALID_PAGE(*root_hpa))
A
Avi Kivity 已提交
3614
		return;
3615

3616 3617 3618 3619
	sp = page_header(*root_hpa & PT64_BASE_ADDR_MASK);
	--sp->root_count;
	if (!sp->root_count && sp->role.invalid)
		kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3620

3621 3622 3623
	*root_hpa = INVALID_PAGE;
}

3624
/* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
3625 3626
void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
			ulong roots_to_free)
3627 3628 3629
{
	int i;
	LIST_HEAD(invalid_list);
3630
	bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
3631

3632
	BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3633

3634
	/* Before acquiring the MMU lock, see if we need to do any real work. */
3635 3636 3637 3638 3639 3640 3641 3642 3643
	if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
			if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
			    VALID_PAGE(mmu->prev_roots[i].hpa))
				break;

		if (i == KVM_MMU_NUM_PREV_ROOTS)
			return;
	}
3644 3645

	spin_lock(&vcpu->kvm->mmu_lock);
3646

3647 3648 3649 3650
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
		if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
			mmu_free_root_page(vcpu->kvm, &mmu->prev_roots[i].hpa,
					   &invalid_list);
3651

3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664
	if (free_active_root) {
		if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
		    (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
			mmu_free_root_page(vcpu->kvm, &mmu->root_hpa,
					   &invalid_list);
		} else {
			for (i = 0; i < 4; ++i)
				if (mmu->pae_root[i] != 0)
					mmu_free_root_page(vcpu->kvm,
							   &mmu->pae_root[i],
							   &invalid_list);
			mmu->root_hpa = INVALID_PAGE;
		}
3665
		mmu->root_cr3 = 0;
3666
	}
3667

3668
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3669
	spin_unlock(&vcpu->kvm->mmu_lock);
3670
}
3671
EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3672

3673 3674 3675 3676 3677
static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
{
	int ret = 0;

	if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3678
		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3679 3680 3681 3682 3683 3684
		ret = 1;
	}

	return ret;
}

3685 3686 3687
static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu_page *sp;
3688
	unsigned i;
3689

3690
	if (vcpu->arch.mmu->shadow_root_level >= PT64_ROOT_4LEVEL) {
3691
		spin_lock(&vcpu->kvm->mmu_lock);
3692 3693
		if(make_mmu_pages_available(vcpu) < 0) {
			spin_unlock(&vcpu->kvm->mmu_lock);
3694
			return -ENOSPC;
3695
		}
3696
		sp = kvm_mmu_get_page(vcpu, 0, 0,
3697
				vcpu->arch.mmu->shadow_root_level, 1, ACC_ALL);
3698 3699
		++sp->root_count;
		spin_unlock(&vcpu->kvm->mmu_lock);
3700 3701
		vcpu->arch.mmu->root_hpa = __pa(sp->spt);
	} else if (vcpu->arch.mmu->shadow_root_level == PT32E_ROOT_LEVEL) {
3702
		for (i = 0; i < 4; ++i) {
3703
			hpa_t root = vcpu->arch.mmu->pae_root[i];
3704

3705
			MMU_WARN_ON(VALID_PAGE(root));
3706
			spin_lock(&vcpu->kvm->mmu_lock);
3707 3708
			if (make_mmu_pages_available(vcpu) < 0) {
				spin_unlock(&vcpu->kvm->mmu_lock);
3709
				return -ENOSPC;
3710
			}
3711
			sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3712
					i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL);
3713 3714 3715
			root = __pa(sp->spt);
			++sp->root_count;
			spin_unlock(&vcpu->kvm->mmu_lock);
3716
			vcpu->arch.mmu->pae_root[i] = root | PT_PRESENT_MASK;
3717
		}
3718
		vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3719 3720
	} else
		BUG();
3721 3722 3723

	/* root_cr3 is ignored for direct MMUs. */
	vcpu->arch.mmu->root_cr3 = 0;
3724 3725 3726 3727 3728

	return 0;
}

static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3729
{
3730
	struct kvm_mmu_page *sp;
3731
	u64 pdptr, pm_mask;
3732
	gfn_t root_gfn, root_cr3;
3733
	int i;
3734

3735
	root_cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu);
3736
	root_gfn = root_cr3 >> PAGE_SHIFT;
3737

3738 3739 3740 3741 3742 3743 3744
	if (mmu_check_root(vcpu, root_gfn))
		return 1;

	/*
	 * Do we shadow a long mode page table? If so we need to
	 * write-protect the guests page table root.
	 */
3745 3746
	if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
		hpa_t root = vcpu->arch.mmu->root_hpa;
3747

3748
		MMU_WARN_ON(VALID_PAGE(root));
3749

3750
		spin_lock(&vcpu->kvm->mmu_lock);
3751 3752
		if (make_mmu_pages_available(vcpu) < 0) {
			spin_unlock(&vcpu->kvm->mmu_lock);
3753
			return -ENOSPC;
3754
		}
3755
		sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
3756
				vcpu->arch.mmu->shadow_root_level, 0, ACC_ALL);
3757 3758
		root = __pa(sp->spt);
		++sp->root_count;
3759
		spin_unlock(&vcpu->kvm->mmu_lock);
3760
		vcpu->arch.mmu->root_hpa = root;
3761
		goto set_root_cr3;
3762
	}
3763

3764 3765
	/*
	 * We shadow a 32 bit page table. This may be a legacy 2-level
3766 3767
	 * or a PAE 3-level page table. In either case we need to be aware that
	 * the shadow page table may be a PAE or a long mode page table.
3768
	 */
3769
	pm_mask = PT_PRESENT_MASK;
3770
	if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL)
3771 3772
		pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;

3773
	for (i = 0; i < 4; ++i) {
3774
		hpa_t root = vcpu->arch.mmu->pae_root[i];
3775

3776
		MMU_WARN_ON(VALID_PAGE(root));
3777 3778
		if (vcpu->arch.mmu->root_level == PT32E_ROOT_LEVEL) {
			pdptr = vcpu->arch.mmu->get_pdptr(vcpu, i);
B
Bandan Das 已提交
3779
			if (!(pdptr & PT_PRESENT_MASK)) {
3780
				vcpu->arch.mmu->pae_root[i] = 0;
A
Avi Kivity 已提交
3781 3782
				continue;
			}
A
Avi Kivity 已提交
3783
			root_gfn = pdptr >> PAGE_SHIFT;
3784 3785
			if (mmu_check_root(vcpu, root_gfn))
				return 1;
3786
		}
3787
		spin_lock(&vcpu->kvm->mmu_lock);
3788 3789
		if (make_mmu_pages_available(vcpu) < 0) {
			spin_unlock(&vcpu->kvm->mmu_lock);
3790
			return -ENOSPC;
3791
		}
3792 3793
		sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL,
				      0, ACC_ALL);
3794 3795
		root = __pa(sp->spt);
		++sp->root_count;
3796 3797
		spin_unlock(&vcpu->kvm->mmu_lock);

3798
		vcpu->arch.mmu->pae_root[i] = root | pm_mask;
3799
	}
3800
	vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3801 3802 3803 3804 3805

	/*
	 * If we shadow a 32 bit page table with a long mode page
	 * table we enter this path.
	 */
3806 3807
	if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
		if (vcpu->arch.mmu->lm_root == NULL) {
3808 3809 3810 3811 3812 3813 3814
			/*
			 * The additional page necessary for this is only
			 * allocated on demand.
			 */

			u64 *lm_root;

3815
			lm_root = (void*)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3816 3817 3818
			if (lm_root == NULL)
				return 1;

3819
			lm_root[0] = __pa(vcpu->arch.mmu->pae_root) | pm_mask;
3820

3821
			vcpu->arch.mmu->lm_root = lm_root;
3822 3823
		}

3824
		vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->lm_root);
3825 3826
	}

3827 3828 3829
set_root_cr3:
	vcpu->arch.mmu->root_cr3 = root_cr3;

3830
	return 0;
3831 3832
}

3833 3834
static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
{
3835
	if (vcpu->arch.mmu->direct_map)
3836 3837 3838 3839 3840
		return mmu_alloc_direct_roots(vcpu);
	else
		return mmu_alloc_shadow_roots(vcpu);
}

3841
void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3842 3843 3844 3845
{
	int i;
	struct kvm_mmu_page *sp;

3846
	if (vcpu->arch.mmu->direct_map)
3847 3848
		return;

3849
	if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3850
		return;
3851

3852
	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3853

3854 3855
	if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
		hpa_t root = vcpu->arch.mmu->root_hpa;
3856
		sp = page_header(root);
3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874

		/*
		 * Even if another CPU was marking the SP as unsync-ed
		 * simultaneously, any guest page table changes are not
		 * guaranteed to be visible anyway until this VCPU issues a TLB
		 * flush strictly after those changes are made. We only need to
		 * ensure that the other CPU sets these flags before any actual
		 * changes to the page tables are made. The comments in
		 * mmu_need_write_protect() describe what could go wrong if this
		 * requirement isn't satisfied.
		 */
		if (!smp_load_acquire(&sp->unsync) &&
		    !smp_load_acquire(&sp->unsync_children))
			return;

		spin_lock(&vcpu->kvm->mmu_lock);
		kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);

3875
		mmu_sync_children(vcpu, sp);
3876

3877
		kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3878
		spin_unlock(&vcpu->kvm->mmu_lock);
3879 3880
		return;
	}
3881 3882 3883 3884

	spin_lock(&vcpu->kvm->mmu_lock);
	kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);

3885
	for (i = 0; i < 4; ++i) {
3886
		hpa_t root = vcpu->arch.mmu->pae_root[i];
3887

3888
		if (root && VALID_PAGE(root)) {
3889 3890 3891 3892 3893 3894
			root &= PT64_BASE_ADDR_MASK;
			sp = page_header(root);
			mmu_sync_children(vcpu, sp);
		}
	}

3895
	kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3896
	spin_unlock(&vcpu->kvm->mmu_lock);
3897
}
N
Nadav Har'El 已提交
3898
EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3899

3900
static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr,
3901
				  u32 access, struct x86_exception *exception)
A
Avi Kivity 已提交
3902
{
3903 3904
	if (exception)
		exception->error_code = 0;
A
Avi Kivity 已提交
3905 3906 3907
	return vaddr;
}

3908
static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr,
3909 3910
					 u32 access,
					 struct x86_exception *exception)
3911
{
3912 3913
	if (exception)
		exception->error_code = 0;
3914
	return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3915 3916
}

3917 3918 3919
static bool
__is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
{
3920
	int bit7 = (pte >> 7) & 1;
3921

3922
	return pte & rsvd_check->rsvd_bits_mask[bit7][level-1];
3923 3924
}

3925
static bool __is_bad_mt_xwr(struct rsvd_bits_validate *rsvd_check, u64 pte)
3926
{
3927
	return rsvd_check->bad_mt_xwr & BIT_ULL(pte & 0x3f);
3928 3929
}

3930
static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3931
{
3932 3933 3934 3935 3936 3937 3938
	/*
	 * A nested guest cannot use the MMIO cache if it is using nested
	 * page tables, because cr2 is a nGPA while the cache stores GPAs.
	 */
	if (mmu_is_nested(vcpu))
		return false;

3939 3940 3941 3942 3943 3944
	if (direct)
		return vcpu_match_mmio_gpa(vcpu, addr);

	return vcpu_match_mmio_gva(vcpu, addr);
}

3945 3946 3947
/* return true if reserved bit is detected on spte. */
static bool
walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3948 3949
{
	struct kvm_shadow_walk_iterator iterator;
3950
	u64 sptes[PT64_ROOT_MAX_LEVEL], spte = 0ull;
3951
	struct rsvd_bits_validate *rsvd_check;
3952 3953
	int root, leaf;
	bool reserved = false;
3954

3955
	rsvd_check = &vcpu->arch.mmu->shadow_zero_check;
3956

3957
	walk_shadow_page_lockless_begin(vcpu);
3958

3959 3960
	for (shadow_walk_init(&iterator, vcpu, addr),
		 leaf = root = iterator.level;
3961 3962 3963 3964 3965
	     shadow_walk_okay(&iterator);
	     __shadow_walk_next(&iterator, spte)) {
		spte = mmu_spte_get_lockless(iterator.sptep);

		sptes[leaf - 1] = spte;
3966
		leaf--;
3967

3968 3969
		if (!is_shadow_present_pte(spte))
			break;
3970

3971 3972 3973 3974 3975 3976 3977
		/*
		 * Use a bitwise-OR instead of a logical-OR to aggregate the
		 * reserved bit and EPT's invalid memtype/XWR checks to avoid
		 * adding a Jcc in the loop.
		 */
		reserved |= __is_bad_mt_xwr(rsvd_check, spte) |
			    __is_rsvd_bits_set(rsvd_check, spte, iterator.level);
3978 3979
	}

3980 3981
	walk_shadow_page_lockless_end(vcpu);

3982 3983 3984
	if (reserved) {
		pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
		       __func__, addr);
3985
		while (root > leaf) {
3986 3987 3988 3989 3990
			pr_err("------ spte 0x%llx level %d.\n",
			       sptes[root - 1], root);
			root--;
		}
	}
3991

3992 3993
	*sptep = spte;
	return reserved;
3994 3995
}

P
Paolo Bonzini 已提交
3996
static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3997 3998
{
	u64 spte;
3999
	bool reserved;
4000

4001
	if (mmio_info_in_cache(vcpu, addr, direct))
4002
		return RET_PF_EMULATE;
4003

4004
	reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
4005
	if (WARN_ON(reserved))
4006
		return -EINVAL;
4007 4008 4009

	if (is_mmio_spte(spte)) {
		gfn_t gfn = get_mmio_spte_gfn(spte);
4010
		unsigned int access = get_mmio_spte_access(spte);
4011

4012
		if (!check_mmio_spte(vcpu, spte))
4013
			return RET_PF_INVALID;
4014

4015 4016
		if (direct)
			addr = 0;
X
Xiao Guangrong 已提交
4017 4018

		trace_handle_mmio_page_fault(addr, gfn, access);
4019
		vcpu_cache_mmio_info(vcpu, addr, gfn, access);
4020
		return RET_PF_EMULATE;
4021 4022 4023 4024 4025 4026
	}

	/*
	 * If the page table is zapped by other cpus, let CPU fault again on
	 * the address.
	 */
4027
	return RET_PF_RETRY;
4028 4029
}

4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049
static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
					 u32 error_code, gfn_t gfn)
{
	if (unlikely(error_code & PFERR_RSVD_MASK))
		return false;

	if (!(error_code & PFERR_PRESENT_MASK) ||
	      !(error_code & PFERR_WRITE_MASK))
		return false;

	/*
	 * guest is writing the page which is write tracked which can
	 * not be fixed by page fault handler.
	 */
	if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
		return true;

	return false;
}

4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063
static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
{
	struct kvm_shadow_walk_iterator iterator;
	u64 spte;

	walk_shadow_page_lockless_begin(vcpu);
	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
		clear_sp_write_flooding_count(iterator.sptep);
		if (!is_shadow_present_pte(spte))
			break;
	}
	walk_shadow_page_lockless_end(vcpu);
}

4064 4065
static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
				   gfn_t gfn)
4066 4067
{
	struct kvm_arch_async_pf arch;
X
Xiao Guangrong 已提交
4068

4069
	arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
4070
	arch.gfn = gfn;
4071
	arch.direct_map = vcpu->arch.mmu->direct_map;
4072
	arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu);
4073

4074 4075
	return kvm_setup_async_pf(vcpu, cr2_or_gpa,
				  kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
4076 4077
}

4078
static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
4079 4080
			 gpa_t cr2_or_gpa, kvm_pfn_t *pfn, bool write,
			 bool *writable)
4081
{
4082
	struct kvm_memory_slot *slot;
4083 4084
	bool async;

4085 4086 4087 4088 4089 4090 4091 4092
	/*
	 * Don't expose private memslots to L2.
	 */
	if (is_guest_mode(vcpu) && !kvm_is_visible_gfn(vcpu->kvm, gfn)) {
		*pfn = KVM_PFN_NOSLOT;
		return false;
	}

4093
	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
4094 4095
	async = false;
	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
4096 4097 4098
	if (!async)
		return false; /* *pfn has correct page already */

4099
	if (!prefault && kvm_can_do_async_pf(vcpu)) {
4100
		trace_kvm_try_async_get_page(cr2_or_gpa, gfn);
4101
		if (kvm_find_async_pf_gfn(vcpu, gfn)) {
4102
			trace_kvm_async_pf_doublefault(cr2_or_gpa, gfn);
4103 4104
			kvm_make_request(KVM_REQ_APF_HALT, vcpu);
			return true;
4105
		} else if (kvm_arch_setup_async_pf(vcpu, cr2_or_gpa, gfn))
4106 4107 4108
			return true;
	}

4109
	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
4110 4111 4112
	return false;
}

4113 4114
static int direct_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
			     bool prefault, int max_level, bool is_tdp)
A
Avi Kivity 已提交
4115
{
4116 4117 4118
	bool write = error_code & PFERR_WRITE_MASK;
	bool exec = error_code & PFERR_FETCH_MASK;
	bool lpage_disallowed = exec && is_nx_huge_page_enabled();
4119
	bool map_writable;
A
Avi Kivity 已提交
4120

4121 4122 4123
	gfn_t gfn = gpa >> PAGE_SHIFT;
	unsigned long mmu_seq;
	kvm_pfn_t pfn;
4124
	int r;
4125

4126
	if (page_fault_handle_page_track(vcpu, error_code, gfn))
4127
		return RET_PF_EMULATE;
4128

4129 4130 4131
	r = mmu_topup_memory_caches(vcpu);
	if (r)
		return r;
4132

4133 4134
	if (lpage_disallowed)
		max_level = PT_PAGE_TABLE_LEVEL;
4135

4136
	if (fast_page_fault(vcpu, gpa, error_code))
4137 4138 4139 4140 4141 4142 4143 4144
		return RET_PF_RETRY;

	mmu_seq = vcpu->kvm->mmu_notifier_seq;
	smp_rmb();

	if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
		return RET_PF_RETRY;

4145
	if (handle_abnormal_pfn(vcpu, is_tdp ? 0 : gpa, gfn, pfn, ACC_ALL, &r))
4146
		return r;
A
Avi Kivity 已提交
4147

4148 4149 4150 4151 4152 4153
	r = RET_PF_RETRY;
	spin_lock(&vcpu->kvm->mmu_lock);
	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
		goto out_unlock;
	if (make_mmu_pages_available(vcpu) < 0)
		goto out_unlock;
4154
	r = __direct_map(vcpu, gpa, write, map_writable, max_level, pfn,
4155
			 prefault, is_tdp && lpage_disallowed);
4156

4157 4158 4159 4160
out_unlock:
	spin_unlock(&vcpu->kvm->mmu_lock);
	kvm_release_pfn_clean(pfn);
	return r;
A
Avi Kivity 已提交
4161 4162
}

4163 4164 4165 4166 4167 4168 4169 4170 4171 4172
static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa,
				u32 error_code, bool prefault)
{
	pgprintk("%s: gva %lx error %x\n", __func__, gpa, error_code);

	/* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
	return direct_page_fault(vcpu, gpa & PAGE_MASK, error_code, prefault,
				 PT_DIRECTORY_LEVEL, false);
}

4173
int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
4174
				u64 fault_address, char *insn, int insn_len)
4175 4176 4177
{
	int r = 1;

4178 4179 4180 4181 4182 4183
#ifndef CONFIG_X86_64
	/* A 64-bit CR2 should be impossible on 32-bit KVM. */
	if (WARN_ON_ONCE(fault_address >> 32))
		return -EFAULT;
#endif

P
Paolo Bonzini 已提交
4184
	vcpu->arch.l1tf_flush_l1d = true;
4185 4186 4187 4188
	switch (vcpu->arch.apf.host_apf_reason) {
	default:
		trace_kvm_page_fault(fault_address, error_code);

4189
		if (kvm_event_needs_reinjection(vcpu))
4190 4191 4192 4193 4194 4195 4196
			kvm_mmu_unprotect_page_virt(vcpu, fault_address);
		r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
				insn_len);
		break;
	case KVM_PV_REASON_PAGE_NOT_PRESENT:
		vcpu->arch.apf.host_apf_reason = 0;
		local_irq_disable();
4197
		kvm_async_pf_task_wait(fault_address, 0);
4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210
		local_irq_enable();
		break;
	case KVM_PV_REASON_PAGE_READY:
		vcpu->arch.apf.host_apf_reason = 0;
		local_irq_disable();
		kvm_async_pf_task_wake(fault_address);
		local_irq_enable();
		break;
	}
	return r;
}
EXPORT_SYMBOL_GPL(kvm_handle_page_fault);

4211 4212
int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
		       bool prefault)
4213
{
4214
	int max_level;
4215

4216 4217 4218 4219
	for (max_level = PT_MAX_HUGEPAGE_LEVEL;
	     max_level > PT_PAGE_TABLE_LEVEL;
	     max_level--) {
		int page_num = KVM_PAGES_PER_HPAGE(max_level);
4220
		gfn_t base = (gpa >> PAGE_SHIFT) & ~(page_num - 1);
4221

4222 4223
		if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
			break;
4224
	}
4225

4226 4227
	return direct_page_fault(vcpu, gpa, error_code, prefault,
				 max_level, true);
4228 4229
}

4230 4231
static void nonpaging_init_context(struct kvm_vcpu *vcpu,
				   struct kvm_mmu *context)
A
Avi Kivity 已提交
4232 4233 4234
{
	context->page_fault = nonpaging_page_fault;
	context->gva_to_gpa = nonpaging_gva_to_gpa;
4235
	context->sync_page = nonpaging_sync_page;
4236
	context->invlpg = NULL;
4237
	context->update_pte = nonpaging_update_pte;
4238
	context->root_level = 0;
A
Avi Kivity 已提交
4239
	context->shadow_root_level = PT32E_ROOT_LEVEL;
4240
	context->direct_map = true;
4241
	context->nx = false;
A
Avi Kivity 已提交
4242 4243
}

4244 4245 4246 4247 4248 4249 4250 4251
static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t cr3,
				  union kvm_mmu_page_role role)
{
	return (role.direct || cr3 == root->cr3) &&
	       VALID_PAGE(root->hpa) && page_header(root->hpa) &&
	       role.word == page_header(root->hpa)->role.word;
}

4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264
/*
 * Find out if a previously cached root matching the new CR3/role is available.
 * The current root is also inserted into the cache.
 * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
 * returned.
 * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
 * false is returned. This root should now be freed by the caller.
 */
static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_cr3,
				  union kvm_mmu_page_role new_role)
{
	uint i;
	struct kvm_mmu_root_info root;
4265
	struct kvm_mmu *mmu = vcpu->arch.mmu;
4266

4267
	root.cr3 = mmu->root_cr3;
4268 4269
	root.hpa = mmu->root_hpa;

4270 4271 4272
	if (is_root_usable(&root, new_cr3, new_role))
		return true;

4273 4274 4275
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
		swap(root, mmu->prev_roots[i]);

4276
		if (is_root_usable(&root, new_cr3, new_role))
4277 4278 4279 4280
			break;
	}

	mmu->root_hpa = root.hpa;
4281
	mmu->root_cr3 = root.cr3;
4282 4283 4284 4285

	return i < KVM_MMU_NUM_PREV_ROOTS;
}

4286
static bool fast_cr3_switch(struct kvm_vcpu *vcpu, gpa_t new_cr3,
4287
			    union kvm_mmu_page_role new_role)
A
Avi Kivity 已提交
4288
{
4289
	struct kvm_mmu *mmu = vcpu->arch.mmu;
4290 4291 4292 4293 4294 4295 4296

	/*
	 * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
	 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
	 * later if necessary.
	 */
	if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
4297 4298 4299
	    mmu->root_level >= PT64_ROOT_4LEVEL)
		return !mmu_check_root(vcpu, new_cr3 >> PAGE_SHIFT) &&
		       cached_root_available(vcpu, new_cr3, new_role);
4300 4301

	return false;
A
Avi Kivity 已提交
4302 4303
}

4304
static void __kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3,
4305
			      union kvm_mmu_page_role new_role,
4306
			      bool skip_tlb_flush, bool skip_mmu_sync)
A
Avi Kivity 已提交
4307
{
4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320
	if (!fast_cr3_switch(vcpu, new_cr3, new_role)) {
		kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, KVM_MMU_ROOT_CURRENT);
		return;
	}

	/*
	 * It's possible that the cached previous root page is obsolete because
	 * of a change in the MMU generation number. However, changing the
	 * generation number is accompanied by KVM_REQ_MMU_RELOAD, which will
	 * free the root set here and allocate a new one.
	 */
	kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);

4321
	if (!skip_mmu_sync)
4322
		kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
4323
	if (!skip_tlb_flush)
4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334
		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);

	/*
	 * The last MMIO access's GVA and GPA are cached in the VCPU. When
	 * switching to a new CR3, that GVA->GPA mapping may no longer be
	 * valid. So clear any cached MMIO info even when we don't need to sync
	 * the shadow page tables.
	 */
	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);

	__clear_sp_write_flooding_count(page_header(vcpu->arch.mmu->root_hpa));
A
Avi Kivity 已提交
4335 4336
}

4337 4338
void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3, bool skip_tlb_flush,
		     bool skip_mmu_sync)
4339
{
4340
	__kvm_mmu_new_cr3(vcpu, new_cr3, kvm_mmu_calc_root_page_role(vcpu),
4341
			  skip_tlb_flush, skip_mmu_sync);
4342
}
4343
EXPORT_SYMBOL_GPL(kvm_mmu_new_cr3);
4344

4345 4346
static unsigned long get_cr3(struct kvm_vcpu *vcpu)
{
4347
	return kvm_read_cr3(vcpu);
4348 4349
}

4350
static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
4351
			   unsigned int access, int *nr_present)
4352 4353 4354 4355 4356 4357 4358 4359
{
	if (unlikely(is_mmio_spte(*sptep))) {
		if (gfn != get_mmio_spte_gfn(*sptep)) {
			mmu_spte_clear_no_track(sptep);
			return true;
		}

		(*nr_present)++;
4360
		mark_mmio_spte(vcpu, sptep, gfn, access);
4361 4362 4363 4364 4365 4366
		return true;
	}

	return false;
}

4367 4368
static inline bool is_last_gpte(struct kvm_mmu *mmu,
				unsigned level, unsigned gpte)
A
Avi Kivity 已提交
4369
{
4370 4371 4372 4373 4374 4375 4376
	/*
	 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
	 * If it is clear, there are no large pages at this level, so clear
	 * PT_PAGE_SIZE_MASK in gpte if that is the case.
	 */
	gpte &= level - mmu->last_nonleaf_level;

4377 4378 4379 4380 4381 4382 4383
	/*
	 * PT_PAGE_TABLE_LEVEL always terminates.  The RHS has bit 7 set
	 * iff level <= PT_PAGE_TABLE_LEVEL, which for our purpose means
	 * level == PT_PAGE_TABLE_LEVEL; set PT_PAGE_SIZE_MASK in gpte then.
	 */
	gpte |= level - PT_PAGE_TABLE_LEVEL - 1;

4384
	return gpte & PT_PAGE_SIZE_MASK;
A
Avi Kivity 已提交
4385 4386
}

4387 4388 4389 4390 4391
#define PTTYPE_EPT 18 /* arbitrary */
#define PTTYPE PTTYPE_EPT
#include "paging_tmpl.h"
#undef PTTYPE

A
Avi Kivity 已提交
4392 4393 4394 4395 4396 4397 4398 4399
#define PTTYPE 64
#include "paging_tmpl.h"
#undef PTTYPE

#define PTTYPE 32
#include "paging_tmpl.h"
#undef PTTYPE

4400 4401 4402 4403
static void
__reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
			struct rsvd_bits_validate *rsvd_check,
			int maxphyaddr, int level, bool nx, bool gbpages,
4404
			bool pse, bool amd)
4405 4406
{
	u64 exb_bit_rsvd = 0;
4407
	u64 gbpages_bit_rsvd = 0;
4408
	u64 nonleaf_bit8_rsvd = 0;
4409

4410
	rsvd_check->bad_mt_xwr = 0;
4411

4412
	if (!nx)
4413
		exb_bit_rsvd = rsvd_bits(63, 63);
4414
	if (!gbpages)
4415
		gbpages_bit_rsvd = rsvd_bits(7, 7);
4416 4417 4418 4419 4420

	/*
	 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
	 * leaf entries) on AMD CPUs only.
	 */
4421
	if (amd)
4422 4423
		nonleaf_bit8_rsvd = rsvd_bits(8, 8);

4424
	switch (level) {
4425 4426
	case PT32_ROOT_LEVEL:
		/* no rsvd bits for 2 level 4K page table entries */
4427 4428 4429 4430
		rsvd_check->rsvd_bits_mask[0][1] = 0;
		rsvd_check->rsvd_bits_mask[0][0] = 0;
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
4431

4432
		if (!pse) {
4433
			rsvd_check->rsvd_bits_mask[1][1] = 0;
4434 4435 4436
			break;
		}

4437 4438
		if (is_cpuid_PSE36())
			/* 36bits PSE 4MB page */
4439
			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4440 4441
		else
			/* 32 bits PSE 4MB page */
4442
			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4443 4444
		break;
	case PT32E_ROOT_LEVEL:
4445
		rsvd_check->rsvd_bits_mask[0][2] =
4446
			rsvd_bits(maxphyaddr, 63) |
4447
			rsvd_bits(5, 8) | rsvd_bits(1, 2);	/* PDPTE */
4448
		rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4449
			rsvd_bits(maxphyaddr, 62);	/* PDE */
4450
		rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4451
			rsvd_bits(maxphyaddr, 62); 	/* PTE */
4452
		rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4453 4454
			rsvd_bits(maxphyaddr, 62) |
			rsvd_bits(13, 20);		/* large page */
4455 4456
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
4457
		break;
4458 4459 4460 4461 4462 4463
	case PT64_ROOT_5LEVEL:
		rsvd_check->rsvd_bits_mask[0][4] = exb_bit_rsvd |
			nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
			rsvd_bits(maxphyaddr, 51);
		rsvd_check->rsvd_bits_mask[1][4] =
			rsvd_check->rsvd_bits_mask[0][4];
4464
		/* fall through */
4465
	case PT64_ROOT_4LEVEL:
4466 4467
		rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
			nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4468
			rsvd_bits(maxphyaddr, 51);
4469 4470
		rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
			nonleaf_bit8_rsvd | gbpages_bit_rsvd |
4471
			rsvd_bits(maxphyaddr, 51);
4472 4473 4474 4475 4476 4477 4478
		rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
			rsvd_bits(maxphyaddr, 51);
		rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
			rsvd_bits(maxphyaddr, 51);
		rsvd_check->rsvd_bits_mask[1][3] =
			rsvd_check->rsvd_bits_mask[0][3];
		rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
4479
			gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
4480
			rsvd_bits(13, 29);
4481
		rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4482 4483
			rsvd_bits(maxphyaddr, 51) |
			rsvd_bits(13, 20);		/* large page */
4484 4485
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
4486 4487 4488 4489
		break;
	}
}

4490 4491 4492 4493 4494
static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
{
	__reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
				cpuid_maxphyaddr(vcpu), context->root_level,
4495 4496
				context->nx,
				guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4497 4498
				is_pse(vcpu),
				guest_cpuid_is_amd_or_hygon(vcpu));
4499 4500
}

4501 4502 4503
static void
__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
			    int maxphyaddr, bool execonly)
4504
{
4505
	u64 bad_mt_xwr;
4506

4507 4508
	rsvd_check->rsvd_bits_mask[0][4] =
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4509
	rsvd_check->rsvd_bits_mask[0][3] =
4510
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4511
	rsvd_check->rsvd_bits_mask[0][2] =
4512
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4513
	rsvd_check->rsvd_bits_mask[0][1] =
4514
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4515
	rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
4516 4517

	/* large page */
4518
	rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4519 4520
	rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
	rsvd_check->rsvd_bits_mask[1][2] =
4521
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
4522
	rsvd_check->rsvd_bits_mask[1][1] =
4523
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
4524
	rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4525

4526 4527 4528 4529 4530 4531 4532 4533
	bad_mt_xwr = 0xFFull << (2 * 8);	/* bits 3..5 must not be 2 */
	bad_mt_xwr |= 0xFFull << (3 * 8);	/* bits 3..5 must not be 3 */
	bad_mt_xwr |= 0xFFull << (7 * 8);	/* bits 3..5 must not be 7 */
	bad_mt_xwr |= REPEAT_BYTE(1ull << 2);	/* bits 0..2 must not be 010 */
	bad_mt_xwr |= REPEAT_BYTE(1ull << 6);	/* bits 0..2 must not be 110 */
	if (!execonly) {
		/* bits 0..2 must not be 100 unless VMX capabilities allow it */
		bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4534
	}
4535
	rsvd_check->bad_mt_xwr = bad_mt_xwr;
4536 4537
}

4538 4539 4540 4541 4542 4543 4544
static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
		struct kvm_mmu *context, bool execonly)
{
	__reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
				    cpuid_maxphyaddr(vcpu), execonly);
}

4545 4546 4547 4548 4549 4550 4551 4552
/*
 * the page table on host is the shadow page table for the page
 * table in guest or amd nested guest, its mmu features completely
 * follow the features in guest.
 */
void
reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
{
4553 4554
	bool uses_nx = context->nx ||
		context->mmu_role.base.smep_andnot_wp;
4555 4556
	struct rsvd_bits_validate *shadow_zero_check;
	int i;
4557

4558 4559 4560 4561
	/*
	 * Passing "true" to the last argument is okay; it adds a check
	 * on bit 8 of the SPTEs which KVM doesn't use anyway.
	 */
4562 4563
	shadow_zero_check = &context->shadow_zero_check;
	__reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4564
				shadow_phys_bits,
4565
				context->shadow_root_level, uses_nx,
4566 4567
				guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
				is_pse(vcpu), true);
4568 4569 4570 4571 4572 4573 4574 4575 4576

	if (!shadow_me_mask)
		return;

	for (i = context->shadow_root_level; --i >= 0;) {
		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
	}

4577 4578 4579
}
EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);

4580 4581 4582 4583 4584 4585
static inline bool boot_cpu_is_amd(void)
{
	WARN_ON_ONCE(!tdp_enabled);
	return shadow_x_mask == 0;
}

4586 4587 4588 4589 4590 4591 4592 4593
/*
 * the direct page table on host, use as much mmu features as
 * possible, however, kvm currently does not do execution-protection.
 */
static void
reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
				struct kvm_mmu *context)
{
4594 4595 4596 4597 4598
	struct rsvd_bits_validate *shadow_zero_check;
	int i;

	shadow_zero_check = &context->shadow_zero_check;

4599
	if (boot_cpu_is_amd())
4600
		__reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4601
					shadow_phys_bits,
4602
					context->shadow_root_level, false,
4603 4604
					boot_cpu_has(X86_FEATURE_GBPAGES),
					true, true);
4605
	else
4606
		__reset_rsvds_bits_mask_ept(shadow_zero_check,
4607
					    shadow_phys_bits,
4608 4609
					    false);

4610 4611 4612 4613 4614 4615 4616
	if (!shadow_me_mask)
		return;

	for (i = context->shadow_root_level; --i >= 0;) {
		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
	}
4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627
}

/*
 * as the comments in reset_shadow_zero_bits_mask() except it
 * is the shadow page table for intel nested guest.
 */
static void
reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
				struct kvm_mmu *context, bool execonly)
{
	__reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4628
				    shadow_phys_bits, execonly);
4629 4630
}

4631 4632 4633 4634 4635 4636 4637 4638 4639 4640
#define BYTE_MASK(access) \
	((1 & (access) ? 2 : 0) | \
	 (2 & (access) ? 4 : 0) | \
	 (3 & (access) ? 8 : 0) | \
	 (4 & (access) ? 16 : 0) | \
	 (5 & (access) ? 32 : 0) | \
	 (6 & (access) ? 64 : 0) | \
	 (7 & (access) ? 128 : 0))


4641 4642
static void update_permission_bitmask(struct kvm_vcpu *vcpu,
				      struct kvm_mmu *mmu, bool ept)
4643
{
4644 4645 4646 4647 4648 4649 4650 4651 4652
	unsigned byte;

	const u8 x = BYTE_MASK(ACC_EXEC_MASK);
	const u8 w = BYTE_MASK(ACC_WRITE_MASK);
	const u8 u = BYTE_MASK(ACC_USER_MASK);

	bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
	bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
	bool cr0_wp = is_write_protection(vcpu);
4653 4654

	for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4655 4656
		unsigned pfec = byte << 1;

F
Feng Wu 已提交
4657
		/*
4658 4659
		 * Each "*f" variable has a 1 bit for each UWX value
		 * that causes a fault with the given PFEC.
F
Feng Wu 已提交
4660
		 */
4661

4662
		/* Faults from writes to non-writable pages */
4663
		u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
4664
		/* Faults from user mode accesses to supervisor pages */
4665
		u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
4666
		/* Faults from fetches of non-executable pages*/
4667
		u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692
		/* Faults from kernel mode fetches of user pages */
		u8 smepf = 0;
		/* Faults from kernel mode accesses of user pages */
		u8 smapf = 0;

		if (!ept) {
			/* Faults from kernel mode accesses to user pages */
			u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;

			/* Not really needed: !nx will cause pte.nx to fault */
			if (!mmu->nx)
				ff = 0;

			/* Allow supervisor writes if !cr0.wp */
			if (!cr0_wp)
				wf = (pfec & PFERR_USER_MASK) ? wf : 0;

			/* Disallow supervisor fetches of user code if cr4.smep */
			if (cr4_smep)
				smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;

			/*
			 * SMAP:kernel-mode data accesses from user-mode
			 * mappings should fault. A fault is considered
			 * as a SMAP violation if all of the following
P
Peng Hao 已提交
4693
			 * conditions are true:
4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706
			 *   - X86_CR4_SMAP is set in CR4
			 *   - A user page is accessed
			 *   - The access is not a fetch
			 *   - Page fault in kernel mode
			 *   - if CPL = 3 or X86_EFLAGS_AC is clear
			 *
			 * Here, we cover the first three conditions.
			 * The fourth is computed dynamically in permission_fault();
			 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
			 * *not* subject to SMAP restrictions.
			 */
			if (cr4_smap)
				smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4707
		}
4708 4709

		mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4710 4711 4712
	}
}

4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787
/*
* PKU is an additional mechanism by which the paging controls access to
* user-mode addresses based on the value in the PKRU register.  Protection
* key violations are reported through a bit in the page fault error code.
* Unlike other bits of the error code, the PK bit is not known at the
* call site of e.g. gva_to_gpa; it must be computed directly in
* permission_fault based on two bits of PKRU, on some machine state (CR4,
* CR0, EFER, CPL), and on other bits of the error code and the page tables.
*
* In particular the following conditions come from the error code, the
* page tables and the machine state:
* - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
* - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
* - PK is always zero if U=0 in the page tables
* - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
*
* The PKRU bitmask caches the result of these four conditions.  The error
* code (minus the P bit) and the page table's U bit form an index into the
* PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
* with the two bits of the PKRU register corresponding to the protection key.
* For the first three conditions above the bits will be 00, thus masking
* away both AD and WD.  For all reads or if the last condition holds, WD
* only will be masked away.
*/
static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
				bool ept)
{
	unsigned bit;
	bool wp;

	if (ept) {
		mmu->pkru_mask = 0;
		return;
	}

	/* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
	if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
		mmu->pkru_mask = 0;
		return;
	}

	wp = is_write_protection(vcpu);

	for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
		unsigned pfec, pkey_bits;
		bool check_pkey, check_write, ff, uf, wf, pte_user;

		pfec = bit << 1;
		ff = pfec & PFERR_FETCH_MASK;
		uf = pfec & PFERR_USER_MASK;
		wf = pfec & PFERR_WRITE_MASK;

		/* PFEC.RSVD is replaced by ACC_USER_MASK. */
		pte_user = pfec & PFERR_RSVD_MASK;

		/*
		 * Only need to check the access which is not an
		 * instruction fetch and is to a user page.
		 */
		check_pkey = (!ff && pte_user);
		/*
		 * write access is controlled by PKRU if it is a
		 * user access or CR0.WP = 1.
		 */
		check_write = check_pkey && wf && (uf || wp);

		/* PKRU.AD stops both read and write access. */
		pkey_bits = !!check_pkey;
		/* PKRU.WD stops write access. */
		pkey_bits |= (!!check_write) << 1;

		mmu->pkru_mask |= (pkey_bits & 3) << pfec;
	}
}

4788
static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
A
Avi Kivity 已提交
4789
{
4790 4791 4792 4793 4794
	unsigned root_level = mmu->root_level;

	mmu->last_nonleaf_level = root_level;
	if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
		mmu->last_nonleaf_level++;
A
Avi Kivity 已提交
4795 4796
}

4797 4798 4799
static void paging64_init_context_common(struct kvm_vcpu *vcpu,
					 struct kvm_mmu *context,
					 int level)
A
Avi Kivity 已提交
4800
{
4801
	context->nx = is_nx(vcpu);
4802
	context->root_level = level;
4803

4804
	reset_rsvds_bits_mask(vcpu, context);
4805
	update_permission_bitmask(vcpu, context, false);
4806
	update_pkru_bitmask(vcpu, context, false);
4807
	update_last_nonleaf_level(vcpu, context);
A
Avi Kivity 已提交
4808

4809
	MMU_WARN_ON(!is_pae(vcpu));
A
Avi Kivity 已提交
4810 4811
	context->page_fault = paging64_page_fault;
	context->gva_to_gpa = paging64_gva_to_gpa;
4812
	context->sync_page = paging64_sync_page;
M
Marcelo Tosatti 已提交
4813
	context->invlpg = paging64_invlpg;
4814
	context->update_pte = paging64_update_pte;
4815
	context->shadow_root_level = level;
4816
	context->direct_map = false;
A
Avi Kivity 已提交
4817 4818
}

4819 4820
static void paging64_init_context(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
4821
{
4822 4823 4824 4825
	int root_level = is_la57_mode(vcpu) ?
			 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;

	paging64_init_context_common(vcpu, context, root_level);
4826 4827
}

4828 4829
static void paging32_init_context(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
A
Avi Kivity 已提交
4830
{
4831
	context->nx = false;
4832
	context->root_level = PT32_ROOT_LEVEL;
4833

4834
	reset_rsvds_bits_mask(vcpu, context);
4835
	update_permission_bitmask(vcpu, context, false);
4836
	update_pkru_bitmask(vcpu, context, false);
4837
	update_last_nonleaf_level(vcpu, context);
A
Avi Kivity 已提交
4838 4839 4840

	context->page_fault = paging32_page_fault;
	context->gva_to_gpa = paging32_gva_to_gpa;
4841
	context->sync_page = paging32_sync_page;
M
Marcelo Tosatti 已提交
4842
	context->invlpg = paging32_invlpg;
4843
	context->update_pte = paging32_update_pte;
A
Avi Kivity 已提交
4844
	context->shadow_root_level = PT32E_ROOT_LEVEL;
4845
	context->direct_map = false;
A
Avi Kivity 已提交
4846 4847
}

4848 4849
static void paging32E_init_context(struct kvm_vcpu *vcpu,
				   struct kvm_mmu *context)
A
Avi Kivity 已提交
4850
{
4851
	paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
A
Avi Kivity 已提交
4852 4853
}

4854 4855 4856 4857
static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu)
{
	union kvm_mmu_extended_role ext = {0};

4858
	ext.cr0_pg = !!is_paging(vcpu);
4859
	ext.cr4_pae = !!is_pae(vcpu);
4860 4861 4862 4863
	ext.cr4_smep = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
	ext.cr4_smap = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
	ext.cr4_pse = !!is_pse(vcpu);
	ext.cr4_pke = !!kvm_read_cr4_bits(vcpu, X86_CR4_PKE);
4864
	ext.maxphyaddr = cpuid_maxphyaddr(vcpu);
4865 4866 4867 4868 4869 4870

	ext.valid = 1;

	return ext;
}

4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891
static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
						   bool base_only)
{
	union kvm_mmu_role role = {0};

	role.base.access = ACC_ALL;
	role.base.nxe = !!is_nx(vcpu);
	role.base.cr0_wp = is_write_protection(vcpu);
	role.base.smm = is_smm(vcpu);
	role.base.guest_mode = is_guest_mode(vcpu);

	if (base_only)
		return role;

	role.ext = kvm_calc_mmu_role_ext(vcpu);

	return role;
}

static union kvm_mmu_role
kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4892
{
4893
	union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4894

4895
	role.base.ad_disabled = (shadow_accessed_mask == 0);
4896
	role.base.level = kvm_x86_ops.get_tdp_level(vcpu);
4897
	role.base.direct = true;
4898
	role.base.gpte_is_8_bytes = true;
4899 4900 4901 4902

	return role;
}

4903
static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4904
{
4905
	struct kvm_mmu *context = vcpu->arch.mmu;
4906 4907
	union kvm_mmu_role new_role =
		kvm_calc_tdp_mmu_root_page_role(vcpu, false);
4908

4909 4910 4911 4912
	if (new_role.as_u64 == context->mmu_role.as_u64)
		return;

	context->mmu_role.as_u64 = new_role.as_u64;
4913
	context->page_fault = kvm_tdp_page_fault;
4914
	context->sync_page = nonpaging_sync_page;
4915
	context->invlpg = NULL;
4916
	context->update_pte = nonpaging_update_pte;
4917
	context->shadow_root_level = kvm_x86_ops.get_tdp_level(vcpu);
4918
	context->direct_map = true;
4919
	context->get_guest_pgd = get_cr3;
4920
	context->get_pdptr = kvm_pdptr_read;
4921
	context->inject_page_fault = kvm_inject_page_fault;
4922 4923

	if (!is_paging(vcpu)) {
4924
		context->nx = false;
4925 4926 4927
		context->gva_to_gpa = nonpaging_gva_to_gpa;
		context->root_level = 0;
	} else if (is_long_mode(vcpu)) {
4928
		context->nx = is_nx(vcpu);
4929 4930
		context->root_level = is_la57_mode(vcpu) ?
				PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4931 4932
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging64_gva_to_gpa;
4933
	} else if (is_pae(vcpu)) {
4934
		context->nx = is_nx(vcpu);
4935
		context->root_level = PT32E_ROOT_LEVEL;
4936 4937
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging64_gva_to_gpa;
4938
	} else {
4939
		context->nx = false;
4940
		context->root_level = PT32_ROOT_LEVEL;
4941 4942
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging32_gva_to_gpa;
4943 4944
	}

4945
	update_permission_bitmask(vcpu, context, false);
4946
	update_pkru_bitmask(vcpu, context, false);
4947
	update_last_nonleaf_level(vcpu, context);
4948
	reset_tdp_shadow_zero_bits_mask(vcpu, context);
4949 4950
}

4951 4952 4953 4954 4955 4956 4957 4958 4959 4960
static union kvm_mmu_role
kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
{
	union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);

	role.base.smep_andnot_wp = role.ext.cr4_smep &&
		!is_write_protection(vcpu);
	role.base.smap_andnot_wp = role.ext.cr4_smap &&
		!is_write_protection(vcpu);
	role.base.direct = !is_paging(vcpu);
4961
	role.base.gpte_is_8_bytes = !!is_pae(vcpu);
4962 4963

	if (!is_long_mode(vcpu))
4964
		role.base.level = PT32E_ROOT_LEVEL;
4965
	else if (is_la57_mode(vcpu))
4966
		role.base.level = PT64_ROOT_5LEVEL;
4967
	else
4968
		role.base.level = PT64_ROOT_4LEVEL;
4969 4970 4971 4972 4973 4974

	return role;
}

void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
{
4975
	struct kvm_mmu *context = vcpu->arch.mmu;
4976 4977 4978 4979 4980
	union kvm_mmu_role new_role =
		kvm_calc_shadow_mmu_root_page_role(vcpu, false);

	if (new_role.as_u64 == context->mmu_role.as_u64)
		return;
A
Avi Kivity 已提交
4981 4982

	if (!is_paging(vcpu))
4983
		nonpaging_init_context(vcpu, context);
A
Avi Kivity 已提交
4984
	else if (is_long_mode(vcpu))
4985
		paging64_init_context(vcpu, context);
A
Avi Kivity 已提交
4986
	else if (is_pae(vcpu))
4987
		paging32E_init_context(vcpu, context);
A
Avi Kivity 已提交
4988
	else
4989
		paging32_init_context(vcpu, context);
4990

4991
	context->mmu_role.as_u64 = new_role.as_u64;
4992
	reset_shadow_zero_bits_mask(vcpu, context);
4993 4994 4995
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);

4996 4997
static union kvm_mmu_role
kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
4998
				   bool execonly, u8 level)
4999
{
5000
	union kvm_mmu_role role = {0};
5001

5002 5003
	/* SMM flag is inherited from root_mmu */
	role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
5004

5005
	role.base.level = level;
5006
	role.base.gpte_is_8_bytes = true;
5007 5008 5009 5010
	role.base.direct = false;
	role.base.ad_disabled = !accessed_dirty;
	role.base.guest_mode = true;
	role.base.access = ACC_ALL;
5011

5012 5013 5014 5015 5016 5017 5018
	/*
	 * WP=1 and NOT_WP=1 is an impossible combination, use WP and the
	 * SMAP variation to denote shadow EPT entries.
	 */
	role.base.cr0_wp = true;
	role.base.smap_andnot_wp = true;

5019
	role.ext = kvm_calc_mmu_role_ext(vcpu);
5020
	role.ext.execonly = execonly;
5021 5022 5023 5024

	return role;
}

5025
void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
5026
			     bool accessed_dirty, gpa_t new_eptp)
N
Nadav Har'El 已提交
5027
{
5028
	struct kvm_mmu *context = vcpu->arch.mmu;
5029
	u8 level = vmx_eptp_page_walk_level(new_eptp);
5030 5031
	union kvm_mmu_role new_role =
		kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
5032
						   execonly, level);
5033

5034
	__kvm_mmu_new_cr3(vcpu, new_eptp, new_role.base, false, false);
5035 5036 5037

	if (new_role.as_u64 == context->mmu_role.as_u64)
		return;
5038

5039
	context->shadow_root_level = level;
N
Nadav Har'El 已提交
5040 5041

	context->nx = true;
5042
	context->ept_ad = accessed_dirty;
N
Nadav Har'El 已提交
5043 5044 5045 5046 5047
	context->page_fault = ept_page_fault;
	context->gva_to_gpa = ept_gva_to_gpa;
	context->sync_page = ept_sync_page;
	context->invlpg = ept_invlpg;
	context->update_pte = ept_update_pte;
5048
	context->root_level = level;
N
Nadav Har'El 已提交
5049
	context->direct_map = false;
5050
	context->mmu_role.as_u64 = new_role.as_u64;
5051

N
Nadav Har'El 已提交
5052
	update_permission_bitmask(vcpu, context, true);
5053
	update_pkru_bitmask(vcpu, context, true);
5054
	update_last_nonleaf_level(vcpu, context);
N
Nadav Har'El 已提交
5055
	reset_rsvds_bits_mask_ept(vcpu, context, execonly);
5056
	reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
N
Nadav Har'El 已提交
5057 5058 5059
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);

5060
static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
5061
{
5062
	struct kvm_mmu *context = vcpu->arch.mmu;
5063 5064

	kvm_init_shadow_mmu(vcpu);
5065
	context->get_guest_pgd     = get_cr3;
5066 5067
	context->get_pdptr         = kvm_pdptr_read;
	context->inject_page_fault = kvm_inject_page_fault;
A
Avi Kivity 已提交
5068 5069
}

5070
static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
5071
{
5072
	union kvm_mmu_role new_role = kvm_calc_mmu_role_common(vcpu, false);
5073 5074
	struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;

5075 5076 5077 5078
	if (new_role.as_u64 == g_context->mmu_role.as_u64)
		return;

	g_context->mmu_role.as_u64 = new_role.as_u64;
5079
	g_context->get_guest_pgd     = get_cr3;
5080
	g_context->get_pdptr         = kvm_pdptr_read;
5081 5082
	g_context->inject_page_fault = kvm_inject_page_fault;

5083 5084 5085 5086 5087 5088
	/*
	 * L2 page tables are never shadowed, so there is no need to sync
	 * SPTEs.
	 */
	g_context->invlpg            = NULL;

5089
	/*
5090
	 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
5091 5092 5093 5094 5095
	 * L1's nested page tables (e.g. EPT12). The nested translation
	 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
	 * L2's page tables as the first level of translation and L1's
	 * nested page tables as the second level of translation. Basically
	 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
5096 5097
	 */
	if (!is_paging(vcpu)) {
5098
		g_context->nx = false;
5099 5100 5101
		g_context->root_level = 0;
		g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
	} else if (is_long_mode(vcpu)) {
5102
		g_context->nx = is_nx(vcpu);
5103 5104
		g_context->root_level = is_la57_mode(vcpu) ?
					PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
5105
		reset_rsvds_bits_mask(vcpu, g_context);
5106 5107
		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
	} else if (is_pae(vcpu)) {
5108
		g_context->nx = is_nx(vcpu);
5109
		g_context->root_level = PT32E_ROOT_LEVEL;
5110
		reset_rsvds_bits_mask(vcpu, g_context);
5111 5112
		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
	} else {
5113
		g_context->nx = false;
5114
		g_context->root_level = PT32_ROOT_LEVEL;
5115
		reset_rsvds_bits_mask(vcpu, g_context);
5116 5117 5118
		g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
	}

5119
	update_permission_bitmask(vcpu, g_context, false);
5120
	update_pkru_bitmask(vcpu, g_context, false);
5121
	update_last_nonleaf_level(vcpu, g_context);
5122 5123
}

5124
void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots)
5125
{
5126
	if (reset_roots) {
5127 5128
		uint i;

5129
		vcpu->arch.mmu->root_hpa = INVALID_PAGE;
5130 5131

		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5132
			vcpu->arch.mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5133 5134
	}

5135
	if (mmu_is_nested(vcpu))
5136
		init_kvm_nested_mmu(vcpu);
5137
	else if (tdp_enabled)
5138
		init_kvm_tdp_mmu(vcpu);
5139
	else
5140
		init_kvm_softmmu(vcpu);
5141
}
5142
EXPORT_SYMBOL_GPL(kvm_init_mmu);
5143

5144 5145 5146
static union kvm_mmu_page_role
kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
{
5147 5148
	union kvm_mmu_role role;

5149
	if (tdp_enabled)
5150
		role = kvm_calc_tdp_mmu_root_page_role(vcpu, true);
5151
	else
5152 5153 5154
		role = kvm_calc_shadow_mmu_root_page_role(vcpu, true);

	return role.base;
5155
}
5156

5157
void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
5158
{
5159
	kvm_mmu_unload(vcpu);
5160
	kvm_init_mmu(vcpu, true);
A
Avi Kivity 已提交
5161
}
5162
EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
A
Avi Kivity 已提交
5163 5164

int kvm_mmu_load(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
5165
{
5166 5167
	int r;

5168
	r = mmu_topup_memory_caches(vcpu);
A
Avi Kivity 已提交
5169 5170
	if (r)
		goto out;
5171
	r = mmu_alloc_roots(vcpu);
5172
	kvm_mmu_sync_roots(vcpu);
5173 5174
	if (r)
		goto out;
5175
	kvm_mmu_load_pgd(vcpu);
5176
	kvm_x86_ops.tlb_flush_current(vcpu);
5177 5178
out:
	return r;
A
Avi Kivity 已提交
5179
}
A
Avi Kivity 已提交
5180 5181 5182 5183
EXPORT_SYMBOL_GPL(kvm_mmu_load);

void kvm_mmu_unload(struct kvm_vcpu *vcpu)
{
5184 5185 5186 5187
	kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
	WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
	kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
	WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
A
Avi Kivity 已提交
5188
}
5189
EXPORT_SYMBOL_GPL(kvm_mmu_unload);
A
Avi Kivity 已提交
5190

5191
static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
5192 5193
				  struct kvm_mmu_page *sp, u64 *spte,
				  const void *new)
5194
{
5195
	if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
5196 5197
		++vcpu->kvm->stat.mmu_pde_zapped;
		return;
5198
        }
5199

A
Avi Kivity 已提交
5200
	++vcpu->kvm->stat.mmu_pte_updated;
5201
	vcpu->arch.mmu->update_pte(vcpu, sp, spte, new);
5202 5203
}

5204 5205 5206 5207 5208 5209 5210 5211
static bool need_remote_flush(u64 old, u64 new)
{
	if (!is_shadow_present_pte(old))
		return false;
	if (!is_shadow_present_pte(new))
		return true;
	if ((old ^ new) & PT64_BASE_ADDR_MASK)
		return true;
5212 5213
	old ^= shadow_nx_mask;
	new ^= shadow_nx_mask;
5214 5215 5216
	return (old & ~new & PT64_PERM_MASK) != 0;
}

5217
static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
5218
				    int *bytes)
5219
{
5220
	u64 gentry = 0;
5221
	int r;
5222 5223 5224

	/*
	 * Assume that the pte write on a page table of the same type
5225 5226
	 * as the current vcpu paging mode since we update the sptes only
	 * when they have the same mode.
5227
	 */
5228
	if (is_pae(vcpu) && *bytes == 4) {
5229
		/* Handle a 32-bit guest writing two halves of a 64-bit gpte */
5230 5231
		*gpa &= ~(gpa_t)7;
		*bytes = 8;
5232 5233
	}

5234 5235 5236 5237
	if (*bytes == 4 || *bytes == 8) {
		r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
		if (r)
			gentry = 0;
5238 5239
	}

5240 5241 5242 5243 5244 5245 5246
	return gentry;
}

/*
 * If we're seeing too many writes to a page, it may no longer be a page table,
 * or we may be forking, in which case it is better to unmap the page.
 */
5247
static bool detect_write_flooding(struct kvm_mmu_page *sp)
5248
{
5249 5250 5251 5252
	/*
	 * Skip write-flooding detected for the sp whose level is 1, because
	 * it can become unsync, then the guest page is not write-protected.
	 */
5253
	if (sp->role.level == PT_PAGE_TABLE_LEVEL)
5254
		return false;
5255

5256 5257
	atomic_inc(&sp->write_flooding_count);
	return atomic_read(&sp->write_flooding_count) >= 3;
5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272
}

/*
 * Misaligned accesses are too much trouble to fix up; also, they usually
 * indicate a page is not used as a page table.
 */
static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
				    int bytes)
{
	unsigned offset, pte_size, misaligned;

	pgprintk("misaligned: gpa %llx bytes %d role %x\n",
		 gpa, bytes, sp->role.word);

	offset = offset_in_page(gpa);
5273
	pte_size = sp->role.gpte_is_8_bytes ? 8 : 4;
5274 5275 5276 5277 5278 5279 5280 5281

	/*
	 * Sometimes, the OS only writes the last one bytes to update status
	 * bits, for example, in linux, andb instruction is used in clear_bit().
	 */
	if (!(offset & (pte_size - 1)) && bytes == 1)
		return false;

5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296
	misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
	misaligned |= bytes < 4;

	return misaligned;
}

static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
{
	unsigned page_offset, quadrant;
	u64 *spte;
	int level;

	page_offset = offset_in_page(gpa);
	level = sp->role.level;
	*nspte = 1;
5297
	if (!sp->role.gpte_is_8_bytes) {
5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318
		page_offset <<= 1;	/* 32->64 */
		/*
		 * A 32-bit pde maps 4MB while the shadow pdes map
		 * only 2MB.  So we need to double the offset again
		 * and zap two pdes instead of one.
		 */
		if (level == PT32_ROOT_LEVEL) {
			page_offset &= ~7; /* kill rounding error */
			page_offset <<= 1;
			*nspte = 2;
		}
		quadrant = page_offset >> PAGE_SHIFT;
		page_offset &= ~PAGE_MASK;
		if (quadrant != sp->role.quadrant)
			return NULL;
	}

	spte = &sp->spt[page_offset / sizeof(*spte)];
	return spte;
}

5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334
/*
 * Ignore various flags when determining if a SPTE can be immediately
 * overwritten for the current MMU.
 *  - level: explicitly checked in mmu_pte_write_new_pte(), and will never
 *    match the current MMU role, as MMU's level tracks the root level.
 *  - access: updated based on the new guest PTE
 *  - quadrant: handled by get_written_sptes()
 *  - invalid: always false (loop only walks valid shadow pages)
 */
static const union kvm_mmu_page_role role_ign = {
	.level = 0xf,
	.access = 0x7,
	.quadrant = 0x3,
	.invalid = 0x1,
};

5335
static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
5336 5337
			      const u8 *new, int bytes,
			      struct kvm_page_track_notifier_node *node)
5338 5339 5340 5341 5342 5343
{
	gfn_t gfn = gpa >> PAGE_SHIFT;
	struct kvm_mmu_page *sp;
	LIST_HEAD(invalid_list);
	u64 entry, gentry, *spte;
	int npte;
5344
	bool remote_flush, local_flush;
5345 5346 5347 5348 5349

	/*
	 * If we don't have indirect shadow pages, it means no page is
	 * write-protected, so we can exit simply.
	 */
5350
	if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
5351 5352
		return;

5353
	remote_flush = local_flush = false;
5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364

	pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);

	/*
	 * No need to care whether allocation memory is successful
	 * or not since pte prefetch is skiped if it does not have
	 * enough objects in the cache.
	 */
	mmu_topup_memory_caches(vcpu);

	spin_lock(&vcpu->kvm->mmu_lock);
5365 5366 5367

	gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);

5368
	++vcpu->kvm->stat.mmu_pte_write;
5369
	kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
5370

5371
	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
5372
		if (detect_write_misaligned(sp, gpa, bytes) ||
5373
		      detect_write_flooding(sp)) {
5374
			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
A
Avi Kivity 已提交
5375
			++vcpu->kvm->stat.mmu_flooded;
5376 5377
			continue;
		}
5378 5379 5380 5381 5382

		spte = get_written_sptes(sp, gpa, &npte);
		if (!spte)
			continue;

5383
		local_flush = true;
5384
		while (npte--) {
5385 5386
			u32 base_role = vcpu->arch.mmu->mmu_role.base.word;

5387
			entry = *spte;
5388
			mmu_page_zap_pte(vcpu->kvm, sp, spte);
5389
			if (gentry &&
5390 5391
			    !((sp->role.word ^ base_role) & ~role_ign.word) &&
			    rmap_can_add(vcpu))
5392
				mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
G
Gleb Natapov 已提交
5393
			if (need_remote_flush(entry, *spte))
5394
				remote_flush = true;
5395
			++spte;
5396 5397
		}
	}
5398
	kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
5399
	kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
5400
	spin_unlock(&vcpu->kvm->mmu_lock);
5401 5402
}

5403 5404
int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
{
5405 5406
	gpa_t gpa;
	int r;
5407

5408
	if (vcpu->arch.mmu->direct_map)
5409 5410
		return 0;

5411
	gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
5412 5413

	r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
5414

5415
	return r;
5416
}
5417
EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
5418

5419
int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
5420
		       void *insn, int insn_len)
5421
{
5422
	int r, emulation_type = EMULTYPE_PF;
5423
	bool direct = vcpu->arch.mmu->direct_map;
5424

5425
	if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
5426 5427
		return RET_PF_RETRY;

5428
	r = RET_PF_INVALID;
5429
	if (unlikely(error_code & PFERR_RSVD_MASK)) {
5430
		r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
5431
		if (r == RET_PF_EMULATE)
5432 5433
			goto emulate;
	}
5434

5435
	if (r == RET_PF_INVALID) {
5436 5437
		r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
					  lower_32_bits(error_code), false);
5438 5439 5440 5441 5442
		WARN_ON(r == RET_PF_INVALID);
	}

	if (r == RET_PF_RETRY)
		return 1;
5443
	if (r < 0)
5444
		return r;
5445

5446 5447 5448 5449 5450 5451 5452
	/*
	 * Before emulating the instruction, check if the error code
	 * was due to a RO violation while translating the guest page.
	 * This can occur when using nested virtualization with nested
	 * paging in both guests. If true, we simply unprotect the page
	 * and resume the guest.
	 */
5453
	if (vcpu->arch.mmu->direct_map &&
5454
	    (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5455
		kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
5456 5457 5458
		return 1;
	}

5459 5460 5461 5462 5463 5464
	/*
	 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
	 * optimistically try to just unprotect the page and let the processor
	 * re-execute the instruction that caused the page fault.  Do not allow
	 * retrying MMIO emulation, as it's not only pointless but could also
	 * cause us to enter an infinite loop because the processor will keep
5465 5466 5467 5468
	 * faulting on the non-existent MMIO address.  Retrying an instruction
	 * from a nested guest is also pointless and dangerous as we are only
	 * explicitly shadowing L1's page tables, i.e. unprotecting something
	 * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5469
	 */
5470
	if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
5471
		emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
5472
emulate:
5473 5474 5475 5476 5477
	/*
	 * On AMD platforms, under certain conditions insn_len may be zero on #NPF.
	 * This can happen if a guest gets a page-fault on data access but the HW
	 * table walker is not able to read the instruction page (e.g instruction
	 * page is not present in memory). In those cases we simply restart the
5478
	 * guest, with the exception of AMD Erratum 1096 which is unrecoverable.
5479
	 */
5480
	if (unlikely(insn && !insn_len)) {
5481
		if (!kvm_x86_ops.need_emulation_on_page_fault(vcpu))
5482 5483
			return 1;
	}
5484

5485
	return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
5486
				       insn_len);
5487 5488 5489
}
EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);

5490 5491
void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
			    gva_t gva, hpa_t root_hpa)
M
Marcelo Tosatti 已提交
5492
{
5493
	int i;
5494

5495 5496 5497 5498 5499 5500 5501 5502 5503 5504
	/* It's actually a GPA for vcpu->arch.guest_mmu.  */
	if (mmu != &vcpu->arch.guest_mmu) {
		/* INVLPG on a non-canonical address is a NOP according to the SDM.  */
		if (is_noncanonical_address(gva, vcpu))
			return;

		kvm_x86_ops.tlb_flush_gva(vcpu, gva);
	}

	if (!mmu->invlpg)
5505 5506
		return;

5507 5508
	if (root_hpa == INVALID_PAGE) {
		mmu->invlpg(vcpu, gva, mmu->root_hpa);
5509

5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528
		/*
		 * INVLPG is required to invalidate any global mappings for the VA,
		 * irrespective of PCID. Since it would take us roughly similar amount
		 * of work to determine whether any of the prev_root mappings of the VA
		 * is marked global, or to just sync it blindly, so we might as well
		 * just always sync it.
		 *
		 * Mappings not reachable via the current cr3 or the prev_roots will be
		 * synced when switching to that cr3, so nothing needs to be done here
		 * for them.
		 */
		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
			if (VALID_PAGE(mmu->prev_roots[i].hpa))
				mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
	} else {
		mmu->invlpg(vcpu, gva, root_hpa);
	}
}
EXPORT_SYMBOL_GPL(kvm_mmu_invalidate_gva);
5529

5530 5531 5532
void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
{
	kvm_mmu_invalidate_gva(vcpu, vcpu->arch.mmu, gva, INVALID_PAGE);
M
Marcelo Tosatti 已提交
5533 5534 5535 5536
	++vcpu->stat.invlpg;
}
EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);

5537

5538 5539
void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
{
5540
	struct kvm_mmu *mmu = vcpu->arch.mmu;
5541
	bool tlb_flush = false;
5542
	uint i;
5543 5544

	if (pcid == kvm_get_active_pcid(vcpu)) {
5545
		mmu->invlpg(vcpu, gva, mmu->root_hpa);
5546
		tlb_flush = true;
5547 5548
	}

5549 5550 5551 5552 5553 5554
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
		if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
		    pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].cr3)) {
			mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
			tlb_flush = true;
		}
5555
	}
5556

5557
	if (tlb_flush)
5558
		kvm_x86_ops.tlb_flush_gva(vcpu, gva);
5559

5560 5561 5562
	++vcpu->stat.invlpg;

	/*
5563 5564 5565
	 * Mappings not reachable via the current cr3 or the prev_roots will be
	 * synced when switching to that cr3, so nothing needs to be done here
	 * for them.
5566 5567 5568 5569
	 */
}
EXPORT_SYMBOL_GPL(kvm_mmu_invpcid_gva);

5570
void kvm_configure_mmu(bool enable_tdp, int tdp_page_level)
5571
{
5572
	tdp_enabled = enable_tdp;
5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586

	/*
	 * max_page_level reflects the capabilities of KVM's MMU irrespective
	 * of kernel support, e.g. KVM may be capable of using 1GB pages when
	 * the kernel is not.  But, KVM never creates a page size greater than
	 * what is used by the kernel for any given HVA, i.e. the kernel's
	 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
	 */
	if (tdp_enabled)
		max_page_level = tdp_page_level;
	else if (boot_cpu_has(X86_FEATURE_GBPAGES))
		max_page_level = PT_PDPE_LEVEL;
	else
		max_page_level = PT_DIRECTORY_LEVEL;
5587
}
5588
EXPORT_SYMBOL_GPL(kvm_configure_mmu);
5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608

/* The return value indicates if tlb flush on all vcpus is needed. */
typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);

/* The caller should hold mmu-lock before calling this function. */
static __always_inline bool
slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
			slot_level_handler fn, int start_level, int end_level,
			gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
{
	struct slot_rmap_walk_iterator iterator;
	bool flush = false;

	for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
			end_gfn, &iterator) {
		if (iterator.rmap)
			flush |= fn(kvm, iterator.rmap);

		if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
			if (flush && lock_flush_tlb) {
5609 5610 5611
				kvm_flush_remote_tlbs_with_address(kvm,
						start_gfn,
						iterator.gfn - start_gfn + 1);
5612 5613 5614 5615 5616 5617 5618
				flush = false;
			}
			cond_resched_lock(&kvm->mmu_lock);
		}
	}

	if (flush && lock_flush_tlb) {
5619 5620
		kvm_flush_remote_tlbs_with_address(kvm, start_gfn,
						   end_gfn - start_gfn + 1);
5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661
		flush = false;
	}

	return flush;
}

static __always_inline bool
slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
		  slot_level_handler fn, int start_level, int end_level,
		  bool lock_flush_tlb)
{
	return slot_handle_level_range(kvm, memslot, fn, start_level,
			end_level, memslot->base_gfn,
			memslot->base_gfn + memslot->npages - 1,
			lock_flush_tlb);
}

static __always_inline bool
slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
		      slot_level_handler fn, bool lock_flush_tlb)
{
	return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
				 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
}

static __always_inline bool
slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
			slot_level_handler fn, bool lock_flush_tlb)
{
	return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
				 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
}

static __always_inline bool
slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
		 slot_level_handler fn, bool lock_flush_tlb)
{
	return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
				 PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
}

5662
static void free_mmu_pages(struct kvm_mmu *mmu)
A
Avi Kivity 已提交
5663
{
5664 5665
	free_page((unsigned long)mmu->pae_root);
	free_page((unsigned long)mmu->lm_root);
A
Avi Kivity 已提交
5666 5667
}

5668
static int alloc_mmu_pages(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
A
Avi Kivity 已提交
5669
{
5670
	struct page *page;
A
Avi Kivity 已提交
5671 5672
	int i;

5673
	/*
5674 5675 5676 5677 5678 5679 5680
	 * When using PAE paging, the four PDPTEs are treated as 'root' pages,
	 * while the PDP table is a per-vCPU construct that's allocated at MMU
	 * creation.  When emulating 32-bit mode, cr3 is only 32 bits even on
	 * x86_64.  Therefore we need to allocate the PDP table in the first
	 * 4GB of memory, which happens to fit the DMA32 zone.  Except for
	 * SVM's 32-bit NPT support, TDP paging doesn't use PAE paging and can
	 * skip allocating the PDP table.
5681
	 */
5682
	if (tdp_enabled && kvm_x86_ops.get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
5683 5684
		return 0;

5685
	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
5686
	if (!page)
5687 5688
		return -ENOMEM;

5689
	mmu->pae_root = page_address(page);
5690
	for (i = 0; i < 4; ++i)
5691
		mmu->pae_root[i] = INVALID_PAGE;
5692

A
Avi Kivity 已提交
5693 5694 5695
	return 0;
}

5696
int kvm_mmu_create(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
5697
{
5698
	uint i;
5699
	int ret;
5700

5701 5702
	vcpu->arch.mmu = &vcpu->arch.root_mmu;
	vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
A
Avi Kivity 已提交
5703

5704
	vcpu->arch.root_mmu.root_hpa = INVALID_PAGE;
5705
	vcpu->arch.root_mmu.root_cr3 = 0;
5706
	vcpu->arch.root_mmu.translate_gpa = translate_gpa;
5707
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5708
		vcpu->arch.root_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
A
Avi Kivity 已提交
5709

5710
	vcpu->arch.guest_mmu.root_hpa = INVALID_PAGE;
5711
	vcpu->arch.guest_mmu.root_cr3 = 0;
5712 5713 5714
	vcpu->arch.guest_mmu.translate_gpa = translate_gpa;
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
		vcpu->arch.guest_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5715

5716
	vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729

	ret = alloc_mmu_pages(vcpu, &vcpu->arch.guest_mmu);
	if (ret)
		return ret;

	ret = alloc_mmu_pages(vcpu, &vcpu->arch.root_mmu);
	if (ret)
		goto fail_allocate_root;

	return ret;
 fail_allocate_root:
	free_mmu_pages(&vcpu->arch.guest_mmu);
	return ret;
A
Avi Kivity 已提交
5730 5731
}

5732
#define BATCH_ZAP_PAGES	10
5733 5734 5735
static void kvm_zap_obsolete_pages(struct kvm *kvm)
{
	struct kvm_mmu_page *sp, *node;
5736
	int nr_zapped, batch = 0;
5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748

restart:
	list_for_each_entry_safe_reverse(sp, node,
	      &kvm->arch.active_mmu_pages, link) {
		/*
		 * No obsolete valid page exists before a newly created page
		 * since active_mmu_pages is a FIFO list.
		 */
		if (!is_obsolete_sp(kvm, sp))
			break;

		/*
5749 5750 5751 5752
		 * Skip invalid pages with a non-zero root count, zapping pages
		 * with a non-zero root count will never succeed, i.e. the page
		 * will get thrown back on active_mmu_pages and we'll get stuck
		 * in an infinite loop.
5753
		 */
5754
		if (sp->role.invalid && sp->root_count)
5755 5756
			continue;

5757 5758 5759 5760 5761 5762
		/*
		 * No need to flush the TLB since we're only zapping shadow
		 * pages with an obsolete generation number and all vCPUS have
		 * loaded a new root, i.e. the shadow pages being zapped cannot
		 * be in active use by the guest.
		 */
5763
		if (batch >= BATCH_ZAP_PAGES &&
5764
		    cond_resched_lock(&kvm->mmu_lock)) {
5765
			batch = 0;
5766 5767 5768
			goto restart;
		}

5769 5770
		if (__kvm_mmu_prepare_zap_page(kvm, sp,
				&kvm->arch.zapped_obsolete_pages, &nr_zapped)) {
5771
			batch += nr_zapped;
5772
			goto restart;
5773
		}
5774 5775
	}

5776 5777 5778 5779 5780
	/*
	 * Trigger a remote TLB flush before freeing the page tables to ensure
	 * KVM is not in the middle of a lockless shadow page table walk, which
	 * may reference the pages.
	 */
5781
	kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794
}

/*
 * Fast invalidate all shadow pages and use lock-break technique
 * to zap obsolete pages.
 *
 * It's required when memslot is being deleted or VM is being
 * destroyed, in these cases, we should ensure that KVM MMU does
 * not use any resource of the being-deleted slot or all slots
 * after calling the function.
 */
static void kvm_mmu_zap_all_fast(struct kvm *kvm)
{
5795 5796
	lockdep_assert_held(&kvm->slots_lock);

5797
	spin_lock(&kvm->mmu_lock);
5798
	trace_kvm_mmu_zap_all_fast(kvm);
5799 5800 5801 5802 5803 5804 5805 5806 5807

	/*
	 * Toggle mmu_valid_gen between '0' and '1'.  Because slots_lock is
	 * held for the entire duration of zapping obsolete pages, it's
	 * impossible for there to be multiple invalid generations associated
	 * with *valid* shadow pages at any given time, i.e. there is exactly
	 * one valid generation and (at most) one invalid generation.
	 */
	kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
5808

5809 5810 5811 5812 5813 5814 5815 5816 5817 5818
	/*
	 * Notify all vcpus to reload its shadow page table and flush TLB.
	 * Then all vcpus will switch to new shadow page table with the new
	 * mmu_valid_gen.
	 *
	 * Note: we need to do this under the protection of mmu_lock,
	 * otherwise, vcpu would purge shadow page but miss tlb flush.
	 */
	kvm_reload_remote_mmus(kvm);

5819 5820 5821 5822
	kvm_zap_obsolete_pages(kvm);
	spin_unlock(&kvm->mmu_lock);
}

5823 5824 5825 5826 5827
static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
{
	return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
}

5828
static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5829 5830
			struct kvm_memory_slot *slot,
			struct kvm_page_track_notifier_node *node)
5831
{
5832
	kvm_mmu_zap_all_fast(kvm);
5833 5834
}

5835
void kvm_mmu_init_vm(struct kvm *kvm)
5836
{
5837
	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5838

5839
	node->track_write = kvm_mmu_pte_write;
5840
	node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5841
	kvm_page_track_register_notifier(kvm, node);
5842 5843
}

5844
void kvm_mmu_uninit_vm(struct kvm *kvm)
5845
{
5846
	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5847

5848
	kvm_page_track_unregister_notifier(kvm, node);
5849 5850
}

X
Xiao Guangrong 已提交
5851 5852 5853 5854
void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;
5855
	int i;
X
Xiao Guangrong 已提交
5856 5857

	spin_lock(&kvm->mmu_lock);
5858 5859 5860 5861 5862 5863 5864 5865 5866
	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
		kvm_for_each_memslot(memslot, slots) {
			gfn_t start, end;

			start = max(gfn_start, memslot->base_gfn);
			end = min(gfn_end, memslot->base_gfn + memslot->npages);
			if (start >= end)
				continue;
X
Xiao Guangrong 已提交
5867

5868 5869 5870
			slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
						PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
						start, end - 1, true);
5871
		}
X
Xiao Guangrong 已提交
5872 5873 5874 5875 5876
	}

	spin_unlock(&kvm->mmu_lock);
}

5877 5878
static bool slot_rmap_write_protect(struct kvm *kvm,
				    struct kvm_rmap_head *rmap_head)
5879
{
5880
	return __rmap_write_protect(kvm, rmap_head, false);
5881 5882
}

5883
void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5884 5885
				      struct kvm_memory_slot *memslot,
				      int start_level)
A
Avi Kivity 已提交
5886
{
5887
	bool flush;
A
Avi Kivity 已提交
5888

5889
	spin_lock(&kvm->mmu_lock);
5890 5891
	flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect,
				start_level, PT_MAX_HUGEPAGE_LEVEL, false);
5892
	spin_unlock(&kvm->mmu_lock);
5893 5894 5895 5896 5897 5898 5899 5900

	/*
	 * We can flush all the TLBs out of the mmu lock without TLB
	 * corruption since we just change the spte from writable to
	 * readonly so that we only need to care the case of changing
	 * spte from present to present (changing the spte from present
	 * to nonpresent will flush all the TLBs immediately), in other
	 * words, the only case we care is mmu_spte_update() where we
W
Wei Yang 已提交
5901
	 * have checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
5902 5903 5904
	 * instead of PT_WRITABLE_MASK, that means it does not depend
	 * on PT_WRITABLE_MASK anymore.
	 */
5905
	if (flush)
5906
		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
A
Avi Kivity 已提交
5907
}
5908

5909
static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5910
					 struct kvm_rmap_head *rmap_head)
5911 5912 5913 5914
{
	u64 *sptep;
	struct rmap_iterator iter;
	int need_tlb_flush = 0;
D
Dan Williams 已提交
5915
	kvm_pfn_t pfn;
5916 5917
	struct kvm_mmu_page *sp;

5918
restart:
5919
	for_each_rmap_spte(rmap_head, &iter, sptep) {
5920 5921 5922 5923
		sp = page_header(__pa(sptep));
		pfn = spte_to_pfn(*sptep);

		/*
5924 5925 5926 5927 5928
		 * We cannot do huge page mapping for indirect shadow pages,
		 * which are found on the last rmap (level = 1) when not using
		 * tdp; such shadow pages are synced with the page table in
		 * the guest, and the guest page table is using 4K page size
		 * mapping if the indirect sp has level = 1.
5929
		 */
5930
		if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
5931 5932
		    (kvm_is_zone_device_pfn(pfn) ||
		     PageCompound(pfn_to_page(pfn)))) {
5933
			pte_list_remove(rmap_head, sptep);
5934 5935 5936 5937 5938 5939 5940

			if (kvm_available_flush_tlb_with_range())
				kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
					KVM_PAGES_PER_HPAGE(sp->role.level));
			else
				need_tlb_flush = 1;

5941 5942
			goto restart;
		}
5943 5944 5945 5946 5947 5948
	}

	return need_tlb_flush;
}

void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5949
				   const struct kvm_memory_slot *memslot)
5950
{
5951
	/* FIXME: const-ify all uses of struct kvm_memory_slot.  */
5952
	spin_lock(&kvm->mmu_lock);
5953 5954
	slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
			 kvm_mmu_zap_collapsible_spte, true);
5955 5956 5957
	spin_unlock(&kvm->mmu_lock);
}

5958 5959 5960 5961
void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
					struct kvm_memory_slot *memslot)
{
	/*
5962 5963 5964 5965 5966
	 * All current use cases for flushing the TLBs for a specific memslot
	 * are related to dirty logging, and do the TLB flush out of mmu_lock.
	 * The interaction between the various operations on memslot must be
	 * serialized by slots_locks to ensure the TLB flush from one operation
	 * is observed by any other operation on the same memslot.
5967 5968
	 */
	lockdep_assert_held(&kvm->slots_lock);
5969 5970
	kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
					   memslot->npages);
5971 5972
}

5973 5974 5975
void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
				   struct kvm_memory_slot *memslot)
{
5976
	bool flush;
5977 5978

	spin_lock(&kvm->mmu_lock);
5979
	flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
5980 5981 5982 5983 5984 5985 5986 5987 5988
	spin_unlock(&kvm->mmu_lock);

	/*
	 * It's also safe to flush TLBs out of mmu lock here as currently this
	 * function is only used for dirty logging, in which case flushing TLB
	 * out of mmu lock also guarantees no dirty pages will be lost in
	 * dirty_bitmap.
	 */
	if (flush)
5989
		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5990 5991 5992 5993 5994 5995
}
EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);

void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
					struct kvm_memory_slot *memslot)
{
5996
	bool flush;
5997 5998

	spin_lock(&kvm->mmu_lock);
5999 6000
	flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
					false);
6001 6002 6003
	spin_unlock(&kvm->mmu_lock);

	if (flush)
6004
		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
6005 6006 6007 6008 6009 6010
}
EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);

void kvm_mmu_slot_set_dirty(struct kvm *kvm,
			    struct kvm_memory_slot *memslot)
{
6011
	bool flush;
6012 6013

	spin_lock(&kvm->mmu_lock);
6014
	flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
6015 6016 6017
	spin_unlock(&kvm->mmu_lock);

	if (flush)
6018
		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
6019 6020 6021
}
EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);

6022
void kvm_mmu_zap_all(struct kvm *kvm)
6023 6024
{
	struct kvm_mmu_page *sp, *node;
6025
	LIST_HEAD(invalid_list);
6026
	int ign;
6027

6028
	spin_lock(&kvm->mmu_lock);
6029
restart:
6030
	list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
6031
		if (sp->role.invalid && sp->root_count)
6032
			continue;
6033
		if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
6034
			goto restart;
6035
		if (cond_resched_lock(&kvm->mmu_lock))
6036 6037 6038
			goto restart;
	}

6039
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
6040 6041 6042
	spin_unlock(&kvm->mmu_lock);
}

6043
void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
6044
{
6045
	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
6046

6047
	gen &= MMIO_SPTE_GEN_MASK;
6048

6049
	/*
6050 6051 6052 6053 6054 6055 6056 6057
	 * Generation numbers are incremented in multiples of the number of
	 * address spaces in order to provide unique generations across all
	 * address spaces.  Strip what is effectively the address space
	 * modifier prior to checking for a wrap of the MMIO generation so
	 * that a wrap in any address space is detected.
	 */
	gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);

6058
	/*
6059
	 * The very rare case: if the MMIO generation number has wrapped,
6060 6061
	 * zap all shadow pages.
	 */
6062
	if (unlikely(gen == 0)) {
6063
		kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
6064
		kvm_mmu_zap_all_fast(kvm);
6065
	}
6066 6067
}

6068 6069
static unsigned long
mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
6070 6071
{
	struct kvm *kvm;
6072
	int nr_to_scan = sc->nr_to_scan;
6073
	unsigned long freed = 0;
6074

J
Junaid Shahid 已提交
6075
	mutex_lock(&kvm_lock);
6076 6077

	list_for_each_entry(kvm, &vm_list, vm_list) {
6078
		int idx;
6079
		LIST_HEAD(invalid_list);
6080

6081 6082 6083 6084 6085 6086 6087 6088
		/*
		 * Never scan more than sc->nr_to_scan VM instances.
		 * Will not hit this condition practically since we do not try
		 * to shrink more than one VM and it is very unlikely to see
		 * !n_used_mmu_pages so many times.
		 */
		if (!nr_to_scan--)
			break;
6089 6090 6091 6092 6093 6094
		/*
		 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
		 * here. We may skip a VM instance errorneosly, but we do not
		 * want to shrink a VM that only started to populate its MMU
		 * anyway.
		 */
6095 6096
		if (!kvm->arch.n_used_mmu_pages &&
		    !kvm_has_zapped_obsolete_pages(kvm))
6097 6098
			continue;

6099
		idx = srcu_read_lock(&kvm->srcu);
6100 6101
		spin_lock(&kvm->mmu_lock);

6102 6103 6104 6105 6106 6107
		if (kvm_has_zapped_obsolete_pages(kvm)) {
			kvm_mmu_commit_zap_page(kvm,
			      &kvm->arch.zapped_obsolete_pages);
			goto unlock;
		}

6108 6109
		if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
			freed++;
6110
		kvm_mmu_commit_zap_page(kvm, &invalid_list);
6111

6112
unlock:
6113
		spin_unlock(&kvm->mmu_lock);
6114
		srcu_read_unlock(&kvm->srcu, idx);
6115

6116 6117 6118 6119 6120
		/*
		 * unfair on small ones
		 * per-vm shrinkers cry out
		 * sadness comes quickly
		 */
6121 6122
		list_move_tail(&kvm->vm_list, &vm_list);
		break;
6123 6124
	}

J
Junaid Shahid 已提交
6125
	mutex_unlock(&kvm_lock);
6126 6127 6128 6129 6130 6131
	return freed;
}

static unsigned long
mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
{
6132
	return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
6133 6134 6135
}

static struct shrinker mmu_shrinker = {
6136 6137
	.count_objects = mmu_shrink_count,
	.scan_objects = mmu_shrink_scan,
6138 6139 6140
	.seeks = DEFAULT_SEEKS * 10,
};

I
Ingo Molnar 已提交
6141
static void mmu_destroy_caches(void)
6142
{
6143 6144
	kmem_cache_destroy(pte_list_desc_cache);
	kmem_cache_destroy(mmu_page_header_cache);
6145 6146
}

6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168
static void kvm_set_mmio_spte_mask(void)
{
	u64 mask;

	/*
	 * Set the reserved bits and the present bit of an paging-structure
	 * entry to generate page fault with PFER.RSV = 1.
	 */

	/*
	 * Mask the uppermost physical address bit, which would be reserved as
	 * long as the supported physical address width is less than 52.
	 */
	mask = 1ull << 51;

	/* Set the present bit. */
	mask |= 1ull;

	/*
	 * If reserved bit is not supported, clear the present bit to disable
	 * mmio page fault.
	 */
6169
	if (shadow_phys_bits == 52)
6170 6171
		mask &= ~1ull;

6172
	kvm_mmu_set_mmio_spte_mask(mask, mask, ACC_WRITE_MASK | ACC_USER_MASK);
6173 6174
}

P
Paolo Bonzini 已提交
6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208
static bool get_nx_auto_mode(void)
{
	/* Return true when CPU has the bug, and mitigations are ON */
	return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
}

static void __set_nx_huge_pages(bool val)
{
	nx_huge_pages = itlb_multihit_kvm_mitigation = val;
}

static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
{
	bool old_val = nx_huge_pages;
	bool new_val;

	/* In "auto" mode deploy workaround only if CPU has the bug. */
	if (sysfs_streq(val, "off"))
		new_val = 0;
	else if (sysfs_streq(val, "force"))
		new_val = 1;
	else if (sysfs_streq(val, "auto"))
		new_val = get_nx_auto_mode();
	else if (strtobool(val, &new_val) < 0)
		return -EINVAL;

	__set_nx_huge_pages(new_val);

	if (new_val != old_val) {
		struct kvm *kvm;

		mutex_lock(&kvm_lock);

		list_for_each_entry(kvm, &vm_list, vm_list) {
6209
			mutex_lock(&kvm->slots_lock);
P
Paolo Bonzini 已提交
6210
			kvm_mmu_zap_all_fast(kvm);
6211
			mutex_unlock(&kvm->slots_lock);
6212 6213

			wake_up_process(kvm->arch.nx_lpage_recovery_thread);
P
Paolo Bonzini 已提交
6214 6215 6216 6217 6218 6219 6220
		}
		mutex_unlock(&kvm_lock);
	}

	return 0;
}

6221 6222
int kvm_mmu_module_init(void)
{
6223 6224
	int ret = -ENOMEM;

P
Paolo Bonzini 已提交
6225 6226 6227
	if (nx_huge_pages == -1)
		__set_nx_huge_pages(get_nx_auto_mode());

6228 6229 6230 6231 6232 6233 6234 6235 6236 6237
	/*
	 * MMU roles use union aliasing which is, generally speaking, an
	 * undefined behavior. However, we supposedly know how compilers behave
	 * and the current status quo is unlikely to change. Guardians below are
	 * supposed to let us know if the assumption becomes false.
	 */
	BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
	BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
	BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));

6238
	kvm_mmu_reset_all_pte_masks();
6239

6240 6241
	kvm_set_mmio_spte_mask();

6242 6243
	pte_list_desc_cache = kmem_cache_create("pte_list_desc",
					    sizeof(struct pte_list_desc),
6244
					    0, SLAB_ACCOUNT, NULL);
6245
	if (!pte_list_desc_cache)
6246
		goto out;
6247

6248 6249
	mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
						  sizeof(struct kvm_mmu_page),
6250
						  0, SLAB_ACCOUNT, NULL);
6251
	if (!mmu_page_header_cache)
6252
		goto out;
6253

6254
	if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
6255
		goto out;
6256

6257 6258 6259
	ret = register_shrinker(&mmu_shrinker);
	if (ret)
		goto out;
6260

6261 6262
	return 0;

6263
out:
6264
	mmu_destroy_caches();
6265
	return ret;
6266 6267
}

6268
/*
P
Peng Hao 已提交
6269
 * Calculate mmu pages needed for kvm.
6270
 */
6271
unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm)
6272
{
6273 6274
	unsigned long nr_mmu_pages;
	unsigned long nr_pages = 0;
6275
	struct kvm_memslots *slots;
6276
	struct kvm_memory_slot *memslot;
6277
	int i;
6278

6279 6280
	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
6281

6282 6283 6284
		kvm_for_each_memslot(memslot, slots)
			nr_pages += memslot->npages;
	}
6285 6286

	nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
6287
	nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
6288 6289 6290 6291

	return nr_mmu_pages;
}

6292 6293
void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
{
6294
	kvm_mmu_unload(vcpu);
6295 6296
	free_mmu_pages(&vcpu->arch.root_mmu);
	free_mmu_pages(&vcpu->arch.guest_mmu);
6297
	mmu_free_memory_caches(vcpu);
6298 6299 6300 6301 6302 6303 6304
}

void kvm_mmu_module_exit(void)
{
	mmu_destroy_caches();
	percpu_counter_destroy(&kvm_total_used_mmu_pages);
	unregister_shrinker(&mmu_shrinker);
6305 6306
	mmu_audit_disable();
}
6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419

static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp)
{
	unsigned int old_val;
	int err;

	old_val = nx_huge_pages_recovery_ratio;
	err = param_set_uint(val, kp);
	if (err)
		return err;

	if (READ_ONCE(nx_huge_pages) &&
	    !old_val && nx_huge_pages_recovery_ratio) {
		struct kvm *kvm;

		mutex_lock(&kvm_lock);

		list_for_each_entry(kvm, &vm_list, vm_list)
			wake_up_process(kvm->arch.nx_lpage_recovery_thread);

		mutex_unlock(&kvm_lock);
	}

	return err;
}

static void kvm_recover_nx_lpages(struct kvm *kvm)
{
	int rcu_idx;
	struct kvm_mmu_page *sp;
	unsigned int ratio;
	LIST_HEAD(invalid_list);
	ulong to_zap;

	rcu_idx = srcu_read_lock(&kvm->srcu);
	spin_lock(&kvm->mmu_lock);

	ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
	to_zap = ratio ? DIV_ROUND_UP(kvm->stat.nx_lpage_splits, ratio) : 0;
	while (to_zap && !list_empty(&kvm->arch.lpage_disallowed_mmu_pages)) {
		/*
		 * We use a separate list instead of just using active_mmu_pages
		 * because the number of lpage_disallowed pages is expected to
		 * be relatively small compared to the total.
		 */
		sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
				      struct kvm_mmu_page,
				      lpage_disallowed_link);
		WARN_ON_ONCE(!sp->lpage_disallowed);
		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
		WARN_ON_ONCE(sp->lpage_disallowed);

		if (!--to_zap || need_resched() || spin_needbreak(&kvm->mmu_lock)) {
			kvm_mmu_commit_zap_page(kvm, &invalid_list);
			if (to_zap)
				cond_resched_lock(&kvm->mmu_lock);
		}
	}

	spin_unlock(&kvm->mmu_lock);
	srcu_read_unlock(&kvm->srcu, rcu_idx);
}

static long get_nx_lpage_recovery_timeout(u64 start_time)
{
	return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio)
		? start_time + 60 * HZ - get_jiffies_64()
		: MAX_SCHEDULE_TIMEOUT;
}

static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
{
	u64 start_time;
	long remaining_time;

	while (true) {
		start_time = get_jiffies_64();
		remaining_time = get_nx_lpage_recovery_timeout(start_time);

		set_current_state(TASK_INTERRUPTIBLE);
		while (!kthread_should_stop() && remaining_time > 0) {
			schedule_timeout(remaining_time);
			remaining_time = get_nx_lpage_recovery_timeout(start_time);
			set_current_state(TASK_INTERRUPTIBLE);
		}

		set_current_state(TASK_RUNNING);

		if (kthread_should_stop())
			return 0;

		kvm_recover_nx_lpages(kvm);
	}
}

int kvm_mmu_post_init_vm(struct kvm *kvm)
{
	int err;

	err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
					  "kvm-nx-lpage-recovery",
					  &kvm->arch.nx_lpage_recovery_thread);
	if (!err)
		kthread_unpark(kvm->arch.nx_lpage_recovery_thread);

	return err;
}

void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
{
	if (kvm->arch.nx_lpage_recovery_thread)
		kthread_stop(kvm->arch.nx_lpage_recovery_thread);
}