mmu.c 163.6 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
A
Avi Kivity 已提交
2 3 4 5 6 7 8 9 10
/*
 * Kernel-based Virtual Machine driver for Linux
 *
 * This module enables machines with Intel VT-x extensions to run virtual
 * machines without emulation or binary translation.
 *
 * MMU support
 *
 * Copyright (C) 2006 Qumranet, Inc.
N
Nicolas Kaiser 已提交
11
 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
A
Avi Kivity 已提交
12 13 14 15 16
 *
 * Authors:
 *   Yaniv Kamay  <yaniv@qumranet.com>
 *   Avi Kivity   <avi@qumranet.com>
 */
A
Avi Kivity 已提交
17

18
#include "irq.h"
19
#include "ioapic.h"
20
#include "mmu.h"
21
#include "mmu_internal.h"
22
#include "tdp_mmu.h"
23
#include "x86.h"
A
Avi Kivity 已提交
24
#include "kvm_cache_regs.h"
25
#include "kvm_emulate.h"
26
#include "cpuid.h"
27
#include "spte.h"
A
Avi Kivity 已提交
28

29
#include <linux/kvm_host.h>
A
Avi Kivity 已提交
30 31 32 33
#include <linux/types.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/highmem.h>
34 35
#include <linux/moduleparam.h>
#include <linux/export.h>
36
#include <linux/swap.h>
M
Marcelo Tosatti 已提交
37
#include <linux/hugetlb.h>
38
#include <linux/compiler.h>
39
#include <linux/srcu.h>
40
#include <linux/slab.h>
41
#include <linux/sched/signal.h>
42
#include <linux/uaccess.h>
43
#include <linux/hash.h>
44
#include <linux/kern_levels.h>
45
#include <linux/kthread.h>
A
Avi Kivity 已提交
46

A
Avi Kivity 已提交
47
#include <asm/page.h>
48
#include <asm/memtype.h>
A
Avi Kivity 已提交
49
#include <asm/cmpxchg.h>
50
#include <asm/io.h>
51
#include <asm/set_memory.h>
52
#include <asm/vmx.h>
53
#include <asm/kvm_page_track.h>
54
#include "trace.h"
A
Avi Kivity 已提交
55

56 57
#include "paging.h"

P
Paolo Bonzini 已提交
58 59
extern bool itlb_multihit_kvm_mitigation;

60
int __read_mostly nx_huge_pages = -1;
61 62 63 64
#ifdef CONFIG_PREEMPT_RT
/* Recovery can cause latency spikes, disable it for PREEMPT_RT.  */
static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
#else
65
static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
66
#endif
P
Paolo Bonzini 已提交
67 68

static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
69
static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp);
P
Paolo Bonzini 已提交
70

71
static const struct kernel_param_ops nx_huge_pages_ops = {
P
Paolo Bonzini 已提交
72 73 74 75
	.set = set_nx_huge_pages,
	.get = param_get_bool,
};

76
static const struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = {
77 78 79 80
	.set = set_nx_huge_pages_recovery_ratio,
	.get = param_get_uint,
};

P
Paolo Bonzini 已提交
81 82
module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
__MODULE_PARM_TYPE(nx_huge_pages, "bool");
83 84 85
module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops,
		&nx_huge_pages_recovery_ratio, 0644);
__MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
P
Paolo Bonzini 已提交
86

87 88 89
static bool __read_mostly force_flush_and_sync_on_reuse;
module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644);

90 91 92 93 94 95 96
/*
 * When setting this variable to true it enables Two-Dimensional-Paging
 * where the hardware walks 2 page tables:
 * 1. the guest-virtual to guest-physical
 * 2. while doing 1. it walks guest-physical to host-physical
 * If the hardware supports that we don't need to do shadow paging.
 */
97
bool tdp_enabled = false;
98

99
static int max_huge_page_level __read_mostly;
100
static int max_tdp_level __read_mostly;
101

102 103 104 105
enum {
	AUDIT_PRE_PAGE_FAULT,
	AUDIT_POST_PAGE_FAULT,
	AUDIT_PRE_PTE_WRITE,
106 107 108
	AUDIT_POST_PTE_WRITE,
	AUDIT_PRE_SYNC,
	AUDIT_POST_SYNC
109
};
110 111

#ifdef MMU_DEBUG
112
bool dbg = 0;
113
module_param(dbg, bool, 0644);
114
#endif
A
Avi Kivity 已提交
115

116 117
#define PTE_PREFETCH_NUM		8

A
Avi Kivity 已提交
118 119 120
#define PT32_LEVEL_BITS 10

#define PT32_LEVEL_SHIFT(level) \
M
Mike Day 已提交
121
		(PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
A
Avi Kivity 已提交
122

123 124 125
#define PT32_LVL_OFFSET_MASK(level) \
	(PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
126 127 128 129 130 131 132 133

#define PT32_INDEX(address, level)\
	(((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))


#define PT32_BASE_ADDR_MASK PAGE_MASK
#define PT32_DIR_BASE_ADDR_MASK \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
134 135 136
#define PT32_LVL_ADDR_MASK(level) \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
					    * PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
137

138 139
#include <trace/events/kvm.h>

140
/* make pte_list_desc fit well in cache lines */
141
#define PTE_LIST_EXT 14
142

143 144 145 146 147
/*
 * Slight optimization of cacheline layout, by putting `more' and `spte_count'
 * at the start; then accessing it will only use one single cacheline for
 * either full (entries==PTE_LIST_EXT) case or entries<=6.
 */
148 149
struct pte_list_desc {
	struct pte_list_desc *more;
150 151 152 153 154 155
	/*
	 * Stores number of entries stored in the pte_list_desc.  No need to be
	 * u64 but just for easier alignment.  When PTE_LIST_EXT, means full.
	 */
	u64 spte_count;
	u64 *sptes[PTE_LIST_EXT];
156 157
};

158 159 160 161
struct kvm_shadow_walk_iterator {
	u64 addr;
	hpa_t shadow_addr;
	u64 *sptep;
162
	int level;
163 164 165
	unsigned index;
};

166 167 168 169 170 171 172
#define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker)     \
	for (shadow_walk_init_using_root(&(_walker), (_vcpu),              \
					 (_root), (_addr));                \
	     shadow_walk_okay(&(_walker));			           \
	     shadow_walk_next(&(_walker)))

#define for_each_shadow_entry(_vcpu, _addr, _walker)            \
173 174 175 176
	for (shadow_walk_init(&(_walker), _vcpu, _addr);	\
	     shadow_walk_okay(&(_walker));			\
	     shadow_walk_next(&(_walker)))

177 178 179 180 181 182
#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)	\
	for (shadow_walk_init(&(_walker), _vcpu, _addr);		\
	     shadow_walk_okay(&(_walker)) &&				\
		({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });	\
	     __shadow_walk_next(&(_walker), spte))

183
static struct kmem_cache *pte_list_desc_cache;
184
struct kmem_cache *mmu_page_header_cache;
185
static struct percpu_counter kvm_total_used_mmu_pages;
186

187
static void mmu_spte_set(u64 *sptep, u64 spte);
188 189
static union kvm_mmu_page_role
kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
190

191 192 193 194 195 196
struct kvm_mmu_role_regs {
	const unsigned long cr0;
	const unsigned long cr4;
	const u64 efer;
};

197 198 199
#define CREATE_TRACE_POINTS
#include "mmutrace.h"

200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
/*
 * Yes, lot's of underscores.  They're a hint that you probably shouldn't be
 * reading from the role_regs.  Once the mmu_role is constructed, it becomes
 * the single source of truth for the MMU's state.
 */
#define BUILD_MMU_ROLE_REGS_ACCESSOR(reg, name, flag)			\
static inline bool ____is_##reg##_##name(struct kvm_mmu_role_regs *regs)\
{									\
	return !!(regs->reg & flag);					\
}
BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, pg, X86_CR0_PG);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, wp, X86_CR0_WP);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pse, X86_CR4_PSE);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pae, X86_CR4_PAE);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smep, X86_CR4_SMEP);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smap, X86_CR4_SMAP);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pke, X86_CR4_PKE);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, la57, X86_CR4_LA57);
BUILD_MMU_ROLE_REGS_ACCESSOR(efer, nx, EFER_NX);
BUILD_MMU_ROLE_REGS_ACCESSOR(efer, lma, EFER_LMA);

221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
/*
 * The MMU itself (with a valid role) is the single source of truth for the
 * MMU.  Do not use the regs used to build the MMU/role, nor the vCPU.  The
 * regs don't account for dependencies, e.g. clearing CR4 bits if CR0.PG=1,
 * and the vCPU may be incorrect/irrelevant.
 */
#define BUILD_MMU_ROLE_ACCESSOR(base_or_ext, reg, name)		\
static inline bool is_##reg##_##name(struct kvm_mmu *mmu)	\
{								\
	return !!(mmu->mmu_role. base_or_ext . reg##_##name);	\
}
BUILD_MMU_ROLE_ACCESSOR(ext,  cr0, pg);
BUILD_MMU_ROLE_ACCESSOR(base, cr0, wp);
BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, pse);
BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, pae);
BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, smep);
BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, smap);
BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, pke);
BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, la57);
BUILD_MMU_ROLE_ACCESSOR(base, efer, nx);

242 243 244 245 246 247 248 249 250 251
static struct kvm_mmu_role_regs vcpu_to_role_regs(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu_role_regs regs = {
		.cr0 = kvm_read_cr0_bits(vcpu, KVM_MMU_CR0_ROLE_BITS),
		.cr4 = kvm_read_cr4_bits(vcpu, KVM_MMU_CR4_ROLE_BITS),
		.efer = vcpu->arch.efer,
	};

	return regs;
}
252

253 254 255 256 257 258 259 260 261 262 263 264
static int role_regs_to_root_level(struct kvm_mmu_role_regs *regs)
{
	if (!____is_cr0_pg(regs))
		return 0;
	else if (____is_efer_lma(regs))
		return ____is_cr4_la57(regs) ? PT64_ROOT_5LEVEL :
					       PT64_ROOT_4LEVEL;
	else if (____is_cr4_pae(regs))
		return PT32E_ROOT_LEVEL;
	else
		return PT32_ROOT_LEVEL;
}
265 266 267

static inline bool kvm_available_flush_tlb_with_range(void)
{
268
	return kvm_x86_ops.tlb_remote_flush_with_range;
269 270 271 272 273 274 275
}

static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
		struct kvm_tlb_range *range)
{
	int ret = -ENOTSUPP;

276
	if (range && kvm_x86_ops.tlb_remote_flush_with_range)
277
		ret = static_call(kvm_x86_tlb_remote_flush_with_range)(kvm, range);
278 279 280 281 282

	if (ret)
		kvm_flush_remote_tlbs(kvm);
}

283
void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
284 285 286 287 288 289 290 291 292 293
		u64 start_gfn, u64 pages)
{
	struct kvm_tlb_range range;

	range.start_gfn = start_gfn;
	range.pages = pages;

	kvm_flush_remote_tlbs_with_range(kvm, &range);
}

294 295 296
static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
			   unsigned int access)
{
297
	u64 spte = make_mmio_spte(vcpu, gfn, access);
298

299 300
	trace_mark_mmio_spte(sptep, gfn, spte);
	mmu_spte_set(sptep, spte);
301 302 303 304
}

static gfn_t get_mmio_spte_gfn(u64 spte)
{
305
	u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
306

307
	gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)
308 309 310
	       & shadow_nonpresent_or_rsvd_mask;

	return gpa >> PAGE_SHIFT;
311 312 313 314
}

static unsigned get_mmio_spte_access(u64 spte)
{
315
	return spte & shadow_mmio_access_mask;
316 317
}

318
static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
319
{
320
	u64 kvm_gen, spte_gen, gen;
321

322 323 324
	gen = kvm_vcpu_memslots(vcpu)->generation;
	if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
		return false;
325

326
	kvm_gen = gen & MMIO_SPTE_GEN_MASK;
327 328 329 330
	spte_gen = get_mmio_spte_generation(spte);

	trace_check_mmio_spte(spte, kvm_gen, spte_gen);
	return likely(kvm_gen == spte_gen);
331 332
}

333 334 335
static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
                                  struct x86_exception *exception)
{
336
	/* Check if guest physical address doesn't exceed guest maximum */
337
	if (kvm_vcpu_is_illegal_gpa(vcpu, gpa)) {
338 339 340 341
		exception->error_code |= PFERR_RSVD_MASK;
		return UNMAPPED_GVA;
	}

342 343 344
        return gpa;
}

A
Avi Kivity 已提交
345 346 347 348 349
static int is_cpuid_PSE36(void)
{
	return 1;
}

350 351 352 353 354 355 356
static gfn_t pse36_gfn_delta(u32 gpte)
{
	int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;

	return (gpte & PT32_DIR_PSE36_MASK) << shift;
}

357
#ifdef CONFIG_X86_64
A
Avi Kivity 已提交
358
static void __set_spte(u64 *sptep, u64 spte)
359
{
360
	WRITE_ONCE(*sptep, spte);
361 362
}

363
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
364
{
365
	WRITE_ONCE(*sptep, spte);
366 367 368 369 370 371
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	return xchg(sptep, spte);
}
372 373 374

static u64 __get_spte_lockless(u64 *sptep)
{
375
	return READ_ONCE(*sptep);
376
}
377
#else
378 379 380 381 382 383 384
union split_spte {
	struct {
		u32 spte_low;
		u32 spte_high;
	};
	u64 spte;
};
385

386 387
static void count_spte_clear(u64 *sptep, u64 spte)
{
388
	struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
389 390 391 392 393 394 395 396 397

	if (is_shadow_present_pte(spte))
		return;

	/* Ensure the spte is completely set before we increase the count */
	smp_wmb();
	sp->clear_spte_count++;
}

398 399 400
static void __set_spte(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;
401

402 403 404 405 406 407 408 409 410 411 412 413
	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	ssptep->spte_high = sspte.spte_high;

	/*
	 * If we map the spte from nonpresent to present, We should store
	 * the high bits firstly, then set present bit, so cpu can not
	 * fetch this spte while we are setting the spte.
	 */
	smp_wmb();

414
	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
415 416
}

417 418 419 420 421 422 423
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

424
	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
425 426 427 428 429 430 431 432

	/*
	 * If we map the spte from present to nonpresent, we should clear
	 * present bit firstly to avoid vcpu fetch the old high bits.
	 */
	smp_wmb();

	ssptep->spte_high = sspte.spte_high;
433
	count_spte_clear(sptep, spte);
434 435 436 437 438 439 440 441 442 443 444
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte, orig;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	/* xchg acts as a barrier before the setting of the high bits */
	orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
445 446
	orig.spte_high = ssptep->spte_high;
	ssptep->spte_high = sspte.spte_high;
447
	count_spte_clear(sptep, spte);
448 449 450

	return orig.spte;
}
451 452 453

/*
 * The idea using the light way get the spte on x86_32 guest is from
454
 * gup_get_pte (mm/gup.c).
455 456 457 458 459 460 461 462 463 464 465 466 467 468
 *
 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
 * coalesces them and we are running out of the MMU lock.  Therefore
 * we need to protect against in-progress updates of the spte.
 *
 * Reading the spte while an update is in progress may get the old value
 * for the high part of the spte.  The race is fine for a present->non-present
 * change (because the high part of the spte is ignored for non-present spte),
 * but for a present->present change we must reread the spte.
 *
 * All such changes are done in two steps (present->non-present and
 * non-present->present), hence it is enough to count the number of
 * present->non-present updates: if it changed while reading the spte,
 * we might have hit the race.  This is done using clear_spte_count.
469 470 471
 */
static u64 __get_spte_lockless(u64 *sptep)
{
472
	struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
	union split_spte spte, *orig = (union split_spte *)sptep;
	int count;

retry:
	count = sp->clear_spte_count;
	smp_rmb();

	spte.spte_low = orig->spte_low;
	smp_rmb();

	spte.spte_high = orig->spte_high;
	smp_rmb();

	if (unlikely(spte.spte_low != orig->spte_low ||
	      count != sp->clear_spte_count))
		goto retry;

	return spte.spte;
}
492 493
#endif

494 495
static bool spte_has_volatile_bits(u64 spte)
{
496 497 498
	if (!is_shadow_present_pte(spte))
		return false;

499
	/*
500
	 * Always atomically update spte if it can be updated
501 502 503 504
	 * out of mmu-lock, it can ensure dirty bit is not lost,
	 * also, it can help us to get a stable is_writable_pte()
	 * to ensure tlb flush is not missed.
	 */
505 506
	if (spte_can_locklessly_be_made_writable(spte) ||
	    is_access_track_spte(spte))
507 508
		return true;

509
	if (spte_ad_enabled(spte)) {
510 511 512 513
		if ((spte & shadow_accessed_mask) == 0 ||
	    	    (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
			return true;
	}
514

515
	return false;
516 517
}

518 519 520 521 522 523 524 525 526 527 528 529
/* Rules for using mmu_spte_set:
 * Set the sptep from nonpresent to present.
 * Note: the sptep being assigned *must* be either not present
 * or in a state where the hardware will not attempt to update
 * the spte.
 */
static void mmu_spte_set(u64 *sptep, u64 new_spte)
{
	WARN_ON(is_shadow_present_pte(*sptep));
	__set_spte(sptep, new_spte);
}

530 531 532
/*
 * Update the SPTE (excluding the PFN), but do not track changes in its
 * accessed/dirty status.
533
 */
534
static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
535
{
536
	u64 old_spte = *sptep;
537

538
	WARN_ON(!is_shadow_present_pte(new_spte));
539

540 541
	if (!is_shadow_present_pte(old_spte)) {
		mmu_spte_set(sptep, new_spte);
542
		return old_spte;
543
	}
544

545
	if (!spte_has_volatile_bits(old_spte))
546
		__update_clear_spte_fast(sptep, new_spte);
547
	else
548
		old_spte = __update_clear_spte_slow(sptep, new_spte);
549

550 551
	WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));

552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
	return old_spte;
}

/* Rules for using mmu_spte_update:
 * Update the state bits, it means the mapped pfn is not changed.
 *
 * Whenever we overwrite a writable spte with a read-only one we
 * should flush remote TLBs. Otherwise rmap_write_protect
 * will find a read-only spte, even though the writable spte
 * might be cached on a CPU's TLB, the return value indicates this
 * case.
 *
 * Returns true if the TLB needs to be flushed
 */
static bool mmu_spte_update(u64 *sptep, u64 new_spte)
{
	bool flush = false;
	u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);

	if (!is_shadow_present_pte(old_spte))
		return false;

574 575
	/*
	 * For the spte updated out of mmu-lock is safe, since
576
	 * we always atomically update it, see the comments in
577 578
	 * spte_has_volatile_bits().
	 */
579
	if (spte_can_locklessly_be_made_writable(old_spte) &&
580
	      !is_writable_pte(new_spte))
581
		flush = true;
582

583
	/*
584
	 * Flush TLB when accessed/dirty states are changed in the page tables,
585 586 587
	 * to guarantee consistency between TLB and page tables.
	 */

588 589
	if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
		flush = true;
590
		kvm_set_pfn_accessed(spte_to_pfn(old_spte));
591 592 593 594
	}

	if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
		flush = true;
595
		kvm_set_pfn_dirty(spte_to_pfn(old_spte));
596
	}
597

598
	return flush;
599 600
}

601 602 603 604
/*
 * Rules for using mmu_spte_clear_track_bits:
 * It sets the sptep from present to nonpresent, and track the
 * state bits, it is used to clear the last level sptep.
605
 * Returns the old PTE.
606
 */
607
static u64 mmu_spte_clear_track_bits(u64 *sptep)
608
{
D
Dan Williams 已提交
609
	kvm_pfn_t pfn;
610 611 612
	u64 old_spte = *sptep;

	if (!spte_has_volatile_bits(old_spte))
613
		__update_clear_spte_fast(sptep, 0ull);
614
	else
615
		old_spte = __update_clear_spte_slow(sptep, 0ull);
616

617
	if (!is_shadow_present_pte(old_spte))
618
		return old_spte;
619 620

	pfn = spte_to_pfn(old_spte);
621 622 623 624 625 626

	/*
	 * KVM does not hold the refcount of the page used by
	 * kvm mmu, before reclaiming the page, we should
	 * unmap it from mmu first.
	 */
627
	WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
628

629
	if (is_accessed_spte(old_spte))
630
		kvm_set_pfn_accessed(pfn);
631 632

	if (is_dirty_spte(old_spte))
633
		kvm_set_pfn_dirty(pfn);
634

635
	return old_spte;
636 637 638 639 640 641 642 643 644
}

/*
 * Rules for using mmu_spte_clear_no_track:
 * Directly clear spte without caring the state bits of sptep,
 * it is used to set the upper level spte.
 */
static void mmu_spte_clear_no_track(u64 *sptep)
{
645
	__update_clear_spte_fast(sptep, 0ull);
646 647
}

648 649 650 651 652
static u64 mmu_spte_get_lockless(u64 *sptep)
{
	return __get_spte_lockless(sptep);
}

653 654 655 656
/* Restore an acc-track PTE back to a regular PTE */
static u64 restore_acc_track_spte(u64 spte)
{
	u64 new_spte = spte;
657 658
	u64 saved_bits = (spte >> SHADOW_ACC_TRACK_SAVED_BITS_SHIFT)
			 & SHADOW_ACC_TRACK_SAVED_BITS_MASK;
659

660
	WARN_ON_ONCE(spte_ad_enabled(spte));
661 662 663
	WARN_ON_ONCE(!is_access_track_spte(spte));

	new_spte &= ~shadow_acc_track_mask;
664 665
	new_spte &= ~(SHADOW_ACC_TRACK_SAVED_BITS_MASK <<
		      SHADOW_ACC_TRACK_SAVED_BITS_SHIFT);
666 667 668 669 670
	new_spte |= saved_bits;

	return new_spte;
}

671 672 673 674 675 676 677 678
/* Returns the Accessed status of the PTE and resets it at the same time. */
static bool mmu_spte_age(u64 *sptep)
{
	u64 spte = mmu_spte_get_lockless(sptep);

	if (!is_accessed_spte(spte))
		return false;

679
	if (spte_ad_enabled(spte)) {
680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
		clear_bit((ffs(shadow_accessed_mask) - 1),
			  (unsigned long *)sptep);
	} else {
		/*
		 * Capture the dirty status of the page, so that it doesn't get
		 * lost when the SPTE is marked for access tracking.
		 */
		if (is_writable_pte(spte))
			kvm_set_pfn_dirty(spte_to_pfn(spte));

		spte = mark_spte_for_access_track(spte);
		mmu_spte_update_no_track(sptep, spte);
	}

	return true;
}

697 698
static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
{
699 700 701 702 703 704 705 706
	if (is_tdp_mmu(vcpu->arch.mmu)) {
		kvm_tdp_mmu_walk_lockless_begin();
	} else {
		/*
		 * Prevent page table teardown by making any free-er wait during
		 * kvm_flush_remote_tlbs() IPI to all active vcpus.
		 */
		local_irq_disable();
707

708 709 710 711 712 713
		/*
		 * Make sure a following spte read is not reordered ahead of the write
		 * to vcpu->mode.
		 */
		smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
	}
714 715 716 717
}

static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
{
718 719 720 721 722 723 724 725 726 727 728
	if (is_tdp_mmu(vcpu->arch.mmu)) {
		kvm_tdp_mmu_walk_lockless_end();
	} else {
		/*
		 * Make sure the write to vcpu->mode is not reordered in front of
		 * reads to sptes.  If it does, kvm_mmu_commit_zap_page() can see us
		 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
		 */
		smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
		local_irq_enable();
	}
729 730
}

731
static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect)
732
{
733 734
	int r;

735
	/* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */
736 737
	r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
				       1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM);
738
	if (r)
739
		return r;
740 741
	r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache,
				       PT64_ROOT_MAX_LEVEL);
742
	if (r)
743
		return r;
744
	if (maybe_indirect) {
745 746
		r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_gfn_array_cache,
					       PT64_ROOT_MAX_LEVEL);
747 748 749
		if (r)
			return r;
	}
750 751
	return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
					  PT64_ROOT_MAX_LEVEL);
752 753 754 755
}

static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
{
756 757 758 759
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache);
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache);
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_gfn_array_cache);
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
760 761
}

762
static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
763
{
764
	return kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
765 766
}

767
static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
768
{
769
	kmem_cache_free(pte_list_desc_cache, pte_list_desc);
770 771
}

772 773 774 775 776 777 778 779 780 781
static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
{
	if (!sp->role.direct)
		return sp->gfns[index];

	return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
}

static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
{
782
	if (!sp->role.direct) {
783
		sp->gfns[index] = gfn;
784 785 786 787 788 789 790 791
		return;
	}

	if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
		pr_err_ratelimited("gfn mismatch under direct page %llx "
				   "(expected %llx, got %llx)\n",
				   sp->gfn,
				   kvm_mmu_page_get_gfn(sp, index), gfn);
792 793
}

M
Marcelo Tosatti 已提交
794
/*
795 796
 * Return the pointer to the large page information for a given gfn,
 * handling slots that are not large page aligned.
M
Marcelo Tosatti 已提交
797
 */
798
static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
799
		const struct kvm_memory_slot *slot, int level)
M
Marcelo Tosatti 已提交
800 801 802
{
	unsigned long idx;

803
	idx = gfn_to_index(gfn, slot->base_gfn, level);
804
	return &slot->arch.lpage_info[level - 2][idx];
M
Marcelo Tosatti 已提交
805 806
}

807
static void update_gfn_disallow_lpage_count(const struct kvm_memory_slot *slot,
808 809 810 811 812
					    gfn_t gfn, int count)
{
	struct kvm_lpage_info *linfo;
	int i;

813
	for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
814 815 816 817 818 819
		linfo = lpage_info_slot(gfn, slot, i);
		linfo->disallow_lpage += count;
		WARN_ON(linfo->disallow_lpage < 0);
	}
}

820
void kvm_mmu_gfn_disallow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn)
821 822 823 824
{
	update_gfn_disallow_lpage_count(slot, gfn, 1);
}

825
void kvm_mmu_gfn_allow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn)
826 827 828 829
{
	update_gfn_disallow_lpage_count(slot, gfn, -1);
}

830
static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
M
Marcelo Tosatti 已提交
831
{
832
	struct kvm_memslots *slots;
833
	struct kvm_memory_slot *slot;
834
	gfn_t gfn;
M
Marcelo Tosatti 已提交
835

836
	kvm->arch.indirect_shadow_pages++;
837
	gfn = sp->gfn;
838 839
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
840 841

	/* the non-leaf shadow pages are keeping readonly. */
842
	if (sp->role.level > PG_LEVEL_4K)
843 844 845
		return kvm_slot_page_track_add_page(kvm, slot, gfn,
						    KVM_PAGE_TRACK_WRITE);

846
	kvm_mmu_gfn_disallow_lpage(slot, gfn);
M
Marcelo Tosatti 已提交
847 848
}

849
void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
P
Paolo Bonzini 已提交
850 851 852 853 854
{
	if (sp->lpage_disallowed)
		return;

	++kvm->stat.nx_lpage_splits;
855 856
	list_add_tail(&sp->lpage_disallowed_link,
		      &kvm->arch.lpage_disallowed_mmu_pages);
P
Paolo Bonzini 已提交
857 858 859
	sp->lpage_disallowed = true;
}

860
static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
M
Marcelo Tosatti 已提交
861
{
862
	struct kvm_memslots *slots;
863
	struct kvm_memory_slot *slot;
864
	gfn_t gfn;
M
Marcelo Tosatti 已提交
865

866
	kvm->arch.indirect_shadow_pages--;
867
	gfn = sp->gfn;
868 869
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
870
	if (sp->role.level > PG_LEVEL_4K)
871 872 873
		return kvm_slot_page_track_remove_page(kvm, slot, gfn,
						       KVM_PAGE_TRACK_WRITE);

874
	kvm_mmu_gfn_allow_lpage(slot, gfn);
M
Marcelo Tosatti 已提交
875 876
}

877
void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
P
Paolo Bonzini 已提交
878 879 880
{
	--kvm->stat.nx_lpage_splits;
	sp->lpage_disallowed = false;
881
	list_del(&sp->lpage_disallowed_link);
P
Paolo Bonzini 已提交
882 883
}

884 885 886
static struct kvm_memory_slot *
gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
			    bool no_dirty_log)
M
Marcelo Tosatti 已提交
887 888
{
	struct kvm_memory_slot *slot;
889

890
	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
891 892
	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
		return NULL;
893
	if (no_dirty_log && kvm_slot_dirty_track_enabled(slot))
894
		return NULL;
895 896 897 898

	return slot;
}

899
/*
900
 * About rmap_head encoding:
901
 *
902 903
 * If the bit zero of rmap_head->val is clear, then it points to the only spte
 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
904
 * pte_list_desc containing more mappings.
905 906 907 908
 */

/*
 * Returns the number of pointers in the rmap chain, not counting the new one.
909
 */
910
static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
911
			struct kvm_rmap_head *rmap_head)
912
{
913
	struct pte_list_desc *desc;
914
	int count = 0;
915

916
	if (!rmap_head->val) {
917
		rmap_printk("%p %llx 0->1\n", spte, *spte);
918 919
		rmap_head->val = (unsigned long)spte;
	} else if (!(rmap_head->val & 1)) {
920
		rmap_printk("%p %llx 1->many\n", spte, *spte);
921
		desc = mmu_alloc_pte_list_desc(vcpu);
922
		desc->sptes[0] = (u64 *)rmap_head->val;
A
Avi Kivity 已提交
923
		desc->sptes[1] = spte;
924
		desc->spte_count = 2;
925
		rmap_head->val = (unsigned long)desc | 1;
926
		++count;
927
	} else {
928
		rmap_printk("%p %llx many->many\n", spte, *spte);
929
		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
930
		while (desc->spte_count == PTE_LIST_EXT) {
931
			count += PTE_LIST_EXT;
932 933 934
			if (!desc->more) {
				desc->more = mmu_alloc_pte_list_desc(vcpu);
				desc = desc->more;
935
				desc->spte_count = 0;
936 937
				break;
			}
938 939
			desc = desc->more;
		}
940 941
		count += desc->spte_count;
		desc->sptes[desc->spte_count++] = spte;
942
	}
943
	return count;
944 945
}

946
static void
947 948 949
pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
			   struct pte_list_desc *desc, int i,
			   struct pte_list_desc *prev_desc)
950
{
951
	int j = desc->spte_count - 1;
952

A
Avi Kivity 已提交
953 954
	desc->sptes[i] = desc->sptes[j];
	desc->sptes[j] = NULL;
955 956
	desc->spte_count--;
	if (desc->spte_count)
957 958
		return;
	if (!prev_desc && !desc->more)
959
		rmap_head->val = 0;
960 961 962 963
	else
		if (prev_desc)
			prev_desc->more = desc->more;
		else
964
			rmap_head->val = (unsigned long)desc->more | 1;
965
	mmu_free_pte_list_desc(desc);
966 967
}

968
static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
969
{
970 971
	struct pte_list_desc *desc;
	struct pte_list_desc *prev_desc;
972 973
	int i;

974
	if (!rmap_head->val) {
975
		pr_err("%s: %p 0->BUG\n", __func__, spte);
976
		BUG();
977
	} else if (!(rmap_head->val & 1)) {
978
		rmap_printk("%p 1->0\n", spte);
979
		if ((u64 *)rmap_head->val != spte) {
980
			pr_err("%s:  %p 1->BUG\n", __func__, spte);
981 982
			BUG();
		}
983
		rmap_head->val = 0;
984
	} else {
985
		rmap_printk("%p many->many\n", spte);
986
		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
987 988
		prev_desc = NULL;
		while (desc) {
989
			for (i = 0; i < desc->spte_count; ++i) {
A
Avi Kivity 已提交
990
				if (desc->sptes[i] == spte) {
991 992
					pte_list_desc_remove_entry(rmap_head,
							desc, i, prev_desc);
993 994
					return;
				}
995
			}
996 997 998
			prev_desc = desc;
			desc = desc->more;
		}
999
		pr_err("%s: %p many->many\n", __func__, spte);
1000 1001 1002 1003
		BUG();
	}
}

1004 1005 1006 1007 1008 1009
static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep)
{
	mmu_spte_clear_track_bits(sptep);
	__pte_list_remove(sptep, rmap_head);
}

1010
static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
1011
					   const struct kvm_memory_slot *slot)
1012
{
1013
	unsigned long idx;
1014

1015
	idx = gfn_to_index(gfn, slot->base_gfn, level);
1016
	return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
1017 1018
}

1019 1020
static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
					 struct kvm_mmu_page *sp)
1021
{
1022
	struct kvm_memslots *slots;
1023 1024
	struct kvm_memory_slot *slot;

1025 1026
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
1027
	return __gfn_to_rmap(gfn, sp->role.level, slot);
1028 1029
}

1030 1031
static bool rmap_can_add(struct kvm_vcpu *vcpu)
{
1032
	struct kvm_mmu_memory_cache *mc;
1033

1034
	mc = &vcpu->arch.mmu_pte_list_desc_cache;
1035
	return kvm_mmu_memory_cache_nr_free_objects(mc);
1036 1037
}

1038 1039 1040
static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
{
	struct kvm_mmu_page *sp;
1041
	struct kvm_rmap_head *rmap_head;
1042

1043
	sp = sptep_to_sp(spte);
1044
	kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1045 1046
	rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
	return pte_list_add(vcpu, spte, rmap_head);
1047 1048 1049 1050 1051 1052
}

static void rmap_remove(struct kvm *kvm, u64 *spte)
{
	struct kvm_mmu_page *sp;
	gfn_t gfn;
1053
	struct kvm_rmap_head *rmap_head;
1054

1055
	sp = sptep_to_sp(spte);
1056
	gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1057
	rmap_head = gfn_to_rmap(kvm, gfn, sp);
1058
	__pte_list_remove(spte, rmap_head);
1059 1060
}

1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
/*
 * Used by the following functions to iterate through the sptes linked by a
 * rmap.  All fields are private and not assumed to be used outside.
 */
struct rmap_iterator {
	/* private fields */
	struct pte_list_desc *desc;	/* holds the sptep if not NULL */
	int pos;			/* index of the sptep */
};

/*
 * Iteration must be started by this function.  This should also be used after
 * removing/dropping sptes from the rmap link because in such cases the
M
Miaohe Lin 已提交
1074
 * information in the iterator may not be valid.
1075 1076 1077
 *
 * Returns sptep if found, NULL otherwise.
 */
1078 1079
static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
			   struct rmap_iterator *iter)
1080
{
1081 1082
	u64 *sptep;

1083
	if (!rmap_head->val)
1084 1085
		return NULL;

1086
	if (!(rmap_head->val & 1)) {
1087
		iter->desc = NULL;
1088 1089
		sptep = (u64 *)rmap_head->val;
		goto out;
1090 1091
	}

1092
	iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1093
	iter->pos = 0;
1094 1095 1096 1097
	sptep = iter->desc->sptes[iter->pos];
out:
	BUG_ON(!is_shadow_present_pte(*sptep));
	return sptep;
1098 1099 1100 1101 1102 1103 1104 1105 1106
}

/*
 * Must be used with a valid iterator: e.g. after rmap_get_first().
 *
 * Returns sptep if found, NULL otherwise.
 */
static u64 *rmap_get_next(struct rmap_iterator *iter)
{
1107 1108
	u64 *sptep;

1109 1110 1111 1112 1113
	if (iter->desc) {
		if (iter->pos < PTE_LIST_EXT - 1) {
			++iter->pos;
			sptep = iter->desc->sptes[iter->pos];
			if (sptep)
1114
				goto out;
1115 1116 1117 1118 1119 1120 1121
		}

		iter->desc = iter->desc->more;

		if (iter->desc) {
			iter->pos = 0;
			/* desc->sptes[0] cannot be NULL */
1122 1123
			sptep = iter->desc->sptes[iter->pos];
			goto out;
1124 1125 1126 1127
		}
	}

	return NULL;
1128 1129 1130
out:
	BUG_ON(!is_shadow_present_pte(*sptep));
	return sptep;
1131 1132
}

1133 1134
#define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)			\
	for (_spte_ = rmap_get_first(_rmap_head_, _iter_);		\
1135
	     _spte_; _spte_ = rmap_get_next(_iter_))
1136

1137
static void drop_spte(struct kvm *kvm, u64 *sptep)
1138
{
1139 1140 1141
	u64 old_spte = mmu_spte_clear_track_bits(sptep);

	if (is_shadow_present_pte(old_spte))
1142
		rmap_remove(kvm, sptep);
A
Avi Kivity 已提交
1143 1144
}

1145 1146 1147 1148

static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
{
	if (is_large_pte(*sptep)) {
1149
		WARN_ON(sptep_to_sp(sptep)->role.level == PG_LEVEL_4K);
1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
		drop_spte(kvm, sptep);
		--kvm->stat.lpages;
		return true;
	}

	return false;
}

static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
{
1160
	if (__drop_large_spte(vcpu->kvm, sptep)) {
1161
		struct kvm_mmu_page *sp = sptep_to_sp(sptep);
1162 1163 1164 1165

		kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
			KVM_PAGES_PER_HPAGE(sp->role.level));
	}
1166 1167 1168
}

/*
1169
 * Write-protect on the specified @sptep, @pt_protect indicates whether
1170
 * spte write-protection is caused by protecting shadow page table.
1171
 *
T
Tiejun Chen 已提交
1172
 * Note: write protection is difference between dirty logging and spte
1173 1174 1175 1176 1177
 * protection:
 * - for dirty logging, the spte can be set to writable at anytime if
 *   its dirty bitmap is properly set.
 * - for spte protection, the spte can be writable only after unsync-ing
 *   shadow page.
1178
 *
1179
 * Return true if tlb need be flushed.
1180
 */
1181
static bool spte_write_protect(u64 *sptep, bool pt_protect)
1182 1183 1184
{
	u64 spte = *sptep;

1185
	if (!is_writable_pte(spte) &&
1186
	      !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1187 1188
		return false;

1189
	rmap_printk("spte %p %llx\n", sptep, *sptep);
1190

1191
	if (pt_protect)
1192
		spte &= ~shadow_mmu_writable_mask;
1193
	spte = spte & ~PT_WRITABLE_MASK;
1194

1195
	return mmu_spte_update(sptep, spte);
1196 1197
}

1198 1199
static bool __rmap_write_protect(struct kvm *kvm,
				 struct kvm_rmap_head *rmap_head,
1200
				 bool pt_protect)
1201
{
1202 1203
	u64 *sptep;
	struct rmap_iterator iter;
1204
	bool flush = false;
1205

1206
	for_each_rmap_spte(rmap_head, &iter, sptep)
1207
		flush |= spte_write_protect(sptep, pt_protect);
1208

1209
	return flush;
1210 1211
}

1212
static bool spte_clear_dirty(u64 *sptep)
1213 1214 1215
{
	u64 spte = *sptep;

1216
	rmap_printk("spte %p %llx\n", sptep, *sptep);
1217

1218
	MMU_WARN_ON(!spte_ad_enabled(spte));
1219 1220 1221 1222
	spte &= ~shadow_dirty_mask;
	return mmu_spte_update(sptep, spte);
}

1223
static bool spte_wrprot_for_clear_dirty(u64 *sptep)
1224 1225 1226
{
	bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
					       (unsigned long *)sptep);
1227
	if (was_writable && !spte_ad_enabled(*sptep))
1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
		kvm_set_pfn_dirty(spte_to_pfn(*sptep));

	return was_writable;
}

/*
 * Gets the GFN ready for another round of dirty logging by clearing the
 *	- D bit on ad-enabled SPTEs, and
 *	- W bit on ad-disabled SPTEs.
 * Returns true iff any D or W bits were cleared.
 */
1239
static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1240
			       const struct kvm_memory_slot *slot)
1241 1242 1243 1244 1245
{
	u64 *sptep;
	struct rmap_iterator iter;
	bool flush = false;

1246
	for_each_rmap_spte(rmap_head, &iter, sptep)
1247 1248
		if (spte_ad_need_write_protect(*sptep))
			flush |= spte_wrprot_for_clear_dirty(sptep);
1249
		else
1250
			flush |= spte_clear_dirty(sptep);
1251 1252 1253 1254

	return flush;
}

1255
/**
1256
 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1257 1258 1259 1260 1261
 * @kvm: kvm instance
 * @slot: slot to protect
 * @gfn_offset: start of the BITS_PER_LONG pages we care about
 * @mask: indicates which pages we should protect
 *
1262
 * Used when we do not need to care about huge page mappings.
1263
 */
1264
static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1265 1266
				     struct kvm_memory_slot *slot,
				     gfn_t gfn_offset, unsigned long mask)
1267
{
1268
	struct kvm_rmap_head *rmap_head;
1269

1270
	if (is_tdp_mmu_enabled(kvm))
1271 1272
		kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
				slot->base_gfn + gfn_offset, mask, true);
1273 1274 1275 1276

	if (!kvm_memslots_have_rmaps(kvm))
		return;

1277
	while (mask) {
1278
		rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1279
					  PG_LEVEL_4K, slot);
1280
		__rmap_write_protect(kvm, rmap_head, false);
M
Marcelo Tosatti 已提交
1281

1282 1283 1284
		/* clear the first set bit */
		mask &= mask - 1;
	}
1285 1286
}

1287
/**
1288 1289
 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
 * protect the page if the D-bit isn't supported.
1290 1291 1292 1293 1294 1295 1296
 * @kvm: kvm instance
 * @slot: slot to clear D-bit
 * @gfn_offset: start of the BITS_PER_LONG pages we care about
 * @mask: indicates which pages we should clear D-bit
 *
 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
 */
1297 1298 1299
static void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
					 struct kvm_memory_slot *slot,
					 gfn_t gfn_offset, unsigned long mask)
1300
{
1301
	struct kvm_rmap_head *rmap_head;
1302

1303
	if (is_tdp_mmu_enabled(kvm))
1304 1305
		kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
				slot->base_gfn + gfn_offset, mask, false);
1306 1307 1308 1309

	if (!kvm_memslots_have_rmaps(kvm))
		return;

1310
	while (mask) {
1311
		rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1312
					  PG_LEVEL_4K, slot);
1313
		__rmap_clear_dirty(kvm, rmap_head, slot);
1314 1315 1316 1317 1318 1319

		/* clear the first set bit */
		mask &= mask - 1;
	}
}

1320 1321 1322 1323 1324 1325 1326
/**
 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
 * PT level pages.
 *
 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
 * enable dirty logging for them.
 *
1327 1328
 * We need to care about huge page mappings: e.g. during dirty logging we may
 * have such mappings.
1329 1330 1331 1332 1333
 */
void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
				struct kvm_memory_slot *slot,
				gfn_t gfn_offset, unsigned long mask)
{
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
	/*
	 * Huge pages are NOT write protected when we start dirty logging in
	 * initially-all-set mode; must write protect them here so that they
	 * are split to 4K on the first write.
	 *
	 * The gfn_offset is guaranteed to be aligned to 64, but the base_gfn
	 * of memslot has no such restriction, so the range can cross two large
	 * pages.
	 */
	if (kvm_dirty_log_manual_protect_and_init_set(kvm)) {
		gfn_t start = slot->base_gfn + gfn_offset + __ffs(mask);
		gfn_t end = slot->base_gfn + gfn_offset + __fls(mask);

		kvm_mmu_slot_gfn_write_protect(kvm, slot, start, PG_LEVEL_2M);

		/* Cross two large pages? */
		if (ALIGN(start << PAGE_SHIFT, PMD_SIZE) !=
		    ALIGN(end << PAGE_SHIFT, PMD_SIZE))
			kvm_mmu_slot_gfn_write_protect(kvm, slot, end,
						       PG_LEVEL_2M);
	}

	/* Now handle 4K PTEs.  */
1357 1358
	if (kvm_x86_ops.cpu_dirty_log_size)
		kvm_mmu_clear_dirty_pt_masked(kvm, slot, gfn_offset, mask);
1359 1360
	else
		kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1361 1362
}

1363 1364
int kvm_cpu_dirty_log_size(void)
{
1365
	return kvm_x86_ops.cpu_dirty_log_size;
1366 1367
}

1368
bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1369 1370
				    struct kvm_memory_slot *slot, u64 gfn,
				    int min_level)
1371
{
1372
	struct kvm_rmap_head *rmap_head;
1373
	int i;
1374
	bool write_protected = false;
1375

1376 1377 1378 1379 1380
	if (kvm_memslots_have_rmaps(kvm)) {
		for (i = min_level; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
			rmap_head = __gfn_to_rmap(gfn, i, slot);
			write_protected |= __rmap_write_protect(kvm, rmap_head, true);
		}
1381 1382
	}

1383
	if (is_tdp_mmu_enabled(kvm))
1384
		write_protected |=
1385
			kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn, min_level);
1386

1387
	return write_protected;
1388 1389
}

1390 1391 1392 1393 1394
static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
{
	struct kvm_memory_slot *slot;

	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1395
	return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn, PG_LEVEL_4K);
1396 1397
}

1398
static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1399
			  const struct kvm_memory_slot *slot)
1400
{
1401 1402
	u64 *sptep;
	struct rmap_iterator iter;
1403
	bool flush = false;
1404

1405
	while ((sptep = rmap_get_first(rmap_head, &iter))) {
1406
		rmap_printk("spte %p %llx.\n", sptep, *sptep);
1407

1408
		pte_list_remove(rmap_head, sptep);
1409
		flush = true;
1410
	}
1411

1412 1413 1414
	return flush;
}

1415 1416 1417
static bool kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			    struct kvm_memory_slot *slot, gfn_t gfn, int level,
			    pte_t unused)
1418
{
1419
	return kvm_zap_rmapp(kvm, rmap_head, slot);
1420 1421
}

1422 1423 1424
static bool kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			      struct kvm_memory_slot *slot, gfn_t gfn, int level,
			      pte_t pte)
1425
{
1426 1427
	u64 *sptep;
	struct rmap_iterator iter;
1428
	int need_flush = 0;
1429
	u64 new_spte;
D
Dan Williams 已提交
1430
	kvm_pfn_t new_pfn;
1431

1432 1433
	WARN_ON(pte_huge(pte));
	new_pfn = pte_pfn(pte);
1434

1435
restart:
1436
	for_each_rmap_spte(rmap_head, &iter, sptep) {
1437
		rmap_printk("spte %p %llx gfn %llx (%d)\n",
1438
			    sptep, *sptep, gfn, level);
1439

1440
		need_flush = 1;
1441

1442
		if (pte_write(pte)) {
1443
			pte_list_remove(rmap_head, sptep);
1444
			goto restart;
1445
		} else {
1446 1447
			new_spte = kvm_mmu_changed_pte_notifier_make_spte(
					*sptep, new_pfn);
1448 1449 1450

			mmu_spte_clear_track_bits(sptep);
			mmu_spte_set(sptep, new_spte);
1451 1452
		}
	}
1453

1454 1455 1456 1457 1458
	if (need_flush && kvm_available_flush_tlb_with_range()) {
		kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
		return 0;
	}

1459
	return need_flush;
1460 1461
}

1462 1463
struct slot_rmap_walk_iterator {
	/* input fields. */
1464
	const struct kvm_memory_slot *slot;
1465 1466 1467 1468 1469 1470 1471
	gfn_t start_gfn;
	gfn_t end_gfn;
	int start_level;
	int end_level;

	/* output fields. */
	gfn_t gfn;
1472
	struct kvm_rmap_head *rmap;
1473 1474 1475
	int level;

	/* private field. */
1476
	struct kvm_rmap_head *end_rmap;
1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
};

static void
rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
{
	iterator->level = level;
	iterator->gfn = iterator->start_gfn;
	iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
	iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
					   iterator->slot);
}

static void
slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1491
		    const struct kvm_memory_slot *slot, int start_level,
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
		    int end_level, gfn_t start_gfn, gfn_t end_gfn)
{
	iterator->slot = slot;
	iterator->start_level = start_level;
	iterator->end_level = end_level;
	iterator->start_gfn = start_gfn;
	iterator->end_gfn = end_gfn;

	rmap_walk_init_level(iterator, iterator->start_level);
}

static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
{
	return !!iterator->rmap;
}

static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
{
	if (++iterator->rmap <= iterator->end_rmap) {
		iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
		return;
	}

	if (++iterator->level > iterator->end_level) {
		iterator->rmap = NULL;
		return;
	}

	rmap_walk_init_level(iterator, iterator->level);
}

#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,	\
	   _start_gfn, _end_gfn, _iter_)				\
	for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,		\
				 _end_level_, _start_gfn, _end_gfn);	\
	     slot_rmap_walk_okay(_iter_);				\
	     slot_rmap_walk_next(_iter_))

1530 1531 1532
typedef bool (*rmap_handler_t)(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			       struct kvm_memory_slot *slot, gfn_t gfn,
			       int level, pte_t pte);
1533

1534 1535 1536
static __always_inline bool kvm_handle_gfn_range(struct kvm *kvm,
						 struct kvm_gfn_range *range,
						 rmap_handler_t handler)
1537
{
1538
	struct slot_rmap_walk_iterator iterator;
1539
	bool ret = false;
1540

1541 1542 1543 1544
	for_each_slot_rmap_range(range->slot, PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL,
				 range->start, range->end - 1, &iterator)
		ret |= handler(kvm, iterator.rmap, range->slot, iterator.gfn,
			       iterator.level, range->pte);
1545

1546
	return ret;
1547 1548
}

1549
bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
1550
{
1551
	bool flush = false;
1552

1553 1554
	if (kvm_memslots_have_rmaps(kvm))
		flush = kvm_handle_gfn_range(kvm, range, kvm_unmap_rmapp);
1555

1556
	if (is_tdp_mmu_enabled(kvm))
1557
		flush |= kvm_tdp_mmu_unmap_gfn_range(kvm, range, flush);
1558

1559
	return flush;
1560 1561
}

1562
bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1563
{
1564
	bool flush = false;
1565

1566 1567
	if (kvm_memslots_have_rmaps(kvm))
		flush = kvm_handle_gfn_range(kvm, range, kvm_set_pte_rmapp);
1568

1569
	if (is_tdp_mmu_enabled(kvm))
1570
		flush |= kvm_tdp_mmu_set_spte_gfn(kvm, range);
1571

1572
	return flush;
1573 1574
}

1575 1576 1577
static bool kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			  struct kvm_memory_slot *slot, gfn_t gfn, int level,
			  pte_t unused)
1578
{
1579
	u64 *sptep;
1580
	struct rmap_iterator iter;
1581 1582
	int young = 0;

1583 1584
	for_each_rmap_spte(rmap_head, &iter, sptep)
		young |= mmu_spte_age(sptep);
1585

1586 1587 1588
	return young;
}

1589 1590 1591
static bool kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			       struct kvm_memory_slot *slot, gfn_t gfn,
			       int level, pte_t unused)
A
Andrea Arcangeli 已提交
1592
{
1593 1594
	u64 *sptep;
	struct rmap_iterator iter;
A
Andrea Arcangeli 已提交
1595

1596 1597 1598 1599
	for_each_rmap_spte(rmap_head, &iter, sptep)
		if (is_accessed_spte(*sptep))
			return 1;
	return 0;
A
Andrea Arcangeli 已提交
1600 1601
}

1602 1603
#define RMAP_RECYCLE_THRESHOLD 1000

1604
static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1605
{
1606
	struct kvm_rmap_head *rmap_head;
1607 1608
	struct kvm_mmu_page *sp;

1609
	sp = sptep_to_sp(spte);
1610

1611
	rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1612

1613
	kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, __pte(0));
1614 1615
	kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
			KVM_PAGES_PER_HPAGE(sp->role.level));
1616 1617
}

1618
bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1619
{
1620
	bool young = false;
1621

1622 1623
	if (kvm_memslots_have_rmaps(kvm))
		young = kvm_handle_gfn_range(kvm, range, kvm_age_rmapp);
1624

1625
	if (is_tdp_mmu_enabled(kvm))
1626
		young |= kvm_tdp_mmu_age_gfn_range(kvm, range);
1627 1628

	return young;
1629 1630
}

1631
bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
A
Andrea Arcangeli 已提交
1632
{
1633
	bool young = false;
1634

1635 1636
	if (kvm_memslots_have_rmaps(kvm))
		young = kvm_handle_gfn_range(kvm, range, kvm_test_age_rmapp);
1637

1638
	if (is_tdp_mmu_enabled(kvm))
1639
		young |= kvm_tdp_mmu_test_age_gfn(kvm, range);
1640 1641

	return young;
A
Andrea Arcangeli 已提交
1642 1643
}

1644
#ifdef MMU_DEBUG
1645
static int is_empty_shadow_page(u64 *spt)
A
Avi Kivity 已提交
1646
{
1647 1648 1649
	u64 *pos;
	u64 *end;

1650
	for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1651
		if (is_shadow_present_pte(*pos)) {
1652
			printk(KERN_ERR "%s: %p %llx\n", __func__,
1653
			       pos, *pos);
A
Avi Kivity 已提交
1654
			return 0;
1655
		}
A
Avi Kivity 已提交
1656 1657
	return 1;
}
1658
#endif
A
Avi Kivity 已提交
1659

1660 1661 1662 1663 1664 1665
/*
 * This value is the sum of all of the kvm instances's
 * kvm->arch.n_used_mmu_pages values.  We need a global,
 * aggregate version in order to make the slab shrinker
 * faster
 */
1666
static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, unsigned long nr)
1667 1668 1669 1670 1671
{
	kvm->arch.n_used_mmu_pages += nr;
	percpu_counter_add(&kvm_total_used_mmu_pages, nr);
}

1672
static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1673
{
1674
	MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1675
	hlist_del(&sp->hash_link);
1676 1677
	list_del(&sp->link);
	free_page((unsigned long)sp->spt);
1678 1679
	if (!sp->role.direct)
		free_page((unsigned long)sp->gfns);
1680
	kmem_cache_free(mmu_page_header_cache, sp);
1681 1682
}

1683 1684
static unsigned kvm_page_table_hashfn(gfn_t gfn)
{
1685
	return hash_64(gfn, KVM_MMU_HASH_SHIFT);
1686 1687
}

1688
static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1689
				    struct kvm_mmu_page *sp, u64 *parent_pte)
1690 1691 1692 1693
{
	if (!parent_pte)
		return;

1694
	pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1695 1696
}

1697
static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1698 1699
				       u64 *parent_pte)
{
1700
	__pte_list_remove(parent_pte, &sp->parent_ptes);
1701 1702
}

1703 1704 1705 1706
static void drop_parent_pte(struct kvm_mmu_page *sp,
			    u64 *parent_pte)
{
	mmu_page_remove_parent_pte(sp, parent_pte);
1707
	mmu_spte_clear_no_track(parent_pte);
1708 1709
}

1710
static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
M
Marcelo Tosatti 已提交
1711
{
1712
	struct kvm_mmu_page *sp;
1713

1714 1715
	sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
	sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache);
1716
	if (!direct)
1717
		sp->gfns = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_gfn_array_cache);
1718
	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1719 1720 1721 1722 1723 1724

	/*
	 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
	 * depends on valid pages being added to the head of the list.  See
	 * comments in kvm_zap_obsolete_pages().
	 */
1725
	sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
1726 1727 1728
	list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
	kvm_mod_used_mmu_pages(vcpu->kvm, +1);
	return sp;
M
Marcelo Tosatti 已提交
1729 1730
}

1731
static void mark_unsync(u64 *spte);
1732
static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1733
{
1734 1735 1736 1737 1738 1739
	u64 *sptep;
	struct rmap_iterator iter;

	for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
		mark_unsync(sptep);
	}
1740 1741
}

1742
static void mark_unsync(u64 *spte)
1743
{
1744
	struct kvm_mmu_page *sp;
1745
	unsigned int index;
1746

1747
	sp = sptep_to_sp(spte);
1748 1749
	index = spte - sp->spt;
	if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1750
		return;
1751
	if (sp->unsync_children++)
1752
		return;
1753
	kvm_mmu_mark_parents_unsync(sp);
1754 1755
}

1756
static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1757
			       struct kvm_mmu_page *sp)
1758
{
1759
	return 0;
1760 1761
}

1762 1763 1764 1765 1766 1767 1768 1769 1770 1771
#define KVM_PAGE_ARRAY_NR 16

struct kvm_mmu_pages {
	struct mmu_page_and_offset {
		struct kvm_mmu_page *sp;
		unsigned int idx;
	} page[KVM_PAGE_ARRAY_NR];
	unsigned int nr;
};

1772 1773
static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
			 int idx)
1774
{
1775
	int i;
1776

1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787
	if (sp->unsync)
		for (i=0; i < pvec->nr; i++)
			if (pvec->page[i].sp == sp)
				return 0;

	pvec->page[pvec->nr].sp = sp;
	pvec->page[pvec->nr].idx = idx;
	pvec->nr++;
	return (pvec->nr == KVM_PAGE_ARRAY_NR);
}

1788 1789 1790 1791 1792 1793 1794
static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
{
	--sp->unsync_children;
	WARN_ON((int)sp->unsync_children < 0);
	__clear_bit(idx, sp->unsync_child_bitmap);
}

1795 1796 1797 1798
static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
	int i, ret, nr_unsync_leaf = 0;
1799

1800
	for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1801
		struct kvm_mmu_page *child;
1802 1803
		u64 ent = sp->spt[i];

1804 1805 1806 1807
		if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
			clear_unsync_child_bit(sp, i);
			continue;
		}
1808

1809
		child = to_shadow_page(ent & PT64_BASE_ADDR_MASK);
1810 1811 1812 1813 1814 1815

		if (child->unsync_children) {
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;

			ret = __mmu_unsync_walk(child, pvec);
1816 1817 1818 1819
			if (!ret) {
				clear_unsync_child_bit(sp, i);
				continue;
			} else if (ret > 0) {
1820
				nr_unsync_leaf += ret;
1821
			} else
1822 1823 1824 1825 1826 1827
				return ret;
		} else if (child->unsync) {
			nr_unsync_leaf++;
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;
		} else
1828
			clear_unsync_child_bit(sp, i);
1829 1830
	}

1831 1832 1833
	return nr_unsync_leaf;
}

1834 1835
#define INVALID_INDEX (-1)

1836 1837 1838
static int mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
P
Paolo Bonzini 已提交
1839
	pvec->nr = 0;
1840 1841 1842
	if (!sp->unsync_children)
		return 0;

1843
	mmu_pages_add(pvec, sp, INVALID_INDEX);
1844
	return __mmu_unsync_walk(sp, pvec);
1845 1846 1847 1848 1849
}

static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
{
	WARN_ON(!sp->unsync);
1850
	trace_kvm_mmu_sync_page(sp);
1851 1852 1853 1854
	sp->unsync = 0;
	--kvm->stat.mmu_unsync;
}

1855 1856
static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				     struct list_head *invalid_list);
1857 1858
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list);
1859

1860 1861
#define for_each_valid_sp(_kvm, _sp, _list)				\
	hlist_for_each_entry(_sp, _list, hash_link)			\
1862
		if (is_obsolete_sp((_kvm), (_sp))) {			\
1863
		} else
1864 1865

#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)			\
1866 1867
	for_each_valid_sp(_kvm, _sp,					\
	  &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)])	\
1868
		if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
1869

1870 1871
static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
			 struct list_head *invalid_list)
1872
{
1873
	if (vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
1874
		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1875
		return false;
1876 1877
	}

1878
	return true;
1879 1880
}

1881 1882 1883 1884
static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
					struct list_head *invalid_list,
					bool remote_flush)
{
1885
	if (!remote_flush && list_empty(invalid_list))
1886 1887 1888 1889 1890 1891 1892 1893 1894
		return false;

	if (!list_empty(invalid_list))
		kvm_mmu_commit_zap_page(kvm, invalid_list);
	else
		kvm_flush_remote_tlbs(kvm);
	return true;
}

1895 1896 1897
static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
				 struct list_head *invalid_list,
				 bool remote_flush, bool local_flush)
1898
{
1899
	if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush))
1900
		return;
1901

1902
	if (local_flush)
1903
		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1904 1905
}

1906 1907 1908 1909 1910 1911 1912
#ifdef CONFIG_KVM_MMU_AUDIT
#include "mmu_audit.c"
#else
static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
static void mmu_audit_disable(void) { }
#endif

1913 1914
static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
{
1915 1916
	return sp->role.invalid ||
	       unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1917 1918
}

1919
struct mmu_page_path {
1920 1921
	struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
	unsigned int idx[PT64_ROOT_MAX_LEVEL];
1922 1923
};

1924
#define for_each_sp(pvec, sp, parents, i)			\
P
Paolo Bonzini 已提交
1925
		for (i = mmu_pages_first(&pvec, &parents);	\
1926 1927 1928
			i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});	\
			i = mmu_pages_next(&pvec, &parents, i))

1929 1930 1931
static int mmu_pages_next(struct kvm_mmu_pages *pvec,
			  struct mmu_page_path *parents,
			  int i)
1932 1933 1934 1935 1936
{
	int n;

	for (n = i+1; n < pvec->nr; n++) {
		struct kvm_mmu_page *sp = pvec->page[n].sp;
P
Paolo Bonzini 已提交
1937 1938
		unsigned idx = pvec->page[n].idx;
		int level = sp->role.level;
1939

P
Paolo Bonzini 已提交
1940
		parents->idx[level-1] = idx;
1941
		if (level == PG_LEVEL_4K)
P
Paolo Bonzini 已提交
1942
			break;
1943

P
Paolo Bonzini 已提交
1944
		parents->parent[level-2] = sp;
1945 1946 1947 1948 1949
	}

	return n;
}

P
Paolo Bonzini 已提交
1950 1951 1952 1953 1954 1955 1956 1957 1958
static int mmu_pages_first(struct kvm_mmu_pages *pvec,
			   struct mmu_page_path *parents)
{
	struct kvm_mmu_page *sp;
	int level;

	if (pvec->nr == 0)
		return 0;

1959 1960
	WARN_ON(pvec->page[0].idx != INVALID_INDEX);

P
Paolo Bonzini 已提交
1961 1962
	sp = pvec->page[0].sp;
	level = sp->role.level;
1963
	WARN_ON(level == PG_LEVEL_4K);
P
Paolo Bonzini 已提交
1964 1965 1966 1967 1968 1969 1970 1971 1972 1973

	parents->parent[level-2] = sp;

	/* Also set up a sentinel.  Further entries in pvec are all
	 * children of sp, so this element is never overwritten.
	 */
	parents->parent[level-1] = NULL;
	return mmu_pages_next(pvec, parents, 0);
}

1974
static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1975
{
1976 1977 1978 1979 1980 1981 1982 1983 1984
	struct kvm_mmu_page *sp;
	unsigned int level = 0;

	do {
		unsigned int idx = parents->idx[level];
		sp = parents->parent[level];
		if (!sp)
			return;

1985
		WARN_ON(idx == INVALID_INDEX);
1986
		clear_unsync_child_bit(sp, idx);
1987
		level++;
P
Paolo Bonzini 已提交
1988
	} while (!sp->unsync_children);
1989
}
1990

1991 1992 1993 1994 1995 1996 1997
static void mmu_sync_children(struct kvm_vcpu *vcpu,
			      struct kvm_mmu_page *parent)
{
	int i;
	struct kvm_mmu_page *sp;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
1998
	LIST_HEAD(invalid_list);
1999
	bool flush = false;
2000 2001

	while (mmu_unsync_walk(parent, &pages)) {
2002
		bool protected = false;
2003 2004

		for_each_sp(pages, sp, parents, i)
2005
			protected |= rmap_write_protect(vcpu, sp->gfn);
2006

2007
		if (protected) {
2008
			kvm_flush_remote_tlbs(vcpu->kvm);
2009 2010
			flush = false;
		}
2011

2012
		for_each_sp(pages, sp, parents, i) {
2013
			kvm_unlink_unsync_page(vcpu->kvm, sp);
2014
			flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2015 2016
			mmu_pages_clear_parents(&parents);
		}
2017
		if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) {
2018
			kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2019
			cond_resched_rwlock_write(&vcpu->kvm->mmu_lock);
2020 2021
			flush = false;
		}
2022
	}
2023 2024

	kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2025 2026
}

2027 2028
static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
{
2029
	atomic_set(&sp->write_flooding_count,  0);
2030 2031 2032 2033
}

static void clear_sp_write_flooding_count(u64 *spte)
{
2034
	__clear_sp_write_flooding_count(sptep_to_sp(spte));
2035 2036
}

2037 2038 2039 2040
static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
					     gfn_t gfn,
					     gva_t gaddr,
					     unsigned level,
2041
					     int direct,
2042
					     unsigned int access)
2043
{
2044
	bool direct_mmu = vcpu->arch.mmu->direct_map;
2045
	union kvm_mmu_page_role role;
2046
	struct hlist_head *sp_list;
2047
	unsigned quadrant;
2048
	struct kvm_mmu_page *sp;
2049
	int collisions = 0;
2050
	LIST_HEAD(invalid_list);
2051

2052
	role = vcpu->arch.mmu->mmu_role.base;
2053
	role.level = level;
2054
	role.direct = direct;
2055
	if (role.direct)
2056
		role.gpte_is_8_bytes = true;
2057
	role.access = access;
2058
	if (!direct_mmu && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
2059 2060 2061 2062
		quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
		quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
		role.quadrant = quadrant;
	}
2063 2064 2065

	sp_list = &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)];
	for_each_valid_sp(vcpu->kvm, sp, sp_list) {
2066 2067 2068 2069 2070
		if (sp->gfn != gfn) {
			collisions++;
			continue;
		}

2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083
		if (sp->role.word != role.word) {
			/*
			 * If the guest is creating an upper-level page, zap
			 * unsync pages for the same gfn.  While it's possible
			 * the guest is using recursive page tables, in all
			 * likelihood the guest has stopped using the unsync
			 * page and is installing a completely unrelated page.
			 * Unsync pages must not be left as is, because the new
			 * upper-level page will be write-protected.
			 */
			if (level > PG_LEVEL_4K && sp->unsync)
				kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
							 &invalid_list);
2084
			continue;
2085
		}
2086

2087 2088 2089
		if (direct_mmu)
			goto trace_get_page;

2090
		if (sp->unsync) {
2091
			/*
2092
			 * The page is good, but is stale.  kvm_sync_page does
2093 2094 2095 2096 2097 2098 2099 2100 2101
			 * get the latest guest state, but (unlike mmu_unsync_children)
			 * it doesn't write-protect the page or mark it synchronized!
			 * This way the validity of the mapping is ensured, but the
			 * overhead of write protection is not incurred until the
			 * guest invalidates the TLB mapping.  This allows multiple
			 * SPs for a single gfn to be unsync.
			 *
			 * If the sync fails, the page is zapped.  If so, break
			 * in order to rebuild it.
2102
			 */
2103
			if (!kvm_sync_page(vcpu, sp, &invalid_list))
2104 2105 2106
				break;

			WARN_ON(!list_empty(&invalid_list));
2107
			kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2108
		}
2109

2110
		if (sp->unsync_children)
2111
			kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2112

2113
		__clear_sp_write_flooding_count(sp);
2114 2115

trace_get_page:
2116
		trace_kvm_mmu_get_page(sp, false);
2117
		goto out;
2118
	}
2119

A
Avi Kivity 已提交
2120
	++vcpu->kvm->stat.mmu_cache_miss;
2121 2122 2123

	sp = kvm_mmu_alloc_page(vcpu, direct);

2124 2125
	sp->gfn = gfn;
	sp->role = role;
2126
	hlist_add_head(&sp->hash_link, sp_list);
2127
	if (!direct) {
2128
		account_shadowed(vcpu->kvm, sp);
2129
		if (level == PG_LEVEL_4K && rmap_write_protect(vcpu, gfn))
2130
			kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
2131
	}
A
Avi Kivity 已提交
2132
	trace_kvm_mmu_get_page(sp, true);
2133
out:
2134 2135
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);

2136 2137
	if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
		vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2138
	return sp;
2139 2140
}

2141 2142 2143
static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
					struct kvm_vcpu *vcpu, hpa_t root,
					u64 addr)
2144 2145
{
	iterator->addr = addr;
2146
	iterator->shadow_addr = root;
2147
	iterator->level = vcpu->arch.mmu->shadow_root_level;
2148

2149
	if (iterator->level == PT64_ROOT_4LEVEL &&
2150 2151
	    vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
	    !vcpu->arch.mmu->direct_map)
2152 2153
		--iterator->level;

2154
	if (iterator->level == PT32E_ROOT_LEVEL) {
2155 2156 2157 2158
		/*
		 * prev_root is currently only used for 64-bit hosts. So only
		 * the active root_hpa is valid here.
		 */
2159
		BUG_ON(root != vcpu->arch.mmu->root_hpa);
2160

2161
		iterator->shadow_addr
2162
			= vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2163 2164 2165 2166 2167 2168 2169
		iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
		--iterator->level;
		if (!iterator->shadow_addr)
			iterator->level = 0;
	}
}

2170 2171 2172
static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
			     struct kvm_vcpu *vcpu, u64 addr)
{
2173
	shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
2174 2175 2176
				    addr);
}

2177 2178
static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
{
2179
	if (iterator->level < PG_LEVEL_4K)
2180
		return false;
2181

2182 2183 2184 2185 2186
	iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
	iterator->sptep	= ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
	return true;
}

2187 2188
static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
			       u64 spte)
2189
{
2190
	if (is_last_spte(spte, iterator->level)) {
2191 2192 2193 2194
		iterator->level = 0;
		return;
	}

2195
	iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2196 2197 2198
	--iterator->level;
}

2199 2200
static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
{
2201
	__shadow_walk_next(iterator, *iterator->sptep);
2202 2203
}

2204 2205 2206 2207 2208 2209 2210 2211 2212
static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
			     struct kvm_mmu_page *sp)
{
	u64 spte;

	BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);

	spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp));

2213
	mmu_spte_set(sptep, spte);
2214 2215 2216 2217 2218

	mmu_page_add_parent_pte(vcpu, sp, sptep);

	if (sp->unsync_children || sp->unsync)
		mark_unsync(sptep);
2219 2220
}

2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233
static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
				   unsigned direct_access)
{
	if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
		struct kvm_mmu_page *child;

		/*
		 * For the direct sp, if the guest pte's dirty bit
		 * changed form clean to dirty, it will corrupt the
		 * sp's access: allow writable in the read-only sp,
		 * so we should update the spte at this point to get
		 * a new sp with the correct access.
		 */
2234
		child = to_shadow_page(*sptep & PT64_BASE_ADDR_MASK);
2235 2236 2237
		if (child->role.access == direct_access)
			return;

2238
		drop_parent_pte(child, sptep);
2239
		kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
2240 2241 2242
	}
}

2243 2244 2245
/* Returns the number of zapped non-leaf child shadow pages. */
static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
			    u64 *spte, struct list_head *invalid_list)
2246 2247 2248 2249 2250 2251
{
	u64 pte;
	struct kvm_mmu_page *child;

	pte = *spte;
	if (is_shadow_present_pte(pte)) {
X
Xiao Guangrong 已提交
2252
		if (is_last_spte(pte, sp->role.level)) {
2253
			drop_spte(kvm, spte);
X
Xiao Guangrong 已提交
2254 2255 2256
			if (is_large_pte(pte))
				--kvm->stat.lpages;
		} else {
2257
			child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2258
			drop_parent_pte(child, spte);
2259 2260 2261 2262 2263 2264 2265 2266 2267 2268

			/*
			 * Recursively zap nested TDP SPs, parentless SPs are
			 * unlikely to be used again in the near future.  This
			 * avoids retaining a large number of stale nested SPs.
			 */
			if (tdp_enabled && invalid_list &&
			    child->role.guest_mode && !child->parent_ptes.val)
				return kvm_mmu_prepare_zap_page(kvm, child,
								invalid_list);
2269
		}
2270
	} else if (is_mmio_spte(pte)) {
2271
		mmu_spte_clear_no_track(spte);
2272
	}
2273
	return 0;
2274 2275
}

2276 2277 2278
static int kvm_mmu_page_unlink_children(struct kvm *kvm,
					struct kvm_mmu_page *sp,
					struct list_head *invalid_list)
2279
{
2280
	int zapped = 0;
2281 2282
	unsigned i;

2283
	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2284 2285 2286
		zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list);

	return zapped;
2287 2288
}

2289
static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2290
{
2291 2292
	u64 *sptep;
	struct rmap_iterator iter;
2293

2294
	while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2295
		drop_parent_pte(sp, sptep);
2296 2297
}

2298
static int mmu_zap_unsync_children(struct kvm *kvm,
2299 2300
				   struct kvm_mmu_page *parent,
				   struct list_head *invalid_list)
2301
{
2302 2303 2304
	int i, zapped = 0;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
2305

2306
	if (parent->role.level == PG_LEVEL_4K)
2307
		return 0;
2308 2309 2310 2311 2312

	while (mmu_unsync_walk(parent, &pages)) {
		struct kvm_mmu_page *sp;

		for_each_sp(pages, sp, parents, i) {
2313
			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2314
			mmu_pages_clear_parents(&parents);
2315
			zapped++;
2316 2317 2318 2319
		}
	}

	return zapped;
2320 2321
}

2322 2323 2324 2325
static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
				       struct kvm_mmu_page *sp,
				       struct list_head *invalid_list,
				       int *nr_zapped)
2326
{
2327
	bool list_unstable;
A
Avi Kivity 已提交
2328

2329
	trace_kvm_mmu_prepare_zap_page(sp);
2330
	++kvm->stat.mmu_shadow_zapped;
2331
	*nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2332
	*nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list);
2333
	kvm_mmu_unlink_parents(kvm, sp);
2334

2335 2336 2337
	/* Zapping children means active_mmu_pages has become unstable. */
	list_unstable = *nr_zapped;

2338
	if (!sp->role.invalid && !sp->role.direct)
2339
		unaccount_shadowed(kvm, sp);
2340

2341 2342
	if (sp->unsync)
		kvm_unlink_unsync_page(kvm, sp);
2343
	if (!sp->root_count) {
2344
		/* Count self */
2345
		(*nr_zapped)++;
2346 2347 2348 2349 2350 2351 2352 2353 2354 2355

		/*
		 * Already invalid pages (previously active roots) are not on
		 * the active page list.  See list_del() in the "else" case of
		 * !sp->root_count.
		 */
		if (sp->role.invalid)
			list_add(&sp->link, invalid_list);
		else
			list_move(&sp->link, invalid_list);
2356
		kvm_mod_used_mmu_pages(kvm, -1);
2357
	} else {
2358 2359 2360 2361 2362
		/*
		 * Remove the active root from the active page list, the root
		 * will be explicitly freed when the root_count hits zero.
		 */
		list_del(&sp->link);
2363

2364 2365 2366 2367 2368 2369
		/*
		 * Obsolete pages cannot be used on any vCPUs, see the comment
		 * in kvm_mmu_zap_all_fast().  Note, is_obsolete_sp() also
		 * treats invalid shadow pages as being obsolete.
		 */
		if (!is_obsolete_sp(kvm, sp))
2370
			kvm_reload_remote_mmus(kvm);
2371
	}
2372

P
Paolo Bonzini 已提交
2373 2374 2375
	if (sp->lpage_disallowed)
		unaccount_huge_nx_page(kvm, sp);

2376
	sp->role.invalid = 1;
2377 2378 2379 2380 2381 2382 2383 2384 2385 2386
	return list_unstable;
}

static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				     struct list_head *invalid_list)
{
	int nr_zapped;

	__kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
	return nr_zapped;
2387 2388
}

2389 2390 2391
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list)
{
2392
	struct kvm_mmu_page *sp, *nsp;
2393 2394 2395 2396

	if (list_empty(invalid_list))
		return;

2397
	/*
2398 2399 2400 2401 2402 2403 2404
	 * We need to make sure everyone sees our modifications to
	 * the page tables and see changes to vcpu->mode here. The barrier
	 * in the kvm_flush_remote_tlbs() achieves this. This pairs
	 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
	 *
	 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
	 * guest mode and/or lockless shadow page table walks.
2405 2406
	 */
	kvm_flush_remote_tlbs(kvm);
2407

2408
	list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2409
		WARN_ON(!sp->role.invalid || sp->root_count);
2410
		kvm_mmu_free_page(sp);
2411
	}
2412 2413
}

2414 2415
static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm,
						  unsigned long nr_to_zap)
2416
{
2417 2418
	unsigned long total_zapped = 0;
	struct kvm_mmu_page *sp, *tmp;
2419
	LIST_HEAD(invalid_list);
2420 2421
	bool unstable;
	int nr_zapped;
2422 2423

	if (list_empty(&kvm->arch.active_mmu_pages))
2424 2425
		return 0;

2426
restart:
2427
	list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) {
2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438
		/*
		 * Don't zap active root pages, the page itself can't be freed
		 * and zapping it will just force vCPUs to realloc and reload.
		 */
		if (sp->root_count)
			continue;

		unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list,
						      &nr_zapped);
		total_zapped += nr_zapped;
		if (total_zapped >= nr_to_zap)
2439 2440
			break;

2441 2442
		if (unstable)
			goto restart;
2443
	}
2444

2445 2446 2447 2448 2449 2450
	kvm_mmu_commit_zap_page(kvm, &invalid_list);

	kvm->stat.mmu_recycled += total_zapped;
	return total_zapped;
}

2451 2452 2453 2454 2455 2456 2457
static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm)
{
	if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
		return kvm->arch.n_max_mmu_pages -
			kvm->arch.n_used_mmu_pages;

	return 0;
2458 2459
}

2460 2461
static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
{
2462
	unsigned long avail = kvm_mmu_available_pages(vcpu->kvm);
2463

2464
	if (likely(avail >= KVM_MIN_FREE_MMU_PAGES))
2465 2466
		return 0;

2467
	kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail);
2468

2469 2470 2471 2472 2473
	/*
	 * Note, this check is intentionally soft, it only guarantees that one
	 * page is available, while the caller may end up allocating as many as
	 * four pages, e.g. for PAE roots or for 5-level paging.  Temporarily
	 * exceeding the (arbitrary by default) limit will not harm the host,
I
Ingo Molnar 已提交
2474
	 * being too aggressive may unnecessarily kill the guest, and getting an
2475 2476 2477
	 * exact count is far more trouble than it's worth, especially in the
	 * page fault paths.
	 */
2478 2479 2480 2481 2482
	if (!kvm_mmu_available_pages(vcpu->kvm))
		return -ENOSPC;
	return 0;
}

2483 2484
/*
 * Changing the number of mmu pages allocated to the vm
2485
 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2486
 */
2487
void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2488
{
2489
	write_lock(&kvm->mmu_lock);
2490

2491
	if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2492 2493
		kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages -
						  goal_nr_mmu_pages);
2494

2495
		goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2496 2497
	}

2498
	kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2499

2500
	write_unlock(&kvm->mmu_lock);
2501 2502
}

2503
int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2504
{
2505
	struct kvm_mmu_page *sp;
2506
	LIST_HEAD(invalid_list);
2507 2508
	int r;

2509
	pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2510
	r = 0;
2511
	write_lock(&kvm->mmu_lock);
2512
	for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2513
		pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2514 2515
			 sp->role.word);
		r = 1;
2516
		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2517
	}
2518
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2519
	write_unlock(&kvm->mmu_lock);
2520

2521
	return r;
2522
}
2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537

static int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
{
	gpa_t gpa;
	int r;

	if (vcpu->arch.mmu->direct_map)
		return 0;

	gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);

	r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);

	return r;
}
2538

2539
static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2540 2541 2542 2543 2544 2545 2546 2547
{
	trace_kvm_mmu_unsync_page(sp);
	++vcpu->kvm->stat.mmu_unsync;
	sp->unsync = 1;

	kvm_mmu_mark_parents_unsync(sp);
}

2548 2549 2550 2551 2552 2553 2554
/*
 * Attempt to unsync any shadow pages that can be reached by the specified gfn,
 * KVM is creating a writable mapping for said gfn.  Returns 0 if all pages
 * were marked unsync (or if there is no shadow page), -EPERM if the SPTE must
 * be write-protected.
 */
int mmu_try_to_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn, bool can_unsync)
2555
{
2556
	struct kvm_mmu_page *sp;
2557

2558 2559 2560 2561 2562
	/*
	 * Force write-protection if the page is being tracked.  Note, the page
	 * track machinery is used to write-protect upper-level shadow pages,
	 * i.e. this guards the role.level == 4K assertion below!
	 */
2563
	if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2564
		return -EPERM;
2565

2566 2567 2568 2569 2570 2571
	/*
	 * The page is not write-tracked, mark existing shadow pages unsync
	 * unless KVM is synchronizing an unsync SP (can_unsync = false).  In
	 * that case, KVM must complete emulation of the guest TLB flush before
	 * allowing shadow pages to become unsync (writable by the guest).
	 */
2572
	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2573
		if (!can_unsync)
2574
			return -EPERM;
2575

2576 2577
		if (sp->unsync)
			continue;
2578

2579
		WARN_ON(sp->role.level != PG_LEVEL_4K);
2580
		kvm_unsync_page(vcpu, sp);
2581
	}
2582

2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604
	/*
	 * We need to ensure that the marking of unsync pages is visible
	 * before the SPTE is updated to allow writes because
	 * kvm_mmu_sync_roots() checks the unsync flags without holding
	 * the MMU lock and so can race with this. If the SPTE was updated
	 * before the page had been marked as unsync-ed, something like the
	 * following could happen:
	 *
	 * CPU 1                    CPU 2
	 * ---------------------------------------------------------------------
	 * 1.2 Host updates SPTE
	 *     to be writable
	 *                      2.1 Guest writes a GPTE for GVA X.
	 *                          (GPTE being in the guest page table shadowed
	 *                           by the SP from CPU 1.)
	 *                          This reads SPTE during the page table walk.
	 *                          Since SPTE.W is read as 1, there is no
	 *                          fault.
	 *
	 *                      2.2 Guest issues TLB flush.
	 *                          That causes a VM Exit.
	 *
2605 2606
	 *                      2.3 Walking of unsync pages sees sp->unsync is
	 *                          false and skips the page.
2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621
	 *
	 *                      2.4 Guest accesses GVA X.
	 *                          Since the mapping in the SP was not updated,
	 *                          so the old mapping for GVA X incorrectly
	 *                          gets used.
	 * 1.1 Host marks SP
	 *     as unsync
	 *     (sp->unsync = true)
	 *
	 * The write barrier below ensures that 1.1 happens before 1.2 and thus
	 * the situation in 2.4 does not arise. The implicit barrier in 2.2
	 * pairs with this write barrier.
	 */
	smp_wmb();

2622
	return 0;
2623 2624
}

2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641
static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
		    unsigned int pte_access, int level,
		    gfn_t gfn, kvm_pfn_t pfn, bool speculative,
		    bool can_unsync, bool host_writable)
{
	u64 spte;
	struct kvm_mmu_page *sp;
	int ret;

	sp = sptep_to_sp(sptep);

	ret = make_spte(vcpu, pte_access, level, gfn, pfn, *sptep, speculative,
			can_unsync, host_writable, sp_ad_disabled(sp), &spte);

	if (spte & PT_WRITABLE_MASK)
		kvm_vcpu_mark_page_dirty(vcpu, gfn);

2642 2643 2644
	if (*sptep == spte)
		ret |= SET_SPTE_SPURIOUS;
	else if (mmu_spte_update(sptep, spte))
2645
		ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
M
Marcelo Tosatti 已提交
2646 2647 2648
	return ret;
}

2649
static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2650
			unsigned int pte_access, bool write_fault, int level,
2651 2652
			gfn_t gfn, kvm_pfn_t pfn, bool speculative,
			bool host_writable)
M
Marcelo Tosatti 已提交
2653 2654
{
	int was_rmapped = 0;
2655
	int rmap_count;
2656
	int set_spte_ret;
2657
	int ret = RET_PF_FIXED;
2658
	bool flush = false;
M
Marcelo Tosatti 已提交
2659

2660 2661
	pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
		 *sptep, write_fault, gfn);
M
Marcelo Tosatti 已提交
2662

2663 2664 2665 2666 2667
	if (unlikely(is_noslot_pfn(pfn))) {
		mark_mmio_spte(vcpu, sptep, gfn, pte_access);
		return RET_PF_EMULATE;
	}

2668
	if (is_shadow_present_pte(*sptep)) {
M
Marcelo Tosatti 已提交
2669 2670 2671 2672
		/*
		 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
		 * the parent of the now unreachable PTE.
		 */
2673
		if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) {
M
Marcelo Tosatti 已提交
2674
			struct kvm_mmu_page *child;
A
Avi Kivity 已提交
2675
			u64 pte = *sptep;
M
Marcelo Tosatti 已提交
2676

2677
			child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2678
			drop_parent_pte(child, sptep);
2679
			flush = true;
A
Avi Kivity 已提交
2680
		} else if (pfn != spte_to_pfn(*sptep)) {
2681
			pgprintk("hfn old %llx new %llx\n",
A
Avi Kivity 已提交
2682
				 spte_to_pfn(*sptep), pfn);
2683
			drop_spte(vcpu->kvm, sptep);
2684
			flush = true;
2685 2686
		} else
			was_rmapped = 1;
M
Marcelo Tosatti 已提交
2687
	}
2688

2689 2690 2691
	set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
				speculative, true, host_writable);
	if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
M
Marcelo Tosatti 已提交
2692
		if (write_fault)
2693
			ret = RET_PF_EMULATE;
2694
		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2695
	}
2696

2697
	if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
2698 2699
		kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
				KVM_PAGES_PER_HPAGE(level));
M
Marcelo Tosatti 已提交
2700

2701 2702 2703 2704 2705 2706 2707 2708 2709
	/*
	 * The fault is fully spurious if and only if the new SPTE and old SPTE
	 * are identical, and emulation is not required.
	 */
	if ((set_spte_ret & SET_SPTE_SPURIOUS) && ret == RET_PF_FIXED) {
		WARN_ON_ONCE(!was_rmapped);
		return RET_PF_SPURIOUS;
	}

A
Avi Kivity 已提交
2710
	pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2711
	trace_kvm_mmu_set_spte(level, gfn, sptep);
A
Avi Kivity 已提交
2712
	if (!was_rmapped && is_large_pte(*sptep))
M
Marcelo Tosatti 已提交
2713 2714
		++vcpu->kvm->stat.lpages;

2715 2716 2717
	if (is_shadow_present_pte(*sptep)) {
		if (!was_rmapped) {
			rmap_count = rmap_add(vcpu, sptep, gfn);
2718 2719
			if (rmap_count > vcpu->kvm->stat.max_mmu_rmap_size)
				vcpu->kvm->stat.max_mmu_rmap_size = rmap_count;
2720 2721 2722
			if (rmap_count > RMAP_RECYCLE_THRESHOLD)
				rmap_recycle(vcpu, sptep, gfn);
		}
2723
	}
2724

2725
	return ret;
2726 2727
}

D
Dan Williams 已提交
2728
static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2729 2730 2731 2732
				     bool no_dirty_log)
{
	struct kvm_memory_slot *slot;

2733
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2734
	if (!slot)
2735
		return KVM_PFN_ERR_FAULT;
2736

2737
	return gfn_to_pfn_memslot_atomic(slot, gfn);
2738 2739 2740 2741 2742 2743 2744
}

static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
				    struct kvm_mmu_page *sp,
				    u64 *start, u64 *end)
{
	struct page *pages[PTE_PREFETCH_NUM];
2745
	struct kvm_memory_slot *slot;
2746
	unsigned int access = sp->role.access;
2747 2748 2749 2750
	int i, ret;
	gfn_t gfn;

	gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2751 2752
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
	if (!slot)
2753 2754
		return -1;

2755
	ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2756 2757 2758
	if (ret <= 0)
		return -1;

2759
	for (i = 0; i < ret; i++, gfn++, start++) {
2760
		mmu_set_spte(vcpu, start, access, false, sp->role.level, gfn,
2761
			     page_to_pfn(pages[i]), true, true);
2762 2763
		put_page(pages[i]);
	}
2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779

	return 0;
}

static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
				  struct kvm_mmu_page *sp, u64 *sptep)
{
	u64 *spte, *start = NULL;
	int i;

	WARN_ON(!sp->role.direct);

	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
	spte = sp->spt + i;

	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2780
		if (is_shadow_present_pte(*spte) || spte == sptep) {
2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794
			if (!start)
				continue;
			if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
				break;
			start = NULL;
		} else if (!start)
			start = spte;
	}
}

static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
{
	struct kvm_mmu_page *sp;

2795
	sp = sptep_to_sp(sptep);
2796

2797
	/*
2798 2799 2800
	 * Without accessed bits, there's no way to distinguish between
	 * actually accessed translations and prefetched, so disable pte
	 * prefetch if accessed bits aren't available.
2801
	 */
2802
	if (sp_ad_disabled(sp))
2803 2804
		return;

2805
	if (sp->role.level > PG_LEVEL_4K)
2806 2807
		return;

2808 2809 2810 2811 2812 2813 2814
	/*
	 * If addresses are being invalidated, skip prefetching to avoid
	 * accidentally prefetching those addresses.
	 */
	if (unlikely(vcpu->kvm->mmu_notifier_count))
		return;

2815 2816 2817
	__direct_pte_prefetch(vcpu, sp, sptep);
}

2818
static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn,
2819
				  const struct kvm_memory_slot *slot)
2820 2821 2822 2823 2824
{
	unsigned long hva;
	pte_t *pte;
	int level;

2825
	if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn))
2826
		return PG_LEVEL_4K;
2827

2828 2829 2830 2831 2832 2833 2834 2835
	/*
	 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
	 * is not solely for performance, it's also necessary to avoid the
	 * "writable" check in __gfn_to_hva_many(), which will always fail on
	 * read-only memslots due to gfn_to_hva() assuming writes.  Earlier
	 * page fault steps have already verified the guest isn't writing a
	 * read-only memslot.
	 */
2836 2837
	hva = __gfn_to_hva_memslot(slot, gfn);

2838
	pte = lookup_address_in_mm(kvm->mm, hva, &level);
2839
	if (unlikely(!pte))
2840
		return PG_LEVEL_4K;
2841 2842 2843 2844

	return level;
}

2845 2846 2847
int kvm_mmu_max_mapping_level(struct kvm *kvm,
			      const struct kvm_memory_slot *slot, gfn_t gfn,
			      kvm_pfn_t pfn, int max_level)
2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
{
	struct kvm_lpage_info *linfo;

	max_level = min(max_level, max_huge_page_level);
	for ( ; max_level > PG_LEVEL_4K; max_level--) {
		linfo = lpage_info_slot(gfn, slot, max_level);
		if (!linfo->disallow_lpage)
			break;
	}

	if (max_level == PG_LEVEL_4K)
		return PG_LEVEL_4K;

	return host_pfn_mapping_level(kvm, gfn, pfn, slot);
}

B
Ben Gardon 已提交
2864 2865 2866
int kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, gfn_t gfn,
			    int max_level, kvm_pfn_t *pfnp,
			    bool huge_page_disallowed, int *req_level)
2867
{
2868
	struct kvm_memory_slot *slot;
2869
	kvm_pfn_t pfn = *pfnp;
2870
	kvm_pfn_t mask;
2871
	int level;
2872

2873 2874
	*req_level = PG_LEVEL_4K;

2875 2876
	if (unlikely(max_level == PG_LEVEL_4K))
		return PG_LEVEL_4K;
2877

2878
	if (is_error_noslot_pfn(pfn) || kvm_is_reserved_pfn(pfn))
2879
		return PG_LEVEL_4K;
2880

2881 2882
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, true);
	if (!slot)
2883
		return PG_LEVEL_4K;
2884

2885
	level = kvm_mmu_max_mapping_level(vcpu->kvm, slot, gfn, pfn, max_level);
2886
	if (level == PG_LEVEL_4K)
2887
		return level;
2888

2889 2890 2891 2892 2893 2894 2895 2896
	*req_level = level = min(level, max_level);

	/*
	 * Enforce the iTLB multihit workaround after capturing the requested
	 * level, which will be used to do precise, accurate accounting.
	 */
	if (huge_page_disallowed)
		return PG_LEVEL_4K;
2897 2898

	/*
2899 2900
	 * mmu_notifier_retry() was successful and mmu_lock is held, so
	 * the pmd can't be split from under us.
2901
	 */
2902 2903 2904
	mask = KVM_PAGES_PER_HPAGE(level) - 1;
	VM_BUG_ON((gfn & mask) != (pfn & mask));
	*pfnp = pfn & ~mask;
2905 2906

	return level;
2907 2908
}

B
Ben Gardon 已提交
2909 2910
void disallowed_hugepage_adjust(u64 spte, gfn_t gfn, int cur_level,
				kvm_pfn_t *pfnp, int *goal_levelp)
P
Paolo Bonzini 已提交
2911
{
B
Ben Gardon 已提交
2912
	int level = *goal_levelp;
P
Paolo Bonzini 已提交
2913

2914
	if (cur_level == level && level > PG_LEVEL_4K &&
P
Paolo Bonzini 已提交
2915 2916 2917 2918 2919 2920 2921 2922 2923
	    is_shadow_present_pte(spte) &&
	    !is_large_pte(spte)) {
		/*
		 * A small SPTE exists for this pfn, but FNAME(fetch)
		 * and __direct_map would like to create a large PTE
		 * instead: just force them to go down another level,
		 * patching back for them into pfn the next 9 bits of
		 * the address.
		 */
2924 2925
		u64 page_mask = KVM_PAGES_PER_HPAGE(level) -
				KVM_PAGES_PER_HPAGE(level - 1);
P
Paolo Bonzini 已提交
2926
		*pfnp |= gfn & page_mask;
B
Ben Gardon 已提交
2927
		(*goal_levelp)--;
P
Paolo Bonzini 已提交
2928 2929 2930
	}
}

2931
static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
2932
			int map_writable, int max_level, kvm_pfn_t pfn,
2933
			bool prefault, bool is_tdp)
2934
{
2935 2936 2937 2938
	bool nx_huge_page_workaround_enabled = is_nx_huge_page_enabled();
	bool write = error_code & PFERR_WRITE_MASK;
	bool exec = error_code & PFERR_FETCH_MASK;
	bool huge_page_disallowed = exec && nx_huge_page_workaround_enabled;
2939
	struct kvm_shadow_walk_iterator it;
2940
	struct kvm_mmu_page *sp;
2941
	int level, req_level, ret;
2942 2943
	gfn_t gfn = gpa >> PAGE_SHIFT;
	gfn_t base_gfn = gfn;
A
Avi Kivity 已提交
2944

2945 2946
	level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn,
					huge_page_disallowed, &req_level);
2947

2948
	trace_kvm_mmu_spte_requested(gpa, level, pfn);
2949
	for_each_shadow_entry(vcpu, gpa, it) {
P
Paolo Bonzini 已提交
2950 2951 2952 2953
		/*
		 * We cannot overwrite existing page tables with an NX
		 * large page, as the leaf could be executable.
		 */
2954
		if (nx_huge_page_workaround_enabled)
2955 2956
			disallowed_hugepage_adjust(*it.sptep, gfn, it.level,
						   &pfn, &level);
P
Paolo Bonzini 已提交
2957

2958 2959
		base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
		if (it.level == level)
2960
			break;
A
Avi Kivity 已提交
2961

2962
		drop_large_spte(vcpu, it.sptep);
2963 2964 2965 2966 2967 2968 2969 2970 2971 2972
		if (is_shadow_present_pte(*it.sptep))
			continue;

		sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
				      it.level - 1, true, ACC_ALL);

		link_shadow_page(vcpu, it.sptep, sp);
		if (is_tdp && huge_page_disallowed &&
		    req_level >= it.level)
			account_huge_nx_page(vcpu->kvm, sp);
2973
	}
2974 2975 2976 2977

	ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL,
			   write, level, base_gfn, pfn, prefault,
			   map_writable);
2978 2979 2980
	if (ret == RET_PF_SPURIOUS)
		return ret;

2981 2982 2983
	direct_pte_prefetch(vcpu, it.sptep);
	++vcpu->stat.pf_fixed;
	return ret;
A
Avi Kivity 已提交
2984 2985
}

H
Huang Ying 已提交
2986
static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2987
{
2988
	send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
2989 2990
}

D
Dan Williams 已提交
2991
static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
2992
{
X
Xiao Guangrong 已提交
2993 2994 2995 2996 2997 2998
	/*
	 * Do not cache the mmio info caused by writing the readonly gfn
	 * into the spte otherwise read access on readonly gfn also can
	 * caused mmio page fault and treat it as mmio access.
	 */
	if (pfn == KVM_PFN_ERR_RO_FAULT)
2999
		return RET_PF_EMULATE;
X
Xiao Guangrong 已提交
3000

3001
	if (pfn == KVM_PFN_ERR_HWPOISON) {
3002
		kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
3003
		return RET_PF_RETRY;
3004
	}
3005

3006
	return -EFAULT;
3007 3008
}

3009
static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
3010 3011
				kvm_pfn_t pfn, unsigned int access,
				int *ret_val)
3012 3013
{
	/* The pfn is invalid, report the error! */
3014
	if (unlikely(is_error_pfn(pfn))) {
3015
		*ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
3016
		return true;
3017 3018
	}

3019
	if (unlikely(is_noslot_pfn(pfn))) {
3020 3021
		vcpu_cache_mmio_info(vcpu, gva, gfn,
				     access & shadow_mmio_access_mask);
3022 3023 3024 3025 3026 3027 3028 3029 3030 3031
		/*
		 * If MMIO caching is disabled, emulate immediately without
		 * touching the shadow page tables as attempting to install an
		 * MMIO SPTE will just be an expensive nop.
		 */
		if (unlikely(!shadow_mmio_value)) {
			*ret_val = RET_PF_EMULATE;
			return true;
		}
	}
3032

3033
	return false;
3034 3035
}

3036
static bool page_fault_can_be_fast(u32 error_code)
3037
{
3038 3039 3040 3041 3042 3043 3044
	/*
	 * Do not fix the mmio spte with invalid generation number which
	 * need to be updated by slow page fault path.
	 */
	if (unlikely(error_code & PFERR_RSVD_MASK))
		return false;

3045 3046 3047 3048 3049
	/* See if the page fault is due to an NX violation */
	if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
		      == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
		return false;

3050
	/*
3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061
	 * #PF can be fast if:
	 * 1. The shadow page table entry is not present, which could mean that
	 *    the fault is potentially caused by access tracking (if enabled).
	 * 2. The shadow page table entry is present and the fault
	 *    is caused by write-protect, that means we just need change the W
	 *    bit of the spte which can be done out of mmu-lock.
	 *
	 * However, if access tracking is disabled we know that a non-present
	 * page must be a genuine page fault where we have to create a new SPTE.
	 * So, if access tracking is disabled, we return true only for write
	 * accesses to a present page.
3062 3063
	 */

3064 3065 3066
	return shadow_acc_track_mask != 0 ||
	       ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
		== (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
3067 3068
}

3069 3070 3071 3072
/*
 * Returns true if the SPTE was fixed successfully. Otherwise,
 * someone else modified the SPTE from its original value.
 */
3073
static bool
3074
fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
3075
			u64 *sptep, u64 old_spte, u64 new_spte)
3076 3077 3078 3079 3080
{
	gfn_t gfn;

	WARN_ON(!sp->role.direct);

3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092
	/*
	 * Theoretically we could also set dirty bit (and flush TLB) here in
	 * order to eliminate unnecessary PML logging. See comments in
	 * set_spte. But fast_page_fault is very unlikely to happen with PML
	 * enabled, so we do not do this. This might result in the same GPA
	 * to be logged in PML buffer again when the write really happens, and
	 * eventually to be called by mark_page_dirty twice. But it's also no
	 * harm. This also avoids the TLB flush needed after setting dirty bit
	 * so non-PML cases won't be impacted.
	 *
	 * Compare with set_spte where instead shadow_dirty_mask is set.
	 */
3093
	if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3094 3095
		return false;

3096
	if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
3097 3098 3099 3100 3101 3102 3103
		/*
		 * The gfn of direct spte is stable since it is
		 * calculated by sp->gfn.
		 */
		gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
		kvm_vcpu_mark_page_dirty(vcpu, gfn);
	}
3104 3105 3106 3107

	return true;
}

3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119
static bool is_access_allowed(u32 fault_err_code, u64 spte)
{
	if (fault_err_code & PFERR_FETCH_MASK)
		return is_executable_pte(spte);

	if (fault_err_code & PFERR_WRITE_MASK)
		return is_writable_pte(spte);

	/* Fault was on Read access */
	return spte & PT_PRESENT_MASK;
}

3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145
/*
 * Returns the last level spte pointer of the shadow page walk for the given
 * gpa, and sets *spte to the spte value. This spte may be non-preset. If no
 * walk could be performed, returns NULL and *spte does not contain valid data.
 *
 * Contract:
 *  - Must be called between walk_shadow_page_lockless_{begin,end}.
 *  - The returned sptep must not be used after walk_shadow_page_lockless_end.
 */
static u64 *fast_pf_get_last_sptep(struct kvm_vcpu *vcpu, gpa_t gpa, u64 *spte)
{
	struct kvm_shadow_walk_iterator iterator;
	u64 old_spte;
	u64 *sptep = NULL;

	for_each_shadow_entry_lockless(vcpu, gpa, iterator, old_spte) {
		sptep = iterator.sptep;
		*spte = old_spte;

		if (!is_shadow_present_pte(old_spte))
			break;
	}

	return sptep;
}

3146
/*
3147
 * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS.
3148
 */
3149
static int fast_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code)
3150
{
3151
	struct kvm_mmu_page *sp;
3152
	int ret = RET_PF_INVALID;
3153
	u64 spte = 0ull;
3154
	u64 *sptep = NULL;
3155
	uint retry_count = 0;
3156

3157
	if (!page_fault_can_be_fast(error_code))
3158
		return ret;
3159 3160 3161

	walk_shadow_page_lockless_begin(vcpu);

3162
	do {
3163
		u64 new_spte;
3164

3165 3166 3167 3168
		if (is_tdp_mmu(vcpu->arch.mmu))
			sptep = kvm_tdp_mmu_fast_pf_get_last_sptep(vcpu, gpa, &spte);
		else
			sptep = fast_pf_get_last_sptep(vcpu, gpa, &spte);
3169

3170 3171 3172
		if (!is_shadow_present_pte(spte))
			break;

3173
		sp = sptep_to_sp(sptep);
3174 3175
		if (!is_last_spte(spte, sp->role.level))
			break;
3176

3177
		/*
3178 3179 3180 3181 3182
		 * Check whether the memory access that caused the fault would
		 * still cause it if it were to be performed right now. If not,
		 * then this is a spurious fault caused by TLB lazily flushed,
		 * or some other CPU has already fixed the PTE after the
		 * current CPU took the fault.
3183 3184 3185 3186
		 *
		 * Need not check the access of upper level table entries since
		 * they are always ACC_ALL.
		 */
3187
		if (is_access_allowed(error_code, spte)) {
3188
			ret = RET_PF_SPURIOUS;
3189 3190
			break;
		}
3191

3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202
		new_spte = spte;

		if (is_access_track_spte(spte))
			new_spte = restore_acc_track_spte(new_spte);

		/*
		 * Currently, to simplify the code, write-protection can
		 * be removed in the fast path only if the SPTE was
		 * write-protected for dirty-logging or access tracking.
		 */
		if ((error_code & PFERR_WRITE_MASK) &&
3203
		    spte_can_locklessly_be_made_writable(spte)) {
3204
			new_spte |= PT_WRITABLE_MASK;
3205 3206

			/*
3207 3208 3209 3210 3211 3212 3213 3214 3215
			 * Do not fix write-permission on the large spte.  Since
			 * we only dirty the first page into the dirty-bitmap in
			 * fast_pf_fix_direct_spte(), other pages are missed
			 * if its slot has dirty logging enabled.
			 *
			 * Instead, we let the slow page fault path create a
			 * normal spte to fix the access.
			 *
			 * See the comments in kvm_arch_commit_memory_region().
3216
			 */
3217
			if (sp->role.level > PG_LEVEL_4K)
3218
				break;
3219
		}
3220

3221
		/* Verify that the fault can be handled in the fast path */
3222 3223
		if (new_spte == spte ||
		    !is_access_allowed(error_code, new_spte))
3224 3225 3226 3227 3228
			break;

		/*
		 * Currently, fast page fault only works for direct mapping
		 * since the gfn is not stable for indirect shadow page. See
3229
		 * Documentation/virt/kvm/locking.rst to get more detail.
3230
		 */
3231
		if (fast_pf_fix_direct_spte(vcpu, sp, sptep, spte, new_spte)) {
3232
			ret = RET_PF_FIXED;
3233
			break;
3234
		}
3235 3236 3237 3238 3239 3240 3241 3242

		if (++retry_count > 4) {
			printk_once(KERN_WARNING
				"kvm: Fast #PF retrying more than 4 times.\n");
			break;
		}

	} while (true);
3243

3244
	trace_fast_page_fault(vcpu, gpa, error_code, sptep, spte, ret);
3245 3246
	walk_shadow_page_lockless_end(vcpu);

3247
	return ret;
3248 3249
}

3250 3251
static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
			       struct list_head *invalid_list)
3252
{
3253
	struct kvm_mmu_page *sp;
3254

3255
	if (!VALID_PAGE(*root_hpa))
A
Avi Kivity 已提交
3256
		return;
3257

3258
	sp = to_shadow_page(*root_hpa & PT64_BASE_ADDR_MASK);
3259

3260
	if (is_tdp_mmu_page(sp))
3261
		kvm_tdp_mmu_put_root(kvm, sp, false);
3262 3263
	else if (!--sp->root_count && sp->role.invalid)
		kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3264

3265 3266 3267
	*root_hpa = INVALID_PAGE;
}

3268
/* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
3269 3270
void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
			ulong roots_to_free)
3271
{
3272
	struct kvm *kvm = vcpu->kvm;
3273 3274
	int i;
	LIST_HEAD(invalid_list);
3275
	bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
3276

3277
	BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3278

3279
	/* Before acquiring the MMU lock, see if we need to do any real work. */
3280 3281 3282 3283 3284 3285 3286 3287 3288
	if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
			if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
			    VALID_PAGE(mmu->prev_roots[i].hpa))
				break;

		if (i == KVM_MMU_NUM_PREV_ROOTS)
			return;
	}
3289

3290
	write_lock(&kvm->mmu_lock);
3291

3292 3293
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
		if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3294
			mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa,
3295
					   &invalid_list);
3296

3297 3298 3299
	if (free_active_root) {
		if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
		    (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3300
			mmu_free_root_page(kvm, &mmu->root_hpa, &invalid_list);
3301
		} else if (mmu->pae_root) {
3302 3303 3304 3305 3306 3307 3308 3309
			for (i = 0; i < 4; ++i) {
				if (!IS_VALID_PAE_ROOT(mmu->pae_root[i]))
					continue;

				mmu_free_root_page(kvm, &mmu->pae_root[i],
						   &invalid_list);
				mmu->pae_root[i] = INVALID_PAE_ROOT;
			}
3310
		}
3311
		mmu->root_hpa = INVALID_PAGE;
3312
		mmu->root_pgd = 0;
3313
	}
3314

3315
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
3316
	write_unlock(&kvm->mmu_lock);
3317
}
3318
EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3319

3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346
void kvm_mmu_free_guest_mode_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
{
	unsigned long roots_to_free = 0;
	hpa_t root_hpa;
	int i;

	/*
	 * This should not be called while L2 is active, L2 can't invalidate
	 * _only_ its own roots, e.g. INVVPID unconditionally exits.
	 */
	WARN_ON_ONCE(mmu->mmu_role.base.guest_mode);

	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
		root_hpa = mmu->prev_roots[i].hpa;
		if (!VALID_PAGE(root_hpa))
			continue;

		if (!to_shadow_page(root_hpa) ||
			to_shadow_page(root_hpa)->role.guest_mode)
			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
	}

	kvm_mmu_free_roots(vcpu, mmu, roots_to_free);
}
EXPORT_SYMBOL_GPL(kvm_mmu_free_guest_mode_roots);


3347 3348 3349 3350
static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
{
	int ret = 0;

3351
	if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) {
3352
		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3353 3354 3355 3356 3357 3358
		ret = 1;
	}

	return ret;
}

3359 3360
static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, gva_t gva,
			    u8 level, bool direct)
3361 3362
{
	struct kvm_mmu_page *sp;
3363 3364 3365 3366 3367 3368 3369 3370 3371

	sp = kvm_mmu_get_page(vcpu, gfn, gva, level, direct, ACC_ALL);
	++sp->root_count;

	return __pa(sp->spt);
}

static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
{
3372 3373
	struct kvm_mmu *mmu = vcpu->arch.mmu;
	u8 shadow_root_level = mmu->shadow_root_level;
3374
	hpa_t root;
3375
	unsigned i;
3376 3377 3378 3379 3380 3381
	int r;

	write_lock(&vcpu->kvm->mmu_lock);
	r = make_mmu_pages_available(vcpu);
	if (r < 0)
		goto out_unlock;
3382

3383
	if (is_tdp_mmu_enabled(vcpu->kvm)) {
3384
		root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu);
3385
		mmu->root_hpa = root;
3386
	} else if (shadow_root_level >= PT64_ROOT_4LEVEL) {
3387
		root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level, true);
3388
		mmu->root_hpa = root;
3389
	} else if (shadow_root_level == PT32E_ROOT_LEVEL) {
3390 3391 3392 3393
		if (WARN_ON_ONCE(!mmu->pae_root)) {
			r = -EIO;
			goto out_unlock;
		}
3394

3395
		for (i = 0; i < 4; ++i) {
3396
			WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3397

3398 3399
			root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT),
					      i << 30, PT32_ROOT_LEVEL, true);
3400 3401
			mmu->pae_root[i] = root | PT_PRESENT_MASK |
					   shadow_me_mask;
3402
		}
3403
		mmu->root_hpa = __pa(mmu->pae_root);
3404 3405
	} else {
		WARN_ONCE(1, "Bad TDP root level = %d\n", shadow_root_level);
3406 3407
		r = -EIO;
		goto out_unlock;
3408
	}
3409

3410
	/* root_pgd is ignored for direct MMUs. */
3411
	mmu->root_pgd = 0;
3412 3413 3414
out_unlock:
	write_unlock(&vcpu->kvm->mmu_lock);
	return r;
3415 3416 3417
}

static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3418
{
3419
	struct kvm_mmu *mmu = vcpu->arch.mmu;
3420
	u64 pdptrs[4], pm_mask;
3421
	gfn_t root_gfn, root_pgd;
3422
	hpa_t root;
3423 3424
	unsigned i;
	int r;
3425

3426
	root_pgd = mmu->get_guest_pgd(vcpu);
3427
	root_gfn = root_pgd >> PAGE_SHIFT;
3428

3429 3430 3431
	if (mmu_check_root(vcpu, root_gfn))
		return 1;

3432 3433 3434 3435
	/*
	 * On SVM, reading PDPTRs might access guest memory, which might fault
	 * and thus might sleep.  Grab the PDPTRs before acquiring mmu_lock.
	 */
3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446
	if (mmu->root_level == PT32E_ROOT_LEVEL) {
		for (i = 0; i < 4; ++i) {
			pdptrs[i] = mmu->get_pdptr(vcpu, i);
			if (!(pdptrs[i] & PT_PRESENT_MASK))
				continue;

			if (mmu_check_root(vcpu, pdptrs[i] >> PAGE_SHIFT))
				return 1;
		}
	}

3447 3448 3449 3450
	r = alloc_all_memslots_rmaps(vcpu->kvm);
	if (r)
		return r;

3451 3452 3453 3454 3455
	write_lock(&vcpu->kvm->mmu_lock);
	r = make_mmu_pages_available(vcpu);
	if (r < 0)
		goto out_unlock;

3456 3457 3458 3459
	/*
	 * Do we shadow a long mode page table? If so we need to
	 * write-protect the guests page table root.
	 */
3460
	if (mmu->root_level >= PT64_ROOT_4LEVEL) {
3461
		root = mmu_alloc_root(vcpu, root_gfn, 0,
3462 3463
				      mmu->shadow_root_level, false);
		mmu->root_hpa = root;
3464
		goto set_root_pgd;
3465
	}
3466

3467 3468 3469 3470
	if (WARN_ON_ONCE(!mmu->pae_root)) {
		r = -EIO;
		goto out_unlock;
	}
3471

3472 3473
	/*
	 * We shadow a 32 bit page table. This may be a legacy 2-level
3474 3475
	 * or a PAE 3-level page table. In either case we need to be aware that
	 * the shadow page table may be a PAE or a long mode page table.
3476
	 */
3477
	pm_mask = PT_PRESENT_MASK | shadow_me_mask;
3478
	if (mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
3479 3480
		pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;

3481
		if (WARN_ON_ONCE(!mmu->pml4_root)) {
3482 3483 3484
			r = -EIO;
			goto out_unlock;
		}
3485

3486
		mmu->pml4_root[0] = __pa(mmu->pae_root) | pm_mask;
3487 3488
	}

3489
	for (i = 0; i < 4; ++i) {
3490
		WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3491

3492
		if (mmu->root_level == PT32E_ROOT_LEVEL) {
3493
			if (!(pdptrs[i] & PT_PRESENT_MASK)) {
3494
				mmu->pae_root[i] = INVALID_PAE_ROOT;
A
Avi Kivity 已提交
3495 3496
				continue;
			}
3497
			root_gfn = pdptrs[i] >> PAGE_SHIFT;
3498
		}
3499

3500 3501
		root = mmu_alloc_root(vcpu, root_gfn, i << 30,
				      PT32_ROOT_LEVEL, false);
3502
		mmu->pae_root[i] = root | pm_mask;
3503
	}
3504

3505
	if (mmu->shadow_root_level == PT64_ROOT_4LEVEL)
3506
		mmu->root_hpa = __pa(mmu->pml4_root);
3507 3508
	else
		mmu->root_hpa = __pa(mmu->pae_root);
3509

3510
set_root_pgd:
3511
	mmu->root_pgd = root_pgd;
3512 3513
out_unlock:
	write_unlock(&vcpu->kvm->mmu_lock);
3514

3515
	return 0;
3516 3517
}

3518 3519 3520
static int mmu_alloc_special_roots(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu *mmu = vcpu->arch.mmu;
3521
	u64 *pml4_root, *pae_root;
3522 3523

	/*
3524 3525 3526 3527
	 * When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP
	 * tables are allocated and initialized at root creation as there is no
	 * equivalent level in the guest's NPT to shadow.  Allocate the tables
	 * on demand, as running a 32-bit L1 VMM on 64-bit KVM is very rare.
3528
	 */
3529 3530 3531
	if (mmu->direct_map || mmu->root_level >= PT64_ROOT_4LEVEL ||
	    mmu->shadow_root_level < PT64_ROOT_4LEVEL)
		return 0;
3532

3533 3534 3535 3536 3537 3538
	/*
	 * This mess only works with 4-level paging and needs to be updated to
	 * work with 5-level paging.
	 */
	if (WARN_ON_ONCE(mmu->shadow_root_level != PT64_ROOT_4LEVEL))
		return -EIO;
3539

3540
	if (mmu->pae_root && mmu->pml4_root)
3541
		return 0;
3542

3543 3544 3545 3546
	/*
	 * The special roots should always be allocated in concert.  Yell and
	 * bail if KVM ends up in a state where only one of the roots is valid.
	 */
3547
	if (WARN_ON_ONCE(!tdp_enabled || mmu->pae_root || mmu->pml4_root))
3548
		return -EIO;
3549

3550 3551 3552 3553
	/*
	 * Unlike 32-bit NPT, the PDP table doesn't need to be in low mem, and
	 * doesn't need to be decrypted.
	 */
3554 3555 3556
	pae_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
	if (!pae_root)
		return -ENOMEM;
3557

3558 3559
	pml4_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
	if (!pml4_root) {
3560 3561
		free_page((unsigned long)pae_root);
		return -ENOMEM;
3562 3563
	}

3564
	mmu->pae_root = pae_root;
3565
	mmu->pml4_root = pml4_root;
3566

3567
	return 0;
3568 3569
}

3570
void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3571 3572 3573 3574
{
	int i;
	struct kvm_mmu_page *sp;

3575
	if (vcpu->arch.mmu->direct_map)
3576 3577
		return;

3578
	if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3579
		return;
3580

3581
	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3582

3583 3584
	if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
		hpa_t root = vcpu->arch.mmu->root_hpa;
3585
		sp = to_shadow_page(root);
3586 3587 3588 3589 3590 3591 3592 3593

		/*
		 * Even if another CPU was marking the SP as unsync-ed
		 * simultaneously, any guest page table changes are not
		 * guaranteed to be visible anyway until this VCPU issues a TLB
		 * flush strictly after those changes are made. We only need to
		 * ensure that the other CPU sets these flags before any actual
		 * changes to the page tables are made. The comments in
3594 3595
		 * mmu_try_to_unsync_pages() describe what could go wrong if
		 * this requirement isn't satisfied.
3596 3597 3598 3599 3600
		 */
		if (!smp_load_acquire(&sp->unsync) &&
		    !smp_load_acquire(&sp->unsync_children))
			return;

3601
		write_lock(&vcpu->kvm->mmu_lock);
3602 3603
		kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);

3604
		mmu_sync_children(vcpu, sp);
3605

3606
		kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3607
		write_unlock(&vcpu->kvm->mmu_lock);
3608 3609
		return;
	}
3610

3611
	write_lock(&vcpu->kvm->mmu_lock);
3612 3613
	kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);

3614
	for (i = 0; i < 4; ++i) {
3615
		hpa_t root = vcpu->arch.mmu->pae_root[i];
3616

3617
		if (IS_VALID_PAE_ROOT(root)) {
3618
			root &= PT64_BASE_ADDR_MASK;
3619
			sp = to_shadow_page(root);
3620 3621 3622 3623
			mmu_sync_children(vcpu, sp);
		}
	}

3624
	kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3625
	write_unlock(&vcpu->kvm->mmu_lock);
3626 3627
}

3628
static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr,
3629
				  u32 access, struct x86_exception *exception)
A
Avi Kivity 已提交
3630
{
3631 3632
	if (exception)
		exception->error_code = 0;
A
Avi Kivity 已提交
3633 3634 3635
	return vaddr;
}

3636
static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr,
3637 3638
					 u32 access,
					 struct x86_exception *exception)
3639
{
3640 3641
	if (exception)
		exception->error_code = 0;
3642
	return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3643 3644
}

3645
static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3646
{
3647 3648 3649 3650 3651 3652 3653
	/*
	 * A nested guest cannot use the MMIO cache if it is using nested
	 * page tables, because cr2 is a nGPA while the cache stores GPAs.
	 */
	if (mmu_is_nested(vcpu))
		return false;

3654 3655 3656 3657 3658 3659
	if (direct)
		return vcpu_match_mmio_gpa(vcpu, addr);

	return vcpu_match_mmio_gva(vcpu, addr);
}

3660 3661 3662
/*
 * Return the level of the lowest level SPTE added to sptes.
 * That SPTE may be non-present.
3663 3664
 *
 * Must be called between walk_shadow_page_lockless_{begin,end}.
3665
 */
3666
static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level)
3667 3668
{
	struct kvm_shadow_walk_iterator iterator;
3669
	int leaf = -1;
3670
	u64 spte;
3671

3672 3673
	for (shadow_walk_init(&iterator, vcpu, addr),
	     *root_level = iterator.level;
3674 3675
	     shadow_walk_okay(&iterator);
	     __shadow_walk_next(&iterator, spte)) {
3676
		leaf = iterator.level;
3677 3678
		spte = mmu_spte_get_lockless(iterator.sptep);

3679
		sptes[leaf] = spte;
3680

3681 3682
		if (!is_shadow_present_pte(spte))
			break;
3683 3684 3685 3686 3687
	}

	return leaf;
}

3688
/* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */
3689 3690
static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
{
3691
	u64 sptes[PT64_ROOT_MAX_LEVEL + 1];
3692
	struct rsvd_bits_validate *rsvd_check;
3693
	int root, leaf, level;
3694 3695
	bool reserved = false;

3696 3697
	walk_shadow_page_lockless_begin(vcpu);

3698
	if (is_tdp_mmu(vcpu->arch.mmu))
3699
		leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, &root);
3700
	else
3701
		leaf = get_walk(vcpu, addr, sptes, &root);
3702

3703 3704
	walk_shadow_page_lockless_end(vcpu);

3705 3706 3707 3708 3709
	if (unlikely(leaf < 0)) {
		*sptep = 0ull;
		return reserved;
	}

3710 3711 3712 3713 3714 3715 3716 3717 3718 3719
	*sptep = sptes[leaf];

	/*
	 * Skip reserved bits checks on the terminal leaf if it's not a valid
	 * SPTE.  Note, this also (intentionally) skips MMIO SPTEs, which, by
	 * design, always have reserved bits set.  The purpose of the checks is
	 * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs.
	 */
	if (!is_shadow_present_pte(sptes[leaf]))
		leaf++;
3720 3721 3722

	rsvd_check = &vcpu->arch.mmu->shadow_zero_check;

3723
	for (level = root; level >= leaf; level--)
3724
		reserved |= is_rsvd_spte(rsvd_check, sptes[level], level);
3725 3726

	if (reserved) {
3727
		pr_err("%s: reserved bits set on MMU-present spte, addr 0x%llx, hierarchy:\n",
3728
		       __func__, addr);
3729
		for (level = root; level >= leaf; level--)
3730 3731
			pr_err("------ spte = 0x%llx level = %d, rsvd bits = 0x%llx",
			       sptes[level], level,
3732
			       get_rsvd_bits(rsvd_check, sptes[level], level));
3733
	}
3734

3735
	return reserved;
3736 3737
}

P
Paolo Bonzini 已提交
3738
static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3739 3740
{
	u64 spte;
3741
	bool reserved;
3742

3743
	if (mmio_info_in_cache(vcpu, addr, direct))
3744
		return RET_PF_EMULATE;
3745

3746
	reserved = get_mmio_spte(vcpu, addr, &spte);
3747
	if (WARN_ON(reserved))
3748
		return -EINVAL;
3749 3750 3751

	if (is_mmio_spte(spte)) {
		gfn_t gfn = get_mmio_spte_gfn(spte);
3752
		unsigned int access = get_mmio_spte_access(spte);
3753

3754
		if (!check_mmio_spte(vcpu, spte))
3755
			return RET_PF_INVALID;
3756

3757 3758
		if (direct)
			addr = 0;
X
Xiao Guangrong 已提交
3759 3760

		trace_handle_mmio_page_fault(addr, gfn, access);
3761
		vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3762
		return RET_PF_EMULATE;
3763 3764 3765 3766 3767 3768
	}

	/*
	 * If the page table is zapped by other cpus, let CPU fault again on
	 * the address.
	 */
3769
	return RET_PF_RETRY;
3770 3771
}

3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791
static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
					 u32 error_code, gfn_t gfn)
{
	if (unlikely(error_code & PFERR_RSVD_MASK))
		return false;

	if (!(error_code & PFERR_PRESENT_MASK) ||
	      !(error_code & PFERR_WRITE_MASK))
		return false;

	/*
	 * guest is writing the page which is write tracked which can
	 * not be fixed by page fault handler.
	 */
	if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
		return true;

	return false;
}

3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805
static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
{
	struct kvm_shadow_walk_iterator iterator;
	u64 spte;

	walk_shadow_page_lockless_begin(vcpu);
	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
		clear_sp_write_flooding_count(iterator.sptep);
		if (!is_shadow_present_pte(spte))
			break;
	}
	walk_shadow_page_lockless_end(vcpu);
}

3806 3807
static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
				    gfn_t gfn)
3808 3809
{
	struct kvm_arch_async_pf arch;
X
Xiao Guangrong 已提交
3810

3811
	arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3812
	arch.gfn = gfn;
3813
	arch.direct_map = vcpu->arch.mmu->direct_map;
3814
	arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu);
3815

3816 3817
	return kvm_setup_async_pf(vcpu, cr2_or_gpa,
				  kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3818 3819
}

3820
static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3821 3822
			 gpa_t cr2_or_gpa, kvm_pfn_t *pfn, hva_t *hva,
			 bool write, bool *writable)
3823
{
3824
	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3825 3826
	bool async;

3827 3828 3829 3830 3831 3832 3833 3834
	/*
	 * Retry the page fault if the gfn hit a memslot that is being deleted
	 * or moved.  This ensures any existing SPTEs for the old memslot will
	 * be zapped before KVM inserts a new MMIO SPTE for the gfn.
	 */
	if (slot && (slot->flags & KVM_MEMSLOT_INVALID))
		return true;

3835 3836
	/* Don't expose private memslots to L2. */
	if (is_guest_mode(vcpu) && !kvm_is_visible_memslot(slot)) {
3837
		*pfn = KVM_PFN_NOSLOT;
3838
		*writable = false;
3839 3840 3841
		return false;
	}

3842
	async = false;
3843 3844
	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async,
				    write, writable, hva);
3845 3846 3847
	if (!async)
		return false; /* *pfn has correct page already */

3848
	if (!prefault && kvm_can_do_async_pf(vcpu)) {
3849
		trace_kvm_try_async_get_page(cr2_or_gpa, gfn);
3850
		if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3851
			trace_kvm_async_pf_doublefault(cr2_or_gpa, gfn);
3852 3853
			kvm_make_request(KVM_REQ_APF_HALT, vcpu);
			return true;
3854
		} else if (kvm_arch_setup_async_pf(vcpu, cr2_or_gpa, gfn))
3855 3856 3857
			return true;
	}

3858 3859
	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL,
				    write, writable, hva);
3860 3861 3862
	return false;
}

3863 3864
static int direct_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
			     bool prefault, int max_level, bool is_tdp)
A
Avi Kivity 已提交
3865
{
3866
	bool is_tdp_mmu_fault = is_tdp_mmu(vcpu->arch.mmu);
3867
	bool write = error_code & PFERR_WRITE_MASK;
3868
	bool map_writable;
A
Avi Kivity 已提交
3869

3870 3871 3872
	gfn_t gfn = gpa >> PAGE_SHIFT;
	unsigned long mmu_seq;
	kvm_pfn_t pfn;
3873
	hva_t hva;
3874
	int r;
3875

3876
	if (page_fault_handle_page_track(vcpu, error_code, gfn))
3877
		return RET_PF_EMULATE;
3878

3879 3880 3881
	r = fast_page_fault(vcpu, gpa, error_code);
	if (r != RET_PF_INVALID)
		return r;
3882

3883
	r = mmu_topup_memory_caches(vcpu, false);
3884 3885
	if (r)
		return r;
3886

3887 3888 3889
	mmu_seq = vcpu->kvm->mmu_notifier_seq;
	smp_rmb();

3890 3891
	if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, &hva,
			 write, &map_writable))
3892 3893
		return RET_PF_RETRY;

3894
	if (handle_abnormal_pfn(vcpu, is_tdp ? 0 : gpa, gfn, pfn, ACC_ALL, &r))
3895
		return r;
A
Avi Kivity 已提交
3896

3897
	r = RET_PF_RETRY;
3898

3899
	if (is_tdp_mmu_fault)
3900 3901 3902 3903
		read_lock(&vcpu->kvm->mmu_lock);
	else
		write_lock(&vcpu->kvm->mmu_lock);

3904
	if (!is_noslot_pfn(pfn) && mmu_notifier_retry_hva(vcpu->kvm, mmu_seq, hva))
3905
		goto out_unlock;
3906 3907
	r = make_mmu_pages_available(vcpu);
	if (r)
3908
		goto out_unlock;
B
Ben Gardon 已提交
3909

3910
	if (is_tdp_mmu_fault)
B
Ben Gardon 已提交
3911 3912 3913 3914 3915
		r = kvm_tdp_mmu_map(vcpu, gpa, error_code, map_writable, max_level,
				    pfn, prefault);
	else
		r = __direct_map(vcpu, gpa, error_code, map_writable, max_level, pfn,
				 prefault, is_tdp);
3916

3917
out_unlock:
3918
	if (is_tdp_mmu_fault)
3919 3920 3921
		read_unlock(&vcpu->kvm->mmu_lock);
	else
		write_unlock(&vcpu->kvm->mmu_lock);
3922 3923
	kvm_release_pfn_clean(pfn);
	return r;
A
Avi Kivity 已提交
3924 3925
}

3926 3927 3928 3929 3930 3931 3932
static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa,
				u32 error_code, bool prefault)
{
	pgprintk("%s: gva %lx error %x\n", __func__, gpa, error_code);

	/* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
	return direct_page_fault(vcpu, gpa & PAGE_MASK, error_code, prefault,
3933
				 PG_LEVEL_2M, false);
3934 3935
}

3936
int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
3937
				u64 fault_address, char *insn, int insn_len)
3938 3939
{
	int r = 1;
3940
	u32 flags = vcpu->arch.apf.host_apf_flags;
3941

3942 3943 3944 3945 3946 3947
#ifndef CONFIG_X86_64
	/* A 64-bit CR2 should be impossible on 32-bit KVM. */
	if (WARN_ON_ONCE(fault_address >> 32))
		return -EFAULT;
#endif

P
Paolo Bonzini 已提交
3948
	vcpu->arch.l1tf_flush_l1d = true;
3949
	if (!flags) {
3950 3951
		trace_kvm_page_fault(fault_address, error_code);

3952
		if (kvm_event_needs_reinjection(vcpu))
3953 3954 3955
			kvm_mmu_unprotect_page_virt(vcpu, fault_address);
		r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
				insn_len);
3956
	} else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
3957
		vcpu->arch.apf.host_apf_flags = 0;
3958
		local_irq_disable();
3959
		kvm_async_pf_task_wait_schedule(fault_address);
3960
		local_irq_enable();
3961 3962
	} else {
		WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags);
3963
	}
3964

3965 3966 3967 3968
	return r;
}
EXPORT_SYMBOL_GPL(kvm_handle_page_fault);

3969 3970
int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
		       bool prefault)
3971
{
3972
	int max_level;
3973

3974
	for (max_level = KVM_MAX_HUGEPAGE_LEVEL;
3975
	     max_level > PG_LEVEL_4K;
3976 3977
	     max_level--) {
		int page_num = KVM_PAGES_PER_HPAGE(max_level);
3978
		gfn_t base = (gpa >> PAGE_SHIFT) & ~(page_num - 1);
3979

3980 3981
		if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
			break;
3982
	}
3983

3984 3985
	return direct_page_fault(vcpu, gpa, error_code, prefault,
				 max_level, true);
3986 3987
}

3988
static void nonpaging_init_context(struct kvm_mmu *context)
A
Avi Kivity 已提交
3989 3990 3991
{
	context->page_fault = nonpaging_page_fault;
	context->gva_to_gpa = nonpaging_gva_to_gpa;
3992
	context->sync_page = nonpaging_sync_page;
3993
	context->invlpg = NULL;
3994
	context->direct_map = true;
A
Avi Kivity 已提交
3995 3996
}

3997
static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd,
3998 3999
				  union kvm_mmu_page_role role)
{
4000
	return (role.direct || pgd == root->pgd) &&
4001 4002
	       VALID_PAGE(root->hpa) && to_shadow_page(root->hpa) &&
	       role.word == to_shadow_page(root->hpa)->role.word;
4003 4004
}

4005
/*
4006
 * Find out if a previously cached root matching the new pgd/role is available.
4007 4008 4009 4010 4011 4012
 * The current root is also inserted into the cache.
 * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
 * returned.
 * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
 * false is returned. This root should now be freed by the caller.
 */
4013
static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_pgd,
4014 4015 4016 4017
				  union kvm_mmu_page_role new_role)
{
	uint i;
	struct kvm_mmu_root_info root;
4018
	struct kvm_mmu *mmu = vcpu->arch.mmu;
4019

4020
	root.pgd = mmu->root_pgd;
4021 4022
	root.hpa = mmu->root_hpa;

4023
	if (is_root_usable(&root, new_pgd, new_role))
4024 4025
		return true;

4026 4027 4028
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
		swap(root, mmu->prev_roots[i]);

4029
		if (is_root_usable(&root, new_pgd, new_role))
4030 4031 4032 4033
			break;
	}

	mmu->root_hpa = root.hpa;
4034
	mmu->root_pgd = root.pgd;
4035 4036 4037 4038

	return i < KVM_MMU_NUM_PREV_ROOTS;
}

4039
static bool fast_pgd_switch(struct kvm_vcpu *vcpu, gpa_t new_pgd,
4040
			    union kvm_mmu_page_role new_role)
A
Avi Kivity 已提交
4041
{
4042
	struct kvm_mmu *mmu = vcpu->arch.mmu;
4043 4044 4045 4046 4047 4048 4049

	/*
	 * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
	 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
	 * later if necessary.
	 */
	if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
4050
	    mmu->root_level >= PT64_ROOT_4LEVEL)
4051
		return cached_root_available(vcpu, new_pgd, new_role);
4052 4053

	return false;
A
Avi Kivity 已提交
4054 4055
}

4056
static void __kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd,
4057
			      union kvm_mmu_page_role new_role)
A
Avi Kivity 已提交
4058
{
4059
	if (!fast_pgd_switch(vcpu, new_pgd, new_role)) {
4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071
		kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, KVM_MMU_ROOT_CURRENT);
		return;
	}

	/*
	 * It's possible that the cached previous root page is obsolete because
	 * of a change in the MMU generation number. However, changing the
	 * generation number is accompanied by KVM_REQ_MMU_RELOAD, which will
	 * free the root set here and allocate a new one.
	 */
	kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);

4072
	if (force_flush_and_sync_on_reuse) {
4073 4074
		kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
4075
	}
4076 4077 4078 4079 4080 4081 4082 4083 4084

	/*
	 * The last MMIO access's GVA and GPA are cached in the VCPU. When
	 * switching to a new CR3, that GVA->GPA mapping may no longer be
	 * valid. So clear any cached MMIO info even when we don't need to sync
	 * the shadow page tables.
	 */
	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);

4085 4086 4087 4088 4089 4090 4091
	/*
	 * If this is a direct root page, it doesn't have a write flooding
	 * count. Otherwise, clear the write flooding count.
	 */
	if (!new_role.direct)
		__clear_sp_write_flooding_count(
				to_shadow_page(vcpu->arch.mmu->root_hpa));
A
Avi Kivity 已提交
4092 4093
}

4094
void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd)
4095
{
4096
	__kvm_mmu_new_pgd(vcpu, new_pgd, kvm_mmu_calc_root_page_role(vcpu));
4097
}
4098
EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd);
4099

4100 4101
static unsigned long get_cr3(struct kvm_vcpu *vcpu)
{
4102
	return kvm_read_cr3(vcpu);
4103 4104
}

4105
static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
4106
			   unsigned int access, int *nr_present)
4107 4108 4109 4110 4111 4112 4113 4114
{
	if (unlikely(is_mmio_spte(*sptep))) {
		if (gfn != get_mmio_spte_gfn(*sptep)) {
			mmu_spte_clear_no_track(sptep);
			return true;
		}

		(*nr_present)++;
4115
		mark_mmio_spte(vcpu, sptep, gfn, access);
4116 4117 4118 4119 4120 4121
		return true;
	}

	return false;
}

4122 4123 4124 4125 4126
#define PTTYPE_EPT 18 /* arbitrary */
#define PTTYPE PTTYPE_EPT
#include "paging_tmpl.h"
#undef PTTYPE

A
Avi Kivity 已提交
4127 4128 4129 4130 4131 4132 4133 4134
#define PTTYPE 64
#include "paging_tmpl.h"
#undef PTTYPE

#define PTTYPE 32
#include "paging_tmpl.h"
#undef PTTYPE

4135
static void
4136
__reset_rsvds_bits_mask(struct rsvd_bits_validate *rsvd_check,
4137
			u64 pa_bits_rsvd, int level, bool nx, bool gbpages,
4138
			bool pse, bool amd)
4139
{
4140
	u64 gbpages_bit_rsvd = 0;
4141
	u64 nonleaf_bit8_rsvd = 0;
4142
	u64 high_bits_rsvd;
4143

4144
	rsvd_check->bad_mt_xwr = 0;
4145

4146
	if (!gbpages)
4147
		gbpages_bit_rsvd = rsvd_bits(7, 7);
4148

4149 4150 4151 4152 4153 4154 4155 4156 4157
	if (level == PT32E_ROOT_LEVEL)
		high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 62);
	else
		high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);

	/* Note, NX doesn't exist in PDPTEs, this is handled below. */
	if (!nx)
		high_bits_rsvd |= rsvd_bits(63, 63);

4158 4159 4160 4161
	/*
	 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
	 * leaf entries) on AMD CPUs only.
	 */
4162
	if (amd)
4163 4164
		nonleaf_bit8_rsvd = rsvd_bits(8, 8);

4165
	switch (level) {
4166 4167
	case PT32_ROOT_LEVEL:
		/* no rsvd bits for 2 level 4K page table entries */
4168 4169 4170 4171
		rsvd_check->rsvd_bits_mask[0][1] = 0;
		rsvd_check->rsvd_bits_mask[0][0] = 0;
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
4172

4173
		if (!pse) {
4174
			rsvd_check->rsvd_bits_mask[1][1] = 0;
4175 4176 4177
			break;
		}

4178 4179
		if (is_cpuid_PSE36())
			/* 36bits PSE 4MB page */
4180
			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4181 4182
		else
			/* 32 bits PSE 4MB page */
4183
			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4184 4185
		break;
	case PT32E_ROOT_LEVEL:
4186 4187 4188 4189 4190 4191 4192 4193
		rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) |
						   high_bits_rsvd |
						   rsvd_bits(5, 8) |
						   rsvd_bits(1, 2);	/* PDPTE */
		rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;	/* PDE */
		rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;	/* PTE */
		rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
						   rsvd_bits(13, 20);	/* large page */
4194 4195
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
4196
		break;
4197
	case PT64_ROOT_5LEVEL:
4198 4199 4200
		rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd |
						   nonleaf_bit8_rsvd |
						   rsvd_bits(7, 7);
4201 4202
		rsvd_check->rsvd_bits_mask[1][4] =
			rsvd_check->rsvd_bits_mask[0][4];
4203
		fallthrough;
4204
	case PT64_ROOT_4LEVEL:
4205 4206 4207 4208 4209 4210 4211
		rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd |
						   nonleaf_bit8_rsvd |
						   rsvd_bits(7, 7);
		rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd |
						   gbpages_bit_rsvd;
		rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;
		rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4212 4213
		rsvd_check->rsvd_bits_mask[1][3] =
			rsvd_check->rsvd_bits_mask[0][3];
4214 4215 4216 4217 4218
		rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd |
						   gbpages_bit_rsvd |
						   rsvd_bits(13, 29);
		rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
						   rsvd_bits(13, 20); /* large page */
4219 4220
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
4221 4222 4223 4224
		break;
	}
}

4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239
static bool guest_can_use_gbpages(struct kvm_vcpu *vcpu)
{
	/*
	 * If TDP is enabled, let the guest use GBPAGES if they're supported in
	 * hardware.  The hardware page walker doesn't let KVM disable GBPAGES,
	 * i.e. won't treat them as reserved, and KVM doesn't redo the GVA->GPA
	 * walk for performance and complexity reasons.  Not to mention KVM
	 * _can't_ solve the problem because GVA->GPA walks aren't visible to
	 * KVM once a TDP translation is installed.  Mimic hardware behavior so
	 * that KVM's is at least consistent, i.e. doesn't randomly inject #PF.
	 */
	return tdp_enabled ? boot_cpu_has(X86_FEATURE_GBPAGES) :
			     guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES);
}

4240 4241 4242
static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
{
4243
	__reset_rsvds_bits_mask(&context->guest_rsvd_check,
4244
				vcpu->arch.reserved_gpa_bits,
4245
				context->root_level, is_efer_nx(context),
4246
				guest_can_use_gbpages(vcpu),
4247
				is_cr4_pse(context),
4248
				guest_cpuid_is_amd_or_hygon(vcpu));
4249 4250
}

4251 4252
static void
__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4253
			    u64 pa_bits_rsvd, bool execonly)
4254
{
4255
	u64 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
4256
	u64 bad_mt_xwr;
4257

4258 4259 4260 4261 4262
	rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7);
	rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7);
	rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6);
	rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6);
	rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4263 4264

	/* large page */
4265
	rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4266
	rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4267 4268
	rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29);
	rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20);
4269
	rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4270

4271 4272 4273 4274 4275 4276 4277 4278
	bad_mt_xwr = 0xFFull << (2 * 8);	/* bits 3..5 must not be 2 */
	bad_mt_xwr |= 0xFFull << (3 * 8);	/* bits 3..5 must not be 3 */
	bad_mt_xwr |= 0xFFull << (7 * 8);	/* bits 3..5 must not be 7 */
	bad_mt_xwr |= REPEAT_BYTE(1ull << 2);	/* bits 0..2 must not be 010 */
	bad_mt_xwr |= REPEAT_BYTE(1ull << 6);	/* bits 0..2 must not be 110 */
	if (!execonly) {
		/* bits 0..2 must not be 100 unless VMX capabilities allow it */
		bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4279
	}
4280
	rsvd_check->bad_mt_xwr = bad_mt_xwr;
4281 4282
}

4283 4284 4285 4286
static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
		struct kvm_mmu *context, bool execonly)
{
	__reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4287
				    vcpu->arch.reserved_gpa_bits, execonly);
4288 4289
}

4290 4291 4292 4293 4294
static inline u64 reserved_hpa_bits(void)
{
	return rsvd_bits(shadow_phys_bits, 63);
}

4295 4296 4297 4298 4299
/*
 * the page table on host is the shadow page table for the page
 * table in guest or amd nested guest, its mmu features completely
 * follow the features in guest.
 */
4300 4301
static void reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
					struct kvm_mmu *context)
4302
{
4303 4304 4305 4306 4307 4308 4309 4310
	/*
	 * KVM uses NX when TDP is disabled to handle a variety of scenarios,
	 * notably for huge SPTEs if iTLB multi-hit mitigation is enabled and
	 * to generate correct permissions for CR0.WP=0/CR4.SMEP=1/EFER.NX=0.
	 * The iTLB multi-hit workaround can be toggled at any time, so assume
	 * NX can be used by any non-nested shadow MMU to avoid having to reset
	 * MMU contexts.  Note, KVM forces EFER.NX=1 when TDP is disabled.
	 */
4311
	bool uses_nx = is_efer_nx(context) || !tdp_enabled;
4312 4313 4314 4315 4316

	/* @amd adds a check on bit of SPTEs, which KVM shouldn't use anyways. */
	bool is_amd = true;
	/* KVM doesn't use 2-level page tables for the shadow MMU. */
	bool is_pse = false;
4317 4318
	struct rsvd_bits_validate *shadow_zero_check;
	int i;
4319

4320 4321
	WARN_ON_ONCE(context->shadow_root_level < PT32E_ROOT_LEVEL);

4322
	shadow_zero_check = &context->shadow_zero_check;
4323
	__reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(),
4324
				context->shadow_root_level, uses_nx,
4325
				guest_can_use_gbpages(vcpu), is_pse, is_amd);
4326 4327 4328 4329 4330 4331 4332 4333 4334

	if (!shadow_me_mask)
		return;

	for (i = context->shadow_root_level; --i >= 0;) {
		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
	}

4335 4336
}

4337 4338 4339 4340 4341 4342
static inline bool boot_cpu_is_amd(void)
{
	WARN_ON_ONCE(!tdp_enabled);
	return shadow_x_mask == 0;
}

4343 4344 4345 4346 4347 4348 4349 4350
/*
 * the direct page table on host, use as much mmu features as
 * possible, however, kvm currently does not do execution-protection.
 */
static void
reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
				struct kvm_mmu *context)
{
4351 4352 4353 4354 4355
	struct rsvd_bits_validate *shadow_zero_check;
	int i;

	shadow_zero_check = &context->shadow_zero_check;

4356
	if (boot_cpu_is_amd())
4357
		__reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(),
4358
					context->shadow_root_level, false,
4359
					boot_cpu_has(X86_FEATURE_GBPAGES),
4360
					false, true);
4361
	else
4362
		__reset_rsvds_bits_mask_ept(shadow_zero_check,
4363
					    reserved_hpa_bits(), false);
4364

4365 4366 4367 4368 4369 4370 4371
	if (!shadow_me_mask)
		return;

	for (i = context->shadow_root_level; --i >= 0;) {
		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
	}
4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382
}

/*
 * as the comments in reset_shadow_zero_bits_mask() except it
 * is the shadow page table for intel nested guest.
 */
static void
reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
				struct kvm_mmu *context, bool execonly)
{
	__reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4383
				    reserved_hpa_bits(), execonly);
4384 4385
}

4386 4387 4388 4389 4390 4391 4392 4393 4394 4395
#define BYTE_MASK(access) \
	((1 & (access) ? 2 : 0) | \
	 (2 & (access) ? 4 : 0) | \
	 (3 & (access) ? 8 : 0) | \
	 (4 & (access) ? 16 : 0) | \
	 (5 & (access) ? 32 : 0) | \
	 (6 & (access) ? 64 : 0) | \
	 (7 & (access) ? 128 : 0))


4396
static void update_permission_bitmask(struct kvm_mmu *mmu, bool ept)
4397
{
4398 4399 4400 4401 4402 4403
	unsigned byte;

	const u8 x = BYTE_MASK(ACC_EXEC_MASK);
	const u8 w = BYTE_MASK(ACC_WRITE_MASK);
	const u8 u = BYTE_MASK(ACC_USER_MASK);

4404 4405 4406
	bool cr4_smep = is_cr4_smep(mmu);
	bool cr4_smap = is_cr4_smap(mmu);
	bool cr0_wp = is_cr0_wp(mmu);
4407
	bool efer_nx = is_efer_nx(mmu);
4408 4409

	for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4410 4411
		unsigned pfec = byte << 1;

F
Feng Wu 已提交
4412
		/*
4413 4414
		 * Each "*f" variable has a 1 bit for each UWX value
		 * that causes a fault with the given PFEC.
F
Feng Wu 已提交
4415
		 */
4416

4417
		/* Faults from writes to non-writable pages */
4418
		u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
4419
		/* Faults from user mode accesses to supervisor pages */
4420
		u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
4421
		/* Faults from fetches of non-executable pages*/
4422
		u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
4423 4424 4425 4426 4427 4428 4429 4430 4431 4432
		/* Faults from kernel mode fetches of user pages */
		u8 smepf = 0;
		/* Faults from kernel mode accesses of user pages */
		u8 smapf = 0;

		if (!ept) {
			/* Faults from kernel mode accesses to user pages */
			u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;

			/* Not really needed: !nx will cause pte.nx to fault */
4433
			if (!efer_nx)
4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447
				ff = 0;

			/* Allow supervisor writes if !cr0.wp */
			if (!cr0_wp)
				wf = (pfec & PFERR_USER_MASK) ? wf : 0;

			/* Disallow supervisor fetches of user code if cr4.smep */
			if (cr4_smep)
				smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;

			/*
			 * SMAP:kernel-mode data accesses from user-mode
			 * mappings should fault. A fault is considered
			 * as a SMAP violation if all of the following
P
Peng Hao 已提交
4448
			 * conditions are true:
4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461
			 *   - X86_CR4_SMAP is set in CR4
			 *   - A user page is accessed
			 *   - The access is not a fetch
			 *   - Page fault in kernel mode
			 *   - if CPL = 3 or X86_EFLAGS_AC is clear
			 *
			 * Here, we cover the first three conditions.
			 * The fourth is computed dynamically in permission_fault();
			 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
			 * *not* subject to SMAP restrictions.
			 */
			if (cr4_smap)
				smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4462
		}
4463 4464

		mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4465 4466 4467
	}
}

4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491
/*
* PKU is an additional mechanism by which the paging controls access to
* user-mode addresses based on the value in the PKRU register.  Protection
* key violations are reported through a bit in the page fault error code.
* Unlike other bits of the error code, the PK bit is not known at the
* call site of e.g. gva_to_gpa; it must be computed directly in
* permission_fault based on two bits of PKRU, on some machine state (CR4,
* CR0, EFER, CPL), and on other bits of the error code and the page tables.
*
* In particular the following conditions come from the error code, the
* page tables and the machine state:
* - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
* - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
* - PK is always zero if U=0 in the page tables
* - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
*
* The PKRU bitmask caches the result of these four conditions.  The error
* code (minus the P bit) and the page table's U bit form an index into the
* PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
* with the two bits of the PKRU register corresponding to the protection key.
* For the first three conditions above the bits will be 00, thus masking
* away both AD and WD.  For all reads or if the last condition holds, WD
* only will be masked away.
*/
4492
static void update_pkru_bitmask(struct kvm_mmu *mmu)
4493 4494 4495 4496
{
	unsigned bit;
	bool wp;

4497
	if (!is_cr4_pke(mmu)) {
4498 4499 4500 4501
		mmu->pkru_mask = 0;
		return;
	}

4502
	wp = is_cr0_wp(mmu);
4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535

	for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
		unsigned pfec, pkey_bits;
		bool check_pkey, check_write, ff, uf, wf, pte_user;

		pfec = bit << 1;
		ff = pfec & PFERR_FETCH_MASK;
		uf = pfec & PFERR_USER_MASK;
		wf = pfec & PFERR_WRITE_MASK;

		/* PFEC.RSVD is replaced by ACC_USER_MASK. */
		pte_user = pfec & PFERR_RSVD_MASK;

		/*
		 * Only need to check the access which is not an
		 * instruction fetch and is to a user page.
		 */
		check_pkey = (!ff && pte_user);
		/*
		 * write access is controlled by PKRU if it is a
		 * user access or CR0.WP = 1.
		 */
		check_write = check_pkey && wf && (uf || wp);

		/* PKRU.AD stops both read and write access. */
		pkey_bits = !!check_pkey;
		/* PKRU.WD stops write access. */
		pkey_bits |= (!!check_write) << 1;

		mmu->pkru_mask |= (pkey_bits & 3) << pfec;
	}
}

4536 4537
static void reset_guest_paging_metadata(struct kvm_vcpu *vcpu,
					struct kvm_mmu *mmu)
A
Avi Kivity 已提交
4538
{
4539 4540
	if (!is_cr0_pg(mmu))
		return;
4541

4542 4543 4544
	reset_rsvds_bits_mask(vcpu, mmu);
	update_permission_bitmask(mmu, false);
	update_pkru_bitmask(mmu);
A
Avi Kivity 已提交
4545 4546
}

4547
static void paging64_init_context(struct kvm_mmu *context)
A
Avi Kivity 已提交
4548 4549 4550
{
	context->page_fault = paging64_page_fault;
	context->gva_to_gpa = paging64_gva_to_gpa;
4551
	context->sync_page = paging64_sync_page;
M
Marcelo Tosatti 已提交
4552
	context->invlpg = paging64_invlpg;
4553
	context->direct_map = false;
A
Avi Kivity 已提交
4554 4555
}

4556
static void paging32_init_context(struct kvm_mmu *context)
A
Avi Kivity 已提交
4557 4558 4559
{
	context->page_fault = paging32_page_fault;
	context->gva_to_gpa = paging32_gva_to_gpa;
4560
	context->sync_page = paging32_sync_page;
M
Marcelo Tosatti 已提交
4561
	context->invlpg = paging32_invlpg;
4562
	context->direct_map = false;
A
Avi Kivity 已提交
4563 4564
}

4565 4566
static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu,
							 struct kvm_mmu_role_regs *regs)
4567 4568 4569
{
	union kvm_mmu_extended_role ext = {0};

4570 4571 4572 4573 4574 4575
	if (____is_cr0_pg(regs)) {
		ext.cr0_pg = 1;
		ext.cr4_pae = ____is_cr4_pae(regs);
		ext.cr4_smep = ____is_cr4_smep(regs);
		ext.cr4_smap = ____is_cr4_smap(regs);
		ext.cr4_pse = ____is_cr4_pse(regs);
4576 4577 4578 4579

		/* PKEY and LA57 are active iff long mode is active. */
		ext.cr4_pke = ____is_efer_lma(regs) && ____is_cr4_pke(regs);
		ext.cr4_la57 = ____is_efer_lma(regs) && ____is_cr4_la57(regs);
4580
	}
4581 4582 4583 4584 4585 4586

	ext.valid = 1;

	return ext;
}

4587
static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
4588
						   struct kvm_mmu_role_regs *regs,
4589 4590 4591 4592 4593
						   bool base_only)
{
	union kvm_mmu_role role = {0};

	role.base.access = ACC_ALL;
4594 4595 4596 4597
	if (____is_cr0_pg(regs)) {
		role.base.efer_nx = ____is_efer_nx(regs);
		role.base.cr0_wp = ____is_cr0_wp(regs);
	}
4598 4599 4600 4601 4602 4603
	role.base.smm = is_smm(vcpu);
	role.base.guest_mode = is_guest_mode(vcpu);

	if (base_only)
		return role;

4604
	role.ext = kvm_calc_mmu_role_ext(vcpu, regs);
4605 4606 4607 4608

	return role;
}

4609 4610 4611
static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu)
{
	/* Use 5-level TDP if and only if it's useful/necessary. */
4612
	if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48)
4613 4614
		return 4;

4615
	return max_tdp_level;
4616 4617
}

4618
static union kvm_mmu_role
4619 4620
kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu,
				struct kvm_mmu_role_regs *regs, bool base_only)
4621
{
4622
	union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, regs, base_only);
4623

4624
	role.base.ad_disabled = (shadow_accessed_mask == 0);
4625
	role.base.level = kvm_mmu_get_tdp_level(vcpu);
4626
	role.base.direct = true;
4627
	role.base.gpte_is_8_bytes = true;
4628 4629 4630 4631

	return role;
}

4632
static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4633
{
4634
	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4635
	struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
4636
	union kvm_mmu_role new_role =
4637
		kvm_calc_tdp_mmu_root_page_role(vcpu, &regs, false);
4638

4639 4640 4641 4642
	if (new_role.as_u64 == context->mmu_role.as_u64)
		return;

	context->mmu_role.as_u64 = new_role.as_u64;
4643
	context->page_fault = kvm_tdp_page_fault;
4644
	context->sync_page = nonpaging_sync_page;
4645
	context->invlpg = NULL;
4646
	context->shadow_root_level = kvm_mmu_get_tdp_level(vcpu);
4647
	context->direct_map = true;
4648
	context->get_guest_pgd = get_cr3;
4649
	context->get_pdptr = kvm_pdptr_read;
4650
	context->inject_page_fault = kvm_inject_page_fault;
4651
	context->root_level = role_regs_to_root_level(&regs);
4652

4653
	if (!is_cr0_pg(context))
4654
		context->gva_to_gpa = nonpaging_gva_to_gpa;
4655
	else if (is_cr4_pae(context))
4656
		context->gva_to_gpa = paging64_gva_to_gpa;
4657
	else
4658
		context->gva_to_gpa = paging32_gva_to_gpa;
4659

4660
	reset_guest_paging_metadata(vcpu, context);
4661
	reset_tdp_shadow_zero_bits_mask(vcpu, context);
4662 4663
}

4664
static union kvm_mmu_role
4665 4666
kvm_calc_shadow_root_page_role_common(struct kvm_vcpu *vcpu,
				      struct kvm_mmu_role_regs *regs, bool base_only)
4667
{
4668
	union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, regs, base_only);
4669

4670 4671
	role.base.smep_andnot_wp = role.ext.cr4_smep && !____is_cr0_wp(regs);
	role.base.smap_andnot_wp = role.ext.cr4_smap && !____is_cr0_wp(regs);
4672
	role.base.gpte_is_8_bytes = ____is_cr0_pg(regs) && ____is_cr4_pae(regs);
4673

4674 4675 4676 4677
	return role;
}

static union kvm_mmu_role
4678 4679
kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu,
				   struct kvm_mmu_role_regs *regs, bool base_only)
4680 4681
{
	union kvm_mmu_role role =
4682
		kvm_calc_shadow_root_page_role_common(vcpu, regs, base_only);
4683

4684
	role.base.direct = !____is_cr0_pg(regs);
4685

4686
	if (!____is_efer_lma(regs))
4687
		role.base.level = PT32E_ROOT_LEVEL;
4688
	else if (____is_cr4_la57(regs))
4689
		role.base.level = PT64_ROOT_5LEVEL;
4690
	else
4691
		role.base.level = PT64_ROOT_4LEVEL;
4692 4693 4694 4695

	return role;
}

4696
static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
4697
				    struct kvm_mmu_role_regs *regs,
4698
				    union kvm_mmu_role new_role)
4699
{
4700 4701
	if (new_role.as_u64 == context->mmu_role.as_u64)
		return;
4702

4703
	context->mmu_role.as_u64 = new_role.as_u64;
4704

4705
	if (!is_cr0_pg(context))
4706
		nonpaging_init_context(context);
4707
	else if (is_cr4_pae(context))
4708
		paging64_init_context(context);
A
Avi Kivity 已提交
4709
	else
4710
		paging32_init_context(context);
4711
	context->root_level = role_regs_to_root_level(regs);
4712

4713
	reset_guest_paging_metadata(vcpu, context);
4714 4715
	context->shadow_root_level = new_role.base.level;

4716
	reset_shadow_zero_bits_mask(vcpu, context);
4717
}
4718

4719 4720
static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu,
				struct kvm_mmu_role_regs *regs)
4721
{
4722
	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4723
	union kvm_mmu_role new_role =
4724
		kvm_calc_shadow_mmu_root_page_role(vcpu, regs, false);
4725

4726
	shadow_mmu_init_context(vcpu, context, regs, new_role);
4727 4728
}

4729
static union kvm_mmu_role
4730 4731
kvm_calc_shadow_npt_root_page_role(struct kvm_vcpu *vcpu,
				   struct kvm_mmu_role_regs *regs)
4732 4733
{
	union kvm_mmu_role role =
4734
		kvm_calc_shadow_root_page_role_common(vcpu, regs, false);
4735 4736

	role.base.direct = false;
4737
	role.base.level = kvm_mmu_get_tdp_level(vcpu);
4738 4739 4740 4741

	return role;
}

4742 4743
void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0,
			     unsigned long cr4, u64 efer, gpa_t nested_cr3)
4744
{
4745
	struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4746 4747 4748 4749 4750
	struct kvm_mmu_role_regs regs = {
		.cr0 = cr0,
		.cr4 = cr4,
		.efer = efer,
	};
4751
	union kvm_mmu_role new_role;
4752

4753
	new_role = kvm_calc_shadow_npt_root_page_role(vcpu, &regs);
4754

4755
	__kvm_mmu_new_pgd(vcpu, nested_cr3, new_role.base);
4756

4757
	shadow_mmu_init_context(vcpu, context, &regs, new_role);
4758 4759
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu);
4760

4761 4762
static union kvm_mmu_role
kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
4763
				   bool execonly, u8 level)
4764
{
4765
	union kvm_mmu_role role = {0};
4766

4767 4768
	/* SMM flag is inherited from root_mmu */
	role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
4769

4770
	role.base.level = level;
4771
	role.base.gpte_is_8_bytes = true;
4772 4773 4774 4775
	role.base.direct = false;
	role.base.ad_disabled = !accessed_dirty;
	role.base.guest_mode = true;
	role.base.access = ACC_ALL;
4776

4777 4778
	/* EPT, and thus nested EPT, does not consume CR0, CR4, nor EFER. */
	role.ext.word = 0;
4779
	role.ext.execonly = execonly;
4780
	role.ext.valid = 1;
4781 4782 4783 4784

	return role;
}

4785
void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
4786
			     bool accessed_dirty, gpa_t new_eptp)
N
Nadav Har'El 已提交
4787
{
4788
	struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4789
	u8 level = vmx_eptp_page_walk_level(new_eptp);
4790 4791
	union kvm_mmu_role new_role =
		kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
4792
						   execonly, level);
4793

4794
	__kvm_mmu_new_pgd(vcpu, new_eptp, new_role.base);
4795 4796 4797

	if (new_role.as_u64 == context->mmu_role.as_u64)
		return;
4798

4799 4800
	context->mmu_role.as_u64 = new_role.as_u64;

4801
	context->shadow_root_level = level;
N
Nadav Har'El 已提交
4802

4803
	context->ept_ad = accessed_dirty;
N
Nadav Har'El 已提交
4804 4805 4806 4807
	context->page_fault = ept_page_fault;
	context->gva_to_gpa = ept_gva_to_gpa;
	context->sync_page = ept_sync_page;
	context->invlpg = ept_invlpg;
4808
	context->root_level = level;
N
Nadav Har'El 已提交
4809
	context->direct_map = false;
4810

4811
	update_permission_bitmask(context, true);
4812
	update_pkru_bitmask(context);
N
Nadav Har'El 已提交
4813
	reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4814
	reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
N
Nadav Har'El 已提交
4815 4816 4817
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);

4818
static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4819
{
4820
	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4821
	struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
4822

4823
	kvm_init_shadow_mmu(vcpu, &regs);
4824

4825
	context->get_guest_pgd     = get_cr3;
4826 4827
	context->get_pdptr         = kvm_pdptr_read;
	context->inject_page_fault = kvm_inject_page_fault;
A
Avi Kivity 已提交
4828 4829
}

4830 4831
static union kvm_mmu_role
kvm_calc_nested_mmu_role(struct kvm_vcpu *vcpu, struct kvm_mmu_role_regs *regs)
4832
{
4833 4834 4835
	union kvm_mmu_role role;

	role = kvm_calc_shadow_root_page_role_common(vcpu, regs, false);
4836 4837 4838 4839 4840 4841 4842

	/*
	 * Nested MMUs are used only for walking L2's gva->gpa, they never have
	 * shadow pages of their own and so "direct" has no meaning.   Set it
	 * to "true" to try to detect bogus usage of the nested MMU.
	 */
	role.base.direct = true;
4843
	role.base.level = role_regs_to_root_level(regs);
4844 4845 4846
	return role;
}

4847
static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4848
{
4849 4850
	struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
	union kvm_mmu_role new_role = kvm_calc_nested_mmu_role(vcpu, &regs);
4851 4852
	struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;

4853 4854 4855 4856
	if (new_role.as_u64 == g_context->mmu_role.as_u64)
		return;

	g_context->mmu_role.as_u64 = new_role.as_u64;
4857
	g_context->get_guest_pgd     = get_cr3;
4858
	g_context->get_pdptr         = kvm_pdptr_read;
4859
	g_context->inject_page_fault = kvm_inject_page_fault;
4860
	g_context->root_level        = new_role.base.level;
4861

4862 4863 4864 4865 4866 4867
	/*
	 * L2 page tables are never shadowed, so there is no need to sync
	 * SPTEs.
	 */
	g_context->invlpg            = NULL;

4868
	/*
4869
	 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
4870 4871 4872 4873 4874
	 * L1's nested page tables (e.g. EPT12). The nested translation
	 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
	 * L2's page tables as the first level of translation and L1's
	 * nested page tables as the second level of translation. Basically
	 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
4875
	 */
4876
	if (!is_paging(vcpu))
4877
		g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4878
	else if (is_long_mode(vcpu))
4879
		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4880
	else if (is_pae(vcpu))
4881
		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4882
	else
4883 4884
		g_context->gva_to_gpa = paging32_gva_to_gpa_nested;

4885
	reset_guest_paging_metadata(vcpu, g_context);
4886 4887
}

4888
void kvm_init_mmu(struct kvm_vcpu *vcpu)
4889
{
4890
	if (mmu_is_nested(vcpu))
4891
		init_kvm_nested_mmu(vcpu);
4892
	else if (tdp_enabled)
4893
		init_kvm_tdp_mmu(vcpu);
4894
	else
4895
		init_kvm_softmmu(vcpu);
4896
}
4897
EXPORT_SYMBOL_GPL(kvm_init_mmu);
4898

4899 4900 4901
static union kvm_mmu_page_role
kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
{
4902
	struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
4903 4904
	union kvm_mmu_role role;

4905
	if (tdp_enabled)
4906
		role = kvm_calc_tdp_mmu_root_page_role(vcpu, &regs, true);
4907
	else
4908
		role = kvm_calc_shadow_mmu_root_page_role(vcpu, &regs, true);
4909 4910

	return role.base;
4911
}
4912

4913 4914 4915 4916 4917 4918 4919 4920 4921 4922
void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu)
{
	/*
	 * Invalidate all MMU roles to force them to reinitialize as CPUID
	 * information is factored into reserved bit calculations.
	 */
	vcpu->arch.root_mmu.mmu_role.ext.valid = 0;
	vcpu->arch.guest_mmu.mmu_role.ext.valid = 0;
	vcpu->arch.nested_mmu.mmu_role.ext.valid = 0;
	kvm_mmu_reset_context(vcpu);
4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942

	/*
	 * KVM does not correctly handle changing guest CPUID after KVM_RUN, as
	 * MAXPHYADDR, GBPAGES support, AMD reserved bit behavior, etc.. aren't
	 * tracked in kvm_mmu_page_role.  As a result, KVM may miss guest page
	 * faults due to reusing SPs/SPTEs.  Alert userspace, but otherwise
	 * sweep the problem under the rug.
	 *
	 * KVM's horrific CPUID ABI makes the problem all but impossible to
	 * solve, as correctly handling multiple vCPU models (with respect to
	 * paging and physical address properties) in a single VM would require
	 * tracking all relevant CPUID information in kvm_mmu_page_role.  That
	 * is very undesirable as it would double the memory requirements for
	 * gfn_track (see struct kvm_mmu_page_role comments), and in practice
	 * no sane VMM mucks with the core vCPU model on the fly.
	 */
	if (vcpu->arch.last_vmentry_cpu != -1) {
		pr_warn_ratelimited("KVM: KVM_SET_CPUID{,2} after KVM_RUN may cause guest instability\n");
		pr_warn_ratelimited("KVM: KVM_SET_CPUID{,2} will fail after KVM_RUN starting with Linux 5.16\n");
	}
4943 4944
}

4945
void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4946
{
4947
	kvm_mmu_unload(vcpu);
4948
	kvm_init_mmu(vcpu);
A
Avi Kivity 已提交
4949
}
4950
EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
A
Avi Kivity 已提交
4951 4952

int kvm_mmu_load(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4953
{
4954 4955
	int r;

4956
	r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->direct_map);
A
Avi Kivity 已提交
4957 4958
	if (r)
		goto out;
4959
	r = mmu_alloc_special_roots(vcpu);
A
Avi Kivity 已提交
4960 4961
	if (r)
		goto out;
4962
	if (vcpu->arch.mmu->direct_map)
4963 4964 4965
		r = mmu_alloc_direct_roots(vcpu);
	else
		r = mmu_alloc_shadow_roots(vcpu);
4966 4967
	if (r)
		goto out;
4968 4969 4970

	kvm_mmu_sync_roots(vcpu);

4971
	kvm_mmu_load_pgd(vcpu);
4972
	static_call(kvm_x86_tlb_flush_current)(vcpu);
4973 4974
out:
	return r;
A
Avi Kivity 已提交
4975
}
A
Avi Kivity 已提交
4976 4977 4978

void kvm_mmu_unload(struct kvm_vcpu *vcpu)
{
4979 4980 4981 4982
	kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
	WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
	kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
	WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
A
Avi Kivity 已提交
4983
}
A
Avi Kivity 已提交
4984

4985 4986 4987 4988 4989 4990 4991 4992
static bool need_remote_flush(u64 old, u64 new)
{
	if (!is_shadow_present_pte(old))
		return false;
	if (!is_shadow_present_pte(new))
		return true;
	if ((old ^ new) & PT64_BASE_ADDR_MASK)
		return true;
4993 4994
	old ^= shadow_nx_mask;
	new ^= shadow_nx_mask;
4995 4996 4997
	return (old & ~new & PT64_PERM_MASK) != 0;
}

4998
static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4999
				    int *bytes)
5000
{
5001
	u64 gentry = 0;
5002
	int r;
5003 5004 5005

	/*
	 * Assume that the pte write on a page table of the same type
5006 5007
	 * as the current vcpu paging mode since we update the sptes only
	 * when they have the same mode.
5008
	 */
5009
	if (is_pae(vcpu) && *bytes == 4) {
5010
		/* Handle a 32-bit guest writing two halves of a 64-bit gpte */
5011 5012
		*gpa &= ~(gpa_t)7;
		*bytes = 8;
5013 5014
	}

5015 5016 5017 5018
	if (*bytes == 4 || *bytes == 8) {
		r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
		if (r)
			gentry = 0;
5019 5020
	}

5021 5022 5023 5024 5025 5026 5027
	return gentry;
}

/*
 * If we're seeing too many writes to a page, it may no longer be a page table,
 * or we may be forking, in which case it is better to unmap the page.
 */
5028
static bool detect_write_flooding(struct kvm_mmu_page *sp)
5029
{
5030 5031 5032 5033
	/*
	 * Skip write-flooding detected for the sp whose level is 1, because
	 * it can become unsync, then the guest page is not write-protected.
	 */
5034
	if (sp->role.level == PG_LEVEL_4K)
5035
		return false;
5036

5037 5038
	atomic_inc(&sp->write_flooding_count);
	return atomic_read(&sp->write_flooding_count) >= 3;
5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053
}

/*
 * Misaligned accesses are too much trouble to fix up; also, they usually
 * indicate a page is not used as a page table.
 */
static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
				    int bytes)
{
	unsigned offset, pte_size, misaligned;

	pgprintk("misaligned: gpa %llx bytes %d role %x\n",
		 gpa, bytes, sp->role.word);

	offset = offset_in_page(gpa);
5054
	pte_size = sp->role.gpte_is_8_bytes ? 8 : 4;
5055 5056 5057 5058 5059 5060 5061 5062

	/*
	 * Sometimes, the OS only writes the last one bytes to update status
	 * bits, for example, in linux, andb instruction is used in clear_bit().
	 */
	if (!(offset & (pte_size - 1)) && bytes == 1)
		return false;

5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077
	misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
	misaligned |= bytes < 4;

	return misaligned;
}

static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
{
	unsigned page_offset, quadrant;
	u64 *spte;
	int level;

	page_offset = offset_in_page(gpa);
	level = sp->role.level;
	*nspte = 1;
5078
	if (!sp->role.gpte_is_8_bytes) {
5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099
		page_offset <<= 1;	/* 32->64 */
		/*
		 * A 32-bit pde maps 4MB while the shadow pdes map
		 * only 2MB.  So we need to double the offset again
		 * and zap two pdes instead of one.
		 */
		if (level == PT32_ROOT_LEVEL) {
			page_offset &= ~7; /* kill rounding error */
			page_offset <<= 1;
			*nspte = 2;
		}
		quadrant = page_offset >> PAGE_SHIFT;
		page_offset &= ~PAGE_MASK;
		if (quadrant != sp->role.quadrant)
			return NULL;
	}

	spte = &sp->spt[page_offset / sizeof(*spte)];
	return spte;
}

5100
static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
5101 5102
			      const u8 *new, int bytes,
			      struct kvm_page_track_notifier_node *node)
5103 5104 5105 5106 5107 5108
{
	gfn_t gfn = gpa >> PAGE_SHIFT;
	struct kvm_mmu_page *sp;
	LIST_HEAD(invalid_list);
	u64 entry, gentry, *spte;
	int npte;
5109
	bool remote_flush, local_flush;
5110 5111 5112 5113 5114

	/*
	 * If we don't have indirect shadow pages, it means no page is
	 * write-protected, so we can exit simply.
	 */
5115
	if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
5116 5117
		return;

5118
	remote_flush = local_flush = false;
5119 5120 5121 5122 5123

	pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);

	/*
	 * No need to care whether allocation memory is successful
I
Ingo Molnar 已提交
5124
	 * or not since pte prefetch is skipped if it does not have
5125 5126
	 * enough objects in the cache.
	 */
5127
	mmu_topup_memory_caches(vcpu, true);
5128

5129
	write_lock(&vcpu->kvm->mmu_lock);
5130 5131 5132

	gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);

5133
	++vcpu->kvm->stat.mmu_pte_write;
5134
	kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
5135

5136
	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
5137
		if (detect_write_misaligned(sp, gpa, bytes) ||
5138
		      detect_write_flooding(sp)) {
5139
			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
A
Avi Kivity 已提交
5140
			++vcpu->kvm->stat.mmu_flooded;
5141 5142
			continue;
		}
5143 5144 5145 5146 5147

		spte = get_written_sptes(sp, gpa, &npte);
		if (!spte)
			continue;

5148
		local_flush = true;
5149
		while (npte--) {
5150
			entry = *spte;
5151
			mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL);
5152 5153
			if (gentry && sp->role.level != PG_LEVEL_4K)
				++vcpu->kvm->stat.mmu_pde_zapped;
G
Gleb Natapov 已提交
5154
			if (need_remote_flush(entry, *spte))
5155
				remote_flush = true;
5156
			++spte;
5157 5158
		}
	}
5159
	kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
5160
	kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
5161
	write_unlock(&vcpu->kvm->mmu_lock);
5162 5163
}

5164
int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
5165
		       void *insn, int insn_len)
5166
{
5167
	int r, emulation_type = EMULTYPE_PF;
5168
	bool direct = vcpu->arch.mmu->direct_map;
5169

5170
	if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
5171 5172
		return RET_PF_RETRY;

5173
	r = RET_PF_INVALID;
5174
	if (unlikely(error_code & PFERR_RSVD_MASK)) {
5175
		r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
5176
		if (r == RET_PF_EMULATE)
5177 5178
			goto emulate;
	}
5179

5180
	if (r == RET_PF_INVALID) {
5181 5182
		r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
					  lower_32_bits(error_code), false);
5183
		if (KVM_BUG_ON(r == RET_PF_INVALID, vcpu->kvm))
5184
			return -EIO;
5185 5186
	}

5187
	if (r < 0)
5188
		return r;
5189 5190
	if (r != RET_PF_EMULATE)
		return 1;
5191

5192 5193 5194 5195 5196 5197 5198
	/*
	 * Before emulating the instruction, check if the error code
	 * was due to a RO violation while translating the guest page.
	 * This can occur when using nested virtualization with nested
	 * paging in both guests. If true, we simply unprotect the page
	 * and resume the guest.
	 */
5199
	if (vcpu->arch.mmu->direct_map &&
5200
	    (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5201
		kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
5202 5203 5204
		return 1;
	}

5205 5206 5207 5208 5209 5210
	/*
	 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
	 * optimistically try to just unprotect the page and let the processor
	 * re-execute the instruction that caused the page fault.  Do not allow
	 * retrying MMIO emulation, as it's not only pointless but could also
	 * cause us to enter an infinite loop because the processor will keep
5211 5212 5213 5214
	 * faulting on the non-existent MMIO address.  Retrying an instruction
	 * from a nested guest is also pointless and dangerous as we are only
	 * explicitly shadowing L1's page tables, i.e. unprotecting something
	 * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5215
	 */
5216
	if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
5217
		emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
5218
emulate:
5219
	return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
5220
				       insn_len);
5221 5222 5223
}
EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);

5224 5225
void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
			    gva_t gva, hpa_t root_hpa)
M
Marcelo Tosatti 已提交
5226
{
5227
	int i;
5228

5229 5230 5231 5232 5233 5234
	/* It's actually a GPA for vcpu->arch.guest_mmu.  */
	if (mmu != &vcpu->arch.guest_mmu) {
		/* INVLPG on a non-canonical address is a NOP according to the SDM.  */
		if (is_noncanonical_address(gva, vcpu))
			return;

5235
		static_call(kvm_x86_tlb_flush_gva)(vcpu, gva);
5236 5237 5238
	}

	if (!mmu->invlpg)
5239 5240
		return;

5241 5242
	if (root_hpa == INVALID_PAGE) {
		mmu->invlpg(vcpu, gva, mmu->root_hpa);
5243

5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261
		/*
		 * INVLPG is required to invalidate any global mappings for the VA,
		 * irrespective of PCID. Since it would take us roughly similar amount
		 * of work to determine whether any of the prev_root mappings of the VA
		 * is marked global, or to just sync it blindly, so we might as well
		 * just always sync it.
		 *
		 * Mappings not reachable via the current cr3 or the prev_roots will be
		 * synced when switching to that cr3, so nothing needs to be done here
		 * for them.
		 */
		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
			if (VALID_PAGE(mmu->prev_roots[i].hpa))
				mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
	} else {
		mmu->invlpg(vcpu, gva, root_hpa);
	}
}
5262

5263 5264 5265
void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
{
	kvm_mmu_invalidate_gva(vcpu, vcpu->arch.mmu, gva, INVALID_PAGE);
M
Marcelo Tosatti 已提交
5266 5267 5268 5269
	++vcpu->stat.invlpg;
}
EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);

5270

5271 5272
void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
{
5273
	struct kvm_mmu *mmu = vcpu->arch.mmu;
5274
	bool tlb_flush = false;
5275
	uint i;
5276 5277

	if (pcid == kvm_get_active_pcid(vcpu)) {
5278
		mmu->invlpg(vcpu, gva, mmu->root_hpa);
5279
		tlb_flush = true;
5280 5281
	}

5282 5283
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
		if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5284
		    pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) {
5285 5286 5287
			mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
			tlb_flush = true;
		}
5288
	}
5289

5290
	if (tlb_flush)
5291
		static_call(kvm_x86_tlb_flush_gva)(vcpu, gva);
5292

5293 5294 5295
	++vcpu->stat.invlpg;

	/*
5296 5297 5298
	 * Mappings not reachable via the current cr3 or the prev_roots will be
	 * synced when switching to that cr3, so nothing needs to be done here
	 * for them.
5299 5300 5301
	 */
}

5302 5303
void kvm_configure_mmu(bool enable_tdp, int tdp_max_root_level,
		       int tdp_huge_page_level)
5304
{
5305
	tdp_enabled = enable_tdp;
5306
	max_tdp_level = tdp_max_root_level;
5307 5308

	/*
5309
	 * max_huge_page_level reflects KVM's MMU capabilities irrespective
5310 5311 5312 5313 5314 5315
	 * of kernel support, e.g. KVM may be capable of using 1GB pages when
	 * the kernel is not.  But, KVM never creates a page size greater than
	 * what is used by the kernel for any given HVA, i.e. the kernel's
	 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
	 */
	if (tdp_enabled)
5316
		max_huge_page_level = tdp_huge_page_level;
5317
	else if (boot_cpu_has(X86_FEATURE_GBPAGES))
5318
		max_huge_page_level = PG_LEVEL_1G;
5319
	else
5320
		max_huge_page_level = PG_LEVEL_2M;
5321
}
5322
EXPORT_SYMBOL_GPL(kvm_configure_mmu);
5323 5324

/* The return value indicates if tlb flush on all vcpus is needed. */
5325 5326 5327
typedef bool (*slot_level_handler) (struct kvm *kvm,
				    struct kvm_rmap_head *rmap_head,
				    const struct kvm_memory_slot *slot);
5328 5329 5330

/* The caller should hold mmu-lock before calling this function. */
static __always_inline bool
5331
slot_handle_level_range(struct kvm *kvm, const struct kvm_memory_slot *memslot,
5332
			slot_level_handler fn, int start_level, int end_level,
5333 5334
			gfn_t start_gfn, gfn_t end_gfn, bool flush_on_yield,
			bool flush)
5335 5336 5337 5338 5339 5340
{
	struct slot_rmap_walk_iterator iterator;

	for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
			end_gfn, &iterator) {
		if (iterator.rmap)
5341
			flush |= fn(kvm, iterator.rmap, memslot);
5342

5343
		if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
5344
			if (flush && flush_on_yield) {
5345 5346 5347
				kvm_flush_remote_tlbs_with_address(kvm,
						start_gfn,
						iterator.gfn - start_gfn + 1);
5348 5349
				flush = false;
			}
5350
			cond_resched_rwlock_write(&kvm->mmu_lock);
5351 5352 5353 5354 5355 5356 5357
		}
	}

	return flush;
}

static __always_inline bool
5358
slot_handle_level(struct kvm *kvm, const struct kvm_memory_slot *memslot,
5359
		  slot_level_handler fn, int start_level, int end_level,
5360
		  bool flush_on_yield)
5361 5362 5363 5364
{
	return slot_handle_level_range(kvm, memslot, fn, start_level,
			end_level, memslot->base_gfn,
			memslot->base_gfn + memslot->npages - 1,
5365
			flush_on_yield, false);
5366 5367 5368
}

static __always_inline bool
5369
slot_handle_leaf(struct kvm *kvm, const struct kvm_memory_slot *memslot,
5370
		 slot_level_handler fn, bool flush_on_yield)
5371
{
5372
	return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
5373
				 PG_LEVEL_4K, flush_on_yield);
5374 5375
}

5376
static void free_mmu_pages(struct kvm_mmu *mmu)
A
Avi Kivity 已提交
5377
{
5378 5379
	if (!tdp_enabled && mmu->pae_root)
		set_memory_encrypted((unsigned long)mmu->pae_root, 1);
5380
	free_page((unsigned long)mmu->pae_root);
5381
	free_page((unsigned long)mmu->pml4_root);
A
Avi Kivity 已提交
5382 5383
}

5384
static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
A
Avi Kivity 已提交
5385
{
5386
	struct page *page;
A
Avi Kivity 已提交
5387 5388
	int i;

5389 5390 5391 5392 5393 5394
	mmu->root_hpa = INVALID_PAGE;
	mmu->root_pgd = 0;
	mmu->translate_gpa = translate_gpa;
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
		mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;

5395
	/*
5396 5397 5398 5399
	 * When using PAE paging, the four PDPTEs are treated as 'root' pages,
	 * while the PDP table is a per-vCPU construct that's allocated at MMU
	 * creation.  When emulating 32-bit mode, cr3 is only 32 bits even on
	 * x86_64.  Therefore we need to allocate the PDP table in the first
5400 5401 5402 5403 5404
	 * 4GB of memory, which happens to fit the DMA32 zone.  TDP paging
	 * generally doesn't use PAE paging and can skip allocating the PDP
	 * table.  The main exception, handled here, is SVM's 32-bit NPT.  The
	 * other exception is for shadowing L1's 32-bit or PAE NPT on 64-bit
	 * KVM; that horror is handled on-demand by mmu_alloc_shadow_roots().
5405
	 */
5406
	if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
5407 5408
		return 0;

5409
	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
5410
	if (!page)
5411 5412
		return -ENOMEM;

5413
	mmu->pae_root = page_address(page);
5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427

	/*
	 * CR3 is only 32 bits when PAE paging is used, thus it's impossible to
	 * get the CPU to treat the PDPTEs as encrypted.  Decrypt the page so
	 * that KVM's writes and the CPU's reads get along.  Note, this is
	 * only necessary when using shadow paging, as 64-bit NPT can get at
	 * the C-bit even when shadowing 32-bit NPT, and SME isn't supported
	 * by 32-bit kernels (when KVM itself uses 32-bit NPT).
	 */
	if (!tdp_enabled)
		set_memory_decrypted((unsigned long)mmu->pae_root, 1);
	else
		WARN_ON_ONCE(shadow_me_mask);

5428
	for (i = 0; i < 4; ++i)
5429
		mmu->pae_root[i] = INVALID_PAE_ROOT;
5430

A
Avi Kivity 已提交
5431 5432 5433
	return 0;
}

5434
int kvm_mmu_create(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
5435
{
5436
	int ret;
5437

5438
	vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache;
5439 5440
	vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO;

5441
	vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache;
5442
	vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO;
5443

5444 5445
	vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO;

5446 5447
	vcpu->arch.mmu = &vcpu->arch.root_mmu;
	vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
A
Avi Kivity 已提交
5448

5449
	vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5450

5451
	ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu);
5452 5453 5454
	if (ret)
		return ret;

5455
	ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu);
5456 5457 5458 5459 5460 5461 5462
	if (ret)
		goto fail_allocate_root;

	return ret;
 fail_allocate_root:
	free_mmu_pages(&vcpu->arch.guest_mmu);
	return ret;
A
Avi Kivity 已提交
5463 5464
}

5465
#define BATCH_ZAP_PAGES	10
5466 5467 5468
static void kvm_zap_obsolete_pages(struct kvm *kvm)
{
	struct kvm_mmu_page *sp, *node;
5469
	int nr_zapped, batch = 0;
5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481

restart:
	list_for_each_entry_safe_reverse(sp, node,
	      &kvm->arch.active_mmu_pages, link) {
		/*
		 * No obsolete valid page exists before a newly created page
		 * since active_mmu_pages is a FIFO list.
		 */
		if (!is_obsolete_sp(kvm, sp))
			break;

		/*
5482 5483 5484
		 * Invalid pages should never land back on the list of active
		 * pages.  Skip the bogus page, otherwise we'll get stuck in an
		 * infinite loop if the page gets put back on the list (again).
5485
		 */
5486
		if (WARN_ON(sp->role.invalid))
5487 5488
			continue;

5489 5490 5491 5492 5493 5494
		/*
		 * No need to flush the TLB since we're only zapping shadow
		 * pages with an obsolete generation number and all vCPUS have
		 * loaded a new root, i.e. the shadow pages being zapped cannot
		 * be in active use by the guest.
		 */
5495
		if (batch >= BATCH_ZAP_PAGES &&
5496
		    cond_resched_rwlock_write(&kvm->mmu_lock)) {
5497
			batch = 0;
5498 5499 5500
			goto restart;
		}

5501 5502
		if (__kvm_mmu_prepare_zap_page(kvm, sp,
				&kvm->arch.zapped_obsolete_pages, &nr_zapped)) {
5503
			batch += nr_zapped;
5504
			goto restart;
5505
		}
5506 5507
	}

5508 5509 5510 5511 5512
	/*
	 * Trigger a remote TLB flush before freeing the page tables to ensure
	 * KVM is not in the middle of a lockless shadow page table walk, which
	 * may reference the pages.
	 */
5513
	kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526
}

/*
 * Fast invalidate all shadow pages and use lock-break technique
 * to zap obsolete pages.
 *
 * It's required when memslot is being deleted or VM is being
 * destroyed, in these cases, we should ensure that KVM MMU does
 * not use any resource of the being-deleted slot or all slots
 * after calling the function.
 */
static void kvm_mmu_zap_all_fast(struct kvm *kvm)
{
5527 5528
	lockdep_assert_held(&kvm->slots_lock);

5529
	write_lock(&kvm->mmu_lock);
5530
	trace_kvm_mmu_zap_all_fast(kvm);
5531 5532 5533 5534 5535 5536 5537 5538 5539

	/*
	 * Toggle mmu_valid_gen between '0' and '1'.  Because slots_lock is
	 * held for the entire duration of zapping obsolete pages, it's
	 * impossible for there to be multiple invalid generations associated
	 * with *valid* shadow pages at any given time, i.e. there is exactly
	 * one valid generation and (at most) one invalid generation.
	 */
	kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
5540

5541 5542 5543 5544 5545 5546 5547 5548 5549
	/* In order to ensure all threads see this change when
	 * handling the MMU reload signal, this must happen in the
	 * same critical section as kvm_reload_remote_mmus, and
	 * before kvm_zap_obsolete_pages as kvm_zap_obsolete_pages
	 * could drop the MMU lock and yield.
	 */
	if (is_tdp_mmu_enabled(kvm))
		kvm_tdp_mmu_invalidate_all_roots(kvm);

5550 5551 5552 5553 5554 5555 5556 5557 5558 5559
	/*
	 * Notify all vcpus to reload its shadow page table and flush TLB.
	 * Then all vcpus will switch to new shadow page table with the new
	 * mmu_valid_gen.
	 *
	 * Note: we need to do this under the protection of mmu_lock,
	 * otherwise, vcpu would purge shadow page but miss tlb flush.
	 */
	kvm_reload_remote_mmus(kvm);

5560
	kvm_zap_obsolete_pages(kvm);
5561

5562
	write_unlock(&kvm->mmu_lock);
5563 5564 5565 5566 5567 5568

	if (is_tdp_mmu_enabled(kvm)) {
		read_lock(&kvm->mmu_lock);
		kvm_tdp_mmu_zap_invalidated_roots(kvm);
		read_unlock(&kvm->mmu_lock);
	}
5569 5570
}

5571 5572 5573 5574 5575
static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
{
	return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
}

5576
static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5577 5578
			struct kvm_memory_slot *slot,
			struct kvm_page_track_notifier_node *node)
5579
{
5580
	kvm_mmu_zap_all_fast(kvm);
5581 5582
}

5583
void kvm_mmu_init_vm(struct kvm *kvm)
5584
{
5585
	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5586

5587 5588 5589 5590 5591 5592 5593
	if (!kvm_mmu_init_tdp_mmu(kvm))
		/*
		 * No smp_load/store wrappers needed here as we are in
		 * VM init and there cannot be any memslots / other threads
		 * accessing this struct kvm yet.
		 */
		kvm->arch.memslots_have_rmaps = true;
5594

5595
	node->track_write = kvm_mmu_pte_write;
5596
	node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5597
	kvm_page_track_register_notifier(kvm, node);
5598 5599
}

5600
void kvm_mmu_uninit_vm(struct kvm *kvm)
5601
{
5602
	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5603

5604
	kvm_page_track_unregister_notifier(kvm, node);
5605 5606

	kvm_mmu_uninit_tdp_mmu(kvm);
5607 5608
}

X
Xiao Guangrong 已提交
5609 5610 5611 5612
void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;
5613
	int i;
5614
	bool flush = false;
X
Xiao Guangrong 已提交
5615

5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626
	if (kvm_memslots_have_rmaps(kvm)) {
		write_lock(&kvm->mmu_lock);
		for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
			slots = __kvm_memslots(kvm, i);
			kvm_for_each_memslot(memslot, slots) {
				gfn_t start, end;

				start = max(gfn_start, memslot->base_gfn);
				end = min(gfn_end, memslot->base_gfn + memslot->npages);
				if (start >= end)
					continue;
X
Xiao Guangrong 已提交
5627

5628 5629
				flush = slot_handle_level_range(kvm,
						(const struct kvm_memory_slot *) memslot,
5630 5631 5632 5633
						kvm_zap_rmapp, PG_LEVEL_4K,
						KVM_MAX_HUGEPAGE_LEVEL, start,
						end - 1, true, flush);
			}
5634
		}
5635 5636 5637
		if (flush)
			kvm_flush_remote_tlbs_with_address(kvm, gfn_start, gfn_end);
		write_unlock(&kvm->mmu_lock);
X
Xiao Guangrong 已提交
5638 5639
	}

5640
	if (is_tdp_mmu_enabled(kvm)) {
5641 5642 5643 5644 5645 5646
		flush = false;

		read_lock(&kvm->mmu_lock);
		for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
			flush = kvm_tdp_mmu_zap_gfn_range(kvm, i, gfn_start,
							  gfn_end, flush, true);
5647
		if (flush)
5648 5649
			kvm_flush_remote_tlbs_with_address(kvm, gfn_start,
							   gfn_end);
5650

5651 5652
		read_unlock(&kvm->mmu_lock);
	}
X
Xiao Guangrong 已提交
5653 5654
}

5655
static bool slot_rmap_write_protect(struct kvm *kvm,
5656
				    struct kvm_rmap_head *rmap_head,
5657
				    const struct kvm_memory_slot *slot)
5658
{
5659
	return __rmap_write_protect(kvm, rmap_head, false);
5660 5661
}

5662
void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5663
				      const struct kvm_memory_slot *memslot,
5664
				      int start_level)
A
Avi Kivity 已提交
5665
{
5666
	bool flush = false;
A
Avi Kivity 已提交
5667

5668 5669 5670 5671 5672 5673 5674
	if (kvm_memslots_have_rmaps(kvm)) {
		write_lock(&kvm->mmu_lock);
		flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect,
					  start_level, KVM_MAX_HUGEPAGE_LEVEL,
					  false);
		write_unlock(&kvm->mmu_lock);
	}
5675

5676 5677 5678 5679 5680 5681
	if (is_tdp_mmu_enabled(kvm)) {
		read_lock(&kvm->mmu_lock);
		flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, start_level);
		read_unlock(&kvm->mmu_lock);
	}

5682 5683 5684 5685 5686 5687 5688
	/*
	 * We can flush all the TLBs out of the mmu lock without TLB
	 * corruption since we just change the spte from writable to
	 * readonly so that we only need to care the case of changing
	 * spte from present to present (changing the spte from present
	 * to nonpresent will flush all the TLBs immediately), in other
	 * words, the only case we care is mmu_spte_update() where we
5689 5690 5691
	 * have checked Host-writable | MMU-writable instead of
	 * PT_WRITABLE_MASK, that means it does not depend on PT_WRITABLE_MASK
	 * anymore.
5692
	 */
5693
	if (flush)
5694
		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
A
Avi Kivity 已提交
5695
}
5696

5697
static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5698
					 struct kvm_rmap_head *rmap_head,
5699
					 const struct kvm_memory_slot *slot)
5700 5701 5702 5703
{
	u64 *sptep;
	struct rmap_iterator iter;
	int need_tlb_flush = 0;
D
Dan Williams 已提交
5704
	kvm_pfn_t pfn;
5705 5706
	struct kvm_mmu_page *sp;

5707
restart:
5708
	for_each_rmap_spte(rmap_head, &iter, sptep) {
5709
		sp = sptep_to_sp(sptep);
5710 5711 5712
		pfn = spte_to_pfn(*sptep);

		/*
5713 5714 5715 5716 5717
		 * We cannot do huge page mapping for indirect shadow pages,
		 * which are found on the last rmap (level = 1) when not using
		 * tdp; such shadow pages are synced with the page table in
		 * the guest, and the guest page table is using 4K page size
		 * mapping if the indirect sp has level = 1.
5718
		 */
5719
		if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
5720 5721
		    sp->role.level < kvm_mmu_max_mapping_level(kvm, slot, sp->gfn,
							       pfn, PG_LEVEL_NUM)) {
5722
			pte_list_remove(rmap_head, sptep);
5723 5724 5725 5726 5727 5728 5729

			if (kvm_available_flush_tlb_with_range())
				kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
					KVM_PAGES_PER_HPAGE(sp->role.level));
			else
				need_tlb_flush = 1;

5730 5731
			goto restart;
		}
5732 5733 5734 5735 5736 5737
	}

	return need_tlb_flush;
}

void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5738
				   const struct kvm_memory_slot *slot)
5739
{
5740
	bool flush = false;
5741

5742 5743 5744 5745 5746 5747 5748
	if (kvm_memslots_have_rmaps(kvm)) {
		write_lock(&kvm->mmu_lock);
		flush = slot_handle_leaf(kvm, slot, kvm_mmu_zap_collapsible_spte, true);
		if (flush)
			kvm_arch_flush_remote_tlbs_memslot(kvm, slot);
		write_unlock(&kvm->mmu_lock);
	}
5749 5750 5751 5752 5753 5754 5755 5756

	if (is_tdp_mmu_enabled(kvm)) {
		read_lock(&kvm->mmu_lock);
		flush = kvm_tdp_mmu_zap_collapsible_sptes(kvm, slot, flush);
		if (flush)
			kvm_arch_flush_remote_tlbs_memslot(kvm, slot);
		read_unlock(&kvm->mmu_lock);
	}
5757 5758
}

5759
void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
5760
					const struct kvm_memory_slot *memslot)
5761 5762
{
	/*
5763
	 * All current use cases for flushing the TLBs for a specific memslot
5764
	 * related to dirty logging, and many do the TLB flush out of mmu_lock.
5765 5766 5767
	 * The interaction between the various operations on memslot must be
	 * serialized by slots_locks to ensure the TLB flush from one operation
	 * is observed by any other operation on the same memslot.
5768 5769
	 */
	lockdep_assert_held(&kvm->slots_lock);
5770 5771
	kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
					   memslot->npages);
5772 5773
}

5774
void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5775
				   const struct kvm_memory_slot *memslot)
5776
{
5777
	bool flush = false;
5778

5779 5780 5781 5782 5783 5784
	if (kvm_memslots_have_rmaps(kvm)) {
		write_lock(&kvm->mmu_lock);
		flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty,
					 false);
		write_unlock(&kvm->mmu_lock);
	}
5785

5786 5787 5788 5789 5790 5791
	if (is_tdp_mmu_enabled(kvm)) {
		read_lock(&kvm->mmu_lock);
		flush |= kvm_tdp_mmu_clear_dirty_slot(kvm, memslot);
		read_unlock(&kvm->mmu_lock);
	}

5792 5793 5794 5795 5796 5797 5798
	/*
	 * It's also safe to flush TLBs out of mmu lock here as currently this
	 * function is only used for dirty logging, in which case flushing TLB
	 * out of mmu lock also guarantees no dirty pages will be lost in
	 * dirty_bitmap.
	 */
	if (flush)
5799
		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5800 5801
}

5802
void kvm_mmu_zap_all(struct kvm *kvm)
5803 5804
{
	struct kvm_mmu_page *sp, *node;
5805
	LIST_HEAD(invalid_list);
5806
	int ign;
5807

5808
	write_lock(&kvm->mmu_lock);
5809
restart:
5810
	list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
5811
		if (WARN_ON(sp->role.invalid))
5812
			continue;
5813
		if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
5814
			goto restart;
5815
		if (cond_resched_rwlock_write(&kvm->mmu_lock))
5816 5817 5818
			goto restart;
	}

5819
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
5820

5821
	if (is_tdp_mmu_enabled(kvm))
5822 5823
		kvm_tdp_mmu_zap_all(kvm);

5824
	write_unlock(&kvm->mmu_lock);
5825 5826
}

5827
void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
5828
{
5829
	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
5830

5831
	gen &= MMIO_SPTE_GEN_MASK;
5832

5833
	/*
5834 5835 5836 5837 5838 5839 5840 5841
	 * Generation numbers are incremented in multiples of the number of
	 * address spaces in order to provide unique generations across all
	 * address spaces.  Strip what is effectively the address space
	 * modifier prior to checking for a wrap of the MMIO generation so
	 * that a wrap in any address space is detected.
	 */
	gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);

5842
	/*
5843
	 * The very rare case: if the MMIO generation number has wrapped,
5844 5845
	 * zap all shadow pages.
	 */
5846
	if (unlikely(gen == 0)) {
5847
		kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
5848
		kvm_mmu_zap_all_fast(kvm);
5849
	}
5850 5851
}

5852 5853
static unsigned long
mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
5854 5855
{
	struct kvm *kvm;
5856
	int nr_to_scan = sc->nr_to_scan;
5857
	unsigned long freed = 0;
5858

J
Junaid Shahid 已提交
5859
	mutex_lock(&kvm_lock);
5860 5861

	list_for_each_entry(kvm, &vm_list, vm_list) {
5862
		int idx;
5863
		LIST_HEAD(invalid_list);
5864

5865 5866 5867 5868 5869 5870 5871 5872
		/*
		 * Never scan more than sc->nr_to_scan VM instances.
		 * Will not hit this condition practically since we do not try
		 * to shrink more than one VM and it is very unlikely to see
		 * !n_used_mmu_pages so many times.
		 */
		if (!nr_to_scan--)
			break;
5873 5874 5875 5876 5877 5878
		/*
		 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
		 * here. We may skip a VM instance errorneosly, but we do not
		 * want to shrink a VM that only started to populate its MMU
		 * anyway.
		 */
5879 5880
		if (!kvm->arch.n_used_mmu_pages &&
		    !kvm_has_zapped_obsolete_pages(kvm))
5881 5882
			continue;

5883
		idx = srcu_read_lock(&kvm->srcu);
5884
		write_lock(&kvm->mmu_lock);
5885

5886 5887 5888 5889 5890 5891
		if (kvm_has_zapped_obsolete_pages(kvm)) {
			kvm_mmu_commit_zap_page(kvm,
			      &kvm->arch.zapped_obsolete_pages);
			goto unlock;
		}

5892
		freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan);
5893

5894
unlock:
5895
		write_unlock(&kvm->mmu_lock);
5896
		srcu_read_unlock(&kvm->srcu, idx);
5897

5898 5899 5900 5901 5902
		/*
		 * unfair on small ones
		 * per-vm shrinkers cry out
		 * sadness comes quickly
		 */
5903 5904
		list_move_tail(&kvm->vm_list, &vm_list);
		break;
5905 5906
	}

J
Junaid Shahid 已提交
5907
	mutex_unlock(&kvm_lock);
5908 5909 5910 5911 5912 5913
	return freed;
}

static unsigned long
mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
{
5914
	return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
5915 5916 5917
}

static struct shrinker mmu_shrinker = {
5918 5919
	.count_objects = mmu_shrink_count,
	.scan_objects = mmu_shrink_scan,
5920 5921 5922
	.seeks = DEFAULT_SEEKS * 10,
};

I
Ingo Molnar 已提交
5923
static void mmu_destroy_caches(void)
5924
{
5925 5926
	kmem_cache_destroy(pte_list_desc_cache);
	kmem_cache_destroy(mmu_page_header_cache);
5927 5928
}

P
Paolo Bonzini 已提交
5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962
static bool get_nx_auto_mode(void)
{
	/* Return true when CPU has the bug, and mitigations are ON */
	return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
}

static void __set_nx_huge_pages(bool val)
{
	nx_huge_pages = itlb_multihit_kvm_mitigation = val;
}

static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
{
	bool old_val = nx_huge_pages;
	bool new_val;

	/* In "auto" mode deploy workaround only if CPU has the bug. */
	if (sysfs_streq(val, "off"))
		new_val = 0;
	else if (sysfs_streq(val, "force"))
		new_val = 1;
	else if (sysfs_streq(val, "auto"))
		new_val = get_nx_auto_mode();
	else if (strtobool(val, &new_val) < 0)
		return -EINVAL;

	__set_nx_huge_pages(new_val);

	if (new_val != old_val) {
		struct kvm *kvm;

		mutex_lock(&kvm_lock);

		list_for_each_entry(kvm, &vm_list, vm_list) {
5963
			mutex_lock(&kvm->slots_lock);
P
Paolo Bonzini 已提交
5964
			kvm_mmu_zap_all_fast(kvm);
5965
			mutex_unlock(&kvm->slots_lock);
5966 5967

			wake_up_process(kvm->arch.nx_lpage_recovery_thread);
P
Paolo Bonzini 已提交
5968 5969 5970 5971 5972 5973 5974
		}
		mutex_unlock(&kvm_lock);
	}

	return 0;
}

5975 5976
int kvm_mmu_module_init(void)
{
5977 5978
	int ret = -ENOMEM;

P
Paolo Bonzini 已提交
5979 5980 5981
	if (nx_huge_pages == -1)
		__set_nx_huge_pages(get_nx_auto_mode());

5982 5983 5984 5985 5986 5987 5988 5989 5990 5991
	/*
	 * MMU roles use union aliasing which is, generally speaking, an
	 * undefined behavior. However, we supposedly know how compilers behave
	 * and the current status quo is unlikely to change. Guardians below are
	 * supposed to let us know if the assumption becomes false.
	 */
	BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
	BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
	BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));

5992
	kvm_mmu_reset_all_pte_masks();
5993

5994 5995
	pte_list_desc_cache = kmem_cache_create("pte_list_desc",
					    sizeof(struct pte_list_desc),
5996
					    0, SLAB_ACCOUNT, NULL);
5997
	if (!pte_list_desc_cache)
5998
		goto out;
5999

6000 6001
	mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
						  sizeof(struct kvm_mmu_page),
6002
						  0, SLAB_ACCOUNT, NULL);
6003
	if (!mmu_page_header_cache)
6004
		goto out;
6005

6006
	if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
6007
		goto out;
6008

6009 6010 6011
	ret = register_shrinker(&mmu_shrinker);
	if (ret)
		goto out;
6012

6013 6014
	return 0;

6015
out:
6016
	mmu_destroy_caches();
6017
	return ret;
6018 6019
}

6020
/*
P
Peng Hao 已提交
6021
 * Calculate mmu pages needed for kvm.
6022
 */
6023
unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm)
6024
{
6025 6026
	unsigned long nr_mmu_pages;
	unsigned long nr_pages = 0;
6027
	struct kvm_memslots *slots;
6028
	struct kvm_memory_slot *memslot;
6029
	int i;
6030

6031 6032
	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
6033

6034 6035 6036
		kvm_for_each_memslot(memslot, slots)
			nr_pages += memslot->npages;
	}
6037 6038

	nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
6039
	nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
6040 6041 6042 6043

	return nr_mmu_pages;
}

6044 6045
void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
{
6046
	kvm_mmu_unload(vcpu);
6047 6048
	free_mmu_pages(&vcpu->arch.root_mmu);
	free_mmu_pages(&vcpu->arch.guest_mmu);
6049
	mmu_free_memory_caches(vcpu);
6050 6051 6052 6053 6054 6055 6056
}

void kvm_mmu_module_exit(void)
{
	mmu_destroy_caches();
	percpu_counter_destroy(&kvm_total_used_mmu_pages);
	unregister_shrinker(&mmu_shrinker);
6057 6058
	mmu_audit_disable();
}
6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086

static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp)
{
	unsigned int old_val;
	int err;

	old_val = nx_huge_pages_recovery_ratio;
	err = param_set_uint(val, kp);
	if (err)
		return err;

	if (READ_ONCE(nx_huge_pages) &&
	    !old_val && nx_huge_pages_recovery_ratio) {
		struct kvm *kvm;

		mutex_lock(&kvm_lock);

		list_for_each_entry(kvm, &vm_list, vm_list)
			wake_up_process(kvm->arch.nx_lpage_recovery_thread);

		mutex_unlock(&kvm_lock);
	}

	return err;
}

static void kvm_recover_nx_lpages(struct kvm *kvm)
{
6087
	unsigned long nx_lpage_splits = kvm->stat.nx_lpage_splits;
6088 6089 6090 6091
	int rcu_idx;
	struct kvm_mmu_page *sp;
	unsigned int ratio;
	LIST_HEAD(invalid_list);
6092
	bool flush = false;
6093 6094 6095
	ulong to_zap;

	rcu_idx = srcu_read_lock(&kvm->srcu);
6096
	write_lock(&kvm->mmu_lock);
6097 6098

	ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
6099
	to_zap = ratio ? DIV_ROUND_UP(nx_lpage_splits, ratio) : 0;
6100 6101 6102 6103
	for ( ; to_zap; --to_zap) {
		if (list_empty(&kvm->arch.lpage_disallowed_mmu_pages))
			break;

6104 6105 6106 6107 6108 6109 6110 6111 6112
		/*
		 * We use a separate list instead of just using active_mmu_pages
		 * because the number of lpage_disallowed pages is expected to
		 * be relatively small compared to the total.
		 */
		sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
				      struct kvm_mmu_page,
				      lpage_disallowed_link);
		WARN_ON_ONCE(!sp->lpage_disallowed);
6113
		if (is_tdp_mmu_page(sp)) {
6114
			flush |= kvm_tdp_mmu_zap_sp(kvm, sp);
6115
		} else {
6116 6117 6118
			kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
			WARN_ON_ONCE(sp->lpage_disallowed);
		}
6119

6120
		if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
6121
			kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
6122
			cond_resched_rwlock_write(&kvm->mmu_lock);
6123
			flush = false;
6124 6125
		}
	}
6126
	kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
6127

6128
	write_unlock(&kvm->mmu_lock);
6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181
	srcu_read_unlock(&kvm->srcu, rcu_idx);
}

static long get_nx_lpage_recovery_timeout(u64 start_time)
{
	return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio)
		? start_time + 60 * HZ - get_jiffies_64()
		: MAX_SCHEDULE_TIMEOUT;
}

static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
{
	u64 start_time;
	long remaining_time;

	while (true) {
		start_time = get_jiffies_64();
		remaining_time = get_nx_lpage_recovery_timeout(start_time);

		set_current_state(TASK_INTERRUPTIBLE);
		while (!kthread_should_stop() && remaining_time > 0) {
			schedule_timeout(remaining_time);
			remaining_time = get_nx_lpage_recovery_timeout(start_time);
			set_current_state(TASK_INTERRUPTIBLE);
		}

		set_current_state(TASK_RUNNING);

		if (kthread_should_stop())
			return 0;

		kvm_recover_nx_lpages(kvm);
	}
}

int kvm_mmu_post_init_vm(struct kvm *kvm)
{
	int err;

	err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
					  "kvm-nx-lpage-recovery",
					  &kvm->arch.nx_lpage_recovery_thread);
	if (!err)
		kthread_unpark(kvm->arch.nx_lpage_recovery_thread);

	return err;
}

void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
{
	if (kvm->arch.nx_lpage_recovery_thread)
		kthread_stop(kvm->arch.nx_lpage_recovery_thread);
}