mmu.c 156.7 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
A
Avi Kivity 已提交
2 3 4 5 6 7 8 9 10
/*
 * Kernel-based Virtual Machine driver for Linux
 *
 * This module enables machines with Intel VT-x extensions to run virtual
 * machines without emulation or binary translation.
 *
 * MMU support
 *
 * Copyright (C) 2006 Qumranet, Inc.
N
Nicolas Kaiser 已提交
11
 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
A
Avi Kivity 已提交
12 13 14 15 16
 *
 * Authors:
 *   Yaniv Kamay  <yaniv@qumranet.com>
 *   Avi Kivity   <avi@qumranet.com>
 */
A
Avi Kivity 已提交
17

18
#include "irq.h"
19
#include "ioapic.h"
20
#include "mmu.h"
21
#include "mmu_internal.h"
22
#include "tdp_mmu.h"
23
#include "x86.h"
A
Avi Kivity 已提交
24
#include "kvm_cache_regs.h"
25
#include "kvm_emulate.h"
26
#include "cpuid.h"
27
#include "spte.h"
A
Avi Kivity 已提交
28

29
#include <linux/kvm_host.h>
A
Avi Kivity 已提交
30 31 32 33
#include <linux/types.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/highmem.h>
34 35
#include <linux/moduleparam.h>
#include <linux/export.h>
36
#include <linux/swap.h>
M
Marcelo Tosatti 已提交
37
#include <linux/hugetlb.h>
38
#include <linux/compiler.h>
39
#include <linux/srcu.h>
40
#include <linux/slab.h>
41
#include <linux/sched/signal.h>
42
#include <linux/uaccess.h>
43
#include <linux/hash.h>
44
#include <linux/kern_levels.h>
45
#include <linux/kthread.h>
A
Avi Kivity 已提交
46

A
Avi Kivity 已提交
47
#include <asm/page.h>
48
#include <asm/memtype.h>
A
Avi Kivity 已提交
49
#include <asm/cmpxchg.h>
50
#include <asm/io.h>
51
#include <asm/vmx.h>
52
#include <asm/kvm_page_track.h>
53
#include "trace.h"
A
Avi Kivity 已提交
54

P
Paolo Bonzini 已提交
55 56 57
extern bool itlb_multihit_kvm_mitigation;

static int __read_mostly nx_huge_pages = -1;
58 59 60 61
#ifdef CONFIG_PREEMPT_RT
/* Recovery can cause latency spikes, disable it for PREEMPT_RT.  */
static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
#else
62
static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
63
#endif
P
Paolo Bonzini 已提交
64 65

static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
66
static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp);
P
Paolo Bonzini 已提交
67

68
static const struct kernel_param_ops nx_huge_pages_ops = {
P
Paolo Bonzini 已提交
69 70 71 72
	.set = set_nx_huge_pages,
	.get = param_get_bool,
};

73
static const struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = {
74 75 76 77
	.set = set_nx_huge_pages_recovery_ratio,
	.get = param_get_uint,
};

P
Paolo Bonzini 已提交
78 79
module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
__MODULE_PARM_TYPE(nx_huge_pages, "bool");
80 81 82
module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops,
		&nx_huge_pages_recovery_ratio, 0644);
__MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
P
Paolo Bonzini 已提交
83

84 85 86
static bool __read_mostly force_flush_and_sync_on_reuse;
module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644);

87 88 89 90 91 92 93
/*
 * When setting this variable to true it enables Two-Dimensional-Paging
 * where the hardware walks 2 page tables:
 * 1. the guest-virtual to guest-physical
 * 2. while doing 1. it walks guest-physical to host-physical
 * If the hardware supports that we don't need to do shadow paging.
 */
94
bool tdp_enabled = false;
95

96
static int max_huge_page_level __read_mostly;
97
static int max_tdp_level __read_mostly;
98

99 100 101 102
enum {
	AUDIT_PRE_PAGE_FAULT,
	AUDIT_POST_PAGE_FAULT,
	AUDIT_PRE_PTE_WRITE,
103 104 105
	AUDIT_POST_PTE_WRITE,
	AUDIT_PRE_SYNC,
	AUDIT_POST_SYNC
106
};
107 108

#ifdef MMU_DEBUG
109
bool dbg = 0;
110
module_param(dbg, bool, 0644);
111
#endif
A
Avi Kivity 已提交
112

113 114
#define PTE_PREFETCH_NUM		8

A
Avi Kivity 已提交
115 116 117
#define PT32_LEVEL_BITS 10

#define PT32_LEVEL_SHIFT(level) \
M
Mike Day 已提交
118
		(PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
A
Avi Kivity 已提交
119

120 121 122
#define PT32_LVL_OFFSET_MASK(level) \
	(PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
123 124 125 126 127 128 129 130

#define PT32_INDEX(address, level)\
	(((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))


#define PT32_BASE_ADDR_MASK PAGE_MASK
#define PT32_DIR_BASE_ADDR_MASK \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
131 132 133
#define PT32_LVL_ADDR_MASK(level) \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
					    * PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
134

135 136
#include <trace/events/kvm.h>

137 138 139
/* make pte_list_desc fit well in cache line */
#define PTE_LIST_EXT 3

140 141 142
struct pte_list_desc {
	u64 *sptes[PTE_LIST_EXT];
	struct pte_list_desc *more;
143 144
};

145 146 147 148
struct kvm_shadow_walk_iterator {
	u64 addr;
	hpa_t shadow_addr;
	u64 *sptep;
149
	int level;
150 151 152
	unsigned index;
};

153 154 155 156 157 158 159
#define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker)     \
	for (shadow_walk_init_using_root(&(_walker), (_vcpu),              \
					 (_root), (_addr));                \
	     shadow_walk_okay(&(_walker));			           \
	     shadow_walk_next(&(_walker)))

#define for_each_shadow_entry(_vcpu, _addr, _walker)            \
160 161 162 163
	for (shadow_walk_init(&(_walker), _vcpu, _addr);	\
	     shadow_walk_okay(&(_walker));			\
	     shadow_walk_next(&(_walker)))

164 165 166 167 168 169
#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)	\
	for (shadow_walk_init(&(_walker), _vcpu, _addr);		\
	     shadow_walk_okay(&(_walker)) &&				\
		({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });	\
	     __shadow_walk_next(&(_walker), spte))

170
static struct kmem_cache *pte_list_desc_cache;
171
struct kmem_cache *mmu_page_header_cache;
172
static struct percpu_counter kvm_total_used_mmu_pages;
173

174
static void mmu_spte_set(u64 *sptep, u64 spte);
175 176
static union kvm_mmu_page_role
kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
177

178 179 180
#define CREATE_TRACE_POINTS
#include "mmutrace.h"

181 182 183

static inline bool kvm_available_flush_tlb_with_range(void)
{
184
	return kvm_x86_ops.tlb_remote_flush_with_range;
185 186 187 188 189 190 191
}

static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
		struct kvm_tlb_range *range)
{
	int ret = -ENOTSUPP;

192
	if (range && kvm_x86_ops.tlb_remote_flush_with_range)
193
		ret = static_call(kvm_x86_tlb_remote_flush_with_range)(kvm, range);
194 195 196 197 198

	if (ret)
		kvm_flush_remote_tlbs(kvm);
}

199
void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
200 201 202 203 204 205 206 207 208 209
		u64 start_gfn, u64 pages)
{
	struct kvm_tlb_range range;

	range.start_gfn = start_gfn;
	range.pages = pages;

	kvm_flush_remote_tlbs_with_range(kvm, &range);
}

210
bool is_nx_huge_page_enabled(void)
P
Paolo Bonzini 已提交
211 212 213 214
{
	return READ_ONCE(nx_huge_pages);
}

215 216 217 218 219
static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
			   unsigned int access)
{
	u64 mask = make_mmio_spte(vcpu, gfn, access);

B
Ben Gardon 已提交
220
	trace_mark_mmio_spte(sptep, gfn, mask);
221
	mmu_spte_set(sptep, mask);
222 223 224 225
}

static gfn_t get_mmio_spte_gfn(u64 spte)
{
226
	u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
227

228
	gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)
229 230 231
	       & shadow_nonpresent_or_rsvd_mask;

	return gpa >> PAGE_SHIFT;
232 233 234 235
}

static unsigned get_mmio_spte_access(u64 spte)
{
236
	return spte & shadow_mmio_access_mask;
237 238
}

239
static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
240
			  kvm_pfn_t pfn, unsigned int access)
241 242
{
	if (unlikely(is_noslot_pfn(pfn))) {
243
		mark_mmio_spte(vcpu, sptep, gfn, access);
244 245 246 247 248
		return true;
	}

	return false;
}
249

250
static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
251
{
252
	u64 kvm_gen, spte_gen, gen;
253

254 255 256
	gen = kvm_vcpu_memslots(vcpu)->generation;
	if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
		return false;
257

258
	kvm_gen = gen & MMIO_SPTE_GEN_MASK;
259 260 261 262
	spte_gen = get_mmio_spte_generation(spte);

	trace_check_mmio_spte(spte, kvm_gen, spte_gen);
	return likely(kvm_gen == spte_gen);
263 264
}

265 266 267
static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
                                  struct x86_exception *exception)
{
268
	/* Check if guest physical address doesn't exceed guest maximum */
269
	if (kvm_vcpu_is_illegal_gpa(vcpu, gpa)) {
270 271 272 273
		exception->error_code |= PFERR_RSVD_MASK;
		return UNMAPPED_GVA;
	}

274 275 276
        return gpa;
}

A
Avi Kivity 已提交
277 278 279 280 281
static int is_cpuid_PSE36(void)
{
	return 1;
}

282 283
static int is_nx(struct kvm_vcpu *vcpu)
{
284
	return vcpu->arch.efer & EFER_NX;
285 286
}

287 288 289 290 291 292 293
static gfn_t pse36_gfn_delta(u32 gpte)
{
	int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;

	return (gpte & PT32_DIR_PSE36_MASK) << shift;
}

294
#ifdef CONFIG_X86_64
A
Avi Kivity 已提交
295
static void __set_spte(u64 *sptep, u64 spte)
296
{
297
	WRITE_ONCE(*sptep, spte);
298 299
}

300
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
301
{
302
	WRITE_ONCE(*sptep, spte);
303 304 305 306 307 308
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	return xchg(sptep, spte);
}
309 310 311

static u64 __get_spte_lockless(u64 *sptep)
{
312
	return READ_ONCE(*sptep);
313
}
314
#else
315 316 317 318 319 320 321
union split_spte {
	struct {
		u32 spte_low;
		u32 spte_high;
	};
	u64 spte;
};
322

323 324
static void count_spte_clear(u64 *sptep, u64 spte)
{
325
	struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
326 327 328 329 330 331 332 333 334

	if (is_shadow_present_pte(spte))
		return;

	/* Ensure the spte is completely set before we increase the count */
	smp_wmb();
	sp->clear_spte_count++;
}

335 336 337
static void __set_spte(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;
338

339 340 341 342 343 344 345 346 347 348 349 350
	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	ssptep->spte_high = sspte.spte_high;

	/*
	 * If we map the spte from nonpresent to present, We should store
	 * the high bits firstly, then set present bit, so cpu can not
	 * fetch this spte while we are setting the spte.
	 */
	smp_wmb();

351
	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
352 353
}

354 355 356 357 358 359 360
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

361
	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
362 363 364 365 366 367 368 369

	/*
	 * If we map the spte from present to nonpresent, we should clear
	 * present bit firstly to avoid vcpu fetch the old high bits.
	 */
	smp_wmb();

	ssptep->spte_high = sspte.spte_high;
370
	count_spte_clear(sptep, spte);
371 372 373 374 375 376 377 378 379 380 381
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte, orig;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	/* xchg acts as a barrier before the setting of the high bits */
	orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
382 383
	orig.spte_high = ssptep->spte_high;
	ssptep->spte_high = sspte.spte_high;
384
	count_spte_clear(sptep, spte);
385 386 387

	return orig.spte;
}
388 389 390

/*
 * The idea using the light way get the spte on x86_32 guest is from
391
 * gup_get_pte (mm/gup.c).
392 393 394 395 396 397 398 399 400 401 402 403 404 405
 *
 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
 * coalesces them and we are running out of the MMU lock.  Therefore
 * we need to protect against in-progress updates of the spte.
 *
 * Reading the spte while an update is in progress may get the old value
 * for the high part of the spte.  The race is fine for a present->non-present
 * change (because the high part of the spte is ignored for non-present spte),
 * but for a present->present change we must reread the spte.
 *
 * All such changes are done in two steps (present->non-present and
 * non-present->present), hence it is enough to count the number of
 * present->non-present updates: if it changed while reading the spte,
 * we might have hit the race.  This is done using clear_spte_count.
406 407 408
 */
static u64 __get_spte_lockless(u64 *sptep)
{
409
	struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
	union split_spte spte, *orig = (union split_spte *)sptep;
	int count;

retry:
	count = sp->clear_spte_count;
	smp_rmb();

	spte.spte_low = orig->spte_low;
	smp_rmb();

	spte.spte_high = orig->spte_high;
	smp_rmb();

	if (unlikely(spte.spte_low != orig->spte_low ||
	      count != sp->clear_spte_count))
		goto retry;

	return spte.spte;
}
429 430
#endif

431 432
static bool spte_has_volatile_bits(u64 spte)
{
433 434 435
	if (!is_shadow_present_pte(spte))
		return false;

436
	/*
437
	 * Always atomically update spte if it can be updated
438 439 440 441
	 * out of mmu-lock, it can ensure dirty bit is not lost,
	 * also, it can help us to get a stable is_writable_pte()
	 * to ensure tlb flush is not missed.
	 */
442 443
	if (spte_can_locklessly_be_made_writable(spte) ||
	    is_access_track_spte(spte))
444 445
		return true;

446
	if (spte_ad_enabled(spte)) {
447 448 449 450
		if ((spte & shadow_accessed_mask) == 0 ||
	    	    (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
			return true;
	}
451

452
	return false;
453 454
}

455 456 457 458 459 460 461 462 463 464 465 466
/* Rules for using mmu_spte_set:
 * Set the sptep from nonpresent to present.
 * Note: the sptep being assigned *must* be either not present
 * or in a state where the hardware will not attempt to update
 * the spte.
 */
static void mmu_spte_set(u64 *sptep, u64 new_spte)
{
	WARN_ON(is_shadow_present_pte(*sptep));
	__set_spte(sptep, new_spte);
}

467 468 469
/*
 * Update the SPTE (excluding the PFN), but do not track changes in its
 * accessed/dirty status.
470
 */
471
static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
472
{
473
	u64 old_spte = *sptep;
474

475
	WARN_ON(!is_shadow_present_pte(new_spte));
476

477 478
	if (!is_shadow_present_pte(old_spte)) {
		mmu_spte_set(sptep, new_spte);
479
		return old_spte;
480
	}
481

482
	if (!spte_has_volatile_bits(old_spte))
483
		__update_clear_spte_fast(sptep, new_spte);
484
	else
485
		old_spte = __update_clear_spte_slow(sptep, new_spte);
486

487 488
	WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));

489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
	return old_spte;
}

/* Rules for using mmu_spte_update:
 * Update the state bits, it means the mapped pfn is not changed.
 *
 * Whenever we overwrite a writable spte with a read-only one we
 * should flush remote TLBs. Otherwise rmap_write_protect
 * will find a read-only spte, even though the writable spte
 * might be cached on a CPU's TLB, the return value indicates this
 * case.
 *
 * Returns true if the TLB needs to be flushed
 */
static bool mmu_spte_update(u64 *sptep, u64 new_spte)
{
	bool flush = false;
	u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);

	if (!is_shadow_present_pte(old_spte))
		return false;

511 512
	/*
	 * For the spte updated out of mmu-lock is safe, since
513
	 * we always atomically update it, see the comments in
514 515
	 * spte_has_volatile_bits().
	 */
516
	if (spte_can_locklessly_be_made_writable(old_spte) &&
517
	      !is_writable_pte(new_spte))
518
		flush = true;
519

520
	/*
521
	 * Flush TLB when accessed/dirty states are changed in the page tables,
522 523 524
	 * to guarantee consistency between TLB and page tables.
	 */

525 526
	if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
		flush = true;
527
		kvm_set_pfn_accessed(spte_to_pfn(old_spte));
528 529 530 531
	}

	if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
		flush = true;
532
		kvm_set_pfn_dirty(spte_to_pfn(old_spte));
533
	}
534

535
	return flush;
536 537
}

538 539 540 541
/*
 * Rules for using mmu_spte_clear_track_bits:
 * It sets the sptep from present to nonpresent, and track the
 * state bits, it is used to clear the last level sptep.
542
 * Returns non-zero if the PTE was previously valid.
543 544 545
 */
static int mmu_spte_clear_track_bits(u64 *sptep)
{
D
Dan Williams 已提交
546
	kvm_pfn_t pfn;
547 548 549
	u64 old_spte = *sptep;

	if (!spte_has_volatile_bits(old_spte))
550
		__update_clear_spte_fast(sptep, 0ull);
551
	else
552
		old_spte = __update_clear_spte_slow(sptep, 0ull);
553

554
	if (!is_shadow_present_pte(old_spte))
555 556 557
		return 0;

	pfn = spte_to_pfn(old_spte);
558 559 560 561 562 563

	/*
	 * KVM does not hold the refcount of the page used by
	 * kvm mmu, before reclaiming the page, we should
	 * unmap it from mmu first.
	 */
564
	WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
565

566
	if (is_accessed_spte(old_spte))
567
		kvm_set_pfn_accessed(pfn);
568 569

	if (is_dirty_spte(old_spte))
570
		kvm_set_pfn_dirty(pfn);
571

572 573 574 575 576 577 578 579 580 581
	return 1;
}

/*
 * Rules for using mmu_spte_clear_no_track:
 * Directly clear spte without caring the state bits of sptep,
 * it is used to set the upper level spte.
 */
static void mmu_spte_clear_no_track(u64 *sptep)
{
582
	__update_clear_spte_fast(sptep, 0ull);
583 584
}

585 586 587 588 589
static u64 mmu_spte_get_lockless(u64 *sptep)
{
	return __get_spte_lockless(sptep);
}

590 591 592 593
/* Restore an acc-track PTE back to a regular PTE */
static u64 restore_acc_track_spte(u64 spte)
{
	u64 new_spte = spte;
594 595
	u64 saved_bits = (spte >> SHADOW_ACC_TRACK_SAVED_BITS_SHIFT)
			 & SHADOW_ACC_TRACK_SAVED_BITS_MASK;
596

597
	WARN_ON_ONCE(spte_ad_enabled(spte));
598 599 600
	WARN_ON_ONCE(!is_access_track_spte(spte));

	new_spte &= ~shadow_acc_track_mask;
601 602
	new_spte &= ~(SHADOW_ACC_TRACK_SAVED_BITS_MASK <<
		      SHADOW_ACC_TRACK_SAVED_BITS_SHIFT);
603 604 605 606 607
	new_spte |= saved_bits;

	return new_spte;
}

608 609 610 611 612 613 614 615
/* Returns the Accessed status of the PTE and resets it at the same time. */
static bool mmu_spte_age(u64 *sptep)
{
	u64 spte = mmu_spte_get_lockless(sptep);

	if (!is_accessed_spte(spte))
		return false;

616
	if (spte_ad_enabled(spte)) {
617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
		clear_bit((ffs(shadow_accessed_mask) - 1),
			  (unsigned long *)sptep);
	} else {
		/*
		 * Capture the dirty status of the page, so that it doesn't get
		 * lost when the SPTE is marked for access tracking.
		 */
		if (is_writable_pte(spte))
			kvm_set_pfn_dirty(spte_to_pfn(spte));

		spte = mark_spte_for_access_track(spte);
		mmu_spte_update_no_track(sptep, spte);
	}

	return true;
}

634 635
static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
{
636 637 638 639 640
	/*
	 * Prevent page table teardown by making any free-er wait during
	 * kvm_flush_remote_tlbs() IPI to all active vcpus.
	 */
	local_irq_disable();
641

642 643 644 645
	/*
	 * Make sure a following spte read is not reordered ahead of the write
	 * to vcpu->mode.
	 */
646
	smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
647 648 649 650
}

static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
{
651 652
	/*
	 * Make sure the write to vcpu->mode is not reordered in front of
653
	 * reads to sptes.  If it does, kvm_mmu_commit_zap_page() can see us
654 655
	 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
	 */
656
	smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
657
	local_irq_enable();
658 659
}

660
static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect)
661
{
662 663
	int r;

664
	/* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */
665 666
	r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
				       1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM);
667
	if (r)
668
		return r;
669 670
	r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache,
				       PT64_ROOT_MAX_LEVEL);
671
	if (r)
672
		return r;
673
	if (maybe_indirect) {
674 675
		r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_gfn_array_cache,
					       PT64_ROOT_MAX_LEVEL);
676 677 678
		if (r)
			return r;
	}
679 680
	return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
					  PT64_ROOT_MAX_LEVEL);
681 682 683 684
}

static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
{
685 686 687 688
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache);
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache);
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_gfn_array_cache);
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
689 690
}

691
static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
692
{
693
	return kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
694 695
}

696
static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
697
{
698
	kmem_cache_free(pte_list_desc_cache, pte_list_desc);
699 700
}

701 702 703 704 705 706 707 708 709 710
static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
{
	if (!sp->role.direct)
		return sp->gfns[index];

	return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
}

static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
{
711
	if (!sp->role.direct) {
712
		sp->gfns[index] = gfn;
713 714 715 716 717 718 719 720
		return;
	}

	if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
		pr_err_ratelimited("gfn mismatch under direct page %llx "
				   "(expected %llx, got %llx)\n",
				   sp->gfn,
				   kvm_mmu_page_get_gfn(sp, index), gfn);
721 722
}

M
Marcelo Tosatti 已提交
723
/*
724 725
 * Return the pointer to the large page information for a given gfn,
 * handling slots that are not large page aligned.
M
Marcelo Tosatti 已提交
726
 */
727 728 729
static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
					      struct kvm_memory_slot *slot,
					      int level)
M
Marcelo Tosatti 已提交
730 731 732
{
	unsigned long idx;

733
	idx = gfn_to_index(gfn, slot->base_gfn, level);
734
	return &slot->arch.lpage_info[level - 2][idx];
M
Marcelo Tosatti 已提交
735 736
}

737 738 739 740 741 742
static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
					    gfn_t gfn, int count)
{
	struct kvm_lpage_info *linfo;
	int i;

743
	for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
		linfo = lpage_info_slot(gfn, slot, i);
		linfo->disallow_lpage += count;
		WARN_ON(linfo->disallow_lpage < 0);
	}
}

void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
{
	update_gfn_disallow_lpage_count(slot, gfn, 1);
}

void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
{
	update_gfn_disallow_lpage_count(slot, gfn, -1);
}

760
static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
M
Marcelo Tosatti 已提交
761
{
762
	struct kvm_memslots *slots;
763
	struct kvm_memory_slot *slot;
764
	gfn_t gfn;
M
Marcelo Tosatti 已提交
765

766
	kvm->arch.indirect_shadow_pages++;
767
	gfn = sp->gfn;
768 769
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
770 771

	/* the non-leaf shadow pages are keeping readonly. */
772
	if (sp->role.level > PG_LEVEL_4K)
773 774 775
		return kvm_slot_page_track_add_page(kvm, slot, gfn,
						    KVM_PAGE_TRACK_WRITE);

776
	kvm_mmu_gfn_disallow_lpage(slot, gfn);
M
Marcelo Tosatti 已提交
777 778
}

779
void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
P
Paolo Bonzini 已提交
780 781 782 783 784
{
	if (sp->lpage_disallowed)
		return;

	++kvm->stat.nx_lpage_splits;
785 786
	list_add_tail(&sp->lpage_disallowed_link,
		      &kvm->arch.lpage_disallowed_mmu_pages);
P
Paolo Bonzini 已提交
787 788 789
	sp->lpage_disallowed = true;
}

790
static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
M
Marcelo Tosatti 已提交
791
{
792
	struct kvm_memslots *slots;
793
	struct kvm_memory_slot *slot;
794
	gfn_t gfn;
M
Marcelo Tosatti 已提交
795

796
	kvm->arch.indirect_shadow_pages--;
797
	gfn = sp->gfn;
798 799
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
800
	if (sp->role.level > PG_LEVEL_4K)
801 802 803
		return kvm_slot_page_track_remove_page(kvm, slot, gfn,
						       KVM_PAGE_TRACK_WRITE);

804
	kvm_mmu_gfn_allow_lpage(slot, gfn);
M
Marcelo Tosatti 已提交
805 806
}

807
void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
P
Paolo Bonzini 已提交
808 809 810
{
	--kvm->stat.nx_lpage_splits;
	sp->lpage_disallowed = false;
811
	list_del(&sp->lpage_disallowed_link);
P
Paolo Bonzini 已提交
812 813
}

814 815 816
static struct kvm_memory_slot *
gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
			    bool no_dirty_log)
M
Marcelo Tosatti 已提交
817 818
{
	struct kvm_memory_slot *slot;
819

820
	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
821 822
	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
		return NULL;
823
	if (no_dirty_log && kvm_slot_dirty_track_enabled(slot))
824
		return NULL;
825 826 827 828

	return slot;
}

829
/*
830
 * About rmap_head encoding:
831
 *
832 833
 * If the bit zero of rmap_head->val is clear, then it points to the only spte
 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
834
 * pte_list_desc containing more mappings.
835 836 837 838
 */

/*
 * Returns the number of pointers in the rmap chain, not counting the new one.
839
 */
840
static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
841
			struct kvm_rmap_head *rmap_head)
842
{
843
	struct pte_list_desc *desc;
844
	int i, count = 0;
845

846
	if (!rmap_head->val) {
847
		rmap_printk("%p %llx 0->1\n", spte, *spte);
848 849
		rmap_head->val = (unsigned long)spte;
	} else if (!(rmap_head->val & 1)) {
850
		rmap_printk("%p %llx 1->many\n", spte, *spte);
851
		desc = mmu_alloc_pte_list_desc(vcpu);
852
		desc->sptes[0] = (u64 *)rmap_head->val;
A
Avi Kivity 已提交
853
		desc->sptes[1] = spte;
854
		rmap_head->val = (unsigned long)desc | 1;
855
		++count;
856
	} else {
857
		rmap_printk("%p %llx many->many\n", spte, *spte);
858
		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
859
		while (desc->sptes[PTE_LIST_EXT-1]) {
860
			count += PTE_LIST_EXT;
861 862 863 864 865 866

			if (!desc->more) {
				desc->more = mmu_alloc_pte_list_desc(vcpu);
				desc = desc->more;
				break;
			}
867 868
			desc = desc->more;
		}
A
Avi Kivity 已提交
869
		for (i = 0; desc->sptes[i]; ++i)
870
			++count;
A
Avi Kivity 已提交
871
		desc->sptes[i] = spte;
872
	}
873
	return count;
874 875
}

876
static void
877 878 879
pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
			   struct pte_list_desc *desc, int i,
			   struct pte_list_desc *prev_desc)
880 881 882
{
	int j;

883
	for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
884
		;
A
Avi Kivity 已提交
885 886
	desc->sptes[i] = desc->sptes[j];
	desc->sptes[j] = NULL;
887 888 889
	if (j != 0)
		return;
	if (!prev_desc && !desc->more)
890
		rmap_head->val = 0;
891 892 893 894
	else
		if (prev_desc)
			prev_desc->more = desc->more;
		else
895
			rmap_head->val = (unsigned long)desc->more | 1;
896
	mmu_free_pte_list_desc(desc);
897 898
}

899
static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
900
{
901 902
	struct pte_list_desc *desc;
	struct pte_list_desc *prev_desc;
903 904
	int i;

905
	if (!rmap_head->val) {
906
		pr_err("%s: %p 0->BUG\n", __func__, spte);
907
		BUG();
908
	} else if (!(rmap_head->val & 1)) {
909
		rmap_printk("%p 1->0\n", spte);
910
		if ((u64 *)rmap_head->val != spte) {
911
			pr_err("%s:  %p 1->BUG\n", __func__, spte);
912 913
			BUG();
		}
914
		rmap_head->val = 0;
915
	} else {
916
		rmap_printk("%p many->many\n", spte);
917
		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
918 919
		prev_desc = NULL;
		while (desc) {
920
			for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
A
Avi Kivity 已提交
921
				if (desc->sptes[i] == spte) {
922 923
					pte_list_desc_remove_entry(rmap_head,
							desc, i, prev_desc);
924 925
					return;
				}
926
			}
927 928 929
			prev_desc = desc;
			desc = desc->more;
		}
930
		pr_err("%s: %p many->many\n", __func__, spte);
931 932 933 934
		BUG();
	}
}

935 936 937 938 939 940
static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep)
{
	mmu_spte_clear_track_bits(sptep);
	__pte_list_remove(sptep, rmap_head);
}

941 942
static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
					   struct kvm_memory_slot *slot)
943
{
944
	unsigned long idx;
945

946
	idx = gfn_to_index(gfn, slot->base_gfn, level);
947
	return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
948 949
}

950 951
static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
					 struct kvm_mmu_page *sp)
952
{
953
	struct kvm_memslots *slots;
954 955
	struct kvm_memory_slot *slot;

956 957
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
958
	return __gfn_to_rmap(gfn, sp->role.level, slot);
959 960
}

961 962
static bool rmap_can_add(struct kvm_vcpu *vcpu)
{
963
	struct kvm_mmu_memory_cache *mc;
964

965
	mc = &vcpu->arch.mmu_pte_list_desc_cache;
966
	return kvm_mmu_memory_cache_nr_free_objects(mc);
967 968
}

969 970 971
static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
{
	struct kvm_mmu_page *sp;
972
	struct kvm_rmap_head *rmap_head;
973

974
	sp = sptep_to_sp(spte);
975
	kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
976 977
	rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
	return pte_list_add(vcpu, spte, rmap_head);
978 979 980 981 982 983
}

static void rmap_remove(struct kvm *kvm, u64 *spte)
{
	struct kvm_mmu_page *sp;
	gfn_t gfn;
984
	struct kvm_rmap_head *rmap_head;
985

986
	sp = sptep_to_sp(spte);
987
	gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
988
	rmap_head = gfn_to_rmap(kvm, gfn, sp);
989
	__pte_list_remove(spte, rmap_head);
990 991
}

992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004
/*
 * Used by the following functions to iterate through the sptes linked by a
 * rmap.  All fields are private and not assumed to be used outside.
 */
struct rmap_iterator {
	/* private fields */
	struct pte_list_desc *desc;	/* holds the sptep if not NULL */
	int pos;			/* index of the sptep */
};

/*
 * Iteration must be started by this function.  This should also be used after
 * removing/dropping sptes from the rmap link because in such cases the
M
Miaohe Lin 已提交
1005
 * information in the iterator may not be valid.
1006 1007 1008
 *
 * Returns sptep if found, NULL otherwise.
 */
1009 1010
static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
			   struct rmap_iterator *iter)
1011
{
1012 1013
	u64 *sptep;

1014
	if (!rmap_head->val)
1015 1016
		return NULL;

1017
	if (!(rmap_head->val & 1)) {
1018
		iter->desc = NULL;
1019 1020
		sptep = (u64 *)rmap_head->val;
		goto out;
1021 1022
	}

1023
	iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1024
	iter->pos = 0;
1025 1026 1027 1028
	sptep = iter->desc->sptes[iter->pos];
out:
	BUG_ON(!is_shadow_present_pte(*sptep));
	return sptep;
1029 1030 1031 1032 1033 1034 1035 1036 1037
}

/*
 * Must be used with a valid iterator: e.g. after rmap_get_first().
 *
 * Returns sptep if found, NULL otherwise.
 */
static u64 *rmap_get_next(struct rmap_iterator *iter)
{
1038 1039
	u64 *sptep;

1040 1041 1042 1043 1044
	if (iter->desc) {
		if (iter->pos < PTE_LIST_EXT - 1) {
			++iter->pos;
			sptep = iter->desc->sptes[iter->pos];
			if (sptep)
1045
				goto out;
1046 1047 1048 1049 1050 1051 1052
		}

		iter->desc = iter->desc->more;

		if (iter->desc) {
			iter->pos = 0;
			/* desc->sptes[0] cannot be NULL */
1053 1054
			sptep = iter->desc->sptes[iter->pos];
			goto out;
1055 1056 1057 1058
		}
	}

	return NULL;
1059 1060 1061
out:
	BUG_ON(!is_shadow_present_pte(*sptep));
	return sptep;
1062 1063
}

1064 1065
#define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)			\
	for (_spte_ = rmap_get_first(_rmap_head_, _iter_);		\
1066
	     _spte_; _spte_ = rmap_get_next(_iter_))
1067

1068
static void drop_spte(struct kvm *kvm, u64 *sptep)
1069
{
1070
	if (mmu_spte_clear_track_bits(sptep))
1071
		rmap_remove(kvm, sptep);
A
Avi Kivity 已提交
1072 1073
}

1074 1075 1076 1077

static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
{
	if (is_large_pte(*sptep)) {
1078
		WARN_ON(sptep_to_sp(sptep)->role.level == PG_LEVEL_4K);
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
		drop_spte(kvm, sptep);
		--kvm->stat.lpages;
		return true;
	}

	return false;
}

static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
{
1089
	if (__drop_large_spte(vcpu->kvm, sptep)) {
1090
		struct kvm_mmu_page *sp = sptep_to_sp(sptep);
1091 1092 1093 1094

		kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
			KVM_PAGES_PER_HPAGE(sp->role.level));
	}
1095 1096 1097
}

/*
1098
 * Write-protect on the specified @sptep, @pt_protect indicates whether
1099
 * spte write-protection is caused by protecting shadow page table.
1100
 *
T
Tiejun Chen 已提交
1101
 * Note: write protection is difference between dirty logging and spte
1102 1103 1104 1105 1106
 * protection:
 * - for dirty logging, the spte can be set to writable at anytime if
 *   its dirty bitmap is properly set.
 * - for spte protection, the spte can be writable only after unsync-ing
 *   shadow page.
1107
 *
1108
 * Return true if tlb need be flushed.
1109
 */
1110
static bool spte_write_protect(u64 *sptep, bool pt_protect)
1111 1112 1113
{
	u64 spte = *sptep;

1114
	if (!is_writable_pte(spte) &&
1115
	      !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1116 1117
		return false;

1118
	rmap_printk("spte %p %llx\n", sptep, *sptep);
1119

1120 1121
	if (pt_protect)
		spte &= ~SPTE_MMU_WRITEABLE;
1122
	spte = spte & ~PT_WRITABLE_MASK;
1123

1124
	return mmu_spte_update(sptep, spte);
1125 1126
}

1127 1128
static bool __rmap_write_protect(struct kvm *kvm,
				 struct kvm_rmap_head *rmap_head,
1129
				 bool pt_protect)
1130
{
1131 1132
	u64 *sptep;
	struct rmap_iterator iter;
1133
	bool flush = false;
1134

1135
	for_each_rmap_spte(rmap_head, &iter, sptep)
1136
		flush |= spte_write_protect(sptep, pt_protect);
1137

1138
	return flush;
1139 1140
}

1141
static bool spte_clear_dirty(u64 *sptep)
1142 1143 1144
{
	u64 spte = *sptep;

1145
	rmap_printk("spte %p %llx\n", sptep, *sptep);
1146

1147
	MMU_WARN_ON(!spte_ad_enabled(spte));
1148 1149 1150 1151
	spte &= ~shadow_dirty_mask;
	return mmu_spte_update(sptep, spte);
}

1152
static bool spte_wrprot_for_clear_dirty(u64 *sptep)
1153 1154 1155
{
	bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
					       (unsigned long *)sptep);
1156
	if (was_writable && !spte_ad_enabled(*sptep))
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
		kvm_set_pfn_dirty(spte_to_pfn(*sptep));

	return was_writable;
}

/*
 * Gets the GFN ready for another round of dirty logging by clearing the
 *	- D bit on ad-enabled SPTEs, and
 *	- W bit on ad-disabled SPTEs.
 * Returns true iff any D or W bits were cleared.
 */
1168 1169
static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			       struct kvm_memory_slot *slot)
1170 1171 1172 1173 1174
{
	u64 *sptep;
	struct rmap_iterator iter;
	bool flush = false;

1175
	for_each_rmap_spte(rmap_head, &iter, sptep)
1176 1177
		if (spte_ad_need_write_protect(*sptep))
			flush |= spte_wrprot_for_clear_dirty(sptep);
1178
		else
1179
			flush |= spte_clear_dirty(sptep);
1180 1181 1182 1183

	return flush;
}

1184
/**
1185
 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1186 1187 1188 1189 1190 1191 1192 1193
 * @kvm: kvm instance
 * @slot: slot to protect
 * @gfn_offset: start of the BITS_PER_LONG pages we care about
 * @mask: indicates which pages we should protect
 *
 * Used when we do not need to care about huge page mappings: e.g. during dirty
 * logging we do not have any such mappings.
 */
1194
static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1195 1196
				     struct kvm_memory_slot *slot,
				     gfn_t gfn_offset, unsigned long mask)
1197
{
1198
	struct kvm_rmap_head *rmap_head;
1199

1200
	if (is_tdp_mmu_enabled(kvm))
1201 1202
		kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
				slot->base_gfn + gfn_offset, mask, true);
1203
	while (mask) {
1204
		rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1205
					  PG_LEVEL_4K, slot);
1206
		__rmap_write_protect(kvm, rmap_head, false);
M
Marcelo Tosatti 已提交
1207

1208 1209 1210
		/* clear the first set bit */
		mask &= mask - 1;
	}
1211 1212
}

1213
/**
1214 1215
 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
 * protect the page if the D-bit isn't supported.
1216 1217 1218 1219 1220 1221 1222
 * @kvm: kvm instance
 * @slot: slot to clear D-bit
 * @gfn_offset: start of the BITS_PER_LONG pages we care about
 * @mask: indicates which pages we should clear D-bit
 *
 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
 */
1223 1224 1225
static void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
					 struct kvm_memory_slot *slot,
					 gfn_t gfn_offset, unsigned long mask)
1226
{
1227
	struct kvm_rmap_head *rmap_head;
1228

1229
	if (is_tdp_mmu_enabled(kvm))
1230 1231
		kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
				slot->base_gfn + gfn_offset, mask, false);
1232
	while (mask) {
1233
		rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1234
					  PG_LEVEL_4K, slot);
1235
		__rmap_clear_dirty(kvm, rmap_head, slot);
1236 1237 1238 1239 1240 1241

		/* clear the first set bit */
		mask &= mask - 1;
	}
}

1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
/**
 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
 * PT level pages.
 *
 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
 * enable dirty logging for them.
 *
 * Used when we do not need to care about huge page mappings: e.g. during dirty
 * logging we do not have any such mappings.
 */
void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
				struct kvm_memory_slot *slot,
				gfn_t gfn_offset, unsigned long mask)
{
1256 1257
	if (kvm_x86_ops.cpu_dirty_log_size)
		kvm_mmu_clear_dirty_pt_masked(kvm, slot, gfn_offset, mask);
1258 1259
	else
		kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1260 1261
}

1262 1263
int kvm_cpu_dirty_log_size(void)
{
1264
	return kvm_x86_ops.cpu_dirty_log_size;
1265 1266
}

1267 1268
bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
				    struct kvm_memory_slot *slot, u64 gfn)
1269
{
1270
	struct kvm_rmap_head *rmap_head;
1271
	int i;
1272
	bool write_protected = false;
1273

1274
	for (i = PG_LEVEL_4K; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
1275
		rmap_head = __gfn_to_rmap(gfn, i, slot);
1276
		write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1277 1278
	}

1279
	if (is_tdp_mmu_enabled(kvm))
1280 1281 1282
		write_protected |=
			kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn);

1283
	return write_protected;
1284 1285
}

1286 1287 1288 1289 1290 1291 1292 1293
static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
{
	struct kvm_memory_slot *slot;

	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
	return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
}

1294 1295
static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			  struct kvm_memory_slot *slot)
1296
{
1297 1298
	u64 *sptep;
	struct rmap_iterator iter;
1299
	bool flush = false;
1300

1301
	while ((sptep = rmap_get_first(rmap_head, &iter))) {
1302
		rmap_printk("spte %p %llx.\n", sptep, *sptep);
1303

1304
		pte_list_remove(rmap_head, sptep);
1305
		flush = true;
1306
	}
1307

1308 1309 1310
	return flush;
}

1311
static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1312 1313 1314
			   struct kvm_memory_slot *slot, gfn_t gfn, int level,
			   unsigned long data)
{
1315
	return kvm_zap_rmapp(kvm, rmap_head, slot);
1316 1317
}

1318
static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1319 1320
			     struct kvm_memory_slot *slot, gfn_t gfn, int level,
			     unsigned long data)
1321
{
1322 1323
	u64 *sptep;
	struct rmap_iterator iter;
1324
	int need_flush = 0;
1325
	u64 new_spte;
1326
	pte_t *ptep = (pte_t *)data;
D
Dan Williams 已提交
1327
	kvm_pfn_t new_pfn;
1328 1329 1330

	WARN_ON(pte_huge(*ptep));
	new_pfn = pte_pfn(*ptep);
1331

1332
restart:
1333
	for_each_rmap_spte(rmap_head, &iter, sptep) {
1334
		rmap_printk("spte %p %llx gfn %llx (%d)\n",
1335
			    sptep, *sptep, gfn, level);
1336

1337
		need_flush = 1;
1338

1339
		if (pte_write(*ptep)) {
1340
			pte_list_remove(rmap_head, sptep);
1341
			goto restart;
1342
		} else {
1343 1344
			new_spte = kvm_mmu_changed_pte_notifier_make_spte(
					*sptep, new_pfn);
1345 1346 1347

			mmu_spte_clear_track_bits(sptep);
			mmu_spte_set(sptep, new_spte);
1348 1349
		}
	}
1350

1351 1352 1353 1354 1355
	if (need_flush && kvm_available_flush_tlb_with_range()) {
		kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
		return 0;
	}

1356
	return need_flush;
1357 1358
}

1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
struct slot_rmap_walk_iterator {
	/* input fields. */
	struct kvm_memory_slot *slot;
	gfn_t start_gfn;
	gfn_t end_gfn;
	int start_level;
	int end_level;

	/* output fields. */
	gfn_t gfn;
1369
	struct kvm_rmap_head *rmap;
1370 1371 1372
	int level;

	/* private field. */
1373
	struct kvm_rmap_head *end_rmap;
1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
};

static void
rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
{
	iterator->level = level;
	iterator->gfn = iterator->start_gfn;
	iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
	iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
					   iterator->slot);
}

static void
slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
		    struct kvm_memory_slot *slot, int start_level,
		    int end_level, gfn_t start_gfn, gfn_t end_gfn)
{
	iterator->slot = slot;
	iterator->start_level = start_level;
	iterator->end_level = end_level;
	iterator->start_gfn = start_gfn;
	iterator->end_gfn = end_gfn;

	rmap_walk_init_level(iterator, iterator->start_level);
}

static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
{
	return !!iterator->rmap;
}

static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
{
	if (++iterator->rmap <= iterator->end_rmap) {
		iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
		return;
	}

	if (++iterator->level > iterator->end_level) {
		iterator->rmap = NULL;
		return;
	}

	rmap_walk_init_level(iterator, iterator->level);
}

#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,	\
	   _start_gfn, _end_gfn, _iter_)				\
	for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,		\
				 _end_level_, _start_gfn, _end_gfn);	\
	     slot_rmap_walk_okay(_iter_);				\
	     slot_rmap_walk_next(_iter_))

1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
static __always_inline int
kvm_handle_hva_range(struct kvm *kvm,
		     unsigned long start,
		     unsigned long end,
		     unsigned long data,
		     int (*handler)(struct kvm *kvm,
				    struct kvm_rmap_head *rmap_head,
				    struct kvm_memory_slot *slot,
				    gfn_t gfn,
				    int level,
				    unsigned long data))
1438
{
1439
	struct kvm_memslots *slots;
1440
	struct kvm_memory_slot *memslot;
1441 1442
	struct slot_rmap_walk_iterator iterator;
	int ret = 0;
1443
	int i;
1444

1445 1446 1447 1448 1449
	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
		kvm_for_each_memslot(memslot, slots) {
			unsigned long hva_start, hva_end;
			gfn_t gfn_start, gfn_end;
1450

1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
			hva_start = max(start, memslot->userspace_addr);
			hva_end = min(end, memslot->userspace_addr +
				      (memslot->npages << PAGE_SHIFT));
			if (hva_start >= hva_end)
				continue;
			/*
			 * {gfn(page) | page intersects with [hva_start, hva_end)} =
			 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
			 */
			gfn_start = hva_to_gfn_memslot(hva_start, memslot);
			gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);

1463
			for_each_slot_rmap_range(memslot, PG_LEVEL_4K,
1464
						 KVM_MAX_HUGEPAGE_LEVEL,
1465 1466 1467 1468 1469
						 gfn_start, gfn_end - 1,
						 &iterator)
				ret |= handler(kvm, iterator.rmap, memslot,
					       iterator.gfn, iterator.level, data);
		}
1470 1471
	}

1472
	return ret;
1473 1474
}

1475 1476
static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
			  unsigned long data,
1477 1478
			  int (*handler)(struct kvm *kvm,
					 struct kvm_rmap_head *rmap_head,
1479
					 struct kvm_memory_slot *slot,
1480
					 gfn_t gfn, int level,
1481 1482 1483
					 unsigned long data))
{
	return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1484 1485
}

1486 1487
int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end,
			unsigned flags)
1488
{
1489 1490 1491 1492
	int r;

	r = kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);

1493
	if (is_tdp_mmu_enabled(kvm))
1494 1495 1496
		r |= kvm_tdp_mmu_zap_hva_range(kvm, start, end);

	return r;
1497 1498
}

1499
int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1500
{
1501 1502 1503 1504
	int r;

	r = kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);

1505
	if (is_tdp_mmu_enabled(kvm))
1506 1507 1508
		r |= kvm_tdp_mmu_set_spte_hva(kvm, hva, &pte);

	return r;
1509 1510
}

1511
static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1512 1513
			 struct kvm_memory_slot *slot, gfn_t gfn, int level,
			 unsigned long data)
1514
{
1515
	u64 *sptep;
1516
	struct rmap_iterator iter;
1517 1518
	int young = 0;

1519 1520
	for_each_rmap_spte(rmap_head, &iter, sptep)
		young |= mmu_spte_age(sptep);
1521

1522
	trace_kvm_age_page(gfn, level, slot, young);
1523 1524 1525
	return young;
}

1526
static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1527 1528
			      struct kvm_memory_slot *slot, gfn_t gfn,
			      int level, unsigned long data)
A
Andrea Arcangeli 已提交
1529
{
1530 1531
	u64 *sptep;
	struct rmap_iterator iter;
A
Andrea Arcangeli 已提交
1532

1533 1534 1535 1536
	for_each_rmap_spte(rmap_head, &iter, sptep)
		if (is_accessed_spte(*sptep))
			return 1;
	return 0;
A
Andrea Arcangeli 已提交
1537 1538
}

1539 1540
#define RMAP_RECYCLE_THRESHOLD 1000

1541
static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1542
{
1543
	struct kvm_rmap_head *rmap_head;
1544 1545
	struct kvm_mmu_page *sp;

1546
	sp = sptep_to_sp(spte);
1547

1548
	rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1549

1550
	kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
1551 1552
	kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
			KVM_PAGES_PER_HPAGE(sp->role.level));
1553 1554
}

A
Andres Lagar-Cavilla 已提交
1555
int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1556
{
1557 1558 1559
	int young = false;

	young = kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1560
	if (is_tdp_mmu_enabled(kvm))
1561 1562 1563
		young |= kvm_tdp_mmu_age_hva_range(kvm, start, end);

	return young;
1564 1565
}

A
Andrea Arcangeli 已提交
1566 1567
int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
{
1568 1569 1570
	int young = false;

	young = kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1571
	if (is_tdp_mmu_enabled(kvm))
1572 1573 1574
		young |= kvm_tdp_mmu_test_age_hva(kvm, hva);

	return young;
A
Andrea Arcangeli 已提交
1575 1576
}

1577
#ifdef MMU_DEBUG
1578
static int is_empty_shadow_page(u64 *spt)
A
Avi Kivity 已提交
1579
{
1580 1581 1582
	u64 *pos;
	u64 *end;

1583
	for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1584
		if (is_shadow_present_pte(*pos)) {
1585
			printk(KERN_ERR "%s: %p %llx\n", __func__,
1586
			       pos, *pos);
A
Avi Kivity 已提交
1587
			return 0;
1588
		}
A
Avi Kivity 已提交
1589 1590
	return 1;
}
1591
#endif
A
Avi Kivity 已提交
1592

1593 1594 1595 1596 1597 1598
/*
 * This value is the sum of all of the kvm instances's
 * kvm->arch.n_used_mmu_pages values.  We need a global,
 * aggregate version in order to make the slab shrinker
 * faster
 */
1599
static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, unsigned long nr)
1600 1601 1602 1603 1604
{
	kvm->arch.n_used_mmu_pages += nr;
	percpu_counter_add(&kvm_total_used_mmu_pages, nr);
}

1605
static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1606
{
1607
	MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1608
	hlist_del(&sp->hash_link);
1609 1610
	list_del(&sp->link);
	free_page((unsigned long)sp->spt);
1611 1612
	if (!sp->role.direct)
		free_page((unsigned long)sp->gfns);
1613
	kmem_cache_free(mmu_page_header_cache, sp);
1614 1615
}

1616 1617
static unsigned kvm_page_table_hashfn(gfn_t gfn)
{
1618
	return hash_64(gfn, KVM_MMU_HASH_SHIFT);
1619 1620
}

1621
static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1622
				    struct kvm_mmu_page *sp, u64 *parent_pte)
1623 1624 1625 1626
{
	if (!parent_pte)
		return;

1627
	pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1628 1629
}

1630
static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1631 1632
				       u64 *parent_pte)
{
1633
	__pte_list_remove(parent_pte, &sp->parent_ptes);
1634 1635
}

1636 1637 1638 1639
static void drop_parent_pte(struct kvm_mmu_page *sp,
			    u64 *parent_pte)
{
	mmu_page_remove_parent_pte(sp, parent_pte);
1640
	mmu_spte_clear_no_track(parent_pte);
1641 1642
}

1643
static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
M
Marcelo Tosatti 已提交
1644
{
1645
	struct kvm_mmu_page *sp;
1646

1647 1648
	sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
	sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache);
1649
	if (!direct)
1650
		sp->gfns = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_gfn_array_cache);
1651
	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1652 1653 1654 1655 1656 1657

	/*
	 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
	 * depends on valid pages being added to the head of the list.  See
	 * comments in kvm_zap_obsolete_pages().
	 */
1658
	sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
1659 1660 1661
	list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
	kvm_mod_used_mmu_pages(vcpu->kvm, +1);
	return sp;
M
Marcelo Tosatti 已提交
1662 1663
}

1664
static void mark_unsync(u64 *spte);
1665
static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1666
{
1667 1668 1669 1670 1671 1672
	u64 *sptep;
	struct rmap_iterator iter;

	for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
		mark_unsync(sptep);
	}
1673 1674
}

1675
static void mark_unsync(u64 *spte)
1676
{
1677
	struct kvm_mmu_page *sp;
1678
	unsigned int index;
1679

1680
	sp = sptep_to_sp(spte);
1681 1682
	index = spte - sp->spt;
	if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1683
		return;
1684
	if (sp->unsync_children++)
1685
		return;
1686
	kvm_mmu_mark_parents_unsync(sp);
1687 1688
}

1689
static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1690
			       struct kvm_mmu_page *sp)
1691
{
1692
	return 0;
1693 1694
}

1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
#define KVM_PAGE_ARRAY_NR 16

struct kvm_mmu_pages {
	struct mmu_page_and_offset {
		struct kvm_mmu_page *sp;
		unsigned int idx;
	} page[KVM_PAGE_ARRAY_NR];
	unsigned int nr;
};

1705 1706
static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
			 int idx)
1707
{
1708
	int i;
1709

1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720
	if (sp->unsync)
		for (i=0; i < pvec->nr; i++)
			if (pvec->page[i].sp == sp)
				return 0;

	pvec->page[pvec->nr].sp = sp;
	pvec->page[pvec->nr].idx = idx;
	pvec->nr++;
	return (pvec->nr == KVM_PAGE_ARRAY_NR);
}

1721 1722 1723 1724 1725 1726 1727
static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
{
	--sp->unsync_children;
	WARN_ON((int)sp->unsync_children < 0);
	__clear_bit(idx, sp->unsync_child_bitmap);
}

1728 1729 1730 1731
static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
	int i, ret, nr_unsync_leaf = 0;
1732

1733
	for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1734
		struct kvm_mmu_page *child;
1735 1736
		u64 ent = sp->spt[i];

1737 1738 1739 1740
		if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
			clear_unsync_child_bit(sp, i);
			continue;
		}
1741

1742
		child = to_shadow_page(ent & PT64_BASE_ADDR_MASK);
1743 1744 1745 1746 1747 1748

		if (child->unsync_children) {
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;

			ret = __mmu_unsync_walk(child, pvec);
1749 1750 1751 1752
			if (!ret) {
				clear_unsync_child_bit(sp, i);
				continue;
			} else if (ret > 0) {
1753
				nr_unsync_leaf += ret;
1754
			} else
1755 1756 1757 1758 1759 1760
				return ret;
		} else if (child->unsync) {
			nr_unsync_leaf++;
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;
		} else
1761
			clear_unsync_child_bit(sp, i);
1762 1763
	}

1764 1765 1766
	return nr_unsync_leaf;
}

1767 1768
#define INVALID_INDEX (-1)

1769 1770 1771
static int mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
P
Paolo Bonzini 已提交
1772
	pvec->nr = 0;
1773 1774 1775
	if (!sp->unsync_children)
		return 0;

1776
	mmu_pages_add(pvec, sp, INVALID_INDEX);
1777
	return __mmu_unsync_walk(sp, pvec);
1778 1779 1780 1781 1782
}

static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
{
	WARN_ON(!sp->unsync);
1783
	trace_kvm_mmu_sync_page(sp);
1784 1785 1786 1787
	sp->unsync = 0;
	--kvm->stat.mmu_unsync;
}

1788 1789
static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				     struct list_head *invalid_list);
1790 1791
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list);
1792

1793 1794
#define for_each_valid_sp(_kvm, _sp, _list)				\
	hlist_for_each_entry(_sp, _list, hash_link)			\
1795
		if (is_obsolete_sp((_kvm), (_sp))) {			\
1796
		} else
1797 1798

#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)			\
1799 1800
	for_each_valid_sp(_kvm, _sp,					\
	  &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)])	\
1801
		if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
1802

1803 1804 1805 1806 1807
static inline bool is_ept_sp(struct kvm_mmu_page *sp)
{
	return sp->role.cr0_wp && sp->role.smap_andnot_wp;
}

1808
/* @sp->gfn should be write-protected at the call site */
1809 1810
static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
			    struct list_head *invalid_list)
1811
{
1812 1813
	if ((!is_ept_sp(sp) && sp->role.gpte_is_8_bytes != !!is_pae(vcpu)) ||
	    vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
1814
		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1815
		return false;
1816 1817
	}

1818
	return true;
1819 1820
}

1821 1822 1823 1824
static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
					struct list_head *invalid_list,
					bool remote_flush)
{
1825
	if (!remote_flush && list_empty(invalid_list))
1826 1827 1828 1829 1830 1831 1832 1833 1834
		return false;

	if (!list_empty(invalid_list))
		kvm_mmu_commit_zap_page(kvm, invalid_list);
	else
		kvm_flush_remote_tlbs(kvm);
	return true;
}

1835 1836 1837
static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
				 struct list_head *invalid_list,
				 bool remote_flush, bool local_flush)
1838
{
1839
	if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush))
1840
		return;
1841

1842
	if (local_flush)
1843
		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1844 1845
}

1846 1847 1848 1849 1850 1851 1852
#ifdef CONFIG_KVM_MMU_AUDIT
#include "mmu_audit.c"
#else
static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
static void mmu_audit_disable(void) { }
#endif

1853 1854
static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
{
1855 1856
	return sp->role.invalid ||
	       unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1857 1858
}

1859
static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1860
			 struct list_head *invalid_list)
1861
{
1862 1863
	kvm_unlink_unsync_page(vcpu->kvm, sp);
	return __kvm_sync_page(vcpu, sp, invalid_list);
1864 1865
}

1866
/* @gfn should be write-protected at the call site */
1867 1868
static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
			   struct list_head *invalid_list)
1869 1870
{
	struct kvm_mmu_page *s;
1871
	bool ret = false;
1872

1873
	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1874
		if (!s->unsync)
1875 1876
			continue;

1877
		WARN_ON(s->role.level != PG_LEVEL_4K);
1878
		ret |= kvm_sync_page(vcpu, s, invalid_list);
1879 1880
	}

1881
	return ret;
1882 1883
}

1884
struct mmu_page_path {
1885 1886
	struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
	unsigned int idx[PT64_ROOT_MAX_LEVEL];
1887 1888
};

1889
#define for_each_sp(pvec, sp, parents, i)			\
P
Paolo Bonzini 已提交
1890
		for (i = mmu_pages_first(&pvec, &parents);	\
1891 1892 1893
			i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});	\
			i = mmu_pages_next(&pvec, &parents, i))

1894 1895 1896
static int mmu_pages_next(struct kvm_mmu_pages *pvec,
			  struct mmu_page_path *parents,
			  int i)
1897 1898 1899 1900 1901
{
	int n;

	for (n = i+1; n < pvec->nr; n++) {
		struct kvm_mmu_page *sp = pvec->page[n].sp;
P
Paolo Bonzini 已提交
1902 1903
		unsigned idx = pvec->page[n].idx;
		int level = sp->role.level;
1904

P
Paolo Bonzini 已提交
1905
		parents->idx[level-1] = idx;
1906
		if (level == PG_LEVEL_4K)
P
Paolo Bonzini 已提交
1907
			break;
1908

P
Paolo Bonzini 已提交
1909
		parents->parent[level-2] = sp;
1910 1911 1912 1913 1914
	}

	return n;
}

P
Paolo Bonzini 已提交
1915 1916 1917 1918 1919 1920 1921 1922 1923
static int mmu_pages_first(struct kvm_mmu_pages *pvec,
			   struct mmu_page_path *parents)
{
	struct kvm_mmu_page *sp;
	int level;

	if (pvec->nr == 0)
		return 0;

1924 1925
	WARN_ON(pvec->page[0].idx != INVALID_INDEX);

P
Paolo Bonzini 已提交
1926 1927
	sp = pvec->page[0].sp;
	level = sp->role.level;
1928
	WARN_ON(level == PG_LEVEL_4K);
P
Paolo Bonzini 已提交
1929 1930 1931 1932 1933 1934 1935 1936 1937 1938

	parents->parent[level-2] = sp;

	/* Also set up a sentinel.  Further entries in pvec are all
	 * children of sp, so this element is never overwritten.
	 */
	parents->parent[level-1] = NULL;
	return mmu_pages_next(pvec, parents, 0);
}

1939
static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1940
{
1941 1942 1943 1944 1945 1946 1947 1948 1949
	struct kvm_mmu_page *sp;
	unsigned int level = 0;

	do {
		unsigned int idx = parents->idx[level];
		sp = parents->parent[level];
		if (!sp)
			return;

1950
		WARN_ON(idx == INVALID_INDEX);
1951
		clear_unsync_child_bit(sp, idx);
1952
		level++;
P
Paolo Bonzini 已提交
1953
	} while (!sp->unsync_children);
1954
}
1955

1956 1957 1958 1959 1960 1961 1962
static void mmu_sync_children(struct kvm_vcpu *vcpu,
			      struct kvm_mmu_page *parent)
{
	int i;
	struct kvm_mmu_page *sp;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
1963
	LIST_HEAD(invalid_list);
1964
	bool flush = false;
1965 1966

	while (mmu_unsync_walk(parent, &pages)) {
1967
		bool protected = false;
1968 1969

		for_each_sp(pages, sp, parents, i)
1970
			protected |= rmap_write_protect(vcpu, sp->gfn);
1971

1972
		if (protected) {
1973
			kvm_flush_remote_tlbs(vcpu->kvm);
1974 1975
			flush = false;
		}
1976

1977
		for_each_sp(pages, sp, parents, i) {
1978
			flush |= kvm_sync_page(vcpu, sp, &invalid_list);
1979 1980
			mmu_pages_clear_parents(&parents);
		}
1981
		if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) {
1982
			kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
1983
			cond_resched_rwlock_write(&vcpu->kvm->mmu_lock);
1984 1985
			flush = false;
		}
1986
	}
1987 1988

	kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
1989 1990
}

1991 1992
static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
{
1993
	atomic_set(&sp->write_flooding_count,  0);
1994 1995 1996 1997
}

static void clear_sp_write_flooding_count(u64 *spte)
{
1998
	__clear_sp_write_flooding_count(sptep_to_sp(spte));
1999 2000
}

2001 2002 2003 2004
static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
					     gfn_t gfn,
					     gva_t gaddr,
					     unsigned level,
2005
					     int direct,
2006
					     unsigned int access)
2007
{
2008
	bool direct_mmu = vcpu->arch.mmu->direct_map;
2009
	union kvm_mmu_page_role role;
2010
	struct hlist_head *sp_list;
2011
	unsigned quadrant;
2012 2013
	struct kvm_mmu_page *sp;
	bool need_sync = false;
2014
	bool flush = false;
2015
	int collisions = 0;
2016
	LIST_HEAD(invalid_list);
2017

2018
	role = vcpu->arch.mmu->mmu_role.base;
2019
	role.level = level;
2020
	role.direct = direct;
2021
	if (role.direct)
2022
		role.gpte_is_8_bytes = true;
2023
	role.access = access;
2024
	if (!direct_mmu && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
2025 2026 2027 2028
		quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
		quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
		role.quadrant = quadrant;
	}
2029 2030 2031

	sp_list = &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)];
	for_each_valid_sp(vcpu->kvm, sp, sp_list) {
2032 2033 2034 2035 2036
		if (sp->gfn != gfn) {
			collisions++;
			continue;
		}

2037 2038
		if (!need_sync && sp->unsync)
			need_sync = true;
2039

2040 2041
		if (sp->role.word != role.word)
			continue;
2042

2043 2044 2045
		if (direct_mmu)
			goto trace_get_page;

2046 2047 2048 2049 2050 2051 2052 2053
		if (sp->unsync) {
			/* The page is good, but __kvm_sync_page might still end
			 * up zapping it.  If so, break in order to rebuild it.
			 */
			if (!__kvm_sync_page(vcpu, sp, &invalid_list))
				break;

			WARN_ON(!list_empty(&invalid_list));
2054
			kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2055
		}
2056

2057
		if (sp->unsync_children)
2058
			kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2059

2060
		__clear_sp_write_flooding_count(sp);
2061 2062

trace_get_page:
2063
		trace_kvm_mmu_get_page(sp, false);
2064
		goto out;
2065
	}
2066

A
Avi Kivity 已提交
2067
	++vcpu->kvm->stat.mmu_cache_miss;
2068 2069 2070

	sp = kvm_mmu_alloc_page(vcpu, direct);

2071 2072
	sp->gfn = gfn;
	sp->role = role;
2073
	hlist_add_head(&sp->hash_link, sp_list);
2074
	if (!direct) {
2075 2076 2077 2078 2079 2080
		/*
		 * we should do write protection before syncing pages
		 * otherwise the content of the synced shadow page may
		 * be inconsistent with guest page table.
		 */
		account_shadowed(vcpu->kvm, sp);
2081
		if (level == PG_LEVEL_4K && rmap_write_protect(vcpu, gfn))
2082
			kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
2083

2084
		if (level > PG_LEVEL_4K && need_sync)
2085
			flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
2086
	}
A
Avi Kivity 已提交
2087
	trace_kvm_mmu_get_page(sp, true);
2088 2089

	kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2090 2091 2092
out:
	if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
		vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2093
	return sp;
2094 2095
}

2096 2097 2098
static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
					struct kvm_vcpu *vcpu, hpa_t root,
					u64 addr)
2099 2100
{
	iterator->addr = addr;
2101
	iterator->shadow_addr = root;
2102
	iterator->level = vcpu->arch.mmu->shadow_root_level;
2103

2104
	if (iterator->level == PT64_ROOT_4LEVEL &&
2105 2106
	    vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
	    !vcpu->arch.mmu->direct_map)
2107 2108
		--iterator->level;

2109
	if (iterator->level == PT32E_ROOT_LEVEL) {
2110 2111 2112 2113
		/*
		 * prev_root is currently only used for 64-bit hosts. So only
		 * the active root_hpa is valid here.
		 */
2114
		BUG_ON(root != vcpu->arch.mmu->root_hpa);
2115

2116
		iterator->shadow_addr
2117
			= vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2118 2119 2120 2121 2122 2123 2124
		iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
		--iterator->level;
		if (!iterator->shadow_addr)
			iterator->level = 0;
	}
}

2125 2126 2127
static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
			     struct kvm_vcpu *vcpu, u64 addr)
{
2128
	shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
2129 2130 2131
				    addr);
}

2132 2133
static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
{
2134
	if (iterator->level < PG_LEVEL_4K)
2135
		return false;
2136

2137 2138 2139 2140 2141
	iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
	iterator->sptep	= ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
	return true;
}

2142 2143
static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
			       u64 spte)
2144
{
2145
	if (is_last_spte(spte, iterator->level)) {
2146 2147 2148 2149
		iterator->level = 0;
		return;
	}

2150
	iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2151 2152 2153
	--iterator->level;
}

2154 2155
static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
{
2156
	__shadow_walk_next(iterator, *iterator->sptep);
2157 2158
}

2159 2160 2161 2162 2163 2164 2165 2166 2167
static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
			     struct kvm_mmu_page *sp)
{
	u64 spte;

	BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);

	spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp));

2168
	mmu_spte_set(sptep, spte);
2169 2170 2171 2172 2173

	mmu_page_add_parent_pte(vcpu, sp, sptep);

	if (sp->unsync_children || sp->unsync)
		mark_unsync(sptep);
2174 2175
}

2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188
static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
				   unsigned direct_access)
{
	if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
		struct kvm_mmu_page *child;

		/*
		 * For the direct sp, if the guest pte's dirty bit
		 * changed form clean to dirty, it will corrupt the
		 * sp's access: allow writable in the read-only sp,
		 * so we should update the spte at this point to get
		 * a new sp with the correct access.
		 */
2189
		child = to_shadow_page(*sptep & PT64_BASE_ADDR_MASK);
2190 2191 2192
		if (child->role.access == direct_access)
			return;

2193
		drop_parent_pte(child, sptep);
2194
		kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
2195 2196 2197
	}
}

2198 2199 2200
/* Returns the number of zapped non-leaf child shadow pages. */
static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
			    u64 *spte, struct list_head *invalid_list)
2201 2202 2203 2204 2205 2206
{
	u64 pte;
	struct kvm_mmu_page *child;

	pte = *spte;
	if (is_shadow_present_pte(pte)) {
X
Xiao Guangrong 已提交
2207
		if (is_last_spte(pte, sp->role.level)) {
2208
			drop_spte(kvm, spte);
X
Xiao Guangrong 已提交
2209 2210 2211
			if (is_large_pte(pte))
				--kvm->stat.lpages;
		} else {
2212
			child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2213
			drop_parent_pte(child, spte);
2214 2215 2216 2217 2218 2219 2220 2221 2222 2223

			/*
			 * Recursively zap nested TDP SPs, parentless SPs are
			 * unlikely to be used again in the near future.  This
			 * avoids retaining a large number of stale nested SPs.
			 */
			if (tdp_enabled && invalid_list &&
			    child->role.guest_mode && !child->parent_ptes.val)
				return kvm_mmu_prepare_zap_page(kvm, child,
								invalid_list);
2224
		}
2225
	} else if (is_mmio_spte(pte)) {
2226
		mmu_spte_clear_no_track(spte);
2227
	}
2228
	return 0;
2229 2230
}

2231 2232 2233
static int kvm_mmu_page_unlink_children(struct kvm *kvm,
					struct kvm_mmu_page *sp,
					struct list_head *invalid_list)
2234
{
2235
	int zapped = 0;
2236 2237
	unsigned i;

2238
	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2239 2240 2241
		zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list);

	return zapped;
2242 2243
}

2244
static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2245
{
2246 2247
	u64 *sptep;
	struct rmap_iterator iter;
2248

2249
	while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2250
		drop_parent_pte(sp, sptep);
2251 2252
}

2253
static int mmu_zap_unsync_children(struct kvm *kvm,
2254 2255
				   struct kvm_mmu_page *parent,
				   struct list_head *invalid_list)
2256
{
2257 2258 2259
	int i, zapped = 0;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
2260

2261
	if (parent->role.level == PG_LEVEL_4K)
2262
		return 0;
2263 2264 2265 2266 2267

	while (mmu_unsync_walk(parent, &pages)) {
		struct kvm_mmu_page *sp;

		for_each_sp(pages, sp, parents, i) {
2268
			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2269
			mmu_pages_clear_parents(&parents);
2270
			zapped++;
2271 2272 2273 2274
		}
	}

	return zapped;
2275 2276
}

2277 2278 2279 2280
static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
				       struct kvm_mmu_page *sp,
				       struct list_head *invalid_list,
				       int *nr_zapped)
2281
{
2282
	bool list_unstable;
A
Avi Kivity 已提交
2283

2284
	trace_kvm_mmu_prepare_zap_page(sp);
2285
	++kvm->stat.mmu_shadow_zapped;
2286
	*nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2287
	*nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list);
2288
	kvm_mmu_unlink_parents(kvm, sp);
2289

2290 2291 2292
	/* Zapping children means active_mmu_pages has become unstable. */
	list_unstable = *nr_zapped;

2293
	if (!sp->role.invalid && !sp->role.direct)
2294
		unaccount_shadowed(kvm, sp);
2295

2296 2297
	if (sp->unsync)
		kvm_unlink_unsync_page(kvm, sp);
2298
	if (!sp->root_count) {
2299
		/* Count self */
2300
		(*nr_zapped)++;
2301 2302 2303 2304 2305 2306 2307 2308 2309 2310

		/*
		 * Already invalid pages (previously active roots) are not on
		 * the active page list.  See list_del() in the "else" case of
		 * !sp->root_count.
		 */
		if (sp->role.invalid)
			list_add(&sp->link, invalid_list);
		else
			list_move(&sp->link, invalid_list);
2311
		kvm_mod_used_mmu_pages(kvm, -1);
2312
	} else {
2313 2314 2315 2316 2317
		/*
		 * Remove the active root from the active page list, the root
		 * will be explicitly freed when the root_count hits zero.
		 */
		list_del(&sp->link);
2318

2319 2320 2321 2322 2323 2324
		/*
		 * Obsolete pages cannot be used on any vCPUs, see the comment
		 * in kvm_mmu_zap_all_fast().  Note, is_obsolete_sp() also
		 * treats invalid shadow pages as being obsolete.
		 */
		if (!is_obsolete_sp(kvm, sp))
2325
			kvm_reload_remote_mmus(kvm);
2326
	}
2327

P
Paolo Bonzini 已提交
2328 2329 2330
	if (sp->lpage_disallowed)
		unaccount_huge_nx_page(kvm, sp);

2331
	sp->role.invalid = 1;
2332 2333 2334 2335 2336 2337 2338 2339 2340 2341
	return list_unstable;
}

static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				     struct list_head *invalid_list)
{
	int nr_zapped;

	__kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
	return nr_zapped;
2342 2343
}

2344 2345 2346
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list)
{
2347
	struct kvm_mmu_page *sp, *nsp;
2348 2349 2350 2351

	if (list_empty(invalid_list))
		return;

2352
	/*
2353 2354 2355 2356 2357 2358 2359
	 * We need to make sure everyone sees our modifications to
	 * the page tables and see changes to vcpu->mode here. The barrier
	 * in the kvm_flush_remote_tlbs() achieves this. This pairs
	 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
	 *
	 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
	 * guest mode and/or lockless shadow page table walks.
2360 2361
	 */
	kvm_flush_remote_tlbs(kvm);
2362

2363
	list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2364
		WARN_ON(!sp->role.invalid || sp->root_count);
2365
		kvm_mmu_free_page(sp);
2366
	}
2367 2368
}

2369 2370
static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm,
						  unsigned long nr_to_zap)
2371
{
2372 2373
	unsigned long total_zapped = 0;
	struct kvm_mmu_page *sp, *tmp;
2374
	LIST_HEAD(invalid_list);
2375 2376
	bool unstable;
	int nr_zapped;
2377 2378

	if (list_empty(&kvm->arch.active_mmu_pages))
2379 2380
		return 0;

2381
restart:
2382
	list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) {
2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393
		/*
		 * Don't zap active root pages, the page itself can't be freed
		 * and zapping it will just force vCPUs to realloc and reload.
		 */
		if (sp->root_count)
			continue;

		unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list,
						      &nr_zapped);
		total_zapped += nr_zapped;
		if (total_zapped >= nr_to_zap)
2394 2395
			break;

2396 2397
		if (unstable)
			goto restart;
2398
	}
2399

2400 2401 2402 2403 2404 2405
	kvm_mmu_commit_zap_page(kvm, &invalid_list);

	kvm->stat.mmu_recycled += total_zapped;
	return total_zapped;
}

2406 2407 2408 2409 2410 2411 2412
static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm)
{
	if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
		return kvm->arch.n_max_mmu_pages -
			kvm->arch.n_used_mmu_pages;

	return 0;
2413 2414
}

2415 2416
static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
{
2417
	unsigned long avail = kvm_mmu_available_pages(vcpu->kvm);
2418

2419
	if (likely(avail >= KVM_MIN_FREE_MMU_PAGES))
2420 2421
		return 0;

2422
	kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail);
2423 2424 2425 2426 2427 2428

	if (!kvm_mmu_available_pages(vcpu->kvm))
		return -ENOSPC;
	return 0;
}

2429 2430
/*
 * Changing the number of mmu pages allocated to the vm
2431
 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2432
 */
2433
void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2434
{
2435
	write_lock(&kvm->mmu_lock);
2436

2437
	if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2438 2439
		kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages -
						  goal_nr_mmu_pages);
2440

2441
		goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2442 2443
	}

2444
	kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2445

2446
	write_unlock(&kvm->mmu_lock);
2447 2448
}

2449
int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2450
{
2451
	struct kvm_mmu_page *sp;
2452
	LIST_HEAD(invalid_list);
2453 2454
	int r;

2455
	pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2456
	r = 0;
2457
	write_lock(&kvm->mmu_lock);
2458
	for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2459
		pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2460 2461
			 sp->role.word);
		r = 1;
2462
		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2463
	}
2464
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2465
	write_unlock(&kvm->mmu_lock);
2466

2467
	return r;
2468
}
2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483

static int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
{
	gpa_t gpa;
	int r;

	if (vcpu->arch.mmu->direct_map)
		return 0;

	gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);

	r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);

	return r;
}
2484

2485
static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2486 2487 2488 2489 2490 2491 2492 2493
{
	trace_kvm_mmu_unsync_page(sp);
	++vcpu->kvm->stat.mmu_unsync;
	sp->unsync = 1;

	kvm_mmu_mark_parents_unsync(sp);
}

2494 2495
bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
			    bool can_unsync)
2496
{
2497
	struct kvm_mmu_page *sp;
2498

2499 2500
	if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
		return true;
2501

2502
	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2503
		if (!can_unsync)
2504
			return true;
2505

2506 2507
		if (sp->unsync)
			continue;
2508

2509
		WARN_ON(sp->role.level != PG_LEVEL_4K);
2510
		kvm_unsync_page(vcpu, sp);
2511
	}
2512

2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551
	/*
	 * We need to ensure that the marking of unsync pages is visible
	 * before the SPTE is updated to allow writes because
	 * kvm_mmu_sync_roots() checks the unsync flags without holding
	 * the MMU lock and so can race with this. If the SPTE was updated
	 * before the page had been marked as unsync-ed, something like the
	 * following could happen:
	 *
	 * CPU 1                    CPU 2
	 * ---------------------------------------------------------------------
	 * 1.2 Host updates SPTE
	 *     to be writable
	 *                      2.1 Guest writes a GPTE for GVA X.
	 *                          (GPTE being in the guest page table shadowed
	 *                           by the SP from CPU 1.)
	 *                          This reads SPTE during the page table walk.
	 *                          Since SPTE.W is read as 1, there is no
	 *                          fault.
	 *
	 *                      2.2 Guest issues TLB flush.
	 *                          That causes a VM Exit.
	 *
	 *                      2.3 kvm_mmu_sync_pages() reads sp->unsync.
	 *                          Since it is false, so it just returns.
	 *
	 *                      2.4 Guest accesses GVA X.
	 *                          Since the mapping in the SP was not updated,
	 *                          so the old mapping for GVA X incorrectly
	 *                          gets used.
	 * 1.1 Host marks SP
	 *     as unsync
	 *     (sp->unsync = true)
	 *
	 * The write barrier below ensures that 1.1 happens before 1.2 and thus
	 * the situation in 2.4 does not arise. The implicit barrier in 2.2
	 * pairs with this write barrier.
	 */
	smp_wmb();

2552
	return false;
2553 2554
}

2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574
static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
		    unsigned int pte_access, int level,
		    gfn_t gfn, kvm_pfn_t pfn, bool speculative,
		    bool can_unsync, bool host_writable)
{
	u64 spte;
	struct kvm_mmu_page *sp;
	int ret;

	if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
		return 0;

	sp = sptep_to_sp(sptep);

	ret = make_spte(vcpu, pte_access, level, gfn, pfn, *sptep, speculative,
			can_unsync, host_writable, sp_ad_disabled(sp), &spte);

	if (spte & PT_WRITABLE_MASK)
		kvm_vcpu_mark_page_dirty(vcpu, gfn);

2575 2576 2577
	if (*sptep == spte)
		ret |= SET_SPTE_SPURIOUS;
	else if (mmu_spte_update(sptep, spte))
2578
		ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
M
Marcelo Tosatti 已提交
2579 2580 2581
	return ret;
}

2582
static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2583
			unsigned int pte_access, bool write_fault, int level,
2584 2585
			gfn_t gfn, kvm_pfn_t pfn, bool speculative,
			bool host_writable)
M
Marcelo Tosatti 已提交
2586 2587
{
	int was_rmapped = 0;
2588
	int rmap_count;
2589
	int set_spte_ret;
2590
	int ret = RET_PF_FIXED;
2591
	bool flush = false;
M
Marcelo Tosatti 已提交
2592

2593 2594
	pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
		 *sptep, write_fault, gfn);
M
Marcelo Tosatti 已提交
2595

2596
	if (is_shadow_present_pte(*sptep)) {
M
Marcelo Tosatti 已提交
2597 2598 2599 2600
		/*
		 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
		 * the parent of the now unreachable PTE.
		 */
2601
		if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) {
M
Marcelo Tosatti 已提交
2602
			struct kvm_mmu_page *child;
A
Avi Kivity 已提交
2603
			u64 pte = *sptep;
M
Marcelo Tosatti 已提交
2604

2605
			child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2606
			drop_parent_pte(child, sptep);
2607
			flush = true;
A
Avi Kivity 已提交
2608
		} else if (pfn != spte_to_pfn(*sptep)) {
2609
			pgprintk("hfn old %llx new %llx\n",
A
Avi Kivity 已提交
2610
				 spte_to_pfn(*sptep), pfn);
2611
			drop_spte(vcpu->kvm, sptep);
2612
			flush = true;
2613 2614
		} else
			was_rmapped = 1;
M
Marcelo Tosatti 已提交
2615
	}
2616

2617 2618 2619
	set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
				speculative, true, host_writable);
	if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
M
Marcelo Tosatti 已提交
2620
		if (write_fault)
2621
			ret = RET_PF_EMULATE;
2622
		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2623
	}
2624

2625
	if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
2626 2627
		kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
				KVM_PAGES_PER_HPAGE(level));
M
Marcelo Tosatti 已提交
2628

2629
	if (unlikely(is_mmio_spte(*sptep)))
2630
		ret = RET_PF_EMULATE;
2631

2632 2633 2634 2635 2636 2637 2638 2639 2640
	/*
	 * The fault is fully spurious if and only if the new SPTE and old SPTE
	 * are identical, and emulation is not required.
	 */
	if ((set_spte_ret & SET_SPTE_SPURIOUS) && ret == RET_PF_FIXED) {
		WARN_ON_ONCE(!was_rmapped);
		return RET_PF_SPURIOUS;
	}

A
Avi Kivity 已提交
2641
	pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2642
	trace_kvm_mmu_set_spte(level, gfn, sptep);
A
Avi Kivity 已提交
2643
	if (!was_rmapped && is_large_pte(*sptep))
M
Marcelo Tosatti 已提交
2644 2645
		++vcpu->kvm->stat.lpages;

2646 2647 2648 2649 2650 2651
	if (is_shadow_present_pte(*sptep)) {
		if (!was_rmapped) {
			rmap_count = rmap_add(vcpu, sptep, gfn);
			if (rmap_count > RMAP_RECYCLE_THRESHOLD)
				rmap_recycle(vcpu, sptep, gfn);
		}
2652
	}
2653

2654
	return ret;
2655 2656
}

D
Dan Williams 已提交
2657
static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2658 2659 2660 2661
				     bool no_dirty_log)
{
	struct kvm_memory_slot *slot;

2662
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2663
	if (!slot)
2664
		return KVM_PFN_ERR_FAULT;
2665

2666
	return gfn_to_pfn_memslot_atomic(slot, gfn);
2667 2668 2669 2670 2671 2672 2673
}

static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
				    struct kvm_mmu_page *sp,
				    u64 *start, u64 *end)
{
	struct page *pages[PTE_PREFETCH_NUM];
2674
	struct kvm_memory_slot *slot;
2675
	unsigned int access = sp->role.access;
2676 2677 2678 2679
	int i, ret;
	gfn_t gfn;

	gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2680 2681
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
	if (!slot)
2682 2683
		return -1;

2684
	ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2685 2686 2687
	if (ret <= 0)
		return -1;

2688
	for (i = 0; i < ret; i++, gfn++, start++) {
2689
		mmu_set_spte(vcpu, start, access, false, sp->role.level, gfn,
2690
			     page_to_pfn(pages[i]), true, true);
2691 2692
		put_page(pages[i]);
	}
2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708

	return 0;
}

static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
				  struct kvm_mmu_page *sp, u64 *sptep)
{
	u64 *spte, *start = NULL;
	int i;

	WARN_ON(!sp->role.direct);

	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
	spte = sp->spt + i;

	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2709
		if (is_shadow_present_pte(*spte) || spte == sptep) {
2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723
			if (!start)
				continue;
			if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
				break;
			start = NULL;
		} else if (!start)
			start = spte;
	}
}

static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
{
	struct kvm_mmu_page *sp;

2724
	sp = sptep_to_sp(sptep);
2725

2726
	/*
2727 2728 2729
	 * Without accessed bits, there's no way to distinguish between
	 * actually accessed translations and prefetched, so disable pte
	 * prefetch if accessed bits aren't available.
2730
	 */
2731
	if (sp_ad_disabled(sp))
2732 2733
		return;

2734
	if (sp->role.level > PG_LEVEL_4K)
2735 2736
		return;

2737 2738 2739 2740 2741 2742 2743
	/*
	 * If addresses are being invalidated, skip prefetching to avoid
	 * accidentally prefetching those addresses.
	 */
	if (unlikely(vcpu->kvm->mmu_notifier_count))
		return;

2744 2745 2746
	__direct_pte_prefetch(vcpu, sp, sptep);
}

2747 2748
static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn,
				  struct kvm_memory_slot *slot)
2749 2750 2751 2752 2753
{
	unsigned long hva;
	pte_t *pte;
	int level;

2754
	if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn))
2755
		return PG_LEVEL_4K;
2756

2757 2758 2759 2760 2761 2762 2763 2764
	/*
	 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
	 * is not solely for performance, it's also necessary to avoid the
	 * "writable" check in __gfn_to_hva_many(), which will always fail on
	 * read-only memslots due to gfn_to_hva() assuming writes.  Earlier
	 * page fault steps have already verified the guest isn't writing a
	 * read-only memslot.
	 */
2765 2766
	hva = __gfn_to_hva_memslot(slot, gfn);

2767
	pte = lookup_address_in_mm(kvm->mm, hva, &level);
2768
	if (unlikely(!pte))
2769
		return PG_LEVEL_4K;
2770 2771 2772 2773

	return level;
}

2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791
int kvm_mmu_max_mapping_level(struct kvm *kvm, struct kvm_memory_slot *slot,
			      gfn_t gfn, kvm_pfn_t pfn, int max_level)
{
	struct kvm_lpage_info *linfo;

	max_level = min(max_level, max_huge_page_level);
	for ( ; max_level > PG_LEVEL_4K; max_level--) {
		linfo = lpage_info_slot(gfn, slot, max_level);
		if (!linfo->disallow_lpage)
			break;
	}

	if (max_level == PG_LEVEL_4K)
		return PG_LEVEL_4K;

	return host_pfn_mapping_level(kvm, gfn, pfn, slot);
}

B
Ben Gardon 已提交
2792 2793 2794
int kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, gfn_t gfn,
			    int max_level, kvm_pfn_t *pfnp,
			    bool huge_page_disallowed, int *req_level)
2795
{
2796
	struct kvm_memory_slot *slot;
2797
	kvm_pfn_t pfn = *pfnp;
2798
	kvm_pfn_t mask;
2799
	int level;
2800

2801 2802
	*req_level = PG_LEVEL_4K;

2803 2804
	if (unlikely(max_level == PG_LEVEL_4K))
		return PG_LEVEL_4K;
2805

2806
	if (is_error_noslot_pfn(pfn) || kvm_is_reserved_pfn(pfn))
2807
		return PG_LEVEL_4K;
2808

2809 2810
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, true);
	if (!slot)
2811
		return PG_LEVEL_4K;
2812

2813
	level = kvm_mmu_max_mapping_level(vcpu->kvm, slot, gfn, pfn, max_level);
2814
	if (level == PG_LEVEL_4K)
2815
		return level;
2816

2817 2818 2819 2820 2821 2822 2823 2824
	*req_level = level = min(level, max_level);

	/*
	 * Enforce the iTLB multihit workaround after capturing the requested
	 * level, which will be used to do precise, accurate accounting.
	 */
	if (huge_page_disallowed)
		return PG_LEVEL_4K;
2825 2826

	/*
2827 2828
	 * mmu_notifier_retry() was successful and mmu_lock is held, so
	 * the pmd can't be split from under us.
2829
	 */
2830 2831 2832
	mask = KVM_PAGES_PER_HPAGE(level) - 1;
	VM_BUG_ON((gfn & mask) != (pfn & mask));
	*pfnp = pfn & ~mask;
2833 2834

	return level;
2835 2836
}

B
Ben Gardon 已提交
2837 2838
void disallowed_hugepage_adjust(u64 spte, gfn_t gfn, int cur_level,
				kvm_pfn_t *pfnp, int *goal_levelp)
P
Paolo Bonzini 已提交
2839
{
B
Ben Gardon 已提交
2840
	int level = *goal_levelp;
P
Paolo Bonzini 已提交
2841

2842
	if (cur_level == level && level > PG_LEVEL_4K &&
P
Paolo Bonzini 已提交
2843 2844 2845 2846 2847 2848 2849 2850 2851
	    is_shadow_present_pte(spte) &&
	    !is_large_pte(spte)) {
		/*
		 * A small SPTE exists for this pfn, but FNAME(fetch)
		 * and __direct_map would like to create a large PTE
		 * instead: just force them to go down another level,
		 * patching back for them into pfn the next 9 bits of
		 * the address.
		 */
2852 2853
		u64 page_mask = KVM_PAGES_PER_HPAGE(level) -
				KVM_PAGES_PER_HPAGE(level - 1);
P
Paolo Bonzini 已提交
2854
		*pfnp |= gfn & page_mask;
B
Ben Gardon 已提交
2855
		(*goal_levelp)--;
P
Paolo Bonzini 已提交
2856 2857 2858
	}
}

2859
static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
2860
			int map_writable, int max_level, kvm_pfn_t pfn,
2861
			bool prefault, bool is_tdp)
2862
{
2863 2864 2865 2866
	bool nx_huge_page_workaround_enabled = is_nx_huge_page_enabled();
	bool write = error_code & PFERR_WRITE_MASK;
	bool exec = error_code & PFERR_FETCH_MASK;
	bool huge_page_disallowed = exec && nx_huge_page_workaround_enabled;
2867
	struct kvm_shadow_walk_iterator it;
2868
	struct kvm_mmu_page *sp;
2869
	int level, req_level, ret;
2870 2871
	gfn_t gfn = gpa >> PAGE_SHIFT;
	gfn_t base_gfn = gfn;
A
Avi Kivity 已提交
2872

2873
	if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
2874
		return RET_PF_RETRY;
2875

2876 2877
	level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn,
					huge_page_disallowed, &req_level);
2878

2879
	trace_kvm_mmu_spte_requested(gpa, level, pfn);
2880
	for_each_shadow_entry(vcpu, gpa, it) {
P
Paolo Bonzini 已提交
2881 2882 2883 2884
		/*
		 * We cannot overwrite existing page tables with an NX
		 * large page, as the leaf could be executable.
		 */
2885
		if (nx_huge_page_workaround_enabled)
2886 2887
			disallowed_hugepage_adjust(*it.sptep, gfn, it.level,
						   &pfn, &level);
P
Paolo Bonzini 已提交
2888

2889 2890
		base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
		if (it.level == level)
2891
			break;
A
Avi Kivity 已提交
2892

2893 2894 2895 2896
		drop_large_spte(vcpu, it.sptep);
		if (!is_shadow_present_pte(*it.sptep)) {
			sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
					      it.level - 1, true, ACC_ALL);
2897

2898
			link_shadow_page(vcpu, it.sptep, sp);
2899 2900
			if (is_tdp && huge_page_disallowed &&
			    req_level >= it.level)
P
Paolo Bonzini 已提交
2901
				account_huge_nx_page(vcpu->kvm, sp);
2902 2903
		}
	}
2904 2905 2906 2907

	ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL,
			   write, level, base_gfn, pfn, prefault,
			   map_writable);
2908 2909 2910
	if (ret == RET_PF_SPURIOUS)
		return ret;

2911 2912 2913
	direct_pte_prefetch(vcpu, it.sptep);
	++vcpu->stat.pf_fixed;
	return ret;
A
Avi Kivity 已提交
2914 2915
}

H
Huang Ying 已提交
2916
static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2917
{
2918
	send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
2919 2920
}

D
Dan Williams 已提交
2921
static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
2922
{
X
Xiao Guangrong 已提交
2923 2924 2925 2926 2927 2928
	/*
	 * Do not cache the mmio info caused by writing the readonly gfn
	 * into the spte otherwise read access on readonly gfn also can
	 * caused mmio page fault and treat it as mmio access.
	 */
	if (pfn == KVM_PFN_ERR_RO_FAULT)
2929
		return RET_PF_EMULATE;
X
Xiao Guangrong 已提交
2930

2931
	if (pfn == KVM_PFN_ERR_HWPOISON) {
2932
		kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
2933
		return RET_PF_RETRY;
2934
	}
2935

2936
	return -EFAULT;
2937 2938
}

2939
static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2940 2941
				kvm_pfn_t pfn, unsigned int access,
				int *ret_val)
2942 2943
{
	/* The pfn is invalid, report the error! */
2944
	if (unlikely(is_error_pfn(pfn))) {
2945
		*ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2946
		return true;
2947 2948
	}

2949
	if (unlikely(is_noslot_pfn(pfn)))
2950 2951
		vcpu_cache_mmio_info(vcpu, gva, gfn,
				     access & shadow_mmio_access_mask);
2952

2953
	return false;
2954 2955
}

2956
static bool page_fault_can_be_fast(u32 error_code)
2957
{
2958 2959 2960 2961 2962 2963 2964
	/*
	 * Do not fix the mmio spte with invalid generation number which
	 * need to be updated by slow page fault path.
	 */
	if (unlikely(error_code & PFERR_RSVD_MASK))
		return false;

2965 2966 2967 2968 2969
	/* See if the page fault is due to an NX violation */
	if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
		      == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
		return false;

2970
	/*
2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981
	 * #PF can be fast if:
	 * 1. The shadow page table entry is not present, which could mean that
	 *    the fault is potentially caused by access tracking (if enabled).
	 * 2. The shadow page table entry is present and the fault
	 *    is caused by write-protect, that means we just need change the W
	 *    bit of the spte which can be done out of mmu-lock.
	 *
	 * However, if access tracking is disabled we know that a non-present
	 * page must be a genuine page fault where we have to create a new SPTE.
	 * So, if access tracking is disabled, we return true only for write
	 * accesses to a present page.
2982 2983
	 */

2984 2985 2986
	return shadow_acc_track_mask != 0 ||
	       ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
		== (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
2987 2988
}

2989 2990 2991 2992
/*
 * Returns true if the SPTE was fixed successfully. Otherwise,
 * someone else modified the SPTE from its original value.
 */
2993
static bool
2994
fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2995
			u64 *sptep, u64 old_spte, u64 new_spte)
2996 2997 2998 2999 3000
{
	gfn_t gfn;

	WARN_ON(!sp->role.direct);

3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012
	/*
	 * Theoretically we could also set dirty bit (and flush TLB) here in
	 * order to eliminate unnecessary PML logging. See comments in
	 * set_spte. But fast_page_fault is very unlikely to happen with PML
	 * enabled, so we do not do this. This might result in the same GPA
	 * to be logged in PML buffer again when the write really happens, and
	 * eventually to be called by mark_page_dirty twice. But it's also no
	 * harm. This also avoids the TLB flush needed after setting dirty bit
	 * so non-PML cases won't be impacted.
	 *
	 * Compare with set_spte where instead shadow_dirty_mask is set.
	 */
3013
	if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3014 3015
		return false;

3016
	if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
3017 3018 3019 3020 3021 3022 3023
		/*
		 * The gfn of direct spte is stable since it is
		 * calculated by sp->gfn.
		 */
		gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
		kvm_vcpu_mark_page_dirty(vcpu, gfn);
	}
3024 3025 3026 3027

	return true;
}

3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039
static bool is_access_allowed(u32 fault_err_code, u64 spte)
{
	if (fault_err_code & PFERR_FETCH_MASK)
		return is_executable_pte(spte);

	if (fault_err_code & PFERR_WRITE_MASK)
		return is_writable_pte(spte);

	/* Fault was on Read access */
	return spte & PT_PRESENT_MASK;
}

3040
/*
3041
 * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS.
3042
 */
3043 3044
static int fast_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
			   u32 error_code)
3045 3046
{
	struct kvm_shadow_walk_iterator iterator;
3047
	struct kvm_mmu_page *sp;
3048
	int ret = RET_PF_INVALID;
3049
	u64 spte = 0ull;
3050
	uint retry_count = 0;
3051

3052
	if (!page_fault_can_be_fast(error_code))
3053
		return ret;
3054 3055 3056

	walk_shadow_page_lockless_begin(vcpu);

3057
	do {
3058
		u64 new_spte;
3059

3060
		for_each_shadow_entry_lockless(vcpu, cr2_or_gpa, iterator, spte)
3061
			if (!is_shadow_present_pte(spte))
3062 3063
				break;

3064
		sp = sptep_to_sp(iterator.sptep);
3065 3066
		if (!is_last_spte(spte, sp->role.level))
			break;
3067

3068
		/*
3069 3070 3071 3072 3073
		 * Check whether the memory access that caused the fault would
		 * still cause it if it were to be performed right now. If not,
		 * then this is a spurious fault caused by TLB lazily flushed,
		 * or some other CPU has already fixed the PTE after the
		 * current CPU took the fault.
3074 3075 3076 3077
		 *
		 * Need not check the access of upper level table entries since
		 * they are always ACC_ALL.
		 */
3078
		if (is_access_allowed(error_code, spte)) {
3079
			ret = RET_PF_SPURIOUS;
3080 3081
			break;
		}
3082

3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093
		new_spte = spte;

		if (is_access_track_spte(spte))
			new_spte = restore_acc_track_spte(new_spte);

		/*
		 * Currently, to simplify the code, write-protection can
		 * be removed in the fast path only if the SPTE was
		 * write-protected for dirty-logging or access tracking.
		 */
		if ((error_code & PFERR_WRITE_MASK) &&
3094
		    spte_can_locklessly_be_made_writable(spte)) {
3095
			new_spte |= PT_WRITABLE_MASK;
3096 3097

			/*
3098 3099 3100 3101 3102 3103 3104 3105 3106
			 * Do not fix write-permission on the large spte.  Since
			 * we only dirty the first page into the dirty-bitmap in
			 * fast_pf_fix_direct_spte(), other pages are missed
			 * if its slot has dirty logging enabled.
			 *
			 * Instead, we let the slow page fault path create a
			 * normal spte to fix the access.
			 *
			 * See the comments in kvm_arch_commit_memory_region().
3107
			 */
3108
			if (sp->role.level > PG_LEVEL_4K)
3109
				break;
3110
		}
3111

3112
		/* Verify that the fault can be handled in the fast path */
3113 3114
		if (new_spte == spte ||
		    !is_access_allowed(error_code, new_spte))
3115 3116 3117 3118 3119
			break;

		/*
		 * Currently, fast page fault only works for direct mapping
		 * since the gfn is not stable for indirect shadow page. See
3120
		 * Documentation/virt/kvm/locking.rst to get more detail.
3121
		 */
3122 3123 3124
		if (fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte,
					    new_spte)) {
			ret = RET_PF_FIXED;
3125
			break;
3126
		}
3127 3128 3129 3130 3131 3132 3133 3134

		if (++retry_count > 4) {
			printk_once(KERN_WARNING
				"kvm: Fast #PF retrying more than 4 times.\n");
			break;
		}

	} while (true);
3135

3136
	trace_fast_page_fault(vcpu, cr2_or_gpa, error_code, iterator.sptep,
3137
			      spte, ret);
3138 3139
	walk_shadow_page_lockless_end(vcpu);

3140
	return ret;
3141 3142
}

3143 3144
static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
			       struct list_head *invalid_list)
3145
{
3146
	struct kvm_mmu_page *sp;
3147

3148
	if (!VALID_PAGE(*root_hpa))
A
Avi Kivity 已提交
3149
		return;
3150

3151
	sp = to_shadow_page(*root_hpa & PT64_BASE_ADDR_MASK);
3152 3153

	if (kvm_mmu_put_root(kvm, sp)) {
3154
		if (is_tdp_mmu_page(sp))
3155 3156 3157 3158
			kvm_tdp_mmu_free_root(kvm, sp);
		else if (sp->role.invalid)
			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
	}
3159

3160 3161 3162
	*root_hpa = INVALID_PAGE;
}

3163
/* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
3164 3165
void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
			ulong roots_to_free)
3166
{
3167
	struct kvm *kvm = vcpu->kvm;
3168 3169
	int i;
	LIST_HEAD(invalid_list);
3170
	bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
3171

3172
	BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3173

3174
	/* Before acquiring the MMU lock, see if we need to do any real work. */
3175 3176 3177 3178 3179 3180 3181 3182 3183
	if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
			if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
			    VALID_PAGE(mmu->prev_roots[i].hpa))
				break;

		if (i == KVM_MMU_NUM_PREV_ROOTS)
			return;
	}
3184

3185
	write_lock(&kvm->mmu_lock);
3186

3187 3188
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
		if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3189
			mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa,
3190
					   &invalid_list);
3191

3192 3193 3194
	if (free_active_root) {
		if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
		    (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3195
			mmu_free_root_page(kvm, &mmu->root_hpa, &invalid_list);
3196
		} else if (mmu->pae_root) {
3197 3198
			for (i = 0; i < 4; ++i)
				if (mmu->pae_root[i] != 0)
3199
					mmu_free_root_page(kvm,
3200 3201 3202
							   &mmu->pae_root[i],
							   &invalid_list);
		}
3203
		mmu->root_hpa = INVALID_PAGE;
3204
		mmu->root_pgd = 0;
3205
	}
3206

3207
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
3208
	write_unlock(&kvm->mmu_lock);
3209
}
3210
EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3211

3212 3213 3214 3215
static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
{
	int ret = 0;

3216
	if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) {
3217
		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3218 3219 3220 3221 3222 3223
		ret = 1;
	}

	return ret;
}

3224 3225
static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, gva_t gva,
			    u8 level, bool direct)
3226 3227
{
	struct kvm_mmu_page *sp;
3228

3229
	write_lock(&vcpu->kvm->mmu_lock);
3230 3231

	if (make_mmu_pages_available(vcpu)) {
3232
		write_unlock(&vcpu->kvm->mmu_lock);
3233 3234 3235 3236 3237
		return INVALID_PAGE;
	}
	sp = kvm_mmu_get_page(vcpu, gfn, gva, level, direct, ACC_ALL);
	++sp->root_count;

3238
	write_unlock(&vcpu->kvm->mmu_lock);
3239 3240 3241 3242 3243
	return __pa(sp->spt);
}

static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
{
3244 3245
	struct kvm_mmu *mmu = vcpu->arch.mmu;
	u8 shadow_root_level = mmu->shadow_root_level;
3246
	hpa_t root;
3247
	unsigned i;
3248

3249
	if (is_tdp_mmu_enabled(vcpu->kvm)) {
3250 3251 3252 3253
		root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu);

		if (!VALID_PAGE(root))
			return -ENOSPC;
3254
		mmu->root_hpa = root;
3255 3256 3257 3258
	} else if (shadow_root_level >= PT64_ROOT_4LEVEL) {
		root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level,
				      true);

3259
		if (!VALID_PAGE(root))
3260
			return -ENOSPC;
3261
		mmu->root_hpa = root;
3262
	} else if (shadow_root_level == PT32E_ROOT_LEVEL) {
3263
		for (i = 0; i < 4; ++i) {
3264
			MMU_WARN_ON(VALID_PAGE(mmu->pae_root[i]));
3265

3266 3267 3268
			root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT),
					      i << 30, PT32_ROOT_LEVEL, true);
			if (!VALID_PAGE(root))
3269
				return -ENOSPC;
3270
			mmu->pae_root[i] = root | PT_PRESENT_MASK;
3271
		}
3272
		mmu->root_hpa = __pa(mmu->pae_root);
3273 3274
	} else
		BUG();
3275

3276
	/* root_pgd is ignored for direct MMUs. */
3277
	mmu->root_pgd = 0;
3278 3279 3280 3281 3282

	return 0;
}

static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3283
{
3284
	struct kvm_mmu *mmu = vcpu->arch.mmu;
3285
	u64 pdptr, pm_mask;
3286
	gfn_t root_gfn, root_pgd;
3287
	hpa_t root;
3288
	int i;
3289

3290
	root_pgd = mmu->get_guest_pgd(vcpu);
3291
	root_gfn = root_pgd >> PAGE_SHIFT;
3292

3293 3294 3295 3296 3297 3298 3299
	if (mmu_check_root(vcpu, root_gfn))
		return 1;

	/*
	 * Do we shadow a long mode page table? If so we need to
	 * write-protect the guests page table root.
	 */
3300 3301
	if (mmu->root_level >= PT64_ROOT_4LEVEL) {
		MMU_WARN_ON(VALID_PAGE(mmu->root_hpa));
3302

3303
		root = mmu_alloc_root(vcpu, root_gfn, 0,
3304
				      mmu->shadow_root_level, false);
3305
		if (!VALID_PAGE(root))
3306
			return -ENOSPC;
3307
		mmu->root_hpa = root;
3308
		goto set_root_pgd;
3309
	}
3310

3311 3312
	/*
	 * We shadow a 32 bit page table. This may be a legacy 2-level
3313 3314
	 * or a PAE 3-level page table. In either case we need to be aware that
	 * the shadow page table may be a PAE or a long mode page table.
3315
	 */
3316
	pm_mask = PT_PRESENT_MASK;
3317
	if (mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
3318 3319
		pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;

3320
		mmu->lm_root[0] = __pa(mmu->pae_root) | pm_mask;
3321 3322
	}

3323
	for (i = 0; i < 4; ++i) {
3324 3325 3326
		MMU_WARN_ON(VALID_PAGE(mmu->pae_root[i]));
		if (mmu->root_level == PT32E_ROOT_LEVEL) {
			pdptr = mmu->get_pdptr(vcpu, i);
B
Bandan Das 已提交
3327
			if (!(pdptr & PT_PRESENT_MASK)) {
3328
				mmu->pae_root[i] = 0;
A
Avi Kivity 已提交
3329 3330
				continue;
			}
A
Avi Kivity 已提交
3331
			root_gfn = pdptr >> PAGE_SHIFT;
3332 3333
			if (mmu_check_root(vcpu, root_gfn))
				return 1;
3334
		}
3335

3336 3337 3338 3339
		root = mmu_alloc_root(vcpu, root_gfn, i << 30,
				      PT32_ROOT_LEVEL, false);
		if (!VALID_PAGE(root))
			return -ENOSPC;
3340
		mmu->pae_root[i] = root | pm_mask;
3341
	}
3342

3343
	if (mmu->shadow_root_level == PT64_ROOT_4LEVEL)
3344
		mmu->root_hpa = __pa(mmu->lm_root);
3345 3346
	else
		mmu->root_hpa = __pa(mmu->pae_root);
3347

3348
set_root_pgd:
3349
	mmu->root_pgd = root_pgd;
3350

3351
	return 0;
3352 3353
}

3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402
static int mmu_alloc_special_roots(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu *mmu = vcpu->arch.mmu;
	u64 *lm_root, *pae_root;

	/*
	 * When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP
	 * tables are allocated and initialized at root creation as there is no
	 * equivalent level in the guest's NPT to shadow.  Allocate the tables
	 * on demand, as running a 32-bit L1 VMM on 64-bit KVM is very rare.
	 */
	if (mmu->direct_map || mmu->root_level >= PT64_ROOT_4LEVEL ||
	    mmu->shadow_root_level < PT64_ROOT_4LEVEL)
		return 0;

	/*
	 * This mess only works with 4-level paging and needs to be updated to
	 * work with 5-level paging.
	 */
	if (WARN_ON_ONCE(mmu->shadow_root_level != PT64_ROOT_4LEVEL))
		return -EIO;

	if (mmu->pae_root && mmu->lm_root)
		return 0;

	/*
	 * The special roots should always be allocated in concert.  Yell and
	 * bail if KVM ends up in a state where only one of the roots is valid.
	 */
	if (WARN_ON_ONCE(!tdp_enabled || mmu->pae_root || mmu->lm_root))
		return -EIO;

	/* Unlike 32-bit NPT, the PDP table doesn't need to be in low mem. */
	pae_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
	if (!pae_root)
		return -ENOMEM;

	lm_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
	if (!lm_root) {
		free_page((unsigned long)pae_root);
		return -ENOMEM;
	}

	mmu->pae_root = pae_root;
	mmu->lm_root = lm_root;

	return 0;
}

3403 3404
static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
{
3405
	if (vcpu->arch.mmu->direct_map)
3406 3407 3408 3409 3410
		return mmu_alloc_direct_roots(vcpu);
	else
		return mmu_alloc_shadow_roots(vcpu);
}

3411
void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3412 3413 3414 3415
{
	int i;
	struct kvm_mmu_page *sp;

3416
	if (vcpu->arch.mmu->direct_map)
3417 3418
		return;

3419
	if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3420
		return;
3421

3422
	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3423

3424 3425
	if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
		hpa_t root = vcpu->arch.mmu->root_hpa;
3426
		sp = to_shadow_page(root);
3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441

		/*
		 * Even if another CPU was marking the SP as unsync-ed
		 * simultaneously, any guest page table changes are not
		 * guaranteed to be visible anyway until this VCPU issues a TLB
		 * flush strictly after those changes are made. We only need to
		 * ensure that the other CPU sets these flags before any actual
		 * changes to the page tables are made. The comments in
		 * mmu_need_write_protect() describe what could go wrong if this
		 * requirement isn't satisfied.
		 */
		if (!smp_load_acquire(&sp->unsync) &&
		    !smp_load_acquire(&sp->unsync_children))
			return;

3442
		write_lock(&vcpu->kvm->mmu_lock);
3443 3444
		kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);

3445
		mmu_sync_children(vcpu, sp);
3446

3447
		kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3448
		write_unlock(&vcpu->kvm->mmu_lock);
3449 3450
		return;
	}
3451

3452
	write_lock(&vcpu->kvm->mmu_lock);
3453 3454
	kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);

3455
	for (i = 0; i < 4; ++i) {
3456
		hpa_t root = vcpu->arch.mmu->pae_root[i];
3457

3458
		if (root && VALID_PAGE(root)) {
3459
			root &= PT64_BASE_ADDR_MASK;
3460
			sp = to_shadow_page(root);
3461 3462 3463 3464
			mmu_sync_children(vcpu, sp);
		}
	}

3465
	kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3466
	write_unlock(&vcpu->kvm->mmu_lock);
3467 3468
}

3469
static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr,
3470
				  u32 access, struct x86_exception *exception)
A
Avi Kivity 已提交
3471
{
3472 3473
	if (exception)
		exception->error_code = 0;
A
Avi Kivity 已提交
3474 3475 3476
	return vaddr;
}

3477
static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr,
3478 3479
					 u32 access,
					 struct x86_exception *exception)
3480
{
3481 3482
	if (exception)
		exception->error_code = 0;
3483
	return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3484 3485
}

3486 3487 3488
static bool
__is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
{
3489
	int bit7 = (pte >> 7) & 1;
3490

3491
	return pte & rsvd_check->rsvd_bits_mask[bit7][level-1];
3492 3493
}

3494
static bool __is_bad_mt_xwr(struct rsvd_bits_validate *rsvd_check, u64 pte)
3495
{
3496
	return rsvd_check->bad_mt_xwr & BIT_ULL(pte & 0x3f);
3497 3498
}

3499
static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3500
{
3501 3502 3503 3504 3505 3506 3507
	/*
	 * A nested guest cannot use the MMIO cache if it is using nested
	 * page tables, because cr2 is a nGPA while the cache stores GPAs.
	 */
	if (mmu_is_nested(vcpu))
		return false;

3508 3509 3510 3511 3512 3513
	if (direct)
		return vcpu_match_mmio_gpa(vcpu, addr);

	return vcpu_match_mmio_gva(vcpu, addr);
}

3514 3515 3516 3517
/*
 * Return the level of the lowest level SPTE added to sptes.
 * That SPTE may be non-present.
 */
3518
static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level)
3519 3520
{
	struct kvm_shadow_walk_iterator iterator;
3521
	int leaf = -1;
3522
	u64 spte;
3523 3524

	walk_shadow_page_lockless_begin(vcpu);
3525

3526 3527
	for (shadow_walk_init(&iterator, vcpu, addr),
	     *root_level = iterator.level;
3528 3529
	     shadow_walk_okay(&iterator);
	     __shadow_walk_next(&iterator, spte)) {
3530
		leaf = iterator.level;
3531 3532
		spte = mmu_spte_get_lockless(iterator.sptep);

3533
		sptes[leaf] = spte;
3534

3535 3536
		if (!is_shadow_present_pte(spte))
			break;
3537 3538 3539 3540 3541 3542 3543
	}

	walk_shadow_page_lockless_end(vcpu);

	return leaf;
}

3544
/* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */
3545 3546
static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
{
3547
	u64 sptes[PT64_ROOT_MAX_LEVEL + 1];
3548
	struct rsvd_bits_validate *rsvd_check;
3549
	int root, leaf, level;
3550 3551 3552 3553 3554 3555 3556 3557
	bool reserved = false;

	if (!VALID_PAGE(vcpu->arch.mmu->root_hpa)) {
		*sptep = 0ull;
		return reserved;
	}

	if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa))
3558
		leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, &root);
3559
	else
3560
		leaf = get_walk(vcpu, addr, sptes, &root);
3561

3562 3563 3564 3565 3566
	if (unlikely(leaf < 0)) {
		*sptep = 0ull;
		return reserved;
	}

3567 3568 3569 3570 3571 3572 3573 3574 3575 3576
	*sptep = sptes[leaf];

	/*
	 * Skip reserved bits checks on the terminal leaf if it's not a valid
	 * SPTE.  Note, this also (intentionally) skips MMIO SPTEs, which, by
	 * design, always have reserved bits set.  The purpose of the checks is
	 * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs.
	 */
	if (!is_shadow_present_pte(sptes[leaf]))
		leaf++;
3577 3578 3579

	rsvd_check = &vcpu->arch.mmu->shadow_zero_check;

3580
	for (level = root; level >= leaf; level--)
3581 3582 3583 3584 3585
		/*
		 * Use a bitwise-OR instead of a logical-OR to aggregate the
		 * reserved bit and EPT's invalid memtype/XWR checks to avoid
		 * adding a Jcc in the loop.
		 */
3586 3587
		reserved |= __is_bad_mt_xwr(rsvd_check, sptes[level]) |
			    __is_rsvd_bits_set(rsvd_check, sptes[level], level);
3588 3589 3590 3591

	if (reserved) {
		pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
		       __func__, addr);
3592
		for (level = root; level >= leaf; level--)
3593
			pr_err("------ spte 0x%llx level %d.\n",
3594
			       sptes[level], level);
3595
	}
3596

3597
	return reserved;
3598 3599
}

P
Paolo Bonzini 已提交
3600
static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3601 3602
{
	u64 spte;
3603
	bool reserved;
3604

3605
	if (mmio_info_in_cache(vcpu, addr, direct))
3606
		return RET_PF_EMULATE;
3607

3608
	reserved = get_mmio_spte(vcpu, addr, &spte);
3609
	if (WARN_ON(reserved))
3610
		return -EINVAL;
3611 3612 3613

	if (is_mmio_spte(spte)) {
		gfn_t gfn = get_mmio_spte_gfn(spte);
3614
		unsigned int access = get_mmio_spte_access(spte);
3615

3616
		if (!check_mmio_spte(vcpu, spte))
3617
			return RET_PF_INVALID;
3618

3619 3620
		if (direct)
			addr = 0;
X
Xiao Guangrong 已提交
3621 3622

		trace_handle_mmio_page_fault(addr, gfn, access);
3623
		vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3624
		return RET_PF_EMULATE;
3625 3626 3627 3628 3629 3630
	}

	/*
	 * If the page table is zapped by other cpus, let CPU fault again on
	 * the address.
	 */
3631
	return RET_PF_RETRY;
3632 3633
}

3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653
static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
					 u32 error_code, gfn_t gfn)
{
	if (unlikely(error_code & PFERR_RSVD_MASK))
		return false;

	if (!(error_code & PFERR_PRESENT_MASK) ||
	      !(error_code & PFERR_WRITE_MASK))
		return false;

	/*
	 * guest is writing the page which is write tracked which can
	 * not be fixed by page fault handler.
	 */
	if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
		return true;

	return false;
}

3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667
static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
{
	struct kvm_shadow_walk_iterator iterator;
	u64 spte;

	walk_shadow_page_lockless_begin(vcpu);
	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
		clear_sp_write_flooding_count(iterator.sptep);
		if (!is_shadow_present_pte(spte))
			break;
	}
	walk_shadow_page_lockless_end(vcpu);
}

3668 3669
static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
				    gfn_t gfn)
3670 3671
{
	struct kvm_arch_async_pf arch;
X
Xiao Guangrong 已提交
3672

3673
	arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3674
	arch.gfn = gfn;
3675
	arch.direct_map = vcpu->arch.mmu->direct_map;
3676
	arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu);
3677

3678 3679
	return kvm_setup_async_pf(vcpu, cr2_or_gpa,
				  kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3680 3681
}

3682
static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3683 3684
			 gpa_t cr2_or_gpa, kvm_pfn_t *pfn, hva_t *hva,
			 bool write, bool *writable)
3685
{
3686
	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3687 3688
	bool async;

3689 3690
	/* Don't expose private memslots to L2. */
	if (is_guest_mode(vcpu) && !kvm_is_visible_memslot(slot)) {
3691
		*pfn = KVM_PFN_NOSLOT;
3692
		*writable = false;
3693 3694 3695
		return false;
	}

3696
	async = false;
3697 3698
	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async,
				    write, writable, hva);
3699 3700 3701
	if (!async)
		return false; /* *pfn has correct page already */

3702
	if (!prefault && kvm_can_do_async_pf(vcpu)) {
3703
		trace_kvm_try_async_get_page(cr2_or_gpa, gfn);
3704
		if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3705
			trace_kvm_async_pf_doublefault(cr2_or_gpa, gfn);
3706 3707
			kvm_make_request(KVM_REQ_APF_HALT, vcpu);
			return true;
3708
		} else if (kvm_arch_setup_async_pf(vcpu, cr2_or_gpa, gfn))
3709 3710 3711
			return true;
	}

3712 3713
	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL,
				    write, writable, hva);
3714 3715 3716
	return false;
}

3717 3718
static int direct_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
			     bool prefault, int max_level, bool is_tdp)
A
Avi Kivity 已提交
3719
{
3720
	bool write = error_code & PFERR_WRITE_MASK;
3721
	bool map_writable;
A
Avi Kivity 已提交
3722

3723 3724 3725
	gfn_t gfn = gpa >> PAGE_SHIFT;
	unsigned long mmu_seq;
	kvm_pfn_t pfn;
3726
	hva_t hva;
3727
	int r;
3728

3729
	if (page_fault_handle_page_track(vcpu, error_code, gfn))
3730
		return RET_PF_EMULATE;
3731

B
Ben Gardon 已提交
3732 3733 3734 3735 3736
	if (!is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa)) {
		r = fast_page_fault(vcpu, gpa, error_code);
		if (r != RET_PF_INVALID)
			return r;
	}
3737

3738
	r = mmu_topup_memory_caches(vcpu, false);
3739 3740
	if (r)
		return r;
3741

3742 3743 3744
	mmu_seq = vcpu->kvm->mmu_notifier_seq;
	smp_rmb();

3745 3746
	if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, &hva,
			 write, &map_writable))
3747 3748
		return RET_PF_RETRY;

3749
	if (handle_abnormal_pfn(vcpu, is_tdp ? 0 : gpa, gfn, pfn, ACC_ALL, &r))
3750
		return r;
A
Avi Kivity 已提交
3751

3752
	r = RET_PF_RETRY;
3753 3754 3755 3756 3757 3758

	if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa))
		read_lock(&vcpu->kvm->mmu_lock);
	else
		write_lock(&vcpu->kvm->mmu_lock);

3759
	if (!is_noslot_pfn(pfn) && mmu_notifier_retry_hva(vcpu->kvm, mmu_seq, hva))
3760
		goto out_unlock;
3761 3762
	r = make_mmu_pages_available(vcpu);
	if (r)
3763
		goto out_unlock;
B
Ben Gardon 已提交
3764 3765 3766 3767 3768 3769 3770

	if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa))
		r = kvm_tdp_mmu_map(vcpu, gpa, error_code, map_writable, max_level,
				    pfn, prefault);
	else
		r = __direct_map(vcpu, gpa, error_code, map_writable, max_level, pfn,
				 prefault, is_tdp);
3771

3772
out_unlock:
3773 3774 3775 3776
	if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa))
		read_unlock(&vcpu->kvm->mmu_lock);
	else
		write_unlock(&vcpu->kvm->mmu_lock);
3777 3778
	kvm_release_pfn_clean(pfn);
	return r;
A
Avi Kivity 已提交
3779 3780
}

3781 3782 3783 3784 3785 3786 3787
static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa,
				u32 error_code, bool prefault)
{
	pgprintk("%s: gva %lx error %x\n", __func__, gpa, error_code);

	/* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
	return direct_page_fault(vcpu, gpa & PAGE_MASK, error_code, prefault,
3788
				 PG_LEVEL_2M, false);
3789 3790
}

3791
int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
3792
				u64 fault_address, char *insn, int insn_len)
3793 3794
{
	int r = 1;
3795
	u32 flags = vcpu->arch.apf.host_apf_flags;
3796

3797 3798 3799 3800 3801 3802
#ifndef CONFIG_X86_64
	/* A 64-bit CR2 should be impossible on 32-bit KVM. */
	if (WARN_ON_ONCE(fault_address >> 32))
		return -EFAULT;
#endif

P
Paolo Bonzini 已提交
3803
	vcpu->arch.l1tf_flush_l1d = true;
3804
	if (!flags) {
3805 3806
		trace_kvm_page_fault(fault_address, error_code);

3807
		if (kvm_event_needs_reinjection(vcpu))
3808 3809 3810
			kvm_mmu_unprotect_page_virt(vcpu, fault_address);
		r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
				insn_len);
3811
	} else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
3812
		vcpu->arch.apf.host_apf_flags = 0;
3813
		local_irq_disable();
3814
		kvm_async_pf_task_wait_schedule(fault_address);
3815
		local_irq_enable();
3816 3817
	} else {
		WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags);
3818
	}
3819

3820 3821 3822 3823
	return r;
}
EXPORT_SYMBOL_GPL(kvm_handle_page_fault);

3824 3825
int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
		       bool prefault)
3826
{
3827
	int max_level;
3828

3829
	for (max_level = KVM_MAX_HUGEPAGE_LEVEL;
3830
	     max_level > PG_LEVEL_4K;
3831 3832
	     max_level--) {
		int page_num = KVM_PAGES_PER_HPAGE(max_level);
3833
		gfn_t base = (gpa >> PAGE_SHIFT) & ~(page_num - 1);
3834

3835 3836
		if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
			break;
3837
	}
3838

3839 3840
	return direct_page_fault(vcpu, gpa, error_code, prefault,
				 max_level, true);
3841 3842
}

3843 3844
static void nonpaging_init_context(struct kvm_vcpu *vcpu,
				   struct kvm_mmu *context)
A
Avi Kivity 已提交
3845 3846 3847
{
	context->page_fault = nonpaging_page_fault;
	context->gva_to_gpa = nonpaging_gva_to_gpa;
3848
	context->sync_page = nonpaging_sync_page;
3849
	context->invlpg = NULL;
3850
	context->root_level = 0;
A
Avi Kivity 已提交
3851
	context->shadow_root_level = PT32E_ROOT_LEVEL;
3852
	context->direct_map = true;
3853
	context->nx = false;
A
Avi Kivity 已提交
3854 3855
}

3856
static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd,
3857 3858
				  union kvm_mmu_page_role role)
{
3859
	return (role.direct || pgd == root->pgd) &&
3860 3861
	       VALID_PAGE(root->hpa) && to_shadow_page(root->hpa) &&
	       role.word == to_shadow_page(root->hpa)->role.word;
3862 3863
}

3864
/*
3865
 * Find out if a previously cached root matching the new pgd/role is available.
3866 3867 3868 3869 3870 3871
 * The current root is also inserted into the cache.
 * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
 * returned.
 * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
 * false is returned. This root should now be freed by the caller.
 */
3872
static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3873 3874 3875 3876
				  union kvm_mmu_page_role new_role)
{
	uint i;
	struct kvm_mmu_root_info root;
3877
	struct kvm_mmu *mmu = vcpu->arch.mmu;
3878

3879
	root.pgd = mmu->root_pgd;
3880 3881
	root.hpa = mmu->root_hpa;

3882
	if (is_root_usable(&root, new_pgd, new_role))
3883 3884
		return true;

3885 3886 3887
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
		swap(root, mmu->prev_roots[i]);

3888
		if (is_root_usable(&root, new_pgd, new_role))
3889 3890 3891 3892
			break;
	}

	mmu->root_hpa = root.hpa;
3893
	mmu->root_pgd = root.pgd;
3894 3895 3896 3897

	return i < KVM_MMU_NUM_PREV_ROOTS;
}

3898
static bool fast_pgd_switch(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3899
			    union kvm_mmu_page_role new_role)
A
Avi Kivity 已提交
3900
{
3901
	struct kvm_mmu *mmu = vcpu->arch.mmu;
3902 3903 3904 3905 3906 3907 3908

	/*
	 * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
	 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
	 * later if necessary.
	 */
	if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3909
	    mmu->root_level >= PT64_ROOT_4LEVEL)
3910
		return cached_root_available(vcpu, new_pgd, new_role);
3911 3912

	return false;
A
Avi Kivity 已提交
3913 3914
}

3915
static void __kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3916
			      union kvm_mmu_page_role new_role,
3917
			      bool skip_tlb_flush, bool skip_mmu_sync)
A
Avi Kivity 已提交
3918
{
3919
	if (!fast_pgd_switch(vcpu, new_pgd, new_role)) {
3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931
		kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, KVM_MMU_ROOT_CURRENT);
		return;
	}

	/*
	 * It's possible that the cached previous root page is obsolete because
	 * of a change in the MMU generation number. However, changing the
	 * generation number is accompanied by KVM_REQ_MMU_RELOAD, which will
	 * free the root set here and allocate a new one.
	 */
	kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);

3932
	if (!skip_mmu_sync || force_flush_and_sync_on_reuse)
3933
		kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
3934
	if (!skip_tlb_flush || force_flush_and_sync_on_reuse)
3935 3936 3937 3938 3939 3940 3941 3942 3943 3944
		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);

	/*
	 * The last MMIO access's GVA and GPA are cached in the VCPU. When
	 * switching to a new CR3, that GVA->GPA mapping may no longer be
	 * valid. So clear any cached MMIO info even when we don't need to sync
	 * the shadow page tables.
	 */
	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);

3945 3946 3947 3948 3949 3950 3951
	/*
	 * If this is a direct root page, it doesn't have a write flooding
	 * count. Otherwise, clear the write flooding count.
	 */
	if (!new_role.direct)
		__clear_sp_write_flooding_count(
				to_shadow_page(vcpu->arch.mmu->root_hpa));
A
Avi Kivity 已提交
3952 3953
}

3954
void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd, bool skip_tlb_flush,
3955
		     bool skip_mmu_sync)
3956
{
3957
	__kvm_mmu_new_pgd(vcpu, new_pgd, kvm_mmu_calc_root_page_role(vcpu),
3958
			  skip_tlb_flush, skip_mmu_sync);
3959
}
3960
EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd);
3961

3962 3963
static unsigned long get_cr3(struct kvm_vcpu *vcpu)
{
3964
	return kvm_read_cr3(vcpu);
3965 3966
}

3967
static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
3968
			   unsigned int access, int *nr_present)
3969 3970 3971 3972 3973 3974 3975 3976
{
	if (unlikely(is_mmio_spte(*sptep))) {
		if (gfn != get_mmio_spte_gfn(*sptep)) {
			mmu_spte_clear_no_track(sptep);
			return true;
		}

		(*nr_present)++;
3977
		mark_mmio_spte(vcpu, sptep, gfn, access);
3978 3979 3980 3981 3982 3983
		return true;
	}

	return false;
}

3984 3985
static inline bool is_last_gpte(struct kvm_mmu *mmu,
				unsigned level, unsigned gpte)
A
Avi Kivity 已提交
3986
{
3987 3988 3989 3990 3991 3992 3993
	/*
	 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
	 * If it is clear, there are no large pages at this level, so clear
	 * PT_PAGE_SIZE_MASK in gpte if that is the case.
	 */
	gpte &= level - mmu->last_nonleaf_level;

3994
	/*
3995 3996 3997
	 * PG_LEVEL_4K always terminates.  The RHS has bit 7 set
	 * iff level <= PG_LEVEL_4K, which for our purpose means
	 * level == PG_LEVEL_4K; set PT_PAGE_SIZE_MASK in gpte then.
3998
	 */
3999
	gpte |= level - PG_LEVEL_4K - 1;
4000

4001
	return gpte & PT_PAGE_SIZE_MASK;
A
Avi Kivity 已提交
4002 4003
}

4004 4005 4006 4007 4008
#define PTTYPE_EPT 18 /* arbitrary */
#define PTTYPE PTTYPE_EPT
#include "paging_tmpl.h"
#undef PTTYPE

A
Avi Kivity 已提交
4009 4010 4011 4012 4013 4014 4015 4016
#define PTTYPE 64
#include "paging_tmpl.h"
#undef PTTYPE

#define PTTYPE 32
#include "paging_tmpl.h"
#undef PTTYPE

4017 4018 4019
static void
__reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
			struct rsvd_bits_validate *rsvd_check,
4020
			u64 pa_bits_rsvd, int level, bool nx, bool gbpages,
4021
			bool pse, bool amd)
4022
{
4023
	u64 gbpages_bit_rsvd = 0;
4024
	u64 nonleaf_bit8_rsvd = 0;
4025
	u64 high_bits_rsvd;
4026

4027
	rsvd_check->bad_mt_xwr = 0;
4028

4029
	if (!gbpages)
4030
		gbpages_bit_rsvd = rsvd_bits(7, 7);
4031

4032 4033 4034 4035 4036 4037 4038 4039 4040
	if (level == PT32E_ROOT_LEVEL)
		high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 62);
	else
		high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);

	/* Note, NX doesn't exist in PDPTEs, this is handled below. */
	if (!nx)
		high_bits_rsvd |= rsvd_bits(63, 63);

4041 4042 4043 4044
	/*
	 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
	 * leaf entries) on AMD CPUs only.
	 */
4045
	if (amd)
4046 4047
		nonleaf_bit8_rsvd = rsvd_bits(8, 8);

4048
	switch (level) {
4049 4050
	case PT32_ROOT_LEVEL:
		/* no rsvd bits for 2 level 4K page table entries */
4051 4052 4053 4054
		rsvd_check->rsvd_bits_mask[0][1] = 0;
		rsvd_check->rsvd_bits_mask[0][0] = 0;
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
4055

4056
		if (!pse) {
4057
			rsvd_check->rsvd_bits_mask[1][1] = 0;
4058 4059 4060
			break;
		}

4061 4062
		if (is_cpuid_PSE36())
			/* 36bits PSE 4MB page */
4063
			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4064 4065
		else
			/* 32 bits PSE 4MB page */
4066
			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4067 4068
		break;
	case PT32E_ROOT_LEVEL:
4069 4070 4071 4072 4073 4074 4075 4076
		rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) |
						   high_bits_rsvd |
						   rsvd_bits(5, 8) |
						   rsvd_bits(1, 2);	/* PDPTE */
		rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;	/* PDE */
		rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;	/* PTE */
		rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
						   rsvd_bits(13, 20);	/* large page */
4077 4078
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
4079
		break;
4080
	case PT64_ROOT_5LEVEL:
4081 4082 4083
		rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd |
						   nonleaf_bit8_rsvd |
						   rsvd_bits(7, 7);
4084 4085
		rsvd_check->rsvd_bits_mask[1][4] =
			rsvd_check->rsvd_bits_mask[0][4];
4086
		fallthrough;
4087
	case PT64_ROOT_4LEVEL:
4088 4089 4090 4091 4092 4093 4094
		rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd |
						   nonleaf_bit8_rsvd |
						   rsvd_bits(7, 7);
		rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd |
						   gbpages_bit_rsvd;
		rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;
		rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4095 4096
		rsvd_check->rsvd_bits_mask[1][3] =
			rsvd_check->rsvd_bits_mask[0][3];
4097 4098 4099 4100 4101
		rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd |
						   gbpages_bit_rsvd |
						   rsvd_bits(13, 29);
		rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
						   rsvd_bits(13, 20); /* large page */
4102 4103
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
4104 4105 4106 4107
		break;
	}
}

4108 4109 4110 4111
static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
{
	__reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
4112 4113
				vcpu->arch.reserved_gpa_bits,
				context->root_level, context->nx,
4114
				guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4115 4116
				is_pse(vcpu),
				guest_cpuid_is_amd_or_hygon(vcpu));
4117 4118
}

4119 4120
static void
__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4121
			    u64 pa_bits_rsvd, bool execonly)
4122
{
4123
	u64 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
4124
	u64 bad_mt_xwr;
4125

4126 4127 4128 4129 4130
	rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7);
	rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7);
	rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6);
	rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6);
	rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4131 4132

	/* large page */
4133
	rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4134
	rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4135 4136
	rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29);
	rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20);
4137
	rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4138

4139 4140 4141 4142 4143 4144 4145 4146
	bad_mt_xwr = 0xFFull << (2 * 8);	/* bits 3..5 must not be 2 */
	bad_mt_xwr |= 0xFFull << (3 * 8);	/* bits 3..5 must not be 3 */
	bad_mt_xwr |= 0xFFull << (7 * 8);	/* bits 3..5 must not be 7 */
	bad_mt_xwr |= REPEAT_BYTE(1ull << 2);	/* bits 0..2 must not be 010 */
	bad_mt_xwr |= REPEAT_BYTE(1ull << 6);	/* bits 0..2 must not be 110 */
	if (!execonly) {
		/* bits 0..2 must not be 100 unless VMX capabilities allow it */
		bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4147
	}
4148
	rsvd_check->bad_mt_xwr = bad_mt_xwr;
4149 4150
}

4151 4152 4153 4154
static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
		struct kvm_mmu *context, bool execonly)
{
	__reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4155
				    vcpu->arch.reserved_gpa_bits, execonly);
4156 4157
}

4158 4159 4160 4161 4162
static inline u64 reserved_hpa_bits(void)
{
	return rsvd_bits(shadow_phys_bits, 63);
}

4163 4164 4165 4166 4167 4168 4169 4170
/*
 * the page table on host is the shadow page table for the page
 * table in guest or amd nested guest, its mmu features completely
 * follow the features in guest.
 */
void
reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
{
4171 4172
	bool uses_nx = context->nx ||
		context->mmu_role.base.smep_andnot_wp;
4173 4174
	struct rsvd_bits_validate *shadow_zero_check;
	int i;
4175

4176 4177 4178 4179
	/*
	 * Passing "true" to the last argument is okay; it adds a check
	 * on bit 8 of the SPTEs which KVM doesn't use anyway.
	 */
4180 4181
	shadow_zero_check = &context->shadow_zero_check;
	__reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4182
				reserved_hpa_bits(),
4183
				context->shadow_root_level, uses_nx,
4184 4185
				guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
				is_pse(vcpu), true);
4186 4187 4188 4189 4190 4191 4192 4193 4194

	if (!shadow_me_mask)
		return;

	for (i = context->shadow_root_level; --i >= 0;) {
		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
	}

4195 4196 4197
}
EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);

4198 4199 4200 4201 4202 4203
static inline bool boot_cpu_is_amd(void)
{
	WARN_ON_ONCE(!tdp_enabled);
	return shadow_x_mask == 0;
}

4204 4205 4206 4207 4208 4209 4210 4211
/*
 * the direct page table on host, use as much mmu features as
 * possible, however, kvm currently does not do execution-protection.
 */
static void
reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
				struct kvm_mmu *context)
{
4212 4213 4214 4215 4216
	struct rsvd_bits_validate *shadow_zero_check;
	int i;

	shadow_zero_check = &context->shadow_zero_check;

4217
	if (boot_cpu_is_amd())
4218
		__reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4219
					reserved_hpa_bits(),
4220
					context->shadow_root_level, false,
4221 4222
					boot_cpu_has(X86_FEATURE_GBPAGES),
					true, true);
4223
	else
4224
		__reset_rsvds_bits_mask_ept(shadow_zero_check,
4225
					    reserved_hpa_bits(), false);
4226

4227 4228 4229 4230 4231 4232 4233
	if (!shadow_me_mask)
		return;

	for (i = context->shadow_root_level; --i >= 0;) {
		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
	}
4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244
}

/*
 * as the comments in reset_shadow_zero_bits_mask() except it
 * is the shadow page table for intel nested guest.
 */
static void
reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
				struct kvm_mmu *context, bool execonly)
{
	__reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4245
				    reserved_hpa_bits(), execonly);
4246 4247
}

4248 4249 4250 4251 4252 4253 4254 4255 4256 4257
#define BYTE_MASK(access) \
	((1 & (access) ? 2 : 0) | \
	 (2 & (access) ? 4 : 0) | \
	 (3 & (access) ? 8 : 0) | \
	 (4 & (access) ? 16 : 0) | \
	 (5 & (access) ? 32 : 0) | \
	 (6 & (access) ? 64 : 0) | \
	 (7 & (access) ? 128 : 0))


4258 4259
static void update_permission_bitmask(struct kvm_vcpu *vcpu,
				      struct kvm_mmu *mmu, bool ept)
4260
{
4261 4262 4263 4264 4265 4266 4267 4268 4269
	unsigned byte;

	const u8 x = BYTE_MASK(ACC_EXEC_MASK);
	const u8 w = BYTE_MASK(ACC_WRITE_MASK);
	const u8 u = BYTE_MASK(ACC_USER_MASK);

	bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
	bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
	bool cr0_wp = is_write_protection(vcpu);
4270 4271

	for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4272 4273
		unsigned pfec = byte << 1;

F
Feng Wu 已提交
4274
		/*
4275 4276
		 * Each "*f" variable has a 1 bit for each UWX value
		 * that causes a fault with the given PFEC.
F
Feng Wu 已提交
4277
		 */
4278

4279
		/* Faults from writes to non-writable pages */
4280
		u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
4281
		/* Faults from user mode accesses to supervisor pages */
4282
		u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
4283
		/* Faults from fetches of non-executable pages*/
4284
		u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309
		/* Faults from kernel mode fetches of user pages */
		u8 smepf = 0;
		/* Faults from kernel mode accesses of user pages */
		u8 smapf = 0;

		if (!ept) {
			/* Faults from kernel mode accesses to user pages */
			u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;

			/* Not really needed: !nx will cause pte.nx to fault */
			if (!mmu->nx)
				ff = 0;

			/* Allow supervisor writes if !cr0.wp */
			if (!cr0_wp)
				wf = (pfec & PFERR_USER_MASK) ? wf : 0;

			/* Disallow supervisor fetches of user code if cr4.smep */
			if (cr4_smep)
				smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;

			/*
			 * SMAP:kernel-mode data accesses from user-mode
			 * mappings should fault. A fault is considered
			 * as a SMAP violation if all of the following
P
Peng Hao 已提交
4310
			 * conditions are true:
4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323
			 *   - X86_CR4_SMAP is set in CR4
			 *   - A user page is accessed
			 *   - The access is not a fetch
			 *   - Page fault in kernel mode
			 *   - if CPL = 3 or X86_EFLAGS_AC is clear
			 *
			 * Here, we cover the first three conditions.
			 * The fourth is computed dynamically in permission_fault();
			 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
			 * *not* subject to SMAP restrictions.
			 */
			if (cr4_smap)
				smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4324
		}
4325 4326

		mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4327 4328 4329
	}
}

4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404
/*
* PKU is an additional mechanism by which the paging controls access to
* user-mode addresses based on the value in the PKRU register.  Protection
* key violations are reported through a bit in the page fault error code.
* Unlike other bits of the error code, the PK bit is not known at the
* call site of e.g. gva_to_gpa; it must be computed directly in
* permission_fault based on two bits of PKRU, on some machine state (CR4,
* CR0, EFER, CPL), and on other bits of the error code and the page tables.
*
* In particular the following conditions come from the error code, the
* page tables and the machine state:
* - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
* - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
* - PK is always zero if U=0 in the page tables
* - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
*
* The PKRU bitmask caches the result of these four conditions.  The error
* code (minus the P bit) and the page table's U bit form an index into the
* PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
* with the two bits of the PKRU register corresponding to the protection key.
* For the first three conditions above the bits will be 00, thus masking
* away both AD and WD.  For all reads or if the last condition holds, WD
* only will be masked away.
*/
static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
				bool ept)
{
	unsigned bit;
	bool wp;

	if (ept) {
		mmu->pkru_mask = 0;
		return;
	}

	/* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
	if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
		mmu->pkru_mask = 0;
		return;
	}

	wp = is_write_protection(vcpu);

	for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
		unsigned pfec, pkey_bits;
		bool check_pkey, check_write, ff, uf, wf, pte_user;

		pfec = bit << 1;
		ff = pfec & PFERR_FETCH_MASK;
		uf = pfec & PFERR_USER_MASK;
		wf = pfec & PFERR_WRITE_MASK;

		/* PFEC.RSVD is replaced by ACC_USER_MASK. */
		pte_user = pfec & PFERR_RSVD_MASK;

		/*
		 * Only need to check the access which is not an
		 * instruction fetch and is to a user page.
		 */
		check_pkey = (!ff && pte_user);
		/*
		 * write access is controlled by PKRU if it is a
		 * user access or CR0.WP = 1.
		 */
		check_write = check_pkey && wf && (uf || wp);

		/* PKRU.AD stops both read and write access. */
		pkey_bits = !!check_pkey;
		/* PKRU.WD stops write access. */
		pkey_bits |= (!!check_write) << 1;

		mmu->pkru_mask |= (pkey_bits & 3) << pfec;
	}
}

4405
static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
A
Avi Kivity 已提交
4406
{
4407 4408 4409 4410 4411
	unsigned root_level = mmu->root_level;

	mmu->last_nonleaf_level = root_level;
	if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
		mmu->last_nonleaf_level++;
A
Avi Kivity 已提交
4412 4413
}

4414 4415 4416
static void paging64_init_context_common(struct kvm_vcpu *vcpu,
					 struct kvm_mmu *context,
					 int level)
A
Avi Kivity 已提交
4417
{
4418
	context->nx = is_nx(vcpu);
4419
	context->root_level = level;
4420

4421
	reset_rsvds_bits_mask(vcpu, context);
4422
	update_permission_bitmask(vcpu, context, false);
4423
	update_pkru_bitmask(vcpu, context, false);
4424
	update_last_nonleaf_level(vcpu, context);
A
Avi Kivity 已提交
4425

4426
	MMU_WARN_ON(!is_pae(vcpu));
A
Avi Kivity 已提交
4427 4428
	context->page_fault = paging64_page_fault;
	context->gva_to_gpa = paging64_gva_to_gpa;
4429
	context->sync_page = paging64_sync_page;
M
Marcelo Tosatti 已提交
4430
	context->invlpg = paging64_invlpg;
4431
	context->shadow_root_level = level;
4432
	context->direct_map = false;
A
Avi Kivity 已提交
4433 4434
}

4435 4436
static void paging64_init_context(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
4437
{
4438 4439 4440 4441
	int root_level = is_la57_mode(vcpu) ?
			 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;

	paging64_init_context_common(vcpu, context, root_level);
4442 4443
}

4444 4445
static void paging32_init_context(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
A
Avi Kivity 已提交
4446
{
4447
	context->nx = false;
4448
	context->root_level = PT32_ROOT_LEVEL;
4449

4450
	reset_rsvds_bits_mask(vcpu, context);
4451
	update_permission_bitmask(vcpu, context, false);
4452
	update_pkru_bitmask(vcpu, context, false);
4453
	update_last_nonleaf_level(vcpu, context);
A
Avi Kivity 已提交
4454 4455 4456

	context->page_fault = paging32_page_fault;
	context->gva_to_gpa = paging32_gva_to_gpa;
4457
	context->sync_page = paging32_sync_page;
M
Marcelo Tosatti 已提交
4458
	context->invlpg = paging32_invlpg;
A
Avi Kivity 已提交
4459
	context->shadow_root_level = PT32E_ROOT_LEVEL;
4460
	context->direct_map = false;
A
Avi Kivity 已提交
4461 4462
}

4463 4464
static void paging32E_init_context(struct kvm_vcpu *vcpu,
				   struct kvm_mmu *context)
A
Avi Kivity 已提交
4465
{
4466
	paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
A
Avi Kivity 已提交
4467 4468
}

4469 4470 4471 4472
static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu)
{
	union kvm_mmu_extended_role ext = {0};

4473
	ext.cr0_pg = !!is_paging(vcpu);
4474
	ext.cr4_pae = !!is_pae(vcpu);
4475 4476 4477 4478
	ext.cr4_smep = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
	ext.cr4_smap = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
	ext.cr4_pse = !!is_pse(vcpu);
	ext.cr4_pke = !!kvm_read_cr4_bits(vcpu, X86_CR4_PKE);
4479
	ext.maxphyaddr = cpuid_maxphyaddr(vcpu);
4480 4481 4482 4483 4484 4485

	ext.valid = 1;

	return ext;
}

4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504
static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
						   bool base_only)
{
	union kvm_mmu_role role = {0};

	role.base.access = ACC_ALL;
	role.base.nxe = !!is_nx(vcpu);
	role.base.cr0_wp = is_write_protection(vcpu);
	role.base.smm = is_smm(vcpu);
	role.base.guest_mode = is_guest_mode(vcpu);

	if (base_only)
		return role;

	role.ext = kvm_calc_mmu_role_ext(vcpu);

	return role;
}

4505 4506 4507
static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu)
{
	/* Use 5-level TDP if and only if it's useful/necessary. */
4508
	if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48)
4509 4510
		return 4;

4511
	return max_tdp_level;
4512 4513
}

4514 4515
static union kvm_mmu_role
kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4516
{
4517
	union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4518

4519
	role.base.ad_disabled = (shadow_accessed_mask == 0);
4520
	role.base.level = kvm_mmu_get_tdp_level(vcpu);
4521
	role.base.direct = true;
4522
	role.base.gpte_is_8_bytes = true;
4523 4524 4525 4526

	return role;
}

4527
static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4528
{
4529
	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4530 4531
	union kvm_mmu_role new_role =
		kvm_calc_tdp_mmu_root_page_role(vcpu, false);
4532

4533 4534 4535 4536
	if (new_role.as_u64 == context->mmu_role.as_u64)
		return;

	context->mmu_role.as_u64 = new_role.as_u64;
4537
	context->page_fault = kvm_tdp_page_fault;
4538
	context->sync_page = nonpaging_sync_page;
4539
	context->invlpg = NULL;
4540
	context->shadow_root_level = kvm_mmu_get_tdp_level(vcpu);
4541
	context->direct_map = true;
4542
	context->get_guest_pgd = get_cr3;
4543
	context->get_pdptr = kvm_pdptr_read;
4544
	context->inject_page_fault = kvm_inject_page_fault;
4545 4546

	if (!is_paging(vcpu)) {
4547
		context->nx = false;
4548 4549 4550
		context->gva_to_gpa = nonpaging_gva_to_gpa;
		context->root_level = 0;
	} else if (is_long_mode(vcpu)) {
4551
		context->nx = is_nx(vcpu);
4552 4553
		context->root_level = is_la57_mode(vcpu) ?
				PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4554 4555
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging64_gva_to_gpa;
4556
	} else if (is_pae(vcpu)) {
4557
		context->nx = is_nx(vcpu);
4558
		context->root_level = PT32E_ROOT_LEVEL;
4559 4560
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging64_gva_to_gpa;
4561
	} else {
4562
		context->nx = false;
4563
		context->root_level = PT32_ROOT_LEVEL;
4564 4565
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging32_gva_to_gpa;
4566 4567
	}

4568
	update_permission_bitmask(vcpu, context, false);
4569
	update_pkru_bitmask(vcpu, context, false);
4570
	update_last_nonleaf_level(vcpu, context);
4571
	reset_tdp_shadow_zero_bits_mask(vcpu, context);
4572 4573
}

4574
static union kvm_mmu_role
4575
kvm_calc_shadow_root_page_role_common(struct kvm_vcpu *vcpu, bool base_only)
4576 4577 4578 4579 4580 4581 4582
{
	union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);

	role.base.smep_andnot_wp = role.ext.cr4_smep &&
		!is_write_protection(vcpu);
	role.base.smap_andnot_wp = role.ext.cr4_smap &&
		!is_write_protection(vcpu);
4583
	role.base.gpte_is_8_bytes = !!is_pae(vcpu);
4584

4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595
	return role;
}

static union kvm_mmu_role
kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
{
	union kvm_mmu_role role =
		kvm_calc_shadow_root_page_role_common(vcpu, base_only);

	role.base.direct = !is_paging(vcpu);

4596
	if (!is_long_mode(vcpu))
4597
		role.base.level = PT32E_ROOT_LEVEL;
4598
	else if (is_la57_mode(vcpu))
4599
		role.base.level = PT64_ROOT_5LEVEL;
4600
	else
4601
		role.base.level = PT64_ROOT_4LEVEL;
4602 4603 4604 4605

	return role;
}

4606 4607 4608
static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
				    u32 cr0, u32 cr4, u32 efer,
				    union kvm_mmu_role new_role)
4609
{
4610
	if (!(cr0 & X86_CR0_PG))
4611
		nonpaging_init_context(vcpu, context);
4612
	else if (efer & EFER_LMA)
4613
		paging64_init_context(vcpu, context);
4614
	else if (cr4 & X86_CR4_PAE)
4615
		paging32E_init_context(vcpu, context);
A
Avi Kivity 已提交
4616
	else
4617
		paging32_init_context(vcpu, context);
4618

4619
	context->mmu_role.as_u64 = new_role.as_u64;
4620
	reset_shadow_zero_bits_mask(vcpu, context);
4621
}
4622 4623 4624

static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer)
{
4625
	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4626 4627 4628 4629
	union kvm_mmu_role new_role =
		kvm_calc_shadow_mmu_root_page_role(vcpu, false);

	if (new_role.as_u64 != context->mmu_role.as_u64)
4630
		shadow_mmu_init_context(vcpu, context, cr0, cr4, efer, new_role);
4631 4632
}

4633 4634 4635 4636 4637 4638 4639
static union kvm_mmu_role
kvm_calc_shadow_npt_root_page_role(struct kvm_vcpu *vcpu)
{
	union kvm_mmu_role role =
		kvm_calc_shadow_root_page_role_common(vcpu, false);

	role.base.direct = false;
4640
	role.base.level = kvm_mmu_get_tdp_level(vcpu);
4641 4642 4643 4644

	return role;
}

4645 4646 4647
void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer,
			     gpa_t nested_cr3)
{
4648
	struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4649
	union kvm_mmu_role new_role = kvm_calc_shadow_npt_root_page_role(vcpu);
4650

4651 4652
	context->shadow_root_level = new_role.base.level;

4653 4654
	__kvm_mmu_new_pgd(vcpu, nested_cr3, new_role.base, false, false);

4655
	if (new_role.as_u64 != context->mmu_role.as_u64)
4656
		shadow_mmu_init_context(vcpu, context, cr0, cr4, efer, new_role);
4657 4658
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu);
4659

4660 4661
static union kvm_mmu_role
kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
4662
				   bool execonly, u8 level)
4663
{
4664
	union kvm_mmu_role role = {0};
4665

4666 4667
	/* SMM flag is inherited from root_mmu */
	role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
4668

4669
	role.base.level = level;
4670
	role.base.gpte_is_8_bytes = true;
4671 4672 4673 4674
	role.base.direct = false;
	role.base.ad_disabled = !accessed_dirty;
	role.base.guest_mode = true;
	role.base.access = ACC_ALL;
4675

4676 4677 4678 4679 4680 4681 4682
	/*
	 * WP=1 and NOT_WP=1 is an impossible combination, use WP and the
	 * SMAP variation to denote shadow EPT entries.
	 */
	role.base.cr0_wp = true;
	role.base.smap_andnot_wp = true;

4683
	role.ext = kvm_calc_mmu_role_ext(vcpu);
4684
	role.ext.execonly = execonly;
4685 4686 4687 4688

	return role;
}

4689
void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
4690
			     bool accessed_dirty, gpa_t new_eptp)
N
Nadav Har'El 已提交
4691
{
4692
	struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4693
	u8 level = vmx_eptp_page_walk_level(new_eptp);
4694 4695
	union kvm_mmu_role new_role =
		kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
4696
						   execonly, level);
4697

4698
	__kvm_mmu_new_pgd(vcpu, new_eptp, new_role.base, true, true);
4699 4700 4701

	if (new_role.as_u64 == context->mmu_role.as_u64)
		return;
4702

4703
	context->shadow_root_level = level;
N
Nadav Har'El 已提交
4704 4705

	context->nx = true;
4706
	context->ept_ad = accessed_dirty;
N
Nadav Har'El 已提交
4707 4708 4709 4710
	context->page_fault = ept_page_fault;
	context->gva_to_gpa = ept_gva_to_gpa;
	context->sync_page = ept_sync_page;
	context->invlpg = ept_invlpg;
4711
	context->root_level = level;
N
Nadav Har'El 已提交
4712
	context->direct_map = false;
4713
	context->mmu_role.as_u64 = new_role.as_u64;
4714

N
Nadav Har'El 已提交
4715
	update_permission_bitmask(vcpu, context, true);
4716
	update_pkru_bitmask(vcpu, context, true);
4717
	update_last_nonleaf_level(vcpu, context);
N
Nadav Har'El 已提交
4718
	reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4719
	reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
N
Nadav Har'El 已提交
4720 4721 4722
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);

4723
static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4724
{
4725
	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4726

4727 4728 4729 4730 4731
	kvm_init_shadow_mmu(vcpu,
			    kvm_read_cr0_bits(vcpu, X86_CR0_PG),
			    kvm_read_cr4_bits(vcpu, X86_CR4_PAE),
			    vcpu->arch.efer);

4732
	context->get_guest_pgd     = get_cr3;
4733 4734
	context->get_pdptr         = kvm_pdptr_read;
	context->inject_page_fault = kvm_inject_page_fault;
A
Avi Kivity 已提交
4735 4736
}

4737
static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4738
{
4739
	union kvm_mmu_role new_role = kvm_calc_mmu_role_common(vcpu, false);
4740 4741
	struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;

4742 4743 4744 4745
	if (new_role.as_u64 == g_context->mmu_role.as_u64)
		return;

	g_context->mmu_role.as_u64 = new_role.as_u64;
4746
	g_context->get_guest_pgd     = get_cr3;
4747
	g_context->get_pdptr         = kvm_pdptr_read;
4748 4749
	g_context->inject_page_fault = kvm_inject_page_fault;

4750 4751 4752 4753 4754 4755
	/*
	 * L2 page tables are never shadowed, so there is no need to sync
	 * SPTEs.
	 */
	g_context->invlpg            = NULL;

4756
	/*
4757
	 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
4758 4759 4760 4761 4762
	 * L1's nested page tables (e.g. EPT12). The nested translation
	 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
	 * L2's page tables as the first level of translation and L1's
	 * nested page tables as the second level of translation. Basically
	 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
4763 4764
	 */
	if (!is_paging(vcpu)) {
4765
		g_context->nx = false;
4766 4767 4768
		g_context->root_level = 0;
		g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
	} else if (is_long_mode(vcpu)) {
4769
		g_context->nx = is_nx(vcpu);
4770 4771
		g_context->root_level = is_la57_mode(vcpu) ?
					PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4772
		reset_rsvds_bits_mask(vcpu, g_context);
4773 4774
		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
	} else if (is_pae(vcpu)) {
4775
		g_context->nx = is_nx(vcpu);
4776
		g_context->root_level = PT32E_ROOT_LEVEL;
4777
		reset_rsvds_bits_mask(vcpu, g_context);
4778 4779
		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
	} else {
4780
		g_context->nx = false;
4781
		g_context->root_level = PT32_ROOT_LEVEL;
4782
		reset_rsvds_bits_mask(vcpu, g_context);
4783 4784 4785
		g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
	}

4786
	update_permission_bitmask(vcpu, g_context, false);
4787
	update_pkru_bitmask(vcpu, g_context, false);
4788
	update_last_nonleaf_level(vcpu, g_context);
4789 4790
}

4791
void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots)
4792
{
4793
	if (reset_roots) {
4794 4795
		uint i;

4796
		vcpu->arch.mmu->root_hpa = INVALID_PAGE;
4797 4798

		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
4799
			vcpu->arch.mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
4800 4801
	}

4802
	if (mmu_is_nested(vcpu))
4803
		init_kvm_nested_mmu(vcpu);
4804
	else if (tdp_enabled)
4805
		init_kvm_tdp_mmu(vcpu);
4806
	else
4807
		init_kvm_softmmu(vcpu);
4808
}
4809
EXPORT_SYMBOL_GPL(kvm_init_mmu);
4810

4811 4812 4813
static union kvm_mmu_page_role
kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
{
4814 4815
	union kvm_mmu_role role;

4816
	if (tdp_enabled)
4817
		role = kvm_calc_tdp_mmu_root_page_role(vcpu, true);
4818
	else
4819 4820 4821
		role = kvm_calc_shadow_mmu_root_page_role(vcpu, true);

	return role.base;
4822
}
4823

4824
void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4825
{
4826
	kvm_mmu_unload(vcpu);
4827
	kvm_init_mmu(vcpu, true);
A
Avi Kivity 已提交
4828
}
4829
EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
A
Avi Kivity 已提交
4830 4831

int kvm_mmu_load(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4832
{
4833 4834
	int r;

4835
	r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->direct_map);
4836 4837 4838
	if (r)
		goto out;
	r = mmu_alloc_special_roots(vcpu);
A
Avi Kivity 已提交
4839 4840
	if (r)
		goto out;
4841
	r = mmu_alloc_roots(vcpu);
4842
	kvm_mmu_sync_roots(vcpu);
4843 4844
	if (r)
		goto out;
4845
	kvm_mmu_load_pgd(vcpu);
4846
	static_call(kvm_x86_tlb_flush_current)(vcpu);
4847 4848
out:
	return r;
A
Avi Kivity 已提交
4849
}
A
Avi Kivity 已提交
4850 4851 4852 4853
EXPORT_SYMBOL_GPL(kvm_mmu_load);

void kvm_mmu_unload(struct kvm_vcpu *vcpu)
{
4854 4855 4856 4857
	kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
	WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
	kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
	WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
A
Avi Kivity 已提交
4858
}
4859
EXPORT_SYMBOL_GPL(kvm_mmu_unload);
A
Avi Kivity 已提交
4860

4861 4862 4863 4864 4865 4866 4867 4868
static bool need_remote_flush(u64 old, u64 new)
{
	if (!is_shadow_present_pte(old))
		return false;
	if (!is_shadow_present_pte(new))
		return true;
	if ((old ^ new) & PT64_BASE_ADDR_MASK)
		return true;
4869 4870
	old ^= shadow_nx_mask;
	new ^= shadow_nx_mask;
4871 4872 4873
	return (old & ~new & PT64_PERM_MASK) != 0;
}

4874
static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4875
				    int *bytes)
4876
{
4877
	u64 gentry = 0;
4878
	int r;
4879 4880 4881

	/*
	 * Assume that the pte write on a page table of the same type
4882 4883
	 * as the current vcpu paging mode since we update the sptes only
	 * when they have the same mode.
4884
	 */
4885
	if (is_pae(vcpu) && *bytes == 4) {
4886
		/* Handle a 32-bit guest writing two halves of a 64-bit gpte */
4887 4888
		*gpa &= ~(gpa_t)7;
		*bytes = 8;
4889 4890
	}

4891 4892 4893 4894
	if (*bytes == 4 || *bytes == 8) {
		r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
		if (r)
			gentry = 0;
4895 4896
	}

4897 4898 4899 4900 4901 4902 4903
	return gentry;
}

/*
 * If we're seeing too many writes to a page, it may no longer be a page table,
 * or we may be forking, in which case it is better to unmap the page.
 */
4904
static bool detect_write_flooding(struct kvm_mmu_page *sp)
4905
{
4906 4907 4908 4909
	/*
	 * Skip write-flooding detected for the sp whose level is 1, because
	 * it can become unsync, then the guest page is not write-protected.
	 */
4910
	if (sp->role.level == PG_LEVEL_4K)
4911
		return false;
4912

4913 4914
	atomic_inc(&sp->write_flooding_count);
	return atomic_read(&sp->write_flooding_count) >= 3;
4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929
}

/*
 * Misaligned accesses are too much trouble to fix up; also, they usually
 * indicate a page is not used as a page table.
 */
static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
				    int bytes)
{
	unsigned offset, pte_size, misaligned;

	pgprintk("misaligned: gpa %llx bytes %d role %x\n",
		 gpa, bytes, sp->role.word);

	offset = offset_in_page(gpa);
4930
	pte_size = sp->role.gpte_is_8_bytes ? 8 : 4;
4931 4932 4933 4934 4935 4936 4937 4938

	/*
	 * Sometimes, the OS only writes the last one bytes to update status
	 * bits, for example, in linux, andb instruction is used in clear_bit().
	 */
	if (!(offset & (pte_size - 1)) && bytes == 1)
		return false;

4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953
	misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
	misaligned |= bytes < 4;

	return misaligned;
}

static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
{
	unsigned page_offset, quadrant;
	u64 *spte;
	int level;

	page_offset = offset_in_page(gpa);
	level = sp->role.level;
	*nspte = 1;
4954
	if (!sp->role.gpte_is_8_bytes) {
4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975
		page_offset <<= 1;	/* 32->64 */
		/*
		 * A 32-bit pde maps 4MB while the shadow pdes map
		 * only 2MB.  So we need to double the offset again
		 * and zap two pdes instead of one.
		 */
		if (level == PT32_ROOT_LEVEL) {
			page_offset &= ~7; /* kill rounding error */
			page_offset <<= 1;
			*nspte = 2;
		}
		quadrant = page_offset >> PAGE_SHIFT;
		page_offset &= ~PAGE_MASK;
		if (quadrant != sp->role.quadrant)
			return NULL;
	}

	spte = &sp->spt[page_offset / sizeof(*spte)];
	return spte;
}

4976
static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4977 4978
			      const u8 *new, int bytes,
			      struct kvm_page_track_notifier_node *node)
4979 4980 4981 4982 4983 4984
{
	gfn_t gfn = gpa >> PAGE_SHIFT;
	struct kvm_mmu_page *sp;
	LIST_HEAD(invalid_list);
	u64 entry, gentry, *spte;
	int npte;
4985
	bool remote_flush, local_flush;
4986 4987 4988 4989 4990

	/*
	 * If we don't have indirect shadow pages, it means no page is
	 * write-protected, so we can exit simply.
	 */
4991
	if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4992 4993
		return;

4994
	remote_flush = local_flush = false;
4995 4996 4997 4998 4999 5000 5001 5002

	pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);

	/*
	 * No need to care whether allocation memory is successful
	 * or not since pte prefetch is skiped if it does not have
	 * enough objects in the cache.
	 */
5003
	mmu_topup_memory_caches(vcpu, true);
5004

5005
	write_lock(&vcpu->kvm->mmu_lock);
5006 5007 5008

	gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);

5009
	++vcpu->kvm->stat.mmu_pte_write;
5010
	kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
5011

5012
	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
5013
		if (detect_write_misaligned(sp, gpa, bytes) ||
5014
		      detect_write_flooding(sp)) {
5015
			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
A
Avi Kivity 已提交
5016
			++vcpu->kvm->stat.mmu_flooded;
5017 5018
			continue;
		}
5019 5020 5021 5022 5023

		spte = get_written_sptes(sp, gpa, &npte);
		if (!spte)
			continue;

5024
		local_flush = true;
5025
		while (npte--) {
5026
			entry = *spte;
5027
			mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL);
5028 5029
			if (gentry && sp->role.level != PG_LEVEL_4K)
				++vcpu->kvm->stat.mmu_pde_zapped;
G
Gleb Natapov 已提交
5030
			if (need_remote_flush(entry, *spte))
5031
				remote_flush = true;
5032
			++spte;
5033 5034
		}
	}
5035
	kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
5036
	kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
5037
	write_unlock(&vcpu->kvm->mmu_lock);
5038 5039
}

5040
int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
5041
		       void *insn, int insn_len)
5042
{
5043
	int r, emulation_type = EMULTYPE_PF;
5044
	bool direct = vcpu->arch.mmu->direct_map;
5045

5046
	if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
5047 5048
		return RET_PF_RETRY;

5049
	r = RET_PF_INVALID;
5050
	if (unlikely(error_code & PFERR_RSVD_MASK)) {
5051
		r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
5052
		if (r == RET_PF_EMULATE)
5053 5054
			goto emulate;
	}
5055

5056
	if (r == RET_PF_INVALID) {
5057 5058
		r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
					  lower_32_bits(error_code), false);
5059 5060
		if (WARN_ON_ONCE(r == RET_PF_INVALID))
			return -EIO;
5061 5062
	}

5063
	if (r < 0)
5064
		return r;
5065 5066
	if (r != RET_PF_EMULATE)
		return 1;
5067

5068 5069 5070 5071 5072 5073 5074
	/*
	 * Before emulating the instruction, check if the error code
	 * was due to a RO violation while translating the guest page.
	 * This can occur when using nested virtualization with nested
	 * paging in both guests. If true, we simply unprotect the page
	 * and resume the guest.
	 */
5075
	if (vcpu->arch.mmu->direct_map &&
5076
	    (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5077
		kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
5078 5079 5080
		return 1;
	}

5081 5082 5083 5084 5085 5086
	/*
	 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
	 * optimistically try to just unprotect the page and let the processor
	 * re-execute the instruction that caused the page fault.  Do not allow
	 * retrying MMIO emulation, as it's not only pointless but could also
	 * cause us to enter an infinite loop because the processor will keep
5087 5088 5089 5090
	 * faulting on the non-existent MMIO address.  Retrying an instruction
	 * from a nested guest is also pointless and dangerous as we are only
	 * explicitly shadowing L1's page tables, i.e. unprotecting something
	 * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5091
	 */
5092
	if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
5093
		emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
5094
emulate:
5095
	return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
5096
				       insn_len);
5097 5098 5099
}
EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);

5100 5101
void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
			    gva_t gva, hpa_t root_hpa)
M
Marcelo Tosatti 已提交
5102
{
5103
	int i;
5104

5105 5106 5107 5108 5109 5110
	/* It's actually a GPA for vcpu->arch.guest_mmu.  */
	if (mmu != &vcpu->arch.guest_mmu) {
		/* INVLPG on a non-canonical address is a NOP according to the SDM.  */
		if (is_noncanonical_address(gva, vcpu))
			return;

5111
		static_call(kvm_x86_tlb_flush_gva)(vcpu, gva);
5112 5113 5114
	}

	if (!mmu->invlpg)
5115 5116
		return;

5117 5118
	if (root_hpa == INVALID_PAGE) {
		mmu->invlpg(vcpu, gva, mmu->root_hpa);
5119

5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137
		/*
		 * INVLPG is required to invalidate any global mappings for the VA,
		 * irrespective of PCID. Since it would take us roughly similar amount
		 * of work to determine whether any of the prev_root mappings of the VA
		 * is marked global, or to just sync it blindly, so we might as well
		 * just always sync it.
		 *
		 * Mappings not reachable via the current cr3 or the prev_roots will be
		 * synced when switching to that cr3, so nothing needs to be done here
		 * for them.
		 */
		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
			if (VALID_PAGE(mmu->prev_roots[i].hpa))
				mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
	} else {
		mmu->invlpg(vcpu, gva, root_hpa);
	}
}
5138

5139 5140 5141
void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
{
	kvm_mmu_invalidate_gva(vcpu, vcpu->arch.mmu, gva, INVALID_PAGE);
M
Marcelo Tosatti 已提交
5142 5143 5144 5145
	++vcpu->stat.invlpg;
}
EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);

5146

5147 5148
void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
{
5149
	struct kvm_mmu *mmu = vcpu->arch.mmu;
5150
	bool tlb_flush = false;
5151
	uint i;
5152 5153

	if (pcid == kvm_get_active_pcid(vcpu)) {
5154
		mmu->invlpg(vcpu, gva, mmu->root_hpa);
5155
		tlb_flush = true;
5156 5157
	}

5158 5159
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
		if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5160
		    pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) {
5161 5162 5163
			mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
			tlb_flush = true;
		}
5164
	}
5165

5166
	if (tlb_flush)
5167
		static_call(kvm_x86_tlb_flush_gva)(vcpu, gva);
5168

5169 5170 5171
	++vcpu->stat.invlpg;

	/*
5172 5173 5174
	 * Mappings not reachable via the current cr3 or the prev_roots will be
	 * synced when switching to that cr3, so nothing needs to be done here
	 * for them.
5175 5176 5177
	 */
}

5178 5179
void kvm_configure_mmu(bool enable_tdp, int tdp_max_root_level,
		       int tdp_huge_page_level)
5180
{
5181
	tdp_enabled = enable_tdp;
5182
	max_tdp_level = tdp_max_root_level;
5183 5184

	/*
5185
	 * max_huge_page_level reflects KVM's MMU capabilities irrespective
5186 5187 5188 5189 5190 5191
	 * of kernel support, e.g. KVM may be capable of using 1GB pages when
	 * the kernel is not.  But, KVM never creates a page size greater than
	 * what is used by the kernel for any given HVA, i.e. the kernel's
	 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
	 */
	if (tdp_enabled)
5192
		max_huge_page_level = tdp_huge_page_level;
5193
	else if (boot_cpu_has(X86_FEATURE_GBPAGES))
5194
		max_huge_page_level = PG_LEVEL_1G;
5195
	else
5196
		max_huge_page_level = PG_LEVEL_2M;
5197
}
5198
EXPORT_SYMBOL_GPL(kvm_configure_mmu);
5199 5200

/* The return value indicates if tlb flush on all vcpus is needed. */
5201 5202
typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head,
				    struct kvm_memory_slot *slot);
5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215

/* The caller should hold mmu-lock before calling this function. */
static __always_inline bool
slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
			slot_level_handler fn, int start_level, int end_level,
			gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
{
	struct slot_rmap_walk_iterator iterator;
	bool flush = false;

	for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
			end_gfn, &iterator) {
		if (iterator.rmap)
5216
			flush |= fn(kvm, iterator.rmap, memslot);
5217

5218
		if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
5219
			if (flush && lock_flush_tlb) {
5220 5221 5222
				kvm_flush_remote_tlbs_with_address(kvm,
						start_gfn,
						iterator.gfn - start_gfn + 1);
5223 5224
				flush = false;
			}
5225
			cond_resched_rwlock_write(&kvm->mmu_lock);
5226 5227 5228 5229
		}
	}

	if (flush && lock_flush_tlb) {
5230 5231
		kvm_flush_remote_tlbs_with_address(kvm, start_gfn,
						   end_gfn - start_gfn + 1);
5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252
		flush = false;
	}

	return flush;
}

static __always_inline bool
slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
		  slot_level_handler fn, int start_level, int end_level,
		  bool lock_flush_tlb)
{
	return slot_handle_level_range(kvm, memslot, fn, start_level,
			end_level, memslot->base_gfn,
			memslot->base_gfn + memslot->npages - 1,
			lock_flush_tlb);
}

static __always_inline bool
slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
		 slot_level_handler fn, bool lock_flush_tlb)
{
5253 5254
	return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
				 PG_LEVEL_4K, lock_flush_tlb);
5255 5256
}

5257
static void free_mmu_pages(struct kvm_mmu *mmu)
A
Avi Kivity 已提交
5258
{
5259 5260
	free_page((unsigned long)mmu->pae_root);
	free_page((unsigned long)mmu->lm_root);
A
Avi Kivity 已提交
5261 5262
}

5263
static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
A
Avi Kivity 已提交
5264
{
5265
	struct page *page;
A
Avi Kivity 已提交
5266 5267
	int i;

5268 5269 5270 5271 5272 5273
	mmu->root_hpa = INVALID_PAGE;
	mmu->root_pgd = 0;
	mmu->translate_gpa = translate_gpa;
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
		mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;

5274
	/*
5275 5276 5277 5278
	 * When using PAE paging, the four PDPTEs are treated as 'root' pages,
	 * while the PDP table is a per-vCPU construct that's allocated at MMU
	 * creation.  When emulating 32-bit mode, cr3 is only 32 bits even on
	 * x86_64.  Therefore we need to allocate the PDP table in the first
5279 5280 5281 5282 5283
	 * 4GB of memory, which happens to fit the DMA32 zone.  TDP paging
	 * generally doesn't use PAE paging and can skip allocating the PDP
	 * table.  The main exception, handled here, is SVM's 32-bit NPT.  The
	 * other exception is for shadowing L1's 32-bit or PAE NPT on 64-bit
	 * KVM; that horror is handled on-demand by mmu_alloc_shadow_roots().
5284
	 */
5285
	if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
5286 5287
		return 0;

5288
	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
5289
	if (!page)
5290 5291
		return -ENOMEM;

5292
	mmu->pae_root = page_address(page);
5293
	for (i = 0; i < 4; ++i)
5294
		mmu->pae_root[i] = INVALID_PAGE;
5295

A
Avi Kivity 已提交
5296 5297 5298
	return 0;
}

5299
int kvm_mmu_create(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
5300
{
5301
	int ret;
5302

5303
	vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache;
5304 5305
	vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO;

5306
	vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache;
5307
	vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO;
5308

5309 5310
	vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO;

5311 5312
	vcpu->arch.mmu = &vcpu->arch.root_mmu;
	vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
A
Avi Kivity 已提交
5313

5314
	vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5315

5316
	ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu);
5317 5318 5319
	if (ret)
		return ret;

5320
	ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu);
5321 5322 5323 5324 5325 5326 5327
	if (ret)
		goto fail_allocate_root;

	return ret;
 fail_allocate_root:
	free_mmu_pages(&vcpu->arch.guest_mmu);
	return ret;
A
Avi Kivity 已提交
5328 5329
}

5330
#define BATCH_ZAP_PAGES	10
5331 5332 5333
static void kvm_zap_obsolete_pages(struct kvm *kvm)
{
	struct kvm_mmu_page *sp, *node;
5334
	int nr_zapped, batch = 0;
5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346

restart:
	list_for_each_entry_safe_reverse(sp, node,
	      &kvm->arch.active_mmu_pages, link) {
		/*
		 * No obsolete valid page exists before a newly created page
		 * since active_mmu_pages is a FIFO list.
		 */
		if (!is_obsolete_sp(kvm, sp))
			break;

		/*
5347 5348 5349
		 * Invalid pages should never land back on the list of active
		 * pages.  Skip the bogus page, otherwise we'll get stuck in an
		 * infinite loop if the page gets put back on the list (again).
5350
		 */
5351
		if (WARN_ON(sp->role.invalid))
5352 5353
			continue;

5354 5355 5356 5357 5358 5359
		/*
		 * No need to flush the TLB since we're only zapping shadow
		 * pages with an obsolete generation number and all vCPUS have
		 * loaded a new root, i.e. the shadow pages being zapped cannot
		 * be in active use by the guest.
		 */
5360
		if (batch >= BATCH_ZAP_PAGES &&
5361
		    cond_resched_rwlock_write(&kvm->mmu_lock)) {
5362
			batch = 0;
5363 5364 5365
			goto restart;
		}

5366 5367
		if (__kvm_mmu_prepare_zap_page(kvm, sp,
				&kvm->arch.zapped_obsolete_pages, &nr_zapped)) {
5368
			batch += nr_zapped;
5369
			goto restart;
5370
		}
5371 5372
	}

5373 5374 5375 5376 5377
	/*
	 * Trigger a remote TLB flush before freeing the page tables to ensure
	 * KVM is not in the middle of a lockless shadow page table walk, which
	 * may reference the pages.
	 */
5378
	kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391
}

/*
 * Fast invalidate all shadow pages and use lock-break technique
 * to zap obsolete pages.
 *
 * It's required when memslot is being deleted or VM is being
 * destroyed, in these cases, we should ensure that KVM MMU does
 * not use any resource of the being-deleted slot or all slots
 * after calling the function.
 */
static void kvm_mmu_zap_all_fast(struct kvm *kvm)
{
5392 5393
	lockdep_assert_held(&kvm->slots_lock);

5394
	write_lock(&kvm->mmu_lock);
5395
	trace_kvm_mmu_zap_all_fast(kvm);
5396 5397 5398 5399 5400 5401 5402 5403 5404

	/*
	 * Toggle mmu_valid_gen between '0' and '1'.  Because slots_lock is
	 * held for the entire duration of zapping obsolete pages, it's
	 * impossible for there to be multiple invalid generations associated
	 * with *valid* shadow pages at any given time, i.e. there is exactly
	 * one valid generation and (at most) one invalid generation.
	 */
	kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
5405

5406 5407 5408 5409 5410 5411 5412 5413 5414 5415
	/*
	 * Notify all vcpus to reload its shadow page table and flush TLB.
	 * Then all vcpus will switch to new shadow page table with the new
	 * mmu_valid_gen.
	 *
	 * Note: we need to do this under the protection of mmu_lock,
	 * otherwise, vcpu would purge shadow page but miss tlb flush.
	 */
	kvm_reload_remote_mmus(kvm);

5416
	kvm_zap_obsolete_pages(kvm);
5417

5418
	if (is_tdp_mmu_enabled(kvm))
5419 5420
		kvm_tdp_mmu_zap_all(kvm);

5421
	write_unlock(&kvm->mmu_lock);
5422 5423
}

5424 5425 5426 5427 5428
static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
{
	return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
}

5429
static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5430 5431
			struct kvm_memory_slot *slot,
			struct kvm_page_track_notifier_node *node)
5432
{
5433
	kvm_mmu_zap_all_fast(kvm);
5434 5435
}

5436
void kvm_mmu_init_vm(struct kvm *kvm)
5437
{
5438
	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5439

5440 5441
	kvm_mmu_init_tdp_mmu(kvm);

5442
	node->track_write = kvm_mmu_pte_write;
5443
	node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5444
	kvm_page_track_register_notifier(kvm, node);
5445 5446
}

5447
void kvm_mmu_uninit_vm(struct kvm *kvm)
5448
{
5449
	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5450

5451
	kvm_page_track_unregister_notifier(kvm, node);
5452 5453

	kvm_mmu_uninit_tdp_mmu(kvm);
5454 5455
}

X
Xiao Guangrong 已提交
5456 5457 5458 5459
void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;
5460
	int i;
5461
	bool flush;
X
Xiao Guangrong 已提交
5462

5463
	write_lock(&kvm->mmu_lock);
5464 5465 5466 5467 5468 5469 5470 5471 5472
	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
		kvm_for_each_memslot(memslot, slots) {
			gfn_t start, end;

			start = max(gfn_start, memslot->base_gfn);
			end = min(gfn_end, memslot->base_gfn + memslot->npages);
			if (start >= end)
				continue;
X
Xiao Guangrong 已提交
5473

5474
			slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
5475
						PG_LEVEL_4K,
5476
						KVM_MAX_HUGEPAGE_LEVEL,
5477
						start, end - 1, true);
5478
		}
X
Xiao Guangrong 已提交
5479 5480
	}

5481
	if (is_tdp_mmu_enabled(kvm)) {
5482 5483 5484 5485 5486
		flush = kvm_tdp_mmu_zap_gfn_range(kvm, gfn_start, gfn_end);
		if (flush)
			kvm_flush_remote_tlbs(kvm);
	}

5487
	write_unlock(&kvm->mmu_lock);
X
Xiao Guangrong 已提交
5488 5489
}

5490
static bool slot_rmap_write_protect(struct kvm *kvm,
5491 5492
				    struct kvm_rmap_head *rmap_head,
				    struct kvm_memory_slot *slot)
5493
{
5494
	return __rmap_write_protect(kvm, rmap_head, false);
5495 5496
}

5497
void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5498 5499
				      struct kvm_memory_slot *memslot,
				      int start_level)
A
Avi Kivity 已提交
5500
{
5501
	bool flush;
A
Avi Kivity 已提交
5502

5503
	write_lock(&kvm->mmu_lock);
5504
	flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect,
5505
				start_level, KVM_MAX_HUGEPAGE_LEVEL, false);
5506
	if (is_tdp_mmu_enabled(kvm))
5507
		flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, PG_LEVEL_4K);
5508
	write_unlock(&kvm->mmu_lock);
5509 5510 5511 5512 5513 5514 5515 5516

	/*
	 * We can flush all the TLBs out of the mmu lock without TLB
	 * corruption since we just change the spte from writable to
	 * readonly so that we only need to care the case of changing
	 * spte from present to present (changing the spte from present
	 * to nonpresent will flush all the TLBs immediately), in other
	 * words, the only case we care is mmu_spte_update() where we
W
Wei Yang 已提交
5517
	 * have checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
5518 5519 5520
	 * instead of PT_WRITABLE_MASK, that means it does not depend
	 * on PT_WRITABLE_MASK anymore.
	 */
5521
	if (flush)
5522
		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
A
Avi Kivity 已提交
5523
}
5524

5525
static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5526 5527
					 struct kvm_rmap_head *rmap_head,
					 struct kvm_memory_slot *slot)
5528 5529 5530 5531
{
	u64 *sptep;
	struct rmap_iterator iter;
	int need_tlb_flush = 0;
D
Dan Williams 已提交
5532
	kvm_pfn_t pfn;
5533 5534
	struct kvm_mmu_page *sp;

5535
restart:
5536
	for_each_rmap_spte(rmap_head, &iter, sptep) {
5537
		sp = sptep_to_sp(sptep);
5538 5539 5540
		pfn = spte_to_pfn(*sptep);

		/*
5541 5542 5543 5544 5545
		 * We cannot do huge page mapping for indirect shadow pages,
		 * which are found on the last rmap (level = 1) when not using
		 * tdp; such shadow pages are synced with the page table in
		 * the guest, and the guest page table is using 4K page size
		 * mapping if the indirect sp has level = 1.
5546
		 */
5547
		if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
5548 5549
		    sp->role.level < kvm_mmu_max_mapping_level(kvm, slot, sp->gfn,
							       pfn, PG_LEVEL_NUM)) {
5550
			pte_list_remove(rmap_head, sptep);
5551 5552 5553 5554 5555 5556 5557

			if (kvm_available_flush_tlb_with_range())
				kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
					KVM_PAGES_PER_HPAGE(sp->role.level));
			else
				need_tlb_flush = 1;

5558 5559
			goto restart;
		}
5560 5561 5562 5563 5564 5565
	}

	return need_tlb_flush;
}

void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5566
				   const struct kvm_memory_slot *memslot)
5567
{
5568
	/* FIXME: const-ify all uses of struct kvm_memory_slot.  */
5569 5570
	struct kvm_memory_slot *slot = (struct kvm_memory_slot *)memslot;

5571
	write_lock(&kvm->mmu_lock);
5572
	slot_handle_leaf(kvm, slot, kvm_mmu_zap_collapsible_spte, true);
5573

5574
	if (is_tdp_mmu_enabled(kvm))
5575
		kvm_tdp_mmu_zap_collapsible_sptes(kvm, slot);
5576
	write_unlock(&kvm->mmu_lock);
5577 5578
}

5579 5580 5581 5582
void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
					struct kvm_memory_slot *memslot)
{
	/*
5583 5584 5585 5586 5587
	 * All current use cases for flushing the TLBs for a specific memslot
	 * are related to dirty logging, and do the TLB flush out of mmu_lock.
	 * The interaction between the various operations on memslot must be
	 * serialized by slots_locks to ensure the TLB flush from one operation
	 * is observed by any other operation on the same memslot.
5588 5589
	 */
	lockdep_assert_held(&kvm->slots_lock);
5590 5591
	kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
					   memslot->npages);
5592 5593
}

5594 5595 5596
void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
				   struct kvm_memory_slot *memslot)
{
5597
	bool flush;
5598

5599
	write_lock(&kvm->mmu_lock);
5600
	flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
5601
	if (is_tdp_mmu_enabled(kvm))
5602
		flush |= kvm_tdp_mmu_clear_dirty_slot(kvm, memslot);
5603
	write_unlock(&kvm->mmu_lock);
5604 5605 5606 5607 5608 5609 5610 5611

	/*
	 * It's also safe to flush TLBs out of mmu lock here as currently this
	 * function is only used for dirty logging, in which case flushing TLB
	 * out of mmu lock also guarantees no dirty pages will be lost in
	 * dirty_bitmap.
	 */
	if (flush)
5612
		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5613 5614
}

5615
void kvm_mmu_zap_all(struct kvm *kvm)
5616 5617
{
	struct kvm_mmu_page *sp, *node;
5618
	LIST_HEAD(invalid_list);
5619
	int ign;
5620

5621
	write_lock(&kvm->mmu_lock);
5622
restart:
5623
	list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
5624
		if (WARN_ON(sp->role.invalid))
5625
			continue;
5626
		if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
5627
			goto restart;
5628
		if (cond_resched_rwlock_write(&kvm->mmu_lock))
5629 5630 5631
			goto restart;
	}

5632
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
5633

5634
	if (is_tdp_mmu_enabled(kvm))
5635 5636
		kvm_tdp_mmu_zap_all(kvm);

5637
	write_unlock(&kvm->mmu_lock);
5638 5639
}

5640
void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
5641
{
5642
	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
5643

5644
	gen &= MMIO_SPTE_GEN_MASK;
5645

5646
	/*
5647 5648 5649 5650 5651 5652 5653 5654
	 * Generation numbers are incremented in multiples of the number of
	 * address spaces in order to provide unique generations across all
	 * address spaces.  Strip what is effectively the address space
	 * modifier prior to checking for a wrap of the MMIO generation so
	 * that a wrap in any address space is detected.
	 */
	gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);

5655
	/*
5656
	 * The very rare case: if the MMIO generation number has wrapped,
5657 5658
	 * zap all shadow pages.
	 */
5659
	if (unlikely(gen == 0)) {
5660
		kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
5661
		kvm_mmu_zap_all_fast(kvm);
5662
	}
5663 5664
}

5665 5666
static unsigned long
mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
5667 5668
{
	struct kvm *kvm;
5669
	int nr_to_scan = sc->nr_to_scan;
5670
	unsigned long freed = 0;
5671

J
Junaid Shahid 已提交
5672
	mutex_lock(&kvm_lock);
5673 5674

	list_for_each_entry(kvm, &vm_list, vm_list) {
5675
		int idx;
5676
		LIST_HEAD(invalid_list);
5677

5678 5679 5680 5681 5682 5683 5684 5685
		/*
		 * Never scan more than sc->nr_to_scan VM instances.
		 * Will not hit this condition practically since we do not try
		 * to shrink more than one VM and it is very unlikely to see
		 * !n_used_mmu_pages so many times.
		 */
		if (!nr_to_scan--)
			break;
5686 5687 5688 5689 5690 5691
		/*
		 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
		 * here. We may skip a VM instance errorneosly, but we do not
		 * want to shrink a VM that only started to populate its MMU
		 * anyway.
		 */
5692 5693
		if (!kvm->arch.n_used_mmu_pages &&
		    !kvm_has_zapped_obsolete_pages(kvm))
5694 5695
			continue;

5696
		idx = srcu_read_lock(&kvm->srcu);
5697
		write_lock(&kvm->mmu_lock);
5698

5699 5700 5701 5702 5703 5704
		if (kvm_has_zapped_obsolete_pages(kvm)) {
			kvm_mmu_commit_zap_page(kvm,
			      &kvm->arch.zapped_obsolete_pages);
			goto unlock;
		}

5705
		freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan);
5706

5707
unlock:
5708
		write_unlock(&kvm->mmu_lock);
5709
		srcu_read_unlock(&kvm->srcu, idx);
5710

5711 5712 5713 5714 5715
		/*
		 * unfair on small ones
		 * per-vm shrinkers cry out
		 * sadness comes quickly
		 */
5716 5717
		list_move_tail(&kvm->vm_list, &vm_list);
		break;
5718 5719
	}

J
Junaid Shahid 已提交
5720
	mutex_unlock(&kvm_lock);
5721 5722 5723 5724 5725 5726
	return freed;
}

static unsigned long
mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
{
5727
	return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
5728 5729 5730
}

static struct shrinker mmu_shrinker = {
5731 5732
	.count_objects = mmu_shrink_count,
	.scan_objects = mmu_shrink_scan,
5733 5734 5735
	.seeks = DEFAULT_SEEKS * 10,
};

I
Ingo Molnar 已提交
5736
static void mmu_destroy_caches(void)
5737
{
5738 5739
	kmem_cache_destroy(pte_list_desc_cache);
	kmem_cache_destroy(mmu_page_header_cache);
5740 5741
}

5742 5743 5744 5745 5746
static void kvm_set_mmio_spte_mask(void)
{
	u64 mask;

	/*
5747 5748 5749 5750 5751
	 * Set a reserved PA bit in MMIO SPTEs to generate page faults with
	 * PFEC.RSVD=1 on MMIO accesses.  64-bit PTEs (PAE, x86-64, and EPT
	 * paging) support a maximum of 52 bits of PA, i.e. if the CPU supports
	 * 52-bit physical addresses then there are no reserved PA bits in the
	 * PTEs and so the reserved PA approach must be disabled.
5752
	 */
5753 5754 5755 5756
	if (shadow_phys_bits < 52)
		mask = BIT_ULL(51) | PT_PRESENT_MASK;
	else
		mask = 0;
5757

P
Paolo Bonzini 已提交
5758
	kvm_mmu_set_mmio_spte_mask(mask, ACC_WRITE_MASK | ACC_USER_MASK);
5759 5760
}

P
Paolo Bonzini 已提交
5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794
static bool get_nx_auto_mode(void)
{
	/* Return true when CPU has the bug, and mitigations are ON */
	return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
}

static void __set_nx_huge_pages(bool val)
{
	nx_huge_pages = itlb_multihit_kvm_mitigation = val;
}

static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
{
	bool old_val = nx_huge_pages;
	bool new_val;

	/* In "auto" mode deploy workaround only if CPU has the bug. */
	if (sysfs_streq(val, "off"))
		new_val = 0;
	else if (sysfs_streq(val, "force"))
		new_val = 1;
	else if (sysfs_streq(val, "auto"))
		new_val = get_nx_auto_mode();
	else if (strtobool(val, &new_val) < 0)
		return -EINVAL;

	__set_nx_huge_pages(new_val);

	if (new_val != old_val) {
		struct kvm *kvm;

		mutex_lock(&kvm_lock);

		list_for_each_entry(kvm, &vm_list, vm_list) {
5795
			mutex_lock(&kvm->slots_lock);
P
Paolo Bonzini 已提交
5796
			kvm_mmu_zap_all_fast(kvm);
5797
			mutex_unlock(&kvm->slots_lock);
5798 5799

			wake_up_process(kvm->arch.nx_lpage_recovery_thread);
P
Paolo Bonzini 已提交
5800 5801 5802 5803 5804 5805 5806
		}
		mutex_unlock(&kvm_lock);
	}

	return 0;
}

5807 5808
int kvm_mmu_module_init(void)
{
5809 5810
	int ret = -ENOMEM;

P
Paolo Bonzini 已提交
5811 5812 5813
	if (nx_huge_pages == -1)
		__set_nx_huge_pages(get_nx_auto_mode());

5814 5815 5816 5817 5818 5819 5820 5821 5822 5823
	/*
	 * MMU roles use union aliasing which is, generally speaking, an
	 * undefined behavior. However, we supposedly know how compilers behave
	 * and the current status quo is unlikely to change. Guardians below are
	 * supposed to let us know if the assumption becomes false.
	 */
	BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
	BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
	BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));

5824
	kvm_mmu_reset_all_pte_masks();
5825

5826 5827
	kvm_set_mmio_spte_mask();

5828 5829
	pte_list_desc_cache = kmem_cache_create("pte_list_desc",
					    sizeof(struct pte_list_desc),
5830
					    0, SLAB_ACCOUNT, NULL);
5831
	if (!pte_list_desc_cache)
5832
		goto out;
5833

5834 5835
	mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
						  sizeof(struct kvm_mmu_page),
5836
						  0, SLAB_ACCOUNT, NULL);
5837
	if (!mmu_page_header_cache)
5838
		goto out;
5839

5840
	if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
5841
		goto out;
5842

5843 5844 5845
	ret = register_shrinker(&mmu_shrinker);
	if (ret)
		goto out;
5846

5847 5848
	return 0;

5849
out:
5850
	mmu_destroy_caches();
5851
	return ret;
5852 5853
}

5854
/*
P
Peng Hao 已提交
5855
 * Calculate mmu pages needed for kvm.
5856
 */
5857
unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm)
5858
{
5859 5860
	unsigned long nr_mmu_pages;
	unsigned long nr_pages = 0;
5861
	struct kvm_memslots *slots;
5862
	struct kvm_memory_slot *memslot;
5863
	int i;
5864

5865 5866
	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
5867

5868 5869 5870
		kvm_for_each_memslot(memslot, slots)
			nr_pages += memslot->npages;
	}
5871 5872

	nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
5873
	nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
5874 5875 5876 5877

	return nr_mmu_pages;
}

5878 5879
void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
{
5880
	kvm_mmu_unload(vcpu);
5881 5882
	free_mmu_pages(&vcpu->arch.root_mmu);
	free_mmu_pages(&vcpu->arch.guest_mmu);
5883
	mmu_free_memory_caches(vcpu);
5884 5885 5886 5887 5888 5889 5890
}

void kvm_mmu_module_exit(void)
{
	mmu_destroy_caches();
	percpu_counter_destroy(&kvm_total_used_mmu_pages);
	unregister_shrinker(&mmu_shrinker);
5891 5892
	mmu_audit_disable();
}
5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927

static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp)
{
	unsigned int old_val;
	int err;

	old_val = nx_huge_pages_recovery_ratio;
	err = param_set_uint(val, kp);
	if (err)
		return err;

	if (READ_ONCE(nx_huge_pages) &&
	    !old_val && nx_huge_pages_recovery_ratio) {
		struct kvm *kvm;

		mutex_lock(&kvm_lock);

		list_for_each_entry(kvm, &vm_list, vm_list)
			wake_up_process(kvm->arch.nx_lpage_recovery_thread);

		mutex_unlock(&kvm_lock);
	}

	return err;
}

static void kvm_recover_nx_lpages(struct kvm *kvm)
{
	int rcu_idx;
	struct kvm_mmu_page *sp;
	unsigned int ratio;
	LIST_HEAD(invalid_list);
	ulong to_zap;

	rcu_idx = srcu_read_lock(&kvm->srcu);
5928
	write_lock(&kvm->mmu_lock);
5929 5930 5931

	ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
	to_zap = ratio ? DIV_ROUND_UP(kvm->stat.nx_lpage_splits, ratio) : 0;
5932 5933 5934 5935
	for ( ; to_zap; --to_zap) {
		if (list_empty(&kvm->arch.lpage_disallowed_mmu_pages))
			break;

5936 5937 5938 5939 5940 5941 5942 5943 5944
		/*
		 * We use a separate list instead of just using active_mmu_pages
		 * because the number of lpage_disallowed pages is expected to
		 * be relatively small compared to the total.
		 */
		sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
				      struct kvm_mmu_page,
				      lpage_disallowed_link);
		WARN_ON_ONCE(!sp->lpage_disallowed);
5945
		if (is_tdp_mmu_page(sp)) {
5946 5947
			kvm_tdp_mmu_zap_gfn_range(kvm, sp->gfn,
				sp->gfn + KVM_PAGES_PER_HPAGE(sp->role.level));
5948
		} else {
5949 5950 5951
			kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
			WARN_ON_ONCE(sp->lpage_disallowed);
		}
5952

5953
		if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
5954
			kvm_mmu_commit_zap_page(kvm, &invalid_list);
5955
			cond_resched_rwlock_write(&kvm->mmu_lock);
5956 5957
		}
	}
5958
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
5959

5960
	write_unlock(&kvm->mmu_lock);
5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013
	srcu_read_unlock(&kvm->srcu, rcu_idx);
}

static long get_nx_lpage_recovery_timeout(u64 start_time)
{
	return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio)
		? start_time + 60 * HZ - get_jiffies_64()
		: MAX_SCHEDULE_TIMEOUT;
}

static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
{
	u64 start_time;
	long remaining_time;

	while (true) {
		start_time = get_jiffies_64();
		remaining_time = get_nx_lpage_recovery_timeout(start_time);

		set_current_state(TASK_INTERRUPTIBLE);
		while (!kthread_should_stop() && remaining_time > 0) {
			schedule_timeout(remaining_time);
			remaining_time = get_nx_lpage_recovery_timeout(start_time);
			set_current_state(TASK_INTERRUPTIBLE);
		}

		set_current_state(TASK_RUNNING);

		if (kthread_should_stop())
			return 0;

		kvm_recover_nx_lpages(kvm);
	}
}

int kvm_mmu_post_init_vm(struct kvm *kvm)
{
	int err;

	err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
					  "kvm-nx-lpage-recovery",
					  &kvm->arch.nx_lpage_recovery_thread);
	if (!err)
		kthread_unpark(kvm->arch.nx_lpage_recovery_thread);

	return err;
}

void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
{
	if (kvm->arch.nx_lpage_recovery_thread)
		kthread_stop(kvm->arch.nx_lpage_recovery_thread);
}