mmu.c 157.5 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
A
Avi Kivity 已提交
2 3 4 5 6 7 8 9 10
/*
 * Kernel-based Virtual Machine driver for Linux
 *
 * This module enables machines with Intel VT-x extensions to run virtual
 * machines without emulation or binary translation.
 *
 * MMU support
 *
 * Copyright (C) 2006 Qumranet, Inc.
N
Nicolas Kaiser 已提交
11
 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
A
Avi Kivity 已提交
12 13 14 15 16
 *
 * Authors:
 *   Yaniv Kamay  <yaniv@qumranet.com>
 *   Avi Kivity   <avi@qumranet.com>
 */
A
Avi Kivity 已提交
17

18
#include "irq.h"
19
#include "ioapic.h"
20
#include "mmu.h"
21
#include "mmu_internal.h"
22
#include "tdp_mmu.h"
23
#include "x86.h"
A
Avi Kivity 已提交
24
#include "kvm_cache_regs.h"
25
#include "kvm_emulate.h"
26
#include "cpuid.h"
27
#include "spte.h"
A
Avi Kivity 已提交
28

29
#include <linux/kvm_host.h>
A
Avi Kivity 已提交
30 31 32 33
#include <linux/types.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/highmem.h>
34 35
#include <linux/moduleparam.h>
#include <linux/export.h>
36
#include <linux/swap.h>
M
Marcelo Tosatti 已提交
37
#include <linux/hugetlb.h>
38
#include <linux/compiler.h>
39
#include <linux/srcu.h>
40
#include <linux/slab.h>
41
#include <linux/sched/signal.h>
42
#include <linux/uaccess.h>
43
#include <linux/hash.h>
44
#include <linux/kern_levels.h>
45
#include <linux/kthread.h>
A
Avi Kivity 已提交
46

A
Avi Kivity 已提交
47
#include <asm/page.h>
48
#include <asm/memtype.h>
A
Avi Kivity 已提交
49
#include <asm/cmpxchg.h>
50
#include <asm/io.h>
51
#include <asm/set_memory.h>
52
#include <asm/vmx.h>
53
#include <asm/kvm_page_track.h>
54
#include "trace.h"
A
Avi Kivity 已提交
55

P
Paolo Bonzini 已提交
56 57 58
extern bool itlb_multihit_kvm_mitigation;

static int __read_mostly nx_huge_pages = -1;
59 60 61 62
#ifdef CONFIG_PREEMPT_RT
/* Recovery can cause latency spikes, disable it for PREEMPT_RT.  */
static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
#else
63
static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
64
#endif
P
Paolo Bonzini 已提交
65 66

static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
67
static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp);
P
Paolo Bonzini 已提交
68

69
static const struct kernel_param_ops nx_huge_pages_ops = {
P
Paolo Bonzini 已提交
70 71 72 73
	.set = set_nx_huge_pages,
	.get = param_get_bool,
};

74
static const struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = {
75 76 77 78
	.set = set_nx_huge_pages_recovery_ratio,
	.get = param_get_uint,
};

P
Paolo Bonzini 已提交
79 80
module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
__MODULE_PARM_TYPE(nx_huge_pages, "bool");
81 82 83
module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops,
		&nx_huge_pages_recovery_ratio, 0644);
__MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
P
Paolo Bonzini 已提交
84

85 86 87
static bool __read_mostly force_flush_and_sync_on_reuse;
module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644);

88 89 90 91 92 93 94
/*
 * When setting this variable to true it enables Two-Dimensional-Paging
 * where the hardware walks 2 page tables:
 * 1. the guest-virtual to guest-physical
 * 2. while doing 1. it walks guest-physical to host-physical
 * If the hardware supports that we don't need to do shadow paging.
 */
95
bool tdp_enabled = false;
96

97
static int max_huge_page_level __read_mostly;
98
static int max_tdp_level __read_mostly;
99

100 101 102 103
enum {
	AUDIT_PRE_PAGE_FAULT,
	AUDIT_POST_PAGE_FAULT,
	AUDIT_PRE_PTE_WRITE,
104 105 106
	AUDIT_POST_PTE_WRITE,
	AUDIT_PRE_SYNC,
	AUDIT_POST_SYNC
107
};
108 109

#ifdef MMU_DEBUG
110
bool dbg = 0;
111
module_param(dbg, bool, 0644);
112
#endif
A
Avi Kivity 已提交
113

114 115
#define PTE_PREFETCH_NUM		8

A
Avi Kivity 已提交
116 117 118
#define PT32_LEVEL_BITS 10

#define PT32_LEVEL_SHIFT(level) \
M
Mike Day 已提交
119
		(PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
A
Avi Kivity 已提交
120

121 122 123
#define PT32_LVL_OFFSET_MASK(level) \
	(PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
124 125 126 127 128 129 130 131

#define PT32_INDEX(address, level)\
	(((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))


#define PT32_BASE_ADDR_MASK PAGE_MASK
#define PT32_DIR_BASE_ADDR_MASK \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
132 133 134
#define PT32_LVL_ADDR_MASK(level) \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
					    * PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
135

136 137
#include <trace/events/kvm.h>

138 139 140
/* make pte_list_desc fit well in cache line */
#define PTE_LIST_EXT 3

141 142 143
struct pte_list_desc {
	u64 *sptes[PTE_LIST_EXT];
	struct pte_list_desc *more;
144 145
};

146 147 148 149
struct kvm_shadow_walk_iterator {
	u64 addr;
	hpa_t shadow_addr;
	u64 *sptep;
150
	int level;
151 152 153
	unsigned index;
};

154 155 156 157 158 159 160
#define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker)     \
	for (shadow_walk_init_using_root(&(_walker), (_vcpu),              \
					 (_root), (_addr));                \
	     shadow_walk_okay(&(_walker));			           \
	     shadow_walk_next(&(_walker)))

#define for_each_shadow_entry(_vcpu, _addr, _walker)            \
161 162 163 164
	for (shadow_walk_init(&(_walker), _vcpu, _addr);	\
	     shadow_walk_okay(&(_walker));			\
	     shadow_walk_next(&(_walker)))

165 166 167 168 169 170
#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)	\
	for (shadow_walk_init(&(_walker), _vcpu, _addr);		\
	     shadow_walk_okay(&(_walker)) &&				\
		({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });	\
	     __shadow_walk_next(&(_walker), spte))

171
static struct kmem_cache *pte_list_desc_cache;
172
struct kmem_cache *mmu_page_header_cache;
173
static struct percpu_counter kvm_total_used_mmu_pages;
174

175
static void mmu_spte_set(u64 *sptep, u64 spte);
176 177
static union kvm_mmu_page_role
kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
178

179 180 181
#define CREATE_TRACE_POINTS
#include "mmutrace.h"

182 183 184

static inline bool kvm_available_flush_tlb_with_range(void)
{
185
	return kvm_x86_ops.tlb_remote_flush_with_range;
186 187 188 189 190 191 192
}

static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
		struct kvm_tlb_range *range)
{
	int ret = -ENOTSUPP;

193
	if (range && kvm_x86_ops.tlb_remote_flush_with_range)
194
		ret = static_call(kvm_x86_tlb_remote_flush_with_range)(kvm, range);
195 196 197 198 199

	if (ret)
		kvm_flush_remote_tlbs(kvm);
}

200
void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
201 202 203 204 205 206 207 208 209 210
		u64 start_gfn, u64 pages)
{
	struct kvm_tlb_range range;

	range.start_gfn = start_gfn;
	range.pages = pages;

	kvm_flush_remote_tlbs_with_range(kvm, &range);
}

211
bool is_nx_huge_page_enabled(void)
P
Paolo Bonzini 已提交
212 213 214 215
{
	return READ_ONCE(nx_huge_pages);
}

216 217 218
static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
			   unsigned int access)
{
219
	u64 spte = make_mmio_spte(vcpu, gfn, access);
220

221 222
	trace_mark_mmio_spte(sptep, gfn, spte);
	mmu_spte_set(sptep, spte);
223 224 225 226
}

static gfn_t get_mmio_spte_gfn(u64 spte)
{
227
	u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
228

229
	gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)
230 231 232
	       & shadow_nonpresent_or_rsvd_mask;

	return gpa >> PAGE_SHIFT;
233 234 235 236
}

static unsigned get_mmio_spte_access(u64 spte)
{
237
	return spte & shadow_mmio_access_mask;
238 239
}

240
static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
241
{
242
	u64 kvm_gen, spte_gen, gen;
243

244 245 246
	gen = kvm_vcpu_memslots(vcpu)->generation;
	if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
		return false;
247

248
	kvm_gen = gen & MMIO_SPTE_GEN_MASK;
249 250 251 252
	spte_gen = get_mmio_spte_generation(spte);

	trace_check_mmio_spte(spte, kvm_gen, spte_gen);
	return likely(kvm_gen == spte_gen);
253 254
}

255 256 257
static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
                                  struct x86_exception *exception)
{
258
	/* Check if guest physical address doesn't exceed guest maximum */
259
	if (kvm_vcpu_is_illegal_gpa(vcpu, gpa)) {
260 261 262 263
		exception->error_code |= PFERR_RSVD_MASK;
		return UNMAPPED_GVA;
	}

264 265 266
        return gpa;
}

A
Avi Kivity 已提交
267 268 269 270 271
static int is_cpuid_PSE36(void)
{
	return 1;
}

272 273
static int is_nx(struct kvm_vcpu *vcpu)
{
274
	return vcpu->arch.efer & EFER_NX;
275 276
}

277 278 279 280 281 282 283
static gfn_t pse36_gfn_delta(u32 gpte)
{
	int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;

	return (gpte & PT32_DIR_PSE36_MASK) << shift;
}

284
#ifdef CONFIG_X86_64
A
Avi Kivity 已提交
285
static void __set_spte(u64 *sptep, u64 spte)
286
{
287
	WRITE_ONCE(*sptep, spte);
288 289
}

290
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
291
{
292
	WRITE_ONCE(*sptep, spte);
293 294 295 296 297 298
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	return xchg(sptep, spte);
}
299 300 301

static u64 __get_spte_lockless(u64 *sptep)
{
302
	return READ_ONCE(*sptep);
303
}
304
#else
305 306 307 308 309 310 311
union split_spte {
	struct {
		u32 spte_low;
		u32 spte_high;
	};
	u64 spte;
};
312

313 314
static void count_spte_clear(u64 *sptep, u64 spte)
{
315
	struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
316 317 318 319 320 321 322 323 324

	if (is_shadow_present_pte(spte))
		return;

	/* Ensure the spte is completely set before we increase the count */
	smp_wmb();
	sp->clear_spte_count++;
}

325 326 327
static void __set_spte(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;
328

329 330 331 332 333 334 335 336 337 338 339 340
	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	ssptep->spte_high = sspte.spte_high;

	/*
	 * If we map the spte from nonpresent to present, We should store
	 * the high bits firstly, then set present bit, so cpu can not
	 * fetch this spte while we are setting the spte.
	 */
	smp_wmb();

341
	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
342 343
}

344 345 346 347 348 349 350
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

351
	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
352 353 354 355 356 357 358 359

	/*
	 * If we map the spte from present to nonpresent, we should clear
	 * present bit firstly to avoid vcpu fetch the old high bits.
	 */
	smp_wmb();

	ssptep->spte_high = sspte.spte_high;
360
	count_spte_clear(sptep, spte);
361 362 363 364 365 366 367 368 369 370 371
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte, orig;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	/* xchg acts as a barrier before the setting of the high bits */
	orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
372 373
	orig.spte_high = ssptep->spte_high;
	ssptep->spte_high = sspte.spte_high;
374
	count_spte_clear(sptep, spte);
375 376 377

	return orig.spte;
}
378 379 380

/*
 * The idea using the light way get the spte on x86_32 guest is from
381
 * gup_get_pte (mm/gup.c).
382 383 384 385 386 387 388 389 390 391 392 393 394 395
 *
 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
 * coalesces them and we are running out of the MMU lock.  Therefore
 * we need to protect against in-progress updates of the spte.
 *
 * Reading the spte while an update is in progress may get the old value
 * for the high part of the spte.  The race is fine for a present->non-present
 * change (because the high part of the spte is ignored for non-present spte),
 * but for a present->present change we must reread the spte.
 *
 * All such changes are done in two steps (present->non-present and
 * non-present->present), hence it is enough to count the number of
 * present->non-present updates: if it changed while reading the spte,
 * we might have hit the race.  This is done using clear_spte_count.
396 397 398
 */
static u64 __get_spte_lockless(u64 *sptep)
{
399
	struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
	union split_spte spte, *orig = (union split_spte *)sptep;
	int count;

retry:
	count = sp->clear_spte_count;
	smp_rmb();

	spte.spte_low = orig->spte_low;
	smp_rmb();

	spte.spte_high = orig->spte_high;
	smp_rmb();

	if (unlikely(spte.spte_low != orig->spte_low ||
	      count != sp->clear_spte_count))
		goto retry;

	return spte.spte;
}
419 420
#endif

421 422
static bool spte_has_volatile_bits(u64 spte)
{
423 424 425
	if (!is_shadow_present_pte(spte))
		return false;

426
	/*
427
	 * Always atomically update spte if it can be updated
428 429 430 431
	 * out of mmu-lock, it can ensure dirty bit is not lost,
	 * also, it can help us to get a stable is_writable_pte()
	 * to ensure tlb flush is not missed.
	 */
432 433
	if (spte_can_locklessly_be_made_writable(spte) ||
	    is_access_track_spte(spte))
434 435
		return true;

436
	if (spte_ad_enabled(spte)) {
437 438 439 440
		if ((spte & shadow_accessed_mask) == 0 ||
	    	    (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
			return true;
	}
441

442
	return false;
443 444
}

445 446 447 448 449 450 451 452 453 454 455 456
/* Rules for using mmu_spte_set:
 * Set the sptep from nonpresent to present.
 * Note: the sptep being assigned *must* be either not present
 * or in a state where the hardware will not attempt to update
 * the spte.
 */
static void mmu_spte_set(u64 *sptep, u64 new_spte)
{
	WARN_ON(is_shadow_present_pte(*sptep));
	__set_spte(sptep, new_spte);
}

457 458 459
/*
 * Update the SPTE (excluding the PFN), but do not track changes in its
 * accessed/dirty status.
460
 */
461
static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
462
{
463
	u64 old_spte = *sptep;
464

465
	WARN_ON(!is_shadow_present_pte(new_spte));
466

467 468
	if (!is_shadow_present_pte(old_spte)) {
		mmu_spte_set(sptep, new_spte);
469
		return old_spte;
470
	}
471

472
	if (!spte_has_volatile_bits(old_spte))
473
		__update_clear_spte_fast(sptep, new_spte);
474
	else
475
		old_spte = __update_clear_spte_slow(sptep, new_spte);
476

477 478
	WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));

479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
	return old_spte;
}

/* Rules for using mmu_spte_update:
 * Update the state bits, it means the mapped pfn is not changed.
 *
 * Whenever we overwrite a writable spte with a read-only one we
 * should flush remote TLBs. Otherwise rmap_write_protect
 * will find a read-only spte, even though the writable spte
 * might be cached on a CPU's TLB, the return value indicates this
 * case.
 *
 * Returns true if the TLB needs to be flushed
 */
static bool mmu_spte_update(u64 *sptep, u64 new_spte)
{
	bool flush = false;
	u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);

	if (!is_shadow_present_pte(old_spte))
		return false;

501 502
	/*
	 * For the spte updated out of mmu-lock is safe, since
503
	 * we always atomically update it, see the comments in
504 505
	 * spte_has_volatile_bits().
	 */
506
	if (spte_can_locklessly_be_made_writable(old_spte) &&
507
	      !is_writable_pte(new_spte))
508
		flush = true;
509

510
	/*
511
	 * Flush TLB when accessed/dirty states are changed in the page tables,
512 513 514
	 * to guarantee consistency between TLB and page tables.
	 */

515 516
	if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
		flush = true;
517
		kvm_set_pfn_accessed(spte_to_pfn(old_spte));
518 519 520 521
	}

	if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
		flush = true;
522
		kvm_set_pfn_dirty(spte_to_pfn(old_spte));
523
	}
524

525
	return flush;
526 527
}

528 529 530 531
/*
 * Rules for using mmu_spte_clear_track_bits:
 * It sets the sptep from present to nonpresent, and track the
 * state bits, it is used to clear the last level sptep.
532
 * Returns non-zero if the PTE was previously valid.
533 534 535
 */
static int mmu_spte_clear_track_bits(u64 *sptep)
{
D
Dan Williams 已提交
536
	kvm_pfn_t pfn;
537 538 539
	u64 old_spte = *sptep;

	if (!spte_has_volatile_bits(old_spte))
540
		__update_clear_spte_fast(sptep, 0ull);
541
	else
542
		old_spte = __update_clear_spte_slow(sptep, 0ull);
543

544
	if (!is_shadow_present_pte(old_spte))
545 546 547
		return 0;

	pfn = spte_to_pfn(old_spte);
548 549 550 551 552 553

	/*
	 * KVM does not hold the refcount of the page used by
	 * kvm mmu, before reclaiming the page, we should
	 * unmap it from mmu first.
	 */
554
	WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
555

556
	if (is_accessed_spte(old_spte))
557
		kvm_set_pfn_accessed(pfn);
558 559

	if (is_dirty_spte(old_spte))
560
		kvm_set_pfn_dirty(pfn);
561

562 563 564 565 566 567 568 569 570 571
	return 1;
}

/*
 * Rules for using mmu_spte_clear_no_track:
 * Directly clear spte without caring the state bits of sptep,
 * it is used to set the upper level spte.
 */
static void mmu_spte_clear_no_track(u64 *sptep)
{
572
	__update_clear_spte_fast(sptep, 0ull);
573 574
}

575 576 577 578 579
static u64 mmu_spte_get_lockless(u64 *sptep)
{
	return __get_spte_lockless(sptep);
}

580 581 582 583
/* Restore an acc-track PTE back to a regular PTE */
static u64 restore_acc_track_spte(u64 spte)
{
	u64 new_spte = spte;
584 585
	u64 saved_bits = (spte >> SHADOW_ACC_TRACK_SAVED_BITS_SHIFT)
			 & SHADOW_ACC_TRACK_SAVED_BITS_MASK;
586

587
	WARN_ON_ONCE(spte_ad_enabled(spte));
588 589 590
	WARN_ON_ONCE(!is_access_track_spte(spte));

	new_spte &= ~shadow_acc_track_mask;
591 592
	new_spte &= ~(SHADOW_ACC_TRACK_SAVED_BITS_MASK <<
		      SHADOW_ACC_TRACK_SAVED_BITS_SHIFT);
593 594 595 596 597
	new_spte |= saved_bits;

	return new_spte;
}

598 599 600 601 602 603 604 605
/* Returns the Accessed status of the PTE and resets it at the same time. */
static bool mmu_spte_age(u64 *sptep)
{
	u64 spte = mmu_spte_get_lockless(sptep);

	if (!is_accessed_spte(spte))
		return false;

606
	if (spte_ad_enabled(spte)) {
607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
		clear_bit((ffs(shadow_accessed_mask) - 1),
			  (unsigned long *)sptep);
	} else {
		/*
		 * Capture the dirty status of the page, so that it doesn't get
		 * lost when the SPTE is marked for access tracking.
		 */
		if (is_writable_pte(spte))
			kvm_set_pfn_dirty(spte_to_pfn(spte));

		spte = mark_spte_for_access_track(spte);
		mmu_spte_update_no_track(sptep, spte);
	}

	return true;
}

624 625
static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
{
626 627 628 629 630
	/*
	 * Prevent page table teardown by making any free-er wait during
	 * kvm_flush_remote_tlbs() IPI to all active vcpus.
	 */
	local_irq_disable();
631

632 633 634 635
	/*
	 * Make sure a following spte read is not reordered ahead of the write
	 * to vcpu->mode.
	 */
636
	smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
637 638 639 640
}

static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
{
641 642
	/*
	 * Make sure the write to vcpu->mode is not reordered in front of
643
	 * reads to sptes.  If it does, kvm_mmu_commit_zap_page() can see us
644 645
	 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
	 */
646
	smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
647
	local_irq_enable();
648 649
}

650
static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect)
651
{
652 653
	int r;

654
	/* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */
655 656
	r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
				       1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM);
657
	if (r)
658
		return r;
659 660
	r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache,
				       PT64_ROOT_MAX_LEVEL);
661
	if (r)
662
		return r;
663
	if (maybe_indirect) {
664 665
		r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_gfn_array_cache,
					       PT64_ROOT_MAX_LEVEL);
666 667 668
		if (r)
			return r;
	}
669 670
	return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
					  PT64_ROOT_MAX_LEVEL);
671 672 673 674
}

static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
{
675 676 677 678
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache);
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache);
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_gfn_array_cache);
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
679 680
}

681
static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
682
{
683
	return kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
684 685
}

686
static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
687
{
688
	kmem_cache_free(pte_list_desc_cache, pte_list_desc);
689 690
}

691 692 693 694 695 696 697 698 699 700
static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
{
	if (!sp->role.direct)
		return sp->gfns[index];

	return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
}

static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
{
701
	if (!sp->role.direct) {
702
		sp->gfns[index] = gfn;
703 704 705 706 707 708 709 710
		return;
	}

	if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
		pr_err_ratelimited("gfn mismatch under direct page %llx "
				   "(expected %llx, got %llx)\n",
				   sp->gfn,
				   kvm_mmu_page_get_gfn(sp, index), gfn);
711 712
}

M
Marcelo Tosatti 已提交
713
/*
714 715
 * Return the pointer to the large page information for a given gfn,
 * handling slots that are not large page aligned.
M
Marcelo Tosatti 已提交
716
 */
717
static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
718
		const struct kvm_memory_slot *slot, int level)
M
Marcelo Tosatti 已提交
719 720 721
{
	unsigned long idx;

722
	idx = gfn_to_index(gfn, slot->base_gfn, level);
723
	return &slot->arch.lpage_info[level - 2][idx];
M
Marcelo Tosatti 已提交
724 725
}

726 727 728 729 730 731
static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
					    gfn_t gfn, int count)
{
	struct kvm_lpage_info *linfo;
	int i;

732
	for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
		linfo = lpage_info_slot(gfn, slot, i);
		linfo->disallow_lpage += count;
		WARN_ON(linfo->disallow_lpage < 0);
	}
}

void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
{
	update_gfn_disallow_lpage_count(slot, gfn, 1);
}

void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
{
	update_gfn_disallow_lpage_count(slot, gfn, -1);
}

749
static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
M
Marcelo Tosatti 已提交
750
{
751
	struct kvm_memslots *slots;
752
	struct kvm_memory_slot *slot;
753
	gfn_t gfn;
M
Marcelo Tosatti 已提交
754

755
	kvm->arch.indirect_shadow_pages++;
756
	gfn = sp->gfn;
757 758
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
759 760

	/* the non-leaf shadow pages are keeping readonly. */
761
	if (sp->role.level > PG_LEVEL_4K)
762 763 764
		return kvm_slot_page_track_add_page(kvm, slot, gfn,
						    KVM_PAGE_TRACK_WRITE);

765
	kvm_mmu_gfn_disallow_lpage(slot, gfn);
M
Marcelo Tosatti 已提交
766 767
}

768
void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
P
Paolo Bonzini 已提交
769 770 771 772 773
{
	if (sp->lpage_disallowed)
		return;

	++kvm->stat.nx_lpage_splits;
774 775
	list_add_tail(&sp->lpage_disallowed_link,
		      &kvm->arch.lpage_disallowed_mmu_pages);
P
Paolo Bonzini 已提交
776 777 778
	sp->lpage_disallowed = true;
}

779
static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
M
Marcelo Tosatti 已提交
780
{
781
	struct kvm_memslots *slots;
782
	struct kvm_memory_slot *slot;
783
	gfn_t gfn;
M
Marcelo Tosatti 已提交
784

785
	kvm->arch.indirect_shadow_pages--;
786
	gfn = sp->gfn;
787 788
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
789
	if (sp->role.level > PG_LEVEL_4K)
790 791 792
		return kvm_slot_page_track_remove_page(kvm, slot, gfn,
						       KVM_PAGE_TRACK_WRITE);

793
	kvm_mmu_gfn_allow_lpage(slot, gfn);
M
Marcelo Tosatti 已提交
794 795
}

796
void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
P
Paolo Bonzini 已提交
797 798 799
{
	--kvm->stat.nx_lpage_splits;
	sp->lpage_disallowed = false;
800
	list_del(&sp->lpage_disallowed_link);
P
Paolo Bonzini 已提交
801 802
}

803 804 805
static struct kvm_memory_slot *
gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
			    bool no_dirty_log)
M
Marcelo Tosatti 已提交
806 807
{
	struct kvm_memory_slot *slot;
808

809
	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
810 811
	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
		return NULL;
812
	if (no_dirty_log && kvm_slot_dirty_track_enabled(slot))
813
		return NULL;
814 815 816 817

	return slot;
}

818
/*
819
 * About rmap_head encoding:
820
 *
821 822
 * If the bit zero of rmap_head->val is clear, then it points to the only spte
 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
823
 * pte_list_desc containing more mappings.
824 825 826 827
 */

/*
 * Returns the number of pointers in the rmap chain, not counting the new one.
828
 */
829
static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
830
			struct kvm_rmap_head *rmap_head)
831
{
832
	struct pte_list_desc *desc;
833
	int i, count = 0;
834

835
	if (!rmap_head->val) {
836
		rmap_printk("%p %llx 0->1\n", spte, *spte);
837 838
		rmap_head->val = (unsigned long)spte;
	} else if (!(rmap_head->val & 1)) {
839
		rmap_printk("%p %llx 1->many\n", spte, *spte);
840
		desc = mmu_alloc_pte_list_desc(vcpu);
841
		desc->sptes[0] = (u64 *)rmap_head->val;
A
Avi Kivity 已提交
842
		desc->sptes[1] = spte;
843
		rmap_head->val = (unsigned long)desc | 1;
844
		++count;
845
	} else {
846
		rmap_printk("%p %llx many->many\n", spte, *spte);
847
		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
848
		while (desc->sptes[PTE_LIST_EXT-1]) {
849
			count += PTE_LIST_EXT;
850 851 852 853 854 855

			if (!desc->more) {
				desc->more = mmu_alloc_pte_list_desc(vcpu);
				desc = desc->more;
				break;
			}
856 857
			desc = desc->more;
		}
A
Avi Kivity 已提交
858
		for (i = 0; desc->sptes[i]; ++i)
859
			++count;
A
Avi Kivity 已提交
860
		desc->sptes[i] = spte;
861
	}
862
	return count;
863 864
}

865
static void
866 867 868
pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
			   struct pte_list_desc *desc, int i,
			   struct pte_list_desc *prev_desc)
869 870 871
{
	int j;

872
	for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
873
		;
A
Avi Kivity 已提交
874 875
	desc->sptes[i] = desc->sptes[j];
	desc->sptes[j] = NULL;
876 877 878
	if (j != 0)
		return;
	if (!prev_desc && !desc->more)
879
		rmap_head->val = 0;
880 881 882 883
	else
		if (prev_desc)
			prev_desc->more = desc->more;
		else
884
			rmap_head->val = (unsigned long)desc->more | 1;
885
	mmu_free_pte_list_desc(desc);
886 887
}

888
static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
889
{
890 891
	struct pte_list_desc *desc;
	struct pte_list_desc *prev_desc;
892 893
	int i;

894
	if (!rmap_head->val) {
895
		pr_err("%s: %p 0->BUG\n", __func__, spte);
896
		BUG();
897
	} else if (!(rmap_head->val & 1)) {
898
		rmap_printk("%p 1->0\n", spte);
899
		if ((u64 *)rmap_head->val != spte) {
900
			pr_err("%s:  %p 1->BUG\n", __func__, spte);
901 902
			BUG();
		}
903
		rmap_head->val = 0;
904
	} else {
905
		rmap_printk("%p many->many\n", spte);
906
		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
907 908
		prev_desc = NULL;
		while (desc) {
909
			for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
A
Avi Kivity 已提交
910
				if (desc->sptes[i] == spte) {
911 912
					pte_list_desc_remove_entry(rmap_head,
							desc, i, prev_desc);
913 914
					return;
				}
915
			}
916 917 918
			prev_desc = desc;
			desc = desc->more;
		}
919
		pr_err("%s: %p many->many\n", __func__, spte);
920 921 922 923
		BUG();
	}
}

924 925 926 927 928 929
static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep)
{
	mmu_spte_clear_track_bits(sptep);
	__pte_list_remove(sptep, rmap_head);
}

930 931
static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
					   struct kvm_memory_slot *slot)
932
{
933
	unsigned long idx;
934

935
	idx = gfn_to_index(gfn, slot->base_gfn, level);
936
	return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
937 938
}

939 940
static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
					 struct kvm_mmu_page *sp)
941
{
942
	struct kvm_memslots *slots;
943 944
	struct kvm_memory_slot *slot;

945 946
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
947
	return __gfn_to_rmap(gfn, sp->role.level, slot);
948 949
}

950 951
static bool rmap_can_add(struct kvm_vcpu *vcpu)
{
952
	struct kvm_mmu_memory_cache *mc;
953

954
	mc = &vcpu->arch.mmu_pte_list_desc_cache;
955
	return kvm_mmu_memory_cache_nr_free_objects(mc);
956 957
}

958 959 960
static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
{
	struct kvm_mmu_page *sp;
961
	struct kvm_rmap_head *rmap_head;
962

963
	sp = sptep_to_sp(spte);
964
	kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
965 966
	rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
	return pte_list_add(vcpu, spte, rmap_head);
967 968 969 970 971 972
}

static void rmap_remove(struct kvm *kvm, u64 *spte)
{
	struct kvm_mmu_page *sp;
	gfn_t gfn;
973
	struct kvm_rmap_head *rmap_head;
974

975
	sp = sptep_to_sp(spte);
976
	gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
977
	rmap_head = gfn_to_rmap(kvm, gfn, sp);
978
	__pte_list_remove(spte, rmap_head);
979 980
}

981 982 983 984 985 986 987 988 989 990 991 992 993
/*
 * Used by the following functions to iterate through the sptes linked by a
 * rmap.  All fields are private and not assumed to be used outside.
 */
struct rmap_iterator {
	/* private fields */
	struct pte_list_desc *desc;	/* holds the sptep if not NULL */
	int pos;			/* index of the sptep */
};

/*
 * Iteration must be started by this function.  This should also be used after
 * removing/dropping sptes from the rmap link because in such cases the
M
Miaohe Lin 已提交
994
 * information in the iterator may not be valid.
995 996 997
 *
 * Returns sptep if found, NULL otherwise.
 */
998 999
static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
			   struct rmap_iterator *iter)
1000
{
1001 1002
	u64 *sptep;

1003
	if (!rmap_head->val)
1004 1005
		return NULL;

1006
	if (!(rmap_head->val & 1)) {
1007
		iter->desc = NULL;
1008 1009
		sptep = (u64 *)rmap_head->val;
		goto out;
1010 1011
	}

1012
	iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1013
	iter->pos = 0;
1014 1015 1016 1017
	sptep = iter->desc->sptes[iter->pos];
out:
	BUG_ON(!is_shadow_present_pte(*sptep));
	return sptep;
1018 1019 1020 1021 1022 1023 1024 1025 1026
}

/*
 * Must be used with a valid iterator: e.g. after rmap_get_first().
 *
 * Returns sptep if found, NULL otherwise.
 */
static u64 *rmap_get_next(struct rmap_iterator *iter)
{
1027 1028
	u64 *sptep;

1029 1030 1031 1032 1033
	if (iter->desc) {
		if (iter->pos < PTE_LIST_EXT - 1) {
			++iter->pos;
			sptep = iter->desc->sptes[iter->pos];
			if (sptep)
1034
				goto out;
1035 1036 1037 1038 1039 1040 1041
		}

		iter->desc = iter->desc->more;

		if (iter->desc) {
			iter->pos = 0;
			/* desc->sptes[0] cannot be NULL */
1042 1043
			sptep = iter->desc->sptes[iter->pos];
			goto out;
1044 1045 1046 1047
		}
	}

	return NULL;
1048 1049 1050
out:
	BUG_ON(!is_shadow_present_pte(*sptep));
	return sptep;
1051 1052
}

1053 1054
#define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)			\
	for (_spte_ = rmap_get_first(_rmap_head_, _iter_);		\
1055
	     _spte_; _spte_ = rmap_get_next(_iter_))
1056

1057
static void drop_spte(struct kvm *kvm, u64 *sptep)
1058
{
1059
	if (mmu_spte_clear_track_bits(sptep))
1060
		rmap_remove(kvm, sptep);
A
Avi Kivity 已提交
1061 1062
}

1063 1064 1065 1066

static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
{
	if (is_large_pte(*sptep)) {
1067
		WARN_ON(sptep_to_sp(sptep)->role.level == PG_LEVEL_4K);
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
		drop_spte(kvm, sptep);
		--kvm->stat.lpages;
		return true;
	}

	return false;
}

static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
{
1078
	if (__drop_large_spte(vcpu->kvm, sptep)) {
1079
		struct kvm_mmu_page *sp = sptep_to_sp(sptep);
1080 1081 1082 1083

		kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
			KVM_PAGES_PER_HPAGE(sp->role.level));
	}
1084 1085 1086
}

/*
1087
 * Write-protect on the specified @sptep, @pt_protect indicates whether
1088
 * spte write-protection is caused by protecting shadow page table.
1089
 *
T
Tiejun Chen 已提交
1090
 * Note: write protection is difference between dirty logging and spte
1091 1092 1093 1094 1095
 * protection:
 * - for dirty logging, the spte can be set to writable at anytime if
 *   its dirty bitmap is properly set.
 * - for spte protection, the spte can be writable only after unsync-ing
 *   shadow page.
1096
 *
1097
 * Return true if tlb need be flushed.
1098
 */
1099
static bool spte_write_protect(u64 *sptep, bool pt_protect)
1100 1101 1102
{
	u64 spte = *sptep;

1103
	if (!is_writable_pte(spte) &&
1104
	      !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1105 1106
		return false;

1107
	rmap_printk("spte %p %llx\n", sptep, *sptep);
1108

1109
	if (pt_protect)
1110
		spte &= ~shadow_mmu_writable_mask;
1111
	spte = spte & ~PT_WRITABLE_MASK;
1112

1113
	return mmu_spte_update(sptep, spte);
1114 1115
}

1116 1117
static bool __rmap_write_protect(struct kvm *kvm,
				 struct kvm_rmap_head *rmap_head,
1118
				 bool pt_protect)
1119
{
1120 1121
	u64 *sptep;
	struct rmap_iterator iter;
1122
	bool flush = false;
1123

1124
	for_each_rmap_spte(rmap_head, &iter, sptep)
1125
		flush |= spte_write_protect(sptep, pt_protect);
1126

1127
	return flush;
1128 1129
}

1130
static bool spte_clear_dirty(u64 *sptep)
1131 1132 1133
{
	u64 spte = *sptep;

1134
	rmap_printk("spte %p %llx\n", sptep, *sptep);
1135

1136
	MMU_WARN_ON(!spte_ad_enabled(spte));
1137 1138 1139 1140
	spte &= ~shadow_dirty_mask;
	return mmu_spte_update(sptep, spte);
}

1141
static bool spte_wrprot_for_clear_dirty(u64 *sptep)
1142 1143 1144
{
	bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
					       (unsigned long *)sptep);
1145
	if (was_writable && !spte_ad_enabled(*sptep))
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
		kvm_set_pfn_dirty(spte_to_pfn(*sptep));

	return was_writable;
}

/*
 * Gets the GFN ready for another round of dirty logging by clearing the
 *	- D bit on ad-enabled SPTEs, and
 *	- W bit on ad-disabled SPTEs.
 * Returns true iff any D or W bits were cleared.
 */
1157 1158
static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			       struct kvm_memory_slot *slot)
1159 1160 1161 1162 1163
{
	u64 *sptep;
	struct rmap_iterator iter;
	bool flush = false;

1164
	for_each_rmap_spte(rmap_head, &iter, sptep)
1165 1166
		if (spte_ad_need_write_protect(*sptep))
			flush |= spte_wrprot_for_clear_dirty(sptep);
1167
		else
1168
			flush |= spte_clear_dirty(sptep);
1169 1170 1171 1172

	return flush;
}

1173
/**
1174
 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1175 1176 1177 1178 1179 1180 1181 1182
 * @kvm: kvm instance
 * @slot: slot to protect
 * @gfn_offset: start of the BITS_PER_LONG pages we care about
 * @mask: indicates which pages we should protect
 *
 * Used when we do not need to care about huge page mappings: e.g. during dirty
 * logging we do not have any such mappings.
 */
1183
static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1184 1185
				     struct kvm_memory_slot *slot,
				     gfn_t gfn_offset, unsigned long mask)
1186
{
1187
	struct kvm_rmap_head *rmap_head;
1188

1189
	if (is_tdp_mmu_enabled(kvm))
1190 1191
		kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
				slot->base_gfn + gfn_offset, mask, true);
1192
	while (mask) {
1193
		rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1194
					  PG_LEVEL_4K, slot);
1195
		__rmap_write_protect(kvm, rmap_head, false);
M
Marcelo Tosatti 已提交
1196

1197 1198 1199
		/* clear the first set bit */
		mask &= mask - 1;
	}
1200 1201
}

1202
/**
1203 1204
 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
 * protect the page if the D-bit isn't supported.
1205 1206 1207 1208 1209 1210 1211
 * @kvm: kvm instance
 * @slot: slot to clear D-bit
 * @gfn_offset: start of the BITS_PER_LONG pages we care about
 * @mask: indicates which pages we should clear D-bit
 *
 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
 */
1212 1213 1214
static void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
					 struct kvm_memory_slot *slot,
					 gfn_t gfn_offset, unsigned long mask)
1215
{
1216
	struct kvm_rmap_head *rmap_head;
1217

1218
	if (is_tdp_mmu_enabled(kvm))
1219 1220
		kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
				slot->base_gfn + gfn_offset, mask, false);
1221
	while (mask) {
1222
		rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1223
					  PG_LEVEL_4K, slot);
1224
		__rmap_clear_dirty(kvm, rmap_head, slot);
1225 1226 1227 1228 1229 1230

		/* clear the first set bit */
		mask &= mask - 1;
	}
}

1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
/**
 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
 * PT level pages.
 *
 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
 * enable dirty logging for them.
 *
 * Used when we do not need to care about huge page mappings: e.g. during dirty
 * logging we do not have any such mappings.
 */
void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
				struct kvm_memory_slot *slot,
				gfn_t gfn_offset, unsigned long mask)
{
1245 1246
	if (kvm_x86_ops.cpu_dirty_log_size)
		kvm_mmu_clear_dirty_pt_masked(kvm, slot, gfn_offset, mask);
1247 1248
	else
		kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1249 1250
}

1251 1252
int kvm_cpu_dirty_log_size(void)
{
1253
	return kvm_x86_ops.cpu_dirty_log_size;
1254 1255
}

1256 1257
bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
				    struct kvm_memory_slot *slot, u64 gfn)
1258
{
1259
	struct kvm_rmap_head *rmap_head;
1260
	int i;
1261
	bool write_protected = false;
1262

1263
	for (i = PG_LEVEL_4K; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
1264
		rmap_head = __gfn_to_rmap(gfn, i, slot);
1265
		write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1266 1267
	}

1268
	if (is_tdp_mmu_enabled(kvm))
1269 1270 1271
		write_protected |=
			kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn);

1272
	return write_protected;
1273 1274
}

1275 1276 1277 1278 1279 1280 1281 1282
static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
{
	struct kvm_memory_slot *slot;

	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
	return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
}

1283 1284
static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			  struct kvm_memory_slot *slot)
1285
{
1286 1287
	u64 *sptep;
	struct rmap_iterator iter;
1288
	bool flush = false;
1289

1290
	while ((sptep = rmap_get_first(rmap_head, &iter))) {
1291
		rmap_printk("spte %p %llx.\n", sptep, *sptep);
1292

1293
		pte_list_remove(rmap_head, sptep);
1294
		flush = true;
1295
	}
1296

1297 1298 1299
	return flush;
}

1300 1301 1302
static bool kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			    struct kvm_memory_slot *slot, gfn_t gfn, int level,
			    pte_t unused)
1303
{
1304
	return kvm_zap_rmapp(kvm, rmap_head, slot);
1305 1306
}

1307 1308 1309
static bool kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			      struct kvm_memory_slot *slot, gfn_t gfn, int level,
			      pte_t pte)
1310
{
1311 1312
	u64 *sptep;
	struct rmap_iterator iter;
1313
	int need_flush = 0;
1314
	u64 new_spte;
D
Dan Williams 已提交
1315
	kvm_pfn_t new_pfn;
1316

1317 1318
	WARN_ON(pte_huge(pte));
	new_pfn = pte_pfn(pte);
1319

1320
restart:
1321
	for_each_rmap_spte(rmap_head, &iter, sptep) {
1322
		rmap_printk("spte %p %llx gfn %llx (%d)\n",
1323
			    sptep, *sptep, gfn, level);
1324

1325
		need_flush = 1;
1326

1327
		if (pte_write(pte)) {
1328
			pte_list_remove(rmap_head, sptep);
1329
			goto restart;
1330
		} else {
1331 1332
			new_spte = kvm_mmu_changed_pte_notifier_make_spte(
					*sptep, new_pfn);
1333 1334 1335

			mmu_spte_clear_track_bits(sptep);
			mmu_spte_set(sptep, new_spte);
1336 1337
		}
	}
1338

1339 1340 1341 1342 1343
	if (need_flush && kvm_available_flush_tlb_with_range()) {
		kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
		return 0;
	}

1344
	return need_flush;
1345 1346
}

1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
struct slot_rmap_walk_iterator {
	/* input fields. */
	struct kvm_memory_slot *slot;
	gfn_t start_gfn;
	gfn_t end_gfn;
	int start_level;
	int end_level;

	/* output fields. */
	gfn_t gfn;
1357
	struct kvm_rmap_head *rmap;
1358 1359 1360
	int level;

	/* private field. */
1361
	struct kvm_rmap_head *end_rmap;
1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
};

static void
rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
{
	iterator->level = level;
	iterator->gfn = iterator->start_gfn;
	iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
	iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
					   iterator->slot);
}

static void
slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
		    struct kvm_memory_slot *slot, int start_level,
		    int end_level, gfn_t start_gfn, gfn_t end_gfn)
{
	iterator->slot = slot;
	iterator->start_level = start_level;
	iterator->end_level = end_level;
	iterator->start_gfn = start_gfn;
	iterator->end_gfn = end_gfn;

	rmap_walk_init_level(iterator, iterator->start_level);
}

static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
{
	return !!iterator->rmap;
}

static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
{
	if (++iterator->rmap <= iterator->end_rmap) {
		iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
		return;
	}

	if (++iterator->level > iterator->end_level) {
		iterator->rmap = NULL;
		return;
	}

	rmap_walk_init_level(iterator, iterator->level);
}

#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,	\
	   _start_gfn, _end_gfn, _iter_)				\
	for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,		\
				 _end_level_, _start_gfn, _end_gfn);	\
	     slot_rmap_walk_okay(_iter_);				\
	     slot_rmap_walk_next(_iter_))

1415 1416 1417
typedef bool (*rmap_handler_t)(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			       struct kvm_memory_slot *slot, gfn_t gfn,
			       int level, pte_t pte);
1418

1419 1420 1421
static __always_inline bool kvm_handle_gfn_range(struct kvm *kvm,
						 struct kvm_gfn_range *range,
						 rmap_handler_t handler)
1422
{
1423
	struct slot_rmap_walk_iterator iterator;
1424
	bool ret = false;
1425

1426 1427 1428 1429
	for_each_slot_rmap_range(range->slot, PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL,
				 range->start, range->end - 1, &iterator)
		ret |= handler(kvm, iterator.rmap, range->slot, iterator.gfn,
			       iterator.level, range->pte);
1430

1431
	return ret;
1432 1433
}

1434
bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
1435
{
1436
	bool flush;
1437

1438
	flush = kvm_handle_gfn_range(kvm, range, kvm_unmap_rmapp);
1439

1440
	if (is_tdp_mmu_enabled(kvm))
1441
		flush |= kvm_tdp_mmu_unmap_gfn_range(kvm, range, flush);
1442

1443
	return flush;
1444 1445
}

1446
bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1447
{
1448
	bool flush;
1449

1450
	flush = kvm_handle_gfn_range(kvm, range, kvm_set_pte_rmapp);
1451

1452
	if (is_tdp_mmu_enabled(kvm))
1453
		flush |= kvm_tdp_mmu_set_spte_gfn(kvm, range);
1454

1455
	return flush;
1456 1457
}

1458 1459 1460
static bool kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			  struct kvm_memory_slot *slot, gfn_t gfn, int level,
			  pte_t unused)
1461
{
1462
	u64 *sptep;
1463
	struct rmap_iterator iter;
1464 1465
	int young = 0;

1466 1467
	for_each_rmap_spte(rmap_head, &iter, sptep)
		young |= mmu_spte_age(sptep);
1468

1469 1470 1471
	return young;
}

1472 1473 1474
static bool kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			       struct kvm_memory_slot *slot, gfn_t gfn,
			       int level, pte_t unused)
A
Andrea Arcangeli 已提交
1475
{
1476 1477
	u64 *sptep;
	struct rmap_iterator iter;
A
Andrea Arcangeli 已提交
1478

1479 1480 1481 1482
	for_each_rmap_spte(rmap_head, &iter, sptep)
		if (is_accessed_spte(*sptep))
			return 1;
	return 0;
A
Andrea Arcangeli 已提交
1483 1484
}

1485 1486
#define RMAP_RECYCLE_THRESHOLD 1000

1487
static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1488
{
1489
	struct kvm_rmap_head *rmap_head;
1490 1491
	struct kvm_mmu_page *sp;

1492
	sp = sptep_to_sp(spte);
1493

1494
	rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1495

1496
	kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, __pte(0));
1497 1498
	kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
			KVM_PAGES_PER_HPAGE(sp->role.level));
1499 1500
}

1501
bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1502
{
1503 1504 1505
	bool young;

	young = kvm_handle_gfn_range(kvm, range, kvm_age_rmapp);
1506

1507
	if (is_tdp_mmu_enabled(kvm))
1508
		young |= kvm_tdp_mmu_age_gfn_range(kvm, range);
1509 1510

	return young;
1511 1512
}

1513
bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
A
Andrea Arcangeli 已提交
1514
{
1515 1516 1517
	bool young;

	young = kvm_handle_gfn_range(kvm, range, kvm_test_age_rmapp);
1518

1519
	if (is_tdp_mmu_enabled(kvm))
1520
		young |= kvm_tdp_mmu_test_age_gfn(kvm, range);
1521 1522

	return young;
A
Andrea Arcangeli 已提交
1523 1524
}

1525
#ifdef MMU_DEBUG
1526
static int is_empty_shadow_page(u64 *spt)
A
Avi Kivity 已提交
1527
{
1528 1529 1530
	u64 *pos;
	u64 *end;

1531
	for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1532
		if (is_shadow_present_pte(*pos)) {
1533
			printk(KERN_ERR "%s: %p %llx\n", __func__,
1534
			       pos, *pos);
A
Avi Kivity 已提交
1535
			return 0;
1536
		}
A
Avi Kivity 已提交
1537 1538
	return 1;
}
1539
#endif
A
Avi Kivity 已提交
1540

1541 1542 1543 1544 1545 1546
/*
 * This value is the sum of all of the kvm instances's
 * kvm->arch.n_used_mmu_pages values.  We need a global,
 * aggregate version in order to make the slab shrinker
 * faster
 */
1547
static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, unsigned long nr)
1548 1549 1550 1551 1552
{
	kvm->arch.n_used_mmu_pages += nr;
	percpu_counter_add(&kvm_total_used_mmu_pages, nr);
}

1553
static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1554
{
1555
	MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1556
	hlist_del(&sp->hash_link);
1557 1558
	list_del(&sp->link);
	free_page((unsigned long)sp->spt);
1559 1560
	if (!sp->role.direct)
		free_page((unsigned long)sp->gfns);
1561
	kmem_cache_free(mmu_page_header_cache, sp);
1562 1563
}

1564 1565
static unsigned kvm_page_table_hashfn(gfn_t gfn)
{
1566
	return hash_64(gfn, KVM_MMU_HASH_SHIFT);
1567 1568
}

1569
static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1570
				    struct kvm_mmu_page *sp, u64 *parent_pte)
1571 1572 1573 1574
{
	if (!parent_pte)
		return;

1575
	pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1576 1577
}

1578
static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1579 1580
				       u64 *parent_pte)
{
1581
	__pte_list_remove(parent_pte, &sp->parent_ptes);
1582 1583
}

1584 1585 1586 1587
static void drop_parent_pte(struct kvm_mmu_page *sp,
			    u64 *parent_pte)
{
	mmu_page_remove_parent_pte(sp, parent_pte);
1588
	mmu_spte_clear_no_track(parent_pte);
1589 1590
}

1591
static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
M
Marcelo Tosatti 已提交
1592
{
1593
	struct kvm_mmu_page *sp;
1594

1595 1596
	sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
	sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache);
1597
	if (!direct)
1598
		sp->gfns = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_gfn_array_cache);
1599
	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1600 1601 1602 1603 1604 1605

	/*
	 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
	 * depends on valid pages being added to the head of the list.  See
	 * comments in kvm_zap_obsolete_pages().
	 */
1606
	sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
1607 1608 1609
	list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
	kvm_mod_used_mmu_pages(vcpu->kvm, +1);
	return sp;
M
Marcelo Tosatti 已提交
1610 1611
}

1612
static void mark_unsync(u64 *spte);
1613
static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1614
{
1615 1616 1617 1618 1619 1620
	u64 *sptep;
	struct rmap_iterator iter;

	for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
		mark_unsync(sptep);
	}
1621 1622
}

1623
static void mark_unsync(u64 *spte)
1624
{
1625
	struct kvm_mmu_page *sp;
1626
	unsigned int index;
1627

1628
	sp = sptep_to_sp(spte);
1629 1630
	index = spte - sp->spt;
	if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1631
		return;
1632
	if (sp->unsync_children++)
1633
		return;
1634
	kvm_mmu_mark_parents_unsync(sp);
1635 1636
}

1637
static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1638
			       struct kvm_mmu_page *sp)
1639
{
1640
	return 0;
1641 1642
}

1643 1644 1645 1646 1647 1648 1649 1650 1651 1652
#define KVM_PAGE_ARRAY_NR 16

struct kvm_mmu_pages {
	struct mmu_page_and_offset {
		struct kvm_mmu_page *sp;
		unsigned int idx;
	} page[KVM_PAGE_ARRAY_NR];
	unsigned int nr;
};

1653 1654
static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
			 int idx)
1655
{
1656
	int i;
1657

1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668
	if (sp->unsync)
		for (i=0; i < pvec->nr; i++)
			if (pvec->page[i].sp == sp)
				return 0;

	pvec->page[pvec->nr].sp = sp;
	pvec->page[pvec->nr].idx = idx;
	pvec->nr++;
	return (pvec->nr == KVM_PAGE_ARRAY_NR);
}

1669 1670 1671 1672 1673 1674 1675
static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
{
	--sp->unsync_children;
	WARN_ON((int)sp->unsync_children < 0);
	__clear_bit(idx, sp->unsync_child_bitmap);
}

1676 1677 1678 1679
static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
	int i, ret, nr_unsync_leaf = 0;
1680

1681
	for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1682
		struct kvm_mmu_page *child;
1683 1684
		u64 ent = sp->spt[i];

1685 1686 1687 1688
		if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
			clear_unsync_child_bit(sp, i);
			continue;
		}
1689

1690
		child = to_shadow_page(ent & PT64_BASE_ADDR_MASK);
1691 1692 1693 1694 1695 1696

		if (child->unsync_children) {
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;

			ret = __mmu_unsync_walk(child, pvec);
1697 1698 1699 1700
			if (!ret) {
				clear_unsync_child_bit(sp, i);
				continue;
			} else if (ret > 0) {
1701
				nr_unsync_leaf += ret;
1702
			} else
1703 1704 1705 1706 1707 1708
				return ret;
		} else if (child->unsync) {
			nr_unsync_leaf++;
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;
		} else
1709
			clear_unsync_child_bit(sp, i);
1710 1711
	}

1712 1713 1714
	return nr_unsync_leaf;
}

1715 1716
#define INVALID_INDEX (-1)

1717 1718 1719
static int mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
P
Paolo Bonzini 已提交
1720
	pvec->nr = 0;
1721 1722 1723
	if (!sp->unsync_children)
		return 0;

1724
	mmu_pages_add(pvec, sp, INVALID_INDEX);
1725
	return __mmu_unsync_walk(sp, pvec);
1726 1727 1728 1729 1730
}

static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
{
	WARN_ON(!sp->unsync);
1731
	trace_kvm_mmu_sync_page(sp);
1732 1733 1734 1735
	sp->unsync = 0;
	--kvm->stat.mmu_unsync;
}

1736 1737
static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				     struct list_head *invalid_list);
1738 1739
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list);
1740

1741 1742
#define for_each_valid_sp(_kvm, _sp, _list)				\
	hlist_for_each_entry(_sp, _list, hash_link)			\
1743
		if (is_obsolete_sp((_kvm), (_sp))) {			\
1744
		} else
1745 1746

#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)			\
1747 1748
	for_each_valid_sp(_kvm, _sp,					\
	  &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)])	\
1749
		if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
1750

1751 1752 1753 1754 1755
static inline bool is_ept_sp(struct kvm_mmu_page *sp)
{
	return sp->role.cr0_wp && sp->role.smap_andnot_wp;
}

1756
/* @sp->gfn should be write-protected at the call site */
1757 1758
static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
			    struct list_head *invalid_list)
1759
{
1760 1761
	if ((!is_ept_sp(sp) && sp->role.gpte_is_8_bytes != !!is_pae(vcpu)) ||
	    vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
1762
		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1763
		return false;
1764 1765
	}

1766
	return true;
1767 1768
}

1769 1770 1771 1772
static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
					struct list_head *invalid_list,
					bool remote_flush)
{
1773
	if (!remote_flush && list_empty(invalid_list))
1774 1775 1776 1777 1778 1779 1780 1781 1782
		return false;

	if (!list_empty(invalid_list))
		kvm_mmu_commit_zap_page(kvm, invalid_list);
	else
		kvm_flush_remote_tlbs(kvm);
	return true;
}

1783 1784 1785
static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
				 struct list_head *invalid_list,
				 bool remote_flush, bool local_flush)
1786
{
1787
	if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush))
1788
		return;
1789

1790
	if (local_flush)
1791
		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1792 1793
}

1794 1795 1796 1797 1798 1799 1800
#ifdef CONFIG_KVM_MMU_AUDIT
#include "mmu_audit.c"
#else
static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
static void mmu_audit_disable(void) { }
#endif

1801 1802
static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
{
1803 1804
	return sp->role.invalid ||
	       unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1805 1806
}

1807
static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1808
			 struct list_head *invalid_list)
1809
{
1810 1811
	kvm_unlink_unsync_page(vcpu->kvm, sp);
	return __kvm_sync_page(vcpu, sp, invalid_list);
1812 1813
}

1814
/* @gfn should be write-protected at the call site */
1815 1816
static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
			   struct list_head *invalid_list)
1817 1818
{
	struct kvm_mmu_page *s;
1819
	bool ret = false;
1820

1821
	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1822
		if (!s->unsync)
1823 1824
			continue;

1825
		WARN_ON(s->role.level != PG_LEVEL_4K);
1826
		ret |= kvm_sync_page(vcpu, s, invalid_list);
1827 1828
	}

1829
	return ret;
1830 1831
}

1832
struct mmu_page_path {
1833 1834
	struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
	unsigned int idx[PT64_ROOT_MAX_LEVEL];
1835 1836
};

1837
#define for_each_sp(pvec, sp, parents, i)			\
P
Paolo Bonzini 已提交
1838
		for (i = mmu_pages_first(&pvec, &parents);	\
1839 1840 1841
			i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});	\
			i = mmu_pages_next(&pvec, &parents, i))

1842 1843 1844
static int mmu_pages_next(struct kvm_mmu_pages *pvec,
			  struct mmu_page_path *parents,
			  int i)
1845 1846 1847 1848 1849
{
	int n;

	for (n = i+1; n < pvec->nr; n++) {
		struct kvm_mmu_page *sp = pvec->page[n].sp;
P
Paolo Bonzini 已提交
1850 1851
		unsigned idx = pvec->page[n].idx;
		int level = sp->role.level;
1852

P
Paolo Bonzini 已提交
1853
		parents->idx[level-1] = idx;
1854
		if (level == PG_LEVEL_4K)
P
Paolo Bonzini 已提交
1855
			break;
1856

P
Paolo Bonzini 已提交
1857
		parents->parent[level-2] = sp;
1858 1859 1860 1861 1862
	}

	return n;
}

P
Paolo Bonzini 已提交
1863 1864 1865 1866 1867 1868 1869 1870 1871
static int mmu_pages_first(struct kvm_mmu_pages *pvec,
			   struct mmu_page_path *parents)
{
	struct kvm_mmu_page *sp;
	int level;

	if (pvec->nr == 0)
		return 0;

1872 1873
	WARN_ON(pvec->page[0].idx != INVALID_INDEX);

P
Paolo Bonzini 已提交
1874 1875
	sp = pvec->page[0].sp;
	level = sp->role.level;
1876
	WARN_ON(level == PG_LEVEL_4K);
P
Paolo Bonzini 已提交
1877 1878 1879 1880 1881 1882 1883 1884 1885 1886

	parents->parent[level-2] = sp;

	/* Also set up a sentinel.  Further entries in pvec are all
	 * children of sp, so this element is never overwritten.
	 */
	parents->parent[level-1] = NULL;
	return mmu_pages_next(pvec, parents, 0);
}

1887
static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1888
{
1889 1890 1891 1892 1893 1894 1895 1896 1897
	struct kvm_mmu_page *sp;
	unsigned int level = 0;

	do {
		unsigned int idx = parents->idx[level];
		sp = parents->parent[level];
		if (!sp)
			return;

1898
		WARN_ON(idx == INVALID_INDEX);
1899
		clear_unsync_child_bit(sp, idx);
1900
		level++;
P
Paolo Bonzini 已提交
1901
	} while (!sp->unsync_children);
1902
}
1903

1904 1905 1906 1907 1908 1909 1910
static void mmu_sync_children(struct kvm_vcpu *vcpu,
			      struct kvm_mmu_page *parent)
{
	int i;
	struct kvm_mmu_page *sp;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
1911
	LIST_HEAD(invalid_list);
1912
	bool flush = false;
1913 1914

	while (mmu_unsync_walk(parent, &pages)) {
1915
		bool protected = false;
1916 1917

		for_each_sp(pages, sp, parents, i)
1918
			protected |= rmap_write_protect(vcpu, sp->gfn);
1919

1920
		if (protected) {
1921
			kvm_flush_remote_tlbs(vcpu->kvm);
1922 1923
			flush = false;
		}
1924

1925
		for_each_sp(pages, sp, parents, i) {
1926
			flush |= kvm_sync_page(vcpu, sp, &invalid_list);
1927 1928
			mmu_pages_clear_parents(&parents);
		}
1929
		if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) {
1930
			kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
1931
			cond_resched_rwlock_write(&vcpu->kvm->mmu_lock);
1932 1933
			flush = false;
		}
1934
	}
1935 1936

	kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
1937 1938
}

1939 1940
static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
{
1941
	atomic_set(&sp->write_flooding_count,  0);
1942 1943 1944 1945
}

static void clear_sp_write_flooding_count(u64 *spte)
{
1946
	__clear_sp_write_flooding_count(sptep_to_sp(spte));
1947 1948
}

1949 1950 1951 1952
static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
					     gfn_t gfn,
					     gva_t gaddr,
					     unsigned level,
1953
					     int direct,
1954
					     unsigned int access)
1955
{
1956
	bool direct_mmu = vcpu->arch.mmu->direct_map;
1957
	union kvm_mmu_page_role role;
1958
	struct hlist_head *sp_list;
1959
	unsigned quadrant;
1960 1961
	struct kvm_mmu_page *sp;
	bool need_sync = false;
1962
	bool flush = false;
1963
	int collisions = 0;
1964
	LIST_HEAD(invalid_list);
1965

1966
	role = vcpu->arch.mmu->mmu_role.base;
1967
	role.level = level;
1968
	role.direct = direct;
1969
	if (role.direct)
1970
		role.gpte_is_8_bytes = true;
1971
	role.access = access;
1972
	if (!direct_mmu && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
1973 1974 1975 1976
		quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
		quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
		role.quadrant = quadrant;
	}
1977 1978 1979

	sp_list = &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)];
	for_each_valid_sp(vcpu->kvm, sp, sp_list) {
1980 1981 1982 1983 1984
		if (sp->gfn != gfn) {
			collisions++;
			continue;
		}

1985 1986
		if (!need_sync && sp->unsync)
			need_sync = true;
1987

1988 1989
		if (sp->role.word != role.word)
			continue;
1990

1991 1992 1993
		if (direct_mmu)
			goto trace_get_page;

1994 1995 1996 1997 1998 1999 2000 2001
		if (sp->unsync) {
			/* The page is good, but __kvm_sync_page might still end
			 * up zapping it.  If so, break in order to rebuild it.
			 */
			if (!__kvm_sync_page(vcpu, sp, &invalid_list))
				break;

			WARN_ON(!list_empty(&invalid_list));
2002
			kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2003
		}
2004

2005
		if (sp->unsync_children)
2006
			kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2007

2008
		__clear_sp_write_flooding_count(sp);
2009 2010

trace_get_page:
2011
		trace_kvm_mmu_get_page(sp, false);
2012
		goto out;
2013
	}
2014

A
Avi Kivity 已提交
2015
	++vcpu->kvm->stat.mmu_cache_miss;
2016 2017 2018

	sp = kvm_mmu_alloc_page(vcpu, direct);

2019 2020
	sp->gfn = gfn;
	sp->role = role;
2021
	hlist_add_head(&sp->hash_link, sp_list);
2022
	if (!direct) {
2023 2024 2025 2026 2027 2028
		/*
		 * we should do write protection before syncing pages
		 * otherwise the content of the synced shadow page may
		 * be inconsistent with guest page table.
		 */
		account_shadowed(vcpu->kvm, sp);
2029
		if (level == PG_LEVEL_4K && rmap_write_protect(vcpu, gfn))
2030
			kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
2031

2032
		if (level > PG_LEVEL_4K && need_sync)
2033
			flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
2034
	}
A
Avi Kivity 已提交
2035
	trace_kvm_mmu_get_page(sp, true);
2036 2037

	kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2038 2039 2040
out:
	if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
		vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2041
	return sp;
2042 2043
}

2044 2045 2046
static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
					struct kvm_vcpu *vcpu, hpa_t root,
					u64 addr)
2047 2048
{
	iterator->addr = addr;
2049
	iterator->shadow_addr = root;
2050
	iterator->level = vcpu->arch.mmu->shadow_root_level;
2051

2052
	if (iterator->level == PT64_ROOT_4LEVEL &&
2053 2054
	    vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
	    !vcpu->arch.mmu->direct_map)
2055 2056
		--iterator->level;

2057
	if (iterator->level == PT32E_ROOT_LEVEL) {
2058 2059 2060 2061
		/*
		 * prev_root is currently only used for 64-bit hosts. So only
		 * the active root_hpa is valid here.
		 */
2062
		BUG_ON(root != vcpu->arch.mmu->root_hpa);
2063

2064
		iterator->shadow_addr
2065
			= vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2066 2067 2068 2069 2070 2071 2072
		iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
		--iterator->level;
		if (!iterator->shadow_addr)
			iterator->level = 0;
	}
}

2073 2074 2075
static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
			     struct kvm_vcpu *vcpu, u64 addr)
{
2076
	shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
2077 2078 2079
				    addr);
}

2080 2081
static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
{
2082
	if (iterator->level < PG_LEVEL_4K)
2083
		return false;
2084

2085 2086 2087 2088 2089
	iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
	iterator->sptep	= ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
	return true;
}

2090 2091
static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
			       u64 spte)
2092
{
2093
	if (is_last_spte(spte, iterator->level)) {
2094 2095 2096 2097
		iterator->level = 0;
		return;
	}

2098
	iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2099 2100 2101
	--iterator->level;
}

2102 2103
static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
{
2104
	__shadow_walk_next(iterator, *iterator->sptep);
2105 2106
}

2107 2108 2109 2110 2111 2112 2113 2114 2115
static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
			     struct kvm_mmu_page *sp)
{
	u64 spte;

	BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);

	spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp));

2116
	mmu_spte_set(sptep, spte);
2117 2118 2119 2120 2121

	mmu_page_add_parent_pte(vcpu, sp, sptep);

	if (sp->unsync_children || sp->unsync)
		mark_unsync(sptep);
2122 2123
}

2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136
static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
				   unsigned direct_access)
{
	if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
		struct kvm_mmu_page *child;

		/*
		 * For the direct sp, if the guest pte's dirty bit
		 * changed form clean to dirty, it will corrupt the
		 * sp's access: allow writable in the read-only sp,
		 * so we should update the spte at this point to get
		 * a new sp with the correct access.
		 */
2137
		child = to_shadow_page(*sptep & PT64_BASE_ADDR_MASK);
2138 2139 2140
		if (child->role.access == direct_access)
			return;

2141
		drop_parent_pte(child, sptep);
2142
		kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
2143 2144 2145
	}
}

2146 2147 2148
/* Returns the number of zapped non-leaf child shadow pages. */
static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
			    u64 *spte, struct list_head *invalid_list)
2149 2150 2151 2152 2153 2154
{
	u64 pte;
	struct kvm_mmu_page *child;

	pte = *spte;
	if (is_shadow_present_pte(pte)) {
X
Xiao Guangrong 已提交
2155
		if (is_last_spte(pte, sp->role.level)) {
2156
			drop_spte(kvm, spte);
X
Xiao Guangrong 已提交
2157 2158 2159
			if (is_large_pte(pte))
				--kvm->stat.lpages;
		} else {
2160
			child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2161
			drop_parent_pte(child, spte);
2162 2163 2164 2165 2166 2167 2168 2169 2170 2171

			/*
			 * Recursively zap nested TDP SPs, parentless SPs are
			 * unlikely to be used again in the near future.  This
			 * avoids retaining a large number of stale nested SPs.
			 */
			if (tdp_enabled && invalid_list &&
			    child->role.guest_mode && !child->parent_ptes.val)
				return kvm_mmu_prepare_zap_page(kvm, child,
								invalid_list);
2172
		}
2173
	} else if (is_mmio_spte(pte)) {
2174
		mmu_spte_clear_no_track(spte);
2175
	}
2176
	return 0;
2177 2178
}

2179 2180 2181
static int kvm_mmu_page_unlink_children(struct kvm *kvm,
					struct kvm_mmu_page *sp,
					struct list_head *invalid_list)
2182
{
2183
	int zapped = 0;
2184 2185
	unsigned i;

2186
	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2187 2188 2189
		zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list);

	return zapped;
2190 2191
}

2192
static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2193
{
2194 2195
	u64 *sptep;
	struct rmap_iterator iter;
2196

2197
	while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2198
		drop_parent_pte(sp, sptep);
2199 2200
}

2201
static int mmu_zap_unsync_children(struct kvm *kvm,
2202 2203
				   struct kvm_mmu_page *parent,
				   struct list_head *invalid_list)
2204
{
2205 2206 2207
	int i, zapped = 0;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
2208

2209
	if (parent->role.level == PG_LEVEL_4K)
2210
		return 0;
2211 2212 2213 2214 2215

	while (mmu_unsync_walk(parent, &pages)) {
		struct kvm_mmu_page *sp;

		for_each_sp(pages, sp, parents, i) {
2216
			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2217
			mmu_pages_clear_parents(&parents);
2218
			zapped++;
2219 2220 2221 2222
		}
	}

	return zapped;
2223 2224
}

2225 2226 2227 2228
static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
				       struct kvm_mmu_page *sp,
				       struct list_head *invalid_list,
				       int *nr_zapped)
2229
{
2230
	bool list_unstable;
A
Avi Kivity 已提交
2231

2232
	trace_kvm_mmu_prepare_zap_page(sp);
2233
	++kvm->stat.mmu_shadow_zapped;
2234
	*nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2235
	*nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list);
2236
	kvm_mmu_unlink_parents(kvm, sp);
2237

2238 2239 2240
	/* Zapping children means active_mmu_pages has become unstable. */
	list_unstable = *nr_zapped;

2241
	if (!sp->role.invalid && !sp->role.direct)
2242
		unaccount_shadowed(kvm, sp);
2243

2244 2245
	if (sp->unsync)
		kvm_unlink_unsync_page(kvm, sp);
2246
	if (!sp->root_count) {
2247
		/* Count self */
2248
		(*nr_zapped)++;
2249 2250 2251 2252 2253 2254 2255 2256 2257 2258

		/*
		 * Already invalid pages (previously active roots) are not on
		 * the active page list.  See list_del() in the "else" case of
		 * !sp->root_count.
		 */
		if (sp->role.invalid)
			list_add(&sp->link, invalid_list);
		else
			list_move(&sp->link, invalid_list);
2259
		kvm_mod_used_mmu_pages(kvm, -1);
2260
	} else {
2261 2262 2263 2264 2265
		/*
		 * Remove the active root from the active page list, the root
		 * will be explicitly freed when the root_count hits zero.
		 */
		list_del(&sp->link);
2266

2267 2268 2269 2270 2271 2272
		/*
		 * Obsolete pages cannot be used on any vCPUs, see the comment
		 * in kvm_mmu_zap_all_fast().  Note, is_obsolete_sp() also
		 * treats invalid shadow pages as being obsolete.
		 */
		if (!is_obsolete_sp(kvm, sp))
2273
			kvm_reload_remote_mmus(kvm);
2274
	}
2275

P
Paolo Bonzini 已提交
2276 2277 2278
	if (sp->lpage_disallowed)
		unaccount_huge_nx_page(kvm, sp);

2279
	sp->role.invalid = 1;
2280 2281 2282 2283 2284 2285 2286 2287 2288 2289
	return list_unstable;
}

static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				     struct list_head *invalid_list)
{
	int nr_zapped;

	__kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
	return nr_zapped;
2290 2291
}

2292 2293 2294
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list)
{
2295
	struct kvm_mmu_page *sp, *nsp;
2296 2297 2298 2299

	if (list_empty(invalid_list))
		return;

2300
	/*
2301 2302 2303 2304 2305 2306 2307
	 * We need to make sure everyone sees our modifications to
	 * the page tables and see changes to vcpu->mode here. The barrier
	 * in the kvm_flush_remote_tlbs() achieves this. This pairs
	 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
	 *
	 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
	 * guest mode and/or lockless shadow page table walks.
2308 2309
	 */
	kvm_flush_remote_tlbs(kvm);
2310

2311
	list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2312
		WARN_ON(!sp->role.invalid || sp->root_count);
2313
		kvm_mmu_free_page(sp);
2314
	}
2315 2316
}

2317 2318
static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm,
						  unsigned long nr_to_zap)
2319
{
2320 2321
	unsigned long total_zapped = 0;
	struct kvm_mmu_page *sp, *tmp;
2322
	LIST_HEAD(invalid_list);
2323 2324
	bool unstable;
	int nr_zapped;
2325 2326

	if (list_empty(&kvm->arch.active_mmu_pages))
2327 2328
		return 0;

2329
restart:
2330
	list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) {
2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341
		/*
		 * Don't zap active root pages, the page itself can't be freed
		 * and zapping it will just force vCPUs to realloc and reload.
		 */
		if (sp->root_count)
			continue;

		unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list,
						      &nr_zapped);
		total_zapped += nr_zapped;
		if (total_zapped >= nr_to_zap)
2342 2343
			break;

2344 2345
		if (unstable)
			goto restart;
2346
	}
2347

2348 2349 2350 2351 2352 2353
	kvm_mmu_commit_zap_page(kvm, &invalid_list);

	kvm->stat.mmu_recycled += total_zapped;
	return total_zapped;
}

2354 2355 2356 2357 2358 2359 2360
static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm)
{
	if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
		return kvm->arch.n_max_mmu_pages -
			kvm->arch.n_used_mmu_pages;

	return 0;
2361 2362
}

2363 2364
static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
{
2365
	unsigned long avail = kvm_mmu_available_pages(vcpu->kvm);
2366

2367
	if (likely(avail >= KVM_MIN_FREE_MMU_PAGES))
2368 2369
		return 0;

2370
	kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail);
2371

2372 2373 2374 2375 2376 2377 2378 2379 2380
	/*
	 * Note, this check is intentionally soft, it only guarantees that one
	 * page is available, while the caller may end up allocating as many as
	 * four pages, e.g. for PAE roots or for 5-level paging.  Temporarily
	 * exceeding the (arbitrary by default) limit will not harm the host,
	 * being too agressive may unnecessarily kill the guest, and getting an
	 * exact count is far more trouble than it's worth, especially in the
	 * page fault paths.
	 */
2381 2382 2383 2384 2385
	if (!kvm_mmu_available_pages(vcpu->kvm))
		return -ENOSPC;
	return 0;
}

2386 2387
/*
 * Changing the number of mmu pages allocated to the vm
2388
 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2389
 */
2390
void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2391
{
2392
	write_lock(&kvm->mmu_lock);
2393

2394
	if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2395 2396
		kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages -
						  goal_nr_mmu_pages);
2397

2398
		goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2399 2400
	}

2401
	kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2402

2403
	write_unlock(&kvm->mmu_lock);
2404 2405
}

2406
int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2407
{
2408
	struct kvm_mmu_page *sp;
2409
	LIST_HEAD(invalid_list);
2410 2411
	int r;

2412
	pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2413
	r = 0;
2414
	write_lock(&kvm->mmu_lock);
2415
	for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2416
		pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2417 2418
			 sp->role.word);
		r = 1;
2419
		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2420
	}
2421
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2422
	write_unlock(&kvm->mmu_lock);
2423

2424
	return r;
2425
}
2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440

static int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
{
	gpa_t gpa;
	int r;

	if (vcpu->arch.mmu->direct_map)
		return 0;

	gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);

	r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);

	return r;
}
2441

2442
static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2443 2444 2445 2446 2447 2448 2449 2450
{
	trace_kvm_mmu_unsync_page(sp);
	++vcpu->kvm->stat.mmu_unsync;
	sp->unsync = 1;

	kvm_mmu_mark_parents_unsync(sp);
}

2451 2452
bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
			    bool can_unsync)
2453
{
2454
	struct kvm_mmu_page *sp;
2455

2456 2457
	if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
		return true;
2458

2459
	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2460
		if (!can_unsync)
2461
			return true;
2462

2463 2464
		if (sp->unsync)
			continue;
2465

2466
		WARN_ON(sp->role.level != PG_LEVEL_4K);
2467
		kvm_unsync_page(vcpu, sp);
2468
	}
2469

2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508
	/*
	 * We need to ensure that the marking of unsync pages is visible
	 * before the SPTE is updated to allow writes because
	 * kvm_mmu_sync_roots() checks the unsync flags without holding
	 * the MMU lock and so can race with this. If the SPTE was updated
	 * before the page had been marked as unsync-ed, something like the
	 * following could happen:
	 *
	 * CPU 1                    CPU 2
	 * ---------------------------------------------------------------------
	 * 1.2 Host updates SPTE
	 *     to be writable
	 *                      2.1 Guest writes a GPTE for GVA X.
	 *                          (GPTE being in the guest page table shadowed
	 *                           by the SP from CPU 1.)
	 *                          This reads SPTE during the page table walk.
	 *                          Since SPTE.W is read as 1, there is no
	 *                          fault.
	 *
	 *                      2.2 Guest issues TLB flush.
	 *                          That causes a VM Exit.
	 *
	 *                      2.3 kvm_mmu_sync_pages() reads sp->unsync.
	 *                          Since it is false, so it just returns.
	 *
	 *                      2.4 Guest accesses GVA X.
	 *                          Since the mapping in the SP was not updated,
	 *                          so the old mapping for GVA X incorrectly
	 *                          gets used.
	 * 1.1 Host marks SP
	 *     as unsync
	 *     (sp->unsync = true)
	 *
	 * The write barrier below ensures that 1.1 happens before 1.2 and thus
	 * the situation in 2.4 does not arise. The implicit barrier in 2.2
	 * pairs with this write barrier.
	 */
	smp_wmb();

2509
	return false;
2510 2511
}

2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528
static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
		    unsigned int pte_access, int level,
		    gfn_t gfn, kvm_pfn_t pfn, bool speculative,
		    bool can_unsync, bool host_writable)
{
	u64 spte;
	struct kvm_mmu_page *sp;
	int ret;

	sp = sptep_to_sp(sptep);

	ret = make_spte(vcpu, pte_access, level, gfn, pfn, *sptep, speculative,
			can_unsync, host_writable, sp_ad_disabled(sp), &spte);

	if (spte & PT_WRITABLE_MASK)
		kvm_vcpu_mark_page_dirty(vcpu, gfn);

2529 2530 2531
	if (*sptep == spte)
		ret |= SET_SPTE_SPURIOUS;
	else if (mmu_spte_update(sptep, spte))
2532
		ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
M
Marcelo Tosatti 已提交
2533 2534 2535
	return ret;
}

2536
static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2537
			unsigned int pte_access, bool write_fault, int level,
2538 2539
			gfn_t gfn, kvm_pfn_t pfn, bool speculative,
			bool host_writable)
M
Marcelo Tosatti 已提交
2540 2541
{
	int was_rmapped = 0;
2542
	int rmap_count;
2543
	int set_spte_ret;
2544
	int ret = RET_PF_FIXED;
2545
	bool flush = false;
M
Marcelo Tosatti 已提交
2546

2547 2548
	pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
		 *sptep, write_fault, gfn);
M
Marcelo Tosatti 已提交
2549

2550 2551 2552 2553 2554
	if (unlikely(is_noslot_pfn(pfn))) {
		mark_mmio_spte(vcpu, sptep, gfn, pte_access);
		return RET_PF_EMULATE;
	}

2555
	if (is_shadow_present_pte(*sptep)) {
M
Marcelo Tosatti 已提交
2556 2557 2558 2559
		/*
		 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
		 * the parent of the now unreachable PTE.
		 */
2560
		if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) {
M
Marcelo Tosatti 已提交
2561
			struct kvm_mmu_page *child;
A
Avi Kivity 已提交
2562
			u64 pte = *sptep;
M
Marcelo Tosatti 已提交
2563

2564
			child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2565
			drop_parent_pte(child, sptep);
2566
			flush = true;
A
Avi Kivity 已提交
2567
		} else if (pfn != spte_to_pfn(*sptep)) {
2568
			pgprintk("hfn old %llx new %llx\n",
A
Avi Kivity 已提交
2569
				 spte_to_pfn(*sptep), pfn);
2570
			drop_spte(vcpu->kvm, sptep);
2571
			flush = true;
2572 2573
		} else
			was_rmapped = 1;
M
Marcelo Tosatti 已提交
2574
	}
2575

2576 2577 2578
	set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
				speculative, true, host_writable);
	if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
M
Marcelo Tosatti 已提交
2579
		if (write_fault)
2580
			ret = RET_PF_EMULATE;
2581
		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2582
	}
2583

2584
	if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
2585 2586
		kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
				KVM_PAGES_PER_HPAGE(level));
M
Marcelo Tosatti 已提交
2587

2588 2589 2590 2591 2592 2593 2594 2595 2596
	/*
	 * The fault is fully spurious if and only if the new SPTE and old SPTE
	 * are identical, and emulation is not required.
	 */
	if ((set_spte_ret & SET_SPTE_SPURIOUS) && ret == RET_PF_FIXED) {
		WARN_ON_ONCE(!was_rmapped);
		return RET_PF_SPURIOUS;
	}

A
Avi Kivity 已提交
2597
	pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2598
	trace_kvm_mmu_set_spte(level, gfn, sptep);
A
Avi Kivity 已提交
2599
	if (!was_rmapped && is_large_pte(*sptep))
M
Marcelo Tosatti 已提交
2600 2601
		++vcpu->kvm->stat.lpages;

2602 2603 2604 2605 2606 2607
	if (is_shadow_present_pte(*sptep)) {
		if (!was_rmapped) {
			rmap_count = rmap_add(vcpu, sptep, gfn);
			if (rmap_count > RMAP_RECYCLE_THRESHOLD)
				rmap_recycle(vcpu, sptep, gfn);
		}
2608
	}
2609

2610
	return ret;
2611 2612
}

D
Dan Williams 已提交
2613
static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2614 2615 2616 2617
				     bool no_dirty_log)
{
	struct kvm_memory_slot *slot;

2618
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2619
	if (!slot)
2620
		return KVM_PFN_ERR_FAULT;
2621

2622
	return gfn_to_pfn_memslot_atomic(slot, gfn);
2623 2624 2625 2626 2627 2628 2629
}

static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
				    struct kvm_mmu_page *sp,
				    u64 *start, u64 *end)
{
	struct page *pages[PTE_PREFETCH_NUM];
2630
	struct kvm_memory_slot *slot;
2631
	unsigned int access = sp->role.access;
2632 2633 2634 2635
	int i, ret;
	gfn_t gfn;

	gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2636 2637
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
	if (!slot)
2638 2639
		return -1;

2640
	ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2641 2642 2643
	if (ret <= 0)
		return -1;

2644
	for (i = 0; i < ret; i++, gfn++, start++) {
2645
		mmu_set_spte(vcpu, start, access, false, sp->role.level, gfn,
2646
			     page_to_pfn(pages[i]), true, true);
2647 2648
		put_page(pages[i]);
	}
2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664

	return 0;
}

static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
				  struct kvm_mmu_page *sp, u64 *sptep)
{
	u64 *spte, *start = NULL;
	int i;

	WARN_ON(!sp->role.direct);

	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
	spte = sp->spt + i;

	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2665
		if (is_shadow_present_pte(*spte) || spte == sptep) {
2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679
			if (!start)
				continue;
			if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
				break;
			start = NULL;
		} else if (!start)
			start = spte;
	}
}

static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
{
	struct kvm_mmu_page *sp;

2680
	sp = sptep_to_sp(sptep);
2681

2682
	/*
2683 2684 2685
	 * Without accessed bits, there's no way to distinguish between
	 * actually accessed translations and prefetched, so disable pte
	 * prefetch if accessed bits aren't available.
2686
	 */
2687
	if (sp_ad_disabled(sp))
2688 2689
		return;

2690
	if (sp->role.level > PG_LEVEL_4K)
2691 2692
		return;

2693 2694 2695 2696 2697 2698 2699
	/*
	 * If addresses are being invalidated, skip prefetching to avoid
	 * accidentally prefetching those addresses.
	 */
	if (unlikely(vcpu->kvm->mmu_notifier_count))
		return;

2700 2701 2702
	__direct_pte_prefetch(vcpu, sp, sptep);
}

2703
static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn,
2704
				  const struct kvm_memory_slot *slot)
2705 2706 2707 2708 2709
{
	unsigned long hva;
	pte_t *pte;
	int level;

2710
	if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn))
2711
		return PG_LEVEL_4K;
2712

2713 2714 2715 2716 2717 2718 2719 2720
	/*
	 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
	 * is not solely for performance, it's also necessary to avoid the
	 * "writable" check in __gfn_to_hva_many(), which will always fail on
	 * read-only memslots due to gfn_to_hva() assuming writes.  Earlier
	 * page fault steps have already verified the guest isn't writing a
	 * read-only memslot.
	 */
2721 2722
	hva = __gfn_to_hva_memslot(slot, gfn);

2723
	pte = lookup_address_in_mm(kvm->mm, hva, &level);
2724
	if (unlikely(!pte))
2725
		return PG_LEVEL_4K;
2726 2727 2728 2729

	return level;
}

2730 2731 2732
int kvm_mmu_max_mapping_level(struct kvm *kvm,
			      const struct kvm_memory_slot *slot, gfn_t gfn,
			      kvm_pfn_t pfn, int max_level)
2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748
{
	struct kvm_lpage_info *linfo;

	max_level = min(max_level, max_huge_page_level);
	for ( ; max_level > PG_LEVEL_4K; max_level--) {
		linfo = lpage_info_slot(gfn, slot, max_level);
		if (!linfo->disallow_lpage)
			break;
	}

	if (max_level == PG_LEVEL_4K)
		return PG_LEVEL_4K;

	return host_pfn_mapping_level(kvm, gfn, pfn, slot);
}

B
Ben Gardon 已提交
2749 2750 2751
int kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, gfn_t gfn,
			    int max_level, kvm_pfn_t *pfnp,
			    bool huge_page_disallowed, int *req_level)
2752
{
2753
	struct kvm_memory_slot *slot;
2754
	kvm_pfn_t pfn = *pfnp;
2755
	kvm_pfn_t mask;
2756
	int level;
2757

2758 2759
	*req_level = PG_LEVEL_4K;

2760 2761
	if (unlikely(max_level == PG_LEVEL_4K))
		return PG_LEVEL_4K;
2762

2763
	if (is_error_noslot_pfn(pfn) || kvm_is_reserved_pfn(pfn))
2764
		return PG_LEVEL_4K;
2765

2766 2767
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, true);
	if (!slot)
2768
		return PG_LEVEL_4K;
2769

2770
	level = kvm_mmu_max_mapping_level(vcpu->kvm, slot, gfn, pfn, max_level);
2771
	if (level == PG_LEVEL_4K)
2772
		return level;
2773

2774 2775 2776 2777 2778 2779 2780 2781
	*req_level = level = min(level, max_level);

	/*
	 * Enforce the iTLB multihit workaround after capturing the requested
	 * level, which will be used to do precise, accurate accounting.
	 */
	if (huge_page_disallowed)
		return PG_LEVEL_4K;
2782 2783

	/*
2784 2785
	 * mmu_notifier_retry() was successful and mmu_lock is held, so
	 * the pmd can't be split from under us.
2786
	 */
2787 2788 2789
	mask = KVM_PAGES_PER_HPAGE(level) - 1;
	VM_BUG_ON((gfn & mask) != (pfn & mask));
	*pfnp = pfn & ~mask;
2790 2791

	return level;
2792 2793
}

B
Ben Gardon 已提交
2794 2795
void disallowed_hugepage_adjust(u64 spte, gfn_t gfn, int cur_level,
				kvm_pfn_t *pfnp, int *goal_levelp)
P
Paolo Bonzini 已提交
2796
{
B
Ben Gardon 已提交
2797
	int level = *goal_levelp;
P
Paolo Bonzini 已提交
2798

2799
	if (cur_level == level && level > PG_LEVEL_4K &&
P
Paolo Bonzini 已提交
2800 2801 2802 2803 2804 2805 2806 2807 2808
	    is_shadow_present_pte(spte) &&
	    !is_large_pte(spte)) {
		/*
		 * A small SPTE exists for this pfn, but FNAME(fetch)
		 * and __direct_map would like to create a large PTE
		 * instead: just force them to go down another level,
		 * patching back for them into pfn the next 9 bits of
		 * the address.
		 */
2809 2810
		u64 page_mask = KVM_PAGES_PER_HPAGE(level) -
				KVM_PAGES_PER_HPAGE(level - 1);
P
Paolo Bonzini 已提交
2811
		*pfnp |= gfn & page_mask;
B
Ben Gardon 已提交
2812
		(*goal_levelp)--;
P
Paolo Bonzini 已提交
2813 2814 2815
	}
}

2816
static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
2817
			int map_writable, int max_level, kvm_pfn_t pfn,
2818
			bool prefault, bool is_tdp)
2819
{
2820 2821 2822 2823
	bool nx_huge_page_workaround_enabled = is_nx_huge_page_enabled();
	bool write = error_code & PFERR_WRITE_MASK;
	bool exec = error_code & PFERR_FETCH_MASK;
	bool huge_page_disallowed = exec && nx_huge_page_workaround_enabled;
2824
	struct kvm_shadow_walk_iterator it;
2825
	struct kvm_mmu_page *sp;
2826
	int level, req_level, ret;
2827 2828
	gfn_t gfn = gpa >> PAGE_SHIFT;
	gfn_t base_gfn = gfn;
A
Avi Kivity 已提交
2829

2830
	if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
2831
		return RET_PF_RETRY;
2832

2833 2834
	level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn,
					huge_page_disallowed, &req_level);
2835

2836
	trace_kvm_mmu_spte_requested(gpa, level, pfn);
2837
	for_each_shadow_entry(vcpu, gpa, it) {
P
Paolo Bonzini 已提交
2838 2839 2840 2841
		/*
		 * We cannot overwrite existing page tables with an NX
		 * large page, as the leaf could be executable.
		 */
2842
		if (nx_huge_page_workaround_enabled)
2843 2844
			disallowed_hugepage_adjust(*it.sptep, gfn, it.level,
						   &pfn, &level);
P
Paolo Bonzini 已提交
2845

2846 2847
		base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
		if (it.level == level)
2848
			break;
A
Avi Kivity 已提交
2849

2850 2851 2852 2853
		drop_large_spte(vcpu, it.sptep);
		if (!is_shadow_present_pte(*it.sptep)) {
			sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
					      it.level - 1, true, ACC_ALL);
2854

2855
			link_shadow_page(vcpu, it.sptep, sp);
2856 2857
			if (is_tdp && huge_page_disallowed &&
			    req_level >= it.level)
P
Paolo Bonzini 已提交
2858
				account_huge_nx_page(vcpu->kvm, sp);
2859 2860
		}
	}
2861 2862 2863 2864

	ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL,
			   write, level, base_gfn, pfn, prefault,
			   map_writable);
2865 2866 2867
	if (ret == RET_PF_SPURIOUS)
		return ret;

2868 2869 2870
	direct_pte_prefetch(vcpu, it.sptep);
	++vcpu->stat.pf_fixed;
	return ret;
A
Avi Kivity 已提交
2871 2872
}

H
Huang Ying 已提交
2873
static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2874
{
2875
	send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
2876 2877
}

D
Dan Williams 已提交
2878
static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
2879
{
X
Xiao Guangrong 已提交
2880 2881 2882 2883 2884 2885
	/*
	 * Do not cache the mmio info caused by writing the readonly gfn
	 * into the spte otherwise read access on readonly gfn also can
	 * caused mmio page fault and treat it as mmio access.
	 */
	if (pfn == KVM_PFN_ERR_RO_FAULT)
2886
		return RET_PF_EMULATE;
X
Xiao Guangrong 已提交
2887

2888
	if (pfn == KVM_PFN_ERR_HWPOISON) {
2889
		kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
2890
		return RET_PF_RETRY;
2891
	}
2892

2893
	return -EFAULT;
2894 2895
}

2896
static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2897 2898
				kvm_pfn_t pfn, unsigned int access,
				int *ret_val)
2899 2900
{
	/* The pfn is invalid, report the error! */
2901
	if (unlikely(is_error_pfn(pfn))) {
2902
		*ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2903
		return true;
2904 2905
	}

2906
	if (unlikely(is_noslot_pfn(pfn))) {
2907 2908
		vcpu_cache_mmio_info(vcpu, gva, gfn,
				     access & shadow_mmio_access_mask);
2909 2910 2911 2912 2913 2914 2915 2916 2917 2918
		/*
		 * If MMIO caching is disabled, emulate immediately without
		 * touching the shadow page tables as attempting to install an
		 * MMIO SPTE will just be an expensive nop.
		 */
		if (unlikely(!shadow_mmio_value)) {
			*ret_val = RET_PF_EMULATE;
			return true;
		}
	}
2919

2920
	return false;
2921 2922
}

2923
static bool page_fault_can_be_fast(u32 error_code)
2924
{
2925 2926 2927 2928 2929 2930 2931
	/*
	 * Do not fix the mmio spte with invalid generation number which
	 * need to be updated by slow page fault path.
	 */
	if (unlikely(error_code & PFERR_RSVD_MASK))
		return false;

2932 2933 2934 2935 2936
	/* See if the page fault is due to an NX violation */
	if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
		      == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
		return false;

2937
	/*
2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948
	 * #PF can be fast if:
	 * 1. The shadow page table entry is not present, which could mean that
	 *    the fault is potentially caused by access tracking (if enabled).
	 * 2. The shadow page table entry is present and the fault
	 *    is caused by write-protect, that means we just need change the W
	 *    bit of the spte which can be done out of mmu-lock.
	 *
	 * However, if access tracking is disabled we know that a non-present
	 * page must be a genuine page fault where we have to create a new SPTE.
	 * So, if access tracking is disabled, we return true only for write
	 * accesses to a present page.
2949 2950
	 */

2951 2952 2953
	return shadow_acc_track_mask != 0 ||
	       ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
		== (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
2954 2955
}

2956 2957 2958 2959
/*
 * Returns true if the SPTE was fixed successfully. Otherwise,
 * someone else modified the SPTE from its original value.
 */
2960
static bool
2961
fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2962
			u64 *sptep, u64 old_spte, u64 new_spte)
2963 2964 2965 2966 2967
{
	gfn_t gfn;

	WARN_ON(!sp->role.direct);

2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979
	/*
	 * Theoretically we could also set dirty bit (and flush TLB) here in
	 * order to eliminate unnecessary PML logging. See comments in
	 * set_spte. But fast_page_fault is very unlikely to happen with PML
	 * enabled, so we do not do this. This might result in the same GPA
	 * to be logged in PML buffer again when the write really happens, and
	 * eventually to be called by mark_page_dirty twice. But it's also no
	 * harm. This also avoids the TLB flush needed after setting dirty bit
	 * so non-PML cases won't be impacted.
	 *
	 * Compare with set_spte where instead shadow_dirty_mask is set.
	 */
2980
	if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
2981 2982
		return false;

2983
	if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
2984 2985 2986 2987 2988 2989 2990
		/*
		 * The gfn of direct spte is stable since it is
		 * calculated by sp->gfn.
		 */
		gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
		kvm_vcpu_mark_page_dirty(vcpu, gfn);
	}
2991 2992 2993 2994

	return true;
}

2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006
static bool is_access_allowed(u32 fault_err_code, u64 spte)
{
	if (fault_err_code & PFERR_FETCH_MASK)
		return is_executable_pte(spte);

	if (fault_err_code & PFERR_WRITE_MASK)
		return is_writable_pte(spte);

	/* Fault was on Read access */
	return spte & PT_PRESENT_MASK;
}

3007
/*
3008
 * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS.
3009
 */
3010 3011
static int fast_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
			   u32 error_code)
3012 3013
{
	struct kvm_shadow_walk_iterator iterator;
3014
	struct kvm_mmu_page *sp;
3015
	int ret = RET_PF_INVALID;
3016
	u64 spte = 0ull;
3017
	uint retry_count = 0;
3018

3019
	if (!page_fault_can_be_fast(error_code))
3020
		return ret;
3021 3022 3023

	walk_shadow_page_lockless_begin(vcpu);

3024
	do {
3025
		u64 new_spte;
3026

3027
		for_each_shadow_entry_lockless(vcpu, cr2_or_gpa, iterator, spte)
3028
			if (!is_shadow_present_pte(spte))
3029 3030
				break;

3031 3032 3033
		if (!is_shadow_present_pte(spte))
			break;

3034
		sp = sptep_to_sp(iterator.sptep);
3035 3036
		if (!is_last_spte(spte, sp->role.level))
			break;
3037

3038
		/*
3039 3040 3041 3042 3043
		 * Check whether the memory access that caused the fault would
		 * still cause it if it were to be performed right now. If not,
		 * then this is a spurious fault caused by TLB lazily flushed,
		 * or some other CPU has already fixed the PTE after the
		 * current CPU took the fault.
3044 3045 3046 3047
		 *
		 * Need not check the access of upper level table entries since
		 * they are always ACC_ALL.
		 */
3048
		if (is_access_allowed(error_code, spte)) {
3049
			ret = RET_PF_SPURIOUS;
3050 3051
			break;
		}
3052

3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063
		new_spte = spte;

		if (is_access_track_spte(spte))
			new_spte = restore_acc_track_spte(new_spte);

		/*
		 * Currently, to simplify the code, write-protection can
		 * be removed in the fast path only if the SPTE was
		 * write-protected for dirty-logging or access tracking.
		 */
		if ((error_code & PFERR_WRITE_MASK) &&
3064
		    spte_can_locklessly_be_made_writable(spte)) {
3065
			new_spte |= PT_WRITABLE_MASK;
3066 3067

			/*
3068 3069 3070 3071 3072 3073 3074 3075 3076
			 * Do not fix write-permission on the large spte.  Since
			 * we only dirty the first page into the dirty-bitmap in
			 * fast_pf_fix_direct_spte(), other pages are missed
			 * if its slot has dirty logging enabled.
			 *
			 * Instead, we let the slow page fault path create a
			 * normal spte to fix the access.
			 *
			 * See the comments in kvm_arch_commit_memory_region().
3077
			 */
3078
			if (sp->role.level > PG_LEVEL_4K)
3079
				break;
3080
		}
3081

3082
		/* Verify that the fault can be handled in the fast path */
3083 3084
		if (new_spte == spte ||
		    !is_access_allowed(error_code, new_spte))
3085 3086 3087 3088 3089
			break;

		/*
		 * Currently, fast page fault only works for direct mapping
		 * since the gfn is not stable for indirect shadow page. See
3090
		 * Documentation/virt/kvm/locking.rst to get more detail.
3091
		 */
3092 3093 3094
		if (fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte,
					    new_spte)) {
			ret = RET_PF_FIXED;
3095
			break;
3096
		}
3097 3098 3099 3100 3101 3102 3103 3104

		if (++retry_count > 4) {
			printk_once(KERN_WARNING
				"kvm: Fast #PF retrying more than 4 times.\n");
			break;
		}

	} while (true);
3105

3106
	trace_fast_page_fault(vcpu, cr2_or_gpa, error_code, iterator.sptep,
3107
			      spte, ret);
3108 3109
	walk_shadow_page_lockless_end(vcpu);

3110
	return ret;
3111 3112
}

3113 3114
static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
			       struct list_head *invalid_list)
3115
{
3116
	struct kvm_mmu_page *sp;
3117

3118
	if (!VALID_PAGE(*root_hpa))
A
Avi Kivity 已提交
3119
		return;
3120

3121
	sp = to_shadow_page(*root_hpa & PT64_BASE_ADDR_MASK);
3122

3123
	if (is_tdp_mmu_page(sp))
3124
		kvm_tdp_mmu_put_root(kvm, sp, false);
3125 3126
	else if (!--sp->root_count && sp->role.invalid)
		kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3127

3128 3129 3130
	*root_hpa = INVALID_PAGE;
}

3131
/* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
3132 3133
void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
			ulong roots_to_free)
3134
{
3135
	struct kvm *kvm = vcpu->kvm;
3136 3137
	int i;
	LIST_HEAD(invalid_list);
3138
	bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
3139

3140
	BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3141

3142
	/* Before acquiring the MMU lock, see if we need to do any real work. */
3143 3144 3145 3146 3147 3148 3149 3150 3151
	if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
			if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
			    VALID_PAGE(mmu->prev_roots[i].hpa))
				break;

		if (i == KVM_MMU_NUM_PREV_ROOTS)
			return;
	}
3152

3153
	write_lock(&kvm->mmu_lock);
3154

3155 3156
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
		if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3157
			mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa,
3158
					   &invalid_list);
3159

3160 3161 3162
	if (free_active_root) {
		if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
		    (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3163
			mmu_free_root_page(kvm, &mmu->root_hpa, &invalid_list);
3164
		} else if (mmu->pae_root) {
3165 3166 3167 3168 3169 3170 3171 3172
			for (i = 0; i < 4; ++i) {
				if (!IS_VALID_PAE_ROOT(mmu->pae_root[i]))
					continue;

				mmu_free_root_page(kvm, &mmu->pae_root[i],
						   &invalid_list);
				mmu->pae_root[i] = INVALID_PAE_ROOT;
			}
3173
		}
3174
		mmu->root_hpa = INVALID_PAGE;
3175
		mmu->root_pgd = 0;
3176
	}
3177

3178
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
3179
	write_unlock(&kvm->mmu_lock);
3180
}
3181
EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3182

3183 3184 3185 3186
static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
{
	int ret = 0;

3187
	if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) {
3188
		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3189 3190 3191 3192 3193 3194
		ret = 1;
	}

	return ret;
}

3195 3196
static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, gva_t gva,
			    u8 level, bool direct)
3197 3198
{
	struct kvm_mmu_page *sp;
3199 3200 3201 3202 3203 3204 3205 3206 3207

	sp = kvm_mmu_get_page(vcpu, gfn, gva, level, direct, ACC_ALL);
	++sp->root_count;

	return __pa(sp->spt);
}

static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
{
3208 3209
	struct kvm_mmu *mmu = vcpu->arch.mmu;
	u8 shadow_root_level = mmu->shadow_root_level;
3210
	hpa_t root;
3211
	unsigned i;
3212 3213 3214 3215 3216 3217
	int r;

	write_lock(&vcpu->kvm->mmu_lock);
	r = make_mmu_pages_available(vcpu);
	if (r < 0)
		goto out_unlock;
3218

3219
	if (is_tdp_mmu_enabled(vcpu->kvm)) {
3220
		root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu);
3221
		mmu->root_hpa = root;
3222
	} else if (shadow_root_level >= PT64_ROOT_4LEVEL) {
3223
		root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level, true);
3224
		mmu->root_hpa = root;
3225
	} else if (shadow_root_level == PT32E_ROOT_LEVEL) {
3226 3227 3228 3229
		if (WARN_ON_ONCE(!mmu->pae_root)) {
			r = -EIO;
			goto out_unlock;
		}
3230

3231
		for (i = 0; i < 4; ++i) {
3232
			WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3233

3234 3235
			root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT),
					      i << 30, PT32_ROOT_LEVEL, true);
3236 3237
			mmu->pae_root[i] = root | PT_PRESENT_MASK |
					   shadow_me_mask;
3238
		}
3239
		mmu->root_hpa = __pa(mmu->pae_root);
3240 3241
	} else {
		WARN_ONCE(1, "Bad TDP root level = %d\n", shadow_root_level);
3242 3243
		r = -EIO;
		goto out_unlock;
3244
	}
3245

3246
	/* root_pgd is ignored for direct MMUs. */
3247
	mmu->root_pgd = 0;
3248 3249 3250
out_unlock:
	write_unlock(&vcpu->kvm->mmu_lock);
	return r;
3251 3252 3253
}

static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3254
{
3255
	struct kvm_mmu *mmu = vcpu->arch.mmu;
3256
	u64 pdptrs[4], pm_mask;
3257
	gfn_t root_gfn, root_pgd;
3258
	hpa_t root;
3259 3260
	unsigned i;
	int r;
3261

3262
	root_pgd = mmu->get_guest_pgd(vcpu);
3263
	root_gfn = root_pgd >> PAGE_SHIFT;
3264

3265 3266 3267
	if (mmu_check_root(vcpu, root_gfn))
		return 1;

3268 3269 3270 3271
	/*
	 * On SVM, reading PDPTRs might access guest memory, which might fault
	 * and thus might sleep.  Grab the PDPTRs before acquiring mmu_lock.
	 */
3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282
	if (mmu->root_level == PT32E_ROOT_LEVEL) {
		for (i = 0; i < 4; ++i) {
			pdptrs[i] = mmu->get_pdptr(vcpu, i);
			if (!(pdptrs[i] & PT_PRESENT_MASK))
				continue;

			if (mmu_check_root(vcpu, pdptrs[i] >> PAGE_SHIFT))
				return 1;
		}
	}

3283 3284 3285 3286 3287
	write_lock(&vcpu->kvm->mmu_lock);
	r = make_mmu_pages_available(vcpu);
	if (r < 0)
		goto out_unlock;

3288 3289 3290 3291
	/*
	 * Do we shadow a long mode page table? If so we need to
	 * write-protect the guests page table root.
	 */
3292
	if (mmu->root_level >= PT64_ROOT_4LEVEL) {
3293
		root = mmu_alloc_root(vcpu, root_gfn, 0,
3294 3295
				      mmu->shadow_root_level, false);
		mmu->root_hpa = root;
3296
		goto set_root_pgd;
3297
	}
3298

3299 3300 3301 3302
	if (WARN_ON_ONCE(!mmu->pae_root)) {
		r = -EIO;
		goto out_unlock;
	}
3303

3304 3305
	/*
	 * We shadow a 32 bit page table. This may be a legacy 2-level
3306 3307
	 * or a PAE 3-level page table. In either case we need to be aware that
	 * the shadow page table may be a PAE or a long mode page table.
3308
	 */
3309
	pm_mask = PT_PRESENT_MASK | shadow_me_mask;
3310
	if (mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
3311 3312
		pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;

3313 3314 3315 3316
		if (WARN_ON_ONCE(!mmu->lm_root)) {
			r = -EIO;
			goto out_unlock;
		}
3317

3318
		mmu->lm_root[0] = __pa(mmu->pae_root) | pm_mask;
3319 3320
	}

3321
	for (i = 0; i < 4; ++i) {
3322
		WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3323

3324
		if (mmu->root_level == PT32E_ROOT_LEVEL) {
3325
			if (!(pdptrs[i] & PT_PRESENT_MASK)) {
3326
				mmu->pae_root[i] = INVALID_PAE_ROOT;
A
Avi Kivity 已提交
3327 3328
				continue;
			}
3329
			root_gfn = pdptrs[i] >> PAGE_SHIFT;
3330
		}
3331

3332 3333
		root = mmu_alloc_root(vcpu, root_gfn, i << 30,
				      PT32_ROOT_LEVEL, false);
3334
		mmu->pae_root[i] = root | pm_mask;
3335
	}
3336

3337
	if (mmu->shadow_root_level == PT64_ROOT_4LEVEL)
3338
		mmu->root_hpa = __pa(mmu->lm_root);
3339 3340
	else
		mmu->root_hpa = __pa(mmu->pae_root);
3341

3342
set_root_pgd:
3343
	mmu->root_pgd = root_pgd;
3344 3345
out_unlock:
	write_unlock(&vcpu->kvm->mmu_lock);
3346

3347
	return 0;
3348 3349
}

3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381
static int mmu_alloc_special_roots(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu *mmu = vcpu->arch.mmu;
	u64 *lm_root, *pae_root;

	/*
	 * When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP
	 * tables are allocated and initialized at root creation as there is no
	 * equivalent level in the guest's NPT to shadow.  Allocate the tables
	 * on demand, as running a 32-bit L1 VMM on 64-bit KVM is very rare.
	 */
	if (mmu->direct_map || mmu->root_level >= PT64_ROOT_4LEVEL ||
	    mmu->shadow_root_level < PT64_ROOT_4LEVEL)
		return 0;

	/*
	 * This mess only works with 4-level paging and needs to be updated to
	 * work with 5-level paging.
	 */
	if (WARN_ON_ONCE(mmu->shadow_root_level != PT64_ROOT_4LEVEL))
		return -EIO;

	if (mmu->pae_root && mmu->lm_root)
		return 0;

	/*
	 * The special roots should always be allocated in concert.  Yell and
	 * bail if KVM ends up in a state where only one of the roots is valid.
	 */
	if (WARN_ON_ONCE(!tdp_enabled || mmu->pae_root || mmu->lm_root))
		return -EIO;

3382 3383 3384 3385
	/*
	 * Unlike 32-bit NPT, the PDP table doesn't need to be in low mem, and
	 * doesn't need to be decrypted.
	 */
3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401
	pae_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
	if (!pae_root)
		return -ENOMEM;

	lm_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
	if (!lm_root) {
		free_page((unsigned long)pae_root);
		return -ENOMEM;
	}

	mmu->pae_root = pae_root;
	mmu->lm_root = lm_root;

	return 0;
}

3402
void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3403 3404 3405 3406
{
	int i;
	struct kvm_mmu_page *sp;

3407
	if (vcpu->arch.mmu->direct_map)
3408 3409
		return;

3410
	if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3411
		return;
3412

3413
	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3414

3415 3416
	if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
		hpa_t root = vcpu->arch.mmu->root_hpa;
3417
		sp = to_shadow_page(root);
3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432

		/*
		 * Even if another CPU was marking the SP as unsync-ed
		 * simultaneously, any guest page table changes are not
		 * guaranteed to be visible anyway until this VCPU issues a TLB
		 * flush strictly after those changes are made. We only need to
		 * ensure that the other CPU sets these flags before any actual
		 * changes to the page tables are made. The comments in
		 * mmu_need_write_protect() describe what could go wrong if this
		 * requirement isn't satisfied.
		 */
		if (!smp_load_acquire(&sp->unsync) &&
		    !smp_load_acquire(&sp->unsync_children))
			return;

3433
		write_lock(&vcpu->kvm->mmu_lock);
3434 3435
		kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);

3436
		mmu_sync_children(vcpu, sp);
3437

3438
		kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3439
		write_unlock(&vcpu->kvm->mmu_lock);
3440 3441
		return;
	}
3442

3443
	write_lock(&vcpu->kvm->mmu_lock);
3444 3445
	kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);

3446
	for (i = 0; i < 4; ++i) {
3447
		hpa_t root = vcpu->arch.mmu->pae_root[i];
3448

3449
		if (IS_VALID_PAE_ROOT(root)) {
3450
			root &= PT64_BASE_ADDR_MASK;
3451
			sp = to_shadow_page(root);
3452 3453 3454 3455
			mmu_sync_children(vcpu, sp);
		}
	}

3456
	kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3457
	write_unlock(&vcpu->kvm->mmu_lock);
3458 3459
}

3460
static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr,
3461
				  u32 access, struct x86_exception *exception)
A
Avi Kivity 已提交
3462
{
3463 3464
	if (exception)
		exception->error_code = 0;
A
Avi Kivity 已提交
3465 3466 3467
	return vaddr;
}

3468
static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr,
3469 3470
					 u32 access,
					 struct x86_exception *exception)
3471
{
3472 3473
	if (exception)
		exception->error_code = 0;
3474
	return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3475 3476
}

3477 3478 3479
static bool
__is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
{
3480
	int bit7 = (pte >> 7) & 1;
3481

3482
	return pte & rsvd_check->rsvd_bits_mask[bit7][level-1];
3483 3484
}

3485
static bool __is_bad_mt_xwr(struct rsvd_bits_validate *rsvd_check, u64 pte)
3486
{
3487
	return rsvd_check->bad_mt_xwr & BIT_ULL(pte & 0x3f);
3488 3489
}

3490
static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3491
{
3492 3493 3494 3495 3496 3497 3498
	/*
	 * A nested guest cannot use the MMIO cache if it is using nested
	 * page tables, because cr2 is a nGPA while the cache stores GPAs.
	 */
	if (mmu_is_nested(vcpu))
		return false;

3499 3500 3501 3502 3503 3504
	if (direct)
		return vcpu_match_mmio_gpa(vcpu, addr);

	return vcpu_match_mmio_gva(vcpu, addr);
}

3505 3506 3507 3508
/*
 * Return the level of the lowest level SPTE added to sptes.
 * That SPTE may be non-present.
 */
3509
static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level)
3510 3511
{
	struct kvm_shadow_walk_iterator iterator;
3512
	int leaf = -1;
3513
	u64 spte;
3514 3515

	walk_shadow_page_lockless_begin(vcpu);
3516

3517 3518
	for (shadow_walk_init(&iterator, vcpu, addr),
	     *root_level = iterator.level;
3519 3520
	     shadow_walk_okay(&iterator);
	     __shadow_walk_next(&iterator, spte)) {
3521
		leaf = iterator.level;
3522 3523
		spte = mmu_spte_get_lockless(iterator.sptep);

3524
		sptes[leaf] = spte;
3525

3526 3527
		if (!is_shadow_present_pte(spte))
			break;
3528 3529 3530 3531 3532 3533 3534
	}

	walk_shadow_page_lockless_end(vcpu);

	return leaf;
}

3535
/* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */
3536 3537
static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
{
3538
	u64 sptes[PT64_ROOT_MAX_LEVEL + 1];
3539
	struct rsvd_bits_validate *rsvd_check;
3540
	int root, leaf, level;
3541 3542 3543 3544 3545 3546 3547 3548
	bool reserved = false;

	if (!VALID_PAGE(vcpu->arch.mmu->root_hpa)) {
		*sptep = 0ull;
		return reserved;
	}

	if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa))
3549
		leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, &root);
3550
	else
3551
		leaf = get_walk(vcpu, addr, sptes, &root);
3552

3553 3554 3555 3556 3557
	if (unlikely(leaf < 0)) {
		*sptep = 0ull;
		return reserved;
	}

3558 3559 3560 3561 3562 3563 3564 3565 3566 3567
	*sptep = sptes[leaf];

	/*
	 * Skip reserved bits checks on the terminal leaf if it's not a valid
	 * SPTE.  Note, this also (intentionally) skips MMIO SPTEs, which, by
	 * design, always have reserved bits set.  The purpose of the checks is
	 * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs.
	 */
	if (!is_shadow_present_pte(sptes[leaf]))
		leaf++;
3568 3569 3570

	rsvd_check = &vcpu->arch.mmu->shadow_zero_check;

3571
	for (level = root; level >= leaf; level--)
3572 3573 3574 3575 3576
		/*
		 * Use a bitwise-OR instead of a logical-OR to aggregate the
		 * reserved bit and EPT's invalid memtype/XWR checks to avoid
		 * adding a Jcc in the loop.
		 */
3577 3578
		reserved |= __is_bad_mt_xwr(rsvd_check, sptes[level]) |
			    __is_rsvd_bits_set(rsvd_check, sptes[level], level);
3579 3580

	if (reserved) {
3581
		pr_err("%s: reserved bits set on MMU-present spte, addr 0x%llx, hierarchy:\n",
3582
		       __func__, addr);
3583
		for (level = root; level >= leaf; level--)
3584 3585 3586
			pr_err("------ spte = 0x%llx level = %d, rsvd bits = 0x%llx",
			       sptes[level], level,
			       rsvd_check->rsvd_bits_mask[(sptes[level] >> 7) & 1][level-1]);
3587
	}
3588

3589
	return reserved;
3590 3591
}

P
Paolo Bonzini 已提交
3592
static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3593 3594
{
	u64 spte;
3595
	bool reserved;
3596

3597
	if (mmio_info_in_cache(vcpu, addr, direct))
3598
		return RET_PF_EMULATE;
3599

3600
	reserved = get_mmio_spte(vcpu, addr, &spte);
3601
	if (WARN_ON(reserved))
3602
		return -EINVAL;
3603 3604 3605

	if (is_mmio_spte(spte)) {
		gfn_t gfn = get_mmio_spte_gfn(spte);
3606
		unsigned int access = get_mmio_spte_access(spte);
3607

3608
		if (!check_mmio_spte(vcpu, spte))
3609
			return RET_PF_INVALID;
3610

3611 3612
		if (direct)
			addr = 0;
X
Xiao Guangrong 已提交
3613 3614

		trace_handle_mmio_page_fault(addr, gfn, access);
3615
		vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3616
		return RET_PF_EMULATE;
3617 3618 3619 3620 3621 3622
	}

	/*
	 * If the page table is zapped by other cpus, let CPU fault again on
	 * the address.
	 */
3623
	return RET_PF_RETRY;
3624 3625
}

3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645
static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
					 u32 error_code, gfn_t gfn)
{
	if (unlikely(error_code & PFERR_RSVD_MASK))
		return false;

	if (!(error_code & PFERR_PRESENT_MASK) ||
	      !(error_code & PFERR_WRITE_MASK))
		return false;

	/*
	 * guest is writing the page which is write tracked which can
	 * not be fixed by page fault handler.
	 */
	if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
		return true;

	return false;
}

3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659
static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
{
	struct kvm_shadow_walk_iterator iterator;
	u64 spte;

	walk_shadow_page_lockless_begin(vcpu);
	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
		clear_sp_write_flooding_count(iterator.sptep);
		if (!is_shadow_present_pte(spte))
			break;
	}
	walk_shadow_page_lockless_end(vcpu);
}

3660 3661
static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
				    gfn_t gfn)
3662 3663
{
	struct kvm_arch_async_pf arch;
X
Xiao Guangrong 已提交
3664

3665
	arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3666
	arch.gfn = gfn;
3667
	arch.direct_map = vcpu->arch.mmu->direct_map;
3668
	arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu);
3669

3670 3671
	return kvm_setup_async_pf(vcpu, cr2_or_gpa,
				  kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3672 3673
}

3674
static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3675 3676
			 gpa_t cr2_or_gpa, kvm_pfn_t *pfn, hva_t *hva,
			 bool write, bool *writable)
3677
{
3678
	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3679 3680
	bool async;

3681 3682 3683 3684 3685 3686 3687 3688
	/*
	 * Retry the page fault if the gfn hit a memslot that is being deleted
	 * or moved.  This ensures any existing SPTEs for the old memslot will
	 * be zapped before KVM inserts a new MMIO SPTE for the gfn.
	 */
	if (slot && (slot->flags & KVM_MEMSLOT_INVALID))
		return true;

3689 3690
	/* Don't expose private memslots to L2. */
	if (is_guest_mode(vcpu) && !kvm_is_visible_memslot(slot)) {
3691
		*pfn = KVM_PFN_NOSLOT;
3692
		*writable = false;
3693 3694 3695
		return false;
	}

3696
	async = false;
3697 3698
	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async,
				    write, writable, hva);
3699 3700 3701
	if (!async)
		return false; /* *pfn has correct page already */

3702
	if (!prefault && kvm_can_do_async_pf(vcpu)) {
3703
		trace_kvm_try_async_get_page(cr2_or_gpa, gfn);
3704
		if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3705
			trace_kvm_async_pf_doublefault(cr2_or_gpa, gfn);
3706 3707
			kvm_make_request(KVM_REQ_APF_HALT, vcpu);
			return true;
3708
		} else if (kvm_arch_setup_async_pf(vcpu, cr2_or_gpa, gfn))
3709 3710 3711
			return true;
	}

3712 3713
	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL,
				    write, writable, hva);
3714 3715 3716
	return false;
}

3717 3718
static int direct_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
			     bool prefault, int max_level, bool is_tdp)
A
Avi Kivity 已提交
3719
{
3720
	bool write = error_code & PFERR_WRITE_MASK;
3721
	bool map_writable;
A
Avi Kivity 已提交
3722

3723 3724 3725
	gfn_t gfn = gpa >> PAGE_SHIFT;
	unsigned long mmu_seq;
	kvm_pfn_t pfn;
3726
	hva_t hva;
3727
	int r;
3728

3729
	if (page_fault_handle_page_track(vcpu, error_code, gfn))
3730
		return RET_PF_EMULATE;
3731

B
Ben Gardon 已提交
3732 3733 3734 3735 3736
	if (!is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa)) {
		r = fast_page_fault(vcpu, gpa, error_code);
		if (r != RET_PF_INVALID)
			return r;
	}
3737

3738
	r = mmu_topup_memory_caches(vcpu, false);
3739 3740
	if (r)
		return r;
3741

3742 3743 3744
	mmu_seq = vcpu->kvm->mmu_notifier_seq;
	smp_rmb();

3745 3746
	if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, &hva,
			 write, &map_writable))
3747 3748
		return RET_PF_RETRY;

3749
	if (handle_abnormal_pfn(vcpu, is_tdp ? 0 : gpa, gfn, pfn, ACC_ALL, &r))
3750
		return r;
A
Avi Kivity 已提交
3751

3752
	r = RET_PF_RETRY;
3753 3754 3755 3756 3757 3758

	if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa))
		read_lock(&vcpu->kvm->mmu_lock);
	else
		write_lock(&vcpu->kvm->mmu_lock);

3759
	if (!is_noslot_pfn(pfn) && mmu_notifier_retry_hva(vcpu->kvm, mmu_seq, hva))
3760
		goto out_unlock;
3761 3762
	r = make_mmu_pages_available(vcpu);
	if (r)
3763
		goto out_unlock;
B
Ben Gardon 已提交
3764 3765 3766 3767 3768 3769 3770

	if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa))
		r = kvm_tdp_mmu_map(vcpu, gpa, error_code, map_writable, max_level,
				    pfn, prefault);
	else
		r = __direct_map(vcpu, gpa, error_code, map_writable, max_level, pfn,
				 prefault, is_tdp);
3771

3772
out_unlock:
3773 3774 3775 3776
	if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa))
		read_unlock(&vcpu->kvm->mmu_lock);
	else
		write_unlock(&vcpu->kvm->mmu_lock);
3777 3778
	kvm_release_pfn_clean(pfn);
	return r;
A
Avi Kivity 已提交
3779 3780
}

3781 3782 3783 3784 3785 3786 3787
static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa,
				u32 error_code, bool prefault)
{
	pgprintk("%s: gva %lx error %x\n", __func__, gpa, error_code);

	/* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
	return direct_page_fault(vcpu, gpa & PAGE_MASK, error_code, prefault,
3788
				 PG_LEVEL_2M, false);
3789 3790
}

3791
int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
3792
				u64 fault_address, char *insn, int insn_len)
3793 3794
{
	int r = 1;
3795
	u32 flags = vcpu->arch.apf.host_apf_flags;
3796

3797 3798 3799 3800 3801 3802
#ifndef CONFIG_X86_64
	/* A 64-bit CR2 should be impossible on 32-bit KVM. */
	if (WARN_ON_ONCE(fault_address >> 32))
		return -EFAULT;
#endif

P
Paolo Bonzini 已提交
3803
	vcpu->arch.l1tf_flush_l1d = true;
3804
	if (!flags) {
3805 3806
		trace_kvm_page_fault(fault_address, error_code);

3807
		if (kvm_event_needs_reinjection(vcpu))
3808 3809 3810
			kvm_mmu_unprotect_page_virt(vcpu, fault_address);
		r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
				insn_len);
3811
	} else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
3812
		vcpu->arch.apf.host_apf_flags = 0;
3813
		local_irq_disable();
3814
		kvm_async_pf_task_wait_schedule(fault_address);
3815
		local_irq_enable();
3816 3817
	} else {
		WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags);
3818
	}
3819

3820 3821 3822 3823
	return r;
}
EXPORT_SYMBOL_GPL(kvm_handle_page_fault);

3824 3825
int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
		       bool prefault)
3826
{
3827
	int max_level;
3828

3829
	for (max_level = KVM_MAX_HUGEPAGE_LEVEL;
3830
	     max_level > PG_LEVEL_4K;
3831 3832
	     max_level--) {
		int page_num = KVM_PAGES_PER_HPAGE(max_level);
3833
		gfn_t base = (gpa >> PAGE_SHIFT) & ~(page_num - 1);
3834

3835 3836
		if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
			break;
3837
	}
3838

3839 3840
	return direct_page_fault(vcpu, gpa, error_code, prefault,
				 max_level, true);
3841 3842
}

3843 3844
static void nonpaging_init_context(struct kvm_vcpu *vcpu,
				   struct kvm_mmu *context)
A
Avi Kivity 已提交
3845 3846 3847
{
	context->page_fault = nonpaging_page_fault;
	context->gva_to_gpa = nonpaging_gva_to_gpa;
3848
	context->sync_page = nonpaging_sync_page;
3849
	context->invlpg = NULL;
3850
	context->root_level = 0;
A
Avi Kivity 已提交
3851
	context->shadow_root_level = PT32E_ROOT_LEVEL;
3852
	context->direct_map = true;
3853
	context->nx = false;
A
Avi Kivity 已提交
3854 3855
}

3856
static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd,
3857 3858
				  union kvm_mmu_page_role role)
{
3859
	return (role.direct || pgd == root->pgd) &&
3860 3861
	       VALID_PAGE(root->hpa) && to_shadow_page(root->hpa) &&
	       role.word == to_shadow_page(root->hpa)->role.word;
3862 3863
}

3864
/*
3865
 * Find out if a previously cached root matching the new pgd/role is available.
3866 3867 3868 3869 3870 3871
 * The current root is also inserted into the cache.
 * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
 * returned.
 * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
 * false is returned. This root should now be freed by the caller.
 */
3872
static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3873 3874 3875 3876
				  union kvm_mmu_page_role new_role)
{
	uint i;
	struct kvm_mmu_root_info root;
3877
	struct kvm_mmu *mmu = vcpu->arch.mmu;
3878

3879
	root.pgd = mmu->root_pgd;
3880 3881
	root.hpa = mmu->root_hpa;

3882
	if (is_root_usable(&root, new_pgd, new_role))
3883 3884
		return true;

3885 3886 3887
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
		swap(root, mmu->prev_roots[i]);

3888
		if (is_root_usable(&root, new_pgd, new_role))
3889 3890 3891 3892
			break;
	}

	mmu->root_hpa = root.hpa;
3893
	mmu->root_pgd = root.pgd;
3894 3895 3896 3897

	return i < KVM_MMU_NUM_PREV_ROOTS;
}

3898
static bool fast_pgd_switch(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3899
			    union kvm_mmu_page_role new_role)
A
Avi Kivity 已提交
3900
{
3901
	struct kvm_mmu *mmu = vcpu->arch.mmu;
3902 3903 3904 3905 3906 3907 3908

	/*
	 * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
	 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
	 * later if necessary.
	 */
	if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3909
	    mmu->root_level >= PT64_ROOT_4LEVEL)
3910
		return cached_root_available(vcpu, new_pgd, new_role);
3911 3912

	return false;
A
Avi Kivity 已提交
3913 3914
}

3915
static void __kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3916
			      union kvm_mmu_page_role new_role,
3917
			      bool skip_tlb_flush, bool skip_mmu_sync)
A
Avi Kivity 已提交
3918
{
3919
	if (!fast_pgd_switch(vcpu, new_pgd, new_role)) {
3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931
		kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, KVM_MMU_ROOT_CURRENT);
		return;
	}

	/*
	 * It's possible that the cached previous root page is obsolete because
	 * of a change in the MMU generation number. However, changing the
	 * generation number is accompanied by KVM_REQ_MMU_RELOAD, which will
	 * free the root set here and allocate a new one.
	 */
	kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);

3932
	if (!skip_mmu_sync || force_flush_and_sync_on_reuse)
3933
		kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
3934
	if (!skip_tlb_flush || force_flush_and_sync_on_reuse)
3935 3936 3937 3938 3939 3940 3941 3942 3943 3944
		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);

	/*
	 * The last MMIO access's GVA and GPA are cached in the VCPU. When
	 * switching to a new CR3, that GVA->GPA mapping may no longer be
	 * valid. So clear any cached MMIO info even when we don't need to sync
	 * the shadow page tables.
	 */
	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);

3945 3946 3947 3948 3949 3950 3951
	/*
	 * If this is a direct root page, it doesn't have a write flooding
	 * count. Otherwise, clear the write flooding count.
	 */
	if (!new_role.direct)
		__clear_sp_write_flooding_count(
				to_shadow_page(vcpu->arch.mmu->root_hpa));
A
Avi Kivity 已提交
3952 3953
}

3954
void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd, bool skip_tlb_flush,
3955
		     bool skip_mmu_sync)
3956
{
3957
	__kvm_mmu_new_pgd(vcpu, new_pgd, kvm_mmu_calc_root_page_role(vcpu),
3958
			  skip_tlb_flush, skip_mmu_sync);
3959
}
3960
EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd);
3961

3962 3963
static unsigned long get_cr3(struct kvm_vcpu *vcpu)
{
3964
	return kvm_read_cr3(vcpu);
3965 3966
}

3967
static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
3968
			   unsigned int access, int *nr_present)
3969 3970 3971 3972 3973 3974 3975 3976
{
	if (unlikely(is_mmio_spte(*sptep))) {
		if (gfn != get_mmio_spte_gfn(*sptep)) {
			mmu_spte_clear_no_track(sptep);
			return true;
		}

		(*nr_present)++;
3977
		mark_mmio_spte(vcpu, sptep, gfn, access);
3978 3979 3980 3981 3982 3983
		return true;
	}

	return false;
}

3984 3985
static inline bool is_last_gpte(struct kvm_mmu *mmu,
				unsigned level, unsigned gpte)
A
Avi Kivity 已提交
3986
{
3987 3988 3989 3990 3991 3992 3993
	/*
	 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
	 * If it is clear, there are no large pages at this level, so clear
	 * PT_PAGE_SIZE_MASK in gpte if that is the case.
	 */
	gpte &= level - mmu->last_nonleaf_level;

3994
	/*
3995 3996 3997
	 * PG_LEVEL_4K always terminates.  The RHS has bit 7 set
	 * iff level <= PG_LEVEL_4K, which for our purpose means
	 * level == PG_LEVEL_4K; set PT_PAGE_SIZE_MASK in gpte then.
3998
	 */
3999
	gpte |= level - PG_LEVEL_4K - 1;
4000

4001
	return gpte & PT_PAGE_SIZE_MASK;
A
Avi Kivity 已提交
4002 4003
}

4004 4005 4006 4007 4008
#define PTTYPE_EPT 18 /* arbitrary */
#define PTTYPE PTTYPE_EPT
#include "paging_tmpl.h"
#undef PTTYPE

A
Avi Kivity 已提交
4009 4010 4011 4012 4013 4014 4015 4016
#define PTTYPE 64
#include "paging_tmpl.h"
#undef PTTYPE

#define PTTYPE 32
#include "paging_tmpl.h"
#undef PTTYPE

4017 4018 4019
static void
__reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
			struct rsvd_bits_validate *rsvd_check,
4020
			u64 pa_bits_rsvd, int level, bool nx, bool gbpages,
4021
			bool pse, bool amd)
4022
{
4023
	u64 gbpages_bit_rsvd = 0;
4024
	u64 nonleaf_bit8_rsvd = 0;
4025
	u64 high_bits_rsvd;
4026

4027
	rsvd_check->bad_mt_xwr = 0;
4028

4029
	if (!gbpages)
4030
		gbpages_bit_rsvd = rsvd_bits(7, 7);
4031

4032 4033 4034 4035 4036 4037 4038 4039 4040
	if (level == PT32E_ROOT_LEVEL)
		high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 62);
	else
		high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);

	/* Note, NX doesn't exist in PDPTEs, this is handled below. */
	if (!nx)
		high_bits_rsvd |= rsvd_bits(63, 63);

4041 4042 4043 4044
	/*
	 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
	 * leaf entries) on AMD CPUs only.
	 */
4045
	if (amd)
4046 4047
		nonleaf_bit8_rsvd = rsvd_bits(8, 8);

4048
	switch (level) {
4049 4050
	case PT32_ROOT_LEVEL:
		/* no rsvd bits for 2 level 4K page table entries */
4051 4052 4053 4054
		rsvd_check->rsvd_bits_mask[0][1] = 0;
		rsvd_check->rsvd_bits_mask[0][0] = 0;
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
4055

4056
		if (!pse) {
4057
			rsvd_check->rsvd_bits_mask[1][1] = 0;
4058 4059 4060
			break;
		}

4061 4062
		if (is_cpuid_PSE36())
			/* 36bits PSE 4MB page */
4063
			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4064 4065
		else
			/* 32 bits PSE 4MB page */
4066
			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4067 4068
		break;
	case PT32E_ROOT_LEVEL:
4069 4070 4071 4072 4073 4074 4075 4076
		rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) |
						   high_bits_rsvd |
						   rsvd_bits(5, 8) |
						   rsvd_bits(1, 2);	/* PDPTE */
		rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;	/* PDE */
		rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;	/* PTE */
		rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
						   rsvd_bits(13, 20);	/* large page */
4077 4078
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
4079
		break;
4080
	case PT64_ROOT_5LEVEL:
4081 4082 4083
		rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd |
						   nonleaf_bit8_rsvd |
						   rsvd_bits(7, 7);
4084 4085
		rsvd_check->rsvd_bits_mask[1][4] =
			rsvd_check->rsvd_bits_mask[0][4];
4086
		fallthrough;
4087
	case PT64_ROOT_4LEVEL:
4088 4089 4090 4091 4092 4093 4094
		rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd |
						   nonleaf_bit8_rsvd |
						   rsvd_bits(7, 7);
		rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd |
						   gbpages_bit_rsvd;
		rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;
		rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4095 4096
		rsvd_check->rsvd_bits_mask[1][3] =
			rsvd_check->rsvd_bits_mask[0][3];
4097 4098 4099 4100 4101
		rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd |
						   gbpages_bit_rsvd |
						   rsvd_bits(13, 29);
		rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
						   rsvd_bits(13, 20); /* large page */
4102 4103
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
4104 4105 4106 4107
		break;
	}
}

4108 4109 4110 4111
static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
{
	__reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
4112 4113
				vcpu->arch.reserved_gpa_bits,
				context->root_level, context->nx,
4114
				guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4115 4116
				is_pse(vcpu),
				guest_cpuid_is_amd_or_hygon(vcpu));
4117 4118
}

4119 4120
static void
__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4121
			    u64 pa_bits_rsvd, bool execonly)
4122
{
4123
	u64 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
4124
	u64 bad_mt_xwr;
4125

4126 4127 4128 4129 4130
	rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7);
	rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7);
	rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6);
	rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6);
	rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4131 4132

	/* large page */
4133
	rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4134
	rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4135 4136
	rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29);
	rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20);
4137
	rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4138

4139 4140 4141 4142 4143 4144 4145 4146
	bad_mt_xwr = 0xFFull << (2 * 8);	/* bits 3..5 must not be 2 */
	bad_mt_xwr |= 0xFFull << (3 * 8);	/* bits 3..5 must not be 3 */
	bad_mt_xwr |= 0xFFull << (7 * 8);	/* bits 3..5 must not be 7 */
	bad_mt_xwr |= REPEAT_BYTE(1ull << 2);	/* bits 0..2 must not be 010 */
	bad_mt_xwr |= REPEAT_BYTE(1ull << 6);	/* bits 0..2 must not be 110 */
	if (!execonly) {
		/* bits 0..2 must not be 100 unless VMX capabilities allow it */
		bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4147
	}
4148
	rsvd_check->bad_mt_xwr = bad_mt_xwr;
4149 4150
}

4151 4152 4153 4154
static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
		struct kvm_mmu *context, bool execonly)
{
	__reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4155
				    vcpu->arch.reserved_gpa_bits, execonly);
4156 4157
}

4158 4159 4160 4161 4162
static inline u64 reserved_hpa_bits(void)
{
	return rsvd_bits(shadow_phys_bits, 63);
}

4163 4164 4165 4166 4167 4168 4169 4170
/*
 * the page table on host is the shadow page table for the page
 * table in guest or amd nested guest, its mmu features completely
 * follow the features in guest.
 */
void
reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
{
4171 4172
	bool uses_nx = context->nx ||
		context->mmu_role.base.smep_andnot_wp;
4173 4174
	struct rsvd_bits_validate *shadow_zero_check;
	int i;
4175

4176 4177 4178 4179
	/*
	 * Passing "true" to the last argument is okay; it adds a check
	 * on bit 8 of the SPTEs which KVM doesn't use anyway.
	 */
4180 4181
	shadow_zero_check = &context->shadow_zero_check;
	__reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4182
				reserved_hpa_bits(),
4183
				context->shadow_root_level, uses_nx,
4184 4185
				guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
				is_pse(vcpu), true);
4186 4187 4188 4189 4190 4191 4192 4193 4194

	if (!shadow_me_mask)
		return;

	for (i = context->shadow_root_level; --i >= 0;) {
		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
	}

4195 4196 4197
}
EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);

4198 4199 4200 4201 4202 4203
static inline bool boot_cpu_is_amd(void)
{
	WARN_ON_ONCE(!tdp_enabled);
	return shadow_x_mask == 0;
}

4204 4205 4206 4207 4208 4209 4210 4211
/*
 * the direct page table on host, use as much mmu features as
 * possible, however, kvm currently does not do execution-protection.
 */
static void
reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
				struct kvm_mmu *context)
{
4212 4213 4214 4215 4216
	struct rsvd_bits_validate *shadow_zero_check;
	int i;

	shadow_zero_check = &context->shadow_zero_check;

4217
	if (boot_cpu_is_amd())
4218
		__reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4219
					reserved_hpa_bits(),
4220
					context->shadow_root_level, false,
4221 4222
					boot_cpu_has(X86_FEATURE_GBPAGES),
					true, true);
4223
	else
4224
		__reset_rsvds_bits_mask_ept(shadow_zero_check,
4225
					    reserved_hpa_bits(), false);
4226

4227 4228 4229 4230 4231 4232 4233
	if (!shadow_me_mask)
		return;

	for (i = context->shadow_root_level; --i >= 0;) {
		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
	}
4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244
}

/*
 * as the comments in reset_shadow_zero_bits_mask() except it
 * is the shadow page table for intel nested guest.
 */
static void
reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
				struct kvm_mmu *context, bool execonly)
{
	__reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4245
				    reserved_hpa_bits(), execonly);
4246 4247
}

4248 4249 4250 4251 4252 4253 4254 4255 4256 4257
#define BYTE_MASK(access) \
	((1 & (access) ? 2 : 0) | \
	 (2 & (access) ? 4 : 0) | \
	 (3 & (access) ? 8 : 0) | \
	 (4 & (access) ? 16 : 0) | \
	 (5 & (access) ? 32 : 0) | \
	 (6 & (access) ? 64 : 0) | \
	 (7 & (access) ? 128 : 0))


4258 4259
static void update_permission_bitmask(struct kvm_vcpu *vcpu,
				      struct kvm_mmu *mmu, bool ept)
4260
{
4261 4262 4263 4264 4265 4266 4267 4268 4269
	unsigned byte;

	const u8 x = BYTE_MASK(ACC_EXEC_MASK);
	const u8 w = BYTE_MASK(ACC_WRITE_MASK);
	const u8 u = BYTE_MASK(ACC_USER_MASK);

	bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
	bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
	bool cr0_wp = is_write_protection(vcpu);
4270 4271

	for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4272 4273
		unsigned pfec = byte << 1;

F
Feng Wu 已提交
4274
		/*
4275 4276
		 * Each "*f" variable has a 1 bit for each UWX value
		 * that causes a fault with the given PFEC.
F
Feng Wu 已提交
4277
		 */
4278

4279
		/* Faults from writes to non-writable pages */
4280
		u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
4281
		/* Faults from user mode accesses to supervisor pages */
4282
		u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
4283
		/* Faults from fetches of non-executable pages*/
4284
		u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309
		/* Faults from kernel mode fetches of user pages */
		u8 smepf = 0;
		/* Faults from kernel mode accesses of user pages */
		u8 smapf = 0;

		if (!ept) {
			/* Faults from kernel mode accesses to user pages */
			u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;

			/* Not really needed: !nx will cause pte.nx to fault */
			if (!mmu->nx)
				ff = 0;

			/* Allow supervisor writes if !cr0.wp */
			if (!cr0_wp)
				wf = (pfec & PFERR_USER_MASK) ? wf : 0;

			/* Disallow supervisor fetches of user code if cr4.smep */
			if (cr4_smep)
				smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;

			/*
			 * SMAP:kernel-mode data accesses from user-mode
			 * mappings should fault. A fault is considered
			 * as a SMAP violation if all of the following
P
Peng Hao 已提交
4310
			 * conditions are true:
4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323
			 *   - X86_CR4_SMAP is set in CR4
			 *   - A user page is accessed
			 *   - The access is not a fetch
			 *   - Page fault in kernel mode
			 *   - if CPL = 3 or X86_EFLAGS_AC is clear
			 *
			 * Here, we cover the first three conditions.
			 * The fourth is computed dynamically in permission_fault();
			 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
			 * *not* subject to SMAP restrictions.
			 */
			if (cr4_smap)
				smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4324
		}
4325 4326

		mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4327 4328 4329
	}
}

4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404
/*
* PKU is an additional mechanism by which the paging controls access to
* user-mode addresses based on the value in the PKRU register.  Protection
* key violations are reported through a bit in the page fault error code.
* Unlike other bits of the error code, the PK bit is not known at the
* call site of e.g. gva_to_gpa; it must be computed directly in
* permission_fault based on two bits of PKRU, on some machine state (CR4,
* CR0, EFER, CPL), and on other bits of the error code and the page tables.
*
* In particular the following conditions come from the error code, the
* page tables and the machine state:
* - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
* - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
* - PK is always zero if U=0 in the page tables
* - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
*
* The PKRU bitmask caches the result of these four conditions.  The error
* code (minus the P bit) and the page table's U bit form an index into the
* PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
* with the two bits of the PKRU register corresponding to the protection key.
* For the first three conditions above the bits will be 00, thus masking
* away both AD and WD.  For all reads or if the last condition holds, WD
* only will be masked away.
*/
static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
				bool ept)
{
	unsigned bit;
	bool wp;

	if (ept) {
		mmu->pkru_mask = 0;
		return;
	}

	/* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
	if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
		mmu->pkru_mask = 0;
		return;
	}

	wp = is_write_protection(vcpu);

	for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
		unsigned pfec, pkey_bits;
		bool check_pkey, check_write, ff, uf, wf, pte_user;

		pfec = bit << 1;
		ff = pfec & PFERR_FETCH_MASK;
		uf = pfec & PFERR_USER_MASK;
		wf = pfec & PFERR_WRITE_MASK;

		/* PFEC.RSVD is replaced by ACC_USER_MASK. */
		pte_user = pfec & PFERR_RSVD_MASK;

		/*
		 * Only need to check the access which is not an
		 * instruction fetch and is to a user page.
		 */
		check_pkey = (!ff && pte_user);
		/*
		 * write access is controlled by PKRU if it is a
		 * user access or CR0.WP = 1.
		 */
		check_write = check_pkey && wf && (uf || wp);

		/* PKRU.AD stops both read and write access. */
		pkey_bits = !!check_pkey;
		/* PKRU.WD stops write access. */
		pkey_bits |= (!!check_write) << 1;

		mmu->pkru_mask |= (pkey_bits & 3) << pfec;
	}
}

4405
static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
A
Avi Kivity 已提交
4406
{
4407 4408 4409 4410 4411
	unsigned root_level = mmu->root_level;

	mmu->last_nonleaf_level = root_level;
	if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
		mmu->last_nonleaf_level++;
A
Avi Kivity 已提交
4412 4413
}

4414 4415 4416
static void paging64_init_context_common(struct kvm_vcpu *vcpu,
					 struct kvm_mmu *context,
					 int level)
A
Avi Kivity 已提交
4417
{
4418
	context->nx = is_nx(vcpu);
4419
	context->root_level = level;
4420

4421
	reset_rsvds_bits_mask(vcpu, context);
4422
	update_permission_bitmask(vcpu, context, false);
4423
	update_pkru_bitmask(vcpu, context, false);
4424
	update_last_nonleaf_level(vcpu, context);
A
Avi Kivity 已提交
4425

4426
	MMU_WARN_ON(!is_pae(vcpu));
A
Avi Kivity 已提交
4427 4428
	context->page_fault = paging64_page_fault;
	context->gva_to_gpa = paging64_gva_to_gpa;
4429
	context->sync_page = paging64_sync_page;
M
Marcelo Tosatti 已提交
4430
	context->invlpg = paging64_invlpg;
4431
	context->shadow_root_level = level;
4432
	context->direct_map = false;
A
Avi Kivity 已提交
4433 4434
}

4435 4436
static void paging64_init_context(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
4437
{
4438 4439 4440 4441
	int root_level = is_la57_mode(vcpu) ?
			 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;

	paging64_init_context_common(vcpu, context, root_level);
4442 4443
}

4444 4445
static void paging32_init_context(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
A
Avi Kivity 已提交
4446
{
4447
	context->nx = false;
4448
	context->root_level = PT32_ROOT_LEVEL;
4449

4450
	reset_rsvds_bits_mask(vcpu, context);
4451
	update_permission_bitmask(vcpu, context, false);
4452
	update_pkru_bitmask(vcpu, context, false);
4453
	update_last_nonleaf_level(vcpu, context);
A
Avi Kivity 已提交
4454 4455 4456

	context->page_fault = paging32_page_fault;
	context->gva_to_gpa = paging32_gva_to_gpa;
4457
	context->sync_page = paging32_sync_page;
M
Marcelo Tosatti 已提交
4458
	context->invlpg = paging32_invlpg;
A
Avi Kivity 已提交
4459
	context->shadow_root_level = PT32E_ROOT_LEVEL;
4460
	context->direct_map = false;
A
Avi Kivity 已提交
4461 4462
}

4463 4464
static void paging32E_init_context(struct kvm_vcpu *vcpu,
				   struct kvm_mmu *context)
A
Avi Kivity 已提交
4465
{
4466
	paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
A
Avi Kivity 已提交
4467 4468
}

4469 4470 4471 4472
static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu)
{
	union kvm_mmu_extended_role ext = {0};

4473
	ext.cr0_pg = !!is_paging(vcpu);
4474
	ext.cr4_pae = !!is_pae(vcpu);
4475 4476 4477 4478
	ext.cr4_smep = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
	ext.cr4_smap = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
	ext.cr4_pse = !!is_pse(vcpu);
	ext.cr4_pke = !!kvm_read_cr4_bits(vcpu, X86_CR4_PKE);
4479
	ext.maxphyaddr = cpuid_maxphyaddr(vcpu);
4480 4481 4482 4483 4484 4485

	ext.valid = 1;

	return ext;
}

4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504
static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
						   bool base_only)
{
	union kvm_mmu_role role = {0};

	role.base.access = ACC_ALL;
	role.base.nxe = !!is_nx(vcpu);
	role.base.cr0_wp = is_write_protection(vcpu);
	role.base.smm = is_smm(vcpu);
	role.base.guest_mode = is_guest_mode(vcpu);

	if (base_only)
		return role;

	role.ext = kvm_calc_mmu_role_ext(vcpu);

	return role;
}

4505 4506 4507
static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu)
{
	/* Use 5-level TDP if and only if it's useful/necessary. */
4508
	if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48)
4509 4510
		return 4;

4511
	return max_tdp_level;
4512 4513
}

4514 4515
static union kvm_mmu_role
kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4516
{
4517
	union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4518

4519
	role.base.ad_disabled = (shadow_accessed_mask == 0);
4520
	role.base.level = kvm_mmu_get_tdp_level(vcpu);
4521
	role.base.direct = true;
4522
	role.base.gpte_is_8_bytes = true;
4523 4524 4525 4526

	return role;
}

4527
static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4528
{
4529
	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4530 4531
	union kvm_mmu_role new_role =
		kvm_calc_tdp_mmu_root_page_role(vcpu, false);
4532

4533 4534 4535 4536
	if (new_role.as_u64 == context->mmu_role.as_u64)
		return;

	context->mmu_role.as_u64 = new_role.as_u64;
4537
	context->page_fault = kvm_tdp_page_fault;
4538
	context->sync_page = nonpaging_sync_page;
4539
	context->invlpg = NULL;
4540
	context->shadow_root_level = kvm_mmu_get_tdp_level(vcpu);
4541
	context->direct_map = true;
4542
	context->get_guest_pgd = get_cr3;
4543
	context->get_pdptr = kvm_pdptr_read;
4544
	context->inject_page_fault = kvm_inject_page_fault;
4545 4546

	if (!is_paging(vcpu)) {
4547
		context->nx = false;
4548 4549 4550
		context->gva_to_gpa = nonpaging_gva_to_gpa;
		context->root_level = 0;
	} else if (is_long_mode(vcpu)) {
4551
		context->nx = is_nx(vcpu);
4552 4553
		context->root_level = is_la57_mode(vcpu) ?
				PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4554 4555
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging64_gva_to_gpa;
4556
	} else if (is_pae(vcpu)) {
4557
		context->nx = is_nx(vcpu);
4558
		context->root_level = PT32E_ROOT_LEVEL;
4559 4560
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging64_gva_to_gpa;
4561
	} else {
4562
		context->nx = false;
4563
		context->root_level = PT32_ROOT_LEVEL;
4564 4565
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging32_gva_to_gpa;
4566 4567
	}

4568
	update_permission_bitmask(vcpu, context, false);
4569
	update_pkru_bitmask(vcpu, context, false);
4570
	update_last_nonleaf_level(vcpu, context);
4571
	reset_tdp_shadow_zero_bits_mask(vcpu, context);
4572 4573
}

4574
static union kvm_mmu_role
4575
kvm_calc_shadow_root_page_role_common(struct kvm_vcpu *vcpu, bool base_only)
4576 4577 4578 4579 4580 4581 4582
{
	union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);

	role.base.smep_andnot_wp = role.ext.cr4_smep &&
		!is_write_protection(vcpu);
	role.base.smap_andnot_wp = role.ext.cr4_smap &&
		!is_write_protection(vcpu);
4583
	role.base.gpte_is_8_bytes = !!is_pae(vcpu);
4584

4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595
	return role;
}

static union kvm_mmu_role
kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
{
	union kvm_mmu_role role =
		kvm_calc_shadow_root_page_role_common(vcpu, base_only);

	role.base.direct = !is_paging(vcpu);

4596
	if (!is_long_mode(vcpu))
4597
		role.base.level = PT32E_ROOT_LEVEL;
4598
	else if (is_la57_mode(vcpu))
4599
		role.base.level = PT64_ROOT_5LEVEL;
4600
	else
4601
		role.base.level = PT64_ROOT_4LEVEL;
4602 4603 4604 4605

	return role;
}

4606 4607 4608
static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
				    u32 cr0, u32 cr4, u32 efer,
				    union kvm_mmu_role new_role)
4609
{
4610
	if (!(cr0 & X86_CR0_PG))
4611
		nonpaging_init_context(vcpu, context);
4612
	else if (efer & EFER_LMA)
4613
		paging64_init_context(vcpu, context);
4614
	else if (cr4 & X86_CR4_PAE)
4615
		paging32E_init_context(vcpu, context);
A
Avi Kivity 已提交
4616
	else
4617
		paging32_init_context(vcpu, context);
4618

4619
	context->mmu_role.as_u64 = new_role.as_u64;
4620
	reset_shadow_zero_bits_mask(vcpu, context);
4621
}
4622 4623 4624

static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer)
{
4625
	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4626 4627 4628 4629
	union kvm_mmu_role new_role =
		kvm_calc_shadow_mmu_root_page_role(vcpu, false);

	if (new_role.as_u64 != context->mmu_role.as_u64)
4630
		shadow_mmu_init_context(vcpu, context, cr0, cr4, efer, new_role);
4631 4632
}

4633 4634 4635 4636 4637 4638 4639
static union kvm_mmu_role
kvm_calc_shadow_npt_root_page_role(struct kvm_vcpu *vcpu)
{
	union kvm_mmu_role role =
		kvm_calc_shadow_root_page_role_common(vcpu, false);

	role.base.direct = false;
4640
	role.base.level = kvm_mmu_get_tdp_level(vcpu);
4641 4642 4643 4644

	return role;
}

4645 4646 4647
void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer,
			     gpa_t nested_cr3)
{
4648
	struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4649
	union kvm_mmu_role new_role = kvm_calc_shadow_npt_root_page_role(vcpu);
4650

4651 4652
	__kvm_mmu_new_pgd(vcpu, nested_cr3, new_role.base, false, false);

4653
	if (new_role.as_u64 != context->mmu_role.as_u64) {
4654
		shadow_mmu_init_context(vcpu, context, cr0, cr4, efer, new_role);
4655 4656 4657 4658 4659 4660 4661

		/*
		 * Override the level set by the common init helper, nested TDP
		 * always uses the host's TDP configuration.
		 */
		context->shadow_root_level = new_role.base.level;
	}
4662 4663
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu);
4664

4665 4666
static union kvm_mmu_role
kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
4667
				   bool execonly, u8 level)
4668
{
4669
	union kvm_mmu_role role = {0};
4670

4671 4672
	/* SMM flag is inherited from root_mmu */
	role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
4673

4674
	role.base.level = level;
4675
	role.base.gpte_is_8_bytes = true;
4676 4677 4678 4679
	role.base.direct = false;
	role.base.ad_disabled = !accessed_dirty;
	role.base.guest_mode = true;
	role.base.access = ACC_ALL;
4680

4681 4682 4683 4684 4685 4686 4687
	/*
	 * WP=1 and NOT_WP=1 is an impossible combination, use WP and the
	 * SMAP variation to denote shadow EPT entries.
	 */
	role.base.cr0_wp = true;
	role.base.smap_andnot_wp = true;

4688
	role.ext = kvm_calc_mmu_role_ext(vcpu);
4689
	role.ext.execonly = execonly;
4690 4691 4692 4693

	return role;
}

4694
void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
4695
			     bool accessed_dirty, gpa_t new_eptp)
N
Nadav Har'El 已提交
4696
{
4697
	struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4698
	u8 level = vmx_eptp_page_walk_level(new_eptp);
4699 4700
	union kvm_mmu_role new_role =
		kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
4701
						   execonly, level);
4702

4703
	__kvm_mmu_new_pgd(vcpu, new_eptp, new_role.base, true, true);
4704 4705 4706

	if (new_role.as_u64 == context->mmu_role.as_u64)
		return;
4707

4708
	context->shadow_root_level = level;
N
Nadav Har'El 已提交
4709 4710

	context->nx = true;
4711
	context->ept_ad = accessed_dirty;
N
Nadav Har'El 已提交
4712 4713 4714 4715
	context->page_fault = ept_page_fault;
	context->gva_to_gpa = ept_gva_to_gpa;
	context->sync_page = ept_sync_page;
	context->invlpg = ept_invlpg;
4716
	context->root_level = level;
N
Nadav Har'El 已提交
4717
	context->direct_map = false;
4718
	context->mmu_role.as_u64 = new_role.as_u64;
4719

N
Nadav Har'El 已提交
4720
	update_permission_bitmask(vcpu, context, true);
4721
	update_pkru_bitmask(vcpu, context, true);
4722
	update_last_nonleaf_level(vcpu, context);
N
Nadav Har'El 已提交
4723
	reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4724
	reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
N
Nadav Har'El 已提交
4725 4726 4727
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);

4728
static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4729
{
4730
	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4731

4732 4733 4734 4735 4736
	kvm_init_shadow_mmu(vcpu,
			    kvm_read_cr0_bits(vcpu, X86_CR0_PG),
			    kvm_read_cr4_bits(vcpu, X86_CR4_PAE),
			    vcpu->arch.efer);

4737
	context->get_guest_pgd     = get_cr3;
4738 4739
	context->get_pdptr         = kvm_pdptr_read;
	context->inject_page_fault = kvm_inject_page_fault;
A
Avi Kivity 已提交
4740 4741
}

4742
static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4743
{
4744
	union kvm_mmu_role new_role = kvm_calc_mmu_role_common(vcpu, false);
4745 4746
	struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;

4747 4748 4749 4750
	if (new_role.as_u64 == g_context->mmu_role.as_u64)
		return;

	g_context->mmu_role.as_u64 = new_role.as_u64;
4751
	g_context->get_guest_pgd     = get_cr3;
4752
	g_context->get_pdptr         = kvm_pdptr_read;
4753 4754
	g_context->inject_page_fault = kvm_inject_page_fault;

4755 4756 4757 4758 4759 4760
	/*
	 * L2 page tables are never shadowed, so there is no need to sync
	 * SPTEs.
	 */
	g_context->invlpg            = NULL;

4761
	/*
4762
	 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
4763 4764 4765 4766 4767
	 * L1's nested page tables (e.g. EPT12). The nested translation
	 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
	 * L2's page tables as the first level of translation and L1's
	 * nested page tables as the second level of translation. Basically
	 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
4768 4769
	 */
	if (!is_paging(vcpu)) {
4770
		g_context->nx = false;
4771 4772 4773
		g_context->root_level = 0;
		g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
	} else if (is_long_mode(vcpu)) {
4774
		g_context->nx = is_nx(vcpu);
4775 4776
		g_context->root_level = is_la57_mode(vcpu) ?
					PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4777
		reset_rsvds_bits_mask(vcpu, g_context);
4778 4779
		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
	} else if (is_pae(vcpu)) {
4780
		g_context->nx = is_nx(vcpu);
4781
		g_context->root_level = PT32E_ROOT_LEVEL;
4782
		reset_rsvds_bits_mask(vcpu, g_context);
4783 4784
		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
	} else {
4785
		g_context->nx = false;
4786
		g_context->root_level = PT32_ROOT_LEVEL;
4787
		reset_rsvds_bits_mask(vcpu, g_context);
4788 4789 4790
		g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
	}

4791
	update_permission_bitmask(vcpu, g_context, false);
4792
	update_pkru_bitmask(vcpu, g_context, false);
4793
	update_last_nonleaf_level(vcpu, g_context);
4794 4795
}

4796
void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots)
4797
{
4798
	if (reset_roots) {
4799 4800
		uint i;

4801
		vcpu->arch.mmu->root_hpa = INVALID_PAGE;
4802 4803

		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
4804
			vcpu->arch.mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
4805 4806
	}

4807
	if (mmu_is_nested(vcpu))
4808
		init_kvm_nested_mmu(vcpu);
4809
	else if (tdp_enabled)
4810
		init_kvm_tdp_mmu(vcpu);
4811
	else
4812
		init_kvm_softmmu(vcpu);
4813
}
4814
EXPORT_SYMBOL_GPL(kvm_init_mmu);
4815

4816 4817 4818
static union kvm_mmu_page_role
kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
{
4819 4820
	union kvm_mmu_role role;

4821
	if (tdp_enabled)
4822
		role = kvm_calc_tdp_mmu_root_page_role(vcpu, true);
4823
	else
4824 4825 4826
		role = kvm_calc_shadow_mmu_root_page_role(vcpu, true);

	return role.base;
4827
}
4828

4829
void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4830
{
4831
	kvm_mmu_unload(vcpu);
4832
	kvm_init_mmu(vcpu, true);
A
Avi Kivity 已提交
4833
}
4834
EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
A
Avi Kivity 已提交
4835 4836

int kvm_mmu_load(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4837
{
4838 4839
	int r;

4840
	r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->direct_map);
4841 4842 4843
	if (r)
		goto out;
	r = mmu_alloc_special_roots(vcpu);
A
Avi Kivity 已提交
4844 4845
	if (r)
		goto out;
4846
	if (vcpu->arch.mmu->direct_map)
4847 4848 4849
		r = mmu_alloc_direct_roots(vcpu);
	else
		r = mmu_alloc_shadow_roots(vcpu);
4850 4851
	if (r)
		goto out;
4852 4853 4854

	kvm_mmu_sync_roots(vcpu);

4855
	kvm_mmu_load_pgd(vcpu);
4856
	static_call(kvm_x86_tlb_flush_current)(vcpu);
4857 4858
out:
	return r;
A
Avi Kivity 已提交
4859
}
A
Avi Kivity 已提交
4860 4861 4862

void kvm_mmu_unload(struct kvm_vcpu *vcpu)
{
4863 4864 4865 4866
	kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
	WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
	kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
	WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
A
Avi Kivity 已提交
4867
}
A
Avi Kivity 已提交
4868

4869 4870 4871 4872 4873 4874 4875 4876
static bool need_remote_flush(u64 old, u64 new)
{
	if (!is_shadow_present_pte(old))
		return false;
	if (!is_shadow_present_pte(new))
		return true;
	if ((old ^ new) & PT64_BASE_ADDR_MASK)
		return true;
4877 4878
	old ^= shadow_nx_mask;
	new ^= shadow_nx_mask;
4879 4880 4881
	return (old & ~new & PT64_PERM_MASK) != 0;
}

4882
static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4883
				    int *bytes)
4884
{
4885
	u64 gentry = 0;
4886
	int r;
4887 4888 4889

	/*
	 * Assume that the pte write on a page table of the same type
4890 4891
	 * as the current vcpu paging mode since we update the sptes only
	 * when they have the same mode.
4892
	 */
4893
	if (is_pae(vcpu) && *bytes == 4) {
4894
		/* Handle a 32-bit guest writing two halves of a 64-bit gpte */
4895 4896
		*gpa &= ~(gpa_t)7;
		*bytes = 8;
4897 4898
	}

4899 4900 4901 4902
	if (*bytes == 4 || *bytes == 8) {
		r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
		if (r)
			gentry = 0;
4903 4904
	}

4905 4906 4907 4908 4909 4910 4911
	return gentry;
}

/*
 * If we're seeing too many writes to a page, it may no longer be a page table,
 * or we may be forking, in which case it is better to unmap the page.
 */
4912
static bool detect_write_flooding(struct kvm_mmu_page *sp)
4913
{
4914 4915 4916 4917
	/*
	 * Skip write-flooding detected for the sp whose level is 1, because
	 * it can become unsync, then the guest page is not write-protected.
	 */
4918
	if (sp->role.level == PG_LEVEL_4K)
4919
		return false;
4920

4921 4922
	atomic_inc(&sp->write_flooding_count);
	return atomic_read(&sp->write_flooding_count) >= 3;
4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937
}

/*
 * Misaligned accesses are too much trouble to fix up; also, they usually
 * indicate a page is not used as a page table.
 */
static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
				    int bytes)
{
	unsigned offset, pte_size, misaligned;

	pgprintk("misaligned: gpa %llx bytes %d role %x\n",
		 gpa, bytes, sp->role.word);

	offset = offset_in_page(gpa);
4938
	pte_size = sp->role.gpte_is_8_bytes ? 8 : 4;
4939 4940 4941 4942 4943 4944 4945 4946

	/*
	 * Sometimes, the OS only writes the last one bytes to update status
	 * bits, for example, in linux, andb instruction is used in clear_bit().
	 */
	if (!(offset & (pte_size - 1)) && bytes == 1)
		return false;

4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961
	misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
	misaligned |= bytes < 4;

	return misaligned;
}

static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
{
	unsigned page_offset, quadrant;
	u64 *spte;
	int level;

	page_offset = offset_in_page(gpa);
	level = sp->role.level;
	*nspte = 1;
4962
	if (!sp->role.gpte_is_8_bytes) {
4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983
		page_offset <<= 1;	/* 32->64 */
		/*
		 * A 32-bit pde maps 4MB while the shadow pdes map
		 * only 2MB.  So we need to double the offset again
		 * and zap two pdes instead of one.
		 */
		if (level == PT32_ROOT_LEVEL) {
			page_offset &= ~7; /* kill rounding error */
			page_offset <<= 1;
			*nspte = 2;
		}
		quadrant = page_offset >> PAGE_SHIFT;
		page_offset &= ~PAGE_MASK;
		if (quadrant != sp->role.quadrant)
			return NULL;
	}

	spte = &sp->spt[page_offset / sizeof(*spte)];
	return spte;
}

4984
static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4985 4986
			      const u8 *new, int bytes,
			      struct kvm_page_track_notifier_node *node)
4987 4988 4989 4990 4991 4992
{
	gfn_t gfn = gpa >> PAGE_SHIFT;
	struct kvm_mmu_page *sp;
	LIST_HEAD(invalid_list);
	u64 entry, gentry, *spte;
	int npte;
4993
	bool remote_flush, local_flush;
4994 4995 4996 4997 4998

	/*
	 * If we don't have indirect shadow pages, it means no page is
	 * write-protected, so we can exit simply.
	 */
4999
	if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
5000 5001
		return;

5002
	remote_flush = local_flush = false;
5003 5004 5005 5006 5007 5008 5009 5010

	pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);

	/*
	 * No need to care whether allocation memory is successful
	 * or not since pte prefetch is skiped if it does not have
	 * enough objects in the cache.
	 */
5011
	mmu_topup_memory_caches(vcpu, true);
5012

5013
	write_lock(&vcpu->kvm->mmu_lock);
5014 5015 5016

	gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);

5017
	++vcpu->kvm->stat.mmu_pte_write;
5018
	kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
5019

5020
	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
5021
		if (detect_write_misaligned(sp, gpa, bytes) ||
5022
		      detect_write_flooding(sp)) {
5023
			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
A
Avi Kivity 已提交
5024
			++vcpu->kvm->stat.mmu_flooded;
5025 5026
			continue;
		}
5027 5028 5029 5030 5031

		spte = get_written_sptes(sp, gpa, &npte);
		if (!spte)
			continue;

5032
		local_flush = true;
5033
		while (npte--) {
5034
			entry = *spte;
5035
			mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL);
5036 5037
			if (gentry && sp->role.level != PG_LEVEL_4K)
				++vcpu->kvm->stat.mmu_pde_zapped;
G
Gleb Natapov 已提交
5038
			if (need_remote_flush(entry, *spte))
5039
				remote_flush = true;
5040
			++spte;
5041 5042
		}
	}
5043
	kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
5044
	kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
5045
	write_unlock(&vcpu->kvm->mmu_lock);
5046 5047
}

5048
int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
5049
		       void *insn, int insn_len)
5050
{
5051
	int r, emulation_type = EMULTYPE_PF;
5052
	bool direct = vcpu->arch.mmu->direct_map;
5053

5054
	if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
5055 5056
		return RET_PF_RETRY;

5057
	r = RET_PF_INVALID;
5058
	if (unlikely(error_code & PFERR_RSVD_MASK)) {
5059
		r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
5060
		if (r == RET_PF_EMULATE)
5061 5062
			goto emulate;
	}
5063

5064
	if (r == RET_PF_INVALID) {
5065 5066
		r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
					  lower_32_bits(error_code), false);
5067 5068
		if (WARN_ON_ONCE(r == RET_PF_INVALID))
			return -EIO;
5069 5070
	}

5071
	if (r < 0)
5072
		return r;
5073 5074
	if (r != RET_PF_EMULATE)
		return 1;
5075

5076 5077 5078 5079 5080 5081 5082
	/*
	 * Before emulating the instruction, check if the error code
	 * was due to a RO violation while translating the guest page.
	 * This can occur when using nested virtualization with nested
	 * paging in both guests. If true, we simply unprotect the page
	 * and resume the guest.
	 */
5083
	if (vcpu->arch.mmu->direct_map &&
5084
	    (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5085
		kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
5086 5087 5088
		return 1;
	}

5089 5090 5091 5092 5093 5094
	/*
	 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
	 * optimistically try to just unprotect the page and let the processor
	 * re-execute the instruction that caused the page fault.  Do not allow
	 * retrying MMIO emulation, as it's not only pointless but could also
	 * cause us to enter an infinite loop because the processor will keep
5095 5096 5097 5098
	 * faulting on the non-existent MMIO address.  Retrying an instruction
	 * from a nested guest is also pointless and dangerous as we are only
	 * explicitly shadowing L1's page tables, i.e. unprotecting something
	 * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5099
	 */
5100
	if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
5101
		emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
5102
emulate:
5103
	return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
5104
				       insn_len);
5105 5106 5107
}
EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);

5108 5109
void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
			    gva_t gva, hpa_t root_hpa)
M
Marcelo Tosatti 已提交
5110
{
5111
	int i;
5112

5113 5114 5115 5116 5117 5118
	/* It's actually a GPA for vcpu->arch.guest_mmu.  */
	if (mmu != &vcpu->arch.guest_mmu) {
		/* INVLPG on a non-canonical address is a NOP according to the SDM.  */
		if (is_noncanonical_address(gva, vcpu))
			return;

5119
		static_call(kvm_x86_tlb_flush_gva)(vcpu, gva);
5120 5121 5122
	}

	if (!mmu->invlpg)
5123 5124
		return;

5125 5126
	if (root_hpa == INVALID_PAGE) {
		mmu->invlpg(vcpu, gva, mmu->root_hpa);
5127

5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145
		/*
		 * INVLPG is required to invalidate any global mappings for the VA,
		 * irrespective of PCID. Since it would take us roughly similar amount
		 * of work to determine whether any of the prev_root mappings of the VA
		 * is marked global, or to just sync it blindly, so we might as well
		 * just always sync it.
		 *
		 * Mappings not reachable via the current cr3 or the prev_roots will be
		 * synced when switching to that cr3, so nothing needs to be done here
		 * for them.
		 */
		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
			if (VALID_PAGE(mmu->prev_roots[i].hpa))
				mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
	} else {
		mmu->invlpg(vcpu, gva, root_hpa);
	}
}
5146

5147 5148 5149
void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
{
	kvm_mmu_invalidate_gva(vcpu, vcpu->arch.mmu, gva, INVALID_PAGE);
M
Marcelo Tosatti 已提交
5150 5151 5152 5153
	++vcpu->stat.invlpg;
}
EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);

5154

5155 5156
void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
{
5157
	struct kvm_mmu *mmu = vcpu->arch.mmu;
5158
	bool tlb_flush = false;
5159
	uint i;
5160 5161

	if (pcid == kvm_get_active_pcid(vcpu)) {
5162
		mmu->invlpg(vcpu, gva, mmu->root_hpa);
5163
		tlb_flush = true;
5164 5165
	}

5166 5167
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
		if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5168
		    pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) {
5169 5170 5171
			mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
			tlb_flush = true;
		}
5172
	}
5173

5174
	if (tlb_flush)
5175
		static_call(kvm_x86_tlb_flush_gva)(vcpu, gva);
5176

5177 5178 5179
	++vcpu->stat.invlpg;

	/*
5180 5181 5182
	 * Mappings not reachable via the current cr3 or the prev_roots will be
	 * synced when switching to that cr3, so nothing needs to be done here
	 * for them.
5183 5184 5185
	 */
}

5186 5187
void kvm_configure_mmu(bool enable_tdp, int tdp_max_root_level,
		       int tdp_huge_page_level)
5188
{
5189
	tdp_enabled = enable_tdp;
5190
	max_tdp_level = tdp_max_root_level;
5191 5192

	/*
5193
	 * max_huge_page_level reflects KVM's MMU capabilities irrespective
5194 5195 5196 5197 5198 5199
	 * of kernel support, e.g. KVM may be capable of using 1GB pages when
	 * the kernel is not.  But, KVM never creates a page size greater than
	 * what is used by the kernel for any given HVA, i.e. the kernel's
	 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
	 */
	if (tdp_enabled)
5200
		max_huge_page_level = tdp_huge_page_level;
5201
	else if (boot_cpu_has(X86_FEATURE_GBPAGES))
5202
		max_huge_page_level = PG_LEVEL_1G;
5203
	else
5204
		max_huge_page_level = PG_LEVEL_2M;
5205
}
5206
EXPORT_SYMBOL_GPL(kvm_configure_mmu);
5207 5208

/* The return value indicates if tlb flush on all vcpus is needed. */
5209 5210
typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head,
				    struct kvm_memory_slot *slot);
5211 5212 5213 5214 5215

/* The caller should hold mmu-lock before calling this function. */
static __always_inline bool
slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
			slot_level_handler fn, int start_level, int end_level,
5216 5217
			gfn_t start_gfn, gfn_t end_gfn, bool flush_on_yield,
			bool flush)
5218 5219 5220 5221 5222 5223
{
	struct slot_rmap_walk_iterator iterator;

	for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
			end_gfn, &iterator) {
		if (iterator.rmap)
5224
			flush |= fn(kvm, iterator.rmap, memslot);
5225

5226
		if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
5227
			if (flush && flush_on_yield) {
5228 5229 5230
				kvm_flush_remote_tlbs_with_address(kvm,
						start_gfn,
						iterator.gfn - start_gfn + 1);
5231 5232
				flush = false;
			}
5233
			cond_resched_rwlock_write(&kvm->mmu_lock);
5234 5235 5236 5237 5238 5239 5240 5241 5242
		}
	}

	return flush;
}

static __always_inline bool
slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
		  slot_level_handler fn, int start_level, int end_level,
5243
		  bool flush_on_yield)
5244 5245 5246 5247
{
	return slot_handle_level_range(kvm, memslot, fn, start_level,
			end_level, memslot->base_gfn,
			memslot->base_gfn + memslot->npages - 1,
5248
			flush_on_yield, false);
5249 5250 5251 5252
}

static __always_inline bool
slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
5253
		 slot_level_handler fn, bool flush_on_yield)
5254
{
5255
	return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
5256
				 PG_LEVEL_4K, flush_on_yield);
5257 5258
}

5259
static void free_mmu_pages(struct kvm_mmu *mmu)
A
Avi Kivity 已提交
5260
{
5261 5262
	if (!tdp_enabled && mmu->pae_root)
		set_memory_encrypted((unsigned long)mmu->pae_root, 1);
5263 5264
	free_page((unsigned long)mmu->pae_root);
	free_page((unsigned long)mmu->lm_root);
A
Avi Kivity 已提交
5265 5266
}

5267
static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
A
Avi Kivity 已提交
5268
{
5269
	struct page *page;
A
Avi Kivity 已提交
5270 5271
	int i;

5272 5273 5274 5275 5276 5277
	mmu->root_hpa = INVALID_PAGE;
	mmu->root_pgd = 0;
	mmu->translate_gpa = translate_gpa;
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
		mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;

5278
	/*
5279 5280 5281 5282
	 * When using PAE paging, the four PDPTEs are treated as 'root' pages,
	 * while the PDP table is a per-vCPU construct that's allocated at MMU
	 * creation.  When emulating 32-bit mode, cr3 is only 32 bits even on
	 * x86_64.  Therefore we need to allocate the PDP table in the first
5283 5284 5285 5286 5287
	 * 4GB of memory, which happens to fit the DMA32 zone.  TDP paging
	 * generally doesn't use PAE paging and can skip allocating the PDP
	 * table.  The main exception, handled here, is SVM's 32-bit NPT.  The
	 * other exception is for shadowing L1's 32-bit or PAE NPT on 64-bit
	 * KVM; that horror is handled on-demand by mmu_alloc_shadow_roots().
5288
	 */
5289
	if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
5290 5291
		return 0;

5292
	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
5293
	if (!page)
5294 5295
		return -ENOMEM;

5296
	mmu->pae_root = page_address(page);
5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310

	/*
	 * CR3 is only 32 bits when PAE paging is used, thus it's impossible to
	 * get the CPU to treat the PDPTEs as encrypted.  Decrypt the page so
	 * that KVM's writes and the CPU's reads get along.  Note, this is
	 * only necessary when using shadow paging, as 64-bit NPT can get at
	 * the C-bit even when shadowing 32-bit NPT, and SME isn't supported
	 * by 32-bit kernels (when KVM itself uses 32-bit NPT).
	 */
	if (!tdp_enabled)
		set_memory_decrypted((unsigned long)mmu->pae_root, 1);
	else
		WARN_ON_ONCE(shadow_me_mask);

5311
	for (i = 0; i < 4; ++i)
5312
		mmu->pae_root[i] = INVALID_PAE_ROOT;
5313

A
Avi Kivity 已提交
5314 5315 5316
	return 0;
}

5317
int kvm_mmu_create(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
5318
{
5319
	int ret;
5320

5321
	vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache;
5322 5323
	vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO;

5324
	vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache;
5325
	vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO;
5326

5327 5328
	vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO;

5329 5330
	vcpu->arch.mmu = &vcpu->arch.root_mmu;
	vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
A
Avi Kivity 已提交
5331

5332
	vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5333

5334
	ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu);
5335 5336 5337
	if (ret)
		return ret;

5338
	ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu);
5339 5340 5341 5342 5343 5344 5345
	if (ret)
		goto fail_allocate_root;

	return ret;
 fail_allocate_root:
	free_mmu_pages(&vcpu->arch.guest_mmu);
	return ret;
A
Avi Kivity 已提交
5346 5347
}

5348
#define BATCH_ZAP_PAGES	10
5349 5350 5351
static void kvm_zap_obsolete_pages(struct kvm *kvm)
{
	struct kvm_mmu_page *sp, *node;
5352
	int nr_zapped, batch = 0;
5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364

restart:
	list_for_each_entry_safe_reverse(sp, node,
	      &kvm->arch.active_mmu_pages, link) {
		/*
		 * No obsolete valid page exists before a newly created page
		 * since active_mmu_pages is a FIFO list.
		 */
		if (!is_obsolete_sp(kvm, sp))
			break;

		/*
5365 5366 5367
		 * Invalid pages should never land back on the list of active
		 * pages.  Skip the bogus page, otherwise we'll get stuck in an
		 * infinite loop if the page gets put back on the list (again).
5368
		 */
5369
		if (WARN_ON(sp->role.invalid))
5370 5371
			continue;

5372 5373 5374 5375 5376 5377
		/*
		 * No need to flush the TLB since we're only zapping shadow
		 * pages with an obsolete generation number and all vCPUS have
		 * loaded a new root, i.e. the shadow pages being zapped cannot
		 * be in active use by the guest.
		 */
5378
		if (batch >= BATCH_ZAP_PAGES &&
5379
		    cond_resched_rwlock_write(&kvm->mmu_lock)) {
5380
			batch = 0;
5381 5382 5383
			goto restart;
		}

5384 5385
		if (__kvm_mmu_prepare_zap_page(kvm, sp,
				&kvm->arch.zapped_obsolete_pages, &nr_zapped)) {
5386
			batch += nr_zapped;
5387
			goto restart;
5388
		}
5389 5390
	}

5391 5392 5393 5394 5395
	/*
	 * Trigger a remote TLB flush before freeing the page tables to ensure
	 * KVM is not in the middle of a lockless shadow page table walk, which
	 * may reference the pages.
	 */
5396
	kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409
}

/*
 * Fast invalidate all shadow pages and use lock-break technique
 * to zap obsolete pages.
 *
 * It's required when memslot is being deleted or VM is being
 * destroyed, in these cases, we should ensure that KVM MMU does
 * not use any resource of the being-deleted slot or all slots
 * after calling the function.
 */
static void kvm_mmu_zap_all_fast(struct kvm *kvm)
{
5410 5411
	lockdep_assert_held(&kvm->slots_lock);

5412
	write_lock(&kvm->mmu_lock);
5413
	trace_kvm_mmu_zap_all_fast(kvm);
5414 5415 5416 5417 5418 5419 5420 5421 5422

	/*
	 * Toggle mmu_valid_gen between '0' and '1'.  Because slots_lock is
	 * held for the entire duration of zapping obsolete pages, it's
	 * impossible for there to be multiple invalid generations associated
	 * with *valid* shadow pages at any given time, i.e. there is exactly
	 * one valid generation and (at most) one invalid generation.
	 */
	kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
5423

5424 5425 5426 5427 5428 5429 5430 5431 5432 5433
	/*
	 * Notify all vcpus to reload its shadow page table and flush TLB.
	 * Then all vcpus will switch to new shadow page table with the new
	 * mmu_valid_gen.
	 *
	 * Note: we need to do this under the protection of mmu_lock,
	 * otherwise, vcpu would purge shadow page but miss tlb flush.
	 */
	kvm_reload_remote_mmus(kvm);

5434
	kvm_zap_obsolete_pages(kvm);
5435

5436
	if (is_tdp_mmu_enabled(kvm))
5437 5438
		kvm_tdp_mmu_zap_all(kvm);

5439
	write_unlock(&kvm->mmu_lock);
5440 5441
}

5442 5443 5444 5445 5446
static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
{
	return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
}

5447
static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5448 5449
			struct kvm_memory_slot *slot,
			struct kvm_page_track_notifier_node *node)
5450
{
5451
	kvm_mmu_zap_all_fast(kvm);
5452 5453
}

5454
void kvm_mmu_init_vm(struct kvm *kvm)
5455
{
5456
	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5457

5458 5459
	kvm_mmu_init_tdp_mmu(kvm);

5460
	node->track_write = kvm_mmu_pte_write;
5461
	node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5462
	kvm_page_track_register_notifier(kvm, node);
5463 5464
}

5465
void kvm_mmu_uninit_vm(struct kvm *kvm)
5466
{
5467
	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5468

5469
	kvm_page_track_unregister_notifier(kvm, node);
5470 5471

	kvm_mmu_uninit_tdp_mmu(kvm);
5472 5473
}

X
Xiao Guangrong 已提交
5474 5475 5476 5477
void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;
5478
	int i;
5479
	bool flush = false;
X
Xiao Guangrong 已提交
5480

5481
	write_lock(&kvm->mmu_lock);
5482 5483 5484 5485 5486 5487 5488 5489 5490
	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
		kvm_for_each_memslot(memslot, slots) {
			gfn_t start, end;

			start = max(gfn_start, memslot->base_gfn);
			end = min(gfn_end, memslot->base_gfn + memslot->npages);
			if (start >= end)
				continue;
X
Xiao Guangrong 已提交
5491

5492 5493 5494
			flush = slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
							PG_LEVEL_4K,
							KVM_MAX_HUGEPAGE_LEVEL,
5495
							start, end - 1, true, flush);
5496
		}
X
Xiao Guangrong 已提交
5497 5498
	}

5499 5500 5501
	if (flush)
		kvm_flush_remote_tlbs_with_address(kvm, gfn_start, gfn_end);

5502
	write_unlock(&kvm->mmu_lock);
5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516

	if (is_tdp_mmu_enabled(kvm)) {
		flush = false;

		read_lock(&kvm->mmu_lock);
		for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
			flush = kvm_tdp_mmu_zap_gfn_range(kvm, i, gfn_start,
							  gfn_end, flush, true);
		if (flush)
			kvm_flush_remote_tlbs_with_address(kvm, gfn_start,
							   gfn_end);

		read_unlock(&kvm->mmu_lock);
	}
X
Xiao Guangrong 已提交
5517 5518
}

5519
static bool slot_rmap_write_protect(struct kvm *kvm,
5520 5521
				    struct kvm_rmap_head *rmap_head,
				    struct kvm_memory_slot *slot)
5522
{
5523
	return __rmap_write_protect(kvm, rmap_head, false);
5524 5525
}

5526
void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5527 5528
				      struct kvm_memory_slot *memslot,
				      int start_level)
A
Avi Kivity 已提交
5529
{
5530
	bool flush;
A
Avi Kivity 已提交
5531

5532
	write_lock(&kvm->mmu_lock);
5533
	flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect,
5534
				start_level, KVM_MAX_HUGEPAGE_LEVEL, false);
5535
	if (is_tdp_mmu_enabled(kvm))
5536
		flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, start_level);
5537
	write_unlock(&kvm->mmu_lock);
5538 5539 5540 5541 5542 5543 5544 5545

	/*
	 * We can flush all the TLBs out of the mmu lock without TLB
	 * corruption since we just change the spte from writable to
	 * readonly so that we only need to care the case of changing
	 * spte from present to present (changing the spte from present
	 * to nonpresent will flush all the TLBs immediately), in other
	 * words, the only case we care is mmu_spte_update() where we
5546 5547 5548
	 * have checked Host-writable | MMU-writable instead of
	 * PT_WRITABLE_MASK, that means it does not depend on PT_WRITABLE_MASK
	 * anymore.
5549
	 */
5550
	if (flush)
5551
		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
A
Avi Kivity 已提交
5552
}
5553

5554
static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5555 5556
					 struct kvm_rmap_head *rmap_head,
					 struct kvm_memory_slot *slot)
5557 5558 5559 5560
{
	u64 *sptep;
	struct rmap_iterator iter;
	int need_tlb_flush = 0;
D
Dan Williams 已提交
5561
	kvm_pfn_t pfn;
5562 5563
	struct kvm_mmu_page *sp;

5564
restart:
5565
	for_each_rmap_spte(rmap_head, &iter, sptep) {
5566
		sp = sptep_to_sp(sptep);
5567 5568 5569
		pfn = spte_to_pfn(*sptep);

		/*
5570 5571 5572 5573 5574
		 * We cannot do huge page mapping for indirect shadow pages,
		 * which are found on the last rmap (level = 1) when not using
		 * tdp; such shadow pages are synced with the page table in
		 * the guest, and the guest page table is using 4K page size
		 * mapping if the indirect sp has level = 1.
5575
		 */
5576
		if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
5577 5578
		    sp->role.level < kvm_mmu_max_mapping_level(kvm, slot, sp->gfn,
							       pfn, PG_LEVEL_NUM)) {
5579
			pte_list_remove(rmap_head, sptep);
5580 5581 5582 5583 5584 5585 5586

			if (kvm_available_flush_tlb_with_range())
				kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
					KVM_PAGES_PER_HPAGE(sp->role.level));
			else
				need_tlb_flush = 1;

5587 5588
			goto restart;
		}
5589 5590 5591 5592 5593 5594
	}

	return need_tlb_flush;
}

void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5595
				   const struct kvm_memory_slot *memslot)
5596
{
5597
	/* FIXME: const-ify all uses of struct kvm_memory_slot.  */
5598
	struct kvm_memory_slot *slot = (struct kvm_memory_slot *)memslot;
5599
	bool flush;
5600

5601
	write_lock(&kvm->mmu_lock);
5602
	flush = slot_handle_leaf(kvm, slot, kvm_mmu_zap_collapsible_spte, true);
5603

5604 5605
	if (flush)
		kvm_arch_flush_remote_tlbs_memslot(kvm, slot);
5606
	write_unlock(&kvm->mmu_lock);
5607 5608 5609 5610 5611 5612 5613 5614 5615 5616

	if (is_tdp_mmu_enabled(kvm)) {
		flush = false;

		read_lock(&kvm->mmu_lock);
		flush = kvm_tdp_mmu_zap_collapsible_sptes(kvm, slot, flush);
		if (flush)
			kvm_arch_flush_remote_tlbs_memslot(kvm, slot);
		read_unlock(&kvm->mmu_lock);
	}
5617 5618
}

5619
void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
5620
					const struct kvm_memory_slot *memslot)
5621 5622
{
	/*
5623
	 * All current use cases for flushing the TLBs for a specific memslot
5624
	 * related to dirty logging, and many do the TLB flush out of mmu_lock.
5625 5626 5627
	 * The interaction between the various operations on memslot must be
	 * serialized by slots_locks to ensure the TLB flush from one operation
	 * is observed by any other operation on the same memslot.
5628 5629
	 */
	lockdep_assert_held(&kvm->slots_lock);
5630 5631
	kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
					   memslot->npages);
5632 5633
}

5634 5635 5636
void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
				   struct kvm_memory_slot *memslot)
{
5637
	bool flush;
5638

5639
	write_lock(&kvm->mmu_lock);
5640
	flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
5641
	if (is_tdp_mmu_enabled(kvm))
5642
		flush |= kvm_tdp_mmu_clear_dirty_slot(kvm, memslot);
5643
	write_unlock(&kvm->mmu_lock);
5644 5645 5646 5647 5648 5649 5650 5651

	/*
	 * It's also safe to flush TLBs out of mmu lock here as currently this
	 * function is only used for dirty logging, in which case flushing TLB
	 * out of mmu lock also guarantees no dirty pages will be lost in
	 * dirty_bitmap.
	 */
	if (flush)
5652
		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5653 5654
}

5655
void kvm_mmu_zap_all(struct kvm *kvm)
5656 5657
{
	struct kvm_mmu_page *sp, *node;
5658
	LIST_HEAD(invalid_list);
5659
	int ign;
5660

5661
	write_lock(&kvm->mmu_lock);
5662
restart:
5663
	list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
5664
		if (WARN_ON(sp->role.invalid))
5665
			continue;
5666
		if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
5667
			goto restart;
5668
		if (cond_resched_rwlock_write(&kvm->mmu_lock))
5669 5670 5671
			goto restart;
	}

5672
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
5673

5674
	if (is_tdp_mmu_enabled(kvm))
5675 5676
		kvm_tdp_mmu_zap_all(kvm);

5677
	write_unlock(&kvm->mmu_lock);
5678 5679
}

5680
void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
5681
{
5682
	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
5683

5684
	gen &= MMIO_SPTE_GEN_MASK;
5685

5686
	/*
5687 5688 5689 5690 5691 5692 5693 5694
	 * Generation numbers are incremented in multiples of the number of
	 * address spaces in order to provide unique generations across all
	 * address spaces.  Strip what is effectively the address space
	 * modifier prior to checking for a wrap of the MMIO generation so
	 * that a wrap in any address space is detected.
	 */
	gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);

5695
	/*
5696
	 * The very rare case: if the MMIO generation number has wrapped,
5697 5698
	 * zap all shadow pages.
	 */
5699
	if (unlikely(gen == 0)) {
5700
		kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
5701
		kvm_mmu_zap_all_fast(kvm);
5702
	}
5703 5704
}

5705 5706
static unsigned long
mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
5707 5708
{
	struct kvm *kvm;
5709
	int nr_to_scan = sc->nr_to_scan;
5710
	unsigned long freed = 0;
5711

J
Junaid Shahid 已提交
5712
	mutex_lock(&kvm_lock);
5713 5714

	list_for_each_entry(kvm, &vm_list, vm_list) {
5715
		int idx;
5716
		LIST_HEAD(invalid_list);
5717

5718 5719 5720 5721 5722 5723 5724 5725
		/*
		 * Never scan more than sc->nr_to_scan VM instances.
		 * Will not hit this condition practically since we do not try
		 * to shrink more than one VM and it is very unlikely to see
		 * !n_used_mmu_pages so many times.
		 */
		if (!nr_to_scan--)
			break;
5726 5727 5728 5729 5730 5731
		/*
		 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
		 * here. We may skip a VM instance errorneosly, but we do not
		 * want to shrink a VM that only started to populate its MMU
		 * anyway.
		 */
5732 5733
		if (!kvm->arch.n_used_mmu_pages &&
		    !kvm_has_zapped_obsolete_pages(kvm))
5734 5735
			continue;

5736
		idx = srcu_read_lock(&kvm->srcu);
5737
		write_lock(&kvm->mmu_lock);
5738

5739 5740 5741 5742 5743 5744
		if (kvm_has_zapped_obsolete_pages(kvm)) {
			kvm_mmu_commit_zap_page(kvm,
			      &kvm->arch.zapped_obsolete_pages);
			goto unlock;
		}

5745
		freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan);
5746

5747
unlock:
5748
		write_unlock(&kvm->mmu_lock);
5749
		srcu_read_unlock(&kvm->srcu, idx);
5750

5751 5752 5753 5754 5755
		/*
		 * unfair on small ones
		 * per-vm shrinkers cry out
		 * sadness comes quickly
		 */
5756 5757
		list_move_tail(&kvm->vm_list, &vm_list);
		break;
5758 5759
	}

J
Junaid Shahid 已提交
5760
	mutex_unlock(&kvm_lock);
5761 5762 5763 5764 5765 5766
	return freed;
}

static unsigned long
mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
{
5767
	return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
5768 5769 5770
}

static struct shrinker mmu_shrinker = {
5771 5772
	.count_objects = mmu_shrink_count,
	.scan_objects = mmu_shrink_scan,
5773 5774 5775
	.seeks = DEFAULT_SEEKS * 10,
};

I
Ingo Molnar 已提交
5776
static void mmu_destroy_caches(void)
5777
{
5778 5779
	kmem_cache_destroy(pte_list_desc_cache);
	kmem_cache_destroy(mmu_page_header_cache);
5780 5781
}

P
Paolo Bonzini 已提交
5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815
static bool get_nx_auto_mode(void)
{
	/* Return true when CPU has the bug, and mitigations are ON */
	return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
}

static void __set_nx_huge_pages(bool val)
{
	nx_huge_pages = itlb_multihit_kvm_mitigation = val;
}

static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
{
	bool old_val = nx_huge_pages;
	bool new_val;

	/* In "auto" mode deploy workaround only if CPU has the bug. */
	if (sysfs_streq(val, "off"))
		new_val = 0;
	else if (sysfs_streq(val, "force"))
		new_val = 1;
	else if (sysfs_streq(val, "auto"))
		new_val = get_nx_auto_mode();
	else if (strtobool(val, &new_val) < 0)
		return -EINVAL;

	__set_nx_huge_pages(new_val);

	if (new_val != old_val) {
		struct kvm *kvm;

		mutex_lock(&kvm_lock);

		list_for_each_entry(kvm, &vm_list, vm_list) {
5816
			mutex_lock(&kvm->slots_lock);
P
Paolo Bonzini 已提交
5817
			kvm_mmu_zap_all_fast(kvm);
5818
			mutex_unlock(&kvm->slots_lock);
5819 5820

			wake_up_process(kvm->arch.nx_lpage_recovery_thread);
P
Paolo Bonzini 已提交
5821 5822 5823 5824 5825 5826 5827
		}
		mutex_unlock(&kvm_lock);
	}

	return 0;
}

5828 5829
int kvm_mmu_module_init(void)
{
5830 5831
	int ret = -ENOMEM;

P
Paolo Bonzini 已提交
5832 5833 5834
	if (nx_huge_pages == -1)
		__set_nx_huge_pages(get_nx_auto_mode());

5835 5836 5837 5838 5839 5840 5841 5842 5843 5844
	/*
	 * MMU roles use union aliasing which is, generally speaking, an
	 * undefined behavior. However, we supposedly know how compilers behave
	 * and the current status quo is unlikely to change. Guardians below are
	 * supposed to let us know if the assumption becomes false.
	 */
	BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
	BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
	BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));

5845
	kvm_mmu_reset_all_pte_masks();
5846

5847 5848
	pte_list_desc_cache = kmem_cache_create("pte_list_desc",
					    sizeof(struct pte_list_desc),
5849
					    0, SLAB_ACCOUNT, NULL);
5850
	if (!pte_list_desc_cache)
5851
		goto out;
5852

5853 5854
	mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
						  sizeof(struct kvm_mmu_page),
5855
						  0, SLAB_ACCOUNT, NULL);
5856
	if (!mmu_page_header_cache)
5857
		goto out;
5858

5859
	if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
5860
		goto out;
5861

5862 5863 5864
	ret = register_shrinker(&mmu_shrinker);
	if (ret)
		goto out;
5865

5866 5867
	return 0;

5868
out:
5869
	mmu_destroy_caches();
5870
	return ret;
5871 5872
}

5873
/*
P
Peng Hao 已提交
5874
 * Calculate mmu pages needed for kvm.
5875
 */
5876
unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm)
5877
{
5878 5879
	unsigned long nr_mmu_pages;
	unsigned long nr_pages = 0;
5880
	struct kvm_memslots *slots;
5881
	struct kvm_memory_slot *memslot;
5882
	int i;
5883

5884 5885
	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
5886

5887 5888 5889
		kvm_for_each_memslot(memslot, slots)
			nr_pages += memslot->npages;
	}
5890 5891

	nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
5892
	nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
5893 5894 5895 5896

	return nr_mmu_pages;
}

5897 5898
void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
{
5899
	kvm_mmu_unload(vcpu);
5900 5901
	free_mmu_pages(&vcpu->arch.root_mmu);
	free_mmu_pages(&vcpu->arch.guest_mmu);
5902
	mmu_free_memory_caches(vcpu);
5903 5904 5905 5906 5907 5908 5909
}

void kvm_mmu_module_exit(void)
{
	mmu_destroy_caches();
	percpu_counter_destroy(&kvm_total_used_mmu_pages);
	unregister_shrinker(&mmu_shrinker);
5910 5911
	mmu_audit_disable();
}
5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943

static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp)
{
	unsigned int old_val;
	int err;

	old_val = nx_huge_pages_recovery_ratio;
	err = param_set_uint(val, kp);
	if (err)
		return err;

	if (READ_ONCE(nx_huge_pages) &&
	    !old_val && nx_huge_pages_recovery_ratio) {
		struct kvm *kvm;

		mutex_lock(&kvm_lock);

		list_for_each_entry(kvm, &vm_list, vm_list)
			wake_up_process(kvm->arch.nx_lpage_recovery_thread);

		mutex_unlock(&kvm_lock);
	}

	return err;
}

static void kvm_recover_nx_lpages(struct kvm *kvm)
{
	int rcu_idx;
	struct kvm_mmu_page *sp;
	unsigned int ratio;
	LIST_HEAD(invalid_list);
5944
	bool flush = false;
5945 5946 5947
	ulong to_zap;

	rcu_idx = srcu_read_lock(&kvm->srcu);
5948
	write_lock(&kvm->mmu_lock);
5949 5950 5951

	ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
	to_zap = ratio ? DIV_ROUND_UP(kvm->stat.nx_lpage_splits, ratio) : 0;
5952 5953 5954 5955
	for ( ; to_zap; --to_zap) {
		if (list_empty(&kvm->arch.lpage_disallowed_mmu_pages))
			break;

5956 5957 5958 5959 5960 5961 5962 5963 5964
		/*
		 * We use a separate list instead of just using active_mmu_pages
		 * because the number of lpage_disallowed pages is expected to
		 * be relatively small compared to the total.
		 */
		sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
				      struct kvm_mmu_page,
				      lpage_disallowed_link);
		WARN_ON_ONCE(!sp->lpage_disallowed);
5965
		if (is_tdp_mmu_page(sp)) {
5966
			flush = kvm_tdp_mmu_zap_sp(kvm, sp);
5967
		} else {
5968 5969 5970
			kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
			WARN_ON_ONCE(sp->lpage_disallowed);
		}
5971

5972
		if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
5973
			kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
5974
			cond_resched_rwlock_write(&kvm->mmu_lock);
5975
			flush = false;
5976 5977
		}
	}
5978
	kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
5979

5980
	write_unlock(&kvm->mmu_lock);
5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033
	srcu_read_unlock(&kvm->srcu, rcu_idx);
}

static long get_nx_lpage_recovery_timeout(u64 start_time)
{
	return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio)
		? start_time + 60 * HZ - get_jiffies_64()
		: MAX_SCHEDULE_TIMEOUT;
}

static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
{
	u64 start_time;
	long remaining_time;

	while (true) {
		start_time = get_jiffies_64();
		remaining_time = get_nx_lpage_recovery_timeout(start_time);

		set_current_state(TASK_INTERRUPTIBLE);
		while (!kthread_should_stop() && remaining_time > 0) {
			schedule_timeout(remaining_time);
			remaining_time = get_nx_lpage_recovery_timeout(start_time);
			set_current_state(TASK_INTERRUPTIBLE);
		}

		set_current_state(TASK_RUNNING);

		if (kthread_should_stop())
			return 0;

		kvm_recover_nx_lpages(kvm);
	}
}

int kvm_mmu_post_init_vm(struct kvm *kvm)
{
	int err;

	err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
					  "kvm-nx-lpage-recovery",
					  &kvm->arch.nx_lpage_recovery_thread);
	if (!err)
		kthread_unpark(kvm->arch.nx_lpage_recovery_thread);

	return err;
}

void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
{
	if (kvm->arch.nx_lpage_recovery_thread)
		kthread_stop(kvm->arch.nx_lpage_recovery_thread);
}