mmu.c 167.0 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
A
Avi Kivity 已提交
2 3 4 5 6 7 8 9 10
/*
 * Kernel-based Virtual Machine driver for Linux
 *
 * This module enables machines with Intel VT-x extensions to run virtual
 * machines without emulation or binary translation.
 *
 * MMU support
 *
 * Copyright (C) 2006 Qumranet, Inc.
N
Nicolas Kaiser 已提交
11
 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
A
Avi Kivity 已提交
12 13 14 15 16
 *
 * Authors:
 *   Yaniv Kamay  <yaniv@qumranet.com>
 *   Avi Kivity   <avi@qumranet.com>
 */
A
Avi Kivity 已提交
17

18
#include "irq.h"
19
#include "ioapic.h"
20
#include "mmu.h"
21
#include "mmu_internal.h"
22
#include "tdp_mmu.h"
23
#include "x86.h"
A
Avi Kivity 已提交
24
#include "kvm_cache_regs.h"
25
#include "kvm_emulate.h"
26
#include "cpuid.h"
27
#include "spte.h"
A
Avi Kivity 已提交
28

29
#include <linux/kvm_host.h>
A
Avi Kivity 已提交
30 31 32 33
#include <linux/types.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/highmem.h>
34 35
#include <linux/moduleparam.h>
#include <linux/export.h>
36
#include <linux/swap.h>
M
Marcelo Tosatti 已提交
37
#include <linux/hugetlb.h>
38
#include <linux/compiler.h>
39
#include <linux/srcu.h>
40
#include <linux/slab.h>
41
#include <linux/sched/signal.h>
42
#include <linux/uaccess.h>
43
#include <linux/hash.h>
44
#include <linux/kern_levels.h>
45
#include <linux/kthread.h>
A
Avi Kivity 已提交
46

A
Avi Kivity 已提交
47
#include <asm/page.h>
48
#include <asm/memtype.h>
A
Avi Kivity 已提交
49
#include <asm/cmpxchg.h>
50
#include <asm/io.h>
51
#include <asm/set_memory.h>
52
#include <asm/vmx.h>
53
#include <asm/kvm_page_track.h>
54
#include "trace.h"
A
Avi Kivity 已提交
55

56 57
#include "paging.h"

P
Paolo Bonzini 已提交
58 59
extern bool itlb_multihit_kvm_mitigation;

60
int __read_mostly nx_huge_pages = -1;
61 62 63 64
#ifdef CONFIG_PREEMPT_RT
/* Recovery can cause latency spikes, disable it for PREEMPT_RT.  */
static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
#else
65
static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
66
#endif
P
Paolo Bonzini 已提交
67 68

static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
69
static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp);
P
Paolo Bonzini 已提交
70

71
static const struct kernel_param_ops nx_huge_pages_ops = {
P
Paolo Bonzini 已提交
72 73 74 75
	.set = set_nx_huge_pages,
	.get = param_get_bool,
};

76
static const struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = {
77 78 79 80
	.set = set_nx_huge_pages_recovery_ratio,
	.get = param_get_uint,
};

P
Paolo Bonzini 已提交
81 82
module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
__MODULE_PARM_TYPE(nx_huge_pages, "bool");
83 84 85
module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops,
		&nx_huge_pages_recovery_ratio, 0644);
__MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
P
Paolo Bonzini 已提交
86

87 88 89
static bool __read_mostly force_flush_and_sync_on_reuse;
module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644);

90 91 92 93 94 95 96
/*
 * When setting this variable to true it enables Two-Dimensional-Paging
 * where the hardware walks 2 page tables:
 * 1. the guest-virtual to guest-physical
 * 2. while doing 1. it walks guest-physical to host-physical
 * If the hardware supports that we don't need to do shadow paging.
 */
97
bool tdp_enabled = false;
98

99
static int max_huge_page_level __read_mostly;
100
static int tdp_root_level __read_mostly;
101
static int max_tdp_level __read_mostly;
102

103 104 105 106
enum {
	AUDIT_PRE_PAGE_FAULT,
	AUDIT_POST_PAGE_FAULT,
	AUDIT_PRE_PTE_WRITE,
107 108 109
	AUDIT_POST_PTE_WRITE,
	AUDIT_PRE_SYNC,
	AUDIT_POST_SYNC
110
};
111 112

#ifdef MMU_DEBUG
113
bool dbg = 0;
114
module_param(dbg, bool, 0644);
115
#endif
A
Avi Kivity 已提交
116

117 118
#define PTE_PREFETCH_NUM		8

A
Avi Kivity 已提交
119 120 121
#define PT32_LEVEL_BITS 10

#define PT32_LEVEL_SHIFT(level) \
M
Mike Day 已提交
122
		(PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
A
Avi Kivity 已提交
123

124 125 126
#define PT32_LVL_OFFSET_MASK(level) \
	(PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
127 128 129 130 131 132 133 134

#define PT32_INDEX(address, level)\
	(((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))


#define PT32_BASE_ADDR_MASK PAGE_MASK
#define PT32_DIR_BASE_ADDR_MASK \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
135 136 137
#define PT32_LVL_ADDR_MASK(level) \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
					    * PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
138

139 140
#include <trace/events/kvm.h>

141
/* make pte_list_desc fit well in cache lines */
142
#define PTE_LIST_EXT 14
143

144 145 146 147 148
/*
 * Slight optimization of cacheline layout, by putting `more' and `spte_count'
 * at the start; then accessing it will only use one single cacheline for
 * either full (entries==PTE_LIST_EXT) case or entries<=6.
 */
149 150
struct pte_list_desc {
	struct pte_list_desc *more;
151 152 153 154 155 156
	/*
	 * Stores number of entries stored in the pte_list_desc.  No need to be
	 * u64 but just for easier alignment.  When PTE_LIST_EXT, means full.
	 */
	u64 spte_count;
	u64 *sptes[PTE_LIST_EXT];
157 158
};

159 160 161 162
struct kvm_shadow_walk_iterator {
	u64 addr;
	hpa_t shadow_addr;
	u64 *sptep;
163
	int level;
164 165 166
	unsigned index;
};

167 168 169 170 171 172 173
#define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker)     \
	for (shadow_walk_init_using_root(&(_walker), (_vcpu),              \
					 (_root), (_addr));                \
	     shadow_walk_okay(&(_walker));			           \
	     shadow_walk_next(&(_walker)))

#define for_each_shadow_entry(_vcpu, _addr, _walker)            \
174 175 176 177
	for (shadow_walk_init(&(_walker), _vcpu, _addr);	\
	     shadow_walk_okay(&(_walker));			\
	     shadow_walk_next(&(_walker)))

178 179 180 181 182 183
#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)	\
	for (shadow_walk_init(&(_walker), _vcpu, _addr);		\
	     shadow_walk_okay(&(_walker)) &&				\
		({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });	\
	     __shadow_walk_next(&(_walker), spte))

184
static struct kmem_cache *pte_list_desc_cache;
185
struct kmem_cache *mmu_page_header_cache;
186
static struct percpu_counter kvm_total_used_mmu_pages;
187

188
static void mmu_spte_set(u64 *sptep, u64 spte);
189 190
static union kvm_mmu_page_role
kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
191

192 193 194 195 196 197
struct kvm_mmu_role_regs {
	const unsigned long cr0;
	const unsigned long cr4;
	const u64 efer;
};

198 199 200
#define CREATE_TRACE_POINTS
#include "mmutrace.h"

201 202 203 204 205 206
/*
 * Yes, lot's of underscores.  They're a hint that you probably shouldn't be
 * reading from the role_regs.  Once the mmu_role is constructed, it becomes
 * the single source of truth for the MMU's state.
 */
#define BUILD_MMU_ROLE_REGS_ACCESSOR(reg, name, flag)			\
207
static inline bool __maybe_unused ____is_##reg##_##name(struct kvm_mmu_role_regs *regs)\
208 209 210 211 212 213 214 215 216 217 218 219 220 221
{									\
	return !!(regs->reg & flag);					\
}
BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, pg, X86_CR0_PG);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, wp, X86_CR0_WP);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pse, X86_CR4_PSE);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pae, X86_CR4_PAE);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smep, X86_CR4_SMEP);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smap, X86_CR4_SMAP);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pke, X86_CR4_PKE);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, la57, X86_CR4_LA57);
BUILD_MMU_ROLE_REGS_ACCESSOR(efer, nx, EFER_NX);
BUILD_MMU_ROLE_REGS_ACCESSOR(efer, lma, EFER_LMA);

222 223 224 225 226 227 228
/*
 * The MMU itself (with a valid role) is the single source of truth for the
 * MMU.  Do not use the regs used to build the MMU/role, nor the vCPU.  The
 * regs don't account for dependencies, e.g. clearing CR4 bits if CR0.PG=1,
 * and the vCPU may be incorrect/irrelevant.
 */
#define BUILD_MMU_ROLE_ACCESSOR(base_or_ext, reg, name)		\
229
static inline bool __maybe_unused is_##reg##_##name(struct kvm_mmu *mmu)	\
230 231 232 233 234 235 236 237 238 239 240 241 242
{								\
	return !!(mmu->mmu_role. base_or_ext . reg##_##name);	\
}
BUILD_MMU_ROLE_ACCESSOR(ext,  cr0, pg);
BUILD_MMU_ROLE_ACCESSOR(base, cr0, wp);
BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, pse);
BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, pae);
BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, smep);
BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, smap);
BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, pke);
BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, la57);
BUILD_MMU_ROLE_ACCESSOR(base, efer, nx);

243 244 245 246 247 248 249 250 251 252
static struct kvm_mmu_role_regs vcpu_to_role_regs(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu_role_regs regs = {
		.cr0 = kvm_read_cr0_bits(vcpu, KVM_MMU_CR0_ROLE_BITS),
		.cr4 = kvm_read_cr4_bits(vcpu, KVM_MMU_CR4_ROLE_BITS),
		.efer = vcpu->arch.efer,
	};

	return regs;
}
253

254 255 256 257 258 259 260 261 262 263 264 265
static int role_regs_to_root_level(struct kvm_mmu_role_regs *regs)
{
	if (!____is_cr0_pg(regs))
		return 0;
	else if (____is_efer_lma(regs))
		return ____is_cr4_la57(regs) ? PT64_ROOT_5LEVEL :
					       PT64_ROOT_4LEVEL;
	else if (____is_cr4_pae(regs))
		return PT32E_ROOT_LEVEL;
	else
		return PT32_ROOT_LEVEL;
}
266 267 268

static inline bool kvm_available_flush_tlb_with_range(void)
{
269
	return kvm_x86_ops.tlb_remote_flush_with_range;
270 271 272 273 274 275 276
}

static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
		struct kvm_tlb_range *range)
{
	int ret = -ENOTSUPP;

277
	if (range && kvm_x86_ops.tlb_remote_flush_with_range)
278
		ret = static_call(kvm_x86_tlb_remote_flush_with_range)(kvm, range);
279 280 281 282 283

	if (ret)
		kvm_flush_remote_tlbs(kvm);
}

284
void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
285 286 287 288 289 290 291 292 293 294
		u64 start_gfn, u64 pages)
{
	struct kvm_tlb_range range;

	range.start_gfn = start_gfn;
	range.pages = pages;

	kvm_flush_remote_tlbs_with_range(kvm, &range);
}

295 296 297
static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
			   unsigned int access)
{
298
	u64 spte = make_mmio_spte(vcpu, gfn, access);
299

300 301
	trace_mark_mmio_spte(sptep, gfn, spte);
	mmu_spte_set(sptep, spte);
302 303 304 305
}

static gfn_t get_mmio_spte_gfn(u64 spte)
{
306
	u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
307

308
	gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)
309 310 311
	       & shadow_nonpresent_or_rsvd_mask;

	return gpa >> PAGE_SHIFT;
312 313 314 315
}

static unsigned get_mmio_spte_access(u64 spte)
{
316
	return spte & shadow_mmio_access_mask;
317 318
}

319
static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
320
{
321
	u64 kvm_gen, spte_gen, gen;
322

323 324 325
	gen = kvm_vcpu_memslots(vcpu)->generation;
	if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
		return false;
326

327
	kvm_gen = gen & MMIO_SPTE_GEN_MASK;
328 329 330 331
	spte_gen = get_mmio_spte_generation(spte);

	trace_check_mmio_spte(spte, kvm_gen, spte_gen);
	return likely(kvm_gen == spte_gen);
332 333
}

334 335 336 337 338 339
static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
                                  struct x86_exception *exception)
{
        return gpa;
}

A
Avi Kivity 已提交
340 341 342 343 344
static int is_cpuid_PSE36(void)
{
	return 1;
}

345 346 347 348 349 350 351
static gfn_t pse36_gfn_delta(u32 gpte)
{
	int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;

	return (gpte & PT32_DIR_PSE36_MASK) << shift;
}

352
#ifdef CONFIG_X86_64
A
Avi Kivity 已提交
353
static void __set_spte(u64 *sptep, u64 spte)
354
{
355
	WRITE_ONCE(*sptep, spte);
356 357
}

358
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
359
{
360
	WRITE_ONCE(*sptep, spte);
361 362 363 364 365 366
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	return xchg(sptep, spte);
}
367 368 369

static u64 __get_spte_lockless(u64 *sptep)
{
370
	return READ_ONCE(*sptep);
371
}
372
#else
373 374 375 376 377 378 379
union split_spte {
	struct {
		u32 spte_low;
		u32 spte_high;
	};
	u64 spte;
};
380

381 382
static void count_spte_clear(u64 *sptep, u64 spte)
{
383
	struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
384 385 386 387 388 389 390 391 392

	if (is_shadow_present_pte(spte))
		return;

	/* Ensure the spte is completely set before we increase the count */
	smp_wmb();
	sp->clear_spte_count++;
}

393 394 395
static void __set_spte(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;
396

397 398 399 400 401 402 403 404 405 406 407 408
	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	ssptep->spte_high = sspte.spte_high;

	/*
	 * If we map the spte from nonpresent to present, We should store
	 * the high bits firstly, then set present bit, so cpu can not
	 * fetch this spte while we are setting the spte.
	 */
	smp_wmb();

409
	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
410 411
}

412 413 414 415 416 417 418
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

419
	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
420 421 422 423 424 425 426 427

	/*
	 * If we map the spte from present to nonpresent, we should clear
	 * present bit firstly to avoid vcpu fetch the old high bits.
	 */
	smp_wmb();

	ssptep->spte_high = sspte.spte_high;
428
	count_spte_clear(sptep, spte);
429 430 431 432 433 434 435 436 437 438 439
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte, orig;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	/* xchg acts as a barrier before the setting of the high bits */
	orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
440 441
	orig.spte_high = ssptep->spte_high;
	ssptep->spte_high = sspte.spte_high;
442
	count_spte_clear(sptep, spte);
443 444 445

	return orig.spte;
}
446 447 448

/*
 * The idea using the light way get the spte on x86_32 guest is from
449
 * gup_get_pte (mm/gup.c).
450 451 452 453 454 455 456 457 458 459 460 461 462 463
 *
 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
 * coalesces them and we are running out of the MMU lock.  Therefore
 * we need to protect against in-progress updates of the spte.
 *
 * Reading the spte while an update is in progress may get the old value
 * for the high part of the spte.  The race is fine for a present->non-present
 * change (because the high part of the spte is ignored for non-present spte),
 * but for a present->present change we must reread the spte.
 *
 * All such changes are done in two steps (present->non-present and
 * non-present->present), hence it is enough to count the number of
 * present->non-present updates: if it changed while reading the spte,
 * we might have hit the race.  This is done using clear_spte_count.
464 465 466
 */
static u64 __get_spte_lockless(u64 *sptep)
{
467
	struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
	union split_spte spte, *orig = (union split_spte *)sptep;
	int count;

retry:
	count = sp->clear_spte_count;
	smp_rmb();

	spte.spte_low = orig->spte_low;
	smp_rmb();

	spte.spte_high = orig->spte_high;
	smp_rmb();

	if (unlikely(spte.spte_low != orig->spte_low ||
	      count != sp->clear_spte_count))
		goto retry;

	return spte.spte;
}
487 488
#endif

489 490
static bool spte_has_volatile_bits(u64 spte)
{
491 492 493
	if (!is_shadow_present_pte(spte))
		return false;

494
	/*
495
	 * Always atomically update spte if it can be updated
496 497 498 499
	 * out of mmu-lock, it can ensure dirty bit is not lost,
	 * also, it can help us to get a stable is_writable_pte()
	 * to ensure tlb flush is not missed.
	 */
500 501
	if (spte_can_locklessly_be_made_writable(spte) ||
	    is_access_track_spte(spte))
502 503
		return true;

504
	if (spte_ad_enabled(spte)) {
505 506 507 508
		if ((spte & shadow_accessed_mask) == 0 ||
	    	    (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
			return true;
	}
509

510
	return false;
511 512
}

513 514 515 516 517 518 519 520 521 522 523 524
/* Rules for using mmu_spte_set:
 * Set the sptep from nonpresent to present.
 * Note: the sptep being assigned *must* be either not present
 * or in a state where the hardware will not attempt to update
 * the spte.
 */
static void mmu_spte_set(u64 *sptep, u64 new_spte)
{
	WARN_ON(is_shadow_present_pte(*sptep));
	__set_spte(sptep, new_spte);
}

525 526 527
/*
 * Update the SPTE (excluding the PFN), but do not track changes in its
 * accessed/dirty status.
528
 */
529
static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
530
{
531
	u64 old_spte = *sptep;
532

533
	WARN_ON(!is_shadow_present_pte(new_spte));
534

535 536
	if (!is_shadow_present_pte(old_spte)) {
		mmu_spte_set(sptep, new_spte);
537
		return old_spte;
538
	}
539

540
	if (!spte_has_volatile_bits(old_spte))
541
		__update_clear_spte_fast(sptep, new_spte);
542
	else
543
		old_spte = __update_clear_spte_slow(sptep, new_spte);
544

545 546
	WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));

547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
	return old_spte;
}

/* Rules for using mmu_spte_update:
 * Update the state bits, it means the mapped pfn is not changed.
 *
 * Whenever we overwrite a writable spte with a read-only one we
 * should flush remote TLBs. Otherwise rmap_write_protect
 * will find a read-only spte, even though the writable spte
 * might be cached on a CPU's TLB, the return value indicates this
 * case.
 *
 * Returns true if the TLB needs to be flushed
 */
static bool mmu_spte_update(u64 *sptep, u64 new_spte)
{
	bool flush = false;
	u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);

	if (!is_shadow_present_pte(old_spte))
		return false;

569 570
	/*
	 * For the spte updated out of mmu-lock is safe, since
571
	 * we always atomically update it, see the comments in
572 573
	 * spte_has_volatile_bits().
	 */
574
	if (spte_can_locklessly_be_made_writable(old_spte) &&
575
	      !is_writable_pte(new_spte))
576
		flush = true;
577

578
	/*
579
	 * Flush TLB when accessed/dirty states are changed in the page tables,
580 581 582
	 * to guarantee consistency between TLB and page tables.
	 */

583 584
	if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
		flush = true;
585
		kvm_set_pfn_accessed(spte_to_pfn(old_spte));
586 587 588 589
	}

	if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
		flush = true;
590
		kvm_set_pfn_dirty(spte_to_pfn(old_spte));
591
	}
592

593
	return flush;
594 595
}

596 597 598 599
/*
 * Rules for using mmu_spte_clear_track_bits:
 * It sets the sptep from present to nonpresent, and track the
 * state bits, it is used to clear the last level sptep.
600
 * Returns the old PTE.
601
 */
602
static int mmu_spte_clear_track_bits(struct kvm *kvm, u64 *sptep)
603
{
D
Dan Williams 已提交
604
	kvm_pfn_t pfn;
605
	u64 old_spte = *sptep;
606
	int level = sptep_to_sp(sptep)->role.level;
607 608

	if (!spte_has_volatile_bits(old_spte))
609
		__update_clear_spte_fast(sptep, 0ull);
610
	else
611
		old_spte = __update_clear_spte_slow(sptep, 0ull);
612

613
	if (!is_shadow_present_pte(old_spte))
614
		return old_spte;
615

616 617
	kvm_update_page_stats(kvm, level, -1);

618
	pfn = spte_to_pfn(old_spte);
619 620 621 622 623 624

	/*
	 * KVM does not hold the refcount of the page used by
	 * kvm mmu, before reclaiming the page, we should
	 * unmap it from mmu first.
	 */
625
	WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
626

627
	if (is_accessed_spte(old_spte))
628
		kvm_set_pfn_accessed(pfn);
629 630

	if (is_dirty_spte(old_spte))
631
		kvm_set_pfn_dirty(pfn);
632

633
	return old_spte;
634 635 636 637 638 639 640 641 642
}

/*
 * Rules for using mmu_spte_clear_no_track:
 * Directly clear spte without caring the state bits of sptep,
 * it is used to set the upper level spte.
 */
static void mmu_spte_clear_no_track(u64 *sptep)
{
643
	__update_clear_spte_fast(sptep, 0ull);
644 645
}

646 647 648 649 650
static u64 mmu_spte_get_lockless(u64 *sptep)
{
	return __get_spte_lockless(sptep);
}

651 652 653 654
/* Restore an acc-track PTE back to a regular PTE */
static u64 restore_acc_track_spte(u64 spte)
{
	u64 new_spte = spte;
655 656
	u64 saved_bits = (spte >> SHADOW_ACC_TRACK_SAVED_BITS_SHIFT)
			 & SHADOW_ACC_TRACK_SAVED_BITS_MASK;
657

658
	WARN_ON_ONCE(spte_ad_enabled(spte));
659 660 661
	WARN_ON_ONCE(!is_access_track_spte(spte));

	new_spte &= ~shadow_acc_track_mask;
662 663
	new_spte &= ~(SHADOW_ACC_TRACK_SAVED_BITS_MASK <<
		      SHADOW_ACC_TRACK_SAVED_BITS_SHIFT);
664 665 666 667 668
	new_spte |= saved_bits;

	return new_spte;
}

669 670 671 672 673 674 675 676
/* Returns the Accessed status of the PTE and resets it at the same time. */
static bool mmu_spte_age(u64 *sptep)
{
	u64 spte = mmu_spte_get_lockless(sptep);

	if (!is_accessed_spte(spte))
		return false;

677
	if (spte_ad_enabled(spte)) {
678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
		clear_bit((ffs(shadow_accessed_mask) - 1),
			  (unsigned long *)sptep);
	} else {
		/*
		 * Capture the dirty status of the page, so that it doesn't get
		 * lost when the SPTE is marked for access tracking.
		 */
		if (is_writable_pte(spte))
			kvm_set_pfn_dirty(spte_to_pfn(spte));

		spte = mark_spte_for_access_track(spte);
		mmu_spte_update_no_track(sptep, spte);
	}

	return true;
}

695 696
static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
{
697 698 699 700 701 702 703 704
	if (is_tdp_mmu(vcpu->arch.mmu)) {
		kvm_tdp_mmu_walk_lockless_begin();
	} else {
		/*
		 * Prevent page table teardown by making any free-er wait during
		 * kvm_flush_remote_tlbs() IPI to all active vcpus.
		 */
		local_irq_disable();
705

706 707 708 709 710 711
		/*
		 * Make sure a following spte read is not reordered ahead of the write
		 * to vcpu->mode.
		 */
		smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
	}
712 713 714 715
}

static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
{
716 717 718 719 720 721 722 723 724 725 726
	if (is_tdp_mmu(vcpu->arch.mmu)) {
		kvm_tdp_mmu_walk_lockless_end();
	} else {
		/*
		 * Make sure the write to vcpu->mode is not reordered in front of
		 * reads to sptes.  If it does, kvm_mmu_commit_zap_page() can see us
		 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
		 */
		smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
		local_irq_enable();
	}
727 728
}

729
static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect)
730
{
731 732
	int r;

733
	/* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */
734 735
	r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
				       1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM);
736
	if (r)
737
		return r;
738 739
	r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache,
				       PT64_ROOT_MAX_LEVEL);
740
	if (r)
741
		return r;
742
	if (maybe_indirect) {
743 744
		r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_gfn_array_cache,
					       PT64_ROOT_MAX_LEVEL);
745 746 747
		if (r)
			return r;
	}
748 749
	return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
					  PT64_ROOT_MAX_LEVEL);
750 751 752 753
}

static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
{
754 755 756 757
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache);
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache);
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_gfn_array_cache);
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
758 759
}

760
static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
761
{
762
	return kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
763 764
}

765
static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
766
{
767
	kmem_cache_free(pte_list_desc_cache, pte_list_desc);
768 769
}

770 771 772 773 774 775 776 777 778 779
static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
{
	if (!sp->role.direct)
		return sp->gfns[index];

	return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
}

static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
{
780
	if (!sp->role.direct) {
781
		sp->gfns[index] = gfn;
782 783 784 785 786 787 788 789
		return;
	}

	if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
		pr_err_ratelimited("gfn mismatch under direct page %llx "
				   "(expected %llx, got %llx)\n",
				   sp->gfn,
				   kvm_mmu_page_get_gfn(sp, index), gfn);
790 791
}

M
Marcelo Tosatti 已提交
792
/*
793 794
 * Return the pointer to the large page information for a given gfn,
 * handling slots that are not large page aligned.
M
Marcelo Tosatti 已提交
795
 */
796
static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
797
		const struct kvm_memory_slot *slot, int level)
M
Marcelo Tosatti 已提交
798 799 800
{
	unsigned long idx;

801
	idx = gfn_to_index(gfn, slot->base_gfn, level);
802
	return &slot->arch.lpage_info[level - 2][idx];
M
Marcelo Tosatti 已提交
803 804
}

805
static void update_gfn_disallow_lpage_count(const struct kvm_memory_slot *slot,
806 807 808 809 810
					    gfn_t gfn, int count)
{
	struct kvm_lpage_info *linfo;
	int i;

811
	for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
812 813 814 815 816 817
		linfo = lpage_info_slot(gfn, slot, i);
		linfo->disallow_lpage += count;
		WARN_ON(linfo->disallow_lpage < 0);
	}
}

818
void kvm_mmu_gfn_disallow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn)
819 820 821 822
{
	update_gfn_disallow_lpage_count(slot, gfn, 1);
}

823
void kvm_mmu_gfn_allow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn)
824 825 826 827
{
	update_gfn_disallow_lpage_count(slot, gfn, -1);
}

828
static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
M
Marcelo Tosatti 已提交
829
{
830
	struct kvm_memslots *slots;
831
	struct kvm_memory_slot *slot;
832
	gfn_t gfn;
M
Marcelo Tosatti 已提交
833

834
	kvm->arch.indirect_shadow_pages++;
835
	gfn = sp->gfn;
836 837
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
838 839

	/* the non-leaf shadow pages are keeping readonly. */
840
	if (sp->role.level > PG_LEVEL_4K)
841 842 843
		return kvm_slot_page_track_add_page(kvm, slot, gfn,
						    KVM_PAGE_TRACK_WRITE);

844
	kvm_mmu_gfn_disallow_lpage(slot, gfn);
M
Marcelo Tosatti 已提交
845 846
}

847
void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
P
Paolo Bonzini 已提交
848 849 850 851 852
{
	if (sp->lpage_disallowed)
		return;

	++kvm->stat.nx_lpage_splits;
853 854
	list_add_tail(&sp->lpage_disallowed_link,
		      &kvm->arch.lpage_disallowed_mmu_pages);
P
Paolo Bonzini 已提交
855 856 857
	sp->lpage_disallowed = true;
}

858
static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
M
Marcelo Tosatti 已提交
859
{
860
	struct kvm_memslots *slots;
861
	struct kvm_memory_slot *slot;
862
	gfn_t gfn;
M
Marcelo Tosatti 已提交
863

864
	kvm->arch.indirect_shadow_pages--;
865
	gfn = sp->gfn;
866 867
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
868
	if (sp->role.level > PG_LEVEL_4K)
869 870 871
		return kvm_slot_page_track_remove_page(kvm, slot, gfn,
						       KVM_PAGE_TRACK_WRITE);

872
	kvm_mmu_gfn_allow_lpage(slot, gfn);
M
Marcelo Tosatti 已提交
873 874
}

875
void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
P
Paolo Bonzini 已提交
876 877 878
{
	--kvm->stat.nx_lpage_splits;
	sp->lpage_disallowed = false;
879
	list_del(&sp->lpage_disallowed_link);
P
Paolo Bonzini 已提交
880 881
}

882 883 884
static struct kvm_memory_slot *
gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
			    bool no_dirty_log)
M
Marcelo Tosatti 已提交
885 886
{
	struct kvm_memory_slot *slot;
887

888
	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
889 890
	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
		return NULL;
891
	if (no_dirty_log && kvm_slot_dirty_track_enabled(slot))
892
		return NULL;
893 894 895 896

	return slot;
}

897
/*
898
 * About rmap_head encoding:
899
 *
900 901
 * If the bit zero of rmap_head->val is clear, then it points to the only spte
 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
902
 * pte_list_desc containing more mappings.
903 904 905 906
 */

/*
 * Returns the number of pointers in the rmap chain, not counting the new one.
907
 */
908
static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
909
			struct kvm_rmap_head *rmap_head)
910
{
911
	struct pte_list_desc *desc;
912
	int count = 0;
913

914
	if (!rmap_head->val) {
915
		rmap_printk("%p %llx 0->1\n", spte, *spte);
916 917
		rmap_head->val = (unsigned long)spte;
	} else if (!(rmap_head->val & 1)) {
918
		rmap_printk("%p %llx 1->many\n", spte, *spte);
919
		desc = mmu_alloc_pte_list_desc(vcpu);
920
		desc->sptes[0] = (u64 *)rmap_head->val;
A
Avi Kivity 已提交
921
		desc->sptes[1] = spte;
922
		desc->spte_count = 2;
923
		rmap_head->val = (unsigned long)desc | 1;
924
		++count;
925
	} else {
926
		rmap_printk("%p %llx many->many\n", spte, *spte);
927
		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
928
		while (desc->spte_count == PTE_LIST_EXT) {
929
			count += PTE_LIST_EXT;
930 931 932
			if (!desc->more) {
				desc->more = mmu_alloc_pte_list_desc(vcpu);
				desc = desc->more;
933
				desc->spte_count = 0;
934 935
				break;
			}
936 937
			desc = desc->more;
		}
938 939
		count += desc->spte_count;
		desc->sptes[desc->spte_count++] = spte;
940
	}
941
	return count;
942 943
}

944
static void
945 946 947
pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
			   struct pte_list_desc *desc, int i,
			   struct pte_list_desc *prev_desc)
948
{
949
	int j = desc->spte_count - 1;
950

A
Avi Kivity 已提交
951 952
	desc->sptes[i] = desc->sptes[j];
	desc->sptes[j] = NULL;
953 954
	desc->spte_count--;
	if (desc->spte_count)
955 956
		return;
	if (!prev_desc && !desc->more)
957
		rmap_head->val = 0;
958 959 960 961
	else
		if (prev_desc)
			prev_desc->more = desc->more;
		else
962
			rmap_head->val = (unsigned long)desc->more | 1;
963
	mmu_free_pte_list_desc(desc);
964 965
}

966
static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
967
{
968 969
	struct pte_list_desc *desc;
	struct pte_list_desc *prev_desc;
970 971
	int i;

972
	if (!rmap_head->val) {
973
		pr_err("%s: %p 0->BUG\n", __func__, spte);
974
		BUG();
975
	} else if (!(rmap_head->val & 1)) {
976
		rmap_printk("%p 1->0\n", spte);
977
		if ((u64 *)rmap_head->val != spte) {
978
			pr_err("%s:  %p 1->BUG\n", __func__, spte);
979 980
			BUG();
		}
981
		rmap_head->val = 0;
982
	} else {
983
		rmap_printk("%p many->many\n", spte);
984
		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
985 986
		prev_desc = NULL;
		while (desc) {
987
			for (i = 0; i < desc->spte_count; ++i) {
A
Avi Kivity 已提交
988
				if (desc->sptes[i] == spte) {
989 990
					pte_list_desc_remove_entry(rmap_head,
							desc, i, prev_desc);
991 992
					return;
				}
993
			}
994 995 996
			prev_desc = desc;
			desc = desc->more;
		}
997
		pr_err("%s: %p many->many\n", __func__, spte);
998 999 1000 1001
		BUG();
	}
}

1002 1003
static void pte_list_remove(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			    u64 *sptep)
1004
{
1005
	mmu_spte_clear_track_bits(kvm, sptep);
1006 1007 1008
	__pte_list_remove(sptep, rmap_head);
}

P
Peter Xu 已提交
1009
/* Return true if rmap existed, false otherwise */
1010
static bool pte_list_destroy(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
P
Peter Xu 已提交
1011 1012 1013 1014 1015 1016 1017 1018
{
	struct pte_list_desc *desc, *next;
	int i;

	if (!rmap_head->val)
		return false;

	if (!(rmap_head->val & 1)) {
1019
		mmu_spte_clear_track_bits(kvm, (u64 *)rmap_head->val);
P
Peter Xu 已提交
1020 1021 1022 1023 1024 1025 1026
		goto out;
	}

	desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);

	for (; desc; desc = next) {
		for (i = 0; i < desc->spte_count; i++)
1027
			mmu_spte_clear_track_bits(kvm, desc->sptes[i]);
P
Peter Xu 已提交
1028 1029 1030 1031 1032 1033 1034 1035 1036
		next = desc->more;
		mmu_free_pte_list_desc(desc);
	}
out:
	/* rmap_head is meaningless now, remember to reset it */
	rmap_head->val = 0;
	return true;
}

1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
unsigned int pte_list_count(struct kvm_rmap_head *rmap_head)
{
	struct pte_list_desc *desc;
	unsigned int count = 0;

	if (!rmap_head->val)
		return 0;
	else if (!(rmap_head->val & 1))
		return 1;

	desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);

	while (desc) {
		count += desc->spte_count;
		desc = desc->more;
	}

	return count;
}

1057 1058
static struct kvm_rmap_head *gfn_to_rmap(gfn_t gfn, int level,
					 const struct kvm_memory_slot *slot)
1059
{
1060
	unsigned long idx;
1061

1062
	idx = gfn_to_index(gfn, slot->base_gfn, level);
1063
	return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
1064 1065
}

1066 1067
static bool rmap_can_add(struct kvm_vcpu *vcpu)
{
1068
	struct kvm_mmu_memory_cache *mc;
1069

1070
	mc = &vcpu->arch.mmu_pte_list_desc_cache;
1071
	return kvm_mmu_memory_cache_nr_free_objects(mc);
1072 1073
}

1074 1075
static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
{
1076
	struct kvm_memory_slot *slot;
1077
	struct kvm_mmu_page *sp;
1078
	struct kvm_rmap_head *rmap_head;
1079

1080
	sp = sptep_to_sp(spte);
1081
	kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1082
	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1083
	rmap_head = gfn_to_rmap(gfn, sp->role.level, slot);
1084
	return pte_list_add(vcpu, spte, rmap_head);
1085 1086
}

1087

1088 1089
static void rmap_remove(struct kvm *kvm, u64 *spte)
{
1090 1091
	struct kvm_memslots *slots;
	struct kvm_memory_slot *slot;
1092 1093
	struct kvm_mmu_page *sp;
	gfn_t gfn;
1094
	struct kvm_rmap_head *rmap_head;
1095

1096
	sp = sptep_to_sp(spte);
1097
	gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1098 1099 1100 1101 1102 1103 1104 1105 1106

	/*
	 * Unlike rmap_add and rmap_recycle, rmap_remove does not run in the
	 * context of a vCPU so have to determine which memslots to use based
	 * on context information in sp->role.
	 */
	slots = kvm_memslots_for_spte_role(kvm, sp->role);

	slot = __gfn_to_memslot(slots, gfn);
1107
	rmap_head = gfn_to_rmap(gfn, sp->role.level, slot);
1108

1109
	__pte_list_remove(spte, rmap_head);
1110 1111
}

1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
/*
 * Used by the following functions to iterate through the sptes linked by a
 * rmap.  All fields are private and not assumed to be used outside.
 */
struct rmap_iterator {
	/* private fields */
	struct pte_list_desc *desc;	/* holds the sptep if not NULL */
	int pos;			/* index of the sptep */
};

/*
 * Iteration must be started by this function.  This should also be used after
 * removing/dropping sptes from the rmap link because in such cases the
M
Miaohe Lin 已提交
1125
 * information in the iterator may not be valid.
1126 1127 1128
 *
 * Returns sptep if found, NULL otherwise.
 */
1129 1130
static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
			   struct rmap_iterator *iter)
1131
{
1132 1133
	u64 *sptep;

1134
	if (!rmap_head->val)
1135 1136
		return NULL;

1137
	if (!(rmap_head->val & 1)) {
1138
		iter->desc = NULL;
1139 1140
		sptep = (u64 *)rmap_head->val;
		goto out;
1141 1142
	}

1143
	iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1144
	iter->pos = 0;
1145 1146 1147 1148
	sptep = iter->desc->sptes[iter->pos];
out:
	BUG_ON(!is_shadow_present_pte(*sptep));
	return sptep;
1149 1150 1151 1152 1153 1154 1155 1156 1157
}

/*
 * Must be used with a valid iterator: e.g. after rmap_get_first().
 *
 * Returns sptep if found, NULL otherwise.
 */
static u64 *rmap_get_next(struct rmap_iterator *iter)
{
1158 1159
	u64 *sptep;

1160 1161 1162 1163 1164
	if (iter->desc) {
		if (iter->pos < PTE_LIST_EXT - 1) {
			++iter->pos;
			sptep = iter->desc->sptes[iter->pos];
			if (sptep)
1165
				goto out;
1166 1167 1168 1169 1170 1171 1172
		}

		iter->desc = iter->desc->more;

		if (iter->desc) {
			iter->pos = 0;
			/* desc->sptes[0] cannot be NULL */
1173 1174
			sptep = iter->desc->sptes[iter->pos];
			goto out;
1175 1176 1177 1178
		}
	}

	return NULL;
1179 1180 1181
out:
	BUG_ON(!is_shadow_present_pte(*sptep));
	return sptep;
1182 1183
}

1184 1185
#define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)			\
	for (_spte_ = rmap_get_first(_rmap_head_, _iter_);		\
1186
	     _spte_; _spte_ = rmap_get_next(_iter_))
1187

1188
static void drop_spte(struct kvm *kvm, u64 *sptep)
1189
{
1190
	u64 old_spte = mmu_spte_clear_track_bits(kvm, sptep);
1191 1192

	if (is_shadow_present_pte(old_spte))
1193
		rmap_remove(kvm, sptep);
A
Avi Kivity 已提交
1194 1195
}

1196 1197 1198 1199

static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
{
	if (is_large_pte(*sptep)) {
1200
		WARN_ON(sptep_to_sp(sptep)->role.level == PG_LEVEL_4K);
1201 1202 1203 1204 1205 1206 1207 1208 1209
		drop_spte(kvm, sptep);
		return true;
	}

	return false;
}

static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
{
1210
	if (__drop_large_spte(vcpu->kvm, sptep)) {
1211
		struct kvm_mmu_page *sp = sptep_to_sp(sptep);
1212 1213 1214 1215

		kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
			KVM_PAGES_PER_HPAGE(sp->role.level));
	}
1216 1217 1218
}

/*
1219
 * Write-protect on the specified @sptep, @pt_protect indicates whether
1220
 * spte write-protection is caused by protecting shadow page table.
1221
 *
T
Tiejun Chen 已提交
1222
 * Note: write protection is difference between dirty logging and spte
1223 1224 1225 1226 1227
 * protection:
 * - for dirty logging, the spte can be set to writable at anytime if
 *   its dirty bitmap is properly set.
 * - for spte protection, the spte can be writable only after unsync-ing
 *   shadow page.
1228
 *
1229
 * Return true if tlb need be flushed.
1230
 */
1231
static bool spte_write_protect(u64 *sptep, bool pt_protect)
1232 1233 1234
{
	u64 spte = *sptep;

1235
	if (!is_writable_pte(spte) &&
1236
	      !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1237 1238
		return false;

1239
	rmap_printk("spte %p %llx\n", sptep, *sptep);
1240

1241
	if (pt_protect)
1242
		spte &= ~shadow_mmu_writable_mask;
1243
	spte = spte & ~PT_WRITABLE_MASK;
1244

1245
	return mmu_spte_update(sptep, spte);
1246 1247
}

1248 1249
static bool __rmap_write_protect(struct kvm *kvm,
				 struct kvm_rmap_head *rmap_head,
1250
				 bool pt_protect)
1251
{
1252 1253
	u64 *sptep;
	struct rmap_iterator iter;
1254
	bool flush = false;
1255

1256
	for_each_rmap_spte(rmap_head, &iter, sptep)
1257
		flush |= spte_write_protect(sptep, pt_protect);
1258

1259
	return flush;
1260 1261
}

1262
static bool spte_clear_dirty(u64 *sptep)
1263 1264 1265
{
	u64 spte = *sptep;

1266
	rmap_printk("spte %p %llx\n", sptep, *sptep);
1267

1268
	MMU_WARN_ON(!spte_ad_enabled(spte));
1269 1270 1271 1272
	spte &= ~shadow_dirty_mask;
	return mmu_spte_update(sptep, spte);
}

1273
static bool spte_wrprot_for_clear_dirty(u64 *sptep)
1274 1275 1276
{
	bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
					       (unsigned long *)sptep);
1277
	if (was_writable && !spte_ad_enabled(*sptep))
1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
		kvm_set_pfn_dirty(spte_to_pfn(*sptep));

	return was_writable;
}

/*
 * Gets the GFN ready for another round of dirty logging by clearing the
 *	- D bit on ad-enabled SPTEs, and
 *	- W bit on ad-disabled SPTEs.
 * Returns true iff any D or W bits were cleared.
 */
1289
static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1290
			       const struct kvm_memory_slot *slot)
1291 1292 1293 1294 1295
{
	u64 *sptep;
	struct rmap_iterator iter;
	bool flush = false;

1296
	for_each_rmap_spte(rmap_head, &iter, sptep)
1297 1298
		if (spte_ad_need_write_protect(*sptep))
			flush |= spte_wrprot_for_clear_dirty(sptep);
1299
		else
1300
			flush |= spte_clear_dirty(sptep);
1301 1302 1303 1304

	return flush;
}

1305
/**
1306
 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1307 1308 1309 1310 1311
 * @kvm: kvm instance
 * @slot: slot to protect
 * @gfn_offset: start of the BITS_PER_LONG pages we care about
 * @mask: indicates which pages we should protect
 *
1312
 * Used when we do not need to care about huge page mappings.
1313
 */
1314
static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1315 1316
				     struct kvm_memory_slot *slot,
				     gfn_t gfn_offset, unsigned long mask)
1317
{
1318
	struct kvm_rmap_head *rmap_head;
1319

1320
	if (is_tdp_mmu_enabled(kvm))
1321 1322
		kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
				slot->base_gfn + gfn_offset, mask, true);
1323 1324 1325 1326

	if (!kvm_memslots_have_rmaps(kvm))
		return;

1327
	while (mask) {
1328 1329
		rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
					PG_LEVEL_4K, slot);
1330
		__rmap_write_protect(kvm, rmap_head, false);
M
Marcelo Tosatti 已提交
1331

1332 1333 1334
		/* clear the first set bit */
		mask &= mask - 1;
	}
1335 1336
}

1337
/**
1338 1339
 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
 * protect the page if the D-bit isn't supported.
1340 1341 1342 1343 1344 1345 1346
 * @kvm: kvm instance
 * @slot: slot to clear D-bit
 * @gfn_offset: start of the BITS_PER_LONG pages we care about
 * @mask: indicates which pages we should clear D-bit
 *
 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
 */
1347 1348 1349
static void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
					 struct kvm_memory_slot *slot,
					 gfn_t gfn_offset, unsigned long mask)
1350
{
1351
	struct kvm_rmap_head *rmap_head;
1352

1353
	if (is_tdp_mmu_enabled(kvm))
1354 1355
		kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
				slot->base_gfn + gfn_offset, mask, false);
1356 1357 1358 1359

	if (!kvm_memslots_have_rmaps(kvm))
		return;

1360
	while (mask) {
1361 1362
		rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
					PG_LEVEL_4K, slot);
1363
		__rmap_clear_dirty(kvm, rmap_head, slot);
1364 1365 1366 1367 1368 1369

		/* clear the first set bit */
		mask &= mask - 1;
	}
}

1370 1371 1372 1373 1374 1375 1376
/**
 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
 * PT level pages.
 *
 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
 * enable dirty logging for them.
 *
1377 1378
 * We need to care about huge page mappings: e.g. during dirty logging we may
 * have such mappings.
1379 1380 1381 1382 1383
 */
void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
				struct kvm_memory_slot *slot,
				gfn_t gfn_offset, unsigned long mask)
{
1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
	/*
	 * Huge pages are NOT write protected when we start dirty logging in
	 * initially-all-set mode; must write protect them here so that they
	 * are split to 4K on the first write.
	 *
	 * The gfn_offset is guaranteed to be aligned to 64, but the base_gfn
	 * of memslot has no such restriction, so the range can cross two large
	 * pages.
	 */
	if (kvm_dirty_log_manual_protect_and_init_set(kvm)) {
		gfn_t start = slot->base_gfn + gfn_offset + __ffs(mask);
		gfn_t end = slot->base_gfn + gfn_offset + __fls(mask);

		kvm_mmu_slot_gfn_write_protect(kvm, slot, start, PG_LEVEL_2M);

		/* Cross two large pages? */
		if (ALIGN(start << PAGE_SHIFT, PMD_SIZE) !=
		    ALIGN(end << PAGE_SHIFT, PMD_SIZE))
			kvm_mmu_slot_gfn_write_protect(kvm, slot, end,
						       PG_LEVEL_2M);
	}

	/* Now handle 4K PTEs.  */
1407 1408
	if (kvm_x86_ops.cpu_dirty_log_size)
		kvm_mmu_clear_dirty_pt_masked(kvm, slot, gfn_offset, mask);
1409 1410
	else
		kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1411 1412
}

1413 1414
int kvm_cpu_dirty_log_size(void)
{
1415
	return kvm_x86_ops.cpu_dirty_log_size;
1416 1417
}

1418
bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1419 1420
				    struct kvm_memory_slot *slot, u64 gfn,
				    int min_level)
1421
{
1422
	struct kvm_rmap_head *rmap_head;
1423
	int i;
1424
	bool write_protected = false;
1425

1426 1427
	if (kvm_memslots_have_rmaps(kvm)) {
		for (i = min_level; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
1428
			rmap_head = gfn_to_rmap(gfn, i, slot);
1429 1430
			write_protected |= __rmap_write_protect(kvm, rmap_head, true);
		}
1431 1432
	}

1433
	if (is_tdp_mmu_enabled(kvm))
1434
		write_protected |=
1435
			kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn, min_level);
1436

1437
	return write_protected;
1438 1439
}

1440 1441 1442 1443 1444
static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
{
	struct kvm_memory_slot *slot;

	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1445
	return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn, PG_LEVEL_4K);
1446 1447
}

1448
static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1449
			  const struct kvm_memory_slot *slot)
1450
{
1451
	return pte_list_destroy(kvm, rmap_head);
1452 1453
}

1454 1455 1456
static bool kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			    struct kvm_memory_slot *slot, gfn_t gfn, int level,
			    pte_t unused)
1457
{
1458
	return kvm_zap_rmapp(kvm, rmap_head, slot);
1459 1460
}

1461 1462 1463
static bool kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			      struct kvm_memory_slot *slot, gfn_t gfn, int level,
			      pte_t pte)
1464
{
1465 1466
	u64 *sptep;
	struct rmap_iterator iter;
1467
	int need_flush = 0;
1468
	u64 new_spte;
D
Dan Williams 已提交
1469
	kvm_pfn_t new_pfn;
1470

1471 1472
	WARN_ON(pte_huge(pte));
	new_pfn = pte_pfn(pte);
1473

1474
restart:
1475
	for_each_rmap_spte(rmap_head, &iter, sptep) {
1476
		rmap_printk("spte %p %llx gfn %llx (%d)\n",
1477
			    sptep, *sptep, gfn, level);
1478

1479
		need_flush = 1;
1480

1481
		if (pte_write(pte)) {
1482
			pte_list_remove(kvm, rmap_head, sptep);
1483
			goto restart;
1484
		} else {
1485 1486
			new_spte = kvm_mmu_changed_pte_notifier_make_spte(
					*sptep, new_pfn);
1487

1488
			mmu_spte_clear_track_bits(kvm, sptep);
1489
			mmu_spte_set(sptep, new_spte);
1490 1491
		}
	}
1492

1493 1494 1495 1496 1497
	if (need_flush && kvm_available_flush_tlb_with_range()) {
		kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
		return 0;
	}

1498
	return need_flush;
1499 1500
}

1501 1502
struct slot_rmap_walk_iterator {
	/* input fields. */
1503
	const struct kvm_memory_slot *slot;
1504 1505 1506 1507 1508 1509 1510
	gfn_t start_gfn;
	gfn_t end_gfn;
	int start_level;
	int end_level;

	/* output fields. */
	gfn_t gfn;
1511
	struct kvm_rmap_head *rmap;
1512 1513 1514
	int level;

	/* private field. */
1515
	struct kvm_rmap_head *end_rmap;
1516 1517 1518 1519 1520 1521 1522
};

static void
rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
{
	iterator->level = level;
	iterator->gfn = iterator->start_gfn;
1523 1524
	iterator->rmap = gfn_to_rmap(iterator->gfn, level, iterator->slot);
	iterator->end_rmap = gfn_to_rmap(iterator->end_gfn, level, iterator->slot);
1525 1526 1527 1528
}

static void
slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1529
		    const struct kvm_memory_slot *slot, int start_level,
1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
		    int end_level, gfn_t start_gfn, gfn_t end_gfn)
{
	iterator->slot = slot;
	iterator->start_level = start_level;
	iterator->end_level = end_level;
	iterator->start_gfn = start_gfn;
	iterator->end_gfn = end_gfn;

	rmap_walk_init_level(iterator, iterator->start_level);
}

static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
{
	return !!iterator->rmap;
}

static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
{
	if (++iterator->rmap <= iterator->end_rmap) {
		iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
		return;
	}

	if (++iterator->level > iterator->end_level) {
		iterator->rmap = NULL;
		return;
	}

	rmap_walk_init_level(iterator, iterator->level);
}

#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,	\
	   _start_gfn, _end_gfn, _iter_)				\
	for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,		\
				 _end_level_, _start_gfn, _end_gfn);	\
	     slot_rmap_walk_okay(_iter_);				\
	     slot_rmap_walk_next(_iter_))

1568 1569 1570
typedef bool (*rmap_handler_t)(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			       struct kvm_memory_slot *slot, gfn_t gfn,
			       int level, pte_t pte);
1571

1572 1573 1574
static __always_inline bool kvm_handle_gfn_range(struct kvm *kvm,
						 struct kvm_gfn_range *range,
						 rmap_handler_t handler)
1575
{
1576
	struct slot_rmap_walk_iterator iterator;
1577
	bool ret = false;
1578

1579 1580 1581 1582
	for_each_slot_rmap_range(range->slot, PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL,
				 range->start, range->end - 1, &iterator)
		ret |= handler(kvm, iterator.rmap, range->slot, iterator.gfn,
			       iterator.level, range->pte);
1583

1584
	return ret;
1585 1586
}

1587
bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
1588
{
1589
	bool flush = false;
1590

1591 1592
	if (kvm_memslots_have_rmaps(kvm))
		flush = kvm_handle_gfn_range(kvm, range, kvm_unmap_rmapp);
1593

1594
	if (is_tdp_mmu_enabled(kvm))
1595
		flush |= kvm_tdp_mmu_unmap_gfn_range(kvm, range, flush);
1596

1597
	return flush;
1598 1599
}

1600
bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1601
{
1602
	bool flush = false;
1603

1604 1605
	if (kvm_memslots_have_rmaps(kvm))
		flush = kvm_handle_gfn_range(kvm, range, kvm_set_pte_rmapp);
1606

1607
	if (is_tdp_mmu_enabled(kvm))
1608
		flush |= kvm_tdp_mmu_set_spte_gfn(kvm, range);
1609

1610
	return flush;
1611 1612
}

1613 1614 1615
static bool kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			  struct kvm_memory_slot *slot, gfn_t gfn, int level,
			  pte_t unused)
1616
{
1617
	u64 *sptep;
1618
	struct rmap_iterator iter;
1619 1620
	int young = 0;

1621 1622
	for_each_rmap_spte(rmap_head, &iter, sptep)
		young |= mmu_spte_age(sptep);
1623

1624 1625 1626
	return young;
}

1627 1628 1629
static bool kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			       struct kvm_memory_slot *slot, gfn_t gfn,
			       int level, pte_t unused)
A
Andrea Arcangeli 已提交
1630
{
1631 1632
	u64 *sptep;
	struct rmap_iterator iter;
A
Andrea Arcangeli 已提交
1633

1634 1635 1636 1637
	for_each_rmap_spte(rmap_head, &iter, sptep)
		if (is_accessed_spte(*sptep))
			return 1;
	return 0;
A
Andrea Arcangeli 已提交
1638 1639
}

1640 1641
#define RMAP_RECYCLE_THRESHOLD 1000

1642
static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1643
{
1644
	struct kvm_memory_slot *slot;
1645
	struct kvm_rmap_head *rmap_head;
1646 1647
	struct kvm_mmu_page *sp;

1648
	sp = sptep_to_sp(spte);
1649
	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1650
	rmap_head = gfn_to_rmap(gfn, sp->role.level, slot);
1651

1652
	kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, __pte(0));
1653 1654
	kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
			KVM_PAGES_PER_HPAGE(sp->role.level));
1655 1656
}

1657
bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1658
{
1659
	bool young = false;
1660

1661 1662
	if (kvm_memslots_have_rmaps(kvm))
		young = kvm_handle_gfn_range(kvm, range, kvm_age_rmapp);
1663

1664
	if (is_tdp_mmu_enabled(kvm))
1665
		young |= kvm_tdp_mmu_age_gfn_range(kvm, range);
1666 1667

	return young;
1668 1669
}

1670
bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
A
Andrea Arcangeli 已提交
1671
{
1672
	bool young = false;
1673

1674 1675
	if (kvm_memslots_have_rmaps(kvm))
		young = kvm_handle_gfn_range(kvm, range, kvm_test_age_rmapp);
1676

1677
	if (is_tdp_mmu_enabled(kvm))
1678
		young |= kvm_tdp_mmu_test_age_gfn(kvm, range);
1679 1680

	return young;
A
Andrea Arcangeli 已提交
1681 1682
}

1683
#ifdef MMU_DEBUG
1684
static int is_empty_shadow_page(u64 *spt)
A
Avi Kivity 已提交
1685
{
1686 1687 1688
	u64 *pos;
	u64 *end;

1689
	for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1690
		if (is_shadow_present_pte(*pos)) {
1691
			printk(KERN_ERR "%s: %p %llx\n", __func__,
1692
			       pos, *pos);
A
Avi Kivity 已提交
1693
			return 0;
1694
		}
A
Avi Kivity 已提交
1695 1696
	return 1;
}
1697
#endif
A
Avi Kivity 已提交
1698

1699 1700 1701 1702 1703 1704
/*
 * This value is the sum of all of the kvm instances's
 * kvm->arch.n_used_mmu_pages values.  We need a global,
 * aggregate version in order to make the slab shrinker
 * faster
 */
1705
static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, long nr)
1706 1707 1708 1709 1710
{
	kvm->arch.n_used_mmu_pages += nr;
	percpu_counter_add(&kvm_total_used_mmu_pages, nr);
}

1711
static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1712
{
1713
	MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1714
	hlist_del(&sp->hash_link);
1715 1716
	list_del(&sp->link);
	free_page((unsigned long)sp->spt);
1717 1718
	if (!sp->role.direct)
		free_page((unsigned long)sp->gfns);
1719
	kmem_cache_free(mmu_page_header_cache, sp);
1720 1721
}

1722 1723
static unsigned kvm_page_table_hashfn(gfn_t gfn)
{
1724
	return hash_64(gfn, KVM_MMU_HASH_SHIFT);
1725 1726
}

1727
static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1728
				    struct kvm_mmu_page *sp, u64 *parent_pte)
1729 1730 1731 1732
{
	if (!parent_pte)
		return;

1733
	pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1734 1735
}

1736
static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1737 1738
				       u64 *parent_pte)
{
1739
	__pte_list_remove(parent_pte, &sp->parent_ptes);
1740 1741
}

1742 1743 1744 1745
static void drop_parent_pte(struct kvm_mmu_page *sp,
			    u64 *parent_pte)
{
	mmu_page_remove_parent_pte(sp, parent_pte);
1746
	mmu_spte_clear_no_track(parent_pte);
1747 1748
}

1749
static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
M
Marcelo Tosatti 已提交
1750
{
1751
	struct kvm_mmu_page *sp;
1752

1753 1754
	sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
	sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache);
1755
	if (!direct)
1756
		sp->gfns = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_gfn_array_cache);
1757
	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1758 1759 1760 1761 1762 1763

	/*
	 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
	 * depends on valid pages being added to the head of the list.  See
	 * comments in kvm_zap_obsolete_pages().
	 */
1764
	sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
1765 1766 1767
	list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
	kvm_mod_used_mmu_pages(vcpu->kvm, +1);
	return sp;
M
Marcelo Tosatti 已提交
1768 1769
}

1770
static void mark_unsync(u64 *spte);
1771
static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1772
{
1773 1774 1775 1776 1777 1778
	u64 *sptep;
	struct rmap_iterator iter;

	for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
		mark_unsync(sptep);
	}
1779 1780
}

1781
static void mark_unsync(u64 *spte)
1782
{
1783
	struct kvm_mmu_page *sp;
1784
	unsigned int index;
1785

1786
	sp = sptep_to_sp(spte);
1787 1788
	index = spte - sp->spt;
	if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1789
		return;
1790
	if (sp->unsync_children++)
1791
		return;
1792
	kvm_mmu_mark_parents_unsync(sp);
1793 1794
}

1795
static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1796
			       struct kvm_mmu_page *sp)
1797
{
1798
	return 0;
1799 1800
}

1801 1802 1803 1804 1805 1806 1807 1808 1809 1810
#define KVM_PAGE_ARRAY_NR 16

struct kvm_mmu_pages {
	struct mmu_page_and_offset {
		struct kvm_mmu_page *sp;
		unsigned int idx;
	} page[KVM_PAGE_ARRAY_NR];
	unsigned int nr;
};

1811 1812
static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
			 int idx)
1813
{
1814
	int i;
1815

1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826
	if (sp->unsync)
		for (i=0; i < pvec->nr; i++)
			if (pvec->page[i].sp == sp)
				return 0;

	pvec->page[pvec->nr].sp = sp;
	pvec->page[pvec->nr].idx = idx;
	pvec->nr++;
	return (pvec->nr == KVM_PAGE_ARRAY_NR);
}

1827 1828 1829 1830 1831 1832 1833
static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
{
	--sp->unsync_children;
	WARN_ON((int)sp->unsync_children < 0);
	__clear_bit(idx, sp->unsync_child_bitmap);
}

1834 1835 1836 1837
static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
	int i, ret, nr_unsync_leaf = 0;
1838

1839
	for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1840
		struct kvm_mmu_page *child;
1841 1842
		u64 ent = sp->spt[i];

1843 1844 1845 1846
		if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
			clear_unsync_child_bit(sp, i);
			continue;
		}
1847

1848
		child = to_shadow_page(ent & PT64_BASE_ADDR_MASK);
1849 1850 1851 1852 1853 1854

		if (child->unsync_children) {
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;

			ret = __mmu_unsync_walk(child, pvec);
1855 1856 1857 1858
			if (!ret) {
				clear_unsync_child_bit(sp, i);
				continue;
			} else if (ret > 0) {
1859
				nr_unsync_leaf += ret;
1860
			} else
1861 1862 1863 1864 1865 1866
				return ret;
		} else if (child->unsync) {
			nr_unsync_leaf++;
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;
		} else
1867
			clear_unsync_child_bit(sp, i);
1868 1869
	}

1870 1871 1872
	return nr_unsync_leaf;
}

1873 1874
#define INVALID_INDEX (-1)

1875 1876 1877
static int mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
P
Paolo Bonzini 已提交
1878
	pvec->nr = 0;
1879 1880 1881
	if (!sp->unsync_children)
		return 0;

1882
	mmu_pages_add(pvec, sp, INVALID_INDEX);
1883
	return __mmu_unsync_walk(sp, pvec);
1884 1885 1886 1887 1888
}

static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
{
	WARN_ON(!sp->unsync);
1889
	trace_kvm_mmu_sync_page(sp);
1890 1891 1892 1893
	sp->unsync = 0;
	--kvm->stat.mmu_unsync;
}

1894 1895
static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				     struct list_head *invalid_list);
1896 1897
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list);
1898

1899 1900
#define for_each_valid_sp(_kvm, _sp, _list)				\
	hlist_for_each_entry(_sp, _list, hash_link)			\
1901
		if (is_obsolete_sp((_kvm), (_sp))) {			\
1902
		} else
1903 1904

#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)			\
1905 1906
	for_each_valid_sp(_kvm, _sp,					\
	  &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)])	\
1907
		if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
1908

1909 1910
static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
			 struct list_head *invalid_list)
1911
{
1912
	if (vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
1913
		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1914
		return false;
1915 1916
	}

1917
	return true;
1918 1919
}

1920 1921 1922 1923
static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
					struct list_head *invalid_list,
					bool remote_flush)
{
1924
	if (!remote_flush && list_empty(invalid_list))
1925 1926 1927 1928 1929 1930 1931 1932 1933
		return false;

	if (!list_empty(invalid_list))
		kvm_mmu_commit_zap_page(kvm, invalid_list);
	else
		kvm_flush_remote_tlbs(kvm);
	return true;
}

1934 1935 1936
static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
				 struct list_head *invalid_list,
				 bool remote_flush, bool local_flush)
1937
{
1938
	if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush))
1939
		return;
1940 1941
}

1942 1943 1944 1945 1946 1947 1948
#ifdef CONFIG_KVM_MMU_AUDIT
#include "mmu_audit.c"
#else
static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
static void mmu_audit_disable(void) { }
#endif

1949 1950
static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
{
1951 1952
	return sp->role.invalid ||
	       unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1953 1954
}

1955
struct mmu_page_path {
1956 1957
	struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
	unsigned int idx[PT64_ROOT_MAX_LEVEL];
1958 1959
};

1960
#define for_each_sp(pvec, sp, parents, i)			\
P
Paolo Bonzini 已提交
1961
		for (i = mmu_pages_first(&pvec, &parents);	\
1962 1963 1964
			i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});	\
			i = mmu_pages_next(&pvec, &parents, i))

1965 1966 1967
static int mmu_pages_next(struct kvm_mmu_pages *pvec,
			  struct mmu_page_path *parents,
			  int i)
1968 1969 1970 1971 1972
{
	int n;

	for (n = i+1; n < pvec->nr; n++) {
		struct kvm_mmu_page *sp = pvec->page[n].sp;
P
Paolo Bonzini 已提交
1973 1974
		unsigned idx = pvec->page[n].idx;
		int level = sp->role.level;
1975

P
Paolo Bonzini 已提交
1976
		parents->idx[level-1] = idx;
1977
		if (level == PG_LEVEL_4K)
P
Paolo Bonzini 已提交
1978
			break;
1979

P
Paolo Bonzini 已提交
1980
		parents->parent[level-2] = sp;
1981 1982 1983 1984 1985
	}

	return n;
}

P
Paolo Bonzini 已提交
1986 1987 1988 1989 1990 1991 1992 1993 1994
static int mmu_pages_first(struct kvm_mmu_pages *pvec,
			   struct mmu_page_path *parents)
{
	struct kvm_mmu_page *sp;
	int level;

	if (pvec->nr == 0)
		return 0;

1995 1996
	WARN_ON(pvec->page[0].idx != INVALID_INDEX);

P
Paolo Bonzini 已提交
1997 1998
	sp = pvec->page[0].sp;
	level = sp->role.level;
1999
	WARN_ON(level == PG_LEVEL_4K);
P
Paolo Bonzini 已提交
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

	parents->parent[level-2] = sp;

	/* Also set up a sentinel.  Further entries in pvec are all
	 * children of sp, so this element is never overwritten.
	 */
	parents->parent[level-1] = NULL;
	return mmu_pages_next(pvec, parents, 0);
}

2010
static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2011
{
2012 2013 2014 2015 2016 2017 2018 2019 2020
	struct kvm_mmu_page *sp;
	unsigned int level = 0;

	do {
		unsigned int idx = parents->idx[level];
		sp = parents->parent[level];
		if (!sp)
			return;

2021
		WARN_ON(idx == INVALID_INDEX);
2022
		clear_unsync_child_bit(sp, idx);
2023
		level++;
P
Paolo Bonzini 已提交
2024
	} while (!sp->unsync_children);
2025
}
2026

2027 2028
static int mmu_sync_children(struct kvm_vcpu *vcpu,
			     struct kvm_mmu_page *parent, bool can_yield)
2029 2030 2031 2032 2033
{
	int i;
	struct kvm_mmu_page *sp;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
2034
	LIST_HEAD(invalid_list);
2035
	bool flush = false;
2036 2037

	while (mmu_unsync_walk(parent, &pages)) {
2038
		bool protected = false;
2039 2040

		for_each_sp(pages, sp, parents, i)
2041
			protected |= rmap_write_protect(vcpu, sp->gfn);
2042

2043
		if (protected) {
2044
			kvm_flush_remote_tlbs(vcpu->kvm);
2045 2046
			flush = false;
		}
2047

2048
		for_each_sp(pages, sp, parents, i) {
2049
			kvm_unlink_unsync_page(vcpu->kvm, sp);
2050
			flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2051 2052
			mmu_pages_clear_parents(&parents);
		}
2053
		if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) {
2054
			kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2055 2056 2057 2058 2059
			if (!can_yield) {
				kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
				return -EINTR;
			}

2060
			cond_resched_rwlock_write(&vcpu->kvm->mmu_lock);
2061 2062
			flush = false;
		}
2063
	}
2064 2065

	kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2066
	return 0;
2067 2068
}

2069 2070
static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
{
2071
	atomic_set(&sp->write_flooding_count,  0);
2072 2073 2074 2075
}

static void clear_sp_write_flooding_count(u64 *spte)
{
2076
	__clear_sp_write_flooding_count(sptep_to_sp(spte));
2077 2078
}

2079 2080 2081 2082
static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
					     gfn_t gfn,
					     gva_t gaddr,
					     unsigned level,
2083
					     int direct,
2084
					     unsigned int access)
2085
{
2086
	bool direct_mmu = vcpu->arch.mmu->direct_map;
2087
	union kvm_mmu_page_role role;
2088
	struct hlist_head *sp_list;
2089
	unsigned quadrant;
2090
	struct kvm_mmu_page *sp;
2091
	int collisions = 0;
2092
	LIST_HEAD(invalid_list);
2093

2094
	role = vcpu->arch.mmu->mmu_role.base;
2095
	role.level = level;
2096
	role.direct = direct;
2097
	if (role.direct)
2098
		role.gpte_is_8_bytes = true;
2099
	role.access = access;
2100
	if (!direct_mmu && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
2101 2102 2103 2104
		quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
		quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
		role.quadrant = quadrant;
	}
2105 2106 2107

	sp_list = &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)];
	for_each_valid_sp(vcpu->kvm, sp, sp_list) {
2108 2109 2110 2111 2112
		if (sp->gfn != gfn) {
			collisions++;
			continue;
		}

2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125
		if (sp->role.word != role.word) {
			/*
			 * If the guest is creating an upper-level page, zap
			 * unsync pages for the same gfn.  While it's possible
			 * the guest is using recursive page tables, in all
			 * likelihood the guest has stopped using the unsync
			 * page and is installing a completely unrelated page.
			 * Unsync pages must not be left as is, because the new
			 * upper-level page will be write-protected.
			 */
			if (level > PG_LEVEL_4K && sp->unsync)
				kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
							 &invalid_list);
2126
			continue;
2127
		}
2128

2129 2130 2131
		if (direct_mmu)
			goto trace_get_page;

2132
		if (sp->unsync) {
2133
			/*
2134
			 * The page is good, but is stale.  kvm_sync_page does
2135 2136 2137 2138 2139 2140 2141 2142 2143
			 * get the latest guest state, but (unlike mmu_unsync_children)
			 * it doesn't write-protect the page or mark it synchronized!
			 * This way the validity of the mapping is ensured, but the
			 * overhead of write protection is not incurred until the
			 * guest invalidates the TLB mapping.  This allows multiple
			 * SPs for a single gfn to be unsync.
			 *
			 * If the sync fails, the page is zapped.  If so, break
			 * in order to rebuild it.
2144
			 */
2145
			if (!kvm_sync_page(vcpu, sp, &invalid_list))
2146 2147 2148 2149
				break;

			WARN_ON(!list_empty(&invalid_list));
		}
2150

2151
		__clear_sp_write_flooding_count(sp);
2152 2153

trace_get_page:
2154
		trace_kvm_mmu_get_page(sp, false);
2155
		goto out;
2156
	}
2157

A
Avi Kivity 已提交
2158
	++vcpu->kvm->stat.mmu_cache_miss;
2159 2160 2161

	sp = kvm_mmu_alloc_page(vcpu, direct);

2162 2163
	sp->gfn = gfn;
	sp->role = role;
2164
	hlist_add_head(&sp->hash_link, sp_list);
2165
	if (!direct) {
2166
		account_shadowed(vcpu->kvm, sp);
2167
		if (level == PG_LEVEL_4K && rmap_write_protect(vcpu, gfn))
2168
			kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
2169
	}
A
Avi Kivity 已提交
2170
	trace_kvm_mmu_get_page(sp, true);
2171
out:
2172 2173
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);

2174 2175
	if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
		vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2176
	return sp;
2177 2178
}

2179 2180 2181
static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
					struct kvm_vcpu *vcpu, hpa_t root,
					u64 addr)
2182 2183
{
	iterator->addr = addr;
2184
	iterator->shadow_addr = root;
2185
	iterator->level = vcpu->arch.mmu->shadow_root_level;
2186

2187
	if (iterator->level == PT64_ROOT_4LEVEL &&
2188 2189
	    vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
	    !vcpu->arch.mmu->direct_map)
2190 2191
		--iterator->level;

2192
	if (iterator->level == PT32E_ROOT_LEVEL) {
2193 2194 2195 2196
		/*
		 * prev_root is currently only used for 64-bit hosts. So only
		 * the active root_hpa is valid here.
		 */
2197
		BUG_ON(root != vcpu->arch.mmu->root_hpa);
2198

2199
		iterator->shadow_addr
2200
			= vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2201 2202 2203 2204 2205 2206 2207
		iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
		--iterator->level;
		if (!iterator->shadow_addr)
			iterator->level = 0;
	}
}

2208 2209 2210
static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
			     struct kvm_vcpu *vcpu, u64 addr)
{
2211
	shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
2212 2213 2214
				    addr);
}

2215 2216
static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
{
2217
	if (iterator->level < PG_LEVEL_4K)
2218
		return false;
2219

2220 2221 2222 2223 2224
	iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
	iterator->sptep	= ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
	return true;
}

2225 2226
static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
			       u64 spte)
2227
{
2228
	if (is_last_spte(spte, iterator->level)) {
2229 2230 2231 2232
		iterator->level = 0;
		return;
	}

2233
	iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2234 2235 2236
	--iterator->level;
}

2237 2238
static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
{
2239
	__shadow_walk_next(iterator, *iterator->sptep);
2240 2241
}

2242 2243 2244 2245 2246 2247 2248 2249 2250
static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
			     struct kvm_mmu_page *sp)
{
	u64 spte;

	BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);

	spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp));

2251
	mmu_spte_set(sptep, spte);
2252 2253 2254 2255 2256

	mmu_page_add_parent_pte(vcpu, sp, sptep);

	if (sp->unsync_children || sp->unsync)
		mark_unsync(sptep);
2257 2258
}

2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
				   unsigned direct_access)
{
	if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
		struct kvm_mmu_page *child;

		/*
		 * For the direct sp, if the guest pte's dirty bit
		 * changed form clean to dirty, it will corrupt the
		 * sp's access: allow writable in the read-only sp,
		 * so we should update the spte at this point to get
		 * a new sp with the correct access.
		 */
2272
		child = to_shadow_page(*sptep & PT64_BASE_ADDR_MASK);
2273 2274 2275
		if (child->role.access == direct_access)
			return;

2276
		drop_parent_pte(child, sptep);
2277
		kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
2278 2279 2280
	}
}

2281 2282 2283
/* Returns the number of zapped non-leaf child shadow pages. */
static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
			    u64 *spte, struct list_head *invalid_list)
2284 2285 2286 2287 2288 2289
{
	u64 pte;
	struct kvm_mmu_page *child;

	pte = *spte;
	if (is_shadow_present_pte(pte)) {
X
Xiao Guangrong 已提交
2290
		if (is_last_spte(pte, sp->role.level)) {
2291
			drop_spte(kvm, spte);
X
Xiao Guangrong 已提交
2292
		} else {
2293
			child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2294
			drop_parent_pte(child, spte);
2295 2296 2297 2298 2299 2300 2301 2302 2303 2304

			/*
			 * Recursively zap nested TDP SPs, parentless SPs are
			 * unlikely to be used again in the near future.  This
			 * avoids retaining a large number of stale nested SPs.
			 */
			if (tdp_enabled && invalid_list &&
			    child->role.guest_mode && !child->parent_ptes.val)
				return kvm_mmu_prepare_zap_page(kvm, child,
								invalid_list);
2305
		}
2306
	} else if (is_mmio_spte(pte)) {
2307
		mmu_spte_clear_no_track(spte);
2308
	}
2309
	return 0;
2310 2311
}

2312 2313 2314
static int kvm_mmu_page_unlink_children(struct kvm *kvm,
					struct kvm_mmu_page *sp,
					struct list_head *invalid_list)
2315
{
2316
	int zapped = 0;
2317 2318
	unsigned i;

2319
	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2320 2321 2322
		zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list);

	return zapped;
2323 2324
}

2325
static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2326
{
2327 2328
	u64 *sptep;
	struct rmap_iterator iter;
2329

2330
	while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2331
		drop_parent_pte(sp, sptep);
2332 2333
}

2334
static int mmu_zap_unsync_children(struct kvm *kvm,
2335 2336
				   struct kvm_mmu_page *parent,
				   struct list_head *invalid_list)
2337
{
2338 2339 2340
	int i, zapped = 0;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
2341

2342
	if (parent->role.level == PG_LEVEL_4K)
2343
		return 0;
2344 2345 2346 2347 2348

	while (mmu_unsync_walk(parent, &pages)) {
		struct kvm_mmu_page *sp;

		for_each_sp(pages, sp, parents, i) {
2349
			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2350
			mmu_pages_clear_parents(&parents);
2351
			zapped++;
2352 2353 2354 2355
		}
	}

	return zapped;
2356 2357
}

2358 2359 2360 2361
static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
				       struct kvm_mmu_page *sp,
				       struct list_head *invalid_list,
				       int *nr_zapped)
2362
{
2363
	bool list_unstable;
A
Avi Kivity 已提交
2364

2365
	trace_kvm_mmu_prepare_zap_page(sp);
2366
	++kvm->stat.mmu_shadow_zapped;
2367
	*nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2368
	*nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list);
2369
	kvm_mmu_unlink_parents(kvm, sp);
2370

2371 2372 2373
	/* Zapping children means active_mmu_pages has become unstable. */
	list_unstable = *nr_zapped;

2374
	if (!sp->role.invalid && !sp->role.direct)
2375
		unaccount_shadowed(kvm, sp);
2376

2377 2378
	if (sp->unsync)
		kvm_unlink_unsync_page(kvm, sp);
2379
	if (!sp->root_count) {
2380
		/* Count self */
2381
		(*nr_zapped)++;
2382 2383 2384 2385 2386 2387 2388 2389 2390 2391

		/*
		 * Already invalid pages (previously active roots) are not on
		 * the active page list.  See list_del() in the "else" case of
		 * !sp->root_count.
		 */
		if (sp->role.invalid)
			list_add(&sp->link, invalid_list);
		else
			list_move(&sp->link, invalid_list);
2392
		kvm_mod_used_mmu_pages(kvm, -1);
2393
	} else {
2394 2395 2396 2397 2398
		/*
		 * Remove the active root from the active page list, the root
		 * will be explicitly freed when the root_count hits zero.
		 */
		list_del(&sp->link);
2399

2400 2401 2402 2403 2404 2405
		/*
		 * Obsolete pages cannot be used on any vCPUs, see the comment
		 * in kvm_mmu_zap_all_fast().  Note, is_obsolete_sp() also
		 * treats invalid shadow pages as being obsolete.
		 */
		if (!is_obsolete_sp(kvm, sp))
2406
			kvm_reload_remote_mmus(kvm);
2407
	}
2408

P
Paolo Bonzini 已提交
2409 2410 2411
	if (sp->lpage_disallowed)
		unaccount_huge_nx_page(kvm, sp);

2412
	sp->role.invalid = 1;
2413 2414 2415 2416 2417 2418 2419 2420 2421 2422
	return list_unstable;
}

static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				     struct list_head *invalid_list)
{
	int nr_zapped;

	__kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
	return nr_zapped;
2423 2424
}

2425 2426 2427
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list)
{
2428
	struct kvm_mmu_page *sp, *nsp;
2429 2430 2431 2432

	if (list_empty(invalid_list))
		return;

2433
	/*
2434 2435 2436 2437 2438 2439 2440
	 * We need to make sure everyone sees our modifications to
	 * the page tables and see changes to vcpu->mode here. The barrier
	 * in the kvm_flush_remote_tlbs() achieves this. This pairs
	 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
	 *
	 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
	 * guest mode and/or lockless shadow page table walks.
2441 2442
	 */
	kvm_flush_remote_tlbs(kvm);
2443

2444
	list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2445
		WARN_ON(!sp->role.invalid || sp->root_count);
2446
		kvm_mmu_free_page(sp);
2447
	}
2448 2449
}

2450 2451
static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm,
						  unsigned long nr_to_zap)
2452
{
2453 2454
	unsigned long total_zapped = 0;
	struct kvm_mmu_page *sp, *tmp;
2455
	LIST_HEAD(invalid_list);
2456 2457
	bool unstable;
	int nr_zapped;
2458 2459

	if (list_empty(&kvm->arch.active_mmu_pages))
2460 2461
		return 0;

2462
restart:
2463
	list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) {
2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474
		/*
		 * Don't zap active root pages, the page itself can't be freed
		 * and zapping it will just force vCPUs to realloc and reload.
		 */
		if (sp->root_count)
			continue;

		unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list,
						      &nr_zapped);
		total_zapped += nr_zapped;
		if (total_zapped >= nr_to_zap)
2475 2476
			break;

2477 2478
		if (unstable)
			goto restart;
2479
	}
2480

2481 2482 2483 2484 2485 2486
	kvm_mmu_commit_zap_page(kvm, &invalid_list);

	kvm->stat.mmu_recycled += total_zapped;
	return total_zapped;
}

2487 2488 2489 2490 2491 2492 2493
static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm)
{
	if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
		return kvm->arch.n_max_mmu_pages -
			kvm->arch.n_used_mmu_pages;

	return 0;
2494 2495
}

2496 2497
static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
{
2498
	unsigned long avail = kvm_mmu_available_pages(vcpu->kvm);
2499

2500
	if (likely(avail >= KVM_MIN_FREE_MMU_PAGES))
2501 2502
		return 0;

2503
	kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail);
2504

2505 2506 2507 2508 2509
	/*
	 * Note, this check is intentionally soft, it only guarantees that one
	 * page is available, while the caller may end up allocating as many as
	 * four pages, e.g. for PAE roots or for 5-level paging.  Temporarily
	 * exceeding the (arbitrary by default) limit will not harm the host,
I
Ingo Molnar 已提交
2510
	 * being too aggressive may unnecessarily kill the guest, and getting an
2511 2512 2513
	 * exact count is far more trouble than it's worth, especially in the
	 * page fault paths.
	 */
2514 2515 2516 2517 2518
	if (!kvm_mmu_available_pages(vcpu->kvm))
		return -ENOSPC;
	return 0;
}

2519 2520
/*
 * Changing the number of mmu pages allocated to the vm
2521
 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2522
 */
2523
void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2524
{
2525
	write_lock(&kvm->mmu_lock);
2526

2527
	if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2528 2529
		kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages -
						  goal_nr_mmu_pages);
2530

2531
		goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2532 2533
	}

2534
	kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2535

2536
	write_unlock(&kvm->mmu_lock);
2537 2538
}

2539
int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2540
{
2541
	struct kvm_mmu_page *sp;
2542
	LIST_HEAD(invalid_list);
2543 2544
	int r;

2545
	pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2546
	r = 0;
2547
	write_lock(&kvm->mmu_lock);
2548
	for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2549
		pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2550 2551
			 sp->role.word);
		r = 1;
2552
		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2553
	}
2554
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2555
	write_unlock(&kvm->mmu_lock);
2556

2557
	return r;
2558
}
2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573

static int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
{
	gpa_t gpa;
	int r;

	if (vcpu->arch.mmu->direct_map)
		return 0;

	gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);

	r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);

	return r;
}
2574

2575
static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2576 2577 2578 2579 2580 2581 2582 2583
{
	trace_kvm_mmu_unsync_page(sp);
	++vcpu->kvm->stat.mmu_unsync;
	sp->unsync = 1;

	kvm_mmu_mark_parents_unsync(sp);
}

2584 2585 2586 2587 2588 2589 2590
/*
 * Attempt to unsync any shadow pages that can be reached by the specified gfn,
 * KVM is creating a writable mapping for said gfn.  Returns 0 if all pages
 * were marked unsync (or if there is no shadow page), -EPERM if the SPTE must
 * be write-protected.
 */
int mmu_try_to_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn, bool can_unsync)
2591
{
2592
	struct kvm_mmu_page *sp;
2593
	bool locked = false;
2594

2595 2596 2597 2598 2599
	/*
	 * Force write-protection if the page is being tracked.  Note, the page
	 * track machinery is used to write-protect upper-level shadow pages,
	 * i.e. this guards the role.level == 4K assertion below!
	 */
2600
	if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2601
		return -EPERM;
2602

2603 2604 2605 2606 2607 2608
	/*
	 * The page is not write-tracked, mark existing shadow pages unsync
	 * unless KVM is synchronizing an unsync SP (can_unsync = false).  In
	 * that case, KVM must complete emulation of the guest TLB flush before
	 * allowing shadow pages to become unsync (writable by the guest).
	 */
2609
	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2610
		if (!can_unsync)
2611
			return -EPERM;
2612

2613 2614
		if (sp->unsync)
			continue;
2615

2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638
		/*
		 * TDP MMU page faults require an additional spinlock as they
		 * run with mmu_lock held for read, not write, and the unsync
		 * logic is not thread safe.  Take the spinklock regardless of
		 * the MMU type to avoid extra conditionals/parameters, there's
		 * no meaningful penalty if mmu_lock is held for write.
		 */
		if (!locked) {
			locked = true;
			spin_lock(&vcpu->kvm->arch.mmu_unsync_pages_lock);

			/*
			 * Recheck after taking the spinlock, a different vCPU
			 * may have since marked the page unsync.  A false
			 * positive on the unprotected check above is not
			 * possible as clearing sp->unsync _must_ hold mmu_lock
			 * for write, i.e. unsync cannot transition from 0->1
			 * while this CPU holds mmu_lock for read (or write).
			 */
			if (READ_ONCE(sp->unsync))
				continue;
		}

2639
		WARN_ON(sp->role.level != PG_LEVEL_4K);
2640
		kvm_unsync_page(vcpu, sp);
2641
	}
2642 2643
	if (locked)
		spin_unlock(&vcpu->kvm->arch.mmu_unsync_pages_lock);
2644

2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666
	/*
	 * We need to ensure that the marking of unsync pages is visible
	 * before the SPTE is updated to allow writes because
	 * kvm_mmu_sync_roots() checks the unsync flags without holding
	 * the MMU lock and so can race with this. If the SPTE was updated
	 * before the page had been marked as unsync-ed, something like the
	 * following could happen:
	 *
	 * CPU 1                    CPU 2
	 * ---------------------------------------------------------------------
	 * 1.2 Host updates SPTE
	 *     to be writable
	 *                      2.1 Guest writes a GPTE for GVA X.
	 *                          (GPTE being in the guest page table shadowed
	 *                           by the SP from CPU 1.)
	 *                          This reads SPTE during the page table walk.
	 *                          Since SPTE.W is read as 1, there is no
	 *                          fault.
	 *
	 *                      2.2 Guest issues TLB flush.
	 *                          That causes a VM Exit.
	 *
2667 2668
	 *                      2.3 Walking of unsync pages sees sp->unsync is
	 *                          false and skips the page.
2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683
	 *
	 *                      2.4 Guest accesses GVA X.
	 *                          Since the mapping in the SP was not updated,
	 *                          so the old mapping for GVA X incorrectly
	 *                          gets used.
	 * 1.1 Host marks SP
	 *     as unsync
	 *     (sp->unsync = true)
	 *
	 * The write barrier below ensures that 1.1 happens before 1.2 and thus
	 * the situation in 2.4 does not arise. The implicit barrier in 2.2
	 * pairs with this write barrier.
	 */
	smp_wmb();

2684
	return 0;
2685 2686
}

2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703
static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
		    unsigned int pte_access, int level,
		    gfn_t gfn, kvm_pfn_t pfn, bool speculative,
		    bool can_unsync, bool host_writable)
{
	u64 spte;
	struct kvm_mmu_page *sp;
	int ret;

	sp = sptep_to_sp(sptep);

	ret = make_spte(vcpu, pte_access, level, gfn, pfn, *sptep, speculative,
			can_unsync, host_writable, sp_ad_disabled(sp), &spte);

	if (spte & PT_WRITABLE_MASK)
		kvm_vcpu_mark_page_dirty(vcpu, gfn);

2704 2705 2706
	if (*sptep == spte)
		ret |= SET_SPTE_SPURIOUS;
	else if (mmu_spte_update(sptep, spte))
2707
		ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
M
Marcelo Tosatti 已提交
2708 2709 2710
	return ret;
}

2711
static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2712
			unsigned int pte_access, bool write_fault, int level,
2713 2714
			gfn_t gfn, kvm_pfn_t pfn, bool speculative,
			bool host_writable)
M
Marcelo Tosatti 已提交
2715 2716
{
	int was_rmapped = 0;
2717
	int rmap_count;
2718
	int set_spte_ret;
2719
	int ret = RET_PF_FIXED;
2720
	bool flush = false;
M
Marcelo Tosatti 已提交
2721

2722 2723
	pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
		 *sptep, write_fault, gfn);
M
Marcelo Tosatti 已提交
2724

2725 2726 2727 2728 2729
	if (unlikely(is_noslot_pfn(pfn))) {
		mark_mmio_spte(vcpu, sptep, gfn, pte_access);
		return RET_PF_EMULATE;
	}

2730
	if (is_shadow_present_pte(*sptep)) {
M
Marcelo Tosatti 已提交
2731 2732 2733 2734
		/*
		 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
		 * the parent of the now unreachable PTE.
		 */
2735
		if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) {
M
Marcelo Tosatti 已提交
2736
			struct kvm_mmu_page *child;
A
Avi Kivity 已提交
2737
			u64 pte = *sptep;
M
Marcelo Tosatti 已提交
2738

2739
			child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2740
			drop_parent_pte(child, sptep);
2741
			flush = true;
A
Avi Kivity 已提交
2742
		} else if (pfn != spte_to_pfn(*sptep)) {
2743
			pgprintk("hfn old %llx new %llx\n",
A
Avi Kivity 已提交
2744
				 spte_to_pfn(*sptep), pfn);
2745
			drop_spte(vcpu->kvm, sptep);
2746
			flush = true;
2747 2748
		} else
			was_rmapped = 1;
M
Marcelo Tosatti 已提交
2749
	}
2750

2751 2752 2753
	set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
				speculative, true, host_writable);
	if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
M
Marcelo Tosatti 已提交
2754
		if (write_fault)
2755
			ret = RET_PF_EMULATE;
2756
	}
2757

2758
	if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
2759 2760
		kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
				KVM_PAGES_PER_HPAGE(level));
M
Marcelo Tosatti 已提交
2761

2762 2763 2764 2765 2766 2767 2768 2769 2770
	/*
	 * The fault is fully spurious if and only if the new SPTE and old SPTE
	 * are identical, and emulation is not required.
	 */
	if ((set_spte_ret & SET_SPTE_SPURIOUS) && ret == RET_PF_FIXED) {
		WARN_ON_ONCE(!was_rmapped);
		return RET_PF_SPURIOUS;
	}

A
Avi Kivity 已提交
2771
	pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2772
	trace_kvm_mmu_set_spte(level, gfn, sptep);
M
Marcelo Tosatti 已提交
2773

2774
	if (!was_rmapped) {
2775
		kvm_update_page_stats(vcpu->kvm, level, 1);
2776 2777 2778
		rmap_count = rmap_add(vcpu, sptep, gfn);
		if (rmap_count > RMAP_RECYCLE_THRESHOLD)
			rmap_recycle(vcpu, sptep, gfn);
2779
	}
2780

2781
	return ret;
2782 2783
}

D
Dan Williams 已提交
2784
static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2785 2786 2787 2788
				     bool no_dirty_log)
{
	struct kvm_memory_slot *slot;

2789
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2790
	if (!slot)
2791
		return KVM_PFN_ERR_FAULT;
2792

2793
	return gfn_to_pfn_memslot_atomic(slot, gfn);
2794 2795 2796 2797 2798 2799 2800
}

static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
				    struct kvm_mmu_page *sp,
				    u64 *start, u64 *end)
{
	struct page *pages[PTE_PREFETCH_NUM];
2801
	struct kvm_memory_slot *slot;
2802
	unsigned int access = sp->role.access;
2803 2804 2805 2806
	int i, ret;
	gfn_t gfn;

	gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2807 2808
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
	if (!slot)
2809 2810
		return -1;

2811
	ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2812 2813 2814
	if (ret <= 0)
		return -1;

2815
	for (i = 0; i < ret; i++, gfn++, start++) {
2816
		mmu_set_spte(vcpu, start, access, false, sp->role.level, gfn,
2817
			     page_to_pfn(pages[i]), true, true);
2818 2819
		put_page(pages[i]);
	}
2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835

	return 0;
}

static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
				  struct kvm_mmu_page *sp, u64 *sptep)
{
	u64 *spte, *start = NULL;
	int i;

	WARN_ON(!sp->role.direct);

	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
	spte = sp->spt + i;

	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2836
		if (is_shadow_present_pte(*spte) || spte == sptep) {
2837 2838 2839
			if (!start)
				continue;
			if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2840
				return;
2841 2842 2843 2844
			start = NULL;
		} else if (!start)
			start = spte;
	}
2845 2846
	if (start)
		direct_pte_prefetch_many(vcpu, sp, start, spte);
2847 2848 2849 2850 2851 2852
}

static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
{
	struct kvm_mmu_page *sp;

2853
	sp = sptep_to_sp(sptep);
2854

2855
	/*
2856 2857 2858
	 * Without accessed bits, there's no way to distinguish between
	 * actually accessed translations and prefetched, so disable pte
	 * prefetch if accessed bits aren't available.
2859
	 */
2860
	if (sp_ad_disabled(sp))
2861 2862
		return;

2863
	if (sp->role.level > PG_LEVEL_4K)
2864 2865
		return;

2866 2867 2868 2869 2870 2871 2872
	/*
	 * If addresses are being invalidated, skip prefetching to avoid
	 * accidentally prefetching those addresses.
	 */
	if (unlikely(vcpu->kvm->mmu_notifier_count))
		return;

2873 2874 2875
	__direct_pte_prefetch(vcpu, sp, sptep);
}

2876
static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn,
2877
				  const struct kvm_memory_slot *slot)
2878 2879 2880 2881 2882
{
	unsigned long hva;
	pte_t *pte;
	int level;

2883
	if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn))
2884
		return PG_LEVEL_4K;
2885

2886 2887 2888 2889 2890 2891 2892 2893
	/*
	 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
	 * is not solely for performance, it's also necessary to avoid the
	 * "writable" check in __gfn_to_hva_many(), which will always fail on
	 * read-only memslots due to gfn_to_hva() assuming writes.  Earlier
	 * page fault steps have already verified the guest isn't writing a
	 * read-only memslot.
	 */
2894 2895
	hva = __gfn_to_hva_memslot(slot, gfn);

2896
	pte = lookup_address_in_mm(kvm->mm, hva, &level);
2897
	if (unlikely(!pte))
2898
		return PG_LEVEL_4K;
2899 2900 2901 2902

	return level;
}

2903 2904 2905
int kvm_mmu_max_mapping_level(struct kvm *kvm,
			      const struct kvm_memory_slot *slot, gfn_t gfn,
			      kvm_pfn_t pfn, int max_level)
2906 2907
{
	struct kvm_lpage_info *linfo;
2908
	int host_level;
2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919

	max_level = min(max_level, max_huge_page_level);
	for ( ; max_level > PG_LEVEL_4K; max_level--) {
		linfo = lpage_info_slot(gfn, slot, max_level);
		if (!linfo->disallow_lpage)
			break;
	}

	if (max_level == PG_LEVEL_4K)
		return PG_LEVEL_4K;

2920 2921
	host_level = host_pfn_mapping_level(kvm, gfn, pfn, slot);
	return min(host_level, max_level);
2922 2923
}

B
Ben Gardon 已提交
2924 2925 2926
int kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, gfn_t gfn,
			    int max_level, kvm_pfn_t *pfnp,
			    bool huge_page_disallowed, int *req_level)
2927
{
2928
	struct kvm_memory_slot *slot;
2929
	kvm_pfn_t pfn = *pfnp;
2930
	kvm_pfn_t mask;
2931
	int level;
2932

2933 2934
	*req_level = PG_LEVEL_4K;

2935 2936
	if (unlikely(max_level == PG_LEVEL_4K))
		return PG_LEVEL_4K;
2937

2938
	if (is_error_noslot_pfn(pfn) || kvm_is_reserved_pfn(pfn))
2939
		return PG_LEVEL_4K;
2940

2941 2942
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, true);
	if (!slot)
2943
		return PG_LEVEL_4K;
2944

2945 2946 2947 2948
	/*
	 * Enforce the iTLB multihit workaround after capturing the requested
	 * level, which will be used to do precise, accurate accounting.
	 */
2949 2950
	*req_level = level = kvm_mmu_max_mapping_level(vcpu->kvm, slot, gfn, pfn, max_level);
	if (level == PG_LEVEL_4K || huge_page_disallowed)
2951
		return PG_LEVEL_4K;
2952 2953

	/*
2954 2955
	 * mmu_notifier_retry() was successful and mmu_lock is held, so
	 * the pmd can't be split from under us.
2956
	 */
2957 2958 2959
	mask = KVM_PAGES_PER_HPAGE(level) - 1;
	VM_BUG_ON((gfn & mask) != (pfn & mask));
	*pfnp = pfn & ~mask;
2960 2961

	return level;
2962 2963
}

B
Ben Gardon 已提交
2964 2965
void disallowed_hugepage_adjust(u64 spte, gfn_t gfn, int cur_level,
				kvm_pfn_t *pfnp, int *goal_levelp)
P
Paolo Bonzini 已提交
2966
{
B
Ben Gardon 已提交
2967
	int level = *goal_levelp;
P
Paolo Bonzini 已提交
2968

2969
	if (cur_level == level && level > PG_LEVEL_4K &&
P
Paolo Bonzini 已提交
2970 2971 2972 2973 2974 2975 2976 2977 2978
	    is_shadow_present_pte(spte) &&
	    !is_large_pte(spte)) {
		/*
		 * A small SPTE exists for this pfn, but FNAME(fetch)
		 * and __direct_map would like to create a large PTE
		 * instead: just force them to go down another level,
		 * patching back for them into pfn the next 9 bits of
		 * the address.
		 */
2979 2980
		u64 page_mask = KVM_PAGES_PER_HPAGE(level) -
				KVM_PAGES_PER_HPAGE(level - 1);
P
Paolo Bonzini 已提交
2981
		*pfnp |= gfn & page_mask;
B
Ben Gardon 已提交
2982
		(*goal_levelp)--;
P
Paolo Bonzini 已提交
2983 2984 2985
	}
}

2986
static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
2987
			int map_writable, int max_level, kvm_pfn_t pfn,
2988
			bool prefault, bool is_tdp)
2989
{
2990 2991 2992 2993
	bool nx_huge_page_workaround_enabled = is_nx_huge_page_enabled();
	bool write = error_code & PFERR_WRITE_MASK;
	bool exec = error_code & PFERR_FETCH_MASK;
	bool huge_page_disallowed = exec && nx_huge_page_workaround_enabled;
2994
	struct kvm_shadow_walk_iterator it;
2995
	struct kvm_mmu_page *sp;
2996
	int level, req_level, ret;
2997 2998
	gfn_t gfn = gpa >> PAGE_SHIFT;
	gfn_t base_gfn = gfn;
A
Avi Kivity 已提交
2999

3000 3001
	level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn,
					huge_page_disallowed, &req_level);
3002

3003
	trace_kvm_mmu_spte_requested(gpa, level, pfn);
3004
	for_each_shadow_entry(vcpu, gpa, it) {
P
Paolo Bonzini 已提交
3005 3006 3007 3008
		/*
		 * We cannot overwrite existing page tables with an NX
		 * large page, as the leaf could be executable.
		 */
3009
		if (nx_huge_page_workaround_enabled)
3010 3011
			disallowed_hugepage_adjust(*it.sptep, gfn, it.level,
						   &pfn, &level);
P
Paolo Bonzini 已提交
3012

3013 3014
		base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
		if (it.level == level)
3015
			break;
A
Avi Kivity 已提交
3016

3017
		drop_large_spte(vcpu, it.sptep);
3018 3019 3020 3021 3022 3023 3024 3025 3026 3027
		if (is_shadow_present_pte(*it.sptep))
			continue;

		sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
				      it.level - 1, true, ACC_ALL);

		link_shadow_page(vcpu, it.sptep, sp);
		if (is_tdp && huge_page_disallowed &&
		    req_level >= it.level)
			account_huge_nx_page(vcpu->kvm, sp);
3028
	}
3029 3030 3031 3032

	ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL,
			   write, level, base_gfn, pfn, prefault,
			   map_writable);
3033 3034 3035
	if (ret == RET_PF_SPURIOUS)
		return ret;

3036 3037 3038
	direct_pte_prefetch(vcpu, it.sptep);
	++vcpu->stat.pf_fixed;
	return ret;
A
Avi Kivity 已提交
3039 3040
}

H
Huang Ying 已提交
3041
static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
3042
{
3043
	send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
3044 3045
}

D
Dan Williams 已提交
3046
static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
3047
{
X
Xiao Guangrong 已提交
3048 3049 3050 3051 3052 3053
	/*
	 * Do not cache the mmio info caused by writing the readonly gfn
	 * into the spte otherwise read access on readonly gfn also can
	 * caused mmio page fault and treat it as mmio access.
	 */
	if (pfn == KVM_PFN_ERR_RO_FAULT)
3054
		return RET_PF_EMULATE;
X
Xiao Guangrong 已提交
3055

3056
	if (pfn == KVM_PFN_ERR_HWPOISON) {
3057
		kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
3058
		return RET_PF_RETRY;
3059
	}
3060

3061
	return -EFAULT;
3062 3063
}

3064
static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
3065 3066
				kvm_pfn_t pfn, unsigned int access,
				int *ret_val)
3067 3068
{
	/* The pfn is invalid, report the error! */
3069
	if (unlikely(is_error_pfn(pfn))) {
3070
		*ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
3071
		return true;
3072 3073
	}

3074
	if (unlikely(is_noslot_pfn(pfn))) {
3075 3076
		vcpu_cache_mmio_info(vcpu, gva, gfn,
				     access & shadow_mmio_access_mask);
3077 3078 3079 3080 3081 3082 3083 3084 3085 3086
		/*
		 * If MMIO caching is disabled, emulate immediately without
		 * touching the shadow page tables as attempting to install an
		 * MMIO SPTE will just be an expensive nop.
		 */
		if (unlikely(!shadow_mmio_value)) {
			*ret_val = RET_PF_EMULATE;
			return true;
		}
	}
3087

3088
	return false;
3089 3090
}

3091
static bool page_fault_can_be_fast(u32 error_code)
3092
{
3093 3094 3095 3096 3097 3098 3099
	/*
	 * Do not fix the mmio spte with invalid generation number which
	 * need to be updated by slow page fault path.
	 */
	if (unlikely(error_code & PFERR_RSVD_MASK))
		return false;

3100 3101 3102 3103 3104
	/* See if the page fault is due to an NX violation */
	if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
		      == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
		return false;

3105
	/*
3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116
	 * #PF can be fast if:
	 * 1. The shadow page table entry is not present, which could mean that
	 *    the fault is potentially caused by access tracking (if enabled).
	 * 2. The shadow page table entry is present and the fault
	 *    is caused by write-protect, that means we just need change the W
	 *    bit of the spte which can be done out of mmu-lock.
	 *
	 * However, if access tracking is disabled we know that a non-present
	 * page must be a genuine page fault where we have to create a new SPTE.
	 * So, if access tracking is disabled, we return true only for write
	 * accesses to a present page.
3117 3118
	 */

3119 3120 3121
	return shadow_acc_track_mask != 0 ||
	       ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
		== (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
3122 3123
}

3124 3125 3126 3127
/*
 * Returns true if the SPTE was fixed successfully. Otherwise,
 * someone else modified the SPTE from its original value.
 */
3128
static bool
3129
fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
3130
			u64 *sptep, u64 old_spte, u64 new_spte)
3131 3132 3133 3134 3135
{
	gfn_t gfn;

	WARN_ON(!sp->role.direct);

3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147
	/*
	 * Theoretically we could also set dirty bit (and flush TLB) here in
	 * order to eliminate unnecessary PML logging. See comments in
	 * set_spte. But fast_page_fault is very unlikely to happen with PML
	 * enabled, so we do not do this. This might result in the same GPA
	 * to be logged in PML buffer again when the write really happens, and
	 * eventually to be called by mark_page_dirty twice. But it's also no
	 * harm. This also avoids the TLB flush needed after setting dirty bit
	 * so non-PML cases won't be impacted.
	 *
	 * Compare with set_spte where instead shadow_dirty_mask is set.
	 */
3148
	if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3149 3150
		return false;

3151
	if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
3152 3153 3154 3155 3156 3157 3158
		/*
		 * The gfn of direct spte is stable since it is
		 * calculated by sp->gfn.
		 */
		gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
		kvm_vcpu_mark_page_dirty(vcpu, gfn);
	}
3159 3160 3161 3162

	return true;
}

3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174
static bool is_access_allowed(u32 fault_err_code, u64 spte)
{
	if (fault_err_code & PFERR_FETCH_MASK)
		return is_executable_pte(spte);

	if (fault_err_code & PFERR_WRITE_MASK)
		return is_writable_pte(spte);

	/* Fault was on Read access */
	return spte & PT_PRESENT_MASK;
}

3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200
/*
 * Returns the last level spte pointer of the shadow page walk for the given
 * gpa, and sets *spte to the spte value. This spte may be non-preset. If no
 * walk could be performed, returns NULL and *spte does not contain valid data.
 *
 * Contract:
 *  - Must be called between walk_shadow_page_lockless_{begin,end}.
 *  - The returned sptep must not be used after walk_shadow_page_lockless_end.
 */
static u64 *fast_pf_get_last_sptep(struct kvm_vcpu *vcpu, gpa_t gpa, u64 *spte)
{
	struct kvm_shadow_walk_iterator iterator;
	u64 old_spte;
	u64 *sptep = NULL;

	for_each_shadow_entry_lockless(vcpu, gpa, iterator, old_spte) {
		sptep = iterator.sptep;
		*spte = old_spte;

		if (!is_shadow_present_pte(old_spte))
			break;
	}

	return sptep;
}

3201
/*
3202
 * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS.
3203
 */
3204
static int fast_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code)
3205
{
3206
	struct kvm_mmu_page *sp;
3207
	int ret = RET_PF_INVALID;
3208
	u64 spte = 0ull;
3209
	u64 *sptep = NULL;
3210
	uint retry_count = 0;
3211

3212
	if (!page_fault_can_be_fast(error_code))
3213
		return ret;
3214 3215 3216

	walk_shadow_page_lockless_begin(vcpu);

3217
	do {
3218
		u64 new_spte;
3219

3220 3221 3222 3223
		if (is_tdp_mmu(vcpu->arch.mmu))
			sptep = kvm_tdp_mmu_fast_pf_get_last_sptep(vcpu, gpa, &spte);
		else
			sptep = fast_pf_get_last_sptep(vcpu, gpa, &spte);
3224

3225 3226 3227
		if (!is_shadow_present_pte(spte))
			break;

3228
		sp = sptep_to_sp(sptep);
3229 3230
		if (!is_last_spte(spte, sp->role.level))
			break;
3231

3232
		/*
3233 3234 3235 3236 3237
		 * Check whether the memory access that caused the fault would
		 * still cause it if it were to be performed right now. If not,
		 * then this is a spurious fault caused by TLB lazily flushed,
		 * or some other CPU has already fixed the PTE after the
		 * current CPU took the fault.
3238 3239 3240 3241
		 *
		 * Need not check the access of upper level table entries since
		 * they are always ACC_ALL.
		 */
3242
		if (is_access_allowed(error_code, spte)) {
3243
			ret = RET_PF_SPURIOUS;
3244 3245
			break;
		}
3246

3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257
		new_spte = spte;

		if (is_access_track_spte(spte))
			new_spte = restore_acc_track_spte(new_spte);

		/*
		 * Currently, to simplify the code, write-protection can
		 * be removed in the fast path only if the SPTE was
		 * write-protected for dirty-logging or access tracking.
		 */
		if ((error_code & PFERR_WRITE_MASK) &&
3258
		    spte_can_locklessly_be_made_writable(spte)) {
3259
			new_spte |= PT_WRITABLE_MASK;
3260 3261

			/*
3262 3263 3264 3265 3266 3267 3268 3269 3270
			 * Do not fix write-permission on the large spte.  Since
			 * we only dirty the first page into the dirty-bitmap in
			 * fast_pf_fix_direct_spte(), other pages are missed
			 * if its slot has dirty logging enabled.
			 *
			 * Instead, we let the slow page fault path create a
			 * normal spte to fix the access.
			 *
			 * See the comments in kvm_arch_commit_memory_region().
3271
			 */
3272
			if (sp->role.level > PG_LEVEL_4K)
3273
				break;
3274
		}
3275

3276
		/* Verify that the fault can be handled in the fast path */
3277 3278
		if (new_spte == spte ||
		    !is_access_allowed(error_code, new_spte))
3279 3280 3281 3282 3283
			break;

		/*
		 * Currently, fast page fault only works for direct mapping
		 * since the gfn is not stable for indirect shadow page. See
3284
		 * Documentation/virt/kvm/locking.rst to get more detail.
3285
		 */
3286
		if (fast_pf_fix_direct_spte(vcpu, sp, sptep, spte, new_spte)) {
3287
			ret = RET_PF_FIXED;
3288
			break;
3289
		}
3290 3291 3292 3293 3294 3295 3296 3297

		if (++retry_count > 4) {
			printk_once(KERN_WARNING
				"kvm: Fast #PF retrying more than 4 times.\n");
			break;
		}

	} while (true);
3298

3299
	trace_fast_page_fault(vcpu, gpa, error_code, sptep, spte, ret);
3300 3301
	walk_shadow_page_lockless_end(vcpu);

3302
	return ret;
3303 3304
}

3305 3306
static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
			       struct list_head *invalid_list)
3307
{
3308
	struct kvm_mmu_page *sp;
3309

3310
	if (!VALID_PAGE(*root_hpa))
A
Avi Kivity 已提交
3311
		return;
3312

3313
	sp = to_shadow_page(*root_hpa & PT64_BASE_ADDR_MASK);
3314

3315
	if (is_tdp_mmu_page(sp))
3316
		kvm_tdp_mmu_put_root(kvm, sp, false);
3317 3318
	else if (!--sp->root_count && sp->role.invalid)
		kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3319

3320 3321 3322
	*root_hpa = INVALID_PAGE;
}

3323
/* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
3324 3325
void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
			ulong roots_to_free)
3326
{
3327
	struct kvm *kvm = vcpu->kvm;
3328 3329
	int i;
	LIST_HEAD(invalid_list);
3330
	bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
3331

3332
	BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3333

3334
	/* Before acquiring the MMU lock, see if we need to do any real work. */
3335 3336 3337 3338 3339 3340 3341 3342 3343
	if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
			if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
			    VALID_PAGE(mmu->prev_roots[i].hpa))
				break;

		if (i == KVM_MMU_NUM_PREV_ROOTS)
			return;
	}
3344

3345
	write_lock(&kvm->mmu_lock);
3346

3347 3348
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
		if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3349
			mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa,
3350
					   &invalid_list);
3351

3352 3353 3354
	if (free_active_root) {
		if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
		    (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3355
			mmu_free_root_page(kvm, &mmu->root_hpa, &invalid_list);
3356
		} else if (mmu->pae_root) {
3357 3358 3359 3360 3361 3362 3363 3364
			for (i = 0; i < 4; ++i) {
				if (!IS_VALID_PAE_ROOT(mmu->pae_root[i]))
					continue;

				mmu_free_root_page(kvm, &mmu->pae_root[i],
						   &invalid_list);
				mmu->pae_root[i] = INVALID_PAE_ROOT;
			}
3365
		}
3366
		mmu->root_hpa = INVALID_PAGE;
3367
		mmu->root_pgd = 0;
3368
	}
3369

3370
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
3371
	write_unlock(&kvm->mmu_lock);
3372
}
3373
EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3374

3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401
void kvm_mmu_free_guest_mode_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
{
	unsigned long roots_to_free = 0;
	hpa_t root_hpa;
	int i;

	/*
	 * This should not be called while L2 is active, L2 can't invalidate
	 * _only_ its own roots, e.g. INVVPID unconditionally exits.
	 */
	WARN_ON_ONCE(mmu->mmu_role.base.guest_mode);

	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
		root_hpa = mmu->prev_roots[i].hpa;
		if (!VALID_PAGE(root_hpa))
			continue;

		if (!to_shadow_page(root_hpa) ||
			to_shadow_page(root_hpa)->role.guest_mode)
			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
	}

	kvm_mmu_free_roots(vcpu, mmu, roots_to_free);
}
EXPORT_SYMBOL_GPL(kvm_mmu_free_guest_mode_roots);


3402 3403 3404 3405
static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
{
	int ret = 0;

3406
	if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) {
3407
		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3408 3409 3410 3411 3412 3413
		ret = 1;
	}

	return ret;
}

3414 3415
static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, gva_t gva,
			    u8 level, bool direct)
3416 3417
{
	struct kvm_mmu_page *sp;
3418 3419 3420 3421 3422 3423 3424 3425 3426

	sp = kvm_mmu_get_page(vcpu, gfn, gva, level, direct, ACC_ALL);
	++sp->root_count;

	return __pa(sp->spt);
}

static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
{
3427 3428
	struct kvm_mmu *mmu = vcpu->arch.mmu;
	u8 shadow_root_level = mmu->shadow_root_level;
3429
	hpa_t root;
3430
	unsigned i;
3431 3432 3433 3434 3435 3436
	int r;

	write_lock(&vcpu->kvm->mmu_lock);
	r = make_mmu_pages_available(vcpu);
	if (r < 0)
		goto out_unlock;
3437

3438
	if (is_tdp_mmu_enabled(vcpu->kvm)) {
3439
		root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu);
3440
		mmu->root_hpa = root;
3441
	} else if (shadow_root_level >= PT64_ROOT_4LEVEL) {
3442
		root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level, true);
3443
		mmu->root_hpa = root;
3444
	} else if (shadow_root_level == PT32E_ROOT_LEVEL) {
3445 3446 3447 3448
		if (WARN_ON_ONCE(!mmu->pae_root)) {
			r = -EIO;
			goto out_unlock;
		}
3449

3450
		for (i = 0; i < 4; ++i) {
3451
			WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3452

3453 3454
			root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT),
					      i << 30, PT32_ROOT_LEVEL, true);
3455 3456
			mmu->pae_root[i] = root | PT_PRESENT_MASK |
					   shadow_me_mask;
3457
		}
3458
		mmu->root_hpa = __pa(mmu->pae_root);
3459 3460
	} else {
		WARN_ONCE(1, "Bad TDP root level = %d\n", shadow_root_level);
3461 3462
		r = -EIO;
		goto out_unlock;
3463
	}
3464

3465
	/* root_pgd is ignored for direct MMUs. */
3466
	mmu->root_pgd = 0;
3467 3468 3469
out_unlock:
	write_unlock(&vcpu->kvm->mmu_lock);
	return r;
3470 3471 3472
}

static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3473
{
3474
	struct kvm_mmu *mmu = vcpu->arch.mmu;
3475
	u64 pdptrs[4], pm_mask;
3476
	gfn_t root_gfn, root_pgd;
3477
	hpa_t root;
3478 3479
	unsigned i;
	int r;
3480

3481
	root_pgd = mmu->get_guest_pgd(vcpu);
3482
	root_gfn = root_pgd >> PAGE_SHIFT;
3483

3484 3485 3486
	if (mmu_check_root(vcpu, root_gfn))
		return 1;

3487 3488 3489 3490
	/*
	 * On SVM, reading PDPTRs might access guest memory, which might fault
	 * and thus might sleep.  Grab the PDPTRs before acquiring mmu_lock.
	 */
3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501
	if (mmu->root_level == PT32E_ROOT_LEVEL) {
		for (i = 0; i < 4; ++i) {
			pdptrs[i] = mmu->get_pdptr(vcpu, i);
			if (!(pdptrs[i] & PT_PRESENT_MASK))
				continue;

			if (mmu_check_root(vcpu, pdptrs[i] >> PAGE_SHIFT))
				return 1;
		}
	}

3502 3503 3504 3505
	r = alloc_all_memslots_rmaps(vcpu->kvm);
	if (r)
		return r;

3506 3507 3508 3509 3510
	write_lock(&vcpu->kvm->mmu_lock);
	r = make_mmu_pages_available(vcpu);
	if (r < 0)
		goto out_unlock;

3511 3512 3513 3514
	/*
	 * Do we shadow a long mode page table? If so we need to
	 * write-protect the guests page table root.
	 */
3515
	if (mmu->root_level >= PT64_ROOT_4LEVEL) {
3516
		root = mmu_alloc_root(vcpu, root_gfn, 0,
3517 3518
				      mmu->shadow_root_level, false);
		mmu->root_hpa = root;
3519
		goto set_root_pgd;
3520
	}
3521

3522 3523 3524 3525
	if (WARN_ON_ONCE(!mmu->pae_root)) {
		r = -EIO;
		goto out_unlock;
	}
3526

3527 3528
	/*
	 * We shadow a 32 bit page table. This may be a legacy 2-level
3529 3530
	 * or a PAE 3-level page table. In either case we need to be aware that
	 * the shadow page table may be a PAE or a long mode page table.
3531
	 */
3532
	pm_mask = PT_PRESENT_MASK | shadow_me_mask;
3533
	if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL) {
3534 3535
		pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;

3536
		if (WARN_ON_ONCE(!mmu->pml4_root)) {
3537 3538 3539
			r = -EIO;
			goto out_unlock;
		}
3540
		mmu->pml4_root[0] = __pa(mmu->pae_root) | pm_mask;
3541 3542 3543 3544 3545 3546 3547 3548

		if (mmu->shadow_root_level == PT64_ROOT_5LEVEL) {
			if (WARN_ON_ONCE(!mmu->pml5_root)) {
				r = -EIO;
				goto out_unlock;
			}
			mmu->pml5_root[0] = __pa(mmu->pml4_root) | pm_mask;
		}
3549 3550
	}

3551
	for (i = 0; i < 4; ++i) {
3552
		WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3553

3554
		if (mmu->root_level == PT32E_ROOT_LEVEL) {
3555
			if (!(pdptrs[i] & PT_PRESENT_MASK)) {
3556
				mmu->pae_root[i] = INVALID_PAE_ROOT;
A
Avi Kivity 已提交
3557 3558
				continue;
			}
3559
			root_gfn = pdptrs[i] >> PAGE_SHIFT;
3560
		}
3561

3562 3563
		root = mmu_alloc_root(vcpu, root_gfn, i << 30,
				      PT32_ROOT_LEVEL, false);
3564
		mmu->pae_root[i] = root | pm_mask;
3565
	}
3566

3567 3568 3569
	if (mmu->shadow_root_level == PT64_ROOT_5LEVEL)
		mmu->root_hpa = __pa(mmu->pml5_root);
	else if (mmu->shadow_root_level == PT64_ROOT_4LEVEL)
3570
		mmu->root_hpa = __pa(mmu->pml4_root);
3571 3572
	else
		mmu->root_hpa = __pa(mmu->pae_root);
3573

3574
set_root_pgd:
3575
	mmu->root_pgd = root_pgd;
3576 3577
out_unlock:
	write_unlock(&vcpu->kvm->mmu_lock);
3578

3579
	return 0;
3580 3581
}

3582 3583 3584
static int mmu_alloc_special_roots(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu *mmu = vcpu->arch.mmu;
3585
	bool need_pml5 = mmu->shadow_root_level > PT64_ROOT_4LEVEL;
3586 3587 3588
	u64 *pml5_root = NULL;
	u64 *pml4_root = NULL;
	u64 *pae_root;
3589 3590

	/*
3591 3592 3593 3594
	 * When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP
	 * tables are allocated and initialized at root creation as there is no
	 * equivalent level in the guest's NPT to shadow.  Allocate the tables
	 * on demand, as running a 32-bit L1 VMM on 64-bit KVM is very rare.
3595
	 */
3596 3597 3598
	if (mmu->direct_map || mmu->root_level >= PT64_ROOT_4LEVEL ||
	    mmu->shadow_root_level < PT64_ROOT_4LEVEL)
		return 0;
3599

3600 3601 3602 3603 3604 3605 3606 3607
	/*
	 * NPT, the only paging mode that uses this horror, uses a fixed number
	 * of levels for the shadow page tables, e.g. all MMUs are 4-level or
	 * all MMus are 5-level.  Thus, this can safely require that pml5_root
	 * is allocated if the other roots are valid and pml5 is needed, as any
	 * prior MMU would also have required pml5.
	 */
	if (mmu->pae_root && mmu->pml4_root && (!need_pml5 || mmu->pml5_root))
3608
		return 0;
3609

3610 3611 3612 3613
	/*
	 * The special roots should always be allocated in concert.  Yell and
	 * bail if KVM ends up in a state where only one of the roots is valid.
	 */
3614
	if (WARN_ON_ONCE(!tdp_enabled || mmu->pae_root || mmu->pml4_root ||
3615
			 (need_pml5 && mmu->pml5_root)))
3616
		return -EIO;
3617

3618 3619 3620 3621
	/*
	 * Unlike 32-bit NPT, the PDP table doesn't need to be in low mem, and
	 * doesn't need to be decrypted.
	 */
3622 3623 3624
	pae_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
	if (!pae_root)
		return -ENOMEM;
3625

3626
#ifdef CONFIG_X86_64
3627
	pml4_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3628 3629 3630
	if (!pml4_root)
		goto err_pml4;

3631
	if (need_pml5) {
3632 3633 3634
		pml5_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
		if (!pml5_root)
			goto err_pml5;
3635
	}
3636
#endif
3637

3638
	mmu->pae_root = pae_root;
3639
	mmu->pml4_root = pml4_root;
3640
	mmu->pml5_root = pml5_root;
3641

3642
	return 0;
3643 3644 3645 3646 3647 3648 3649 3650

#ifdef CONFIG_X86_64
err_pml5:
	free_page((unsigned long)pml4_root);
err_pml4:
	free_page((unsigned long)pae_root);
	return -ENOMEM;
#endif
3651 3652
}

3653
void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3654 3655 3656 3657
{
	int i;
	struct kvm_mmu_page *sp;

3658
	if (vcpu->arch.mmu->direct_map)
3659 3660
		return;

3661
	if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3662
		return;
3663

3664
	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3665

3666 3667
	if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
		hpa_t root = vcpu->arch.mmu->root_hpa;
3668
		sp = to_shadow_page(root);
3669 3670 3671 3672 3673 3674 3675 3676

		/*
		 * Even if another CPU was marking the SP as unsync-ed
		 * simultaneously, any guest page table changes are not
		 * guaranteed to be visible anyway until this VCPU issues a TLB
		 * flush strictly after those changes are made. We only need to
		 * ensure that the other CPU sets these flags before any actual
		 * changes to the page tables are made. The comments in
3677 3678
		 * mmu_try_to_unsync_pages() describe what could go wrong if
		 * this requirement isn't satisfied.
3679 3680 3681 3682 3683
		 */
		if (!smp_load_acquire(&sp->unsync) &&
		    !smp_load_acquire(&sp->unsync_children))
			return;

3684
		write_lock(&vcpu->kvm->mmu_lock);
3685 3686
		kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);

3687
		mmu_sync_children(vcpu, sp, true);
3688

3689
		kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3690
		write_unlock(&vcpu->kvm->mmu_lock);
3691 3692
		return;
	}
3693

3694
	write_lock(&vcpu->kvm->mmu_lock);
3695 3696
	kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);

3697
	for (i = 0; i < 4; ++i) {
3698
		hpa_t root = vcpu->arch.mmu->pae_root[i];
3699

3700
		if (IS_VALID_PAE_ROOT(root)) {
3701
			root &= PT64_BASE_ADDR_MASK;
3702
			sp = to_shadow_page(root);
3703
			mmu_sync_children(vcpu, sp, true);
3704 3705 3706
		}
	}

3707
	kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3708
	write_unlock(&vcpu->kvm->mmu_lock);
3709 3710
}

3711
static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr,
3712
				  u32 access, struct x86_exception *exception)
A
Avi Kivity 已提交
3713
{
3714 3715
	if (exception)
		exception->error_code = 0;
A
Avi Kivity 已提交
3716 3717 3718
	return vaddr;
}

3719
static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr,
3720 3721
					 u32 access,
					 struct x86_exception *exception)
3722
{
3723 3724
	if (exception)
		exception->error_code = 0;
3725
	return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3726 3727
}

3728
static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3729
{
3730 3731 3732 3733 3734 3735 3736
	/*
	 * A nested guest cannot use the MMIO cache if it is using nested
	 * page tables, because cr2 is a nGPA while the cache stores GPAs.
	 */
	if (mmu_is_nested(vcpu))
		return false;

3737 3738 3739 3740 3741 3742
	if (direct)
		return vcpu_match_mmio_gpa(vcpu, addr);

	return vcpu_match_mmio_gva(vcpu, addr);
}

3743 3744 3745
/*
 * Return the level of the lowest level SPTE added to sptes.
 * That SPTE may be non-present.
3746 3747
 *
 * Must be called between walk_shadow_page_lockless_{begin,end}.
3748
 */
3749
static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level)
3750 3751
{
	struct kvm_shadow_walk_iterator iterator;
3752
	int leaf = -1;
3753
	u64 spte;
3754

3755 3756
	for (shadow_walk_init(&iterator, vcpu, addr),
	     *root_level = iterator.level;
3757 3758
	     shadow_walk_okay(&iterator);
	     __shadow_walk_next(&iterator, spte)) {
3759
		leaf = iterator.level;
3760 3761
		spte = mmu_spte_get_lockless(iterator.sptep);

3762
		sptes[leaf] = spte;
3763

3764 3765
		if (!is_shadow_present_pte(spte))
			break;
3766 3767 3768 3769 3770
	}

	return leaf;
}

3771
/* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */
3772 3773
static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
{
3774
	u64 sptes[PT64_ROOT_MAX_LEVEL + 1];
3775
	struct rsvd_bits_validate *rsvd_check;
3776
	int root, leaf, level;
3777 3778
	bool reserved = false;

3779 3780
	walk_shadow_page_lockless_begin(vcpu);

3781
	if (is_tdp_mmu(vcpu->arch.mmu))
3782
		leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, &root);
3783
	else
3784
		leaf = get_walk(vcpu, addr, sptes, &root);
3785

3786 3787
	walk_shadow_page_lockless_end(vcpu);

3788 3789 3790 3791 3792
	if (unlikely(leaf < 0)) {
		*sptep = 0ull;
		return reserved;
	}

3793 3794 3795 3796 3797 3798 3799 3800 3801 3802
	*sptep = sptes[leaf];

	/*
	 * Skip reserved bits checks on the terminal leaf if it's not a valid
	 * SPTE.  Note, this also (intentionally) skips MMIO SPTEs, which, by
	 * design, always have reserved bits set.  The purpose of the checks is
	 * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs.
	 */
	if (!is_shadow_present_pte(sptes[leaf]))
		leaf++;
3803 3804 3805

	rsvd_check = &vcpu->arch.mmu->shadow_zero_check;

3806
	for (level = root; level >= leaf; level--)
3807
		reserved |= is_rsvd_spte(rsvd_check, sptes[level], level);
3808 3809

	if (reserved) {
3810
		pr_err("%s: reserved bits set on MMU-present spte, addr 0x%llx, hierarchy:\n",
3811
		       __func__, addr);
3812
		for (level = root; level >= leaf; level--)
3813 3814
			pr_err("------ spte = 0x%llx level = %d, rsvd bits = 0x%llx",
			       sptes[level], level,
3815
			       get_rsvd_bits(rsvd_check, sptes[level], level));
3816
	}
3817

3818
	return reserved;
3819 3820
}

P
Paolo Bonzini 已提交
3821
static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3822 3823
{
	u64 spte;
3824
	bool reserved;
3825

3826
	if (mmio_info_in_cache(vcpu, addr, direct))
3827
		return RET_PF_EMULATE;
3828

3829
	reserved = get_mmio_spte(vcpu, addr, &spte);
3830
	if (WARN_ON(reserved))
3831
		return -EINVAL;
3832 3833 3834

	if (is_mmio_spte(spte)) {
		gfn_t gfn = get_mmio_spte_gfn(spte);
3835
		unsigned int access = get_mmio_spte_access(spte);
3836

3837
		if (!check_mmio_spte(vcpu, spte))
3838
			return RET_PF_INVALID;
3839

3840 3841
		if (direct)
			addr = 0;
X
Xiao Guangrong 已提交
3842 3843

		trace_handle_mmio_page_fault(addr, gfn, access);
3844
		vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3845
		return RET_PF_EMULATE;
3846 3847 3848 3849 3850 3851
	}

	/*
	 * If the page table is zapped by other cpus, let CPU fault again on
	 * the address.
	 */
3852
	return RET_PF_RETRY;
3853 3854
}

3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874
static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
					 u32 error_code, gfn_t gfn)
{
	if (unlikely(error_code & PFERR_RSVD_MASK))
		return false;

	if (!(error_code & PFERR_PRESENT_MASK) ||
	      !(error_code & PFERR_WRITE_MASK))
		return false;

	/*
	 * guest is writing the page which is write tracked which can
	 * not be fixed by page fault handler.
	 */
	if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
		return true;

	return false;
}

3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888
static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
{
	struct kvm_shadow_walk_iterator iterator;
	u64 spte;

	walk_shadow_page_lockless_begin(vcpu);
	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
		clear_sp_write_flooding_count(iterator.sptep);
		if (!is_shadow_present_pte(spte))
			break;
	}
	walk_shadow_page_lockless_end(vcpu);
}

3889 3890
static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
				    gfn_t gfn)
3891 3892
{
	struct kvm_arch_async_pf arch;
X
Xiao Guangrong 已提交
3893

3894
	arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3895
	arch.gfn = gfn;
3896
	arch.direct_map = vcpu->arch.mmu->direct_map;
3897
	arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu);
3898

3899 3900
	return kvm_setup_async_pf(vcpu, cr2_or_gpa,
				  kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3901 3902
}

3903
static bool kvm_faultin_pfn(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3904
			 gpa_t cr2_or_gpa, kvm_pfn_t *pfn, hva_t *hva,
3905
			 bool write, bool *writable, int *r)
3906
{
3907
	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3908 3909
	bool async;

3910 3911 3912 3913 3914 3915
	/*
	 * Retry the page fault if the gfn hit a memslot that is being deleted
	 * or moved.  This ensures any existing SPTEs for the old memslot will
	 * be zapped before KVM inserts a new MMIO SPTE for the gfn.
	 */
	if (slot && (slot->flags & KVM_MEMSLOT_INVALID))
3916
		goto out_retry;
3917

3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935
	if (!kvm_is_visible_memslot(slot)) {
		/* Don't expose private memslots to L2. */
		if (is_guest_mode(vcpu)) {
			*pfn = KVM_PFN_NOSLOT;
			*writable = false;
			return false;
		}
		/*
		 * If the APIC access page exists but is disabled, go directly
		 * to emulation without caching the MMIO access or creating a
		 * MMIO SPTE.  That way the cache doesn't need to be purged
		 * when the AVIC is re-enabled.
		 */
		if (slot && slot->id == APIC_ACCESS_PAGE_PRIVATE_MEMSLOT &&
		    !kvm_apicv_activated(vcpu->kvm)) {
			*r = RET_PF_EMULATE;
			return true;
		}
3936 3937
	}

3938
	async = false;
3939 3940
	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async,
				    write, writable, hva);
3941 3942 3943
	if (!async)
		return false; /* *pfn has correct page already */

3944
	if (!prefault && kvm_can_do_async_pf(vcpu)) {
3945
		trace_kvm_try_async_get_page(cr2_or_gpa, gfn);
3946
		if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3947
			trace_kvm_async_pf_doublefault(cr2_or_gpa, gfn);
3948
			kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3949
			goto out_retry;
3950
		} else if (kvm_arch_setup_async_pf(vcpu, cr2_or_gpa, gfn))
3951
			goto out_retry;
3952 3953
	}

3954 3955
	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL,
				    write, writable, hva);
3956 3957 3958 3959

out_retry:
	*r = RET_PF_RETRY;
	return true;
3960 3961
}

3962 3963
static int direct_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
			     bool prefault, int max_level, bool is_tdp)
A
Avi Kivity 已提交
3964
{
3965
	bool is_tdp_mmu_fault = is_tdp_mmu(vcpu->arch.mmu);
3966
	bool write = error_code & PFERR_WRITE_MASK;
3967
	bool map_writable;
A
Avi Kivity 已提交
3968

3969 3970 3971
	gfn_t gfn = gpa >> PAGE_SHIFT;
	unsigned long mmu_seq;
	kvm_pfn_t pfn;
3972
	hva_t hva;
3973
	int r;
3974

3975
	if (page_fault_handle_page_track(vcpu, error_code, gfn))
3976
		return RET_PF_EMULATE;
3977

3978 3979 3980
	r = fast_page_fault(vcpu, gpa, error_code);
	if (r != RET_PF_INVALID)
		return r;
3981

3982
	r = mmu_topup_memory_caches(vcpu, false);
3983 3984
	if (r)
		return r;
3985

3986 3987 3988
	mmu_seq = vcpu->kvm->mmu_notifier_seq;
	smp_rmb();

3989
	if (kvm_faultin_pfn(vcpu, prefault, gfn, gpa, &pfn, &hva,
3990 3991
			 write, &map_writable, &r))
		return r;
3992

3993
	if (handle_abnormal_pfn(vcpu, is_tdp ? 0 : gpa, gfn, pfn, ACC_ALL, &r))
3994
		return r;
A
Avi Kivity 已提交
3995

3996
	r = RET_PF_RETRY;
3997

3998
	if (is_tdp_mmu_fault)
3999 4000 4001 4002
		read_lock(&vcpu->kvm->mmu_lock);
	else
		write_lock(&vcpu->kvm->mmu_lock);

4003
	if (!is_noslot_pfn(pfn) && mmu_notifier_retry_hva(vcpu->kvm, mmu_seq, hva))
4004
		goto out_unlock;
4005 4006
	r = make_mmu_pages_available(vcpu);
	if (r)
4007
		goto out_unlock;
B
Ben Gardon 已提交
4008

4009
	if (is_tdp_mmu_fault)
B
Ben Gardon 已提交
4010 4011 4012 4013 4014
		r = kvm_tdp_mmu_map(vcpu, gpa, error_code, map_writable, max_level,
				    pfn, prefault);
	else
		r = __direct_map(vcpu, gpa, error_code, map_writable, max_level, pfn,
				 prefault, is_tdp);
4015

4016
out_unlock:
4017
	if (is_tdp_mmu_fault)
4018 4019 4020
		read_unlock(&vcpu->kvm->mmu_lock);
	else
		write_unlock(&vcpu->kvm->mmu_lock);
4021 4022
	kvm_release_pfn_clean(pfn);
	return r;
A
Avi Kivity 已提交
4023 4024
}

4025 4026 4027 4028 4029 4030 4031
static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa,
				u32 error_code, bool prefault)
{
	pgprintk("%s: gva %lx error %x\n", __func__, gpa, error_code);

	/* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
	return direct_page_fault(vcpu, gpa & PAGE_MASK, error_code, prefault,
4032
				 PG_LEVEL_2M, false);
4033 4034
}

4035
int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
4036
				u64 fault_address, char *insn, int insn_len)
4037 4038
{
	int r = 1;
4039
	u32 flags = vcpu->arch.apf.host_apf_flags;
4040

4041 4042 4043 4044 4045 4046
#ifndef CONFIG_X86_64
	/* A 64-bit CR2 should be impossible on 32-bit KVM. */
	if (WARN_ON_ONCE(fault_address >> 32))
		return -EFAULT;
#endif

P
Paolo Bonzini 已提交
4047
	vcpu->arch.l1tf_flush_l1d = true;
4048
	if (!flags) {
4049 4050
		trace_kvm_page_fault(fault_address, error_code);

4051
		if (kvm_event_needs_reinjection(vcpu))
4052 4053 4054
			kvm_mmu_unprotect_page_virt(vcpu, fault_address);
		r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
				insn_len);
4055
	} else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
4056
		vcpu->arch.apf.host_apf_flags = 0;
4057
		local_irq_disable();
4058
		kvm_async_pf_task_wait_schedule(fault_address);
4059
		local_irq_enable();
4060 4061
	} else {
		WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags);
4062
	}
4063

4064 4065 4066 4067
	return r;
}
EXPORT_SYMBOL_GPL(kvm_handle_page_fault);

4068 4069
int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
		       bool prefault)
4070
{
4071
	int max_level;
4072

4073
	for (max_level = KVM_MAX_HUGEPAGE_LEVEL;
4074
	     max_level > PG_LEVEL_4K;
4075 4076
	     max_level--) {
		int page_num = KVM_PAGES_PER_HPAGE(max_level);
4077
		gfn_t base = (gpa >> PAGE_SHIFT) & ~(page_num - 1);
4078

4079 4080
		if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
			break;
4081
	}
4082

4083 4084
	return direct_page_fault(vcpu, gpa, error_code, prefault,
				 max_level, true);
4085 4086
}

4087
static void nonpaging_init_context(struct kvm_mmu *context)
A
Avi Kivity 已提交
4088 4089 4090
{
	context->page_fault = nonpaging_page_fault;
	context->gva_to_gpa = nonpaging_gva_to_gpa;
4091
	context->sync_page = nonpaging_sync_page;
4092
	context->invlpg = NULL;
4093
	context->direct_map = true;
A
Avi Kivity 已提交
4094 4095
}

4096
static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd,
4097 4098
				  union kvm_mmu_page_role role)
{
4099
	return (role.direct || pgd == root->pgd) &&
4100 4101
	       VALID_PAGE(root->hpa) && to_shadow_page(root->hpa) &&
	       role.word == to_shadow_page(root->hpa)->role.word;
4102 4103
}

4104
/*
4105
 * Find out if a previously cached root matching the new pgd/role is available.
4106 4107 4108 4109 4110 4111
 * The current root is also inserted into the cache.
 * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
 * returned.
 * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
 * false is returned. This root should now be freed by the caller.
 */
4112
static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_pgd,
4113 4114 4115 4116
				  union kvm_mmu_page_role new_role)
{
	uint i;
	struct kvm_mmu_root_info root;
4117
	struct kvm_mmu *mmu = vcpu->arch.mmu;
4118

4119
	root.pgd = mmu->root_pgd;
4120 4121
	root.hpa = mmu->root_hpa;

4122
	if (is_root_usable(&root, new_pgd, new_role))
4123 4124
		return true;

4125 4126 4127
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
		swap(root, mmu->prev_roots[i]);

4128
		if (is_root_usable(&root, new_pgd, new_role))
4129 4130 4131 4132
			break;
	}

	mmu->root_hpa = root.hpa;
4133
	mmu->root_pgd = root.pgd;
4134 4135 4136 4137

	return i < KVM_MMU_NUM_PREV_ROOTS;
}

4138
static bool fast_pgd_switch(struct kvm_vcpu *vcpu, gpa_t new_pgd,
4139
			    union kvm_mmu_page_role new_role)
A
Avi Kivity 已提交
4140
{
4141
	struct kvm_mmu *mmu = vcpu->arch.mmu;
4142 4143 4144 4145 4146 4147 4148

	/*
	 * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
	 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
	 * later if necessary.
	 */
	if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
4149
	    mmu->root_level >= PT64_ROOT_4LEVEL)
4150
		return cached_root_available(vcpu, new_pgd, new_role);
4151 4152

	return false;
A
Avi Kivity 已提交
4153 4154
}

4155
static void __kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd,
4156
			      union kvm_mmu_page_role new_role)
A
Avi Kivity 已提交
4157
{
4158
	if (!fast_pgd_switch(vcpu, new_pgd, new_role)) {
4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170
		kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, KVM_MMU_ROOT_CURRENT);
		return;
	}

	/*
	 * It's possible that the cached previous root page is obsolete because
	 * of a change in the MMU generation number. However, changing the
	 * generation number is accompanied by KVM_REQ_MMU_RELOAD, which will
	 * free the root set here and allocate a new one.
	 */
	kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);

4171
	if (force_flush_and_sync_on_reuse) {
4172 4173
		kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
4174
	}
4175 4176 4177 4178 4179 4180 4181 4182 4183

	/*
	 * The last MMIO access's GVA and GPA are cached in the VCPU. When
	 * switching to a new CR3, that GVA->GPA mapping may no longer be
	 * valid. So clear any cached MMIO info even when we don't need to sync
	 * the shadow page tables.
	 */
	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);

4184 4185 4186 4187 4188 4189 4190
	/*
	 * If this is a direct root page, it doesn't have a write flooding
	 * count. Otherwise, clear the write flooding count.
	 */
	if (!new_role.direct)
		__clear_sp_write_flooding_count(
				to_shadow_page(vcpu->arch.mmu->root_hpa));
A
Avi Kivity 已提交
4191 4192
}

4193
void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd)
4194
{
4195
	__kvm_mmu_new_pgd(vcpu, new_pgd, kvm_mmu_calc_root_page_role(vcpu));
4196
}
4197
EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd);
4198

4199 4200
static unsigned long get_cr3(struct kvm_vcpu *vcpu)
{
4201
	return kvm_read_cr3(vcpu);
4202 4203
}

4204
static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
4205
			   unsigned int access, int *nr_present)
4206 4207 4208 4209 4210 4211 4212 4213
{
	if (unlikely(is_mmio_spte(*sptep))) {
		if (gfn != get_mmio_spte_gfn(*sptep)) {
			mmu_spte_clear_no_track(sptep);
			return true;
		}

		(*nr_present)++;
4214
		mark_mmio_spte(vcpu, sptep, gfn, access);
4215 4216 4217 4218 4219 4220
		return true;
	}

	return false;
}

4221 4222 4223 4224 4225
#define PTTYPE_EPT 18 /* arbitrary */
#define PTTYPE PTTYPE_EPT
#include "paging_tmpl.h"
#undef PTTYPE

A
Avi Kivity 已提交
4226 4227 4228 4229 4230 4231 4232 4233
#define PTTYPE 64
#include "paging_tmpl.h"
#undef PTTYPE

#define PTTYPE 32
#include "paging_tmpl.h"
#undef PTTYPE

4234
static void
4235
__reset_rsvds_bits_mask(struct rsvd_bits_validate *rsvd_check,
4236
			u64 pa_bits_rsvd, int level, bool nx, bool gbpages,
4237
			bool pse, bool amd)
4238
{
4239
	u64 gbpages_bit_rsvd = 0;
4240
	u64 nonleaf_bit8_rsvd = 0;
4241
	u64 high_bits_rsvd;
4242

4243
	rsvd_check->bad_mt_xwr = 0;
4244

4245
	if (!gbpages)
4246
		gbpages_bit_rsvd = rsvd_bits(7, 7);
4247

4248 4249 4250 4251 4252 4253 4254 4255 4256
	if (level == PT32E_ROOT_LEVEL)
		high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 62);
	else
		high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);

	/* Note, NX doesn't exist in PDPTEs, this is handled below. */
	if (!nx)
		high_bits_rsvd |= rsvd_bits(63, 63);

4257 4258 4259 4260
	/*
	 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
	 * leaf entries) on AMD CPUs only.
	 */
4261
	if (amd)
4262 4263
		nonleaf_bit8_rsvd = rsvd_bits(8, 8);

4264
	switch (level) {
4265 4266
	case PT32_ROOT_LEVEL:
		/* no rsvd bits for 2 level 4K page table entries */
4267 4268 4269 4270
		rsvd_check->rsvd_bits_mask[0][1] = 0;
		rsvd_check->rsvd_bits_mask[0][0] = 0;
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
4271

4272
		if (!pse) {
4273
			rsvd_check->rsvd_bits_mask[1][1] = 0;
4274 4275 4276
			break;
		}

4277 4278
		if (is_cpuid_PSE36())
			/* 36bits PSE 4MB page */
4279
			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4280 4281
		else
			/* 32 bits PSE 4MB page */
4282
			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4283 4284
		break;
	case PT32E_ROOT_LEVEL:
4285 4286 4287 4288 4289 4290 4291 4292
		rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) |
						   high_bits_rsvd |
						   rsvd_bits(5, 8) |
						   rsvd_bits(1, 2);	/* PDPTE */
		rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;	/* PDE */
		rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;	/* PTE */
		rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
						   rsvd_bits(13, 20);	/* large page */
4293 4294
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
4295
		break;
4296
	case PT64_ROOT_5LEVEL:
4297 4298 4299
		rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd |
						   nonleaf_bit8_rsvd |
						   rsvd_bits(7, 7);
4300 4301
		rsvd_check->rsvd_bits_mask[1][4] =
			rsvd_check->rsvd_bits_mask[0][4];
4302
		fallthrough;
4303
	case PT64_ROOT_4LEVEL:
4304 4305 4306 4307 4308 4309 4310
		rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd |
						   nonleaf_bit8_rsvd |
						   rsvd_bits(7, 7);
		rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd |
						   gbpages_bit_rsvd;
		rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;
		rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4311 4312
		rsvd_check->rsvd_bits_mask[1][3] =
			rsvd_check->rsvd_bits_mask[0][3];
4313 4314 4315 4316 4317
		rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd |
						   gbpages_bit_rsvd |
						   rsvd_bits(13, 29);
		rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
						   rsvd_bits(13, 20); /* large page */
4318 4319
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
4320 4321 4322 4323
		break;
	}
}

4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338
static bool guest_can_use_gbpages(struct kvm_vcpu *vcpu)
{
	/*
	 * If TDP is enabled, let the guest use GBPAGES if they're supported in
	 * hardware.  The hardware page walker doesn't let KVM disable GBPAGES,
	 * i.e. won't treat them as reserved, and KVM doesn't redo the GVA->GPA
	 * walk for performance and complexity reasons.  Not to mention KVM
	 * _can't_ solve the problem because GVA->GPA walks aren't visible to
	 * KVM once a TDP translation is installed.  Mimic hardware behavior so
	 * that KVM's is at least consistent, i.e. doesn't randomly inject #PF.
	 */
	return tdp_enabled ? boot_cpu_has(X86_FEATURE_GBPAGES) :
			     guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES);
}

4339 4340 4341
static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
{
4342
	__reset_rsvds_bits_mask(&context->guest_rsvd_check,
4343
				vcpu->arch.reserved_gpa_bits,
4344
				context->root_level, is_efer_nx(context),
4345
				guest_can_use_gbpages(vcpu),
4346
				is_cr4_pse(context),
4347
				guest_cpuid_is_amd_or_hygon(vcpu));
4348 4349
}

4350 4351
static void
__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4352
			    u64 pa_bits_rsvd, bool execonly)
4353
{
4354
	u64 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
4355
	u64 bad_mt_xwr;
4356

4357 4358 4359 4360 4361
	rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7);
	rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7);
	rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6);
	rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6);
	rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4362 4363

	/* large page */
4364
	rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4365
	rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4366 4367
	rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29);
	rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20);
4368
	rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4369

4370 4371 4372 4373 4374 4375 4376 4377
	bad_mt_xwr = 0xFFull << (2 * 8);	/* bits 3..5 must not be 2 */
	bad_mt_xwr |= 0xFFull << (3 * 8);	/* bits 3..5 must not be 3 */
	bad_mt_xwr |= 0xFFull << (7 * 8);	/* bits 3..5 must not be 7 */
	bad_mt_xwr |= REPEAT_BYTE(1ull << 2);	/* bits 0..2 must not be 010 */
	bad_mt_xwr |= REPEAT_BYTE(1ull << 6);	/* bits 0..2 must not be 110 */
	if (!execonly) {
		/* bits 0..2 must not be 100 unless VMX capabilities allow it */
		bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4378
	}
4379
	rsvd_check->bad_mt_xwr = bad_mt_xwr;
4380 4381
}

4382 4383 4384 4385
static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
		struct kvm_mmu *context, bool execonly)
{
	__reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4386
				    vcpu->arch.reserved_gpa_bits, execonly);
4387 4388
}

4389 4390 4391 4392 4393
static inline u64 reserved_hpa_bits(void)
{
	return rsvd_bits(shadow_phys_bits, 63);
}

4394 4395 4396 4397 4398
/*
 * the page table on host is the shadow page table for the page
 * table in guest or amd nested guest, its mmu features completely
 * follow the features in guest.
 */
4399 4400
static void reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
					struct kvm_mmu *context)
4401
{
4402 4403 4404 4405 4406 4407 4408 4409
	/*
	 * KVM uses NX when TDP is disabled to handle a variety of scenarios,
	 * notably for huge SPTEs if iTLB multi-hit mitigation is enabled and
	 * to generate correct permissions for CR0.WP=0/CR4.SMEP=1/EFER.NX=0.
	 * The iTLB multi-hit workaround can be toggled at any time, so assume
	 * NX can be used by any non-nested shadow MMU to avoid having to reset
	 * MMU contexts.  Note, KVM forces EFER.NX=1 when TDP is disabled.
	 */
4410
	bool uses_nx = is_efer_nx(context) || !tdp_enabled;
4411 4412 4413 4414 4415

	/* @amd adds a check on bit of SPTEs, which KVM shouldn't use anyways. */
	bool is_amd = true;
	/* KVM doesn't use 2-level page tables for the shadow MMU. */
	bool is_pse = false;
4416 4417
	struct rsvd_bits_validate *shadow_zero_check;
	int i;
4418

4419 4420
	WARN_ON_ONCE(context->shadow_root_level < PT32E_ROOT_LEVEL);

4421
	shadow_zero_check = &context->shadow_zero_check;
4422
	__reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(),
4423
				context->shadow_root_level, uses_nx,
4424
				guest_can_use_gbpages(vcpu), is_pse, is_amd);
4425 4426 4427 4428 4429 4430 4431 4432 4433

	if (!shadow_me_mask)
		return;

	for (i = context->shadow_root_level; --i >= 0;) {
		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
	}

4434 4435
}

4436 4437 4438 4439 4440 4441
static inline bool boot_cpu_is_amd(void)
{
	WARN_ON_ONCE(!tdp_enabled);
	return shadow_x_mask == 0;
}

4442 4443 4444 4445 4446 4447 4448 4449
/*
 * the direct page table on host, use as much mmu features as
 * possible, however, kvm currently does not do execution-protection.
 */
static void
reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
				struct kvm_mmu *context)
{
4450 4451 4452 4453 4454
	struct rsvd_bits_validate *shadow_zero_check;
	int i;

	shadow_zero_check = &context->shadow_zero_check;

4455
	if (boot_cpu_is_amd())
4456
		__reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(),
4457
					context->shadow_root_level, false,
4458
					boot_cpu_has(X86_FEATURE_GBPAGES),
4459
					false, true);
4460
	else
4461
		__reset_rsvds_bits_mask_ept(shadow_zero_check,
4462
					    reserved_hpa_bits(), false);
4463

4464 4465 4466 4467 4468 4469 4470
	if (!shadow_me_mask)
		return;

	for (i = context->shadow_root_level; --i >= 0;) {
		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
	}
4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481
}

/*
 * as the comments in reset_shadow_zero_bits_mask() except it
 * is the shadow page table for intel nested guest.
 */
static void
reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
				struct kvm_mmu *context, bool execonly)
{
	__reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4482
				    reserved_hpa_bits(), execonly);
4483 4484
}

4485 4486 4487 4488 4489 4490 4491 4492 4493 4494
#define BYTE_MASK(access) \
	((1 & (access) ? 2 : 0) | \
	 (2 & (access) ? 4 : 0) | \
	 (3 & (access) ? 8 : 0) | \
	 (4 & (access) ? 16 : 0) | \
	 (5 & (access) ? 32 : 0) | \
	 (6 & (access) ? 64 : 0) | \
	 (7 & (access) ? 128 : 0))


4495
static void update_permission_bitmask(struct kvm_mmu *mmu, bool ept)
4496
{
4497 4498 4499 4500 4501 4502
	unsigned byte;

	const u8 x = BYTE_MASK(ACC_EXEC_MASK);
	const u8 w = BYTE_MASK(ACC_WRITE_MASK);
	const u8 u = BYTE_MASK(ACC_USER_MASK);

4503 4504 4505
	bool cr4_smep = is_cr4_smep(mmu);
	bool cr4_smap = is_cr4_smap(mmu);
	bool cr0_wp = is_cr0_wp(mmu);
4506
	bool efer_nx = is_efer_nx(mmu);
4507 4508

	for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4509 4510
		unsigned pfec = byte << 1;

F
Feng Wu 已提交
4511
		/*
4512 4513
		 * Each "*f" variable has a 1 bit for each UWX value
		 * that causes a fault with the given PFEC.
F
Feng Wu 已提交
4514
		 */
4515

4516
		/* Faults from writes to non-writable pages */
4517
		u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
4518
		/* Faults from user mode accesses to supervisor pages */
4519
		u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
4520
		/* Faults from fetches of non-executable pages*/
4521
		u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
4522 4523 4524 4525 4526 4527 4528 4529 4530 4531
		/* Faults from kernel mode fetches of user pages */
		u8 smepf = 0;
		/* Faults from kernel mode accesses of user pages */
		u8 smapf = 0;

		if (!ept) {
			/* Faults from kernel mode accesses to user pages */
			u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;

			/* Not really needed: !nx will cause pte.nx to fault */
4532
			if (!efer_nx)
4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546
				ff = 0;

			/* Allow supervisor writes if !cr0.wp */
			if (!cr0_wp)
				wf = (pfec & PFERR_USER_MASK) ? wf : 0;

			/* Disallow supervisor fetches of user code if cr4.smep */
			if (cr4_smep)
				smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;

			/*
			 * SMAP:kernel-mode data accesses from user-mode
			 * mappings should fault. A fault is considered
			 * as a SMAP violation if all of the following
P
Peng Hao 已提交
4547
			 * conditions are true:
4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560
			 *   - X86_CR4_SMAP is set in CR4
			 *   - A user page is accessed
			 *   - The access is not a fetch
			 *   - Page fault in kernel mode
			 *   - if CPL = 3 or X86_EFLAGS_AC is clear
			 *
			 * Here, we cover the first three conditions.
			 * The fourth is computed dynamically in permission_fault();
			 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
			 * *not* subject to SMAP restrictions.
			 */
			if (cr4_smap)
				smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4561
		}
4562 4563

		mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4564 4565 4566
	}
}

4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590
/*
* PKU is an additional mechanism by which the paging controls access to
* user-mode addresses based on the value in the PKRU register.  Protection
* key violations are reported through a bit in the page fault error code.
* Unlike other bits of the error code, the PK bit is not known at the
* call site of e.g. gva_to_gpa; it must be computed directly in
* permission_fault based on two bits of PKRU, on some machine state (CR4,
* CR0, EFER, CPL), and on other bits of the error code and the page tables.
*
* In particular the following conditions come from the error code, the
* page tables and the machine state:
* - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
* - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
* - PK is always zero if U=0 in the page tables
* - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
*
* The PKRU bitmask caches the result of these four conditions.  The error
* code (minus the P bit) and the page table's U bit form an index into the
* PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
* with the two bits of the PKRU register corresponding to the protection key.
* For the first three conditions above the bits will be 00, thus masking
* away both AD and WD.  For all reads or if the last condition holds, WD
* only will be masked away.
*/
4591
static void update_pkru_bitmask(struct kvm_mmu *mmu)
4592 4593 4594 4595
{
	unsigned bit;
	bool wp;

4596
	if (!is_cr4_pke(mmu)) {
4597 4598 4599 4600
		mmu->pkru_mask = 0;
		return;
	}

4601
	wp = is_cr0_wp(mmu);
4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634

	for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
		unsigned pfec, pkey_bits;
		bool check_pkey, check_write, ff, uf, wf, pte_user;

		pfec = bit << 1;
		ff = pfec & PFERR_FETCH_MASK;
		uf = pfec & PFERR_USER_MASK;
		wf = pfec & PFERR_WRITE_MASK;

		/* PFEC.RSVD is replaced by ACC_USER_MASK. */
		pte_user = pfec & PFERR_RSVD_MASK;

		/*
		 * Only need to check the access which is not an
		 * instruction fetch and is to a user page.
		 */
		check_pkey = (!ff && pte_user);
		/*
		 * write access is controlled by PKRU if it is a
		 * user access or CR0.WP = 1.
		 */
		check_write = check_pkey && wf && (uf || wp);

		/* PKRU.AD stops both read and write access. */
		pkey_bits = !!check_pkey;
		/* PKRU.WD stops write access. */
		pkey_bits |= (!!check_write) << 1;

		mmu->pkru_mask |= (pkey_bits & 3) << pfec;
	}
}

4635 4636
static void reset_guest_paging_metadata(struct kvm_vcpu *vcpu,
					struct kvm_mmu *mmu)
A
Avi Kivity 已提交
4637
{
4638 4639
	if (!is_cr0_pg(mmu))
		return;
4640

4641 4642 4643
	reset_rsvds_bits_mask(vcpu, mmu);
	update_permission_bitmask(mmu, false);
	update_pkru_bitmask(mmu);
A
Avi Kivity 已提交
4644 4645
}

4646
static void paging64_init_context(struct kvm_mmu *context)
A
Avi Kivity 已提交
4647 4648 4649
{
	context->page_fault = paging64_page_fault;
	context->gva_to_gpa = paging64_gva_to_gpa;
4650
	context->sync_page = paging64_sync_page;
M
Marcelo Tosatti 已提交
4651
	context->invlpg = paging64_invlpg;
4652
	context->direct_map = false;
A
Avi Kivity 已提交
4653 4654
}

4655
static void paging32_init_context(struct kvm_mmu *context)
A
Avi Kivity 已提交
4656 4657 4658
{
	context->page_fault = paging32_page_fault;
	context->gva_to_gpa = paging32_gva_to_gpa;
4659
	context->sync_page = paging32_sync_page;
M
Marcelo Tosatti 已提交
4660
	context->invlpg = paging32_invlpg;
4661
	context->direct_map = false;
A
Avi Kivity 已提交
4662 4663
}

4664 4665
static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu,
							 struct kvm_mmu_role_regs *regs)
4666 4667 4668
{
	union kvm_mmu_extended_role ext = {0};

4669 4670 4671 4672 4673 4674
	if (____is_cr0_pg(regs)) {
		ext.cr0_pg = 1;
		ext.cr4_pae = ____is_cr4_pae(regs);
		ext.cr4_smep = ____is_cr4_smep(regs);
		ext.cr4_smap = ____is_cr4_smap(regs);
		ext.cr4_pse = ____is_cr4_pse(regs);
4675 4676 4677 4678

		/* PKEY and LA57 are active iff long mode is active. */
		ext.cr4_pke = ____is_efer_lma(regs) && ____is_cr4_pke(regs);
		ext.cr4_la57 = ____is_efer_lma(regs) && ____is_cr4_la57(regs);
4679
	}
4680 4681 4682 4683 4684 4685

	ext.valid = 1;

	return ext;
}

4686
static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
4687
						   struct kvm_mmu_role_regs *regs,
4688 4689 4690 4691 4692
						   bool base_only)
{
	union kvm_mmu_role role = {0};

	role.base.access = ACC_ALL;
4693 4694 4695 4696
	if (____is_cr0_pg(regs)) {
		role.base.efer_nx = ____is_efer_nx(regs);
		role.base.cr0_wp = ____is_cr0_wp(regs);
	}
4697 4698 4699 4700 4701 4702
	role.base.smm = is_smm(vcpu);
	role.base.guest_mode = is_guest_mode(vcpu);

	if (base_only)
		return role;

4703
	role.ext = kvm_calc_mmu_role_ext(vcpu, regs);
4704 4705 4706 4707

	return role;
}

4708 4709
static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu)
{
4710 4711 4712 4713
	/* tdp_root_level is architecture forced level, use it if nonzero */
	if (tdp_root_level)
		return tdp_root_level;

4714
	/* Use 5-level TDP if and only if it's useful/necessary. */
4715
	if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48)
4716 4717
		return 4;

4718
	return max_tdp_level;
4719 4720
}

4721
static union kvm_mmu_role
4722 4723
kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu,
				struct kvm_mmu_role_regs *regs, bool base_only)
4724
{
4725
	union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, regs, base_only);
4726

4727
	role.base.ad_disabled = (shadow_accessed_mask == 0);
4728
	role.base.level = kvm_mmu_get_tdp_level(vcpu);
4729
	role.base.direct = true;
4730
	role.base.gpte_is_8_bytes = true;
4731 4732 4733 4734

	return role;
}

4735
static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4736
{
4737
	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4738
	struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
4739
	union kvm_mmu_role new_role =
4740
		kvm_calc_tdp_mmu_root_page_role(vcpu, &regs, false);
4741

4742 4743 4744 4745
	if (new_role.as_u64 == context->mmu_role.as_u64)
		return;

	context->mmu_role.as_u64 = new_role.as_u64;
4746
	context->page_fault = kvm_tdp_page_fault;
4747
	context->sync_page = nonpaging_sync_page;
4748
	context->invlpg = NULL;
4749
	context->shadow_root_level = kvm_mmu_get_tdp_level(vcpu);
4750
	context->direct_map = true;
4751
	context->get_guest_pgd = get_cr3;
4752
	context->get_pdptr = kvm_pdptr_read;
4753
	context->inject_page_fault = kvm_inject_page_fault;
4754
	context->root_level = role_regs_to_root_level(&regs);
4755

4756
	if (!is_cr0_pg(context))
4757
		context->gva_to_gpa = nonpaging_gva_to_gpa;
4758
	else if (is_cr4_pae(context))
4759
		context->gva_to_gpa = paging64_gva_to_gpa;
4760
	else
4761
		context->gva_to_gpa = paging32_gva_to_gpa;
4762

4763
	reset_guest_paging_metadata(vcpu, context);
4764
	reset_tdp_shadow_zero_bits_mask(vcpu, context);
4765 4766
}

4767
static union kvm_mmu_role
4768 4769
kvm_calc_shadow_root_page_role_common(struct kvm_vcpu *vcpu,
				      struct kvm_mmu_role_regs *regs, bool base_only)
4770
{
4771
	union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, regs, base_only);
4772

4773 4774
	role.base.smep_andnot_wp = role.ext.cr4_smep && !____is_cr0_wp(regs);
	role.base.smap_andnot_wp = role.ext.cr4_smap && !____is_cr0_wp(regs);
4775
	role.base.gpte_is_8_bytes = ____is_cr0_pg(regs) && ____is_cr4_pae(regs);
4776

4777 4778 4779 4780
	return role;
}

static union kvm_mmu_role
4781 4782
kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu,
				   struct kvm_mmu_role_regs *regs, bool base_only)
4783 4784
{
	union kvm_mmu_role role =
4785
		kvm_calc_shadow_root_page_role_common(vcpu, regs, base_only);
4786

4787
	role.base.direct = !____is_cr0_pg(regs);
4788

4789
	if (!____is_efer_lma(regs))
4790
		role.base.level = PT32E_ROOT_LEVEL;
4791
	else if (____is_cr4_la57(regs))
4792
		role.base.level = PT64_ROOT_5LEVEL;
4793
	else
4794
		role.base.level = PT64_ROOT_4LEVEL;
4795 4796 4797 4798

	return role;
}

4799
static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
4800
				    struct kvm_mmu_role_regs *regs,
4801
				    union kvm_mmu_role new_role)
4802
{
4803 4804
	if (new_role.as_u64 == context->mmu_role.as_u64)
		return;
4805

4806
	context->mmu_role.as_u64 = new_role.as_u64;
4807

4808
	if (!is_cr0_pg(context))
4809
		nonpaging_init_context(context);
4810
	else if (is_cr4_pae(context))
4811
		paging64_init_context(context);
A
Avi Kivity 已提交
4812
	else
4813
		paging32_init_context(context);
4814
	context->root_level = role_regs_to_root_level(regs);
4815

4816
	reset_guest_paging_metadata(vcpu, context);
4817 4818
	context->shadow_root_level = new_role.base.level;

4819
	reset_shadow_zero_bits_mask(vcpu, context);
4820
}
4821

4822 4823
static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu,
				struct kvm_mmu_role_regs *regs)
4824
{
4825
	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4826
	union kvm_mmu_role new_role =
4827
		kvm_calc_shadow_mmu_root_page_role(vcpu, regs, false);
4828

4829
	shadow_mmu_init_context(vcpu, context, regs, new_role);
4830 4831
}

4832
static union kvm_mmu_role
4833 4834
kvm_calc_shadow_npt_root_page_role(struct kvm_vcpu *vcpu,
				   struct kvm_mmu_role_regs *regs)
4835 4836
{
	union kvm_mmu_role role =
4837
		kvm_calc_shadow_root_page_role_common(vcpu, regs, false);
4838 4839

	role.base.direct = false;
4840
	role.base.level = kvm_mmu_get_tdp_level(vcpu);
4841 4842 4843 4844

	return role;
}

4845 4846
void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0,
			     unsigned long cr4, u64 efer, gpa_t nested_cr3)
4847
{
4848
	struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4849 4850 4851 4852 4853
	struct kvm_mmu_role_regs regs = {
		.cr0 = cr0,
		.cr4 = cr4,
		.efer = efer,
	};
4854
	union kvm_mmu_role new_role;
4855

4856
	new_role = kvm_calc_shadow_npt_root_page_role(vcpu, &regs);
4857

4858
	__kvm_mmu_new_pgd(vcpu, nested_cr3, new_role.base);
4859

4860
	shadow_mmu_init_context(vcpu, context, &regs, new_role);
4861 4862
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu);
4863

4864 4865
static union kvm_mmu_role
kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
4866
				   bool execonly, u8 level)
4867
{
4868
	union kvm_mmu_role role = {0};
4869

4870 4871
	/* SMM flag is inherited from root_mmu */
	role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
4872

4873
	role.base.level = level;
4874
	role.base.gpte_is_8_bytes = true;
4875 4876 4877 4878
	role.base.direct = false;
	role.base.ad_disabled = !accessed_dirty;
	role.base.guest_mode = true;
	role.base.access = ACC_ALL;
4879

4880 4881
	/* EPT, and thus nested EPT, does not consume CR0, CR4, nor EFER. */
	role.ext.word = 0;
4882
	role.ext.execonly = execonly;
4883
	role.ext.valid = 1;
4884 4885 4886 4887

	return role;
}

4888
void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
4889
			     bool accessed_dirty, gpa_t new_eptp)
N
Nadav Har'El 已提交
4890
{
4891
	struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4892
	u8 level = vmx_eptp_page_walk_level(new_eptp);
4893 4894
	union kvm_mmu_role new_role =
		kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
4895
						   execonly, level);
4896

4897
	__kvm_mmu_new_pgd(vcpu, new_eptp, new_role.base);
4898 4899 4900

	if (new_role.as_u64 == context->mmu_role.as_u64)
		return;
4901

4902 4903
	context->mmu_role.as_u64 = new_role.as_u64;

4904
	context->shadow_root_level = level;
N
Nadav Har'El 已提交
4905

4906
	context->ept_ad = accessed_dirty;
N
Nadav Har'El 已提交
4907 4908 4909 4910
	context->page_fault = ept_page_fault;
	context->gva_to_gpa = ept_gva_to_gpa;
	context->sync_page = ept_sync_page;
	context->invlpg = ept_invlpg;
4911
	context->root_level = level;
N
Nadav Har'El 已提交
4912
	context->direct_map = false;
4913

4914
	update_permission_bitmask(context, true);
4915
	update_pkru_bitmask(context);
N
Nadav Har'El 已提交
4916
	reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4917
	reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
N
Nadav Har'El 已提交
4918 4919 4920
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);

4921
static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4922
{
4923
	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4924
	struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
4925

4926
	kvm_init_shadow_mmu(vcpu, &regs);
4927

4928
	context->get_guest_pgd     = get_cr3;
4929 4930
	context->get_pdptr         = kvm_pdptr_read;
	context->inject_page_fault = kvm_inject_page_fault;
A
Avi Kivity 已提交
4931 4932
}

4933 4934
static union kvm_mmu_role
kvm_calc_nested_mmu_role(struct kvm_vcpu *vcpu, struct kvm_mmu_role_regs *regs)
4935
{
4936 4937 4938
	union kvm_mmu_role role;

	role = kvm_calc_shadow_root_page_role_common(vcpu, regs, false);
4939 4940 4941 4942 4943 4944 4945

	/*
	 * Nested MMUs are used only for walking L2's gva->gpa, they never have
	 * shadow pages of their own and so "direct" has no meaning.   Set it
	 * to "true" to try to detect bogus usage of the nested MMU.
	 */
	role.base.direct = true;
4946
	role.base.level = role_regs_to_root_level(regs);
4947 4948 4949
	return role;
}

4950
static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4951
{
4952 4953
	struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
	union kvm_mmu_role new_role = kvm_calc_nested_mmu_role(vcpu, &regs);
4954 4955
	struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;

4956 4957 4958 4959
	if (new_role.as_u64 == g_context->mmu_role.as_u64)
		return;

	g_context->mmu_role.as_u64 = new_role.as_u64;
4960
	g_context->get_guest_pgd     = get_cr3;
4961
	g_context->get_pdptr         = kvm_pdptr_read;
4962
	g_context->inject_page_fault = kvm_inject_page_fault;
4963
	g_context->root_level        = new_role.base.level;
4964

4965 4966 4967 4968 4969 4970
	/*
	 * L2 page tables are never shadowed, so there is no need to sync
	 * SPTEs.
	 */
	g_context->invlpg            = NULL;

4971
	/*
4972
	 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
4973 4974 4975 4976 4977
	 * L1's nested page tables (e.g. EPT12). The nested translation
	 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
	 * L2's page tables as the first level of translation and L1's
	 * nested page tables as the second level of translation. Basically
	 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
4978
	 */
4979
	if (!is_paging(vcpu))
4980
		g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4981
	else if (is_long_mode(vcpu))
4982
		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4983
	else if (is_pae(vcpu))
4984
		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4985
	else
4986 4987
		g_context->gva_to_gpa = paging32_gva_to_gpa_nested;

4988
	reset_guest_paging_metadata(vcpu, g_context);
4989 4990
}

4991
void kvm_init_mmu(struct kvm_vcpu *vcpu)
4992
{
4993
	if (mmu_is_nested(vcpu))
4994
		init_kvm_nested_mmu(vcpu);
4995
	else if (tdp_enabled)
4996
		init_kvm_tdp_mmu(vcpu);
4997
	else
4998
		init_kvm_softmmu(vcpu);
4999
}
5000
EXPORT_SYMBOL_GPL(kvm_init_mmu);
5001

5002 5003 5004
static union kvm_mmu_page_role
kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
{
5005
	struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
5006 5007
	union kvm_mmu_role role;

5008
	if (tdp_enabled)
5009
		role = kvm_calc_tdp_mmu_root_page_role(vcpu, &regs, true);
5010
	else
5011
		role = kvm_calc_shadow_mmu_root_page_role(vcpu, &regs, true);
5012 5013

	return role.base;
5014
}
5015

5016 5017 5018 5019 5020 5021 5022 5023 5024 5025
void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu)
{
	/*
	 * Invalidate all MMU roles to force them to reinitialize as CPUID
	 * information is factored into reserved bit calculations.
	 */
	vcpu->arch.root_mmu.mmu_role.ext.valid = 0;
	vcpu->arch.guest_mmu.mmu_role.ext.valid = 0;
	vcpu->arch.nested_mmu.mmu_role.ext.valid = 0;
	kvm_mmu_reset_context(vcpu);
5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045

	/*
	 * KVM does not correctly handle changing guest CPUID after KVM_RUN, as
	 * MAXPHYADDR, GBPAGES support, AMD reserved bit behavior, etc.. aren't
	 * tracked in kvm_mmu_page_role.  As a result, KVM may miss guest page
	 * faults due to reusing SPs/SPTEs.  Alert userspace, but otherwise
	 * sweep the problem under the rug.
	 *
	 * KVM's horrific CPUID ABI makes the problem all but impossible to
	 * solve, as correctly handling multiple vCPU models (with respect to
	 * paging and physical address properties) in a single VM would require
	 * tracking all relevant CPUID information in kvm_mmu_page_role.  That
	 * is very undesirable as it would double the memory requirements for
	 * gfn_track (see struct kvm_mmu_page_role comments), and in practice
	 * no sane VMM mucks with the core vCPU model on the fly.
	 */
	if (vcpu->arch.last_vmentry_cpu != -1) {
		pr_warn_ratelimited("KVM: KVM_SET_CPUID{,2} after KVM_RUN may cause guest instability\n");
		pr_warn_ratelimited("KVM: KVM_SET_CPUID{,2} will fail after KVM_RUN starting with Linux 5.16\n");
	}
5046 5047
}

5048
void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
5049
{
5050
	kvm_mmu_unload(vcpu);
5051
	kvm_init_mmu(vcpu);
A
Avi Kivity 已提交
5052
}
5053
EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
A
Avi Kivity 已提交
5054 5055

int kvm_mmu_load(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
5056
{
5057 5058
	int r;

5059
	r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->direct_map);
A
Avi Kivity 已提交
5060 5061
	if (r)
		goto out;
5062
	r = mmu_alloc_special_roots(vcpu);
A
Avi Kivity 已提交
5063 5064
	if (r)
		goto out;
5065
	if (vcpu->arch.mmu->direct_map)
5066 5067 5068
		r = mmu_alloc_direct_roots(vcpu);
	else
		r = mmu_alloc_shadow_roots(vcpu);
5069 5070
	if (r)
		goto out;
5071 5072 5073

	kvm_mmu_sync_roots(vcpu);

5074
	kvm_mmu_load_pgd(vcpu);
5075
	static_call(kvm_x86_tlb_flush_current)(vcpu);
5076 5077
out:
	return r;
A
Avi Kivity 已提交
5078
}
A
Avi Kivity 已提交
5079 5080 5081

void kvm_mmu_unload(struct kvm_vcpu *vcpu)
{
5082 5083 5084 5085
	kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
	WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
	kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
	WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
A
Avi Kivity 已提交
5086
}
A
Avi Kivity 已提交
5087

5088 5089 5090 5091 5092 5093 5094 5095
static bool need_remote_flush(u64 old, u64 new)
{
	if (!is_shadow_present_pte(old))
		return false;
	if (!is_shadow_present_pte(new))
		return true;
	if ((old ^ new) & PT64_BASE_ADDR_MASK)
		return true;
5096 5097
	old ^= shadow_nx_mask;
	new ^= shadow_nx_mask;
5098 5099 5100
	return (old & ~new & PT64_PERM_MASK) != 0;
}

5101
static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
5102
				    int *bytes)
5103
{
5104
	u64 gentry = 0;
5105
	int r;
5106 5107 5108

	/*
	 * Assume that the pte write on a page table of the same type
5109 5110
	 * as the current vcpu paging mode since we update the sptes only
	 * when they have the same mode.
5111
	 */
5112
	if (is_pae(vcpu) && *bytes == 4) {
5113
		/* Handle a 32-bit guest writing two halves of a 64-bit gpte */
5114 5115
		*gpa &= ~(gpa_t)7;
		*bytes = 8;
5116 5117
	}

5118 5119 5120 5121
	if (*bytes == 4 || *bytes == 8) {
		r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
		if (r)
			gentry = 0;
5122 5123
	}

5124 5125 5126 5127 5128 5129 5130
	return gentry;
}

/*
 * If we're seeing too many writes to a page, it may no longer be a page table,
 * or we may be forking, in which case it is better to unmap the page.
 */
5131
static bool detect_write_flooding(struct kvm_mmu_page *sp)
5132
{
5133 5134 5135 5136
	/*
	 * Skip write-flooding detected for the sp whose level is 1, because
	 * it can become unsync, then the guest page is not write-protected.
	 */
5137
	if (sp->role.level == PG_LEVEL_4K)
5138
		return false;
5139

5140 5141
	atomic_inc(&sp->write_flooding_count);
	return atomic_read(&sp->write_flooding_count) >= 3;
5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156
}

/*
 * Misaligned accesses are too much trouble to fix up; also, they usually
 * indicate a page is not used as a page table.
 */
static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
				    int bytes)
{
	unsigned offset, pte_size, misaligned;

	pgprintk("misaligned: gpa %llx bytes %d role %x\n",
		 gpa, bytes, sp->role.word);

	offset = offset_in_page(gpa);
5157
	pte_size = sp->role.gpte_is_8_bytes ? 8 : 4;
5158 5159 5160 5161 5162 5163 5164 5165

	/*
	 * Sometimes, the OS only writes the last one bytes to update status
	 * bits, for example, in linux, andb instruction is used in clear_bit().
	 */
	if (!(offset & (pte_size - 1)) && bytes == 1)
		return false;

5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180
	misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
	misaligned |= bytes < 4;

	return misaligned;
}

static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
{
	unsigned page_offset, quadrant;
	u64 *spte;
	int level;

	page_offset = offset_in_page(gpa);
	level = sp->role.level;
	*nspte = 1;
5181
	if (!sp->role.gpte_is_8_bytes) {
5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202
		page_offset <<= 1;	/* 32->64 */
		/*
		 * A 32-bit pde maps 4MB while the shadow pdes map
		 * only 2MB.  So we need to double the offset again
		 * and zap two pdes instead of one.
		 */
		if (level == PT32_ROOT_LEVEL) {
			page_offset &= ~7; /* kill rounding error */
			page_offset <<= 1;
			*nspte = 2;
		}
		quadrant = page_offset >> PAGE_SHIFT;
		page_offset &= ~PAGE_MASK;
		if (quadrant != sp->role.quadrant)
			return NULL;
	}

	spte = &sp->spt[page_offset / sizeof(*spte)];
	return spte;
}

5203
static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
5204 5205
			      const u8 *new, int bytes,
			      struct kvm_page_track_notifier_node *node)
5206 5207 5208 5209 5210 5211
{
	gfn_t gfn = gpa >> PAGE_SHIFT;
	struct kvm_mmu_page *sp;
	LIST_HEAD(invalid_list);
	u64 entry, gentry, *spte;
	int npte;
5212
	bool remote_flush, local_flush;
5213 5214 5215 5216 5217

	/*
	 * If we don't have indirect shadow pages, it means no page is
	 * write-protected, so we can exit simply.
	 */
5218
	if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
5219 5220
		return;

5221
	remote_flush = local_flush = false;
5222 5223 5224 5225 5226

	pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);

	/*
	 * No need to care whether allocation memory is successful
I
Ingo Molnar 已提交
5227
	 * or not since pte prefetch is skipped if it does not have
5228 5229
	 * enough objects in the cache.
	 */
5230
	mmu_topup_memory_caches(vcpu, true);
5231

5232
	write_lock(&vcpu->kvm->mmu_lock);
5233 5234 5235

	gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);

5236
	++vcpu->kvm->stat.mmu_pte_write;
5237
	kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
5238

5239
	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
5240
		if (detect_write_misaligned(sp, gpa, bytes) ||
5241
		      detect_write_flooding(sp)) {
5242
			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
A
Avi Kivity 已提交
5243
			++vcpu->kvm->stat.mmu_flooded;
5244 5245
			continue;
		}
5246 5247 5248 5249 5250

		spte = get_written_sptes(sp, gpa, &npte);
		if (!spte)
			continue;

5251
		local_flush = true;
5252
		while (npte--) {
5253
			entry = *spte;
5254
			mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL);
5255 5256
			if (gentry && sp->role.level != PG_LEVEL_4K)
				++vcpu->kvm->stat.mmu_pde_zapped;
G
Gleb Natapov 已提交
5257
			if (need_remote_flush(entry, *spte))
5258
				remote_flush = true;
5259
			++spte;
5260 5261
		}
	}
5262
	kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
5263
	kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
5264
	write_unlock(&vcpu->kvm->mmu_lock);
5265 5266
}

5267
int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
5268
		       void *insn, int insn_len)
5269
{
5270
	int r, emulation_type = EMULTYPE_PF;
5271
	bool direct = vcpu->arch.mmu->direct_map;
5272

5273
	if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
5274 5275
		return RET_PF_RETRY;

5276
	r = RET_PF_INVALID;
5277
	if (unlikely(error_code & PFERR_RSVD_MASK)) {
5278
		r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
5279
		if (r == RET_PF_EMULATE)
5280 5281
			goto emulate;
	}
5282

5283
	if (r == RET_PF_INVALID) {
5284 5285
		r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
					  lower_32_bits(error_code), false);
5286
		if (KVM_BUG_ON(r == RET_PF_INVALID, vcpu->kvm))
5287
			return -EIO;
5288 5289
	}

5290
	if (r < 0)
5291
		return r;
5292 5293
	if (r != RET_PF_EMULATE)
		return 1;
5294

5295 5296 5297 5298 5299 5300 5301
	/*
	 * Before emulating the instruction, check if the error code
	 * was due to a RO violation while translating the guest page.
	 * This can occur when using nested virtualization with nested
	 * paging in both guests. If true, we simply unprotect the page
	 * and resume the guest.
	 */
5302
	if (vcpu->arch.mmu->direct_map &&
5303
	    (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5304
		kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
5305 5306 5307
		return 1;
	}

5308 5309 5310 5311 5312 5313
	/*
	 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
	 * optimistically try to just unprotect the page and let the processor
	 * re-execute the instruction that caused the page fault.  Do not allow
	 * retrying MMIO emulation, as it's not only pointless but could also
	 * cause us to enter an infinite loop because the processor will keep
5314 5315 5316 5317
	 * faulting on the non-existent MMIO address.  Retrying an instruction
	 * from a nested guest is also pointless and dangerous as we are only
	 * explicitly shadowing L1's page tables, i.e. unprotecting something
	 * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5318
	 */
5319
	if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
5320
		emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
5321
emulate:
5322
	return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
5323
				       insn_len);
5324 5325 5326
}
EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);

5327 5328
void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
			    gva_t gva, hpa_t root_hpa)
M
Marcelo Tosatti 已提交
5329
{
5330
	int i;
5331

5332 5333 5334 5335 5336 5337
	/* It's actually a GPA for vcpu->arch.guest_mmu.  */
	if (mmu != &vcpu->arch.guest_mmu) {
		/* INVLPG on a non-canonical address is a NOP according to the SDM.  */
		if (is_noncanonical_address(gva, vcpu))
			return;

5338
		static_call(kvm_x86_tlb_flush_gva)(vcpu, gva);
5339 5340 5341
	}

	if (!mmu->invlpg)
5342 5343
		return;

5344 5345
	if (root_hpa == INVALID_PAGE) {
		mmu->invlpg(vcpu, gva, mmu->root_hpa);
5346

5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364
		/*
		 * INVLPG is required to invalidate any global mappings for the VA,
		 * irrespective of PCID. Since it would take us roughly similar amount
		 * of work to determine whether any of the prev_root mappings of the VA
		 * is marked global, or to just sync it blindly, so we might as well
		 * just always sync it.
		 *
		 * Mappings not reachable via the current cr3 or the prev_roots will be
		 * synced when switching to that cr3, so nothing needs to be done here
		 * for them.
		 */
		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
			if (VALID_PAGE(mmu->prev_roots[i].hpa))
				mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
	} else {
		mmu->invlpg(vcpu, gva, root_hpa);
	}
}
5365

5366 5367 5368
void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
{
	kvm_mmu_invalidate_gva(vcpu, vcpu->arch.mmu, gva, INVALID_PAGE);
M
Marcelo Tosatti 已提交
5369 5370 5371 5372
	++vcpu->stat.invlpg;
}
EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);

5373

5374 5375
void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
{
5376
	struct kvm_mmu *mmu = vcpu->arch.mmu;
5377
	bool tlb_flush = false;
5378
	uint i;
5379 5380

	if (pcid == kvm_get_active_pcid(vcpu)) {
5381
		mmu->invlpg(vcpu, gva, mmu->root_hpa);
5382
		tlb_flush = true;
5383 5384
	}

5385 5386
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
		if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5387
		    pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) {
5388 5389 5390
			mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
			tlb_flush = true;
		}
5391
	}
5392

5393
	if (tlb_flush)
5394
		static_call(kvm_x86_tlb_flush_gva)(vcpu, gva);
5395

5396 5397 5398
	++vcpu->stat.invlpg;

	/*
5399 5400 5401
	 * Mappings not reachable via the current cr3 or the prev_roots will be
	 * synced when switching to that cr3, so nothing needs to be done here
	 * for them.
5402 5403 5404
	 */
}

5405 5406
void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level,
		       int tdp_max_root_level, int tdp_huge_page_level)
5407
{
5408
	tdp_enabled = enable_tdp;
5409
	tdp_root_level = tdp_forced_root_level;
5410
	max_tdp_level = tdp_max_root_level;
5411 5412

	/*
5413
	 * max_huge_page_level reflects KVM's MMU capabilities irrespective
5414 5415 5416 5417 5418 5419
	 * of kernel support, e.g. KVM may be capable of using 1GB pages when
	 * the kernel is not.  But, KVM never creates a page size greater than
	 * what is used by the kernel for any given HVA, i.e. the kernel's
	 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
	 */
	if (tdp_enabled)
5420
		max_huge_page_level = tdp_huge_page_level;
5421
	else if (boot_cpu_has(X86_FEATURE_GBPAGES))
5422
		max_huge_page_level = PG_LEVEL_1G;
5423
	else
5424
		max_huge_page_level = PG_LEVEL_2M;
5425
}
5426
EXPORT_SYMBOL_GPL(kvm_configure_mmu);
5427 5428

/* The return value indicates if tlb flush on all vcpus is needed. */
5429 5430 5431
typedef bool (*slot_level_handler) (struct kvm *kvm,
				    struct kvm_rmap_head *rmap_head,
				    const struct kvm_memory_slot *slot);
5432 5433 5434

/* The caller should hold mmu-lock before calling this function. */
static __always_inline bool
5435
slot_handle_level_range(struct kvm *kvm, const struct kvm_memory_slot *memslot,
5436
			slot_level_handler fn, int start_level, int end_level,
5437 5438
			gfn_t start_gfn, gfn_t end_gfn, bool flush_on_yield,
			bool flush)
5439 5440 5441 5442 5443 5444
{
	struct slot_rmap_walk_iterator iterator;

	for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
			end_gfn, &iterator) {
		if (iterator.rmap)
5445
			flush |= fn(kvm, iterator.rmap, memslot);
5446

5447
		if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
5448
			if (flush && flush_on_yield) {
5449 5450 5451
				kvm_flush_remote_tlbs_with_address(kvm,
						start_gfn,
						iterator.gfn - start_gfn + 1);
5452 5453
				flush = false;
			}
5454
			cond_resched_rwlock_write(&kvm->mmu_lock);
5455 5456 5457 5458 5459 5460 5461
		}
	}

	return flush;
}

static __always_inline bool
5462
slot_handle_level(struct kvm *kvm, const struct kvm_memory_slot *memslot,
5463
		  slot_level_handler fn, int start_level, int end_level,
5464
		  bool flush_on_yield)
5465 5466 5467 5468
{
	return slot_handle_level_range(kvm, memslot, fn, start_level,
			end_level, memslot->base_gfn,
			memslot->base_gfn + memslot->npages - 1,
5469
			flush_on_yield, false);
5470 5471 5472
}

static __always_inline bool
5473
slot_handle_leaf(struct kvm *kvm, const struct kvm_memory_slot *memslot,
5474
		 slot_level_handler fn, bool flush_on_yield)
5475
{
5476
	return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
5477
				 PG_LEVEL_4K, flush_on_yield);
5478 5479
}

5480
static void free_mmu_pages(struct kvm_mmu *mmu)
A
Avi Kivity 已提交
5481
{
5482 5483
	if (!tdp_enabled && mmu->pae_root)
		set_memory_encrypted((unsigned long)mmu->pae_root, 1);
5484
	free_page((unsigned long)mmu->pae_root);
5485
	free_page((unsigned long)mmu->pml4_root);
5486
	free_page((unsigned long)mmu->pml5_root);
A
Avi Kivity 已提交
5487 5488
}

5489
static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
A
Avi Kivity 已提交
5490
{
5491
	struct page *page;
A
Avi Kivity 已提交
5492 5493
	int i;

5494 5495 5496 5497 5498 5499
	mmu->root_hpa = INVALID_PAGE;
	mmu->root_pgd = 0;
	mmu->translate_gpa = translate_gpa;
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
		mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;

5500
	/*
5501 5502 5503 5504
	 * When using PAE paging, the four PDPTEs are treated as 'root' pages,
	 * while the PDP table is a per-vCPU construct that's allocated at MMU
	 * creation.  When emulating 32-bit mode, cr3 is only 32 bits even on
	 * x86_64.  Therefore we need to allocate the PDP table in the first
5505 5506 5507 5508 5509
	 * 4GB of memory, which happens to fit the DMA32 zone.  TDP paging
	 * generally doesn't use PAE paging and can skip allocating the PDP
	 * table.  The main exception, handled here, is SVM's 32-bit NPT.  The
	 * other exception is for shadowing L1's 32-bit or PAE NPT on 64-bit
	 * KVM; that horror is handled on-demand by mmu_alloc_shadow_roots().
5510
	 */
5511
	if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
5512 5513
		return 0;

5514
	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
5515
	if (!page)
5516 5517
		return -ENOMEM;

5518
	mmu->pae_root = page_address(page);
5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532

	/*
	 * CR3 is only 32 bits when PAE paging is used, thus it's impossible to
	 * get the CPU to treat the PDPTEs as encrypted.  Decrypt the page so
	 * that KVM's writes and the CPU's reads get along.  Note, this is
	 * only necessary when using shadow paging, as 64-bit NPT can get at
	 * the C-bit even when shadowing 32-bit NPT, and SME isn't supported
	 * by 32-bit kernels (when KVM itself uses 32-bit NPT).
	 */
	if (!tdp_enabled)
		set_memory_decrypted((unsigned long)mmu->pae_root, 1);
	else
		WARN_ON_ONCE(shadow_me_mask);

5533
	for (i = 0; i < 4; ++i)
5534
		mmu->pae_root[i] = INVALID_PAE_ROOT;
5535

A
Avi Kivity 已提交
5536 5537 5538
	return 0;
}

5539
int kvm_mmu_create(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
5540
{
5541
	int ret;
5542

5543
	vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache;
5544 5545
	vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO;

5546
	vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache;
5547
	vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO;
5548

5549 5550
	vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO;

5551 5552
	vcpu->arch.mmu = &vcpu->arch.root_mmu;
	vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
A
Avi Kivity 已提交
5553

5554
	vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5555

5556
	ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu);
5557 5558 5559
	if (ret)
		return ret;

5560
	ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu);
5561 5562 5563 5564 5565 5566 5567
	if (ret)
		goto fail_allocate_root;

	return ret;
 fail_allocate_root:
	free_mmu_pages(&vcpu->arch.guest_mmu);
	return ret;
A
Avi Kivity 已提交
5568 5569
}

5570
#define BATCH_ZAP_PAGES	10
5571 5572 5573
static void kvm_zap_obsolete_pages(struct kvm *kvm)
{
	struct kvm_mmu_page *sp, *node;
5574
	int nr_zapped, batch = 0;
5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586

restart:
	list_for_each_entry_safe_reverse(sp, node,
	      &kvm->arch.active_mmu_pages, link) {
		/*
		 * No obsolete valid page exists before a newly created page
		 * since active_mmu_pages is a FIFO list.
		 */
		if (!is_obsolete_sp(kvm, sp))
			break;

		/*
5587 5588 5589
		 * Invalid pages should never land back on the list of active
		 * pages.  Skip the bogus page, otherwise we'll get stuck in an
		 * infinite loop if the page gets put back on the list (again).
5590
		 */
5591
		if (WARN_ON(sp->role.invalid))
5592 5593
			continue;

5594 5595 5596 5597 5598 5599
		/*
		 * No need to flush the TLB since we're only zapping shadow
		 * pages with an obsolete generation number and all vCPUS have
		 * loaded a new root, i.e. the shadow pages being zapped cannot
		 * be in active use by the guest.
		 */
5600
		if (batch >= BATCH_ZAP_PAGES &&
5601
		    cond_resched_rwlock_write(&kvm->mmu_lock)) {
5602
			batch = 0;
5603 5604 5605
			goto restart;
		}

5606 5607
		if (__kvm_mmu_prepare_zap_page(kvm, sp,
				&kvm->arch.zapped_obsolete_pages, &nr_zapped)) {
5608
			batch += nr_zapped;
5609
			goto restart;
5610
		}
5611 5612
	}

5613 5614 5615 5616 5617
	/*
	 * Trigger a remote TLB flush before freeing the page tables to ensure
	 * KVM is not in the middle of a lockless shadow page table walk, which
	 * may reference the pages.
	 */
5618
	kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631
}

/*
 * Fast invalidate all shadow pages and use lock-break technique
 * to zap obsolete pages.
 *
 * It's required when memslot is being deleted or VM is being
 * destroyed, in these cases, we should ensure that KVM MMU does
 * not use any resource of the being-deleted slot or all slots
 * after calling the function.
 */
static void kvm_mmu_zap_all_fast(struct kvm *kvm)
{
5632 5633
	lockdep_assert_held(&kvm->slots_lock);

5634
	write_lock(&kvm->mmu_lock);
5635
	trace_kvm_mmu_zap_all_fast(kvm);
5636 5637 5638 5639 5640 5641 5642 5643 5644

	/*
	 * Toggle mmu_valid_gen between '0' and '1'.  Because slots_lock is
	 * held for the entire duration of zapping obsolete pages, it's
	 * impossible for there to be multiple invalid generations associated
	 * with *valid* shadow pages at any given time, i.e. there is exactly
	 * one valid generation and (at most) one invalid generation.
	 */
	kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
5645

5646 5647 5648 5649 5650 5651 5652 5653 5654
	/* In order to ensure all threads see this change when
	 * handling the MMU reload signal, this must happen in the
	 * same critical section as kvm_reload_remote_mmus, and
	 * before kvm_zap_obsolete_pages as kvm_zap_obsolete_pages
	 * could drop the MMU lock and yield.
	 */
	if (is_tdp_mmu_enabled(kvm))
		kvm_tdp_mmu_invalidate_all_roots(kvm);

5655 5656 5657 5658 5659 5660 5661 5662 5663 5664
	/*
	 * Notify all vcpus to reload its shadow page table and flush TLB.
	 * Then all vcpus will switch to new shadow page table with the new
	 * mmu_valid_gen.
	 *
	 * Note: we need to do this under the protection of mmu_lock,
	 * otherwise, vcpu would purge shadow page but miss tlb flush.
	 */
	kvm_reload_remote_mmus(kvm);

5665
	kvm_zap_obsolete_pages(kvm);
5666

5667
	write_unlock(&kvm->mmu_lock);
5668 5669 5670 5671 5672 5673

	if (is_tdp_mmu_enabled(kvm)) {
		read_lock(&kvm->mmu_lock);
		kvm_tdp_mmu_zap_invalidated_roots(kvm);
		read_unlock(&kvm->mmu_lock);
	}
5674 5675
}

5676 5677 5678 5679 5680
static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
{
	return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
}

5681
static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5682 5683
			struct kvm_memory_slot *slot,
			struct kvm_page_track_notifier_node *node)
5684
{
5685
	kvm_mmu_zap_all_fast(kvm);
5686 5687
}

5688
void kvm_mmu_init_vm(struct kvm *kvm)
5689
{
5690
	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5691

5692 5693
	spin_lock_init(&kvm->arch.mmu_unsync_pages_lock);

5694 5695 5696 5697 5698 5699 5700
	if (!kvm_mmu_init_tdp_mmu(kvm))
		/*
		 * No smp_load/store wrappers needed here as we are in
		 * VM init and there cannot be any memslots / other threads
		 * accessing this struct kvm yet.
		 */
		kvm->arch.memslots_have_rmaps = true;
5701

5702
	node->track_write = kvm_mmu_pte_write;
5703
	node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5704
	kvm_page_track_register_notifier(kvm, node);
5705 5706
}

5707
void kvm_mmu_uninit_vm(struct kvm *kvm)
5708
{
5709
	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5710

5711
	kvm_page_track_unregister_notifier(kvm, node);
5712 5713

	kvm_mmu_uninit_tdp_mmu(kvm);
5714 5715
}

5716 5717 5718 5719
/*
 * Invalidate (zap) SPTEs that cover GFNs from gfn_start and up to gfn_end
 * (not including it)
 */
X
Xiao Guangrong 已提交
5720 5721 5722 5723
void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;
5724
	int i;
5725
	bool flush = false;
X
Xiao Guangrong 已提交
5726

5727 5728
	write_lock(&kvm->mmu_lock);

5729 5730
	kvm_inc_notifier_count(kvm, gfn_start, gfn_end);

5731 5732 5733 5734 5735 5736 5737 5738 5739 5740
	if (kvm_memslots_have_rmaps(kvm)) {
		for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
			slots = __kvm_memslots(kvm, i);
			kvm_for_each_memslot(memslot, slots) {
				gfn_t start, end;

				start = max(gfn_start, memslot->base_gfn);
				end = min(gfn_end, memslot->base_gfn + memslot->npages);
				if (start >= end)
					continue;
X
Xiao Guangrong 已提交
5741

5742 5743
				flush = slot_handle_level_range(kvm,
						(const struct kvm_memory_slot *) memslot,
5744 5745 5746 5747
						kvm_zap_rmapp, PG_LEVEL_4K,
						KVM_MAX_HUGEPAGE_LEVEL, start,
						end - 1, true, flush);
			}
5748
		}
5749
		if (flush)
5750 5751
			kvm_flush_remote_tlbs_with_address(kvm, gfn_start,
							   gfn_end - gfn_start);
X
Xiao Guangrong 已提交
5752 5753
	}

5754
	if (is_tdp_mmu_enabled(kvm)) {
5755 5756
		for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
			flush = kvm_tdp_mmu_zap_gfn_range(kvm, i, gfn_start,
5757
							  gfn_end, flush);
5758 5759 5760
		if (flush)
			kvm_flush_remote_tlbs_with_address(kvm, gfn_start,
							   gfn_end - gfn_start);
5761
	}
5762 5763 5764 5765

	if (flush)
		kvm_flush_remote_tlbs_with_address(kvm, gfn_start, gfn_end);

5766 5767
	kvm_dec_notifier_count(kvm, gfn_start, gfn_end);

5768
	write_unlock(&kvm->mmu_lock);
X
Xiao Guangrong 已提交
5769 5770
}

5771
static bool slot_rmap_write_protect(struct kvm *kvm,
5772
				    struct kvm_rmap_head *rmap_head,
5773
				    const struct kvm_memory_slot *slot)
5774
{
5775
	return __rmap_write_protect(kvm, rmap_head, false);
5776 5777
}

5778
void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5779
				      const struct kvm_memory_slot *memslot,
5780
				      int start_level)
A
Avi Kivity 已提交
5781
{
5782
	bool flush = false;
A
Avi Kivity 已提交
5783

5784 5785 5786 5787 5788 5789 5790
	if (kvm_memslots_have_rmaps(kvm)) {
		write_lock(&kvm->mmu_lock);
		flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect,
					  start_level, KVM_MAX_HUGEPAGE_LEVEL,
					  false);
		write_unlock(&kvm->mmu_lock);
	}
5791

5792 5793 5794 5795 5796 5797
	if (is_tdp_mmu_enabled(kvm)) {
		read_lock(&kvm->mmu_lock);
		flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, start_level);
		read_unlock(&kvm->mmu_lock);
	}

5798 5799 5800 5801 5802 5803 5804
	/*
	 * We can flush all the TLBs out of the mmu lock without TLB
	 * corruption since we just change the spte from writable to
	 * readonly so that we only need to care the case of changing
	 * spte from present to present (changing the spte from present
	 * to nonpresent will flush all the TLBs immediately), in other
	 * words, the only case we care is mmu_spte_update() where we
5805 5806 5807
	 * have checked Host-writable | MMU-writable instead of
	 * PT_WRITABLE_MASK, that means it does not depend on PT_WRITABLE_MASK
	 * anymore.
5808
	 */
5809
	if (flush)
5810
		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
A
Avi Kivity 已提交
5811
}
5812

5813
static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5814
					 struct kvm_rmap_head *rmap_head,
5815
					 const struct kvm_memory_slot *slot)
5816 5817 5818 5819
{
	u64 *sptep;
	struct rmap_iterator iter;
	int need_tlb_flush = 0;
D
Dan Williams 已提交
5820
	kvm_pfn_t pfn;
5821 5822
	struct kvm_mmu_page *sp;

5823
restart:
5824
	for_each_rmap_spte(rmap_head, &iter, sptep) {
5825
		sp = sptep_to_sp(sptep);
5826 5827 5828
		pfn = spte_to_pfn(*sptep);

		/*
5829 5830 5831 5832 5833
		 * We cannot do huge page mapping for indirect shadow pages,
		 * which are found on the last rmap (level = 1) when not using
		 * tdp; such shadow pages are synced with the page table in
		 * the guest, and the guest page table is using 4K page size
		 * mapping if the indirect sp has level = 1.
5834
		 */
5835
		if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
5836 5837
		    sp->role.level < kvm_mmu_max_mapping_level(kvm, slot, sp->gfn,
							       pfn, PG_LEVEL_NUM)) {
5838
			pte_list_remove(kvm, rmap_head, sptep);
5839 5840 5841 5842 5843 5844 5845

			if (kvm_available_flush_tlb_with_range())
				kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
					KVM_PAGES_PER_HPAGE(sp->role.level));
			else
				need_tlb_flush = 1;

5846 5847
			goto restart;
		}
5848 5849 5850 5851 5852 5853
	}

	return need_tlb_flush;
}

void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5854
				   const struct kvm_memory_slot *slot)
5855
{
5856
	bool flush = false;
5857

5858 5859 5860 5861 5862 5863 5864
	if (kvm_memslots_have_rmaps(kvm)) {
		write_lock(&kvm->mmu_lock);
		flush = slot_handle_leaf(kvm, slot, kvm_mmu_zap_collapsible_spte, true);
		if (flush)
			kvm_arch_flush_remote_tlbs_memslot(kvm, slot);
		write_unlock(&kvm->mmu_lock);
	}
5865 5866 5867 5868 5869 5870 5871 5872

	if (is_tdp_mmu_enabled(kvm)) {
		read_lock(&kvm->mmu_lock);
		flush = kvm_tdp_mmu_zap_collapsible_sptes(kvm, slot, flush);
		if (flush)
			kvm_arch_flush_remote_tlbs_memslot(kvm, slot);
		read_unlock(&kvm->mmu_lock);
	}
5873 5874
}

5875
void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
5876
					const struct kvm_memory_slot *memslot)
5877 5878
{
	/*
5879
	 * All current use cases for flushing the TLBs for a specific memslot
5880
	 * related to dirty logging, and many do the TLB flush out of mmu_lock.
5881 5882 5883
	 * The interaction between the various operations on memslot must be
	 * serialized by slots_locks to ensure the TLB flush from one operation
	 * is observed by any other operation on the same memslot.
5884 5885
	 */
	lockdep_assert_held(&kvm->slots_lock);
5886 5887
	kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
					   memslot->npages);
5888 5889
}

5890
void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5891
				   const struct kvm_memory_slot *memslot)
5892
{
5893
	bool flush = false;
5894

5895 5896 5897 5898 5899 5900
	if (kvm_memslots_have_rmaps(kvm)) {
		write_lock(&kvm->mmu_lock);
		flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty,
					 false);
		write_unlock(&kvm->mmu_lock);
	}
5901

5902 5903 5904 5905 5906 5907
	if (is_tdp_mmu_enabled(kvm)) {
		read_lock(&kvm->mmu_lock);
		flush |= kvm_tdp_mmu_clear_dirty_slot(kvm, memslot);
		read_unlock(&kvm->mmu_lock);
	}

5908 5909 5910 5911 5912 5913 5914
	/*
	 * It's also safe to flush TLBs out of mmu lock here as currently this
	 * function is only used for dirty logging, in which case flushing TLB
	 * out of mmu lock also guarantees no dirty pages will be lost in
	 * dirty_bitmap.
	 */
	if (flush)
5915
		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5916 5917
}

5918
void kvm_mmu_zap_all(struct kvm *kvm)
5919 5920
{
	struct kvm_mmu_page *sp, *node;
5921
	LIST_HEAD(invalid_list);
5922
	int ign;
5923

5924
	write_lock(&kvm->mmu_lock);
5925
restart:
5926
	list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
5927
		if (WARN_ON(sp->role.invalid))
5928
			continue;
5929
		if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
5930
			goto restart;
5931
		if (cond_resched_rwlock_write(&kvm->mmu_lock))
5932 5933 5934
			goto restart;
	}

5935
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
5936

5937
	if (is_tdp_mmu_enabled(kvm))
5938 5939
		kvm_tdp_mmu_zap_all(kvm);

5940
	write_unlock(&kvm->mmu_lock);
5941 5942
}

5943
void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
5944
{
5945
	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
5946

5947
	gen &= MMIO_SPTE_GEN_MASK;
5948

5949
	/*
5950 5951 5952 5953 5954 5955 5956 5957
	 * Generation numbers are incremented in multiples of the number of
	 * address spaces in order to provide unique generations across all
	 * address spaces.  Strip what is effectively the address space
	 * modifier prior to checking for a wrap of the MMIO generation so
	 * that a wrap in any address space is detected.
	 */
	gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);

5958
	/*
5959
	 * The very rare case: if the MMIO generation number has wrapped,
5960 5961
	 * zap all shadow pages.
	 */
5962
	if (unlikely(gen == 0)) {
5963
		kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
5964
		kvm_mmu_zap_all_fast(kvm);
5965
	}
5966 5967
}

5968 5969
static unsigned long
mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
5970 5971
{
	struct kvm *kvm;
5972
	int nr_to_scan = sc->nr_to_scan;
5973
	unsigned long freed = 0;
5974

J
Junaid Shahid 已提交
5975
	mutex_lock(&kvm_lock);
5976 5977

	list_for_each_entry(kvm, &vm_list, vm_list) {
5978
		int idx;
5979
		LIST_HEAD(invalid_list);
5980

5981 5982 5983 5984 5985 5986 5987 5988
		/*
		 * Never scan more than sc->nr_to_scan VM instances.
		 * Will not hit this condition practically since we do not try
		 * to shrink more than one VM and it is very unlikely to see
		 * !n_used_mmu_pages so many times.
		 */
		if (!nr_to_scan--)
			break;
5989 5990 5991 5992 5993 5994
		/*
		 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
		 * here. We may skip a VM instance errorneosly, but we do not
		 * want to shrink a VM that only started to populate its MMU
		 * anyway.
		 */
5995 5996
		if (!kvm->arch.n_used_mmu_pages &&
		    !kvm_has_zapped_obsolete_pages(kvm))
5997 5998
			continue;

5999
		idx = srcu_read_lock(&kvm->srcu);
6000
		write_lock(&kvm->mmu_lock);
6001

6002 6003 6004 6005 6006 6007
		if (kvm_has_zapped_obsolete_pages(kvm)) {
			kvm_mmu_commit_zap_page(kvm,
			      &kvm->arch.zapped_obsolete_pages);
			goto unlock;
		}

6008
		freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan);
6009

6010
unlock:
6011
		write_unlock(&kvm->mmu_lock);
6012
		srcu_read_unlock(&kvm->srcu, idx);
6013

6014 6015 6016 6017 6018
		/*
		 * unfair on small ones
		 * per-vm shrinkers cry out
		 * sadness comes quickly
		 */
6019 6020
		list_move_tail(&kvm->vm_list, &vm_list);
		break;
6021 6022
	}

J
Junaid Shahid 已提交
6023
	mutex_unlock(&kvm_lock);
6024 6025 6026 6027 6028 6029
	return freed;
}

static unsigned long
mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
{
6030
	return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
6031 6032 6033
}

static struct shrinker mmu_shrinker = {
6034 6035
	.count_objects = mmu_shrink_count,
	.scan_objects = mmu_shrink_scan,
6036 6037 6038
	.seeks = DEFAULT_SEEKS * 10,
};

I
Ingo Molnar 已提交
6039
static void mmu_destroy_caches(void)
6040
{
6041 6042
	kmem_cache_destroy(pte_list_desc_cache);
	kmem_cache_destroy(mmu_page_header_cache);
6043 6044
}

P
Paolo Bonzini 已提交
6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078
static bool get_nx_auto_mode(void)
{
	/* Return true when CPU has the bug, and mitigations are ON */
	return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
}

static void __set_nx_huge_pages(bool val)
{
	nx_huge_pages = itlb_multihit_kvm_mitigation = val;
}

static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
{
	bool old_val = nx_huge_pages;
	bool new_val;

	/* In "auto" mode deploy workaround only if CPU has the bug. */
	if (sysfs_streq(val, "off"))
		new_val = 0;
	else if (sysfs_streq(val, "force"))
		new_val = 1;
	else if (sysfs_streq(val, "auto"))
		new_val = get_nx_auto_mode();
	else if (strtobool(val, &new_val) < 0)
		return -EINVAL;

	__set_nx_huge_pages(new_val);

	if (new_val != old_val) {
		struct kvm *kvm;

		mutex_lock(&kvm_lock);

		list_for_each_entry(kvm, &vm_list, vm_list) {
6079
			mutex_lock(&kvm->slots_lock);
P
Paolo Bonzini 已提交
6080
			kvm_mmu_zap_all_fast(kvm);
6081
			mutex_unlock(&kvm->slots_lock);
6082 6083

			wake_up_process(kvm->arch.nx_lpage_recovery_thread);
P
Paolo Bonzini 已提交
6084 6085 6086 6087 6088 6089 6090
		}
		mutex_unlock(&kvm_lock);
	}

	return 0;
}

6091 6092
int kvm_mmu_module_init(void)
{
6093 6094
	int ret = -ENOMEM;

P
Paolo Bonzini 已提交
6095 6096 6097
	if (nx_huge_pages == -1)
		__set_nx_huge_pages(get_nx_auto_mode());

6098 6099 6100 6101 6102 6103 6104 6105 6106 6107
	/*
	 * MMU roles use union aliasing which is, generally speaking, an
	 * undefined behavior. However, we supposedly know how compilers behave
	 * and the current status quo is unlikely to change. Guardians below are
	 * supposed to let us know if the assumption becomes false.
	 */
	BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
	BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
	BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));

6108
	kvm_mmu_reset_all_pte_masks();
6109

6110 6111
	pte_list_desc_cache = kmem_cache_create("pte_list_desc",
					    sizeof(struct pte_list_desc),
6112
					    0, SLAB_ACCOUNT, NULL);
6113
	if (!pte_list_desc_cache)
6114
		goto out;
6115

6116 6117
	mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
						  sizeof(struct kvm_mmu_page),
6118
						  0, SLAB_ACCOUNT, NULL);
6119
	if (!mmu_page_header_cache)
6120
		goto out;
6121

6122
	if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
6123
		goto out;
6124

6125 6126 6127
	ret = register_shrinker(&mmu_shrinker);
	if (ret)
		goto out;
6128

6129 6130
	return 0;

6131
out:
6132
	mmu_destroy_caches();
6133
	return ret;
6134 6135
}

6136
/*
P
Peng Hao 已提交
6137
 * Calculate mmu pages needed for kvm.
6138
 */
6139
unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm)
6140
{
6141 6142
	unsigned long nr_mmu_pages;
	unsigned long nr_pages = 0;
6143
	struct kvm_memslots *slots;
6144
	struct kvm_memory_slot *memslot;
6145
	int i;
6146

6147 6148
	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
6149

6150 6151 6152
		kvm_for_each_memslot(memslot, slots)
			nr_pages += memslot->npages;
	}
6153 6154

	nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
6155
	nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
6156 6157 6158 6159

	return nr_mmu_pages;
}

6160 6161
void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
{
6162
	kvm_mmu_unload(vcpu);
6163 6164
	free_mmu_pages(&vcpu->arch.root_mmu);
	free_mmu_pages(&vcpu->arch.guest_mmu);
6165
	mmu_free_memory_caches(vcpu);
6166 6167 6168 6169 6170 6171 6172
}

void kvm_mmu_module_exit(void)
{
	mmu_destroy_caches();
	percpu_counter_destroy(&kvm_total_used_mmu_pages);
	unregister_shrinker(&mmu_shrinker);
6173 6174
	mmu_audit_disable();
}
6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202

static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp)
{
	unsigned int old_val;
	int err;

	old_val = nx_huge_pages_recovery_ratio;
	err = param_set_uint(val, kp);
	if (err)
		return err;

	if (READ_ONCE(nx_huge_pages) &&
	    !old_val && nx_huge_pages_recovery_ratio) {
		struct kvm *kvm;

		mutex_lock(&kvm_lock);

		list_for_each_entry(kvm, &vm_list, vm_list)
			wake_up_process(kvm->arch.nx_lpage_recovery_thread);

		mutex_unlock(&kvm_lock);
	}

	return err;
}

static void kvm_recover_nx_lpages(struct kvm *kvm)
{
6203
	unsigned long nx_lpage_splits = kvm->stat.nx_lpage_splits;
6204 6205 6206 6207
	int rcu_idx;
	struct kvm_mmu_page *sp;
	unsigned int ratio;
	LIST_HEAD(invalid_list);
6208
	bool flush = false;
6209 6210 6211
	ulong to_zap;

	rcu_idx = srcu_read_lock(&kvm->srcu);
6212
	write_lock(&kvm->mmu_lock);
6213 6214

	ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
6215
	to_zap = ratio ? DIV_ROUND_UP(nx_lpage_splits, ratio) : 0;
6216 6217 6218 6219
	for ( ; to_zap; --to_zap) {
		if (list_empty(&kvm->arch.lpage_disallowed_mmu_pages))
			break;

6220 6221 6222 6223 6224 6225 6226 6227 6228
		/*
		 * We use a separate list instead of just using active_mmu_pages
		 * because the number of lpage_disallowed pages is expected to
		 * be relatively small compared to the total.
		 */
		sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
				      struct kvm_mmu_page,
				      lpage_disallowed_link);
		WARN_ON_ONCE(!sp->lpage_disallowed);
6229
		if (is_tdp_mmu_page(sp)) {
6230
			flush |= kvm_tdp_mmu_zap_sp(kvm, sp);
6231
		} else {
6232 6233 6234
			kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
			WARN_ON_ONCE(sp->lpage_disallowed);
		}
6235

6236
		if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
6237
			kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
6238
			cond_resched_rwlock_write(&kvm->mmu_lock);
6239
			flush = false;
6240 6241
		}
	}
6242
	kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
6243

6244
	write_unlock(&kvm->mmu_lock);
6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297
	srcu_read_unlock(&kvm->srcu, rcu_idx);
}

static long get_nx_lpage_recovery_timeout(u64 start_time)
{
	return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio)
		? start_time + 60 * HZ - get_jiffies_64()
		: MAX_SCHEDULE_TIMEOUT;
}

static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
{
	u64 start_time;
	long remaining_time;

	while (true) {
		start_time = get_jiffies_64();
		remaining_time = get_nx_lpage_recovery_timeout(start_time);

		set_current_state(TASK_INTERRUPTIBLE);
		while (!kthread_should_stop() && remaining_time > 0) {
			schedule_timeout(remaining_time);
			remaining_time = get_nx_lpage_recovery_timeout(start_time);
			set_current_state(TASK_INTERRUPTIBLE);
		}

		set_current_state(TASK_RUNNING);

		if (kthread_should_stop())
			return 0;

		kvm_recover_nx_lpages(kvm);
	}
}

int kvm_mmu_post_init_vm(struct kvm *kvm)
{
	int err;

	err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
					  "kvm-nx-lpage-recovery",
					  &kvm->arch.nx_lpage_recovery_thread);
	if (!err)
		kthread_unpark(kvm->arch.nx_lpage_recovery_thread);

	return err;
}

void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
{
	if (kvm->arch.nx_lpage_recovery_thread)
		kthread_stop(kvm->arch.nx_lpage_recovery_thread);
}