mmu.c 157.5 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
A
Avi Kivity 已提交
2 3 4 5 6 7 8 9 10
/*
 * Kernel-based Virtual Machine driver for Linux
 *
 * This module enables machines with Intel VT-x extensions to run virtual
 * machines without emulation or binary translation.
 *
 * MMU support
 *
 * Copyright (C) 2006 Qumranet, Inc.
N
Nicolas Kaiser 已提交
11
 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
A
Avi Kivity 已提交
12 13 14 15 16
 *
 * Authors:
 *   Yaniv Kamay  <yaniv@qumranet.com>
 *   Avi Kivity   <avi@qumranet.com>
 */
A
Avi Kivity 已提交
17

18
#include "irq.h"
19
#include "ioapic.h"
20
#include "mmu.h"
21
#include "mmu_internal.h"
22
#include "tdp_mmu.h"
23
#include "x86.h"
A
Avi Kivity 已提交
24
#include "kvm_cache_regs.h"
25
#include "kvm_emulate.h"
26
#include "cpuid.h"
27
#include "spte.h"
A
Avi Kivity 已提交
28

29
#include <linux/kvm_host.h>
A
Avi Kivity 已提交
30 31 32 33
#include <linux/types.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/highmem.h>
34 35
#include <linux/moduleparam.h>
#include <linux/export.h>
36
#include <linux/swap.h>
M
Marcelo Tosatti 已提交
37
#include <linux/hugetlb.h>
38
#include <linux/compiler.h>
39
#include <linux/srcu.h>
40
#include <linux/slab.h>
41
#include <linux/sched/signal.h>
42
#include <linux/uaccess.h>
43
#include <linux/hash.h>
44
#include <linux/kern_levels.h>
45
#include <linux/kthread.h>
A
Avi Kivity 已提交
46

A
Avi Kivity 已提交
47
#include <asm/page.h>
48
#include <asm/memtype.h>
A
Avi Kivity 已提交
49
#include <asm/cmpxchg.h>
50
#include <asm/io.h>
51
#include <asm/vmx.h>
52
#include <asm/kvm_page_track.h>
53
#include "trace.h"
A
Avi Kivity 已提交
54

P
Paolo Bonzini 已提交
55 56 57
extern bool itlb_multihit_kvm_mitigation;

static int __read_mostly nx_huge_pages = -1;
58 59 60 61
#ifdef CONFIG_PREEMPT_RT
/* Recovery can cause latency spikes, disable it for PREEMPT_RT.  */
static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
#else
62
static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
63
#endif
P
Paolo Bonzini 已提交
64 65

static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
66
static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp);
P
Paolo Bonzini 已提交
67

68
static const struct kernel_param_ops nx_huge_pages_ops = {
P
Paolo Bonzini 已提交
69 70 71 72
	.set = set_nx_huge_pages,
	.get = param_get_bool,
};

73
static const struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = {
74 75 76 77
	.set = set_nx_huge_pages_recovery_ratio,
	.get = param_get_uint,
};

P
Paolo Bonzini 已提交
78 79
module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
__MODULE_PARM_TYPE(nx_huge_pages, "bool");
80 81 82
module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops,
		&nx_huge_pages_recovery_ratio, 0644);
__MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
P
Paolo Bonzini 已提交
83

84 85 86
static bool __read_mostly force_flush_and_sync_on_reuse;
module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644);

87 88 89 90 91 92 93
/*
 * When setting this variable to true it enables Two-Dimensional-Paging
 * where the hardware walks 2 page tables:
 * 1. the guest-virtual to guest-physical
 * 2. while doing 1. it walks guest-physical to host-physical
 * If the hardware supports that we don't need to do shadow paging.
 */
94
bool tdp_enabled = false;
95

96
static int max_huge_page_level __read_mostly;
97
static int max_tdp_level __read_mostly;
98

99 100 101 102
enum {
	AUDIT_PRE_PAGE_FAULT,
	AUDIT_POST_PAGE_FAULT,
	AUDIT_PRE_PTE_WRITE,
103 104 105
	AUDIT_POST_PTE_WRITE,
	AUDIT_PRE_SYNC,
	AUDIT_POST_SYNC
106
};
107 108

#ifdef MMU_DEBUG
109
bool dbg = 0;
110
module_param(dbg, bool, 0644);
111
#endif
A
Avi Kivity 已提交
112

113 114
#define PTE_PREFETCH_NUM		8

A
Avi Kivity 已提交
115 116 117
#define PT32_LEVEL_BITS 10

#define PT32_LEVEL_SHIFT(level) \
M
Mike Day 已提交
118
		(PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
A
Avi Kivity 已提交
119

120 121 122
#define PT32_LVL_OFFSET_MASK(level) \
	(PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
123 124 125 126 127 128 129 130

#define PT32_INDEX(address, level)\
	(((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))


#define PT32_BASE_ADDR_MASK PAGE_MASK
#define PT32_DIR_BASE_ADDR_MASK \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
131 132 133
#define PT32_LVL_ADDR_MASK(level) \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
					    * PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
134

135 136
#include <trace/events/kvm.h>

137 138 139
/* make pte_list_desc fit well in cache line */
#define PTE_LIST_EXT 3

140 141 142
struct pte_list_desc {
	u64 *sptes[PTE_LIST_EXT];
	struct pte_list_desc *more;
143 144
};

145 146 147 148
struct kvm_shadow_walk_iterator {
	u64 addr;
	hpa_t shadow_addr;
	u64 *sptep;
149
	int level;
150 151 152
	unsigned index;
};

153 154 155 156 157 158 159
#define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker)     \
	for (shadow_walk_init_using_root(&(_walker), (_vcpu),              \
					 (_root), (_addr));                \
	     shadow_walk_okay(&(_walker));			           \
	     shadow_walk_next(&(_walker)))

#define for_each_shadow_entry(_vcpu, _addr, _walker)            \
160 161 162 163
	for (shadow_walk_init(&(_walker), _vcpu, _addr);	\
	     shadow_walk_okay(&(_walker));			\
	     shadow_walk_next(&(_walker)))

164 165 166 167 168 169
#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)	\
	for (shadow_walk_init(&(_walker), _vcpu, _addr);		\
	     shadow_walk_okay(&(_walker)) &&				\
		({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });	\
	     __shadow_walk_next(&(_walker), spte))

170
static struct kmem_cache *pte_list_desc_cache;
171
struct kmem_cache *mmu_page_header_cache;
172
static struct percpu_counter kvm_total_used_mmu_pages;
173

174
static void mmu_spte_set(u64 *sptep, u64 spte);
175 176
static union kvm_mmu_page_role
kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
177

178 179 180
#define CREATE_TRACE_POINTS
#include "mmutrace.h"

181 182 183

static inline bool kvm_available_flush_tlb_with_range(void)
{
184
	return kvm_x86_ops.tlb_remote_flush_with_range;
185 186 187 188 189 190 191
}

static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
		struct kvm_tlb_range *range)
{
	int ret = -ENOTSUPP;

192
	if (range && kvm_x86_ops.tlb_remote_flush_with_range)
193
		ret = static_call(kvm_x86_tlb_remote_flush_with_range)(kvm, range);
194 195 196 197 198

	if (ret)
		kvm_flush_remote_tlbs(kvm);
}

199
void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
200 201 202 203 204 205 206 207 208 209
		u64 start_gfn, u64 pages)
{
	struct kvm_tlb_range range;

	range.start_gfn = start_gfn;
	range.pages = pages;

	kvm_flush_remote_tlbs_with_range(kvm, &range);
}

210
bool is_nx_huge_page_enabled(void)
P
Paolo Bonzini 已提交
211 212 213 214
{
	return READ_ONCE(nx_huge_pages);
}

215 216 217 218 219
static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
			   unsigned int access)
{
	u64 mask = make_mmio_spte(vcpu, gfn, access);

B
Ben Gardon 已提交
220
	trace_mark_mmio_spte(sptep, gfn, mask);
221
	mmu_spte_set(sptep, mask);
222 223 224 225
}

static gfn_t get_mmio_spte_gfn(u64 spte)
{
226
	u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
227

228
	gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)
229 230 231
	       & shadow_nonpresent_or_rsvd_mask;

	return gpa >> PAGE_SHIFT;
232 233 234 235
}

static unsigned get_mmio_spte_access(u64 spte)
{
236
	return spte & shadow_mmio_access_mask;
237 238
}

239
static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
240
{
241
	u64 kvm_gen, spte_gen, gen;
242

243 244 245
	gen = kvm_vcpu_memslots(vcpu)->generation;
	if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
		return false;
246

247
	kvm_gen = gen & MMIO_SPTE_GEN_MASK;
248 249 250 251
	spte_gen = get_mmio_spte_generation(spte);

	trace_check_mmio_spte(spte, kvm_gen, spte_gen);
	return likely(kvm_gen == spte_gen);
252 253
}

254 255 256
static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
                                  struct x86_exception *exception)
{
257
	/* Check if guest physical address doesn't exceed guest maximum */
258
	if (kvm_vcpu_is_illegal_gpa(vcpu, gpa)) {
259 260 261 262
		exception->error_code |= PFERR_RSVD_MASK;
		return UNMAPPED_GVA;
	}

263 264 265
        return gpa;
}

A
Avi Kivity 已提交
266 267 268 269 270
static int is_cpuid_PSE36(void)
{
	return 1;
}

271 272
static int is_nx(struct kvm_vcpu *vcpu)
{
273
	return vcpu->arch.efer & EFER_NX;
274 275
}

276 277 278 279 280 281 282
static gfn_t pse36_gfn_delta(u32 gpte)
{
	int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;

	return (gpte & PT32_DIR_PSE36_MASK) << shift;
}

283
#ifdef CONFIG_X86_64
A
Avi Kivity 已提交
284
static void __set_spte(u64 *sptep, u64 spte)
285
{
286
	WRITE_ONCE(*sptep, spte);
287 288
}

289
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
290
{
291
	WRITE_ONCE(*sptep, spte);
292 293 294 295 296 297
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	return xchg(sptep, spte);
}
298 299 300

static u64 __get_spte_lockless(u64 *sptep)
{
301
	return READ_ONCE(*sptep);
302
}
303
#else
304 305 306 307 308 309 310
union split_spte {
	struct {
		u32 spte_low;
		u32 spte_high;
	};
	u64 spte;
};
311

312 313
static void count_spte_clear(u64 *sptep, u64 spte)
{
314
	struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
315 316 317 318 319 320 321 322 323

	if (is_shadow_present_pte(spte))
		return;

	/* Ensure the spte is completely set before we increase the count */
	smp_wmb();
	sp->clear_spte_count++;
}

324 325 326
static void __set_spte(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;
327

328 329 330 331 332 333 334 335 336 337 338 339
	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	ssptep->spte_high = sspte.spte_high;

	/*
	 * If we map the spte from nonpresent to present, We should store
	 * the high bits firstly, then set present bit, so cpu can not
	 * fetch this spte while we are setting the spte.
	 */
	smp_wmb();

340
	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
341 342
}

343 344 345 346 347 348 349
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

350
	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
351 352 353 354 355 356 357 358

	/*
	 * If we map the spte from present to nonpresent, we should clear
	 * present bit firstly to avoid vcpu fetch the old high bits.
	 */
	smp_wmb();

	ssptep->spte_high = sspte.spte_high;
359
	count_spte_clear(sptep, spte);
360 361 362 363 364 365 366 367 368 369 370
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte, orig;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	/* xchg acts as a barrier before the setting of the high bits */
	orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
371 372
	orig.spte_high = ssptep->spte_high;
	ssptep->spte_high = sspte.spte_high;
373
	count_spte_clear(sptep, spte);
374 375 376

	return orig.spte;
}
377 378 379

/*
 * The idea using the light way get the spte on x86_32 guest is from
380
 * gup_get_pte (mm/gup.c).
381 382 383 384 385 386 387 388 389 390 391 392 393 394
 *
 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
 * coalesces them and we are running out of the MMU lock.  Therefore
 * we need to protect against in-progress updates of the spte.
 *
 * Reading the spte while an update is in progress may get the old value
 * for the high part of the spte.  The race is fine for a present->non-present
 * change (because the high part of the spte is ignored for non-present spte),
 * but for a present->present change we must reread the spte.
 *
 * All such changes are done in two steps (present->non-present and
 * non-present->present), hence it is enough to count the number of
 * present->non-present updates: if it changed while reading the spte,
 * we might have hit the race.  This is done using clear_spte_count.
395 396 397
 */
static u64 __get_spte_lockless(u64 *sptep)
{
398
	struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
	union split_spte spte, *orig = (union split_spte *)sptep;
	int count;

retry:
	count = sp->clear_spte_count;
	smp_rmb();

	spte.spte_low = orig->spte_low;
	smp_rmb();

	spte.spte_high = orig->spte_high;
	smp_rmb();

	if (unlikely(spte.spte_low != orig->spte_low ||
	      count != sp->clear_spte_count))
		goto retry;

	return spte.spte;
}
418 419
#endif

420 421
static bool spte_has_volatile_bits(u64 spte)
{
422 423 424
	if (!is_shadow_present_pte(spte))
		return false;

425
	/*
426
	 * Always atomically update spte if it can be updated
427 428 429 430
	 * out of mmu-lock, it can ensure dirty bit is not lost,
	 * also, it can help us to get a stable is_writable_pte()
	 * to ensure tlb flush is not missed.
	 */
431 432
	if (spte_can_locklessly_be_made_writable(spte) ||
	    is_access_track_spte(spte))
433 434
		return true;

435
	if (spte_ad_enabled(spte)) {
436 437 438 439
		if ((spte & shadow_accessed_mask) == 0 ||
	    	    (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
			return true;
	}
440

441
	return false;
442 443
}

444 445 446 447 448 449 450 451 452 453 454 455
/* Rules for using mmu_spte_set:
 * Set the sptep from nonpresent to present.
 * Note: the sptep being assigned *must* be either not present
 * or in a state where the hardware will not attempt to update
 * the spte.
 */
static void mmu_spte_set(u64 *sptep, u64 new_spte)
{
	WARN_ON(is_shadow_present_pte(*sptep));
	__set_spte(sptep, new_spte);
}

456 457 458
/*
 * Update the SPTE (excluding the PFN), but do not track changes in its
 * accessed/dirty status.
459
 */
460
static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
461
{
462
	u64 old_spte = *sptep;
463

464
	WARN_ON(!is_shadow_present_pte(new_spte));
465

466 467
	if (!is_shadow_present_pte(old_spte)) {
		mmu_spte_set(sptep, new_spte);
468
		return old_spte;
469
	}
470

471
	if (!spte_has_volatile_bits(old_spte))
472
		__update_clear_spte_fast(sptep, new_spte);
473
	else
474
		old_spte = __update_clear_spte_slow(sptep, new_spte);
475

476 477
	WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));

478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
	return old_spte;
}

/* Rules for using mmu_spte_update:
 * Update the state bits, it means the mapped pfn is not changed.
 *
 * Whenever we overwrite a writable spte with a read-only one we
 * should flush remote TLBs. Otherwise rmap_write_protect
 * will find a read-only spte, even though the writable spte
 * might be cached on a CPU's TLB, the return value indicates this
 * case.
 *
 * Returns true if the TLB needs to be flushed
 */
static bool mmu_spte_update(u64 *sptep, u64 new_spte)
{
	bool flush = false;
	u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);

	if (!is_shadow_present_pte(old_spte))
		return false;

500 501
	/*
	 * For the spte updated out of mmu-lock is safe, since
502
	 * we always atomically update it, see the comments in
503 504
	 * spte_has_volatile_bits().
	 */
505
	if (spte_can_locklessly_be_made_writable(old_spte) &&
506
	      !is_writable_pte(new_spte))
507
		flush = true;
508

509
	/*
510
	 * Flush TLB when accessed/dirty states are changed in the page tables,
511 512 513
	 * to guarantee consistency between TLB and page tables.
	 */

514 515
	if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
		flush = true;
516
		kvm_set_pfn_accessed(spte_to_pfn(old_spte));
517 518 519 520
	}

	if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
		flush = true;
521
		kvm_set_pfn_dirty(spte_to_pfn(old_spte));
522
	}
523

524
	return flush;
525 526
}

527 528 529 530
/*
 * Rules for using mmu_spte_clear_track_bits:
 * It sets the sptep from present to nonpresent, and track the
 * state bits, it is used to clear the last level sptep.
531
 * Returns non-zero if the PTE was previously valid.
532 533 534
 */
static int mmu_spte_clear_track_bits(u64 *sptep)
{
D
Dan Williams 已提交
535
	kvm_pfn_t pfn;
536 537 538
	u64 old_spte = *sptep;

	if (!spte_has_volatile_bits(old_spte))
539
		__update_clear_spte_fast(sptep, 0ull);
540
	else
541
		old_spte = __update_clear_spte_slow(sptep, 0ull);
542

543
	if (!is_shadow_present_pte(old_spte))
544 545 546
		return 0;

	pfn = spte_to_pfn(old_spte);
547 548 549 550 551 552

	/*
	 * KVM does not hold the refcount of the page used by
	 * kvm mmu, before reclaiming the page, we should
	 * unmap it from mmu first.
	 */
553
	WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
554

555
	if (is_accessed_spte(old_spte))
556
		kvm_set_pfn_accessed(pfn);
557 558

	if (is_dirty_spte(old_spte))
559
		kvm_set_pfn_dirty(pfn);
560

561 562 563 564 565 566 567 568 569 570
	return 1;
}

/*
 * Rules for using mmu_spte_clear_no_track:
 * Directly clear spte without caring the state bits of sptep,
 * it is used to set the upper level spte.
 */
static void mmu_spte_clear_no_track(u64 *sptep)
{
571
	__update_clear_spte_fast(sptep, 0ull);
572 573
}

574 575 576 577 578
static u64 mmu_spte_get_lockless(u64 *sptep)
{
	return __get_spte_lockless(sptep);
}

579 580 581 582
/* Restore an acc-track PTE back to a regular PTE */
static u64 restore_acc_track_spte(u64 spte)
{
	u64 new_spte = spte;
583 584
	u64 saved_bits = (spte >> SHADOW_ACC_TRACK_SAVED_BITS_SHIFT)
			 & SHADOW_ACC_TRACK_SAVED_BITS_MASK;
585

586
	WARN_ON_ONCE(spte_ad_enabled(spte));
587 588 589
	WARN_ON_ONCE(!is_access_track_spte(spte));

	new_spte &= ~shadow_acc_track_mask;
590 591
	new_spte &= ~(SHADOW_ACC_TRACK_SAVED_BITS_MASK <<
		      SHADOW_ACC_TRACK_SAVED_BITS_SHIFT);
592 593 594 595 596
	new_spte |= saved_bits;

	return new_spte;
}

597 598 599 600 601 602 603 604
/* Returns the Accessed status of the PTE and resets it at the same time. */
static bool mmu_spte_age(u64 *sptep)
{
	u64 spte = mmu_spte_get_lockless(sptep);

	if (!is_accessed_spte(spte))
		return false;

605
	if (spte_ad_enabled(spte)) {
606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
		clear_bit((ffs(shadow_accessed_mask) - 1),
			  (unsigned long *)sptep);
	} else {
		/*
		 * Capture the dirty status of the page, so that it doesn't get
		 * lost when the SPTE is marked for access tracking.
		 */
		if (is_writable_pte(spte))
			kvm_set_pfn_dirty(spte_to_pfn(spte));

		spte = mark_spte_for_access_track(spte);
		mmu_spte_update_no_track(sptep, spte);
	}

	return true;
}

623 624
static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
{
625 626 627 628 629
	/*
	 * Prevent page table teardown by making any free-er wait during
	 * kvm_flush_remote_tlbs() IPI to all active vcpus.
	 */
	local_irq_disable();
630

631 632 633 634
	/*
	 * Make sure a following spte read is not reordered ahead of the write
	 * to vcpu->mode.
	 */
635
	smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
636 637 638 639
}

static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
{
640 641
	/*
	 * Make sure the write to vcpu->mode is not reordered in front of
642
	 * reads to sptes.  If it does, kvm_mmu_commit_zap_page() can see us
643 644
	 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
	 */
645
	smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
646
	local_irq_enable();
647 648
}

649
static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect)
650
{
651 652
	int r;

653
	/* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */
654 655
	r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
				       1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM);
656
	if (r)
657
		return r;
658 659
	r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache,
				       PT64_ROOT_MAX_LEVEL);
660
	if (r)
661
		return r;
662
	if (maybe_indirect) {
663 664
		r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_gfn_array_cache,
					       PT64_ROOT_MAX_LEVEL);
665 666 667
		if (r)
			return r;
	}
668 669
	return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
					  PT64_ROOT_MAX_LEVEL);
670 671 672 673
}

static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
{
674 675 676 677
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache);
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache);
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_gfn_array_cache);
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
678 679
}

680
static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
681
{
682
	return kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
683 684
}

685
static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
686
{
687
	kmem_cache_free(pte_list_desc_cache, pte_list_desc);
688 689
}

690 691 692 693 694 695 696 697 698 699
static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
{
	if (!sp->role.direct)
		return sp->gfns[index];

	return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
}

static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
{
700
	if (!sp->role.direct) {
701
		sp->gfns[index] = gfn;
702 703 704 705 706 707 708 709
		return;
	}

	if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
		pr_err_ratelimited("gfn mismatch under direct page %llx "
				   "(expected %llx, got %llx)\n",
				   sp->gfn,
				   kvm_mmu_page_get_gfn(sp, index), gfn);
710 711
}

M
Marcelo Tosatti 已提交
712
/*
713 714
 * Return the pointer to the large page information for a given gfn,
 * handling slots that are not large page aligned.
M
Marcelo Tosatti 已提交
715
 */
716 717 718
static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
					      struct kvm_memory_slot *slot,
					      int level)
M
Marcelo Tosatti 已提交
719 720 721
{
	unsigned long idx;

722
	idx = gfn_to_index(gfn, slot->base_gfn, level);
723
	return &slot->arch.lpage_info[level - 2][idx];
M
Marcelo Tosatti 已提交
724 725
}

726 727 728 729 730 731
static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
					    gfn_t gfn, int count)
{
	struct kvm_lpage_info *linfo;
	int i;

732
	for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
		linfo = lpage_info_slot(gfn, slot, i);
		linfo->disallow_lpage += count;
		WARN_ON(linfo->disallow_lpage < 0);
	}
}

void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
{
	update_gfn_disallow_lpage_count(slot, gfn, 1);
}

void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
{
	update_gfn_disallow_lpage_count(slot, gfn, -1);
}

749
static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
M
Marcelo Tosatti 已提交
750
{
751
	struct kvm_memslots *slots;
752
	struct kvm_memory_slot *slot;
753
	gfn_t gfn;
M
Marcelo Tosatti 已提交
754

755
	kvm->arch.indirect_shadow_pages++;
756
	gfn = sp->gfn;
757 758
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
759 760

	/* the non-leaf shadow pages are keeping readonly. */
761
	if (sp->role.level > PG_LEVEL_4K)
762 763 764
		return kvm_slot_page_track_add_page(kvm, slot, gfn,
						    KVM_PAGE_TRACK_WRITE);

765
	kvm_mmu_gfn_disallow_lpage(slot, gfn);
M
Marcelo Tosatti 已提交
766 767
}

768
void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
P
Paolo Bonzini 已提交
769 770 771 772 773
{
	if (sp->lpage_disallowed)
		return;

	++kvm->stat.nx_lpage_splits;
774 775
	list_add_tail(&sp->lpage_disallowed_link,
		      &kvm->arch.lpage_disallowed_mmu_pages);
P
Paolo Bonzini 已提交
776 777 778
	sp->lpage_disallowed = true;
}

779
static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
M
Marcelo Tosatti 已提交
780
{
781
	struct kvm_memslots *slots;
782
	struct kvm_memory_slot *slot;
783
	gfn_t gfn;
M
Marcelo Tosatti 已提交
784

785
	kvm->arch.indirect_shadow_pages--;
786
	gfn = sp->gfn;
787 788
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
789
	if (sp->role.level > PG_LEVEL_4K)
790 791 792
		return kvm_slot_page_track_remove_page(kvm, slot, gfn,
						       KVM_PAGE_TRACK_WRITE);

793
	kvm_mmu_gfn_allow_lpage(slot, gfn);
M
Marcelo Tosatti 已提交
794 795
}

796
void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
P
Paolo Bonzini 已提交
797 798 799
{
	--kvm->stat.nx_lpage_splits;
	sp->lpage_disallowed = false;
800
	list_del(&sp->lpage_disallowed_link);
P
Paolo Bonzini 已提交
801 802
}

803 804 805
static struct kvm_memory_slot *
gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
			    bool no_dirty_log)
M
Marcelo Tosatti 已提交
806 807
{
	struct kvm_memory_slot *slot;
808

809
	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
810 811
	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
		return NULL;
812
	if (no_dirty_log && kvm_slot_dirty_track_enabled(slot))
813
		return NULL;
814 815 816 817

	return slot;
}

818
/*
819
 * About rmap_head encoding:
820
 *
821 822
 * If the bit zero of rmap_head->val is clear, then it points to the only spte
 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
823
 * pte_list_desc containing more mappings.
824 825 826 827
 */

/*
 * Returns the number of pointers in the rmap chain, not counting the new one.
828
 */
829
static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
830
			struct kvm_rmap_head *rmap_head)
831
{
832
	struct pte_list_desc *desc;
833
	int i, count = 0;
834

835
	if (!rmap_head->val) {
836
		rmap_printk("%p %llx 0->1\n", spte, *spte);
837 838
		rmap_head->val = (unsigned long)spte;
	} else if (!(rmap_head->val & 1)) {
839
		rmap_printk("%p %llx 1->many\n", spte, *spte);
840
		desc = mmu_alloc_pte_list_desc(vcpu);
841
		desc->sptes[0] = (u64 *)rmap_head->val;
A
Avi Kivity 已提交
842
		desc->sptes[1] = spte;
843
		rmap_head->val = (unsigned long)desc | 1;
844
		++count;
845
	} else {
846
		rmap_printk("%p %llx many->many\n", spte, *spte);
847
		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
848
		while (desc->sptes[PTE_LIST_EXT-1]) {
849
			count += PTE_LIST_EXT;
850 851 852 853 854 855

			if (!desc->more) {
				desc->more = mmu_alloc_pte_list_desc(vcpu);
				desc = desc->more;
				break;
			}
856 857
			desc = desc->more;
		}
A
Avi Kivity 已提交
858
		for (i = 0; desc->sptes[i]; ++i)
859
			++count;
A
Avi Kivity 已提交
860
		desc->sptes[i] = spte;
861
	}
862
	return count;
863 864
}

865
static void
866 867 868
pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
			   struct pte_list_desc *desc, int i,
			   struct pte_list_desc *prev_desc)
869 870 871
{
	int j;

872
	for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
873
		;
A
Avi Kivity 已提交
874 875
	desc->sptes[i] = desc->sptes[j];
	desc->sptes[j] = NULL;
876 877 878
	if (j != 0)
		return;
	if (!prev_desc && !desc->more)
879
		rmap_head->val = 0;
880 881 882 883
	else
		if (prev_desc)
			prev_desc->more = desc->more;
		else
884
			rmap_head->val = (unsigned long)desc->more | 1;
885
	mmu_free_pte_list_desc(desc);
886 887
}

888
static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
889
{
890 891
	struct pte_list_desc *desc;
	struct pte_list_desc *prev_desc;
892 893
	int i;

894
	if (!rmap_head->val) {
895
		pr_err("%s: %p 0->BUG\n", __func__, spte);
896
		BUG();
897
	} else if (!(rmap_head->val & 1)) {
898
		rmap_printk("%p 1->0\n", spte);
899
		if ((u64 *)rmap_head->val != spte) {
900
			pr_err("%s:  %p 1->BUG\n", __func__, spte);
901 902
			BUG();
		}
903
		rmap_head->val = 0;
904
	} else {
905
		rmap_printk("%p many->many\n", spte);
906
		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
907 908
		prev_desc = NULL;
		while (desc) {
909
			for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
A
Avi Kivity 已提交
910
				if (desc->sptes[i] == spte) {
911 912
					pte_list_desc_remove_entry(rmap_head,
							desc, i, prev_desc);
913 914
					return;
				}
915
			}
916 917 918
			prev_desc = desc;
			desc = desc->more;
		}
919
		pr_err("%s: %p many->many\n", __func__, spte);
920 921 922 923
		BUG();
	}
}

924 925 926 927 928 929
static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep)
{
	mmu_spte_clear_track_bits(sptep);
	__pte_list_remove(sptep, rmap_head);
}

930 931
static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
					   struct kvm_memory_slot *slot)
932
{
933
	unsigned long idx;
934

935
	idx = gfn_to_index(gfn, slot->base_gfn, level);
936
	return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
937 938
}

939 940
static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
					 struct kvm_mmu_page *sp)
941
{
942
	struct kvm_memslots *slots;
943 944
	struct kvm_memory_slot *slot;

945 946
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
947
	return __gfn_to_rmap(gfn, sp->role.level, slot);
948 949
}

950 951
static bool rmap_can_add(struct kvm_vcpu *vcpu)
{
952
	struct kvm_mmu_memory_cache *mc;
953

954
	mc = &vcpu->arch.mmu_pte_list_desc_cache;
955
	return kvm_mmu_memory_cache_nr_free_objects(mc);
956 957
}

958 959 960
static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
{
	struct kvm_mmu_page *sp;
961
	struct kvm_rmap_head *rmap_head;
962

963
	sp = sptep_to_sp(spte);
964
	kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
965 966
	rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
	return pte_list_add(vcpu, spte, rmap_head);
967 968 969 970 971 972
}

static void rmap_remove(struct kvm *kvm, u64 *spte)
{
	struct kvm_mmu_page *sp;
	gfn_t gfn;
973
	struct kvm_rmap_head *rmap_head;
974

975
	sp = sptep_to_sp(spte);
976
	gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
977
	rmap_head = gfn_to_rmap(kvm, gfn, sp);
978
	__pte_list_remove(spte, rmap_head);
979 980
}

981 982 983 984 985 986 987 988 989 990 991 992 993
/*
 * Used by the following functions to iterate through the sptes linked by a
 * rmap.  All fields are private and not assumed to be used outside.
 */
struct rmap_iterator {
	/* private fields */
	struct pte_list_desc *desc;	/* holds the sptep if not NULL */
	int pos;			/* index of the sptep */
};

/*
 * Iteration must be started by this function.  This should also be used after
 * removing/dropping sptes from the rmap link because in such cases the
M
Miaohe Lin 已提交
994
 * information in the iterator may not be valid.
995 996 997
 *
 * Returns sptep if found, NULL otherwise.
 */
998 999
static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
			   struct rmap_iterator *iter)
1000
{
1001 1002
	u64 *sptep;

1003
	if (!rmap_head->val)
1004 1005
		return NULL;

1006
	if (!(rmap_head->val & 1)) {
1007
		iter->desc = NULL;
1008 1009
		sptep = (u64 *)rmap_head->val;
		goto out;
1010 1011
	}

1012
	iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1013
	iter->pos = 0;
1014 1015 1016 1017
	sptep = iter->desc->sptes[iter->pos];
out:
	BUG_ON(!is_shadow_present_pte(*sptep));
	return sptep;
1018 1019 1020 1021 1022 1023 1024 1025 1026
}

/*
 * Must be used with a valid iterator: e.g. after rmap_get_first().
 *
 * Returns sptep if found, NULL otherwise.
 */
static u64 *rmap_get_next(struct rmap_iterator *iter)
{
1027 1028
	u64 *sptep;

1029 1030 1031 1032 1033
	if (iter->desc) {
		if (iter->pos < PTE_LIST_EXT - 1) {
			++iter->pos;
			sptep = iter->desc->sptes[iter->pos];
			if (sptep)
1034
				goto out;
1035 1036 1037 1038 1039 1040 1041
		}

		iter->desc = iter->desc->more;

		if (iter->desc) {
			iter->pos = 0;
			/* desc->sptes[0] cannot be NULL */
1042 1043
			sptep = iter->desc->sptes[iter->pos];
			goto out;
1044 1045 1046 1047
		}
	}

	return NULL;
1048 1049 1050
out:
	BUG_ON(!is_shadow_present_pte(*sptep));
	return sptep;
1051 1052
}

1053 1054
#define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)			\
	for (_spte_ = rmap_get_first(_rmap_head_, _iter_);		\
1055
	     _spte_; _spte_ = rmap_get_next(_iter_))
1056

1057
static void drop_spte(struct kvm *kvm, u64 *sptep)
1058
{
1059
	if (mmu_spte_clear_track_bits(sptep))
1060
		rmap_remove(kvm, sptep);
A
Avi Kivity 已提交
1061 1062
}

1063 1064 1065 1066

static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
{
	if (is_large_pte(*sptep)) {
1067
		WARN_ON(sptep_to_sp(sptep)->role.level == PG_LEVEL_4K);
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
		drop_spte(kvm, sptep);
		--kvm->stat.lpages;
		return true;
	}

	return false;
}

static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
{
1078
	if (__drop_large_spte(vcpu->kvm, sptep)) {
1079
		struct kvm_mmu_page *sp = sptep_to_sp(sptep);
1080 1081 1082 1083

		kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
			KVM_PAGES_PER_HPAGE(sp->role.level));
	}
1084 1085 1086
}

/*
1087
 * Write-protect on the specified @sptep, @pt_protect indicates whether
1088
 * spte write-protection is caused by protecting shadow page table.
1089
 *
T
Tiejun Chen 已提交
1090
 * Note: write protection is difference between dirty logging and spte
1091 1092 1093 1094 1095
 * protection:
 * - for dirty logging, the spte can be set to writable at anytime if
 *   its dirty bitmap is properly set.
 * - for spte protection, the spte can be writable only after unsync-ing
 *   shadow page.
1096
 *
1097
 * Return true if tlb need be flushed.
1098
 */
1099
static bool spte_write_protect(u64 *sptep, bool pt_protect)
1100 1101 1102
{
	u64 spte = *sptep;

1103
	if (!is_writable_pte(spte) &&
1104
	      !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1105 1106
		return false;

1107
	rmap_printk("spte %p %llx\n", sptep, *sptep);
1108

1109 1110
	if (pt_protect)
		spte &= ~SPTE_MMU_WRITEABLE;
1111
	spte = spte & ~PT_WRITABLE_MASK;
1112

1113
	return mmu_spte_update(sptep, spte);
1114 1115
}

1116 1117
static bool __rmap_write_protect(struct kvm *kvm,
				 struct kvm_rmap_head *rmap_head,
1118
				 bool pt_protect)
1119
{
1120 1121
	u64 *sptep;
	struct rmap_iterator iter;
1122
	bool flush = false;
1123

1124
	for_each_rmap_spte(rmap_head, &iter, sptep)
1125
		flush |= spte_write_protect(sptep, pt_protect);
1126

1127
	return flush;
1128 1129
}

1130
static bool spte_clear_dirty(u64 *sptep)
1131 1132 1133
{
	u64 spte = *sptep;

1134
	rmap_printk("spte %p %llx\n", sptep, *sptep);
1135

1136
	MMU_WARN_ON(!spte_ad_enabled(spte));
1137 1138 1139 1140
	spte &= ~shadow_dirty_mask;
	return mmu_spte_update(sptep, spte);
}

1141
static bool spte_wrprot_for_clear_dirty(u64 *sptep)
1142 1143 1144
{
	bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
					       (unsigned long *)sptep);
1145
	if (was_writable && !spte_ad_enabled(*sptep))
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
		kvm_set_pfn_dirty(spte_to_pfn(*sptep));

	return was_writable;
}

/*
 * Gets the GFN ready for another round of dirty logging by clearing the
 *	- D bit on ad-enabled SPTEs, and
 *	- W bit on ad-disabled SPTEs.
 * Returns true iff any D or W bits were cleared.
 */
1157 1158
static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			       struct kvm_memory_slot *slot)
1159 1160 1161 1162 1163
{
	u64 *sptep;
	struct rmap_iterator iter;
	bool flush = false;

1164
	for_each_rmap_spte(rmap_head, &iter, sptep)
1165 1166
		if (spte_ad_need_write_protect(*sptep))
			flush |= spte_wrprot_for_clear_dirty(sptep);
1167
		else
1168
			flush |= spte_clear_dirty(sptep);
1169 1170 1171 1172

	return flush;
}

1173
/**
1174
 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1175 1176 1177 1178 1179 1180 1181 1182
 * @kvm: kvm instance
 * @slot: slot to protect
 * @gfn_offset: start of the BITS_PER_LONG pages we care about
 * @mask: indicates which pages we should protect
 *
 * Used when we do not need to care about huge page mappings: e.g. during dirty
 * logging we do not have any such mappings.
 */
1183
static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1184 1185
				     struct kvm_memory_slot *slot,
				     gfn_t gfn_offset, unsigned long mask)
1186
{
1187
	struct kvm_rmap_head *rmap_head;
1188

1189
	if (is_tdp_mmu_enabled(kvm))
1190 1191
		kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
				slot->base_gfn + gfn_offset, mask, true);
1192
	while (mask) {
1193
		rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1194
					  PG_LEVEL_4K, slot);
1195
		__rmap_write_protect(kvm, rmap_head, false);
M
Marcelo Tosatti 已提交
1196

1197 1198 1199
		/* clear the first set bit */
		mask &= mask - 1;
	}
1200 1201
}

1202
/**
1203 1204
 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
 * protect the page if the D-bit isn't supported.
1205 1206 1207 1208 1209 1210 1211
 * @kvm: kvm instance
 * @slot: slot to clear D-bit
 * @gfn_offset: start of the BITS_PER_LONG pages we care about
 * @mask: indicates which pages we should clear D-bit
 *
 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
 */
1212 1213 1214
static void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
					 struct kvm_memory_slot *slot,
					 gfn_t gfn_offset, unsigned long mask)
1215
{
1216
	struct kvm_rmap_head *rmap_head;
1217

1218
	if (is_tdp_mmu_enabled(kvm))
1219 1220
		kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
				slot->base_gfn + gfn_offset, mask, false);
1221
	while (mask) {
1222
		rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1223
					  PG_LEVEL_4K, slot);
1224
		__rmap_clear_dirty(kvm, rmap_head, slot);
1225 1226 1227 1228 1229 1230

		/* clear the first set bit */
		mask &= mask - 1;
	}
}

1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
/**
 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
 * PT level pages.
 *
 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
 * enable dirty logging for them.
 *
 * Used when we do not need to care about huge page mappings: e.g. during dirty
 * logging we do not have any such mappings.
 */
void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
				struct kvm_memory_slot *slot,
				gfn_t gfn_offset, unsigned long mask)
{
1245 1246
	if (kvm_x86_ops.cpu_dirty_log_size)
		kvm_mmu_clear_dirty_pt_masked(kvm, slot, gfn_offset, mask);
1247 1248
	else
		kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1249 1250
}

1251 1252
int kvm_cpu_dirty_log_size(void)
{
1253
	return kvm_x86_ops.cpu_dirty_log_size;
1254 1255
}

1256 1257
bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
				    struct kvm_memory_slot *slot, u64 gfn)
1258
{
1259
	struct kvm_rmap_head *rmap_head;
1260
	int i;
1261
	bool write_protected = false;
1262

1263
	for (i = PG_LEVEL_4K; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
1264
		rmap_head = __gfn_to_rmap(gfn, i, slot);
1265
		write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1266 1267
	}

1268
	if (is_tdp_mmu_enabled(kvm))
1269 1270 1271
		write_protected |=
			kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn);

1272
	return write_protected;
1273 1274
}

1275 1276 1277 1278 1279 1280 1281 1282
static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
{
	struct kvm_memory_slot *slot;

	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
	return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
}

1283 1284
static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			  struct kvm_memory_slot *slot)
1285
{
1286 1287
	u64 *sptep;
	struct rmap_iterator iter;
1288
	bool flush = false;
1289

1290
	while ((sptep = rmap_get_first(rmap_head, &iter))) {
1291
		rmap_printk("spte %p %llx.\n", sptep, *sptep);
1292

1293
		pte_list_remove(rmap_head, sptep);
1294
		flush = true;
1295
	}
1296

1297 1298 1299
	return flush;
}

1300
static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1301 1302 1303
			   struct kvm_memory_slot *slot, gfn_t gfn, int level,
			   unsigned long data)
{
1304
	return kvm_zap_rmapp(kvm, rmap_head, slot);
1305 1306
}

1307
static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1308 1309
			     struct kvm_memory_slot *slot, gfn_t gfn, int level,
			     unsigned long data)
1310
{
1311 1312
	u64 *sptep;
	struct rmap_iterator iter;
1313
	int need_flush = 0;
1314
	u64 new_spte;
1315
	pte_t *ptep = (pte_t *)data;
D
Dan Williams 已提交
1316
	kvm_pfn_t new_pfn;
1317 1318 1319

	WARN_ON(pte_huge(*ptep));
	new_pfn = pte_pfn(*ptep);
1320

1321
restart:
1322
	for_each_rmap_spte(rmap_head, &iter, sptep) {
1323
		rmap_printk("spte %p %llx gfn %llx (%d)\n",
1324
			    sptep, *sptep, gfn, level);
1325

1326
		need_flush = 1;
1327

1328
		if (pte_write(*ptep)) {
1329
			pte_list_remove(rmap_head, sptep);
1330
			goto restart;
1331
		} else {
1332 1333
			new_spte = kvm_mmu_changed_pte_notifier_make_spte(
					*sptep, new_pfn);
1334 1335 1336

			mmu_spte_clear_track_bits(sptep);
			mmu_spte_set(sptep, new_spte);
1337 1338
		}
	}
1339

1340 1341 1342 1343 1344
	if (need_flush && kvm_available_flush_tlb_with_range()) {
		kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
		return 0;
	}

1345
	return need_flush;
1346 1347
}

1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
struct slot_rmap_walk_iterator {
	/* input fields. */
	struct kvm_memory_slot *slot;
	gfn_t start_gfn;
	gfn_t end_gfn;
	int start_level;
	int end_level;

	/* output fields. */
	gfn_t gfn;
1358
	struct kvm_rmap_head *rmap;
1359 1360 1361
	int level;

	/* private field. */
1362
	struct kvm_rmap_head *end_rmap;
1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
};

static void
rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
{
	iterator->level = level;
	iterator->gfn = iterator->start_gfn;
	iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
	iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
					   iterator->slot);
}

static void
slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
		    struct kvm_memory_slot *slot, int start_level,
		    int end_level, gfn_t start_gfn, gfn_t end_gfn)
{
	iterator->slot = slot;
	iterator->start_level = start_level;
	iterator->end_level = end_level;
	iterator->start_gfn = start_gfn;
	iterator->end_gfn = end_gfn;

	rmap_walk_init_level(iterator, iterator->start_level);
}

static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
{
	return !!iterator->rmap;
}

static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
{
	if (++iterator->rmap <= iterator->end_rmap) {
		iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
		return;
	}

	if (++iterator->level > iterator->end_level) {
		iterator->rmap = NULL;
		return;
	}

	rmap_walk_init_level(iterator, iterator->level);
}

#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,	\
	   _start_gfn, _end_gfn, _iter_)				\
	for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,		\
				 _end_level_, _start_gfn, _end_gfn);	\
	     slot_rmap_walk_okay(_iter_);				\
	     slot_rmap_walk_next(_iter_))

1416 1417 1418 1419 1420 1421 1422 1423 1424
typedef int (*rmap_handler_t)(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			      struct kvm_memory_slot *slot, gfn_t gfn,
			      int level, unsigned long data);

static __always_inline int kvm_handle_hva_range(struct kvm *kvm,
						unsigned long start,
						unsigned long end,
						unsigned long data,
						rmap_handler_t handler)
1425
{
1426
	struct kvm_memslots *slots;
1427
	struct kvm_memory_slot *memslot;
1428 1429
	struct slot_rmap_walk_iterator iterator;
	int ret = 0;
1430
	int i;
1431

1432 1433 1434 1435 1436
	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
		kvm_for_each_memslot(memslot, slots) {
			unsigned long hva_start, hva_end;
			gfn_t gfn_start, gfn_end;
1437

1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
			hva_start = max(start, memslot->userspace_addr);
			hva_end = min(end, memslot->userspace_addr +
				      (memslot->npages << PAGE_SHIFT));
			if (hva_start >= hva_end)
				continue;
			/*
			 * {gfn(page) | page intersects with [hva_start, hva_end)} =
			 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
			 */
			gfn_start = hva_to_gfn_memslot(hva_start, memslot);
			gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);

1450
			for_each_slot_rmap_range(memslot, PG_LEVEL_4K,
1451
						 KVM_MAX_HUGEPAGE_LEVEL,
1452 1453 1454 1455 1456
						 gfn_start, gfn_end - 1,
						 &iterator)
				ret |= handler(kvm, iterator.rmap, memslot,
					       iterator.gfn, iterator.level, data);
		}
1457 1458
	}

1459
	return ret;
1460 1461
}

1462
static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1463
			  unsigned long data, rmap_handler_t handler)
1464 1465
{
	return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1466 1467
}

1468 1469
int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end,
			unsigned flags)
1470
{
1471 1472 1473 1474
	int r;

	r = kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);

1475
	if (is_tdp_mmu_enabled(kvm))
1476 1477 1478
		r |= kvm_tdp_mmu_zap_hva_range(kvm, start, end);

	return r;
1479 1480
}

1481
int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1482
{
1483 1484 1485 1486
	int r;

	r = kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);

1487
	if (is_tdp_mmu_enabled(kvm))
1488 1489 1490
		r |= kvm_tdp_mmu_set_spte_hva(kvm, hva, &pte);

	return r;
1491 1492
}

1493
static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1494 1495
			 struct kvm_memory_slot *slot, gfn_t gfn, int level,
			 unsigned long data)
1496
{
1497
	u64 *sptep;
1498
	struct rmap_iterator iter;
1499 1500
	int young = 0;

1501 1502
	for_each_rmap_spte(rmap_head, &iter, sptep)
		young |= mmu_spte_age(sptep);
1503

1504
	trace_kvm_age_page(gfn, level, slot, young);
1505 1506 1507
	return young;
}

1508
static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1509 1510
			      struct kvm_memory_slot *slot, gfn_t gfn,
			      int level, unsigned long data)
A
Andrea Arcangeli 已提交
1511
{
1512 1513
	u64 *sptep;
	struct rmap_iterator iter;
A
Andrea Arcangeli 已提交
1514

1515 1516 1517 1518
	for_each_rmap_spte(rmap_head, &iter, sptep)
		if (is_accessed_spte(*sptep))
			return 1;
	return 0;
A
Andrea Arcangeli 已提交
1519 1520
}

1521 1522
#define RMAP_RECYCLE_THRESHOLD 1000

1523
static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1524
{
1525
	struct kvm_rmap_head *rmap_head;
1526 1527
	struct kvm_mmu_page *sp;

1528
	sp = sptep_to_sp(spte);
1529

1530
	rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1531

1532
	kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
1533 1534
	kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
			KVM_PAGES_PER_HPAGE(sp->role.level));
1535 1536
}

A
Andres Lagar-Cavilla 已提交
1537
int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1538
{
1539 1540 1541
	int young = false;

	young = kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1542
	if (is_tdp_mmu_enabled(kvm))
1543 1544 1545
		young |= kvm_tdp_mmu_age_hva_range(kvm, start, end);

	return young;
1546 1547
}

A
Andrea Arcangeli 已提交
1548 1549
int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
{
1550 1551 1552
	int young = false;

	young = kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1553
	if (is_tdp_mmu_enabled(kvm))
1554 1555 1556
		young |= kvm_tdp_mmu_test_age_hva(kvm, hva);

	return young;
A
Andrea Arcangeli 已提交
1557 1558
}

1559
#ifdef MMU_DEBUG
1560
static int is_empty_shadow_page(u64 *spt)
A
Avi Kivity 已提交
1561
{
1562 1563 1564
	u64 *pos;
	u64 *end;

1565
	for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1566
		if (is_shadow_present_pte(*pos)) {
1567
			printk(KERN_ERR "%s: %p %llx\n", __func__,
1568
			       pos, *pos);
A
Avi Kivity 已提交
1569
			return 0;
1570
		}
A
Avi Kivity 已提交
1571 1572
	return 1;
}
1573
#endif
A
Avi Kivity 已提交
1574

1575 1576 1577 1578 1579 1580
/*
 * This value is the sum of all of the kvm instances's
 * kvm->arch.n_used_mmu_pages values.  We need a global,
 * aggregate version in order to make the slab shrinker
 * faster
 */
1581
static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, unsigned long nr)
1582 1583 1584 1585 1586
{
	kvm->arch.n_used_mmu_pages += nr;
	percpu_counter_add(&kvm_total_used_mmu_pages, nr);
}

1587
static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1588
{
1589
	MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1590
	hlist_del(&sp->hash_link);
1591 1592
	list_del(&sp->link);
	free_page((unsigned long)sp->spt);
1593 1594
	if (!sp->role.direct)
		free_page((unsigned long)sp->gfns);
1595
	kmem_cache_free(mmu_page_header_cache, sp);
1596 1597
}

1598 1599
static unsigned kvm_page_table_hashfn(gfn_t gfn)
{
1600
	return hash_64(gfn, KVM_MMU_HASH_SHIFT);
1601 1602
}

1603
static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1604
				    struct kvm_mmu_page *sp, u64 *parent_pte)
1605 1606 1607 1608
{
	if (!parent_pte)
		return;

1609
	pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1610 1611
}

1612
static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1613 1614
				       u64 *parent_pte)
{
1615
	__pte_list_remove(parent_pte, &sp->parent_ptes);
1616 1617
}

1618 1619 1620 1621
static void drop_parent_pte(struct kvm_mmu_page *sp,
			    u64 *parent_pte)
{
	mmu_page_remove_parent_pte(sp, parent_pte);
1622
	mmu_spte_clear_no_track(parent_pte);
1623 1624
}

1625
static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
M
Marcelo Tosatti 已提交
1626
{
1627
	struct kvm_mmu_page *sp;
1628

1629 1630
	sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
	sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache);
1631
	if (!direct)
1632
		sp->gfns = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_gfn_array_cache);
1633
	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1634 1635 1636 1637 1638 1639

	/*
	 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
	 * depends on valid pages being added to the head of the list.  See
	 * comments in kvm_zap_obsolete_pages().
	 */
1640
	sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
1641 1642 1643
	list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
	kvm_mod_used_mmu_pages(vcpu->kvm, +1);
	return sp;
M
Marcelo Tosatti 已提交
1644 1645
}

1646
static void mark_unsync(u64 *spte);
1647
static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1648
{
1649 1650 1651 1652 1653 1654
	u64 *sptep;
	struct rmap_iterator iter;

	for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
		mark_unsync(sptep);
	}
1655 1656
}

1657
static void mark_unsync(u64 *spte)
1658
{
1659
	struct kvm_mmu_page *sp;
1660
	unsigned int index;
1661

1662
	sp = sptep_to_sp(spte);
1663 1664
	index = spte - sp->spt;
	if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1665
		return;
1666
	if (sp->unsync_children++)
1667
		return;
1668
	kvm_mmu_mark_parents_unsync(sp);
1669 1670
}

1671
static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1672
			       struct kvm_mmu_page *sp)
1673
{
1674
	return 0;
1675 1676
}

1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
#define KVM_PAGE_ARRAY_NR 16

struct kvm_mmu_pages {
	struct mmu_page_and_offset {
		struct kvm_mmu_page *sp;
		unsigned int idx;
	} page[KVM_PAGE_ARRAY_NR];
	unsigned int nr;
};

1687 1688
static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
			 int idx)
1689
{
1690
	int i;
1691

1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702
	if (sp->unsync)
		for (i=0; i < pvec->nr; i++)
			if (pvec->page[i].sp == sp)
				return 0;

	pvec->page[pvec->nr].sp = sp;
	pvec->page[pvec->nr].idx = idx;
	pvec->nr++;
	return (pvec->nr == KVM_PAGE_ARRAY_NR);
}

1703 1704 1705 1706 1707 1708 1709
static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
{
	--sp->unsync_children;
	WARN_ON((int)sp->unsync_children < 0);
	__clear_bit(idx, sp->unsync_child_bitmap);
}

1710 1711 1712 1713
static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
	int i, ret, nr_unsync_leaf = 0;
1714

1715
	for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1716
		struct kvm_mmu_page *child;
1717 1718
		u64 ent = sp->spt[i];

1719 1720 1721 1722
		if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
			clear_unsync_child_bit(sp, i);
			continue;
		}
1723

1724
		child = to_shadow_page(ent & PT64_BASE_ADDR_MASK);
1725 1726 1727 1728 1729 1730

		if (child->unsync_children) {
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;

			ret = __mmu_unsync_walk(child, pvec);
1731 1732 1733 1734
			if (!ret) {
				clear_unsync_child_bit(sp, i);
				continue;
			} else if (ret > 0) {
1735
				nr_unsync_leaf += ret;
1736
			} else
1737 1738 1739 1740 1741 1742
				return ret;
		} else if (child->unsync) {
			nr_unsync_leaf++;
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;
		} else
1743
			clear_unsync_child_bit(sp, i);
1744 1745
	}

1746 1747 1748
	return nr_unsync_leaf;
}

1749 1750
#define INVALID_INDEX (-1)

1751 1752 1753
static int mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
P
Paolo Bonzini 已提交
1754
	pvec->nr = 0;
1755 1756 1757
	if (!sp->unsync_children)
		return 0;

1758
	mmu_pages_add(pvec, sp, INVALID_INDEX);
1759
	return __mmu_unsync_walk(sp, pvec);
1760 1761 1762 1763 1764
}

static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
{
	WARN_ON(!sp->unsync);
1765
	trace_kvm_mmu_sync_page(sp);
1766 1767 1768 1769
	sp->unsync = 0;
	--kvm->stat.mmu_unsync;
}

1770 1771
static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				     struct list_head *invalid_list);
1772 1773
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list);
1774

1775 1776
#define for_each_valid_sp(_kvm, _sp, _list)				\
	hlist_for_each_entry(_sp, _list, hash_link)			\
1777
		if (is_obsolete_sp((_kvm), (_sp))) {			\
1778
		} else
1779 1780

#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)			\
1781 1782
	for_each_valid_sp(_kvm, _sp,					\
	  &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)])	\
1783
		if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
1784

1785 1786 1787 1788 1789
static inline bool is_ept_sp(struct kvm_mmu_page *sp)
{
	return sp->role.cr0_wp && sp->role.smap_andnot_wp;
}

1790
/* @sp->gfn should be write-protected at the call site */
1791 1792
static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
			    struct list_head *invalid_list)
1793
{
1794 1795
	if ((!is_ept_sp(sp) && sp->role.gpte_is_8_bytes != !!is_pae(vcpu)) ||
	    vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
1796
		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1797
		return false;
1798 1799
	}

1800
	return true;
1801 1802
}

1803 1804 1805 1806
static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
					struct list_head *invalid_list,
					bool remote_flush)
{
1807
	if (!remote_flush && list_empty(invalid_list))
1808 1809 1810 1811 1812 1813 1814 1815 1816
		return false;

	if (!list_empty(invalid_list))
		kvm_mmu_commit_zap_page(kvm, invalid_list);
	else
		kvm_flush_remote_tlbs(kvm);
	return true;
}

1817 1818 1819
static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
				 struct list_head *invalid_list,
				 bool remote_flush, bool local_flush)
1820
{
1821
	if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush))
1822
		return;
1823

1824
	if (local_flush)
1825
		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1826 1827
}

1828 1829 1830 1831 1832 1833 1834
#ifdef CONFIG_KVM_MMU_AUDIT
#include "mmu_audit.c"
#else
static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
static void mmu_audit_disable(void) { }
#endif

1835 1836
static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
{
1837 1838
	return sp->role.invalid ||
	       unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1839 1840
}

1841
static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1842
			 struct list_head *invalid_list)
1843
{
1844 1845
	kvm_unlink_unsync_page(vcpu->kvm, sp);
	return __kvm_sync_page(vcpu, sp, invalid_list);
1846 1847
}

1848
/* @gfn should be write-protected at the call site */
1849 1850
static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
			   struct list_head *invalid_list)
1851 1852
{
	struct kvm_mmu_page *s;
1853
	bool ret = false;
1854

1855
	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1856
		if (!s->unsync)
1857 1858
			continue;

1859
		WARN_ON(s->role.level != PG_LEVEL_4K);
1860
		ret |= kvm_sync_page(vcpu, s, invalid_list);
1861 1862
	}

1863
	return ret;
1864 1865
}

1866
struct mmu_page_path {
1867 1868
	struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
	unsigned int idx[PT64_ROOT_MAX_LEVEL];
1869 1870
};

1871
#define for_each_sp(pvec, sp, parents, i)			\
P
Paolo Bonzini 已提交
1872
		for (i = mmu_pages_first(&pvec, &parents);	\
1873 1874 1875
			i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});	\
			i = mmu_pages_next(&pvec, &parents, i))

1876 1877 1878
static int mmu_pages_next(struct kvm_mmu_pages *pvec,
			  struct mmu_page_path *parents,
			  int i)
1879 1880 1881 1882 1883
{
	int n;

	for (n = i+1; n < pvec->nr; n++) {
		struct kvm_mmu_page *sp = pvec->page[n].sp;
P
Paolo Bonzini 已提交
1884 1885
		unsigned idx = pvec->page[n].idx;
		int level = sp->role.level;
1886

P
Paolo Bonzini 已提交
1887
		parents->idx[level-1] = idx;
1888
		if (level == PG_LEVEL_4K)
P
Paolo Bonzini 已提交
1889
			break;
1890

P
Paolo Bonzini 已提交
1891
		parents->parent[level-2] = sp;
1892 1893 1894 1895 1896
	}

	return n;
}

P
Paolo Bonzini 已提交
1897 1898 1899 1900 1901 1902 1903 1904 1905
static int mmu_pages_first(struct kvm_mmu_pages *pvec,
			   struct mmu_page_path *parents)
{
	struct kvm_mmu_page *sp;
	int level;

	if (pvec->nr == 0)
		return 0;

1906 1907
	WARN_ON(pvec->page[0].idx != INVALID_INDEX);

P
Paolo Bonzini 已提交
1908 1909
	sp = pvec->page[0].sp;
	level = sp->role.level;
1910
	WARN_ON(level == PG_LEVEL_4K);
P
Paolo Bonzini 已提交
1911 1912 1913 1914 1915 1916 1917 1918 1919 1920

	parents->parent[level-2] = sp;

	/* Also set up a sentinel.  Further entries in pvec are all
	 * children of sp, so this element is never overwritten.
	 */
	parents->parent[level-1] = NULL;
	return mmu_pages_next(pvec, parents, 0);
}

1921
static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1922
{
1923 1924 1925 1926 1927 1928 1929 1930 1931
	struct kvm_mmu_page *sp;
	unsigned int level = 0;

	do {
		unsigned int idx = parents->idx[level];
		sp = parents->parent[level];
		if (!sp)
			return;

1932
		WARN_ON(idx == INVALID_INDEX);
1933
		clear_unsync_child_bit(sp, idx);
1934
		level++;
P
Paolo Bonzini 已提交
1935
	} while (!sp->unsync_children);
1936
}
1937

1938 1939 1940 1941 1942 1943 1944
static void mmu_sync_children(struct kvm_vcpu *vcpu,
			      struct kvm_mmu_page *parent)
{
	int i;
	struct kvm_mmu_page *sp;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
1945
	LIST_HEAD(invalid_list);
1946
	bool flush = false;
1947 1948

	while (mmu_unsync_walk(parent, &pages)) {
1949
		bool protected = false;
1950 1951

		for_each_sp(pages, sp, parents, i)
1952
			protected |= rmap_write_protect(vcpu, sp->gfn);
1953

1954
		if (protected) {
1955
			kvm_flush_remote_tlbs(vcpu->kvm);
1956 1957
			flush = false;
		}
1958

1959
		for_each_sp(pages, sp, parents, i) {
1960
			flush |= kvm_sync_page(vcpu, sp, &invalid_list);
1961 1962
			mmu_pages_clear_parents(&parents);
		}
1963
		if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) {
1964
			kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
1965
			cond_resched_rwlock_write(&vcpu->kvm->mmu_lock);
1966 1967
			flush = false;
		}
1968
	}
1969 1970

	kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
1971 1972
}

1973 1974
static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
{
1975
	atomic_set(&sp->write_flooding_count,  0);
1976 1977 1978 1979
}

static void clear_sp_write_flooding_count(u64 *spte)
{
1980
	__clear_sp_write_flooding_count(sptep_to_sp(spte));
1981 1982
}

1983 1984 1985 1986
static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
					     gfn_t gfn,
					     gva_t gaddr,
					     unsigned level,
1987
					     int direct,
1988
					     unsigned int access)
1989
{
1990
	bool direct_mmu = vcpu->arch.mmu->direct_map;
1991
	union kvm_mmu_page_role role;
1992
	struct hlist_head *sp_list;
1993
	unsigned quadrant;
1994 1995
	struct kvm_mmu_page *sp;
	bool need_sync = false;
1996
	bool flush = false;
1997
	int collisions = 0;
1998
	LIST_HEAD(invalid_list);
1999

2000
	role = vcpu->arch.mmu->mmu_role.base;
2001
	role.level = level;
2002
	role.direct = direct;
2003
	if (role.direct)
2004
		role.gpte_is_8_bytes = true;
2005
	role.access = access;
2006
	if (!direct_mmu && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
2007 2008 2009 2010
		quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
		quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
		role.quadrant = quadrant;
	}
2011 2012 2013

	sp_list = &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)];
	for_each_valid_sp(vcpu->kvm, sp, sp_list) {
2014 2015 2016 2017 2018
		if (sp->gfn != gfn) {
			collisions++;
			continue;
		}

2019 2020
		if (!need_sync && sp->unsync)
			need_sync = true;
2021

2022 2023
		if (sp->role.word != role.word)
			continue;
2024

2025 2026 2027
		if (direct_mmu)
			goto trace_get_page;

2028 2029 2030 2031 2032 2033 2034 2035
		if (sp->unsync) {
			/* The page is good, but __kvm_sync_page might still end
			 * up zapping it.  If so, break in order to rebuild it.
			 */
			if (!__kvm_sync_page(vcpu, sp, &invalid_list))
				break;

			WARN_ON(!list_empty(&invalid_list));
2036
			kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2037
		}
2038

2039
		if (sp->unsync_children)
2040
			kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2041

2042
		__clear_sp_write_flooding_count(sp);
2043 2044

trace_get_page:
2045
		trace_kvm_mmu_get_page(sp, false);
2046
		goto out;
2047
	}
2048

A
Avi Kivity 已提交
2049
	++vcpu->kvm->stat.mmu_cache_miss;
2050 2051 2052

	sp = kvm_mmu_alloc_page(vcpu, direct);

2053 2054
	sp->gfn = gfn;
	sp->role = role;
2055
	hlist_add_head(&sp->hash_link, sp_list);
2056
	if (!direct) {
2057 2058 2059 2060 2061 2062
		/*
		 * we should do write protection before syncing pages
		 * otherwise the content of the synced shadow page may
		 * be inconsistent with guest page table.
		 */
		account_shadowed(vcpu->kvm, sp);
2063
		if (level == PG_LEVEL_4K && rmap_write_protect(vcpu, gfn))
2064
			kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
2065

2066
		if (level > PG_LEVEL_4K && need_sync)
2067
			flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
2068
	}
A
Avi Kivity 已提交
2069
	trace_kvm_mmu_get_page(sp, true);
2070 2071

	kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2072 2073 2074
out:
	if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
		vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2075
	return sp;
2076 2077
}

2078 2079 2080
static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
					struct kvm_vcpu *vcpu, hpa_t root,
					u64 addr)
2081 2082
{
	iterator->addr = addr;
2083
	iterator->shadow_addr = root;
2084
	iterator->level = vcpu->arch.mmu->shadow_root_level;
2085

2086
	if (iterator->level == PT64_ROOT_4LEVEL &&
2087 2088
	    vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
	    !vcpu->arch.mmu->direct_map)
2089 2090
		--iterator->level;

2091
	if (iterator->level == PT32E_ROOT_LEVEL) {
2092 2093 2094 2095
		/*
		 * prev_root is currently only used for 64-bit hosts. So only
		 * the active root_hpa is valid here.
		 */
2096
		BUG_ON(root != vcpu->arch.mmu->root_hpa);
2097

2098
		iterator->shadow_addr
2099
			= vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2100 2101 2102 2103 2104 2105 2106
		iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
		--iterator->level;
		if (!iterator->shadow_addr)
			iterator->level = 0;
	}
}

2107 2108 2109
static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
			     struct kvm_vcpu *vcpu, u64 addr)
{
2110
	shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
2111 2112 2113
				    addr);
}

2114 2115
static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
{
2116
	if (iterator->level < PG_LEVEL_4K)
2117
		return false;
2118

2119 2120 2121 2122 2123
	iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
	iterator->sptep	= ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
	return true;
}

2124 2125
static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
			       u64 spte)
2126
{
2127
	if (is_last_spte(spte, iterator->level)) {
2128 2129 2130 2131
		iterator->level = 0;
		return;
	}

2132
	iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2133 2134 2135
	--iterator->level;
}

2136 2137
static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
{
2138
	__shadow_walk_next(iterator, *iterator->sptep);
2139 2140
}

2141 2142 2143 2144 2145 2146 2147 2148 2149
static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
			     struct kvm_mmu_page *sp)
{
	u64 spte;

	BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);

	spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp));

2150
	mmu_spte_set(sptep, spte);
2151 2152 2153 2154 2155

	mmu_page_add_parent_pte(vcpu, sp, sptep);

	if (sp->unsync_children || sp->unsync)
		mark_unsync(sptep);
2156 2157
}

2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170
static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
				   unsigned direct_access)
{
	if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
		struct kvm_mmu_page *child;

		/*
		 * For the direct sp, if the guest pte's dirty bit
		 * changed form clean to dirty, it will corrupt the
		 * sp's access: allow writable in the read-only sp,
		 * so we should update the spte at this point to get
		 * a new sp with the correct access.
		 */
2171
		child = to_shadow_page(*sptep & PT64_BASE_ADDR_MASK);
2172 2173 2174
		if (child->role.access == direct_access)
			return;

2175
		drop_parent_pte(child, sptep);
2176
		kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
2177 2178 2179
	}
}

2180 2181 2182
/* Returns the number of zapped non-leaf child shadow pages. */
static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
			    u64 *spte, struct list_head *invalid_list)
2183 2184 2185 2186 2187 2188
{
	u64 pte;
	struct kvm_mmu_page *child;

	pte = *spte;
	if (is_shadow_present_pte(pte)) {
X
Xiao Guangrong 已提交
2189
		if (is_last_spte(pte, sp->role.level)) {
2190
			drop_spte(kvm, spte);
X
Xiao Guangrong 已提交
2191 2192 2193
			if (is_large_pte(pte))
				--kvm->stat.lpages;
		} else {
2194
			child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2195
			drop_parent_pte(child, spte);
2196 2197 2198 2199 2200 2201 2202 2203 2204 2205

			/*
			 * Recursively zap nested TDP SPs, parentless SPs are
			 * unlikely to be used again in the near future.  This
			 * avoids retaining a large number of stale nested SPs.
			 */
			if (tdp_enabled && invalid_list &&
			    child->role.guest_mode && !child->parent_ptes.val)
				return kvm_mmu_prepare_zap_page(kvm, child,
								invalid_list);
2206
		}
2207
	} else if (is_mmio_spte(pte)) {
2208
		mmu_spte_clear_no_track(spte);
2209
	}
2210
	return 0;
2211 2212
}

2213 2214 2215
static int kvm_mmu_page_unlink_children(struct kvm *kvm,
					struct kvm_mmu_page *sp,
					struct list_head *invalid_list)
2216
{
2217
	int zapped = 0;
2218 2219
	unsigned i;

2220
	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2221 2222 2223
		zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list);

	return zapped;
2224 2225
}

2226
static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2227
{
2228 2229
	u64 *sptep;
	struct rmap_iterator iter;
2230

2231
	while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2232
		drop_parent_pte(sp, sptep);
2233 2234
}

2235
static int mmu_zap_unsync_children(struct kvm *kvm,
2236 2237
				   struct kvm_mmu_page *parent,
				   struct list_head *invalid_list)
2238
{
2239 2240 2241
	int i, zapped = 0;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
2242

2243
	if (parent->role.level == PG_LEVEL_4K)
2244
		return 0;
2245 2246 2247 2248 2249

	while (mmu_unsync_walk(parent, &pages)) {
		struct kvm_mmu_page *sp;

		for_each_sp(pages, sp, parents, i) {
2250
			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2251
			mmu_pages_clear_parents(&parents);
2252
			zapped++;
2253 2254 2255 2256
		}
	}

	return zapped;
2257 2258
}

2259 2260 2261 2262
static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
				       struct kvm_mmu_page *sp,
				       struct list_head *invalid_list,
				       int *nr_zapped)
2263
{
2264
	bool list_unstable;
A
Avi Kivity 已提交
2265

2266
	trace_kvm_mmu_prepare_zap_page(sp);
2267
	++kvm->stat.mmu_shadow_zapped;
2268
	*nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2269
	*nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list);
2270
	kvm_mmu_unlink_parents(kvm, sp);
2271

2272 2273 2274
	/* Zapping children means active_mmu_pages has become unstable. */
	list_unstable = *nr_zapped;

2275
	if (!sp->role.invalid && !sp->role.direct)
2276
		unaccount_shadowed(kvm, sp);
2277

2278 2279
	if (sp->unsync)
		kvm_unlink_unsync_page(kvm, sp);
2280
	if (!sp->root_count) {
2281
		/* Count self */
2282
		(*nr_zapped)++;
2283 2284 2285 2286 2287 2288 2289 2290 2291 2292

		/*
		 * Already invalid pages (previously active roots) are not on
		 * the active page list.  See list_del() in the "else" case of
		 * !sp->root_count.
		 */
		if (sp->role.invalid)
			list_add(&sp->link, invalid_list);
		else
			list_move(&sp->link, invalid_list);
2293
		kvm_mod_used_mmu_pages(kvm, -1);
2294
	} else {
2295 2296 2297 2298 2299
		/*
		 * Remove the active root from the active page list, the root
		 * will be explicitly freed when the root_count hits zero.
		 */
		list_del(&sp->link);
2300

2301 2302 2303 2304 2305 2306
		/*
		 * Obsolete pages cannot be used on any vCPUs, see the comment
		 * in kvm_mmu_zap_all_fast().  Note, is_obsolete_sp() also
		 * treats invalid shadow pages as being obsolete.
		 */
		if (!is_obsolete_sp(kvm, sp))
2307
			kvm_reload_remote_mmus(kvm);
2308
	}
2309

P
Paolo Bonzini 已提交
2310 2311 2312
	if (sp->lpage_disallowed)
		unaccount_huge_nx_page(kvm, sp);

2313
	sp->role.invalid = 1;
2314 2315 2316 2317 2318 2319 2320 2321 2322 2323
	return list_unstable;
}

static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				     struct list_head *invalid_list)
{
	int nr_zapped;

	__kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
	return nr_zapped;
2324 2325
}

2326 2327 2328
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list)
{
2329
	struct kvm_mmu_page *sp, *nsp;
2330 2331 2332 2333

	if (list_empty(invalid_list))
		return;

2334
	/*
2335 2336 2337 2338 2339 2340 2341
	 * We need to make sure everyone sees our modifications to
	 * the page tables and see changes to vcpu->mode here. The barrier
	 * in the kvm_flush_remote_tlbs() achieves this. This pairs
	 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
	 *
	 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
	 * guest mode and/or lockless shadow page table walks.
2342 2343
	 */
	kvm_flush_remote_tlbs(kvm);
2344

2345
	list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2346
		WARN_ON(!sp->role.invalid || sp->root_count);
2347
		kvm_mmu_free_page(sp);
2348
	}
2349 2350
}

2351 2352
static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm,
						  unsigned long nr_to_zap)
2353
{
2354 2355
	unsigned long total_zapped = 0;
	struct kvm_mmu_page *sp, *tmp;
2356
	LIST_HEAD(invalid_list);
2357 2358
	bool unstable;
	int nr_zapped;
2359 2360

	if (list_empty(&kvm->arch.active_mmu_pages))
2361 2362
		return 0;

2363
restart:
2364
	list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) {
2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375
		/*
		 * Don't zap active root pages, the page itself can't be freed
		 * and zapping it will just force vCPUs to realloc and reload.
		 */
		if (sp->root_count)
			continue;

		unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list,
						      &nr_zapped);
		total_zapped += nr_zapped;
		if (total_zapped >= nr_to_zap)
2376 2377
			break;

2378 2379
		if (unstable)
			goto restart;
2380
	}
2381

2382 2383 2384 2385 2386 2387
	kvm_mmu_commit_zap_page(kvm, &invalid_list);

	kvm->stat.mmu_recycled += total_zapped;
	return total_zapped;
}

2388 2389 2390 2391 2392 2393 2394
static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm)
{
	if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
		return kvm->arch.n_max_mmu_pages -
			kvm->arch.n_used_mmu_pages;

	return 0;
2395 2396
}

2397 2398
static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
{
2399
	unsigned long avail = kvm_mmu_available_pages(vcpu->kvm);
2400

2401
	if (likely(avail >= KVM_MIN_FREE_MMU_PAGES))
2402 2403
		return 0;

2404
	kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail);
2405

2406 2407 2408 2409 2410 2411 2412 2413 2414
	/*
	 * Note, this check is intentionally soft, it only guarantees that one
	 * page is available, while the caller may end up allocating as many as
	 * four pages, e.g. for PAE roots or for 5-level paging.  Temporarily
	 * exceeding the (arbitrary by default) limit will not harm the host,
	 * being too agressive may unnecessarily kill the guest, and getting an
	 * exact count is far more trouble than it's worth, especially in the
	 * page fault paths.
	 */
2415 2416 2417 2418 2419
	if (!kvm_mmu_available_pages(vcpu->kvm))
		return -ENOSPC;
	return 0;
}

2420 2421
/*
 * Changing the number of mmu pages allocated to the vm
2422
 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2423
 */
2424
void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2425
{
2426
	write_lock(&kvm->mmu_lock);
2427

2428
	if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2429 2430
		kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages -
						  goal_nr_mmu_pages);
2431

2432
		goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2433 2434
	}

2435
	kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2436

2437
	write_unlock(&kvm->mmu_lock);
2438 2439
}

2440
int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2441
{
2442
	struct kvm_mmu_page *sp;
2443
	LIST_HEAD(invalid_list);
2444 2445
	int r;

2446
	pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2447
	r = 0;
2448
	write_lock(&kvm->mmu_lock);
2449
	for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2450
		pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2451 2452
			 sp->role.word);
		r = 1;
2453
		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2454
	}
2455
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2456
	write_unlock(&kvm->mmu_lock);
2457

2458
	return r;
2459
}
2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474

static int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
{
	gpa_t gpa;
	int r;

	if (vcpu->arch.mmu->direct_map)
		return 0;

	gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);

	r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);

	return r;
}
2475

2476
static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2477 2478 2479 2480 2481 2482 2483 2484
{
	trace_kvm_mmu_unsync_page(sp);
	++vcpu->kvm->stat.mmu_unsync;
	sp->unsync = 1;

	kvm_mmu_mark_parents_unsync(sp);
}

2485 2486
bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
			    bool can_unsync)
2487
{
2488
	struct kvm_mmu_page *sp;
2489

2490 2491
	if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
		return true;
2492

2493
	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2494
		if (!can_unsync)
2495
			return true;
2496

2497 2498
		if (sp->unsync)
			continue;
2499

2500
		WARN_ON(sp->role.level != PG_LEVEL_4K);
2501
		kvm_unsync_page(vcpu, sp);
2502
	}
2503

2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542
	/*
	 * We need to ensure that the marking of unsync pages is visible
	 * before the SPTE is updated to allow writes because
	 * kvm_mmu_sync_roots() checks the unsync flags without holding
	 * the MMU lock and so can race with this. If the SPTE was updated
	 * before the page had been marked as unsync-ed, something like the
	 * following could happen:
	 *
	 * CPU 1                    CPU 2
	 * ---------------------------------------------------------------------
	 * 1.2 Host updates SPTE
	 *     to be writable
	 *                      2.1 Guest writes a GPTE for GVA X.
	 *                          (GPTE being in the guest page table shadowed
	 *                           by the SP from CPU 1.)
	 *                          This reads SPTE during the page table walk.
	 *                          Since SPTE.W is read as 1, there is no
	 *                          fault.
	 *
	 *                      2.2 Guest issues TLB flush.
	 *                          That causes a VM Exit.
	 *
	 *                      2.3 kvm_mmu_sync_pages() reads sp->unsync.
	 *                          Since it is false, so it just returns.
	 *
	 *                      2.4 Guest accesses GVA X.
	 *                          Since the mapping in the SP was not updated,
	 *                          so the old mapping for GVA X incorrectly
	 *                          gets used.
	 * 1.1 Host marks SP
	 *     as unsync
	 *     (sp->unsync = true)
	 *
	 * The write barrier below ensures that 1.1 happens before 1.2 and thus
	 * the situation in 2.4 does not arise. The implicit barrier in 2.2
	 * pairs with this write barrier.
	 */
	smp_wmb();

2543
	return false;
2544 2545
}

2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562
static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
		    unsigned int pte_access, int level,
		    gfn_t gfn, kvm_pfn_t pfn, bool speculative,
		    bool can_unsync, bool host_writable)
{
	u64 spte;
	struct kvm_mmu_page *sp;
	int ret;

	sp = sptep_to_sp(sptep);

	ret = make_spte(vcpu, pte_access, level, gfn, pfn, *sptep, speculative,
			can_unsync, host_writable, sp_ad_disabled(sp), &spte);

	if (spte & PT_WRITABLE_MASK)
		kvm_vcpu_mark_page_dirty(vcpu, gfn);

2563 2564 2565
	if (*sptep == spte)
		ret |= SET_SPTE_SPURIOUS;
	else if (mmu_spte_update(sptep, spte))
2566
		ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
M
Marcelo Tosatti 已提交
2567 2568 2569
	return ret;
}

2570
static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2571
			unsigned int pte_access, bool write_fault, int level,
2572 2573
			gfn_t gfn, kvm_pfn_t pfn, bool speculative,
			bool host_writable)
M
Marcelo Tosatti 已提交
2574 2575
{
	int was_rmapped = 0;
2576
	int rmap_count;
2577
	int set_spte_ret;
2578
	int ret = RET_PF_FIXED;
2579
	bool flush = false;
M
Marcelo Tosatti 已提交
2580

2581 2582
	pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
		 *sptep, write_fault, gfn);
M
Marcelo Tosatti 已提交
2583

2584 2585 2586 2587 2588
	if (unlikely(is_noslot_pfn(pfn))) {
		mark_mmio_spte(vcpu, sptep, gfn, pte_access);
		return RET_PF_EMULATE;
	}

2589
	if (is_shadow_present_pte(*sptep)) {
M
Marcelo Tosatti 已提交
2590 2591 2592 2593
		/*
		 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
		 * the parent of the now unreachable PTE.
		 */
2594
		if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) {
M
Marcelo Tosatti 已提交
2595
			struct kvm_mmu_page *child;
A
Avi Kivity 已提交
2596
			u64 pte = *sptep;
M
Marcelo Tosatti 已提交
2597

2598
			child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2599
			drop_parent_pte(child, sptep);
2600
			flush = true;
A
Avi Kivity 已提交
2601
		} else if (pfn != spte_to_pfn(*sptep)) {
2602
			pgprintk("hfn old %llx new %llx\n",
A
Avi Kivity 已提交
2603
				 spte_to_pfn(*sptep), pfn);
2604
			drop_spte(vcpu->kvm, sptep);
2605
			flush = true;
2606 2607
		} else
			was_rmapped = 1;
M
Marcelo Tosatti 已提交
2608
	}
2609

2610 2611 2612
	set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
				speculative, true, host_writable);
	if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
M
Marcelo Tosatti 已提交
2613
		if (write_fault)
2614
			ret = RET_PF_EMULATE;
2615
		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2616
	}
2617

2618
	if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
2619 2620
		kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
				KVM_PAGES_PER_HPAGE(level));
M
Marcelo Tosatti 已提交
2621

2622 2623 2624 2625 2626 2627 2628 2629 2630
	/*
	 * The fault is fully spurious if and only if the new SPTE and old SPTE
	 * are identical, and emulation is not required.
	 */
	if ((set_spte_ret & SET_SPTE_SPURIOUS) && ret == RET_PF_FIXED) {
		WARN_ON_ONCE(!was_rmapped);
		return RET_PF_SPURIOUS;
	}

A
Avi Kivity 已提交
2631
	pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2632
	trace_kvm_mmu_set_spte(level, gfn, sptep);
A
Avi Kivity 已提交
2633
	if (!was_rmapped && is_large_pte(*sptep))
M
Marcelo Tosatti 已提交
2634 2635
		++vcpu->kvm->stat.lpages;

2636 2637 2638 2639 2640 2641
	if (is_shadow_present_pte(*sptep)) {
		if (!was_rmapped) {
			rmap_count = rmap_add(vcpu, sptep, gfn);
			if (rmap_count > RMAP_RECYCLE_THRESHOLD)
				rmap_recycle(vcpu, sptep, gfn);
		}
2642
	}
2643

2644
	return ret;
2645 2646
}

D
Dan Williams 已提交
2647
static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2648 2649 2650 2651
				     bool no_dirty_log)
{
	struct kvm_memory_slot *slot;

2652
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2653
	if (!slot)
2654
		return KVM_PFN_ERR_FAULT;
2655

2656
	return gfn_to_pfn_memslot_atomic(slot, gfn);
2657 2658 2659 2660 2661 2662 2663
}

static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
				    struct kvm_mmu_page *sp,
				    u64 *start, u64 *end)
{
	struct page *pages[PTE_PREFETCH_NUM];
2664
	struct kvm_memory_slot *slot;
2665
	unsigned int access = sp->role.access;
2666 2667 2668 2669
	int i, ret;
	gfn_t gfn;

	gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2670 2671
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
	if (!slot)
2672 2673
		return -1;

2674
	ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2675 2676 2677
	if (ret <= 0)
		return -1;

2678
	for (i = 0; i < ret; i++, gfn++, start++) {
2679
		mmu_set_spte(vcpu, start, access, false, sp->role.level, gfn,
2680
			     page_to_pfn(pages[i]), true, true);
2681 2682
		put_page(pages[i]);
	}
2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698

	return 0;
}

static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
				  struct kvm_mmu_page *sp, u64 *sptep)
{
	u64 *spte, *start = NULL;
	int i;

	WARN_ON(!sp->role.direct);

	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
	spte = sp->spt + i;

	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2699
		if (is_shadow_present_pte(*spte) || spte == sptep) {
2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713
			if (!start)
				continue;
			if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
				break;
			start = NULL;
		} else if (!start)
			start = spte;
	}
}

static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
{
	struct kvm_mmu_page *sp;

2714
	sp = sptep_to_sp(sptep);
2715

2716
	/*
2717 2718 2719
	 * Without accessed bits, there's no way to distinguish between
	 * actually accessed translations and prefetched, so disable pte
	 * prefetch if accessed bits aren't available.
2720
	 */
2721
	if (sp_ad_disabled(sp))
2722 2723
		return;

2724
	if (sp->role.level > PG_LEVEL_4K)
2725 2726
		return;

2727 2728 2729 2730 2731 2732 2733
	/*
	 * If addresses are being invalidated, skip prefetching to avoid
	 * accidentally prefetching those addresses.
	 */
	if (unlikely(vcpu->kvm->mmu_notifier_count))
		return;

2734 2735 2736
	__direct_pte_prefetch(vcpu, sp, sptep);
}

2737 2738
static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn,
				  struct kvm_memory_slot *slot)
2739 2740 2741 2742 2743
{
	unsigned long hva;
	pte_t *pte;
	int level;

2744
	if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn))
2745
		return PG_LEVEL_4K;
2746

2747 2748 2749 2750 2751 2752 2753 2754
	/*
	 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
	 * is not solely for performance, it's also necessary to avoid the
	 * "writable" check in __gfn_to_hva_many(), which will always fail on
	 * read-only memslots due to gfn_to_hva() assuming writes.  Earlier
	 * page fault steps have already verified the guest isn't writing a
	 * read-only memslot.
	 */
2755 2756
	hva = __gfn_to_hva_memslot(slot, gfn);

2757
	pte = lookup_address_in_mm(kvm->mm, hva, &level);
2758
	if (unlikely(!pte))
2759
		return PG_LEVEL_4K;
2760 2761 2762 2763

	return level;
}

2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781
int kvm_mmu_max_mapping_level(struct kvm *kvm, struct kvm_memory_slot *slot,
			      gfn_t gfn, kvm_pfn_t pfn, int max_level)
{
	struct kvm_lpage_info *linfo;

	max_level = min(max_level, max_huge_page_level);
	for ( ; max_level > PG_LEVEL_4K; max_level--) {
		linfo = lpage_info_slot(gfn, slot, max_level);
		if (!linfo->disallow_lpage)
			break;
	}

	if (max_level == PG_LEVEL_4K)
		return PG_LEVEL_4K;

	return host_pfn_mapping_level(kvm, gfn, pfn, slot);
}

B
Ben Gardon 已提交
2782 2783 2784
int kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, gfn_t gfn,
			    int max_level, kvm_pfn_t *pfnp,
			    bool huge_page_disallowed, int *req_level)
2785
{
2786
	struct kvm_memory_slot *slot;
2787
	kvm_pfn_t pfn = *pfnp;
2788
	kvm_pfn_t mask;
2789
	int level;
2790

2791 2792
	*req_level = PG_LEVEL_4K;

2793 2794
	if (unlikely(max_level == PG_LEVEL_4K))
		return PG_LEVEL_4K;
2795

2796
	if (is_error_noslot_pfn(pfn) || kvm_is_reserved_pfn(pfn))
2797
		return PG_LEVEL_4K;
2798

2799 2800
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, true);
	if (!slot)
2801
		return PG_LEVEL_4K;
2802

2803
	level = kvm_mmu_max_mapping_level(vcpu->kvm, slot, gfn, pfn, max_level);
2804
	if (level == PG_LEVEL_4K)
2805
		return level;
2806

2807 2808 2809 2810 2811 2812 2813 2814
	*req_level = level = min(level, max_level);

	/*
	 * Enforce the iTLB multihit workaround after capturing the requested
	 * level, which will be used to do precise, accurate accounting.
	 */
	if (huge_page_disallowed)
		return PG_LEVEL_4K;
2815 2816

	/*
2817 2818
	 * mmu_notifier_retry() was successful and mmu_lock is held, so
	 * the pmd can't be split from under us.
2819
	 */
2820 2821 2822
	mask = KVM_PAGES_PER_HPAGE(level) - 1;
	VM_BUG_ON((gfn & mask) != (pfn & mask));
	*pfnp = pfn & ~mask;
2823 2824

	return level;
2825 2826
}

B
Ben Gardon 已提交
2827 2828
void disallowed_hugepage_adjust(u64 spte, gfn_t gfn, int cur_level,
				kvm_pfn_t *pfnp, int *goal_levelp)
P
Paolo Bonzini 已提交
2829
{
B
Ben Gardon 已提交
2830
	int level = *goal_levelp;
P
Paolo Bonzini 已提交
2831

2832
	if (cur_level == level && level > PG_LEVEL_4K &&
P
Paolo Bonzini 已提交
2833 2834 2835 2836 2837 2838 2839 2840 2841
	    is_shadow_present_pte(spte) &&
	    !is_large_pte(spte)) {
		/*
		 * A small SPTE exists for this pfn, but FNAME(fetch)
		 * and __direct_map would like to create a large PTE
		 * instead: just force them to go down another level,
		 * patching back for them into pfn the next 9 bits of
		 * the address.
		 */
2842 2843
		u64 page_mask = KVM_PAGES_PER_HPAGE(level) -
				KVM_PAGES_PER_HPAGE(level - 1);
P
Paolo Bonzini 已提交
2844
		*pfnp |= gfn & page_mask;
B
Ben Gardon 已提交
2845
		(*goal_levelp)--;
P
Paolo Bonzini 已提交
2846 2847 2848
	}
}

2849
static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
2850
			int map_writable, int max_level, kvm_pfn_t pfn,
2851
			bool prefault, bool is_tdp)
2852
{
2853 2854 2855 2856
	bool nx_huge_page_workaround_enabled = is_nx_huge_page_enabled();
	bool write = error_code & PFERR_WRITE_MASK;
	bool exec = error_code & PFERR_FETCH_MASK;
	bool huge_page_disallowed = exec && nx_huge_page_workaround_enabled;
2857
	struct kvm_shadow_walk_iterator it;
2858
	struct kvm_mmu_page *sp;
2859
	int level, req_level, ret;
2860 2861
	gfn_t gfn = gpa >> PAGE_SHIFT;
	gfn_t base_gfn = gfn;
A
Avi Kivity 已提交
2862

2863
	if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
2864
		return RET_PF_RETRY;
2865

2866 2867
	level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn,
					huge_page_disallowed, &req_level);
2868

2869
	trace_kvm_mmu_spte_requested(gpa, level, pfn);
2870
	for_each_shadow_entry(vcpu, gpa, it) {
P
Paolo Bonzini 已提交
2871 2872 2873 2874
		/*
		 * We cannot overwrite existing page tables with an NX
		 * large page, as the leaf could be executable.
		 */
2875
		if (nx_huge_page_workaround_enabled)
2876 2877
			disallowed_hugepage_adjust(*it.sptep, gfn, it.level,
						   &pfn, &level);
P
Paolo Bonzini 已提交
2878

2879 2880
		base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
		if (it.level == level)
2881
			break;
A
Avi Kivity 已提交
2882

2883 2884 2885 2886
		drop_large_spte(vcpu, it.sptep);
		if (!is_shadow_present_pte(*it.sptep)) {
			sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
					      it.level - 1, true, ACC_ALL);
2887

2888
			link_shadow_page(vcpu, it.sptep, sp);
2889 2890
			if (is_tdp && huge_page_disallowed &&
			    req_level >= it.level)
P
Paolo Bonzini 已提交
2891
				account_huge_nx_page(vcpu->kvm, sp);
2892 2893
		}
	}
2894 2895 2896 2897

	ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL,
			   write, level, base_gfn, pfn, prefault,
			   map_writable);
2898 2899 2900
	if (ret == RET_PF_SPURIOUS)
		return ret;

2901 2902 2903
	direct_pte_prefetch(vcpu, it.sptep);
	++vcpu->stat.pf_fixed;
	return ret;
A
Avi Kivity 已提交
2904 2905
}

H
Huang Ying 已提交
2906
static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2907
{
2908
	send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
2909 2910
}

D
Dan Williams 已提交
2911
static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
2912
{
X
Xiao Guangrong 已提交
2913 2914 2915 2916 2917 2918
	/*
	 * Do not cache the mmio info caused by writing the readonly gfn
	 * into the spte otherwise read access on readonly gfn also can
	 * caused mmio page fault and treat it as mmio access.
	 */
	if (pfn == KVM_PFN_ERR_RO_FAULT)
2919
		return RET_PF_EMULATE;
X
Xiao Guangrong 已提交
2920

2921
	if (pfn == KVM_PFN_ERR_HWPOISON) {
2922
		kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
2923
		return RET_PF_RETRY;
2924
	}
2925

2926
	return -EFAULT;
2927 2928
}

2929
static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2930 2931
				kvm_pfn_t pfn, unsigned int access,
				int *ret_val)
2932 2933
{
	/* The pfn is invalid, report the error! */
2934
	if (unlikely(is_error_pfn(pfn))) {
2935
		*ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2936
		return true;
2937 2938
	}

2939
	if (unlikely(is_noslot_pfn(pfn))) {
2940 2941
		vcpu_cache_mmio_info(vcpu, gva, gfn,
				     access & shadow_mmio_access_mask);
2942 2943 2944 2945 2946 2947 2948 2949 2950 2951
		/*
		 * If MMIO caching is disabled, emulate immediately without
		 * touching the shadow page tables as attempting to install an
		 * MMIO SPTE will just be an expensive nop.
		 */
		if (unlikely(!shadow_mmio_value)) {
			*ret_val = RET_PF_EMULATE;
			return true;
		}
	}
2952

2953
	return false;
2954 2955
}

2956
static bool page_fault_can_be_fast(u32 error_code)
2957
{
2958 2959 2960 2961 2962 2963 2964
	/*
	 * Do not fix the mmio spte with invalid generation number which
	 * need to be updated by slow page fault path.
	 */
	if (unlikely(error_code & PFERR_RSVD_MASK))
		return false;

2965 2966 2967 2968 2969
	/* See if the page fault is due to an NX violation */
	if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
		      == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
		return false;

2970
	/*
2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981
	 * #PF can be fast if:
	 * 1. The shadow page table entry is not present, which could mean that
	 *    the fault is potentially caused by access tracking (if enabled).
	 * 2. The shadow page table entry is present and the fault
	 *    is caused by write-protect, that means we just need change the W
	 *    bit of the spte which can be done out of mmu-lock.
	 *
	 * However, if access tracking is disabled we know that a non-present
	 * page must be a genuine page fault where we have to create a new SPTE.
	 * So, if access tracking is disabled, we return true only for write
	 * accesses to a present page.
2982 2983
	 */

2984 2985 2986
	return shadow_acc_track_mask != 0 ||
	       ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
		== (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
2987 2988
}

2989 2990 2991 2992
/*
 * Returns true if the SPTE was fixed successfully. Otherwise,
 * someone else modified the SPTE from its original value.
 */
2993
static bool
2994
fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2995
			u64 *sptep, u64 old_spte, u64 new_spte)
2996 2997 2998 2999 3000
{
	gfn_t gfn;

	WARN_ON(!sp->role.direct);

3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012
	/*
	 * Theoretically we could also set dirty bit (and flush TLB) here in
	 * order to eliminate unnecessary PML logging. See comments in
	 * set_spte. But fast_page_fault is very unlikely to happen with PML
	 * enabled, so we do not do this. This might result in the same GPA
	 * to be logged in PML buffer again when the write really happens, and
	 * eventually to be called by mark_page_dirty twice. But it's also no
	 * harm. This also avoids the TLB flush needed after setting dirty bit
	 * so non-PML cases won't be impacted.
	 *
	 * Compare with set_spte where instead shadow_dirty_mask is set.
	 */
3013
	if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3014 3015
		return false;

3016
	if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
3017 3018 3019 3020 3021 3022 3023
		/*
		 * The gfn of direct spte is stable since it is
		 * calculated by sp->gfn.
		 */
		gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
		kvm_vcpu_mark_page_dirty(vcpu, gfn);
	}
3024 3025 3026 3027

	return true;
}

3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039
static bool is_access_allowed(u32 fault_err_code, u64 spte)
{
	if (fault_err_code & PFERR_FETCH_MASK)
		return is_executable_pte(spte);

	if (fault_err_code & PFERR_WRITE_MASK)
		return is_writable_pte(spte);

	/* Fault was on Read access */
	return spte & PT_PRESENT_MASK;
}

3040
/*
3041
 * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS.
3042
 */
3043 3044
static int fast_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
			   u32 error_code)
3045 3046
{
	struct kvm_shadow_walk_iterator iterator;
3047
	struct kvm_mmu_page *sp;
3048
	int ret = RET_PF_INVALID;
3049
	u64 spte = 0ull;
3050
	uint retry_count = 0;
3051

3052
	if (!page_fault_can_be_fast(error_code))
3053
		return ret;
3054 3055 3056

	walk_shadow_page_lockless_begin(vcpu);

3057
	do {
3058
		u64 new_spte;
3059

3060
		for_each_shadow_entry_lockless(vcpu, cr2_or_gpa, iterator, spte)
3061
			if (!is_shadow_present_pte(spte))
3062 3063
				break;

3064 3065 3066
		if (!is_shadow_present_pte(spte))
			break;

3067
		sp = sptep_to_sp(iterator.sptep);
3068 3069
		if (!is_last_spte(spte, sp->role.level))
			break;
3070

3071
		/*
3072 3073 3074 3075 3076
		 * Check whether the memory access that caused the fault would
		 * still cause it if it were to be performed right now. If not,
		 * then this is a spurious fault caused by TLB lazily flushed,
		 * or some other CPU has already fixed the PTE after the
		 * current CPU took the fault.
3077 3078 3079 3080
		 *
		 * Need not check the access of upper level table entries since
		 * they are always ACC_ALL.
		 */
3081
		if (is_access_allowed(error_code, spte)) {
3082
			ret = RET_PF_SPURIOUS;
3083 3084
			break;
		}
3085

3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096
		new_spte = spte;

		if (is_access_track_spte(spte))
			new_spte = restore_acc_track_spte(new_spte);

		/*
		 * Currently, to simplify the code, write-protection can
		 * be removed in the fast path only if the SPTE was
		 * write-protected for dirty-logging or access tracking.
		 */
		if ((error_code & PFERR_WRITE_MASK) &&
3097
		    spte_can_locklessly_be_made_writable(spte)) {
3098
			new_spte |= PT_WRITABLE_MASK;
3099 3100

			/*
3101 3102 3103 3104 3105 3106 3107 3108 3109
			 * Do not fix write-permission on the large spte.  Since
			 * we only dirty the first page into the dirty-bitmap in
			 * fast_pf_fix_direct_spte(), other pages are missed
			 * if its slot has dirty logging enabled.
			 *
			 * Instead, we let the slow page fault path create a
			 * normal spte to fix the access.
			 *
			 * See the comments in kvm_arch_commit_memory_region().
3110
			 */
3111
			if (sp->role.level > PG_LEVEL_4K)
3112
				break;
3113
		}
3114

3115
		/* Verify that the fault can be handled in the fast path */
3116 3117
		if (new_spte == spte ||
		    !is_access_allowed(error_code, new_spte))
3118 3119 3120 3121 3122
			break;

		/*
		 * Currently, fast page fault only works for direct mapping
		 * since the gfn is not stable for indirect shadow page. See
3123
		 * Documentation/virt/kvm/locking.rst to get more detail.
3124
		 */
3125 3126 3127
		if (fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte,
					    new_spte)) {
			ret = RET_PF_FIXED;
3128
			break;
3129
		}
3130 3131 3132 3133 3134 3135 3136 3137

		if (++retry_count > 4) {
			printk_once(KERN_WARNING
				"kvm: Fast #PF retrying more than 4 times.\n");
			break;
		}

	} while (true);
3138

3139
	trace_fast_page_fault(vcpu, cr2_or_gpa, error_code, iterator.sptep,
3140
			      spte, ret);
3141 3142
	walk_shadow_page_lockless_end(vcpu);

3143
	return ret;
3144 3145
}

3146 3147
static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
			       struct list_head *invalid_list)
3148
{
3149
	struct kvm_mmu_page *sp;
3150

3151
	if (!VALID_PAGE(*root_hpa))
A
Avi Kivity 已提交
3152
		return;
3153

3154
	sp = to_shadow_page(*root_hpa & PT64_BASE_ADDR_MASK);
3155 3156

	if (kvm_mmu_put_root(kvm, sp)) {
3157
		if (is_tdp_mmu_page(sp))
3158 3159 3160 3161
			kvm_tdp_mmu_free_root(kvm, sp);
		else if (sp->role.invalid)
			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
	}
3162

3163 3164 3165
	*root_hpa = INVALID_PAGE;
}

3166
/* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
3167 3168
void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
			ulong roots_to_free)
3169
{
3170
	struct kvm *kvm = vcpu->kvm;
3171 3172
	int i;
	LIST_HEAD(invalid_list);
3173
	bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
3174

3175
	BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3176

3177
	/* Before acquiring the MMU lock, see if we need to do any real work. */
3178 3179 3180 3181 3182 3183 3184 3185 3186
	if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
			if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
			    VALID_PAGE(mmu->prev_roots[i].hpa))
				break;

		if (i == KVM_MMU_NUM_PREV_ROOTS)
			return;
	}
3187

3188
	write_lock(&kvm->mmu_lock);
3189

3190 3191
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
		if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3192
			mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa,
3193
					   &invalid_list);
3194

3195 3196 3197
	if (free_active_root) {
		if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
		    (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3198
			mmu_free_root_page(kvm, &mmu->root_hpa, &invalid_list);
3199
		} else if (mmu->pae_root) {
3200 3201
			for (i = 0; i < 4; ++i)
				if (mmu->pae_root[i] != 0)
3202
					mmu_free_root_page(kvm,
3203 3204 3205
							   &mmu->pae_root[i],
							   &invalid_list);
		}
3206
		mmu->root_hpa = INVALID_PAGE;
3207
		mmu->root_pgd = 0;
3208
	}
3209

3210
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
3211
	write_unlock(&kvm->mmu_lock);
3212
}
3213
EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3214

3215 3216 3217 3218
static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
{
	int ret = 0;

3219
	if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) {
3220
		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3221 3222 3223 3224 3225 3226
		ret = 1;
	}

	return ret;
}

3227 3228
static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, gva_t gva,
			    u8 level, bool direct)
3229 3230
{
	struct kvm_mmu_page *sp;
3231 3232 3233 3234 3235 3236 3237 3238 3239

	sp = kvm_mmu_get_page(vcpu, gfn, gva, level, direct, ACC_ALL);
	++sp->root_count;

	return __pa(sp->spt);
}

static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
{
3240 3241
	struct kvm_mmu *mmu = vcpu->arch.mmu;
	u8 shadow_root_level = mmu->shadow_root_level;
3242
	hpa_t root;
3243
	unsigned i;
3244

3245
	if (is_tdp_mmu_enabled(vcpu->kvm)) {
3246
		root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu);
3247
		mmu->root_hpa = root;
3248
	} else if (shadow_root_level >= PT64_ROOT_4LEVEL) {
3249
		root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level, true);
3250
		mmu->root_hpa = root;
3251
	} else if (shadow_root_level == PT32E_ROOT_LEVEL) {
3252 3253 3254
		if (WARN_ON_ONCE(!mmu->pae_root))
			return -EIO;

3255
		for (i = 0; i < 4; ++i) {
3256 3257
			WARN_ON_ONCE(mmu->pae_root[i] &&
				     VALID_PAGE(mmu->pae_root[i]));
3258

3259 3260
			root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT),
					      i << 30, PT32_ROOT_LEVEL, true);
3261 3262
			mmu->pae_root[i] = root | PT_PRESENT_MASK |
					   shadow_me_mask;
3263
		}
3264
		mmu->root_hpa = __pa(mmu->pae_root);
3265 3266 3267 3268
	} else {
		WARN_ONCE(1, "Bad TDP root level = %d\n", shadow_root_level);
		return -EIO;
	}
3269

3270
	/* root_pgd is ignored for direct MMUs. */
3271
	mmu->root_pgd = 0;
3272 3273 3274 3275 3276

	return 0;
}

static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3277
{
3278
	struct kvm_mmu *mmu = vcpu->arch.mmu;
3279
	u64 pdptrs[4], pm_mask;
3280
	gfn_t root_gfn, root_pgd;
3281
	hpa_t root;
3282
	int i;
3283

3284
	root_pgd = mmu->get_guest_pgd(vcpu);
3285
	root_gfn = root_pgd >> PAGE_SHIFT;
3286

3287 3288 3289
	if (mmu_check_root(vcpu, root_gfn))
		return 1;

3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300
	if (mmu->root_level == PT32E_ROOT_LEVEL) {
		for (i = 0; i < 4; ++i) {
			pdptrs[i] = mmu->get_pdptr(vcpu, i);
			if (!(pdptrs[i] & PT_PRESENT_MASK))
				continue;

			if (mmu_check_root(vcpu, pdptrs[i] >> PAGE_SHIFT))
				return 1;
		}
	}

3301 3302 3303 3304
	/*
	 * Do we shadow a long mode page table? If so we need to
	 * write-protect the guests page table root.
	 */
3305
	if (mmu->root_level >= PT64_ROOT_4LEVEL) {
3306
		root = mmu_alloc_root(vcpu, root_gfn, 0,
3307 3308
				      mmu->shadow_root_level, false);
		mmu->root_hpa = root;
3309
		goto set_root_pgd;
3310
	}
3311

3312 3313 3314
	if (WARN_ON_ONCE(!mmu->pae_root))
		return -EIO;

3315 3316
	/*
	 * We shadow a 32 bit page table. This may be a legacy 2-level
3317 3318
	 * or a PAE 3-level page table. In either case we need to be aware that
	 * the shadow page table may be a PAE or a long mode page table.
3319
	 */
3320
	pm_mask = PT_PRESENT_MASK | shadow_me_mask;
3321
	if (mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
3322 3323
		pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;

3324 3325 3326
		if (WARN_ON_ONCE(!mmu->lm_root))
			return -EIO;

3327
		mmu->lm_root[0] = __pa(mmu->pae_root) | pm_mask;
3328 3329
	}

3330
	for (i = 0; i < 4; ++i) {
3331
		WARN_ON_ONCE(mmu->pae_root[i] && VALID_PAGE(mmu->pae_root[i]));
3332

3333
		if (mmu->root_level == PT32E_ROOT_LEVEL) {
3334
			if (!(pdptrs[i] & PT_PRESENT_MASK)) {
3335
				mmu->pae_root[i] = 0;
A
Avi Kivity 已提交
3336 3337
				continue;
			}
3338
			root_gfn = pdptrs[i] >> PAGE_SHIFT;
3339
		}
3340

3341 3342
		root = mmu_alloc_root(vcpu, root_gfn, i << 30,
				      PT32_ROOT_LEVEL, false);
3343
		mmu->pae_root[i] = root | pm_mask;
3344
	}
3345

3346
	if (mmu->shadow_root_level == PT64_ROOT_4LEVEL)
3347
		mmu->root_hpa = __pa(mmu->lm_root);
3348 3349
	else
		mmu->root_hpa = __pa(mmu->pae_root);
3350

3351
set_root_pgd:
3352
	mmu->root_pgd = root_pgd;
3353

3354
	return 0;
3355 3356
}

3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405
static int mmu_alloc_special_roots(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu *mmu = vcpu->arch.mmu;
	u64 *lm_root, *pae_root;

	/*
	 * When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP
	 * tables are allocated and initialized at root creation as there is no
	 * equivalent level in the guest's NPT to shadow.  Allocate the tables
	 * on demand, as running a 32-bit L1 VMM on 64-bit KVM is very rare.
	 */
	if (mmu->direct_map || mmu->root_level >= PT64_ROOT_4LEVEL ||
	    mmu->shadow_root_level < PT64_ROOT_4LEVEL)
		return 0;

	/*
	 * This mess only works with 4-level paging and needs to be updated to
	 * work with 5-level paging.
	 */
	if (WARN_ON_ONCE(mmu->shadow_root_level != PT64_ROOT_4LEVEL))
		return -EIO;

	if (mmu->pae_root && mmu->lm_root)
		return 0;

	/*
	 * The special roots should always be allocated in concert.  Yell and
	 * bail if KVM ends up in a state where only one of the roots is valid.
	 */
	if (WARN_ON_ONCE(!tdp_enabled || mmu->pae_root || mmu->lm_root))
		return -EIO;

	/* Unlike 32-bit NPT, the PDP table doesn't need to be in low mem. */
	pae_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
	if (!pae_root)
		return -ENOMEM;

	lm_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
	if (!lm_root) {
		free_page((unsigned long)pae_root);
		return -ENOMEM;
	}

	mmu->pae_root = pae_root;
	mmu->lm_root = lm_root;

	return 0;
}

3406
void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3407 3408 3409 3410
{
	int i;
	struct kvm_mmu_page *sp;

3411
	if (vcpu->arch.mmu->direct_map)
3412 3413
		return;

3414
	if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3415
		return;
3416

3417
	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3418

3419 3420
	if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
		hpa_t root = vcpu->arch.mmu->root_hpa;
3421
		sp = to_shadow_page(root);
3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436

		/*
		 * Even if another CPU was marking the SP as unsync-ed
		 * simultaneously, any guest page table changes are not
		 * guaranteed to be visible anyway until this VCPU issues a TLB
		 * flush strictly after those changes are made. We only need to
		 * ensure that the other CPU sets these flags before any actual
		 * changes to the page tables are made. The comments in
		 * mmu_need_write_protect() describe what could go wrong if this
		 * requirement isn't satisfied.
		 */
		if (!smp_load_acquire(&sp->unsync) &&
		    !smp_load_acquire(&sp->unsync_children))
			return;

3437
		write_lock(&vcpu->kvm->mmu_lock);
3438 3439
		kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);

3440
		mmu_sync_children(vcpu, sp);
3441

3442
		kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3443
		write_unlock(&vcpu->kvm->mmu_lock);
3444 3445
		return;
	}
3446

3447
	write_lock(&vcpu->kvm->mmu_lock);
3448 3449
	kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);

3450
	for (i = 0; i < 4; ++i) {
3451
		hpa_t root = vcpu->arch.mmu->pae_root[i];
3452

3453
		if (root && VALID_PAGE(root)) {
3454
			root &= PT64_BASE_ADDR_MASK;
3455
			sp = to_shadow_page(root);
3456 3457 3458 3459
			mmu_sync_children(vcpu, sp);
		}
	}

3460
	kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3461
	write_unlock(&vcpu->kvm->mmu_lock);
3462 3463
}

3464
static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr,
3465
				  u32 access, struct x86_exception *exception)
A
Avi Kivity 已提交
3466
{
3467 3468
	if (exception)
		exception->error_code = 0;
A
Avi Kivity 已提交
3469 3470 3471
	return vaddr;
}

3472
static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr,
3473 3474
					 u32 access,
					 struct x86_exception *exception)
3475
{
3476 3477
	if (exception)
		exception->error_code = 0;
3478
	return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3479 3480
}

3481 3482 3483
static bool
__is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
{
3484
	int bit7 = (pte >> 7) & 1;
3485

3486
	return pte & rsvd_check->rsvd_bits_mask[bit7][level-1];
3487 3488
}

3489
static bool __is_bad_mt_xwr(struct rsvd_bits_validate *rsvd_check, u64 pte)
3490
{
3491
	return rsvd_check->bad_mt_xwr & BIT_ULL(pte & 0x3f);
3492 3493
}

3494
static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3495
{
3496 3497 3498 3499 3500 3501 3502
	/*
	 * A nested guest cannot use the MMIO cache if it is using nested
	 * page tables, because cr2 is a nGPA while the cache stores GPAs.
	 */
	if (mmu_is_nested(vcpu))
		return false;

3503 3504 3505 3506 3507 3508
	if (direct)
		return vcpu_match_mmio_gpa(vcpu, addr);

	return vcpu_match_mmio_gva(vcpu, addr);
}

3509 3510 3511 3512
/*
 * Return the level of the lowest level SPTE added to sptes.
 * That SPTE may be non-present.
 */
3513
static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level)
3514 3515
{
	struct kvm_shadow_walk_iterator iterator;
3516
	int leaf = -1;
3517
	u64 spte;
3518 3519

	walk_shadow_page_lockless_begin(vcpu);
3520

3521 3522
	for (shadow_walk_init(&iterator, vcpu, addr),
	     *root_level = iterator.level;
3523 3524
	     shadow_walk_okay(&iterator);
	     __shadow_walk_next(&iterator, spte)) {
3525
		leaf = iterator.level;
3526 3527
		spte = mmu_spte_get_lockless(iterator.sptep);

3528
		sptes[leaf] = spte;
3529

3530 3531
		if (!is_shadow_present_pte(spte))
			break;
3532 3533 3534 3535 3536 3537 3538
	}

	walk_shadow_page_lockless_end(vcpu);

	return leaf;
}

3539
/* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */
3540 3541
static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
{
3542
	u64 sptes[PT64_ROOT_MAX_LEVEL + 1];
3543
	struct rsvd_bits_validate *rsvd_check;
3544
	int root, leaf, level;
3545 3546 3547 3548 3549 3550 3551 3552
	bool reserved = false;

	if (!VALID_PAGE(vcpu->arch.mmu->root_hpa)) {
		*sptep = 0ull;
		return reserved;
	}

	if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa))
3553
		leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, &root);
3554
	else
3555
		leaf = get_walk(vcpu, addr, sptes, &root);
3556

3557 3558 3559 3560 3561
	if (unlikely(leaf < 0)) {
		*sptep = 0ull;
		return reserved;
	}

3562 3563 3564 3565 3566 3567 3568 3569 3570 3571
	*sptep = sptes[leaf];

	/*
	 * Skip reserved bits checks on the terminal leaf if it's not a valid
	 * SPTE.  Note, this also (intentionally) skips MMIO SPTEs, which, by
	 * design, always have reserved bits set.  The purpose of the checks is
	 * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs.
	 */
	if (!is_shadow_present_pte(sptes[leaf]))
		leaf++;
3572 3573 3574

	rsvd_check = &vcpu->arch.mmu->shadow_zero_check;

3575
	for (level = root; level >= leaf; level--)
3576 3577 3578 3579 3580
		/*
		 * Use a bitwise-OR instead of a logical-OR to aggregate the
		 * reserved bit and EPT's invalid memtype/XWR checks to avoid
		 * adding a Jcc in the loop.
		 */
3581 3582
		reserved |= __is_bad_mt_xwr(rsvd_check, sptes[level]) |
			    __is_rsvd_bits_set(rsvd_check, sptes[level], level);
3583 3584 3585 3586

	if (reserved) {
		pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
		       __func__, addr);
3587
		for (level = root; level >= leaf; level--)
3588
			pr_err("------ spte 0x%llx level %d.\n",
3589
			       sptes[level], level);
3590
	}
3591

3592
	return reserved;
3593 3594
}

P
Paolo Bonzini 已提交
3595
static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3596 3597
{
	u64 spte;
3598
	bool reserved;
3599

3600
	if (mmio_info_in_cache(vcpu, addr, direct))
3601
		return RET_PF_EMULATE;
3602

3603
	reserved = get_mmio_spte(vcpu, addr, &spte);
3604
	if (WARN_ON(reserved))
3605
		return -EINVAL;
3606 3607 3608

	if (is_mmio_spte(spte)) {
		gfn_t gfn = get_mmio_spte_gfn(spte);
3609
		unsigned int access = get_mmio_spte_access(spte);
3610

3611
		if (!check_mmio_spte(vcpu, spte))
3612
			return RET_PF_INVALID;
3613

3614 3615
		if (direct)
			addr = 0;
X
Xiao Guangrong 已提交
3616 3617

		trace_handle_mmio_page_fault(addr, gfn, access);
3618
		vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3619
		return RET_PF_EMULATE;
3620 3621 3622 3623 3624 3625
	}

	/*
	 * If the page table is zapped by other cpus, let CPU fault again on
	 * the address.
	 */
3626
	return RET_PF_RETRY;
3627 3628
}

3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648
static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
					 u32 error_code, gfn_t gfn)
{
	if (unlikely(error_code & PFERR_RSVD_MASK))
		return false;

	if (!(error_code & PFERR_PRESENT_MASK) ||
	      !(error_code & PFERR_WRITE_MASK))
		return false;

	/*
	 * guest is writing the page which is write tracked which can
	 * not be fixed by page fault handler.
	 */
	if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
		return true;

	return false;
}

3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662
static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
{
	struct kvm_shadow_walk_iterator iterator;
	u64 spte;

	walk_shadow_page_lockless_begin(vcpu);
	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
		clear_sp_write_flooding_count(iterator.sptep);
		if (!is_shadow_present_pte(spte))
			break;
	}
	walk_shadow_page_lockless_end(vcpu);
}

3663 3664
static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
				    gfn_t gfn)
3665 3666
{
	struct kvm_arch_async_pf arch;
X
Xiao Guangrong 已提交
3667

3668
	arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3669
	arch.gfn = gfn;
3670
	arch.direct_map = vcpu->arch.mmu->direct_map;
3671
	arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu);
3672

3673 3674
	return kvm_setup_async_pf(vcpu, cr2_or_gpa,
				  kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3675 3676
}

3677
static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3678 3679
			 gpa_t cr2_or_gpa, kvm_pfn_t *pfn, hva_t *hva,
			 bool write, bool *writable)
3680
{
3681
	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3682 3683
	bool async;

3684 3685 3686 3687 3688 3689 3690 3691
	/*
	 * Retry the page fault if the gfn hit a memslot that is being deleted
	 * or moved.  This ensures any existing SPTEs for the old memslot will
	 * be zapped before KVM inserts a new MMIO SPTE for the gfn.
	 */
	if (slot && (slot->flags & KVM_MEMSLOT_INVALID))
		return true;

3692 3693
	/* Don't expose private memslots to L2. */
	if (is_guest_mode(vcpu) && !kvm_is_visible_memslot(slot)) {
3694
		*pfn = KVM_PFN_NOSLOT;
3695
		*writable = false;
3696 3697 3698
		return false;
	}

3699
	async = false;
3700 3701
	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async,
				    write, writable, hva);
3702 3703 3704
	if (!async)
		return false; /* *pfn has correct page already */

3705
	if (!prefault && kvm_can_do_async_pf(vcpu)) {
3706
		trace_kvm_try_async_get_page(cr2_or_gpa, gfn);
3707
		if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3708
			trace_kvm_async_pf_doublefault(cr2_or_gpa, gfn);
3709 3710
			kvm_make_request(KVM_REQ_APF_HALT, vcpu);
			return true;
3711
		} else if (kvm_arch_setup_async_pf(vcpu, cr2_or_gpa, gfn))
3712 3713 3714
			return true;
	}

3715 3716
	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL,
				    write, writable, hva);
3717 3718 3719
	return false;
}

3720 3721
static int direct_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
			     bool prefault, int max_level, bool is_tdp)
A
Avi Kivity 已提交
3722
{
3723
	bool write = error_code & PFERR_WRITE_MASK;
3724
	bool map_writable;
A
Avi Kivity 已提交
3725

3726 3727 3728
	gfn_t gfn = gpa >> PAGE_SHIFT;
	unsigned long mmu_seq;
	kvm_pfn_t pfn;
3729
	hva_t hva;
3730
	int r;
3731

3732
	if (page_fault_handle_page_track(vcpu, error_code, gfn))
3733
		return RET_PF_EMULATE;
3734

B
Ben Gardon 已提交
3735 3736 3737 3738 3739
	if (!is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa)) {
		r = fast_page_fault(vcpu, gpa, error_code);
		if (r != RET_PF_INVALID)
			return r;
	}
3740

3741
	r = mmu_topup_memory_caches(vcpu, false);
3742 3743
	if (r)
		return r;
3744

3745 3746 3747
	mmu_seq = vcpu->kvm->mmu_notifier_seq;
	smp_rmb();

3748 3749
	if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, &hva,
			 write, &map_writable))
3750 3751
		return RET_PF_RETRY;

3752
	if (handle_abnormal_pfn(vcpu, is_tdp ? 0 : gpa, gfn, pfn, ACC_ALL, &r))
3753
		return r;
A
Avi Kivity 已提交
3754

3755
	r = RET_PF_RETRY;
3756 3757 3758 3759 3760 3761

	if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa))
		read_lock(&vcpu->kvm->mmu_lock);
	else
		write_lock(&vcpu->kvm->mmu_lock);

3762
	if (!is_noslot_pfn(pfn) && mmu_notifier_retry_hva(vcpu->kvm, mmu_seq, hva))
3763
		goto out_unlock;
3764 3765
	r = make_mmu_pages_available(vcpu);
	if (r)
3766
		goto out_unlock;
B
Ben Gardon 已提交
3767 3768 3769 3770 3771 3772 3773

	if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa))
		r = kvm_tdp_mmu_map(vcpu, gpa, error_code, map_writable, max_level,
				    pfn, prefault);
	else
		r = __direct_map(vcpu, gpa, error_code, map_writable, max_level, pfn,
				 prefault, is_tdp);
3774

3775
out_unlock:
3776 3777 3778 3779
	if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa))
		read_unlock(&vcpu->kvm->mmu_lock);
	else
		write_unlock(&vcpu->kvm->mmu_lock);
3780 3781
	kvm_release_pfn_clean(pfn);
	return r;
A
Avi Kivity 已提交
3782 3783
}

3784 3785 3786 3787 3788 3789 3790
static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa,
				u32 error_code, bool prefault)
{
	pgprintk("%s: gva %lx error %x\n", __func__, gpa, error_code);

	/* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
	return direct_page_fault(vcpu, gpa & PAGE_MASK, error_code, prefault,
3791
				 PG_LEVEL_2M, false);
3792 3793
}

3794
int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
3795
				u64 fault_address, char *insn, int insn_len)
3796 3797
{
	int r = 1;
3798
	u32 flags = vcpu->arch.apf.host_apf_flags;
3799

3800 3801 3802 3803 3804 3805
#ifndef CONFIG_X86_64
	/* A 64-bit CR2 should be impossible on 32-bit KVM. */
	if (WARN_ON_ONCE(fault_address >> 32))
		return -EFAULT;
#endif

P
Paolo Bonzini 已提交
3806
	vcpu->arch.l1tf_flush_l1d = true;
3807
	if (!flags) {
3808 3809
		trace_kvm_page_fault(fault_address, error_code);

3810
		if (kvm_event_needs_reinjection(vcpu))
3811 3812 3813
			kvm_mmu_unprotect_page_virt(vcpu, fault_address);
		r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
				insn_len);
3814
	} else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
3815
		vcpu->arch.apf.host_apf_flags = 0;
3816
		local_irq_disable();
3817
		kvm_async_pf_task_wait_schedule(fault_address);
3818
		local_irq_enable();
3819 3820
	} else {
		WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags);
3821
	}
3822

3823 3824 3825 3826
	return r;
}
EXPORT_SYMBOL_GPL(kvm_handle_page_fault);

3827 3828
int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
		       bool prefault)
3829
{
3830
	int max_level;
3831

3832
	for (max_level = KVM_MAX_HUGEPAGE_LEVEL;
3833
	     max_level > PG_LEVEL_4K;
3834 3835
	     max_level--) {
		int page_num = KVM_PAGES_PER_HPAGE(max_level);
3836
		gfn_t base = (gpa >> PAGE_SHIFT) & ~(page_num - 1);
3837

3838 3839
		if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
			break;
3840
	}
3841

3842 3843
	return direct_page_fault(vcpu, gpa, error_code, prefault,
				 max_level, true);
3844 3845
}

3846 3847
static void nonpaging_init_context(struct kvm_vcpu *vcpu,
				   struct kvm_mmu *context)
A
Avi Kivity 已提交
3848 3849 3850
{
	context->page_fault = nonpaging_page_fault;
	context->gva_to_gpa = nonpaging_gva_to_gpa;
3851
	context->sync_page = nonpaging_sync_page;
3852
	context->invlpg = NULL;
3853
	context->root_level = 0;
A
Avi Kivity 已提交
3854
	context->shadow_root_level = PT32E_ROOT_LEVEL;
3855
	context->direct_map = true;
3856
	context->nx = false;
A
Avi Kivity 已提交
3857 3858
}

3859
static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd,
3860 3861
				  union kvm_mmu_page_role role)
{
3862
	return (role.direct || pgd == root->pgd) &&
3863 3864
	       VALID_PAGE(root->hpa) && to_shadow_page(root->hpa) &&
	       role.word == to_shadow_page(root->hpa)->role.word;
3865 3866
}

3867
/*
3868
 * Find out if a previously cached root matching the new pgd/role is available.
3869 3870 3871 3872 3873 3874
 * The current root is also inserted into the cache.
 * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
 * returned.
 * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
 * false is returned. This root should now be freed by the caller.
 */
3875
static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3876 3877 3878 3879
				  union kvm_mmu_page_role new_role)
{
	uint i;
	struct kvm_mmu_root_info root;
3880
	struct kvm_mmu *mmu = vcpu->arch.mmu;
3881

3882
	root.pgd = mmu->root_pgd;
3883 3884
	root.hpa = mmu->root_hpa;

3885
	if (is_root_usable(&root, new_pgd, new_role))
3886 3887
		return true;

3888 3889 3890
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
		swap(root, mmu->prev_roots[i]);

3891
		if (is_root_usable(&root, new_pgd, new_role))
3892 3893 3894 3895
			break;
	}

	mmu->root_hpa = root.hpa;
3896
	mmu->root_pgd = root.pgd;
3897 3898 3899 3900

	return i < KVM_MMU_NUM_PREV_ROOTS;
}

3901
static bool fast_pgd_switch(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3902
			    union kvm_mmu_page_role new_role)
A
Avi Kivity 已提交
3903
{
3904
	struct kvm_mmu *mmu = vcpu->arch.mmu;
3905 3906 3907 3908 3909 3910 3911

	/*
	 * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
	 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
	 * later if necessary.
	 */
	if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3912
	    mmu->root_level >= PT64_ROOT_4LEVEL)
3913
		return cached_root_available(vcpu, new_pgd, new_role);
3914 3915

	return false;
A
Avi Kivity 已提交
3916 3917
}

3918
static void __kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3919
			      union kvm_mmu_page_role new_role,
3920
			      bool skip_tlb_flush, bool skip_mmu_sync)
A
Avi Kivity 已提交
3921
{
3922
	if (!fast_pgd_switch(vcpu, new_pgd, new_role)) {
3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934
		kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, KVM_MMU_ROOT_CURRENT);
		return;
	}

	/*
	 * It's possible that the cached previous root page is obsolete because
	 * of a change in the MMU generation number. However, changing the
	 * generation number is accompanied by KVM_REQ_MMU_RELOAD, which will
	 * free the root set here and allocate a new one.
	 */
	kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);

3935
	if (!skip_mmu_sync || force_flush_and_sync_on_reuse)
3936
		kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
3937
	if (!skip_tlb_flush || force_flush_and_sync_on_reuse)
3938 3939 3940 3941 3942 3943 3944 3945 3946 3947
		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);

	/*
	 * The last MMIO access's GVA and GPA are cached in the VCPU. When
	 * switching to a new CR3, that GVA->GPA mapping may no longer be
	 * valid. So clear any cached MMIO info even when we don't need to sync
	 * the shadow page tables.
	 */
	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);

3948 3949 3950 3951 3952 3953 3954
	/*
	 * If this is a direct root page, it doesn't have a write flooding
	 * count. Otherwise, clear the write flooding count.
	 */
	if (!new_role.direct)
		__clear_sp_write_flooding_count(
				to_shadow_page(vcpu->arch.mmu->root_hpa));
A
Avi Kivity 已提交
3955 3956
}

3957
void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd, bool skip_tlb_flush,
3958
		     bool skip_mmu_sync)
3959
{
3960
	__kvm_mmu_new_pgd(vcpu, new_pgd, kvm_mmu_calc_root_page_role(vcpu),
3961
			  skip_tlb_flush, skip_mmu_sync);
3962
}
3963
EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd);
3964

3965 3966
static unsigned long get_cr3(struct kvm_vcpu *vcpu)
{
3967
	return kvm_read_cr3(vcpu);
3968 3969
}

3970
static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
3971
			   unsigned int access, int *nr_present)
3972 3973 3974 3975 3976 3977 3978 3979
{
	if (unlikely(is_mmio_spte(*sptep))) {
		if (gfn != get_mmio_spte_gfn(*sptep)) {
			mmu_spte_clear_no_track(sptep);
			return true;
		}

		(*nr_present)++;
3980
		mark_mmio_spte(vcpu, sptep, gfn, access);
3981 3982 3983 3984 3985 3986
		return true;
	}

	return false;
}

3987 3988
static inline bool is_last_gpte(struct kvm_mmu *mmu,
				unsigned level, unsigned gpte)
A
Avi Kivity 已提交
3989
{
3990 3991 3992 3993 3994 3995 3996
	/*
	 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
	 * If it is clear, there are no large pages at this level, so clear
	 * PT_PAGE_SIZE_MASK in gpte if that is the case.
	 */
	gpte &= level - mmu->last_nonleaf_level;

3997
	/*
3998 3999 4000
	 * PG_LEVEL_4K always terminates.  The RHS has bit 7 set
	 * iff level <= PG_LEVEL_4K, which for our purpose means
	 * level == PG_LEVEL_4K; set PT_PAGE_SIZE_MASK in gpte then.
4001
	 */
4002
	gpte |= level - PG_LEVEL_4K - 1;
4003

4004
	return gpte & PT_PAGE_SIZE_MASK;
A
Avi Kivity 已提交
4005 4006
}

4007 4008 4009 4010 4011
#define PTTYPE_EPT 18 /* arbitrary */
#define PTTYPE PTTYPE_EPT
#include "paging_tmpl.h"
#undef PTTYPE

A
Avi Kivity 已提交
4012 4013 4014 4015 4016 4017 4018 4019
#define PTTYPE 64
#include "paging_tmpl.h"
#undef PTTYPE

#define PTTYPE 32
#include "paging_tmpl.h"
#undef PTTYPE

4020 4021 4022
static void
__reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
			struct rsvd_bits_validate *rsvd_check,
4023
			u64 pa_bits_rsvd, int level, bool nx, bool gbpages,
4024
			bool pse, bool amd)
4025
{
4026
	u64 gbpages_bit_rsvd = 0;
4027
	u64 nonleaf_bit8_rsvd = 0;
4028
	u64 high_bits_rsvd;
4029

4030
	rsvd_check->bad_mt_xwr = 0;
4031

4032
	if (!gbpages)
4033
		gbpages_bit_rsvd = rsvd_bits(7, 7);
4034

4035 4036 4037 4038 4039 4040 4041 4042 4043
	if (level == PT32E_ROOT_LEVEL)
		high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 62);
	else
		high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);

	/* Note, NX doesn't exist in PDPTEs, this is handled below. */
	if (!nx)
		high_bits_rsvd |= rsvd_bits(63, 63);

4044 4045 4046 4047
	/*
	 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
	 * leaf entries) on AMD CPUs only.
	 */
4048
	if (amd)
4049 4050
		nonleaf_bit8_rsvd = rsvd_bits(8, 8);

4051
	switch (level) {
4052 4053
	case PT32_ROOT_LEVEL:
		/* no rsvd bits for 2 level 4K page table entries */
4054 4055 4056 4057
		rsvd_check->rsvd_bits_mask[0][1] = 0;
		rsvd_check->rsvd_bits_mask[0][0] = 0;
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
4058

4059
		if (!pse) {
4060
			rsvd_check->rsvd_bits_mask[1][1] = 0;
4061 4062 4063
			break;
		}

4064 4065
		if (is_cpuid_PSE36())
			/* 36bits PSE 4MB page */
4066
			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4067 4068
		else
			/* 32 bits PSE 4MB page */
4069
			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4070 4071
		break;
	case PT32E_ROOT_LEVEL:
4072 4073 4074 4075 4076 4077 4078 4079
		rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) |
						   high_bits_rsvd |
						   rsvd_bits(5, 8) |
						   rsvd_bits(1, 2);	/* PDPTE */
		rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;	/* PDE */
		rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;	/* PTE */
		rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
						   rsvd_bits(13, 20);	/* large page */
4080 4081
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
4082
		break;
4083
	case PT64_ROOT_5LEVEL:
4084 4085 4086
		rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd |
						   nonleaf_bit8_rsvd |
						   rsvd_bits(7, 7);
4087 4088
		rsvd_check->rsvd_bits_mask[1][4] =
			rsvd_check->rsvd_bits_mask[0][4];
4089
		fallthrough;
4090
	case PT64_ROOT_4LEVEL:
4091 4092 4093 4094 4095 4096 4097
		rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd |
						   nonleaf_bit8_rsvd |
						   rsvd_bits(7, 7);
		rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd |
						   gbpages_bit_rsvd;
		rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;
		rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4098 4099
		rsvd_check->rsvd_bits_mask[1][3] =
			rsvd_check->rsvd_bits_mask[0][3];
4100 4101 4102 4103 4104
		rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd |
						   gbpages_bit_rsvd |
						   rsvd_bits(13, 29);
		rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
						   rsvd_bits(13, 20); /* large page */
4105 4106
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
4107 4108 4109 4110
		break;
	}
}

4111 4112 4113 4114
static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
{
	__reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
4115 4116
				vcpu->arch.reserved_gpa_bits,
				context->root_level, context->nx,
4117
				guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4118 4119
				is_pse(vcpu),
				guest_cpuid_is_amd_or_hygon(vcpu));
4120 4121
}

4122 4123
static void
__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4124
			    u64 pa_bits_rsvd, bool execonly)
4125
{
4126
	u64 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
4127
	u64 bad_mt_xwr;
4128

4129 4130 4131 4132 4133
	rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7);
	rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7);
	rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6);
	rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6);
	rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4134 4135

	/* large page */
4136
	rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4137
	rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4138 4139
	rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29);
	rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20);
4140
	rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4141

4142 4143 4144 4145 4146 4147 4148 4149
	bad_mt_xwr = 0xFFull << (2 * 8);	/* bits 3..5 must not be 2 */
	bad_mt_xwr |= 0xFFull << (3 * 8);	/* bits 3..5 must not be 3 */
	bad_mt_xwr |= 0xFFull << (7 * 8);	/* bits 3..5 must not be 7 */
	bad_mt_xwr |= REPEAT_BYTE(1ull << 2);	/* bits 0..2 must not be 010 */
	bad_mt_xwr |= REPEAT_BYTE(1ull << 6);	/* bits 0..2 must not be 110 */
	if (!execonly) {
		/* bits 0..2 must not be 100 unless VMX capabilities allow it */
		bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4150
	}
4151
	rsvd_check->bad_mt_xwr = bad_mt_xwr;
4152 4153
}

4154 4155 4156 4157
static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
		struct kvm_mmu *context, bool execonly)
{
	__reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4158
				    vcpu->arch.reserved_gpa_bits, execonly);
4159 4160
}

4161 4162 4163 4164 4165
static inline u64 reserved_hpa_bits(void)
{
	return rsvd_bits(shadow_phys_bits, 63);
}

4166 4167 4168 4169 4170 4171 4172 4173
/*
 * the page table on host is the shadow page table for the page
 * table in guest or amd nested guest, its mmu features completely
 * follow the features in guest.
 */
void
reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
{
4174 4175
	bool uses_nx = context->nx ||
		context->mmu_role.base.smep_andnot_wp;
4176 4177
	struct rsvd_bits_validate *shadow_zero_check;
	int i;
4178

4179 4180 4181 4182
	/*
	 * Passing "true" to the last argument is okay; it adds a check
	 * on bit 8 of the SPTEs which KVM doesn't use anyway.
	 */
4183 4184
	shadow_zero_check = &context->shadow_zero_check;
	__reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4185
				reserved_hpa_bits(),
4186
				context->shadow_root_level, uses_nx,
4187 4188
				guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
				is_pse(vcpu), true);
4189 4190 4191 4192 4193 4194 4195 4196 4197

	if (!shadow_me_mask)
		return;

	for (i = context->shadow_root_level; --i >= 0;) {
		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
	}

4198 4199 4200
}
EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);

4201 4202 4203 4204 4205 4206
static inline bool boot_cpu_is_amd(void)
{
	WARN_ON_ONCE(!tdp_enabled);
	return shadow_x_mask == 0;
}

4207 4208 4209 4210 4211 4212 4213 4214
/*
 * the direct page table on host, use as much mmu features as
 * possible, however, kvm currently does not do execution-protection.
 */
static void
reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
				struct kvm_mmu *context)
{
4215 4216 4217 4218 4219
	struct rsvd_bits_validate *shadow_zero_check;
	int i;

	shadow_zero_check = &context->shadow_zero_check;

4220
	if (boot_cpu_is_amd())
4221
		__reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4222
					reserved_hpa_bits(),
4223
					context->shadow_root_level, false,
4224 4225
					boot_cpu_has(X86_FEATURE_GBPAGES),
					true, true);
4226
	else
4227
		__reset_rsvds_bits_mask_ept(shadow_zero_check,
4228
					    reserved_hpa_bits(), false);
4229

4230 4231 4232 4233 4234 4235 4236
	if (!shadow_me_mask)
		return;

	for (i = context->shadow_root_level; --i >= 0;) {
		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
	}
4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247
}

/*
 * as the comments in reset_shadow_zero_bits_mask() except it
 * is the shadow page table for intel nested guest.
 */
static void
reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
				struct kvm_mmu *context, bool execonly)
{
	__reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4248
				    reserved_hpa_bits(), execonly);
4249 4250
}

4251 4252 4253 4254 4255 4256 4257 4258 4259 4260
#define BYTE_MASK(access) \
	((1 & (access) ? 2 : 0) | \
	 (2 & (access) ? 4 : 0) | \
	 (3 & (access) ? 8 : 0) | \
	 (4 & (access) ? 16 : 0) | \
	 (5 & (access) ? 32 : 0) | \
	 (6 & (access) ? 64 : 0) | \
	 (7 & (access) ? 128 : 0))


4261 4262
static void update_permission_bitmask(struct kvm_vcpu *vcpu,
				      struct kvm_mmu *mmu, bool ept)
4263
{
4264 4265 4266 4267 4268 4269 4270 4271 4272
	unsigned byte;

	const u8 x = BYTE_MASK(ACC_EXEC_MASK);
	const u8 w = BYTE_MASK(ACC_WRITE_MASK);
	const u8 u = BYTE_MASK(ACC_USER_MASK);

	bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
	bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
	bool cr0_wp = is_write_protection(vcpu);
4273 4274

	for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4275 4276
		unsigned pfec = byte << 1;

F
Feng Wu 已提交
4277
		/*
4278 4279
		 * Each "*f" variable has a 1 bit for each UWX value
		 * that causes a fault with the given PFEC.
F
Feng Wu 已提交
4280
		 */
4281

4282
		/* Faults from writes to non-writable pages */
4283
		u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
4284
		/* Faults from user mode accesses to supervisor pages */
4285
		u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
4286
		/* Faults from fetches of non-executable pages*/
4287
		u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312
		/* Faults from kernel mode fetches of user pages */
		u8 smepf = 0;
		/* Faults from kernel mode accesses of user pages */
		u8 smapf = 0;

		if (!ept) {
			/* Faults from kernel mode accesses to user pages */
			u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;

			/* Not really needed: !nx will cause pte.nx to fault */
			if (!mmu->nx)
				ff = 0;

			/* Allow supervisor writes if !cr0.wp */
			if (!cr0_wp)
				wf = (pfec & PFERR_USER_MASK) ? wf : 0;

			/* Disallow supervisor fetches of user code if cr4.smep */
			if (cr4_smep)
				smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;

			/*
			 * SMAP:kernel-mode data accesses from user-mode
			 * mappings should fault. A fault is considered
			 * as a SMAP violation if all of the following
P
Peng Hao 已提交
4313
			 * conditions are true:
4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326
			 *   - X86_CR4_SMAP is set in CR4
			 *   - A user page is accessed
			 *   - The access is not a fetch
			 *   - Page fault in kernel mode
			 *   - if CPL = 3 or X86_EFLAGS_AC is clear
			 *
			 * Here, we cover the first three conditions.
			 * The fourth is computed dynamically in permission_fault();
			 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
			 * *not* subject to SMAP restrictions.
			 */
			if (cr4_smap)
				smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4327
		}
4328 4329

		mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4330 4331 4332
	}
}

4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407
/*
* PKU is an additional mechanism by which the paging controls access to
* user-mode addresses based on the value in the PKRU register.  Protection
* key violations are reported through a bit in the page fault error code.
* Unlike other bits of the error code, the PK bit is not known at the
* call site of e.g. gva_to_gpa; it must be computed directly in
* permission_fault based on two bits of PKRU, on some machine state (CR4,
* CR0, EFER, CPL), and on other bits of the error code and the page tables.
*
* In particular the following conditions come from the error code, the
* page tables and the machine state:
* - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
* - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
* - PK is always zero if U=0 in the page tables
* - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
*
* The PKRU bitmask caches the result of these four conditions.  The error
* code (minus the P bit) and the page table's U bit form an index into the
* PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
* with the two bits of the PKRU register corresponding to the protection key.
* For the first three conditions above the bits will be 00, thus masking
* away both AD and WD.  For all reads or if the last condition holds, WD
* only will be masked away.
*/
static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
				bool ept)
{
	unsigned bit;
	bool wp;

	if (ept) {
		mmu->pkru_mask = 0;
		return;
	}

	/* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
	if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
		mmu->pkru_mask = 0;
		return;
	}

	wp = is_write_protection(vcpu);

	for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
		unsigned pfec, pkey_bits;
		bool check_pkey, check_write, ff, uf, wf, pte_user;

		pfec = bit << 1;
		ff = pfec & PFERR_FETCH_MASK;
		uf = pfec & PFERR_USER_MASK;
		wf = pfec & PFERR_WRITE_MASK;

		/* PFEC.RSVD is replaced by ACC_USER_MASK. */
		pte_user = pfec & PFERR_RSVD_MASK;

		/*
		 * Only need to check the access which is not an
		 * instruction fetch and is to a user page.
		 */
		check_pkey = (!ff && pte_user);
		/*
		 * write access is controlled by PKRU if it is a
		 * user access or CR0.WP = 1.
		 */
		check_write = check_pkey && wf && (uf || wp);

		/* PKRU.AD stops both read and write access. */
		pkey_bits = !!check_pkey;
		/* PKRU.WD stops write access. */
		pkey_bits |= (!!check_write) << 1;

		mmu->pkru_mask |= (pkey_bits & 3) << pfec;
	}
}

4408
static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
A
Avi Kivity 已提交
4409
{
4410 4411 4412 4413 4414
	unsigned root_level = mmu->root_level;

	mmu->last_nonleaf_level = root_level;
	if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
		mmu->last_nonleaf_level++;
A
Avi Kivity 已提交
4415 4416
}

4417 4418 4419
static void paging64_init_context_common(struct kvm_vcpu *vcpu,
					 struct kvm_mmu *context,
					 int level)
A
Avi Kivity 已提交
4420
{
4421
	context->nx = is_nx(vcpu);
4422
	context->root_level = level;
4423

4424
	reset_rsvds_bits_mask(vcpu, context);
4425
	update_permission_bitmask(vcpu, context, false);
4426
	update_pkru_bitmask(vcpu, context, false);
4427
	update_last_nonleaf_level(vcpu, context);
A
Avi Kivity 已提交
4428

4429
	MMU_WARN_ON(!is_pae(vcpu));
A
Avi Kivity 已提交
4430 4431
	context->page_fault = paging64_page_fault;
	context->gva_to_gpa = paging64_gva_to_gpa;
4432
	context->sync_page = paging64_sync_page;
M
Marcelo Tosatti 已提交
4433
	context->invlpg = paging64_invlpg;
4434
	context->shadow_root_level = level;
4435
	context->direct_map = false;
A
Avi Kivity 已提交
4436 4437
}

4438 4439
static void paging64_init_context(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
4440
{
4441 4442 4443 4444
	int root_level = is_la57_mode(vcpu) ?
			 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;

	paging64_init_context_common(vcpu, context, root_level);
4445 4446
}

4447 4448
static void paging32_init_context(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
A
Avi Kivity 已提交
4449
{
4450
	context->nx = false;
4451
	context->root_level = PT32_ROOT_LEVEL;
4452

4453
	reset_rsvds_bits_mask(vcpu, context);
4454
	update_permission_bitmask(vcpu, context, false);
4455
	update_pkru_bitmask(vcpu, context, false);
4456
	update_last_nonleaf_level(vcpu, context);
A
Avi Kivity 已提交
4457 4458 4459

	context->page_fault = paging32_page_fault;
	context->gva_to_gpa = paging32_gva_to_gpa;
4460
	context->sync_page = paging32_sync_page;
M
Marcelo Tosatti 已提交
4461
	context->invlpg = paging32_invlpg;
A
Avi Kivity 已提交
4462
	context->shadow_root_level = PT32E_ROOT_LEVEL;
4463
	context->direct_map = false;
A
Avi Kivity 已提交
4464 4465
}

4466 4467
static void paging32E_init_context(struct kvm_vcpu *vcpu,
				   struct kvm_mmu *context)
A
Avi Kivity 已提交
4468
{
4469
	paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
A
Avi Kivity 已提交
4470 4471
}

4472 4473 4474 4475
static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu)
{
	union kvm_mmu_extended_role ext = {0};

4476
	ext.cr0_pg = !!is_paging(vcpu);
4477
	ext.cr4_pae = !!is_pae(vcpu);
4478 4479 4480 4481
	ext.cr4_smep = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
	ext.cr4_smap = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
	ext.cr4_pse = !!is_pse(vcpu);
	ext.cr4_pke = !!kvm_read_cr4_bits(vcpu, X86_CR4_PKE);
4482
	ext.maxphyaddr = cpuid_maxphyaddr(vcpu);
4483 4484 4485 4486 4487 4488

	ext.valid = 1;

	return ext;
}

4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507
static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
						   bool base_only)
{
	union kvm_mmu_role role = {0};

	role.base.access = ACC_ALL;
	role.base.nxe = !!is_nx(vcpu);
	role.base.cr0_wp = is_write_protection(vcpu);
	role.base.smm = is_smm(vcpu);
	role.base.guest_mode = is_guest_mode(vcpu);

	if (base_only)
		return role;

	role.ext = kvm_calc_mmu_role_ext(vcpu);

	return role;
}

4508 4509 4510
static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu)
{
	/* Use 5-level TDP if and only if it's useful/necessary. */
4511
	if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48)
4512 4513
		return 4;

4514
	return max_tdp_level;
4515 4516
}

4517 4518
static union kvm_mmu_role
kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4519
{
4520
	union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4521

4522
	role.base.ad_disabled = (shadow_accessed_mask == 0);
4523
	role.base.level = kvm_mmu_get_tdp_level(vcpu);
4524
	role.base.direct = true;
4525
	role.base.gpte_is_8_bytes = true;
4526 4527 4528 4529

	return role;
}

4530
static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4531
{
4532
	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4533 4534
	union kvm_mmu_role new_role =
		kvm_calc_tdp_mmu_root_page_role(vcpu, false);
4535

4536 4537 4538 4539
	if (new_role.as_u64 == context->mmu_role.as_u64)
		return;

	context->mmu_role.as_u64 = new_role.as_u64;
4540
	context->page_fault = kvm_tdp_page_fault;
4541
	context->sync_page = nonpaging_sync_page;
4542
	context->invlpg = NULL;
4543
	context->shadow_root_level = kvm_mmu_get_tdp_level(vcpu);
4544
	context->direct_map = true;
4545
	context->get_guest_pgd = get_cr3;
4546
	context->get_pdptr = kvm_pdptr_read;
4547
	context->inject_page_fault = kvm_inject_page_fault;
4548 4549

	if (!is_paging(vcpu)) {
4550
		context->nx = false;
4551 4552 4553
		context->gva_to_gpa = nonpaging_gva_to_gpa;
		context->root_level = 0;
	} else if (is_long_mode(vcpu)) {
4554
		context->nx = is_nx(vcpu);
4555 4556
		context->root_level = is_la57_mode(vcpu) ?
				PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4557 4558
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging64_gva_to_gpa;
4559
	} else if (is_pae(vcpu)) {
4560
		context->nx = is_nx(vcpu);
4561
		context->root_level = PT32E_ROOT_LEVEL;
4562 4563
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging64_gva_to_gpa;
4564
	} else {
4565
		context->nx = false;
4566
		context->root_level = PT32_ROOT_LEVEL;
4567 4568
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging32_gva_to_gpa;
4569 4570
	}

4571
	update_permission_bitmask(vcpu, context, false);
4572
	update_pkru_bitmask(vcpu, context, false);
4573
	update_last_nonleaf_level(vcpu, context);
4574
	reset_tdp_shadow_zero_bits_mask(vcpu, context);
4575 4576
}

4577
static union kvm_mmu_role
4578
kvm_calc_shadow_root_page_role_common(struct kvm_vcpu *vcpu, bool base_only)
4579 4580 4581 4582 4583 4584 4585
{
	union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);

	role.base.smep_andnot_wp = role.ext.cr4_smep &&
		!is_write_protection(vcpu);
	role.base.smap_andnot_wp = role.ext.cr4_smap &&
		!is_write_protection(vcpu);
4586
	role.base.gpte_is_8_bytes = !!is_pae(vcpu);
4587

4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598
	return role;
}

static union kvm_mmu_role
kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
{
	union kvm_mmu_role role =
		kvm_calc_shadow_root_page_role_common(vcpu, base_only);

	role.base.direct = !is_paging(vcpu);

4599
	if (!is_long_mode(vcpu))
4600
		role.base.level = PT32E_ROOT_LEVEL;
4601
	else if (is_la57_mode(vcpu))
4602
		role.base.level = PT64_ROOT_5LEVEL;
4603
	else
4604
		role.base.level = PT64_ROOT_4LEVEL;
4605 4606 4607 4608

	return role;
}

4609 4610 4611
static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
				    u32 cr0, u32 cr4, u32 efer,
				    union kvm_mmu_role new_role)
4612
{
4613
	if (!(cr0 & X86_CR0_PG))
4614
		nonpaging_init_context(vcpu, context);
4615
	else if (efer & EFER_LMA)
4616
		paging64_init_context(vcpu, context);
4617
	else if (cr4 & X86_CR4_PAE)
4618
		paging32E_init_context(vcpu, context);
A
Avi Kivity 已提交
4619
	else
4620
		paging32_init_context(vcpu, context);
4621

4622
	context->mmu_role.as_u64 = new_role.as_u64;
4623
	reset_shadow_zero_bits_mask(vcpu, context);
4624
}
4625 4626 4627

static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer)
{
4628
	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4629 4630 4631 4632
	union kvm_mmu_role new_role =
		kvm_calc_shadow_mmu_root_page_role(vcpu, false);

	if (new_role.as_u64 != context->mmu_role.as_u64)
4633
		shadow_mmu_init_context(vcpu, context, cr0, cr4, efer, new_role);
4634 4635
}

4636 4637 4638 4639 4640 4641 4642
static union kvm_mmu_role
kvm_calc_shadow_npt_root_page_role(struct kvm_vcpu *vcpu)
{
	union kvm_mmu_role role =
		kvm_calc_shadow_root_page_role_common(vcpu, false);

	role.base.direct = false;
4643
	role.base.level = kvm_mmu_get_tdp_level(vcpu);
4644 4645 4646 4647

	return role;
}

4648 4649 4650
void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer,
			     gpa_t nested_cr3)
{
4651
	struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4652
	union kvm_mmu_role new_role = kvm_calc_shadow_npt_root_page_role(vcpu);
4653

4654 4655
	__kvm_mmu_new_pgd(vcpu, nested_cr3, new_role.base, false, false);

4656
	if (new_role.as_u64 != context->mmu_role.as_u64) {
4657
		shadow_mmu_init_context(vcpu, context, cr0, cr4, efer, new_role);
4658 4659 4660 4661 4662 4663 4664

		/*
		 * Override the level set by the common init helper, nested TDP
		 * always uses the host's TDP configuration.
		 */
		context->shadow_root_level = new_role.base.level;
	}
4665 4666
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu);
4667

4668 4669
static union kvm_mmu_role
kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
4670
				   bool execonly, u8 level)
4671
{
4672
	union kvm_mmu_role role = {0};
4673

4674 4675
	/* SMM flag is inherited from root_mmu */
	role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
4676

4677
	role.base.level = level;
4678
	role.base.gpte_is_8_bytes = true;
4679 4680 4681 4682
	role.base.direct = false;
	role.base.ad_disabled = !accessed_dirty;
	role.base.guest_mode = true;
	role.base.access = ACC_ALL;
4683

4684 4685 4686 4687 4688 4689 4690
	/*
	 * WP=1 and NOT_WP=1 is an impossible combination, use WP and the
	 * SMAP variation to denote shadow EPT entries.
	 */
	role.base.cr0_wp = true;
	role.base.smap_andnot_wp = true;

4691
	role.ext = kvm_calc_mmu_role_ext(vcpu);
4692
	role.ext.execonly = execonly;
4693 4694 4695 4696

	return role;
}

4697
void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
4698
			     bool accessed_dirty, gpa_t new_eptp)
N
Nadav Har'El 已提交
4699
{
4700
	struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4701
	u8 level = vmx_eptp_page_walk_level(new_eptp);
4702 4703
	union kvm_mmu_role new_role =
		kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
4704
						   execonly, level);
4705

4706
	__kvm_mmu_new_pgd(vcpu, new_eptp, new_role.base, true, true);
4707 4708 4709

	if (new_role.as_u64 == context->mmu_role.as_u64)
		return;
4710

4711
	context->shadow_root_level = level;
N
Nadav Har'El 已提交
4712 4713

	context->nx = true;
4714
	context->ept_ad = accessed_dirty;
N
Nadav Har'El 已提交
4715 4716 4717 4718
	context->page_fault = ept_page_fault;
	context->gva_to_gpa = ept_gva_to_gpa;
	context->sync_page = ept_sync_page;
	context->invlpg = ept_invlpg;
4719
	context->root_level = level;
N
Nadav Har'El 已提交
4720
	context->direct_map = false;
4721
	context->mmu_role.as_u64 = new_role.as_u64;
4722

N
Nadav Har'El 已提交
4723
	update_permission_bitmask(vcpu, context, true);
4724
	update_pkru_bitmask(vcpu, context, true);
4725
	update_last_nonleaf_level(vcpu, context);
N
Nadav Har'El 已提交
4726
	reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4727
	reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
N
Nadav Har'El 已提交
4728 4729 4730
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);

4731
static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4732
{
4733
	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4734

4735 4736 4737 4738 4739
	kvm_init_shadow_mmu(vcpu,
			    kvm_read_cr0_bits(vcpu, X86_CR0_PG),
			    kvm_read_cr4_bits(vcpu, X86_CR4_PAE),
			    vcpu->arch.efer);

4740
	context->get_guest_pgd     = get_cr3;
4741 4742
	context->get_pdptr         = kvm_pdptr_read;
	context->inject_page_fault = kvm_inject_page_fault;
A
Avi Kivity 已提交
4743 4744
}

4745
static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4746
{
4747
	union kvm_mmu_role new_role = kvm_calc_mmu_role_common(vcpu, false);
4748 4749
	struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;

4750 4751 4752 4753
	if (new_role.as_u64 == g_context->mmu_role.as_u64)
		return;

	g_context->mmu_role.as_u64 = new_role.as_u64;
4754
	g_context->get_guest_pgd     = get_cr3;
4755
	g_context->get_pdptr         = kvm_pdptr_read;
4756 4757
	g_context->inject_page_fault = kvm_inject_page_fault;

4758 4759 4760 4761 4762 4763
	/*
	 * L2 page tables are never shadowed, so there is no need to sync
	 * SPTEs.
	 */
	g_context->invlpg            = NULL;

4764
	/*
4765
	 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
4766 4767 4768 4769 4770
	 * L1's nested page tables (e.g. EPT12). The nested translation
	 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
	 * L2's page tables as the first level of translation and L1's
	 * nested page tables as the second level of translation. Basically
	 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
4771 4772
	 */
	if (!is_paging(vcpu)) {
4773
		g_context->nx = false;
4774 4775 4776
		g_context->root_level = 0;
		g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
	} else if (is_long_mode(vcpu)) {
4777
		g_context->nx = is_nx(vcpu);
4778 4779
		g_context->root_level = is_la57_mode(vcpu) ?
					PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4780
		reset_rsvds_bits_mask(vcpu, g_context);
4781 4782
		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
	} else if (is_pae(vcpu)) {
4783
		g_context->nx = is_nx(vcpu);
4784
		g_context->root_level = PT32E_ROOT_LEVEL;
4785
		reset_rsvds_bits_mask(vcpu, g_context);
4786 4787
		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
	} else {
4788
		g_context->nx = false;
4789
		g_context->root_level = PT32_ROOT_LEVEL;
4790
		reset_rsvds_bits_mask(vcpu, g_context);
4791 4792 4793
		g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
	}

4794
	update_permission_bitmask(vcpu, g_context, false);
4795
	update_pkru_bitmask(vcpu, g_context, false);
4796
	update_last_nonleaf_level(vcpu, g_context);
4797 4798
}

4799
void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots)
4800
{
4801
	if (reset_roots) {
4802 4803
		uint i;

4804
		vcpu->arch.mmu->root_hpa = INVALID_PAGE;
4805 4806

		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
4807
			vcpu->arch.mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
4808 4809
	}

4810
	if (mmu_is_nested(vcpu))
4811
		init_kvm_nested_mmu(vcpu);
4812
	else if (tdp_enabled)
4813
		init_kvm_tdp_mmu(vcpu);
4814
	else
4815
		init_kvm_softmmu(vcpu);
4816
}
4817
EXPORT_SYMBOL_GPL(kvm_init_mmu);
4818

4819 4820 4821
static union kvm_mmu_page_role
kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
{
4822 4823
	union kvm_mmu_role role;

4824
	if (tdp_enabled)
4825
		role = kvm_calc_tdp_mmu_root_page_role(vcpu, true);
4826
	else
4827 4828 4829
		role = kvm_calc_shadow_mmu_root_page_role(vcpu, true);

	return role.base;
4830
}
4831

4832
void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4833
{
4834
	kvm_mmu_unload(vcpu);
4835
	kvm_init_mmu(vcpu, true);
A
Avi Kivity 已提交
4836
}
4837
EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
A
Avi Kivity 已提交
4838 4839

int kvm_mmu_load(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4840
{
4841 4842
	int r;

4843
	r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->direct_map);
4844 4845 4846
	if (r)
		goto out;
	r = mmu_alloc_special_roots(vcpu);
A
Avi Kivity 已提交
4847 4848
	if (r)
		goto out;
4849 4850 4851 4852 4853 4854 4855 4856
	write_lock(&vcpu->kvm->mmu_lock);
	if (make_mmu_pages_available(vcpu))
		r = -ENOSPC;
	else if (vcpu->arch.mmu->direct_map)
		r = mmu_alloc_direct_roots(vcpu);
	else
		r = mmu_alloc_shadow_roots(vcpu);
	write_unlock(&vcpu->kvm->mmu_lock);
4857 4858
	if (r)
		goto out;
4859 4860 4861

	kvm_mmu_sync_roots(vcpu);

4862
	kvm_mmu_load_pgd(vcpu);
4863
	static_call(kvm_x86_tlb_flush_current)(vcpu);
4864 4865
out:
	return r;
A
Avi Kivity 已提交
4866
}
A
Avi Kivity 已提交
4867 4868 4869

void kvm_mmu_unload(struct kvm_vcpu *vcpu)
{
4870 4871 4872 4873
	kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
	WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
	kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
	WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
A
Avi Kivity 已提交
4874
}
A
Avi Kivity 已提交
4875

4876 4877 4878 4879 4880 4881 4882 4883
static bool need_remote_flush(u64 old, u64 new)
{
	if (!is_shadow_present_pte(old))
		return false;
	if (!is_shadow_present_pte(new))
		return true;
	if ((old ^ new) & PT64_BASE_ADDR_MASK)
		return true;
4884 4885
	old ^= shadow_nx_mask;
	new ^= shadow_nx_mask;
4886 4887 4888
	return (old & ~new & PT64_PERM_MASK) != 0;
}

4889
static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4890
				    int *bytes)
4891
{
4892
	u64 gentry = 0;
4893
	int r;
4894 4895 4896

	/*
	 * Assume that the pte write on a page table of the same type
4897 4898
	 * as the current vcpu paging mode since we update the sptes only
	 * when they have the same mode.
4899
	 */
4900
	if (is_pae(vcpu) && *bytes == 4) {
4901
		/* Handle a 32-bit guest writing two halves of a 64-bit gpte */
4902 4903
		*gpa &= ~(gpa_t)7;
		*bytes = 8;
4904 4905
	}

4906 4907 4908 4909
	if (*bytes == 4 || *bytes == 8) {
		r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
		if (r)
			gentry = 0;
4910 4911
	}

4912 4913 4914 4915 4916 4917 4918
	return gentry;
}

/*
 * If we're seeing too many writes to a page, it may no longer be a page table,
 * or we may be forking, in which case it is better to unmap the page.
 */
4919
static bool detect_write_flooding(struct kvm_mmu_page *sp)
4920
{
4921 4922 4923 4924
	/*
	 * Skip write-flooding detected for the sp whose level is 1, because
	 * it can become unsync, then the guest page is not write-protected.
	 */
4925
	if (sp->role.level == PG_LEVEL_4K)
4926
		return false;
4927

4928 4929
	atomic_inc(&sp->write_flooding_count);
	return atomic_read(&sp->write_flooding_count) >= 3;
4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944
}

/*
 * Misaligned accesses are too much trouble to fix up; also, they usually
 * indicate a page is not used as a page table.
 */
static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
				    int bytes)
{
	unsigned offset, pte_size, misaligned;

	pgprintk("misaligned: gpa %llx bytes %d role %x\n",
		 gpa, bytes, sp->role.word);

	offset = offset_in_page(gpa);
4945
	pte_size = sp->role.gpte_is_8_bytes ? 8 : 4;
4946 4947 4948 4949 4950 4951 4952 4953

	/*
	 * Sometimes, the OS only writes the last one bytes to update status
	 * bits, for example, in linux, andb instruction is used in clear_bit().
	 */
	if (!(offset & (pte_size - 1)) && bytes == 1)
		return false;

4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968
	misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
	misaligned |= bytes < 4;

	return misaligned;
}

static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
{
	unsigned page_offset, quadrant;
	u64 *spte;
	int level;

	page_offset = offset_in_page(gpa);
	level = sp->role.level;
	*nspte = 1;
4969
	if (!sp->role.gpte_is_8_bytes) {
4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990
		page_offset <<= 1;	/* 32->64 */
		/*
		 * A 32-bit pde maps 4MB while the shadow pdes map
		 * only 2MB.  So we need to double the offset again
		 * and zap two pdes instead of one.
		 */
		if (level == PT32_ROOT_LEVEL) {
			page_offset &= ~7; /* kill rounding error */
			page_offset <<= 1;
			*nspte = 2;
		}
		quadrant = page_offset >> PAGE_SHIFT;
		page_offset &= ~PAGE_MASK;
		if (quadrant != sp->role.quadrant)
			return NULL;
	}

	spte = &sp->spt[page_offset / sizeof(*spte)];
	return spte;
}

4991
static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4992 4993
			      const u8 *new, int bytes,
			      struct kvm_page_track_notifier_node *node)
4994 4995 4996 4997 4998 4999
{
	gfn_t gfn = gpa >> PAGE_SHIFT;
	struct kvm_mmu_page *sp;
	LIST_HEAD(invalid_list);
	u64 entry, gentry, *spte;
	int npte;
5000
	bool remote_flush, local_flush;
5001 5002 5003 5004 5005

	/*
	 * If we don't have indirect shadow pages, it means no page is
	 * write-protected, so we can exit simply.
	 */
5006
	if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
5007 5008
		return;

5009
	remote_flush = local_flush = false;
5010 5011 5012 5013 5014 5015 5016 5017

	pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);

	/*
	 * No need to care whether allocation memory is successful
	 * or not since pte prefetch is skiped if it does not have
	 * enough objects in the cache.
	 */
5018
	mmu_topup_memory_caches(vcpu, true);
5019

5020
	write_lock(&vcpu->kvm->mmu_lock);
5021 5022 5023

	gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);

5024
	++vcpu->kvm->stat.mmu_pte_write;
5025
	kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
5026

5027
	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
5028
		if (detect_write_misaligned(sp, gpa, bytes) ||
5029
		      detect_write_flooding(sp)) {
5030
			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
A
Avi Kivity 已提交
5031
			++vcpu->kvm->stat.mmu_flooded;
5032 5033
			continue;
		}
5034 5035 5036 5037 5038

		spte = get_written_sptes(sp, gpa, &npte);
		if (!spte)
			continue;

5039
		local_flush = true;
5040
		while (npte--) {
5041
			entry = *spte;
5042
			mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL);
5043 5044
			if (gentry && sp->role.level != PG_LEVEL_4K)
				++vcpu->kvm->stat.mmu_pde_zapped;
G
Gleb Natapov 已提交
5045
			if (need_remote_flush(entry, *spte))
5046
				remote_flush = true;
5047
			++spte;
5048 5049
		}
	}
5050
	kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
5051
	kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
5052
	write_unlock(&vcpu->kvm->mmu_lock);
5053 5054
}

5055
int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
5056
		       void *insn, int insn_len)
5057
{
5058
	int r, emulation_type = EMULTYPE_PF;
5059
	bool direct = vcpu->arch.mmu->direct_map;
5060

5061
	if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
5062 5063
		return RET_PF_RETRY;

5064
	r = RET_PF_INVALID;
5065
	if (unlikely(error_code & PFERR_RSVD_MASK)) {
5066
		r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
5067
		if (r == RET_PF_EMULATE)
5068 5069
			goto emulate;
	}
5070

5071
	if (r == RET_PF_INVALID) {
5072 5073
		r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
					  lower_32_bits(error_code), false);
5074 5075
		if (WARN_ON_ONCE(r == RET_PF_INVALID))
			return -EIO;
5076 5077
	}

5078
	if (r < 0)
5079
		return r;
5080 5081
	if (r != RET_PF_EMULATE)
		return 1;
5082

5083 5084 5085 5086 5087 5088 5089
	/*
	 * Before emulating the instruction, check if the error code
	 * was due to a RO violation while translating the guest page.
	 * This can occur when using nested virtualization with nested
	 * paging in both guests. If true, we simply unprotect the page
	 * and resume the guest.
	 */
5090
	if (vcpu->arch.mmu->direct_map &&
5091
	    (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5092
		kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
5093 5094 5095
		return 1;
	}

5096 5097 5098 5099 5100 5101
	/*
	 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
	 * optimistically try to just unprotect the page and let the processor
	 * re-execute the instruction that caused the page fault.  Do not allow
	 * retrying MMIO emulation, as it's not only pointless but could also
	 * cause us to enter an infinite loop because the processor will keep
5102 5103 5104 5105
	 * faulting on the non-existent MMIO address.  Retrying an instruction
	 * from a nested guest is also pointless and dangerous as we are only
	 * explicitly shadowing L1's page tables, i.e. unprotecting something
	 * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5106
	 */
5107
	if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
5108
		emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
5109
emulate:
5110
	return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
5111
				       insn_len);
5112 5113 5114
}
EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);

5115 5116
void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
			    gva_t gva, hpa_t root_hpa)
M
Marcelo Tosatti 已提交
5117
{
5118
	int i;
5119

5120 5121 5122 5123 5124 5125
	/* It's actually a GPA for vcpu->arch.guest_mmu.  */
	if (mmu != &vcpu->arch.guest_mmu) {
		/* INVLPG on a non-canonical address is a NOP according to the SDM.  */
		if (is_noncanonical_address(gva, vcpu))
			return;

5126
		static_call(kvm_x86_tlb_flush_gva)(vcpu, gva);
5127 5128 5129
	}

	if (!mmu->invlpg)
5130 5131
		return;

5132 5133
	if (root_hpa == INVALID_PAGE) {
		mmu->invlpg(vcpu, gva, mmu->root_hpa);
5134

5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152
		/*
		 * INVLPG is required to invalidate any global mappings for the VA,
		 * irrespective of PCID. Since it would take us roughly similar amount
		 * of work to determine whether any of the prev_root mappings of the VA
		 * is marked global, or to just sync it blindly, so we might as well
		 * just always sync it.
		 *
		 * Mappings not reachable via the current cr3 or the prev_roots will be
		 * synced when switching to that cr3, so nothing needs to be done here
		 * for them.
		 */
		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
			if (VALID_PAGE(mmu->prev_roots[i].hpa))
				mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
	} else {
		mmu->invlpg(vcpu, gva, root_hpa);
	}
}
5153

5154 5155 5156
void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
{
	kvm_mmu_invalidate_gva(vcpu, vcpu->arch.mmu, gva, INVALID_PAGE);
M
Marcelo Tosatti 已提交
5157 5158 5159 5160
	++vcpu->stat.invlpg;
}
EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);

5161

5162 5163
void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
{
5164
	struct kvm_mmu *mmu = vcpu->arch.mmu;
5165
	bool tlb_flush = false;
5166
	uint i;
5167 5168

	if (pcid == kvm_get_active_pcid(vcpu)) {
5169
		mmu->invlpg(vcpu, gva, mmu->root_hpa);
5170
		tlb_flush = true;
5171 5172
	}

5173 5174
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
		if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5175
		    pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) {
5176 5177 5178
			mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
			tlb_flush = true;
		}
5179
	}
5180

5181
	if (tlb_flush)
5182
		static_call(kvm_x86_tlb_flush_gva)(vcpu, gva);
5183

5184 5185 5186
	++vcpu->stat.invlpg;

	/*
5187 5188 5189
	 * Mappings not reachable via the current cr3 or the prev_roots will be
	 * synced when switching to that cr3, so nothing needs to be done here
	 * for them.
5190 5191 5192
	 */
}

5193 5194
void kvm_configure_mmu(bool enable_tdp, int tdp_max_root_level,
		       int tdp_huge_page_level)
5195
{
5196
	tdp_enabled = enable_tdp;
5197
	max_tdp_level = tdp_max_root_level;
5198 5199

	/*
5200
	 * max_huge_page_level reflects KVM's MMU capabilities irrespective
5201 5202 5203 5204 5205 5206
	 * of kernel support, e.g. KVM may be capable of using 1GB pages when
	 * the kernel is not.  But, KVM never creates a page size greater than
	 * what is used by the kernel for any given HVA, i.e. the kernel's
	 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
	 */
	if (tdp_enabled)
5207
		max_huge_page_level = tdp_huge_page_level;
5208
	else if (boot_cpu_has(X86_FEATURE_GBPAGES))
5209
		max_huge_page_level = PG_LEVEL_1G;
5210
	else
5211
		max_huge_page_level = PG_LEVEL_2M;
5212
}
5213
EXPORT_SYMBOL_GPL(kvm_configure_mmu);
5214 5215

/* The return value indicates if tlb flush on all vcpus is needed. */
5216 5217
typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head,
				    struct kvm_memory_slot *slot);
5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230

/* The caller should hold mmu-lock before calling this function. */
static __always_inline bool
slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
			slot_level_handler fn, int start_level, int end_level,
			gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
{
	struct slot_rmap_walk_iterator iterator;
	bool flush = false;

	for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
			end_gfn, &iterator) {
		if (iterator.rmap)
5231
			flush |= fn(kvm, iterator.rmap, memslot);
5232

5233
		if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
5234
			if (flush && lock_flush_tlb) {
5235 5236 5237
				kvm_flush_remote_tlbs_with_address(kvm,
						start_gfn,
						iterator.gfn - start_gfn + 1);
5238 5239
				flush = false;
			}
5240
			cond_resched_rwlock_write(&kvm->mmu_lock);
5241 5242 5243 5244
		}
	}

	if (flush && lock_flush_tlb) {
5245 5246
		kvm_flush_remote_tlbs_with_address(kvm, start_gfn,
						   end_gfn - start_gfn + 1);
5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267
		flush = false;
	}

	return flush;
}

static __always_inline bool
slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
		  slot_level_handler fn, int start_level, int end_level,
		  bool lock_flush_tlb)
{
	return slot_handle_level_range(kvm, memslot, fn, start_level,
			end_level, memslot->base_gfn,
			memslot->base_gfn + memslot->npages - 1,
			lock_flush_tlb);
}

static __always_inline bool
slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
		 slot_level_handler fn, bool lock_flush_tlb)
{
5268 5269
	return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
				 PG_LEVEL_4K, lock_flush_tlb);
5270 5271
}

5272
static void free_mmu_pages(struct kvm_mmu *mmu)
A
Avi Kivity 已提交
5273
{
5274 5275
	free_page((unsigned long)mmu->pae_root);
	free_page((unsigned long)mmu->lm_root);
A
Avi Kivity 已提交
5276 5277
}

5278
static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
A
Avi Kivity 已提交
5279
{
5280
	struct page *page;
A
Avi Kivity 已提交
5281 5282
	int i;

5283 5284 5285 5286 5287 5288
	mmu->root_hpa = INVALID_PAGE;
	mmu->root_pgd = 0;
	mmu->translate_gpa = translate_gpa;
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
		mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;

5289
	/*
5290 5291 5292 5293
	 * When using PAE paging, the four PDPTEs are treated as 'root' pages,
	 * while the PDP table is a per-vCPU construct that's allocated at MMU
	 * creation.  When emulating 32-bit mode, cr3 is only 32 bits even on
	 * x86_64.  Therefore we need to allocate the PDP table in the first
5294 5295 5296 5297 5298
	 * 4GB of memory, which happens to fit the DMA32 zone.  TDP paging
	 * generally doesn't use PAE paging and can skip allocating the PDP
	 * table.  The main exception, handled here, is SVM's 32-bit NPT.  The
	 * other exception is for shadowing L1's 32-bit or PAE NPT on 64-bit
	 * KVM; that horror is handled on-demand by mmu_alloc_shadow_roots().
5299
	 */
5300
	if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
5301 5302
		return 0;

5303
	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
5304
	if (!page)
5305 5306
		return -ENOMEM;

5307
	mmu->pae_root = page_address(page);
5308
	for (i = 0; i < 4; ++i)
5309
		mmu->pae_root[i] = INVALID_PAGE;
5310

A
Avi Kivity 已提交
5311 5312 5313
	return 0;
}

5314
int kvm_mmu_create(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
5315
{
5316
	int ret;
5317

5318
	vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache;
5319 5320
	vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO;

5321
	vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache;
5322
	vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO;
5323

5324 5325
	vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO;

5326 5327
	vcpu->arch.mmu = &vcpu->arch.root_mmu;
	vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
A
Avi Kivity 已提交
5328

5329
	vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5330

5331
	ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu);
5332 5333 5334
	if (ret)
		return ret;

5335
	ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu);
5336 5337 5338 5339 5340 5341 5342
	if (ret)
		goto fail_allocate_root;

	return ret;
 fail_allocate_root:
	free_mmu_pages(&vcpu->arch.guest_mmu);
	return ret;
A
Avi Kivity 已提交
5343 5344
}

5345
#define BATCH_ZAP_PAGES	10
5346 5347 5348
static void kvm_zap_obsolete_pages(struct kvm *kvm)
{
	struct kvm_mmu_page *sp, *node;
5349
	int nr_zapped, batch = 0;
5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361

restart:
	list_for_each_entry_safe_reverse(sp, node,
	      &kvm->arch.active_mmu_pages, link) {
		/*
		 * No obsolete valid page exists before a newly created page
		 * since active_mmu_pages is a FIFO list.
		 */
		if (!is_obsolete_sp(kvm, sp))
			break;

		/*
5362 5363 5364
		 * Invalid pages should never land back on the list of active
		 * pages.  Skip the bogus page, otherwise we'll get stuck in an
		 * infinite loop if the page gets put back on the list (again).
5365
		 */
5366
		if (WARN_ON(sp->role.invalid))
5367 5368
			continue;

5369 5370 5371 5372 5373 5374
		/*
		 * No need to flush the TLB since we're only zapping shadow
		 * pages with an obsolete generation number and all vCPUS have
		 * loaded a new root, i.e. the shadow pages being zapped cannot
		 * be in active use by the guest.
		 */
5375
		if (batch >= BATCH_ZAP_PAGES &&
5376
		    cond_resched_rwlock_write(&kvm->mmu_lock)) {
5377
			batch = 0;
5378 5379 5380
			goto restart;
		}

5381 5382
		if (__kvm_mmu_prepare_zap_page(kvm, sp,
				&kvm->arch.zapped_obsolete_pages, &nr_zapped)) {
5383
			batch += nr_zapped;
5384
			goto restart;
5385
		}
5386 5387
	}

5388 5389 5390 5391 5392
	/*
	 * Trigger a remote TLB flush before freeing the page tables to ensure
	 * KVM is not in the middle of a lockless shadow page table walk, which
	 * may reference the pages.
	 */
5393
	kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406
}

/*
 * Fast invalidate all shadow pages and use lock-break technique
 * to zap obsolete pages.
 *
 * It's required when memslot is being deleted or VM is being
 * destroyed, in these cases, we should ensure that KVM MMU does
 * not use any resource of the being-deleted slot or all slots
 * after calling the function.
 */
static void kvm_mmu_zap_all_fast(struct kvm *kvm)
{
5407 5408
	lockdep_assert_held(&kvm->slots_lock);

5409
	write_lock(&kvm->mmu_lock);
5410
	trace_kvm_mmu_zap_all_fast(kvm);
5411 5412 5413 5414 5415 5416 5417 5418 5419

	/*
	 * Toggle mmu_valid_gen between '0' and '1'.  Because slots_lock is
	 * held for the entire duration of zapping obsolete pages, it's
	 * impossible for there to be multiple invalid generations associated
	 * with *valid* shadow pages at any given time, i.e. there is exactly
	 * one valid generation and (at most) one invalid generation.
	 */
	kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
5420

5421 5422 5423 5424 5425 5426 5427 5428 5429 5430
	/*
	 * Notify all vcpus to reload its shadow page table and flush TLB.
	 * Then all vcpus will switch to new shadow page table with the new
	 * mmu_valid_gen.
	 *
	 * Note: we need to do this under the protection of mmu_lock,
	 * otherwise, vcpu would purge shadow page but miss tlb flush.
	 */
	kvm_reload_remote_mmus(kvm);

5431
	kvm_zap_obsolete_pages(kvm);
5432

5433
	if (is_tdp_mmu_enabled(kvm))
5434 5435
		kvm_tdp_mmu_zap_all(kvm);

5436
	write_unlock(&kvm->mmu_lock);
5437 5438
}

5439 5440 5441 5442 5443
static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
{
	return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
}

5444
static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5445 5446
			struct kvm_memory_slot *slot,
			struct kvm_page_track_notifier_node *node)
5447
{
5448
	kvm_mmu_zap_all_fast(kvm);
5449 5450
}

5451
void kvm_mmu_init_vm(struct kvm *kvm)
5452
{
5453
	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5454

5455 5456
	kvm_mmu_init_tdp_mmu(kvm);

5457
	node->track_write = kvm_mmu_pte_write;
5458
	node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5459
	kvm_page_track_register_notifier(kvm, node);
5460 5461
}

5462
void kvm_mmu_uninit_vm(struct kvm *kvm)
5463
{
5464
	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5465

5466
	kvm_page_track_unregister_notifier(kvm, node);
5467 5468

	kvm_mmu_uninit_tdp_mmu(kvm);
5469 5470
}

X
Xiao Guangrong 已提交
5471 5472 5473 5474
void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;
5475
	int i;
5476
	bool flush;
X
Xiao Guangrong 已提交
5477

5478
	write_lock(&kvm->mmu_lock);
5479 5480 5481 5482 5483 5484 5485 5486 5487
	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
		kvm_for_each_memslot(memslot, slots) {
			gfn_t start, end;

			start = max(gfn_start, memslot->base_gfn);
			end = min(gfn_end, memslot->base_gfn + memslot->npages);
			if (start >= end)
				continue;
X
Xiao Guangrong 已提交
5488

5489
			slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
5490
						PG_LEVEL_4K,
5491
						KVM_MAX_HUGEPAGE_LEVEL,
5492
						start, end - 1, true);
5493
		}
X
Xiao Guangrong 已提交
5494 5495
	}

5496
	if (is_tdp_mmu_enabled(kvm)) {
5497 5498 5499 5500 5501
		flush = kvm_tdp_mmu_zap_gfn_range(kvm, gfn_start, gfn_end);
		if (flush)
			kvm_flush_remote_tlbs(kvm);
	}

5502
	write_unlock(&kvm->mmu_lock);
X
Xiao Guangrong 已提交
5503 5504
}

5505
static bool slot_rmap_write_protect(struct kvm *kvm,
5506 5507
				    struct kvm_rmap_head *rmap_head,
				    struct kvm_memory_slot *slot)
5508
{
5509
	return __rmap_write_protect(kvm, rmap_head, false);
5510 5511
}

5512
void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5513 5514
				      struct kvm_memory_slot *memslot,
				      int start_level)
A
Avi Kivity 已提交
5515
{
5516
	bool flush;
A
Avi Kivity 已提交
5517

5518
	write_lock(&kvm->mmu_lock);
5519
	flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect,
5520
				start_level, KVM_MAX_HUGEPAGE_LEVEL, false);
5521
	if (is_tdp_mmu_enabled(kvm))
5522
		flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, PG_LEVEL_4K);
5523
	write_unlock(&kvm->mmu_lock);
5524 5525 5526 5527 5528 5529 5530 5531

	/*
	 * We can flush all the TLBs out of the mmu lock without TLB
	 * corruption since we just change the spte from writable to
	 * readonly so that we only need to care the case of changing
	 * spte from present to present (changing the spte from present
	 * to nonpresent will flush all the TLBs immediately), in other
	 * words, the only case we care is mmu_spte_update() where we
W
Wei Yang 已提交
5532
	 * have checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
5533 5534 5535
	 * instead of PT_WRITABLE_MASK, that means it does not depend
	 * on PT_WRITABLE_MASK anymore.
	 */
5536
	if (flush)
5537
		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
A
Avi Kivity 已提交
5538
}
5539

5540
static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5541 5542
					 struct kvm_rmap_head *rmap_head,
					 struct kvm_memory_slot *slot)
5543 5544 5545 5546
{
	u64 *sptep;
	struct rmap_iterator iter;
	int need_tlb_flush = 0;
D
Dan Williams 已提交
5547
	kvm_pfn_t pfn;
5548 5549
	struct kvm_mmu_page *sp;

5550
restart:
5551
	for_each_rmap_spte(rmap_head, &iter, sptep) {
5552
		sp = sptep_to_sp(sptep);
5553 5554 5555
		pfn = spte_to_pfn(*sptep);

		/*
5556 5557 5558 5559 5560
		 * We cannot do huge page mapping for indirect shadow pages,
		 * which are found on the last rmap (level = 1) when not using
		 * tdp; such shadow pages are synced with the page table in
		 * the guest, and the guest page table is using 4K page size
		 * mapping if the indirect sp has level = 1.
5561
		 */
5562
		if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
5563 5564
		    sp->role.level < kvm_mmu_max_mapping_level(kvm, slot, sp->gfn,
							       pfn, PG_LEVEL_NUM)) {
5565
			pte_list_remove(rmap_head, sptep);
5566 5567 5568 5569 5570 5571 5572

			if (kvm_available_flush_tlb_with_range())
				kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
					KVM_PAGES_PER_HPAGE(sp->role.level));
			else
				need_tlb_flush = 1;

5573 5574
			goto restart;
		}
5575 5576 5577 5578 5579 5580
	}

	return need_tlb_flush;
}

void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5581
				   const struct kvm_memory_slot *memslot)
5582
{
5583
	/* FIXME: const-ify all uses of struct kvm_memory_slot.  */
5584 5585
	struct kvm_memory_slot *slot = (struct kvm_memory_slot *)memslot;

5586
	write_lock(&kvm->mmu_lock);
5587
	slot_handle_leaf(kvm, slot, kvm_mmu_zap_collapsible_spte, true);
5588

5589
	if (is_tdp_mmu_enabled(kvm))
5590
		kvm_tdp_mmu_zap_collapsible_sptes(kvm, slot);
5591
	write_unlock(&kvm->mmu_lock);
5592 5593
}

5594 5595 5596 5597
void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
					struct kvm_memory_slot *memslot)
{
	/*
5598 5599 5600 5601 5602
	 * All current use cases for flushing the TLBs for a specific memslot
	 * are related to dirty logging, and do the TLB flush out of mmu_lock.
	 * The interaction between the various operations on memslot must be
	 * serialized by slots_locks to ensure the TLB flush from one operation
	 * is observed by any other operation on the same memslot.
5603 5604
	 */
	lockdep_assert_held(&kvm->slots_lock);
5605 5606
	kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
					   memslot->npages);
5607 5608
}

5609 5610 5611
void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
				   struct kvm_memory_slot *memslot)
{
5612
	bool flush;
5613

5614
	write_lock(&kvm->mmu_lock);
5615
	flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
5616
	if (is_tdp_mmu_enabled(kvm))
5617
		flush |= kvm_tdp_mmu_clear_dirty_slot(kvm, memslot);
5618
	write_unlock(&kvm->mmu_lock);
5619 5620 5621 5622 5623 5624 5625 5626

	/*
	 * It's also safe to flush TLBs out of mmu lock here as currently this
	 * function is only used for dirty logging, in which case flushing TLB
	 * out of mmu lock also guarantees no dirty pages will be lost in
	 * dirty_bitmap.
	 */
	if (flush)
5627
		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5628 5629
}

5630
void kvm_mmu_zap_all(struct kvm *kvm)
5631 5632
{
	struct kvm_mmu_page *sp, *node;
5633
	LIST_HEAD(invalid_list);
5634
	int ign;
5635

5636
	write_lock(&kvm->mmu_lock);
5637
restart:
5638
	list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
5639
		if (WARN_ON(sp->role.invalid))
5640
			continue;
5641
		if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
5642
			goto restart;
5643
		if (cond_resched_rwlock_write(&kvm->mmu_lock))
5644 5645 5646
			goto restart;
	}

5647
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
5648

5649
	if (is_tdp_mmu_enabled(kvm))
5650 5651
		kvm_tdp_mmu_zap_all(kvm);

5652
	write_unlock(&kvm->mmu_lock);
5653 5654
}

5655
void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
5656
{
5657
	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
5658

5659
	gen &= MMIO_SPTE_GEN_MASK;
5660

5661
	/*
5662 5663 5664 5665 5666 5667 5668 5669
	 * Generation numbers are incremented in multiples of the number of
	 * address spaces in order to provide unique generations across all
	 * address spaces.  Strip what is effectively the address space
	 * modifier prior to checking for a wrap of the MMIO generation so
	 * that a wrap in any address space is detected.
	 */
	gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);

5670
	/*
5671
	 * The very rare case: if the MMIO generation number has wrapped,
5672 5673
	 * zap all shadow pages.
	 */
5674
	if (unlikely(gen == 0)) {
5675
		kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
5676
		kvm_mmu_zap_all_fast(kvm);
5677
	}
5678 5679
}

5680 5681
static unsigned long
mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
5682 5683
{
	struct kvm *kvm;
5684
	int nr_to_scan = sc->nr_to_scan;
5685
	unsigned long freed = 0;
5686

J
Junaid Shahid 已提交
5687
	mutex_lock(&kvm_lock);
5688 5689

	list_for_each_entry(kvm, &vm_list, vm_list) {
5690
		int idx;
5691
		LIST_HEAD(invalid_list);
5692

5693 5694 5695 5696 5697 5698 5699 5700
		/*
		 * Never scan more than sc->nr_to_scan VM instances.
		 * Will not hit this condition practically since we do not try
		 * to shrink more than one VM and it is very unlikely to see
		 * !n_used_mmu_pages so many times.
		 */
		if (!nr_to_scan--)
			break;
5701 5702 5703 5704 5705 5706
		/*
		 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
		 * here. We may skip a VM instance errorneosly, but we do not
		 * want to shrink a VM that only started to populate its MMU
		 * anyway.
		 */
5707 5708
		if (!kvm->arch.n_used_mmu_pages &&
		    !kvm_has_zapped_obsolete_pages(kvm))
5709 5710
			continue;

5711
		idx = srcu_read_lock(&kvm->srcu);
5712
		write_lock(&kvm->mmu_lock);
5713

5714 5715 5716 5717 5718 5719
		if (kvm_has_zapped_obsolete_pages(kvm)) {
			kvm_mmu_commit_zap_page(kvm,
			      &kvm->arch.zapped_obsolete_pages);
			goto unlock;
		}

5720
		freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan);
5721

5722
unlock:
5723
		write_unlock(&kvm->mmu_lock);
5724
		srcu_read_unlock(&kvm->srcu, idx);
5725

5726 5727 5728 5729 5730
		/*
		 * unfair on small ones
		 * per-vm shrinkers cry out
		 * sadness comes quickly
		 */
5731 5732
		list_move_tail(&kvm->vm_list, &vm_list);
		break;
5733 5734
	}

J
Junaid Shahid 已提交
5735
	mutex_unlock(&kvm_lock);
5736 5737 5738 5739 5740 5741
	return freed;
}

static unsigned long
mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
{
5742
	return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
5743 5744 5745
}

static struct shrinker mmu_shrinker = {
5746 5747
	.count_objects = mmu_shrink_count,
	.scan_objects = mmu_shrink_scan,
5748 5749 5750
	.seeks = DEFAULT_SEEKS * 10,
};

I
Ingo Molnar 已提交
5751
static void mmu_destroy_caches(void)
5752
{
5753 5754
	kmem_cache_destroy(pte_list_desc_cache);
	kmem_cache_destroy(mmu_page_header_cache);
5755 5756
}

5757 5758 5759 5760 5761
static void kvm_set_mmio_spte_mask(void)
{
	u64 mask;

	/*
5762 5763 5764 5765 5766
	 * Set a reserved PA bit in MMIO SPTEs to generate page faults with
	 * PFEC.RSVD=1 on MMIO accesses.  64-bit PTEs (PAE, x86-64, and EPT
	 * paging) support a maximum of 52 bits of PA, i.e. if the CPU supports
	 * 52-bit physical addresses then there are no reserved PA bits in the
	 * PTEs and so the reserved PA approach must be disabled.
5767
	 */
5768 5769 5770 5771
	if (shadow_phys_bits < 52)
		mask = BIT_ULL(51) | PT_PRESENT_MASK;
	else
		mask = 0;
5772

P
Paolo Bonzini 已提交
5773
	kvm_mmu_set_mmio_spte_mask(mask, ACC_WRITE_MASK | ACC_USER_MASK);
5774 5775
}

P
Paolo Bonzini 已提交
5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809
static bool get_nx_auto_mode(void)
{
	/* Return true when CPU has the bug, and mitigations are ON */
	return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
}

static void __set_nx_huge_pages(bool val)
{
	nx_huge_pages = itlb_multihit_kvm_mitigation = val;
}

static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
{
	bool old_val = nx_huge_pages;
	bool new_val;

	/* In "auto" mode deploy workaround only if CPU has the bug. */
	if (sysfs_streq(val, "off"))
		new_val = 0;
	else if (sysfs_streq(val, "force"))
		new_val = 1;
	else if (sysfs_streq(val, "auto"))
		new_val = get_nx_auto_mode();
	else if (strtobool(val, &new_val) < 0)
		return -EINVAL;

	__set_nx_huge_pages(new_val);

	if (new_val != old_val) {
		struct kvm *kvm;

		mutex_lock(&kvm_lock);

		list_for_each_entry(kvm, &vm_list, vm_list) {
5810
			mutex_lock(&kvm->slots_lock);
P
Paolo Bonzini 已提交
5811
			kvm_mmu_zap_all_fast(kvm);
5812
			mutex_unlock(&kvm->slots_lock);
5813 5814

			wake_up_process(kvm->arch.nx_lpage_recovery_thread);
P
Paolo Bonzini 已提交
5815 5816 5817 5818 5819 5820 5821
		}
		mutex_unlock(&kvm_lock);
	}

	return 0;
}

5822 5823
int kvm_mmu_module_init(void)
{
5824 5825
	int ret = -ENOMEM;

P
Paolo Bonzini 已提交
5826 5827 5828
	if (nx_huge_pages == -1)
		__set_nx_huge_pages(get_nx_auto_mode());

5829 5830 5831 5832 5833 5834 5835 5836 5837 5838
	/*
	 * MMU roles use union aliasing which is, generally speaking, an
	 * undefined behavior. However, we supposedly know how compilers behave
	 * and the current status quo is unlikely to change. Guardians below are
	 * supposed to let us know if the assumption becomes false.
	 */
	BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
	BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
	BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));

5839
	kvm_mmu_reset_all_pte_masks();
5840

5841 5842
	kvm_set_mmio_spte_mask();

5843 5844
	pte_list_desc_cache = kmem_cache_create("pte_list_desc",
					    sizeof(struct pte_list_desc),
5845
					    0, SLAB_ACCOUNT, NULL);
5846
	if (!pte_list_desc_cache)
5847
		goto out;
5848

5849 5850
	mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
						  sizeof(struct kvm_mmu_page),
5851
						  0, SLAB_ACCOUNT, NULL);
5852
	if (!mmu_page_header_cache)
5853
		goto out;
5854

5855
	if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
5856
		goto out;
5857

5858 5859 5860
	ret = register_shrinker(&mmu_shrinker);
	if (ret)
		goto out;
5861

5862 5863
	return 0;

5864
out:
5865
	mmu_destroy_caches();
5866
	return ret;
5867 5868
}

5869
/*
P
Peng Hao 已提交
5870
 * Calculate mmu pages needed for kvm.
5871
 */
5872
unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm)
5873
{
5874 5875
	unsigned long nr_mmu_pages;
	unsigned long nr_pages = 0;
5876
	struct kvm_memslots *slots;
5877
	struct kvm_memory_slot *memslot;
5878
	int i;
5879

5880 5881
	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
5882

5883 5884 5885
		kvm_for_each_memslot(memslot, slots)
			nr_pages += memslot->npages;
	}
5886 5887

	nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
5888
	nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
5889 5890 5891 5892

	return nr_mmu_pages;
}

5893 5894
void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
{
5895
	kvm_mmu_unload(vcpu);
5896 5897
	free_mmu_pages(&vcpu->arch.root_mmu);
	free_mmu_pages(&vcpu->arch.guest_mmu);
5898
	mmu_free_memory_caches(vcpu);
5899 5900 5901 5902 5903 5904 5905
}

void kvm_mmu_module_exit(void)
{
	mmu_destroy_caches();
	percpu_counter_destroy(&kvm_total_used_mmu_pages);
	unregister_shrinker(&mmu_shrinker);
5906 5907
	mmu_audit_disable();
}
5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942

static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp)
{
	unsigned int old_val;
	int err;

	old_val = nx_huge_pages_recovery_ratio;
	err = param_set_uint(val, kp);
	if (err)
		return err;

	if (READ_ONCE(nx_huge_pages) &&
	    !old_val && nx_huge_pages_recovery_ratio) {
		struct kvm *kvm;

		mutex_lock(&kvm_lock);

		list_for_each_entry(kvm, &vm_list, vm_list)
			wake_up_process(kvm->arch.nx_lpage_recovery_thread);

		mutex_unlock(&kvm_lock);
	}

	return err;
}

static void kvm_recover_nx_lpages(struct kvm *kvm)
{
	int rcu_idx;
	struct kvm_mmu_page *sp;
	unsigned int ratio;
	LIST_HEAD(invalid_list);
	ulong to_zap;

	rcu_idx = srcu_read_lock(&kvm->srcu);
5943
	write_lock(&kvm->mmu_lock);
5944 5945 5946

	ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
	to_zap = ratio ? DIV_ROUND_UP(kvm->stat.nx_lpage_splits, ratio) : 0;
5947 5948 5949 5950
	for ( ; to_zap; --to_zap) {
		if (list_empty(&kvm->arch.lpage_disallowed_mmu_pages))
			break;

5951 5952 5953 5954 5955 5956 5957 5958 5959
		/*
		 * We use a separate list instead of just using active_mmu_pages
		 * because the number of lpage_disallowed pages is expected to
		 * be relatively small compared to the total.
		 */
		sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
				      struct kvm_mmu_page,
				      lpage_disallowed_link);
		WARN_ON_ONCE(!sp->lpage_disallowed);
5960
		if (is_tdp_mmu_page(sp)) {
5961 5962
			kvm_tdp_mmu_zap_gfn_range(kvm, sp->gfn,
				sp->gfn + KVM_PAGES_PER_HPAGE(sp->role.level));
5963
		} else {
5964 5965 5966
			kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
			WARN_ON_ONCE(sp->lpage_disallowed);
		}
5967

5968
		if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
5969
			kvm_mmu_commit_zap_page(kvm, &invalid_list);
5970
			cond_resched_rwlock_write(&kvm->mmu_lock);
5971 5972
		}
	}
5973
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
5974

5975
	write_unlock(&kvm->mmu_lock);
5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028
	srcu_read_unlock(&kvm->srcu, rcu_idx);
}

static long get_nx_lpage_recovery_timeout(u64 start_time)
{
	return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio)
		? start_time + 60 * HZ - get_jiffies_64()
		: MAX_SCHEDULE_TIMEOUT;
}

static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
{
	u64 start_time;
	long remaining_time;

	while (true) {
		start_time = get_jiffies_64();
		remaining_time = get_nx_lpage_recovery_timeout(start_time);

		set_current_state(TASK_INTERRUPTIBLE);
		while (!kthread_should_stop() && remaining_time > 0) {
			schedule_timeout(remaining_time);
			remaining_time = get_nx_lpage_recovery_timeout(start_time);
			set_current_state(TASK_INTERRUPTIBLE);
		}

		set_current_state(TASK_RUNNING);

		if (kthread_should_stop())
			return 0;

		kvm_recover_nx_lpages(kvm);
	}
}

int kvm_mmu_post_init_vm(struct kvm *kvm)
{
	int err;

	err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
					  "kvm-nx-lpage-recovery",
					  &kvm->arch.nx_lpage_recovery_thread);
	if (!err)
		kthread_unpark(kvm->arch.nx_lpage_recovery_thread);

	return err;
}

void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
{
	if (kvm->arch.nx_lpage_recovery_thread)
		kthread_stop(kvm->arch.nx_lpage_recovery_thread);
}