mmu.c 169.6 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
A
Avi Kivity 已提交
2 3 4 5 6 7 8 9 10
/*
 * Kernel-based Virtual Machine driver for Linux
 *
 * This module enables machines with Intel VT-x extensions to run virtual
 * machines without emulation or binary translation.
 *
 * MMU support
 *
 * Copyright (C) 2006 Qumranet, Inc.
N
Nicolas Kaiser 已提交
11
 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
A
Avi Kivity 已提交
12 13 14 15 16
 *
 * Authors:
 *   Yaniv Kamay  <yaniv@qumranet.com>
 *   Avi Kivity   <avi@qumranet.com>
 */
A
Avi Kivity 已提交
17

18
#include "irq.h"
19
#include "mmu.h"
20
#include "x86.h"
A
Avi Kivity 已提交
21
#include "kvm_cache_regs.h"
22
#include "kvm_emulate.h"
23
#include "cpuid.h"
A
Avi Kivity 已提交
24

25
#include <linux/kvm_host.h>
A
Avi Kivity 已提交
26 27 28 29
#include <linux/types.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/highmem.h>
30 31
#include <linux/moduleparam.h>
#include <linux/export.h>
32
#include <linux/swap.h>
M
Marcelo Tosatti 已提交
33
#include <linux/hugetlb.h>
34
#include <linux/compiler.h>
35
#include <linux/srcu.h>
36
#include <linux/slab.h>
37
#include <linux/sched/signal.h>
38
#include <linux/uaccess.h>
39
#include <linux/hash.h>
40
#include <linux/kern_levels.h>
41
#include <linux/kthread.h>
A
Avi Kivity 已提交
42

A
Avi Kivity 已提交
43
#include <asm/page.h>
44
#include <asm/memtype.h>
A
Avi Kivity 已提交
45
#include <asm/cmpxchg.h>
46
#include <asm/e820/api.h>
47
#include <asm/io.h>
48
#include <asm/vmx.h>
49
#include <asm/kvm_page_track.h>
50
#include "trace.h"
A
Avi Kivity 已提交
51

P
Paolo Bonzini 已提交
52 53 54
extern bool itlb_multihit_kvm_mitigation;

static int __read_mostly nx_huge_pages = -1;
55 56 57 58
#ifdef CONFIG_PREEMPT_RT
/* Recovery can cause latency spikes, disable it for PREEMPT_RT.  */
static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
#else
59
static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
60
#endif
P
Paolo Bonzini 已提交
61 62

static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
63
static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp);
P
Paolo Bonzini 已提交
64 65 66 67 68 69

static struct kernel_param_ops nx_huge_pages_ops = {
	.set = set_nx_huge_pages,
	.get = param_get_bool,
};

70 71 72 73 74
static struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = {
	.set = set_nx_huge_pages_recovery_ratio,
	.get = param_get_uint,
};

P
Paolo Bonzini 已提交
75 76
module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
__MODULE_PARM_TYPE(nx_huge_pages, "bool");
77 78 79
module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops,
		&nx_huge_pages_recovery_ratio, 0644);
__MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
P
Paolo Bonzini 已提交
80

81 82 83
static bool __read_mostly force_flush_and_sync_on_reuse;
module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644);

84 85 86 87 88 89 90
/*
 * When setting this variable to true it enables Two-Dimensional-Paging
 * where the hardware walks 2 page tables:
 * 1. the guest-virtual to guest-physical
 * 2. while doing 1. it walks guest-physical to host-physical
 * If the hardware supports that we don't need to do shadow paging.
 */
91
bool tdp_enabled = false;
92

93 94
static int max_page_level __read_mostly;

95 96 97 98
enum {
	AUDIT_PRE_PAGE_FAULT,
	AUDIT_POST_PAGE_FAULT,
	AUDIT_PRE_PTE_WRITE,
99 100 101
	AUDIT_POST_PTE_WRITE,
	AUDIT_PRE_SYNC,
	AUDIT_POST_SYNC
102
};
103

104
#undef MMU_DEBUG
105 106

#ifdef MMU_DEBUG
107 108
static bool dbg = 0;
module_param(dbg, bool, 0644);
109 110 111

#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
112
#define MMU_WARN_ON(x) WARN_ON(x)
113 114 115
#else
#define pgprintk(x...) do { } while (0)
#define rmap_printk(x...) do { } while (0)
116
#define MMU_WARN_ON(x) do { } while (0)
117
#endif
A
Avi Kivity 已提交
118

119 120
#define PTE_PREFETCH_NUM		8

121
#define PT_FIRST_AVAIL_BITS_SHIFT 10
122 123 124 125 126 127 128 129 130
#define PT64_SECOND_AVAIL_BITS_SHIFT 54

/*
 * The mask used to denote special SPTEs, which can be either MMIO SPTEs or
 * Access Tracking SPTEs.
 */
#define SPTE_SPECIAL_MASK (3ULL << 52)
#define SPTE_AD_ENABLED_MASK (0ULL << 52)
#define SPTE_AD_DISABLED_MASK (1ULL << 52)
131
#define SPTE_AD_WRPROT_ONLY_MASK (2ULL << 52)
132
#define SPTE_MMIO_MASK (3ULL << 52)
A
Avi Kivity 已提交
133 134 135 136

#define PT64_LEVEL_BITS 9

#define PT64_LEVEL_SHIFT(level) \
M
Mike Day 已提交
137
		(PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
A
Avi Kivity 已提交
138 139 140 141 142 143 144 145

#define PT64_INDEX(address, level)\
	(((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))


#define PT32_LEVEL_BITS 10

#define PT32_LEVEL_SHIFT(level) \
M
Mike Day 已提交
146
		(PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
A
Avi Kivity 已提交
147

148 149 150
#define PT32_LVL_OFFSET_MASK(level) \
	(PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
151 152 153 154 155

#define PT32_INDEX(address, level)\
	(((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))


156 157 158 159 160
#ifdef CONFIG_DYNAMIC_PHYSICAL_MASK
#define PT64_BASE_ADDR_MASK (physical_mask & ~(u64)(PAGE_SIZE-1))
#else
#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
#endif
161 162 163 164 165 166
#define PT64_LVL_ADDR_MASK(level) \
	(PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT64_LEVEL_BITS))) - 1))
#define PT64_LVL_OFFSET_MASK(level) \
	(PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT64_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
167 168 169 170

#define PT32_BASE_ADDR_MASK PAGE_MASK
#define PT32_DIR_BASE_ADDR_MASK \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
171 172 173
#define PT32_LVL_ADDR_MASK(level) \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
					    * PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
174

175
#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
176
			| shadow_x_mask | shadow_nx_mask | shadow_me_mask)
A
Avi Kivity 已提交
177

178 179 180 181 182
#define ACC_EXEC_MASK    1
#define ACC_WRITE_MASK   PT_WRITABLE_MASK
#define ACC_USER_MASK    PT_USER_MASK
#define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)

183 184 185 186
/* The mask for the R/X bits in EPT PTEs */
#define PT64_EPT_READABLE_MASK			0x1ull
#define PT64_EPT_EXECUTABLE_MASK		0x4ull

187 188
#include <trace/events/kvm.h>

189 190
#define SPTE_HOST_WRITEABLE	(1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
#define SPTE_MMU_WRITEABLE	(1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
191

192 193
#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)

194 195 196
/* make pte_list_desc fit well in cache line */
#define PTE_LIST_EXT 3

197 198 199 200 201 202 203 204 205 206 207 208 209 210
/*
 * Return values of handle_mmio_page_fault and mmu.page_fault:
 * RET_PF_RETRY: let CPU fault again on the address.
 * RET_PF_EMULATE: mmio page fault, emulate the instruction directly.
 *
 * For handle_mmio_page_fault only:
 * RET_PF_INVALID: the spte is invalid, let the real page fault path update it.
 */
enum {
	RET_PF_RETRY = 0,
	RET_PF_EMULATE = 1,
	RET_PF_INVALID = 2,
};

211 212 213
struct pte_list_desc {
	u64 *sptes[PTE_LIST_EXT];
	struct pte_list_desc *more;
214 215
};

216 217 218 219
struct kvm_shadow_walk_iterator {
	u64 addr;
	hpa_t shadow_addr;
	u64 *sptep;
220
	int level;
221 222 223
	unsigned index;
};

224 225 226 227 228 229 230
#define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker)     \
	for (shadow_walk_init_using_root(&(_walker), (_vcpu),              \
					 (_root), (_addr));                \
	     shadow_walk_okay(&(_walker));			           \
	     shadow_walk_next(&(_walker)))

#define for_each_shadow_entry(_vcpu, _addr, _walker)            \
231 232 233 234
	for (shadow_walk_init(&(_walker), _vcpu, _addr);	\
	     shadow_walk_okay(&(_walker));			\
	     shadow_walk_next(&(_walker)))

235 236 237 238 239 240
#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)	\
	for (shadow_walk_init(&(_walker), _vcpu, _addr);		\
	     shadow_walk_okay(&(_walker)) &&				\
		({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });	\
	     __shadow_walk_next(&(_walker), spte))

241
static struct kmem_cache *pte_list_desc_cache;
242
static struct kmem_cache *mmu_page_header_cache;
243
static struct percpu_counter kvm_total_used_mmu_pages;
244

S
Sheng Yang 已提交
245 246 247 248 249
static u64 __read_mostly shadow_nx_mask;
static u64 __read_mostly shadow_x_mask;	/* mutual exclusive with nx_mask */
static u64 __read_mostly shadow_user_mask;
static u64 __read_mostly shadow_accessed_mask;
static u64 __read_mostly shadow_dirty_mask;
250
static u64 __read_mostly shadow_mmio_mask;
251
static u64 __read_mostly shadow_mmio_value;
252
static u64 __read_mostly shadow_mmio_access_mask;
253
static u64 __read_mostly shadow_present_mask;
254
static u64 __read_mostly shadow_me_mask;
255

256
/*
257 258 259
 * SPTEs used by MMUs without A/D bits are marked with SPTE_AD_DISABLED_MASK;
 * shadow_acc_track_mask is the set of bits to be cleared in non-accessed
 * pages.
260 261 262 263 264 265 266 267 268 269 270 271 272
 */
static u64 __read_mostly shadow_acc_track_mask;

/*
 * The mask/shift to use for saving the original R/X bits when marking the PTE
 * as not-present for access tracking purposes. We do not save the W bit as the
 * PTEs being access tracked also need to be dirty tracked, so the W bit will be
 * restored only when a write is attempted to the page.
 */
static const u64 shadow_acc_track_saved_bits_mask = PT64_EPT_READABLE_MASK |
						    PT64_EPT_EXECUTABLE_MASK;
static const u64 shadow_acc_track_saved_bits_shift = PT64_SECOND_AVAIL_BITS_SHIFT;

273 274 275 276 277 278 279 280 281 282 283
/*
 * This mask must be set on all non-zero Non-Present or Reserved SPTEs in order
 * to guard against L1TF attacks.
 */
static u64 __read_mostly shadow_nonpresent_or_rsvd_mask;

/*
 * The number of high-order 1 bits to use in the mask above.
 */
static const u64 shadow_nonpresent_or_rsvd_mask_len = 5;

284 285 286 287 288 289 290 291 292 293
/*
 * In some cases, we need to preserve the GFN of a non-present or reserved
 * SPTE when we usurp the upper five bits of the physical address space to
 * defend against L1TF, e.g. for MMIO SPTEs.  To preserve the GFN, we'll
 * shift bits of the GFN that overlap with shadow_nonpresent_or_rsvd_mask
 * left into the reserved bits, i.e. the GFN in the SPTE will be split into
 * high and low parts.  This mask covers the lower bits of the GFN.
 */
static u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask;

294 295 296 297 298
/*
 * The number of non-reserved physical address bits irrespective of features
 * that repurpose legal bits, e.g. MKTME.
 */
static u8 __read_mostly shadow_phys_bits;
299

300
static void mmu_spte_set(u64 *sptep, u64 spte);
301
static bool is_executable_pte(u64 spte);
302 303
static union kvm_mmu_page_role
kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
304

305 306 307
#define CREATE_TRACE_POINTS
#include "mmutrace.h"

308 309 310

static inline bool kvm_available_flush_tlb_with_range(void)
{
311
	return kvm_x86_ops.tlb_remote_flush_with_range;
312 313 314 315 316 317 318
}

static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
		struct kvm_tlb_range *range)
{
	int ret = -ENOTSUPP;

319 320
	if (range && kvm_x86_ops.tlb_remote_flush_with_range)
		ret = kvm_x86_ops.tlb_remote_flush_with_range(kvm, range);
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336

	if (ret)
		kvm_flush_remote_tlbs(kvm);
}

static void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
		u64 start_gfn, u64 pages)
{
	struct kvm_tlb_range range;

	range.start_gfn = start_gfn;
	range.pages = pages;

	kvm_flush_remote_tlbs_with_range(kvm, &range);
}

337
void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask, u64 mmio_value, u64 access_mask)
338
{
339
	BUG_ON((u64)(unsigned)access_mask != access_mask);
340
	BUG_ON((mmio_mask & mmio_value) != mmio_value);
341
	shadow_mmio_value = mmio_value | SPTE_MMIO_MASK;
342
	shadow_mmio_mask = mmio_mask | SPTE_SPECIAL_MASK;
343
	shadow_mmio_access_mask = access_mask;
344 345 346
}
EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);

347 348 349 350 351
static bool is_mmio_spte(u64 spte)
{
	return (spte & shadow_mmio_mask) == shadow_mmio_value;
}

352 353 354 355 356
static inline bool sp_ad_disabled(struct kvm_mmu_page *sp)
{
	return sp->role.ad_disabled;
}

357 358 359 360 361 362 363 364 365 366 367
static inline bool kvm_vcpu_ad_need_write_protect(struct kvm_vcpu *vcpu)
{
	/*
	 * When using the EPT page-modification log, the GPAs in the log
	 * would come from L2 rather than L1.  Therefore, we need to rely
	 * on write protection to record dirty pages.  This also bypasses
	 * PML, since writes now result in a vmexit.
	 */
	return vcpu->arch.mmu == &vcpu->arch.guest_mmu;
}

368 369
static inline bool spte_ad_enabled(u64 spte)
{
370
	MMU_WARN_ON(is_mmio_spte(spte));
371 372 373 374 375 376 377
	return (spte & SPTE_SPECIAL_MASK) != SPTE_AD_DISABLED_MASK;
}

static inline bool spte_ad_need_write_protect(u64 spte)
{
	MMU_WARN_ON(is_mmio_spte(spte));
	return (spte & SPTE_SPECIAL_MASK) != SPTE_AD_ENABLED_MASK;
378 379
}

P
Paolo Bonzini 已提交
380 381 382 383 384
static bool is_nx_huge_page_enabled(void)
{
	return READ_ONCE(nx_huge_pages);
}

385 386
static inline u64 spte_shadow_accessed_mask(u64 spte)
{
387
	MMU_WARN_ON(is_mmio_spte(spte));
388 389 390 391 392
	return spte_ad_enabled(spte) ? shadow_accessed_mask : 0;
}

static inline u64 spte_shadow_dirty_mask(u64 spte)
{
393
	MMU_WARN_ON(is_mmio_spte(spte));
394 395 396
	return spte_ad_enabled(spte) ? shadow_dirty_mask : 0;
}

397 398
static inline bool is_access_track_spte(u64 spte)
{
399
	return !spte_ad_enabled(spte) && (spte & shadow_acc_track_mask) == 0;
400 401
}

402
/*
403 404
 * Due to limited space in PTEs, the MMIO generation is a 19 bit subset of
 * the memslots generation and is derived as follows:
405
 *
406 407
 * Bits 0-8 of the MMIO generation are propagated to spte bits 3-11
 * Bits 9-18 of the MMIO generation are propagated to spte bits 52-61
408
 *
409 410 411 412 413 414
 * The KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS flag is intentionally not included in
 * the MMIO generation number, as doing so would require stealing a bit from
 * the "real" generation number and thus effectively halve the maximum number
 * of MMIO generations that can be handled before encountering a wrap (which
 * requires a full MMU zap).  The flag is instead explicitly queried when
 * checking for MMIO spte cache hits.
415
 */
416
#define MMIO_SPTE_GEN_MASK		GENMASK_ULL(17, 0)
417

418 419 420 421
#define MMIO_SPTE_GEN_LOW_START		3
#define MMIO_SPTE_GEN_LOW_END		11
#define MMIO_SPTE_GEN_LOW_MASK		GENMASK_ULL(MMIO_SPTE_GEN_LOW_END, \
						    MMIO_SPTE_GEN_LOW_START)
422

423 424
#define MMIO_SPTE_GEN_HIGH_START	PT64_SECOND_AVAIL_BITS_SHIFT
#define MMIO_SPTE_GEN_HIGH_END		62
425 426
#define MMIO_SPTE_GEN_HIGH_MASK		GENMASK_ULL(MMIO_SPTE_GEN_HIGH_END, \
						    MMIO_SPTE_GEN_HIGH_START)
427

428
static u64 generation_mmio_spte_mask(u64 gen)
429 430 431
{
	u64 mask;

432
	WARN_ON(gen & ~MMIO_SPTE_GEN_MASK);
433
	BUILD_BUG_ON((MMIO_SPTE_GEN_HIGH_MASK | MMIO_SPTE_GEN_LOW_MASK) & SPTE_SPECIAL_MASK);
434

435 436
	mask = (gen << MMIO_SPTE_GEN_LOW_START) & MMIO_SPTE_GEN_LOW_MASK;
	mask |= (gen << MMIO_SPTE_GEN_HIGH_START) & MMIO_SPTE_GEN_HIGH_MASK;
437 438 439
	return mask;
}

440
static u64 get_mmio_spte_generation(u64 spte)
441
{
442
	u64 gen;
443

444 445
	gen = (spte & MMIO_SPTE_GEN_LOW_MASK) >> MMIO_SPTE_GEN_LOW_START;
	gen |= (spte & MMIO_SPTE_GEN_HIGH_MASK) >> MMIO_SPTE_GEN_HIGH_START;
446 447 448
	return gen;
}

449
static u64 make_mmio_spte(struct kvm_vcpu *vcpu, u64 gfn, unsigned int access)
450
{
451

452
	u64 gen = kvm_vcpu_memslots(vcpu)->generation & MMIO_SPTE_GEN_MASK;
453
	u64 mask = generation_mmio_spte_mask(gen);
454
	u64 gpa = gfn << PAGE_SHIFT;
455

456
	access &= shadow_mmio_access_mask;
457 458 459 460
	mask |= shadow_mmio_value | access;
	mask |= gpa | shadow_nonpresent_or_rsvd_mask;
	mask |= (gpa & shadow_nonpresent_or_rsvd_mask)
		<< shadow_nonpresent_or_rsvd_mask_len;
461

462 463 464 465 466 467 468 469 470 471 472
	return mask;
}

static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
			   unsigned int access)
{
	u64 mask = make_mmio_spte(vcpu, gfn, access);
	unsigned int gen = get_mmio_spte_generation(mask);

	access = mask & ACC_ALL;

473
	trace_mark_mmio_spte(sptep, gfn, access, gen);
474
	mmu_spte_set(sptep, mask);
475 476 477 478
}

static gfn_t get_mmio_spte_gfn(u64 spte)
{
479
	u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
480 481 482 483 484

	gpa |= (spte >> shadow_nonpresent_or_rsvd_mask_len)
	       & shadow_nonpresent_or_rsvd_mask;

	return gpa >> PAGE_SHIFT;
485 486 487 488
}

static unsigned get_mmio_spte_access(u64 spte)
{
489
	return spte & shadow_mmio_access_mask;
490 491
}

492
static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
493
			  kvm_pfn_t pfn, unsigned int access)
494 495
{
	if (unlikely(is_noslot_pfn(pfn))) {
496
		mark_mmio_spte(vcpu, sptep, gfn, access);
497 498 499 500 501
		return true;
	}

	return false;
}
502

503
static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
504
{
505
	u64 kvm_gen, spte_gen, gen;
506

507 508 509
	gen = kvm_vcpu_memslots(vcpu)->generation;
	if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
		return false;
510

511
	kvm_gen = gen & MMIO_SPTE_GEN_MASK;
512 513 514 515
	spte_gen = get_mmio_spte_generation(spte);

	trace_check_mmio_spte(spte, kvm_gen, spte_gen);
	return likely(kvm_gen == spte_gen);
516 517
}

518 519 520 521 522 523 524
/*
 * Sets the shadow PTE masks used by the MMU.
 *
 * Assumptions:
 *  - Setting either @accessed_mask or @dirty_mask requires setting both
 *  - At least one of @accessed_mask or @acc_track_mask must be set
 */
S
Sheng Yang 已提交
525
void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
526
		u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask,
527
		u64 acc_track_mask, u64 me_mask)
S
Sheng Yang 已提交
528
{
529 530
	BUG_ON(!dirty_mask != !accessed_mask);
	BUG_ON(!accessed_mask && !acc_track_mask);
531
	BUG_ON(acc_track_mask & SPTE_SPECIAL_MASK);
532

S
Sheng Yang 已提交
533 534 535 536 537
	shadow_user_mask = user_mask;
	shadow_accessed_mask = accessed_mask;
	shadow_dirty_mask = dirty_mask;
	shadow_nx_mask = nx_mask;
	shadow_x_mask = x_mask;
538
	shadow_present_mask = p_mask;
539
	shadow_acc_track_mask = acc_track_mask;
540
	shadow_me_mask = me_mask;
S
Sheng Yang 已提交
541 542 543
}
EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);

544 545 546
static u8 kvm_get_shadow_phys_bits(void)
{
	/*
547 548 549 550
	 * boot_cpu_data.x86_phys_bits is reduced when MKTME or SME are detected
	 * in CPU detection code, but the processor treats those reduced bits as
	 * 'keyID' thus they are not reserved bits. Therefore KVM needs to look at
	 * the physical address bits reported by CPUID.
551
	 */
552 553
	if (likely(boot_cpu_data.extended_cpuid_level >= 0x80000008))
		return cpuid_eax(0x80000008) & 0xff;
554

555 556 557 558 559 560
	/*
	 * Quite weird to have VMX or SVM but not MAXPHYADDR; probably a VM with
	 * custom CPUID.  Proceed with whatever the kernel found since these features
	 * aren't virtualizable (SME/SEV also require CPUIDs higher than 0x80000008).
	 */
	return boot_cpu_data.x86_phys_bits;
561 562
}

563
static void kvm_mmu_reset_all_pte_masks(void)
564
{
565 566
	u8 low_phys_bits;

567 568 569 570 571 572 573 574
	shadow_user_mask = 0;
	shadow_accessed_mask = 0;
	shadow_dirty_mask = 0;
	shadow_nx_mask = 0;
	shadow_x_mask = 0;
	shadow_mmio_mask = 0;
	shadow_present_mask = 0;
	shadow_acc_track_mask = 0;
575

576 577
	shadow_phys_bits = kvm_get_shadow_phys_bits();

578 579 580 581
	/*
	 * If the CPU has 46 or less physical address bits, then set an
	 * appropriate mask to guard against L1TF attacks. Otherwise, it is
	 * assumed that the CPU is not vulnerable to L1TF.
582 583 584 585 586
	 *
	 * Some Intel CPUs address the L1 cache using more PA bits than are
	 * reported by CPUID. Use the PA width of the L1 cache when possible
	 * to achieve more effective mitigation, e.g. if system RAM overlaps
	 * the most significant bits of legal physical address space.
587
	 */
588 589 590
	shadow_nonpresent_or_rsvd_mask = 0;
	low_phys_bits = boot_cpu_data.x86_cache_bits;
	if (boot_cpu_data.x86_cache_bits <
591
	    52 - shadow_nonpresent_or_rsvd_mask_len) {
592
		shadow_nonpresent_or_rsvd_mask =
593
			rsvd_bits(boot_cpu_data.x86_cache_bits -
594
				  shadow_nonpresent_or_rsvd_mask_len,
595
				  boot_cpu_data.x86_cache_bits - 1);
596
		low_phys_bits -= shadow_nonpresent_or_rsvd_mask_len;
597 598 599
	} else
		WARN_ON_ONCE(boot_cpu_has_bug(X86_BUG_L1TF));

600 601
	shadow_nonpresent_or_rsvd_lower_gfn_mask =
		GENMASK_ULL(low_phys_bits - 1, PAGE_SHIFT);
602 603
}

A
Avi Kivity 已提交
604 605 606 607 608
static int is_cpuid_PSE36(void)
{
	return 1;
}

609 610
static int is_nx(struct kvm_vcpu *vcpu)
{
611
	return vcpu->arch.efer & EFER_NX;
612 613
}

614 615
static int is_shadow_present_pte(u64 pte)
{
616
	return (pte != 0) && !is_mmio_spte(pte);
617 618
}

M
Marcelo Tosatti 已提交
619 620 621 622 623
static int is_large_pte(u64 pte)
{
	return pte & PT_PAGE_SIZE_MASK;
}

624 625 626 627
static int is_last_spte(u64 pte, int level)
{
	if (level == PT_PAGE_TABLE_LEVEL)
		return 1;
628
	if (is_large_pte(pte))
629 630 631 632
		return 1;
	return 0;
}

633 634 635 636 637
static bool is_executable_pte(u64 spte)
{
	return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask;
}

D
Dan Williams 已提交
638
static kvm_pfn_t spte_to_pfn(u64 pte)
639
{
640
	return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
641 642
}

643 644 645 646 647 648 649
static gfn_t pse36_gfn_delta(u32 gpte)
{
	int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;

	return (gpte & PT32_DIR_PSE36_MASK) << shift;
}

650
#ifdef CONFIG_X86_64
A
Avi Kivity 已提交
651
static void __set_spte(u64 *sptep, u64 spte)
652
{
653
	WRITE_ONCE(*sptep, spte);
654 655
}

656
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
657
{
658
	WRITE_ONCE(*sptep, spte);
659 660 661 662 663 664
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	return xchg(sptep, spte);
}
665 666 667

static u64 __get_spte_lockless(u64 *sptep)
{
668
	return READ_ONCE(*sptep);
669
}
670
#else
671 672 673 674 675 676 677
union split_spte {
	struct {
		u32 spte_low;
		u32 spte_high;
	};
	u64 spte;
};
678

679 680 681 682 683 684 685 686 687 688 689 690
static void count_spte_clear(u64 *sptep, u64 spte)
{
	struct kvm_mmu_page *sp =  page_header(__pa(sptep));

	if (is_shadow_present_pte(spte))
		return;

	/* Ensure the spte is completely set before we increase the count */
	smp_wmb();
	sp->clear_spte_count++;
}

691 692 693
static void __set_spte(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;
694

695 696 697 698 699 700 701 702 703 704 705 706
	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	ssptep->spte_high = sspte.spte_high;

	/*
	 * If we map the spte from nonpresent to present, We should store
	 * the high bits firstly, then set present bit, so cpu can not
	 * fetch this spte while we are setting the spte.
	 */
	smp_wmb();

707
	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
708 709
}

710 711 712 713 714 715 716
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

717
	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
718 719 720 721 722 723 724 725

	/*
	 * If we map the spte from present to nonpresent, we should clear
	 * present bit firstly to avoid vcpu fetch the old high bits.
	 */
	smp_wmb();

	ssptep->spte_high = sspte.spte_high;
726
	count_spte_clear(sptep, spte);
727 728 729 730 731 732 733 734 735 736 737
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte, orig;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	/* xchg acts as a barrier before the setting of the high bits */
	orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
738 739
	orig.spte_high = ssptep->spte_high;
	ssptep->spte_high = sspte.spte_high;
740
	count_spte_clear(sptep, spte);
741 742 743

	return orig.spte;
}
744 745 746

/*
 * The idea using the light way get the spte on x86_32 guest is from
747
 * gup_get_pte (mm/gup.c).
748 749 750 751 752 753 754 755 756 757 758 759 760 761
 *
 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
 * coalesces them and we are running out of the MMU lock.  Therefore
 * we need to protect against in-progress updates of the spte.
 *
 * Reading the spte while an update is in progress may get the old value
 * for the high part of the spte.  The race is fine for a present->non-present
 * change (because the high part of the spte is ignored for non-present spte),
 * but for a present->present change we must reread the spte.
 *
 * All such changes are done in two steps (present->non-present and
 * non-present->present), hence it is enough to count the number of
 * present->non-present updates: if it changed while reading the spte,
 * we might have hit the race.  This is done using clear_spte_count.
762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
 */
static u64 __get_spte_lockless(u64 *sptep)
{
	struct kvm_mmu_page *sp =  page_header(__pa(sptep));
	union split_spte spte, *orig = (union split_spte *)sptep;
	int count;

retry:
	count = sp->clear_spte_count;
	smp_rmb();

	spte.spte_low = orig->spte_low;
	smp_rmb();

	spte.spte_high = orig->spte_high;
	smp_rmb();

	if (unlikely(spte.spte_low != orig->spte_low ||
	      count != sp->clear_spte_count))
		goto retry;

	return spte.spte;
}
785 786
#endif

787
static bool spte_can_locklessly_be_made_writable(u64 spte)
788
{
789 790
	return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
		(SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
791 792
}

793 794
static bool spte_has_volatile_bits(u64 spte)
{
795 796 797
	if (!is_shadow_present_pte(spte))
		return false;

798
	/*
799
	 * Always atomically update spte if it can be updated
800 801 802 803
	 * out of mmu-lock, it can ensure dirty bit is not lost,
	 * also, it can help us to get a stable is_writable_pte()
	 * to ensure tlb flush is not missed.
	 */
804 805
	if (spte_can_locklessly_be_made_writable(spte) ||
	    is_access_track_spte(spte))
806 807
		return true;

808
	if (spte_ad_enabled(spte)) {
809 810 811 812
		if ((spte & shadow_accessed_mask) == 0 ||
	    	    (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
			return true;
	}
813

814
	return false;
815 816
}

817
static bool is_accessed_spte(u64 spte)
818
{
819 820 821 822
	u64 accessed_mask = spte_shadow_accessed_mask(spte);

	return accessed_mask ? spte & accessed_mask
			     : !is_access_track_spte(spte);
823 824
}

825
static bool is_dirty_spte(u64 spte)
826
{
827 828 829
	u64 dirty_mask = spte_shadow_dirty_mask(spte);

	return dirty_mask ? spte & dirty_mask : spte & PT_WRITABLE_MASK;
830 831
}

832 833 834 835 836 837 838 839 840 841 842 843
/* Rules for using mmu_spte_set:
 * Set the sptep from nonpresent to present.
 * Note: the sptep being assigned *must* be either not present
 * or in a state where the hardware will not attempt to update
 * the spte.
 */
static void mmu_spte_set(u64 *sptep, u64 new_spte)
{
	WARN_ON(is_shadow_present_pte(*sptep));
	__set_spte(sptep, new_spte);
}

844 845 846
/*
 * Update the SPTE (excluding the PFN), but do not track changes in its
 * accessed/dirty status.
847
 */
848
static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
849
{
850
	u64 old_spte = *sptep;
851

852
	WARN_ON(!is_shadow_present_pte(new_spte));
853

854 855
	if (!is_shadow_present_pte(old_spte)) {
		mmu_spte_set(sptep, new_spte);
856
		return old_spte;
857
	}
858

859
	if (!spte_has_volatile_bits(old_spte))
860
		__update_clear_spte_fast(sptep, new_spte);
861
	else
862
		old_spte = __update_clear_spte_slow(sptep, new_spte);
863

864 865
	WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));

866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887
	return old_spte;
}

/* Rules for using mmu_spte_update:
 * Update the state bits, it means the mapped pfn is not changed.
 *
 * Whenever we overwrite a writable spte with a read-only one we
 * should flush remote TLBs. Otherwise rmap_write_protect
 * will find a read-only spte, even though the writable spte
 * might be cached on a CPU's TLB, the return value indicates this
 * case.
 *
 * Returns true if the TLB needs to be flushed
 */
static bool mmu_spte_update(u64 *sptep, u64 new_spte)
{
	bool flush = false;
	u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);

	if (!is_shadow_present_pte(old_spte))
		return false;

888 889
	/*
	 * For the spte updated out of mmu-lock is safe, since
890
	 * we always atomically update it, see the comments in
891 892
	 * spte_has_volatile_bits().
	 */
893
	if (spte_can_locklessly_be_made_writable(old_spte) &&
894
	      !is_writable_pte(new_spte))
895
		flush = true;
896

897
	/*
898
	 * Flush TLB when accessed/dirty states are changed in the page tables,
899 900 901
	 * to guarantee consistency between TLB and page tables.
	 */

902 903
	if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
		flush = true;
904
		kvm_set_pfn_accessed(spte_to_pfn(old_spte));
905 906 907 908
	}

	if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
		flush = true;
909
		kvm_set_pfn_dirty(spte_to_pfn(old_spte));
910
	}
911

912
	return flush;
913 914
}

915 916 917 918
/*
 * Rules for using mmu_spte_clear_track_bits:
 * It sets the sptep from present to nonpresent, and track the
 * state bits, it is used to clear the last level sptep.
919
 * Returns non-zero if the PTE was previously valid.
920 921 922
 */
static int mmu_spte_clear_track_bits(u64 *sptep)
{
D
Dan Williams 已提交
923
	kvm_pfn_t pfn;
924 925 926
	u64 old_spte = *sptep;

	if (!spte_has_volatile_bits(old_spte))
927
		__update_clear_spte_fast(sptep, 0ull);
928
	else
929
		old_spte = __update_clear_spte_slow(sptep, 0ull);
930

931
	if (!is_shadow_present_pte(old_spte))
932 933 934
		return 0;

	pfn = spte_to_pfn(old_spte);
935 936 937 938 939 940

	/*
	 * KVM does not hold the refcount of the page used by
	 * kvm mmu, before reclaiming the page, we should
	 * unmap it from mmu first.
	 */
941
	WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
942

943
	if (is_accessed_spte(old_spte))
944
		kvm_set_pfn_accessed(pfn);
945 946

	if (is_dirty_spte(old_spte))
947
		kvm_set_pfn_dirty(pfn);
948

949 950 951 952 953 954 955 956 957 958
	return 1;
}

/*
 * Rules for using mmu_spte_clear_no_track:
 * Directly clear spte without caring the state bits of sptep,
 * it is used to set the upper level spte.
 */
static void mmu_spte_clear_no_track(u64 *sptep)
{
959
	__update_clear_spte_fast(sptep, 0ull);
960 961
}

962 963 964 965 966
static u64 mmu_spte_get_lockless(u64 *sptep)
{
	return __get_spte_lockless(sptep);
}

967 968
static u64 mark_spte_for_access_track(u64 spte)
{
969
	if (spte_ad_enabled(spte))
970 971
		return spte & ~shadow_accessed_mask;

972
	if (is_access_track_spte(spte))
973 974 975
		return spte;

	/*
976 977 978
	 * Making an Access Tracking PTE will result in removal of write access
	 * from the PTE. So, verify that we will be able to restore the write
	 * access in the fast page fault path later on.
979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994
	 */
	WARN_ONCE((spte & PT_WRITABLE_MASK) &&
		  !spte_can_locklessly_be_made_writable(spte),
		  "kvm: Writable SPTE is not locklessly dirty-trackable\n");

	WARN_ONCE(spte & (shadow_acc_track_saved_bits_mask <<
			  shadow_acc_track_saved_bits_shift),
		  "kvm: Access Tracking saved bit locations are not zero\n");

	spte |= (spte & shadow_acc_track_saved_bits_mask) <<
		shadow_acc_track_saved_bits_shift;
	spte &= ~shadow_acc_track_mask;

	return spte;
}

995 996 997 998 999 1000 1001
/* Restore an acc-track PTE back to a regular PTE */
static u64 restore_acc_track_spte(u64 spte)
{
	u64 new_spte = spte;
	u64 saved_bits = (spte >> shadow_acc_track_saved_bits_shift)
			 & shadow_acc_track_saved_bits_mask;

1002
	WARN_ON_ONCE(spte_ad_enabled(spte));
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
	WARN_ON_ONCE(!is_access_track_spte(spte));

	new_spte &= ~shadow_acc_track_mask;
	new_spte &= ~(shadow_acc_track_saved_bits_mask <<
		      shadow_acc_track_saved_bits_shift);
	new_spte |= saved_bits;

	return new_spte;
}

1013 1014 1015 1016 1017 1018 1019 1020
/* Returns the Accessed status of the PTE and resets it at the same time. */
static bool mmu_spte_age(u64 *sptep)
{
	u64 spte = mmu_spte_get_lockless(sptep);

	if (!is_accessed_spte(spte))
		return false;

1021
	if (spte_ad_enabled(spte)) {
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
		clear_bit((ffs(shadow_accessed_mask) - 1),
			  (unsigned long *)sptep);
	} else {
		/*
		 * Capture the dirty status of the page, so that it doesn't get
		 * lost when the SPTE is marked for access tracking.
		 */
		if (is_writable_pte(spte))
			kvm_set_pfn_dirty(spte_to_pfn(spte));

		spte = mark_spte_for_access_track(spte);
		mmu_spte_update_no_track(sptep, spte);
	}

	return true;
}

1039 1040
static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
{
1041 1042 1043 1044 1045
	/*
	 * Prevent page table teardown by making any free-er wait during
	 * kvm_flush_remote_tlbs() IPI to all active vcpus.
	 */
	local_irq_disable();
1046

1047 1048 1049 1050
	/*
	 * Make sure a following spte read is not reordered ahead of the write
	 * to vcpu->mode.
	 */
1051
	smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
1052 1053 1054 1055
}

static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
{
1056 1057
	/*
	 * Make sure the write to vcpu->mode is not reordered in front of
1058
	 * reads to sptes.  If it does, kvm_mmu_commit_zap_page() can see us
1059 1060
	 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
	 */
1061
	smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
1062
	local_irq_enable();
1063 1064
}

1065
static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
1066
				  struct kmem_cache *base_cache, int min)
1067 1068 1069 1070
{
	void *obj;

	if (cache->nobjs >= min)
1071
		return 0;
1072
	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
1073
		obj = kmem_cache_zalloc(base_cache, GFP_KERNEL_ACCOUNT);
1074
		if (!obj)
1075
			return cache->nobjs >= min ? 0 : -ENOMEM;
1076 1077
		cache->objects[cache->nobjs++] = obj;
	}
1078
	return 0;
1079 1080
}

1081 1082 1083 1084 1085
static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
{
	return cache->nobjs;
}

1086 1087
static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
				  struct kmem_cache *cache)
1088 1089
{
	while (mc->nobjs)
1090
		kmem_cache_free(cache, mc->objects[--mc->nobjs]);
1091 1092
}

A
Avi Kivity 已提交
1093
static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
1094
				       int min)
A
Avi Kivity 已提交
1095
{
1096
	void *page;
A
Avi Kivity 已提交
1097 1098 1099 1100

	if (cache->nobjs >= min)
		return 0;
	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
1101
		page = (void *)__get_free_page(GFP_KERNEL_ACCOUNT);
A
Avi Kivity 已提交
1102
		if (!page)
1103
			return cache->nobjs >= min ? 0 : -ENOMEM;
1104
		cache->objects[cache->nobjs++] = page;
A
Avi Kivity 已提交
1105 1106 1107 1108 1109 1110 1111
	}
	return 0;
}

static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
{
	while (mc->nobjs)
1112
		free_page((unsigned long)mc->objects[--mc->nobjs]);
A
Avi Kivity 已提交
1113 1114
}

1115
static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
1116
{
1117 1118
	int r;

1119
	r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
1120
				   pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
1121 1122
	if (r)
		goto out;
1123
	r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
1124 1125
	if (r)
		goto out;
1126
	r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
1127
				   mmu_page_header_cache, 4);
1128 1129
out:
	return r;
1130 1131 1132 1133
}

static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
{
1134 1135
	mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
				pte_list_desc_cache);
1136
	mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
1137 1138
	mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
				mmu_page_header_cache);
1139 1140
}

1141
static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
1142 1143 1144 1145 1146 1147 1148 1149
{
	void *p;

	BUG_ON(!mc->nobjs);
	p = mc->objects[--mc->nobjs];
	return p;
}

1150
static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
1151
{
1152
	return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
1153 1154
}

1155
static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
1156
{
1157
	kmem_cache_free(pte_list_desc_cache, pte_list_desc);
1158 1159
}

1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
{
	if (!sp->role.direct)
		return sp->gfns[index];

	return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
}

static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
{
1170
	if (!sp->role.direct) {
1171
		sp->gfns[index] = gfn;
1172 1173 1174 1175 1176 1177 1178 1179
		return;
	}

	if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
		pr_err_ratelimited("gfn mismatch under direct page %llx "
				   "(expected %llx, got %llx)\n",
				   sp->gfn,
				   kvm_mmu_page_get_gfn(sp, index), gfn);
1180 1181
}

M
Marcelo Tosatti 已提交
1182
/*
1183 1184
 * Return the pointer to the large page information for a given gfn,
 * handling slots that are not large page aligned.
M
Marcelo Tosatti 已提交
1185
 */
1186 1187 1188
static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
					      struct kvm_memory_slot *slot,
					      int level)
M
Marcelo Tosatti 已提交
1189 1190 1191
{
	unsigned long idx;

1192
	idx = gfn_to_index(gfn, slot->base_gfn, level);
1193
	return &slot->arch.lpage_info[level - 2][idx];
M
Marcelo Tosatti 已提交
1194 1195
}

1196 1197 1198 1199 1200 1201
static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
					    gfn_t gfn, int count)
{
	struct kvm_lpage_info *linfo;
	int i;

1202
	for (i = PT_DIRECTORY_LEVEL; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
		linfo = lpage_info_slot(gfn, slot, i);
		linfo->disallow_lpage += count;
		WARN_ON(linfo->disallow_lpage < 0);
	}
}

void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
{
	update_gfn_disallow_lpage_count(slot, gfn, 1);
}

void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
{
	update_gfn_disallow_lpage_count(slot, gfn, -1);
}

1219
static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
M
Marcelo Tosatti 已提交
1220
{
1221
	struct kvm_memslots *slots;
1222
	struct kvm_memory_slot *slot;
1223
	gfn_t gfn;
M
Marcelo Tosatti 已提交
1224

1225
	kvm->arch.indirect_shadow_pages++;
1226
	gfn = sp->gfn;
1227 1228
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
1229 1230 1231 1232 1233 1234

	/* the non-leaf shadow pages are keeping readonly. */
	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
		return kvm_slot_page_track_add_page(kvm, slot, gfn,
						    KVM_PAGE_TRACK_WRITE);

1235
	kvm_mmu_gfn_disallow_lpage(slot, gfn);
M
Marcelo Tosatti 已提交
1236 1237
}

P
Paolo Bonzini 已提交
1238 1239 1240 1241 1242 1243
static void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
{
	if (sp->lpage_disallowed)
		return;

	++kvm->stat.nx_lpage_splits;
1244 1245
	list_add_tail(&sp->lpage_disallowed_link,
		      &kvm->arch.lpage_disallowed_mmu_pages);
P
Paolo Bonzini 已提交
1246 1247 1248
	sp->lpage_disallowed = true;
}

1249
static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
M
Marcelo Tosatti 已提交
1250
{
1251
	struct kvm_memslots *slots;
1252
	struct kvm_memory_slot *slot;
1253
	gfn_t gfn;
M
Marcelo Tosatti 已提交
1254

1255
	kvm->arch.indirect_shadow_pages--;
1256
	gfn = sp->gfn;
1257 1258
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
1259 1260 1261 1262
	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
		return kvm_slot_page_track_remove_page(kvm, slot, gfn,
						       KVM_PAGE_TRACK_WRITE);

1263
	kvm_mmu_gfn_allow_lpage(slot, gfn);
M
Marcelo Tosatti 已提交
1264 1265
}

P
Paolo Bonzini 已提交
1266 1267 1268 1269
static void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
{
	--kvm->stat.nx_lpage_splits;
	sp->lpage_disallowed = false;
1270
	list_del(&sp->lpage_disallowed_link);
P
Paolo Bonzini 已提交
1271 1272
}

1273 1274 1275
static struct kvm_memory_slot *
gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
			    bool no_dirty_log)
M
Marcelo Tosatti 已提交
1276 1277
{
	struct kvm_memory_slot *slot;
1278

1279
	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1280 1281 1282 1283
	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
		return NULL;
	if (no_dirty_log && slot->dirty_bitmap)
		return NULL;
1284 1285 1286 1287

	return slot;
}

1288
/*
1289
 * About rmap_head encoding:
1290
 *
1291 1292
 * If the bit zero of rmap_head->val is clear, then it points to the only spte
 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
1293
 * pte_list_desc containing more mappings.
1294 1295 1296 1297
 */

/*
 * Returns the number of pointers in the rmap chain, not counting the new one.
1298
 */
1299
static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
1300
			struct kvm_rmap_head *rmap_head)
1301
{
1302
	struct pte_list_desc *desc;
1303
	int i, count = 0;
1304

1305
	if (!rmap_head->val) {
1306
		rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
1307 1308
		rmap_head->val = (unsigned long)spte;
	} else if (!(rmap_head->val & 1)) {
1309 1310
		rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
		desc = mmu_alloc_pte_list_desc(vcpu);
1311
		desc->sptes[0] = (u64 *)rmap_head->val;
A
Avi Kivity 已提交
1312
		desc->sptes[1] = spte;
1313
		rmap_head->val = (unsigned long)desc | 1;
1314
		++count;
1315
	} else {
1316
		rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
1317
		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1318
		while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
1319
			desc = desc->more;
1320
			count += PTE_LIST_EXT;
1321
		}
1322 1323
		if (desc->sptes[PTE_LIST_EXT-1]) {
			desc->more = mmu_alloc_pte_list_desc(vcpu);
1324 1325
			desc = desc->more;
		}
A
Avi Kivity 已提交
1326
		for (i = 0; desc->sptes[i]; ++i)
1327
			++count;
A
Avi Kivity 已提交
1328
		desc->sptes[i] = spte;
1329
	}
1330
	return count;
1331 1332
}

1333
static void
1334 1335 1336
pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
			   struct pte_list_desc *desc, int i,
			   struct pte_list_desc *prev_desc)
1337 1338 1339
{
	int j;

1340
	for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
1341
		;
A
Avi Kivity 已提交
1342 1343
	desc->sptes[i] = desc->sptes[j];
	desc->sptes[j] = NULL;
1344 1345 1346
	if (j != 0)
		return;
	if (!prev_desc && !desc->more)
1347
		rmap_head->val = 0;
1348 1349 1350 1351
	else
		if (prev_desc)
			prev_desc->more = desc->more;
		else
1352
			rmap_head->val = (unsigned long)desc->more | 1;
1353
	mmu_free_pte_list_desc(desc);
1354 1355
}

1356
static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
1357
{
1358 1359
	struct pte_list_desc *desc;
	struct pte_list_desc *prev_desc;
1360 1361
	int i;

1362
	if (!rmap_head->val) {
1363
		pr_err("%s: %p 0->BUG\n", __func__, spte);
1364
		BUG();
1365
	} else if (!(rmap_head->val & 1)) {
1366
		rmap_printk("%s:  %p 1->0\n", __func__, spte);
1367
		if ((u64 *)rmap_head->val != spte) {
1368
			pr_err("%s:  %p 1->BUG\n", __func__, spte);
1369 1370
			BUG();
		}
1371
		rmap_head->val = 0;
1372
	} else {
1373
		rmap_printk("%s:  %p many->many\n", __func__, spte);
1374
		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1375 1376
		prev_desc = NULL;
		while (desc) {
1377
			for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
A
Avi Kivity 已提交
1378
				if (desc->sptes[i] == spte) {
1379 1380
					pte_list_desc_remove_entry(rmap_head,
							desc, i, prev_desc);
1381 1382
					return;
				}
1383
			}
1384 1385 1386
			prev_desc = desc;
			desc = desc->more;
		}
1387
		pr_err("%s: %p many->many\n", __func__, spte);
1388 1389 1390 1391
		BUG();
	}
}

1392 1393 1394 1395 1396 1397
static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep)
{
	mmu_spte_clear_track_bits(sptep);
	__pte_list_remove(sptep, rmap_head);
}

1398 1399
static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
					   struct kvm_memory_slot *slot)
1400
{
1401
	unsigned long idx;
1402

1403
	idx = gfn_to_index(gfn, slot->base_gfn, level);
1404
	return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1405 1406
}

1407 1408
static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
					 struct kvm_mmu_page *sp)
1409
{
1410
	struct kvm_memslots *slots;
1411 1412
	struct kvm_memory_slot *slot;

1413 1414
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
1415
	return __gfn_to_rmap(gfn, sp->role.level, slot);
1416 1417
}

1418 1419 1420 1421 1422 1423 1424 1425
static bool rmap_can_add(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu_memory_cache *cache;

	cache = &vcpu->arch.mmu_pte_list_desc_cache;
	return mmu_memory_cache_free_objects(cache);
}

1426 1427 1428
static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
{
	struct kvm_mmu_page *sp;
1429
	struct kvm_rmap_head *rmap_head;
1430 1431 1432

	sp = page_header(__pa(spte));
	kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1433 1434
	rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
	return pte_list_add(vcpu, spte, rmap_head);
1435 1436 1437 1438 1439 1440
}

static void rmap_remove(struct kvm *kvm, u64 *spte)
{
	struct kvm_mmu_page *sp;
	gfn_t gfn;
1441
	struct kvm_rmap_head *rmap_head;
1442 1443 1444

	sp = page_header(__pa(spte));
	gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1445
	rmap_head = gfn_to_rmap(kvm, gfn, sp);
1446
	__pte_list_remove(spte, rmap_head);
1447 1448
}

1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
/*
 * Used by the following functions to iterate through the sptes linked by a
 * rmap.  All fields are private and not assumed to be used outside.
 */
struct rmap_iterator {
	/* private fields */
	struct pte_list_desc *desc;	/* holds the sptep if not NULL */
	int pos;			/* index of the sptep */
};

/*
 * Iteration must be started by this function.  This should also be used after
 * removing/dropping sptes from the rmap link because in such cases the
M
Miaohe Lin 已提交
1462
 * information in the iterator may not be valid.
1463 1464 1465
 *
 * Returns sptep if found, NULL otherwise.
 */
1466 1467
static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
			   struct rmap_iterator *iter)
1468
{
1469 1470
	u64 *sptep;

1471
	if (!rmap_head->val)
1472 1473
		return NULL;

1474
	if (!(rmap_head->val & 1)) {
1475
		iter->desc = NULL;
1476 1477
		sptep = (u64 *)rmap_head->val;
		goto out;
1478 1479
	}

1480
	iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1481
	iter->pos = 0;
1482 1483 1484 1485
	sptep = iter->desc->sptes[iter->pos];
out:
	BUG_ON(!is_shadow_present_pte(*sptep));
	return sptep;
1486 1487 1488 1489 1490 1491 1492 1493 1494
}

/*
 * Must be used with a valid iterator: e.g. after rmap_get_first().
 *
 * Returns sptep if found, NULL otherwise.
 */
static u64 *rmap_get_next(struct rmap_iterator *iter)
{
1495 1496
	u64 *sptep;

1497 1498 1499 1500 1501
	if (iter->desc) {
		if (iter->pos < PTE_LIST_EXT - 1) {
			++iter->pos;
			sptep = iter->desc->sptes[iter->pos];
			if (sptep)
1502
				goto out;
1503 1504 1505 1506 1507 1508 1509
		}

		iter->desc = iter->desc->more;

		if (iter->desc) {
			iter->pos = 0;
			/* desc->sptes[0] cannot be NULL */
1510 1511
			sptep = iter->desc->sptes[iter->pos];
			goto out;
1512 1513 1514 1515
		}
	}

	return NULL;
1516 1517 1518
out:
	BUG_ON(!is_shadow_present_pte(*sptep));
	return sptep;
1519 1520
}

1521 1522
#define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)			\
	for (_spte_ = rmap_get_first(_rmap_head_, _iter_);		\
1523
	     _spte_; _spte_ = rmap_get_next(_iter_))
1524

1525
static void drop_spte(struct kvm *kvm, u64 *sptep)
1526
{
1527
	if (mmu_spte_clear_track_bits(sptep))
1528
		rmap_remove(kvm, sptep);
A
Avi Kivity 已提交
1529 1530
}

1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546

static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
{
	if (is_large_pte(*sptep)) {
		WARN_ON(page_header(__pa(sptep))->role.level ==
			PT_PAGE_TABLE_LEVEL);
		drop_spte(kvm, sptep);
		--kvm->stat.lpages;
		return true;
	}

	return false;
}

static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
{
1547 1548 1549 1550 1551 1552
	if (__drop_large_spte(vcpu->kvm, sptep)) {
		struct kvm_mmu_page *sp = page_header(__pa(sptep));

		kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
			KVM_PAGES_PER_HPAGE(sp->role.level));
	}
1553 1554 1555
}

/*
1556
 * Write-protect on the specified @sptep, @pt_protect indicates whether
1557
 * spte write-protection is caused by protecting shadow page table.
1558
 *
T
Tiejun Chen 已提交
1559
 * Note: write protection is difference between dirty logging and spte
1560 1561 1562 1563 1564
 * protection:
 * - for dirty logging, the spte can be set to writable at anytime if
 *   its dirty bitmap is properly set.
 * - for spte protection, the spte can be writable only after unsync-ing
 *   shadow page.
1565
 *
1566
 * Return true if tlb need be flushed.
1567
 */
1568
static bool spte_write_protect(u64 *sptep, bool pt_protect)
1569 1570 1571
{
	u64 spte = *sptep;

1572
	if (!is_writable_pte(spte) &&
1573
	      !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1574 1575 1576 1577
		return false;

	rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);

1578 1579
	if (pt_protect)
		spte &= ~SPTE_MMU_WRITEABLE;
1580
	spte = spte & ~PT_WRITABLE_MASK;
1581

1582
	return mmu_spte_update(sptep, spte);
1583 1584
}

1585 1586
static bool __rmap_write_protect(struct kvm *kvm,
				 struct kvm_rmap_head *rmap_head,
1587
				 bool pt_protect)
1588
{
1589 1590
	u64 *sptep;
	struct rmap_iterator iter;
1591
	bool flush = false;
1592

1593
	for_each_rmap_spte(rmap_head, &iter, sptep)
1594
		flush |= spte_write_protect(sptep, pt_protect);
1595

1596
	return flush;
1597 1598
}

1599
static bool spte_clear_dirty(u64 *sptep)
1600 1601 1602 1603 1604
{
	u64 spte = *sptep;

	rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);

1605
	MMU_WARN_ON(!spte_ad_enabled(spte));
1606 1607 1608 1609
	spte &= ~shadow_dirty_mask;
	return mmu_spte_update(sptep, spte);
}

1610
static bool spte_wrprot_for_clear_dirty(u64 *sptep)
1611 1612 1613
{
	bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
					       (unsigned long *)sptep);
1614
	if (was_writable && !spte_ad_enabled(*sptep))
1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625
		kvm_set_pfn_dirty(spte_to_pfn(*sptep));

	return was_writable;
}

/*
 * Gets the GFN ready for another round of dirty logging by clearing the
 *	- D bit on ad-enabled SPTEs, and
 *	- W bit on ad-disabled SPTEs.
 * Returns true iff any D or W bits were cleared.
 */
1626
static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1627 1628 1629 1630 1631
{
	u64 *sptep;
	struct rmap_iterator iter;
	bool flush = false;

1632
	for_each_rmap_spte(rmap_head, &iter, sptep)
1633 1634
		if (spte_ad_need_write_protect(*sptep))
			flush |= spte_wrprot_for_clear_dirty(sptep);
1635
		else
1636
			flush |= spte_clear_dirty(sptep);
1637 1638 1639 1640

	return flush;
}

1641
static bool spte_set_dirty(u64 *sptep)
1642 1643 1644 1645 1646
{
	u64 spte = *sptep;

	rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);

1647
	/*
1648
	 * Similar to the !kvm_x86_ops.slot_disable_log_dirty case,
1649 1650 1651
	 * do not bother adding back write access to pages marked
	 * SPTE_AD_WRPROT_ONLY_MASK.
	 */
1652 1653 1654 1655 1656
	spte |= shadow_dirty_mask;

	return mmu_spte_update(sptep, spte);
}

1657
static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1658 1659 1660 1661 1662
{
	u64 *sptep;
	struct rmap_iterator iter;
	bool flush = false;

1663
	for_each_rmap_spte(rmap_head, &iter, sptep)
1664 1665
		if (spte_ad_enabled(*sptep))
			flush |= spte_set_dirty(sptep);
1666 1667 1668 1669

	return flush;
}

1670
/**
1671
 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1672 1673 1674 1675 1676 1677 1678 1679
 * @kvm: kvm instance
 * @slot: slot to protect
 * @gfn_offset: start of the BITS_PER_LONG pages we care about
 * @mask: indicates which pages we should protect
 *
 * Used when we do not need to care about huge page mappings: e.g. during dirty
 * logging we do not have any such mappings.
 */
1680
static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1681 1682
				     struct kvm_memory_slot *slot,
				     gfn_t gfn_offset, unsigned long mask)
1683
{
1684
	struct kvm_rmap_head *rmap_head;
1685

1686
	while (mask) {
1687 1688 1689
		rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
					  PT_PAGE_TABLE_LEVEL, slot);
		__rmap_write_protect(kvm, rmap_head, false);
M
Marcelo Tosatti 已提交
1690

1691 1692 1693
		/* clear the first set bit */
		mask &= mask - 1;
	}
1694 1695
}

1696
/**
1697 1698
 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
 * protect the page if the D-bit isn't supported.
1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709
 * @kvm: kvm instance
 * @slot: slot to clear D-bit
 * @gfn_offset: start of the BITS_PER_LONG pages we care about
 * @mask: indicates which pages we should clear D-bit
 *
 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
 */
void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
				     struct kvm_memory_slot *slot,
				     gfn_t gfn_offset, unsigned long mask)
{
1710
	struct kvm_rmap_head *rmap_head;
1711 1712

	while (mask) {
1713 1714 1715
		rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
					  PT_PAGE_TABLE_LEVEL, slot);
		__rmap_clear_dirty(kvm, rmap_head);
1716 1717 1718 1719 1720 1721 1722

		/* clear the first set bit */
		mask &= mask - 1;
	}
}
EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);

1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736
/**
 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
 * PT level pages.
 *
 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
 * enable dirty logging for them.
 *
 * Used when we do not need to care about huge page mappings: e.g. during dirty
 * logging we do not have any such mappings.
 */
void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
				struct kvm_memory_slot *slot,
				gfn_t gfn_offset, unsigned long mask)
{
1737 1738
	if (kvm_x86_ops.enable_log_dirty_pt_masked)
		kvm_x86_ops.enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1739 1740 1741
				mask);
	else
		kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1742 1743
}

1744 1745 1746 1747 1748 1749 1750 1751 1752
/**
 * kvm_arch_write_log_dirty - emulate dirty page logging
 * @vcpu: Guest mode vcpu
 *
 * Emulate arch specific page modification logging for the
 * nested hypervisor
 */
int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu)
{
1753 1754
	if (kvm_x86_ops.write_log_dirty)
		return kvm_x86_ops.write_log_dirty(vcpu);
1755 1756 1757 1758

	return 0;
}

1759 1760
bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
				    struct kvm_memory_slot *slot, u64 gfn)
1761
{
1762
	struct kvm_rmap_head *rmap_head;
1763
	int i;
1764
	bool write_protected = false;
1765

1766
	for (i = PT_PAGE_TABLE_LEVEL; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
1767
		rmap_head = __gfn_to_rmap(gfn, i, slot);
1768
		write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1769 1770 1771
	}

	return write_protected;
1772 1773
}

1774 1775 1776 1777 1778 1779 1780 1781
static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
{
	struct kvm_memory_slot *slot;

	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
	return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
}

1782
static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1783
{
1784 1785
	u64 *sptep;
	struct rmap_iterator iter;
1786
	bool flush = false;
1787

1788
	while ((sptep = rmap_get_first(rmap_head, &iter))) {
1789
		rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1790

1791
		pte_list_remove(rmap_head, sptep);
1792
		flush = true;
1793
	}
1794

1795 1796 1797
	return flush;
}

1798
static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1799 1800 1801
			   struct kvm_memory_slot *slot, gfn_t gfn, int level,
			   unsigned long data)
{
1802
	return kvm_zap_rmapp(kvm, rmap_head);
1803 1804
}

1805
static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1806 1807
			     struct kvm_memory_slot *slot, gfn_t gfn, int level,
			     unsigned long data)
1808
{
1809 1810
	u64 *sptep;
	struct rmap_iterator iter;
1811
	int need_flush = 0;
1812
	u64 new_spte;
1813
	pte_t *ptep = (pte_t *)data;
D
Dan Williams 已提交
1814
	kvm_pfn_t new_pfn;
1815 1816 1817

	WARN_ON(pte_huge(*ptep));
	new_pfn = pte_pfn(*ptep);
1818

1819
restart:
1820
	for_each_rmap_spte(rmap_head, &iter, sptep) {
1821
		rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1822
			    sptep, *sptep, gfn, level);
1823

1824
		need_flush = 1;
1825

1826
		if (pte_write(*ptep)) {
1827
			pte_list_remove(rmap_head, sptep);
1828
			goto restart;
1829
		} else {
1830
			new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1831 1832 1833 1834
			new_spte |= (u64)new_pfn << PAGE_SHIFT;

			new_spte &= ~PT_WRITABLE_MASK;
			new_spte &= ~SPTE_HOST_WRITEABLE;
1835 1836

			new_spte = mark_spte_for_access_track(new_spte);
1837 1838 1839

			mmu_spte_clear_track_bits(sptep);
			mmu_spte_set(sptep, new_spte);
1840 1841
		}
	}
1842

1843 1844 1845 1846 1847
	if (need_flush && kvm_available_flush_tlb_with_range()) {
		kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
		return 0;
	}

1848
	return need_flush;
1849 1850
}

1851 1852 1853 1854 1855 1856 1857 1858 1859 1860
struct slot_rmap_walk_iterator {
	/* input fields. */
	struct kvm_memory_slot *slot;
	gfn_t start_gfn;
	gfn_t end_gfn;
	int start_level;
	int end_level;

	/* output fields. */
	gfn_t gfn;
1861
	struct kvm_rmap_head *rmap;
1862 1863 1864
	int level;

	/* private field. */
1865
	struct kvm_rmap_head *end_rmap;
1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918
};

static void
rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
{
	iterator->level = level;
	iterator->gfn = iterator->start_gfn;
	iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
	iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
					   iterator->slot);
}

static void
slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
		    struct kvm_memory_slot *slot, int start_level,
		    int end_level, gfn_t start_gfn, gfn_t end_gfn)
{
	iterator->slot = slot;
	iterator->start_level = start_level;
	iterator->end_level = end_level;
	iterator->start_gfn = start_gfn;
	iterator->end_gfn = end_gfn;

	rmap_walk_init_level(iterator, iterator->start_level);
}

static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
{
	return !!iterator->rmap;
}

static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
{
	if (++iterator->rmap <= iterator->end_rmap) {
		iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
		return;
	}

	if (++iterator->level > iterator->end_level) {
		iterator->rmap = NULL;
		return;
	}

	rmap_walk_init_level(iterator, iterator->level);
}

#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,	\
	   _start_gfn, _end_gfn, _iter_)				\
	for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,		\
				 _end_level_, _start_gfn, _end_gfn);	\
	     slot_rmap_walk_okay(_iter_);				\
	     slot_rmap_walk_next(_iter_))

1919 1920 1921 1922 1923
static int kvm_handle_hva_range(struct kvm *kvm,
				unsigned long start,
				unsigned long end,
				unsigned long data,
				int (*handler)(struct kvm *kvm,
1924
					       struct kvm_rmap_head *rmap_head,
1925
					       struct kvm_memory_slot *slot,
1926 1927
					       gfn_t gfn,
					       int level,
1928
					       unsigned long data))
1929
{
1930
	struct kvm_memslots *slots;
1931
	struct kvm_memory_slot *memslot;
1932 1933
	struct slot_rmap_walk_iterator iterator;
	int ret = 0;
1934
	int i;
1935

1936 1937 1938 1939 1940
	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
		kvm_for_each_memslot(memslot, slots) {
			unsigned long hva_start, hva_end;
			gfn_t gfn_start, gfn_end;
1941

1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954
			hva_start = max(start, memslot->userspace_addr);
			hva_end = min(end, memslot->userspace_addr +
				      (memslot->npages << PAGE_SHIFT));
			if (hva_start >= hva_end)
				continue;
			/*
			 * {gfn(page) | page intersects with [hva_start, hva_end)} =
			 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
			 */
			gfn_start = hva_to_gfn_memslot(hva_start, memslot);
			gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);

			for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
1955
						 KVM_MAX_HUGEPAGE_LEVEL,
1956 1957 1958 1959 1960
						 gfn_start, gfn_end - 1,
						 &iterator)
				ret |= handler(kvm, iterator.rmap, memslot,
					       iterator.gfn, iterator.level, data);
		}
1961 1962
	}

1963
	return ret;
1964 1965
}

1966 1967
static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
			  unsigned long data,
1968 1969
			  int (*handler)(struct kvm *kvm,
					 struct kvm_rmap_head *rmap_head,
1970
					 struct kvm_memory_slot *slot,
1971
					 gfn_t gfn, int level,
1972 1973 1974
					 unsigned long data))
{
	return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1975 1976
}

1977 1978 1979 1980 1981
int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
{
	return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
}

1982
int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1983
{
1984
	return kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1985 1986
}

1987
static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1988 1989
			 struct kvm_memory_slot *slot, gfn_t gfn, int level,
			 unsigned long data)
1990
{
1991
	u64 *sptep;
1992
	struct rmap_iterator uninitialized_var(iter);
1993 1994
	int young = 0;

1995 1996
	for_each_rmap_spte(rmap_head, &iter, sptep)
		young |= mmu_spte_age(sptep);
1997

1998
	trace_kvm_age_page(gfn, level, slot, young);
1999 2000 2001
	return young;
}

2002
static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
2003 2004
			      struct kvm_memory_slot *slot, gfn_t gfn,
			      int level, unsigned long data)
A
Andrea Arcangeli 已提交
2005
{
2006 2007
	u64 *sptep;
	struct rmap_iterator iter;
A
Andrea Arcangeli 已提交
2008

2009 2010 2011 2012
	for_each_rmap_spte(rmap_head, &iter, sptep)
		if (is_accessed_spte(*sptep))
			return 1;
	return 0;
A
Andrea Arcangeli 已提交
2013 2014
}

2015 2016
#define RMAP_RECYCLE_THRESHOLD 1000

2017
static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
2018
{
2019
	struct kvm_rmap_head *rmap_head;
2020 2021 2022
	struct kvm_mmu_page *sp;

	sp = page_header(__pa(spte));
2023

2024
	rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
2025

2026
	kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
2027 2028
	kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
			KVM_PAGES_PER_HPAGE(sp->role.level));
2029 2030
}

A
Andres Lagar-Cavilla 已提交
2031
int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
2032
{
A
Andres Lagar-Cavilla 已提交
2033
	return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
2034 2035
}

A
Andrea Arcangeli 已提交
2036 2037 2038 2039 2040
int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
{
	return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
}

2041
#ifdef MMU_DEBUG
2042
static int is_empty_shadow_page(u64 *spt)
A
Avi Kivity 已提交
2043
{
2044 2045 2046
	u64 *pos;
	u64 *end;

2047
	for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
2048
		if (is_shadow_present_pte(*pos)) {
2049
			printk(KERN_ERR "%s: %p %llx\n", __func__,
2050
			       pos, *pos);
A
Avi Kivity 已提交
2051
			return 0;
2052
		}
A
Avi Kivity 已提交
2053 2054
	return 1;
}
2055
#endif
A
Avi Kivity 已提交
2056

2057 2058 2059 2060 2061 2062
/*
 * This value is the sum of all of the kvm instances's
 * kvm->arch.n_used_mmu_pages values.  We need a global,
 * aggregate version in order to make the slab shrinker
 * faster
 */
2063
static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, unsigned long nr)
2064 2065 2066 2067 2068
{
	kvm->arch.n_used_mmu_pages += nr;
	percpu_counter_add(&kvm_total_used_mmu_pages, nr);
}

2069
static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
2070
{
2071
	MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
2072
	hlist_del(&sp->hash_link);
2073 2074
	list_del(&sp->link);
	free_page((unsigned long)sp->spt);
2075 2076
	if (!sp->role.direct)
		free_page((unsigned long)sp->gfns);
2077
	kmem_cache_free(mmu_page_header_cache, sp);
2078 2079
}

2080 2081
static unsigned kvm_page_table_hashfn(gfn_t gfn)
{
2082
	return hash_64(gfn, KVM_MMU_HASH_SHIFT);
2083 2084
}

2085
static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
2086
				    struct kvm_mmu_page *sp, u64 *parent_pte)
2087 2088 2089 2090
{
	if (!parent_pte)
		return;

2091
	pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
2092 2093
}

2094
static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
2095 2096
				       u64 *parent_pte)
{
2097
	__pte_list_remove(parent_pte, &sp->parent_ptes);
2098 2099
}

2100 2101 2102 2103
static void drop_parent_pte(struct kvm_mmu_page *sp,
			    u64 *parent_pte)
{
	mmu_page_remove_parent_pte(sp, parent_pte);
2104
	mmu_spte_clear_no_track(parent_pte);
2105 2106
}

2107
static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
M
Marcelo Tosatti 已提交
2108
{
2109
	struct kvm_mmu_page *sp;
2110

2111 2112
	sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
	sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
2113
	if (!direct)
2114
		sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
2115
	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
2116 2117 2118 2119 2120 2121

	/*
	 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
	 * depends on valid pages being added to the head of the list.  See
	 * comments in kvm_zap_obsolete_pages().
	 */
2122
	sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
2123 2124 2125
	list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
	kvm_mod_used_mmu_pages(vcpu->kvm, +1);
	return sp;
M
Marcelo Tosatti 已提交
2126 2127
}

2128
static void mark_unsync(u64 *spte);
2129
static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
2130
{
2131 2132 2133 2134 2135 2136
	u64 *sptep;
	struct rmap_iterator iter;

	for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
		mark_unsync(sptep);
	}
2137 2138
}

2139
static void mark_unsync(u64 *spte)
2140
{
2141
	struct kvm_mmu_page *sp;
2142
	unsigned int index;
2143

2144
	sp = page_header(__pa(spte));
2145 2146
	index = spte - sp->spt;
	if (__test_and_set_bit(index, sp->unsync_child_bitmap))
2147
		return;
2148
	if (sp->unsync_children++)
2149
		return;
2150
	kvm_mmu_mark_parents_unsync(sp);
2151 2152
}

2153
static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
2154
			       struct kvm_mmu_page *sp)
2155
{
2156
	return 0;
2157 2158
}

2159 2160
static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
				 struct kvm_mmu_page *sp, u64 *spte,
2161
				 const void *pte)
2162 2163 2164 2165
{
	WARN_ON(1);
}

2166 2167 2168 2169 2170 2171 2172 2173 2174 2175
#define KVM_PAGE_ARRAY_NR 16

struct kvm_mmu_pages {
	struct mmu_page_and_offset {
		struct kvm_mmu_page *sp;
		unsigned int idx;
	} page[KVM_PAGE_ARRAY_NR];
	unsigned int nr;
};

2176 2177
static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
			 int idx)
2178
{
2179
	int i;
2180

2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
	if (sp->unsync)
		for (i=0; i < pvec->nr; i++)
			if (pvec->page[i].sp == sp)
				return 0;

	pvec->page[pvec->nr].sp = sp;
	pvec->page[pvec->nr].idx = idx;
	pvec->nr++;
	return (pvec->nr == KVM_PAGE_ARRAY_NR);
}

2192 2193 2194 2195 2196 2197 2198
static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
{
	--sp->unsync_children;
	WARN_ON((int)sp->unsync_children < 0);
	__clear_bit(idx, sp->unsync_child_bitmap);
}

2199 2200 2201 2202
static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
	int i, ret, nr_unsync_leaf = 0;
2203

2204
	for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
2205
		struct kvm_mmu_page *child;
2206 2207
		u64 ent = sp->spt[i];

2208 2209 2210 2211
		if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
			clear_unsync_child_bit(sp, i);
			continue;
		}
2212 2213 2214 2215 2216 2217 2218 2219

		child = page_header(ent & PT64_BASE_ADDR_MASK);

		if (child->unsync_children) {
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;

			ret = __mmu_unsync_walk(child, pvec);
2220 2221 2222 2223
			if (!ret) {
				clear_unsync_child_bit(sp, i);
				continue;
			} else if (ret > 0) {
2224
				nr_unsync_leaf += ret;
2225
			} else
2226 2227 2228 2229 2230 2231
				return ret;
		} else if (child->unsync) {
			nr_unsync_leaf++;
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;
		} else
2232
			clear_unsync_child_bit(sp, i);
2233 2234
	}

2235 2236 2237
	return nr_unsync_leaf;
}

2238 2239
#define INVALID_INDEX (-1)

2240 2241 2242
static int mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
P
Paolo Bonzini 已提交
2243
	pvec->nr = 0;
2244 2245 2246
	if (!sp->unsync_children)
		return 0;

2247
	mmu_pages_add(pvec, sp, INVALID_INDEX);
2248
	return __mmu_unsync_walk(sp, pvec);
2249 2250 2251 2252 2253
}

static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
{
	WARN_ON(!sp->unsync);
2254
	trace_kvm_mmu_sync_page(sp);
2255 2256 2257 2258
	sp->unsync = 0;
	--kvm->stat.mmu_unsync;
}

2259 2260
static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				     struct list_head *invalid_list);
2261 2262
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list);
2263

2264

2265
#define for_each_valid_sp(_kvm, _sp, _gfn)				\
2266 2267
	hlist_for_each_entry(_sp,					\
	  &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
2268
		if (is_obsolete_sp((_kvm), (_sp))) {			\
2269
		} else
2270 2271

#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)			\
2272 2273
	for_each_valid_sp(_kvm, _sp, _gfn)				\
		if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
2274

2275 2276 2277 2278 2279
static inline bool is_ept_sp(struct kvm_mmu_page *sp)
{
	return sp->role.cr0_wp && sp->role.smap_andnot_wp;
}

2280
/* @sp->gfn should be write-protected at the call site */
2281 2282
static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
			    struct list_head *invalid_list)
2283
{
2284 2285
	if ((!is_ept_sp(sp) && sp->role.gpte_is_8_bytes != !!is_pae(vcpu)) ||
	    vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
2286
		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
2287
		return false;
2288 2289
	}

2290
	return true;
2291 2292
}

2293 2294 2295 2296
static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
					struct list_head *invalid_list,
					bool remote_flush)
{
2297
	if (!remote_flush && list_empty(invalid_list))
2298 2299 2300 2301 2302 2303 2304 2305 2306
		return false;

	if (!list_empty(invalid_list))
		kvm_mmu_commit_zap_page(kvm, invalid_list);
	else
		kvm_flush_remote_tlbs(kvm);
	return true;
}

2307 2308 2309
static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
				 struct list_head *invalid_list,
				 bool remote_flush, bool local_flush)
2310
{
2311
	if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush))
2312
		return;
2313

2314
	if (local_flush)
2315
		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2316 2317
}

2318 2319 2320 2321 2322 2323 2324
#ifdef CONFIG_KVM_MMU_AUDIT
#include "mmu_audit.c"
#else
static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
static void mmu_audit_disable(void) { }
#endif

2325 2326
static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
{
2327 2328
	return sp->role.invalid ||
	       unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2329 2330
}

2331
static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2332
			 struct list_head *invalid_list)
2333
{
2334 2335
	kvm_unlink_unsync_page(vcpu->kvm, sp);
	return __kvm_sync_page(vcpu, sp, invalid_list);
2336 2337
}

2338
/* @gfn should be write-protected at the call site */
2339 2340
static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
			   struct list_head *invalid_list)
2341 2342
{
	struct kvm_mmu_page *s;
2343
	bool ret = false;
2344

2345
	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2346
		if (!s->unsync)
2347 2348 2349
			continue;

		WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2350
		ret |= kvm_sync_page(vcpu, s, invalid_list);
2351 2352
	}

2353
	return ret;
2354 2355
}

2356
struct mmu_page_path {
2357 2358
	struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
	unsigned int idx[PT64_ROOT_MAX_LEVEL];
2359 2360
};

2361
#define for_each_sp(pvec, sp, parents, i)			\
P
Paolo Bonzini 已提交
2362
		for (i = mmu_pages_first(&pvec, &parents);	\
2363 2364 2365
			i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});	\
			i = mmu_pages_next(&pvec, &parents, i))

2366 2367 2368
static int mmu_pages_next(struct kvm_mmu_pages *pvec,
			  struct mmu_page_path *parents,
			  int i)
2369 2370 2371 2372 2373
{
	int n;

	for (n = i+1; n < pvec->nr; n++) {
		struct kvm_mmu_page *sp = pvec->page[n].sp;
P
Paolo Bonzini 已提交
2374 2375
		unsigned idx = pvec->page[n].idx;
		int level = sp->role.level;
2376

P
Paolo Bonzini 已提交
2377 2378 2379
		parents->idx[level-1] = idx;
		if (level == PT_PAGE_TABLE_LEVEL)
			break;
2380

P
Paolo Bonzini 已提交
2381
		parents->parent[level-2] = sp;
2382 2383 2384 2385 2386
	}

	return n;
}

P
Paolo Bonzini 已提交
2387 2388 2389 2390 2391 2392 2393 2394 2395
static int mmu_pages_first(struct kvm_mmu_pages *pvec,
			   struct mmu_page_path *parents)
{
	struct kvm_mmu_page *sp;
	int level;

	if (pvec->nr == 0)
		return 0;

2396 2397
	WARN_ON(pvec->page[0].idx != INVALID_INDEX);

P
Paolo Bonzini 已提交
2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410
	sp = pvec->page[0].sp;
	level = sp->role.level;
	WARN_ON(level == PT_PAGE_TABLE_LEVEL);

	parents->parent[level-2] = sp;

	/* Also set up a sentinel.  Further entries in pvec are all
	 * children of sp, so this element is never overwritten.
	 */
	parents->parent[level-1] = NULL;
	return mmu_pages_next(pvec, parents, 0);
}

2411
static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2412
{
2413 2414 2415 2416 2417 2418 2419 2420 2421
	struct kvm_mmu_page *sp;
	unsigned int level = 0;

	do {
		unsigned int idx = parents->idx[level];
		sp = parents->parent[level];
		if (!sp)
			return;

2422
		WARN_ON(idx == INVALID_INDEX);
2423
		clear_unsync_child_bit(sp, idx);
2424
		level++;
P
Paolo Bonzini 已提交
2425
	} while (!sp->unsync_children);
2426
}
2427

2428 2429 2430 2431 2432 2433 2434
static void mmu_sync_children(struct kvm_vcpu *vcpu,
			      struct kvm_mmu_page *parent)
{
	int i;
	struct kvm_mmu_page *sp;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
2435
	LIST_HEAD(invalid_list);
2436
	bool flush = false;
2437 2438

	while (mmu_unsync_walk(parent, &pages)) {
2439
		bool protected = false;
2440 2441

		for_each_sp(pages, sp, parents, i)
2442
			protected |= rmap_write_protect(vcpu, sp->gfn);
2443

2444
		if (protected) {
2445
			kvm_flush_remote_tlbs(vcpu->kvm);
2446 2447
			flush = false;
		}
2448

2449
		for_each_sp(pages, sp, parents, i) {
2450
			flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2451 2452
			mmu_pages_clear_parents(&parents);
		}
2453 2454 2455 2456 2457
		if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
			kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
			cond_resched_lock(&vcpu->kvm->mmu_lock);
			flush = false;
		}
2458
	}
2459 2460

	kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2461 2462
}

2463 2464
static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
{
2465
	atomic_set(&sp->write_flooding_count,  0);
2466 2467 2468 2469 2470 2471 2472 2473 2474
}

static void clear_sp_write_flooding_count(u64 *spte)
{
	struct kvm_mmu_page *sp =  page_header(__pa(spte));

	__clear_sp_write_flooding_count(sp);
}

2475 2476 2477 2478
static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
					     gfn_t gfn,
					     gva_t gaddr,
					     unsigned level,
2479
					     int direct,
2480
					     unsigned int access)
2481 2482 2483
{
	union kvm_mmu_page_role role;
	unsigned quadrant;
2484 2485
	struct kvm_mmu_page *sp;
	bool need_sync = false;
2486
	bool flush = false;
2487
	int collisions = 0;
2488
	LIST_HEAD(invalid_list);
2489

2490
	role = vcpu->arch.mmu->mmu_role.base;
2491
	role.level = level;
2492
	role.direct = direct;
2493
	if (role.direct)
2494
		role.gpte_is_8_bytes = true;
2495
	role.access = access;
2496 2497
	if (!vcpu->arch.mmu->direct_map
	    && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
2498 2499 2500 2501
		quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
		quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
		role.quadrant = quadrant;
	}
2502 2503 2504 2505 2506 2507
	for_each_valid_sp(vcpu->kvm, sp, gfn) {
		if (sp->gfn != gfn) {
			collisions++;
			continue;
		}

2508 2509
		if (!need_sync && sp->unsync)
			need_sync = true;
2510

2511 2512
		if (sp->role.word != role.word)
			continue;
2513

2514 2515 2516 2517 2518 2519 2520 2521
		if (sp->unsync) {
			/* The page is good, but __kvm_sync_page might still end
			 * up zapping it.  If so, break in order to rebuild it.
			 */
			if (!__kvm_sync_page(vcpu, sp, &invalid_list))
				break;

			WARN_ON(!list_empty(&invalid_list));
2522
			kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2523
		}
2524

2525
		if (sp->unsync_children)
2526
			kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2527

2528
		__clear_sp_write_flooding_count(sp);
2529
		trace_kvm_mmu_get_page(sp, false);
2530
		goto out;
2531
	}
2532

A
Avi Kivity 已提交
2533
	++vcpu->kvm->stat.mmu_cache_miss;
2534 2535 2536

	sp = kvm_mmu_alloc_page(vcpu, direct);

2537 2538
	sp->gfn = gfn;
	sp->role = role;
2539 2540
	hlist_add_head(&sp->hash_link,
		&vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
2541
	if (!direct) {
2542 2543 2544 2545 2546 2547 2548 2549
		/*
		 * we should do write protection before syncing pages
		 * otherwise the content of the synced shadow page may
		 * be inconsistent with guest page table.
		 */
		account_shadowed(vcpu->kvm, sp);
		if (level == PT_PAGE_TABLE_LEVEL &&
		      rmap_write_protect(vcpu, gfn))
2550
			kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
2551 2552

		if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2553
			flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
2554
	}
2555
	clear_page(sp->spt);
A
Avi Kivity 已提交
2556
	trace_kvm_mmu_get_page(sp, true);
2557 2558

	kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2559 2560 2561
out:
	if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
		vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2562
	return sp;
2563 2564
}

2565 2566 2567
static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
					struct kvm_vcpu *vcpu, hpa_t root,
					u64 addr)
2568 2569
{
	iterator->addr = addr;
2570
	iterator->shadow_addr = root;
2571
	iterator->level = vcpu->arch.mmu->shadow_root_level;
2572

2573
	if (iterator->level == PT64_ROOT_4LEVEL &&
2574 2575
	    vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
	    !vcpu->arch.mmu->direct_map)
2576 2577
		--iterator->level;

2578
	if (iterator->level == PT32E_ROOT_LEVEL) {
2579 2580 2581 2582
		/*
		 * prev_root is currently only used for 64-bit hosts. So only
		 * the active root_hpa is valid here.
		 */
2583
		BUG_ON(root != vcpu->arch.mmu->root_hpa);
2584

2585
		iterator->shadow_addr
2586
			= vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2587 2588 2589 2590 2591 2592 2593
		iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
		--iterator->level;
		if (!iterator->shadow_addr)
			iterator->level = 0;
	}
}

2594 2595 2596
static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
			     struct kvm_vcpu *vcpu, u64 addr)
{
2597
	shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
2598 2599 2600
				    addr);
}

2601 2602 2603 2604
static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
{
	if (iterator->level < PT_PAGE_TABLE_LEVEL)
		return false;
2605

2606 2607 2608 2609 2610
	iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
	iterator->sptep	= ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
	return true;
}

2611 2612
static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
			       u64 spte)
2613
{
2614
	if (is_last_spte(spte, iterator->level)) {
2615 2616 2617 2618
		iterator->level = 0;
		return;
	}

2619
	iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2620 2621 2622
	--iterator->level;
}

2623 2624
static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
{
2625
	__shadow_walk_next(iterator, *iterator->sptep);
2626 2627
}

2628 2629
static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
			     struct kvm_mmu_page *sp)
2630 2631 2632
{
	u64 spte;

2633
	BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2634

2635
	spte = __pa(sp->spt) | shadow_present_mask | PT_WRITABLE_MASK |
2636
	       shadow_user_mask | shadow_x_mask | shadow_me_mask;
2637 2638

	if (sp_ad_disabled(sp))
2639
		spte |= SPTE_AD_DISABLED_MASK;
2640 2641
	else
		spte |= shadow_accessed_mask;
X
Xiao Guangrong 已提交
2642

2643
	mmu_spte_set(sptep, spte);
2644 2645 2646 2647 2648

	mmu_page_add_parent_pte(vcpu, sp, sptep);

	if (sp->unsync_children || sp->unsync)
		mark_unsync(sptep);
2649 2650
}

2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667
static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
				   unsigned direct_access)
{
	if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
		struct kvm_mmu_page *child;

		/*
		 * For the direct sp, if the guest pte's dirty bit
		 * changed form clean to dirty, it will corrupt the
		 * sp's access: allow writable in the read-only sp,
		 * so we should update the spte at this point to get
		 * a new sp with the correct access.
		 */
		child = page_header(*sptep & PT64_BASE_ADDR_MASK);
		if (child->role.access == direct_access)
			return;

2668
		drop_parent_pte(child, sptep);
2669
		kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
2670 2671 2672
	}
}

X
Xiao Guangrong 已提交
2673
static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2674 2675 2676 2677 2678 2679 2680
			     u64 *spte)
{
	u64 pte;
	struct kvm_mmu_page *child;

	pte = *spte;
	if (is_shadow_present_pte(pte)) {
X
Xiao Guangrong 已提交
2681
		if (is_last_spte(pte, sp->role.level)) {
2682
			drop_spte(kvm, spte);
X
Xiao Guangrong 已提交
2683 2684 2685
			if (is_large_pte(pte))
				--kvm->stat.lpages;
		} else {
2686
			child = page_header(pte & PT64_BASE_ADDR_MASK);
2687
			drop_parent_pte(child, spte);
2688
		}
X
Xiao Guangrong 已提交
2689 2690 2691 2692
		return true;
	}

	if (is_mmio_spte(pte))
2693
		mmu_spte_clear_no_track(spte);
2694

X
Xiao Guangrong 已提交
2695
	return false;
2696 2697
}

2698
static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2699
					 struct kvm_mmu_page *sp)
2700
{
2701 2702
	unsigned i;

2703 2704
	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
		mmu_page_zap_pte(kvm, sp, sp->spt + i);
2705 2706
}

2707
static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2708
{
2709 2710
	u64 *sptep;
	struct rmap_iterator iter;
2711

2712
	while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2713
		drop_parent_pte(sp, sptep);
2714 2715
}

2716
static int mmu_zap_unsync_children(struct kvm *kvm,
2717 2718
				   struct kvm_mmu_page *parent,
				   struct list_head *invalid_list)
2719
{
2720 2721 2722
	int i, zapped = 0;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
2723

2724
	if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2725
		return 0;
2726 2727 2728 2729 2730

	while (mmu_unsync_walk(parent, &pages)) {
		struct kvm_mmu_page *sp;

		for_each_sp(pages, sp, parents, i) {
2731
			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2732
			mmu_pages_clear_parents(&parents);
2733
			zapped++;
2734 2735 2736 2737
		}
	}

	return zapped;
2738 2739
}

2740 2741 2742 2743
static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
				       struct kvm_mmu_page *sp,
				       struct list_head *invalid_list,
				       int *nr_zapped)
2744
{
2745
	bool list_unstable;
A
Avi Kivity 已提交
2746

2747
	trace_kvm_mmu_prepare_zap_page(sp);
2748
	++kvm->stat.mmu_shadow_zapped;
2749
	*nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2750
	kvm_mmu_page_unlink_children(kvm, sp);
2751
	kvm_mmu_unlink_parents(kvm, sp);
2752

2753 2754 2755
	/* Zapping children means active_mmu_pages has become unstable. */
	list_unstable = *nr_zapped;

2756
	if (!sp->role.invalid && !sp->role.direct)
2757
		unaccount_shadowed(kvm, sp);
2758

2759 2760
	if (sp->unsync)
		kvm_unlink_unsync_page(kvm, sp);
2761
	if (!sp->root_count) {
2762
		/* Count self */
2763
		(*nr_zapped)++;
2764
		list_move(&sp->link, invalid_list);
2765
		kvm_mod_used_mmu_pages(kvm, -1);
2766
	} else {
A
Avi Kivity 已提交
2767
		list_move(&sp->link, &kvm->arch.active_mmu_pages);
2768

2769 2770 2771 2772 2773 2774
		/*
		 * Obsolete pages cannot be used on any vCPUs, see the comment
		 * in kvm_mmu_zap_all_fast().  Note, is_obsolete_sp() also
		 * treats invalid shadow pages as being obsolete.
		 */
		if (!is_obsolete_sp(kvm, sp))
2775
			kvm_reload_remote_mmus(kvm);
2776
	}
2777

P
Paolo Bonzini 已提交
2778 2779 2780
	if (sp->lpage_disallowed)
		unaccount_huge_nx_page(kvm, sp);

2781
	sp->role.invalid = 1;
2782 2783 2784 2785 2786 2787 2788 2789 2790 2791
	return list_unstable;
}

static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				     struct list_head *invalid_list)
{
	int nr_zapped;

	__kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
	return nr_zapped;
2792 2793
}

2794 2795 2796
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list)
{
2797
	struct kvm_mmu_page *sp, *nsp;
2798 2799 2800 2801

	if (list_empty(invalid_list))
		return;

2802
	/*
2803 2804 2805 2806 2807 2808 2809
	 * We need to make sure everyone sees our modifications to
	 * the page tables and see changes to vcpu->mode here. The barrier
	 * in the kvm_flush_remote_tlbs() achieves this. This pairs
	 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
	 *
	 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
	 * guest mode and/or lockless shadow page table walks.
2810 2811
	 */
	kvm_flush_remote_tlbs(kvm);
2812

2813
	list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2814
		WARN_ON(!sp->role.invalid || sp->root_count);
2815
		kvm_mmu_free_page(sp);
2816
	}
2817 2818
}

2819 2820 2821 2822 2823 2824 2825 2826
static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
					struct list_head *invalid_list)
{
	struct kvm_mmu_page *sp;

	if (list_empty(&kvm->arch.active_mmu_pages))
		return false;

G
Geliang Tang 已提交
2827 2828
	sp = list_last_entry(&kvm->arch.active_mmu_pages,
			     struct kvm_mmu_page, link);
2829
	return kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2830 2831
}

2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851
static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
{
	LIST_HEAD(invalid_list);

	if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
		return 0;

	while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
		if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
			break;

		++vcpu->kvm->stat.mmu_recycled;
	}
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);

	if (!kvm_mmu_available_pages(vcpu->kvm))
		return -ENOSPC;
	return 0;
}

2852 2853
/*
 * Changing the number of mmu pages allocated to the vm
2854
 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2855
 */
2856
void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2857
{
2858
	LIST_HEAD(invalid_list);
2859

2860 2861
	spin_lock(&kvm->mmu_lock);

2862
	if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2863 2864 2865 2866
		/* Need to free some mmu pages to achieve the goal. */
		while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
			if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
				break;
2867

2868
		kvm_mmu_commit_zap_page(kvm, &invalid_list);
2869
		goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2870 2871
	}

2872
	kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2873 2874

	spin_unlock(&kvm->mmu_lock);
2875 2876
}

2877
int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2878
{
2879
	struct kvm_mmu_page *sp;
2880
	LIST_HEAD(invalid_list);
2881 2882
	int r;

2883
	pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2884
	r = 0;
2885
	spin_lock(&kvm->mmu_lock);
2886
	for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2887
		pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2888 2889
			 sp->role.word);
		r = 1;
2890
		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2891
	}
2892
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2893 2894
	spin_unlock(&kvm->mmu_lock);

2895
	return r;
2896
}
2897
EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2898

2899
static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2900 2901 2902 2903 2904 2905 2906 2907
{
	trace_kvm_mmu_unsync_page(sp);
	++vcpu->kvm->stat.mmu_unsync;
	sp->unsync = 1;

	kvm_mmu_mark_parents_unsync(sp);
}

2908 2909
static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
				   bool can_unsync)
2910
{
2911
	struct kvm_mmu_page *sp;
2912

2913 2914
	if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
		return true;
2915

2916
	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2917
		if (!can_unsync)
2918
			return true;
2919

2920 2921
		if (sp->unsync)
			continue;
2922

2923 2924
		WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
		kvm_unsync_page(vcpu, sp);
2925
	}
2926

2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965
	/*
	 * We need to ensure that the marking of unsync pages is visible
	 * before the SPTE is updated to allow writes because
	 * kvm_mmu_sync_roots() checks the unsync flags without holding
	 * the MMU lock and so can race with this. If the SPTE was updated
	 * before the page had been marked as unsync-ed, something like the
	 * following could happen:
	 *
	 * CPU 1                    CPU 2
	 * ---------------------------------------------------------------------
	 * 1.2 Host updates SPTE
	 *     to be writable
	 *                      2.1 Guest writes a GPTE for GVA X.
	 *                          (GPTE being in the guest page table shadowed
	 *                           by the SP from CPU 1.)
	 *                          This reads SPTE during the page table walk.
	 *                          Since SPTE.W is read as 1, there is no
	 *                          fault.
	 *
	 *                      2.2 Guest issues TLB flush.
	 *                          That causes a VM Exit.
	 *
	 *                      2.3 kvm_mmu_sync_pages() reads sp->unsync.
	 *                          Since it is false, so it just returns.
	 *
	 *                      2.4 Guest accesses GVA X.
	 *                          Since the mapping in the SP was not updated,
	 *                          so the old mapping for GVA X incorrectly
	 *                          gets used.
	 * 1.1 Host marks SP
	 *     as unsync
	 *     (sp->unsync = true)
	 *
	 * The write barrier below ensures that 1.1 happens before 1.2 and thus
	 * the situation in 2.4 does not arise. The implicit barrier in 2.2
	 * pairs with this write barrier.
	 */
	smp_wmb();

2966
	return false;
2967 2968
}

D
Dan Williams 已提交
2969
static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
2970 2971
{
	if (pfn_valid(pfn))
2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983
		return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)) &&
			/*
			 * Some reserved pages, such as those from NVDIMM
			 * DAX devices, are not for MMIO, and can be mapped
			 * with cached memory type for better performance.
			 * However, the above check misconceives those pages
			 * as MMIO, and results in KVM mapping them with UC
			 * memory type, which would hurt the performance.
			 * Therefore, we check the host memory type in addition
			 * and only treat UC/UC-/WC pages as MMIO.
			 */
			(!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn));
2984

2985 2986 2987
	return !e820__mapped_raw_any(pfn_to_hpa(pfn),
				     pfn_to_hpa(pfn + 1) - 1,
				     E820_TYPE_RAM);
2988 2989
}

2990 2991 2992 2993
/* Bits which may be returned by set_spte() */
#define SET_SPTE_WRITE_PROTECTED_PT	BIT(0)
#define SET_SPTE_NEED_REMOTE_TLB_FLUSH	BIT(1)

A
Avi Kivity 已提交
2994
static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2995
		    unsigned int pte_access, int level,
D
Dan Williams 已提交
2996
		    gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2997
		    bool can_unsync, bool host_writable)
2998
{
2999
	u64 spte = 0;
M
Marcelo Tosatti 已提交
3000
	int ret = 0;
3001
	struct kvm_mmu_page *sp;
S
Sheng Yang 已提交
3002

3003
	if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
3004 3005
		return 0;

3006 3007
	sp = page_header(__pa(sptep));
	if (sp_ad_disabled(sp))
3008
		spte |= SPTE_AD_DISABLED_MASK;
3009 3010
	else if (kvm_vcpu_ad_need_write_protect(vcpu))
		spte |= SPTE_AD_WRPROT_ONLY_MASK;
3011

3012 3013 3014 3015 3016 3017
	/*
	 * For the EPT case, shadow_present_mask is 0 if hardware
	 * supports exec-only page table entries.  In that case,
	 * ACC_USER_MASK and shadow_user_mask are used to represent
	 * read access.  See FNAME(gpte_access) in paging_tmpl.h.
	 */
3018
	spte |= shadow_present_mask;
3019
	if (!speculative)
3020
		spte |= spte_shadow_accessed_mask(spte);
3021

P
Paolo Bonzini 已提交
3022 3023 3024 3025 3026
	if (level > PT_PAGE_TABLE_LEVEL && (pte_access & ACC_EXEC_MASK) &&
	    is_nx_huge_page_enabled()) {
		pte_access &= ~ACC_EXEC_MASK;
	}

S
Sheng Yang 已提交
3027 3028 3029 3030
	if (pte_access & ACC_EXEC_MASK)
		spte |= shadow_x_mask;
	else
		spte |= shadow_nx_mask;
3031

3032
	if (pte_access & ACC_USER_MASK)
S
Sheng Yang 已提交
3033
		spte |= shadow_user_mask;
3034

3035
	if (level > PT_PAGE_TABLE_LEVEL)
M
Marcelo Tosatti 已提交
3036
		spte |= PT_PAGE_SIZE_MASK;
3037
	if (tdp_enabled)
3038
		spte |= kvm_x86_ops.get_mt_mask(vcpu, gfn,
3039
			kvm_is_mmio_pfn(pfn));
3040

3041
	if (host_writable)
3042
		spte |= SPTE_HOST_WRITEABLE;
3043 3044
	else
		pte_access &= ~ACC_WRITE_MASK;
3045

3046 3047 3048
	if (!kvm_is_mmio_pfn(pfn))
		spte |= shadow_me_mask;

3049
	spte |= (u64)pfn << PAGE_SHIFT;
3050

3051
	if (pte_access & ACC_WRITE_MASK) {
3052
		spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
3053

3054 3055 3056 3057 3058 3059
		/*
		 * Optimization: for pte sync, if spte was writable the hash
		 * lookup is unnecessary (and expensive). Write protection
		 * is responsibility of mmu_get_page / kvm_sync_page.
		 * Same reasoning can be applied to dirty page accounting.
		 */
3060
		if (!can_unsync && is_writable_pte(*sptep))
3061 3062
			goto set_pte;

3063
		if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
3064
			pgprintk("%s: found shadow page for %llx, marking ro\n",
3065
				 __func__, gfn);
3066
			ret |= SET_SPTE_WRITE_PROTECTED_PT;
3067
			pte_access &= ~ACC_WRITE_MASK;
3068
			spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
3069 3070 3071
		}
	}

3072
	if (pte_access & ACC_WRITE_MASK) {
3073
		kvm_vcpu_mark_page_dirty(vcpu, gfn);
3074
		spte |= spte_shadow_dirty_mask(spte);
3075
	}
3076

3077 3078 3079
	if (speculative)
		spte = mark_spte_for_access_track(spte);

3080
set_pte:
3081
	if (mmu_spte_update(sptep, spte))
3082
		ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
M
Marcelo Tosatti 已提交
3083 3084 3085
	return ret;
}

3086 3087 3088 3089
static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
			unsigned int pte_access, int write_fault, int level,
			gfn_t gfn, kvm_pfn_t pfn, bool speculative,
			bool host_writable)
M
Marcelo Tosatti 已提交
3090 3091
{
	int was_rmapped = 0;
3092
	int rmap_count;
3093
	int set_spte_ret;
3094
	int ret = RET_PF_RETRY;
3095
	bool flush = false;
M
Marcelo Tosatti 已提交
3096

3097 3098
	pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
		 *sptep, write_fault, gfn);
M
Marcelo Tosatti 已提交
3099

3100
	if (is_shadow_present_pte(*sptep)) {
M
Marcelo Tosatti 已提交
3101 3102 3103 3104
		/*
		 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
		 * the parent of the now unreachable PTE.
		 */
3105 3106
		if (level > PT_PAGE_TABLE_LEVEL &&
		    !is_large_pte(*sptep)) {
M
Marcelo Tosatti 已提交
3107
			struct kvm_mmu_page *child;
A
Avi Kivity 已提交
3108
			u64 pte = *sptep;
M
Marcelo Tosatti 已提交
3109 3110

			child = page_header(pte & PT64_BASE_ADDR_MASK);
3111
			drop_parent_pte(child, sptep);
3112
			flush = true;
A
Avi Kivity 已提交
3113
		} else if (pfn != spte_to_pfn(*sptep)) {
3114
			pgprintk("hfn old %llx new %llx\n",
A
Avi Kivity 已提交
3115
				 spte_to_pfn(*sptep), pfn);
3116
			drop_spte(vcpu->kvm, sptep);
3117
			flush = true;
3118 3119
		} else
			was_rmapped = 1;
M
Marcelo Tosatti 已提交
3120
	}
3121

3122 3123 3124
	set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
				speculative, true, host_writable);
	if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
M
Marcelo Tosatti 已提交
3125
		if (write_fault)
3126
			ret = RET_PF_EMULATE;
3127
		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
3128
	}
3129

3130
	if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
3131 3132
		kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
				KVM_PAGES_PER_HPAGE(level));
M
Marcelo Tosatti 已提交
3133

3134
	if (unlikely(is_mmio_spte(*sptep)))
3135
		ret = RET_PF_EMULATE;
3136

A
Avi Kivity 已提交
3137
	pgprintk("%s: setting spte %llx\n", __func__, *sptep);
3138
	trace_kvm_mmu_set_spte(level, gfn, sptep);
A
Avi Kivity 已提交
3139
	if (!was_rmapped && is_large_pte(*sptep))
M
Marcelo Tosatti 已提交
3140 3141
		++vcpu->kvm->stat.lpages;

3142 3143 3144 3145 3146 3147
	if (is_shadow_present_pte(*sptep)) {
		if (!was_rmapped) {
			rmap_count = rmap_add(vcpu, sptep, gfn);
			if (rmap_count > RMAP_RECYCLE_THRESHOLD)
				rmap_recycle(vcpu, sptep, gfn);
		}
3148
	}
3149

3150
	return ret;
3151 3152
}

D
Dan Williams 已提交
3153
static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
3154 3155 3156 3157
				     bool no_dirty_log)
{
	struct kvm_memory_slot *slot;

3158
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
3159
	if (!slot)
3160
		return KVM_PFN_ERR_FAULT;
3161

3162
	return gfn_to_pfn_memslot_atomic(slot, gfn);
3163 3164 3165 3166 3167 3168 3169
}

static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
				    struct kvm_mmu_page *sp,
				    u64 *start, u64 *end)
{
	struct page *pages[PTE_PREFETCH_NUM];
3170
	struct kvm_memory_slot *slot;
3171
	unsigned int access = sp->role.access;
3172 3173 3174 3175
	int i, ret;
	gfn_t gfn;

	gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
3176 3177
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
	if (!slot)
3178 3179
		return -1;

3180
	ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
3181 3182 3183
	if (ret <= 0)
		return -1;

3184
	for (i = 0; i < ret; i++, gfn++, start++) {
3185 3186
		mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
			     page_to_pfn(pages[i]), true, true);
3187 3188
		put_page(pages[i]);
	}
3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204

	return 0;
}

static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
				  struct kvm_mmu_page *sp, u64 *sptep)
{
	u64 *spte, *start = NULL;
	int i;

	WARN_ON(!sp->role.direct);

	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
	spte = sp->spt + i;

	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
3205
		if (is_shadow_present_pte(*spte) || spte == sptep) {
3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219
			if (!start)
				continue;
			if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
				break;
			start = NULL;
		} else if (!start)
			start = spte;
	}
}

static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
{
	struct kvm_mmu_page *sp;

3220 3221
	sp = page_header(__pa(sptep));

3222
	/*
3223 3224 3225
	 * Without accessed bits, there's no way to distinguish between
	 * actually accessed translations and prefetched, so disable pte
	 * prefetch if accessed bits aren't available.
3226
	 */
3227
	if (sp_ad_disabled(sp))
3228 3229 3230 3231 3232 3233 3234 3235
		return;

	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
		return;

	__direct_pte_prefetch(vcpu, sp, sptep);
}

3236
static int host_pfn_mapping_level(struct kvm_vcpu *vcpu, gfn_t gfn,
3237
				  kvm_pfn_t pfn, struct kvm_memory_slot *slot)
3238 3239 3240 3241 3242 3243 3244 3245 3246
{
	unsigned long hva;
	pte_t *pte;
	int level;

	BUILD_BUG_ON(PT_PAGE_TABLE_LEVEL != (int)PG_LEVEL_4K ||
		     PT_DIRECTORY_LEVEL != (int)PG_LEVEL_2M ||
		     PT_PDPE_LEVEL != (int)PG_LEVEL_1G);

3247
	if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn))
3248 3249
		return PT_PAGE_TABLE_LEVEL;

3250 3251 3252 3253 3254 3255 3256 3257
	/*
	 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
	 * is not solely for performance, it's also necessary to avoid the
	 * "writable" check in __gfn_to_hva_many(), which will always fail on
	 * read-only memslots due to gfn_to_hva() assuming writes.  Earlier
	 * page fault steps have already verified the guest isn't writing a
	 * read-only memslot.
	 */
3258 3259 3260 3261 3262 3263 3264 3265 3266
	hva = __gfn_to_hva_memslot(slot, gfn);

	pte = lookup_address_in_mm(vcpu->kvm->mm, hva, &level);
	if (unlikely(!pte))
		return PT_PAGE_TABLE_LEVEL;

	return level;
}

3267 3268
static int kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, gfn_t gfn,
				   int max_level, kvm_pfn_t *pfnp)
3269
{
3270
	struct kvm_memory_slot *slot;
3271
	struct kvm_lpage_info *linfo;
3272
	kvm_pfn_t pfn = *pfnp;
3273
	kvm_pfn_t mask;
3274
	int level;
3275

3276
	if (unlikely(max_level == PT_PAGE_TABLE_LEVEL))
3277
		return PT_PAGE_TABLE_LEVEL;
3278

3279
	if (is_error_noslot_pfn(pfn) || kvm_is_reserved_pfn(pfn))
3280
		return PT_PAGE_TABLE_LEVEL;
3281

3282 3283 3284 3285
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, true);
	if (!slot)
		return PT_PAGE_TABLE_LEVEL;

3286
	max_level = min(max_level, max_page_level);
3287
	for ( ; max_level > PT_PAGE_TABLE_LEVEL; max_level--) {
3288 3289
		linfo = lpage_info_slot(gfn, slot, max_level);
		if (!linfo->disallow_lpage)
3290 3291 3292 3293 3294 3295 3296
			break;
	}

	if (max_level == PT_PAGE_TABLE_LEVEL)
		return PT_PAGE_TABLE_LEVEL;

	level = host_pfn_mapping_level(vcpu, gfn, pfn, slot);
3297
	if (level == PT_PAGE_TABLE_LEVEL)
3298
		return level;
3299

3300
	level = min(level, max_level);
3301 3302

	/*
3303 3304
	 * mmu_notifier_retry() was successful and mmu_lock is held, so
	 * the pmd can't be split from under us.
3305
	 */
3306 3307 3308
	mask = KVM_PAGES_PER_HPAGE(level) - 1;
	VM_BUG_ON((gfn & mask) != (pfn & mask));
	*pfnp = pfn & ~mask;
3309 3310

	return level;
3311 3312
}

P
Paolo Bonzini 已提交
3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335
static void disallowed_hugepage_adjust(struct kvm_shadow_walk_iterator it,
				       gfn_t gfn, kvm_pfn_t *pfnp, int *levelp)
{
	int level = *levelp;
	u64 spte = *it.sptep;

	if (it.level == level && level > PT_PAGE_TABLE_LEVEL &&
	    is_nx_huge_page_enabled() &&
	    is_shadow_present_pte(spte) &&
	    !is_large_pte(spte)) {
		/*
		 * A small SPTE exists for this pfn, but FNAME(fetch)
		 * and __direct_map would like to create a large PTE
		 * instead: just force them to go down another level,
		 * patching back for them into pfn the next 9 bits of
		 * the address.
		 */
		u64 page_mask = KVM_PAGES_PER_HPAGE(level) - KVM_PAGES_PER_HPAGE(level - 1);
		*pfnp |= gfn & page_mask;
		(*levelp)--;
	}
}

3336
static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, int write,
3337 3338
			int map_writable, int max_level, kvm_pfn_t pfn,
			bool prefault, bool account_disallowed_nx_lpage)
3339
{
3340
	struct kvm_shadow_walk_iterator it;
3341
	struct kvm_mmu_page *sp;
3342
	int level, ret;
3343 3344
	gfn_t gfn = gpa >> PAGE_SHIFT;
	gfn_t base_gfn = gfn;
A
Avi Kivity 已提交
3345

3346
	if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
3347
		return RET_PF_RETRY;
3348

3349
	level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn);
3350

3351
	trace_kvm_mmu_spte_requested(gpa, level, pfn);
3352
	for_each_shadow_entry(vcpu, gpa, it) {
P
Paolo Bonzini 已提交
3353 3354 3355 3356 3357 3358
		/*
		 * We cannot overwrite existing page tables with an NX
		 * large page, as the leaf could be executable.
		 */
		disallowed_hugepage_adjust(it, gfn, &pfn, &level);

3359 3360
		base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
		if (it.level == level)
3361
			break;
A
Avi Kivity 已提交
3362

3363 3364 3365 3366
		drop_large_spte(vcpu, it.sptep);
		if (!is_shadow_present_pte(*it.sptep)) {
			sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
					      it.level - 1, true, ACC_ALL);
3367

3368
			link_shadow_page(vcpu, it.sptep, sp);
3369
			if (account_disallowed_nx_lpage)
P
Paolo Bonzini 已提交
3370
				account_huge_nx_page(vcpu->kvm, sp);
3371 3372
		}
	}
3373 3374 3375 3376 3377 3378 3379

	ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL,
			   write, level, base_gfn, pfn, prefault,
			   map_writable);
	direct_pte_prefetch(vcpu, it.sptep);
	++vcpu->stat.pf_fixed;
	return ret;
A
Avi Kivity 已提交
3380 3381
}

H
Huang Ying 已提交
3382
static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
3383
{
3384
	send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
3385 3386
}

D
Dan Williams 已提交
3387
static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
3388
{
X
Xiao Guangrong 已提交
3389 3390 3391 3392 3393 3394
	/*
	 * Do not cache the mmio info caused by writing the readonly gfn
	 * into the spte otherwise read access on readonly gfn also can
	 * caused mmio page fault and treat it as mmio access.
	 */
	if (pfn == KVM_PFN_ERR_RO_FAULT)
3395
		return RET_PF_EMULATE;
X
Xiao Guangrong 已提交
3396

3397
	if (pfn == KVM_PFN_ERR_HWPOISON) {
3398
		kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
3399
		return RET_PF_RETRY;
3400
	}
3401

3402
	return -EFAULT;
3403 3404
}

3405
static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
3406 3407
				kvm_pfn_t pfn, unsigned int access,
				int *ret_val)
3408 3409
{
	/* The pfn is invalid, report the error! */
3410
	if (unlikely(is_error_pfn(pfn))) {
3411
		*ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
3412
		return true;
3413 3414
	}

3415
	if (unlikely(is_noslot_pfn(pfn)))
3416 3417
		vcpu_cache_mmio_info(vcpu, gva, gfn,
				     access & shadow_mmio_access_mask);
3418

3419
	return false;
3420 3421
}

3422
static bool page_fault_can_be_fast(u32 error_code)
3423
{
3424 3425 3426 3427 3428 3429 3430
	/*
	 * Do not fix the mmio spte with invalid generation number which
	 * need to be updated by slow page fault path.
	 */
	if (unlikely(error_code & PFERR_RSVD_MASK))
		return false;

3431 3432 3433 3434 3435
	/* See if the page fault is due to an NX violation */
	if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
		      == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
		return false;

3436
	/*
3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447
	 * #PF can be fast if:
	 * 1. The shadow page table entry is not present, which could mean that
	 *    the fault is potentially caused by access tracking (if enabled).
	 * 2. The shadow page table entry is present and the fault
	 *    is caused by write-protect, that means we just need change the W
	 *    bit of the spte which can be done out of mmu-lock.
	 *
	 * However, if access tracking is disabled we know that a non-present
	 * page must be a genuine page fault where we have to create a new SPTE.
	 * So, if access tracking is disabled, we return true only for write
	 * accesses to a present page.
3448 3449
	 */

3450 3451 3452
	return shadow_acc_track_mask != 0 ||
	       ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
		== (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
3453 3454
}

3455 3456 3457 3458
/*
 * Returns true if the SPTE was fixed successfully. Otherwise,
 * someone else modified the SPTE from its original value.
 */
3459
static bool
3460
fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
3461
			u64 *sptep, u64 old_spte, u64 new_spte)
3462 3463 3464 3465 3466
{
	gfn_t gfn;

	WARN_ON(!sp->role.direct);

3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478
	/*
	 * Theoretically we could also set dirty bit (and flush TLB) here in
	 * order to eliminate unnecessary PML logging. See comments in
	 * set_spte. But fast_page_fault is very unlikely to happen with PML
	 * enabled, so we do not do this. This might result in the same GPA
	 * to be logged in PML buffer again when the write really happens, and
	 * eventually to be called by mark_page_dirty twice. But it's also no
	 * harm. This also avoids the TLB flush needed after setting dirty bit
	 * so non-PML cases won't be impacted.
	 *
	 * Compare with set_spte where instead shadow_dirty_mask is set.
	 */
3479
	if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3480 3481
		return false;

3482
	if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
3483 3484 3485 3486 3487 3488 3489
		/*
		 * The gfn of direct spte is stable since it is
		 * calculated by sp->gfn.
		 */
		gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
		kvm_vcpu_mark_page_dirty(vcpu, gfn);
	}
3490 3491 3492 3493

	return true;
}

3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505
static bool is_access_allowed(u32 fault_err_code, u64 spte)
{
	if (fault_err_code & PFERR_FETCH_MASK)
		return is_executable_pte(spte);

	if (fault_err_code & PFERR_WRITE_MASK)
		return is_writable_pte(spte);

	/* Fault was on Read access */
	return spte & PT_PRESENT_MASK;
}

3506 3507 3508 3509 3510
/*
 * Return value:
 * - true: let the vcpu to access on the same address again.
 * - false: let the real page fault path to fix it.
 */
3511
static bool fast_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3512 3513 3514
			    u32 error_code)
{
	struct kvm_shadow_walk_iterator iterator;
3515
	struct kvm_mmu_page *sp;
3516
	bool fault_handled = false;
3517
	u64 spte = 0ull;
3518
	uint retry_count = 0;
3519

3520
	if (!page_fault_can_be_fast(error_code))
3521 3522 3523 3524
		return false;

	walk_shadow_page_lockless_begin(vcpu);

3525
	do {
3526
		u64 new_spte;
3527

3528
		for_each_shadow_entry_lockless(vcpu, cr2_or_gpa, iterator, spte)
3529
			if (!is_shadow_present_pte(spte))
3530 3531
				break;

3532 3533 3534
		sp = page_header(__pa(iterator.sptep));
		if (!is_last_spte(spte, sp->role.level))
			break;
3535

3536
		/*
3537 3538 3539 3540 3541
		 * Check whether the memory access that caused the fault would
		 * still cause it if it were to be performed right now. If not,
		 * then this is a spurious fault caused by TLB lazily flushed,
		 * or some other CPU has already fixed the PTE after the
		 * current CPU took the fault.
3542 3543 3544 3545
		 *
		 * Need not check the access of upper level table entries since
		 * they are always ACC_ALL.
		 */
3546 3547 3548 3549
		if (is_access_allowed(error_code, spte)) {
			fault_handled = true;
			break;
		}
3550

3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561
		new_spte = spte;

		if (is_access_track_spte(spte))
			new_spte = restore_acc_track_spte(new_spte);

		/*
		 * Currently, to simplify the code, write-protection can
		 * be removed in the fast path only if the SPTE was
		 * write-protected for dirty-logging or access tracking.
		 */
		if ((error_code & PFERR_WRITE_MASK) &&
3562
		    spte_can_locklessly_be_made_writable(spte)) {
3563
			new_spte |= PT_WRITABLE_MASK;
3564 3565

			/*
3566 3567 3568 3569 3570 3571 3572 3573 3574
			 * Do not fix write-permission on the large spte.  Since
			 * we only dirty the first page into the dirty-bitmap in
			 * fast_pf_fix_direct_spte(), other pages are missed
			 * if its slot has dirty logging enabled.
			 *
			 * Instead, we let the slow page fault path create a
			 * normal spte to fix the access.
			 *
			 * See the comments in kvm_arch_commit_memory_region().
3575
			 */
3576
			if (sp->role.level > PT_PAGE_TABLE_LEVEL)
3577
				break;
3578
		}
3579

3580
		/* Verify that the fault can be handled in the fast path */
3581 3582
		if (new_spte == spte ||
		    !is_access_allowed(error_code, new_spte))
3583 3584 3585 3586 3587
			break;

		/*
		 * Currently, fast page fault only works for direct mapping
		 * since the gfn is not stable for indirect shadow page. See
3588
		 * Documentation/virt/kvm/locking.txt to get more detail.
3589 3590
		 */
		fault_handled = fast_pf_fix_direct_spte(vcpu, sp,
3591
							iterator.sptep, spte,
3592
							new_spte);
3593 3594 3595 3596 3597 3598 3599 3600 3601 3602
		if (fault_handled)
			break;

		if (++retry_count > 4) {
			printk_once(KERN_WARNING
				"kvm: Fast #PF retrying more than 4 times.\n");
			break;
		}

	} while (true);
3603

3604
	trace_fast_page_fault(vcpu, cr2_or_gpa, error_code, iterator.sptep,
3605
			      spte, fault_handled);
3606 3607
	walk_shadow_page_lockless_end(vcpu);

3608
	return fault_handled;
3609 3610
}

3611 3612
static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
			       struct list_head *invalid_list)
3613
{
3614
	struct kvm_mmu_page *sp;
3615

3616
	if (!VALID_PAGE(*root_hpa))
A
Avi Kivity 已提交
3617
		return;
3618

3619 3620 3621 3622
	sp = page_header(*root_hpa & PT64_BASE_ADDR_MASK);
	--sp->root_count;
	if (!sp->root_count && sp->role.invalid)
		kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3623

3624 3625 3626
	*root_hpa = INVALID_PAGE;
}

3627
/* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
3628 3629
void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
			ulong roots_to_free)
3630 3631 3632
{
	int i;
	LIST_HEAD(invalid_list);
3633
	bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
3634

3635
	BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3636

3637
	/* Before acquiring the MMU lock, see if we need to do any real work. */
3638 3639 3640 3641 3642 3643 3644 3645 3646
	if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
			if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
			    VALID_PAGE(mmu->prev_roots[i].hpa))
				break;

		if (i == KVM_MMU_NUM_PREV_ROOTS)
			return;
	}
3647 3648

	spin_lock(&vcpu->kvm->mmu_lock);
3649

3650 3651 3652 3653
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
		if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
			mmu_free_root_page(vcpu->kvm, &mmu->prev_roots[i].hpa,
					   &invalid_list);
3654

3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667
	if (free_active_root) {
		if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
		    (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
			mmu_free_root_page(vcpu->kvm, &mmu->root_hpa,
					   &invalid_list);
		} else {
			for (i = 0; i < 4; ++i)
				if (mmu->pae_root[i] != 0)
					mmu_free_root_page(vcpu->kvm,
							   &mmu->pae_root[i],
							   &invalid_list);
			mmu->root_hpa = INVALID_PAGE;
		}
3668
		mmu->root_pgd = 0;
3669
	}
3670

3671
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3672
	spin_unlock(&vcpu->kvm->mmu_lock);
3673
}
3674
EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3675

3676 3677 3678 3679 3680
static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
{
	int ret = 0;

	if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3681
		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3682 3683 3684 3685 3686 3687
		ret = 1;
	}

	return ret;
}

3688 3689 3690
static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu_page *sp;
3691
	unsigned i;
3692

3693
	if (vcpu->arch.mmu->shadow_root_level >= PT64_ROOT_4LEVEL) {
3694
		spin_lock(&vcpu->kvm->mmu_lock);
3695 3696
		if(make_mmu_pages_available(vcpu) < 0) {
			spin_unlock(&vcpu->kvm->mmu_lock);
3697
			return -ENOSPC;
3698
		}
3699
		sp = kvm_mmu_get_page(vcpu, 0, 0,
3700
				vcpu->arch.mmu->shadow_root_level, 1, ACC_ALL);
3701 3702
		++sp->root_count;
		spin_unlock(&vcpu->kvm->mmu_lock);
3703 3704
		vcpu->arch.mmu->root_hpa = __pa(sp->spt);
	} else if (vcpu->arch.mmu->shadow_root_level == PT32E_ROOT_LEVEL) {
3705
		for (i = 0; i < 4; ++i) {
3706
			hpa_t root = vcpu->arch.mmu->pae_root[i];
3707

3708
			MMU_WARN_ON(VALID_PAGE(root));
3709
			spin_lock(&vcpu->kvm->mmu_lock);
3710 3711
			if (make_mmu_pages_available(vcpu) < 0) {
				spin_unlock(&vcpu->kvm->mmu_lock);
3712
				return -ENOSPC;
3713
			}
3714
			sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3715
					i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL);
3716 3717 3718
			root = __pa(sp->spt);
			++sp->root_count;
			spin_unlock(&vcpu->kvm->mmu_lock);
3719
			vcpu->arch.mmu->pae_root[i] = root | PT_PRESENT_MASK;
3720
		}
3721
		vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3722 3723
	} else
		BUG();
3724

3725 3726
	/* root_pgd is ignored for direct MMUs. */
	vcpu->arch.mmu->root_pgd = 0;
3727 3728 3729 3730 3731

	return 0;
}

static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3732
{
3733
	struct kvm_mmu_page *sp;
3734
	u64 pdptr, pm_mask;
3735
	gfn_t root_gfn, root_pgd;
3736
	int i;
3737

3738 3739
	root_pgd = vcpu->arch.mmu->get_guest_pgd(vcpu);
	root_gfn = root_pgd >> PAGE_SHIFT;
3740

3741 3742 3743 3744 3745 3746 3747
	if (mmu_check_root(vcpu, root_gfn))
		return 1;

	/*
	 * Do we shadow a long mode page table? If so we need to
	 * write-protect the guests page table root.
	 */
3748 3749
	if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
		hpa_t root = vcpu->arch.mmu->root_hpa;
3750

3751
		MMU_WARN_ON(VALID_PAGE(root));
3752

3753
		spin_lock(&vcpu->kvm->mmu_lock);
3754 3755
		if (make_mmu_pages_available(vcpu) < 0) {
			spin_unlock(&vcpu->kvm->mmu_lock);
3756
			return -ENOSPC;
3757
		}
3758
		sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
3759
				vcpu->arch.mmu->shadow_root_level, 0, ACC_ALL);
3760 3761
		root = __pa(sp->spt);
		++sp->root_count;
3762
		spin_unlock(&vcpu->kvm->mmu_lock);
3763
		vcpu->arch.mmu->root_hpa = root;
3764
		goto set_root_pgd;
3765
	}
3766

3767 3768
	/*
	 * We shadow a 32 bit page table. This may be a legacy 2-level
3769 3770
	 * or a PAE 3-level page table. In either case we need to be aware that
	 * the shadow page table may be a PAE or a long mode page table.
3771
	 */
3772
	pm_mask = PT_PRESENT_MASK;
3773
	if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL)
3774 3775
		pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;

3776
	for (i = 0; i < 4; ++i) {
3777
		hpa_t root = vcpu->arch.mmu->pae_root[i];
3778

3779
		MMU_WARN_ON(VALID_PAGE(root));
3780 3781
		if (vcpu->arch.mmu->root_level == PT32E_ROOT_LEVEL) {
			pdptr = vcpu->arch.mmu->get_pdptr(vcpu, i);
B
Bandan Das 已提交
3782
			if (!(pdptr & PT_PRESENT_MASK)) {
3783
				vcpu->arch.mmu->pae_root[i] = 0;
A
Avi Kivity 已提交
3784 3785
				continue;
			}
A
Avi Kivity 已提交
3786
			root_gfn = pdptr >> PAGE_SHIFT;
3787 3788
			if (mmu_check_root(vcpu, root_gfn))
				return 1;
3789
		}
3790
		spin_lock(&vcpu->kvm->mmu_lock);
3791 3792
		if (make_mmu_pages_available(vcpu) < 0) {
			spin_unlock(&vcpu->kvm->mmu_lock);
3793
			return -ENOSPC;
3794
		}
3795 3796
		sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL,
				      0, ACC_ALL);
3797 3798
		root = __pa(sp->spt);
		++sp->root_count;
3799 3800
		spin_unlock(&vcpu->kvm->mmu_lock);

3801
		vcpu->arch.mmu->pae_root[i] = root | pm_mask;
3802
	}
3803
	vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3804 3805 3806 3807 3808

	/*
	 * If we shadow a 32 bit page table with a long mode page
	 * table we enter this path.
	 */
3809 3810
	if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
		if (vcpu->arch.mmu->lm_root == NULL) {
3811 3812 3813 3814 3815 3816 3817
			/*
			 * The additional page necessary for this is only
			 * allocated on demand.
			 */

			u64 *lm_root;

3818
			lm_root = (void*)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3819 3820 3821
			if (lm_root == NULL)
				return 1;

3822
			lm_root[0] = __pa(vcpu->arch.mmu->pae_root) | pm_mask;
3823

3824
			vcpu->arch.mmu->lm_root = lm_root;
3825 3826
		}

3827
		vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->lm_root);
3828 3829
	}

3830 3831
set_root_pgd:
	vcpu->arch.mmu->root_pgd = root_pgd;
3832

3833
	return 0;
3834 3835
}

3836 3837
static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
{
3838
	if (vcpu->arch.mmu->direct_map)
3839 3840 3841 3842 3843
		return mmu_alloc_direct_roots(vcpu);
	else
		return mmu_alloc_shadow_roots(vcpu);
}

3844
void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3845 3846 3847 3848
{
	int i;
	struct kvm_mmu_page *sp;

3849
	if (vcpu->arch.mmu->direct_map)
3850 3851
		return;

3852
	if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3853
		return;
3854

3855
	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3856

3857 3858
	if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
		hpa_t root = vcpu->arch.mmu->root_hpa;
3859
		sp = page_header(root);
3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877

		/*
		 * Even if another CPU was marking the SP as unsync-ed
		 * simultaneously, any guest page table changes are not
		 * guaranteed to be visible anyway until this VCPU issues a TLB
		 * flush strictly after those changes are made. We only need to
		 * ensure that the other CPU sets these flags before any actual
		 * changes to the page tables are made. The comments in
		 * mmu_need_write_protect() describe what could go wrong if this
		 * requirement isn't satisfied.
		 */
		if (!smp_load_acquire(&sp->unsync) &&
		    !smp_load_acquire(&sp->unsync_children))
			return;

		spin_lock(&vcpu->kvm->mmu_lock);
		kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);

3878
		mmu_sync_children(vcpu, sp);
3879

3880
		kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3881
		spin_unlock(&vcpu->kvm->mmu_lock);
3882 3883
		return;
	}
3884 3885 3886 3887

	spin_lock(&vcpu->kvm->mmu_lock);
	kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);

3888
	for (i = 0; i < 4; ++i) {
3889
		hpa_t root = vcpu->arch.mmu->pae_root[i];
3890

3891
		if (root && VALID_PAGE(root)) {
3892 3893 3894 3895 3896 3897
			root &= PT64_BASE_ADDR_MASK;
			sp = page_header(root);
			mmu_sync_children(vcpu, sp);
		}
	}

3898
	kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3899
	spin_unlock(&vcpu->kvm->mmu_lock);
3900
}
N
Nadav Har'El 已提交
3901
EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3902

3903
static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr,
3904
				  u32 access, struct x86_exception *exception)
A
Avi Kivity 已提交
3905
{
3906 3907
	if (exception)
		exception->error_code = 0;
A
Avi Kivity 已提交
3908 3909 3910
	return vaddr;
}

3911
static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr,
3912 3913
					 u32 access,
					 struct x86_exception *exception)
3914
{
3915 3916
	if (exception)
		exception->error_code = 0;
3917
	return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3918 3919
}

3920 3921 3922
static bool
__is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
{
3923
	int bit7 = (pte >> 7) & 1;
3924

3925
	return pte & rsvd_check->rsvd_bits_mask[bit7][level-1];
3926 3927
}

3928
static bool __is_bad_mt_xwr(struct rsvd_bits_validate *rsvd_check, u64 pte)
3929
{
3930
	return rsvd_check->bad_mt_xwr & BIT_ULL(pte & 0x3f);
3931 3932
}

3933
static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3934
{
3935 3936 3937 3938 3939 3940 3941
	/*
	 * A nested guest cannot use the MMIO cache if it is using nested
	 * page tables, because cr2 is a nGPA while the cache stores GPAs.
	 */
	if (mmu_is_nested(vcpu))
		return false;

3942 3943 3944 3945 3946 3947
	if (direct)
		return vcpu_match_mmio_gpa(vcpu, addr);

	return vcpu_match_mmio_gva(vcpu, addr);
}

3948 3949 3950
/* return true if reserved bit is detected on spte. */
static bool
walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3951 3952
{
	struct kvm_shadow_walk_iterator iterator;
3953
	u64 sptes[PT64_ROOT_MAX_LEVEL], spte = 0ull;
3954
	struct rsvd_bits_validate *rsvd_check;
3955 3956
	int root, leaf;
	bool reserved = false;
3957

3958
	rsvd_check = &vcpu->arch.mmu->shadow_zero_check;
3959

3960
	walk_shadow_page_lockless_begin(vcpu);
3961

3962 3963
	for (shadow_walk_init(&iterator, vcpu, addr),
		 leaf = root = iterator.level;
3964 3965 3966 3967 3968
	     shadow_walk_okay(&iterator);
	     __shadow_walk_next(&iterator, spte)) {
		spte = mmu_spte_get_lockless(iterator.sptep);

		sptes[leaf - 1] = spte;
3969
		leaf--;
3970

3971 3972
		if (!is_shadow_present_pte(spte))
			break;
3973

3974 3975 3976 3977 3978 3979 3980
		/*
		 * Use a bitwise-OR instead of a logical-OR to aggregate the
		 * reserved bit and EPT's invalid memtype/XWR checks to avoid
		 * adding a Jcc in the loop.
		 */
		reserved |= __is_bad_mt_xwr(rsvd_check, spte) |
			    __is_rsvd_bits_set(rsvd_check, spte, iterator.level);
3981 3982
	}

3983 3984
	walk_shadow_page_lockless_end(vcpu);

3985 3986 3987
	if (reserved) {
		pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
		       __func__, addr);
3988
		while (root > leaf) {
3989 3990 3991 3992 3993
			pr_err("------ spte 0x%llx level %d.\n",
			       sptes[root - 1], root);
			root--;
		}
	}
3994

3995 3996
	*sptep = spte;
	return reserved;
3997 3998
}

P
Paolo Bonzini 已提交
3999
static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
4000 4001
{
	u64 spte;
4002
	bool reserved;
4003

4004
	if (mmio_info_in_cache(vcpu, addr, direct))
4005
		return RET_PF_EMULATE;
4006

4007
	reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
4008
	if (WARN_ON(reserved))
4009
		return -EINVAL;
4010 4011 4012

	if (is_mmio_spte(spte)) {
		gfn_t gfn = get_mmio_spte_gfn(spte);
4013
		unsigned int access = get_mmio_spte_access(spte);
4014

4015
		if (!check_mmio_spte(vcpu, spte))
4016
			return RET_PF_INVALID;
4017

4018 4019
		if (direct)
			addr = 0;
X
Xiao Guangrong 已提交
4020 4021

		trace_handle_mmio_page_fault(addr, gfn, access);
4022
		vcpu_cache_mmio_info(vcpu, addr, gfn, access);
4023
		return RET_PF_EMULATE;
4024 4025 4026 4027 4028 4029
	}

	/*
	 * If the page table is zapped by other cpus, let CPU fault again on
	 * the address.
	 */
4030
	return RET_PF_RETRY;
4031 4032
}

4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052
static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
					 u32 error_code, gfn_t gfn)
{
	if (unlikely(error_code & PFERR_RSVD_MASK))
		return false;

	if (!(error_code & PFERR_PRESENT_MASK) ||
	      !(error_code & PFERR_WRITE_MASK))
		return false;

	/*
	 * guest is writing the page which is write tracked which can
	 * not be fixed by page fault handler.
	 */
	if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
		return true;

	return false;
}

4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066
static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
{
	struct kvm_shadow_walk_iterator iterator;
	u64 spte;

	walk_shadow_page_lockless_begin(vcpu);
	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
		clear_sp_write_flooding_count(iterator.sptep);
		if (!is_shadow_present_pte(spte))
			break;
	}
	walk_shadow_page_lockless_end(vcpu);
}

4067 4068
static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
				   gfn_t gfn)
4069 4070
{
	struct kvm_arch_async_pf arch;
X
Xiao Guangrong 已提交
4071

4072
	arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
4073
	arch.gfn = gfn;
4074
	arch.direct_map = vcpu->arch.mmu->direct_map;
4075
	arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu);
4076

4077 4078
	return kvm_setup_async_pf(vcpu, cr2_or_gpa,
				  kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
4079 4080
}

4081
static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
4082 4083
			 gpa_t cr2_or_gpa, kvm_pfn_t *pfn, bool write,
			 bool *writable)
4084
{
4085
	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
4086 4087
	bool async;

4088 4089
	/* Don't expose private memslots to L2. */
	if (is_guest_mode(vcpu) && !kvm_is_visible_memslot(slot)) {
4090
		*pfn = KVM_PFN_NOSLOT;
4091
		*writable = false;
4092 4093 4094
		return false;
	}

4095 4096
	async = false;
	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
4097 4098 4099
	if (!async)
		return false; /* *pfn has correct page already */

4100
	if (!prefault && kvm_can_do_async_pf(vcpu)) {
4101
		trace_kvm_try_async_get_page(cr2_or_gpa, gfn);
4102
		if (kvm_find_async_pf_gfn(vcpu, gfn)) {
4103
			trace_kvm_async_pf_doublefault(cr2_or_gpa, gfn);
4104 4105
			kvm_make_request(KVM_REQ_APF_HALT, vcpu);
			return true;
4106
		} else if (kvm_arch_setup_async_pf(vcpu, cr2_or_gpa, gfn))
4107 4108 4109
			return true;
	}

4110
	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
4111 4112 4113
	return false;
}

4114 4115
static int direct_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
			     bool prefault, int max_level, bool is_tdp)
A
Avi Kivity 已提交
4116
{
4117 4118 4119
	bool write = error_code & PFERR_WRITE_MASK;
	bool exec = error_code & PFERR_FETCH_MASK;
	bool lpage_disallowed = exec && is_nx_huge_page_enabled();
4120
	bool map_writable;
A
Avi Kivity 已提交
4121

4122 4123 4124
	gfn_t gfn = gpa >> PAGE_SHIFT;
	unsigned long mmu_seq;
	kvm_pfn_t pfn;
4125
	int r;
4126

4127
	if (page_fault_handle_page_track(vcpu, error_code, gfn))
4128
		return RET_PF_EMULATE;
4129

4130 4131 4132
	r = mmu_topup_memory_caches(vcpu);
	if (r)
		return r;
4133

4134 4135
	if (lpage_disallowed)
		max_level = PT_PAGE_TABLE_LEVEL;
4136

4137
	if (fast_page_fault(vcpu, gpa, error_code))
4138 4139 4140 4141 4142 4143 4144 4145
		return RET_PF_RETRY;

	mmu_seq = vcpu->kvm->mmu_notifier_seq;
	smp_rmb();

	if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
		return RET_PF_RETRY;

4146
	if (handle_abnormal_pfn(vcpu, is_tdp ? 0 : gpa, gfn, pfn, ACC_ALL, &r))
4147
		return r;
A
Avi Kivity 已提交
4148

4149 4150 4151 4152 4153 4154
	r = RET_PF_RETRY;
	spin_lock(&vcpu->kvm->mmu_lock);
	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
		goto out_unlock;
	if (make_mmu_pages_available(vcpu) < 0)
		goto out_unlock;
4155
	r = __direct_map(vcpu, gpa, write, map_writable, max_level, pfn,
4156
			 prefault, is_tdp && lpage_disallowed);
4157

4158 4159 4160 4161
out_unlock:
	spin_unlock(&vcpu->kvm->mmu_lock);
	kvm_release_pfn_clean(pfn);
	return r;
A
Avi Kivity 已提交
4162 4163
}

4164 4165 4166 4167 4168 4169 4170 4171 4172 4173
static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa,
				u32 error_code, bool prefault)
{
	pgprintk("%s: gva %lx error %x\n", __func__, gpa, error_code);

	/* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
	return direct_page_fault(vcpu, gpa & PAGE_MASK, error_code, prefault,
				 PT_DIRECTORY_LEVEL, false);
}

4174
int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
4175
				u64 fault_address, char *insn, int insn_len)
4176 4177 4178
{
	int r = 1;

4179 4180 4181 4182 4183 4184
#ifndef CONFIG_X86_64
	/* A 64-bit CR2 should be impossible on 32-bit KVM. */
	if (WARN_ON_ONCE(fault_address >> 32))
		return -EFAULT;
#endif

P
Paolo Bonzini 已提交
4185
	vcpu->arch.l1tf_flush_l1d = true;
4186 4187 4188 4189
	switch (vcpu->arch.apf.host_apf_reason) {
	default:
		trace_kvm_page_fault(fault_address, error_code);

4190
		if (kvm_event_needs_reinjection(vcpu))
4191 4192 4193 4194 4195 4196 4197
			kvm_mmu_unprotect_page_virt(vcpu, fault_address);
		r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
				insn_len);
		break;
	case KVM_PV_REASON_PAGE_NOT_PRESENT:
		vcpu->arch.apf.host_apf_reason = 0;
		local_irq_disable();
4198
		kvm_async_pf_task_wait(fault_address, 0);
4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211
		local_irq_enable();
		break;
	case KVM_PV_REASON_PAGE_READY:
		vcpu->arch.apf.host_apf_reason = 0;
		local_irq_disable();
		kvm_async_pf_task_wake(fault_address);
		local_irq_enable();
		break;
	}
	return r;
}
EXPORT_SYMBOL_GPL(kvm_handle_page_fault);

4212 4213
int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
		       bool prefault)
4214
{
4215
	int max_level;
4216

4217
	for (max_level = KVM_MAX_HUGEPAGE_LEVEL;
4218 4219 4220
	     max_level > PT_PAGE_TABLE_LEVEL;
	     max_level--) {
		int page_num = KVM_PAGES_PER_HPAGE(max_level);
4221
		gfn_t base = (gpa >> PAGE_SHIFT) & ~(page_num - 1);
4222

4223 4224
		if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
			break;
4225
	}
4226

4227 4228
	return direct_page_fault(vcpu, gpa, error_code, prefault,
				 max_level, true);
4229 4230
}

4231 4232
static void nonpaging_init_context(struct kvm_vcpu *vcpu,
				   struct kvm_mmu *context)
A
Avi Kivity 已提交
4233 4234 4235
{
	context->page_fault = nonpaging_page_fault;
	context->gva_to_gpa = nonpaging_gva_to_gpa;
4236
	context->sync_page = nonpaging_sync_page;
4237
	context->invlpg = NULL;
4238
	context->update_pte = nonpaging_update_pte;
4239
	context->root_level = 0;
A
Avi Kivity 已提交
4240
	context->shadow_root_level = PT32E_ROOT_LEVEL;
4241
	context->direct_map = true;
4242
	context->nx = false;
A
Avi Kivity 已提交
4243 4244
}

4245
static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd,
4246 4247
				  union kvm_mmu_page_role role)
{
4248
	return (role.direct || pgd == root->pgd) &&
4249 4250 4251 4252
	       VALID_PAGE(root->hpa) && page_header(root->hpa) &&
	       role.word == page_header(root->hpa)->role.word;
}

4253
/*
4254
 * Find out if a previously cached root matching the new pgd/role is available.
4255 4256 4257 4258 4259 4260
 * The current root is also inserted into the cache.
 * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
 * returned.
 * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
 * false is returned. This root should now be freed by the caller.
 */
4261
static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_pgd,
4262 4263 4264 4265
				  union kvm_mmu_page_role new_role)
{
	uint i;
	struct kvm_mmu_root_info root;
4266
	struct kvm_mmu *mmu = vcpu->arch.mmu;
4267

4268
	root.pgd = mmu->root_pgd;
4269 4270
	root.hpa = mmu->root_hpa;

4271
	if (is_root_usable(&root, new_pgd, new_role))
4272 4273
		return true;

4274 4275 4276
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
		swap(root, mmu->prev_roots[i]);

4277
		if (is_root_usable(&root, new_pgd, new_role))
4278 4279 4280 4281
			break;
	}

	mmu->root_hpa = root.hpa;
4282
	mmu->root_pgd = root.pgd;
4283 4284 4285 4286

	return i < KVM_MMU_NUM_PREV_ROOTS;
}

4287
static bool fast_pgd_switch(struct kvm_vcpu *vcpu, gpa_t new_pgd,
4288
			    union kvm_mmu_page_role new_role)
A
Avi Kivity 已提交
4289
{
4290
	struct kvm_mmu *mmu = vcpu->arch.mmu;
4291 4292 4293 4294 4295 4296 4297

	/*
	 * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
	 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
	 * later if necessary.
	 */
	if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
4298
	    mmu->root_level >= PT64_ROOT_4LEVEL)
4299 4300
		return !mmu_check_root(vcpu, new_pgd >> PAGE_SHIFT) &&
		       cached_root_available(vcpu, new_pgd, new_role);
4301 4302

	return false;
A
Avi Kivity 已提交
4303 4304
}

4305
static void __kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd,
4306
			      union kvm_mmu_page_role new_role,
4307
			      bool skip_tlb_flush, bool skip_mmu_sync)
A
Avi Kivity 已提交
4308
{
4309
	if (!fast_pgd_switch(vcpu, new_pgd, new_role)) {
4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321
		kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, KVM_MMU_ROOT_CURRENT);
		return;
	}

	/*
	 * It's possible that the cached previous root page is obsolete because
	 * of a change in the MMU generation number. However, changing the
	 * generation number is accompanied by KVM_REQ_MMU_RELOAD, which will
	 * free the root set here and allocate a new one.
	 */
	kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);

4322
	if (!skip_mmu_sync || force_flush_and_sync_on_reuse)
4323
		kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
4324
	if (!skip_tlb_flush || force_flush_and_sync_on_reuse)
4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335
		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);

	/*
	 * The last MMIO access's GVA and GPA are cached in the VCPU. When
	 * switching to a new CR3, that GVA->GPA mapping may no longer be
	 * valid. So clear any cached MMIO info even when we don't need to sync
	 * the shadow page tables.
	 */
	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);

	__clear_sp_write_flooding_count(page_header(vcpu->arch.mmu->root_hpa));
A
Avi Kivity 已提交
4336 4337
}

4338
void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd, bool skip_tlb_flush,
4339
		     bool skip_mmu_sync)
4340
{
4341
	__kvm_mmu_new_pgd(vcpu, new_pgd, kvm_mmu_calc_root_page_role(vcpu),
4342
			  skip_tlb_flush, skip_mmu_sync);
4343
}
4344
EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd);
4345

4346 4347
static unsigned long get_cr3(struct kvm_vcpu *vcpu)
{
4348
	return kvm_read_cr3(vcpu);
4349 4350
}

4351
static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
4352
			   unsigned int access, int *nr_present)
4353 4354 4355 4356 4357 4358 4359 4360
{
	if (unlikely(is_mmio_spte(*sptep))) {
		if (gfn != get_mmio_spte_gfn(*sptep)) {
			mmu_spte_clear_no_track(sptep);
			return true;
		}

		(*nr_present)++;
4361
		mark_mmio_spte(vcpu, sptep, gfn, access);
4362 4363 4364 4365 4366 4367
		return true;
	}

	return false;
}

4368 4369
static inline bool is_last_gpte(struct kvm_mmu *mmu,
				unsigned level, unsigned gpte)
A
Avi Kivity 已提交
4370
{
4371 4372 4373 4374 4375 4376 4377
	/*
	 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
	 * If it is clear, there are no large pages at this level, so clear
	 * PT_PAGE_SIZE_MASK in gpte if that is the case.
	 */
	gpte &= level - mmu->last_nonleaf_level;

4378 4379 4380 4381 4382 4383 4384
	/*
	 * PT_PAGE_TABLE_LEVEL always terminates.  The RHS has bit 7 set
	 * iff level <= PT_PAGE_TABLE_LEVEL, which for our purpose means
	 * level == PT_PAGE_TABLE_LEVEL; set PT_PAGE_SIZE_MASK in gpte then.
	 */
	gpte |= level - PT_PAGE_TABLE_LEVEL - 1;

4385
	return gpte & PT_PAGE_SIZE_MASK;
A
Avi Kivity 已提交
4386 4387
}

4388 4389 4390 4391 4392
#define PTTYPE_EPT 18 /* arbitrary */
#define PTTYPE PTTYPE_EPT
#include "paging_tmpl.h"
#undef PTTYPE

A
Avi Kivity 已提交
4393 4394 4395 4396 4397 4398 4399 4400
#define PTTYPE 64
#include "paging_tmpl.h"
#undef PTTYPE

#define PTTYPE 32
#include "paging_tmpl.h"
#undef PTTYPE

4401 4402 4403 4404
static void
__reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
			struct rsvd_bits_validate *rsvd_check,
			int maxphyaddr, int level, bool nx, bool gbpages,
4405
			bool pse, bool amd)
4406 4407
{
	u64 exb_bit_rsvd = 0;
4408
	u64 gbpages_bit_rsvd = 0;
4409
	u64 nonleaf_bit8_rsvd = 0;
4410

4411
	rsvd_check->bad_mt_xwr = 0;
4412

4413
	if (!nx)
4414
		exb_bit_rsvd = rsvd_bits(63, 63);
4415
	if (!gbpages)
4416
		gbpages_bit_rsvd = rsvd_bits(7, 7);
4417 4418 4419 4420 4421

	/*
	 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
	 * leaf entries) on AMD CPUs only.
	 */
4422
	if (amd)
4423 4424
		nonleaf_bit8_rsvd = rsvd_bits(8, 8);

4425
	switch (level) {
4426 4427
	case PT32_ROOT_LEVEL:
		/* no rsvd bits for 2 level 4K page table entries */
4428 4429 4430 4431
		rsvd_check->rsvd_bits_mask[0][1] = 0;
		rsvd_check->rsvd_bits_mask[0][0] = 0;
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
4432

4433
		if (!pse) {
4434
			rsvd_check->rsvd_bits_mask[1][1] = 0;
4435 4436 4437
			break;
		}

4438 4439
		if (is_cpuid_PSE36())
			/* 36bits PSE 4MB page */
4440
			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4441 4442
		else
			/* 32 bits PSE 4MB page */
4443
			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4444 4445
		break;
	case PT32E_ROOT_LEVEL:
4446
		rsvd_check->rsvd_bits_mask[0][2] =
4447
			rsvd_bits(maxphyaddr, 63) |
4448
			rsvd_bits(5, 8) | rsvd_bits(1, 2);	/* PDPTE */
4449
		rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4450
			rsvd_bits(maxphyaddr, 62);	/* PDE */
4451
		rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4452
			rsvd_bits(maxphyaddr, 62); 	/* PTE */
4453
		rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4454 4455
			rsvd_bits(maxphyaddr, 62) |
			rsvd_bits(13, 20);		/* large page */
4456 4457
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
4458
		break;
4459 4460 4461 4462 4463 4464
	case PT64_ROOT_5LEVEL:
		rsvd_check->rsvd_bits_mask[0][4] = exb_bit_rsvd |
			nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
			rsvd_bits(maxphyaddr, 51);
		rsvd_check->rsvd_bits_mask[1][4] =
			rsvd_check->rsvd_bits_mask[0][4];
4465
		/* fall through */
4466
	case PT64_ROOT_4LEVEL:
4467 4468
		rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
			nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4469
			rsvd_bits(maxphyaddr, 51);
4470 4471
		rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
			nonleaf_bit8_rsvd | gbpages_bit_rsvd |
4472
			rsvd_bits(maxphyaddr, 51);
4473 4474 4475 4476 4477 4478 4479
		rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
			rsvd_bits(maxphyaddr, 51);
		rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
			rsvd_bits(maxphyaddr, 51);
		rsvd_check->rsvd_bits_mask[1][3] =
			rsvd_check->rsvd_bits_mask[0][3];
		rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
4480
			gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
4481
			rsvd_bits(13, 29);
4482
		rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4483 4484
			rsvd_bits(maxphyaddr, 51) |
			rsvd_bits(13, 20);		/* large page */
4485 4486
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
4487 4488 4489 4490
		break;
	}
}

4491 4492 4493 4494 4495
static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
{
	__reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
				cpuid_maxphyaddr(vcpu), context->root_level,
4496 4497
				context->nx,
				guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4498 4499
				is_pse(vcpu),
				guest_cpuid_is_amd_or_hygon(vcpu));
4500 4501
}

4502 4503 4504
static void
__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
			    int maxphyaddr, bool execonly)
4505
{
4506
	u64 bad_mt_xwr;
4507

4508 4509
	rsvd_check->rsvd_bits_mask[0][4] =
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4510
	rsvd_check->rsvd_bits_mask[0][3] =
4511
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4512
	rsvd_check->rsvd_bits_mask[0][2] =
4513
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4514
	rsvd_check->rsvd_bits_mask[0][1] =
4515
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4516
	rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
4517 4518

	/* large page */
4519
	rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4520 4521
	rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
	rsvd_check->rsvd_bits_mask[1][2] =
4522
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
4523
	rsvd_check->rsvd_bits_mask[1][1] =
4524
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
4525
	rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4526

4527 4528 4529 4530 4531 4532 4533 4534
	bad_mt_xwr = 0xFFull << (2 * 8);	/* bits 3..5 must not be 2 */
	bad_mt_xwr |= 0xFFull << (3 * 8);	/* bits 3..5 must not be 3 */
	bad_mt_xwr |= 0xFFull << (7 * 8);	/* bits 3..5 must not be 7 */
	bad_mt_xwr |= REPEAT_BYTE(1ull << 2);	/* bits 0..2 must not be 010 */
	bad_mt_xwr |= REPEAT_BYTE(1ull << 6);	/* bits 0..2 must not be 110 */
	if (!execonly) {
		/* bits 0..2 must not be 100 unless VMX capabilities allow it */
		bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4535
	}
4536
	rsvd_check->bad_mt_xwr = bad_mt_xwr;
4537 4538
}

4539 4540 4541 4542 4543 4544 4545
static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
		struct kvm_mmu *context, bool execonly)
{
	__reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
				    cpuid_maxphyaddr(vcpu), execonly);
}

4546 4547 4548 4549 4550 4551 4552 4553
/*
 * the page table on host is the shadow page table for the page
 * table in guest or amd nested guest, its mmu features completely
 * follow the features in guest.
 */
void
reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
{
4554 4555
	bool uses_nx = context->nx ||
		context->mmu_role.base.smep_andnot_wp;
4556 4557
	struct rsvd_bits_validate *shadow_zero_check;
	int i;
4558

4559 4560 4561 4562
	/*
	 * Passing "true" to the last argument is okay; it adds a check
	 * on bit 8 of the SPTEs which KVM doesn't use anyway.
	 */
4563 4564
	shadow_zero_check = &context->shadow_zero_check;
	__reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4565
				shadow_phys_bits,
4566
				context->shadow_root_level, uses_nx,
4567 4568
				guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
				is_pse(vcpu), true);
4569 4570 4571 4572 4573 4574 4575 4576 4577

	if (!shadow_me_mask)
		return;

	for (i = context->shadow_root_level; --i >= 0;) {
		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
	}

4578 4579 4580
}
EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);

4581 4582 4583 4584 4585 4586
static inline bool boot_cpu_is_amd(void)
{
	WARN_ON_ONCE(!tdp_enabled);
	return shadow_x_mask == 0;
}

4587 4588 4589 4590 4591 4592 4593 4594
/*
 * the direct page table on host, use as much mmu features as
 * possible, however, kvm currently does not do execution-protection.
 */
static void
reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
				struct kvm_mmu *context)
{
4595 4596 4597 4598 4599
	struct rsvd_bits_validate *shadow_zero_check;
	int i;

	shadow_zero_check = &context->shadow_zero_check;

4600
	if (boot_cpu_is_amd())
4601
		__reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4602
					shadow_phys_bits,
4603
					context->shadow_root_level, false,
4604 4605
					boot_cpu_has(X86_FEATURE_GBPAGES),
					true, true);
4606
	else
4607
		__reset_rsvds_bits_mask_ept(shadow_zero_check,
4608
					    shadow_phys_bits,
4609 4610
					    false);

4611 4612 4613 4614 4615 4616 4617
	if (!shadow_me_mask)
		return;

	for (i = context->shadow_root_level; --i >= 0;) {
		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
	}
4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628
}

/*
 * as the comments in reset_shadow_zero_bits_mask() except it
 * is the shadow page table for intel nested guest.
 */
static void
reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
				struct kvm_mmu *context, bool execonly)
{
	__reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4629
				    shadow_phys_bits, execonly);
4630 4631
}

4632 4633 4634 4635 4636 4637 4638 4639 4640 4641
#define BYTE_MASK(access) \
	((1 & (access) ? 2 : 0) | \
	 (2 & (access) ? 4 : 0) | \
	 (3 & (access) ? 8 : 0) | \
	 (4 & (access) ? 16 : 0) | \
	 (5 & (access) ? 32 : 0) | \
	 (6 & (access) ? 64 : 0) | \
	 (7 & (access) ? 128 : 0))


4642 4643
static void update_permission_bitmask(struct kvm_vcpu *vcpu,
				      struct kvm_mmu *mmu, bool ept)
4644
{
4645 4646 4647 4648 4649 4650 4651 4652 4653
	unsigned byte;

	const u8 x = BYTE_MASK(ACC_EXEC_MASK);
	const u8 w = BYTE_MASK(ACC_WRITE_MASK);
	const u8 u = BYTE_MASK(ACC_USER_MASK);

	bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
	bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
	bool cr0_wp = is_write_protection(vcpu);
4654 4655

	for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4656 4657
		unsigned pfec = byte << 1;

F
Feng Wu 已提交
4658
		/*
4659 4660
		 * Each "*f" variable has a 1 bit for each UWX value
		 * that causes a fault with the given PFEC.
F
Feng Wu 已提交
4661
		 */
4662

4663
		/* Faults from writes to non-writable pages */
4664
		u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
4665
		/* Faults from user mode accesses to supervisor pages */
4666
		u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
4667
		/* Faults from fetches of non-executable pages*/
4668
		u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693
		/* Faults from kernel mode fetches of user pages */
		u8 smepf = 0;
		/* Faults from kernel mode accesses of user pages */
		u8 smapf = 0;

		if (!ept) {
			/* Faults from kernel mode accesses to user pages */
			u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;

			/* Not really needed: !nx will cause pte.nx to fault */
			if (!mmu->nx)
				ff = 0;

			/* Allow supervisor writes if !cr0.wp */
			if (!cr0_wp)
				wf = (pfec & PFERR_USER_MASK) ? wf : 0;

			/* Disallow supervisor fetches of user code if cr4.smep */
			if (cr4_smep)
				smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;

			/*
			 * SMAP:kernel-mode data accesses from user-mode
			 * mappings should fault. A fault is considered
			 * as a SMAP violation if all of the following
P
Peng Hao 已提交
4694
			 * conditions are true:
4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707
			 *   - X86_CR4_SMAP is set in CR4
			 *   - A user page is accessed
			 *   - The access is not a fetch
			 *   - Page fault in kernel mode
			 *   - if CPL = 3 or X86_EFLAGS_AC is clear
			 *
			 * Here, we cover the first three conditions.
			 * The fourth is computed dynamically in permission_fault();
			 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
			 * *not* subject to SMAP restrictions.
			 */
			if (cr4_smap)
				smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4708
		}
4709 4710

		mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4711 4712 4713
	}
}

4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788
/*
* PKU is an additional mechanism by which the paging controls access to
* user-mode addresses based on the value in the PKRU register.  Protection
* key violations are reported through a bit in the page fault error code.
* Unlike other bits of the error code, the PK bit is not known at the
* call site of e.g. gva_to_gpa; it must be computed directly in
* permission_fault based on two bits of PKRU, on some machine state (CR4,
* CR0, EFER, CPL), and on other bits of the error code and the page tables.
*
* In particular the following conditions come from the error code, the
* page tables and the machine state:
* - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
* - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
* - PK is always zero if U=0 in the page tables
* - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
*
* The PKRU bitmask caches the result of these four conditions.  The error
* code (minus the P bit) and the page table's U bit form an index into the
* PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
* with the two bits of the PKRU register corresponding to the protection key.
* For the first three conditions above the bits will be 00, thus masking
* away both AD and WD.  For all reads or if the last condition holds, WD
* only will be masked away.
*/
static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
				bool ept)
{
	unsigned bit;
	bool wp;

	if (ept) {
		mmu->pkru_mask = 0;
		return;
	}

	/* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
	if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
		mmu->pkru_mask = 0;
		return;
	}

	wp = is_write_protection(vcpu);

	for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
		unsigned pfec, pkey_bits;
		bool check_pkey, check_write, ff, uf, wf, pte_user;

		pfec = bit << 1;
		ff = pfec & PFERR_FETCH_MASK;
		uf = pfec & PFERR_USER_MASK;
		wf = pfec & PFERR_WRITE_MASK;

		/* PFEC.RSVD is replaced by ACC_USER_MASK. */
		pte_user = pfec & PFERR_RSVD_MASK;

		/*
		 * Only need to check the access which is not an
		 * instruction fetch and is to a user page.
		 */
		check_pkey = (!ff && pte_user);
		/*
		 * write access is controlled by PKRU if it is a
		 * user access or CR0.WP = 1.
		 */
		check_write = check_pkey && wf && (uf || wp);

		/* PKRU.AD stops both read and write access. */
		pkey_bits = !!check_pkey;
		/* PKRU.WD stops write access. */
		pkey_bits |= (!!check_write) << 1;

		mmu->pkru_mask |= (pkey_bits & 3) << pfec;
	}
}

4789
static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
A
Avi Kivity 已提交
4790
{
4791 4792 4793 4794 4795
	unsigned root_level = mmu->root_level;

	mmu->last_nonleaf_level = root_level;
	if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
		mmu->last_nonleaf_level++;
A
Avi Kivity 已提交
4796 4797
}

4798 4799 4800
static void paging64_init_context_common(struct kvm_vcpu *vcpu,
					 struct kvm_mmu *context,
					 int level)
A
Avi Kivity 已提交
4801
{
4802
	context->nx = is_nx(vcpu);
4803
	context->root_level = level;
4804

4805
	reset_rsvds_bits_mask(vcpu, context);
4806
	update_permission_bitmask(vcpu, context, false);
4807
	update_pkru_bitmask(vcpu, context, false);
4808
	update_last_nonleaf_level(vcpu, context);
A
Avi Kivity 已提交
4809

4810
	MMU_WARN_ON(!is_pae(vcpu));
A
Avi Kivity 已提交
4811 4812
	context->page_fault = paging64_page_fault;
	context->gva_to_gpa = paging64_gva_to_gpa;
4813
	context->sync_page = paging64_sync_page;
M
Marcelo Tosatti 已提交
4814
	context->invlpg = paging64_invlpg;
4815
	context->update_pte = paging64_update_pte;
4816
	context->shadow_root_level = level;
4817
	context->direct_map = false;
A
Avi Kivity 已提交
4818 4819
}

4820 4821
static void paging64_init_context(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
4822
{
4823 4824 4825 4826
	int root_level = is_la57_mode(vcpu) ?
			 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;

	paging64_init_context_common(vcpu, context, root_level);
4827 4828
}

4829 4830
static void paging32_init_context(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
A
Avi Kivity 已提交
4831
{
4832
	context->nx = false;
4833
	context->root_level = PT32_ROOT_LEVEL;
4834

4835
	reset_rsvds_bits_mask(vcpu, context);
4836
	update_permission_bitmask(vcpu, context, false);
4837
	update_pkru_bitmask(vcpu, context, false);
4838
	update_last_nonleaf_level(vcpu, context);
A
Avi Kivity 已提交
4839 4840 4841

	context->page_fault = paging32_page_fault;
	context->gva_to_gpa = paging32_gva_to_gpa;
4842
	context->sync_page = paging32_sync_page;
M
Marcelo Tosatti 已提交
4843
	context->invlpg = paging32_invlpg;
4844
	context->update_pte = paging32_update_pte;
A
Avi Kivity 已提交
4845
	context->shadow_root_level = PT32E_ROOT_LEVEL;
4846
	context->direct_map = false;
A
Avi Kivity 已提交
4847 4848
}

4849 4850
static void paging32E_init_context(struct kvm_vcpu *vcpu,
				   struct kvm_mmu *context)
A
Avi Kivity 已提交
4851
{
4852
	paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
A
Avi Kivity 已提交
4853 4854
}

4855 4856 4857 4858
static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu)
{
	union kvm_mmu_extended_role ext = {0};

4859
	ext.cr0_pg = !!is_paging(vcpu);
4860
	ext.cr4_pae = !!is_pae(vcpu);
4861 4862 4863 4864
	ext.cr4_smep = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
	ext.cr4_smap = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
	ext.cr4_pse = !!is_pse(vcpu);
	ext.cr4_pke = !!kvm_read_cr4_bits(vcpu, X86_CR4_PKE);
4865
	ext.maxphyaddr = cpuid_maxphyaddr(vcpu);
4866 4867 4868 4869 4870 4871

	ext.valid = 1;

	return ext;
}

4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892
static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
						   bool base_only)
{
	union kvm_mmu_role role = {0};

	role.base.access = ACC_ALL;
	role.base.nxe = !!is_nx(vcpu);
	role.base.cr0_wp = is_write_protection(vcpu);
	role.base.smm = is_smm(vcpu);
	role.base.guest_mode = is_guest_mode(vcpu);

	if (base_only)
		return role;

	role.ext = kvm_calc_mmu_role_ext(vcpu);

	return role;
}

static union kvm_mmu_role
kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4893
{
4894
	union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4895

4896
	role.base.ad_disabled = (shadow_accessed_mask == 0);
4897
	role.base.level = vcpu->arch.tdp_level;
4898
	role.base.direct = true;
4899
	role.base.gpte_is_8_bytes = true;
4900 4901 4902 4903

	return role;
}

4904
static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4905
{
4906
	struct kvm_mmu *context = vcpu->arch.mmu;
4907 4908
	union kvm_mmu_role new_role =
		kvm_calc_tdp_mmu_root_page_role(vcpu, false);
4909

4910 4911 4912 4913
	if (new_role.as_u64 == context->mmu_role.as_u64)
		return;

	context->mmu_role.as_u64 = new_role.as_u64;
4914
	context->page_fault = kvm_tdp_page_fault;
4915
	context->sync_page = nonpaging_sync_page;
4916
	context->invlpg = NULL;
4917
	context->update_pte = nonpaging_update_pte;
4918
	context->shadow_root_level = vcpu->arch.tdp_level;
4919
	context->direct_map = true;
4920
	context->get_guest_pgd = get_cr3;
4921
	context->get_pdptr = kvm_pdptr_read;
4922
	context->inject_page_fault = kvm_inject_page_fault;
4923 4924

	if (!is_paging(vcpu)) {
4925
		context->nx = false;
4926 4927 4928
		context->gva_to_gpa = nonpaging_gva_to_gpa;
		context->root_level = 0;
	} else if (is_long_mode(vcpu)) {
4929
		context->nx = is_nx(vcpu);
4930 4931
		context->root_level = is_la57_mode(vcpu) ?
				PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4932 4933
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging64_gva_to_gpa;
4934
	} else if (is_pae(vcpu)) {
4935
		context->nx = is_nx(vcpu);
4936
		context->root_level = PT32E_ROOT_LEVEL;
4937 4938
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging64_gva_to_gpa;
4939
	} else {
4940
		context->nx = false;
4941
		context->root_level = PT32_ROOT_LEVEL;
4942 4943
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging32_gva_to_gpa;
4944 4945
	}

4946
	update_permission_bitmask(vcpu, context, false);
4947
	update_pkru_bitmask(vcpu, context, false);
4948
	update_last_nonleaf_level(vcpu, context);
4949
	reset_tdp_shadow_zero_bits_mask(vcpu, context);
4950 4951
}

4952 4953 4954 4955 4956 4957 4958 4959 4960 4961
static union kvm_mmu_role
kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
{
	union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);

	role.base.smep_andnot_wp = role.ext.cr4_smep &&
		!is_write_protection(vcpu);
	role.base.smap_andnot_wp = role.ext.cr4_smap &&
		!is_write_protection(vcpu);
	role.base.direct = !is_paging(vcpu);
4962
	role.base.gpte_is_8_bytes = !!is_pae(vcpu);
4963 4964

	if (!is_long_mode(vcpu))
4965
		role.base.level = PT32E_ROOT_LEVEL;
4966
	else if (is_la57_mode(vcpu))
4967
		role.base.level = PT64_ROOT_5LEVEL;
4968
	else
4969
		role.base.level = PT64_ROOT_4LEVEL;
4970 4971 4972 4973 4974 4975

	return role;
}

void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
{
4976
	struct kvm_mmu *context = vcpu->arch.mmu;
4977 4978 4979 4980 4981
	union kvm_mmu_role new_role =
		kvm_calc_shadow_mmu_root_page_role(vcpu, false);

	if (new_role.as_u64 == context->mmu_role.as_u64)
		return;
A
Avi Kivity 已提交
4982 4983

	if (!is_paging(vcpu))
4984
		nonpaging_init_context(vcpu, context);
A
Avi Kivity 已提交
4985
	else if (is_long_mode(vcpu))
4986
		paging64_init_context(vcpu, context);
A
Avi Kivity 已提交
4987
	else if (is_pae(vcpu))
4988
		paging32E_init_context(vcpu, context);
A
Avi Kivity 已提交
4989
	else
4990
		paging32_init_context(vcpu, context);
4991

4992
	context->mmu_role.as_u64 = new_role.as_u64;
4993
	reset_shadow_zero_bits_mask(vcpu, context);
4994 4995 4996
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);

4997 4998
static union kvm_mmu_role
kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
4999
				   bool execonly, u8 level)
5000
{
5001
	union kvm_mmu_role role = {0};
5002

5003 5004
	/* SMM flag is inherited from root_mmu */
	role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
5005

5006
	role.base.level = level;
5007
	role.base.gpte_is_8_bytes = true;
5008 5009 5010 5011
	role.base.direct = false;
	role.base.ad_disabled = !accessed_dirty;
	role.base.guest_mode = true;
	role.base.access = ACC_ALL;
5012

5013 5014 5015 5016 5017 5018 5019
	/*
	 * WP=1 and NOT_WP=1 is an impossible combination, use WP and the
	 * SMAP variation to denote shadow EPT entries.
	 */
	role.base.cr0_wp = true;
	role.base.smap_andnot_wp = true;

5020
	role.ext = kvm_calc_mmu_role_ext(vcpu);
5021
	role.ext.execonly = execonly;
5022 5023 5024 5025

	return role;
}

5026
void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
5027
			     bool accessed_dirty, gpa_t new_eptp)
N
Nadav Har'El 已提交
5028
{
5029
	struct kvm_mmu *context = vcpu->arch.mmu;
5030
	u8 level = vmx_eptp_page_walk_level(new_eptp);
5031 5032
	union kvm_mmu_role new_role =
		kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
5033
						   execonly, level);
5034

5035
	__kvm_mmu_new_pgd(vcpu, new_eptp, new_role.base, true, true);
5036 5037 5038

	if (new_role.as_u64 == context->mmu_role.as_u64)
		return;
5039

5040
	context->shadow_root_level = level;
N
Nadav Har'El 已提交
5041 5042

	context->nx = true;
5043
	context->ept_ad = accessed_dirty;
N
Nadav Har'El 已提交
5044 5045 5046 5047 5048
	context->page_fault = ept_page_fault;
	context->gva_to_gpa = ept_gva_to_gpa;
	context->sync_page = ept_sync_page;
	context->invlpg = ept_invlpg;
	context->update_pte = ept_update_pte;
5049
	context->root_level = level;
N
Nadav Har'El 已提交
5050
	context->direct_map = false;
5051
	context->mmu_role.as_u64 = new_role.as_u64;
5052

N
Nadav Har'El 已提交
5053
	update_permission_bitmask(vcpu, context, true);
5054
	update_pkru_bitmask(vcpu, context, true);
5055
	update_last_nonleaf_level(vcpu, context);
N
Nadav Har'El 已提交
5056
	reset_rsvds_bits_mask_ept(vcpu, context, execonly);
5057
	reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
N
Nadav Har'El 已提交
5058 5059 5060
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);

5061
static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
5062
{
5063
	struct kvm_mmu *context = vcpu->arch.mmu;
5064 5065

	kvm_init_shadow_mmu(vcpu);
5066
	context->get_guest_pgd     = get_cr3;
5067 5068
	context->get_pdptr         = kvm_pdptr_read;
	context->inject_page_fault = kvm_inject_page_fault;
A
Avi Kivity 已提交
5069 5070
}

5071
static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
5072
{
5073
	union kvm_mmu_role new_role = kvm_calc_mmu_role_common(vcpu, false);
5074 5075
	struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;

5076 5077 5078 5079
	if (new_role.as_u64 == g_context->mmu_role.as_u64)
		return;

	g_context->mmu_role.as_u64 = new_role.as_u64;
5080
	g_context->get_guest_pgd     = get_cr3;
5081
	g_context->get_pdptr         = kvm_pdptr_read;
5082 5083
	g_context->inject_page_fault = kvm_inject_page_fault;

5084 5085 5086 5087 5088 5089
	/*
	 * L2 page tables are never shadowed, so there is no need to sync
	 * SPTEs.
	 */
	g_context->invlpg            = NULL;

5090
	/*
5091
	 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
5092 5093 5094 5095 5096
	 * L1's nested page tables (e.g. EPT12). The nested translation
	 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
	 * L2's page tables as the first level of translation and L1's
	 * nested page tables as the second level of translation. Basically
	 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
5097 5098
	 */
	if (!is_paging(vcpu)) {
5099
		g_context->nx = false;
5100 5101 5102
		g_context->root_level = 0;
		g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
	} else if (is_long_mode(vcpu)) {
5103
		g_context->nx = is_nx(vcpu);
5104 5105
		g_context->root_level = is_la57_mode(vcpu) ?
					PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
5106
		reset_rsvds_bits_mask(vcpu, g_context);
5107 5108
		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
	} else if (is_pae(vcpu)) {
5109
		g_context->nx = is_nx(vcpu);
5110
		g_context->root_level = PT32E_ROOT_LEVEL;
5111
		reset_rsvds_bits_mask(vcpu, g_context);
5112 5113
		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
	} else {
5114
		g_context->nx = false;
5115
		g_context->root_level = PT32_ROOT_LEVEL;
5116
		reset_rsvds_bits_mask(vcpu, g_context);
5117 5118 5119
		g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
	}

5120
	update_permission_bitmask(vcpu, g_context, false);
5121
	update_pkru_bitmask(vcpu, g_context, false);
5122
	update_last_nonleaf_level(vcpu, g_context);
5123 5124
}

5125
void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots)
5126
{
5127
	if (reset_roots) {
5128 5129
		uint i;

5130
		vcpu->arch.mmu->root_hpa = INVALID_PAGE;
5131 5132

		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5133
			vcpu->arch.mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5134 5135
	}

5136
	if (mmu_is_nested(vcpu))
5137
		init_kvm_nested_mmu(vcpu);
5138
	else if (tdp_enabled)
5139
		init_kvm_tdp_mmu(vcpu);
5140
	else
5141
		init_kvm_softmmu(vcpu);
5142
}
5143
EXPORT_SYMBOL_GPL(kvm_init_mmu);
5144

5145 5146 5147
static union kvm_mmu_page_role
kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
{
5148 5149
	union kvm_mmu_role role;

5150
	if (tdp_enabled)
5151
		role = kvm_calc_tdp_mmu_root_page_role(vcpu, true);
5152
	else
5153 5154 5155
		role = kvm_calc_shadow_mmu_root_page_role(vcpu, true);

	return role.base;
5156
}
5157

5158
void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
5159
{
5160
	kvm_mmu_unload(vcpu);
5161
	kvm_init_mmu(vcpu, true);
A
Avi Kivity 已提交
5162
}
5163
EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
A
Avi Kivity 已提交
5164 5165

int kvm_mmu_load(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
5166
{
5167 5168
	int r;

5169
	r = mmu_topup_memory_caches(vcpu);
A
Avi Kivity 已提交
5170 5171
	if (r)
		goto out;
5172
	r = mmu_alloc_roots(vcpu);
5173
	kvm_mmu_sync_roots(vcpu);
5174 5175
	if (r)
		goto out;
5176
	kvm_mmu_load_pgd(vcpu);
5177
	kvm_x86_ops.tlb_flush_current(vcpu);
5178 5179
out:
	return r;
A
Avi Kivity 已提交
5180
}
A
Avi Kivity 已提交
5181 5182 5183 5184
EXPORT_SYMBOL_GPL(kvm_mmu_load);

void kvm_mmu_unload(struct kvm_vcpu *vcpu)
{
5185 5186 5187 5188
	kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
	WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
	kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
	WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
A
Avi Kivity 已提交
5189
}
5190
EXPORT_SYMBOL_GPL(kvm_mmu_unload);
A
Avi Kivity 已提交
5191

5192
static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
5193 5194
				  struct kvm_mmu_page *sp, u64 *spte,
				  const void *new)
5195
{
5196
	if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
5197 5198
		++vcpu->kvm->stat.mmu_pde_zapped;
		return;
5199
        }
5200

A
Avi Kivity 已提交
5201
	++vcpu->kvm->stat.mmu_pte_updated;
5202
	vcpu->arch.mmu->update_pte(vcpu, sp, spte, new);
5203 5204
}

5205 5206 5207 5208 5209 5210 5211 5212
static bool need_remote_flush(u64 old, u64 new)
{
	if (!is_shadow_present_pte(old))
		return false;
	if (!is_shadow_present_pte(new))
		return true;
	if ((old ^ new) & PT64_BASE_ADDR_MASK)
		return true;
5213 5214
	old ^= shadow_nx_mask;
	new ^= shadow_nx_mask;
5215 5216 5217
	return (old & ~new & PT64_PERM_MASK) != 0;
}

5218
static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
5219
				    int *bytes)
5220
{
5221
	u64 gentry = 0;
5222
	int r;
5223 5224 5225

	/*
	 * Assume that the pte write on a page table of the same type
5226 5227
	 * as the current vcpu paging mode since we update the sptes only
	 * when they have the same mode.
5228
	 */
5229
	if (is_pae(vcpu) && *bytes == 4) {
5230
		/* Handle a 32-bit guest writing two halves of a 64-bit gpte */
5231 5232
		*gpa &= ~(gpa_t)7;
		*bytes = 8;
5233 5234
	}

5235 5236 5237 5238
	if (*bytes == 4 || *bytes == 8) {
		r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
		if (r)
			gentry = 0;
5239 5240
	}

5241 5242 5243 5244 5245 5246 5247
	return gentry;
}

/*
 * If we're seeing too many writes to a page, it may no longer be a page table,
 * or we may be forking, in which case it is better to unmap the page.
 */
5248
static bool detect_write_flooding(struct kvm_mmu_page *sp)
5249
{
5250 5251 5252 5253
	/*
	 * Skip write-flooding detected for the sp whose level is 1, because
	 * it can become unsync, then the guest page is not write-protected.
	 */
5254
	if (sp->role.level == PT_PAGE_TABLE_LEVEL)
5255
		return false;
5256

5257 5258
	atomic_inc(&sp->write_flooding_count);
	return atomic_read(&sp->write_flooding_count) >= 3;
5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273
}

/*
 * Misaligned accesses are too much trouble to fix up; also, they usually
 * indicate a page is not used as a page table.
 */
static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
				    int bytes)
{
	unsigned offset, pte_size, misaligned;

	pgprintk("misaligned: gpa %llx bytes %d role %x\n",
		 gpa, bytes, sp->role.word);

	offset = offset_in_page(gpa);
5274
	pte_size = sp->role.gpte_is_8_bytes ? 8 : 4;
5275 5276 5277 5278 5279 5280 5281 5282

	/*
	 * Sometimes, the OS only writes the last one bytes to update status
	 * bits, for example, in linux, andb instruction is used in clear_bit().
	 */
	if (!(offset & (pte_size - 1)) && bytes == 1)
		return false;

5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297
	misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
	misaligned |= bytes < 4;

	return misaligned;
}

static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
{
	unsigned page_offset, quadrant;
	u64 *spte;
	int level;

	page_offset = offset_in_page(gpa);
	level = sp->role.level;
	*nspte = 1;
5298
	if (!sp->role.gpte_is_8_bytes) {
5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319
		page_offset <<= 1;	/* 32->64 */
		/*
		 * A 32-bit pde maps 4MB while the shadow pdes map
		 * only 2MB.  So we need to double the offset again
		 * and zap two pdes instead of one.
		 */
		if (level == PT32_ROOT_LEVEL) {
			page_offset &= ~7; /* kill rounding error */
			page_offset <<= 1;
			*nspte = 2;
		}
		quadrant = page_offset >> PAGE_SHIFT;
		page_offset &= ~PAGE_MASK;
		if (quadrant != sp->role.quadrant)
			return NULL;
	}

	spte = &sp->spt[page_offset / sizeof(*spte)];
	return spte;
}

5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335
/*
 * Ignore various flags when determining if a SPTE can be immediately
 * overwritten for the current MMU.
 *  - level: explicitly checked in mmu_pte_write_new_pte(), and will never
 *    match the current MMU role, as MMU's level tracks the root level.
 *  - access: updated based on the new guest PTE
 *  - quadrant: handled by get_written_sptes()
 *  - invalid: always false (loop only walks valid shadow pages)
 */
static const union kvm_mmu_page_role role_ign = {
	.level = 0xf,
	.access = 0x7,
	.quadrant = 0x3,
	.invalid = 0x1,
};

5336
static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
5337 5338
			      const u8 *new, int bytes,
			      struct kvm_page_track_notifier_node *node)
5339 5340 5341 5342 5343 5344
{
	gfn_t gfn = gpa >> PAGE_SHIFT;
	struct kvm_mmu_page *sp;
	LIST_HEAD(invalid_list);
	u64 entry, gentry, *spte;
	int npte;
5345
	bool remote_flush, local_flush;
5346 5347 5348 5349 5350

	/*
	 * If we don't have indirect shadow pages, it means no page is
	 * write-protected, so we can exit simply.
	 */
5351
	if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
5352 5353
		return;

5354
	remote_flush = local_flush = false;
5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365

	pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);

	/*
	 * No need to care whether allocation memory is successful
	 * or not since pte prefetch is skiped if it does not have
	 * enough objects in the cache.
	 */
	mmu_topup_memory_caches(vcpu);

	spin_lock(&vcpu->kvm->mmu_lock);
5366 5367 5368

	gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);

5369
	++vcpu->kvm->stat.mmu_pte_write;
5370
	kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
5371

5372
	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
5373
		if (detect_write_misaligned(sp, gpa, bytes) ||
5374
		      detect_write_flooding(sp)) {
5375
			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
A
Avi Kivity 已提交
5376
			++vcpu->kvm->stat.mmu_flooded;
5377 5378
			continue;
		}
5379 5380 5381 5382 5383

		spte = get_written_sptes(sp, gpa, &npte);
		if (!spte)
			continue;

5384
		local_flush = true;
5385
		while (npte--) {
5386 5387
			u32 base_role = vcpu->arch.mmu->mmu_role.base.word;

5388
			entry = *spte;
5389
			mmu_page_zap_pte(vcpu->kvm, sp, spte);
5390
			if (gentry &&
5391 5392
			    !((sp->role.word ^ base_role) & ~role_ign.word) &&
			    rmap_can_add(vcpu))
5393
				mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
G
Gleb Natapov 已提交
5394
			if (need_remote_flush(entry, *spte))
5395
				remote_flush = true;
5396
			++spte;
5397 5398
		}
	}
5399
	kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
5400
	kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
5401
	spin_unlock(&vcpu->kvm->mmu_lock);
5402 5403
}

5404 5405
int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
{
5406 5407
	gpa_t gpa;
	int r;
5408

5409
	if (vcpu->arch.mmu->direct_map)
5410 5411
		return 0;

5412
	gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
5413 5414

	r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
5415

5416
	return r;
5417
}
5418
EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
5419

5420
int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
5421
		       void *insn, int insn_len)
5422
{
5423
	int r, emulation_type = EMULTYPE_PF;
5424
	bool direct = vcpu->arch.mmu->direct_map;
5425

5426
	if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
5427 5428
		return RET_PF_RETRY;

5429
	r = RET_PF_INVALID;
5430
	if (unlikely(error_code & PFERR_RSVD_MASK)) {
5431
		r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
5432
		if (r == RET_PF_EMULATE)
5433 5434
			goto emulate;
	}
5435

5436
	if (r == RET_PF_INVALID) {
5437 5438
		r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
					  lower_32_bits(error_code), false);
5439 5440 5441 5442 5443
		WARN_ON(r == RET_PF_INVALID);
	}

	if (r == RET_PF_RETRY)
		return 1;
5444
	if (r < 0)
5445
		return r;
5446

5447 5448 5449 5450 5451 5452 5453
	/*
	 * Before emulating the instruction, check if the error code
	 * was due to a RO violation while translating the guest page.
	 * This can occur when using nested virtualization with nested
	 * paging in both guests. If true, we simply unprotect the page
	 * and resume the guest.
	 */
5454
	if (vcpu->arch.mmu->direct_map &&
5455
	    (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5456
		kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
5457 5458 5459
		return 1;
	}

5460 5461 5462 5463 5464 5465
	/*
	 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
	 * optimistically try to just unprotect the page and let the processor
	 * re-execute the instruction that caused the page fault.  Do not allow
	 * retrying MMIO emulation, as it's not only pointless but could also
	 * cause us to enter an infinite loop because the processor will keep
5466 5467 5468 5469
	 * faulting on the non-existent MMIO address.  Retrying an instruction
	 * from a nested guest is also pointless and dangerous as we are only
	 * explicitly shadowing L1's page tables, i.e. unprotecting something
	 * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5470
	 */
5471
	if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
5472
		emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
5473
emulate:
5474 5475 5476 5477 5478
	/*
	 * On AMD platforms, under certain conditions insn_len may be zero on #NPF.
	 * This can happen if a guest gets a page-fault on data access but the HW
	 * table walker is not able to read the instruction page (e.g instruction
	 * page is not present in memory). In those cases we simply restart the
5479
	 * guest, with the exception of AMD Erratum 1096 which is unrecoverable.
5480
	 */
5481
	if (unlikely(insn && !insn_len)) {
5482
		if (!kvm_x86_ops.need_emulation_on_page_fault(vcpu))
5483 5484
			return 1;
	}
5485

5486
	return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
5487
				       insn_len);
5488 5489 5490
}
EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);

5491 5492
void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
			    gva_t gva, hpa_t root_hpa)
M
Marcelo Tosatti 已提交
5493
{
5494
	int i;
5495

5496 5497 5498 5499 5500 5501 5502 5503 5504 5505
	/* It's actually a GPA for vcpu->arch.guest_mmu.  */
	if (mmu != &vcpu->arch.guest_mmu) {
		/* INVLPG on a non-canonical address is a NOP according to the SDM.  */
		if (is_noncanonical_address(gva, vcpu))
			return;

		kvm_x86_ops.tlb_flush_gva(vcpu, gva);
	}

	if (!mmu->invlpg)
5506 5507
		return;

5508 5509
	if (root_hpa == INVALID_PAGE) {
		mmu->invlpg(vcpu, gva, mmu->root_hpa);
5510

5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529
		/*
		 * INVLPG is required to invalidate any global mappings for the VA,
		 * irrespective of PCID. Since it would take us roughly similar amount
		 * of work to determine whether any of the prev_root mappings of the VA
		 * is marked global, or to just sync it blindly, so we might as well
		 * just always sync it.
		 *
		 * Mappings not reachable via the current cr3 or the prev_roots will be
		 * synced when switching to that cr3, so nothing needs to be done here
		 * for them.
		 */
		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
			if (VALID_PAGE(mmu->prev_roots[i].hpa))
				mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
	} else {
		mmu->invlpg(vcpu, gva, root_hpa);
	}
}
EXPORT_SYMBOL_GPL(kvm_mmu_invalidate_gva);
5530

5531 5532 5533
void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
{
	kvm_mmu_invalidate_gva(vcpu, vcpu->arch.mmu, gva, INVALID_PAGE);
M
Marcelo Tosatti 已提交
5534 5535 5536 5537
	++vcpu->stat.invlpg;
}
EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);

5538

5539 5540
void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
{
5541
	struct kvm_mmu *mmu = vcpu->arch.mmu;
5542
	bool tlb_flush = false;
5543
	uint i;
5544 5545

	if (pcid == kvm_get_active_pcid(vcpu)) {
5546
		mmu->invlpg(vcpu, gva, mmu->root_hpa);
5547
		tlb_flush = true;
5548 5549
	}

5550 5551
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
		if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5552
		    pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) {
5553 5554 5555
			mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
			tlb_flush = true;
		}
5556
	}
5557

5558
	if (tlb_flush)
5559
		kvm_x86_ops.tlb_flush_gva(vcpu, gva);
5560

5561 5562 5563
	++vcpu->stat.invlpg;

	/*
5564 5565 5566
	 * Mappings not reachable via the current cr3 or the prev_roots will be
	 * synced when switching to that cr3, so nothing needs to be done here
	 * for them.
5567 5568 5569 5570
	 */
}
EXPORT_SYMBOL_GPL(kvm_mmu_invpcid_gva);

5571
void kvm_configure_mmu(bool enable_tdp, int tdp_page_level)
5572
{
5573
	tdp_enabled = enable_tdp;
5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587

	/*
	 * max_page_level reflects the capabilities of KVM's MMU irrespective
	 * of kernel support, e.g. KVM may be capable of using 1GB pages when
	 * the kernel is not.  But, KVM never creates a page size greater than
	 * what is used by the kernel for any given HVA, i.e. the kernel's
	 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
	 */
	if (tdp_enabled)
		max_page_level = tdp_page_level;
	else if (boot_cpu_has(X86_FEATURE_GBPAGES))
		max_page_level = PT_PDPE_LEVEL;
	else
		max_page_level = PT_DIRECTORY_LEVEL;
5588
}
5589
EXPORT_SYMBOL_GPL(kvm_configure_mmu);
5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609

/* The return value indicates if tlb flush on all vcpus is needed. */
typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);

/* The caller should hold mmu-lock before calling this function. */
static __always_inline bool
slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
			slot_level_handler fn, int start_level, int end_level,
			gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
{
	struct slot_rmap_walk_iterator iterator;
	bool flush = false;

	for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
			end_gfn, &iterator) {
		if (iterator.rmap)
			flush |= fn(kvm, iterator.rmap);

		if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
			if (flush && lock_flush_tlb) {
5610 5611 5612
				kvm_flush_remote_tlbs_with_address(kvm,
						start_gfn,
						iterator.gfn - start_gfn + 1);
5613 5614 5615 5616 5617 5618 5619
				flush = false;
			}
			cond_resched_lock(&kvm->mmu_lock);
		}
	}

	if (flush && lock_flush_tlb) {
5620 5621
		kvm_flush_remote_tlbs_with_address(kvm, start_gfn,
						   end_gfn - start_gfn + 1);
5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643
		flush = false;
	}

	return flush;
}

static __always_inline bool
slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
		  slot_level_handler fn, int start_level, int end_level,
		  bool lock_flush_tlb)
{
	return slot_handle_level_range(kvm, memslot, fn, start_level,
			end_level, memslot->base_gfn,
			memslot->base_gfn + memslot->npages - 1,
			lock_flush_tlb);
}

static __always_inline bool
slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
		      slot_level_handler fn, bool lock_flush_tlb)
{
	return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
5644
				 KVM_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5645 5646 5647 5648 5649 5650 5651
}

static __always_inline bool
slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
			slot_level_handler fn, bool lock_flush_tlb)
{
	return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
5652
				 KVM_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5653 5654 5655 5656 5657 5658 5659 5660 5661 5662
}

static __always_inline bool
slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
		 slot_level_handler fn, bool lock_flush_tlb)
{
	return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
				 PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
}

5663
static void free_mmu_pages(struct kvm_mmu *mmu)
A
Avi Kivity 已提交
5664
{
5665 5666
	free_page((unsigned long)mmu->pae_root);
	free_page((unsigned long)mmu->lm_root);
A
Avi Kivity 已提交
5667 5668
}

5669
static int alloc_mmu_pages(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
A
Avi Kivity 已提交
5670
{
5671
	struct page *page;
A
Avi Kivity 已提交
5672 5673
	int i;

5674
	/*
5675 5676 5677 5678 5679 5680 5681
	 * When using PAE paging, the four PDPTEs are treated as 'root' pages,
	 * while the PDP table is a per-vCPU construct that's allocated at MMU
	 * creation.  When emulating 32-bit mode, cr3 is only 32 bits even on
	 * x86_64.  Therefore we need to allocate the PDP table in the first
	 * 4GB of memory, which happens to fit the DMA32 zone.  Except for
	 * SVM's 32-bit NPT support, TDP paging doesn't use PAE paging and can
	 * skip allocating the PDP table.
5682
	 */
5683
	if (tdp_enabled && vcpu->arch.tdp_level > PT32E_ROOT_LEVEL)
5684 5685
		return 0;

5686
	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
5687
	if (!page)
5688 5689
		return -ENOMEM;

5690
	mmu->pae_root = page_address(page);
5691
	for (i = 0; i < 4; ++i)
5692
		mmu->pae_root[i] = INVALID_PAGE;
5693

A
Avi Kivity 已提交
5694 5695 5696
	return 0;
}

5697
int kvm_mmu_create(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
5698
{
5699
	uint i;
5700
	int ret;
5701

5702 5703
	vcpu->arch.mmu = &vcpu->arch.root_mmu;
	vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
A
Avi Kivity 已提交
5704

5705
	vcpu->arch.root_mmu.root_hpa = INVALID_PAGE;
5706
	vcpu->arch.root_mmu.root_pgd = 0;
5707
	vcpu->arch.root_mmu.translate_gpa = translate_gpa;
5708
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5709
		vcpu->arch.root_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
A
Avi Kivity 已提交
5710

5711
	vcpu->arch.guest_mmu.root_hpa = INVALID_PAGE;
5712
	vcpu->arch.guest_mmu.root_pgd = 0;
5713 5714 5715
	vcpu->arch.guest_mmu.translate_gpa = translate_gpa;
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
		vcpu->arch.guest_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5716

5717
	vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730

	ret = alloc_mmu_pages(vcpu, &vcpu->arch.guest_mmu);
	if (ret)
		return ret;

	ret = alloc_mmu_pages(vcpu, &vcpu->arch.root_mmu);
	if (ret)
		goto fail_allocate_root;

	return ret;
 fail_allocate_root:
	free_mmu_pages(&vcpu->arch.guest_mmu);
	return ret;
A
Avi Kivity 已提交
5731 5732
}

5733
#define BATCH_ZAP_PAGES	10
5734 5735 5736
static void kvm_zap_obsolete_pages(struct kvm *kvm)
{
	struct kvm_mmu_page *sp, *node;
5737
	int nr_zapped, batch = 0;
5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749

restart:
	list_for_each_entry_safe_reverse(sp, node,
	      &kvm->arch.active_mmu_pages, link) {
		/*
		 * No obsolete valid page exists before a newly created page
		 * since active_mmu_pages is a FIFO list.
		 */
		if (!is_obsolete_sp(kvm, sp))
			break;

		/*
5750 5751 5752 5753
		 * Skip invalid pages with a non-zero root count, zapping pages
		 * with a non-zero root count will never succeed, i.e. the page
		 * will get thrown back on active_mmu_pages and we'll get stuck
		 * in an infinite loop.
5754
		 */
5755
		if (sp->role.invalid && sp->root_count)
5756 5757
			continue;

5758 5759 5760 5761 5762 5763
		/*
		 * No need to flush the TLB since we're only zapping shadow
		 * pages with an obsolete generation number and all vCPUS have
		 * loaded a new root, i.e. the shadow pages being zapped cannot
		 * be in active use by the guest.
		 */
5764
		if (batch >= BATCH_ZAP_PAGES &&
5765
		    cond_resched_lock(&kvm->mmu_lock)) {
5766
			batch = 0;
5767 5768 5769
			goto restart;
		}

5770 5771
		if (__kvm_mmu_prepare_zap_page(kvm, sp,
				&kvm->arch.zapped_obsolete_pages, &nr_zapped)) {
5772
			batch += nr_zapped;
5773
			goto restart;
5774
		}
5775 5776
	}

5777 5778 5779 5780 5781
	/*
	 * Trigger a remote TLB flush before freeing the page tables to ensure
	 * KVM is not in the middle of a lockless shadow page table walk, which
	 * may reference the pages.
	 */
5782
	kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795
}

/*
 * Fast invalidate all shadow pages and use lock-break technique
 * to zap obsolete pages.
 *
 * It's required when memslot is being deleted or VM is being
 * destroyed, in these cases, we should ensure that KVM MMU does
 * not use any resource of the being-deleted slot or all slots
 * after calling the function.
 */
static void kvm_mmu_zap_all_fast(struct kvm *kvm)
{
5796 5797
	lockdep_assert_held(&kvm->slots_lock);

5798
	spin_lock(&kvm->mmu_lock);
5799
	trace_kvm_mmu_zap_all_fast(kvm);
5800 5801 5802 5803 5804 5805 5806 5807 5808

	/*
	 * Toggle mmu_valid_gen between '0' and '1'.  Because slots_lock is
	 * held for the entire duration of zapping obsolete pages, it's
	 * impossible for there to be multiple invalid generations associated
	 * with *valid* shadow pages at any given time, i.e. there is exactly
	 * one valid generation and (at most) one invalid generation.
	 */
	kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
5809

5810 5811 5812 5813 5814 5815 5816 5817 5818 5819
	/*
	 * Notify all vcpus to reload its shadow page table and flush TLB.
	 * Then all vcpus will switch to new shadow page table with the new
	 * mmu_valid_gen.
	 *
	 * Note: we need to do this under the protection of mmu_lock,
	 * otherwise, vcpu would purge shadow page but miss tlb flush.
	 */
	kvm_reload_remote_mmus(kvm);

5820 5821 5822 5823
	kvm_zap_obsolete_pages(kvm);
	spin_unlock(&kvm->mmu_lock);
}

5824 5825 5826 5827 5828
static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
{
	return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
}

5829
static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5830 5831
			struct kvm_memory_slot *slot,
			struct kvm_page_track_notifier_node *node)
5832
{
5833
	kvm_mmu_zap_all_fast(kvm);
5834 5835
}

5836
void kvm_mmu_init_vm(struct kvm *kvm)
5837
{
5838
	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5839

5840
	node->track_write = kvm_mmu_pte_write;
5841
	node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5842
	kvm_page_track_register_notifier(kvm, node);
5843 5844
}

5845
void kvm_mmu_uninit_vm(struct kvm *kvm)
5846
{
5847
	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5848

5849
	kvm_page_track_unregister_notifier(kvm, node);
5850 5851
}

X
Xiao Guangrong 已提交
5852 5853 5854 5855
void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;
5856
	int i;
X
Xiao Guangrong 已提交
5857 5858

	spin_lock(&kvm->mmu_lock);
5859 5860 5861 5862 5863 5864 5865 5866 5867
	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
		kvm_for_each_memslot(memslot, slots) {
			gfn_t start, end;

			start = max(gfn_start, memslot->base_gfn);
			end = min(gfn_end, memslot->base_gfn + memslot->npages);
			if (start >= end)
				continue;
X
Xiao Guangrong 已提交
5868

5869
			slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
5870 5871
						PT_PAGE_TABLE_LEVEL,
						KVM_MAX_HUGEPAGE_LEVEL,
5872
						start, end - 1, true);
5873
		}
X
Xiao Guangrong 已提交
5874 5875 5876 5877 5878
	}

	spin_unlock(&kvm->mmu_lock);
}

5879 5880
static bool slot_rmap_write_protect(struct kvm *kvm,
				    struct kvm_rmap_head *rmap_head)
5881
{
5882
	return __rmap_write_protect(kvm, rmap_head, false);
5883 5884
}

5885
void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5886 5887
				      struct kvm_memory_slot *memslot,
				      int start_level)
A
Avi Kivity 已提交
5888
{
5889
	bool flush;
A
Avi Kivity 已提交
5890

5891
	spin_lock(&kvm->mmu_lock);
5892
	flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect,
5893
				start_level, KVM_MAX_HUGEPAGE_LEVEL, false);
5894
	spin_unlock(&kvm->mmu_lock);
5895 5896 5897 5898 5899 5900 5901 5902

	/*
	 * We can flush all the TLBs out of the mmu lock without TLB
	 * corruption since we just change the spte from writable to
	 * readonly so that we only need to care the case of changing
	 * spte from present to present (changing the spte from present
	 * to nonpresent will flush all the TLBs immediately), in other
	 * words, the only case we care is mmu_spte_update() where we
W
Wei Yang 已提交
5903
	 * have checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
5904 5905 5906
	 * instead of PT_WRITABLE_MASK, that means it does not depend
	 * on PT_WRITABLE_MASK anymore.
	 */
5907
	if (flush)
5908
		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
A
Avi Kivity 已提交
5909
}
5910

5911
static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5912
					 struct kvm_rmap_head *rmap_head)
5913 5914 5915 5916
{
	u64 *sptep;
	struct rmap_iterator iter;
	int need_tlb_flush = 0;
D
Dan Williams 已提交
5917
	kvm_pfn_t pfn;
5918 5919
	struct kvm_mmu_page *sp;

5920
restart:
5921
	for_each_rmap_spte(rmap_head, &iter, sptep) {
5922 5923 5924 5925
		sp = page_header(__pa(sptep));
		pfn = spte_to_pfn(*sptep);

		/*
5926 5927 5928 5929 5930
		 * We cannot do huge page mapping for indirect shadow pages,
		 * which are found on the last rmap (level = 1) when not using
		 * tdp; such shadow pages are synced with the page table in
		 * the guest, and the guest page table is using 4K page size
		 * mapping if the indirect sp has level = 1.
5931
		 */
5932
		if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
5933 5934
		    (kvm_is_zone_device_pfn(pfn) ||
		     PageCompound(pfn_to_page(pfn)))) {
5935
			pte_list_remove(rmap_head, sptep);
5936 5937 5938 5939 5940 5941 5942

			if (kvm_available_flush_tlb_with_range())
				kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
					KVM_PAGES_PER_HPAGE(sp->role.level));
			else
				need_tlb_flush = 1;

5943 5944
			goto restart;
		}
5945 5946 5947 5948 5949 5950
	}

	return need_tlb_flush;
}

void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5951
				   const struct kvm_memory_slot *memslot)
5952
{
5953
	/* FIXME: const-ify all uses of struct kvm_memory_slot.  */
5954
	spin_lock(&kvm->mmu_lock);
5955 5956
	slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
			 kvm_mmu_zap_collapsible_spte, true);
5957 5958 5959
	spin_unlock(&kvm->mmu_lock);
}

5960 5961 5962 5963
void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
					struct kvm_memory_slot *memslot)
{
	/*
5964 5965 5966 5967 5968
	 * All current use cases for flushing the TLBs for a specific memslot
	 * are related to dirty logging, and do the TLB flush out of mmu_lock.
	 * The interaction between the various operations on memslot must be
	 * serialized by slots_locks to ensure the TLB flush from one operation
	 * is observed by any other operation on the same memslot.
5969 5970
	 */
	lockdep_assert_held(&kvm->slots_lock);
5971 5972
	kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
					   memslot->npages);
5973 5974
}

5975 5976 5977
void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
				   struct kvm_memory_slot *memslot)
{
5978
	bool flush;
5979 5980

	spin_lock(&kvm->mmu_lock);
5981
	flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
5982 5983 5984 5985 5986 5987 5988 5989 5990
	spin_unlock(&kvm->mmu_lock);

	/*
	 * It's also safe to flush TLBs out of mmu lock here as currently this
	 * function is only used for dirty logging, in which case flushing TLB
	 * out of mmu lock also guarantees no dirty pages will be lost in
	 * dirty_bitmap.
	 */
	if (flush)
5991
		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5992 5993 5994 5995 5996 5997
}
EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);

void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
					struct kvm_memory_slot *memslot)
{
5998
	bool flush;
5999 6000

	spin_lock(&kvm->mmu_lock);
6001 6002
	flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
					false);
6003 6004 6005
	spin_unlock(&kvm->mmu_lock);

	if (flush)
6006
		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
6007 6008 6009 6010 6011 6012
}
EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);

void kvm_mmu_slot_set_dirty(struct kvm *kvm,
			    struct kvm_memory_slot *memslot)
{
6013
	bool flush;
6014 6015

	spin_lock(&kvm->mmu_lock);
6016
	flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
6017 6018 6019
	spin_unlock(&kvm->mmu_lock);

	if (flush)
6020
		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
6021 6022 6023
}
EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);

6024
void kvm_mmu_zap_all(struct kvm *kvm)
6025 6026
{
	struct kvm_mmu_page *sp, *node;
6027
	LIST_HEAD(invalid_list);
6028
	int ign;
6029

6030
	spin_lock(&kvm->mmu_lock);
6031
restart:
6032
	list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
6033
		if (sp->role.invalid && sp->root_count)
6034
			continue;
6035
		if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
6036
			goto restart;
6037
		if (cond_resched_lock(&kvm->mmu_lock))
6038 6039 6040
			goto restart;
	}

6041
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
6042 6043 6044
	spin_unlock(&kvm->mmu_lock);
}

6045
void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
6046
{
6047
	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
6048

6049
	gen &= MMIO_SPTE_GEN_MASK;
6050

6051
	/*
6052 6053 6054 6055 6056 6057 6058 6059
	 * Generation numbers are incremented in multiples of the number of
	 * address spaces in order to provide unique generations across all
	 * address spaces.  Strip what is effectively the address space
	 * modifier prior to checking for a wrap of the MMIO generation so
	 * that a wrap in any address space is detected.
	 */
	gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);

6060
	/*
6061
	 * The very rare case: if the MMIO generation number has wrapped,
6062 6063
	 * zap all shadow pages.
	 */
6064
	if (unlikely(gen == 0)) {
6065
		kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
6066
		kvm_mmu_zap_all_fast(kvm);
6067
	}
6068 6069
}

6070 6071
static unsigned long
mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
6072 6073
{
	struct kvm *kvm;
6074
	int nr_to_scan = sc->nr_to_scan;
6075
	unsigned long freed = 0;
6076

J
Junaid Shahid 已提交
6077
	mutex_lock(&kvm_lock);
6078 6079

	list_for_each_entry(kvm, &vm_list, vm_list) {
6080
		int idx;
6081
		LIST_HEAD(invalid_list);
6082

6083 6084 6085 6086 6087 6088 6089 6090
		/*
		 * Never scan more than sc->nr_to_scan VM instances.
		 * Will not hit this condition practically since we do not try
		 * to shrink more than one VM and it is very unlikely to see
		 * !n_used_mmu_pages so many times.
		 */
		if (!nr_to_scan--)
			break;
6091 6092 6093 6094 6095 6096
		/*
		 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
		 * here. We may skip a VM instance errorneosly, but we do not
		 * want to shrink a VM that only started to populate its MMU
		 * anyway.
		 */
6097 6098
		if (!kvm->arch.n_used_mmu_pages &&
		    !kvm_has_zapped_obsolete_pages(kvm))
6099 6100
			continue;

6101
		idx = srcu_read_lock(&kvm->srcu);
6102 6103
		spin_lock(&kvm->mmu_lock);

6104 6105 6106 6107 6108 6109
		if (kvm_has_zapped_obsolete_pages(kvm)) {
			kvm_mmu_commit_zap_page(kvm,
			      &kvm->arch.zapped_obsolete_pages);
			goto unlock;
		}

6110 6111
		if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
			freed++;
6112
		kvm_mmu_commit_zap_page(kvm, &invalid_list);
6113

6114
unlock:
6115
		spin_unlock(&kvm->mmu_lock);
6116
		srcu_read_unlock(&kvm->srcu, idx);
6117

6118 6119 6120 6121 6122
		/*
		 * unfair on small ones
		 * per-vm shrinkers cry out
		 * sadness comes quickly
		 */
6123 6124
		list_move_tail(&kvm->vm_list, &vm_list);
		break;
6125 6126
	}

J
Junaid Shahid 已提交
6127
	mutex_unlock(&kvm_lock);
6128 6129 6130 6131 6132 6133
	return freed;
}

static unsigned long
mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
{
6134
	return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
6135 6136 6137
}

static struct shrinker mmu_shrinker = {
6138 6139
	.count_objects = mmu_shrink_count,
	.scan_objects = mmu_shrink_scan,
6140 6141 6142
	.seeks = DEFAULT_SEEKS * 10,
};

I
Ingo Molnar 已提交
6143
static void mmu_destroy_caches(void)
6144
{
6145 6146
	kmem_cache_destroy(pte_list_desc_cache);
	kmem_cache_destroy(mmu_page_header_cache);
6147 6148
}

6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170
static void kvm_set_mmio_spte_mask(void)
{
	u64 mask;

	/*
	 * Set the reserved bits and the present bit of an paging-structure
	 * entry to generate page fault with PFER.RSV = 1.
	 */

	/*
	 * Mask the uppermost physical address bit, which would be reserved as
	 * long as the supported physical address width is less than 52.
	 */
	mask = 1ull << 51;

	/* Set the present bit. */
	mask |= 1ull;

	/*
	 * If reserved bit is not supported, clear the present bit to disable
	 * mmio page fault.
	 */
6171
	if (shadow_phys_bits == 52)
6172 6173
		mask &= ~1ull;

6174
	kvm_mmu_set_mmio_spte_mask(mask, mask, ACC_WRITE_MASK | ACC_USER_MASK);
6175 6176
}

P
Paolo Bonzini 已提交
6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210
static bool get_nx_auto_mode(void)
{
	/* Return true when CPU has the bug, and mitigations are ON */
	return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
}

static void __set_nx_huge_pages(bool val)
{
	nx_huge_pages = itlb_multihit_kvm_mitigation = val;
}

static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
{
	bool old_val = nx_huge_pages;
	bool new_val;

	/* In "auto" mode deploy workaround only if CPU has the bug. */
	if (sysfs_streq(val, "off"))
		new_val = 0;
	else if (sysfs_streq(val, "force"))
		new_val = 1;
	else if (sysfs_streq(val, "auto"))
		new_val = get_nx_auto_mode();
	else if (strtobool(val, &new_val) < 0)
		return -EINVAL;

	__set_nx_huge_pages(new_val);

	if (new_val != old_val) {
		struct kvm *kvm;

		mutex_lock(&kvm_lock);

		list_for_each_entry(kvm, &vm_list, vm_list) {
6211
			mutex_lock(&kvm->slots_lock);
P
Paolo Bonzini 已提交
6212
			kvm_mmu_zap_all_fast(kvm);
6213
			mutex_unlock(&kvm->slots_lock);
6214 6215

			wake_up_process(kvm->arch.nx_lpage_recovery_thread);
P
Paolo Bonzini 已提交
6216 6217 6218 6219 6220 6221 6222
		}
		mutex_unlock(&kvm_lock);
	}

	return 0;
}

6223 6224
int kvm_mmu_module_init(void)
{
6225 6226
	int ret = -ENOMEM;

P
Paolo Bonzini 已提交
6227 6228 6229
	if (nx_huge_pages == -1)
		__set_nx_huge_pages(get_nx_auto_mode());

6230 6231 6232 6233 6234 6235 6236 6237 6238 6239
	/*
	 * MMU roles use union aliasing which is, generally speaking, an
	 * undefined behavior. However, we supposedly know how compilers behave
	 * and the current status quo is unlikely to change. Guardians below are
	 * supposed to let us know if the assumption becomes false.
	 */
	BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
	BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
	BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));

6240
	kvm_mmu_reset_all_pte_masks();
6241

6242 6243
	kvm_set_mmio_spte_mask();

6244 6245
	pte_list_desc_cache = kmem_cache_create("pte_list_desc",
					    sizeof(struct pte_list_desc),
6246
					    0, SLAB_ACCOUNT, NULL);
6247
	if (!pte_list_desc_cache)
6248
		goto out;
6249

6250 6251
	mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
						  sizeof(struct kvm_mmu_page),
6252
						  0, SLAB_ACCOUNT, NULL);
6253
	if (!mmu_page_header_cache)
6254
		goto out;
6255

6256
	if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
6257
		goto out;
6258

6259 6260 6261
	ret = register_shrinker(&mmu_shrinker);
	if (ret)
		goto out;
6262

6263 6264
	return 0;

6265
out:
6266
	mmu_destroy_caches();
6267
	return ret;
6268 6269
}

6270
/*
P
Peng Hao 已提交
6271
 * Calculate mmu pages needed for kvm.
6272
 */
6273
unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm)
6274
{
6275 6276
	unsigned long nr_mmu_pages;
	unsigned long nr_pages = 0;
6277
	struct kvm_memslots *slots;
6278
	struct kvm_memory_slot *memslot;
6279
	int i;
6280

6281 6282
	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
6283

6284 6285 6286
		kvm_for_each_memslot(memslot, slots)
			nr_pages += memslot->npages;
	}
6287 6288

	nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
6289
	nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
6290 6291 6292 6293

	return nr_mmu_pages;
}

6294 6295
void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
{
6296
	kvm_mmu_unload(vcpu);
6297 6298
	free_mmu_pages(&vcpu->arch.root_mmu);
	free_mmu_pages(&vcpu->arch.guest_mmu);
6299
	mmu_free_memory_caches(vcpu);
6300 6301 6302 6303 6304 6305 6306
}

void kvm_mmu_module_exit(void)
{
	mmu_destroy_caches();
	percpu_counter_destroy(&kvm_total_used_mmu_pages);
	unregister_shrinker(&mmu_shrinker);
6307 6308
	mmu_audit_disable();
}
6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421

static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp)
{
	unsigned int old_val;
	int err;

	old_val = nx_huge_pages_recovery_ratio;
	err = param_set_uint(val, kp);
	if (err)
		return err;

	if (READ_ONCE(nx_huge_pages) &&
	    !old_val && nx_huge_pages_recovery_ratio) {
		struct kvm *kvm;

		mutex_lock(&kvm_lock);

		list_for_each_entry(kvm, &vm_list, vm_list)
			wake_up_process(kvm->arch.nx_lpage_recovery_thread);

		mutex_unlock(&kvm_lock);
	}

	return err;
}

static void kvm_recover_nx_lpages(struct kvm *kvm)
{
	int rcu_idx;
	struct kvm_mmu_page *sp;
	unsigned int ratio;
	LIST_HEAD(invalid_list);
	ulong to_zap;

	rcu_idx = srcu_read_lock(&kvm->srcu);
	spin_lock(&kvm->mmu_lock);

	ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
	to_zap = ratio ? DIV_ROUND_UP(kvm->stat.nx_lpage_splits, ratio) : 0;
	while (to_zap && !list_empty(&kvm->arch.lpage_disallowed_mmu_pages)) {
		/*
		 * We use a separate list instead of just using active_mmu_pages
		 * because the number of lpage_disallowed pages is expected to
		 * be relatively small compared to the total.
		 */
		sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
				      struct kvm_mmu_page,
				      lpage_disallowed_link);
		WARN_ON_ONCE(!sp->lpage_disallowed);
		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
		WARN_ON_ONCE(sp->lpage_disallowed);

		if (!--to_zap || need_resched() || spin_needbreak(&kvm->mmu_lock)) {
			kvm_mmu_commit_zap_page(kvm, &invalid_list);
			if (to_zap)
				cond_resched_lock(&kvm->mmu_lock);
		}
	}

	spin_unlock(&kvm->mmu_lock);
	srcu_read_unlock(&kvm->srcu, rcu_idx);
}

static long get_nx_lpage_recovery_timeout(u64 start_time)
{
	return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio)
		? start_time + 60 * HZ - get_jiffies_64()
		: MAX_SCHEDULE_TIMEOUT;
}

static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
{
	u64 start_time;
	long remaining_time;

	while (true) {
		start_time = get_jiffies_64();
		remaining_time = get_nx_lpage_recovery_timeout(start_time);

		set_current_state(TASK_INTERRUPTIBLE);
		while (!kthread_should_stop() && remaining_time > 0) {
			schedule_timeout(remaining_time);
			remaining_time = get_nx_lpage_recovery_timeout(start_time);
			set_current_state(TASK_INTERRUPTIBLE);
		}

		set_current_state(TASK_RUNNING);

		if (kthread_should_stop())
			return 0;

		kvm_recover_nx_lpages(kvm);
	}
}

int kvm_mmu_post_init_vm(struct kvm *kvm)
{
	int err;

	err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
					  "kvm-nx-lpage-recovery",
					  &kvm->arch.nx_lpage_recovery_thread);
	if (!err)
		kthread_unpark(kvm->arch.nx_lpage_recovery_thread);

	return err;
}

void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
{
	if (kvm->arch.nx_lpage_recovery_thread)
		kthread_stop(kvm->arch.nx_lpage_recovery_thread);
}