mmu.c 169.1 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
A
Avi Kivity 已提交
2 3 4 5 6 7 8 9 10
/*
 * Kernel-based Virtual Machine driver for Linux
 *
 * This module enables machines with Intel VT-x extensions to run virtual
 * machines without emulation or binary translation.
 *
 * MMU support
 *
 * Copyright (C) 2006 Qumranet, Inc.
N
Nicolas Kaiser 已提交
11
 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
A
Avi Kivity 已提交
12 13 14 15 16
 *
 * Authors:
 *   Yaniv Kamay  <yaniv@qumranet.com>
 *   Avi Kivity   <avi@qumranet.com>
 */
A
Avi Kivity 已提交
17

18
#include "irq.h"
19
#include "mmu.h"
20
#include "x86.h"
A
Avi Kivity 已提交
21
#include "kvm_cache_regs.h"
22
#include "kvm_emulate.h"
23
#include "cpuid.h"
A
Avi Kivity 已提交
24

25
#include <linux/kvm_host.h>
A
Avi Kivity 已提交
26 27 28 29
#include <linux/types.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/highmem.h>
30 31
#include <linux/moduleparam.h>
#include <linux/export.h>
32
#include <linux/swap.h>
M
Marcelo Tosatti 已提交
33
#include <linux/hugetlb.h>
34
#include <linux/compiler.h>
35
#include <linux/srcu.h>
36
#include <linux/slab.h>
37
#include <linux/sched/signal.h>
38
#include <linux/uaccess.h>
39
#include <linux/hash.h>
40
#include <linux/kern_levels.h>
41
#include <linux/kthread.h>
A
Avi Kivity 已提交
42

A
Avi Kivity 已提交
43
#include <asm/page.h>
44
#include <asm/memtype.h>
A
Avi Kivity 已提交
45
#include <asm/cmpxchg.h>
46
#include <asm/e820/api.h>
47
#include <asm/io.h>
48
#include <asm/vmx.h>
49
#include <asm/kvm_page_track.h>
50
#include "trace.h"
A
Avi Kivity 已提交
51

P
Paolo Bonzini 已提交
52 53 54
extern bool itlb_multihit_kvm_mitigation;

static int __read_mostly nx_huge_pages = -1;
55 56 57 58
#ifdef CONFIG_PREEMPT_RT
/* Recovery can cause latency spikes, disable it for PREEMPT_RT.  */
static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
#else
59
static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
60
#endif
P
Paolo Bonzini 已提交
61 62

static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
63
static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp);
P
Paolo Bonzini 已提交
64 65 66 67 68 69

static struct kernel_param_ops nx_huge_pages_ops = {
	.set = set_nx_huge_pages,
	.get = param_get_bool,
};

70 71 72 73 74
static struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = {
	.set = set_nx_huge_pages_recovery_ratio,
	.get = param_get_uint,
};

P
Paolo Bonzini 已提交
75 76
module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
__MODULE_PARM_TYPE(nx_huge_pages, "bool");
77 78 79
module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops,
		&nx_huge_pages_recovery_ratio, 0644);
__MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
P
Paolo Bonzini 已提交
80

81 82 83
static bool __read_mostly force_flush_and_sync_on_reuse;
module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644);

84 85 86 87 88 89 90
/*
 * When setting this variable to true it enables Two-Dimensional-Paging
 * where the hardware walks 2 page tables:
 * 1. the guest-virtual to guest-physical
 * 2. while doing 1. it walks guest-physical to host-physical
 * If the hardware supports that we don't need to do shadow paging.
 */
91
bool tdp_enabled = false;
92

93 94
static int max_page_level __read_mostly;

95 96 97 98
enum {
	AUDIT_PRE_PAGE_FAULT,
	AUDIT_POST_PAGE_FAULT,
	AUDIT_PRE_PTE_WRITE,
99 100 101
	AUDIT_POST_PTE_WRITE,
	AUDIT_PRE_SYNC,
	AUDIT_POST_SYNC
102
};
103

104
#undef MMU_DEBUG
105 106

#ifdef MMU_DEBUG
107 108
static bool dbg = 0;
module_param(dbg, bool, 0644);
109 110 111

#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
112
#define MMU_WARN_ON(x) WARN_ON(x)
113 114 115
#else
#define pgprintk(x...) do { } while (0)
#define rmap_printk(x...) do { } while (0)
116
#define MMU_WARN_ON(x) do { } while (0)
117
#endif
A
Avi Kivity 已提交
118

119 120
#define PTE_PREFETCH_NUM		8

121
#define PT_FIRST_AVAIL_BITS_SHIFT 10
122 123 124 125 126 127 128 129 130
#define PT64_SECOND_AVAIL_BITS_SHIFT 54

/*
 * The mask used to denote special SPTEs, which can be either MMIO SPTEs or
 * Access Tracking SPTEs.
 */
#define SPTE_SPECIAL_MASK (3ULL << 52)
#define SPTE_AD_ENABLED_MASK (0ULL << 52)
#define SPTE_AD_DISABLED_MASK (1ULL << 52)
131
#define SPTE_AD_WRPROT_ONLY_MASK (2ULL << 52)
132
#define SPTE_MMIO_MASK (3ULL << 52)
A
Avi Kivity 已提交
133 134 135 136

#define PT64_LEVEL_BITS 9

#define PT64_LEVEL_SHIFT(level) \
M
Mike Day 已提交
137
		(PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
A
Avi Kivity 已提交
138 139 140 141 142 143 144 145

#define PT64_INDEX(address, level)\
	(((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))


#define PT32_LEVEL_BITS 10

#define PT32_LEVEL_SHIFT(level) \
M
Mike Day 已提交
146
		(PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
A
Avi Kivity 已提交
147

148 149 150
#define PT32_LVL_OFFSET_MASK(level) \
	(PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
151 152 153 154 155

#define PT32_INDEX(address, level)\
	(((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))


156 157 158 159 160
#ifdef CONFIG_DYNAMIC_PHYSICAL_MASK
#define PT64_BASE_ADDR_MASK (physical_mask & ~(u64)(PAGE_SIZE-1))
#else
#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
#endif
161 162 163 164 165 166
#define PT64_LVL_ADDR_MASK(level) \
	(PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT64_LEVEL_BITS))) - 1))
#define PT64_LVL_OFFSET_MASK(level) \
	(PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT64_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
167 168 169 170

#define PT32_BASE_ADDR_MASK PAGE_MASK
#define PT32_DIR_BASE_ADDR_MASK \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
171 172 173
#define PT32_LVL_ADDR_MASK(level) \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
					    * PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
174

175
#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
176
			| shadow_x_mask | shadow_nx_mask | shadow_me_mask)
A
Avi Kivity 已提交
177

178 179 180 181 182
#define ACC_EXEC_MASK    1
#define ACC_WRITE_MASK   PT_WRITABLE_MASK
#define ACC_USER_MASK    PT_USER_MASK
#define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)

183 184 185 186
/* The mask for the R/X bits in EPT PTEs */
#define PT64_EPT_READABLE_MASK			0x1ull
#define PT64_EPT_EXECUTABLE_MASK		0x4ull

187 188
#include <trace/events/kvm.h>

189 190
#define SPTE_HOST_WRITEABLE	(1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
#define SPTE_MMU_WRITEABLE	(1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
191

192 193
#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)

194 195 196
/* make pte_list_desc fit well in cache line */
#define PTE_LIST_EXT 3

197 198 199 200 201 202 203 204 205 206 207 208 209 210
/*
 * Return values of handle_mmio_page_fault and mmu.page_fault:
 * RET_PF_RETRY: let CPU fault again on the address.
 * RET_PF_EMULATE: mmio page fault, emulate the instruction directly.
 *
 * For handle_mmio_page_fault only:
 * RET_PF_INVALID: the spte is invalid, let the real page fault path update it.
 */
enum {
	RET_PF_RETRY = 0,
	RET_PF_EMULATE = 1,
	RET_PF_INVALID = 2,
};

211 212 213
struct pte_list_desc {
	u64 *sptes[PTE_LIST_EXT];
	struct pte_list_desc *more;
214 215
};

216 217 218 219
struct kvm_shadow_walk_iterator {
	u64 addr;
	hpa_t shadow_addr;
	u64 *sptep;
220
	int level;
221 222 223
	unsigned index;
};

224 225 226 227 228 229 230
#define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker)     \
	for (shadow_walk_init_using_root(&(_walker), (_vcpu),              \
					 (_root), (_addr));                \
	     shadow_walk_okay(&(_walker));			           \
	     shadow_walk_next(&(_walker)))

#define for_each_shadow_entry(_vcpu, _addr, _walker)            \
231 232 233 234
	for (shadow_walk_init(&(_walker), _vcpu, _addr);	\
	     shadow_walk_okay(&(_walker));			\
	     shadow_walk_next(&(_walker)))

235 236 237 238 239 240
#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)	\
	for (shadow_walk_init(&(_walker), _vcpu, _addr);		\
	     shadow_walk_okay(&(_walker)) &&				\
		({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });	\
	     __shadow_walk_next(&(_walker), spte))

241
static struct kmem_cache *pte_list_desc_cache;
242
static struct kmem_cache *mmu_page_header_cache;
243
static struct percpu_counter kvm_total_used_mmu_pages;
244

S
Sheng Yang 已提交
245 246 247 248 249
static u64 __read_mostly shadow_nx_mask;
static u64 __read_mostly shadow_x_mask;	/* mutual exclusive with nx_mask */
static u64 __read_mostly shadow_user_mask;
static u64 __read_mostly shadow_accessed_mask;
static u64 __read_mostly shadow_dirty_mask;
250
static u64 __read_mostly shadow_mmio_mask;
251
static u64 __read_mostly shadow_mmio_value;
252
static u64 __read_mostly shadow_mmio_access_mask;
253
static u64 __read_mostly shadow_present_mask;
254
static u64 __read_mostly shadow_me_mask;
255

256
/*
257 258 259
 * SPTEs used by MMUs without A/D bits are marked with SPTE_AD_DISABLED_MASK;
 * shadow_acc_track_mask is the set of bits to be cleared in non-accessed
 * pages.
260 261 262 263 264 265 266 267 268 269 270 271 272
 */
static u64 __read_mostly shadow_acc_track_mask;

/*
 * The mask/shift to use for saving the original R/X bits when marking the PTE
 * as not-present for access tracking purposes. We do not save the W bit as the
 * PTEs being access tracked also need to be dirty tracked, so the W bit will be
 * restored only when a write is attempted to the page.
 */
static const u64 shadow_acc_track_saved_bits_mask = PT64_EPT_READABLE_MASK |
						    PT64_EPT_EXECUTABLE_MASK;
static const u64 shadow_acc_track_saved_bits_shift = PT64_SECOND_AVAIL_BITS_SHIFT;

273 274 275 276 277 278 279 280 281 282 283
/*
 * This mask must be set on all non-zero Non-Present or Reserved SPTEs in order
 * to guard against L1TF attacks.
 */
static u64 __read_mostly shadow_nonpresent_or_rsvd_mask;

/*
 * The number of high-order 1 bits to use in the mask above.
 */
static const u64 shadow_nonpresent_or_rsvd_mask_len = 5;

284 285 286 287 288 289 290 291 292 293
/*
 * In some cases, we need to preserve the GFN of a non-present or reserved
 * SPTE when we usurp the upper five bits of the physical address space to
 * defend against L1TF, e.g. for MMIO SPTEs.  To preserve the GFN, we'll
 * shift bits of the GFN that overlap with shadow_nonpresent_or_rsvd_mask
 * left into the reserved bits, i.e. the GFN in the SPTE will be split into
 * high and low parts.  This mask covers the lower bits of the GFN.
 */
static u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask;

294 295 296 297 298
/*
 * The number of non-reserved physical address bits irrespective of features
 * that repurpose legal bits, e.g. MKTME.
 */
static u8 __read_mostly shadow_phys_bits;
299

300
static void mmu_spte_set(u64 *sptep, u64 spte);
301
static bool is_executable_pte(u64 spte);
302 303
static union kvm_mmu_page_role
kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
304

305 306 307
#define CREATE_TRACE_POINTS
#include "mmutrace.h"

308 309 310

static inline bool kvm_available_flush_tlb_with_range(void)
{
311
	return kvm_x86_ops.tlb_remote_flush_with_range;
312 313 314 315 316 317 318
}

static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
		struct kvm_tlb_range *range)
{
	int ret = -ENOTSUPP;

319 320
	if (range && kvm_x86_ops.tlb_remote_flush_with_range)
		ret = kvm_x86_ops.tlb_remote_flush_with_range(kvm, range);
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336

	if (ret)
		kvm_flush_remote_tlbs(kvm);
}

static void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
		u64 start_gfn, u64 pages)
{
	struct kvm_tlb_range range;

	range.start_gfn = start_gfn;
	range.pages = pages;

	kvm_flush_remote_tlbs_with_range(kvm, &range);
}

337
void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask, u64 mmio_value, u64 access_mask)
338
{
339
	BUG_ON((u64)(unsigned)access_mask != access_mask);
340
	BUG_ON((mmio_mask & mmio_value) != mmio_value);
341
	shadow_mmio_value = mmio_value | SPTE_MMIO_MASK;
342
	shadow_mmio_mask = mmio_mask | SPTE_SPECIAL_MASK;
343
	shadow_mmio_access_mask = access_mask;
344 345 346
}
EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);

347 348 349 350 351
static bool is_mmio_spte(u64 spte)
{
	return (spte & shadow_mmio_mask) == shadow_mmio_value;
}

352 353 354 355 356
static inline bool sp_ad_disabled(struct kvm_mmu_page *sp)
{
	return sp->role.ad_disabled;
}

357 358 359 360 361 362 363 364 365 366 367
static inline bool kvm_vcpu_ad_need_write_protect(struct kvm_vcpu *vcpu)
{
	/*
	 * When using the EPT page-modification log, the GPAs in the log
	 * would come from L2 rather than L1.  Therefore, we need to rely
	 * on write protection to record dirty pages.  This also bypasses
	 * PML, since writes now result in a vmexit.
	 */
	return vcpu->arch.mmu == &vcpu->arch.guest_mmu;
}

368 369
static inline bool spte_ad_enabled(u64 spte)
{
370
	MMU_WARN_ON(is_mmio_spte(spte));
371 372 373 374 375 376 377
	return (spte & SPTE_SPECIAL_MASK) != SPTE_AD_DISABLED_MASK;
}

static inline bool spte_ad_need_write_protect(u64 spte)
{
	MMU_WARN_ON(is_mmio_spte(spte));
	return (spte & SPTE_SPECIAL_MASK) != SPTE_AD_ENABLED_MASK;
378 379
}

P
Paolo Bonzini 已提交
380 381 382 383 384
static bool is_nx_huge_page_enabled(void)
{
	return READ_ONCE(nx_huge_pages);
}

385 386
static inline u64 spte_shadow_accessed_mask(u64 spte)
{
387
	MMU_WARN_ON(is_mmio_spte(spte));
388 389 390 391 392
	return spte_ad_enabled(spte) ? shadow_accessed_mask : 0;
}

static inline u64 spte_shadow_dirty_mask(u64 spte)
{
393
	MMU_WARN_ON(is_mmio_spte(spte));
394 395 396
	return spte_ad_enabled(spte) ? shadow_dirty_mask : 0;
}

397 398
static inline bool is_access_track_spte(u64 spte)
{
399
	return !spte_ad_enabled(spte) && (spte & shadow_acc_track_mask) == 0;
400 401
}

402
/*
403 404
 * Due to limited space in PTEs, the MMIO generation is a 19 bit subset of
 * the memslots generation and is derived as follows:
405
 *
406 407
 * Bits 0-8 of the MMIO generation are propagated to spte bits 3-11
 * Bits 9-18 of the MMIO generation are propagated to spte bits 52-61
408
 *
409 410 411 412 413 414
 * The KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS flag is intentionally not included in
 * the MMIO generation number, as doing so would require stealing a bit from
 * the "real" generation number and thus effectively halve the maximum number
 * of MMIO generations that can be handled before encountering a wrap (which
 * requires a full MMU zap).  The flag is instead explicitly queried when
 * checking for MMIO spte cache hits.
415
 */
416
#define MMIO_SPTE_GEN_MASK		GENMASK_ULL(17, 0)
417

418 419 420 421
#define MMIO_SPTE_GEN_LOW_START		3
#define MMIO_SPTE_GEN_LOW_END		11
#define MMIO_SPTE_GEN_LOW_MASK		GENMASK_ULL(MMIO_SPTE_GEN_LOW_END, \
						    MMIO_SPTE_GEN_LOW_START)
422

423 424
#define MMIO_SPTE_GEN_HIGH_START	PT64_SECOND_AVAIL_BITS_SHIFT
#define MMIO_SPTE_GEN_HIGH_END		62
425 426
#define MMIO_SPTE_GEN_HIGH_MASK		GENMASK_ULL(MMIO_SPTE_GEN_HIGH_END, \
						    MMIO_SPTE_GEN_HIGH_START)
427

428
static u64 generation_mmio_spte_mask(u64 gen)
429 430 431
{
	u64 mask;

432
	WARN_ON(gen & ~MMIO_SPTE_GEN_MASK);
433
	BUILD_BUG_ON((MMIO_SPTE_GEN_HIGH_MASK | MMIO_SPTE_GEN_LOW_MASK) & SPTE_SPECIAL_MASK);
434

435 436
	mask = (gen << MMIO_SPTE_GEN_LOW_START) & MMIO_SPTE_GEN_LOW_MASK;
	mask |= (gen << MMIO_SPTE_GEN_HIGH_START) & MMIO_SPTE_GEN_HIGH_MASK;
437 438 439
	return mask;
}

440
static u64 get_mmio_spte_generation(u64 spte)
441
{
442
	u64 gen;
443

444 445
	gen = (spte & MMIO_SPTE_GEN_LOW_MASK) >> MMIO_SPTE_GEN_LOW_START;
	gen |= (spte & MMIO_SPTE_GEN_HIGH_MASK) >> MMIO_SPTE_GEN_HIGH_START;
446 447 448
	return gen;
}

449
static u64 make_mmio_spte(struct kvm_vcpu *vcpu, u64 gfn, unsigned int access)
450
{
451

452
	u64 gen = kvm_vcpu_memslots(vcpu)->generation & MMIO_SPTE_GEN_MASK;
453
	u64 mask = generation_mmio_spte_mask(gen);
454
	u64 gpa = gfn << PAGE_SHIFT;
455

456
	access &= shadow_mmio_access_mask;
457 458 459 460
	mask |= shadow_mmio_value | access;
	mask |= gpa | shadow_nonpresent_or_rsvd_mask;
	mask |= (gpa & shadow_nonpresent_or_rsvd_mask)
		<< shadow_nonpresent_or_rsvd_mask_len;
461

462 463 464 465 466 467 468 469 470 471 472
	return mask;
}

static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
			   unsigned int access)
{
	u64 mask = make_mmio_spte(vcpu, gfn, access);
	unsigned int gen = get_mmio_spte_generation(mask);

	access = mask & ACC_ALL;

473
	trace_mark_mmio_spte(sptep, gfn, access, gen);
474
	mmu_spte_set(sptep, mask);
475 476 477 478
}

static gfn_t get_mmio_spte_gfn(u64 spte)
{
479
	u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
480 481 482 483 484

	gpa |= (spte >> shadow_nonpresent_or_rsvd_mask_len)
	       & shadow_nonpresent_or_rsvd_mask;

	return gpa >> PAGE_SHIFT;
485 486 487 488
}

static unsigned get_mmio_spte_access(u64 spte)
{
489
	return spte & shadow_mmio_access_mask;
490 491
}

492
static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
493
			  kvm_pfn_t pfn, unsigned int access)
494 495
{
	if (unlikely(is_noslot_pfn(pfn))) {
496
		mark_mmio_spte(vcpu, sptep, gfn, access);
497 498 499 500 501
		return true;
	}

	return false;
}
502

503
static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
504
{
505
	u64 kvm_gen, spte_gen, gen;
506

507 508 509
	gen = kvm_vcpu_memslots(vcpu)->generation;
	if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
		return false;
510

511
	kvm_gen = gen & MMIO_SPTE_GEN_MASK;
512 513 514 515
	spte_gen = get_mmio_spte_generation(spte);

	trace_check_mmio_spte(spte, kvm_gen, spte_gen);
	return likely(kvm_gen == spte_gen);
516 517
}

518 519 520 521 522 523 524
/*
 * Sets the shadow PTE masks used by the MMU.
 *
 * Assumptions:
 *  - Setting either @accessed_mask or @dirty_mask requires setting both
 *  - At least one of @accessed_mask or @acc_track_mask must be set
 */
S
Sheng Yang 已提交
525
void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
526
		u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask,
527
		u64 acc_track_mask, u64 me_mask)
S
Sheng Yang 已提交
528
{
529 530
	BUG_ON(!dirty_mask != !accessed_mask);
	BUG_ON(!accessed_mask && !acc_track_mask);
531
	BUG_ON(acc_track_mask & SPTE_SPECIAL_MASK);
532

S
Sheng Yang 已提交
533 534 535 536 537
	shadow_user_mask = user_mask;
	shadow_accessed_mask = accessed_mask;
	shadow_dirty_mask = dirty_mask;
	shadow_nx_mask = nx_mask;
	shadow_x_mask = x_mask;
538
	shadow_present_mask = p_mask;
539
	shadow_acc_track_mask = acc_track_mask;
540
	shadow_me_mask = me_mask;
S
Sheng Yang 已提交
541 542 543
}
EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);

544 545 546
static u8 kvm_get_shadow_phys_bits(void)
{
	/*
547 548 549 550
	 * boot_cpu_data.x86_phys_bits is reduced when MKTME or SME are detected
	 * in CPU detection code, but the processor treats those reduced bits as
	 * 'keyID' thus they are not reserved bits. Therefore KVM needs to look at
	 * the physical address bits reported by CPUID.
551
	 */
552 553
	if (likely(boot_cpu_data.extended_cpuid_level >= 0x80000008))
		return cpuid_eax(0x80000008) & 0xff;
554

555 556 557 558 559 560
	/*
	 * Quite weird to have VMX or SVM but not MAXPHYADDR; probably a VM with
	 * custom CPUID.  Proceed with whatever the kernel found since these features
	 * aren't virtualizable (SME/SEV also require CPUIDs higher than 0x80000008).
	 */
	return boot_cpu_data.x86_phys_bits;
561 562
}

563
static void kvm_mmu_reset_all_pte_masks(void)
564
{
565 566
	u8 low_phys_bits;

567 568 569 570 571 572 573 574
	shadow_user_mask = 0;
	shadow_accessed_mask = 0;
	shadow_dirty_mask = 0;
	shadow_nx_mask = 0;
	shadow_x_mask = 0;
	shadow_mmio_mask = 0;
	shadow_present_mask = 0;
	shadow_acc_track_mask = 0;
575

576 577
	shadow_phys_bits = kvm_get_shadow_phys_bits();

578 579 580 581
	/*
	 * If the CPU has 46 or less physical address bits, then set an
	 * appropriate mask to guard against L1TF attacks. Otherwise, it is
	 * assumed that the CPU is not vulnerable to L1TF.
582 583 584 585 586
	 *
	 * Some Intel CPUs address the L1 cache using more PA bits than are
	 * reported by CPUID. Use the PA width of the L1 cache when possible
	 * to achieve more effective mitigation, e.g. if system RAM overlaps
	 * the most significant bits of legal physical address space.
587
	 */
588 589 590
	shadow_nonpresent_or_rsvd_mask = 0;
	low_phys_bits = boot_cpu_data.x86_cache_bits;
	if (boot_cpu_data.x86_cache_bits <
591
	    52 - shadow_nonpresent_or_rsvd_mask_len) {
592
		shadow_nonpresent_or_rsvd_mask =
593
			rsvd_bits(boot_cpu_data.x86_cache_bits -
594
				  shadow_nonpresent_or_rsvd_mask_len,
595
				  boot_cpu_data.x86_cache_bits - 1);
596
		low_phys_bits -= shadow_nonpresent_or_rsvd_mask_len;
597 598 599
	} else
		WARN_ON_ONCE(boot_cpu_has_bug(X86_BUG_L1TF));

600 601
	shadow_nonpresent_or_rsvd_lower_gfn_mask =
		GENMASK_ULL(low_phys_bits - 1, PAGE_SHIFT);
602 603
}

A
Avi Kivity 已提交
604 605 606 607 608
static int is_cpuid_PSE36(void)
{
	return 1;
}

609 610
static int is_nx(struct kvm_vcpu *vcpu)
{
611
	return vcpu->arch.efer & EFER_NX;
612 613
}

614 615
static int is_shadow_present_pte(u64 pte)
{
616
	return (pte != 0) && !is_mmio_spte(pte);
617 618
}

M
Marcelo Tosatti 已提交
619 620 621 622 623
static int is_large_pte(u64 pte)
{
	return pte & PT_PAGE_SIZE_MASK;
}

624 625
static int is_last_spte(u64 pte, int level)
{
626
	if (level == PG_LEVEL_4K)
627
		return 1;
628
	if (is_large_pte(pte))
629 630 631 632
		return 1;
	return 0;
}

633 634 635 636 637
static bool is_executable_pte(u64 spte)
{
	return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask;
}

D
Dan Williams 已提交
638
static kvm_pfn_t spte_to_pfn(u64 pte)
639
{
640
	return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
641 642
}

643 644 645 646 647 648 649
static gfn_t pse36_gfn_delta(u32 gpte)
{
	int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;

	return (gpte & PT32_DIR_PSE36_MASK) << shift;
}

650
#ifdef CONFIG_X86_64
A
Avi Kivity 已提交
651
static void __set_spte(u64 *sptep, u64 spte)
652
{
653
	WRITE_ONCE(*sptep, spte);
654 655
}

656
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
657
{
658
	WRITE_ONCE(*sptep, spte);
659 660 661 662 663 664
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	return xchg(sptep, spte);
}
665 666 667

static u64 __get_spte_lockless(u64 *sptep)
{
668
	return READ_ONCE(*sptep);
669
}
670
#else
671 672 673 674 675 676 677
union split_spte {
	struct {
		u32 spte_low;
		u32 spte_high;
	};
	u64 spte;
};
678

679 680 681 682 683 684 685 686 687 688 689 690
static void count_spte_clear(u64 *sptep, u64 spte)
{
	struct kvm_mmu_page *sp =  page_header(__pa(sptep));

	if (is_shadow_present_pte(spte))
		return;

	/* Ensure the spte is completely set before we increase the count */
	smp_wmb();
	sp->clear_spte_count++;
}

691 692 693
static void __set_spte(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;
694

695 696 697 698 699 700 701 702 703 704 705 706
	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	ssptep->spte_high = sspte.spte_high;

	/*
	 * If we map the spte from nonpresent to present, We should store
	 * the high bits firstly, then set present bit, so cpu can not
	 * fetch this spte while we are setting the spte.
	 */
	smp_wmb();

707
	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
708 709
}

710 711 712 713 714 715 716
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

717
	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
718 719 720 721 722 723 724 725

	/*
	 * If we map the spte from present to nonpresent, we should clear
	 * present bit firstly to avoid vcpu fetch the old high bits.
	 */
	smp_wmb();

	ssptep->spte_high = sspte.spte_high;
726
	count_spte_clear(sptep, spte);
727 728 729 730 731 732 733 734 735 736 737
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte, orig;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	/* xchg acts as a barrier before the setting of the high bits */
	orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
738 739
	orig.spte_high = ssptep->spte_high;
	ssptep->spte_high = sspte.spte_high;
740
	count_spte_clear(sptep, spte);
741 742 743

	return orig.spte;
}
744 745 746

/*
 * The idea using the light way get the spte on x86_32 guest is from
747
 * gup_get_pte (mm/gup.c).
748 749 750 751 752 753 754 755 756 757 758 759 760 761
 *
 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
 * coalesces them and we are running out of the MMU lock.  Therefore
 * we need to protect against in-progress updates of the spte.
 *
 * Reading the spte while an update is in progress may get the old value
 * for the high part of the spte.  The race is fine for a present->non-present
 * change (because the high part of the spte is ignored for non-present spte),
 * but for a present->present change we must reread the spte.
 *
 * All such changes are done in two steps (present->non-present and
 * non-present->present), hence it is enough to count the number of
 * present->non-present updates: if it changed while reading the spte,
 * we might have hit the race.  This is done using clear_spte_count.
762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
 */
static u64 __get_spte_lockless(u64 *sptep)
{
	struct kvm_mmu_page *sp =  page_header(__pa(sptep));
	union split_spte spte, *orig = (union split_spte *)sptep;
	int count;

retry:
	count = sp->clear_spte_count;
	smp_rmb();

	spte.spte_low = orig->spte_low;
	smp_rmb();

	spte.spte_high = orig->spte_high;
	smp_rmb();

	if (unlikely(spte.spte_low != orig->spte_low ||
	      count != sp->clear_spte_count))
		goto retry;

	return spte.spte;
}
785 786
#endif

787
static bool spte_can_locklessly_be_made_writable(u64 spte)
788
{
789 790
	return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
		(SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
791 792
}

793 794
static bool spte_has_volatile_bits(u64 spte)
{
795 796 797
	if (!is_shadow_present_pte(spte))
		return false;

798
	/*
799
	 * Always atomically update spte if it can be updated
800 801 802 803
	 * out of mmu-lock, it can ensure dirty bit is not lost,
	 * also, it can help us to get a stable is_writable_pte()
	 * to ensure tlb flush is not missed.
	 */
804 805
	if (spte_can_locklessly_be_made_writable(spte) ||
	    is_access_track_spte(spte))
806 807
		return true;

808
	if (spte_ad_enabled(spte)) {
809 810 811 812
		if ((spte & shadow_accessed_mask) == 0 ||
	    	    (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
			return true;
	}
813

814
	return false;
815 816
}

817
static bool is_accessed_spte(u64 spte)
818
{
819 820 821 822
	u64 accessed_mask = spte_shadow_accessed_mask(spte);

	return accessed_mask ? spte & accessed_mask
			     : !is_access_track_spte(spte);
823 824
}

825
static bool is_dirty_spte(u64 spte)
826
{
827 828 829
	u64 dirty_mask = spte_shadow_dirty_mask(spte);

	return dirty_mask ? spte & dirty_mask : spte & PT_WRITABLE_MASK;
830 831
}

832 833 834 835 836 837 838 839 840 841 842 843
/* Rules for using mmu_spte_set:
 * Set the sptep from nonpresent to present.
 * Note: the sptep being assigned *must* be either not present
 * or in a state where the hardware will not attempt to update
 * the spte.
 */
static void mmu_spte_set(u64 *sptep, u64 new_spte)
{
	WARN_ON(is_shadow_present_pte(*sptep));
	__set_spte(sptep, new_spte);
}

844 845 846
/*
 * Update the SPTE (excluding the PFN), but do not track changes in its
 * accessed/dirty status.
847
 */
848
static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
849
{
850
	u64 old_spte = *sptep;
851

852
	WARN_ON(!is_shadow_present_pte(new_spte));
853

854 855
	if (!is_shadow_present_pte(old_spte)) {
		mmu_spte_set(sptep, new_spte);
856
		return old_spte;
857
	}
858

859
	if (!spte_has_volatile_bits(old_spte))
860
		__update_clear_spte_fast(sptep, new_spte);
861
	else
862
		old_spte = __update_clear_spte_slow(sptep, new_spte);
863

864 865
	WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));

866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887
	return old_spte;
}

/* Rules for using mmu_spte_update:
 * Update the state bits, it means the mapped pfn is not changed.
 *
 * Whenever we overwrite a writable spte with a read-only one we
 * should flush remote TLBs. Otherwise rmap_write_protect
 * will find a read-only spte, even though the writable spte
 * might be cached on a CPU's TLB, the return value indicates this
 * case.
 *
 * Returns true if the TLB needs to be flushed
 */
static bool mmu_spte_update(u64 *sptep, u64 new_spte)
{
	bool flush = false;
	u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);

	if (!is_shadow_present_pte(old_spte))
		return false;

888 889
	/*
	 * For the spte updated out of mmu-lock is safe, since
890
	 * we always atomically update it, see the comments in
891 892
	 * spte_has_volatile_bits().
	 */
893
	if (spte_can_locklessly_be_made_writable(old_spte) &&
894
	      !is_writable_pte(new_spte))
895
		flush = true;
896

897
	/*
898
	 * Flush TLB when accessed/dirty states are changed in the page tables,
899 900 901
	 * to guarantee consistency between TLB and page tables.
	 */

902 903
	if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
		flush = true;
904
		kvm_set_pfn_accessed(spte_to_pfn(old_spte));
905 906 907 908
	}

	if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
		flush = true;
909
		kvm_set_pfn_dirty(spte_to_pfn(old_spte));
910
	}
911

912
	return flush;
913 914
}

915 916 917 918
/*
 * Rules for using mmu_spte_clear_track_bits:
 * It sets the sptep from present to nonpresent, and track the
 * state bits, it is used to clear the last level sptep.
919
 * Returns non-zero if the PTE was previously valid.
920 921 922
 */
static int mmu_spte_clear_track_bits(u64 *sptep)
{
D
Dan Williams 已提交
923
	kvm_pfn_t pfn;
924 925 926
	u64 old_spte = *sptep;

	if (!spte_has_volatile_bits(old_spte))
927
		__update_clear_spte_fast(sptep, 0ull);
928
	else
929
		old_spte = __update_clear_spte_slow(sptep, 0ull);
930

931
	if (!is_shadow_present_pte(old_spte))
932 933 934
		return 0;

	pfn = spte_to_pfn(old_spte);
935 936 937 938 939 940

	/*
	 * KVM does not hold the refcount of the page used by
	 * kvm mmu, before reclaiming the page, we should
	 * unmap it from mmu first.
	 */
941
	WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
942

943
	if (is_accessed_spte(old_spte))
944
		kvm_set_pfn_accessed(pfn);
945 946

	if (is_dirty_spte(old_spte))
947
		kvm_set_pfn_dirty(pfn);
948

949 950 951 952 953 954 955 956 957 958
	return 1;
}

/*
 * Rules for using mmu_spte_clear_no_track:
 * Directly clear spte without caring the state bits of sptep,
 * it is used to set the upper level spte.
 */
static void mmu_spte_clear_no_track(u64 *sptep)
{
959
	__update_clear_spte_fast(sptep, 0ull);
960 961
}

962 963 964 965 966
static u64 mmu_spte_get_lockless(u64 *sptep)
{
	return __get_spte_lockless(sptep);
}

967 968
static u64 mark_spte_for_access_track(u64 spte)
{
969
	if (spte_ad_enabled(spte))
970 971
		return spte & ~shadow_accessed_mask;

972
	if (is_access_track_spte(spte))
973 974 975
		return spte;

	/*
976 977 978
	 * Making an Access Tracking PTE will result in removal of write access
	 * from the PTE. So, verify that we will be able to restore the write
	 * access in the fast page fault path later on.
979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994
	 */
	WARN_ONCE((spte & PT_WRITABLE_MASK) &&
		  !spte_can_locklessly_be_made_writable(spte),
		  "kvm: Writable SPTE is not locklessly dirty-trackable\n");

	WARN_ONCE(spte & (shadow_acc_track_saved_bits_mask <<
			  shadow_acc_track_saved_bits_shift),
		  "kvm: Access Tracking saved bit locations are not zero\n");

	spte |= (spte & shadow_acc_track_saved_bits_mask) <<
		shadow_acc_track_saved_bits_shift;
	spte &= ~shadow_acc_track_mask;

	return spte;
}

995 996 997 998 999 1000 1001
/* Restore an acc-track PTE back to a regular PTE */
static u64 restore_acc_track_spte(u64 spte)
{
	u64 new_spte = spte;
	u64 saved_bits = (spte >> shadow_acc_track_saved_bits_shift)
			 & shadow_acc_track_saved_bits_mask;

1002
	WARN_ON_ONCE(spte_ad_enabled(spte));
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
	WARN_ON_ONCE(!is_access_track_spte(spte));

	new_spte &= ~shadow_acc_track_mask;
	new_spte &= ~(shadow_acc_track_saved_bits_mask <<
		      shadow_acc_track_saved_bits_shift);
	new_spte |= saved_bits;

	return new_spte;
}

1013 1014 1015 1016 1017 1018 1019 1020
/* Returns the Accessed status of the PTE and resets it at the same time. */
static bool mmu_spte_age(u64 *sptep)
{
	u64 spte = mmu_spte_get_lockless(sptep);

	if (!is_accessed_spte(spte))
		return false;

1021
	if (spte_ad_enabled(spte)) {
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
		clear_bit((ffs(shadow_accessed_mask) - 1),
			  (unsigned long *)sptep);
	} else {
		/*
		 * Capture the dirty status of the page, so that it doesn't get
		 * lost when the SPTE is marked for access tracking.
		 */
		if (is_writable_pte(spte))
			kvm_set_pfn_dirty(spte_to_pfn(spte));

		spte = mark_spte_for_access_track(spte);
		mmu_spte_update_no_track(sptep, spte);
	}

	return true;
}

1039 1040
static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
{
1041 1042 1043 1044 1045
	/*
	 * Prevent page table teardown by making any free-er wait during
	 * kvm_flush_remote_tlbs() IPI to all active vcpus.
	 */
	local_irq_disable();
1046

1047 1048 1049 1050
	/*
	 * Make sure a following spte read is not reordered ahead of the write
	 * to vcpu->mode.
	 */
1051
	smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
1052 1053 1054 1055
}

static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
{
1056 1057
	/*
	 * Make sure the write to vcpu->mode is not reordered in front of
1058
	 * reads to sptes.  If it does, kvm_mmu_commit_zap_page() can see us
1059 1060
	 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
	 */
1061
	smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
1062
	local_irq_enable();
1063 1064
}

1065
static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
1066
				  struct kmem_cache *base_cache, int min)
1067 1068 1069 1070
{
	void *obj;

	if (cache->nobjs >= min)
1071
		return 0;
1072
	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
1073
		obj = kmem_cache_zalloc(base_cache, GFP_KERNEL_ACCOUNT);
1074
		if (!obj)
1075
			return cache->nobjs >= min ? 0 : -ENOMEM;
1076 1077
		cache->objects[cache->nobjs++] = obj;
	}
1078
	return 0;
1079 1080
}

1081 1082 1083 1084 1085
static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
{
	return cache->nobjs;
}

1086 1087
static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
				  struct kmem_cache *cache)
1088 1089
{
	while (mc->nobjs)
1090
		kmem_cache_free(cache, mc->objects[--mc->nobjs]);
1091 1092
}

A
Avi Kivity 已提交
1093
static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
1094
				       int min)
A
Avi Kivity 已提交
1095
{
1096
	void *page;
A
Avi Kivity 已提交
1097 1098 1099 1100

	if (cache->nobjs >= min)
		return 0;
	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
1101
		page = (void *)__get_free_page(GFP_KERNEL_ACCOUNT);
A
Avi Kivity 已提交
1102
		if (!page)
1103
			return cache->nobjs >= min ? 0 : -ENOMEM;
1104
		cache->objects[cache->nobjs++] = page;
A
Avi Kivity 已提交
1105 1106 1107 1108 1109 1110 1111
	}
	return 0;
}

static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
{
	while (mc->nobjs)
1112
		free_page((unsigned long)mc->objects[--mc->nobjs]);
A
Avi Kivity 已提交
1113 1114
}

1115
static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
1116
{
1117 1118
	int r;

1119
	r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
1120
				   pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
1121 1122
	if (r)
		goto out;
1123
	r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
1124 1125
	if (r)
		goto out;
1126
	r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
1127
				   mmu_page_header_cache, 4);
1128 1129
out:
	return r;
1130 1131 1132 1133
}

static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
{
1134 1135
	mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
				pte_list_desc_cache);
1136
	mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
1137 1138
	mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
				mmu_page_header_cache);
1139 1140
}

1141
static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
1142 1143 1144 1145 1146 1147 1148 1149
{
	void *p;

	BUG_ON(!mc->nobjs);
	p = mc->objects[--mc->nobjs];
	return p;
}

1150
static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
1151
{
1152
	return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
1153 1154
}

1155
static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
1156
{
1157
	kmem_cache_free(pte_list_desc_cache, pte_list_desc);
1158 1159
}

1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
{
	if (!sp->role.direct)
		return sp->gfns[index];

	return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
}

static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
{
1170
	if (!sp->role.direct) {
1171
		sp->gfns[index] = gfn;
1172 1173 1174 1175 1176 1177 1178 1179
		return;
	}

	if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
		pr_err_ratelimited("gfn mismatch under direct page %llx "
				   "(expected %llx, got %llx)\n",
				   sp->gfn,
				   kvm_mmu_page_get_gfn(sp, index), gfn);
1180 1181
}

M
Marcelo Tosatti 已提交
1182
/*
1183 1184
 * Return the pointer to the large page information for a given gfn,
 * handling slots that are not large page aligned.
M
Marcelo Tosatti 已提交
1185
 */
1186 1187 1188
static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
					      struct kvm_memory_slot *slot,
					      int level)
M
Marcelo Tosatti 已提交
1189 1190 1191
{
	unsigned long idx;

1192
	idx = gfn_to_index(gfn, slot->base_gfn, level);
1193
	return &slot->arch.lpage_info[level - 2][idx];
M
Marcelo Tosatti 已提交
1194 1195
}

1196 1197 1198 1199 1200 1201
static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
					    gfn_t gfn, int count)
{
	struct kvm_lpage_info *linfo;
	int i;

1202
	for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
		linfo = lpage_info_slot(gfn, slot, i);
		linfo->disallow_lpage += count;
		WARN_ON(linfo->disallow_lpage < 0);
	}
}

void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
{
	update_gfn_disallow_lpage_count(slot, gfn, 1);
}

void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
{
	update_gfn_disallow_lpage_count(slot, gfn, -1);
}

1219
static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
M
Marcelo Tosatti 已提交
1220
{
1221
	struct kvm_memslots *slots;
1222
	struct kvm_memory_slot *slot;
1223
	gfn_t gfn;
M
Marcelo Tosatti 已提交
1224

1225
	kvm->arch.indirect_shadow_pages++;
1226
	gfn = sp->gfn;
1227 1228
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
1229 1230

	/* the non-leaf shadow pages are keeping readonly. */
1231
	if (sp->role.level > PG_LEVEL_4K)
1232 1233 1234
		return kvm_slot_page_track_add_page(kvm, slot, gfn,
						    KVM_PAGE_TRACK_WRITE);

1235
	kvm_mmu_gfn_disallow_lpage(slot, gfn);
M
Marcelo Tosatti 已提交
1236 1237
}

P
Paolo Bonzini 已提交
1238 1239 1240 1241 1242 1243
static void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
{
	if (sp->lpage_disallowed)
		return;

	++kvm->stat.nx_lpage_splits;
1244 1245
	list_add_tail(&sp->lpage_disallowed_link,
		      &kvm->arch.lpage_disallowed_mmu_pages);
P
Paolo Bonzini 已提交
1246 1247 1248
	sp->lpage_disallowed = true;
}

1249
static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
M
Marcelo Tosatti 已提交
1250
{
1251
	struct kvm_memslots *slots;
1252
	struct kvm_memory_slot *slot;
1253
	gfn_t gfn;
M
Marcelo Tosatti 已提交
1254

1255
	kvm->arch.indirect_shadow_pages--;
1256
	gfn = sp->gfn;
1257 1258
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
1259
	if (sp->role.level > PG_LEVEL_4K)
1260 1261 1262
		return kvm_slot_page_track_remove_page(kvm, slot, gfn,
						       KVM_PAGE_TRACK_WRITE);

1263
	kvm_mmu_gfn_allow_lpage(slot, gfn);
M
Marcelo Tosatti 已提交
1264 1265
}

P
Paolo Bonzini 已提交
1266 1267 1268 1269
static void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
{
	--kvm->stat.nx_lpage_splits;
	sp->lpage_disallowed = false;
1270
	list_del(&sp->lpage_disallowed_link);
P
Paolo Bonzini 已提交
1271 1272
}

1273 1274 1275
static struct kvm_memory_slot *
gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
			    bool no_dirty_log)
M
Marcelo Tosatti 已提交
1276 1277
{
	struct kvm_memory_slot *slot;
1278

1279
	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1280 1281 1282 1283
	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
		return NULL;
	if (no_dirty_log && slot->dirty_bitmap)
		return NULL;
1284 1285 1286 1287

	return slot;
}

1288
/*
1289
 * About rmap_head encoding:
1290
 *
1291 1292
 * If the bit zero of rmap_head->val is clear, then it points to the only spte
 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
1293
 * pte_list_desc containing more mappings.
1294 1295 1296 1297
 */

/*
 * Returns the number of pointers in the rmap chain, not counting the new one.
1298
 */
1299
static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
1300
			struct kvm_rmap_head *rmap_head)
1301
{
1302
	struct pte_list_desc *desc;
1303
	int i, count = 0;
1304

1305
	if (!rmap_head->val) {
1306
		rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
1307 1308
		rmap_head->val = (unsigned long)spte;
	} else if (!(rmap_head->val & 1)) {
1309 1310
		rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
		desc = mmu_alloc_pte_list_desc(vcpu);
1311
		desc->sptes[0] = (u64 *)rmap_head->val;
A
Avi Kivity 已提交
1312
		desc->sptes[1] = spte;
1313
		rmap_head->val = (unsigned long)desc | 1;
1314
		++count;
1315
	} else {
1316
		rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
1317
		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1318
		while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
1319
			desc = desc->more;
1320
			count += PTE_LIST_EXT;
1321
		}
1322 1323
		if (desc->sptes[PTE_LIST_EXT-1]) {
			desc->more = mmu_alloc_pte_list_desc(vcpu);
1324 1325
			desc = desc->more;
		}
A
Avi Kivity 已提交
1326
		for (i = 0; desc->sptes[i]; ++i)
1327
			++count;
A
Avi Kivity 已提交
1328
		desc->sptes[i] = spte;
1329
	}
1330
	return count;
1331 1332
}

1333
static void
1334 1335 1336
pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
			   struct pte_list_desc *desc, int i,
			   struct pte_list_desc *prev_desc)
1337 1338 1339
{
	int j;

1340
	for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
1341
		;
A
Avi Kivity 已提交
1342 1343
	desc->sptes[i] = desc->sptes[j];
	desc->sptes[j] = NULL;
1344 1345 1346
	if (j != 0)
		return;
	if (!prev_desc && !desc->more)
1347
		rmap_head->val = 0;
1348 1349 1350 1351
	else
		if (prev_desc)
			prev_desc->more = desc->more;
		else
1352
			rmap_head->val = (unsigned long)desc->more | 1;
1353
	mmu_free_pte_list_desc(desc);
1354 1355
}

1356
static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
1357
{
1358 1359
	struct pte_list_desc *desc;
	struct pte_list_desc *prev_desc;
1360 1361
	int i;

1362
	if (!rmap_head->val) {
1363
		pr_err("%s: %p 0->BUG\n", __func__, spte);
1364
		BUG();
1365
	} else if (!(rmap_head->val & 1)) {
1366
		rmap_printk("%s:  %p 1->0\n", __func__, spte);
1367
		if ((u64 *)rmap_head->val != spte) {
1368
			pr_err("%s:  %p 1->BUG\n", __func__, spte);
1369 1370
			BUG();
		}
1371
		rmap_head->val = 0;
1372
	} else {
1373
		rmap_printk("%s:  %p many->many\n", __func__, spte);
1374
		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1375 1376
		prev_desc = NULL;
		while (desc) {
1377
			for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
A
Avi Kivity 已提交
1378
				if (desc->sptes[i] == spte) {
1379 1380
					pte_list_desc_remove_entry(rmap_head,
							desc, i, prev_desc);
1381 1382
					return;
				}
1383
			}
1384 1385 1386
			prev_desc = desc;
			desc = desc->more;
		}
1387
		pr_err("%s: %p many->many\n", __func__, spte);
1388 1389 1390 1391
		BUG();
	}
}

1392 1393 1394 1395 1396 1397
static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep)
{
	mmu_spte_clear_track_bits(sptep);
	__pte_list_remove(sptep, rmap_head);
}

1398 1399
static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
					   struct kvm_memory_slot *slot)
1400
{
1401
	unsigned long idx;
1402

1403
	idx = gfn_to_index(gfn, slot->base_gfn, level);
1404
	return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
1405 1406
}

1407 1408
static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
					 struct kvm_mmu_page *sp)
1409
{
1410
	struct kvm_memslots *slots;
1411 1412
	struct kvm_memory_slot *slot;

1413 1414
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
1415
	return __gfn_to_rmap(gfn, sp->role.level, slot);
1416 1417
}

1418 1419 1420 1421 1422 1423 1424 1425
static bool rmap_can_add(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu_memory_cache *cache;

	cache = &vcpu->arch.mmu_pte_list_desc_cache;
	return mmu_memory_cache_free_objects(cache);
}

1426 1427 1428
static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
{
	struct kvm_mmu_page *sp;
1429
	struct kvm_rmap_head *rmap_head;
1430 1431 1432

	sp = page_header(__pa(spte));
	kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1433 1434
	rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
	return pte_list_add(vcpu, spte, rmap_head);
1435 1436 1437 1438 1439 1440
}

static void rmap_remove(struct kvm *kvm, u64 *spte)
{
	struct kvm_mmu_page *sp;
	gfn_t gfn;
1441
	struct kvm_rmap_head *rmap_head;
1442 1443 1444

	sp = page_header(__pa(spte));
	gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1445
	rmap_head = gfn_to_rmap(kvm, gfn, sp);
1446
	__pte_list_remove(spte, rmap_head);
1447 1448
}

1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
/*
 * Used by the following functions to iterate through the sptes linked by a
 * rmap.  All fields are private and not assumed to be used outside.
 */
struct rmap_iterator {
	/* private fields */
	struct pte_list_desc *desc;	/* holds the sptep if not NULL */
	int pos;			/* index of the sptep */
};

/*
 * Iteration must be started by this function.  This should also be used after
 * removing/dropping sptes from the rmap link because in such cases the
M
Miaohe Lin 已提交
1462
 * information in the iterator may not be valid.
1463 1464 1465
 *
 * Returns sptep if found, NULL otherwise.
 */
1466 1467
static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
			   struct rmap_iterator *iter)
1468
{
1469 1470
	u64 *sptep;

1471
	if (!rmap_head->val)
1472 1473
		return NULL;

1474
	if (!(rmap_head->val & 1)) {
1475
		iter->desc = NULL;
1476 1477
		sptep = (u64 *)rmap_head->val;
		goto out;
1478 1479
	}

1480
	iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1481
	iter->pos = 0;
1482 1483 1484 1485
	sptep = iter->desc->sptes[iter->pos];
out:
	BUG_ON(!is_shadow_present_pte(*sptep));
	return sptep;
1486 1487 1488 1489 1490 1491 1492 1493 1494
}

/*
 * Must be used with a valid iterator: e.g. after rmap_get_first().
 *
 * Returns sptep if found, NULL otherwise.
 */
static u64 *rmap_get_next(struct rmap_iterator *iter)
{
1495 1496
	u64 *sptep;

1497 1498 1499 1500 1501
	if (iter->desc) {
		if (iter->pos < PTE_LIST_EXT - 1) {
			++iter->pos;
			sptep = iter->desc->sptes[iter->pos];
			if (sptep)
1502
				goto out;
1503 1504 1505 1506 1507 1508 1509
		}

		iter->desc = iter->desc->more;

		if (iter->desc) {
			iter->pos = 0;
			/* desc->sptes[0] cannot be NULL */
1510 1511
			sptep = iter->desc->sptes[iter->pos];
			goto out;
1512 1513 1514 1515
		}
	}

	return NULL;
1516 1517 1518
out:
	BUG_ON(!is_shadow_present_pte(*sptep));
	return sptep;
1519 1520
}

1521 1522
#define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)			\
	for (_spte_ = rmap_get_first(_rmap_head_, _iter_);		\
1523
	     _spte_; _spte_ = rmap_get_next(_iter_))
1524

1525
static void drop_spte(struct kvm *kvm, u64 *sptep)
1526
{
1527
	if (mmu_spte_clear_track_bits(sptep))
1528
		rmap_remove(kvm, sptep);
A
Avi Kivity 已提交
1529 1530
}

1531 1532 1533 1534

static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
{
	if (is_large_pte(*sptep)) {
1535
		WARN_ON(page_header(__pa(sptep))->role.level == PG_LEVEL_4K);
1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
		drop_spte(kvm, sptep);
		--kvm->stat.lpages;
		return true;
	}

	return false;
}

static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
{
1546 1547 1548 1549 1550 1551
	if (__drop_large_spte(vcpu->kvm, sptep)) {
		struct kvm_mmu_page *sp = page_header(__pa(sptep));

		kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
			KVM_PAGES_PER_HPAGE(sp->role.level));
	}
1552 1553 1554
}

/*
1555
 * Write-protect on the specified @sptep, @pt_protect indicates whether
1556
 * spte write-protection is caused by protecting shadow page table.
1557
 *
T
Tiejun Chen 已提交
1558
 * Note: write protection is difference between dirty logging and spte
1559 1560 1561 1562 1563
 * protection:
 * - for dirty logging, the spte can be set to writable at anytime if
 *   its dirty bitmap is properly set.
 * - for spte protection, the spte can be writable only after unsync-ing
 *   shadow page.
1564
 *
1565
 * Return true if tlb need be flushed.
1566
 */
1567
static bool spte_write_protect(u64 *sptep, bool pt_protect)
1568 1569 1570
{
	u64 spte = *sptep;

1571
	if (!is_writable_pte(spte) &&
1572
	      !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1573 1574 1575 1576
		return false;

	rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);

1577 1578
	if (pt_protect)
		spte &= ~SPTE_MMU_WRITEABLE;
1579
	spte = spte & ~PT_WRITABLE_MASK;
1580

1581
	return mmu_spte_update(sptep, spte);
1582 1583
}

1584 1585
static bool __rmap_write_protect(struct kvm *kvm,
				 struct kvm_rmap_head *rmap_head,
1586
				 bool pt_protect)
1587
{
1588 1589
	u64 *sptep;
	struct rmap_iterator iter;
1590
	bool flush = false;
1591

1592
	for_each_rmap_spte(rmap_head, &iter, sptep)
1593
		flush |= spte_write_protect(sptep, pt_protect);
1594

1595
	return flush;
1596 1597
}

1598
static bool spte_clear_dirty(u64 *sptep)
1599 1600 1601 1602 1603
{
	u64 spte = *sptep;

	rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);

1604
	MMU_WARN_ON(!spte_ad_enabled(spte));
1605 1606 1607 1608
	spte &= ~shadow_dirty_mask;
	return mmu_spte_update(sptep, spte);
}

1609
static bool spte_wrprot_for_clear_dirty(u64 *sptep)
1610 1611 1612
{
	bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
					       (unsigned long *)sptep);
1613
	if (was_writable && !spte_ad_enabled(*sptep))
1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
		kvm_set_pfn_dirty(spte_to_pfn(*sptep));

	return was_writable;
}

/*
 * Gets the GFN ready for another round of dirty logging by clearing the
 *	- D bit on ad-enabled SPTEs, and
 *	- W bit on ad-disabled SPTEs.
 * Returns true iff any D or W bits were cleared.
 */
1625
static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1626 1627 1628 1629 1630
{
	u64 *sptep;
	struct rmap_iterator iter;
	bool flush = false;

1631
	for_each_rmap_spte(rmap_head, &iter, sptep)
1632 1633
		if (spte_ad_need_write_protect(*sptep))
			flush |= spte_wrprot_for_clear_dirty(sptep);
1634
		else
1635
			flush |= spte_clear_dirty(sptep);
1636 1637 1638 1639

	return flush;
}

1640
static bool spte_set_dirty(u64 *sptep)
1641 1642 1643 1644 1645
{
	u64 spte = *sptep;

	rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);

1646
	/*
1647
	 * Similar to the !kvm_x86_ops.slot_disable_log_dirty case,
1648 1649 1650
	 * do not bother adding back write access to pages marked
	 * SPTE_AD_WRPROT_ONLY_MASK.
	 */
1651 1652 1653 1654 1655
	spte |= shadow_dirty_mask;

	return mmu_spte_update(sptep, spte);
}

1656
static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1657 1658 1659 1660 1661
{
	u64 *sptep;
	struct rmap_iterator iter;
	bool flush = false;

1662
	for_each_rmap_spte(rmap_head, &iter, sptep)
1663 1664
		if (spte_ad_enabled(*sptep))
			flush |= spte_set_dirty(sptep);
1665 1666 1667 1668

	return flush;
}

1669
/**
1670
 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1671 1672 1673 1674 1675 1676 1677 1678
 * @kvm: kvm instance
 * @slot: slot to protect
 * @gfn_offset: start of the BITS_PER_LONG pages we care about
 * @mask: indicates which pages we should protect
 *
 * Used when we do not need to care about huge page mappings: e.g. during dirty
 * logging we do not have any such mappings.
 */
1679
static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1680 1681
				     struct kvm_memory_slot *slot,
				     gfn_t gfn_offset, unsigned long mask)
1682
{
1683
	struct kvm_rmap_head *rmap_head;
1684

1685
	while (mask) {
1686
		rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1687
					  PG_LEVEL_4K, slot);
1688
		__rmap_write_protect(kvm, rmap_head, false);
M
Marcelo Tosatti 已提交
1689

1690 1691 1692
		/* clear the first set bit */
		mask &= mask - 1;
	}
1693 1694
}

1695
/**
1696 1697
 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
 * protect the page if the D-bit isn't supported.
1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
 * @kvm: kvm instance
 * @slot: slot to clear D-bit
 * @gfn_offset: start of the BITS_PER_LONG pages we care about
 * @mask: indicates which pages we should clear D-bit
 *
 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
 */
void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
				     struct kvm_memory_slot *slot,
				     gfn_t gfn_offset, unsigned long mask)
{
1709
	struct kvm_rmap_head *rmap_head;
1710 1711

	while (mask) {
1712
		rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1713
					  PG_LEVEL_4K, slot);
1714
		__rmap_clear_dirty(kvm, rmap_head);
1715 1716 1717 1718 1719 1720 1721

		/* clear the first set bit */
		mask &= mask - 1;
	}
}
EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);

1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
/**
 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
 * PT level pages.
 *
 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
 * enable dirty logging for them.
 *
 * Used when we do not need to care about huge page mappings: e.g. during dirty
 * logging we do not have any such mappings.
 */
void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
				struct kvm_memory_slot *slot,
				gfn_t gfn_offset, unsigned long mask)
{
1736 1737
	if (kvm_x86_ops.enable_log_dirty_pt_masked)
		kvm_x86_ops.enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1738 1739 1740
				mask);
	else
		kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1741 1742
}

1743 1744 1745 1746 1747 1748 1749 1750 1751
/**
 * kvm_arch_write_log_dirty - emulate dirty page logging
 * @vcpu: Guest mode vcpu
 *
 * Emulate arch specific page modification logging for the
 * nested hypervisor
 */
int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu)
{
1752 1753
	if (kvm_x86_ops.write_log_dirty)
		return kvm_x86_ops.write_log_dirty(vcpu);
1754 1755 1756 1757

	return 0;
}

1758 1759
bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
				    struct kvm_memory_slot *slot, u64 gfn)
1760
{
1761
	struct kvm_rmap_head *rmap_head;
1762
	int i;
1763
	bool write_protected = false;
1764

1765
	for (i = PG_LEVEL_4K; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
1766
		rmap_head = __gfn_to_rmap(gfn, i, slot);
1767
		write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1768 1769 1770
	}

	return write_protected;
1771 1772
}

1773 1774 1775 1776 1777 1778 1779 1780
static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
{
	struct kvm_memory_slot *slot;

	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
	return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
}

1781
static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1782
{
1783 1784
	u64 *sptep;
	struct rmap_iterator iter;
1785
	bool flush = false;
1786

1787
	while ((sptep = rmap_get_first(rmap_head, &iter))) {
1788
		rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1789

1790
		pte_list_remove(rmap_head, sptep);
1791
		flush = true;
1792
	}
1793

1794 1795 1796
	return flush;
}

1797
static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1798 1799 1800
			   struct kvm_memory_slot *slot, gfn_t gfn, int level,
			   unsigned long data)
{
1801
	return kvm_zap_rmapp(kvm, rmap_head);
1802 1803
}

1804
static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1805 1806
			     struct kvm_memory_slot *slot, gfn_t gfn, int level,
			     unsigned long data)
1807
{
1808 1809
	u64 *sptep;
	struct rmap_iterator iter;
1810
	int need_flush = 0;
1811
	u64 new_spte;
1812
	pte_t *ptep = (pte_t *)data;
D
Dan Williams 已提交
1813
	kvm_pfn_t new_pfn;
1814 1815 1816

	WARN_ON(pte_huge(*ptep));
	new_pfn = pte_pfn(*ptep);
1817

1818
restart:
1819
	for_each_rmap_spte(rmap_head, &iter, sptep) {
1820
		rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1821
			    sptep, *sptep, gfn, level);
1822

1823
		need_flush = 1;
1824

1825
		if (pte_write(*ptep)) {
1826
			pte_list_remove(rmap_head, sptep);
1827
			goto restart;
1828
		} else {
1829
			new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1830 1831 1832 1833
			new_spte |= (u64)new_pfn << PAGE_SHIFT;

			new_spte &= ~PT_WRITABLE_MASK;
			new_spte &= ~SPTE_HOST_WRITEABLE;
1834 1835

			new_spte = mark_spte_for_access_track(new_spte);
1836 1837 1838

			mmu_spte_clear_track_bits(sptep);
			mmu_spte_set(sptep, new_spte);
1839 1840
		}
	}
1841

1842 1843 1844 1845 1846
	if (need_flush && kvm_available_flush_tlb_with_range()) {
		kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
		return 0;
	}

1847
	return need_flush;
1848 1849
}

1850 1851 1852 1853 1854 1855 1856 1857 1858 1859
struct slot_rmap_walk_iterator {
	/* input fields. */
	struct kvm_memory_slot *slot;
	gfn_t start_gfn;
	gfn_t end_gfn;
	int start_level;
	int end_level;

	/* output fields. */
	gfn_t gfn;
1860
	struct kvm_rmap_head *rmap;
1861 1862 1863
	int level;

	/* private field. */
1864
	struct kvm_rmap_head *end_rmap;
1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917
};

static void
rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
{
	iterator->level = level;
	iterator->gfn = iterator->start_gfn;
	iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
	iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
					   iterator->slot);
}

static void
slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
		    struct kvm_memory_slot *slot, int start_level,
		    int end_level, gfn_t start_gfn, gfn_t end_gfn)
{
	iterator->slot = slot;
	iterator->start_level = start_level;
	iterator->end_level = end_level;
	iterator->start_gfn = start_gfn;
	iterator->end_gfn = end_gfn;

	rmap_walk_init_level(iterator, iterator->start_level);
}

static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
{
	return !!iterator->rmap;
}

static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
{
	if (++iterator->rmap <= iterator->end_rmap) {
		iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
		return;
	}

	if (++iterator->level > iterator->end_level) {
		iterator->rmap = NULL;
		return;
	}

	rmap_walk_init_level(iterator, iterator->level);
}

#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,	\
	   _start_gfn, _end_gfn, _iter_)				\
	for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,		\
				 _end_level_, _start_gfn, _end_gfn);	\
	     slot_rmap_walk_okay(_iter_);				\
	     slot_rmap_walk_next(_iter_))

1918 1919 1920 1921 1922
static int kvm_handle_hva_range(struct kvm *kvm,
				unsigned long start,
				unsigned long end,
				unsigned long data,
				int (*handler)(struct kvm *kvm,
1923
					       struct kvm_rmap_head *rmap_head,
1924
					       struct kvm_memory_slot *slot,
1925 1926
					       gfn_t gfn,
					       int level,
1927
					       unsigned long data))
1928
{
1929
	struct kvm_memslots *slots;
1930
	struct kvm_memory_slot *memslot;
1931 1932
	struct slot_rmap_walk_iterator iterator;
	int ret = 0;
1933
	int i;
1934

1935 1936 1937 1938 1939
	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
		kvm_for_each_memslot(memslot, slots) {
			unsigned long hva_start, hva_end;
			gfn_t gfn_start, gfn_end;
1940

1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952
			hva_start = max(start, memslot->userspace_addr);
			hva_end = min(end, memslot->userspace_addr +
				      (memslot->npages << PAGE_SHIFT));
			if (hva_start >= hva_end)
				continue;
			/*
			 * {gfn(page) | page intersects with [hva_start, hva_end)} =
			 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
			 */
			gfn_start = hva_to_gfn_memslot(hva_start, memslot);
			gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);

1953
			for_each_slot_rmap_range(memslot, PG_LEVEL_4K,
1954
						 KVM_MAX_HUGEPAGE_LEVEL,
1955 1956 1957 1958 1959
						 gfn_start, gfn_end - 1,
						 &iterator)
				ret |= handler(kvm, iterator.rmap, memslot,
					       iterator.gfn, iterator.level, data);
		}
1960 1961
	}

1962
	return ret;
1963 1964
}

1965 1966
static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
			  unsigned long data,
1967 1968
			  int (*handler)(struct kvm *kvm,
					 struct kvm_rmap_head *rmap_head,
1969
					 struct kvm_memory_slot *slot,
1970
					 gfn_t gfn, int level,
1971 1972 1973
					 unsigned long data))
{
	return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1974 1975
}

1976 1977 1978 1979 1980
int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
{
	return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
}

1981
int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1982
{
1983
	return kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1984 1985
}

1986
static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1987 1988
			 struct kvm_memory_slot *slot, gfn_t gfn, int level,
			 unsigned long data)
1989
{
1990
	u64 *sptep;
1991
	struct rmap_iterator uninitialized_var(iter);
1992 1993
	int young = 0;

1994 1995
	for_each_rmap_spte(rmap_head, &iter, sptep)
		young |= mmu_spte_age(sptep);
1996

1997
	trace_kvm_age_page(gfn, level, slot, young);
1998 1999 2000
	return young;
}

2001
static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
2002 2003
			      struct kvm_memory_slot *slot, gfn_t gfn,
			      int level, unsigned long data)
A
Andrea Arcangeli 已提交
2004
{
2005 2006
	u64 *sptep;
	struct rmap_iterator iter;
A
Andrea Arcangeli 已提交
2007

2008 2009 2010 2011
	for_each_rmap_spte(rmap_head, &iter, sptep)
		if (is_accessed_spte(*sptep))
			return 1;
	return 0;
A
Andrea Arcangeli 已提交
2012 2013
}

2014 2015
#define RMAP_RECYCLE_THRESHOLD 1000

2016
static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
2017
{
2018
	struct kvm_rmap_head *rmap_head;
2019 2020 2021
	struct kvm_mmu_page *sp;

	sp = page_header(__pa(spte));
2022

2023
	rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
2024

2025
	kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
2026 2027
	kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
			KVM_PAGES_PER_HPAGE(sp->role.level));
2028 2029
}

A
Andres Lagar-Cavilla 已提交
2030
int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
2031
{
A
Andres Lagar-Cavilla 已提交
2032
	return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
2033 2034
}

A
Andrea Arcangeli 已提交
2035 2036 2037 2038 2039
int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
{
	return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
}

2040
#ifdef MMU_DEBUG
2041
static int is_empty_shadow_page(u64 *spt)
A
Avi Kivity 已提交
2042
{
2043 2044 2045
	u64 *pos;
	u64 *end;

2046
	for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
2047
		if (is_shadow_present_pte(*pos)) {
2048
			printk(KERN_ERR "%s: %p %llx\n", __func__,
2049
			       pos, *pos);
A
Avi Kivity 已提交
2050
			return 0;
2051
		}
A
Avi Kivity 已提交
2052 2053
	return 1;
}
2054
#endif
A
Avi Kivity 已提交
2055

2056 2057 2058 2059 2060 2061
/*
 * This value is the sum of all of the kvm instances's
 * kvm->arch.n_used_mmu_pages values.  We need a global,
 * aggregate version in order to make the slab shrinker
 * faster
 */
2062
static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, unsigned long nr)
2063 2064 2065 2066 2067
{
	kvm->arch.n_used_mmu_pages += nr;
	percpu_counter_add(&kvm_total_used_mmu_pages, nr);
}

2068
static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
2069
{
2070
	MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
2071
	hlist_del(&sp->hash_link);
2072 2073
	list_del(&sp->link);
	free_page((unsigned long)sp->spt);
2074 2075
	if (!sp->role.direct)
		free_page((unsigned long)sp->gfns);
2076
	kmem_cache_free(mmu_page_header_cache, sp);
2077 2078
}

2079 2080
static unsigned kvm_page_table_hashfn(gfn_t gfn)
{
2081
	return hash_64(gfn, KVM_MMU_HASH_SHIFT);
2082 2083
}

2084
static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
2085
				    struct kvm_mmu_page *sp, u64 *parent_pte)
2086 2087 2088 2089
{
	if (!parent_pte)
		return;

2090
	pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
2091 2092
}

2093
static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
2094 2095
				       u64 *parent_pte)
{
2096
	__pte_list_remove(parent_pte, &sp->parent_ptes);
2097 2098
}

2099 2100 2101 2102
static void drop_parent_pte(struct kvm_mmu_page *sp,
			    u64 *parent_pte)
{
	mmu_page_remove_parent_pte(sp, parent_pte);
2103
	mmu_spte_clear_no_track(parent_pte);
2104 2105
}

2106
static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
M
Marcelo Tosatti 已提交
2107
{
2108
	struct kvm_mmu_page *sp;
2109

2110 2111
	sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
	sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
2112
	if (!direct)
2113
		sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
2114
	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
2115 2116 2117 2118 2119 2120

	/*
	 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
	 * depends on valid pages being added to the head of the list.  See
	 * comments in kvm_zap_obsolete_pages().
	 */
2121
	sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
2122 2123 2124
	list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
	kvm_mod_used_mmu_pages(vcpu->kvm, +1);
	return sp;
M
Marcelo Tosatti 已提交
2125 2126
}

2127
static void mark_unsync(u64 *spte);
2128
static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
2129
{
2130 2131 2132 2133 2134 2135
	u64 *sptep;
	struct rmap_iterator iter;

	for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
		mark_unsync(sptep);
	}
2136 2137
}

2138
static void mark_unsync(u64 *spte)
2139
{
2140
	struct kvm_mmu_page *sp;
2141
	unsigned int index;
2142

2143
	sp = page_header(__pa(spte));
2144 2145
	index = spte - sp->spt;
	if (__test_and_set_bit(index, sp->unsync_child_bitmap))
2146
		return;
2147
	if (sp->unsync_children++)
2148
		return;
2149
	kvm_mmu_mark_parents_unsync(sp);
2150 2151
}

2152
static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
2153
			       struct kvm_mmu_page *sp)
2154
{
2155
	return 0;
2156 2157
}

2158 2159
static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
				 struct kvm_mmu_page *sp, u64 *spte,
2160
				 const void *pte)
2161 2162 2163 2164
{
	WARN_ON(1);
}

2165 2166 2167 2168 2169 2170 2171 2172 2173 2174
#define KVM_PAGE_ARRAY_NR 16

struct kvm_mmu_pages {
	struct mmu_page_and_offset {
		struct kvm_mmu_page *sp;
		unsigned int idx;
	} page[KVM_PAGE_ARRAY_NR];
	unsigned int nr;
};

2175 2176
static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
			 int idx)
2177
{
2178
	int i;
2179

2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190
	if (sp->unsync)
		for (i=0; i < pvec->nr; i++)
			if (pvec->page[i].sp == sp)
				return 0;

	pvec->page[pvec->nr].sp = sp;
	pvec->page[pvec->nr].idx = idx;
	pvec->nr++;
	return (pvec->nr == KVM_PAGE_ARRAY_NR);
}

2191 2192 2193 2194 2195 2196 2197
static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
{
	--sp->unsync_children;
	WARN_ON((int)sp->unsync_children < 0);
	__clear_bit(idx, sp->unsync_child_bitmap);
}

2198 2199 2200 2201
static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
	int i, ret, nr_unsync_leaf = 0;
2202

2203
	for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
2204
		struct kvm_mmu_page *child;
2205 2206
		u64 ent = sp->spt[i];

2207 2208 2209 2210
		if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
			clear_unsync_child_bit(sp, i);
			continue;
		}
2211 2212 2213 2214 2215 2216 2217 2218

		child = page_header(ent & PT64_BASE_ADDR_MASK);

		if (child->unsync_children) {
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;

			ret = __mmu_unsync_walk(child, pvec);
2219 2220 2221 2222
			if (!ret) {
				clear_unsync_child_bit(sp, i);
				continue;
			} else if (ret > 0) {
2223
				nr_unsync_leaf += ret;
2224
			} else
2225 2226 2227 2228 2229 2230
				return ret;
		} else if (child->unsync) {
			nr_unsync_leaf++;
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;
		} else
2231
			clear_unsync_child_bit(sp, i);
2232 2233
	}

2234 2235 2236
	return nr_unsync_leaf;
}

2237 2238
#define INVALID_INDEX (-1)

2239 2240 2241
static int mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
P
Paolo Bonzini 已提交
2242
	pvec->nr = 0;
2243 2244 2245
	if (!sp->unsync_children)
		return 0;

2246
	mmu_pages_add(pvec, sp, INVALID_INDEX);
2247
	return __mmu_unsync_walk(sp, pvec);
2248 2249 2250 2251 2252
}

static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
{
	WARN_ON(!sp->unsync);
2253
	trace_kvm_mmu_sync_page(sp);
2254 2255 2256 2257
	sp->unsync = 0;
	--kvm->stat.mmu_unsync;
}

2258 2259
static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				     struct list_head *invalid_list);
2260 2261
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list);
2262

2263

2264
#define for_each_valid_sp(_kvm, _sp, _gfn)				\
2265 2266
	hlist_for_each_entry(_sp,					\
	  &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
2267
		if (is_obsolete_sp((_kvm), (_sp))) {			\
2268
		} else
2269 2270

#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)			\
2271 2272
	for_each_valid_sp(_kvm, _sp, _gfn)				\
		if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
2273

2274 2275 2276 2277 2278
static inline bool is_ept_sp(struct kvm_mmu_page *sp)
{
	return sp->role.cr0_wp && sp->role.smap_andnot_wp;
}

2279
/* @sp->gfn should be write-protected at the call site */
2280 2281
static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
			    struct list_head *invalid_list)
2282
{
2283 2284
	if ((!is_ept_sp(sp) && sp->role.gpte_is_8_bytes != !!is_pae(vcpu)) ||
	    vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
2285
		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
2286
		return false;
2287 2288
	}

2289
	return true;
2290 2291
}

2292 2293 2294 2295
static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
					struct list_head *invalid_list,
					bool remote_flush)
{
2296
	if (!remote_flush && list_empty(invalid_list))
2297 2298 2299 2300 2301 2302 2303 2304 2305
		return false;

	if (!list_empty(invalid_list))
		kvm_mmu_commit_zap_page(kvm, invalid_list);
	else
		kvm_flush_remote_tlbs(kvm);
	return true;
}

2306 2307 2308
static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
				 struct list_head *invalid_list,
				 bool remote_flush, bool local_flush)
2309
{
2310
	if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush))
2311
		return;
2312

2313
	if (local_flush)
2314
		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2315 2316
}

2317 2318 2319 2320 2321 2322 2323
#ifdef CONFIG_KVM_MMU_AUDIT
#include "mmu_audit.c"
#else
static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
static void mmu_audit_disable(void) { }
#endif

2324 2325
static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
{
2326 2327
	return sp->role.invalid ||
	       unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2328 2329
}

2330
static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2331
			 struct list_head *invalid_list)
2332
{
2333 2334
	kvm_unlink_unsync_page(vcpu->kvm, sp);
	return __kvm_sync_page(vcpu, sp, invalid_list);
2335 2336
}

2337
/* @gfn should be write-protected at the call site */
2338 2339
static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
			   struct list_head *invalid_list)
2340 2341
{
	struct kvm_mmu_page *s;
2342
	bool ret = false;
2343

2344
	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2345
		if (!s->unsync)
2346 2347
			continue;

2348
		WARN_ON(s->role.level != PG_LEVEL_4K);
2349
		ret |= kvm_sync_page(vcpu, s, invalid_list);
2350 2351
	}

2352
	return ret;
2353 2354
}

2355
struct mmu_page_path {
2356 2357
	struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
	unsigned int idx[PT64_ROOT_MAX_LEVEL];
2358 2359
};

2360
#define for_each_sp(pvec, sp, parents, i)			\
P
Paolo Bonzini 已提交
2361
		for (i = mmu_pages_first(&pvec, &parents);	\
2362 2363 2364
			i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});	\
			i = mmu_pages_next(&pvec, &parents, i))

2365 2366 2367
static int mmu_pages_next(struct kvm_mmu_pages *pvec,
			  struct mmu_page_path *parents,
			  int i)
2368 2369 2370 2371 2372
{
	int n;

	for (n = i+1; n < pvec->nr; n++) {
		struct kvm_mmu_page *sp = pvec->page[n].sp;
P
Paolo Bonzini 已提交
2373 2374
		unsigned idx = pvec->page[n].idx;
		int level = sp->role.level;
2375

P
Paolo Bonzini 已提交
2376
		parents->idx[level-1] = idx;
2377
		if (level == PG_LEVEL_4K)
P
Paolo Bonzini 已提交
2378
			break;
2379

P
Paolo Bonzini 已提交
2380
		parents->parent[level-2] = sp;
2381 2382 2383 2384 2385
	}

	return n;
}

P
Paolo Bonzini 已提交
2386 2387 2388 2389 2390 2391 2392 2393 2394
static int mmu_pages_first(struct kvm_mmu_pages *pvec,
			   struct mmu_page_path *parents)
{
	struct kvm_mmu_page *sp;
	int level;

	if (pvec->nr == 0)
		return 0;

2395 2396
	WARN_ON(pvec->page[0].idx != INVALID_INDEX);

P
Paolo Bonzini 已提交
2397 2398
	sp = pvec->page[0].sp;
	level = sp->role.level;
2399
	WARN_ON(level == PG_LEVEL_4K);
P
Paolo Bonzini 已提交
2400 2401 2402 2403 2404 2405 2406 2407 2408 2409

	parents->parent[level-2] = sp;

	/* Also set up a sentinel.  Further entries in pvec are all
	 * children of sp, so this element is never overwritten.
	 */
	parents->parent[level-1] = NULL;
	return mmu_pages_next(pvec, parents, 0);
}

2410
static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2411
{
2412 2413 2414 2415 2416 2417 2418 2419 2420
	struct kvm_mmu_page *sp;
	unsigned int level = 0;

	do {
		unsigned int idx = parents->idx[level];
		sp = parents->parent[level];
		if (!sp)
			return;

2421
		WARN_ON(idx == INVALID_INDEX);
2422
		clear_unsync_child_bit(sp, idx);
2423
		level++;
P
Paolo Bonzini 已提交
2424
	} while (!sp->unsync_children);
2425
}
2426

2427 2428 2429 2430 2431 2432 2433
static void mmu_sync_children(struct kvm_vcpu *vcpu,
			      struct kvm_mmu_page *parent)
{
	int i;
	struct kvm_mmu_page *sp;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
2434
	LIST_HEAD(invalid_list);
2435
	bool flush = false;
2436 2437

	while (mmu_unsync_walk(parent, &pages)) {
2438
		bool protected = false;
2439 2440

		for_each_sp(pages, sp, parents, i)
2441
			protected |= rmap_write_protect(vcpu, sp->gfn);
2442

2443
		if (protected) {
2444
			kvm_flush_remote_tlbs(vcpu->kvm);
2445 2446
			flush = false;
		}
2447

2448
		for_each_sp(pages, sp, parents, i) {
2449
			flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2450 2451
			mmu_pages_clear_parents(&parents);
		}
2452 2453 2454 2455 2456
		if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
			kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
			cond_resched_lock(&vcpu->kvm->mmu_lock);
			flush = false;
		}
2457
	}
2458 2459

	kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2460 2461
}

2462 2463
static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
{
2464
	atomic_set(&sp->write_flooding_count,  0);
2465 2466 2467 2468 2469 2470 2471 2472 2473
}

static void clear_sp_write_flooding_count(u64 *spte)
{
	struct kvm_mmu_page *sp =  page_header(__pa(spte));

	__clear_sp_write_flooding_count(sp);
}

2474 2475 2476 2477
static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
					     gfn_t gfn,
					     gva_t gaddr,
					     unsigned level,
2478
					     int direct,
2479
					     unsigned int access)
2480 2481 2482
{
	union kvm_mmu_page_role role;
	unsigned quadrant;
2483 2484
	struct kvm_mmu_page *sp;
	bool need_sync = false;
2485
	bool flush = false;
2486
	int collisions = 0;
2487
	LIST_HEAD(invalid_list);
2488

2489
	role = vcpu->arch.mmu->mmu_role.base;
2490
	role.level = level;
2491
	role.direct = direct;
2492
	if (role.direct)
2493
		role.gpte_is_8_bytes = true;
2494
	role.access = access;
2495 2496
	if (!vcpu->arch.mmu->direct_map
	    && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
2497 2498 2499 2500
		quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
		quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
		role.quadrant = quadrant;
	}
2501 2502 2503 2504 2505 2506
	for_each_valid_sp(vcpu->kvm, sp, gfn) {
		if (sp->gfn != gfn) {
			collisions++;
			continue;
		}

2507 2508
		if (!need_sync && sp->unsync)
			need_sync = true;
2509

2510 2511
		if (sp->role.word != role.word)
			continue;
2512

2513 2514 2515 2516 2517 2518 2519 2520
		if (sp->unsync) {
			/* The page is good, but __kvm_sync_page might still end
			 * up zapping it.  If so, break in order to rebuild it.
			 */
			if (!__kvm_sync_page(vcpu, sp, &invalid_list))
				break;

			WARN_ON(!list_empty(&invalid_list));
2521
			kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2522
		}
2523

2524
		if (sp->unsync_children)
2525
			kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2526

2527
		__clear_sp_write_flooding_count(sp);
2528
		trace_kvm_mmu_get_page(sp, false);
2529
		goto out;
2530
	}
2531

A
Avi Kivity 已提交
2532
	++vcpu->kvm->stat.mmu_cache_miss;
2533 2534 2535

	sp = kvm_mmu_alloc_page(vcpu, direct);

2536 2537
	sp->gfn = gfn;
	sp->role = role;
2538 2539
	hlist_add_head(&sp->hash_link,
		&vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
2540
	if (!direct) {
2541 2542 2543 2544 2545 2546
		/*
		 * we should do write protection before syncing pages
		 * otherwise the content of the synced shadow page may
		 * be inconsistent with guest page table.
		 */
		account_shadowed(vcpu->kvm, sp);
2547
		if (level == PG_LEVEL_4K && rmap_write_protect(vcpu, gfn))
2548
			kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
2549

2550
		if (level > PG_LEVEL_4K && need_sync)
2551
			flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
2552
	}
2553
	clear_page(sp->spt);
A
Avi Kivity 已提交
2554
	trace_kvm_mmu_get_page(sp, true);
2555 2556

	kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2557 2558 2559
out:
	if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
		vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2560
	return sp;
2561 2562
}

2563 2564 2565
static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
					struct kvm_vcpu *vcpu, hpa_t root,
					u64 addr)
2566 2567
{
	iterator->addr = addr;
2568
	iterator->shadow_addr = root;
2569
	iterator->level = vcpu->arch.mmu->shadow_root_level;
2570

2571
	if (iterator->level == PT64_ROOT_4LEVEL &&
2572 2573
	    vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
	    !vcpu->arch.mmu->direct_map)
2574 2575
		--iterator->level;

2576
	if (iterator->level == PT32E_ROOT_LEVEL) {
2577 2578 2579 2580
		/*
		 * prev_root is currently only used for 64-bit hosts. So only
		 * the active root_hpa is valid here.
		 */
2581
		BUG_ON(root != vcpu->arch.mmu->root_hpa);
2582

2583
		iterator->shadow_addr
2584
			= vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2585 2586 2587 2588 2589 2590 2591
		iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
		--iterator->level;
		if (!iterator->shadow_addr)
			iterator->level = 0;
	}
}

2592 2593 2594
static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
			     struct kvm_vcpu *vcpu, u64 addr)
{
2595
	shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
2596 2597 2598
				    addr);
}

2599 2600
static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
{
2601
	if (iterator->level < PG_LEVEL_4K)
2602
		return false;
2603

2604 2605 2606 2607 2608
	iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
	iterator->sptep	= ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
	return true;
}

2609 2610
static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
			       u64 spte)
2611
{
2612
	if (is_last_spte(spte, iterator->level)) {
2613 2614 2615 2616
		iterator->level = 0;
		return;
	}

2617
	iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2618 2619 2620
	--iterator->level;
}

2621 2622
static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
{
2623
	__shadow_walk_next(iterator, *iterator->sptep);
2624 2625
}

2626 2627
static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
			     struct kvm_mmu_page *sp)
2628 2629 2630
{
	u64 spte;

2631
	BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2632

2633
	spte = __pa(sp->spt) | shadow_present_mask | PT_WRITABLE_MASK |
2634
	       shadow_user_mask | shadow_x_mask | shadow_me_mask;
2635 2636

	if (sp_ad_disabled(sp))
2637
		spte |= SPTE_AD_DISABLED_MASK;
2638 2639
	else
		spte |= shadow_accessed_mask;
X
Xiao Guangrong 已提交
2640

2641
	mmu_spte_set(sptep, spte);
2642 2643 2644 2645 2646

	mmu_page_add_parent_pte(vcpu, sp, sptep);

	if (sp->unsync_children || sp->unsync)
		mark_unsync(sptep);
2647 2648
}

2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665
static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
				   unsigned direct_access)
{
	if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
		struct kvm_mmu_page *child;

		/*
		 * For the direct sp, if the guest pte's dirty bit
		 * changed form clean to dirty, it will corrupt the
		 * sp's access: allow writable in the read-only sp,
		 * so we should update the spte at this point to get
		 * a new sp with the correct access.
		 */
		child = page_header(*sptep & PT64_BASE_ADDR_MASK);
		if (child->role.access == direct_access)
			return;

2666
		drop_parent_pte(child, sptep);
2667
		kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
2668 2669 2670
	}
}

X
Xiao Guangrong 已提交
2671
static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2672 2673 2674 2675 2676 2677 2678
			     u64 *spte)
{
	u64 pte;
	struct kvm_mmu_page *child;

	pte = *spte;
	if (is_shadow_present_pte(pte)) {
X
Xiao Guangrong 已提交
2679
		if (is_last_spte(pte, sp->role.level)) {
2680
			drop_spte(kvm, spte);
X
Xiao Guangrong 已提交
2681 2682 2683
			if (is_large_pte(pte))
				--kvm->stat.lpages;
		} else {
2684
			child = page_header(pte & PT64_BASE_ADDR_MASK);
2685
			drop_parent_pte(child, spte);
2686
		}
X
Xiao Guangrong 已提交
2687 2688 2689 2690
		return true;
	}

	if (is_mmio_spte(pte))
2691
		mmu_spte_clear_no_track(spte);
2692

X
Xiao Guangrong 已提交
2693
	return false;
2694 2695
}

2696
static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2697
					 struct kvm_mmu_page *sp)
2698
{
2699 2700
	unsigned i;

2701 2702
	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
		mmu_page_zap_pte(kvm, sp, sp->spt + i);
2703 2704
}

2705
static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2706
{
2707 2708
	u64 *sptep;
	struct rmap_iterator iter;
2709

2710
	while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2711
		drop_parent_pte(sp, sptep);
2712 2713
}

2714
static int mmu_zap_unsync_children(struct kvm *kvm,
2715 2716
				   struct kvm_mmu_page *parent,
				   struct list_head *invalid_list)
2717
{
2718 2719 2720
	int i, zapped = 0;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
2721

2722
	if (parent->role.level == PG_LEVEL_4K)
2723
		return 0;
2724 2725 2726 2727 2728

	while (mmu_unsync_walk(parent, &pages)) {
		struct kvm_mmu_page *sp;

		for_each_sp(pages, sp, parents, i) {
2729
			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2730
			mmu_pages_clear_parents(&parents);
2731
			zapped++;
2732 2733 2734 2735
		}
	}

	return zapped;
2736 2737
}

2738 2739 2740 2741
static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
				       struct kvm_mmu_page *sp,
				       struct list_head *invalid_list,
				       int *nr_zapped)
2742
{
2743
	bool list_unstable;
A
Avi Kivity 已提交
2744

2745
	trace_kvm_mmu_prepare_zap_page(sp);
2746
	++kvm->stat.mmu_shadow_zapped;
2747
	*nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2748
	kvm_mmu_page_unlink_children(kvm, sp);
2749
	kvm_mmu_unlink_parents(kvm, sp);
2750

2751 2752 2753
	/* Zapping children means active_mmu_pages has become unstable. */
	list_unstable = *nr_zapped;

2754
	if (!sp->role.invalid && !sp->role.direct)
2755
		unaccount_shadowed(kvm, sp);
2756

2757 2758
	if (sp->unsync)
		kvm_unlink_unsync_page(kvm, sp);
2759
	if (!sp->root_count) {
2760
		/* Count self */
2761
		(*nr_zapped)++;
2762
		list_move(&sp->link, invalid_list);
2763
		kvm_mod_used_mmu_pages(kvm, -1);
2764
	} else {
A
Avi Kivity 已提交
2765
		list_move(&sp->link, &kvm->arch.active_mmu_pages);
2766

2767 2768 2769 2770 2771 2772
		/*
		 * Obsolete pages cannot be used on any vCPUs, see the comment
		 * in kvm_mmu_zap_all_fast().  Note, is_obsolete_sp() also
		 * treats invalid shadow pages as being obsolete.
		 */
		if (!is_obsolete_sp(kvm, sp))
2773
			kvm_reload_remote_mmus(kvm);
2774
	}
2775

P
Paolo Bonzini 已提交
2776 2777 2778
	if (sp->lpage_disallowed)
		unaccount_huge_nx_page(kvm, sp);

2779
	sp->role.invalid = 1;
2780 2781 2782 2783 2784 2785 2786 2787 2788 2789
	return list_unstable;
}

static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				     struct list_head *invalid_list)
{
	int nr_zapped;

	__kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
	return nr_zapped;
2790 2791
}

2792 2793 2794
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list)
{
2795
	struct kvm_mmu_page *sp, *nsp;
2796 2797 2798 2799

	if (list_empty(invalid_list))
		return;

2800
	/*
2801 2802 2803 2804 2805 2806 2807
	 * We need to make sure everyone sees our modifications to
	 * the page tables and see changes to vcpu->mode here. The barrier
	 * in the kvm_flush_remote_tlbs() achieves this. This pairs
	 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
	 *
	 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
	 * guest mode and/or lockless shadow page table walks.
2808 2809
	 */
	kvm_flush_remote_tlbs(kvm);
2810

2811
	list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2812
		WARN_ON(!sp->role.invalid || sp->root_count);
2813
		kvm_mmu_free_page(sp);
2814
	}
2815 2816
}

2817 2818 2819 2820 2821 2822 2823 2824
static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
					struct list_head *invalid_list)
{
	struct kvm_mmu_page *sp;

	if (list_empty(&kvm->arch.active_mmu_pages))
		return false;

G
Geliang Tang 已提交
2825 2826
	sp = list_last_entry(&kvm->arch.active_mmu_pages,
			     struct kvm_mmu_page, link);
2827
	return kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2828 2829
}

2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849
static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
{
	LIST_HEAD(invalid_list);

	if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
		return 0;

	while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
		if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
			break;

		++vcpu->kvm->stat.mmu_recycled;
	}
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);

	if (!kvm_mmu_available_pages(vcpu->kvm))
		return -ENOSPC;
	return 0;
}

2850 2851
/*
 * Changing the number of mmu pages allocated to the vm
2852
 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2853
 */
2854
void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2855
{
2856
	LIST_HEAD(invalid_list);
2857

2858 2859
	spin_lock(&kvm->mmu_lock);

2860
	if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2861 2862 2863 2864
		/* Need to free some mmu pages to achieve the goal. */
		while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
			if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
				break;
2865

2866
		kvm_mmu_commit_zap_page(kvm, &invalid_list);
2867
		goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2868 2869
	}

2870
	kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2871 2872

	spin_unlock(&kvm->mmu_lock);
2873 2874
}

2875
int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2876
{
2877
	struct kvm_mmu_page *sp;
2878
	LIST_HEAD(invalid_list);
2879 2880
	int r;

2881
	pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2882
	r = 0;
2883
	spin_lock(&kvm->mmu_lock);
2884
	for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2885
		pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2886 2887
			 sp->role.word);
		r = 1;
2888
		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2889
	}
2890
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2891 2892
	spin_unlock(&kvm->mmu_lock);

2893
	return r;
2894
}
2895
EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2896

2897
static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2898 2899 2900 2901 2902 2903 2904 2905
{
	trace_kvm_mmu_unsync_page(sp);
	++vcpu->kvm->stat.mmu_unsync;
	sp->unsync = 1;

	kvm_mmu_mark_parents_unsync(sp);
}

2906 2907
static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
				   bool can_unsync)
2908
{
2909
	struct kvm_mmu_page *sp;
2910

2911 2912
	if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
		return true;
2913

2914
	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2915
		if (!can_unsync)
2916
			return true;
2917

2918 2919
		if (sp->unsync)
			continue;
2920

2921
		WARN_ON(sp->role.level != PG_LEVEL_4K);
2922
		kvm_unsync_page(vcpu, sp);
2923
	}
2924

2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963
	/*
	 * We need to ensure that the marking of unsync pages is visible
	 * before the SPTE is updated to allow writes because
	 * kvm_mmu_sync_roots() checks the unsync flags without holding
	 * the MMU lock and so can race with this. If the SPTE was updated
	 * before the page had been marked as unsync-ed, something like the
	 * following could happen:
	 *
	 * CPU 1                    CPU 2
	 * ---------------------------------------------------------------------
	 * 1.2 Host updates SPTE
	 *     to be writable
	 *                      2.1 Guest writes a GPTE for GVA X.
	 *                          (GPTE being in the guest page table shadowed
	 *                           by the SP from CPU 1.)
	 *                          This reads SPTE during the page table walk.
	 *                          Since SPTE.W is read as 1, there is no
	 *                          fault.
	 *
	 *                      2.2 Guest issues TLB flush.
	 *                          That causes a VM Exit.
	 *
	 *                      2.3 kvm_mmu_sync_pages() reads sp->unsync.
	 *                          Since it is false, so it just returns.
	 *
	 *                      2.4 Guest accesses GVA X.
	 *                          Since the mapping in the SP was not updated,
	 *                          so the old mapping for GVA X incorrectly
	 *                          gets used.
	 * 1.1 Host marks SP
	 *     as unsync
	 *     (sp->unsync = true)
	 *
	 * The write barrier below ensures that 1.1 happens before 1.2 and thus
	 * the situation in 2.4 does not arise. The implicit barrier in 2.2
	 * pairs with this write barrier.
	 */
	smp_wmb();

2964
	return false;
2965 2966
}

D
Dan Williams 已提交
2967
static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
2968 2969
{
	if (pfn_valid(pfn))
2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981
		return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)) &&
			/*
			 * Some reserved pages, such as those from NVDIMM
			 * DAX devices, are not for MMIO, and can be mapped
			 * with cached memory type for better performance.
			 * However, the above check misconceives those pages
			 * as MMIO, and results in KVM mapping them with UC
			 * memory type, which would hurt the performance.
			 * Therefore, we check the host memory type in addition
			 * and only treat UC/UC-/WC pages as MMIO.
			 */
			(!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn));
2982

2983 2984 2985
	return !e820__mapped_raw_any(pfn_to_hpa(pfn),
				     pfn_to_hpa(pfn + 1) - 1,
				     E820_TYPE_RAM);
2986 2987
}

2988 2989 2990 2991
/* Bits which may be returned by set_spte() */
#define SET_SPTE_WRITE_PROTECTED_PT	BIT(0)
#define SET_SPTE_NEED_REMOTE_TLB_FLUSH	BIT(1)

A
Avi Kivity 已提交
2992
static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2993
		    unsigned int pte_access, int level,
D
Dan Williams 已提交
2994
		    gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2995
		    bool can_unsync, bool host_writable)
2996
{
2997
	u64 spte = 0;
M
Marcelo Tosatti 已提交
2998
	int ret = 0;
2999
	struct kvm_mmu_page *sp;
S
Sheng Yang 已提交
3000

3001
	if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
3002 3003
		return 0;

3004 3005
	sp = page_header(__pa(sptep));
	if (sp_ad_disabled(sp))
3006
		spte |= SPTE_AD_DISABLED_MASK;
3007 3008
	else if (kvm_vcpu_ad_need_write_protect(vcpu))
		spte |= SPTE_AD_WRPROT_ONLY_MASK;
3009

3010 3011 3012 3013 3014 3015
	/*
	 * For the EPT case, shadow_present_mask is 0 if hardware
	 * supports exec-only page table entries.  In that case,
	 * ACC_USER_MASK and shadow_user_mask are used to represent
	 * read access.  See FNAME(gpte_access) in paging_tmpl.h.
	 */
3016
	spte |= shadow_present_mask;
3017
	if (!speculative)
3018
		spte |= spte_shadow_accessed_mask(spte);
3019

3020
	if (level > PG_LEVEL_4K && (pte_access & ACC_EXEC_MASK) &&
P
Paolo Bonzini 已提交
3021 3022 3023 3024
	    is_nx_huge_page_enabled()) {
		pte_access &= ~ACC_EXEC_MASK;
	}

S
Sheng Yang 已提交
3025 3026 3027 3028
	if (pte_access & ACC_EXEC_MASK)
		spte |= shadow_x_mask;
	else
		spte |= shadow_nx_mask;
3029

3030
	if (pte_access & ACC_USER_MASK)
S
Sheng Yang 已提交
3031
		spte |= shadow_user_mask;
3032

3033
	if (level > PG_LEVEL_4K)
M
Marcelo Tosatti 已提交
3034
		spte |= PT_PAGE_SIZE_MASK;
3035
	if (tdp_enabled)
3036
		spte |= kvm_x86_ops.get_mt_mask(vcpu, gfn,
3037
			kvm_is_mmio_pfn(pfn));
3038

3039
	if (host_writable)
3040
		spte |= SPTE_HOST_WRITEABLE;
3041 3042
	else
		pte_access &= ~ACC_WRITE_MASK;
3043

3044 3045 3046
	if (!kvm_is_mmio_pfn(pfn))
		spte |= shadow_me_mask;

3047
	spte |= (u64)pfn << PAGE_SHIFT;
3048

3049
	if (pte_access & ACC_WRITE_MASK) {
3050
		spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
3051

3052 3053 3054 3055 3056 3057
		/*
		 * Optimization: for pte sync, if spte was writable the hash
		 * lookup is unnecessary (and expensive). Write protection
		 * is responsibility of mmu_get_page / kvm_sync_page.
		 * Same reasoning can be applied to dirty page accounting.
		 */
3058
		if (!can_unsync && is_writable_pte(*sptep))
3059 3060
			goto set_pte;

3061
		if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
3062
			pgprintk("%s: found shadow page for %llx, marking ro\n",
3063
				 __func__, gfn);
3064
			ret |= SET_SPTE_WRITE_PROTECTED_PT;
3065
			pte_access &= ~ACC_WRITE_MASK;
3066
			spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
3067 3068 3069
		}
	}

3070
	if (pte_access & ACC_WRITE_MASK) {
3071
		kvm_vcpu_mark_page_dirty(vcpu, gfn);
3072
		spte |= spte_shadow_dirty_mask(spte);
3073
	}
3074

3075 3076 3077
	if (speculative)
		spte = mark_spte_for_access_track(spte);

3078
set_pte:
3079
	if (mmu_spte_update(sptep, spte))
3080
		ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
M
Marcelo Tosatti 已提交
3081 3082 3083
	return ret;
}

3084 3085 3086 3087
static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
			unsigned int pte_access, int write_fault, int level,
			gfn_t gfn, kvm_pfn_t pfn, bool speculative,
			bool host_writable)
M
Marcelo Tosatti 已提交
3088 3089
{
	int was_rmapped = 0;
3090
	int rmap_count;
3091
	int set_spte_ret;
3092
	int ret = RET_PF_RETRY;
3093
	bool flush = false;
M
Marcelo Tosatti 已提交
3094

3095 3096
	pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
		 *sptep, write_fault, gfn);
M
Marcelo Tosatti 已提交
3097

3098
	if (is_shadow_present_pte(*sptep)) {
M
Marcelo Tosatti 已提交
3099 3100 3101 3102
		/*
		 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
		 * the parent of the now unreachable PTE.
		 */
3103
		if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) {
M
Marcelo Tosatti 已提交
3104
			struct kvm_mmu_page *child;
A
Avi Kivity 已提交
3105
			u64 pte = *sptep;
M
Marcelo Tosatti 已提交
3106 3107

			child = page_header(pte & PT64_BASE_ADDR_MASK);
3108
			drop_parent_pte(child, sptep);
3109
			flush = true;
A
Avi Kivity 已提交
3110
		} else if (pfn != spte_to_pfn(*sptep)) {
3111
			pgprintk("hfn old %llx new %llx\n",
A
Avi Kivity 已提交
3112
				 spte_to_pfn(*sptep), pfn);
3113
			drop_spte(vcpu->kvm, sptep);
3114
			flush = true;
3115 3116
		} else
			was_rmapped = 1;
M
Marcelo Tosatti 已提交
3117
	}
3118

3119 3120 3121
	set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
				speculative, true, host_writable);
	if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
M
Marcelo Tosatti 已提交
3122
		if (write_fault)
3123
			ret = RET_PF_EMULATE;
3124
		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
3125
	}
3126

3127
	if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
3128 3129
		kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
				KVM_PAGES_PER_HPAGE(level));
M
Marcelo Tosatti 已提交
3130

3131
	if (unlikely(is_mmio_spte(*sptep)))
3132
		ret = RET_PF_EMULATE;
3133

A
Avi Kivity 已提交
3134
	pgprintk("%s: setting spte %llx\n", __func__, *sptep);
3135
	trace_kvm_mmu_set_spte(level, gfn, sptep);
A
Avi Kivity 已提交
3136
	if (!was_rmapped && is_large_pte(*sptep))
M
Marcelo Tosatti 已提交
3137 3138
		++vcpu->kvm->stat.lpages;

3139 3140 3141 3142 3143 3144
	if (is_shadow_present_pte(*sptep)) {
		if (!was_rmapped) {
			rmap_count = rmap_add(vcpu, sptep, gfn);
			if (rmap_count > RMAP_RECYCLE_THRESHOLD)
				rmap_recycle(vcpu, sptep, gfn);
		}
3145
	}
3146

3147
	return ret;
3148 3149
}

D
Dan Williams 已提交
3150
static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
3151 3152 3153 3154
				     bool no_dirty_log)
{
	struct kvm_memory_slot *slot;

3155
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
3156
	if (!slot)
3157
		return KVM_PFN_ERR_FAULT;
3158

3159
	return gfn_to_pfn_memslot_atomic(slot, gfn);
3160 3161 3162 3163 3164 3165 3166
}

static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
				    struct kvm_mmu_page *sp,
				    u64 *start, u64 *end)
{
	struct page *pages[PTE_PREFETCH_NUM];
3167
	struct kvm_memory_slot *slot;
3168
	unsigned int access = sp->role.access;
3169 3170 3171 3172
	int i, ret;
	gfn_t gfn;

	gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
3173 3174
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
	if (!slot)
3175 3176
		return -1;

3177
	ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
3178 3179 3180
	if (ret <= 0)
		return -1;

3181
	for (i = 0; i < ret; i++, gfn++, start++) {
3182 3183
		mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
			     page_to_pfn(pages[i]), true, true);
3184 3185
		put_page(pages[i]);
	}
3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201

	return 0;
}

static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
				  struct kvm_mmu_page *sp, u64 *sptep)
{
	u64 *spte, *start = NULL;
	int i;

	WARN_ON(!sp->role.direct);

	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
	spte = sp->spt + i;

	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
3202
		if (is_shadow_present_pte(*spte) || spte == sptep) {
3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216
			if (!start)
				continue;
			if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
				break;
			start = NULL;
		} else if (!start)
			start = spte;
	}
}

static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
{
	struct kvm_mmu_page *sp;

3217 3218
	sp = page_header(__pa(sptep));

3219
	/*
3220 3221 3222
	 * Without accessed bits, there's no way to distinguish between
	 * actually accessed translations and prefetched, so disable pte
	 * prefetch if accessed bits aren't available.
3223
	 */
3224
	if (sp_ad_disabled(sp))
3225 3226
		return;

3227
	if (sp->role.level > PG_LEVEL_4K)
3228 3229 3230 3231 3232
		return;

	__direct_pte_prefetch(vcpu, sp, sptep);
}

3233
static int host_pfn_mapping_level(struct kvm_vcpu *vcpu, gfn_t gfn,
3234
				  kvm_pfn_t pfn, struct kvm_memory_slot *slot)
3235 3236 3237 3238 3239
{
	unsigned long hva;
	pte_t *pte;
	int level;

3240
	if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn))
3241
		return PG_LEVEL_4K;
3242

3243 3244 3245 3246 3247 3248 3249 3250
	/*
	 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
	 * is not solely for performance, it's also necessary to avoid the
	 * "writable" check in __gfn_to_hva_many(), which will always fail on
	 * read-only memslots due to gfn_to_hva() assuming writes.  Earlier
	 * page fault steps have already verified the guest isn't writing a
	 * read-only memslot.
	 */
3251 3252 3253 3254
	hva = __gfn_to_hva_memslot(slot, gfn);

	pte = lookup_address_in_mm(vcpu->kvm->mm, hva, &level);
	if (unlikely(!pte))
3255
		return PG_LEVEL_4K;
3256 3257 3258 3259

	return level;
}

3260 3261
static int kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, gfn_t gfn,
				   int max_level, kvm_pfn_t *pfnp)
3262
{
3263
	struct kvm_memory_slot *slot;
3264
	struct kvm_lpage_info *linfo;
3265
	kvm_pfn_t pfn = *pfnp;
3266
	kvm_pfn_t mask;
3267
	int level;
3268

3269 3270
	if (unlikely(max_level == PG_LEVEL_4K))
		return PG_LEVEL_4K;
3271

3272
	if (is_error_noslot_pfn(pfn) || kvm_is_reserved_pfn(pfn))
3273
		return PG_LEVEL_4K;
3274

3275 3276
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, true);
	if (!slot)
3277
		return PG_LEVEL_4K;
3278

3279
	max_level = min(max_level, max_page_level);
3280
	for ( ; max_level > PG_LEVEL_4K; max_level--) {
3281 3282
		linfo = lpage_info_slot(gfn, slot, max_level);
		if (!linfo->disallow_lpage)
3283 3284 3285
			break;
	}

3286 3287
	if (max_level == PG_LEVEL_4K)
		return PG_LEVEL_4K;
3288 3289

	level = host_pfn_mapping_level(vcpu, gfn, pfn, slot);
3290
	if (level == PG_LEVEL_4K)
3291
		return level;
3292

3293
	level = min(level, max_level);
3294 3295

	/*
3296 3297
	 * mmu_notifier_retry() was successful and mmu_lock is held, so
	 * the pmd can't be split from under us.
3298
	 */
3299 3300 3301
	mask = KVM_PAGES_PER_HPAGE(level) - 1;
	VM_BUG_ON((gfn & mask) != (pfn & mask));
	*pfnp = pfn & ~mask;
3302 3303

	return level;
3304 3305
}

P
Paolo Bonzini 已提交
3306 3307 3308 3309 3310 3311
static void disallowed_hugepage_adjust(struct kvm_shadow_walk_iterator it,
				       gfn_t gfn, kvm_pfn_t *pfnp, int *levelp)
{
	int level = *levelp;
	u64 spte = *it.sptep;

3312
	if (it.level == level && level > PG_LEVEL_4K &&
P
Paolo Bonzini 已提交
3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328
	    is_nx_huge_page_enabled() &&
	    is_shadow_present_pte(spte) &&
	    !is_large_pte(spte)) {
		/*
		 * A small SPTE exists for this pfn, but FNAME(fetch)
		 * and __direct_map would like to create a large PTE
		 * instead: just force them to go down another level,
		 * patching back for them into pfn the next 9 bits of
		 * the address.
		 */
		u64 page_mask = KVM_PAGES_PER_HPAGE(level) - KVM_PAGES_PER_HPAGE(level - 1);
		*pfnp |= gfn & page_mask;
		(*levelp)--;
	}
}

3329
static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, int write,
3330 3331
			int map_writable, int max_level, kvm_pfn_t pfn,
			bool prefault, bool account_disallowed_nx_lpage)
3332
{
3333
	struct kvm_shadow_walk_iterator it;
3334
	struct kvm_mmu_page *sp;
3335
	int level, ret;
3336 3337
	gfn_t gfn = gpa >> PAGE_SHIFT;
	gfn_t base_gfn = gfn;
A
Avi Kivity 已提交
3338

3339
	if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
3340
		return RET_PF_RETRY;
3341

3342
	level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn);
3343

3344
	trace_kvm_mmu_spte_requested(gpa, level, pfn);
3345
	for_each_shadow_entry(vcpu, gpa, it) {
P
Paolo Bonzini 已提交
3346 3347 3348 3349 3350 3351
		/*
		 * We cannot overwrite existing page tables with an NX
		 * large page, as the leaf could be executable.
		 */
		disallowed_hugepage_adjust(it, gfn, &pfn, &level);

3352 3353
		base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
		if (it.level == level)
3354
			break;
A
Avi Kivity 已提交
3355

3356 3357 3358 3359
		drop_large_spte(vcpu, it.sptep);
		if (!is_shadow_present_pte(*it.sptep)) {
			sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
					      it.level - 1, true, ACC_ALL);
3360

3361
			link_shadow_page(vcpu, it.sptep, sp);
3362
			if (account_disallowed_nx_lpage)
P
Paolo Bonzini 已提交
3363
				account_huge_nx_page(vcpu->kvm, sp);
3364 3365
		}
	}
3366 3367 3368 3369 3370 3371 3372

	ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL,
			   write, level, base_gfn, pfn, prefault,
			   map_writable);
	direct_pte_prefetch(vcpu, it.sptep);
	++vcpu->stat.pf_fixed;
	return ret;
A
Avi Kivity 已提交
3373 3374
}

H
Huang Ying 已提交
3375
static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
3376
{
3377
	send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
3378 3379
}

D
Dan Williams 已提交
3380
static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
3381
{
X
Xiao Guangrong 已提交
3382 3383 3384 3385 3386 3387
	/*
	 * Do not cache the mmio info caused by writing the readonly gfn
	 * into the spte otherwise read access on readonly gfn also can
	 * caused mmio page fault and treat it as mmio access.
	 */
	if (pfn == KVM_PFN_ERR_RO_FAULT)
3388
		return RET_PF_EMULATE;
X
Xiao Guangrong 已提交
3389

3390
	if (pfn == KVM_PFN_ERR_HWPOISON) {
3391
		kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
3392
		return RET_PF_RETRY;
3393
	}
3394

3395
	return -EFAULT;
3396 3397
}

3398
static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
3399 3400
				kvm_pfn_t pfn, unsigned int access,
				int *ret_val)
3401 3402
{
	/* The pfn is invalid, report the error! */
3403
	if (unlikely(is_error_pfn(pfn))) {
3404
		*ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
3405
		return true;
3406 3407
	}

3408
	if (unlikely(is_noslot_pfn(pfn)))
3409 3410
		vcpu_cache_mmio_info(vcpu, gva, gfn,
				     access & shadow_mmio_access_mask);
3411

3412
	return false;
3413 3414
}

3415
static bool page_fault_can_be_fast(u32 error_code)
3416
{
3417 3418 3419 3420 3421 3422 3423
	/*
	 * Do not fix the mmio spte with invalid generation number which
	 * need to be updated by slow page fault path.
	 */
	if (unlikely(error_code & PFERR_RSVD_MASK))
		return false;

3424 3425 3426 3427 3428
	/* See if the page fault is due to an NX violation */
	if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
		      == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
		return false;

3429
	/*
3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440
	 * #PF can be fast if:
	 * 1. The shadow page table entry is not present, which could mean that
	 *    the fault is potentially caused by access tracking (if enabled).
	 * 2. The shadow page table entry is present and the fault
	 *    is caused by write-protect, that means we just need change the W
	 *    bit of the spte which can be done out of mmu-lock.
	 *
	 * However, if access tracking is disabled we know that a non-present
	 * page must be a genuine page fault where we have to create a new SPTE.
	 * So, if access tracking is disabled, we return true only for write
	 * accesses to a present page.
3441 3442
	 */

3443 3444 3445
	return shadow_acc_track_mask != 0 ||
	       ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
		== (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
3446 3447
}

3448 3449 3450 3451
/*
 * Returns true if the SPTE was fixed successfully. Otherwise,
 * someone else modified the SPTE from its original value.
 */
3452
static bool
3453
fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
3454
			u64 *sptep, u64 old_spte, u64 new_spte)
3455 3456 3457 3458 3459
{
	gfn_t gfn;

	WARN_ON(!sp->role.direct);

3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471
	/*
	 * Theoretically we could also set dirty bit (and flush TLB) here in
	 * order to eliminate unnecessary PML logging. See comments in
	 * set_spte. But fast_page_fault is very unlikely to happen with PML
	 * enabled, so we do not do this. This might result in the same GPA
	 * to be logged in PML buffer again when the write really happens, and
	 * eventually to be called by mark_page_dirty twice. But it's also no
	 * harm. This also avoids the TLB flush needed after setting dirty bit
	 * so non-PML cases won't be impacted.
	 *
	 * Compare with set_spte where instead shadow_dirty_mask is set.
	 */
3472
	if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3473 3474
		return false;

3475
	if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
3476 3477 3478 3479 3480 3481 3482
		/*
		 * The gfn of direct spte is stable since it is
		 * calculated by sp->gfn.
		 */
		gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
		kvm_vcpu_mark_page_dirty(vcpu, gfn);
	}
3483 3484 3485 3486

	return true;
}

3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498
static bool is_access_allowed(u32 fault_err_code, u64 spte)
{
	if (fault_err_code & PFERR_FETCH_MASK)
		return is_executable_pte(spte);

	if (fault_err_code & PFERR_WRITE_MASK)
		return is_writable_pte(spte);

	/* Fault was on Read access */
	return spte & PT_PRESENT_MASK;
}

3499 3500 3501 3502 3503
/*
 * Return value:
 * - true: let the vcpu to access on the same address again.
 * - false: let the real page fault path to fix it.
 */
3504
static bool fast_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3505 3506 3507
			    u32 error_code)
{
	struct kvm_shadow_walk_iterator iterator;
3508
	struct kvm_mmu_page *sp;
3509
	bool fault_handled = false;
3510
	u64 spte = 0ull;
3511
	uint retry_count = 0;
3512

3513
	if (!page_fault_can_be_fast(error_code))
3514 3515 3516 3517
		return false;

	walk_shadow_page_lockless_begin(vcpu);

3518
	do {
3519
		u64 new_spte;
3520

3521
		for_each_shadow_entry_lockless(vcpu, cr2_or_gpa, iterator, spte)
3522
			if (!is_shadow_present_pte(spte))
3523 3524
				break;

3525 3526 3527
		sp = page_header(__pa(iterator.sptep));
		if (!is_last_spte(spte, sp->role.level))
			break;
3528

3529
		/*
3530 3531 3532 3533 3534
		 * Check whether the memory access that caused the fault would
		 * still cause it if it were to be performed right now. If not,
		 * then this is a spurious fault caused by TLB lazily flushed,
		 * or some other CPU has already fixed the PTE after the
		 * current CPU took the fault.
3535 3536 3537 3538
		 *
		 * Need not check the access of upper level table entries since
		 * they are always ACC_ALL.
		 */
3539 3540 3541 3542
		if (is_access_allowed(error_code, spte)) {
			fault_handled = true;
			break;
		}
3543

3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554
		new_spte = spte;

		if (is_access_track_spte(spte))
			new_spte = restore_acc_track_spte(new_spte);

		/*
		 * Currently, to simplify the code, write-protection can
		 * be removed in the fast path only if the SPTE was
		 * write-protected for dirty-logging or access tracking.
		 */
		if ((error_code & PFERR_WRITE_MASK) &&
3555
		    spte_can_locklessly_be_made_writable(spte)) {
3556
			new_spte |= PT_WRITABLE_MASK;
3557 3558

			/*
3559 3560 3561 3562 3563 3564 3565 3566 3567
			 * Do not fix write-permission on the large spte.  Since
			 * we only dirty the first page into the dirty-bitmap in
			 * fast_pf_fix_direct_spte(), other pages are missed
			 * if its slot has dirty logging enabled.
			 *
			 * Instead, we let the slow page fault path create a
			 * normal spte to fix the access.
			 *
			 * See the comments in kvm_arch_commit_memory_region().
3568
			 */
3569
			if (sp->role.level > PG_LEVEL_4K)
3570
				break;
3571
		}
3572

3573
		/* Verify that the fault can be handled in the fast path */
3574 3575
		if (new_spte == spte ||
		    !is_access_allowed(error_code, new_spte))
3576 3577 3578 3579 3580
			break;

		/*
		 * Currently, fast page fault only works for direct mapping
		 * since the gfn is not stable for indirect shadow page. See
3581
		 * Documentation/virt/kvm/locking.txt to get more detail.
3582 3583
		 */
		fault_handled = fast_pf_fix_direct_spte(vcpu, sp,
3584
							iterator.sptep, spte,
3585
							new_spte);
3586 3587 3588 3589 3590 3591 3592 3593 3594 3595
		if (fault_handled)
			break;

		if (++retry_count > 4) {
			printk_once(KERN_WARNING
				"kvm: Fast #PF retrying more than 4 times.\n");
			break;
		}

	} while (true);
3596

3597
	trace_fast_page_fault(vcpu, cr2_or_gpa, error_code, iterator.sptep,
3598
			      spte, fault_handled);
3599 3600
	walk_shadow_page_lockless_end(vcpu);

3601
	return fault_handled;
3602 3603
}

3604 3605
static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
			       struct list_head *invalid_list)
3606
{
3607
	struct kvm_mmu_page *sp;
3608

3609
	if (!VALID_PAGE(*root_hpa))
A
Avi Kivity 已提交
3610
		return;
3611

3612 3613 3614 3615
	sp = page_header(*root_hpa & PT64_BASE_ADDR_MASK);
	--sp->root_count;
	if (!sp->root_count && sp->role.invalid)
		kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3616

3617 3618 3619
	*root_hpa = INVALID_PAGE;
}

3620
/* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
3621 3622
void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
			ulong roots_to_free)
3623 3624 3625
{
	int i;
	LIST_HEAD(invalid_list);
3626
	bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
3627

3628
	BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3629

3630
	/* Before acquiring the MMU lock, see if we need to do any real work. */
3631 3632 3633 3634 3635 3636 3637 3638 3639
	if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
			if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
			    VALID_PAGE(mmu->prev_roots[i].hpa))
				break;

		if (i == KVM_MMU_NUM_PREV_ROOTS)
			return;
	}
3640 3641

	spin_lock(&vcpu->kvm->mmu_lock);
3642

3643 3644 3645 3646
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
		if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
			mmu_free_root_page(vcpu->kvm, &mmu->prev_roots[i].hpa,
					   &invalid_list);
3647

3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660
	if (free_active_root) {
		if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
		    (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
			mmu_free_root_page(vcpu->kvm, &mmu->root_hpa,
					   &invalid_list);
		} else {
			for (i = 0; i < 4; ++i)
				if (mmu->pae_root[i] != 0)
					mmu_free_root_page(vcpu->kvm,
							   &mmu->pae_root[i],
							   &invalid_list);
			mmu->root_hpa = INVALID_PAGE;
		}
3661
		mmu->root_pgd = 0;
3662
	}
3663

3664
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3665
	spin_unlock(&vcpu->kvm->mmu_lock);
3666
}
3667
EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3668

3669 3670 3671 3672 3673
static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
{
	int ret = 0;

	if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3674
		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3675 3676 3677 3678 3679 3680
		ret = 1;
	}

	return ret;
}

3681 3682 3683
static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu_page *sp;
3684
	unsigned i;
3685

3686
	if (vcpu->arch.mmu->shadow_root_level >= PT64_ROOT_4LEVEL) {
3687
		spin_lock(&vcpu->kvm->mmu_lock);
3688 3689
		if(make_mmu_pages_available(vcpu) < 0) {
			spin_unlock(&vcpu->kvm->mmu_lock);
3690
			return -ENOSPC;
3691
		}
3692
		sp = kvm_mmu_get_page(vcpu, 0, 0,
3693
				vcpu->arch.mmu->shadow_root_level, 1, ACC_ALL);
3694 3695
		++sp->root_count;
		spin_unlock(&vcpu->kvm->mmu_lock);
3696 3697
		vcpu->arch.mmu->root_hpa = __pa(sp->spt);
	} else if (vcpu->arch.mmu->shadow_root_level == PT32E_ROOT_LEVEL) {
3698
		for (i = 0; i < 4; ++i) {
3699
			hpa_t root = vcpu->arch.mmu->pae_root[i];
3700

3701
			MMU_WARN_ON(VALID_PAGE(root));
3702
			spin_lock(&vcpu->kvm->mmu_lock);
3703 3704
			if (make_mmu_pages_available(vcpu) < 0) {
				spin_unlock(&vcpu->kvm->mmu_lock);
3705
				return -ENOSPC;
3706
			}
3707
			sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3708
					i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL);
3709 3710 3711
			root = __pa(sp->spt);
			++sp->root_count;
			spin_unlock(&vcpu->kvm->mmu_lock);
3712
			vcpu->arch.mmu->pae_root[i] = root | PT_PRESENT_MASK;
3713
		}
3714
		vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3715 3716
	} else
		BUG();
3717

3718 3719
	/* root_pgd is ignored for direct MMUs. */
	vcpu->arch.mmu->root_pgd = 0;
3720 3721 3722 3723 3724

	return 0;
}

static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3725
{
3726
	struct kvm_mmu_page *sp;
3727
	u64 pdptr, pm_mask;
3728
	gfn_t root_gfn, root_pgd;
3729
	int i;
3730

3731 3732
	root_pgd = vcpu->arch.mmu->get_guest_pgd(vcpu);
	root_gfn = root_pgd >> PAGE_SHIFT;
3733

3734 3735 3736 3737 3738 3739 3740
	if (mmu_check_root(vcpu, root_gfn))
		return 1;

	/*
	 * Do we shadow a long mode page table? If so we need to
	 * write-protect the guests page table root.
	 */
3741 3742
	if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
		hpa_t root = vcpu->arch.mmu->root_hpa;
3743

3744
		MMU_WARN_ON(VALID_PAGE(root));
3745

3746
		spin_lock(&vcpu->kvm->mmu_lock);
3747 3748
		if (make_mmu_pages_available(vcpu) < 0) {
			spin_unlock(&vcpu->kvm->mmu_lock);
3749
			return -ENOSPC;
3750
		}
3751
		sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
3752
				vcpu->arch.mmu->shadow_root_level, 0, ACC_ALL);
3753 3754
		root = __pa(sp->spt);
		++sp->root_count;
3755
		spin_unlock(&vcpu->kvm->mmu_lock);
3756
		vcpu->arch.mmu->root_hpa = root;
3757
		goto set_root_pgd;
3758
	}
3759

3760 3761
	/*
	 * We shadow a 32 bit page table. This may be a legacy 2-level
3762 3763
	 * or a PAE 3-level page table. In either case we need to be aware that
	 * the shadow page table may be a PAE or a long mode page table.
3764
	 */
3765
	pm_mask = PT_PRESENT_MASK;
3766
	if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL)
3767 3768
		pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;

3769
	for (i = 0; i < 4; ++i) {
3770
		hpa_t root = vcpu->arch.mmu->pae_root[i];
3771

3772
		MMU_WARN_ON(VALID_PAGE(root));
3773 3774
		if (vcpu->arch.mmu->root_level == PT32E_ROOT_LEVEL) {
			pdptr = vcpu->arch.mmu->get_pdptr(vcpu, i);
B
Bandan Das 已提交
3775
			if (!(pdptr & PT_PRESENT_MASK)) {
3776
				vcpu->arch.mmu->pae_root[i] = 0;
A
Avi Kivity 已提交
3777 3778
				continue;
			}
A
Avi Kivity 已提交
3779
			root_gfn = pdptr >> PAGE_SHIFT;
3780 3781
			if (mmu_check_root(vcpu, root_gfn))
				return 1;
3782
		}
3783
		spin_lock(&vcpu->kvm->mmu_lock);
3784 3785
		if (make_mmu_pages_available(vcpu) < 0) {
			spin_unlock(&vcpu->kvm->mmu_lock);
3786
			return -ENOSPC;
3787
		}
3788 3789
		sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL,
				      0, ACC_ALL);
3790 3791
		root = __pa(sp->spt);
		++sp->root_count;
3792 3793
		spin_unlock(&vcpu->kvm->mmu_lock);

3794
		vcpu->arch.mmu->pae_root[i] = root | pm_mask;
3795
	}
3796
	vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3797 3798 3799 3800 3801

	/*
	 * If we shadow a 32 bit page table with a long mode page
	 * table we enter this path.
	 */
3802 3803
	if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
		if (vcpu->arch.mmu->lm_root == NULL) {
3804 3805 3806 3807 3808 3809 3810
			/*
			 * The additional page necessary for this is only
			 * allocated on demand.
			 */

			u64 *lm_root;

3811
			lm_root = (void*)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3812 3813 3814
			if (lm_root == NULL)
				return 1;

3815
			lm_root[0] = __pa(vcpu->arch.mmu->pae_root) | pm_mask;
3816

3817
			vcpu->arch.mmu->lm_root = lm_root;
3818 3819
		}

3820
		vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->lm_root);
3821 3822
	}

3823 3824
set_root_pgd:
	vcpu->arch.mmu->root_pgd = root_pgd;
3825

3826
	return 0;
3827 3828
}

3829 3830
static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
{
3831
	if (vcpu->arch.mmu->direct_map)
3832 3833 3834 3835 3836
		return mmu_alloc_direct_roots(vcpu);
	else
		return mmu_alloc_shadow_roots(vcpu);
}

3837
void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3838 3839 3840 3841
{
	int i;
	struct kvm_mmu_page *sp;

3842
	if (vcpu->arch.mmu->direct_map)
3843 3844
		return;

3845
	if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3846
		return;
3847

3848
	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3849

3850 3851
	if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
		hpa_t root = vcpu->arch.mmu->root_hpa;
3852
		sp = page_header(root);
3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870

		/*
		 * Even if another CPU was marking the SP as unsync-ed
		 * simultaneously, any guest page table changes are not
		 * guaranteed to be visible anyway until this VCPU issues a TLB
		 * flush strictly after those changes are made. We only need to
		 * ensure that the other CPU sets these flags before any actual
		 * changes to the page tables are made. The comments in
		 * mmu_need_write_protect() describe what could go wrong if this
		 * requirement isn't satisfied.
		 */
		if (!smp_load_acquire(&sp->unsync) &&
		    !smp_load_acquire(&sp->unsync_children))
			return;

		spin_lock(&vcpu->kvm->mmu_lock);
		kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);

3871
		mmu_sync_children(vcpu, sp);
3872

3873
		kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3874
		spin_unlock(&vcpu->kvm->mmu_lock);
3875 3876
		return;
	}
3877 3878 3879 3880

	spin_lock(&vcpu->kvm->mmu_lock);
	kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);

3881
	for (i = 0; i < 4; ++i) {
3882
		hpa_t root = vcpu->arch.mmu->pae_root[i];
3883

3884
		if (root && VALID_PAGE(root)) {
3885 3886 3887 3888 3889 3890
			root &= PT64_BASE_ADDR_MASK;
			sp = page_header(root);
			mmu_sync_children(vcpu, sp);
		}
	}

3891
	kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3892
	spin_unlock(&vcpu->kvm->mmu_lock);
3893
}
N
Nadav Har'El 已提交
3894
EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3895

3896
static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr,
3897
				  u32 access, struct x86_exception *exception)
A
Avi Kivity 已提交
3898
{
3899 3900
	if (exception)
		exception->error_code = 0;
A
Avi Kivity 已提交
3901 3902 3903
	return vaddr;
}

3904
static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr,
3905 3906
					 u32 access,
					 struct x86_exception *exception)
3907
{
3908 3909
	if (exception)
		exception->error_code = 0;
3910
	return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3911 3912
}

3913 3914 3915
static bool
__is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
{
3916
	int bit7 = (pte >> 7) & 1;
3917

3918
	return pte & rsvd_check->rsvd_bits_mask[bit7][level-1];
3919 3920
}

3921
static bool __is_bad_mt_xwr(struct rsvd_bits_validate *rsvd_check, u64 pte)
3922
{
3923
	return rsvd_check->bad_mt_xwr & BIT_ULL(pte & 0x3f);
3924 3925
}

3926
static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3927
{
3928 3929 3930 3931 3932 3933 3934
	/*
	 * A nested guest cannot use the MMIO cache if it is using nested
	 * page tables, because cr2 is a nGPA while the cache stores GPAs.
	 */
	if (mmu_is_nested(vcpu))
		return false;

3935 3936 3937 3938 3939 3940
	if (direct)
		return vcpu_match_mmio_gpa(vcpu, addr);

	return vcpu_match_mmio_gva(vcpu, addr);
}

3941 3942 3943
/* return true if reserved bit is detected on spte. */
static bool
walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3944 3945
{
	struct kvm_shadow_walk_iterator iterator;
3946
	u64 sptes[PT64_ROOT_MAX_LEVEL], spte = 0ull;
3947
	struct rsvd_bits_validate *rsvd_check;
3948 3949
	int root, leaf;
	bool reserved = false;
3950

3951
	rsvd_check = &vcpu->arch.mmu->shadow_zero_check;
3952

3953
	walk_shadow_page_lockless_begin(vcpu);
3954

3955 3956
	for (shadow_walk_init(&iterator, vcpu, addr),
		 leaf = root = iterator.level;
3957 3958 3959 3960 3961
	     shadow_walk_okay(&iterator);
	     __shadow_walk_next(&iterator, spte)) {
		spte = mmu_spte_get_lockless(iterator.sptep);

		sptes[leaf - 1] = spte;
3962
		leaf--;
3963

3964 3965
		if (!is_shadow_present_pte(spte))
			break;
3966

3967 3968 3969 3970 3971 3972 3973
		/*
		 * Use a bitwise-OR instead of a logical-OR to aggregate the
		 * reserved bit and EPT's invalid memtype/XWR checks to avoid
		 * adding a Jcc in the loop.
		 */
		reserved |= __is_bad_mt_xwr(rsvd_check, spte) |
			    __is_rsvd_bits_set(rsvd_check, spte, iterator.level);
3974 3975
	}

3976 3977
	walk_shadow_page_lockless_end(vcpu);

3978 3979 3980
	if (reserved) {
		pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
		       __func__, addr);
3981
		while (root > leaf) {
3982 3983 3984 3985 3986
			pr_err("------ spte 0x%llx level %d.\n",
			       sptes[root - 1], root);
			root--;
		}
	}
3987

3988 3989
	*sptep = spte;
	return reserved;
3990 3991
}

P
Paolo Bonzini 已提交
3992
static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3993 3994
{
	u64 spte;
3995
	bool reserved;
3996

3997
	if (mmio_info_in_cache(vcpu, addr, direct))
3998
		return RET_PF_EMULATE;
3999

4000
	reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
4001
	if (WARN_ON(reserved))
4002
		return -EINVAL;
4003 4004 4005

	if (is_mmio_spte(spte)) {
		gfn_t gfn = get_mmio_spte_gfn(spte);
4006
		unsigned int access = get_mmio_spte_access(spte);
4007

4008
		if (!check_mmio_spte(vcpu, spte))
4009
			return RET_PF_INVALID;
4010

4011 4012
		if (direct)
			addr = 0;
X
Xiao Guangrong 已提交
4013 4014

		trace_handle_mmio_page_fault(addr, gfn, access);
4015
		vcpu_cache_mmio_info(vcpu, addr, gfn, access);
4016
		return RET_PF_EMULATE;
4017 4018 4019 4020 4021 4022
	}

	/*
	 * If the page table is zapped by other cpus, let CPU fault again on
	 * the address.
	 */
4023
	return RET_PF_RETRY;
4024 4025
}

4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045
static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
					 u32 error_code, gfn_t gfn)
{
	if (unlikely(error_code & PFERR_RSVD_MASK))
		return false;

	if (!(error_code & PFERR_PRESENT_MASK) ||
	      !(error_code & PFERR_WRITE_MASK))
		return false;

	/*
	 * guest is writing the page which is write tracked which can
	 * not be fixed by page fault handler.
	 */
	if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
		return true;

	return false;
}

4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059
static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
{
	struct kvm_shadow_walk_iterator iterator;
	u64 spte;

	walk_shadow_page_lockless_begin(vcpu);
	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
		clear_sp_write_flooding_count(iterator.sptep);
		if (!is_shadow_present_pte(spte))
			break;
	}
	walk_shadow_page_lockless_end(vcpu);
}

4060 4061
static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
				   gfn_t gfn)
4062 4063
{
	struct kvm_arch_async_pf arch;
X
Xiao Guangrong 已提交
4064

4065
	arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
4066
	arch.gfn = gfn;
4067
	arch.direct_map = vcpu->arch.mmu->direct_map;
4068
	arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu);
4069

4070 4071
	return kvm_setup_async_pf(vcpu, cr2_or_gpa,
				  kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
4072 4073
}

4074
static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
4075 4076
			 gpa_t cr2_or_gpa, kvm_pfn_t *pfn, bool write,
			 bool *writable)
4077
{
4078
	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
4079 4080
	bool async;

4081 4082
	/* Don't expose private memslots to L2. */
	if (is_guest_mode(vcpu) && !kvm_is_visible_memslot(slot)) {
4083
		*pfn = KVM_PFN_NOSLOT;
4084
		*writable = false;
4085 4086 4087
		return false;
	}

4088 4089
	async = false;
	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
4090 4091 4092
	if (!async)
		return false; /* *pfn has correct page already */

4093
	if (!prefault && kvm_can_do_async_pf(vcpu)) {
4094
		trace_kvm_try_async_get_page(cr2_or_gpa, gfn);
4095
		if (kvm_find_async_pf_gfn(vcpu, gfn)) {
4096
			trace_kvm_async_pf_doublefault(cr2_or_gpa, gfn);
4097 4098
			kvm_make_request(KVM_REQ_APF_HALT, vcpu);
			return true;
4099
		} else if (kvm_arch_setup_async_pf(vcpu, cr2_or_gpa, gfn))
4100 4101 4102
			return true;
	}

4103
	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
4104 4105 4106
	return false;
}

4107 4108
static int direct_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
			     bool prefault, int max_level, bool is_tdp)
A
Avi Kivity 已提交
4109
{
4110 4111 4112
	bool write = error_code & PFERR_WRITE_MASK;
	bool exec = error_code & PFERR_FETCH_MASK;
	bool lpage_disallowed = exec && is_nx_huge_page_enabled();
4113
	bool map_writable;
A
Avi Kivity 已提交
4114

4115 4116 4117
	gfn_t gfn = gpa >> PAGE_SHIFT;
	unsigned long mmu_seq;
	kvm_pfn_t pfn;
4118
	int r;
4119

4120
	if (page_fault_handle_page_track(vcpu, error_code, gfn))
4121
		return RET_PF_EMULATE;
4122

4123 4124 4125
	r = mmu_topup_memory_caches(vcpu);
	if (r)
		return r;
4126

4127
	if (lpage_disallowed)
4128
		max_level = PG_LEVEL_4K;
4129

4130
	if (fast_page_fault(vcpu, gpa, error_code))
4131 4132 4133 4134 4135 4136 4137 4138
		return RET_PF_RETRY;

	mmu_seq = vcpu->kvm->mmu_notifier_seq;
	smp_rmb();

	if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
		return RET_PF_RETRY;

4139
	if (handle_abnormal_pfn(vcpu, is_tdp ? 0 : gpa, gfn, pfn, ACC_ALL, &r))
4140
		return r;
A
Avi Kivity 已提交
4141

4142 4143 4144 4145 4146 4147
	r = RET_PF_RETRY;
	spin_lock(&vcpu->kvm->mmu_lock);
	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
		goto out_unlock;
	if (make_mmu_pages_available(vcpu) < 0)
		goto out_unlock;
4148
	r = __direct_map(vcpu, gpa, write, map_writable, max_level, pfn,
4149
			 prefault, is_tdp && lpage_disallowed);
4150

4151 4152 4153 4154
out_unlock:
	spin_unlock(&vcpu->kvm->mmu_lock);
	kvm_release_pfn_clean(pfn);
	return r;
A
Avi Kivity 已提交
4155 4156
}

4157 4158 4159 4160 4161 4162 4163
static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa,
				u32 error_code, bool prefault)
{
	pgprintk("%s: gva %lx error %x\n", __func__, gpa, error_code);

	/* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
	return direct_page_fault(vcpu, gpa & PAGE_MASK, error_code, prefault,
4164
				 PG_LEVEL_2M, false);
4165 4166
}

4167
int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
4168
				u64 fault_address, char *insn, int insn_len)
4169 4170 4171
{
	int r = 1;

4172 4173 4174 4175 4176 4177
#ifndef CONFIG_X86_64
	/* A 64-bit CR2 should be impossible on 32-bit KVM. */
	if (WARN_ON_ONCE(fault_address >> 32))
		return -EFAULT;
#endif

P
Paolo Bonzini 已提交
4178
	vcpu->arch.l1tf_flush_l1d = true;
4179 4180 4181 4182
	switch (vcpu->arch.apf.host_apf_reason) {
	default:
		trace_kvm_page_fault(fault_address, error_code);

4183
		if (kvm_event_needs_reinjection(vcpu))
4184 4185 4186 4187 4188 4189 4190
			kvm_mmu_unprotect_page_virt(vcpu, fault_address);
		r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
				insn_len);
		break;
	case KVM_PV_REASON_PAGE_NOT_PRESENT:
		vcpu->arch.apf.host_apf_reason = 0;
		local_irq_disable();
4191
		kvm_async_pf_task_wait(fault_address, 0);
4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204
		local_irq_enable();
		break;
	case KVM_PV_REASON_PAGE_READY:
		vcpu->arch.apf.host_apf_reason = 0;
		local_irq_disable();
		kvm_async_pf_task_wake(fault_address);
		local_irq_enable();
		break;
	}
	return r;
}
EXPORT_SYMBOL_GPL(kvm_handle_page_fault);

4205 4206
int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
		       bool prefault)
4207
{
4208
	int max_level;
4209

4210
	for (max_level = KVM_MAX_HUGEPAGE_LEVEL;
4211
	     max_level > PG_LEVEL_4K;
4212 4213
	     max_level--) {
		int page_num = KVM_PAGES_PER_HPAGE(max_level);
4214
		gfn_t base = (gpa >> PAGE_SHIFT) & ~(page_num - 1);
4215

4216 4217
		if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
			break;
4218
	}
4219

4220 4221
	return direct_page_fault(vcpu, gpa, error_code, prefault,
				 max_level, true);
4222 4223
}

4224 4225
static void nonpaging_init_context(struct kvm_vcpu *vcpu,
				   struct kvm_mmu *context)
A
Avi Kivity 已提交
4226 4227 4228
{
	context->page_fault = nonpaging_page_fault;
	context->gva_to_gpa = nonpaging_gva_to_gpa;
4229
	context->sync_page = nonpaging_sync_page;
4230
	context->invlpg = NULL;
4231
	context->update_pte = nonpaging_update_pte;
4232
	context->root_level = 0;
A
Avi Kivity 已提交
4233
	context->shadow_root_level = PT32E_ROOT_LEVEL;
4234
	context->direct_map = true;
4235
	context->nx = false;
A
Avi Kivity 已提交
4236 4237
}

4238
static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd,
4239 4240
				  union kvm_mmu_page_role role)
{
4241
	return (role.direct || pgd == root->pgd) &&
4242 4243 4244 4245
	       VALID_PAGE(root->hpa) && page_header(root->hpa) &&
	       role.word == page_header(root->hpa)->role.word;
}

4246
/*
4247
 * Find out if a previously cached root matching the new pgd/role is available.
4248 4249 4250 4251 4252 4253
 * The current root is also inserted into the cache.
 * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
 * returned.
 * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
 * false is returned. This root should now be freed by the caller.
 */
4254
static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_pgd,
4255 4256 4257 4258
				  union kvm_mmu_page_role new_role)
{
	uint i;
	struct kvm_mmu_root_info root;
4259
	struct kvm_mmu *mmu = vcpu->arch.mmu;
4260

4261
	root.pgd = mmu->root_pgd;
4262 4263
	root.hpa = mmu->root_hpa;

4264
	if (is_root_usable(&root, new_pgd, new_role))
4265 4266
		return true;

4267 4268 4269
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
		swap(root, mmu->prev_roots[i]);

4270
		if (is_root_usable(&root, new_pgd, new_role))
4271 4272 4273 4274
			break;
	}

	mmu->root_hpa = root.hpa;
4275
	mmu->root_pgd = root.pgd;
4276 4277 4278 4279

	return i < KVM_MMU_NUM_PREV_ROOTS;
}

4280
static bool fast_pgd_switch(struct kvm_vcpu *vcpu, gpa_t new_pgd,
4281
			    union kvm_mmu_page_role new_role)
A
Avi Kivity 已提交
4282
{
4283
	struct kvm_mmu *mmu = vcpu->arch.mmu;
4284 4285 4286 4287 4288 4289 4290

	/*
	 * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
	 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
	 * later if necessary.
	 */
	if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
4291
	    mmu->root_level >= PT64_ROOT_4LEVEL)
4292 4293
		return !mmu_check_root(vcpu, new_pgd >> PAGE_SHIFT) &&
		       cached_root_available(vcpu, new_pgd, new_role);
4294 4295

	return false;
A
Avi Kivity 已提交
4296 4297
}

4298
static void __kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd,
4299
			      union kvm_mmu_page_role new_role,
4300
			      bool skip_tlb_flush, bool skip_mmu_sync)
A
Avi Kivity 已提交
4301
{
4302
	if (!fast_pgd_switch(vcpu, new_pgd, new_role)) {
4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314
		kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, KVM_MMU_ROOT_CURRENT);
		return;
	}

	/*
	 * It's possible that the cached previous root page is obsolete because
	 * of a change in the MMU generation number. However, changing the
	 * generation number is accompanied by KVM_REQ_MMU_RELOAD, which will
	 * free the root set here and allocate a new one.
	 */
	kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);

4315
	if (!skip_mmu_sync || force_flush_and_sync_on_reuse)
4316
		kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
4317
	if (!skip_tlb_flush || force_flush_and_sync_on_reuse)
4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328
		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);

	/*
	 * The last MMIO access's GVA and GPA are cached in the VCPU. When
	 * switching to a new CR3, that GVA->GPA mapping may no longer be
	 * valid. So clear any cached MMIO info even when we don't need to sync
	 * the shadow page tables.
	 */
	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);

	__clear_sp_write_flooding_count(page_header(vcpu->arch.mmu->root_hpa));
A
Avi Kivity 已提交
4329 4330
}

4331
void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd, bool skip_tlb_flush,
4332
		     bool skip_mmu_sync)
4333
{
4334
	__kvm_mmu_new_pgd(vcpu, new_pgd, kvm_mmu_calc_root_page_role(vcpu),
4335
			  skip_tlb_flush, skip_mmu_sync);
4336
}
4337
EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd);
4338

4339 4340
static unsigned long get_cr3(struct kvm_vcpu *vcpu)
{
4341
	return kvm_read_cr3(vcpu);
4342 4343
}

4344
static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
4345
			   unsigned int access, int *nr_present)
4346 4347 4348 4349 4350 4351 4352 4353
{
	if (unlikely(is_mmio_spte(*sptep))) {
		if (gfn != get_mmio_spte_gfn(*sptep)) {
			mmu_spte_clear_no_track(sptep);
			return true;
		}

		(*nr_present)++;
4354
		mark_mmio_spte(vcpu, sptep, gfn, access);
4355 4356 4357 4358 4359 4360
		return true;
	}

	return false;
}

4361 4362
static inline bool is_last_gpte(struct kvm_mmu *mmu,
				unsigned level, unsigned gpte)
A
Avi Kivity 已提交
4363
{
4364 4365 4366 4367 4368 4369 4370
	/*
	 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
	 * If it is clear, there are no large pages at this level, so clear
	 * PT_PAGE_SIZE_MASK in gpte if that is the case.
	 */
	gpte &= level - mmu->last_nonleaf_level;

4371
	/*
4372 4373 4374
	 * PG_LEVEL_4K always terminates.  The RHS has bit 7 set
	 * iff level <= PG_LEVEL_4K, which for our purpose means
	 * level == PG_LEVEL_4K; set PT_PAGE_SIZE_MASK in gpte then.
4375
	 */
4376
	gpte |= level - PG_LEVEL_4K - 1;
4377

4378
	return gpte & PT_PAGE_SIZE_MASK;
A
Avi Kivity 已提交
4379 4380
}

4381 4382 4383 4384 4385
#define PTTYPE_EPT 18 /* arbitrary */
#define PTTYPE PTTYPE_EPT
#include "paging_tmpl.h"
#undef PTTYPE

A
Avi Kivity 已提交
4386 4387 4388 4389 4390 4391 4392 4393
#define PTTYPE 64
#include "paging_tmpl.h"
#undef PTTYPE

#define PTTYPE 32
#include "paging_tmpl.h"
#undef PTTYPE

4394 4395 4396 4397
static void
__reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
			struct rsvd_bits_validate *rsvd_check,
			int maxphyaddr, int level, bool nx, bool gbpages,
4398
			bool pse, bool amd)
4399 4400
{
	u64 exb_bit_rsvd = 0;
4401
	u64 gbpages_bit_rsvd = 0;
4402
	u64 nonleaf_bit8_rsvd = 0;
4403

4404
	rsvd_check->bad_mt_xwr = 0;
4405

4406
	if (!nx)
4407
		exb_bit_rsvd = rsvd_bits(63, 63);
4408
	if (!gbpages)
4409
		gbpages_bit_rsvd = rsvd_bits(7, 7);
4410 4411 4412 4413 4414

	/*
	 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
	 * leaf entries) on AMD CPUs only.
	 */
4415
	if (amd)
4416 4417
		nonleaf_bit8_rsvd = rsvd_bits(8, 8);

4418
	switch (level) {
4419 4420
	case PT32_ROOT_LEVEL:
		/* no rsvd bits for 2 level 4K page table entries */
4421 4422 4423 4424
		rsvd_check->rsvd_bits_mask[0][1] = 0;
		rsvd_check->rsvd_bits_mask[0][0] = 0;
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
4425

4426
		if (!pse) {
4427
			rsvd_check->rsvd_bits_mask[1][1] = 0;
4428 4429 4430
			break;
		}

4431 4432
		if (is_cpuid_PSE36())
			/* 36bits PSE 4MB page */
4433
			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4434 4435
		else
			/* 32 bits PSE 4MB page */
4436
			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4437 4438
		break;
	case PT32E_ROOT_LEVEL:
4439
		rsvd_check->rsvd_bits_mask[0][2] =
4440
			rsvd_bits(maxphyaddr, 63) |
4441
			rsvd_bits(5, 8) | rsvd_bits(1, 2);	/* PDPTE */
4442
		rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4443
			rsvd_bits(maxphyaddr, 62);	/* PDE */
4444
		rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4445
			rsvd_bits(maxphyaddr, 62); 	/* PTE */
4446
		rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4447 4448
			rsvd_bits(maxphyaddr, 62) |
			rsvd_bits(13, 20);		/* large page */
4449 4450
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
4451
		break;
4452 4453 4454 4455 4456 4457
	case PT64_ROOT_5LEVEL:
		rsvd_check->rsvd_bits_mask[0][4] = exb_bit_rsvd |
			nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
			rsvd_bits(maxphyaddr, 51);
		rsvd_check->rsvd_bits_mask[1][4] =
			rsvd_check->rsvd_bits_mask[0][4];
4458
		/* fall through */
4459
	case PT64_ROOT_4LEVEL:
4460 4461
		rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
			nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4462
			rsvd_bits(maxphyaddr, 51);
4463 4464
		rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
			nonleaf_bit8_rsvd | gbpages_bit_rsvd |
4465
			rsvd_bits(maxphyaddr, 51);
4466 4467 4468 4469 4470 4471 4472
		rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
			rsvd_bits(maxphyaddr, 51);
		rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
			rsvd_bits(maxphyaddr, 51);
		rsvd_check->rsvd_bits_mask[1][3] =
			rsvd_check->rsvd_bits_mask[0][3];
		rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
4473
			gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
4474
			rsvd_bits(13, 29);
4475
		rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4476 4477
			rsvd_bits(maxphyaddr, 51) |
			rsvd_bits(13, 20);		/* large page */
4478 4479
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
4480 4481 4482 4483
		break;
	}
}

4484 4485 4486 4487 4488
static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
{
	__reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
				cpuid_maxphyaddr(vcpu), context->root_level,
4489 4490
				context->nx,
				guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4491 4492
				is_pse(vcpu),
				guest_cpuid_is_amd_or_hygon(vcpu));
4493 4494
}

4495 4496 4497
static void
__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
			    int maxphyaddr, bool execonly)
4498
{
4499
	u64 bad_mt_xwr;
4500

4501 4502
	rsvd_check->rsvd_bits_mask[0][4] =
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4503
	rsvd_check->rsvd_bits_mask[0][3] =
4504
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4505
	rsvd_check->rsvd_bits_mask[0][2] =
4506
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4507
	rsvd_check->rsvd_bits_mask[0][1] =
4508
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4509
	rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
4510 4511

	/* large page */
4512
	rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4513 4514
	rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
	rsvd_check->rsvd_bits_mask[1][2] =
4515
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
4516
	rsvd_check->rsvd_bits_mask[1][1] =
4517
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
4518
	rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4519

4520 4521 4522 4523 4524 4525 4526 4527
	bad_mt_xwr = 0xFFull << (2 * 8);	/* bits 3..5 must not be 2 */
	bad_mt_xwr |= 0xFFull << (3 * 8);	/* bits 3..5 must not be 3 */
	bad_mt_xwr |= 0xFFull << (7 * 8);	/* bits 3..5 must not be 7 */
	bad_mt_xwr |= REPEAT_BYTE(1ull << 2);	/* bits 0..2 must not be 010 */
	bad_mt_xwr |= REPEAT_BYTE(1ull << 6);	/* bits 0..2 must not be 110 */
	if (!execonly) {
		/* bits 0..2 must not be 100 unless VMX capabilities allow it */
		bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4528
	}
4529
	rsvd_check->bad_mt_xwr = bad_mt_xwr;
4530 4531
}

4532 4533 4534 4535 4536 4537 4538
static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
		struct kvm_mmu *context, bool execonly)
{
	__reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
				    cpuid_maxphyaddr(vcpu), execonly);
}

4539 4540 4541 4542 4543 4544 4545 4546
/*
 * the page table on host is the shadow page table for the page
 * table in guest or amd nested guest, its mmu features completely
 * follow the features in guest.
 */
void
reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
{
4547 4548
	bool uses_nx = context->nx ||
		context->mmu_role.base.smep_andnot_wp;
4549 4550
	struct rsvd_bits_validate *shadow_zero_check;
	int i;
4551

4552 4553 4554 4555
	/*
	 * Passing "true" to the last argument is okay; it adds a check
	 * on bit 8 of the SPTEs which KVM doesn't use anyway.
	 */
4556 4557
	shadow_zero_check = &context->shadow_zero_check;
	__reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4558
				shadow_phys_bits,
4559
				context->shadow_root_level, uses_nx,
4560 4561
				guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
				is_pse(vcpu), true);
4562 4563 4564 4565 4566 4567 4568 4569 4570

	if (!shadow_me_mask)
		return;

	for (i = context->shadow_root_level; --i >= 0;) {
		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
	}

4571 4572 4573
}
EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);

4574 4575 4576 4577 4578 4579
static inline bool boot_cpu_is_amd(void)
{
	WARN_ON_ONCE(!tdp_enabled);
	return shadow_x_mask == 0;
}

4580 4581 4582 4583 4584 4585 4586 4587
/*
 * the direct page table on host, use as much mmu features as
 * possible, however, kvm currently does not do execution-protection.
 */
static void
reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
				struct kvm_mmu *context)
{
4588 4589 4590 4591 4592
	struct rsvd_bits_validate *shadow_zero_check;
	int i;

	shadow_zero_check = &context->shadow_zero_check;

4593
	if (boot_cpu_is_amd())
4594
		__reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4595
					shadow_phys_bits,
4596
					context->shadow_root_level, false,
4597 4598
					boot_cpu_has(X86_FEATURE_GBPAGES),
					true, true);
4599
	else
4600
		__reset_rsvds_bits_mask_ept(shadow_zero_check,
4601
					    shadow_phys_bits,
4602 4603
					    false);

4604 4605 4606 4607 4608 4609 4610
	if (!shadow_me_mask)
		return;

	for (i = context->shadow_root_level; --i >= 0;) {
		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
	}
4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621
}

/*
 * as the comments in reset_shadow_zero_bits_mask() except it
 * is the shadow page table for intel nested guest.
 */
static void
reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
				struct kvm_mmu *context, bool execonly)
{
	__reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4622
				    shadow_phys_bits, execonly);
4623 4624
}

4625 4626 4627 4628 4629 4630 4631 4632 4633 4634
#define BYTE_MASK(access) \
	((1 & (access) ? 2 : 0) | \
	 (2 & (access) ? 4 : 0) | \
	 (3 & (access) ? 8 : 0) | \
	 (4 & (access) ? 16 : 0) | \
	 (5 & (access) ? 32 : 0) | \
	 (6 & (access) ? 64 : 0) | \
	 (7 & (access) ? 128 : 0))


4635 4636
static void update_permission_bitmask(struct kvm_vcpu *vcpu,
				      struct kvm_mmu *mmu, bool ept)
4637
{
4638 4639 4640 4641 4642 4643 4644 4645 4646
	unsigned byte;

	const u8 x = BYTE_MASK(ACC_EXEC_MASK);
	const u8 w = BYTE_MASK(ACC_WRITE_MASK);
	const u8 u = BYTE_MASK(ACC_USER_MASK);

	bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
	bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
	bool cr0_wp = is_write_protection(vcpu);
4647 4648

	for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4649 4650
		unsigned pfec = byte << 1;

F
Feng Wu 已提交
4651
		/*
4652 4653
		 * Each "*f" variable has a 1 bit for each UWX value
		 * that causes a fault with the given PFEC.
F
Feng Wu 已提交
4654
		 */
4655

4656
		/* Faults from writes to non-writable pages */
4657
		u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
4658
		/* Faults from user mode accesses to supervisor pages */
4659
		u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
4660
		/* Faults from fetches of non-executable pages*/
4661
		u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686
		/* Faults from kernel mode fetches of user pages */
		u8 smepf = 0;
		/* Faults from kernel mode accesses of user pages */
		u8 smapf = 0;

		if (!ept) {
			/* Faults from kernel mode accesses to user pages */
			u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;

			/* Not really needed: !nx will cause pte.nx to fault */
			if (!mmu->nx)
				ff = 0;

			/* Allow supervisor writes if !cr0.wp */
			if (!cr0_wp)
				wf = (pfec & PFERR_USER_MASK) ? wf : 0;

			/* Disallow supervisor fetches of user code if cr4.smep */
			if (cr4_smep)
				smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;

			/*
			 * SMAP:kernel-mode data accesses from user-mode
			 * mappings should fault. A fault is considered
			 * as a SMAP violation if all of the following
P
Peng Hao 已提交
4687
			 * conditions are true:
4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700
			 *   - X86_CR4_SMAP is set in CR4
			 *   - A user page is accessed
			 *   - The access is not a fetch
			 *   - Page fault in kernel mode
			 *   - if CPL = 3 or X86_EFLAGS_AC is clear
			 *
			 * Here, we cover the first three conditions.
			 * The fourth is computed dynamically in permission_fault();
			 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
			 * *not* subject to SMAP restrictions.
			 */
			if (cr4_smap)
				smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4701
		}
4702 4703

		mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4704 4705 4706
	}
}

4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781
/*
* PKU is an additional mechanism by which the paging controls access to
* user-mode addresses based on the value in the PKRU register.  Protection
* key violations are reported through a bit in the page fault error code.
* Unlike other bits of the error code, the PK bit is not known at the
* call site of e.g. gva_to_gpa; it must be computed directly in
* permission_fault based on two bits of PKRU, on some machine state (CR4,
* CR0, EFER, CPL), and on other bits of the error code and the page tables.
*
* In particular the following conditions come from the error code, the
* page tables and the machine state:
* - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
* - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
* - PK is always zero if U=0 in the page tables
* - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
*
* The PKRU bitmask caches the result of these four conditions.  The error
* code (minus the P bit) and the page table's U bit form an index into the
* PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
* with the two bits of the PKRU register corresponding to the protection key.
* For the first three conditions above the bits will be 00, thus masking
* away both AD and WD.  For all reads or if the last condition holds, WD
* only will be masked away.
*/
static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
				bool ept)
{
	unsigned bit;
	bool wp;

	if (ept) {
		mmu->pkru_mask = 0;
		return;
	}

	/* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
	if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
		mmu->pkru_mask = 0;
		return;
	}

	wp = is_write_protection(vcpu);

	for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
		unsigned pfec, pkey_bits;
		bool check_pkey, check_write, ff, uf, wf, pte_user;

		pfec = bit << 1;
		ff = pfec & PFERR_FETCH_MASK;
		uf = pfec & PFERR_USER_MASK;
		wf = pfec & PFERR_WRITE_MASK;

		/* PFEC.RSVD is replaced by ACC_USER_MASK. */
		pte_user = pfec & PFERR_RSVD_MASK;

		/*
		 * Only need to check the access which is not an
		 * instruction fetch and is to a user page.
		 */
		check_pkey = (!ff && pte_user);
		/*
		 * write access is controlled by PKRU if it is a
		 * user access or CR0.WP = 1.
		 */
		check_write = check_pkey && wf && (uf || wp);

		/* PKRU.AD stops both read and write access. */
		pkey_bits = !!check_pkey;
		/* PKRU.WD stops write access. */
		pkey_bits |= (!!check_write) << 1;

		mmu->pkru_mask |= (pkey_bits & 3) << pfec;
	}
}

4782
static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
A
Avi Kivity 已提交
4783
{
4784 4785 4786 4787 4788
	unsigned root_level = mmu->root_level;

	mmu->last_nonleaf_level = root_level;
	if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
		mmu->last_nonleaf_level++;
A
Avi Kivity 已提交
4789 4790
}

4791 4792 4793
static void paging64_init_context_common(struct kvm_vcpu *vcpu,
					 struct kvm_mmu *context,
					 int level)
A
Avi Kivity 已提交
4794
{
4795
	context->nx = is_nx(vcpu);
4796
	context->root_level = level;
4797

4798
	reset_rsvds_bits_mask(vcpu, context);
4799
	update_permission_bitmask(vcpu, context, false);
4800
	update_pkru_bitmask(vcpu, context, false);
4801
	update_last_nonleaf_level(vcpu, context);
A
Avi Kivity 已提交
4802

4803
	MMU_WARN_ON(!is_pae(vcpu));
A
Avi Kivity 已提交
4804 4805
	context->page_fault = paging64_page_fault;
	context->gva_to_gpa = paging64_gva_to_gpa;
4806
	context->sync_page = paging64_sync_page;
M
Marcelo Tosatti 已提交
4807
	context->invlpg = paging64_invlpg;
4808
	context->update_pte = paging64_update_pte;
4809
	context->shadow_root_level = level;
4810
	context->direct_map = false;
A
Avi Kivity 已提交
4811 4812
}

4813 4814
static void paging64_init_context(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
4815
{
4816 4817 4818 4819
	int root_level = is_la57_mode(vcpu) ?
			 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;

	paging64_init_context_common(vcpu, context, root_level);
4820 4821
}

4822 4823
static void paging32_init_context(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
A
Avi Kivity 已提交
4824
{
4825
	context->nx = false;
4826
	context->root_level = PT32_ROOT_LEVEL;
4827

4828
	reset_rsvds_bits_mask(vcpu, context);
4829
	update_permission_bitmask(vcpu, context, false);
4830
	update_pkru_bitmask(vcpu, context, false);
4831
	update_last_nonleaf_level(vcpu, context);
A
Avi Kivity 已提交
4832 4833 4834

	context->page_fault = paging32_page_fault;
	context->gva_to_gpa = paging32_gva_to_gpa;
4835
	context->sync_page = paging32_sync_page;
M
Marcelo Tosatti 已提交
4836
	context->invlpg = paging32_invlpg;
4837
	context->update_pte = paging32_update_pte;
A
Avi Kivity 已提交
4838
	context->shadow_root_level = PT32E_ROOT_LEVEL;
4839
	context->direct_map = false;
A
Avi Kivity 已提交
4840 4841
}

4842 4843
static void paging32E_init_context(struct kvm_vcpu *vcpu,
				   struct kvm_mmu *context)
A
Avi Kivity 已提交
4844
{
4845
	paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
A
Avi Kivity 已提交
4846 4847
}

4848 4849 4850 4851
static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu)
{
	union kvm_mmu_extended_role ext = {0};

4852
	ext.cr0_pg = !!is_paging(vcpu);
4853
	ext.cr4_pae = !!is_pae(vcpu);
4854 4855 4856 4857
	ext.cr4_smep = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
	ext.cr4_smap = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
	ext.cr4_pse = !!is_pse(vcpu);
	ext.cr4_pke = !!kvm_read_cr4_bits(vcpu, X86_CR4_PKE);
4858
	ext.maxphyaddr = cpuid_maxphyaddr(vcpu);
4859 4860 4861 4862 4863 4864

	ext.valid = 1;

	return ext;
}

4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885
static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
						   bool base_only)
{
	union kvm_mmu_role role = {0};

	role.base.access = ACC_ALL;
	role.base.nxe = !!is_nx(vcpu);
	role.base.cr0_wp = is_write_protection(vcpu);
	role.base.smm = is_smm(vcpu);
	role.base.guest_mode = is_guest_mode(vcpu);

	if (base_only)
		return role;

	role.ext = kvm_calc_mmu_role_ext(vcpu);

	return role;
}

static union kvm_mmu_role
kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4886
{
4887
	union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4888

4889
	role.base.ad_disabled = (shadow_accessed_mask == 0);
4890
	role.base.level = vcpu->arch.tdp_level;
4891
	role.base.direct = true;
4892
	role.base.gpte_is_8_bytes = true;
4893 4894 4895 4896

	return role;
}

4897
static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4898
{
4899
	struct kvm_mmu *context = vcpu->arch.mmu;
4900 4901
	union kvm_mmu_role new_role =
		kvm_calc_tdp_mmu_root_page_role(vcpu, false);
4902

4903 4904 4905 4906
	if (new_role.as_u64 == context->mmu_role.as_u64)
		return;

	context->mmu_role.as_u64 = new_role.as_u64;
4907
	context->page_fault = kvm_tdp_page_fault;
4908
	context->sync_page = nonpaging_sync_page;
4909
	context->invlpg = NULL;
4910
	context->update_pte = nonpaging_update_pte;
4911
	context->shadow_root_level = vcpu->arch.tdp_level;
4912
	context->direct_map = true;
4913
	context->get_guest_pgd = get_cr3;
4914
	context->get_pdptr = kvm_pdptr_read;
4915
	context->inject_page_fault = kvm_inject_page_fault;
4916 4917

	if (!is_paging(vcpu)) {
4918
		context->nx = false;
4919 4920 4921
		context->gva_to_gpa = nonpaging_gva_to_gpa;
		context->root_level = 0;
	} else if (is_long_mode(vcpu)) {
4922
		context->nx = is_nx(vcpu);
4923 4924
		context->root_level = is_la57_mode(vcpu) ?
				PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4925 4926
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging64_gva_to_gpa;
4927
	} else if (is_pae(vcpu)) {
4928
		context->nx = is_nx(vcpu);
4929
		context->root_level = PT32E_ROOT_LEVEL;
4930 4931
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging64_gva_to_gpa;
4932
	} else {
4933
		context->nx = false;
4934
		context->root_level = PT32_ROOT_LEVEL;
4935 4936
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging32_gva_to_gpa;
4937 4938
	}

4939
	update_permission_bitmask(vcpu, context, false);
4940
	update_pkru_bitmask(vcpu, context, false);
4941
	update_last_nonleaf_level(vcpu, context);
4942
	reset_tdp_shadow_zero_bits_mask(vcpu, context);
4943 4944
}

4945 4946 4947 4948 4949 4950 4951 4952 4953 4954
static union kvm_mmu_role
kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
{
	union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);

	role.base.smep_andnot_wp = role.ext.cr4_smep &&
		!is_write_protection(vcpu);
	role.base.smap_andnot_wp = role.ext.cr4_smap &&
		!is_write_protection(vcpu);
	role.base.direct = !is_paging(vcpu);
4955
	role.base.gpte_is_8_bytes = !!is_pae(vcpu);
4956 4957

	if (!is_long_mode(vcpu))
4958
		role.base.level = PT32E_ROOT_LEVEL;
4959
	else if (is_la57_mode(vcpu))
4960
		role.base.level = PT64_ROOT_5LEVEL;
4961
	else
4962
		role.base.level = PT64_ROOT_4LEVEL;
4963 4964 4965 4966 4967 4968

	return role;
}

void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
{
4969
	struct kvm_mmu *context = vcpu->arch.mmu;
4970 4971 4972 4973 4974
	union kvm_mmu_role new_role =
		kvm_calc_shadow_mmu_root_page_role(vcpu, false);

	if (new_role.as_u64 == context->mmu_role.as_u64)
		return;
A
Avi Kivity 已提交
4975 4976

	if (!is_paging(vcpu))
4977
		nonpaging_init_context(vcpu, context);
A
Avi Kivity 已提交
4978
	else if (is_long_mode(vcpu))
4979
		paging64_init_context(vcpu, context);
A
Avi Kivity 已提交
4980
	else if (is_pae(vcpu))
4981
		paging32E_init_context(vcpu, context);
A
Avi Kivity 已提交
4982
	else
4983
		paging32_init_context(vcpu, context);
4984

4985
	context->mmu_role.as_u64 = new_role.as_u64;
4986
	reset_shadow_zero_bits_mask(vcpu, context);
4987 4988 4989
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);

4990 4991
static union kvm_mmu_role
kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
4992
				   bool execonly, u8 level)
4993
{
4994
	union kvm_mmu_role role = {0};
4995

4996 4997
	/* SMM flag is inherited from root_mmu */
	role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
4998

4999
	role.base.level = level;
5000
	role.base.gpte_is_8_bytes = true;
5001 5002 5003 5004
	role.base.direct = false;
	role.base.ad_disabled = !accessed_dirty;
	role.base.guest_mode = true;
	role.base.access = ACC_ALL;
5005

5006 5007 5008 5009 5010 5011 5012
	/*
	 * WP=1 and NOT_WP=1 is an impossible combination, use WP and the
	 * SMAP variation to denote shadow EPT entries.
	 */
	role.base.cr0_wp = true;
	role.base.smap_andnot_wp = true;

5013
	role.ext = kvm_calc_mmu_role_ext(vcpu);
5014
	role.ext.execonly = execonly;
5015 5016 5017 5018

	return role;
}

5019
void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
5020
			     bool accessed_dirty, gpa_t new_eptp)
N
Nadav Har'El 已提交
5021
{
5022
	struct kvm_mmu *context = vcpu->arch.mmu;
5023
	u8 level = vmx_eptp_page_walk_level(new_eptp);
5024 5025
	union kvm_mmu_role new_role =
		kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
5026
						   execonly, level);
5027

5028
	__kvm_mmu_new_pgd(vcpu, new_eptp, new_role.base, true, true);
5029 5030 5031

	if (new_role.as_u64 == context->mmu_role.as_u64)
		return;
5032

5033
	context->shadow_root_level = level;
N
Nadav Har'El 已提交
5034 5035

	context->nx = true;
5036
	context->ept_ad = accessed_dirty;
N
Nadav Har'El 已提交
5037 5038 5039 5040 5041
	context->page_fault = ept_page_fault;
	context->gva_to_gpa = ept_gva_to_gpa;
	context->sync_page = ept_sync_page;
	context->invlpg = ept_invlpg;
	context->update_pte = ept_update_pte;
5042
	context->root_level = level;
N
Nadav Har'El 已提交
5043
	context->direct_map = false;
5044
	context->mmu_role.as_u64 = new_role.as_u64;
5045

N
Nadav Har'El 已提交
5046
	update_permission_bitmask(vcpu, context, true);
5047
	update_pkru_bitmask(vcpu, context, true);
5048
	update_last_nonleaf_level(vcpu, context);
N
Nadav Har'El 已提交
5049
	reset_rsvds_bits_mask_ept(vcpu, context, execonly);
5050
	reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
N
Nadav Har'El 已提交
5051 5052 5053
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);

5054
static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
5055
{
5056
	struct kvm_mmu *context = vcpu->arch.mmu;
5057 5058

	kvm_init_shadow_mmu(vcpu);
5059
	context->get_guest_pgd     = get_cr3;
5060 5061
	context->get_pdptr         = kvm_pdptr_read;
	context->inject_page_fault = kvm_inject_page_fault;
A
Avi Kivity 已提交
5062 5063
}

5064
static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
5065
{
5066
	union kvm_mmu_role new_role = kvm_calc_mmu_role_common(vcpu, false);
5067 5068
	struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;

5069 5070 5071 5072
	if (new_role.as_u64 == g_context->mmu_role.as_u64)
		return;

	g_context->mmu_role.as_u64 = new_role.as_u64;
5073
	g_context->get_guest_pgd     = get_cr3;
5074
	g_context->get_pdptr         = kvm_pdptr_read;
5075 5076
	g_context->inject_page_fault = kvm_inject_page_fault;

5077 5078 5079 5080 5081 5082
	/*
	 * L2 page tables are never shadowed, so there is no need to sync
	 * SPTEs.
	 */
	g_context->invlpg            = NULL;

5083
	/*
5084
	 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
5085 5086 5087 5088 5089
	 * L1's nested page tables (e.g. EPT12). The nested translation
	 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
	 * L2's page tables as the first level of translation and L1's
	 * nested page tables as the second level of translation. Basically
	 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
5090 5091
	 */
	if (!is_paging(vcpu)) {
5092
		g_context->nx = false;
5093 5094 5095
		g_context->root_level = 0;
		g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
	} else if (is_long_mode(vcpu)) {
5096
		g_context->nx = is_nx(vcpu);
5097 5098
		g_context->root_level = is_la57_mode(vcpu) ?
					PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
5099
		reset_rsvds_bits_mask(vcpu, g_context);
5100 5101
		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
	} else if (is_pae(vcpu)) {
5102
		g_context->nx = is_nx(vcpu);
5103
		g_context->root_level = PT32E_ROOT_LEVEL;
5104
		reset_rsvds_bits_mask(vcpu, g_context);
5105 5106
		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
	} else {
5107
		g_context->nx = false;
5108
		g_context->root_level = PT32_ROOT_LEVEL;
5109
		reset_rsvds_bits_mask(vcpu, g_context);
5110 5111 5112
		g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
	}

5113
	update_permission_bitmask(vcpu, g_context, false);
5114
	update_pkru_bitmask(vcpu, g_context, false);
5115
	update_last_nonleaf_level(vcpu, g_context);
5116 5117
}

5118
void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots)
5119
{
5120
	if (reset_roots) {
5121 5122
		uint i;

5123
		vcpu->arch.mmu->root_hpa = INVALID_PAGE;
5124 5125

		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5126
			vcpu->arch.mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5127 5128
	}

5129
	if (mmu_is_nested(vcpu))
5130
		init_kvm_nested_mmu(vcpu);
5131
	else if (tdp_enabled)
5132
		init_kvm_tdp_mmu(vcpu);
5133
	else
5134
		init_kvm_softmmu(vcpu);
5135
}
5136
EXPORT_SYMBOL_GPL(kvm_init_mmu);
5137

5138 5139 5140
static union kvm_mmu_page_role
kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
{
5141 5142
	union kvm_mmu_role role;

5143
	if (tdp_enabled)
5144
		role = kvm_calc_tdp_mmu_root_page_role(vcpu, true);
5145
	else
5146 5147 5148
		role = kvm_calc_shadow_mmu_root_page_role(vcpu, true);

	return role.base;
5149
}
5150

5151
void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
5152
{
5153
	kvm_mmu_unload(vcpu);
5154
	kvm_init_mmu(vcpu, true);
A
Avi Kivity 已提交
5155
}
5156
EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
A
Avi Kivity 已提交
5157 5158

int kvm_mmu_load(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
5159
{
5160 5161
	int r;

5162
	r = mmu_topup_memory_caches(vcpu);
A
Avi Kivity 已提交
5163 5164
	if (r)
		goto out;
5165
	r = mmu_alloc_roots(vcpu);
5166
	kvm_mmu_sync_roots(vcpu);
5167 5168
	if (r)
		goto out;
5169
	kvm_mmu_load_pgd(vcpu);
5170
	kvm_x86_ops.tlb_flush_current(vcpu);
5171 5172
out:
	return r;
A
Avi Kivity 已提交
5173
}
A
Avi Kivity 已提交
5174 5175 5176 5177
EXPORT_SYMBOL_GPL(kvm_mmu_load);

void kvm_mmu_unload(struct kvm_vcpu *vcpu)
{
5178 5179 5180 5181
	kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
	WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
	kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
	WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
A
Avi Kivity 已提交
5182
}
5183
EXPORT_SYMBOL_GPL(kvm_mmu_unload);
A
Avi Kivity 已提交
5184

5185
static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
5186 5187
				  struct kvm_mmu_page *sp, u64 *spte,
				  const void *new)
5188
{
5189
	if (sp->role.level != PG_LEVEL_4K) {
5190 5191
		++vcpu->kvm->stat.mmu_pde_zapped;
		return;
5192
        }
5193

A
Avi Kivity 已提交
5194
	++vcpu->kvm->stat.mmu_pte_updated;
5195
	vcpu->arch.mmu->update_pte(vcpu, sp, spte, new);
5196 5197
}

5198 5199 5200 5201 5202 5203 5204 5205
static bool need_remote_flush(u64 old, u64 new)
{
	if (!is_shadow_present_pte(old))
		return false;
	if (!is_shadow_present_pte(new))
		return true;
	if ((old ^ new) & PT64_BASE_ADDR_MASK)
		return true;
5206 5207
	old ^= shadow_nx_mask;
	new ^= shadow_nx_mask;
5208 5209 5210
	return (old & ~new & PT64_PERM_MASK) != 0;
}

5211
static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
5212
				    int *bytes)
5213
{
5214
	u64 gentry = 0;
5215
	int r;
5216 5217 5218

	/*
	 * Assume that the pte write on a page table of the same type
5219 5220
	 * as the current vcpu paging mode since we update the sptes only
	 * when they have the same mode.
5221
	 */
5222
	if (is_pae(vcpu) && *bytes == 4) {
5223
		/* Handle a 32-bit guest writing two halves of a 64-bit gpte */
5224 5225
		*gpa &= ~(gpa_t)7;
		*bytes = 8;
5226 5227
	}

5228 5229 5230 5231
	if (*bytes == 4 || *bytes == 8) {
		r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
		if (r)
			gentry = 0;
5232 5233
	}

5234 5235 5236 5237 5238 5239 5240
	return gentry;
}

/*
 * If we're seeing too many writes to a page, it may no longer be a page table,
 * or we may be forking, in which case it is better to unmap the page.
 */
5241
static bool detect_write_flooding(struct kvm_mmu_page *sp)
5242
{
5243 5244 5245 5246
	/*
	 * Skip write-flooding detected for the sp whose level is 1, because
	 * it can become unsync, then the guest page is not write-protected.
	 */
5247
	if (sp->role.level == PG_LEVEL_4K)
5248
		return false;
5249

5250 5251
	atomic_inc(&sp->write_flooding_count);
	return atomic_read(&sp->write_flooding_count) >= 3;
5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266
}

/*
 * Misaligned accesses are too much trouble to fix up; also, they usually
 * indicate a page is not used as a page table.
 */
static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
				    int bytes)
{
	unsigned offset, pte_size, misaligned;

	pgprintk("misaligned: gpa %llx bytes %d role %x\n",
		 gpa, bytes, sp->role.word);

	offset = offset_in_page(gpa);
5267
	pte_size = sp->role.gpte_is_8_bytes ? 8 : 4;
5268 5269 5270 5271 5272 5273 5274 5275

	/*
	 * Sometimes, the OS only writes the last one bytes to update status
	 * bits, for example, in linux, andb instruction is used in clear_bit().
	 */
	if (!(offset & (pte_size - 1)) && bytes == 1)
		return false;

5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290
	misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
	misaligned |= bytes < 4;

	return misaligned;
}

static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
{
	unsigned page_offset, quadrant;
	u64 *spte;
	int level;

	page_offset = offset_in_page(gpa);
	level = sp->role.level;
	*nspte = 1;
5291
	if (!sp->role.gpte_is_8_bytes) {
5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312
		page_offset <<= 1;	/* 32->64 */
		/*
		 * A 32-bit pde maps 4MB while the shadow pdes map
		 * only 2MB.  So we need to double the offset again
		 * and zap two pdes instead of one.
		 */
		if (level == PT32_ROOT_LEVEL) {
			page_offset &= ~7; /* kill rounding error */
			page_offset <<= 1;
			*nspte = 2;
		}
		quadrant = page_offset >> PAGE_SHIFT;
		page_offset &= ~PAGE_MASK;
		if (quadrant != sp->role.quadrant)
			return NULL;
	}

	spte = &sp->spt[page_offset / sizeof(*spte)];
	return spte;
}

5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328
/*
 * Ignore various flags when determining if a SPTE can be immediately
 * overwritten for the current MMU.
 *  - level: explicitly checked in mmu_pte_write_new_pte(), and will never
 *    match the current MMU role, as MMU's level tracks the root level.
 *  - access: updated based on the new guest PTE
 *  - quadrant: handled by get_written_sptes()
 *  - invalid: always false (loop only walks valid shadow pages)
 */
static const union kvm_mmu_page_role role_ign = {
	.level = 0xf,
	.access = 0x7,
	.quadrant = 0x3,
	.invalid = 0x1,
};

5329
static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
5330 5331
			      const u8 *new, int bytes,
			      struct kvm_page_track_notifier_node *node)
5332 5333 5334 5335 5336 5337
{
	gfn_t gfn = gpa >> PAGE_SHIFT;
	struct kvm_mmu_page *sp;
	LIST_HEAD(invalid_list);
	u64 entry, gentry, *spte;
	int npte;
5338
	bool remote_flush, local_flush;
5339 5340 5341 5342 5343

	/*
	 * If we don't have indirect shadow pages, it means no page is
	 * write-protected, so we can exit simply.
	 */
5344
	if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
5345 5346
		return;

5347
	remote_flush = local_flush = false;
5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358

	pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);

	/*
	 * No need to care whether allocation memory is successful
	 * or not since pte prefetch is skiped if it does not have
	 * enough objects in the cache.
	 */
	mmu_topup_memory_caches(vcpu);

	spin_lock(&vcpu->kvm->mmu_lock);
5359 5360 5361

	gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);

5362
	++vcpu->kvm->stat.mmu_pte_write;
5363
	kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
5364

5365
	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
5366
		if (detect_write_misaligned(sp, gpa, bytes) ||
5367
		      detect_write_flooding(sp)) {
5368
			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
A
Avi Kivity 已提交
5369
			++vcpu->kvm->stat.mmu_flooded;
5370 5371
			continue;
		}
5372 5373 5374 5375 5376

		spte = get_written_sptes(sp, gpa, &npte);
		if (!spte)
			continue;

5377
		local_flush = true;
5378
		while (npte--) {
5379 5380
			u32 base_role = vcpu->arch.mmu->mmu_role.base.word;

5381
			entry = *spte;
5382
			mmu_page_zap_pte(vcpu->kvm, sp, spte);
5383
			if (gentry &&
5384 5385
			    !((sp->role.word ^ base_role) & ~role_ign.word) &&
			    rmap_can_add(vcpu))
5386
				mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
G
Gleb Natapov 已提交
5387
			if (need_remote_flush(entry, *spte))
5388
				remote_flush = true;
5389
			++spte;
5390 5391
		}
	}
5392
	kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
5393
	kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
5394
	spin_unlock(&vcpu->kvm->mmu_lock);
5395 5396
}

5397 5398
int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
{
5399 5400
	gpa_t gpa;
	int r;
5401

5402
	if (vcpu->arch.mmu->direct_map)
5403 5404
		return 0;

5405
	gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
5406 5407

	r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
5408

5409
	return r;
5410
}
5411
EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
5412

5413
int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
5414
		       void *insn, int insn_len)
5415
{
5416
	int r, emulation_type = EMULTYPE_PF;
5417
	bool direct = vcpu->arch.mmu->direct_map;
5418

5419
	if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
5420 5421
		return RET_PF_RETRY;

5422
	r = RET_PF_INVALID;
5423
	if (unlikely(error_code & PFERR_RSVD_MASK)) {
5424
		r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
5425
		if (r == RET_PF_EMULATE)
5426 5427
			goto emulate;
	}
5428

5429
	if (r == RET_PF_INVALID) {
5430 5431
		r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
					  lower_32_bits(error_code), false);
5432 5433 5434 5435 5436
		WARN_ON(r == RET_PF_INVALID);
	}

	if (r == RET_PF_RETRY)
		return 1;
5437
	if (r < 0)
5438
		return r;
5439

5440 5441 5442 5443 5444 5445 5446
	/*
	 * Before emulating the instruction, check if the error code
	 * was due to a RO violation while translating the guest page.
	 * This can occur when using nested virtualization with nested
	 * paging in both guests. If true, we simply unprotect the page
	 * and resume the guest.
	 */
5447
	if (vcpu->arch.mmu->direct_map &&
5448
	    (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5449
		kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
5450 5451 5452
		return 1;
	}

5453 5454 5455 5456 5457 5458
	/*
	 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
	 * optimistically try to just unprotect the page and let the processor
	 * re-execute the instruction that caused the page fault.  Do not allow
	 * retrying MMIO emulation, as it's not only pointless but could also
	 * cause us to enter an infinite loop because the processor will keep
5459 5460 5461 5462
	 * faulting on the non-existent MMIO address.  Retrying an instruction
	 * from a nested guest is also pointless and dangerous as we are only
	 * explicitly shadowing L1's page tables, i.e. unprotecting something
	 * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5463
	 */
5464
	if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
5465
		emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
5466
emulate:
5467 5468 5469 5470 5471
	/*
	 * On AMD platforms, under certain conditions insn_len may be zero on #NPF.
	 * This can happen if a guest gets a page-fault on data access but the HW
	 * table walker is not able to read the instruction page (e.g instruction
	 * page is not present in memory). In those cases we simply restart the
5472
	 * guest, with the exception of AMD Erratum 1096 which is unrecoverable.
5473
	 */
5474
	if (unlikely(insn && !insn_len)) {
5475
		if (!kvm_x86_ops.need_emulation_on_page_fault(vcpu))
5476 5477
			return 1;
	}
5478

5479
	return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
5480
				       insn_len);
5481 5482 5483
}
EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);

5484 5485
void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
			    gva_t gva, hpa_t root_hpa)
M
Marcelo Tosatti 已提交
5486
{
5487
	int i;
5488

5489 5490 5491 5492 5493 5494 5495 5496 5497 5498
	/* It's actually a GPA for vcpu->arch.guest_mmu.  */
	if (mmu != &vcpu->arch.guest_mmu) {
		/* INVLPG on a non-canonical address is a NOP according to the SDM.  */
		if (is_noncanonical_address(gva, vcpu))
			return;

		kvm_x86_ops.tlb_flush_gva(vcpu, gva);
	}

	if (!mmu->invlpg)
5499 5500
		return;

5501 5502
	if (root_hpa == INVALID_PAGE) {
		mmu->invlpg(vcpu, gva, mmu->root_hpa);
5503

5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522
		/*
		 * INVLPG is required to invalidate any global mappings for the VA,
		 * irrespective of PCID. Since it would take us roughly similar amount
		 * of work to determine whether any of the prev_root mappings of the VA
		 * is marked global, or to just sync it blindly, so we might as well
		 * just always sync it.
		 *
		 * Mappings not reachable via the current cr3 or the prev_roots will be
		 * synced when switching to that cr3, so nothing needs to be done here
		 * for them.
		 */
		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
			if (VALID_PAGE(mmu->prev_roots[i].hpa))
				mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
	} else {
		mmu->invlpg(vcpu, gva, root_hpa);
	}
}
EXPORT_SYMBOL_GPL(kvm_mmu_invalidate_gva);
5523

5524 5525 5526
void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
{
	kvm_mmu_invalidate_gva(vcpu, vcpu->arch.mmu, gva, INVALID_PAGE);
M
Marcelo Tosatti 已提交
5527 5528 5529 5530
	++vcpu->stat.invlpg;
}
EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);

5531

5532 5533
void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
{
5534
	struct kvm_mmu *mmu = vcpu->arch.mmu;
5535
	bool tlb_flush = false;
5536
	uint i;
5537 5538

	if (pcid == kvm_get_active_pcid(vcpu)) {
5539
		mmu->invlpg(vcpu, gva, mmu->root_hpa);
5540
		tlb_flush = true;
5541 5542
	}

5543 5544
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
		if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5545
		    pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) {
5546 5547 5548
			mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
			tlb_flush = true;
		}
5549
	}
5550

5551
	if (tlb_flush)
5552
		kvm_x86_ops.tlb_flush_gva(vcpu, gva);
5553

5554 5555 5556
	++vcpu->stat.invlpg;

	/*
5557 5558 5559
	 * Mappings not reachable via the current cr3 or the prev_roots will be
	 * synced when switching to that cr3, so nothing needs to be done here
	 * for them.
5560 5561 5562 5563
	 */
}
EXPORT_SYMBOL_GPL(kvm_mmu_invpcid_gva);

5564
void kvm_configure_mmu(bool enable_tdp, int tdp_page_level)
5565
{
5566
	tdp_enabled = enable_tdp;
5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577

	/*
	 * max_page_level reflects the capabilities of KVM's MMU irrespective
	 * of kernel support, e.g. KVM may be capable of using 1GB pages when
	 * the kernel is not.  But, KVM never creates a page size greater than
	 * what is used by the kernel for any given HVA, i.e. the kernel's
	 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
	 */
	if (tdp_enabled)
		max_page_level = tdp_page_level;
	else if (boot_cpu_has(X86_FEATURE_GBPAGES))
5578
		max_page_level = PG_LEVEL_1G;
5579
	else
5580
		max_page_level = PG_LEVEL_2M;
5581
}
5582
EXPORT_SYMBOL_GPL(kvm_configure_mmu);
5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602

/* The return value indicates if tlb flush on all vcpus is needed. */
typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);

/* The caller should hold mmu-lock before calling this function. */
static __always_inline bool
slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
			slot_level_handler fn, int start_level, int end_level,
			gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
{
	struct slot_rmap_walk_iterator iterator;
	bool flush = false;

	for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
			end_gfn, &iterator) {
		if (iterator.rmap)
			flush |= fn(kvm, iterator.rmap);

		if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
			if (flush && lock_flush_tlb) {
5603 5604 5605
				kvm_flush_remote_tlbs_with_address(kvm,
						start_gfn,
						iterator.gfn - start_gfn + 1);
5606 5607 5608 5609 5610 5611 5612
				flush = false;
			}
			cond_resched_lock(&kvm->mmu_lock);
		}
	}

	if (flush && lock_flush_tlb) {
5613 5614
		kvm_flush_remote_tlbs_with_address(kvm, start_gfn,
						   end_gfn - start_gfn + 1);
5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635
		flush = false;
	}

	return flush;
}

static __always_inline bool
slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
		  slot_level_handler fn, int start_level, int end_level,
		  bool lock_flush_tlb)
{
	return slot_handle_level_range(kvm, memslot, fn, start_level,
			end_level, memslot->base_gfn,
			memslot->base_gfn + memslot->npages - 1,
			lock_flush_tlb);
}

static __always_inline bool
slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
		      slot_level_handler fn, bool lock_flush_tlb)
{
5636
	return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
5637
				 KVM_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5638 5639 5640 5641 5642 5643
}

static __always_inline bool
slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
			slot_level_handler fn, bool lock_flush_tlb)
{
5644
	return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K + 1,
5645
				 KVM_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5646 5647 5648 5649 5650 5651
}

static __always_inline bool
slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
		 slot_level_handler fn, bool lock_flush_tlb)
{
5652 5653
	return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
				 PG_LEVEL_4K, lock_flush_tlb);
5654 5655
}

5656
static void free_mmu_pages(struct kvm_mmu *mmu)
A
Avi Kivity 已提交
5657
{
5658 5659
	free_page((unsigned long)mmu->pae_root);
	free_page((unsigned long)mmu->lm_root);
A
Avi Kivity 已提交
5660 5661
}

5662
static int alloc_mmu_pages(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
A
Avi Kivity 已提交
5663
{
5664
	struct page *page;
A
Avi Kivity 已提交
5665 5666
	int i;

5667
	/*
5668 5669 5670 5671 5672 5673 5674
	 * When using PAE paging, the four PDPTEs are treated as 'root' pages,
	 * while the PDP table is a per-vCPU construct that's allocated at MMU
	 * creation.  When emulating 32-bit mode, cr3 is only 32 bits even on
	 * x86_64.  Therefore we need to allocate the PDP table in the first
	 * 4GB of memory, which happens to fit the DMA32 zone.  Except for
	 * SVM's 32-bit NPT support, TDP paging doesn't use PAE paging and can
	 * skip allocating the PDP table.
5675
	 */
5676
	if (tdp_enabled && vcpu->arch.tdp_level > PT32E_ROOT_LEVEL)
5677 5678
		return 0;

5679
	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
5680
	if (!page)
5681 5682
		return -ENOMEM;

5683
	mmu->pae_root = page_address(page);
5684
	for (i = 0; i < 4; ++i)
5685
		mmu->pae_root[i] = INVALID_PAGE;
5686

A
Avi Kivity 已提交
5687 5688 5689
	return 0;
}

5690
int kvm_mmu_create(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
5691
{
5692
	uint i;
5693
	int ret;
5694

5695 5696
	vcpu->arch.mmu = &vcpu->arch.root_mmu;
	vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
A
Avi Kivity 已提交
5697

5698
	vcpu->arch.root_mmu.root_hpa = INVALID_PAGE;
5699
	vcpu->arch.root_mmu.root_pgd = 0;
5700
	vcpu->arch.root_mmu.translate_gpa = translate_gpa;
5701
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5702
		vcpu->arch.root_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
A
Avi Kivity 已提交
5703

5704
	vcpu->arch.guest_mmu.root_hpa = INVALID_PAGE;
5705
	vcpu->arch.guest_mmu.root_pgd = 0;
5706 5707 5708
	vcpu->arch.guest_mmu.translate_gpa = translate_gpa;
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
		vcpu->arch.guest_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5709

5710
	vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723

	ret = alloc_mmu_pages(vcpu, &vcpu->arch.guest_mmu);
	if (ret)
		return ret;

	ret = alloc_mmu_pages(vcpu, &vcpu->arch.root_mmu);
	if (ret)
		goto fail_allocate_root;

	return ret;
 fail_allocate_root:
	free_mmu_pages(&vcpu->arch.guest_mmu);
	return ret;
A
Avi Kivity 已提交
5724 5725
}

5726
#define BATCH_ZAP_PAGES	10
5727 5728 5729
static void kvm_zap_obsolete_pages(struct kvm *kvm)
{
	struct kvm_mmu_page *sp, *node;
5730
	int nr_zapped, batch = 0;
5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742

restart:
	list_for_each_entry_safe_reverse(sp, node,
	      &kvm->arch.active_mmu_pages, link) {
		/*
		 * No obsolete valid page exists before a newly created page
		 * since active_mmu_pages is a FIFO list.
		 */
		if (!is_obsolete_sp(kvm, sp))
			break;

		/*
5743 5744 5745 5746
		 * Skip invalid pages with a non-zero root count, zapping pages
		 * with a non-zero root count will never succeed, i.e. the page
		 * will get thrown back on active_mmu_pages and we'll get stuck
		 * in an infinite loop.
5747
		 */
5748
		if (sp->role.invalid && sp->root_count)
5749 5750
			continue;

5751 5752 5753 5754 5755 5756
		/*
		 * No need to flush the TLB since we're only zapping shadow
		 * pages with an obsolete generation number and all vCPUS have
		 * loaded a new root, i.e. the shadow pages being zapped cannot
		 * be in active use by the guest.
		 */
5757
		if (batch >= BATCH_ZAP_PAGES &&
5758
		    cond_resched_lock(&kvm->mmu_lock)) {
5759
			batch = 0;
5760 5761 5762
			goto restart;
		}

5763 5764
		if (__kvm_mmu_prepare_zap_page(kvm, sp,
				&kvm->arch.zapped_obsolete_pages, &nr_zapped)) {
5765
			batch += nr_zapped;
5766
			goto restart;
5767
		}
5768 5769
	}

5770 5771 5772 5773 5774
	/*
	 * Trigger a remote TLB flush before freeing the page tables to ensure
	 * KVM is not in the middle of a lockless shadow page table walk, which
	 * may reference the pages.
	 */
5775
	kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788
}

/*
 * Fast invalidate all shadow pages and use lock-break technique
 * to zap obsolete pages.
 *
 * It's required when memslot is being deleted or VM is being
 * destroyed, in these cases, we should ensure that KVM MMU does
 * not use any resource of the being-deleted slot or all slots
 * after calling the function.
 */
static void kvm_mmu_zap_all_fast(struct kvm *kvm)
{
5789 5790
	lockdep_assert_held(&kvm->slots_lock);

5791
	spin_lock(&kvm->mmu_lock);
5792
	trace_kvm_mmu_zap_all_fast(kvm);
5793 5794 5795 5796 5797 5798 5799 5800 5801

	/*
	 * Toggle mmu_valid_gen between '0' and '1'.  Because slots_lock is
	 * held for the entire duration of zapping obsolete pages, it's
	 * impossible for there to be multiple invalid generations associated
	 * with *valid* shadow pages at any given time, i.e. there is exactly
	 * one valid generation and (at most) one invalid generation.
	 */
	kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
5802

5803 5804 5805 5806 5807 5808 5809 5810 5811 5812
	/*
	 * Notify all vcpus to reload its shadow page table and flush TLB.
	 * Then all vcpus will switch to new shadow page table with the new
	 * mmu_valid_gen.
	 *
	 * Note: we need to do this under the protection of mmu_lock,
	 * otherwise, vcpu would purge shadow page but miss tlb flush.
	 */
	kvm_reload_remote_mmus(kvm);

5813 5814 5815 5816
	kvm_zap_obsolete_pages(kvm);
	spin_unlock(&kvm->mmu_lock);
}

5817 5818 5819 5820 5821
static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
{
	return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
}

5822
static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5823 5824
			struct kvm_memory_slot *slot,
			struct kvm_page_track_notifier_node *node)
5825
{
5826
	kvm_mmu_zap_all_fast(kvm);
5827 5828
}

5829
void kvm_mmu_init_vm(struct kvm *kvm)
5830
{
5831
	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5832

5833
	node->track_write = kvm_mmu_pte_write;
5834
	node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5835
	kvm_page_track_register_notifier(kvm, node);
5836 5837
}

5838
void kvm_mmu_uninit_vm(struct kvm *kvm)
5839
{
5840
	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5841

5842
	kvm_page_track_unregister_notifier(kvm, node);
5843 5844
}

X
Xiao Guangrong 已提交
5845 5846 5847 5848
void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;
5849
	int i;
X
Xiao Guangrong 已提交
5850 5851

	spin_lock(&kvm->mmu_lock);
5852 5853 5854 5855 5856 5857 5858 5859 5860
	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
		kvm_for_each_memslot(memslot, slots) {
			gfn_t start, end;

			start = max(gfn_start, memslot->base_gfn);
			end = min(gfn_end, memslot->base_gfn + memslot->npages);
			if (start >= end)
				continue;
X
Xiao Guangrong 已提交
5861

5862
			slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
5863
						PG_LEVEL_4K,
5864
						KVM_MAX_HUGEPAGE_LEVEL,
5865
						start, end - 1, true);
5866
		}
X
Xiao Guangrong 已提交
5867 5868 5869 5870 5871
	}

	spin_unlock(&kvm->mmu_lock);
}

5872 5873
static bool slot_rmap_write_protect(struct kvm *kvm,
				    struct kvm_rmap_head *rmap_head)
5874
{
5875
	return __rmap_write_protect(kvm, rmap_head, false);
5876 5877
}

5878
void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5879 5880
				      struct kvm_memory_slot *memslot,
				      int start_level)
A
Avi Kivity 已提交
5881
{
5882
	bool flush;
A
Avi Kivity 已提交
5883

5884
	spin_lock(&kvm->mmu_lock);
5885
	flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect,
5886
				start_level, KVM_MAX_HUGEPAGE_LEVEL, false);
5887
	spin_unlock(&kvm->mmu_lock);
5888 5889 5890 5891 5892 5893 5894 5895

	/*
	 * We can flush all the TLBs out of the mmu lock without TLB
	 * corruption since we just change the spte from writable to
	 * readonly so that we only need to care the case of changing
	 * spte from present to present (changing the spte from present
	 * to nonpresent will flush all the TLBs immediately), in other
	 * words, the only case we care is mmu_spte_update() where we
W
Wei Yang 已提交
5896
	 * have checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
5897 5898 5899
	 * instead of PT_WRITABLE_MASK, that means it does not depend
	 * on PT_WRITABLE_MASK anymore.
	 */
5900
	if (flush)
5901
		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
A
Avi Kivity 已提交
5902
}
5903

5904
static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5905
					 struct kvm_rmap_head *rmap_head)
5906 5907 5908 5909
{
	u64 *sptep;
	struct rmap_iterator iter;
	int need_tlb_flush = 0;
D
Dan Williams 已提交
5910
	kvm_pfn_t pfn;
5911 5912
	struct kvm_mmu_page *sp;

5913
restart:
5914
	for_each_rmap_spte(rmap_head, &iter, sptep) {
5915 5916 5917 5918
		sp = page_header(__pa(sptep));
		pfn = spte_to_pfn(*sptep);

		/*
5919 5920 5921 5922 5923
		 * We cannot do huge page mapping for indirect shadow pages,
		 * which are found on the last rmap (level = 1) when not using
		 * tdp; such shadow pages are synced with the page table in
		 * the guest, and the guest page table is using 4K page size
		 * mapping if the indirect sp has level = 1.
5924
		 */
5925
		if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
5926 5927
		    (kvm_is_zone_device_pfn(pfn) ||
		     PageCompound(pfn_to_page(pfn)))) {
5928
			pte_list_remove(rmap_head, sptep);
5929 5930 5931 5932 5933 5934 5935

			if (kvm_available_flush_tlb_with_range())
				kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
					KVM_PAGES_PER_HPAGE(sp->role.level));
			else
				need_tlb_flush = 1;

5936 5937
			goto restart;
		}
5938 5939 5940 5941 5942 5943
	}

	return need_tlb_flush;
}

void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5944
				   const struct kvm_memory_slot *memslot)
5945
{
5946
	/* FIXME: const-ify all uses of struct kvm_memory_slot.  */
5947
	spin_lock(&kvm->mmu_lock);
5948 5949
	slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
			 kvm_mmu_zap_collapsible_spte, true);
5950 5951 5952
	spin_unlock(&kvm->mmu_lock);
}

5953 5954 5955 5956
void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
					struct kvm_memory_slot *memslot)
{
	/*
5957 5958 5959 5960 5961
	 * All current use cases for flushing the TLBs for a specific memslot
	 * are related to dirty logging, and do the TLB flush out of mmu_lock.
	 * The interaction between the various operations on memslot must be
	 * serialized by slots_locks to ensure the TLB flush from one operation
	 * is observed by any other operation on the same memslot.
5962 5963
	 */
	lockdep_assert_held(&kvm->slots_lock);
5964 5965
	kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
					   memslot->npages);
5966 5967
}

5968 5969 5970
void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
				   struct kvm_memory_slot *memslot)
{
5971
	bool flush;
5972 5973

	spin_lock(&kvm->mmu_lock);
5974
	flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
5975 5976 5977 5978 5979 5980 5981 5982 5983
	spin_unlock(&kvm->mmu_lock);

	/*
	 * It's also safe to flush TLBs out of mmu lock here as currently this
	 * function is only used for dirty logging, in which case flushing TLB
	 * out of mmu lock also guarantees no dirty pages will be lost in
	 * dirty_bitmap.
	 */
	if (flush)
5984
		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5985 5986 5987 5988 5989 5990
}
EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);

void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
					struct kvm_memory_slot *memslot)
{
5991
	bool flush;
5992 5993

	spin_lock(&kvm->mmu_lock);
5994 5995
	flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
					false);
5996 5997 5998
	spin_unlock(&kvm->mmu_lock);

	if (flush)
5999
		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
6000 6001 6002 6003 6004 6005
}
EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);

void kvm_mmu_slot_set_dirty(struct kvm *kvm,
			    struct kvm_memory_slot *memslot)
{
6006
	bool flush;
6007 6008

	spin_lock(&kvm->mmu_lock);
6009
	flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
6010 6011 6012
	spin_unlock(&kvm->mmu_lock);

	if (flush)
6013
		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
6014 6015 6016
}
EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);

6017
void kvm_mmu_zap_all(struct kvm *kvm)
6018 6019
{
	struct kvm_mmu_page *sp, *node;
6020
	LIST_HEAD(invalid_list);
6021
	int ign;
6022

6023
	spin_lock(&kvm->mmu_lock);
6024
restart:
6025
	list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
6026
		if (sp->role.invalid && sp->root_count)
6027
			continue;
6028
		if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
6029
			goto restart;
6030
		if (cond_resched_lock(&kvm->mmu_lock))
6031 6032 6033
			goto restart;
	}

6034
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
6035 6036 6037
	spin_unlock(&kvm->mmu_lock);
}

6038
void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
6039
{
6040
	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
6041

6042
	gen &= MMIO_SPTE_GEN_MASK;
6043

6044
	/*
6045 6046 6047 6048 6049 6050 6051 6052
	 * Generation numbers are incremented in multiples of the number of
	 * address spaces in order to provide unique generations across all
	 * address spaces.  Strip what is effectively the address space
	 * modifier prior to checking for a wrap of the MMIO generation so
	 * that a wrap in any address space is detected.
	 */
	gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);

6053
	/*
6054
	 * The very rare case: if the MMIO generation number has wrapped,
6055 6056
	 * zap all shadow pages.
	 */
6057
	if (unlikely(gen == 0)) {
6058
		kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
6059
		kvm_mmu_zap_all_fast(kvm);
6060
	}
6061 6062
}

6063 6064
static unsigned long
mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
6065 6066
{
	struct kvm *kvm;
6067
	int nr_to_scan = sc->nr_to_scan;
6068
	unsigned long freed = 0;
6069

J
Junaid Shahid 已提交
6070
	mutex_lock(&kvm_lock);
6071 6072

	list_for_each_entry(kvm, &vm_list, vm_list) {
6073
		int idx;
6074
		LIST_HEAD(invalid_list);
6075

6076 6077 6078 6079 6080 6081 6082 6083
		/*
		 * Never scan more than sc->nr_to_scan VM instances.
		 * Will not hit this condition practically since we do not try
		 * to shrink more than one VM and it is very unlikely to see
		 * !n_used_mmu_pages so many times.
		 */
		if (!nr_to_scan--)
			break;
6084 6085 6086 6087 6088 6089
		/*
		 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
		 * here. We may skip a VM instance errorneosly, but we do not
		 * want to shrink a VM that only started to populate its MMU
		 * anyway.
		 */
6090 6091
		if (!kvm->arch.n_used_mmu_pages &&
		    !kvm_has_zapped_obsolete_pages(kvm))
6092 6093
			continue;

6094
		idx = srcu_read_lock(&kvm->srcu);
6095 6096
		spin_lock(&kvm->mmu_lock);

6097 6098 6099 6100 6101 6102
		if (kvm_has_zapped_obsolete_pages(kvm)) {
			kvm_mmu_commit_zap_page(kvm,
			      &kvm->arch.zapped_obsolete_pages);
			goto unlock;
		}

6103 6104
		if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
			freed++;
6105
		kvm_mmu_commit_zap_page(kvm, &invalid_list);
6106

6107
unlock:
6108
		spin_unlock(&kvm->mmu_lock);
6109
		srcu_read_unlock(&kvm->srcu, idx);
6110

6111 6112 6113 6114 6115
		/*
		 * unfair on small ones
		 * per-vm shrinkers cry out
		 * sadness comes quickly
		 */
6116 6117
		list_move_tail(&kvm->vm_list, &vm_list);
		break;
6118 6119
	}

J
Junaid Shahid 已提交
6120
	mutex_unlock(&kvm_lock);
6121 6122 6123 6124 6125 6126
	return freed;
}

static unsigned long
mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
{
6127
	return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
6128 6129 6130
}

static struct shrinker mmu_shrinker = {
6131 6132
	.count_objects = mmu_shrink_count,
	.scan_objects = mmu_shrink_scan,
6133 6134 6135
	.seeks = DEFAULT_SEEKS * 10,
};

I
Ingo Molnar 已提交
6136
static void mmu_destroy_caches(void)
6137
{
6138 6139
	kmem_cache_destroy(pte_list_desc_cache);
	kmem_cache_destroy(mmu_page_header_cache);
6140 6141
}

6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163
static void kvm_set_mmio_spte_mask(void)
{
	u64 mask;

	/*
	 * Set the reserved bits and the present bit of an paging-structure
	 * entry to generate page fault with PFER.RSV = 1.
	 */

	/*
	 * Mask the uppermost physical address bit, which would be reserved as
	 * long as the supported physical address width is less than 52.
	 */
	mask = 1ull << 51;

	/* Set the present bit. */
	mask |= 1ull;

	/*
	 * If reserved bit is not supported, clear the present bit to disable
	 * mmio page fault.
	 */
6164
	if (shadow_phys_bits == 52)
6165 6166
		mask &= ~1ull;

6167
	kvm_mmu_set_mmio_spte_mask(mask, mask, ACC_WRITE_MASK | ACC_USER_MASK);
6168 6169
}

P
Paolo Bonzini 已提交
6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203
static bool get_nx_auto_mode(void)
{
	/* Return true when CPU has the bug, and mitigations are ON */
	return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
}

static void __set_nx_huge_pages(bool val)
{
	nx_huge_pages = itlb_multihit_kvm_mitigation = val;
}

static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
{
	bool old_val = nx_huge_pages;
	bool new_val;

	/* In "auto" mode deploy workaround only if CPU has the bug. */
	if (sysfs_streq(val, "off"))
		new_val = 0;
	else if (sysfs_streq(val, "force"))
		new_val = 1;
	else if (sysfs_streq(val, "auto"))
		new_val = get_nx_auto_mode();
	else if (strtobool(val, &new_val) < 0)
		return -EINVAL;

	__set_nx_huge_pages(new_val);

	if (new_val != old_val) {
		struct kvm *kvm;

		mutex_lock(&kvm_lock);

		list_for_each_entry(kvm, &vm_list, vm_list) {
6204
			mutex_lock(&kvm->slots_lock);
P
Paolo Bonzini 已提交
6205
			kvm_mmu_zap_all_fast(kvm);
6206
			mutex_unlock(&kvm->slots_lock);
6207 6208

			wake_up_process(kvm->arch.nx_lpage_recovery_thread);
P
Paolo Bonzini 已提交
6209 6210 6211 6212 6213 6214 6215
		}
		mutex_unlock(&kvm_lock);
	}

	return 0;
}

6216 6217
int kvm_mmu_module_init(void)
{
6218 6219
	int ret = -ENOMEM;

P
Paolo Bonzini 已提交
6220 6221 6222
	if (nx_huge_pages == -1)
		__set_nx_huge_pages(get_nx_auto_mode());

6223 6224 6225 6226 6227 6228 6229 6230 6231 6232
	/*
	 * MMU roles use union aliasing which is, generally speaking, an
	 * undefined behavior. However, we supposedly know how compilers behave
	 * and the current status quo is unlikely to change. Guardians below are
	 * supposed to let us know if the assumption becomes false.
	 */
	BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
	BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
	BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));

6233
	kvm_mmu_reset_all_pte_masks();
6234

6235 6236
	kvm_set_mmio_spte_mask();

6237 6238
	pte_list_desc_cache = kmem_cache_create("pte_list_desc",
					    sizeof(struct pte_list_desc),
6239
					    0, SLAB_ACCOUNT, NULL);
6240
	if (!pte_list_desc_cache)
6241
		goto out;
6242

6243 6244
	mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
						  sizeof(struct kvm_mmu_page),
6245
						  0, SLAB_ACCOUNT, NULL);
6246
	if (!mmu_page_header_cache)
6247
		goto out;
6248

6249
	if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
6250
		goto out;
6251

6252 6253 6254
	ret = register_shrinker(&mmu_shrinker);
	if (ret)
		goto out;
6255

6256 6257
	return 0;

6258
out:
6259
	mmu_destroy_caches();
6260
	return ret;
6261 6262
}

6263
/*
P
Peng Hao 已提交
6264
 * Calculate mmu pages needed for kvm.
6265
 */
6266
unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm)
6267
{
6268 6269
	unsigned long nr_mmu_pages;
	unsigned long nr_pages = 0;
6270
	struct kvm_memslots *slots;
6271
	struct kvm_memory_slot *memslot;
6272
	int i;
6273

6274 6275
	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
6276

6277 6278 6279
		kvm_for_each_memslot(memslot, slots)
			nr_pages += memslot->npages;
	}
6280 6281

	nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
6282
	nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
6283 6284 6285 6286

	return nr_mmu_pages;
}

6287 6288
void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
{
6289
	kvm_mmu_unload(vcpu);
6290 6291
	free_mmu_pages(&vcpu->arch.root_mmu);
	free_mmu_pages(&vcpu->arch.guest_mmu);
6292
	mmu_free_memory_caches(vcpu);
6293 6294 6295 6296 6297 6298 6299
}

void kvm_mmu_module_exit(void)
{
	mmu_destroy_caches();
	percpu_counter_destroy(&kvm_total_used_mmu_pages);
	unregister_shrinker(&mmu_shrinker);
6300 6301
	mmu_audit_disable();
}
6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414

static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp)
{
	unsigned int old_val;
	int err;

	old_val = nx_huge_pages_recovery_ratio;
	err = param_set_uint(val, kp);
	if (err)
		return err;

	if (READ_ONCE(nx_huge_pages) &&
	    !old_val && nx_huge_pages_recovery_ratio) {
		struct kvm *kvm;

		mutex_lock(&kvm_lock);

		list_for_each_entry(kvm, &vm_list, vm_list)
			wake_up_process(kvm->arch.nx_lpage_recovery_thread);

		mutex_unlock(&kvm_lock);
	}

	return err;
}

static void kvm_recover_nx_lpages(struct kvm *kvm)
{
	int rcu_idx;
	struct kvm_mmu_page *sp;
	unsigned int ratio;
	LIST_HEAD(invalid_list);
	ulong to_zap;

	rcu_idx = srcu_read_lock(&kvm->srcu);
	spin_lock(&kvm->mmu_lock);

	ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
	to_zap = ratio ? DIV_ROUND_UP(kvm->stat.nx_lpage_splits, ratio) : 0;
	while (to_zap && !list_empty(&kvm->arch.lpage_disallowed_mmu_pages)) {
		/*
		 * We use a separate list instead of just using active_mmu_pages
		 * because the number of lpage_disallowed pages is expected to
		 * be relatively small compared to the total.
		 */
		sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
				      struct kvm_mmu_page,
				      lpage_disallowed_link);
		WARN_ON_ONCE(!sp->lpage_disallowed);
		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
		WARN_ON_ONCE(sp->lpage_disallowed);

		if (!--to_zap || need_resched() || spin_needbreak(&kvm->mmu_lock)) {
			kvm_mmu_commit_zap_page(kvm, &invalid_list);
			if (to_zap)
				cond_resched_lock(&kvm->mmu_lock);
		}
	}

	spin_unlock(&kvm->mmu_lock);
	srcu_read_unlock(&kvm->srcu, rcu_idx);
}

static long get_nx_lpage_recovery_timeout(u64 start_time)
{
	return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio)
		? start_time + 60 * HZ - get_jiffies_64()
		: MAX_SCHEDULE_TIMEOUT;
}

static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
{
	u64 start_time;
	long remaining_time;

	while (true) {
		start_time = get_jiffies_64();
		remaining_time = get_nx_lpage_recovery_timeout(start_time);

		set_current_state(TASK_INTERRUPTIBLE);
		while (!kthread_should_stop() && remaining_time > 0) {
			schedule_timeout(remaining_time);
			remaining_time = get_nx_lpage_recovery_timeout(start_time);
			set_current_state(TASK_INTERRUPTIBLE);
		}

		set_current_state(TASK_RUNNING);

		if (kthread_should_stop())
			return 0;

		kvm_recover_nx_lpages(kvm);
	}
}

int kvm_mmu_post_init_vm(struct kvm *kvm)
{
	int err;

	err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
					  "kvm-nx-lpage-recovery",
					  &kvm->arch.nx_lpage_recovery_thread);
	if (!err)
		kthread_unpark(kvm->arch.nx_lpage_recovery_thread);

	return err;
}

void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
{
	if (kvm->arch.nx_lpage_recovery_thread)
		kthread_stop(kvm->arch.nx_lpage_recovery_thread);
}