mmu.c 171.7 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
A
Avi Kivity 已提交
2 3 4 5 6 7 8 9 10
/*
 * Kernel-based Virtual Machine driver for Linux
 *
 * This module enables machines with Intel VT-x extensions to run virtual
 * machines without emulation or binary translation.
 *
 * MMU support
 *
 * Copyright (C) 2006 Qumranet, Inc.
N
Nicolas Kaiser 已提交
11
 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
A
Avi Kivity 已提交
12 13 14 15 16
 *
 * Authors:
 *   Yaniv Kamay  <yaniv@qumranet.com>
 *   Avi Kivity   <avi@qumranet.com>
 */
A
Avi Kivity 已提交
17

18
#include "irq.h"
19
#include "ioapic.h"
20
#include "mmu.h"
21
#include "mmu_internal.h"
22
#include "tdp_mmu.h"
23
#include "x86.h"
A
Avi Kivity 已提交
24
#include "kvm_cache_regs.h"
25
#include "kvm_emulate.h"
26
#include "cpuid.h"
27
#include "spte.h"
A
Avi Kivity 已提交
28

29
#include <linux/kvm_host.h>
A
Avi Kivity 已提交
30 31 32 33
#include <linux/types.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/highmem.h>
34 35
#include <linux/moduleparam.h>
#include <linux/export.h>
36
#include <linux/swap.h>
M
Marcelo Tosatti 已提交
37
#include <linux/hugetlb.h>
38
#include <linux/compiler.h>
39
#include <linux/srcu.h>
40
#include <linux/slab.h>
41
#include <linux/sched/signal.h>
42
#include <linux/uaccess.h>
43
#include <linux/hash.h>
44
#include <linux/kern_levels.h>
45
#include <linux/kthread.h>
A
Avi Kivity 已提交
46

A
Avi Kivity 已提交
47
#include <asm/page.h>
48
#include <asm/memtype.h>
A
Avi Kivity 已提交
49
#include <asm/cmpxchg.h>
50
#include <asm/io.h>
51
#include <asm/set_memory.h>
52
#include <asm/vmx.h>
53
#include <asm/kvm_page_track.h>
54
#include "trace.h"
A
Avi Kivity 已提交
55

56 57
#include "paging.h"

P
Paolo Bonzini 已提交
58 59
extern bool itlb_multihit_kvm_mitigation;

60
int __read_mostly nx_huge_pages = -1;
61
static uint __read_mostly nx_huge_pages_recovery_period_ms;
62 63 64 65
#ifdef CONFIG_PREEMPT_RT
/* Recovery can cause latency spikes, disable it for PREEMPT_RT.  */
static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
#else
66
static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
67
#endif
P
Paolo Bonzini 已提交
68 69

static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
70
static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp);
P
Paolo Bonzini 已提交
71

72
static const struct kernel_param_ops nx_huge_pages_ops = {
P
Paolo Bonzini 已提交
73 74 75 76
	.set = set_nx_huge_pages,
	.get = param_get_bool,
};

77 78
static const struct kernel_param_ops nx_huge_pages_recovery_param_ops = {
	.set = set_nx_huge_pages_recovery_param,
79 80 81
	.get = param_get_uint,
};

P
Paolo Bonzini 已提交
82 83
module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
__MODULE_PARM_TYPE(nx_huge_pages, "bool");
84
module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_param_ops,
85 86
		&nx_huge_pages_recovery_ratio, 0644);
__MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
87 88 89
module_param_cb(nx_huge_pages_recovery_period_ms, &nx_huge_pages_recovery_param_ops,
		&nx_huge_pages_recovery_period_ms, 0644);
__MODULE_PARM_TYPE(nx_huge_pages_recovery_period_ms, "uint");
P
Paolo Bonzini 已提交
90

91 92 93
static bool __read_mostly force_flush_and_sync_on_reuse;
module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644);

94 95 96 97 98 99 100
/*
 * When setting this variable to true it enables Two-Dimensional-Paging
 * where the hardware walks 2 page tables:
 * 1. the guest-virtual to guest-physical
 * 2. while doing 1. it walks guest-physical to host-physical
 * If the hardware supports that we don't need to do shadow paging.
 */
101
bool tdp_enabled = false;
102

103
static int max_huge_page_level __read_mostly;
104
static int tdp_root_level __read_mostly;
105
static int max_tdp_level __read_mostly;
106

107
#ifdef MMU_DEBUG
108
bool dbg = 0;
109
module_param(dbg, bool, 0644);
110
#endif
A
Avi Kivity 已提交
111

112 113
#define PTE_PREFETCH_NUM		8

A
Avi Kivity 已提交
114 115 116
#define PT32_LEVEL_BITS 10

#define PT32_LEVEL_SHIFT(level) \
M
Mike Day 已提交
117
		(PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
A
Avi Kivity 已提交
118

119 120 121
#define PT32_LVL_OFFSET_MASK(level) \
	(PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
122 123 124 125 126 127 128 129

#define PT32_INDEX(address, level)\
	(((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))


#define PT32_BASE_ADDR_MASK PAGE_MASK
#define PT32_DIR_BASE_ADDR_MASK \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
130 131 132
#define PT32_LVL_ADDR_MASK(level) \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
					    * PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
133

134 135
#include <trace/events/kvm.h>

136
/* make pte_list_desc fit well in cache lines */
137
#define PTE_LIST_EXT 14
138

139 140 141 142 143
/*
 * Slight optimization of cacheline layout, by putting `more' and `spte_count'
 * at the start; then accessing it will only use one single cacheline for
 * either full (entries==PTE_LIST_EXT) case or entries<=6.
 */
144 145
struct pte_list_desc {
	struct pte_list_desc *more;
146 147 148 149 150 151
	/*
	 * Stores number of entries stored in the pte_list_desc.  No need to be
	 * u64 but just for easier alignment.  When PTE_LIST_EXT, means full.
	 */
	u64 spte_count;
	u64 *sptes[PTE_LIST_EXT];
152 153
};

154 155 156 157
struct kvm_shadow_walk_iterator {
	u64 addr;
	hpa_t shadow_addr;
	u64 *sptep;
158
	int level;
159 160 161
	unsigned index;
};

162 163 164 165 166 167 168
#define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker)     \
	for (shadow_walk_init_using_root(&(_walker), (_vcpu),              \
					 (_root), (_addr));                \
	     shadow_walk_okay(&(_walker));			           \
	     shadow_walk_next(&(_walker)))

#define for_each_shadow_entry(_vcpu, _addr, _walker)            \
169 170 171 172
	for (shadow_walk_init(&(_walker), _vcpu, _addr);	\
	     shadow_walk_okay(&(_walker));			\
	     shadow_walk_next(&(_walker)))

173 174 175 176 177 178
#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)	\
	for (shadow_walk_init(&(_walker), _vcpu, _addr);		\
	     shadow_walk_okay(&(_walker)) &&				\
		({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });	\
	     __shadow_walk_next(&(_walker), spte))

179
static struct kmem_cache *pte_list_desc_cache;
180
struct kmem_cache *mmu_page_header_cache;
181
static struct percpu_counter kvm_total_used_mmu_pages;
182

183 184
static void mmu_spte_set(u64 *sptep, u64 spte);

185 186 187 188 189 190
struct kvm_mmu_role_regs {
	const unsigned long cr0;
	const unsigned long cr4;
	const u64 efer;
};

191 192 193
#define CREATE_TRACE_POINTS
#include "mmutrace.h"

194 195 196 197 198 199
/*
 * Yes, lot's of underscores.  They're a hint that you probably shouldn't be
 * reading from the role_regs.  Once the mmu_role is constructed, it becomes
 * the single source of truth for the MMU's state.
 */
#define BUILD_MMU_ROLE_REGS_ACCESSOR(reg, name, flag)			\
200
static inline bool __maybe_unused ____is_##reg##_##name(struct kvm_mmu_role_regs *regs)\
201 202 203 204 205 206 207 208 209 210 211 212 213 214
{									\
	return !!(regs->reg & flag);					\
}
BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, pg, X86_CR0_PG);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, wp, X86_CR0_WP);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pse, X86_CR4_PSE);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pae, X86_CR4_PAE);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smep, X86_CR4_SMEP);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smap, X86_CR4_SMAP);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pke, X86_CR4_PKE);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, la57, X86_CR4_LA57);
BUILD_MMU_ROLE_REGS_ACCESSOR(efer, nx, EFER_NX);
BUILD_MMU_ROLE_REGS_ACCESSOR(efer, lma, EFER_LMA);

215 216 217 218 219 220 221
/*
 * The MMU itself (with a valid role) is the single source of truth for the
 * MMU.  Do not use the regs used to build the MMU/role, nor the vCPU.  The
 * regs don't account for dependencies, e.g. clearing CR4 bits if CR0.PG=1,
 * and the vCPU may be incorrect/irrelevant.
 */
#define BUILD_MMU_ROLE_ACCESSOR(base_or_ext, reg, name)		\
222
static inline bool __maybe_unused is_##reg##_##name(struct kvm_mmu *mmu)	\
223 224 225 226 227 228 229 230 231 232 233 234 235
{								\
	return !!(mmu->mmu_role. base_or_ext . reg##_##name);	\
}
BUILD_MMU_ROLE_ACCESSOR(ext,  cr0, pg);
BUILD_MMU_ROLE_ACCESSOR(base, cr0, wp);
BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, pse);
BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, pae);
BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, smep);
BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, smap);
BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, pke);
BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, la57);
BUILD_MMU_ROLE_ACCESSOR(base, efer, nx);

236 237 238 239 240 241 242 243 244 245
static struct kvm_mmu_role_regs vcpu_to_role_regs(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu_role_regs regs = {
		.cr0 = kvm_read_cr0_bits(vcpu, KVM_MMU_CR0_ROLE_BITS),
		.cr4 = kvm_read_cr4_bits(vcpu, KVM_MMU_CR4_ROLE_BITS),
		.efer = vcpu->arch.efer,
	};

	return regs;
}
246

247 248 249 250 251 252 253 254 255 256 257 258
static int role_regs_to_root_level(struct kvm_mmu_role_regs *regs)
{
	if (!____is_cr0_pg(regs))
		return 0;
	else if (____is_efer_lma(regs))
		return ____is_cr4_la57(regs) ? PT64_ROOT_5LEVEL :
					       PT64_ROOT_4LEVEL;
	else if (____is_cr4_pae(regs))
		return PT32E_ROOT_LEVEL;
	else
		return PT32_ROOT_LEVEL;
}
259 260 261

static inline bool kvm_available_flush_tlb_with_range(void)
{
262
	return kvm_x86_ops.tlb_remote_flush_with_range;
263 264 265 266 267 268 269
}

static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
		struct kvm_tlb_range *range)
{
	int ret = -ENOTSUPP;

270
	if (range && kvm_x86_ops.tlb_remote_flush_with_range)
271
		ret = static_call(kvm_x86_tlb_remote_flush_with_range)(kvm, range);
272 273 274 275 276

	if (ret)
		kvm_flush_remote_tlbs(kvm);
}

277
void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
278 279 280 281 282 283 284 285 286 287
		u64 start_gfn, u64 pages)
{
	struct kvm_tlb_range range;

	range.start_gfn = start_gfn;
	range.pages = pages;

	kvm_flush_remote_tlbs_with_range(kvm, &range);
}

288 289 290
static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
			   unsigned int access)
{
291
	u64 spte = make_mmio_spte(vcpu, gfn, access);
292

293 294
	trace_mark_mmio_spte(sptep, gfn, spte);
	mmu_spte_set(sptep, spte);
295 296 297 298
}

static gfn_t get_mmio_spte_gfn(u64 spte)
{
299
	u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
300

301
	gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)
302 303 304
	       & shadow_nonpresent_or_rsvd_mask;

	return gpa >> PAGE_SHIFT;
305 306 307 308
}

static unsigned get_mmio_spte_access(u64 spte)
{
309
	return spte & shadow_mmio_access_mask;
310 311
}

312
static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
313
{
314
	u64 kvm_gen, spte_gen, gen;
315

316 317 318
	gen = kvm_vcpu_memslots(vcpu)->generation;
	if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
		return false;
319

320
	kvm_gen = gen & MMIO_SPTE_GEN_MASK;
321 322 323 324
	spte_gen = get_mmio_spte_generation(spte);

	trace_check_mmio_spte(spte, kvm_gen, spte_gen);
	return likely(kvm_gen == spte_gen);
325 326
}

A
Avi Kivity 已提交
327 328 329 330 331
static int is_cpuid_PSE36(void)
{
	return 1;
}

332 333 334 335 336 337 338
static gfn_t pse36_gfn_delta(u32 gpte)
{
	int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;

	return (gpte & PT32_DIR_PSE36_MASK) << shift;
}

339
#ifdef CONFIG_X86_64
A
Avi Kivity 已提交
340
static void __set_spte(u64 *sptep, u64 spte)
341
{
342
	WRITE_ONCE(*sptep, spte);
343 344
}

345
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
346
{
347
	WRITE_ONCE(*sptep, spte);
348 349 350 351 352 353
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	return xchg(sptep, spte);
}
354 355 356

static u64 __get_spte_lockless(u64 *sptep)
{
357
	return READ_ONCE(*sptep);
358
}
359
#else
360 361 362 363 364 365 366
union split_spte {
	struct {
		u32 spte_low;
		u32 spte_high;
	};
	u64 spte;
};
367

368 369
static void count_spte_clear(u64 *sptep, u64 spte)
{
370
	struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
371 372 373 374 375 376 377 378 379

	if (is_shadow_present_pte(spte))
		return;

	/* Ensure the spte is completely set before we increase the count */
	smp_wmb();
	sp->clear_spte_count++;
}

380 381 382
static void __set_spte(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;
383

384 385 386 387 388 389 390 391 392 393 394 395
	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	ssptep->spte_high = sspte.spte_high;

	/*
	 * If we map the spte from nonpresent to present, We should store
	 * the high bits firstly, then set present bit, so cpu can not
	 * fetch this spte while we are setting the spte.
	 */
	smp_wmb();

396
	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
397 398
}

399 400 401 402 403 404 405
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

406
	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
407 408 409 410 411 412 413 414

	/*
	 * If we map the spte from present to nonpresent, we should clear
	 * present bit firstly to avoid vcpu fetch the old high bits.
	 */
	smp_wmb();

	ssptep->spte_high = sspte.spte_high;
415
	count_spte_clear(sptep, spte);
416 417 418 419 420 421 422 423 424 425 426
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte, orig;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	/* xchg acts as a barrier before the setting of the high bits */
	orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
427 428
	orig.spte_high = ssptep->spte_high;
	ssptep->spte_high = sspte.spte_high;
429
	count_spte_clear(sptep, spte);
430 431 432

	return orig.spte;
}
433 434 435

/*
 * The idea using the light way get the spte on x86_32 guest is from
436
 * gup_get_pte (mm/gup.c).
437 438 439 440 441 442 443 444 445 446 447 448 449 450
 *
 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
 * coalesces them and we are running out of the MMU lock.  Therefore
 * we need to protect against in-progress updates of the spte.
 *
 * Reading the spte while an update is in progress may get the old value
 * for the high part of the spte.  The race is fine for a present->non-present
 * change (because the high part of the spte is ignored for non-present spte),
 * but for a present->present change we must reread the spte.
 *
 * All such changes are done in two steps (present->non-present and
 * non-present->present), hence it is enough to count the number of
 * present->non-present updates: if it changed while reading the spte,
 * we might have hit the race.  This is done using clear_spte_count.
451 452 453
 */
static u64 __get_spte_lockless(u64 *sptep)
{
454
	struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
	union split_spte spte, *orig = (union split_spte *)sptep;
	int count;

retry:
	count = sp->clear_spte_count;
	smp_rmb();

	spte.spte_low = orig->spte_low;
	smp_rmb();

	spte.spte_high = orig->spte_high;
	smp_rmb();

	if (unlikely(spte.spte_low != orig->spte_low ||
	      count != sp->clear_spte_count))
		goto retry;

	return spte.spte;
}
474 475
#endif

476 477
static bool spte_has_volatile_bits(u64 spte)
{
478 479 480
	if (!is_shadow_present_pte(spte))
		return false;

481
	/*
482
	 * Always atomically update spte if it can be updated
483 484 485 486
	 * out of mmu-lock, it can ensure dirty bit is not lost,
	 * also, it can help us to get a stable is_writable_pte()
	 * to ensure tlb flush is not missed.
	 */
487 488
	if (spte_can_locklessly_be_made_writable(spte) ||
	    is_access_track_spte(spte))
489 490
		return true;

491
	if (spte_ad_enabled(spte)) {
492 493 494 495
		if ((spte & shadow_accessed_mask) == 0 ||
	    	    (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
			return true;
	}
496

497
	return false;
498 499
}

500 501 502 503 504 505 506 507 508 509 510 511
/* Rules for using mmu_spte_set:
 * Set the sptep from nonpresent to present.
 * Note: the sptep being assigned *must* be either not present
 * or in a state where the hardware will not attempt to update
 * the spte.
 */
static void mmu_spte_set(u64 *sptep, u64 new_spte)
{
	WARN_ON(is_shadow_present_pte(*sptep));
	__set_spte(sptep, new_spte);
}

512 513 514
/*
 * Update the SPTE (excluding the PFN), but do not track changes in its
 * accessed/dirty status.
515
 */
516
static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
517
{
518
	u64 old_spte = *sptep;
519

520
	WARN_ON(!is_shadow_present_pte(new_spte));
521
	check_spte_writable_invariants(new_spte);
522

523 524
	if (!is_shadow_present_pte(old_spte)) {
		mmu_spte_set(sptep, new_spte);
525
		return old_spte;
526
	}
527

528
	if (!spte_has_volatile_bits(old_spte))
529
		__update_clear_spte_fast(sptep, new_spte);
530
	else
531
		old_spte = __update_clear_spte_slow(sptep, new_spte);
532

533 534
	WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));

535 536 537 538 539 540
	return old_spte;
}

/* Rules for using mmu_spte_update:
 * Update the state bits, it means the mapped pfn is not changed.
 *
541 542 543
 * Whenever an MMU-writable SPTE is overwritten with a read-only SPTE, remote
 * TLBs must be flushed. Otherwise rmap_write_protect will find a read-only
 * spte, even though the writable spte might be cached on a CPU's TLB.
544 545 546 547 548 549 550 551 552 553 554
 *
 * Returns true if the TLB needs to be flushed
 */
static bool mmu_spte_update(u64 *sptep, u64 new_spte)
{
	bool flush = false;
	u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);

	if (!is_shadow_present_pte(old_spte))
		return false;

555 556
	/*
	 * For the spte updated out of mmu-lock is safe, since
557
	 * we always atomically update it, see the comments in
558 559
	 * spte_has_volatile_bits().
	 */
560
	if (spte_can_locklessly_be_made_writable(old_spte) &&
561
	      !is_writable_pte(new_spte))
562
		flush = true;
563

564
	/*
565
	 * Flush TLB when accessed/dirty states are changed in the page tables,
566 567 568
	 * to guarantee consistency between TLB and page tables.
	 */

569 570
	if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
		flush = true;
571
		kvm_set_pfn_accessed(spte_to_pfn(old_spte));
572 573 574 575
	}

	if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
		flush = true;
576
		kvm_set_pfn_dirty(spte_to_pfn(old_spte));
577
	}
578

579
	return flush;
580 581
}

582 583 584 585
/*
 * Rules for using mmu_spte_clear_track_bits:
 * It sets the sptep from present to nonpresent, and track the
 * state bits, it is used to clear the last level sptep.
586
 * Returns the old PTE.
587
 */
588
static int mmu_spte_clear_track_bits(struct kvm *kvm, u64 *sptep)
589
{
D
Dan Williams 已提交
590
	kvm_pfn_t pfn;
591
	u64 old_spte = *sptep;
592
	int level = sptep_to_sp(sptep)->role.level;
593 594

	if (!spte_has_volatile_bits(old_spte))
595
		__update_clear_spte_fast(sptep, 0ull);
596
	else
597
		old_spte = __update_clear_spte_slow(sptep, 0ull);
598

599
	if (!is_shadow_present_pte(old_spte))
600
		return old_spte;
601

602 603
	kvm_update_page_stats(kvm, level, -1);

604
	pfn = spte_to_pfn(old_spte);
605 606 607 608 609 610

	/*
	 * KVM does not hold the refcount of the page used by
	 * kvm mmu, before reclaiming the page, we should
	 * unmap it from mmu first.
	 */
611
	WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
612

613
	if (is_accessed_spte(old_spte))
614
		kvm_set_pfn_accessed(pfn);
615 616

	if (is_dirty_spte(old_spte))
617
		kvm_set_pfn_dirty(pfn);
618

619
	return old_spte;
620 621 622 623 624 625 626 627 628
}

/*
 * Rules for using mmu_spte_clear_no_track:
 * Directly clear spte without caring the state bits of sptep,
 * it is used to set the upper level spte.
 */
static void mmu_spte_clear_no_track(u64 *sptep)
{
629
	__update_clear_spte_fast(sptep, 0ull);
630 631
}

632 633 634 635 636
static u64 mmu_spte_get_lockless(u64 *sptep)
{
	return __get_spte_lockless(sptep);
}

637 638 639 640 641 642 643 644
/* Returns the Accessed status of the PTE and resets it at the same time. */
static bool mmu_spte_age(u64 *sptep)
{
	u64 spte = mmu_spte_get_lockless(sptep);

	if (!is_accessed_spte(spte))
		return false;

645
	if (spte_ad_enabled(spte)) {
646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
		clear_bit((ffs(shadow_accessed_mask) - 1),
			  (unsigned long *)sptep);
	} else {
		/*
		 * Capture the dirty status of the page, so that it doesn't get
		 * lost when the SPTE is marked for access tracking.
		 */
		if (is_writable_pte(spte))
			kvm_set_pfn_dirty(spte_to_pfn(spte));

		spte = mark_spte_for_access_track(spte);
		mmu_spte_update_no_track(sptep, spte);
	}

	return true;
}

663 664
static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
{
665 666 667 668 669 670 671 672
	if (is_tdp_mmu(vcpu->arch.mmu)) {
		kvm_tdp_mmu_walk_lockless_begin();
	} else {
		/*
		 * Prevent page table teardown by making any free-er wait during
		 * kvm_flush_remote_tlbs() IPI to all active vcpus.
		 */
		local_irq_disable();
673

674 675 676 677 678 679
		/*
		 * Make sure a following spte read is not reordered ahead of the write
		 * to vcpu->mode.
		 */
		smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
	}
680 681 682 683
}

static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
{
684 685 686 687 688 689 690 691 692 693 694
	if (is_tdp_mmu(vcpu->arch.mmu)) {
		kvm_tdp_mmu_walk_lockless_end();
	} else {
		/*
		 * Make sure the write to vcpu->mode is not reordered in front of
		 * reads to sptes.  If it does, kvm_mmu_commit_zap_page() can see us
		 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
		 */
		smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
		local_irq_enable();
	}
695 696
}

697
static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect)
698
{
699 700
	int r;

701
	/* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */
702 703
	r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
				       1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM);
704
	if (r)
705
		return r;
706 707
	r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache,
				       PT64_ROOT_MAX_LEVEL);
708
	if (r)
709
		return r;
710
	if (maybe_indirect) {
711 712
		r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_gfn_array_cache,
					       PT64_ROOT_MAX_LEVEL);
713 714 715
		if (r)
			return r;
	}
716 717
	return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
					  PT64_ROOT_MAX_LEVEL);
718 719 720 721
}

static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
{
722 723 724 725
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache);
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache);
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_gfn_array_cache);
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
726 727
}

728
static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
729
{
730
	return kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
731 732
}

733
static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
734
{
735
	kmem_cache_free(pte_list_desc_cache, pte_list_desc);
736 737
}

738 739 740 741 742 743 744 745 746 747
static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
{
	if (!sp->role.direct)
		return sp->gfns[index];

	return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
}

static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
{
748
	if (!sp->role.direct) {
749
		sp->gfns[index] = gfn;
750 751 752 753 754 755 756 757
		return;
	}

	if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
		pr_err_ratelimited("gfn mismatch under direct page %llx "
				   "(expected %llx, got %llx)\n",
				   sp->gfn,
				   kvm_mmu_page_get_gfn(sp, index), gfn);
758 759
}

M
Marcelo Tosatti 已提交
760
/*
761 762
 * Return the pointer to the large page information for a given gfn,
 * handling slots that are not large page aligned.
M
Marcelo Tosatti 已提交
763
 */
764
static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
765
		const struct kvm_memory_slot *slot, int level)
M
Marcelo Tosatti 已提交
766 767 768
{
	unsigned long idx;

769
	idx = gfn_to_index(gfn, slot->base_gfn, level);
770
	return &slot->arch.lpage_info[level - 2][idx];
M
Marcelo Tosatti 已提交
771 772
}

773
static void update_gfn_disallow_lpage_count(const struct kvm_memory_slot *slot,
774 775 776 777 778
					    gfn_t gfn, int count)
{
	struct kvm_lpage_info *linfo;
	int i;

779
	for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
780 781 782 783 784 785
		linfo = lpage_info_slot(gfn, slot, i);
		linfo->disallow_lpage += count;
		WARN_ON(linfo->disallow_lpage < 0);
	}
}

786
void kvm_mmu_gfn_disallow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn)
787 788 789 790
{
	update_gfn_disallow_lpage_count(slot, gfn, 1);
}

791
void kvm_mmu_gfn_allow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn)
792 793 794 795
{
	update_gfn_disallow_lpage_count(slot, gfn, -1);
}

796
static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
M
Marcelo Tosatti 已提交
797
{
798
	struct kvm_memslots *slots;
799
	struct kvm_memory_slot *slot;
800
	gfn_t gfn;
M
Marcelo Tosatti 已提交
801

802
	kvm->arch.indirect_shadow_pages++;
803
	gfn = sp->gfn;
804 805
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
806 807

	/* the non-leaf shadow pages are keeping readonly. */
808
	if (sp->role.level > PG_LEVEL_4K)
809 810 811
		return kvm_slot_page_track_add_page(kvm, slot, gfn,
						    KVM_PAGE_TRACK_WRITE);

812
	kvm_mmu_gfn_disallow_lpage(slot, gfn);
M
Marcelo Tosatti 已提交
813 814
}

815
void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
P
Paolo Bonzini 已提交
816 817 818 819 820
{
	if (sp->lpage_disallowed)
		return;

	++kvm->stat.nx_lpage_splits;
821 822
	list_add_tail(&sp->lpage_disallowed_link,
		      &kvm->arch.lpage_disallowed_mmu_pages);
P
Paolo Bonzini 已提交
823 824 825
	sp->lpage_disallowed = true;
}

826
static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
M
Marcelo Tosatti 已提交
827
{
828
	struct kvm_memslots *slots;
829
	struct kvm_memory_slot *slot;
830
	gfn_t gfn;
M
Marcelo Tosatti 已提交
831

832
	kvm->arch.indirect_shadow_pages--;
833
	gfn = sp->gfn;
834 835
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
836
	if (sp->role.level > PG_LEVEL_4K)
837 838 839
		return kvm_slot_page_track_remove_page(kvm, slot, gfn,
						       KVM_PAGE_TRACK_WRITE);

840
	kvm_mmu_gfn_allow_lpage(slot, gfn);
M
Marcelo Tosatti 已提交
841 842
}

843
void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
P
Paolo Bonzini 已提交
844 845 846
{
	--kvm->stat.nx_lpage_splits;
	sp->lpage_disallowed = false;
847
	list_del(&sp->lpage_disallowed_link);
P
Paolo Bonzini 已提交
848 849
}

850 851 852
static struct kvm_memory_slot *
gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
			    bool no_dirty_log)
M
Marcelo Tosatti 已提交
853 854
{
	struct kvm_memory_slot *slot;
855

856
	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
857 858
	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
		return NULL;
859
	if (no_dirty_log && kvm_slot_dirty_track_enabled(slot))
860
		return NULL;
861 862 863 864

	return slot;
}

865
/*
866
 * About rmap_head encoding:
867
 *
868 869
 * If the bit zero of rmap_head->val is clear, then it points to the only spte
 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
870
 * pte_list_desc containing more mappings.
871 872 873 874
 */

/*
 * Returns the number of pointers in the rmap chain, not counting the new one.
875
 */
876
static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
877
			struct kvm_rmap_head *rmap_head)
878
{
879
	struct pte_list_desc *desc;
880
	int count = 0;
881

882
	if (!rmap_head->val) {
883
		rmap_printk("%p %llx 0->1\n", spte, *spte);
884 885
		rmap_head->val = (unsigned long)spte;
	} else if (!(rmap_head->val & 1)) {
886
		rmap_printk("%p %llx 1->many\n", spte, *spte);
887
		desc = mmu_alloc_pte_list_desc(vcpu);
888
		desc->sptes[0] = (u64 *)rmap_head->val;
A
Avi Kivity 已提交
889
		desc->sptes[1] = spte;
890
		desc->spte_count = 2;
891
		rmap_head->val = (unsigned long)desc | 1;
892
		++count;
893
	} else {
894
		rmap_printk("%p %llx many->many\n", spte, *spte);
895
		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
896
		while (desc->spte_count == PTE_LIST_EXT) {
897
			count += PTE_LIST_EXT;
898 899 900
			if (!desc->more) {
				desc->more = mmu_alloc_pte_list_desc(vcpu);
				desc = desc->more;
901
				desc->spte_count = 0;
902 903
				break;
			}
904 905
			desc = desc->more;
		}
906 907
		count += desc->spte_count;
		desc->sptes[desc->spte_count++] = spte;
908
	}
909
	return count;
910 911
}

912
static void
913 914 915
pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
			   struct pte_list_desc *desc, int i,
			   struct pte_list_desc *prev_desc)
916
{
917
	int j = desc->spte_count - 1;
918

A
Avi Kivity 已提交
919 920
	desc->sptes[i] = desc->sptes[j];
	desc->sptes[j] = NULL;
921 922
	desc->spte_count--;
	if (desc->spte_count)
923 924
		return;
	if (!prev_desc && !desc->more)
925
		rmap_head->val = 0;
926 927 928 929
	else
		if (prev_desc)
			prev_desc->more = desc->more;
		else
930
			rmap_head->val = (unsigned long)desc->more | 1;
931
	mmu_free_pte_list_desc(desc);
932 933
}

934
static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
935
{
936 937
	struct pte_list_desc *desc;
	struct pte_list_desc *prev_desc;
938 939
	int i;

940
	if (!rmap_head->val) {
941
		pr_err("%s: %p 0->BUG\n", __func__, spte);
942
		BUG();
943
	} else if (!(rmap_head->val & 1)) {
944
		rmap_printk("%p 1->0\n", spte);
945
		if ((u64 *)rmap_head->val != spte) {
946
			pr_err("%s:  %p 1->BUG\n", __func__, spte);
947 948
			BUG();
		}
949
		rmap_head->val = 0;
950
	} else {
951
		rmap_printk("%p many->many\n", spte);
952
		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
953 954
		prev_desc = NULL;
		while (desc) {
955
			for (i = 0; i < desc->spte_count; ++i) {
A
Avi Kivity 已提交
956
				if (desc->sptes[i] == spte) {
957 958
					pte_list_desc_remove_entry(rmap_head,
							desc, i, prev_desc);
959 960
					return;
				}
961
			}
962 963 964
			prev_desc = desc;
			desc = desc->more;
		}
965
		pr_err("%s: %p many->many\n", __func__, spte);
966 967 968 969
		BUG();
	}
}

970 971
static void pte_list_remove(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			    u64 *sptep)
972
{
973
	mmu_spte_clear_track_bits(kvm, sptep);
974 975 976
	__pte_list_remove(sptep, rmap_head);
}

P
Peter Xu 已提交
977
/* Return true if rmap existed, false otherwise */
978
static bool pte_list_destroy(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
P
Peter Xu 已提交
979 980 981 982 983 984 985 986
{
	struct pte_list_desc *desc, *next;
	int i;

	if (!rmap_head->val)
		return false;

	if (!(rmap_head->val & 1)) {
987
		mmu_spte_clear_track_bits(kvm, (u64 *)rmap_head->val);
P
Peter Xu 已提交
988 989 990 991 992 993 994
		goto out;
	}

	desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);

	for (; desc; desc = next) {
		for (i = 0; i < desc->spte_count; i++)
995
			mmu_spte_clear_track_bits(kvm, desc->sptes[i]);
P
Peter Xu 已提交
996 997 998 999 1000 1001 1002 1003 1004
		next = desc->more;
		mmu_free_pte_list_desc(desc);
	}
out:
	/* rmap_head is meaningless now, remember to reset it */
	rmap_head->val = 0;
	return true;
}

1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
unsigned int pte_list_count(struct kvm_rmap_head *rmap_head)
{
	struct pte_list_desc *desc;
	unsigned int count = 0;

	if (!rmap_head->val)
		return 0;
	else if (!(rmap_head->val & 1))
		return 1;

	desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);

	while (desc) {
		count += desc->spte_count;
		desc = desc->more;
	}

	return count;
}

1025 1026
static struct kvm_rmap_head *gfn_to_rmap(gfn_t gfn, int level,
					 const struct kvm_memory_slot *slot)
1027
{
1028
	unsigned long idx;
1029

1030
	idx = gfn_to_index(gfn, slot->base_gfn, level);
1031
	return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
1032 1033
}

1034 1035
static bool rmap_can_add(struct kvm_vcpu *vcpu)
{
1036
	struct kvm_mmu_memory_cache *mc;
1037

1038
	mc = &vcpu->arch.mmu_pte_list_desc_cache;
1039
	return kvm_mmu_memory_cache_nr_free_objects(mc);
1040 1041
}

1042 1043
static void rmap_remove(struct kvm *kvm, u64 *spte)
{
1044 1045
	struct kvm_memslots *slots;
	struct kvm_memory_slot *slot;
1046 1047
	struct kvm_mmu_page *sp;
	gfn_t gfn;
1048
	struct kvm_rmap_head *rmap_head;
1049

1050
	sp = sptep_to_sp(spte);
1051
	gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1052 1053

	/*
1054 1055 1056
	 * Unlike rmap_add, rmap_remove does not run in the context of a vCPU
	 * so we have to determine which memslots to use based on context
	 * information in sp->role.
1057 1058 1059 1060
	 */
	slots = kvm_memslots_for_spte_role(kvm, sp->role);

	slot = __gfn_to_memslot(slots, gfn);
1061
	rmap_head = gfn_to_rmap(gfn, sp->role.level, slot);
1062

1063
	__pte_list_remove(spte, rmap_head);
1064 1065
}

1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
/*
 * Used by the following functions to iterate through the sptes linked by a
 * rmap.  All fields are private and not assumed to be used outside.
 */
struct rmap_iterator {
	/* private fields */
	struct pte_list_desc *desc;	/* holds the sptep if not NULL */
	int pos;			/* index of the sptep */
};

/*
 * Iteration must be started by this function.  This should also be used after
 * removing/dropping sptes from the rmap link because in such cases the
M
Miaohe Lin 已提交
1079
 * information in the iterator may not be valid.
1080 1081 1082
 *
 * Returns sptep if found, NULL otherwise.
 */
1083 1084
static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
			   struct rmap_iterator *iter)
1085
{
1086 1087
	u64 *sptep;

1088
	if (!rmap_head->val)
1089 1090
		return NULL;

1091
	if (!(rmap_head->val & 1)) {
1092
		iter->desc = NULL;
1093 1094
		sptep = (u64 *)rmap_head->val;
		goto out;
1095 1096
	}

1097
	iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1098
	iter->pos = 0;
1099 1100 1101 1102
	sptep = iter->desc->sptes[iter->pos];
out:
	BUG_ON(!is_shadow_present_pte(*sptep));
	return sptep;
1103 1104 1105 1106 1107 1108 1109 1110 1111
}

/*
 * Must be used with a valid iterator: e.g. after rmap_get_first().
 *
 * Returns sptep if found, NULL otherwise.
 */
static u64 *rmap_get_next(struct rmap_iterator *iter)
{
1112 1113
	u64 *sptep;

1114 1115 1116 1117 1118
	if (iter->desc) {
		if (iter->pos < PTE_LIST_EXT - 1) {
			++iter->pos;
			sptep = iter->desc->sptes[iter->pos];
			if (sptep)
1119
				goto out;
1120 1121 1122 1123 1124 1125 1126
		}

		iter->desc = iter->desc->more;

		if (iter->desc) {
			iter->pos = 0;
			/* desc->sptes[0] cannot be NULL */
1127 1128
			sptep = iter->desc->sptes[iter->pos];
			goto out;
1129 1130 1131 1132
		}
	}

	return NULL;
1133 1134 1135
out:
	BUG_ON(!is_shadow_present_pte(*sptep));
	return sptep;
1136 1137
}

1138 1139
#define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)			\
	for (_spte_ = rmap_get_first(_rmap_head_, _iter_);		\
1140
	     _spte_; _spte_ = rmap_get_next(_iter_))
1141

1142
static void drop_spte(struct kvm *kvm, u64 *sptep)
1143
{
1144
	u64 old_spte = mmu_spte_clear_track_bits(kvm, sptep);
1145 1146

	if (is_shadow_present_pte(old_spte))
1147
		rmap_remove(kvm, sptep);
A
Avi Kivity 已提交
1148 1149
}

1150 1151 1152 1153

static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
{
	if (is_large_pte(*sptep)) {
1154
		WARN_ON(sptep_to_sp(sptep)->role.level == PG_LEVEL_4K);
1155 1156 1157 1158 1159 1160 1161 1162 1163
		drop_spte(kvm, sptep);
		return true;
	}

	return false;
}

static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
{
1164
	if (__drop_large_spte(vcpu->kvm, sptep)) {
1165
		struct kvm_mmu_page *sp = sptep_to_sp(sptep);
1166 1167 1168 1169

		kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
			KVM_PAGES_PER_HPAGE(sp->role.level));
	}
1170 1171 1172
}

/*
1173
 * Write-protect on the specified @sptep, @pt_protect indicates whether
1174
 * spte write-protection is caused by protecting shadow page table.
1175
 *
T
Tiejun Chen 已提交
1176
 * Note: write protection is difference between dirty logging and spte
1177 1178 1179 1180 1181
 * protection:
 * - for dirty logging, the spte can be set to writable at anytime if
 *   its dirty bitmap is properly set.
 * - for spte protection, the spte can be writable only after unsync-ing
 *   shadow page.
1182
 *
1183
 * Return true if tlb need be flushed.
1184
 */
1185
static bool spte_write_protect(u64 *sptep, bool pt_protect)
1186 1187 1188
{
	u64 spte = *sptep;

1189
	if (!is_writable_pte(spte) &&
1190
	      !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1191 1192
		return false;

1193
	rmap_printk("spte %p %llx\n", sptep, *sptep);
1194

1195
	if (pt_protect)
1196
		spte &= ~shadow_mmu_writable_mask;
1197
	spte = spte & ~PT_WRITABLE_MASK;
1198

1199
	return mmu_spte_update(sptep, spte);
1200 1201
}

1202 1203
static bool rmap_write_protect(struct kvm_rmap_head *rmap_head,
			       bool pt_protect)
1204
{
1205 1206
	u64 *sptep;
	struct rmap_iterator iter;
1207
	bool flush = false;
1208

1209
	for_each_rmap_spte(rmap_head, &iter, sptep)
1210
		flush |= spte_write_protect(sptep, pt_protect);
1211

1212
	return flush;
1213 1214
}

1215
static bool spte_clear_dirty(u64 *sptep)
1216 1217 1218
{
	u64 spte = *sptep;

1219
	rmap_printk("spte %p %llx\n", sptep, *sptep);
1220

1221
	MMU_WARN_ON(!spte_ad_enabled(spte));
1222 1223 1224 1225
	spte &= ~shadow_dirty_mask;
	return mmu_spte_update(sptep, spte);
}

1226
static bool spte_wrprot_for_clear_dirty(u64 *sptep)
1227 1228 1229
{
	bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
					       (unsigned long *)sptep);
1230
	if (was_writable && !spte_ad_enabled(*sptep))
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
		kvm_set_pfn_dirty(spte_to_pfn(*sptep));

	return was_writable;
}

/*
 * Gets the GFN ready for another round of dirty logging by clearing the
 *	- D bit on ad-enabled SPTEs, and
 *	- W bit on ad-disabled SPTEs.
 * Returns true iff any D or W bits were cleared.
 */
1242
static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1243
			       const struct kvm_memory_slot *slot)
1244 1245 1246 1247 1248
{
	u64 *sptep;
	struct rmap_iterator iter;
	bool flush = false;

1249
	for_each_rmap_spte(rmap_head, &iter, sptep)
1250 1251
		if (spte_ad_need_write_protect(*sptep))
			flush |= spte_wrprot_for_clear_dirty(sptep);
1252
		else
1253
			flush |= spte_clear_dirty(sptep);
1254 1255 1256 1257

	return flush;
}

1258
/**
1259
 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1260 1261 1262 1263 1264
 * @kvm: kvm instance
 * @slot: slot to protect
 * @gfn_offset: start of the BITS_PER_LONG pages we care about
 * @mask: indicates which pages we should protect
 *
1265
 * Used when we do not need to care about huge page mappings.
1266
 */
1267
static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1268 1269
				     struct kvm_memory_slot *slot,
				     gfn_t gfn_offset, unsigned long mask)
1270
{
1271
	struct kvm_rmap_head *rmap_head;
1272

1273
	if (is_tdp_mmu_enabled(kvm))
1274 1275
		kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
				slot->base_gfn + gfn_offset, mask, true);
1276 1277 1278 1279

	if (!kvm_memslots_have_rmaps(kvm))
		return;

1280
	while (mask) {
1281 1282
		rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
					PG_LEVEL_4K, slot);
1283
		rmap_write_protect(rmap_head, false);
M
Marcelo Tosatti 已提交
1284

1285 1286 1287
		/* clear the first set bit */
		mask &= mask - 1;
	}
1288 1289
}

1290
/**
1291 1292
 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
 * protect the page if the D-bit isn't supported.
1293 1294 1295 1296 1297 1298 1299
 * @kvm: kvm instance
 * @slot: slot to clear D-bit
 * @gfn_offset: start of the BITS_PER_LONG pages we care about
 * @mask: indicates which pages we should clear D-bit
 *
 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
 */
1300 1301 1302
static void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
					 struct kvm_memory_slot *slot,
					 gfn_t gfn_offset, unsigned long mask)
1303
{
1304
	struct kvm_rmap_head *rmap_head;
1305

1306
	if (is_tdp_mmu_enabled(kvm))
1307 1308
		kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
				slot->base_gfn + gfn_offset, mask, false);
1309 1310 1311 1312

	if (!kvm_memslots_have_rmaps(kvm))
		return;

1313
	while (mask) {
1314 1315
		rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
					PG_LEVEL_4K, slot);
1316
		__rmap_clear_dirty(kvm, rmap_head, slot);
1317 1318 1319 1320 1321 1322

		/* clear the first set bit */
		mask &= mask - 1;
	}
}

1323 1324 1325 1326 1327 1328 1329
/**
 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
 * PT level pages.
 *
 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
 * enable dirty logging for them.
 *
1330 1331
 * We need to care about huge page mappings: e.g. during dirty logging we may
 * have such mappings.
1332 1333 1334 1335 1336
 */
void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
				struct kvm_memory_slot *slot,
				gfn_t gfn_offset, unsigned long mask)
{
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
	/*
	 * Huge pages are NOT write protected when we start dirty logging in
	 * initially-all-set mode; must write protect them here so that they
	 * are split to 4K on the first write.
	 *
	 * The gfn_offset is guaranteed to be aligned to 64, but the base_gfn
	 * of memslot has no such restriction, so the range can cross two large
	 * pages.
	 */
	if (kvm_dirty_log_manual_protect_and_init_set(kvm)) {
		gfn_t start = slot->base_gfn + gfn_offset + __ffs(mask);
		gfn_t end = slot->base_gfn + gfn_offset + __fls(mask);

1350 1351 1352
		if (READ_ONCE(eager_page_split))
			kvm_mmu_try_split_huge_pages(kvm, slot, start, end, PG_LEVEL_4K);

1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
		kvm_mmu_slot_gfn_write_protect(kvm, slot, start, PG_LEVEL_2M);

		/* Cross two large pages? */
		if (ALIGN(start << PAGE_SHIFT, PMD_SIZE) !=
		    ALIGN(end << PAGE_SHIFT, PMD_SIZE))
			kvm_mmu_slot_gfn_write_protect(kvm, slot, end,
						       PG_LEVEL_2M);
	}

	/* Now handle 4K PTEs.  */
1363 1364
	if (kvm_x86_ops.cpu_dirty_log_size)
		kvm_mmu_clear_dirty_pt_masked(kvm, slot, gfn_offset, mask);
1365 1366
	else
		kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1367 1368
}

1369 1370
int kvm_cpu_dirty_log_size(void)
{
1371
	return kvm_x86_ops.cpu_dirty_log_size;
1372 1373
}

1374
bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1375 1376
				    struct kvm_memory_slot *slot, u64 gfn,
				    int min_level)
1377
{
1378
	struct kvm_rmap_head *rmap_head;
1379
	int i;
1380
	bool write_protected = false;
1381

1382 1383
	if (kvm_memslots_have_rmaps(kvm)) {
		for (i = min_level; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
1384
			rmap_head = gfn_to_rmap(gfn, i, slot);
1385
			write_protected |= rmap_write_protect(rmap_head, true);
1386
		}
1387 1388
	}

1389
	if (is_tdp_mmu_enabled(kvm))
1390
		write_protected |=
1391
			kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn, min_level);
1392

1393
	return write_protected;
1394 1395
}

1396
static bool kvm_vcpu_write_protect_gfn(struct kvm_vcpu *vcpu, u64 gfn)
1397 1398 1399 1400
{
	struct kvm_memory_slot *slot;

	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1401
	return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn, PG_LEVEL_4K);
1402 1403
}

1404
static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1405
			  const struct kvm_memory_slot *slot)
1406
{
1407
	return pte_list_destroy(kvm, rmap_head);
1408 1409
}

1410 1411 1412
static bool kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			    struct kvm_memory_slot *slot, gfn_t gfn, int level,
			    pte_t unused)
1413
{
1414
	return kvm_zap_rmapp(kvm, rmap_head, slot);
1415 1416
}

1417 1418 1419
static bool kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			      struct kvm_memory_slot *slot, gfn_t gfn, int level,
			      pte_t pte)
1420
{
1421 1422
	u64 *sptep;
	struct rmap_iterator iter;
1423
	bool need_flush = false;
1424
	u64 new_spte;
D
Dan Williams 已提交
1425
	kvm_pfn_t new_pfn;
1426

1427 1428
	WARN_ON(pte_huge(pte));
	new_pfn = pte_pfn(pte);
1429

1430
restart:
1431
	for_each_rmap_spte(rmap_head, &iter, sptep) {
1432
		rmap_printk("spte %p %llx gfn %llx (%d)\n",
1433
			    sptep, *sptep, gfn, level);
1434

1435
		need_flush = true;
1436

1437
		if (pte_write(pte)) {
1438
			pte_list_remove(kvm, rmap_head, sptep);
1439
			goto restart;
1440
		} else {
1441 1442
			new_spte = kvm_mmu_changed_pte_notifier_make_spte(
					*sptep, new_pfn);
1443

1444
			mmu_spte_clear_track_bits(kvm, sptep);
1445
			mmu_spte_set(sptep, new_spte);
1446 1447
		}
	}
1448

1449 1450
	if (need_flush && kvm_available_flush_tlb_with_range()) {
		kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
1451
		return false;
1452 1453
	}

1454
	return need_flush;
1455 1456
}

1457 1458
struct slot_rmap_walk_iterator {
	/* input fields. */
1459
	const struct kvm_memory_slot *slot;
1460 1461 1462 1463 1464 1465 1466
	gfn_t start_gfn;
	gfn_t end_gfn;
	int start_level;
	int end_level;

	/* output fields. */
	gfn_t gfn;
1467
	struct kvm_rmap_head *rmap;
1468 1469 1470
	int level;

	/* private field. */
1471
	struct kvm_rmap_head *end_rmap;
1472 1473 1474 1475 1476 1477 1478
};

static void
rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
{
	iterator->level = level;
	iterator->gfn = iterator->start_gfn;
1479 1480
	iterator->rmap = gfn_to_rmap(iterator->gfn, level, iterator->slot);
	iterator->end_rmap = gfn_to_rmap(iterator->end_gfn, level, iterator->slot);
1481 1482 1483 1484
}

static void
slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1485
		    const struct kvm_memory_slot *slot, int start_level,
1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
		    int end_level, gfn_t start_gfn, gfn_t end_gfn)
{
	iterator->slot = slot;
	iterator->start_level = start_level;
	iterator->end_level = end_level;
	iterator->start_gfn = start_gfn;
	iterator->end_gfn = end_gfn;

	rmap_walk_init_level(iterator, iterator->start_level);
}

static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
{
	return !!iterator->rmap;
}

static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
{
	if (++iterator->rmap <= iterator->end_rmap) {
		iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
		return;
	}

	if (++iterator->level > iterator->end_level) {
		iterator->rmap = NULL;
		return;
	}

	rmap_walk_init_level(iterator, iterator->level);
}

#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,	\
	   _start_gfn, _end_gfn, _iter_)				\
	for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,		\
				 _end_level_, _start_gfn, _end_gfn);	\
	     slot_rmap_walk_okay(_iter_);				\
	     slot_rmap_walk_next(_iter_))

1524 1525 1526
typedef bool (*rmap_handler_t)(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			       struct kvm_memory_slot *slot, gfn_t gfn,
			       int level, pte_t pte);
1527

1528 1529 1530
static __always_inline bool kvm_handle_gfn_range(struct kvm *kvm,
						 struct kvm_gfn_range *range,
						 rmap_handler_t handler)
1531
{
1532
	struct slot_rmap_walk_iterator iterator;
1533
	bool ret = false;
1534

1535 1536 1537 1538
	for_each_slot_rmap_range(range->slot, PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL,
				 range->start, range->end - 1, &iterator)
		ret |= handler(kvm, iterator.rmap, range->slot, iterator.gfn,
			       iterator.level, range->pte);
1539

1540
	return ret;
1541 1542
}

1543
bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
1544
{
1545
	bool flush = false;
1546

1547 1548
	if (kvm_memslots_have_rmaps(kvm))
		flush = kvm_handle_gfn_range(kvm, range, kvm_unmap_rmapp);
1549

1550
	if (is_tdp_mmu_enabled(kvm))
1551
		flush = kvm_tdp_mmu_unmap_gfn_range(kvm, range, flush);
1552

1553
	return flush;
1554 1555
}

1556
bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1557
{
1558
	bool flush = false;
1559

1560 1561
	if (kvm_memslots_have_rmaps(kvm))
		flush = kvm_handle_gfn_range(kvm, range, kvm_set_pte_rmapp);
1562

1563
	if (is_tdp_mmu_enabled(kvm))
1564
		flush |= kvm_tdp_mmu_set_spte_gfn(kvm, range);
1565

1566
	return flush;
1567 1568
}

1569 1570 1571
static bool kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			  struct kvm_memory_slot *slot, gfn_t gfn, int level,
			  pte_t unused)
1572
{
1573
	u64 *sptep;
1574
	struct rmap_iterator iter;
1575 1576
	int young = 0;

1577 1578
	for_each_rmap_spte(rmap_head, &iter, sptep)
		young |= mmu_spte_age(sptep);
1579

1580 1581 1582
	return young;
}

1583 1584 1585
static bool kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			       struct kvm_memory_slot *slot, gfn_t gfn,
			       int level, pte_t unused)
A
Andrea Arcangeli 已提交
1586
{
1587 1588
	u64 *sptep;
	struct rmap_iterator iter;
A
Andrea Arcangeli 已提交
1589

1590 1591
	for_each_rmap_spte(rmap_head, &iter, sptep)
		if (is_accessed_spte(*sptep))
1592 1593
			return true;
	return false;
A
Andrea Arcangeli 已提交
1594 1595
}

1596 1597
#define RMAP_RECYCLE_THRESHOLD 1000

1598 1599
static void rmap_add(struct kvm_vcpu *vcpu, struct kvm_memory_slot *slot,
		     u64 *spte, gfn_t gfn)
1600
{
1601
	struct kvm_mmu_page *sp;
1602 1603
	struct kvm_rmap_head *rmap_head;
	int rmap_count;
1604

1605
	sp = sptep_to_sp(spte);
1606
	kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1607
	rmap_head = gfn_to_rmap(gfn, sp->role.level, slot);
1608
	rmap_count = pte_list_add(vcpu, spte, rmap_head);
1609

1610 1611 1612 1613 1614
	if (rmap_count > RMAP_RECYCLE_THRESHOLD) {
		kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, __pte(0));
		kvm_flush_remote_tlbs_with_address(
				vcpu->kvm, sp->gfn, KVM_PAGES_PER_HPAGE(sp->role.level));
	}
1615 1616
}

1617
bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1618
{
1619
	bool young = false;
1620

1621 1622
	if (kvm_memslots_have_rmaps(kvm))
		young = kvm_handle_gfn_range(kvm, range, kvm_age_rmapp);
1623

1624
	if (is_tdp_mmu_enabled(kvm))
1625
		young |= kvm_tdp_mmu_age_gfn_range(kvm, range);
1626 1627

	return young;
1628 1629
}

1630
bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
A
Andrea Arcangeli 已提交
1631
{
1632
	bool young = false;
1633

1634 1635
	if (kvm_memslots_have_rmaps(kvm))
		young = kvm_handle_gfn_range(kvm, range, kvm_test_age_rmapp);
1636

1637
	if (is_tdp_mmu_enabled(kvm))
1638
		young |= kvm_tdp_mmu_test_age_gfn(kvm, range);
1639 1640

	return young;
A
Andrea Arcangeli 已提交
1641 1642
}

1643
#ifdef MMU_DEBUG
1644
static int is_empty_shadow_page(u64 *spt)
A
Avi Kivity 已提交
1645
{
1646 1647 1648
	u64 *pos;
	u64 *end;

1649
	for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1650
		if (is_shadow_present_pte(*pos)) {
1651
			printk(KERN_ERR "%s: %p %llx\n", __func__,
1652
			       pos, *pos);
A
Avi Kivity 已提交
1653
			return 0;
1654
		}
A
Avi Kivity 已提交
1655 1656
	return 1;
}
1657
#endif
A
Avi Kivity 已提交
1658

1659 1660 1661 1662 1663 1664
/*
 * This value is the sum of all of the kvm instances's
 * kvm->arch.n_used_mmu_pages values.  We need a global,
 * aggregate version in order to make the slab shrinker
 * faster
 */
1665
static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, long nr)
1666 1667 1668 1669 1670
{
	kvm->arch.n_used_mmu_pages += nr;
	percpu_counter_add(&kvm_total_used_mmu_pages, nr);
}

1671
static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1672
{
1673
	MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1674
	hlist_del(&sp->hash_link);
1675 1676
	list_del(&sp->link);
	free_page((unsigned long)sp->spt);
1677 1678
	if (!sp->role.direct)
		free_page((unsigned long)sp->gfns);
1679
	kmem_cache_free(mmu_page_header_cache, sp);
1680 1681
}

1682 1683
static unsigned kvm_page_table_hashfn(gfn_t gfn)
{
1684
	return hash_64(gfn, KVM_MMU_HASH_SHIFT);
1685 1686
}

1687
static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1688
				    struct kvm_mmu_page *sp, u64 *parent_pte)
1689 1690 1691 1692
{
	if (!parent_pte)
		return;

1693
	pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1694 1695
}

1696
static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1697 1698
				       u64 *parent_pte)
{
1699
	__pte_list_remove(parent_pte, &sp->parent_ptes);
1700 1701
}

1702 1703 1704 1705
static void drop_parent_pte(struct kvm_mmu_page *sp,
			    u64 *parent_pte)
{
	mmu_page_remove_parent_pte(sp, parent_pte);
1706
	mmu_spte_clear_no_track(parent_pte);
1707 1708
}

1709
static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
M
Marcelo Tosatti 已提交
1710
{
1711
	struct kvm_mmu_page *sp;
1712

1713 1714
	sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
	sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache);
1715
	if (!direct)
1716
		sp->gfns = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_gfn_array_cache);
1717
	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1718 1719 1720 1721 1722 1723

	/*
	 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
	 * depends on valid pages being added to the head of the list.  See
	 * comments in kvm_zap_obsolete_pages().
	 */
1724
	sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
1725 1726 1727
	list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
	kvm_mod_used_mmu_pages(vcpu->kvm, +1);
	return sp;
M
Marcelo Tosatti 已提交
1728 1729
}

1730
static void mark_unsync(u64 *spte);
1731
static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1732
{
1733 1734 1735 1736 1737 1738
	u64 *sptep;
	struct rmap_iterator iter;

	for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
		mark_unsync(sptep);
	}
1739 1740
}

1741
static void mark_unsync(u64 *spte)
1742
{
1743
	struct kvm_mmu_page *sp;
1744
	unsigned int index;
1745

1746
	sp = sptep_to_sp(spte);
1747 1748
	index = spte - sp->spt;
	if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1749
		return;
1750
	if (sp->unsync_children++)
1751
		return;
1752
	kvm_mmu_mark_parents_unsync(sp);
1753 1754
}

1755
static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1756
			       struct kvm_mmu_page *sp)
1757
{
1758
	return -1;
1759 1760
}

1761 1762 1763 1764 1765 1766 1767 1768 1769 1770
#define KVM_PAGE_ARRAY_NR 16

struct kvm_mmu_pages {
	struct mmu_page_and_offset {
		struct kvm_mmu_page *sp;
		unsigned int idx;
	} page[KVM_PAGE_ARRAY_NR];
	unsigned int nr;
};

1771 1772
static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
			 int idx)
1773
{
1774
	int i;
1775

1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786
	if (sp->unsync)
		for (i=0; i < pvec->nr; i++)
			if (pvec->page[i].sp == sp)
				return 0;

	pvec->page[pvec->nr].sp = sp;
	pvec->page[pvec->nr].idx = idx;
	pvec->nr++;
	return (pvec->nr == KVM_PAGE_ARRAY_NR);
}

1787 1788 1789 1790 1791 1792 1793
static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
{
	--sp->unsync_children;
	WARN_ON((int)sp->unsync_children < 0);
	__clear_bit(idx, sp->unsync_child_bitmap);
}

1794 1795 1796 1797
static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
	int i, ret, nr_unsync_leaf = 0;
1798

1799
	for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1800
		struct kvm_mmu_page *child;
1801 1802
		u64 ent = sp->spt[i];

1803 1804 1805 1806
		if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
			clear_unsync_child_bit(sp, i);
			continue;
		}
1807

1808
		child = to_shadow_page(ent & PT64_BASE_ADDR_MASK);
1809 1810 1811 1812 1813 1814

		if (child->unsync_children) {
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;

			ret = __mmu_unsync_walk(child, pvec);
1815 1816 1817 1818
			if (!ret) {
				clear_unsync_child_bit(sp, i);
				continue;
			} else if (ret > 0) {
1819
				nr_unsync_leaf += ret;
1820
			} else
1821 1822 1823 1824 1825 1826
				return ret;
		} else if (child->unsync) {
			nr_unsync_leaf++;
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;
		} else
1827
			clear_unsync_child_bit(sp, i);
1828 1829
	}

1830 1831 1832
	return nr_unsync_leaf;
}

1833 1834
#define INVALID_INDEX (-1)

1835 1836 1837
static int mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
P
Paolo Bonzini 已提交
1838
	pvec->nr = 0;
1839 1840 1841
	if (!sp->unsync_children)
		return 0;

1842
	mmu_pages_add(pvec, sp, INVALID_INDEX);
1843
	return __mmu_unsync_walk(sp, pvec);
1844 1845 1846 1847 1848
}

static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
{
	WARN_ON(!sp->unsync);
1849
	trace_kvm_mmu_sync_page(sp);
1850 1851 1852 1853
	sp->unsync = 0;
	--kvm->stat.mmu_unsync;
}

1854 1855
static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				     struct list_head *invalid_list);
1856 1857
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list);
1858

1859 1860
#define for_each_valid_sp(_kvm, _sp, _list)				\
	hlist_for_each_entry(_sp, _list, hash_link)			\
1861
		if (is_obsolete_sp((_kvm), (_sp))) {			\
1862
		} else
1863 1864

#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)			\
1865 1866
	for_each_valid_sp(_kvm, _sp,					\
	  &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)])	\
1867
		if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
1868

1869 1870
static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
			 struct list_head *invalid_list)
1871
{
1872 1873 1874
	int ret = vcpu->arch.mmu->sync_page(vcpu, sp);

	if (ret < 0) {
1875
		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1876
		return false;
1877 1878
	}

1879
	return !!ret;
1880 1881
}

1882 1883 1884 1885
static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
					struct list_head *invalid_list,
					bool remote_flush)
{
1886
	if (!remote_flush && list_empty(invalid_list))
1887 1888 1889 1890 1891 1892 1893 1894 1895
		return false;

	if (!list_empty(invalid_list))
		kvm_mmu_commit_zap_page(kvm, invalid_list);
	else
		kvm_flush_remote_tlbs(kvm);
	return true;
}

1896 1897
static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
{
1898 1899 1900 1901 1902
	if (sp->role.invalid)
		return true;

	/* TDP MMU pages due not use the MMU generation. */
	return !sp->tdp_mmu_page &&
1903
	       unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1904 1905
}

1906
struct mmu_page_path {
1907 1908
	struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
	unsigned int idx[PT64_ROOT_MAX_LEVEL];
1909 1910
};

1911
#define for_each_sp(pvec, sp, parents, i)			\
P
Paolo Bonzini 已提交
1912
		for (i = mmu_pages_first(&pvec, &parents);	\
1913 1914 1915
			i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});	\
			i = mmu_pages_next(&pvec, &parents, i))

1916 1917 1918
static int mmu_pages_next(struct kvm_mmu_pages *pvec,
			  struct mmu_page_path *parents,
			  int i)
1919 1920 1921 1922 1923
{
	int n;

	for (n = i+1; n < pvec->nr; n++) {
		struct kvm_mmu_page *sp = pvec->page[n].sp;
P
Paolo Bonzini 已提交
1924 1925
		unsigned idx = pvec->page[n].idx;
		int level = sp->role.level;
1926

P
Paolo Bonzini 已提交
1927
		parents->idx[level-1] = idx;
1928
		if (level == PG_LEVEL_4K)
P
Paolo Bonzini 已提交
1929
			break;
1930

P
Paolo Bonzini 已提交
1931
		parents->parent[level-2] = sp;
1932 1933 1934 1935 1936
	}

	return n;
}

P
Paolo Bonzini 已提交
1937 1938 1939 1940 1941 1942 1943 1944 1945
static int mmu_pages_first(struct kvm_mmu_pages *pvec,
			   struct mmu_page_path *parents)
{
	struct kvm_mmu_page *sp;
	int level;

	if (pvec->nr == 0)
		return 0;

1946 1947
	WARN_ON(pvec->page[0].idx != INVALID_INDEX);

P
Paolo Bonzini 已提交
1948 1949
	sp = pvec->page[0].sp;
	level = sp->role.level;
1950
	WARN_ON(level == PG_LEVEL_4K);
P
Paolo Bonzini 已提交
1951 1952 1953 1954 1955 1956 1957 1958 1959 1960

	parents->parent[level-2] = sp;

	/* Also set up a sentinel.  Further entries in pvec are all
	 * children of sp, so this element is never overwritten.
	 */
	parents->parent[level-1] = NULL;
	return mmu_pages_next(pvec, parents, 0);
}

1961
static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1962
{
1963 1964 1965 1966 1967 1968 1969 1970 1971
	struct kvm_mmu_page *sp;
	unsigned int level = 0;

	do {
		unsigned int idx = parents->idx[level];
		sp = parents->parent[level];
		if (!sp)
			return;

1972
		WARN_ON(idx == INVALID_INDEX);
1973
		clear_unsync_child_bit(sp, idx);
1974
		level++;
P
Paolo Bonzini 已提交
1975
	} while (!sp->unsync_children);
1976
}
1977

1978 1979
static int mmu_sync_children(struct kvm_vcpu *vcpu,
			     struct kvm_mmu_page *parent, bool can_yield)
1980 1981 1982 1983 1984
{
	int i;
	struct kvm_mmu_page *sp;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
1985
	LIST_HEAD(invalid_list);
1986
	bool flush = false;
1987 1988

	while (mmu_unsync_walk(parent, &pages)) {
1989
		bool protected = false;
1990 1991

		for_each_sp(pages, sp, parents, i)
1992
			protected |= kvm_vcpu_write_protect_gfn(vcpu, sp->gfn);
1993

1994
		if (protected) {
1995
			kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, true);
1996 1997
			flush = false;
		}
1998

1999
		for_each_sp(pages, sp, parents, i) {
2000
			kvm_unlink_unsync_page(vcpu->kvm, sp);
2001
			flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2002 2003
			mmu_pages_clear_parents(&parents);
		}
2004
		if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) {
2005
			kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush);
2006 2007 2008 2009 2010
			if (!can_yield) {
				kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
				return -EINTR;
			}

2011
			cond_resched_rwlock_write(&vcpu->kvm->mmu_lock);
2012 2013
			flush = false;
		}
2014
	}
2015

2016
	kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush);
2017
	return 0;
2018 2019
}

2020 2021
static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
{
2022
	atomic_set(&sp->write_flooding_count,  0);
2023 2024 2025 2026
}

static void clear_sp_write_flooding_count(u64 *spte)
{
2027
	__clear_sp_write_flooding_count(sptep_to_sp(spte));
2028 2029
}

2030 2031 2032 2033
static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
					     gfn_t gfn,
					     gva_t gaddr,
					     unsigned level,
2034
					     int direct,
2035
					     unsigned int access)
2036
{
2037
	bool direct_mmu = vcpu->arch.mmu->direct_map;
2038
	union kvm_mmu_page_role role;
2039
	struct hlist_head *sp_list;
2040
	unsigned quadrant;
2041
	struct kvm_mmu_page *sp;
2042
	int collisions = 0;
2043
	LIST_HEAD(invalid_list);
2044

2045
	role = vcpu->arch.mmu->mmu_role.base;
2046
	role.level = level;
2047
	role.direct = direct;
2048
	role.access = access;
2049
	if (role.has_4_byte_gpte) {
2050 2051 2052 2053
		quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
		quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
		role.quadrant = quadrant;
	}
2054 2055 2056

	sp_list = &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)];
	for_each_valid_sp(vcpu->kvm, sp, sp_list) {
2057 2058 2059 2060 2061
		if (sp->gfn != gfn) {
			collisions++;
			continue;
		}

2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074
		if (sp->role.word != role.word) {
			/*
			 * If the guest is creating an upper-level page, zap
			 * unsync pages for the same gfn.  While it's possible
			 * the guest is using recursive page tables, in all
			 * likelihood the guest has stopped using the unsync
			 * page and is installing a completely unrelated page.
			 * Unsync pages must not be left as is, because the new
			 * upper-level page will be write-protected.
			 */
			if (level > PG_LEVEL_4K && sp->unsync)
				kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
							 &invalid_list);
2075
			continue;
2076
		}
2077

2078 2079 2080
		if (direct_mmu)
			goto trace_get_page;

2081
		if (sp->unsync) {
2082
			/*
2083
			 * The page is good, but is stale.  kvm_sync_page does
2084 2085 2086 2087 2088 2089 2090 2091 2092
			 * get the latest guest state, but (unlike mmu_unsync_children)
			 * it doesn't write-protect the page or mark it synchronized!
			 * This way the validity of the mapping is ensured, but the
			 * overhead of write protection is not incurred until the
			 * guest invalidates the TLB mapping.  This allows multiple
			 * SPs for a single gfn to be unsync.
			 *
			 * If the sync fails, the page is zapped.  If so, break
			 * in order to rebuild it.
2093
			 */
2094
			if (!kvm_sync_page(vcpu, sp, &invalid_list))
2095 2096 2097
				break;

			WARN_ON(!list_empty(&invalid_list));
2098
			kvm_flush_remote_tlbs(vcpu->kvm);
2099
		}
2100

2101
		__clear_sp_write_flooding_count(sp);
2102 2103

trace_get_page:
2104
		trace_kvm_mmu_get_page(sp, false);
2105
		goto out;
2106
	}
2107

A
Avi Kivity 已提交
2108
	++vcpu->kvm->stat.mmu_cache_miss;
2109 2110 2111

	sp = kvm_mmu_alloc_page(vcpu, direct);

2112 2113
	sp->gfn = gfn;
	sp->role = role;
2114
	hlist_add_head(&sp->hash_link, sp_list);
2115
	if (!direct) {
2116
		account_shadowed(vcpu->kvm, sp);
2117
		if (level == PG_LEVEL_4K && kvm_vcpu_write_protect_gfn(vcpu, gfn))
2118
			kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
2119
	}
A
Avi Kivity 已提交
2120
	trace_kvm_mmu_get_page(sp, true);
2121
out:
2122 2123
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);

2124 2125
	if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
		vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2126
	return sp;
2127 2128
}

2129 2130 2131
static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
					struct kvm_vcpu *vcpu, hpa_t root,
					u64 addr)
2132 2133
{
	iterator->addr = addr;
2134
	iterator->shadow_addr = root;
2135
	iterator->level = vcpu->arch.mmu->shadow_root_level;
2136

2137
	if (iterator->level >= PT64_ROOT_4LEVEL &&
2138 2139
	    vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
	    !vcpu->arch.mmu->direct_map)
2140
		iterator->level = PT32E_ROOT_LEVEL;
2141

2142
	if (iterator->level == PT32E_ROOT_LEVEL) {
2143 2144 2145 2146
		/*
		 * prev_root is currently only used for 64-bit hosts. So only
		 * the active root_hpa is valid here.
		 */
2147
		BUG_ON(root != vcpu->arch.mmu->root.hpa);
2148

2149
		iterator->shadow_addr
2150
			= vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2151 2152 2153 2154 2155 2156 2157
		iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
		--iterator->level;
		if (!iterator->shadow_addr)
			iterator->level = 0;
	}
}

2158 2159 2160
static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
			     struct kvm_vcpu *vcpu, u64 addr)
{
2161
	shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root.hpa,
2162 2163 2164
				    addr);
}

2165 2166
static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
{
2167
	if (iterator->level < PG_LEVEL_4K)
2168
		return false;
2169

2170 2171 2172 2173 2174
	iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
	iterator->sptep	= ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
	return true;
}

2175 2176
static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
			       u64 spte)
2177
{
2178
	if (!is_shadow_present_pte(spte) || is_last_spte(spte, iterator->level)) {
2179 2180 2181 2182
		iterator->level = 0;
		return;
	}

2183
	iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2184 2185 2186
	--iterator->level;
}

2187 2188
static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
{
2189
	__shadow_walk_next(iterator, *iterator->sptep);
2190 2191
}

2192 2193 2194 2195 2196 2197 2198 2199 2200
static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
			     struct kvm_mmu_page *sp)
{
	u64 spte;

	BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);

	spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp));

2201
	mmu_spte_set(sptep, spte);
2202 2203 2204 2205 2206

	mmu_page_add_parent_pte(vcpu, sp, sptep);

	if (sp->unsync_children || sp->unsync)
		mark_unsync(sptep);
2207 2208
}

2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221
static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
				   unsigned direct_access)
{
	if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
		struct kvm_mmu_page *child;

		/*
		 * For the direct sp, if the guest pte's dirty bit
		 * changed form clean to dirty, it will corrupt the
		 * sp's access: allow writable in the read-only sp,
		 * so we should update the spte at this point to get
		 * a new sp with the correct access.
		 */
2222
		child = to_shadow_page(*sptep & PT64_BASE_ADDR_MASK);
2223 2224 2225
		if (child->role.access == direct_access)
			return;

2226
		drop_parent_pte(child, sptep);
2227
		kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
2228 2229 2230
	}
}

2231 2232 2233
/* Returns the number of zapped non-leaf child shadow pages. */
static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
			    u64 *spte, struct list_head *invalid_list)
2234 2235 2236 2237 2238 2239
{
	u64 pte;
	struct kvm_mmu_page *child;

	pte = *spte;
	if (is_shadow_present_pte(pte)) {
X
Xiao Guangrong 已提交
2240
		if (is_last_spte(pte, sp->role.level)) {
2241
			drop_spte(kvm, spte);
X
Xiao Guangrong 已提交
2242
		} else {
2243
			child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2244
			drop_parent_pte(child, spte);
2245 2246 2247 2248 2249 2250 2251 2252 2253 2254

			/*
			 * Recursively zap nested TDP SPs, parentless SPs are
			 * unlikely to be used again in the near future.  This
			 * avoids retaining a large number of stale nested SPs.
			 */
			if (tdp_enabled && invalid_list &&
			    child->role.guest_mode && !child->parent_ptes.val)
				return kvm_mmu_prepare_zap_page(kvm, child,
								invalid_list);
2255
		}
2256
	} else if (is_mmio_spte(pte)) {
2257
		mmu_spte_clear_no_track(spte);
2258
	}
2259
	return 0;
2260 2261
}

2262 2263 2264
static int kvm_mmu_page_unlink_children(struct kvm *kvm,
					struct kvm_mmu_page *sp,
					struct list_head *invalid_list)
2265
{
2266
	int zapped = 0;
2267 2268
	unsigned i;

2269
	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2270 2271 2272
		zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list);

	return zapped;
2273 2274
}

2275
static void kvm_mmu_unlink_parents(struct kvm_mmu_page *sp)
2276
{
2277 2278
	u64 *sptep;
	struct rmap_iterator iter;
2279

2280
	while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2281
		drop_parent_pte(sp, sptep);
2282 2283
}

2284
static int mmu_zap_unsync_children(struct kvm *kvm,
2285 2286
				   struct kvm_mmu_page *parent,
				   struct list_head *invalid_list)
2287
{
2288 2289 2290
	int i, zapped = 0;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
2291

2292
	if (parent->role.level == PG_LEVEL_4K)
2293
		return 0;
2294 2295 2296 2297 2298

	while (mmu_unsync_walk(parent, &pages)) {
		struct kvm_mmu_page *sp;

		for_each_sp(pages, sp, parents, i) {
2299
			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2300
			mmu_pages_clear_parents(&parents);
2301
			zapped++;
2302 2303 2304 2305
		}
	}

	return zapped;
2306 2307
}

2308 2309 2310 2311
static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
				       struct kvm_mmu_page *sp,
				       struct list_head *invalid_list,
				       int *nr_zapped)
2312
{
2313
	bool list_unstable, zapped_root = false;
A
Avi Kivity 已提交
2314

2315
	trace_kvm_mmu_prepare_zap_page(sp);
2316
	++kvm->stat.mmu_shadow_zapped;
2317
	*nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2318
	*nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list);
2319
	kvm_mmu_unlink_parents(sp);
2320

2321 2322 2323
	/* Zapping children means active_mmu_pages has become unstable. */
	list_unstable = *nr_zapped;

2324
	if (!sp->role.invalid && !sp->role.direct)
2325
		unaccount_shadowed(kvm, sp);
2326

2327 2328
	if (sp->unsync)
		kvm_unlink_unsync_page(kvm, sp);
2329
	if (!sp->root_count) {
2330
		/* Count self */
2331
		(*nr_zapped)++;
2332 2333 2334 2335 2336 2337 2338 2339 2340 2341

		/*
		 * Already invalid pages (previously active roots) are not on
		 * the active page list.  See list_del() in the "else" case of
		 * !sp->root_count.
		 */
		if (sp->role.invalid)
			list_add(&sp->link, invalid_list);
		else
			list_move(&sp->link, invalid_list);
2342
		kvm_mod_used_mmu_pages(kvm, -1);
2343
	} else {
2344 2345 2346 2347 2348
		/*
		 * Remove the active root from the active page list, the root
		 * will be explicitly freed when the root_count hits zero.
		 */
		list_del(&sp->link);
2349

2350 2351 2352 2353 2354
		/*
		 * Obsolete pages cannot be used on any vCPUs, see the comment
		 * in kvm_mmu_zap_all_fast().  Note, is_obsolete_sp() also
		 * treats invalid shadow pages as being obsolete.
		 */
2355
		zapped_root = !is_obsolete_sp(kvm, sp);
2356
	}
2357

P
Paolo Bonzini 已提交
2358 2359 2360
	if (sp->lpage_disallowed)
		unaccount_huge_nx_page(kvm, sp);

2361
	sp->role.invalid = 1;
2362 2363 2364 2365 2366 2367 2368

	/*
	 * Make the request to free obsolete roots after marking the root
	 * invalid, otherwise other vCPUs may not see it as invalid.
	 */
	if (zapped_root)
		kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS);
2369 2370 2371 2372 2373 2374 2375 2376 2377 2378
	return list_unstable;
}

static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				     struct list_head *invalid_list)
{
	int nr_zapped;

	__kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
	return nr_zapped;
2379 2380
}

2381 2382 2383
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list)
{
2384
	struct kvm_mmu_page *sp, *nsp;
2385 2386 2387 2388

	if (list_empty(invalid_list))
		return;

2389
	/*
2390 2391 2392 2393 2394 2395 2396
	 * We need to make sure everyone sees our modifications to
	 * the page tables and see changes to vcpu->mode here. The barrier
	 * in the kvm_flush_remote_tlbs() achieves this. This pairs
	 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
	 *
	 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
	 * guest mode and/or lockless shadow page table walks.
2397 2398
	 */
	kvm_flush_remote_tlbs(kvm);
2399

2400
	list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2401
		WARN_ON(!sp->role.invalid || sp->root_count);
2402
		kvm_mmu_free_page(sp);
2403
	}
2404 2405
}

2406 2407
static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm,
						  unsigned long nr_to_zap)
2408
{
2409 2410
	unsigned long total_zapped = 0;
	struct kvm_mmu_page *sp, *tmp;
2411
	LIST_HEAD(invalid_list);
2412 2413
	bool unstable;
	int nr_zapped;
2414 2415

	if (list_empty(&kvm->arch.active_mmu_pages))
2416 2417
		return 0;

2418
restart:
2419
	list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) {
2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430
		/*
		 * Don't zap active root pages, the page itself can't be freed
		 * and zapping it will just force vCPUs to realloc and reload.
		 */
		if (sp->root_count)
			continue;

		unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list,
						      &nr_zapped);
		total_zapped += nr_zapped;
		if (total_zapped >= nr_to_zap)
2431 2432
			break;

2433 2434
		if (unstable)
			goto restart;
2435
	}
2436

2437 2438 2439 2440 2441 2442
	kvm_mmu_commit_zap_page(kvm, &invalid_list);

	kvm->stat.mmu_recycled += total_zapped;
	return total_zapped;
}

2443 2444 2445 2446 2447 2448 2449
static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm)
{
	if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
		return kvm->arch.n_max_mmu_pages -
			kvm->arch.n_used_mmu_pages;

	return 0;
2450 2451
}

2452 2453
static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
{
2454
	unsigned long avail = kvm_mmu_available_pages(vcpu->kvm);
2455

2456
	if (likely(avail >= KVM_MIN_FREE_MMU_PAGES))
2457 2458
		return 0;

2459
	kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail);
2460

2461 2462 2463 2464 2465
	/*
	 * Note, this check is intentionally soft, it only guarantees that one
	 * page is available, while the caller may end up allocating as many as
	 * four pages, e.g. for PAE roots or for 5-level paging.  Temporarily
	 * exceeding the (arbitrary by default) limit will not harm the host,
I
Ingo Molnar 已提交
2466
	 * being too aggressive may unnecessarily kill the guest, and getting an
2467 2468 2469
	 * exact count is far more trouble than it's worth, especially in the
	 * page fault paths.
	 */
2470 2471 2472 2473 2474
	if (!kvm_mmu_available_pages(vcpu->kvm))
		return -ENOSPC;
	return 0;
}

2475 2476
/*
 * Changing the number of mmu pages allocated to the vm
2477
 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2478
 */
2479
void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2480
{
2481
	write_lock(&kvm->mmu_lock);
2482

2483
	if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2484 2485
		kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages -
						  goal_nr_mmu_pages);
2486

2487
		goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2488 2489
	}

2490
	kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2491

2492
	write_unlock(&kvm->mmu_lock);
2493 2494
}

2495
int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2496
{
2497
	struct kvm_mmu_page *sp;
2498
	LIST_HEAD(invalid_list);
2499 2500
	int r;

2501
	pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2502
	r = 0;
2503
	write_lock(&kvm->mmu_lock);
2504
	for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2505
		pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2506 2507
			 sp->role.word);
		r = 1;
2508
		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2509
	}
2510
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2511
	write_unlock(&kvm->mmu_lock);
2512

2513
	return r;
2514
}
2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529

static int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
{
	gpa_t gpa;
	int r;

	if (vcpu->arch.mmu->direct_map)
		return 0;

	gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);

	r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);

	return r;
}
2530

2531
static void kvm_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
2532 2533
{
	trace_kvm_mmu_unsync_page(sp);
2534
	++kvm->stat.mmu_unsync;
2535 2536 2537 2538 2539
	sp->unsync = 1;

	kvm_mmu_mark_parents_unsync(sp);
}

2540 2541 2542 2543 2544 2545
/*
 * Attempt to unsync any shadow pages that can be reached by the specified gfn,
 * KVM is creating a writable mapping for said gfn.  Returns 0 if all pages
 * were marked unsync (or if there is no shadow page), -EPERM if the SPTE must
 * be write-protected.
 */
2546
int mmu_try_to_unsync_pages(struct kvm *kvm, const struct kvm_memory_slot *slot,
2547
			    gfn_t gfn, bool can_unsync, bool prefetch)
2548
{
2549
	struct kvm_mmu_page *sp;
2550
	bool locked = false;
2551

2552 2553 2554 2555 2556
	/*
	 * Force write-protection if the page is being tracked.  Note, the page
	 * track machinery is used to write-protect upper-level shadow pages,
	 * i.e. this guards the role.level == 4K assertion below!
	 */
2557
	if (kvm_slot_page_track_is_active(kvm, slot, gfn, KVM_PAGE_TRACK_WRITE))
2558
		return -EPERM;
2559

2560 2561 2562 2563 2564 2565
	/*
	 * The page is not write-tracked, mark existing shadow pages unsync
	 * unless KVM is synchronizing an unsync SP (can_unsync = false).  In
	 * that case, KVM must complete emulation of the guest TLB flush before
	 * allowing shadow pages to become unsync (writable by the guest).
	 */
2566
	for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2567
		if (!can_unsync)
2568
			return -EPERM;
2569

2570 2571
		if (sp->unsync)
			continue;
2572

2573
		if (prefetch)
2574 2575
			return -EEXIST;

2576 2577 2578 2579 2580 2581 2582 2583 2584
		/*
		 * TDP MMU page faults require an additional spinlock as they
		 * run with mmu_lock held for read, not write, and the unsync
		 * logic is not thread safe.  Take the spinklock regardless of
		 * the MMU type to avoid extra conditionals/parameters, there's
		 * no meaningful penalty if mmu_lock is held for write.
		 */
		if (!locked) {
			locked = true;
2585
			spin_lock(&kvm->arch.mmu_unsync_pages_lock);
2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598

			/*
			 * Recheck after taking the spinlock, a different vCPU
			 * may have since marked the page unsync.  A false
			 * positive on the unprotected check above is not
			 * possible as clearing sp->unsync _must_ hold mmu_lock
			 * for write, i.e. unsync cannot transition from 0->1
			 * while this CPU holds mmu_lock for read (or write).
			 */
			if (READ_ONCE(sp->unsync))
				continue;
		}

2599
		WARN_ON(sp->role.level != PG_LEVEL_4K);
2600
		kvm_unsync_page(kvm, sp);
2601
	}
2602
	if (locked)
2603
		spin_unlock(&kvm->arch.mmu_unsync_pages_lock);
2604

2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626
	/*
	 * We need to ensure that the marking of unsync pages is visible
	 * before the SPTE is updated to allow writes because
	 * kvm_mmu_sync_roots() checks the unsync flags without holding
	 * the MMU lock and so can race with this. If the SPTE was updated
	 * before the page had been marked as unsync-ed, something like the
	 * following could happen:
	 *
	 * CPU 1                    CPU 2
	 * ---------------------------------------------------------------------
	 * 1.2 Host updates SPTE
	 *     to be writable
	 *                      2.1 Guest writes a GPTE for GVA X.
	 *                          (GPTE being in the guest page table shadowed
	 *                           by the SP from CPU 1.)
	 *                          This reads SPTE during the page table walk.
	 *                          Since SPTE.W is read as 1, there is no
	 *                          fault.
	 *
	 *                      2.2 Guest issues TLB flush.
	 *                          That causes a VM Exit.
	 *
2627 2628
	 *                      2.3 Walking of unsync pages sees sp->unsync is
	 *                          false and skips the page.
2629 2630 2631 2632 2633 2634 2635 2636 2637 2638
	 *
	 *                      2.4 Guest accesses GVA X.
	 *                          Since the mapping in the SP was not updated,
	 *                          so the old mapping for GVA X incorrectly
	 *                          gets used.
	 * 1.1 Host marks SP
	 *     as unsync
	 *     (sp->unsync = true)
	 *
	 * The write barrier below ensures that 1.1 happens before 1.2 and thus
2639 2640
	 * the situation in 2.4 does not arise.  It pairs with the read barrier
	 * in is_unsync_root(), placed between 2.1's load of SPTE.W and 2.3.
2641 2642 2643
	 */
	smp_wmb();

2644
	return 0;
2645 2646
}

2647 2648
static int mmu_set_spte(struct kvm_vcpu *vcpu, struct kvm_memory_slot *slot,
			u64 *sptep, unsigned int pte_access, gfn_t gfn,
2649
			kvm_pfn_t pfn, struct kvm_page_fault *fault)
M
Marcelo Tosatti 已提交
2650
{
2651
	struct kvm_mmu_page *sp = sptep_to_sp(sptep);
2652
	int level = sp->role.level;
M
Marcelo Tosatti 已提交
2653
	int was_rmapped = 0;
2654
	int ret = RET_PF_FIXED;
2655
	bool flush = false;
2656
	bool wrprot;
2657
	u64 spte;
M
Marcelo Tosatti 已提交
2658

2659 2660
	/* Prefetching always gets a writable pfn.  */
	bool host_writable = !fault || fault->map_writable;
2661
	bool prefetch = !fault || fault->prefetch;
2662
	bool write_fault = fault && fault->write;
M
Marcelo Tosatti 已提交
2663

2664 2665
	pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
		 *sptep, write_fault, gfn);
M
Marcelo Tosatti 已提交
2666

2667 2668 2669 2670 2671
	if (unlikely(is_noslot_pfn(pfn))) {
		mark_mmio_spte(vcpu, sptep, gfn, pte_access);
		return RET_PF_EMULATE;
	}

2672
	if (is_shadow_present_pte(*sptep)) {
M
Marcelo Tosatti 已提交
2673 2674 2675 2676
		/*
		 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
		 * the parent of the now unreachable PTE.
		 */
2677
		if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) {
M
Marcelo Tosatti 已提交
2678
			struct kvm_mmu_page *child;
A
Avi Kivity 已提交
2679
			u64 pte = *sptep;
M
Marcelo Tosatti 已提交
2680

2681
			child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2682
			drop_parent_pte(child, sptep);
2683
			flush = true;
A
Avi Kivity 已提交
2684
		} else if (pfn != spte_to_pfn(*sptep)) {
2685
			pgprintk("hfn old %llx new %llx\n",
A
Avi Kivity 已提交
2686
				 spte_to_pfn(*sptep), pfn);
2687
			drop_spte(vcpu->kvm, sptep);
2688
			flush = true;
2689 2690
		} else
			was_rmapped = 1;
M
Marcelo Tosatti 已提交
2691
	}
2692

2693
	wrprot = make_spte(vcpu, sp, slot, pte_access, gfn, pfn, *sptep, prefetch,
2694
			   true, host_writable, &spte);
2695 2696 2697 2698 2699 2700 2701 2702

	if (*sptep == spte) {
		ret = RET_PF_SPURIOUS;
	} else {
		trace_kvm_mmu_set_spte(level, gfn, sptep);
		flush |= mmu_spte_update(sptep, spte);
	}

2703
	if (wrprot) {
M
Marcelo Tosatti 已提交
2704
		if (write_fault)
2705
			ret = RET_PF_EMULATE;
2706
	}
2707

2708
	if (flush)
2709 2710
		kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
				KVM_PAGES_PER_HPAGE(level));
M
Marcelo Tosatti 已提交
2711

A
Avi Kivity 已提交
2712
	pgprintk("%s: setting spte %llx\n", __func__, *sptep);
M
Marcelo Tosatti 已提交
2713

2714
	if (!was_rmapped) {
2715
		WARN_ON_ONCE(ret == RET_PF_SPURIOUS);
2716
		kvm_update_page_stats(vcpu->kvm, level, 1);
2717
		rmap_add(vcpu, slot, sptep, gfn);
2718
	}
2719

2720
	return ret;
2721 2722
}

2723 2724 2725 2726 2727
static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
				    struct kvm_mmu_page *sp,
				    u64 *start, u64 *end)
{
	struct page *pages[PTE_PREFETCH_NUM];
2728
	struct kvm_memory_slot *slot;
2729
	unsigned int access = sp->role.access;
2730 2731 2732 2733
	int i, ret;
	gfn_t gfn;

	gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2734 2735
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
	if (!slot)
2736 2737
		return -1;

2738
	ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2739 2740 2741
	if (ret <= 0)
		return -1;

2742
	for (i = 0; i < ret; i++, gfn++, start++) {
2743
		mmu_set_spte(vcpu, slot, start, access, gfn,
2744
			     page_to_pfn(pages[i]), NULL);
2745 2746
		put_page(pages[i]);
	}
2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762

	return 0;
}

static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
				  struct kvm_mmu_page *sp, u64 *sptep)
{
	u64 *spte, *start = NULL;
	int i;

	WARN_ON(!sp->role.direct);

	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
	spte = sp->spt + i;

	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2763
		if (is_shadow_present_pte(*spte) || spte == sptep) {
2764 2765 2766
			if (!start)
				continue;
			if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2767
				return;
2768 2769 2770 2771
			start = NULL;
		} else if (!start)
			start = spte;
	}
2772 2773
	if (start)
		direct_pte_prefetch_many(vcpu, sp, start, spte);
2774 2775 2776 2777 2778 2779
}

static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
{
	struct kvm_mmu_page *sp;

2780
	sp = sptep_to_sp(sptep);
2781

2782
	/*
2783 2784 2785
	 * Without accessed bits, there's no way to distinguish between
	 * actually accessed translations and prefetched, so disable pte
	 * prefetch if accessed bits aren't available.
2786
	 */
2787
	if (sp_ad_disabled(sp))
2788 2789
		return;

2790
	if (sp->role.level > PG_LEVEL_4K)
2791 2792
		return;

2793 2794 2795 2796 2797 2798 2799
	/*
	 * If addresses are being invalidated, skip prefetching to avoid
	 * accidentally prefetching those addresses.
	 */
	if (unlikely(vcpu->kvm->mmu_notifier_count))
		return;

2800 2801 2802
	__direct_pte_prefetch(vcpu, sp, sptep);
}

2803
static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn,
2804
				  const struct kvm_memory_slot *slot)
2805 2806 2807 2808 2809
{
	unsigned long hva;
	pte_t *pte;
	int level;

2810
	if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn))
2811
		return PG_LEVEL_4K;
2812

2813 2814 2815 2816 2817 2818 2819 2820
	/*
	 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
	 * is not solely for performance, it's also necessary to avoid the
	 * "writable" check in __gfn_to_hva_many(), which will always fail on
	 * read-only memslots due to gfn_to_hva() assuming writes.  Earlier
	 * page fault steps have already verified the guest isn't writing a
	 * read-only memslot.
	 */
2821 2822
	hva = __gfn_to_hva_memslot(slot, gfn);

2823
	pte = lookup_address_in_mm(kvm->mm, hva, &level);
2824
	if (unlikely(!pte))
2825
		return PG_LEVEL_4K;
2826 2827 2828 2829

	return level;
}

2830 2831 2832
int kvm_mmu_max_mapping_level(struct kvm *kvm,
			      const struct kvm_memory_slot *slot, gfn_t gfn,
			      kvm_pfn_t pfn, int max_level)
2833 2834
{
	struct kvm_lpage_info *linfo;
2835
	int host_level;
2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846

	max_level = min(max_level, max_huge_page_level);
	for ( ; max_level > PG_LEVEL_4K; max_level--) {
		linfo = lpage_info_slot(gfn, slot, max_level);
		if (!linfo->disallow_lpage)
			break;
	}

	if (max_level == PG_LEVEL_4K)
		return PG_LEVEL_4K;

2847 2848
	host_level = host_pfn_mapping_level(kvm, gfn, pfn, slot);
	return min(host_level, max_level);
2849 2850
}

2851
void kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
2852
{
2853
	struct kvm_memory_slot *slot = fault->slot;
2854 2855
	kvm_pfn_t mask;

2856
	fault->huge_page_disallowed = fault->exec && fault->nx_huge_page_workaround_enabled;
2857

2858 2859
	if (unlikely(fault->max_level == PG_LEVEL_4K))
		return;
2860

2861 2862
	if (is_error_noslot_pfn(fault->pfn) || kvm_is_reserved_pfn(fault->pfn))
		return;
2863

2864
	if (kvm_slot_dirty_track_enabled(slot))
2865
		return;
2866

2867 2868 2869 2870
	/*
	 * Enforce the iTLB multihit workaround after capturing the requested
	 * level, which will be used to do precise, accurate accounting.
	 */
2871 2872 2873 2874 2875
	fault->req_level = kvm_mmu_max_mapping_level(vcpu->kvm, slot,
						     fault->gfn, fault->pfn,
						     fault->max_level);
	if (fault->req_level == PG_LEVEL_4K || fault->huge_page_disallowed)
		return;
2876 2877

	/*
2878 2879
	 * mmu_notifier_retry() was successful and mmu_lock is held, so
	 * the pmd can't be split from under us.
2880
	 */
2881 2882 2883 2884
	fault->goal_level = fault->req_level;
	mask = KVM_PAGES_PER_HPAGE(fault->goal_level) - 1;
	VM_BUG_ON((fault->gfn & mask) != (fault->pfn & mask));
	fault->pfn &= ~mask;
2885 2886
}

2887
void disallowed_hugepage_adjust(struct kvm_page_fault *fault, u64 spte, int cur_level)
P
Paolo Bonzini 已提交
2888
{
2889 2890
	if (cur_level > PG_LEVEL_4K &&
	    cur_level == fault->goal_level &&
P
Paolo Bonzini 已提交
2891 2892 2893 2894 2895 2896 2897 2898 2899
	    is_shadow_present_pte(spte) &&
	    !is_large_pte(spte)) {
		/*
		 * A small SPTE exists for this pfn, but FNAME(fetch)
		 * and __direct_map would like to create a large PTE
		 * instead: just force them to go down another level,
		 * patching back for them into pfn the next 9 bits of
		 * the address.
		 */
2900 2901 2902 2903
		u64 page_mask = KVM_PAGES_PER_HPAGE(cur_level) -
				KVM_PAGES_PER_HPAGE(cur_level - 1);
		fault->pfn |= fault->gfn & page_mask;
		fault->goal_level--;
P
Paolo Bonzini 已提交
2904 2905 2906
	}
}

2907
static int __direct_map(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
2908
{
2909
	struct kvm_shadow_walk_iterator it;
2910
	struct kvm_mmu_page *sp;
2911
	int ret;
2912
	gfn_t base_gfn = fault->gfn;
A
Avi Kivity 已提交
2913

2914
	kvm_mmu_hugepage_adjust(vcpu, fault);
2915

2916
	trace_kvm_mmu_spte_requested(fault);
2917
	for_each_shadow_entry(vcpu, fault->addr, it) {
P
Paolo Bonzini 已提交
2918 2919 2920 2921
		/*
		 * We cannot overwrite existing page tables with an NX
		 * large page, as the leaf could be executable.
		 */
2922
		if (fault->nx_huge_page_workaround_enabled)
2923
			disallowed_hugepage_adjust(fault, *it.sptep, it.level);
P
Paolo Bonzini 已提交
2924

2925
		base_gfn = fault->gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
2926
		if (it.level == fault->goal_level)
2927
			break;
A
Avi Kivity 已提交
2928

2929
		drop_large_spte(vcpu, it.sptep);
2930 2931 2932 2933 2934 2935 2936
		if (is_shadow_present_pte(*it.sptep))
			continue;

		sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
				      it.level - 1, true, ACC_ALL);

		link_shadow_page(vcpu, it.sptep, sp);
2937 2938
		if (fault->is_tdp && fault->huge_page_disallowed &&
		    fault->req_level >= it.level)
2939
			account_huge_nx_page(vcpu->kvm, sp);
2940
	}
2941

2942 2943 2944
	if (WARN_ON_ONCE(it.level != fault->goal_level))
		return -EFAULT;

2945
	ret = mmu_set_spte(vcpu, fault->slot, it.sptep, ACC_ALL,
2946
			   base_gfn, fault->pfn, fault);
2947 2948 2949
	if (ret == RET_PF_SPURIOUS)
		return ret;

2950 2951 2952
	direct_pte_prefetch(vcpu, it.sptep);
	++vcpu->stat.pf_fixed;
	return ret;
A
Avi Kivity 已提交
2953 2954
}

H
Huang Ying 已提交
2955
static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2956
{
2957
	send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
2958 2959
}

D
Dan Williams 已提交
2960
static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
2961
{
X
Xiao Guangrong 已提交
2962 2963 2964 2965 2966 2967
	/*
	 * Do not cache the mmio info caused by writing the readonly gfn
	 * into the spte otherwise read access on readonly gfn also can
	 * caused mmio page fault and treat it as mmio access.
	 */
	if (pfn == KVM_PFN_ERR_RO_FAULT)
2968
		return RET_PF_EMULATE;
X
Xiao Guangrong 已提交
2969

2970
	if (pfn == KVM_PFN_ERR_HWPOISON) {
2971
		kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
2972
		return RET_PF_RETRY;
2973
	}
2974

2975
	return -EFAULT;
2976 2977
}

2978 2979
static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault,
				unsigned int access, int *ret_val)
2980 2981
{
	/* The pfn is invalid, report the error! */
2982 2983
	if (unlikely(is_error_pfn(fault->pfn))) {
		*ret_val = kvm_handle_bad_page(vcpu, fault->gfn, fault->pfn);
2984
		return true;
2985 2986
	}

2987
	if (unlikely(!fault->slot)) {
2988 2989 2990
		gva_t gva = fault->is_tdp ? 0 : fault->addr;

		vcpu_cache_mmio_info(vcpu, gva, fault->gfn,
2991
				     access & shadow_mmio_access_mask);
2992 2993 2994 2995 2996 2997 2998 2999 3000 3001
		/*
		 * If MMIO caching is disabled, emulate immediately without
		 * touching the shadow page tables as attempting to install an
		 * MMIO SPTE will just be an expensive nop.
		 */
		if (unlikely(!shadow_mmio_value)) {
			*ret_val = RET_PF_EMULATE;
			return true;
		}
	}
3002

3003
	return false;
3004 3005
}

3006
static bool page_fault_can_be_fast(struct kvm_page_fault *fault)
3007
{
3008 3009 3010 3011
	/*
	 * Do not fix the mmio spte with invalid generation number which
	 * need to be updated by slow page fault path.
	 */
3012
	if (fault->rsvd)
3013 3014
		return false;

3015
	/* See if the page fault is due to an NX violation */
3016
	if (unlikely(fault->exec && fault->present))
3017 3018
		return false;

3019
	/*
3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030
	 * #PF can be fast if:
	 * 1. The shadow page table entry is not present, which could mean that
	 *    the fault is potentially caused by access tracking (if enabled).
	 * 2. The shadow page table entry is present and the fault
	 *    is caused by write-protect, that means we just need change the W
	 *    bit of the spte which can be done out of mmu-lock.
	 *
	 * However, if access tracking is disabled we know that a non-present
	 * page must be a genuine page fault where we have to create a new SPTE.
	 * So, if access tracking is disabled, we return true only for write
	 * accesses to a present page.
3031 3032
	 */

3033
	return shadow_acc_track_mask != 0 || (fault->write && fault->present);
3034 3035
}

3036 3037 3038 3039
/*
 * Returns true if the SPTE was fixed successfully. Otherwise,
 * someone else modified the SPTE from its original value.
 */
3040
static bool
3041
fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault,
3042
			u64 *sptep, u64 old_spte, u64 new_spte)
3043
{
3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
	/*
	 * Theoretically we could also set dirty bit (and flush TLB) here in
	 * order to eliminate unnecessary PML logging. See comments in
	 * set_spte. But fast_page_fault is very unlikely to happen with PML
	 * enabled, so we do not do this. This might result in the same GPA
	 * to be logged in PML buffer again when the write really happens, and
	 * eventually to be called by mark_page_dirty twice. But it's also no
	 * harm. This also avoids the TLB flush needed after setting dirty bit
	 * so non-PML cases won't be impacted.
	 *
	 * Compare with set_spte where instead shadow_dirty_mask is set.
	 */
3056
	if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3057 3058
		return false;

3059 3060
	if (is_writable_pte(new_spte) && !is_writable_pte(old_spte))
		mark_page_dirty_in_slot(vcpu->kvm, fault->slot, fault->gfn);
3061 3062 3063 3064

	return true;
}

3065
static bool is_access_allowed(struct kvm_page_fault *fault, u64 spte)
3066
{
3067
	if (fault->exec)
3068 3069
		return is_executable_pte(spte);

3070
	if (fault->write)
3071 3072 3073 3074 3075 3076
		return is_writable_pte(spte);

	/* Fault was on Read access */
	return spte & PT_PRESENT_MASK;
}

3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099
/*
 * Returns the last level spte pointer of the shadow page walk for the given
 * gpa, and sets *spte to the spte value. This spte may be non-preset. If no
 * walk could be performed, returns NULL and *spte does not contain valid data.
 *
 * Contract:
 *  - Must be called between walk_shadow_page_lockless_{begin,end}.
 *  - The returned sptep must not be used after walk_shadow_page_lockless_end.
 */
static u64 *fast_pf_get_last_sptep(struct kvm_vcpu *vcpu, gpa_t gpa, u64 *spte)
{
	struct kvm_shadow_walk_iterator iterator;
	u64 old_spte;
	u64 *sptep = NULL;

	for_each_shadow_entry_lockless(vcpu, gpa, iterator, old_spte) {
		sptep = iterator.sptep;
		*spte = old_spte;
	}

	return sptep;
}

3100
/*
3101
 * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS.
3102
 */
3103
static int fast_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
3104
{
3105
	struct kvm_mmu_page *sp;
3106
	int ret = RET_PF_INVALID;
3107
	u64 spte = 0ull;
3108
	u64 *sptep = NULL;
3109
	uint retry_count = 0;
3110

3111
	if (!page_fault_can_be_fast(fault))
3112
		return ret;
3113 3114 3115

	walk_shadow_page_lockless_begin(vcpu);

3116
	do {
3117
		u64 new_spte;
3118

3119
		if (is_tdp_mmu(vcpu->arch.mmu))
3120
			sptep = kvm_tdp_mmu_fast_pf_get_last_sptep(vcpu, fault->addr, &spte);
3121
		else
3122
			sptep = fast_pf_get_last_sptep(vcpu, fault->addr, &spte);
3123

3124 3125 3126
		if (!is_shadow_present_pte(spte))
			break;

3127
		sp = sptep_to_sp(sptep);
3128 3129
		if (!is_last_spte(spte, sp->role.level))
			break;
3130

3131
		/*
3132 3133 3134 3135 3136
		 * Check whether the memory access that caused the fault would
		 * still cause it if it were to be performed right now. If not,
		 * then this is a spurious fault caused by TLB lazily flushed,
		 * or some other CPU has already fixed the PTE after the
		 * current CPU took the fault.
3137 3138 3139 3140
		 *
		 * Need not check the access of upper level table entries since
		 * they are always ACC_ALL.
		 */
3141
		if (is_access_allowed(fault, spte)) {
3142
			ret = RET_PF_SPURIOUS;
3143 3144
			break;
		}
3145

3146 3147 3148 3149 3150 3151 3152 3153 3154 3155
		new_spte = spte;

		if (is_access_track_spte(spte))
			new_spte = restore_acc_track_spte(new_spte);

		/*
		 * Currently, to simplify the code, write-protection can
		 * be removed in the fast path only if the SPTE was
		 * write-protected for dirty-logging or access tracking.
		 */
3156
		if (fault->write &&
3157
		    spte_can_locklessly_be_made_writable(spte)) {
3158
			new_spte |= PT_WRITABLE_MASK;
3159 3160

			/*
3161 3162 3163
			 * Do not fix write-permission on the large spte when
			 * dirty logging is enabled. Since we only dirty the
			 * first page into the dirty-bitmap in
3164 3165 3166 3167 3168
			 * fast_pf_fix_direct_spte(), other pages are missed
			 * if its slot has dirty logging enabled.
			 *
			 * Instead, we let the slow page fault path create a
			 * normal spte to fix the access.
3169
			 */
3170 3171
			if (sp->role.level > PG_LEVEL_4K &&
			    kvm_slot_dirty_track_enabled(fault->slot))
3172
				break;
3173
		}
3174

3175
		/* Verify that the fault can be handled in the fast path */
3176
		if (new_spte == spte ||
3177
		    !is_access_allowed(fault, new_spte))
3178 3179 3180 3181 3182
			break;

		/*
		 * Currently, fast page fault only works for direct mapping
		 * since the gfn is not stable for indirect shadow page. See
3183
		 * Documentation/virt/kvm/locking.rst to get more detail.
3184
		 */
3185
		if (fast_pf_fix_direct_spte(vcpu, fault, sptep, spte, new_spte)) {
3186
			ret = RET_PF_FIXED;
3187
			break;
3188
		}
3189 3190 3191 3192 3193 3194 3195 3196

		if (++retry_count > 4) {
			printk_once(KERN_WARNING
				"kvm: Fast #PF retrying more than 4 times.\n");
			break;
		}

	} while (true);
3197

3198
	trace_fast_page_fault(vcpu, fault, sptep, spte, ret);
3199 3200
	walk_shadow_page_lockless_end(vcpu);

3201
	return ret;
3202 3203
}

3204 3205
static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
			       struct list_head *invalid_list)
3206
{
3207
	struct kvm_mmu_page *sp;
3208

3209
	if (!VALID_PAGE(*root_hpa))
A
Avi Kivity 已提交
3210
		return;
3211

3212
	sp = to_shadow_page(*root_hpa & PT64_BASE_ADDR_MASK);
3213 3214
	if (WARN_ON(!sp))
		return;
3215

3216
	if (is_tdp_mmu_page(sp))
3217
		kvm_tdp_mmu_put_root(kvm, sp, false);
3218 3219
	else if (!--sp->root_count && sp->role.invalid)
		kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3220

3221 3222 3223
	*root_hpa = INVALID_PAGE;
}

3224
/* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
3225
void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu,
3226
			ulong roots_to_free)
3227 3228 3229
{
	int i;
	LIST_HEAD(invalid_list);
3230
	bool free_active_root;
3231

3232
	BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3233

3234
	/* Before acquiring the MMU lock, see if we need to do any real work. */
3235 3236 3237 3238
	free_active_root = (roots_to_free & KVM_MMU_ROOT_CURRENT)
		&& VALID_PAGE(mmu->root.hpa);

	if (!free_active_root) {
3239 3240 3241 3242 3243 3244 3245 3246
		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
			if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
			    VALID_PAGE(mmu->prev_roots[i].hpa))
				break;

		if (i == KVM_MMU_NUM_PREV_ROOTS)
			return;
	}
3247

3248
	write_lock(&kvm->mmu_lock);
3249

3250 3251
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
		if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3252
			mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa,
3253
					   &invalid_list);
3254

3255
	if (free_active_root) {
3256
		if (to_shadow_page(mmu->root.hpa)) {
3257
			mmu_free_root_page(kvm, &mmu->root.hpa, &invalid_list);
3258
		} else if (mmu->pae_root) {
3259 3260 3261 3262 3263 3264 3265 3266
			for (i = 0; i < 4; ++i) {
				if (!IS_VALID_PAE_ROOT(mmu->pae_root[i]))
					continue;

				mmu_free_root_page(kvm, &mmu->pae_root[i],
						   &invalid_list);
				mmu->pae_root[i] = INVALID_PAE_ROOT;
			}
3267
		}
3268 3269
		mmu->root.hpa = INVALID_PAGE;
		mmu->root.pgd = 0;
3270
	}
3271

3272
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
3273
	write_unlock(&kvm->mmu_lock);
3274
}
3275
EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3276

3277
void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu)
3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298
{
	unsigned long roots_to_free = 0;
	hpa_t root_hpa;
	int i;

	/*
	 * This should not be called while L2 is active, L2 can't invalidate
	 * _only_ its own roots, e.g. INVVPID unconditionally exits.
	 */
	WARN_ON_ONCE(mmu->mmu_role.base.guest_mode);

	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
		root_hpa = mmu->prev_roots[i].hpa;
		if (!VALID_PAGE(root_hpa))
			continue;

		if (!to_shadow_page(root_hpa) ||
			to_shadow_page(root_hpa)->role.guest_mode)
			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
	}

3299
	kvm_mmu_free_roots(kvm, mmu, roots_to_free);
3300 3301 3302 3303
}
EXPORT_SYMBOL_GPL(kvm_mmu_free_guest_mode_roots);


3304 3305 3306 3307
static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
{
	int ret = 0;

3308
	if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) {
3309
		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3310 3311 3312 3313 3314 3315
		ret = 1;
	}

	return ret;
}

3316 3317
static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, gva_t gva,
			    u8 level, bool direct)
3318 3319
{
	struct kvm_mmu_page *sp;
3320 3321 3322 3323 3324 3325 3326 3327 3328

	sp = kvm_mmu_get_page(vcpu, gfn, gva, level, direct, ACC_ALL);
	++sp->root_count;

	return __pa(sp->spt);
}

static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
{
3329 3330
	struct kvm_mmu *mmu = vcpu->arch.mmu;
	u8 shadow_root_level = mmu->shadow_root_level;
3331
	hpa_t root;
3332
	unsigned i;
3333 3334 3335 3336 3337 3338
	int r;

	write_lock(&vcpu->kvm->mmu_lock);
	r = make_mmu_pages_available(vcpu);
	if (r < 0)
		goto out_unlock;
3339

3340
	if (is_tdp_mmu_enabled(vcpu->kvm)) {
3341
		root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu);
3342
		mmu->root.hpa = root;
3343
	} else if (shadow_root_level >= PT64_ROOT_4LEVEL) {
3344
		root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level, true);
3345
		mmu->root.hpa = root;
3346
	} else if (shadow_root_level == PT32E_ROOT_LEVEL) {
3347 3348 3349 3350
		if (WARN_ON_ONCE(!mmu->pae_root)) {
			r = -EIO;
			goto out_unlock;
		}
3351

3352
		for (i = 0; i < 4; ++i) {
3353
			WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3354

3355 3356
			root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT),
					      i << 30, PT32_ROOT_LEVEL, true);
3357 3358
			mmu->pae_root[i] = root | PT_PRESENT_MASK |
					   shadow_me_mask;
3359
		}
3360
		mmu->root.hpa = __pa(mmu->pae_root);
3361 3362
	} else {
		WARN_ONCE(1, "Bad TDP root level = %d\n", shadow_root_level);
3363 3364
		r = -EIO;
		goto out_unlock;
3365
	}
3366

3367 3368
	/* root.pgd is ignored for direct MMUs. */
	mmu->root.pgd = 0;
3369 3370 3371
out_unlock:
	write_unlock(&vcpu->kvm->mmu_lock);
	return r;
3372 3373
}

3374 3375 3376 3377
static int mmu_first_shadow_root_alloc(struct kvm *kvm)
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *slot;
3378
	int r = 0, i, bkt;
3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402

	/*
	 * Check if this is the first shadow root being allocated before
	 * taking the lock.
	 */
	if (kvm_shadow_root_allocated(kvm))
		return 0;

	mutex_lock(&kvm->slots_arch_lock);

	/* Recheck, under the lock, whether this is the first shadow root. */
	if (kvm_shadow_root_allocated(kvm))
		goto out_unlock;

	/*
	 * Check if anything actually needs to be allocated, e.g. all metadata
	 * will be allocated upfront if TDP is disabled.
	 */
	if (kvm_memslots_have_rmaps(kvm) &&
	    kvm_page_track_write_tracking_enabled(kvm))
		goto out_success;

	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
3403
		kvm_for_each_memslot(slot, bkt, slots) {
3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434
			/*
			 * Both of these functions are no-ops if the target is
			 * already allocated, so unconditionally calling both
			 * is safe.  Intentionally do NOT free allocations on
			 * failure to avoid having to track which allocations
			 * were made now versus when the memslot was created.
			 * The metadata is guaranteed to be freed when the slot
			 * is freed, and will be kept/used if userspace retries
			 * KVM_RUN instead of killing the VM.
			 */
			r = memslot_rmap_alloc(slot, slot->npages);
			if (r)
				goto out_unlock;
			r = kvm_page_track_write_tracking_alloc(slot);
			if (r)
				goto out_unlock;
		}
	}

	/*
	 * Ensure that shadow_root_allocated becomes true strictly after
	 * all the related pointers are set.
	 */
out_success:
	smp_store_release(&kvm->arch.shadow_root_allocated, true);

out_unlock:
	mutex_unlock(&kvm->slots_arch_lock);
	return r;
}

3435
static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3436
{
3437
	struct kvm_mmu *mmu = vcpu->arch.mmu;
3438
	u64 pdptrs[4], pm_mask;
3439
	gfn_t root_gfn, root_pgd;
3440
	hpa_t root;
3441 3442
	unsigned i;
	int r;
3443

3444
	root_pgd = mmu->get_guest_pgd(vcpu);
3445
	root_gfn = root_pgd >> PAGE_SHIFT;
3446

3447 3448 3449
	if (mmu_check_root(vcpu, root_gfn))
		return 1;

3450 3451 3452 3453
	/*
	 * On SVM, reading PDPTRs might access guest memory, which might fault
	 * and thus might sleep.  Grab the PDPTRs before acquiring mmu_lock.
	 */
3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464
	if (mmu->root_level == PT32E_ROOT_LEVEL) {
		for (i = 0; i < 4; ++i) {
			pdptrs[i] = mmu->get_pdptr(vcpu, i);
			if (!(pdptrs[i] & PT_PRESENT_MASK))
				continue;

			if (mmu_check_root(vcpu, pdptrs[i] >> PAGE_SHIFT))
				return 1;
		}
	}

3465
	r = mmu_first_shadow_root_alloc(vcpu->kvm);
3466 3467 3468
	if (r)
		return r;

3469 3470 3471 3472 3473
	write_lock(&vcpu->kvm->mmu_lock);
	r = make_mmu_pages_available(vcpu);
	if (r < 0)
		goto out_unlock;

3474 3475 3476 3477
	/*
	 * Do we shadow a long mode page table? If so we need to
	 * write-protect the guests page table root.
	 */
3478
	if (mmu->root_level >= PT64_ROOT_4LEVEL) {
3479
		root = mmu_alloc_root(vcpu, root_gfn, 0,
3480
				      mmu->shadow_root_level, false);
3481
		mmu->root.hpa = root;
3482
		goto set_root_pgd;
3483
	}
3484

3485 3486 3487 3488
	if (WARN_ON_ONCE(!mmu->pae_root)) {
		r = -EIO;
		goto out_unlock;
	}
3489

3490 3491
	/*
	 * We shadow a 32 bit page table. This may be a legacy 2-level
3492 3493
	 * or a PAE 3-level page table. In either case we need to be aware that
	 * the shadow page table may be a PAE or a long mode page table.
3494
	 */
3495
	pm_mask = PT_PRESENT_MASK | shadow_me_mask;
3496
	if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL) {
3497 3498
		pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;

3499
		if (WARN_ON_ONCE(!mmu->pml4_root)) {
3500 3501 3502
			r = -EIO;
			goto out_unlock;
		}
3503
		mmu->pml4_root[0] = __pa(mmu->pae_root) | pm_mask;
3504 3505 3506 3507 3508 3509 3510 3511

		if (mmu->shadow_root_level == PT64_ROOT_5LEVEL) {
			if (WARN_ON_ONCE(!mmu->pml5_root)) {
				r = -EIO;
				goto out_unlock;
			}
			mmu->pml5_root[0] = __pa(mmu->pml4_root) | pm_mask;
		}
3512 3513
	}

3514
	for (i = 0; i < 4; ++i) {
3515
		WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3516

3517
		if (mmu->root_level == PT32E_ROOT_LEVEL) {
3518
			if (!(pdptrs[i] & PT_PRESENT_MASK)) {
3519
				mmu->pae_root[i] = INVALID_PAE_ROOT;
A
Avi Kivity 已提交
3520 3521
				continue;
			}
3522
			root_gfn = pdptrs[i] >> PAGE_SHIFT;
3523
		}
3524

3525 3526
		root = mmu_alloc_root(vcpu, root_gfn, i << 30,
				      PT32_ROOT_LEVEL, false);
3527
		mmu->pae_root[i] = root | pm_mask;
3528
	}
3529

3530
	if (mmu->shadow_root_level == PT64_ROOT_5LEVEL)
3531
		mmu->root.hpa = __pa(mmu->pml5_root);
3532
	else if (mmu->shadow_root_level == PT64_ROOT_4LEVEL)
3533
		mmu->root.hpa = __pa(mmu->pml4_root);
3534
	else
3535
		mmu->root.hpa = __pa(mmu->pae_root);
3536

3537
set_root_pgd:
3538
	mmu->root.pgd = root_pgd;
3539 3540
out_unlock:
	write_unlock(&vcpu->kvm->mmu_lock);
3541

3542
	return r;
3543 3544
}

3545 3546 3547
static int mmu_alloc_special_roots(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu *mmu = vcpu->arch.mmu;
3548
	bool need_pml5 = mmu->shadow_root_level > PT64_ROOT_4LEVEL;
3549 3550 3551
	u64 *pml5_root = NULL;
	u64 *pml4_root = NULL;
	u64 *pae_root;
3552 3553

	/*
3554 3555 3556 3557
	 * When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP
	 * tables are allocated and initialized at root creation as there is no
	 * equivalent level in the guest's NPT to shadow.  Allocate the tables
	 * on demand, as running a 32-bit L1 VMM on 64-bit KVM is very rare.
3558
	 */
3559 3560 3561
	if (mmu->direct_map || mmu->root_level >= PT64_ROOT_4LEVEL ||
	    mmu->shadow_root_level < PT64_ROOT_4LEVEL)
		return 0;
3562

3563 3564 3565 3566 3567 3568 3569 3570
	/*
	 * NPT, the only paging mode that uses this horror, uses a fixed number
	 * of levels for the shadow page tables, e.g. all MMUs are 4-level or
	 * all MMus are 5-level.  Thus, this can safely require that pml5_root
	 * is allocated if the other roots are valid and pml5 is needed, as any
	 * prior MMU would also have required pml5.
	 */
	if (mmu->pae_root && mmu->pml4_root && (!need_pml5 || mmu->pml5_root))
3571
		return 0;
3572

3573 3574 3575 3576
	/*
	 * The special roots should always be allocated in concert.  Yell and
	 * bail if KVM ends up in a state where only one of the roots is valid.
	 */
3577
	if (WARN_ON_ONCE(!tdp_enabled || mmu->pae_root || mmu->pml4_root ||
3578
			 (need_pml5 && mmu->pml5_root)))
3579
		return -EIO;
3580

3581 3582 3583 3584
	/*
	 * Unlike 32-bit NPT, the PDP table doesn't need to be in low mem, and
	 * doesn't need to be decrypted.
	 */
3585 3586 3587
	pae_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
	if (!pae_root)
		return -ENOMEM;
3588

3589
#ifdef CONFIG_X86_64
3590
	pml4_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3591 3592 3593
	if (!pml4_root)
		goto err_pml4;

3594
	if (need_pml5) {
3595 3596 3597
		pml5_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
		if (!pml5_root)
			goto err_pml5;
3598
	}
3599
#endif
3600

3601
	mmu->pae_root = pae_root;
3602
	mmu->pml4_root = pml4_root;
3603
	mmu->pml5_root = pml5_root;
3604

3605
	return 0;
3606 3607 3608 3609 3610 3611 3612 3613

#ifdef CONFIG_X86_64
err_pml5:
	free_page((unsigned long)pml4_root);
err_pml4:
	free_page((unsigned long)pae_root);
	return -ENOMEM;
#endif
3614 3615
}

3616 3617 3618 3619
static bool is_unsync_root(hpa_t root)
{
	struct kvm_mmu_page *sp;

3620 3621 3622
	if (!VALID_PAGE(root))
		return false;

3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636
	/*
	 * The read barrier orders the CPU's read of SPTE.W during the page table
	 * walk before the reads of sp->unsync/sp->unsync_children here.
	 *
	 * Even if another CPU was marking the SP as unsync-ed simultaneously,
	 * any guest page table changes are not guaranteed to be visible anyway
	 * until this VCPU issues a TLB flush strictly after those changes are
	 * made.  We only need to ensure that the other CPU sets these flags
	 * before any actual changes to the page tables are made.  The comments
	 * in mmu_try_to_unsync_pages() describe what could go wrong if this
	 * requirement isn't satisfied.
	 */
	smp_rmb();
	sp = to_shadow_page(root);
3637 3638 3639 3640 3641 3642 3643 3644

	/*
	 * PAE roots (somewhat arbitrarily) aren't backed by shadow pages, the
	 * PDPTEs for a given PAE root need to be synchronized individually.
	 */
	if (WARN_ON_ONCE(!sp))
		return false;

3645 3646 3647 3648 3649 3650
	if (sp->unsync || sp->unsync_children)
		return true;

	return false;
}

3651
void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3652 3653 3654 3655
{
	int i;
	struct kvm_mmu_page *sp;

3656
	if (vcpu->arch.mmu->direct_map)
3657 3658
		return;

3659
	if (!VALID_PAGE(vcpu->arch.mmu->root.hpa))
3660
		return;
3661

3662
	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3663

3664
	if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3665
		hpa_t root = vcpu->arch.mmu->root.hpa;
3666
		sp = to_shadow_page(root);
3667

3668
		if (!is_unsync_root(root))
3669 3670
			return;

3671
		write_lock(&vcpu->kvm->mmu_lock);
3672
		mmu_sync_children(vcpu, sp, true);
3673
		write_unlock(&vcpu->kvm->mmu_lock);
3674 3675
		return;
	}
3676

3677
	write_lock(&vcpu->kvm->mmu_lock);
3678

3679
	for (i = 0; i < 4; ++i) {
3680
		hpa_t root = vcpu->arch.mmu->pae_root[i];
3681

3682
		if (IS_VALID_PAE_ROOT(root)) {
3683
			root &= PT64_BASE_ADDR_MASK;
3684
			sp = to_shadow_page(root);
3685
			mmu_sync_children(vcpu, sp, true);
3686 3687 3688
		}
	}

3689
	write_unlock(&vcpu->kvm->mmu_lock);
3690 3691
}

3692 3693 3694 3695 3696 3697 3698 3699 3700 3701
void kvm_mmu_sync_prev_roots(struct kvm_vcpu *vcpu)
{
	unsigned long roots_to_free = 0;
	int i;

	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
		if (is_unsync_root(vcpu->arch.mmu->prev_roots[i].hpa))
			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);

	/* sync prev_roots by simply freeing them */
3702
	kvm_mmu_free_roots(vcpu->kvm, vcpu->arch.mmu, roots_to_free);
3703 3704
}

3705 3706 3707
static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
				  gpa_t vaddr, u32 access,
				  struct x86_exception *exception)
A
Avi Kivity 已提交
3708
{
3709 3710
	if (exception)
		exception->error_code = 0;
3711
	return kvm_translate_gpa(vcpu, mmu, vaddr, access, exception);
3712 3713
}

3714
static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3715
{
3716 3717 3718 3719 3720 3721 3722
	/*
	 * A nested guest cannot use the MMIO cache if it is using nested
	 * page tables, because cr2 is a nGPA while the cache stores GPAs.
	 */
	if (mmu_is_nested(vcpu))
		return false;

3723 3724 3725 3726 3727 3728
	if (direct)
		return vcpu_match_mmio_gpa(vcpu, addr);

	return vcpu_match_mmio_gva(vcpu, addr);
}

3729 3730 3731
/*
 * Return the level of the lowest level SPTE added to sptes.
 * That SPTE may be non-present.
3732 3733
 *
 * Must be called between walk_shadow_page_lockless_{begin,end}.
3734
 */
3735
static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level)
3736 3737
{
	struct kvm_shadow_walk_iterator iterator;
3738
	int leaf = -1;
3739
	u64 spte;
3740

3741 3742
	for (shadow_walk_init(&iterator, vcpu, addr),
	     *root_level = iterator.level;
3743 3744
	     shadow_walk_okay(&iterator);
	     __shadow_walk_next(&iterator, spte)) {
3745
		leaf = iterator.level;
3746 3747
		spte = mmu_spte_get_lockless(iterator.sptep);

3748
		sptes[leaf] = spte;
3749 3750 3751 3752 3753
	}

	return leaf;
}

3754
/* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */
3755 3756
static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
{
3757
	u64 sptes[PT64_ROOT_MAX_LEVEL + 1];
3758
	struct rsvd_bits_validate *rsvd_check;
3759
	int root, leaf, level;
3760 3761
	bool reserved = false;

3762 3763
	walk_shadow_page_lockless_begin(vcpu);

3764
	if (is_tdp_mmu(vcpu->arch.mmu))
3765
		leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, &root);
3766
	else
3767
		leaf = get_walk(vcpu, addr, sptes, &root);
3768

3769 3770
	walk_shadow_page_lockless_end(vcpu);

3771 3772 3773 3774 3775
	if (unlikely(leaf < 0)) {
		*sptep = 0ull;
		return reserved;
	}

3776 3777 3778 3779 3780 3781 3782 3783 3784 3785
	*sptep = sptes[leaf];

	/*
	 * Skip reserved bits checks on the terminal leaf if it's not a valid
	 * SPTE.  Note, this also (intentionally) skips MMIO SPTEs, which, by
	 * design, always have reserved bits set.  The purpose of the checks is
	 * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs.
	 */
	if (!is_shadow_present_pte(sptes[leaf]))
		leaf++;
3786 3787 3788

	rsvd_check = &vcpu->arch.mmu->shadow_zero_check;

3789
	for (level = root; level >= leaf; level--)
3790
		reserved |= is_rsvd_spte(rsvd_check, sptes[level], level);
3791 3792

	if (reserved) {
3793
		pr_err("%s: reserved bits set on MMU-present spte, addr 0x%llx, hierarchy:\n",
3794
		       __func__, addr);
3795
		for (level = root; level >= leaf; level--)
3796 3797
			pr_err("------ spte = 0x%llx level = %d, rsvd bits = 0x%llx",
			       sptes[level], level,
3798
			       get_rsvd_bits(rsvd_check, sptes[level], level));
3799
	}
3800

3801
	return reserved;
3802 3803
}

P
Paolo Bonzini 已提交
3804
static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3805 3806
{
	u64 spte;
3807
	bool reserved;
3808

3809
	if (mmio_info_in_cache(vcpu, addr, direct))
3810
		return RET_PF_EMULATE;
3811

3812
	reserved = get_mmio_spte(vcpu, addr, &spte);
3813
	if (WARN_ON(reserved))
3814
		return -EINVAL;
3815 3816 3817

	if (is_mmio_spte(spte)) {
		gfn_t gfn = get_mmio_spte_gfn(spte);
3818
		unsigned int access = get_mmio_spte_access(spte);
3819

3820
		if (!check_mmio_spte(vcpu, spte))
3821
			return RET_PF_INVALID;
3822

3823 3824
		if (direct)
			addr = 0;
X
Xiao Guangrong 已提交
3825 3826

		trace_handle_mmio_page_fault(addr, gfn, access);
3827
		vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3828
		return RET_PF_EMULATE;
3829 3830 3831 3832 3833 3834
	}

	/*
	 * If the page table is zapped by other cpus, let CPU fault again on
	 * the address.
	 */
3835
	return RET_PF_RETRY;
3836 3837
}

3838
static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3839
					 struct kvm_page_fault *fault)
3840
{
3841
	if (unlikely(fault->rsvd))
3842 3843
		return false;

3844
	if (!fault->present || !fault->write)
3845 3846 3847 3848 3849 3850
		return false;

	/*
	 * guest is writing the page which is write tracked which can
	 * not be fixed by page fault handler.
	 */
3851
	if (kvm_slot_page_track_is_active(vcpu->kvm, fault->slot, fault->gfn, KVM_PAGE_TRACK_WRITE))
3852 3853 3854 3855 3856
		return true;

	return false;
}

3857 3858 3859 3860 3861 3862
static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
{
	struct kvm_shadow_walk_iterator iterator;
	u64 spte;

	walk_shadow_page_lockless_begin(vcpu);
3863
	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
3864 3865 3866 3867
		clear_sp_write_flooding_count(iterator.sptep);
	walk_shadow_page_lockless_end(vcpu);
}

3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878
static u32 alloc_apf_token(struct kvm_vcpu *vcpu)
{
	/* make sure the token value is not 0 */
	u32 id = vcpu->arch.apf.id;

	if (id << 12 == 0)
		vcpu->arch.apf.id = 1;

	return (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
}

3879 3880
static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
				    gfn_t gfn)
3881 3882
{
	struct kvm_arch_async_pf arch;
X
Xiao Guangrong 已提交
3883

3884
	arch.token = alloc_apf_token(vcpu);
3885
	arch.gfn = gfn;
3886
	arch.direct_map = vcpu->arch.mmu->direct_map;
3887
	arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu);
3888

3889 3890
	return kvm_setup_async_pf(vcpu, cr2_or_gpa,
				  kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3891 3892
}

3893
static bool kvm_faultin_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault, int *r)
3894
{
3895
	struct kvm_memory_slot *slot = fault->slot;
3896 3897
	bool async;

3898 3899 3900 3901 3902 3903
	/*
	 * Retry the page fault if the gfn hit a memslot that is being deleted
	 * or moved.  This ensures any existing SPTEs for the old memslot will
	 * be zapped before KVM inserts a new MMIO SPTE for the gfn.
	 */
	if (slot && (slot->flags & KVM_MEMSLOT_INVALID))
3904
		goto out_retry;
3905

3906 3907 3908
	if (!kvm_is_visible_memslot(slot)) {
		/* Don't expose private memslots to L2. */
		if (is_guest_mode(vcpu)) {
3909
			fault->slot = NULL;
3910 3911
			fault->pfn = KVM_PFN_NOSLOT;
			fault->map_writable = false;
3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924
			return false;
		}
		/*
		 * If the APIC access page exists but is disabled, go directly
		 * to emulation without caching the MMIO access or creating a
		 * MMIO SPTE.  That way the cache doesn't need to be purged
		 * when the AVIC is re-enabled.
		 */
		if (slot && slot->id == APIC_ACCESS_PAGE_PRIVATE_MEMSLOT &&
		    !kvm_apicv_activated(vcpu->kvm)) {
			*r = RET_PF_EMULATE;
			return true;
		}
3925 3926
	}

3927
	async = false;
3928 3929 3930
	fault->pfn = __gfn_to_pfn_memslot(slot, fault->gfn, false, &async,
					  fault->write, &fault->map_writable,
					  &fault->hva);
3931 3932 3933
	if (!async)
		return false; /* *pfn has correct page already */

3934
	if (!fault->prefetch && kvm_can_do_async_pf(vcpu)) {
3935 3936 3937
		trace_kvm_try_async_get_page(fault->addr, fault->gfn);
		if (kvm_find_async_pf_gfn(vcpu, fault->gfn)) {
			trace_kvm_async_pf_doublefault(fault->addr, fault->gfn);
3938
			kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3939
			goto out_retry;
3940
		} else if (kvm_arch_setup_async_pf(vcpu, fault->addr, fault->gfn))
3941
			goto out_retry;
3942 3943
	}

3944 3945 3946
	fault->pfn = __gfn_to_pfn_memslot(slot, fault->gfn, false, NULL,
					  fault->write, &fault->map_writable,
					  &fault->hva);
3947
	return false;
3948 3949 3950 3951

out_retry:
	*r = RET_PF_RETRY;
	return true;
3952 3953
}

3954 3955 3956 3957 3958 3959 3960
/*
 * Returns true if the page fault is stale and needs to be retried, i.e. if the
 * root was invalidated by a memslot update or a relevant mmu_notifier fired.
 */
static bool is_page_fault_stale(struct kvm_vcpu *vcpu,
				struct kvm_page_fault *fault, int mmu_seq)
{
3961
	struct kvm_mmu_page *sp = to_shadow_page(vcpu->arch.mmu->root.hpa);
3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974

	/* Special roots, e.g. pae_root, are not backed by shadow pages. */
	if (sp && is_obsolete_sp(vcpu->kvm, sp))
		return true;

	/*
	 * Roots without an associated shadow page are considered invalid if
	 * there is a pending request to free obsolete roots.  The request is
	 * only a hint that the current root _may_ be obsolete and needs to be
	 * reloaded, e.g. if the guest frees a PGD that KVM is tracking as a
	 * previous root, then __kvm_mmu_prepare_zap_page() signals all vCPUs
	 * to reload even if no vCPU is actively using the root.
	 */
3975
	if (!sp && kvm_test_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
3976 3977 3978 3979 3980 3981
		return true;

	return fault->slot &&
	       mmu_notifier_retry_hva(vcpu->kvm, mmu_seq, fault->hva);
}

3982
static int direct_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
A
Avi Kivity 已提交
3983
{
3984
	bool is_tdp_mmu_fault = is_tdp_mmu(vcpu->arch.mmu);
A
Avi Kivity 已提交
3985

3986
	unsigned long mmu_seq;
3987
	int r;
3988

3989
	fault->gfn = fault->addr >> PAGE_SHIFT;
3990 3991
	fault->slot = kvm_vcpu_gfn_to_memslot(vcpu, fault->gfn);

3992
	if (page_fault_handle_page_track(vcpu, fault))
3993
		return RET_PF_EMULATE;
3994

3995
	r = fast_page_fault(vcpu, fault);
3996 3997
	if (r != RET_PF_INVALID)
		return r;
3998

3999
	r = mmu_topup_memory_caches(vcpu, false);
4000 4001
	if (r)
		return r;
4002

4003 4004 4005
	mmu_seq = vcpu->kvm->mmu_notifier_seq;
	smp_rmb();

4006
	if (kvm_faultin_pfn(vcpu, fault, &r))
4007
		return r;
4008

4009
	if (handle_abnormal_pfn(vcpu, fault, ACC_ALL, &r))
4010
		return r;
A
Avi Kivity 已提交
4011

4012
	r = RET_PF_RETRY;
4013

4014
	if (is_tdp_mmu_fault)
4015 4016 4017 4018
		read_lock(&vcpu->kvm->mmu_lock);
	else
		write_lock(&vcpu->kvm->mmu_lock);

4019
	if (is_page_fault_stale(vcpu, fault, mmu_seq))
4020
		goto out_unlock;
4021

4022 4023
	r = make_mmu_pages_available(vcpu);
	if (r)
4024
		goto out_unlock;
B
Ben Gardon 已提交
4025

4026
	if (is_tdp_mmu_fault)
4027
		r = kvm_tdp_mmu_map(vcpu, fault);
B
Ben Gardon 已提交
4028
	else
4029
		r = __direct_map(vcpu, fault);
4030

4031
out_unlock:
4032
	if (is_tdp_mmu_fault)
4033 4034 4035
		read_unlock(&vcpu->kvm->mmu_lock);
	else
		write_unlock(&vcpu->kvm->mmu_lock);
4036
	kvm_release_pfn_clean(fault->pfn);
4037
	return r;
A
Avi Kivity 已提交
4038 4039
}

4040 4041
static int nonpaging_page_fault(struct kvm_vcpu *vcpu,
				struct kvm_page_fault *fault)
4042
{
4043
	pgprintk("%s: gva %lx error %x\n", __func__, fault->addr, fault->error_code);
4044 4045

	/* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
4046 4047
	fault->max_level = PG_LEVEL_2M;
	return direct_page_fault(vcpu, fault);
4048 4049
}

4050
int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
4051
				u64 fault_address, char *insn, int insn_len)
4052 4053
{
	int r = 1;
4054
	u32 flags = vcpu->arch.apf.host_apf_flags;
4055

4056 4057 4058 4059 4060 4061
#ifndef CONFIG_X86_64
	/* A 64-bit CR2 should be impossible on 32-bit KVM. */
	if (WARN_ON_ONCE(fault_address >> 32))
		return -EFAULT;
#endif

P
Paolo Bonzini 已提交
4062
	vcpu->arch.l1tf_flush_l1d = true;
4063
	if (!flags) {
4064 4065
		trace_kvm_page_fault(fault_address, error_code);

4066
		if (kvm_event_needs_reinjection(vcpu))
4067 4068 4069
			kvm_mmu_unprotect_page_virt(vcpu, fault_address);
		r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
				insn_len);
4070
	} else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
4071
		vcpu->arch.apf.host_apf_flags = 0;
4072
		local_irq_disable();
4073
		kvm_async_pf_task_wait_schedule(fault_address);
4074
		local_irq_enable();
4075 4076
	} else {
		WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags);
4077
	}
4078

4079 4080 4081 4082
	return r;
}
EXPORT_SYMBOL_GPL(kvm_handle_page_fault);

4083
int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
4084
{
4085 4086 4087
	while (fault->max_level > PG_LEVEL_4K) {
		int page_num = KVM_PAGES_PER_HPAGE(fault->max_level);
		gfn_t base = (fault->addr >> PAGE_SHIFT) & ~(page_num - 1);
4088

4089 4090
		if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
			break;
4091 4092

		--fault->max_level;
4093
	}
4094

4095
	return direct_page_fault(vcpu, fault);
4096 4097
}

4098
static void nonpaging_init_context(struct kvm_mmu *context)
A
Avi Kivity 已提交
4099 4100 4101
{
	context->page_fault = nonpaging_page_fault;
	context->gva_to_gpa = nonpaging_gva_to_gpa;
4102
	context->sync_page = nonpaging_sync_page;
4103
	context->invlpg = NULL;
4104
	context->direct_map = true;
A
Avi Kivity 已提交
4105 4106
}

4107
static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd,
4108 4109
				  union kvm_mmu_page_role role)
{
4110
	return (role.direct || pgd == root->pgd) &&
4111
	       VALID_PAGE(root->hpa) &&
4112
	       role.word == to_shadow_page(root->hpa)->role.word;
4113 4114
}

4115
/*
4116 4117 4118 4119 4120 4121
 * Find out if a previously cached root matching the new pgd/role is available,
 * and insert the current root as the MRU in the cache.
 * If a matching root is found, it is assigned to kvm_mmu->root and
 * true is returned.
 * If no match is found, kvm_mmu->root is left invalid, the LRU root is
 * evicted to make room for the current root, and false is returned.
4122
 */
4123 4124 4125
static bool cached_root_find_and_keep_current(struct kvm *kvm, struct kvm_mmu *mmu,
					      gpa_t new_pgd,
					      union kvm_mmu_page_role new_role)
4126 4127 4128
{
	uint i;

4129
	if (is_root_usable(&mmu->root, new_pgd, new_role))
4130 4131
		return true;

4132
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
4133 4134 4135 4136 4137 4138 4139 4140
		/*
		 * The swaps end up rotating the cache like this:
		 *   C   0 1 2 3   (on entry to the function)
		 *   0   C 1 2 3
		 *   1   C 0 2 3
		 *   2   C 0 1 3
		 *   3   C 0 1 2   (on exit from the loop)
		 */
4141 4142
		swap(mmu->root, mmu->prev_roots[i]);
		if (is_root_usable(&mmu->root, new_pgd, new_role))
4143
			return true;
4144 4145
	}

4146 4147
	kvm_mmu_free_roots(kvm, mmu, KVM_MMU_ROOT_CURRENT);
	return false;
4148 4149
}

4150 4151 4152 4153 4154 4155 4156 4157 4158 4159
/*
 * Find out if a previously cached root matching the new pgd/role is available.
 * On entry, mmu->root is invalid.
 * If a matching root is found, it is assigned to kvm_mmu->root, the LRU entry
 * of the cache becomes invalid, and true is returned.
 * If no match is found, kvm_mmu->root is left invalid and false is returned.
 */
static bool cached_root_find_without_current(struct kvm *kvm, struct kvm_mmu *mmu,
					     gpa_t new_pgd,
					     union kvm_mmu_page_role new_role)
A
Avi Kivity 已提交
4160
{
4161 4162 4163 4164 4165
	uint i;

	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
		if (is_root_usable(&mmu->prev_roots[i], new_pgd, new_role))
			goto hit;
4166

4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180
	return false;

hit:
	swap(mmu->root, mmu->prev_roots[i]);
	/* Bubble up the remaining roots.  */
	for (; i < KVM_MMU_NUM_PREV_ROOTS - 1; i++)
		mmu->prev_roots[i] = mmu->prev_roots[i + 1];
	mmu->prev_roots[i].hpa = INVALID_PAGE;
	return true;
}

static bool fast_pgd_switch(struct kvm *kvm, struct kvm_mmu *mmu,
			    gpa_t new_pgd, union kvm_mmu_page_role new_role)
{
4181
	/*
4182
	 * For now, limit the caching to 64-bit hosts+VMs in order to avoid
4183 4184 4185
	 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
	 * later if necessary.
	 */
4186 4187
	if (VALID_PAGE(mmu->root.hpa) && !to_shadow_page(mmu->root.hpa))
		kvm_mmu_free_roots(kvm, mmu, KVM_MMU_ROOT_CURRENT);
4188

4189 4190 4191 4192
	if (VALID_PAGE(mmu->root.hpa))
		return cached_root_find_and_keep_current(kvm, mmu, new_pgd, new_role);
	else
		return cached_root_find_without_current(kvm, mmu, new_pgd, new_role);
A
Avi Kivity 已提交
4193 4194
}

4195
void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd)
A
Avi Kivity 已提交
4196
{
4197
	struct kvm_mmu *mmu = vcpu->arch.mmu;
4198
	union kvm_mmu_page_role new_role = mmu->mmu_role.base;
4199

4200 4201
	if (!fast_pgd_switch(vcpu->kvm, mmu, new_pgd, new_role)) {
		/* kvm_mmu_ensure_valid_pgd will set up a new root.  */
4202 4203 4204 4205 4206 4207
		return;
	}

	/*
	 * It's possible that the cached previous root page is obsolete because
	 * of a change in the MMU generation number. However, changing the
4208 4209
	 * generation number is accompanied by KVM_REQ_MMU_FREE_OBSOLETE_ROOTS,
	 * which will free the root set here and allocate a new one.
4210 4211 4212
	 */
	kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);

4213
	if (force_flush_and_sync_on_reuse) {
4214 4215
		kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
4216
	}
4217 4218 4219 4220 4221 4222 4223 4224 4225

	/*
	 * The last MMIO access's GVA and GPA are cached in the VCPU. When
	 * switching to a new CR3, that GVA->GPA mapping may no longer be
	 * valid. So clear any cached MMIO info even when we don't need to sync
	 * the shadow page tables.
	 */
	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);

4226 4227 4228 4229 4230 4231
	/*
	 * If this is a direct root page, it doesn't have a write flooding
	 * count. Otherwise, clear the write flooding count.
	 */
	if (!new_role.direct)
		__clear_sp_write_flooding_count(
4232
				to_shadow_page(vcpu->arch.mmu->root.hpa));
A
Avi Kivity 已提交
4233
}
4234
EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd);
4235

4236 4237
static unsigned long get_cr3(struct kvm_vcpu *vcpu)
{
4238
	return kvm_read_cr3(vcpu);
4239 4240
}

4241
static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
4242
			   unsigned int access)
4243 4244 4245 4246 4247 4248 4249
{
	if (unlikely(is_mmio_spte(*sptep))) {
		if (gfn != get_mmio_spte_gfn(*sptep)) {
			mmu_spte_clear_no_track(sptep);
			return true;
		}

4250
		mark_mmio_spte(vcpu, sptep, gfn, access);
4251 4252 4253 4254 4255 4256
		return true;
	}

	return false;
}

4257 4258 4259 4260 4261
#define PTTYPE_EPT 18 /* arbitrary */
#define PTTYPE PTTYPE_EPT
#include "paging_tmpl.h"
#undef PTTYPE

A
Avi Kivity 已提交
4262 4263 4264 4265 4266 4267 4268 4269
#define PTTYPE 64
#include "paging_tmpl.h"
#undef PTTYPE

#define PTTYPE 32
#include "paging_tmpl.h"
#undef PTTYPE

4270
static void
4271
__reset_rsvds_bits_mask(struct rsvd_bits_validate *rsvd_check,
4272
			u64 pa_bits_rsvd, int level, bool nx, bool gbpages,
4273
			bool pse, bool amd)
4274
{
4275
	u64 gbpages_bit_rsvd = 0;
4276
	u64 nonleaf_bit8_rsvd = 0;
4277
	u64 high_bits_rsvd;
4278

4279
	rsvd_check->bad_mt_xwr = 0;
4280

4281
	if (!gbpages)
4282
		gbpages_bit_rsvd = rsvd_bits(7, 7);
4283

4284 4285 4286 4287 4288 4289 4290 4291 4292
	if (level == PT32E_ROOT_LEVEL)
		high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 62);
	else
		high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);

	/* Note, NX doesn't exist in PDPTEs, this is handled below. */
	if (!nx)
		high_bits_rsvd |= rsvd_bits(63, 63);

4293 4294 4295 4296
	/*
	 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
	 * leaf entries) on AMD CPUs only.
	 */
4297
	if (amd)
4298 4299
		nonleaf_bit8_rsvd = rsvd_bits(8, 8);

4300
	switch (level) {
4301 4302
	case PT32_ROOT_LEVEL:
		/* no rsvd bits for 2 level 4K page table entries */
4303 4304 4305 4306
		rsvd_check->rsvd_bits_mask[0][1] = 0;
		rsvd_check->rsvd_bits_mask[0][0] = 0;
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
4307

4308
		if (!pse) {
4309
			rsvd_check->rsvd_bits_mask[1][1] = 0;
4310 4311 4312
			break;
		}

4313 4314
		if (is_cpuid_PSE36())
			/* 36bits PSE 4MB page */
4315
			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4316 4317
		else
			/* 32 bits PSE 4MB page */
4318
			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4319 4320
		break;
	case PT32E_ROOT_LEVEL:
4321 4322 4323 4324 4325 4326 4327 4328
		rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) |
						   high_bits_rsvd |
						   rsvd_bits(5, 8) |
						   rsvd_bits(1, 2);	/* PDPTE */
		rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;	/* PDE */
		rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;	/* PTE */
		rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
						   rsvd_bits(13, 20);	/* large page */
4329 4330
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
4331
		break;
4332
	case PT64_ROOT_5LEVEL:
4333 4334 4335
		rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd |
						   nonleaf_bit8_rsvd |
						   rsvd_bits(7, 7);
4336 4337
		rsvd_check->rsvd_bits_mask[1][4] =
			rsvd_check->rsvd_bits_mask[0][4];
4338
		fallthrough;
4339
	case PT64_ROOT_4LEVEL:
4340 4341 4342 4343 4344 4345 4346
		rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd |
						   nonleaf_bit8_rsvd |
						   rsvd_bits(7, 7);
		rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd |
						   gbpages_bit_rsvd;
		rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;
		rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4347 4348
		rsvd_check->rsvd_bits_mask[1][3] =
			rsvd_check->rsvd_bits_mask[0][3];
4349 4350 4351 4352 4353
		rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd |
						   gbpages_bit_rsvd |
						   rsvd_bits(13, 29);
		rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
						   rsvd_bits(13, 20); /* large page */
4354 4355
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
4356 4357 4358 4359
		break;
	}
}

4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374
static bool guest_can_use_gbpages(struct kvm_vcpu *vcpu)
{
	/*
	 * If TDP is enabled, let the guest use GBPAGES if they're supported in
	 * hardware.  The hardware page walker doesn't let KVM disable GBPAGES,
	 * i.e. won't treat them as reserved, and KVM doesn't redo the GVA->GPA
	 * walk for performance and complexity reasons.  Not to mention KVM
	 * _can't_ solve the problem because GVA->GPA walks aren't visible to
	 * KVM once a TDP translation is installed.  Mimic hardware behavior so
	 * that KVM's is at least consistent, i.e. doesn't randomly inject #PF.
	 */
	return tdp_enabled ? boot_cpu_has(X86_FEATURE_GBPAGES) :
			     guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES);
}

4375 4376 4377
static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
{
4378
	__reset_rsvds_bits_mask(&context->guest_rsvd_check,
4379
				vcpu->arch.reserved_gpa_bits,
4380
				context->root_level, is_efer_nx(context),
4381
				guest_can_use_gbpages(vcpu),
4382
				is_cr4_pse(context),
4383
				guest_cpuid_is_amd_or_hygon(vcpu));
4384 4385
}

4386 4387
static void
__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4388
			    u64 pa_bits_rsvd, bool execonly, int huge_page_level)
4389
{
4390
	u64 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
4391
	u64 large_1g_rsvd = 0, large_2m_rsvd = 0;
4392
	u64 bad_mt_xwr;
4393

4394 4395 4396 4397 4398
	if (huge_page_level < PG_LEVEL_1G)
		large_1g_rsvd = rsvd_bits(7, 7);
	if (huge_page_level < PG_LEVEL_2M)
		large_2m_rsvd = rsvd_bits(7, 7);

4399 4400
	rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7);
	rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7);
4401 4402
	rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6) | large_1g_rsvd;
	rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6) | large_2m_rsvd;
4403
	rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4404 4405

	/* large page */
4406
	rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4407
	rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4408 4409
	rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29) | large_1g_rsvd;
	rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20) | large_2m_rsvd;
4410
	rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4411

4412 4413 4414 4415 4416 4417 4418 4419
	bad_mt_xwr = 0xFFull << (2 * 8);	/* bits 3..5 must not be 2 */
	bad_mt_xwr |= 0xFFull << (3 * 8);	/* bits 3..5 must not be 3 */
	bad_mt_xwr |= 0xFFull << (7 * 8);	/* bits 3..5 must not be 7 */
	bad_mt_xwr |= REPEAT_BYTE(1ull << 2);	/* bits 0..2 must not be 010 */
	bad_mt_xwr |= REPEAT_BYTE(1ull << 6);	/* bits 0..2 must not be 110 */
	if (!execonly) {
		/* bits 0..2 must not be 100 unless VMX capabilities allow it */
		bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4420
	}
4421
	rsvd_check->bad_mt_xwr = bad_mt_xwr;
4422 4423
}

4424
static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4425
		struct kvm_mmu *context, bool execonly, int huge_page_level)
4426 4427
{
	__reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4428 4429
				    vcpu->arch.reserved_gpa_bits, execonly,
				    huge_page_level);
4430 4431
}

4432 4433 4434 4435 4436
static inline u64 reserved_hpa_bits(void)
{
	return rsvd_bits(shadow_phys_bits, 63);
}

4437 4438 4439 4440 4441
/*
 * the page table on host is the shadow page table for the page
 * table in guest or amd nested guest, its mmu features completely
 * follow the features in guest.
 */
4442 4443
static void reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
					struct kvm_mmu *context)
4444
{
4445 4446 4447 4448 4449 4450 4451 4452
	/*
	 * KVM uses NX when TDP is disabled to handle a variety of scenarios,
	 * notably for huge SPTEs if iTLB multi-hit mitigation is enabled and
	 * to generate correct permissions for CR0.WP=0/CR4.SMEP=1/EFER.NX=0.
	 * The iTLB multi-hit workaround can be toggled at any time, so assume
	 * NX can be used by any non-nested shadow MMU to avoid having to reset
	 * MMU contexts.  Note, KVM forces EFER.NX=1 when TDP is disabled.
	 */
4453
	bool uses_nx = is_efer_nx(context) || !tdp_enabled;
4454 4455 4456 4457 4458

	/* @amd adds a check on bit of SPTEs, which KVM shouldn't use anyways. */
	bool is_amd = true;
	/* KVM doesn't use 2-level page tables for the shadow MMU. */
	bool is_pse = false;
4459 4460
	struct rsvd_bits_validate *shadow_zero_check;
	int i;
4461

4462 4463
	WARN_ON_ONCE(context->shadow_root_level < PT32E_ROOT_LEVEL);

4464
	shadow_zero_check = &context->shadow_zero_check;
4465
	__reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(),
4466
				context->shadow_root_level, uses_nx,
4467
				guest_can_use_gbpages(vcpu), is_pse, is_amd);
4468 4469 4470 4471 4472 4473 4474 4475 4476

	if (!shadow_me_mask)
		return;

	for (i = context->shadow_root_level; --i >= 0;) {
		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
	}

4477 4478
}

4479 4480 4481 4482 4483 4484
static inline bool boot_cpu_is_amd(void)
{
	WARN_ON_ONCE(!tdp_enabled);
	return shadow_x_mask == 0;
}

4485 4486 4487 4488 4489
/*
 * the direct page table on host, use as much mmu features as
 * possible, however, kvm currently does not do execution-protection.
 */
static void
4490
reset_tdp_shadow_zero_bits_mask(struct kvm_mmu *context)
4491
{
4492 4493 4494 4495 4496
	struct rsvd_bits_validate *shadow_zero_check;
	int i;

	shadow_zero_check = &context->shadow_zero_check;

4497
	if (boot_cpu_is_amd())
4498
		__reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(),
4499
					context->shadow_root_level, false,
4500
					boot_cpu_has(X86_FEATURE_GBPAGES),
4501
					false, true);
4502
	else
4503
		__reset_rsvds_bits_mask_ept(shadow_zero_check,
4504 4505
					    reserved_hpa_bits(), false,
					    max_huge_page_level);
4506

4507 4508 4509 4510 4511 4512 4513
	if (!shadow_me_mask)
		return;

	for (i = context->shadow_root_level; --i >= 0;) {
		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
	}
4514 4515 4516 4517 4518 4519 4520
}

/*
 * as the comments in reset_shadow_zero_bits_mask() except it
 * is the shadow page table for intel nested guest.
 */
static void
4521
reset_ept_shadow_zero_bits_mask(struct kvm_mmu *context, bool execonly)
4522 4523
{
	__reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4524 4525
				    reserved_hpa_bits(), execonly,
				    max_huge_page_level);
4526 4527
}

4528 4529 4530 4531 4532 4533 4534 4535 4536 4537
#define BYTE_MASK(access) \
	((1 & (access) ? 2 : 0) | \
	 (2 & (access) ? 4 : 0) | \
	 (3 & (access) ? 8 : 0) | \
	 (4 & (access) ? 16 : 0) | \
	 (5 & (access) ? 32 : 0) | \
	 (6 & (access) ? 64 : 0) | \
	 (7 & (access) ? 128 : 0))


4538
static void update_permission_bitmask(struct kvm_mmu *mmu, bool ept)
4539
{
4540 4541 4542 4543 4544 4545
	unsigned byte;

	const u8 x = BYTE_MASK(ACC_EXEC_MASK);
	const u8 w = BYTE_MASK(ACC_WRITE_MASK);
	const u8 u = BYTE_MASK(ACC_USER_MASK);

4546 4547 4548
	bool cr4_smep = is_cr4_smep(mmu);
	bool cr4_smap = is_cr4_smap(mmu);
	bool cr0_wp = is_cr0_wp(mmu);
4549
	bool efer_nx = is_efer_nx(mmu);
4550 4551

	for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4552 4553
		unsigned pfec = byte << 1;

F
Feng Wu 已提交
4554
		/*
4555 4556
		 * Each "*f" variable has a 1 bit for each UWX value
		 * that causes a fault with the given PFEC.
F
Feng Wu 已提交
4557
		 */
4558

4559
		/* Faults from writes to non-writable pages */
4560
		u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
4561
		/* Faults from user mode accesses to supervisor pages */
4562
		u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
4563
		/* Faults from fetches of non-executable pages*/
4564
		u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
4565 4566 4567 4568 4569 4570 4571 4572 4573 4574
		/* Faults from kernel mode fetches of user pages */
		u8 smepf = 0;
		/* Faults from kernel mode accesses of user pages */
		u8 smapf = 0;

		if (!ept) {
			/* Faults from kernel mode accesses to user pages */
			u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;

			/* Not really needed: !nx will cause pte.nx to fault */
4575
			if (!efer_nx)
4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589
				ff = 0;

			/* Allow supervisor writes if !cr0.wp */
			if (!cr0_wp)
				wf = (pfec & PFERR_USER_MASK) ? wf : 0;

			/* Disallow supervisor fetches of user code if cr4.smep */
			if (cr4_smep)
				smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;

			/*
			 * SMAP:kernel-mode data accesses from user-mode
			 * mappings should fault. A fault is considered
			 * as a SMAP violation if all of the following
P
Peng Hao 已提交
4590
			 * conditions are true:
4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603
			 *   - X86_CR4_SMAP is set in CR4
			 *   - A user page is accessed
			 *   - The access is not a fetch
			 *   - Page fault in kernel mode
			 *   - if CPL = 3 or X86_EFLAGS_AC is clear
			 *
			 * Here, we cover the first three conditions.
			 * The fourth is computed dynamically in permission_fault();
			 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
			 * *not* subject to SMAP restrictions.
			 */
			if (cr4_smap)
				smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4604
		}
4605 4606

		mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4607 4608 4609
	}
}

4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633
/*
* PKU is an additional mechanism by which the paging controls access to
* user-mode addresses based on the value in the PKRU register.  Protection
* key violations are reported through a bit in the page fault error code.
* Unlike other bits of the error code, the PK bit is not known at the
* call site of e.g. gva_to_gpa; it must be computed directly in
* permission_fault based on two bits of PKRU, on some machine state (CR4,
* CR0, EFER, CPL), and on other bits of the error code and the page tables.
*
* In particular the following conditions come from the error code, the
* page tables and the machine state:
* - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
* - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
* - PK is always zero if U=0 in the page tables
* - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
*
* The PKRU bitmask caches the result of these four conditions.  The error
* code (minus the P bit) and the page table's U bit form an index into the
* PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
* with the two bits of the PKRU register corresponding to the protection key.
* For the first three conditions above the bits will be 00, thus masking
* away both AD and WD.  For all reads or if the last condition holds, WD
* only will be masked away.
*/
4634
static void update_pkru_bitmask(struct kvm_mmu *mmu)
4635 4636 4637 4638
{
	unsigned bit;
	bool wp;

4639 4640 4641
	mmu->pkru_mask = 0;

	if (!is_cr4_pke(mmu))
4642 4643
		return;

4644
	wp = is_cr0_wp(mmu);
4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677

	for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
		unsigned pfec, pkey_bits;
		bool check_pkey, check_write, ff, uf, wf, pte_user;

		pfec = bit << 1;
		ff = pfec & PFERR_FETCH_MASK;
		uf = pfec & PFERR_USER_MASK;
		wf = pfec & PFERR_WRITE_MASK;

		/* PFEC.RSVD is replaced by ACC_USER_MASK. */
		pte_user = pfec & PFERR_RSVD_MASK;

		/*
		 * Only need to check the access which is not an
		 * instruction fetch and is to a user page.
		 */
		check_pkey = (!ff && pte_user);
		/*
		 * write access is controlled by PKRU if it is a
		 * user access or CR0.WP = 1.
		 */
		check_write = check_pkey && wf && (uf || wp);

		/* PKRU.AD stops both read and write access. */
		pkey_bits = !!check_pkey;
		/* PKRU.WD stops write access. */
		pkey_bits |= (!!check_write) << 1;

		mmu->pkru_mask |= (pkey_bits & 3) << pfec;
	}
}

4678 4679
static void reset_guest_paging_metadata(struct kvm_vcpu *vcpu,
					struct kvm_mmu *mmu)
A
Avi Kivity 已提交
4680
{
4681 4682
	if (!is_cr0_pg(mmu))
		return;
4683

4684 4685 4686
	reset_rsvds_bits_mask(vcpu, mmu);
	update_permission_bitmask(mmu, false);
	update_pkru_bitmask(mmu);
A
Avi Kivity 已提交
4687 4688
}

4689
static void paging64_init_context(struct kvm_mmu *context)
A
Avi Kivity 已提交
4690 4691 4692
{
	context->page_fault = paging64_page_fault;
	context->gva_to_gpa = paging64_gva_to_gpa;
4693
	context->sync_page = paging64_sync_page;
M
Marcelo Tosatti 已提交
4694
	context->invlpg = paging64_invlpg;
4695
	context->direct_map = false;
A
Avi Kivity 已提交
4696 4697
}

4698
static void paging32_init_context(struct kvm_mmu *context)
A
Avi Kivity 已提交
4699 4700 4701
{
	context->page_fault = paging32_page_fault;
	context->gva_to_gpa = paging32_gva_to_gpa;
4702
	context->sync_page = paging32_sync_page;
M
Marcelo Tosatti 已提交
4703
	context->invlpg = paging32_invlpg;
4704
	context->direct_map = false;
A
Avi Kivity 已提交
4705 4706
}

4707 4708
static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu,
							 struct kvm_mmu_role_regs *regs)
4709 4710 4711
{
	union kvm_mmu_extended_role ext = {0};

4712 4713 4714 4715 4716 4717
	if (____is_cr0_pg(regs)) {
		ext.cr0_pg = 1;
		ext.cr4_pae = ____is_cr4_pae(regs);
		ext.cr4_smep = ____is_cr4_smep(regs);
		ext.cr4_smap = ____is_cr4_smap(regs);
		ext.cr4_pse = ____is_cr4_pse(regs);
4718 4719 4720 4721

		/* PKEY and LA57 are active iff long mode is active. */
		ext.cr4_pke = ____is_efer_lma(regs) && ____is_cr4_pke(regs);
		ext.cr4_la57 = ____is_efer_lma(regs) && ____is_cr4_la57(regs);
4722
		ext.efer_lma = ____is_efer_lma(regs);
4723
	}
4724 4725 4726 4727 4728 4729

	ext.valid = 1;

	return ext;
}

4730
static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
4731
						   struct kvm_mmu_role_regs *regs,
4732 4733 4734 4735 4736
						   bool base_only)
{
	union kvm_mmu_role role = {0};

	role.base.access = ACC_ALL;
4737 4738 4739 4740
	if (____is_cr0_pg(regs)) {
		role.base.efer_nx = ____is_efer_nx(regs);
		role.base.cr0_wp = ____is_cr0_wp(regs);
	}
4741 4742 4743 4744 4745 4746
	role.base.smm = is_smm(vcpu);
	role.base.guest_mode = is_guest_mode(vcpu);

	if (base_only)
		return role;

4747
	role.ext = kvm_calc_mmu_role_ext(vcpu, regs);
4748 4749 4750 4751

	return role;
}

4752 4753
static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu)
{
4754 4755 4756 4757
	/* tdp_root_level is architecture forced level, use it if nonzero */
	if (tdp_root_level)
		return tdp_root_level;

4758
	/* Use 5-level TDP if and only if it's useful/necessary. */
4759
	if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48)
4760 4761
		return 4;

4762
	return max_tdp_level;
4763 4764
}

4765
static union kvm_mmu_role
4766 4767
kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu,
				struct kvm_mmu_role_regs *regs, bool base_only)
4768
{
4769
	union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, regs, base_only);
4770

4771
	role.base.ad_disabled = (shadow_accessed_mask == 0);
4772
	role.base.level = kvm_mmu_get_tdp_level(vcpu);
4773
	role.base.direct = true;
4774
	role.base.has_4_byte_gpte = false;
4775 4776 4777 4778

	return role;
}

4779
static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4780
{
4781
	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4782
	struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
4783
	union kvm_mmu_role new_role =
4784
		kvm_calc_tdp_mmu_root_page_role(vcpu, &regs, false);
4785

4786 4787 4788 4789
	if (new_role.as_u64 == context->mmu_role.as_u64)
		return;

	context->mmu_role.as_u64 = new_role.as_u64;
4790
	context->page_fault = kvm_tdp_page_fault;
4791
	context->sync_page = nonpaging_sync_page;
4792
	context->invlpg = NULL;
4793
	context->shadow_root_level = kvm_mmu_get_tdp_level(vcpu);
4794
	context->direct_map = true;
4795
	context->get_guest_pgd = get_cr3;
4796
	context->get_pdptr = kvm_pdptr_read;
4797
	context->inject_page_fault = kvm_inject_page_fault;
4798
	context->root_level = role_regs_to_root_level(&regs);
4799

4800
	if (!is_cr0_pg(context))
4801
		context->gva_to_gpa = nonpaging_gva_to_gpa;
4802
	else if (is_cr4_pae(context))
4803
		context->gva_to_gpa = paging64_gva_to_gpa;
4804
	else
4805
		context->gva_to_gpa = paging32_gva_to_gpa;
4806

4807
	reset_guest_paging_metadata(vcpu, context);
4808
	reset_tdp_shadow_zero_bits_mask(context);
4809 4810
}

4811
static union kvm_mmu_role
4812 4813
kvm_calc_shadow_root_page_role_common(struct kvm_vcpu *vcpu,
				      struct kvm_mmu_role_regs *regs, bool base_only)
4814
{
4815
	union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, regs, base_only);
4816

4817 4818
	role.base.smep_andnot_wp = role.ext.cr4_smep && !____is_cr0_wp(regs);
	role.base.smap_andnot_wp = role.ext.cr4_smap && !____is_cr0_wp(regs);
4819
	role.base.has_4_byte_gpte = ____is_cr0_pg(regs) && !____is_cr4_pae(regs);
4820

4821 4822 4823 4824
	return role;
}

static union kvm_mmu_role
4825 4826
kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu,
				   struct kvm_mmu_role_regs *regs, bool base_only)
4827 4828
{
	union kvm_mmu_role role =
4829
		kvm_calc_shadow_root_page_role_common(vcpu, regs, base_only);
4830

4831
	role.base.direct = !____is_cr0_pg(regs);
4832

4833
	if (!____is_efer_lma(regs))
4834
		role.base.level = PT32E_ROOT_LEVEL;
4835
	else if (____is_cr4_la57(regs))
4836
		role.base.level = PT64_ROOT_5LEVEL;
4837
	else
4838
		role.base.level = PT64_ROOT_4LEVEL;
4839 4840 4841 4842

	return role;
}

4843
static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
4844
				    struct kvm_mmu_role_regs *regs,
4845
				    union kvm_mmu_role new_role)
4846
{
4847 4848
	if (new_role.as_u64 == context->mmu_role.as_u64)
		return;
4849

4850
	context->mmu_role.as_u64 = new_role.as_u64;
4851

4852
	if (!is_cr0_pg(context))
4853
		nonpaging_init_context(context);
4854
	else if (is_cr4_pae(context))
4855
		paging64_init_context(context);
A
Avi Kivity 已提交
4856
	else
4857
		paging32_init_context(context);
4858
	context->root_level = role_regs_to_root_level(regs);
4859

4860
	reset_guest_paging_metadata(vcpu, context);
4861 4862
	context->shadow_root_level = new_role.base.level;

4863
	reset_shadow_zero_bits_mask(vcpu, context);
4864
}
4865

4866 4867
static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu,
				struct kvm_mmu_role_regs *regs)
4868
{
4869
	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4870
	union kvm_mmu_role new_role =
4871
		kvm_calc_shadow_mmu_root_page_role(vcpu, regs, false);
4872

4873
	shadow_mmu_init_context(vcpu, context, regs, new_role);
4874 4875
}

4876
static union kvm_mmu_role
4877 4878
kvm_calc_shadow_npt_root_page_role(struct kvm_vcpu *vcpu,
				   struct kvm_mmu_role_regs *regs)
4879 4880
{
	union kvm_mmu_role role =
4881
		kvm_calc_shadow_root_page_role_common(vcpu, regs, false);
4882 4883

	role.base.direct = false;
4884
	role.base.level = kvm_mmu_get_tdp_level(vcpu);
4885 4886 4887 4888

	return role;
}

4889 4890
void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0,
			     unsigned long cr4, u64 efer, gpa_t nested_cr3)
4891
{
4892
	struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4893 4894
	struct kvm_mmu_role_regs regs = {
		.cr0 = cr0,
4895
		.cr4 = cr4 & ~X86_CR4_PKE,
4896 4897
		.efer = efer,
	};
4898
	union kvm_mmu_role new_role;
4899

4900
	new_role = kvm_calc_shadow_npt_root_page_role(vcpu, &regs);
4901

4902
	shadow_mmu_init_context(vcpu, context, &regs, new_role);
4903
	kvm_mmu_new_pgd(vcpu, nested_cr3);
4904 4905
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu);
4906

4907 4908
static union kvm_mmu_role
kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
4909
				   bool execonly, u8 level)
4910
{
4911
	union kvm_mmu_role role = {0};
4912

4913 4914
	/* SMM flag is inherited from root_mmu */
	role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
4915

4916
	role.base.level = level;
4917
	role.base.has_4_byte_gpte = false;
4918 4919 4920 4921
	role.base.direct = false;
	role.base.ad_disabled = !accessed_dirty;
	role.base.guest_mode = true;
	role.base.access = ACC_ALL;
4922

4923 4924
	/* EPT, and thus nested EPT, does not consume CR0, CR4, nor EFER. */
	role.ext.word = 0;
4925
	role.ext.execonly = execonly;
4926
	role.ext.valid = 1;
4927 4928 4929 4930

	return role;
}

4931
void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
4932 4933
			     int huge_page_level, bool accessed_dirty,
			     gpa_t new_eptp)
N
Nadav Har'El 已提交
4934
{
4935
	struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4936
	u8 level = vmx_eptp_page_walk_level(new_eptp);
4937 4938
	union kvm_mmu_role new_role =
		kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
4939
						   execonly, level);
4940

4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957
	if (new_role.as_u64 != context->mmu_role.as_u64) {
		context->mmu_role.as_u64 = new_role.as_u64;

		context->shadow_root_level = level;

		context->ept_ad = accessed_dirty;
		context->page_fault = ept_page_fault;
		context->gva_to_gpa = ept_gva_to_gpa;
		context->sync_page = ept_sync_page;
		context->invlpg = ept_invlpg;
		context->root_level = level;
		context->direct_map = false;
		update_permission_bitmask(context, true);
		context->pkru_mask = 0;
		reset_rsvds_bits_mask_ept(vcpu, context, execonly, huge_page_level);
		reset_ept_shadow_zero_bits_mask(context, execonly);
	}
4958

4959
	kvm_mmu_new_pgd(vcpu, new_eptp);
N
Nadav Har'El 已提交
4960 4961 4962
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);

4963
static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4964
{
4965
	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4966
	struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
4967

4968
	kvm_init_shadow_mmu(vcpu, &regs);
4969

4970
	context->get_guest_pgd     = get_cr3;
4971 4972
	context->get_pdptr         = kvm_pdptr_read;
	context->inject_page_fault = kvm_inject_page_fault;
A
Avi Kivity 已提交
4973 4974
}

4975 4976
static union kvm_mmu_role
kvm_calc_nested_mmu_role(struct kvm_vcpu *vcpu, struct kvm_mmu_role_regs *regs)
4977
{
4978 4979 4980
	union kvm_mmu_role role;

	role = kvm_calc_shadow_root_page_role_common(vcpu, regs, false);
4981 4982 4983 4984 4985 4986 4987

	/*
	 * Nested MMUs are used only for walking L2's gva->gpa, they never have
	 * shadow pages of their own and so "direct" has no meaning.   Set it
	 * to "true" to try to detect bogus usage of the nested MMU.
	 */
	role.base.direct = true;
4988
	role.base.level = role_regs_to_root_level(regs);
4989 4990 4991
	return role;
}

4992
static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4993
{
4994 4995
	struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
	union kvm_mmu_role new_role = kvm_calc_nested_mmu_role(vcpu, &regs);
4996 4997
	struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;

4998 4999 5000 5001
	if (new_role.as_u64 == g_context->mmu_role.as_u64)
		return;

	g_context->mmu_role.as_u64 = new_role.as_u64;
5002
	g_context->get_guest_pgd     = get_cr3;
5003
	g_context->get_pdptr         = kvm_pdptr_read;
5004
	g_context->inject_page_fault = kvm_inject_page_fault;
5005
	g_context->root_level        = new_role.base.level;
5006

5007 5008 5009 5010 5011 5012
	/*
	 * L2 page tables are never shadowed, so there is no need to sync
	 * SPTEs.
	 */
	g_context->invlpg            = NULL;

5013
	/*
5014
	 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
5015 5016 5017 5018 5019
	 * L1's nested page tables (e.g. EPT12). The nested translation
	 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
	 * L2's page tables as the first level of translation and L1's
	 * nested page tables as the second level of translation. Basically
	 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
5020
	 */
5021
	if (!is_paging(vcpu))
5022
		g_context->gva_to_gpa = nonpaging_gva_to_gpa;
5023
	else if (is_long_mode(vcpu))
5024
		g_context->gva_to_gpa = paging64_gva_to_gpa;
5025
	else if (is_pae(vcpu))
5026
		g_context->gva_to_gpa = paging64_gva_to_gpa;
5027
	else
5028
		g_context->gva_to_gpa = paging32_gva_to_gpa;
5029

5030
	reset_guest_paging_metadata(vcpu, g_context);
5031 5032
}

5033
void kvm_init_mmu(struct kvm_vcpu *vcpu)
5034
{
5035
	if (mmu_is_nested(vcpu))
5036
		init_kvm_nested_mmu(vcpu);
5037
	else if (tdp_enabled)
5038
		init_kvm_tdp_mmu(vcpu);
5039
	else
5040
		init_kvm_softmmu(vcpu);
5041
}
5042
EXPORT_SYMBOL_GPL(kvm_init_mmu);
5043

5044 5045 5046 5047 5048
void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu)
{
	/*
	 * Invalidate all MMU roles to force them to reinitialize as CPUID
	 * information is factored into reserved bit calculations.
5049 5050 5051 5052 5053 5054 5055 5056
	 *
	 * Correctly handling multiple vCPU models with respect to paging and
	 * physical address properties) in a single VM would require tracking
	 * all relevant CPUID information in kvm_mmu_page_role. That is very
	 * undesirable as it would increase the memory requirements for
	 * gfn_track (see struct kvm_mmu_page_role comments).  For now that
	 * problem is swept under the rug; KVM's CPUID API is horrific and
	 * it's all but impossible to solve it without introducing a new API.
5057 5058 5059 5060 5061
	 */
	vcpu->arch.root_mmu.mmu_role.ext.valid = 0;
	vcpu->arch.guest_mmu.mmu_role.ext.valid = 0;
	vcpu->arch.nested_mmu.mmu_role.ext.valid = 0;
	kvm_mmu_reset_context(vcpu);
5062 5063

	/*
5064 5065
	 * Changing guest CPUID after KVM_RUN is forbidden, see the comment in
	 * kvm_arch_vcpu_ioctl().
5066
	 */
5067
	KVM_BUG_ON(vcpu->arch.last_vmentry_cpu != -1, vcpu->kvm);
5068 5069
}

5070
void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
5071
{
5072
	kvm_mmu_unload(vcpu);
5073
	kvm_init_mmu(vcpu);
A
Avi Kivity 已提交
5074
}
5075
EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
A
Avi Kivity 已提交
5076 5077

int kvm_mmu_load(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
5078
{
5079 5080
	int r;

5081
	r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->direct_map);
A
Avi Kivity 已提交
5082 5083
	if (r)
		goto out;
5084
	r = mmu_alloc_special_roots(vcpu);
A
Avi Kivity 已提交
5085 5086
	if (r)
		goto out;
5087
	if (vcpu->arch.mmu->direct_map)
5088 5089 5090
		r = mmu_alloc_direct_roots(vcpu);
	else
		r = mmu_alloc_shadow_roots(vcpu);
5091 5092
	if (r)
		goto out;
5093 5094 5095

	kvm_mmu_sync_roots(vcpu);

5096
	kvm_mmu_load_pgd(vcpu);
5097
	static_call(kvm_x86_flush_tlb_current)(vcpu);
5098 5099
out:
	return r;
A
Avi Kivity 已提交
5100
}
A
Avi Kivity 已提交
5101 5102 5103

void kvm_mmu_unload(struct kvm_vcpu *vcpu)
{
5104 5105 5106
	struct kvm *kvm = vcpu->kvm;

	kvm_mmu_free_roots(kvm, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
5107
	WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root.hpa));
5108
	kvm_mmu_free_roots(kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
5109
	WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root.hpa));
5110
	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
A
Avi Kivity 已提交
5111
}
A
Avi Kivity 已提交
5112

5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157
static bool is_obsolete_root(struct kvm *kvm, hpa_t root_hpa)
{
	struct kvm_mmu_page *sp;

	if (!VALID_PAGE(root_hpa))
		return false;

	/*
	 * When freeing obsolete roots, treat roots as obsolete if they don't
	 * have an associated shadow page.  This does mean KVM will get false
	 * positives and free roots that don't strictly need to be freed, but
	 * such false positives are relatively rare:
	 *
	 *  (a) only PAE paging and nested NPT has roots without shadow pages
	 *  (b) remote reloads due to a memslot update obsoletes _all_ roots
	 *  (c) KVM doesn't track previous roots for PAE paging, and the guest
	 *      is unlikely to zap an in-use PGD.
	 */
	sp = to_shadow_page(root_hpa);
	return !sp || is_obsolete_sp(kvm, sp);
}

static void __kvm_mmu_free_obsolete_roots(struct kvm *kvm, struct kvm_mmu *mmu)
{
	unsigned long roots_to_free = 0;
	int i;

	if (is_obsolete_root(kvm, mmu->root.hpa))
		roots_to_free |= KVM_MMU_ROOT_CURRENT;

	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
		if (is_obsolete_root(kvm, mmu->root.hpa))
			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
	}

	if (roots_to_free)
		kvm_mmu_free_roots(kvm, mmu, roots_to_free);
}

void kvm_mmu_free_obsolete_roots(struct kvm_vcpu *vcpu)
{
	__kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.root_mmu);
	__kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.guest_mmu);
}

5158 5159 5160 5161 5162 5163 5164 5165
static bool need_remote_flush(u64 old, u64 new)
{
	if (!is_shadow_present_pte(old))
		return false;
	if (!is_shadow_present_pte(new))
		return true;
	if ((old ^ new) & PT64_BASE_ADDR_MASK)
		return true;
5166 5167
	old ^= shadow_nx_mask;
	new ^= shadow_nx_mask;
5168 5169 5170
	return (old & ~new & PT64_PERM_MASK) != 0;
}

5171
static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
5172
				    int *bytes)
5173
{
5174
	u64 gentry = 0;
5175
	int r;
5176 5177 5178

	/*
	 * Assume that the pte write on a page table of the same type
5179 5180
	 * as the current vcpu paging mode since we update the sptes only
	 * when they have the same mode.
5181
	 */
5182
	if (is_pae(vcpu) && *bytes == 4) {
5183
		/* Handle a 32-bit guest writing two halves of a 64-bit gpte */
5184 5185
		*gpa &= ~(gpa_t)7;
		*bytes = 8;
5186 5187
	}

5188 5189 5190 5191
	if (*bytes == 4 || *bytes == 8) {
		r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
		if (r)
			gentry = 0;
5192 5193
	}

5194 5195 5196 5197 5198 5199 5200
	return gentry;
}

/*
 * If we're seeing too many writes to a page, it may no longer be a page table,
 * or we may be forking, in which case it is better to unmap the page.
 */
5201
static bool detect_write_flooding(struct kvm_mmu_page *sp)
5202
{
5203 5204 5205 5206
	/*
	 * Skip write-flooding detected for the sp whose level is 1, because
	 * it can become unsync, then the guest page is not write-protected.
	 */
5207
	if (sp->role.level == PG_LEVEL_4K)
5208
		return false;
5209

5210 5211
	atomic_inc(&sp->write_flooding_count);
	return atomic_read(&sp->write_flooding_count) >= 3;
5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226
}

/*
 * Misaligned accesses are too much trouble to fix up; also, they usually
 * indicate a page is not used as a page table.
 */
static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
				    int bytes)
{
	unsigned offset, pte_size, misaligned;

	pgprintk("misaligned: gpa %llx bytes %d role %x\n",
		 gpa, bytes, sp->role.word);

	offset = offset_in_page(gpa);
5227
	pte_size = sp->role.has_4_byte_gpte ? 4 : 8;
5228 5229 5230 5231 5232 5233 5234 5235

	/*
	 * Sometimes, the OS only writes the last one bytes to update status
	 * bits, for example, in linux, andb instruction is used in clear_bit().
	 */
	if (!(offset & (pte_size - 1)) && bytes == 1)
		return false;

5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250
	misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
	misaligned |= bytes < 4;

	return misaligned;
}

static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
{
	unsigned page_offset, quadrant;
	u64 *spte;
	int level;

	page_offset = offset_in_page(gpa);
	level = sp->role.level;
	*nspte = 1;
5251
	if (sp->role.has_4_byte_gpte) {
5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272
		page_offset <<= 1;	/* 32->64 */
		/*
		 * A 32-bit pde maps 4MB while the shadow pdes map
		 * only 2MB.  So we need to double the offset again
		 * and zap two pdes instead of one.
		 */
		if (level == PT32_ROOT_LEVEL) {
			page_offset &= ~7; /* kill rounding error */
			page_offset <<= 1;
			*nspte = 2;
		}
		quadrant = page_offset >> PAGE_SHIFT;
		page_offset &= ~PAGE_MASK;
		if (quadrant != sp->role.quadrant)
			return NULL;
	}

	spte = &sp->spt[page_offset / sizeof(*spte)];
	return spte;
}

5273
static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
5274 5275
			      const u8 *new, int bytes,
			      struct kvm_page_track_notifier_node *node)
5276 5277 5278 5279 5280 5281
{
	gfn_t gfn = gpa >> PAGE_SHIFT;
	struct kvm_mmu_page *sp;
	LIST_HEAD(invalid_list);
	u64 entry, gentry, *spte;
	int npte;
5282
	bool flush = false;
5283 5284 5285 5286 5287

	/*
	 * If we don't have indirect shadow pages, it means no page is
	 * write-protected, so we can exit simply.
	 */
5288
	if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
5289 5290 5291 5292 5293 5294
		return;

	pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);

	/*
	 * No need to care whether allocation memory is successful
I
Ingo Molnar 已提交
5295
	 * or not since pte prefetch is skipped if it does not have
5296 5297
	 * enough objects in the cache.
	 */
5298
	mmu_topup_memory_caches(vcpu, true);
5299

5300
	write_lock(&vcpu->kvm->mmu_lock);
5301 5302 5303

	gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);

5304 5305
	++vcpu->kvm->stat.mmu_pte_write;

5306
	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
5307
		if (detect_write_misaligned(sp, gpa, bytes) ||
5308
		      detect_write_flooding(sp)) {
5309
			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
A
Avi Kivity 已提交
5310
			++vcpu->kvm->stat.mmu_flooded;
5311 5312
			continue;
		}
5313 5314 5315 5316 5317

		spte = get_written_sptes(sp, gpa, &npte);
		if (!spte)
			continue;

5318
		while (npte--) {
5319
			entry = *spte;
5320
			mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL);
5321 5322
			if (gentry && sp->role.level != PG_LEVEL_4K)
				++vcpu->kvm->stat.mmu_pde_zapped;
G
Gleb Natapov 已提交
5323
			if (need_remote_flush(entry, *spte))
5324
				flush = true;
5325
			++spte;
5326 5327
		}
	}
5328
	kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush);
5329
	write_unlock(&vcpu->kvm->mmu_lock);
5330 5331
}

5332
int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
5333
		       void *insn, int insn_len)
5334
{
5335
	int r, emulation_type = EMULTYPE_PF;
5336
	bool direct = vcpu->arch.mmu->direct_map;
5337

5338
	if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root.hpa)))
5339 5340
		return RET_PF_RETRY;

5341
	r = RET_PF_INVALID;
5342
	if (unlikely(error_code & PFERR_RSVD_MASK)) {
5343
		r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
5344
		if (r == RET_PF_EMULATE)
5345 5346
			goto emulate;
	}
5347

5348
	if (r == RET_PF_INVALID) {
5349 5350
		r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
					  lower_32_bits(error_code), false);
5351
		if (KVM_BUG_ON(r == RET_PF_INVALID, vcpu->kvm))
5352
			return -EIO;
5353 5354
	}

5355
	if (r < 0)
5356
		return r;
5357 5358
	if (r != RET_PF_EMULATE)
		return 1;
5359

5360 5361 5362 5363 5364 5365 5366
	/*
	 * Before emulating the instruction, check if the error code
	 * was due to a RO violation while translating the guest page.
	 * This can occur when using nested virtualization with nested
	 * paging in both guests. If true, we simply unprotect the page
	 * and resume the guest.
	 */
5367
	if (vcpu->arch.mmu->direct_map &&
5368
	    (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5369
		kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
5370 5371 5372
		return 1;
	}

5373 5374 5375 5376 5377 5378
	/*
	 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
	 * optimistically try to just unprotect the page and let the processor
	 * re-execute the instruction that caused the page fault.  Do not allow
	 * retrying MMIO emulation, as it's not only pointless but could also
	 * cause us to enter an infinite loop because the processor will keep
5379 5380 5381 5382
	 * faulting on the non-existent MMIO address.  Retrying an instruction
	 * from a nested guest is also pointless and dangerous as we are only
	 * explicitly shadowing L1's page tables, i.e. unprotecting something
	 * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5383
	 */
5384
	if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
5385
		emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
5386
emulate:
5387
	return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
5388
				       insn_len);
5389 5390 5391
}
EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);

5392 5393
void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
			    gva_t gva, hpa_t root_hpa)
M
Marcelo Tosatti 已提交
5394
{
5395
	int i;
5396

5397 5398 5399 5400 5401 5402
	/* It's actually a GPA for vcpu->arch.guest_mmu.  */
	if (mmu != &vcpu->arch.guest_mmu) {
		/* INVLPG on a non-canonical address is a NOP according to the SDM.  */
		if (is_noncanonical_address(gva, vcpu))
			return;

5403
		static_call(kvm_x86_flush_tlb_gva)(vcpu, gva);
5404 5405 5406
	}

	if (!mmu->invlpg)
5407 5408
		return;

5409
	if (root_hpa == INVALID_PAGE) {
5410
		mmu->invlpg(vcpu, gva, mmu->root.hpa);
5411

5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429
		/*
		 * INVLPG is required to invalidate any global mappings for the VA,
		 * irrespective of PCID. Since it would take us roughly similar amount
		 * of work to determine whether any of the prev_root mappings of the VA
		 * is marked global, or to just sync it blindly, so we might as well
		 * just always sync it.
		 *
		 * Mappings not reachable via the current cr3 or the prev_roots will be
		 * synced when switching to that cr3, so nothing needs to be done here
		 * for them.
		 */
		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
			if (VALID_PAGE(mmu->prev_roots[i].hpa))
				mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
	} else {
		mmu->invlpg(vcpu, gva, root_hpa);
	}
}
5430

5431 5432
void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
{
5433
	kvm_mmu_invalidate_gva(vcpu, vcpu->arch.walk_mmu, gva, INVALID_PAGE);
M
Marcelo Tosatti 已提交
5434 5435 5436 5437
	++vcpu->stat.invlpg;
}
EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);

5438

5439 5440
void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
{
5441
	struct kvm_mmu *mmu = vcpu->arch.mmu;
5442
	bool tlb_flush = false;
5443
	uint i;
5444 5445

	if (pcid == kvm_get_active_pcid(vcpu)) {
5446
		mmu->invlpg(vcpu, gva, mmu->root.hpa);
5447
		tlb_flush = true;
5448 5449
	}

5450 5451
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
		if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5452
		    pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) {
5453 5454 5455
			mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
			tlb_flush = true;
		}
5456
	}
5457

5458
	if (tlb_flush)
5459
		static_call(kvm_x86_flush_tlb_gva)(vcpu, gva);
5460

5461 5462 5463
	++vcpu->stat.invlpg;

	/*
5464 5465 5466
	 * Mappings not reachable via the current cr3 or the prev_roots will be
	 * synced when switching to that cr3, so nothing needs to be done here
	 * for them.
5467 5468 5469
	 */
}

5470 5471
void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level,
		       int tdp_max_root_level, int tdp_huge_page_level)
5472
{
5473
	tdp_enabled = enable_tdp;
5474
	tdp_root_level = tdp_forced_root_level;
5475
	max_tdp_level = tdp_max_root_level;
5476 5477

	/*
5478
	 * max_huge_page_level reflects KVM's MMU capabilities irrespective
5479 5480 5481 5482 5483 5484
	 * of kernel support, e.g. KVM may be capable of using 1GB pages when
	 * the kernel is not.  But, KVM never creates a page size greater than
	 * what is used by the kernel for any given HVA, i.e. the kernel's
	 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
	 */
	if (tdp_enabled)
5485
		max_huge_page_level = tdp_huge_page_level;
5486
	else if (boot_cpu_has(X86_FEATURE_GBPAGES))
5487
		max_huge_page_level = PG_LEVEL_1G;
5488
	else
5489
		max_huge_page_level = PG_LEVEL_2M;
5490
}
5491
EXPORT_SYMBOL_GPL(kvm_configure_mmu);
5492 5493

/* The return value indicates if tlb flush on all vcpus is needed. */
5494 5495 5496
typedef bool (*slot_level_handler) (struct kvm *kvm,
				    struct kvm_rmap_head *rmap_head,
				    const struct kvm_memory_slot *slot);
5497 5498 5499

/* The caller should hold mmu-lock before calling this function. */
static __always_inline bool
5500
slot_handle_level_range(struct kvm *kvm, const struct kvm_memory_slot *memslot,
5501
			slot_level_handler fn, int start_level, int end_level,
5502 5503
			gfn_t start_gfn, gfn_t end_gfn, bool flush_on_yield,
			bool flush)
5504 5505 5506 5507 5508 5509
{
	struct slot_rmap_walk_iterator iterator;

	for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
			end_gfn, &iterator) {
		if (iterator.rmap)
5510
			flush |= fn(kvm, iterator.rmap, memslot);
5511

5512
		if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
5513
			if (flush && flush_on_yield) {
5514 5515 5516
				kvm_flush_remote_tlbs_with_address(kvm,
						start_gfn,
						iterator.gfn - start_gfn + 1);
5517 5518
				flush = false;
			}
5519
			cond_resched_rwlock_write(&kvm->mmu_lock);
5520 5521 5522 5523 5524 5525 5526
		}
	}

	return flush;
}

static __always_inline bool
5527
slot_handle_level(struct kvm *kvm, const struct kvm_memory_slot *memslot,
5528
		  slot_level_handler fn, int start_level, int end_level,
5529
		  bool flush_on_yield)
5530 5531 5532 5533
{
	return slot_handle_level_range(kvm, memslot, fn, start_level,
			end_level, memslot->base_gfn,
			memslot->base_gfn + memslot->npages - 1,
5534
			flush_on_yield, false);
5535 5536 5537
}

static __always_inline bool
5538 5539
slot_handle_level_4k(struct kvm *kvm, const struct kvm_memory_slot *memslot,
		     slot_level_handler fn, bool flush_on_yield)
5540
{
5541
	return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
5542
				 PG_LEVEL_4K, flush_on_yield);
5543 5544
}

5545
static void free_mmu_pages(struct kvm_mmu *mmu)
A
Avi Kivity 已提交
5546
{
5547 5548
	if (!tdp_enabled && mmu->pae_root)
		set_memory_encrypted((unsigned long)mmu->pae_root, 1);
5549
	free_page((unsigned long)mmu->pae_root);
5550
	free_page((unsigned long)mmu->pml4_root);
5551
	free_page((unsigned long)mmu->pml5_root);
A
Avi Kivity 已提交
5552 5553
}

5554
static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
A
Avi Kivity 已提交
5555
{
5556
	struct page *page;
A
Avi Kivity 已提交
5557 5558
	int i;

5559 5560
	mmu->root.hpa = INVALID_PAGE;
	mmu->root.pgd = 0;
5561 5562 5563
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
		mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;

5564 5565 5566 5567
	/* vcpu->arch.guest_mmu isn't used when !tdp_enabled. */
	if (!tdp_enabled && mmu == &vcpu->arch.guest_mmu)
		return 0;

5568
	/*
5569 5570 5571 5572
	 * When using PAE paging, the four PDPTEs are treated as 'root' pages,
	 * while the PDP table is a per-vCPU construct that's allocated at MMU
	 * creation.  When emulating 32-bit mode, cr3 is only 32 bits even on
	 * x86_64.  Therefore we need to allocate the PDP table in the first
5573 5574 5575 5576
	 * 4GB of memory, which happens to fit the DMA32 zone.  TDP paging
	 * generally doesn't use PAE paging and can skip allocating the PDP
	 * table.  The main exception, handled here, is SVM's 32-bit NPT.  The
	 * other exception is for shadowing L1's 32-bit or PAE NPT on 64-bit
5577
	 * KVM; that horror is handled on-demand by mmu_alloc_special_roots().
5578
	 */
5579
	if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
5580 5581
		return 0;

5582
	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
5583
	if (!page)
5584 5585
		return -ENOMEM;

5586
	mmu->pae_root = page_address(page);
5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600

	/*
	 * CR3 is only 32 bits when PAE paging is used, thus it's impossible to
	 * get the CPU to treat the PDPTEs as encrypted.  Decrypt the page so
	 * that KVM's writes and the CPU's reads get along.  Note, this is
	 * only necessary when using shadow paging, as 64-bit NPT can get at
	 * the C-bit even when shadowing 32-bit NPT, and SME isn't supported
	 * by 32-bit kernels (when KVM itself uses 32-bit NPT).
	 */
	if (!tdp_enabled)
		set_memory_decrypted((unsigned long)mmu->pae_root, 1);
	else
		WARN_ON_ONCE(shadow_me_mask);

5601
	for (i = 0; i < 4; ++i)
5602
		mmu->pae_root[i] = INVALID_PAE_ROOT;
5603

A
Avi Kivity 已提交
5604 5605 5606
	return 0;
}

5607
int kvm_mmu_create(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
5608
{
5609
	int ret;
5610

5611
	vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache;
5612 5613
	vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO;

5614
	vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache;
5615
	vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO;
5616

5617 5618
	vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO;

5619 5620
	vcpu->arch.mmu = &vcpu->arch.root_mmu;
	vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
A
Avi Kivity 已提交
5621

5622
	ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu);
5623 5624 5625
	if (ret)
		return ret;

5626
	ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu);
5627 5628 5629 5630 5631 5632 5633
	if (ret)
		goto fail_allocate_root;

	return ret;
 fail_allocate_root:
	free_mmu_pages(&vcpu->arch.guest_mmu);
	return ret;
A
Avi Kivity 已提交
5634 5635
}

5636
#define BATCH_ZAP_PAGES	10
5637 5638 5639
static void kvm_zap_obsolete_pages(struct kvm *kvm)
{
	struct kvm_mmu_page *sp, *node;
5640
	int nr_zapped, batch = 0;
5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652

restart:
	list_for_each_entry_safe_reverse(sp, node,
	      &kvm->arch.active_mmu_pages, link) {
		/*
		 * No obsolete valid page exists before a newly created page
		 * since active_mmu_pages is a FIFO list.
		 */
		if (!is_obsolete_sp(kvm, sp))
			break;

		/*
5653 5654 5655
		 * Invalid pages should never land back on the list of active
		 * pages.  Skip the bogus page, otherwise we'll get stuck in an
		 * infinite loop if the page gets put back on the list (again).
5656
		 */
5657
		if (WARN_ON(sp->role.invalid))
5658 5659
			continue;

5660 5661 5662 5663 5664 5665
		/*
		 * No need to flush the TLB since we're only zapping shadow
		 * pages with an obsolete generation number and all vCPUS have
		 * loaded a new root, i.e. the shadow pages being zapped cannot
		 * be in active use by the guest.
		 */
5666
		if (batch >= BATCH_ZAP_PAGES &&
5667
		    cond_resched_rwlock_write(&kvm->mmu_lock)) {
5668
			batch = 0;
5669 5670 5671
			goto restart;
		}

5672 5673
		if (__kvm_mmu_prepare_zap_page(kvm, sp,
				&kvm->arch.zapped_obsolete_pages, &nr_zapped)) {
5674
			batch += nr_zapped;
5675
			goto restart;
5676
		}
5677 5678
	}

5679 5680 5681 5682 5683
	/*
	 * Trigger a remote TLB flush before freeing the page tables to ensure
	 * KVM is not in the middle of a lockless shadow page table walk, which
	 * may reference the pages.
	 */
5684
	kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697
}

/*
 * Fast invalidate all shadow pages and use lock-break technique
 * to zap obsolete pages.
 *
 * It's required when memslot is being deleted or VM is being
 * destroyed, in these cases, we should ensure that KVM MMU does
 * not use any resource of the being-deleted slot or all slots
 * after calling the function.
 */
static void kvm_mmu_zap_all_fast(struct kvm *kvm)
{
5698 5699
	lockdep_assert_held(&kvm->slots_lock);

5700
	write_lock(&kvm->mmu_lock);
5701
	trace_kvm_mmu_zap_all_fast(kvm);
5702 5703 5704 5705 5706 5707 5708 5709 5710

	/*
	 * Toggle mmu_valid_gen between '0' and '1'.  Because slots_lock is
	 * held for the entire duration of zapping obsolete pages, it's
	 * impossible for there to be multiple invalid generations associated
	 * with *valid* shadow pages at any given time, i.e. there is exactly
	 * one valid generation and (at most) one invalid generation.
	 */
	kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
5711

5712 5713 5714 5715 5716
	/*
	 * In order to ensure all vCPUs drop their soon-to-be invalid roots,
	 * invalidating TDP MMU roots must be done while holding mmu_lock for
	 * write and in the same critical section as making the reload request,
	 * e.g. before kvm_zap_obsolete_pages() could drop mmu_lock and yield.
5717 5718 5719 5720
	 */
	if (is_tdp_mmu_enabled(kvm))
		kvm_tdp_mmu_invalidate_all_roots(kvm);

5721 5722 5723 5724 5725 5726 5727 5728
	/*
	 * Notify all vcpus to reload its shadow page table and flush TLB.
	 * Then all vcpus will switch to new shadow page table with the new
	 * mmu_valid_gen.
	 *
	 * Note: we need to do this under the protection of mmu_lock,
	 * otherwise, vcpu would purge shadow page but miss tlb flush.
	 */
5729
	kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS);
5730

5731
	kvm_zap_obsolete_pages(kvm);
5732

5733
	write_unlock(&kvm->mmu_lock);
5734 5735 5736 5737 5738 5739

	if (is_tdp_mmu_enabled(kvm)) {
		read_lock(&kvm->mmu_lock);
		kvm_tdp_mmu_zap_invalidated_roots(kvm);
		read_unlock(&kvm->mmu_lock);
	}
5740 5741
}

5742 5743 5744 5745 5746
static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
{
	return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
}

5747
static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5748 5749
			struct kvm_memory_slot *slot,
			struct kvm_page_track_notifier_node *node)
5750
{
5751
	kvm_mmu_zap_all_fast(kvm);
5752 5753
}

5754
void kvm_mmu_init_vm(struct kvm *kvm)
5755
{
5756
	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5757

5758 5759
	spin_lock_init(&kvm->arch.mmu_unsync_pages_lock);

5760
	kvm_mmu_init_tdp_mmu(kvm);
5761

5762
	node->track_write = kvm_mmu_pte_write;
5763
	node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5764
	kvm_page_track_register_notifier(kvm, node);
5765 5766
}

5767
void kvm_mmu_uninit_vm(struct kvm *kvm)
5768
{
5769
	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5770

5771
	kvm_page_track_unregister_notifier(kvm, node);
5772 5773

	kvm_mmu_uninit_tdp_mmu(kvm);
5774 5775
}

5776 5777 5778 5779
static bool __kvm_zap_rmaps(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
{
	const struct kvm_memory_slot *memslot;
	struct kvm_memslots *slots;
5780
	struct kvm_memslot_iter iter;
5781 5782
	bool flush = false;
	gfn_t start, end;
5783
	int i;
5784 5785 5786 5787 5788 5789

	if (!kvm_memslots_have_rmaps(kvm))
		return flush;

	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
5790 5791 5792

		kvm_for_each_memslot_in_gfn_range(&iter, slots, gfn_start, gfn_end) {
			memslot = iter.slot;
5793 5794
			start = max(gfn_start, memslot->base_gfn);
			end = min(gfn_end, memslot->base_gfn + memslot->npages);
5795
			if (WARN_ON_ONCE(start >= end))
5796 5797 5798
				continue;

			flush = slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
5799

5800 5801 5802 5803 5804 5805 5806 5807
							PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL,
							start, end - 1, true, flush);
		}
	}

	return flush;
}

5808 5809 5810 5811
/*
 * Invalidate (zap) SPTEs that cover GFNs from gfn_start and up to gfn_end
 * (not including it)
 */
X
Xiao Guangrong 已提交
5812 5813
void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
{
5814
	bool flush;
5815
	int i;
X
Xiao Guangrong 已提交
5816

5817 5818 5819
	if (WARN_ON_ONCE(gfn_end <= gfn_start))
		return;

5820 5821
	write_lock(&kvm->mmu_lock);

5822 5823
	kvm_inc_notifier_count(kvm, gfn_start, gfn_end);

5824
	flush = __kvm_zap_rmaps(kvm, gfn_start, gfn_end);
X
Xiao Guangrong 已提交
5825

5826
	if (is_tdp_mmu_enabled(kvm)) {
5827 5828
		for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
			flush = kvm_tdp_mmu_zap_gfn_range(kvm, i, gfn_start,
5829
							  gfn_end, flush);
5830
	}
5831 5832

	if (flush)
5833 5834
		kvm_flush_remote_tlbs_with_address(kvm, gfn_start,
						   gfn_end - gfn_start);
5835

5836 5837
	kvm_dec_notifier_count(kvm, gfn_start, gfn_end);

5838
	write_unlock(&kvm->mmu_lock);
X
Xiao Guangrong 已提交
5839 5840
}

5841
static bool slot_rmap_write_protect(struct kvm *kvm,
5842
				    struct kvm_rmap_head *rmap_head,
5843
				    const struct kvm_memory_slot *slot)
5844
{
5845
	return rmap_write_protect(rmap_head, false);
5846 5847
}

5848
void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5849
				      const struct kvm_memory_slot *memslot,
5850
				      int start_level)
A
Avi Kivity 已提交
5851
{
5852
	bool flush = false;
A
Avi Kivity 已提交
5853

5854 5855 5856 5857 5858 5859 5860
	if (kvm_memslots_have_rmaps(kvm)) {
		write_lock(&kvm->mmu_lock);
		flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect,
					  start_level, KVM_MAX_HUGEPAGE_LEVEL,
					  false);
		write_unlock(&kvm->mmu_lock);
	}
5861

5862 5863 5864 5865 5866 5867
	if (is_tdp_mmu_enabled(kvm)) {
		read_lock(&kvm->mmu_lock);
		flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, start_level);
		read_unlock(&kvm->mmu_lock);
	}

5868
	/*
5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888
	 * Flush TLBs if any SPTEs had to be write-protected to ensure that
	 * guest writes are reflected in the dirty bitmap before the memslot
	 * update completes, i.e. before enabling dirty logging is visible to
	 * userspace.
	 *
	 * Perform the TLB flush outside the mmu_lock to reduce the amount of
	 * time the lock is held. However, this does mean that another CPU can
	 * now grab mmu_lock and encounter a write-protected SPTE while CPUs
	 * still have a writable mapping for the associated GFN in their TLB.
	 *
	 * This is safe but requires KVM to be careful when making decisions
	 * based on the write-protection status of an SPTE. Specifically, KVM
	 * also write-protects SPTEs to monitor changes to guest page tables
	 * during shadow paging, and must guarantee no CPUs can write to those
	 * page before the lock is dropped. As mentioned in the previous
	 * paragraph, a write-protected SPTE is no guarantee that CPU cannot
	 * perform writes. So to determine if a TLB flush is truly required, KVM
	 * will clear a separate software-only bit (MMU-writable) and skip the
	 * flush if-and-only-if this bit was already clear.
	 *
5889
	 * See is_writable_pte() for more details.
5890
	 */
5891
	if (flush)
5892
		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
A
Avi Kivity 已提交
5893
}
5894

5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910
/* Must be called with the mmu_lock held in write-mode. */
void kvm_mmu_try_split_huge_pages(struct kvm *kvm,
				   const struct kvm_memory_slot *memslot,
				   u64 start, u64 end,
				   int target_level)
{
	if (is_tdp_mmu_enabled(kvm))
		kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end,
						 target_level, false);

	/*
	 * A TLB flush is unnecessary at this point for the same resons as in
	 * kvm_mmu_slot_try_split_huge_pages().
	 */
}

5911
void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm,
5912 5913
					const struct kvm_memory_slot *memslot,
					int target_level)
5914 5915 5916 5917 5918 5919
{
	u64 start = memslot->base_gfn;
	u64 end = start + memslot->npages;

	if (is_tdp_mmu_enabled(kvm)) {
		read_lock(&kvm->mmu_lock);
5920
		kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level, true);
5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934
		read_unlock(&kvm->mmu_lock);
	}

	/*
	 * No TLB flush is necessary here. KVM will flush TLBs after
	 * write-protecting and/or clearing dirty on the newly split SPTEs to
	 * ensure that guest writes are reflected in the dirty log before the
	 * ioctl to enable dirty logging on this memslot completes. Since the
	 * split SPTEs retain the write and dirty bits of the huge SPTE, it is
	 * safe for KVM to decide if a TLB flush is necessary based on the split
	 * SPTEs.
	 */
}

5935
static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5936
					 struct kvm_rmap_head *rmap_head,
5937
					 const struct kvm_memory_slot *slot)
5938 5939 5940 5941
{
	u64 *sptep;
	struct rmap_iterator iter;
	int need_tlb_flush = 0;
D
Dan Williams 已提交
5942
	kvm_pfn_t pfn;
5943 5944
	struct kvm_mmu_page *sp;

5945
restart:
5946
	for_each_rmap_spte(rmap_head, &iter, sptep) {
5947
		sp = sptep_to_sp(sptep);
5948 5949 5950
		pfn = spte_to_pfn(*sptep);

		/*
5951 5952 5953 5954 5955
		 * We cannot do huge page mapping for indirect shadow pages,
		 * which are found on the last rmap (level = 1) when not using
		 * tdp; such shadow pages are synced with the page table in
		 * the guest, and the guest page table is using 4K page size
		 * mapping if the indirect sp has level = 1.
5956
		 */
5957
		if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
5958 5959
		    sp->role.level < kvm_mmu_max_mapping_level(kvm, slot, sp->gfn,
							       pfn, PG_LEVEL_NUM)) {
5960
			pte_list_remove(kvm, rmap_head, sptep);
5961 5962 5963 5964 5965 5966 5967

			if (kvm_available_flush_tlb_with_range())
				kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
					KVM_PAGES_PER_HPAGE(sp->role.level));
			else
				need_tlb_flush = 1;

5968 5969
			goto restart;
		}
5970 5971 5972 5973 5974 5975
	}

	return need_tlb_flush;
}

void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5976
				   const struct kvm_memory_slot *slot)
5977
{
5978 5979
	if (kvm_memslots_have_rmaps(kvm)) {
		write_lock(&kvm->mmu_lock);
5980 5981 5982 5983 5984
		/*
		 * Zap only 4k SPTEs since the legacy MMU only supports dirty
		 * logging at a 4k granularity and never creates collapsible
		 * 2m SPTEs during dirty logging.
		 */
5985
		if (slot_handle_level_4k(kvm, slot, kvm_mmu_zap_collapsible_spte, true))
5986 5987 5988
			kvm_arch_flush_remote_tlbs_memslot(kvm, slot);
		write_unlock(&kvm->mmu_lock);
	}
5989 5990 5991

	if (is_tdp_mmu_enabled(kvm)) {
		read_lock(&kvm->mmu_lock);
5992
		kvm_tdp_mmu_zap_collapsible_sptes(kvm, slot);
5993 5994
		read_unlock(&kvm->mmu_lock);
	}
5995 5996
}

5997
void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
5998
					const struct kvm_memory_slot *memslot)
5999 6000
{
	/*
6001
	 * All current use cases for flushing the TLBs for a specific memslot
6002
	 * related to dirty logging, and many do the TLB flush out of mmu_lock.
6003 6004 6005
	 * The interaction between the various operations on memslot must be
	 * serialized by slots_locks to ensure the TLB flush from one operation
	 * is observed by any other operation on the same memslot.
6006 6007
	 */
	lockdep_assert_held(&kvm->slots_lock);
6008 6009
	kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
					   memslot->npages);
6010 6011
}

6012
void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
6013
				   const struct kvm_memory_slot *memslot)
6014
{
6015
	bool flush = false;
6016

6017 6018
	if (kvm_memslots_have_rmaps(kvm)) {
		write_lock(&kvm->mmu_lock);
6019 6020 6021 6022 6023
		/*
		 * Clear dirty bits only on 4k SPTEs since the legacy MMU only
		 * support dirty logging at a 4k granularity.
		 */
		flush = slot_handle_level_4k(kvm, memslot, __rmap_clear_dirty, false);
6024 6025
		write_unlock(&kvm->mmu_lock);
	}
6026

6027 6028 6029 6030 6031 6032
	if (is_tdp_mmu_enabled(kvm)) {
		read_lock(&kvm->mmu_lock);
		flush |= kvm_tdp_mmu_clear_dirty_slot(kvm, memslot);
		read_unlock(&kvm->mmu_lock);
	}

6033 6034 6035 6036 6037 6038 6039
	/*
	 * It's also safe to flush TLBs out of mmu lock here as currently this
	 * function is only used for dirty logging, in which case flushing TLB
	 * out of mmu lock also guarantees no dirty pages will be lost in
	 * dirty_bitmap.
	 */
	if (flush)
6040
		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
6041 6042
}

6043
void kvm_mmu_zap_all(struct kvm *kvm)
6044 6045
{
	struct kvm_mmu_page *sp, *node;
6046
	LIST_HEAD(invalid_list);
6047
	int ign;
6048

6049
	write_lock(&kvm->mmu_lock);
6050
restart:
6051
	list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
6052
		if (WARN_ON(sp->role.invalid))
6053
			continue;
6054
		if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
6055
			goto restart;
6056
		if (cond_resched_rwlock_write(&kvm->mmu_lock))
6057 6058 6059
			goto restart;
	}

6060
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
6061

6062
	if (is_tdp_mmu_enabled(kvm))
6063 6064
		kvm_tdp_mmu_zap_all(kvm);

6065
	write_unlock(&kvm->mmu_lock);
6066 6067
}

6068
void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
6069
{
6070
	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
6071

6072
	gen &= MMIO_SPTE_GEN_MASK;
6073

6074
	/*
6075 6076 6077 6078 6079 6080 6081 6082
	 * Generation numbers are incremented in multiples of the number of
	 * address spaces in order to provide unique generations across all
	 * address spaces.  Strip what is effectively the address space
	 * modifier prior to checking for a wrap of the MMIO generation so
	 * that a wrap in any address space is detected.
	 */
	gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);

6083
	/*
6084
	 * The very rare case: if the MMIO generation number has wrapped,
6085 6086
	 * zap all shadow pages.
	 */
6087
	if (unlikely(gen == 0)) {
6088
		kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
6089
		kvm_mmu_zap_all_fast(kvm);
6090
	}
6091 6092
}

6093 6094
static unsigned long
mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
6095 6096
{
	struct kvm *kvm;
6097
	int nr_to_scan = sc->nr_to_scan;
6098
	unsigned long freed = 0;
6099

J
Junaid Shahid 已提交
6100
	mutex_lock(&kvm_lock);
6101 6102

	list_for_each_entry(kvm, &vm_list, vm_list) {
6103
		int idx;
6104
		LIST_HEAD(invalid_list);
6105

6106 6107 6108 6109 6110 6111 6112 6113
		/*
		 * Never scan more than sc->nr_to_scan VM instances.
		 * Will not hit this condition practically since we do not try
		 * to shrink more than one VM and it is very unlikely to see
		 * !n_used_mmu_pages so many times.
		 */
		if (!nr_to_scan--)
			break;
6114 6115 6116 6117 6118 6119
		/*
		 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
		 * here. We may skip a VM instance errorneosly, but we do not
		 * want to shrink a VM that only started to populate its MMU
		 * anyway.
		 */
6120 6121
		if (!kvm->arch.n_used_mmu_pages &&
		    !kvm_has_zapped_obsolete_pages(kvm))
6122 6123
			continue;

6124
		idx = srcu_read_lock(&kvm->srcu);
6125
		write_lock(&kvm->mmu_lock);
6126

6127 6128 6129 6130 6131 6132
		if (kvm_has_zapped_obsolete_pages(kvm)) {
			kvm_mmu_commit_zap_page(kvm,
			      &kvm->arch.zapped_obsolete_pages);
			goto unlock;
		}

6133
		freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan);
6134

6135
unlock:
6136
		write_unlock(&kvm->mmu_lock);
6137
		srcu_read_unlock(&kvm->srcu, idx);
6138

6139 6140 6141 6142 6143
		/*
		 * unfair on small ones
		 * per-vm shrinkers cry out
		 * sadness comes quickly
		 */
6144 6145
		list_move_tail(&kvm->vm_list, &vm_list);
		break;
6146 6147
	}

J
Junaid Shahid 已提交
6148
	mutex_unlock(&kvm_lock);
6149 6150 6151 6152 6153 6154
	return freed;
}

static unsigned long
mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
{
6155
	return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
6156 6157 6158
}

static struct shrinker mmu_shrinker = {
6159 6160
	.count_objects = mmu_shrink_count,
	.scan_objects = mmu_shrink_scan,
6161 6162 6163
	.seeks = DEFAULT_SEEKS * 10,
};

I
Ingo Molnar 已提交
6164
static void mmu_destroy_caches(void)
6165
{
6166 6167
	kmem_cache_destroy(pte_list_desc_cache);
	kmem_cache_destroy(mmu_page_header_cache);
6168 6169
}

P
Paolo Bonzini 已提交
6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203
static bool get_nx_auto_mode(void)
{
	/* Return true when CPU has the bug, and mitigations are ON */
	return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
}

static void __set_nx_huge_pages(bool val)
{
	nx_huge_pages = itlb_multihit_kvm_mitigation = val;
}

static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
{
	bool old_val = nx_huge_pages;
	bool new_val;

	/* In "auto" mode deploy workaround only if CPU has the bug. */
	if (sysfs_streq(val, "off"))
		new_val = 0;
	else if (sysfs_streq(val, "force"))
		new_val = 1;
	else if (sysfs_streq(val, "auto"))
		new_val = get_nx_auto_mode();
	else if (strtobool(val, &new_val) < 0)
		return -EINVAL;

	__set_nx_huge_pages(new_val);

	if (new_val != old_val) {
		struct kvm *kvm;

		mutex_lock(&kvm_lock);

		list_for_each_entry(kvm, &vm_list, vm_list) {
6204
			mutex_lock(&kvm->slots_lock);
P
Paolo Bonzini 已提交
6205
			kvm_mmu_zap_all_fast(kvm);
6206
			mutex_unlock(&kvm->slots_lock);
6207 6208

			wake_up_process(kvm->arch.nx_lpage_recovery_thread);
P
Paolo Bonzini 已提交
6209 6210 6211 6212 6213 6214 6215
		}
		mutex_unlock(&kvm_lock);
	}

	return 0;
}

6216 6217
int kvm_mmu_module_init(void)
{
6218 6219
	int ret = -ENOMEM;

P
Paolo Bonzini 已提交
6220 6221 6222
	if (nx_huge_pages == -1)
		__set_nx_huge_pages(get_nx_auto_mode());

6223 6224 6225 6226 6227 6228 6229 6230 6231 6232
	/*
	 * MMU roles use union aliasing which is, generally speaking, an
	 * undefined behavior. However, we supposedly know how compilers behave
	 * and the current status quo is unlikely to change. Guardians below are
	 * supposed to let us know if the assumption becomes false.
	 */
	BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
	BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
	BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));

6233
	kvm_mmu_reset_all_pte_masks();
6234

6235 6236
	pte_list_desc_cache = kmem_cache_create("pte_list_desc",
					    sizeof(struct pte_list_desc),
6237
					    0, SLAB_ACCOUNT, NULL);
6238
	if (!pte_list_desc_cache)
6239
		goto out;
6240

6241 6242
	mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
						  sizeof(struct kvm_mmu_page),
6243
						  0, SLAB_ACCOUNT, NULL);
6244
	if (!mmu_page_header_cache)
6245
		goto out;
6246

6247
	if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
6248
		goto out;
6249

6250 6251 6252
	ret = register_shrinker(&mmu_shrinker);
	if (ret)
		goto out;
6253

6254 6255
	return 0;

6256
out:
6257
	mmu_destroy_caches();
6258
	return ret;
6259 6260
}

6261 6262
void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
{
6263
	kvm_mmu_unload(vcpu);
6264 6265
	free_mmu_pages(&vcpu->arch.root_mmu);
	free_mmu_pages(&vcpu->arch.guest_mmu);
6266
	mmu_free_memory_caches(vcpu);
6267 6268 6269 6270 6271 6272 6273
}

void kvm_mmu_module_exit(void)
{
	mmu_destroy_caches();
	percpu_counter_destroy(&kvm_total_used_mmu_pages);
	unregister_shrinker(&mmu_shrinker);
6274
}
6275

6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300
/*
 * Calculate the effective recovery period, accounting for '0' meaning "let KVM
 * select a halving time of 1 hour".  Returns true if recovery is enabled.
 */
static bool calc_nx_huge_pages_recovery_period(uint *period)
{
	/*
	 * Use READ_ONCE to get the params, this may be called outside of the
	 * param setters, e.g. by the kthread to compute its next timeout.
	 */
	bool enabled = READ_ONCE(nx_huge_pages);
	uint ratio = READ_ONCE(nx_huge_pages_recovery_ratio);

	if (!enabled || !ratio)
		return false;

	*period = READ_ONCE(nx_huge_pages_recovery_period_ms);
	if (!*period) {
		/* Make sure the period is not less than one second.  */
		ratio = min(ratio, 3600u);
		*period = 60 * 60 * 1000 / ratio;
	}
	return true;
}

6301
static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp)
6302
{
6303 6304
	bool was_recovery_enabled, is_recovery_enabled;
	uint old_period, new_period;
6305 6306
	int err;

6307
	was_recovery_enabled = calc_nx_huge_pages_recovery_period(&old_period);
6308

6309 6310 6311 6312
	err = param_set_uint(val, kp);
	if (err)
		return err;

6313
	is_recovery_enabled = calc_nx_huge_pages_recovery_period(&new_period);
6314

6315
	if (is_recovery_enabled &&
6316
	    (!was_recovery_enabled || old_period > new_period)) {
6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331
		struct kvm *kvm;

		mutex_lock(&kvm_lock);

		list_for_each_entry(kvm, &vm_list, vm_list)
			wake_up_process(kvm->arch.nx_lpage_recovery_thread);

		mutex_unlock(&kvm_lock);
	}

	return err;
}

static void kvm_recover_nx_lpages(struct kvm *kvm)
{
6332
	unsigned long nx_lpage_splits = kvm->stat.nx_lpage_splits;
6333 6334 6335 6336
	int rcu_idx;
	struct kvm_mmu_page *sp;
	unsigned int ratio;
	LIST_HEAD(invalid_list);
6337
	bool flush = false;
6338 6339 6340
	ulong to_zap;

	rcu_idx = srcu_read_lock(&kvm->srcu);
6341
	write_lock(&kvm->mmu_lock);
6342 6343

	ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
6344
	to_zap = ratio ? DIV_ROUND_UP(nx_lpage_splits, ratio) : 0;
6345 6346 6347 6348
	for ( ; to_zap; --to_zap) {
		if (list_empty(&kvm->arch.lpage_disallowed_mmu_pages))
			break;

6349 6350 6351 6352 6353 6354 6355 6356 6357
		/*
		 * We use a separate list instead of just using active_mmu_pages
		 * because the number of lpage_disallowed pages is expected to
		 * be relatively small compared to the total.
		 */
		sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
				      struct kvm_mmu_page,
				      lpage_disallowed_link);
		WARN_ON_ONCE(!sp->lpage_disallowed);
6358
		if (is_tdp_mmu_page(sp)) {
6359
			flush |= kvm_tdp_mmu_zap_sp(kvm, sp);
6360
		} else {
6361 6362 6363
			kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
			WARN_ON_ONCE(sp->lpage_disallowed);
		}
6364

6365
		if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
6366
			kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
6367
			cond_resched_rwlock_write(&kvm->mmu_lock);
6368
			flush = false;
6369 6370
		}
	}
6371
	kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
6372

6373
	write_unlock(&kvm->mmu_lock);
6374 6375 6376 6377 6378
	srcu_read_unlock(&kvm->srcu, rcu_idx);
}

static long get_nx_lpage_recovery_timeout(u64 start_time)
{
6379 6380
	bool enabled;
	uint period;
6381

6382
	enabled = calc_nx_huge_pages_recovery_period(&period);
6383

6384 6385
	return enabled ? start_time + msecs_to_jiffies(period) - get_jiffies_64()
		       : MAX_SCHEDULE_TIMEOUT;
6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430
}

static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
{
	u64 start_time;
	long remaining_time;

	while (true) {
		start_time = get_jiffies_64();
		remaining_time = get_nx_lpage_recovery_timeout(start_time);

		set_current_state(TASK_INTERRUPTIBLE);
		while (!kthread_should_stop() && remaining_time > 0) {
			schedule_timeout(remaining_time);
			remaining_time = get_nx_lpage_recovery_timeout(start_time);
			set_current_state(TASK_INTERRUPTIBLE);
		}

		set_current_state(TASK_RUNNING);

		if (kthread_should_stop())
			return 0;

		kvm_recover_nx_lpages(kvm);
	}
}

int kvm_mmu_post_init_vm(struct kvm *kvm)
{
	int err;

	err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
					  "kvm-nx-lpage-recovery",
					  &kvm->arch.nx_lpage_recovery_thread);
	if (!err)
		kthread_unpark(kvm->arch.nx_lpage_recovery_thread);

	return err;
}

void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
{
	if (kvm->arch.nx_lpage_recovery_thread)
		kthread_stop(kvm->arch.nx_lpage_recovery_thread);
}