mmu.c 167.9 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
A
Avi Kivity 已提交
2 3 4 5 6 7 8 9 10
/*
 * Kernel-based Virtual Machine driver for Linux
 *
 * This module enables machines with Intel VT-x extensions to run virtual
 * machines without emulation or binary translation.
 *
 * MMU support
 *
 * Copyright (C) 2006 Qumranet, Inc.
N
Nicolas Kaiser 已提交
11
 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
A
Avi Kivity 已提交
12 13 14 15 16
 *
 * Authors:
 *   Yaniv Kamay  <yaniv@qumranet.com>
 *   Avi Kivity   <avi@qumranet.com>
 */
A
Avi Kivity 已提交
17

18
#include "irq.h"
19
#include "ioapic.h"
20
#include "mmu.h"
21
#include "mmu_internal.h"
22
#include "tdp_mmu.h"
23
#include "x86.h"
A
Avi Kivity 已提交
24
#include "kvm_cache_regs.h"
25
#include "kvm_emulate.h"
26
#include "cpuid.h"
27
#include "spte.h"
A
Avi Kivity 已提交
28

29
#include <linux/kvm_host.h>
A
Avi Kivity 已提交
30 31 32 33
#include <linux/types.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/highmem.h>
34 35
#include <linux/moduleparam.h>
#include <linux/export.h>
36
#include <linux/swap.h>
M
Marcelo Tosatti 已提交
37
#include <linux/hugetlb.h>
38
#include <linux/compiler.h>
39
#include <linux/srcu.h>
40
#include <linux/slab.h>
41
#include <linux/sched/signal.h>
42
#include <linux/uaccess.h>
43
#include <linux/hash.h>
44
#include <linux/kern_levels.h>
45
#include <linux/kthread.h>
A
Avi Kivity 已提交
46

A
Avi Kivity 已提交
47
#include <asm/page.h>
48
#include <asm/memtype.h>
A
Avi Kivity 已提交
49
#include <asm/cmpxchg.h>
50
#include <asm/io.h>
51
#include <asm/set_memory.h>
52
#include <asm/vmx.h>
53
#include <asm/kvm_page_track.h>
54
#include "trace.h"
A
Avi Kivity 已提交
55

56 57
#include "paging.h"

P
Paolo Bonzini 已提交
58 59
extern bool itlb_multihit_kvm_mitigation;

60
int __read_mostly nx_huge_pages = -1;
61
static uint __read_mostly nx_huge_pages_recovery_period_ms;
62 63 64 65
#ifdef CONFIG_PREEMPT_RT
/* Recovery can cause latency spikes, disable it for PREEMPT_RT.  */
static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
#else
66
static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
67
#endif
P
Paolo Bonzini 已提交
68 69

static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
70
static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp);
P
Paolo Bonzini 已提交
71

72
static const struct kernel_param_ops nx_huge_pages_ops = {
P
Paolo Bonzini 已提交
73 74 75 76
	.set = set_nx_huge_pages,
	.get = param_get_bool,
};

77 78
static const struct kernel_param_ops nx_huge_pages_recovery_param_ops = {
	.set = set_nx_huge_pages_recovery_param,
79 80 81
	.get = param_get_uint,
};

P
Paolo Bonzini 已提交
82 83
module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
__MODULE_PARM_TYPE(nx_huge_pages, "bool");
84
module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_param_ops,
85 86
		&nx_huge_pages_recovery_ratio, 0644);
__MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
87 88 89
module_param_cb(nx_huge_pages_recovery_period_ms, &nx_huge_pages_recovery_param_ops,
		&nx_huge_pages_recovery_period_ms, 0644);
__MODULE_PARM_TYPE(nx_huge_pages_recovery_period_ms, "uint");
P
Paolo Bonzini 已提交
90

91 92 93
static bool __read_mostly force_flush_and_sync_on_reuse;
module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644);

94 95 96 97 98 99 100
/*
 * When setting this variable to true it enables Two-Dimensional-Paging
 * where the hardware walks 2 page tables:
 * 1. the guest-virtual to guest-physical
 * 2. while doing 1. it walks guest-physical to host-physical
 * If the hardware supports that we don't need to do shadow paging.
 */
101
bool tdp_enabled = false;
102

103
static int max_huge_page_level __read_mostly;
104
static int tdp_root_level __read_mostly;
105
static int max_tdp_level __read_mostly;
106

107 108 109 110
enum {
	AUDIT_PRE_PAGE_FAULT,
	AUDIT_POST_PAGE_FAULT,
	AUDIT_PRE_PTE_WRITE,
111 112 113
	AUDIT_POST_PTE_WRITE,
	AUDIT_PRE_SYNC,
	AUDIT_POST_SYNC
114
};
115 116

#ifdef MMU_DEBUG
117
bool dbg = 0;
118
module_param(dbg, bool, 0644);
119
#endif
A
Avi Kivity 已提交
120

121 122
#define PTE_PREFETCH_NUM		8

A
Avi Kivity 已提交
123 124 125
#define PT32_LEVEL_BITS 10

#define PT32_LEVEL_SHIFT(level) \
M
Mike Day 已提交
126
		(PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
A
Avi Kivity 已提交
127

128 129 130
#define PT32_LVL_OFFSET_MASK(level) \
	(PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
131 132 133 134 135 136 137 138

#define PT32_INDEX(address, level)\
	(((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))


#define PT32_BASE_ADDR_MASK PAGE_MASK
#define PT32_DIR_BASE_ADDR_MASK \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
139 140 141
#define PT32_LVL_ADDR_MASK(level) \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
					    * PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
142

143 144
#include <trace/events/kvm.h>

145
/* make pte_list_desc fit well in cache lines */
146
#define PTE_LIST_EXT 14
147

148 149 150 151 152
/*
 * Slight optimization of cacheline layout, by putting `more' and `spte_count'
 * at the start; then accessing it will only use one single cacheline for
 * either full (entries==PTE_LIST_EXT) case or entries<=6.
 */
153 154
struct pte_list_desc {
	struct pte_list_desc *more;
155 156 157 158 159 160
	/*
	 * Stores number of entries stored in the pte_list_desc.  No need to be
	 * u64 but just for easier alignment.  When PTE_LIST_EXT, means full.
	 */
	u64 spte_count;
	u64 *sptes[PTE_LIST_EXT];
161 162
};

163 164 165 166
struct kvm_shadow_walk_iterator {
	u64 addr;
	hpa_t shadow_addr;
	u64 *sptep;
167
	int level;
168 169 170
	unsigned index;
};

171 172 173 174 175 176 177
#define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker)     \
	for (shadow_walk_init_using_root(&(_walker), (_vcpu),              \
					 (_root), (_addr));                \
	     shadow_walk_okay(&(_walker));			           \
	     shadow_walk_next(&(_walker)))

#define for_each_shadow_entry(_vcpu, _addr, _walker)            \
178 179 180 181
	for (shadow_walk_init(&(_walker), _vcpu, _addr);	\
	     shadow_walk_okay(&(_walker));			\
	     shadow_walk_next(&(_walker)))

182 183 184 185 186 187
#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)	\
	for (shadow_walk_init(&(_walker), _vcpu, _addr);		\
	     shadow_walk_okay(&(_walker)) &&				\
		({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });	\
	     __shadow_walk_next(&(_walker), spte))

188
static struct kmem_cache *pte_list_desc_cache;
189
struct kmem_cache *mmu_page_header_cache;
190
static struct percpu_counter kvm_total_used_mmu_pages;
191

192
static void mmu_spte_set(u64 *sptep, u64 spte);
193 194
static union kvm_mmu_page_role
kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
195

196 197 198 199 200 201
struct kvm_mmu_role_regs {
	const unsigned long cr0;
	const unsigned long cr4;
	const u64 efer;
};

202 203 204
#define CREATE_TRACE_POINTS
#include "mmutrace.h"

205 206 207 208 209 210
/*
 * Yes, lot's of underscores.  They're a hint that you probably shouldn't be
 * reading from the role_regs.  Once the mmu_role is constructed, it becomes
 * the single source of truth for the MMU's state.
 */
#define BUILD_MMU_ROLE_REGS_ACCESSOR(reg, name, flag)			\
211
static inline bool __maybe_unused ____is_##reg##_##name(struct kvm_mmu_role_regs *regs)\
212 213 214 215 216 217 218 219 220 221 222 223 224 225
{									\
	return !!(regs->reg & flag);					\
}
BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, pg, X86_CR0_PG);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, wp, X86_CR0_WP);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pse, X86_CR4_PSE);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pae, X86_CR4_PAE);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smep, X86_CR4_SMEP);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smap, X86_CR4_SMAP);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pke, X86_CR4_PKE);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, la57, X86_CR4_LA57);
BUILD_MMU_ROLE_REGS_ACCESSOR(efer, nx, EFER_NX);
BUILD_MMU_ROLE_REGS_ACCESSOR(efer, lma, EFER_LMA);

226 227 228 229 230 231 232
/*
 * The MMU itself (with a valid role) is the single source of truth for the
 * MMU.  Do not use the regs used to build the MMU/role, nor the vCPU.  The
 * regs don't account for dependencies, e.g. clearing CR4 bits if CR0.PG=1,
 * and the vCPU may be incorrect/irrelevant.
 */
#define BUILD_MMU_ROLE_ACCESSOR(base_or_ext, reg, name)		\
233
static inline bool __maybe_unused is_##reg##_##name(struct kvm_mmu *mmu)	\
234 235 236 237 238 239 240 241 242 243 244 245 246
{								\
	return !!(mmu->mmu_role. base_or_ext . reg##_##name);	\
}
BUILD_MMU_ROLE_ACCESSOR(ext,  cr0, pg);
BUILD_MMU_ROLE_ACCESSOR(base, cr0, wp);
BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, pse);
BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, pae);
BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, smep);
BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, smap);
BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, pke);
BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, la57);
BUILD_MMU_ROLE_ACCESSOR(base, efer, nx);

247 248 249 250 251 252 253 254 255 256
static struct kvm_mmu_role_regs vcpu_to_role_regs(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu_role_regs regs = {
		.cr0 = kvm_read_cr0_bits(vcpu, KVM_MMU_CR0_ROLE_BITS),
		.cr4 = kvm_read_cr4_bits(vcpu, KVM_MMU_CR4_ROLE_BITS),
		.efer = vcpu->arch.efer,
	};

	return regs;
}
257

258 259 260 261 262 263 264 265 266 267 268 269
static int role_regs_to_root_level(struct kvm_mmu_role_regs *regs)
{
	if (!____is_cr0_pg(regs))
		return 0;
	else if (____is_efer_lma(regs))
		return ____is_cr4_la57(regs) ? PT64_ROOT_5LEVEL :
					       PT64_ROOT_4LEVEL;
	else if (____is_cr4_pae(regs))
		return PT32E_ROOT_LEVEL;
	else
		return PT32_ROOT_LEVEL;
}
270 271 272

static inline bool kvm_available_flush_tlb_with_range(void)
{
273
	return kvm_x86_ops.tlb_remote_flush_with_range;
274 275 276 277 278 279 280
}

static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
		struct kvm_tlb_range *range)
{
	int ret = -ENOTSUPP;

281
	if (range && kvm_x86_ops.tlb_remote_flush_with_range)
282
		ret = static_call(kvm_x86_tlb_remote_flush_with_range)(kvm, range);
283 284 285 286 287

	if (ret)
		kvm_flush_remote_tlbs(kvm);
}

288
void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
289 290 291 292 293 294 295 296 297 298
		u64 start_gfn, u64 pages)
{
	struct kvm_tlb_range range;

	range.start_gfn = start_gfn;
	range.pages = pages;

	kvm_flush_remote_tlbs_with_range(kvm, &range);
}

299 300 301
static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
			   unsigned int access)
{
302
	u64 spte = make_mmio_spte(vcpu, gfn, access);
303

304 305
	trace_mark_mmio_spte(sptep, gfn, spte);
	mmu_spte_set(sptep, spte);
306 307 308 309
}

static gfn_t get_mmio_spte_gfn(u64 spte)
{
310
	u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
311

312
	gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)
313 314 315
	       & shadow_nonpresent_or_rsvd_mask;

	return gpa >> PAGE_SHIFT;
316 317 318 319
}

static unsigned get_mmio_spte_access(u64 spte)
{
320
	return spte & shadow_mmio_access_mask;
321 322
}

323
static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
324
{
325
	u64 kvm_gen, spte_gen, gen;
326

327 328 329
	gen = kvm_vcpu_memslots(vcpu)->generation;
	if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
		return false;
330

331
	kvm_gen = gen & MMIO_SPTE_GEN_MASK;
332 333 334 335
	spte_gen = get_mmio_spte_generation(spte);

	trace_check_mmio_spte(spte, kvm_gen, spte_gen);
	return likely(kvm_gen == spte_gen);
336 337
}

338 339 340 341 342 343
static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
                                  struct x86_exception *exception)
{
        return gpa;
}

A
Avi Kivity 已提交
344 345 346 347 348
static int is_cpuid_PSE36(void)
{
	return 1;
}

349 350 351 352 353 354 355
static gfn_t pse36_gfn_delta(u32 gpte)
{
	int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;

	return (gpte & PT32_DIR_PSE36_MASK) << shift;
}

356
#ifdef CONFIG_X86_64
A
Avi Kivity 已提交
357
static void __set_spte(u64 *sptep, u64 spte)
358
{
359
	WRITE_ONCE(*sptep, spte);
360 361
}

362
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
363
{
364
	WRITE_ONCE(*sptep, spte);
365 366 367 368 369 370
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	return xchg(sptep, spte);
}
371 372 373

static u64 __get_spte_lockless(u64 *sptep)
{
374
	return READ_ONCE(*sptep);
375
}
376
#else
377 378 379 380 381 382 383
union split_spte {
	struct {
		u32 spte_low;
		u32 spte_high;
	};
	u64 spte;
};
384

385 386
static void count_spte_clear(u64 *sptep, u64 spte)
{
387
	struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
388 389 390 391 392 393 394 395 396

	if (is_shadow_present_pte(spte))
		return;

	/* Ensure the spte is completely set before we increase the count */
	smp_wmb();
	sp->clear_spte_count++;
}

397 398 399
static void __set_spte(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;
400

401 402 403 404 405 406 407 408 409 410 411 412
	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	ssptep->spte_high = sspte.spte_high;

	/*
	 * If we map the spte from nonpresent to present, We should store
	 * the high bits firstly, then set present bit, so cpu can not
	 * fetch this spte while we are setting the spte.
	 */
	smp_wmb();

413
	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
414 415
}

416 417 418 419 420 421 422
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

423
	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
424 425 426 427 428 429 430 431

	/*
	 * If we map the spte from present to nonpresent, we should clear
	 * present bit firstly to avoid vcpu fetch the old high bits.
	 */
	smp_wmb();

	ssptep->spte_high = sspte.spte_high;
432
	count_spte_clear(sptep, spte);
433 434 435 436 437 438 439 440 441 442 443
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte, orig;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	/* xchg acts as a barrier before the setting of the high bits */
	orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
444 445
	orig.spte_high = ssptep->spte_high;
	ssptep->spte_high = sspte.spte_high;
446
	count_spte_clear(sptep, spte);
447 448 449

	return orig.spte;
}
450 451 452

/*
 * The idea using the light way get the spte on x86_32 guest is from
453
 * gup_get_pte (mm/gup.c).
454 455 456 457 458 459 460 461 462 463 464 465 466 467
 *
 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
 * coalesces them and we are running out of the MMU lock.  Therefore
 * we need to protect against in-progress updates of the spte.
 *
 * Reading the spte while an update is in progress may get the old value
 * for the high part of the spte.  The race is fine for a present->non-present
 * change (because the high part of the spte is ignored for non-present spte),
 * but for a present->present change we must reread the spte.
 *
 * All such changes are done in two steps (present->non-present and
 * non-present->present), hence it is enough to count the number of
 * present->non-present updates: if it changed while reading the spte,
 * we might have hit the race.  This is done using clear_spte_count.
468 469 470
 */
static u64 __get_spte_lockless(u64 *sptep)
{
471
	struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
	union split_spte spte, *orig = (union split_spte *)sptep;
	int count;

retry:
	count = sp->clear_spte_count;
	smp_rmb();

	spte.spte_low = orig->spte_low;
	smp_rmb();

	spte.spte_high = orig->spte_high;
	smp_rmb();

	if (unlikely(spte.spte_low != orig->spte_low ||
	      count != sp->clear_spte_count))
		goto retry;

	return spte.spte;
}
491 492
#endif

493 494
static bool spte_has_volatile_bits(u64 spte)
{
495 496 497
	if (!is_shadow_present_pte(spte))
		return false;

498
	/*
499
	 * Always atomically update spte if it can be updated
500 501 502 503
	 * out of mmu-lock, it can ensure dirty bit is not lost,
	 * also, it can help us to get a stable is_writable_pte()
	 * to ensure tlb flush is not missed.
	 */
504 505
	if (spte_can_locklessly_be_made_writable(spte) ||
	    is_access_track_spte(spte))
506 507
		return true;

508
	if (spte_ad_enabled(spte)) {
509 510 511 512
		if ((spte & shadow_accessed_mask) == 0 ||
	    	    (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
			return true;
	}
513

514
	return false;
515 516
}

517 518 519 520 521 522 523 524 525 526 527 528
/* Rules for using mmu_spte_set:
 * Set the sptep from nonpresent to present.
 * Note: the sptep being assigned *must* be either not present
 * or in a state where the hardware will not attempt to update
 * the spte.
 */
static void mmu_spte_set(u64 *sptep, u64 new_spte)
{
	WARN_ON(is_shadow_present_pte(*sptep));
	__set_spte(sptep, new_spte);
}

529 530 531
/*
 * Update the SPTE (excluding the PFN), but do not track changes in its
 * accessed/dirty status.
532
 */
533
static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
534
{
535
	u64 old_spte = *sptep;
536

537
	WARN_ON(!is_shadow_present_pte(new_spte));
538

539 540
	if (!is_shadow_present_pte(old_spte)) {
		mmu_spte_set(sptep, new_spte);
541
		return old_spte;
542
	}
543

544
	if (!spte_has_volatile_bits(old_spte))
545
		__update_clear_spte_fast(sptep, new_spte);
546
	else
547
		old_spte = __update_clear_spte_slow(sptep, new_spte);
548

549 550
	WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));

551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
	return old_spte;
}

/* Rules for using mmu_spte_update:
 * Update the state bits, it means the mapped pfn is not changed.
 *
 * Whenever we overwrite a writable spte with a read-only one we
 * should flush remote TLBs. Otherwise rmap_write_protect
 * will find a read-only spte, even though the writable spte
 * might be cached on a CPU's TLB, the return value indicates this
 * case.
 *
 * Returns true if the TLB needs to be flushed
 */
static bool mmu_spte_update(u64 *sptep, u64 new_spte)
{
	bool flush = false;
	u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);

	if (!is_shadow_present_pte(old_spte))
		return false;

573 574
	/*
	 * For the spte updated out of mmu-lock is safe, since
575
	 * we always atomically update it, see the comments in
576 577
	 * spte_has_volatile_bits().
	 */
578
	if (spte_can_locklessly_be_made_writable(old_spte) &&
579
	      !is_writable_pte(new_spte))
580
		flush = true;
581

582
	/*
583
	 * Flush TLB when accessed/dirty states are changed in the page tables,
584 585 586
	 * to guarantee consistency between TLB and page tables.
	 */

587 588
	if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
		flush = true;
589
		kvm_set_pfn_accessed(spte_to_pfn(old_spte));
590 591 592 593
	}

	if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
		flush = true;
594
		kvm_set_pfn_dirty(spte_to_pfn(old_spte));
595
	}
596

597
	return flush;
598 599
}

600 601 602 603
/*
 * Rules for using mmu_spte_clear_track_bits:
 * It sets the sptep from present to nonpresent, and track the
 * state bits, it is used to clear the last level sptep.
604
 * Returns the old PTE.
605
 */
606
static int mmu_spte_clear_track_bits(struct kvm *kvm, u64 *sptep)
607
{
D
Dan Williams 已提交
608
	kvm_pfn_t pfn;
609
	u64 old_spte = *sptep;
610
	int level = sptep_to_sp(sptep)->role.level;
611 612

	if (!spte_has_volatile_bits(old_spte))
613
		__update_clear_spte_fast(sptep, 0ull);
614
	else
615
		old_spte = __update_clear_spte_slow(sptep, 0ull);
616

617
	if (!is_shadow_present_pte(old_spte))
618
		return old_spte;
619

620 621
	kvm_update_page_stats(kvm, level, -1);

622
	pfn = spte_to_pfn(old_spte);
623 624 625 626 627 628

	/*
	 * KVM does not hold the refcount of the page used by
	 * kvm mmu, before reclaiming the page, we should
	 * unmap it from mmu first.
	 */
629
	WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
630

631
	if (is_accessed_spte(old_spte))
632
		kvm_set_pfn_accessed(pfn);
633 634

	if (is_dirty_spte(old_spte))
635
		kvm_set_pfn_dirty(pfn);
636

637
	return old_spte;
638 639 640 641 642 643 644 645 646
}

/*
 * Rules for using mmu_spte_clear_no_track:
 * Directly clear spte without caring the state bits of sptep,
 * it is used to set the upper level spte.
 */
static void mmu_spte_clear_no_track(u64 *sptep)
{
647
	__update_clear_spte_fast(sptep, 0ull);
648 649
}

650 651 652 653 654
static u64 mmu_spte_get_lockless(u64 *sptep)
{
	return __get_spte_lockless(sptep);
}

655 656 657 658
/* Restore an acc-track PTE back to a regular PTE */
static u64 restore_acc_track_spte(u64 spte)
{
	u64 new_spte = spte;
659 660
	u64 saved_bits = (spte >> SHADOW_ACC_TRACK_SAVED_BITS_SHIFT)
			 & SHADOW_ACC_TRACK_SAVED_BITS_MASK;
661

662
	WARN_ON_ONCE(spte_ad_enabled(spte));
663 664 665
	WARN_ON_ONCE(!is_access_track_spte(spte));

	new_spte &= ~shadow_acc_track_mask;
666 667
	new_spte &= ~(SHADOW_ACC_TRACK_SAVED_BITS_MASK <<
		      SHADOW_ACC_TRACK_SAVED_BITS_SHIFT);
668 669 670 671 672
	new_spte |= saved_bits;

	return new_spte;
}

673 674 675 676 677 678 679 680
/* Returns the Accessed status of the PTE and resets it at the same time. */
static bool mmu_spte_age(u64 *sptep)
{
	u64 spte = mmu_spte_get_lockless(sptep);

	if (!is_accessed_spte(spte))
		return false;

681
	if (spte_ad_enabled(spte)) {
682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
		clear_bit((ffs(shadow_accessed_mask) - 1),
			  (unsigned long *)sptep);
	} else {
		/*
		 * Capture the dirty status of the page, so that it doesn't get
		 * lost when the SPTE is marked for access tracking.
		 */
		if (is_writable_pte(spte))
			kvm_set_pfn_dirty(spte_to_pfn(spte));

		spte = mark_spte_for_access_track(spte);
		mmu_spte_update_no_track(sptep, spte);
	}

	return true;
}

699 700
static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
{
701 702 703 704 705 706 707 708
	if (is_tdp_mmu(vcpu->arch.mmu)) {
		kvm_tdp_mmu_walk_lockless_begin();
	} else {
		/*
		 * Prevent page table teardown by making any free-er wait during
		 * kvm_flush_remote_tlbs() IPI to all active vcpus.
		 */
		local_irq_disable();
709

710 711 712 713 714 715
		/*
		 * Make sure a following spte read is not reordered ahead of the write
		 * to vcpu->mode.
		 */
		smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
	}
716 717 718 719
}

static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
{
720 721 722 723 724 725 726 727 728 729 730
	if (is_tdp_mmu(vcpu->arch.mmu)) {
		kvm_tdp_mmu_walk_lockless_end();
	} else {
		/*
		 * Make sure the write to vcpu->mode is not reordered in front of
		 * reads to sptes.  If it does, kvm_mmu_commit_zap_page() can see us
		 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
		 */
		smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
		local_irq_enable();
	}
731 732
}

733
static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect)
734
{
735 736
	int r;

737
	/* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */
738 739
	r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
				       1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM);
740
	if (r)
741
		return r;
742 743
	r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache,
				       PT64_ROOT_MAX_LEVEL);
744
	if (r)
745
		return r;
746
	if (maybe_indirect) {
747 748
		r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_gfn_array_cache,
					       PT64_ROOT_MAX_LEVEL);
749 750 751
		if (r)
			return r;
	}
752 753
	return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
					  PT64_ROOT_MAX_LEVEL);
754 755 756 757
}

static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
{
758 759 760 761
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache);
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache);
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_gfn_array_cache);
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
762 763
}

764
static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
765
{
766
	return kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
767 768
}

769
static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
770
{
771
	kmem_cache_free(pte_list_desc_cache, pte_list_desc);
772 773
}

774 775 776 777 778 779 780 781 782 783
static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
{
	if (!sp->role.direct)
		return sp->gfns[index];

	return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
}

static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
{
784
	if (!sp->role.direct) {
785
		sp->gfns[index] = gfn;
786 787 788 789 790 791 792 793
		return;
	}

	if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
		pr_err_ratelimited("gfn mismatch under direct page %llx "
				   "(expected %llx, got %llx)\n",
				   sp->gfn,
				   kvm_mmu_page_get_gfn(sp, index), gfn);
794 795
}

M
Marcelo Tosatti 已提交
796
/*
797 798
 * Return the pointer to the large page information for a given gfn,
 * handling slots that are not large page aligned.
M
Marcelo Tosatti 已提交
799
 */
800
static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
801
		const struct kvm_memory_slot *slot, int level)
M
Marcelo Tosatti 已提交
802 803 804
{
	unsigned long idx;

805
	idx = gfn_to_index(gfn, slot->base_gfn, level);
806
	return &slot->arch.lpage_info[level - 2][idx];
M
Marcelo Tosatti 已提交
807 808
}

809
static void update_gfn_disallow_lpage_count(const struct kvm_memory_slot *slot,
810 811 812 813 814
					    gfn_t gfn, int count)
{
	struct kvm_lpage_info *linfo;
	int i;

815
	for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
816 817 818 819 820 821
		linfo = lpage_info_slot(gfn, slot, i);
		linfo->disallow_lpage += count;
		WARN_ON(linfo->disallow_lpage < 0);
	}
}

822
void kvm_mmu_gfn_disallow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn)
823 824 825 826
{
	update_gfn_disallow_lpage_count(slot, gfn, 1);
}

827
void kvm_mmu_gfn_allow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn)
828 829 830 831
{
	update_gfn_disallow_lpage_count(slot, gfn, -1);
}

832
static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
M
Marcelo Tosatti 已提交
833
{
834
	struct kvm_memslots *slots;
835
	struct kvm_memory_slot *slot;
836
	gfn_t gfn;
M
Marcelo Tosatti 已提交
837

838
	kvm->arch.indirect_shadow_pages++;
839
	gfn = sp->gfn;
840 841
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
842 843

	/* the non-leaf shadow pages are keeping readonly. */
844
	if (sp->role.level > PG_LEVEL_4K)
845 846 847
		return kvm_slot_page_track_add_page(kvm, slot, gfn,
						    KVM_PAGE_TRACK_WRITE);

848
	kvm_mmu_gfn_disallow_lpage(slot, gfn);
M
Marcelo Tosatti 已提交
849 850
}

851
void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
P
Paolo Bonzini 已提交
852 853 854 855 856
{
	if (sp->lpage_disallowed)
		return;

	++kvm->stat.nx_lpage_splits;
857 858
	list_add_tail(&sp->lpage_disallowed_link,
		      &kvm->arch.lpage_disallowed_mmu_pages);
P
Paolo Bonzini 已提交
859 860 861
	sp->lpage_disallowed = true;
}

862
static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
M
Marcelo Tosatti 已提交
863
{
864
	struct kvm_memslots *slots;
865
	struct kvm_memory_slot *slot;
866
	gfn_t gfn;
M
Marcelo Tosatti 已提交
867

868
	kvm->arch.indirect_shadow_pages--;
869
	gfn = sp->gfn;
870 871
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
872
	if (sp->role.level > PG_LEVEL_4K)
873 874 875
		return kvm_slot_page_track_remove_page(kvm, slot, gfn,
						       KVM_PAGE_TRACK_WRITE);

876
	kvm_mmu_gfn_allow_lpage(slot, gfn);
M
Marcelo Tosatti 已提交
877 878
}

879
void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
P
Paolo Bonzini 已提交
880 881 882
{
	--kvm->stat.nx_lpage_splits;
	sp->lpage_disallowed = false;
883
	list_del(&sp->lpage_disallowed_link);
P
Paolo Bonzini 已提交
884 885
}

886 887 888
static struct kvm_memory_slot *
gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
			    bool no_dirty_log)
M
Marcelo Tosatti 已提交
889 890
{
	struct kvm_memory_slot *slot;
891

892
	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
893 894
	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
		return NULL;
895
	if (no_dirty_log && kvm_slot_dirty_track_enabled(slot))
896
		return NULL;
897 898 899 900

	return slot;
}

901
/*
902
 * About rmap_head encoding:
903
 *
904 905
 * If the bit zero of rmap_head->val is clear, then it points to the only spte
 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
906
 * pte_list_desc containing more mappings.
907 908 909 910
 */

/*
 * Returns the number of pointers in the rmap chain, not counting the new one.
911
 */
912
static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
913
			struct kvm_rmap_head *rmap_head)
914
{
915
	struct pte_list_desc *desc;
916
	int count = 0;
917

918
	if (!rmap_head->val) {
919
		rmap_printk("%p %llx 0->1\n", spte, *spte);
920 921
		rmap_head->val = (unsigned long)spte;
	} else if (!(rmap_head->val & 1)) {
922
		rmap_printk("%p %llx 1->many\n", spte, *spte);
923
		desc = mmu_alloc_pte_list_desc(vcpu);
924
		desc->sptes[0] = (u64 *)rmap_head->val;
A
Avi Kivity 已提交
925
		desc->sptes[1] = spte;
926
		desc->spte_count = 2;
927
		rmap_head->val = (unsigned long)desc | 1;
928
		++count;
929
	} else {
930
		rmap_printk("%p %llx many->many\n", spte, *spte);
931
		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
932
		while (desc->spte_count == PTE_LIST_EXT) {
933
			count += PTE_LIST_EXT;
934 935 936
			if (!desc->more) {
				desc->more = mmu_alloc_pte_list_desc(vcpu);
				desc = desc->more;
937
				desc->spte_count = 0;
938 939
				break;
			}
940 941
			desc = desc->more;
		}
942 943
		count += desc->spte_count;
		desc->sptes[desc->spte_count++] = spte;
944
	}
945
	return count;
946 947
}

948
static void
949 950 951
pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
			   struct pte_list_desc *desc, int i,
			   struct pte_list_desc *prev_desc)
952
{
953
	int j = desc->spte_count - 1;
954

A
Avi Kivity 已提交
955 956
	desc->sptes[i] = desc->sptes[j];
	desc->sptes[j] = NULL;
957 958
	desc->spte_count--;
	if (desc->spte_count)
959 960
		return;
	if (!prev_desc && !desc->more)
961
		rmap_head->val = 0;
962 963 964 965
	else
		if (prev_desc)
			prev_desc->more = desc->more;
		else
966
			rmap_head->val = (unsigned long)desc->more | 1;
967
	mmu_free_pte_list_desc(desc);
968 969
}

970
static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
971
{
972 973
	struct pte_list_desc *desc;
	struct pte_list_desc *prev_desc;
974 975
	int i;

976
	if (!rmap_head->val) {
977
		pr_err("%s: %p 0->BUG\n", __func__, spte);
978
		BUG();
979
	} else if (!(rmap_head->val & 1)) {
980
		rmap_printk("%p 1->0\n", spte);
981
		if ((u64 *)rmap_head->val != spte) {
982
			pr_err("%s:  %p 1->BUG\n", __func__, spte);
983 984
			BUG();
		}
985
		rmap_head->val = 0;
986
	} else {
987
		rmap_printk("%p many->many\n", spte);
988
		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
989 990
		prev_desc = NULL;
		while (desc) {
991
			for (i = 0; i < desc->spte_count; ++i) {
A
Avi Kivity 已提交
992
				if (desc->sptes[i] == spte) {
993 994
					pte_list_desc_remove_entry(rmap_head,
							desc, i, prev_desc);
995 996
					return;
				}
997
			}
998 999 1000
			prev_desc = desc;
			desc = desc->more;
		}
1001
		pr_err("%s: %p many->many\n", __func__, spte);
1002 1003 1004 1005
		BUG();
	}
}

1006 1007
static void pte_list_remove(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			    u64 *sptep)
1008
{
1009
	mmu_spte_clear_track_bits(kvm, sptep);
1010 1011 1012
	__pte_list_remove(sptep, rmap_head);
}

P
Peter Xu 已提交
1013
/* Return true if rmap existed, false otherwise */
1014
static bool pte_list_destroy(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
P
Peter Xu 已提交
1015 1016 1017 1018 1019 1020 1021 1022
{
	struct pte_list_desc *desc, *next;
	int i;

	if (!rmap_head->val)
		return false;

	if (!(rmap_head->val & 1)) {
1023
		mmu_spte_clear_track_bits(kvm, (u64 *)rmap_head->val);
P
Peter Xu 已提交
1024 1025 1026 1027 1028 1029 1030
		goto out;
	}

	desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);

	for (; desc; desc = next) {
		for (i = 0; i < desc->spte_count; i++)
1031
			mmu_spte_clear_track_bits(kvm, desc->sptes[i]);
P
Peter Xu 已提交
1032 1033 1034 1035 1036 1037 1038 1039 1040
		next = desc->more;
		mmu_free_pte_list_desc(desc);
	}
out:
	/* rmap_head is meaningless now, remember to reset it */
	rmap_head->val = 0;
	return true;
}

1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
unsigned int pte_list_count(struct kvm_rmap_head *rmap_head)
{
	struct pte_list_desc *desc;
	unsigned int count = 0;

	if (!rmap_head->val)
		return 0;
	else if (!(rmap_head->val & 1))
		return 1;

	desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);

	while (desc) {
		count += desc->spte_count;
		desc = desc->more;
	}

	return count;
}

1061 1062
static struct kvm_rmap_head *gfn_to_rmap(gfn_t gfn, int level,
					 const struct kvm_memory_slot *slot)
1063
{
1064
	unsigned long idx;
1065

1066
	idx = gfn_to_index(gfn, slot->base_gfn, level);
1067
	return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
1068 1069
}

1070 1071
static bool rmap_can_add(struct kvm_vcpu *vcpu)
{
1072
	struct kvm_mmu_memory_cache *mc;
1073

1074
	mc = &vcpu->arch.mmu_pte_list_desc_cache;
1075
	return kvm_mmu_memory_cache_nr_free_objects(mc);
1076 1077
}

1078 1079
static void rmap_remove(struct kvm *kvm, u64 *spte)
{
1080 1081
	struct kvm_memslots *slots;
	struct kvm_memory_slot *slot;
1082 1083
	struct kvm_mmu_page *sp;
	gfn_t gfn;
1084
	struct kvm_rmap_head *rmap_head;
1085

1086
	sp = sptep_to_sp(spte);
1087
	gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1088 1089

	/*
1090 1091 1092
	 * Unlike rmap_add, rmap_remove does not run in the context of a vCPU
	 * so we have to determine which memslots to use based on context
	 * information in sp->role.
1093 1094 1095 1096
	 */
	slots = kvm_memslots_for_spte_role(kvm, sp->role);

	slot = __gfn_to_memslot(slots, gfn);
1097
	rmap_head = gfn_to_rmap(gfn, sp->role.level, slot);
1098

1099
	__pte_list_remove(spte, rmap_head);
1100 1101
}

1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
/*
 * Used by the following functions to iterate through the sptes linked by a
 * rmap.  All fields are private and not assumed to be used outside.
 */
struct rmap_iterator {
	/* private fields */
	struct pte_list_desc *desc;	/* holds the sptep if not NULL */
	int pos;			/* index of the sptep */
};

/*
 * Iteration must be started by this function.  This should also be used after
 * removing/dropping sptes from the rmap link because in such cases the
M
Miaohe Lin 已提交
1115
 * information in the iterator may not be valid.
1116 1117 1118
 *
 * Returns sptep if found, NULL otherwise.
 */
1119 1120
static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
			   struct rmap_iterator *iter)
1121
{
1122 1123
	u64 *sptep;

1124
	if (!rmap_head->val)
1125 1126
		return NULL;

1127
	if (!(rmap_head->val & 1)) {
1128
		iter->desc = NULL;
1129 1130
		sptep = (u64 *)rmap_head->val;
		goto out;
1131 1132
	}

1133
	iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1134
	iter->pos = 0;
1135 1136 1137 1138
	sptep = iter->desc->sptes[iter->pos];
out:
	BUG_ON(!is_shadow_present_pte(*sptep));
	return sptep;
1139 1140 1141 1142 1143 1144 1145 1146 1147
}

/*
 * Must be used with a valid iterator: e.g. after rmap_get_first().
 *
 * Returns sptep if found, NULL otherwise.
 */
static u64 *rmap_get_next(struct rmap_iterator *iter)
{
1148 1149
	u64 *sptep;

1150 1151 1152 1153 1154
	if (iter->desc) {
		if (iter->pos < PTE_LIST_EXT - 1) {
			++iter->pos;
			sptep = iter->desc->sptes[iter->pos];
			if (sptep)
1155
				goto out;
1156 1157 1158 1159 1160 1161 1162
		}

		iter->desc = iter->desc->more;

		if (iter->desc) {
			iter->pos = 0;
			/* desc->sptes[0] cannot be NULL */
1163 1164
			sptep = iter->desc->sptes[iter->pos];
			goto out;
1165 1166 1167 1168
		}
	}

	return NULL;
1169 1170 1171
out:
	BUG_ON(!is_shadow_present_pte(*sptep));
	return sptep;
1172 1173
}

1174 1175
#define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)			\
	for (_spte_ = rmap_get_first(_rmap_head_, _iter_);		\
1176
	     _spte_; _spte_ = rmap_get_next(_iter_))
1177

1178
static void drop_spte(struct kvm *kvm, u64 *sptep)
1179
{
1180
	u64 old_spte = mmu_spte_clear_track_bits(kvm, sptep);
1181 1182

	if (is_shadow_present_pte(old_spte))
1183
		rmap_remove(kvm, sptep);
A
Avi Kivity 已提交
1184 1185
}

1186 1187 1188 1189

static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
{
	if (is_large_pte(*sptep)) {
1190
		WARN_ON(sptep_to_sp(sptep)->role.level == PG_LEVEL_4K);
1191 1192 1193 1194 1195 1196 1197 1198 1199
		drop_spte(kvm, sptep);
		return true;
	}

	return false;
}

static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
{
1200
	if (__drop_large_spte(vcpu->kvm, sptep)) {
1201
		struct kvm_mmu_page *sp = sptep_to_sp(sptep);
1202 1203 1204 1205

		kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
			KVM_PAGES_PER_HPAGE(sp->role.level));
	}
1206 1207 1208
}

/*
1209
 * Write-protect on the specified @sptep, @pt_protect indicates whether
1210
 * spte write-protection is caused by protecting shadow page table.
1211
 *
T
Tiejun Chen 已提交
1212
 * Note: write protection is difference between dirty logging and spte
1213 1214 1215 1216 1217
 * protection:
 * - for dirty logging, the spte can be set to writable at anytime if
 *   its dirty bitmap is properly set.
 * - for spte protection, the spte can be writable only after unsync-ing
 *   shadow page.
1218
 *
1219
 * Return true if tlb need be flushed.
1220
 */
1221
static bool spte_write_protect(u64 *sptep, bool pt_protect)
1222 1223 1224
{
	u64 spte = *sptep;

1225
	if (!is_writable_pte(spte) &&
1226
	      !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1227 1228
		return false;

1229
	rmap_printk("spte %p %llx\n", sptep, *sptep);
1230

1231
	if (pt_protect)
1232
		spte &= ~shadow_mmu_writable_mask;
1233
	spte = spte & ~PT_WRITABLE_MASK;
1234

1235
	return mmu_spte_update(sptep, spte);
1236 1237
}

1238 1239
static bool __rmap_write_protect(struct kvm *kvm,
				 struct kvm_rmap_head *rmap_head,
1240
				 bool pt_protect)
1241
{
1242 1243
	u64 *sptep;
	struct rmap_iterator iter;
1244
	bool flush = false;
1245

1246
	for_each_rmap_spte(rmap_head, &iter, sptep)
1247
		flush |= spte_write_protect(sptep, pt_protect);
1248

1249
	return flush;
1250 1251
}

1252
static bool spte_clear_dirty(u64 *sptep)
1253 1254 1255
{
	u64 spte = *sptep;

1256
	rmap_printk("spte %p %llx\n", sptep, *sptep);
1257

1258
	MMU_WARN_ON(!spte_ad_enabled(spte));
1259 1260 1261 1262
	spte &= ~shadow_dirty_mask;
	return mmu_spte_update(sptep, spte);
}

1263
static bool spte_wrprot_for_clear_dirty(u64 *sptep)
1264 1265 1266
{
	bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
					       (unsigned long *)sptep);
1267
	if (was_writable && !spte_ad_enabled(*sptep))
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
		kvm_set_pfn_dirty(spte_to_pfn(*sptep));

	return was_writable;
}

/*
 * Gets the GFN ready for another round of dirty logging by clearing the
 *	- D bit on ad-enabled SPTEs, and
 *	- W bit on ad-disabled SPTEs.
 * Returns true iff any D or W bits were cleared.
 */
1279
static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1280
			       const struct kvm_memory_slot *slot)
1281 1282 1283 1284 1285
{
	u64 *sptep;
	struct rmap_iterator iter;
	bool flush = false;

1286
	for_each_rmap_spte(rmap_head, &iter, sptep)
1287 1288
		if (spte_ad_need_write_protect(*sptep))
			flush |= spte_wrprot_for_clear_dirty(sptep);
1289
		else
1290
			flush |= spte_clear_dirty(sptep);
1291 1292 1293 1294

	return flush;
}

1295
/**
1296
 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1297 1298 1299 1300 1301
 * @kvm: kvm instance
 * @slot: slot to protect
 * @gfn_offset: start of the BITS_PER_LONG pages we care about
 * @mask: indicates which pages we should protect
 *
1302
 * Used when we do not need to care about huge page mappings.
1303
 */
1304
static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1305 1306
				     struct kvm_memory_slot *slot,
				     gfn_t gfn_offset, unsigned long mask)
1307
{
1308
	struct kvm_rmap_head *rmap_head;
1309

1310
	if (is_tdp_mmu_enabled(kvm))
1311 1312
		kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
				slot->base_gfn + gfn_offset, mask, true);
1313 1314 1315 1316

	if (!kvm_memslots_have_rmaps(kvm))
		return;

1317
	while (mask) {
1318 1319
		rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
					PG_LEVEL_4K, slot);
1320
		__rmap_write_protect(kvm, rmap_head, false);
M
Marcelo Tosatti 已提交
1321

1322 1323 1324
		/* clear the first set bit */
		mask &= mask - 1;
	}
1325 1326
}

1327
/**
1328 1329
 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
 * protect the page if the D-bit isn't supported.
1330 1331 1332 1333 1334 1335 1336
 * @kvm: kvm instance
 * @slot: slot to clear D-bit
 * @gfn_offset: start of the BITS_PER_LONG pages we care about
 * @mask: indicates which pages we should clear D-bit
 *
 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
 */
1337 1338 1339
static void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
					 struct kvm_memory_slot *slot,
					 gfn_t gfn_offset, unsigned long mask)
1340
{
1341
	struct kvm_rmap_head *rmap_head;
1342

1343
	if (is_tdp_mmu_enabled(kvm))
1344 1345
		kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
				slot->base_gfn + gfn_offset, mask, false);
1346 1347 1348 1349

	if (!kvm_memslots_have_rmaps(kvm))
		return;

1350
	while (mask) {
1351 1352
		rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
					PG_LEVEL_4K, slot);
1353
		__rmap_clear_dirty(kvm, rmap_head, slot);
1354 1355 1356 1357 1358 1359

		/* clear the first set bit */
		mask &= mask - 1;
	}
}

1360 1361 1362 1363 1364 1365 1366
/**
 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
 * PT level pages.
 *
 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
 * enable dirty logging for them.
 *
1367 1368
 * We need to care about huge page mappings: e.g. during dirty logging we may
 * have such mappings.
1369 1370 1371 1372 1373
 */
void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
				struct kvm_memory_slot *slot,
				gfn_t gfn_offset, unsigned long mask)
{
1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
	/*
	 * Huge pages are NOT write protected when we start dirty logging in
	 * initially-all-set mode; must write protect them here so that they
	 * are split to 4K on the first write.
	 *
	 * The gfn_offset is guaranteed to be aligned to 64, but the base_gfn
	 * of memslot has no such restriction, so the range can cross two large
	 * pages.
	 */
	if (kvm_dirty_log_manual_protect_and_init_set(kvm)) {
		gfn_t start = slot->base_gfn + gfn_offset + __ffs(mask);
		gfn_t end = slot->base_gfn + gfn_offset + __fls(mask);

		kvm_mmu_slot_gfn_write_protect(kvm, slot, start, PG_LEVEL_2M);

		/* Cross two large pages? */
		if (ALIGN(start << PAGE_SHIFT, PMD_SIZE) !=
		    ALIGN(end << PAGE_SHIFT, PMD_SIZE))
			kvm_mmu_slot_gfn_write_protect(kvm, slot, end,
						       PG_LEVEL_2M);
	}

	/* Now handle 4K PTEs.  */
1397 1398
	if (kvm_x86_ops.cpu_dirty_log_size)
		kvm_mmu_clear_dirty_pt_masked(kvm, slot, gfn_offset, mask);
1399 1400
	else
		kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1401 1402
}

1403 1404
int kvm_cpu_dirty_log_size(void)
{
1405
	return kvm_x86_ops.cpu_dirty_log_size;
1406 1407
}

1408
bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1409 1410
				    struct kvm_memory_slot *slot, u64 gfn,
				    int min_level)
1411
{
1412
	struct kvm_rmap_head *rmap_head;
1413
	int i;
1414
	bool write_protected = false;
1415

1416 1417
	if (kvm_memslots_have_rmaps(kvm)) {
		for (i = min_level; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
1418
			rmap_head = gfn_to_rmap(gfn, i, slot);
1419 1420
			write_protected |= __rmap_write_protect(kvm, rmap_head, true);
		}
1421 1422
	}

1423
	if (is_tdp_mmu_enabled(kvm))
1424
		write_protected |=
1425
			kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn, min_level);
1426

1427
	return write_protected;
1428 1429
}

1430 1431 1432 1433 1434
static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
{
	struct kvm_memory_slot *slot;

	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1435
	return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn, PG_LEVEL_4K);
1436 1437
}

1438
static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1439
			  const struct kvm_memory_slot *slot)
1440
{
1441
	return pte_list_destroy(kvm, rmap_head);
1442 1443
}

1444 1445 1446
static bool kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			    struct kvm_memory_slot *slot, gfn_t gfn, int level,
			    pte_t unused)
1447
{
1448
	return kvm_zap_rmapp(kvm, rmap_head, slot);
1449 1450
}

1451 1452 1453
static bool kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			      struct kvm_memory_slot *slot, gfn_t gfn, int level,
			      pte_t pte)
1454
{
1455 1456
	u64 *sptep;
	struct rmap_iterator iter;
1457
	bool need_flush = false;
1458
	u64 new_spte;
D
Dan Williams 已提交
1459
	kvm_pfn_t new_pfn;
1460

1461 1462
	WARN_ON(pte_huge(pte));
	new_pfn = pte_pfn(pte);
1463

1464
restart:
1465
	for_each_rmap_spte(rmap_head, &iter, sptep) {
1466
		rmap_printk("spte %p %llx gfn %llx (%d)\n",
1467
			    sptep, *sptep, gfn, level);
1468

1469
		need_flush = true;
1470

1471
		if (pte_write(pte)) {
1472
			pte_list_remove(kvm, rmap_head, sptep);
1473
			goto restart;
1474
		} else {
1475 1476
			new_spte = kvm_mmu_changed_pte_notifier_make_spte(
					*sptep, new_pfn);
1477

1478
			mmu_spte_clear_track_bits(kvm, sptep);
1479
			mmu_spte_set(sptep, new_spte);
1480 1481
		}
	}
1482

1483 1484
	if (need_flush && kvm_available_flush_tlb_with_range()) {
		kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
1485
		return false;
1486 1487
	}

1488
	return need_flush;
1489 1490
}

1491 1492
struct slot_rmap_walk_iterator {
	/* input fields. */
1493
	const struct kvm_memory_slot *slot;
1494 1495 1496 1497 1498 1499 1500
	gfn_t start_gfn;
	gfn_t end_gfn;
	int start_level;
	int end_level;

	/* output fields. */
	gfn_t gfn;
1501
	struct kvm_rmap_head *rmap;
1502 1503 1504
	int level;

	/* private field. */
1505
	struct kvm_rmap_head *end_rmap;
1506 1507 1508 1509 1510 1511 1512
};

static void
rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
{
	iterator->level = level;
	iterator->gfn = iterator->start_gfn;
1513 1514
	iterator->rmap = gfn_to_rmap(iterator->gfn, level, iterator->slot);
	iterator->end_rmap = gfn_to_rmap(iterator->end_gfn, level, iterator->slot);
1515 1516 1517 1518
}

static void
slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1519
		    const struct kvm_memory_slot *slot, int start_level,
1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
		    int end_level, gfn_t start_gfn, gfn_t end_gfn)
{
	iterator->slot = slot;
	iterator->start_level = start_level;
	iterator->end_level = end_level;
	iterator->start_gfn = start_gfn;
	iterator->end_gfn = end_gfn;

	rmap_walk_init_level(iterator, iterator->start_level);
}

static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
{
	return !!iterator->rmap;
}

static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
{
	if (++iterator->rmap <= iterator->end_rmap) {
		iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
		return;
	}

	if (++iterator->level > iterator->end_level) {
		iterator->rmap = NULL;
		return;
	}

	rmap_walk_init_level(iterator, iterator->level);
}

#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,	\
	   _start_gfn, _end_gfn, _iter_)				\
	for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,		\
				 _end_level_, _start_gfn, _end_gfn);	\
	     slot_rmap_walk_okay(_iter_);				\
	     slot_rmap_walk_next(_iter_))

1558 1559 1560
typedef bool (*rmap_handler_t)(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			       struct kvm_memory_slot *slot, gfn_t gfn,
			       int level, pte_t pte);
1561

1562 1563 1564
static __always_inline bool kvm_handle_gfn_range(struct kvm *kvm,
						 struct kvm_gfn_range *range,
						 rmap_handler_t handler)
1565
{
1566
	struct slot_rmap_walk_iterator iterator;
1567
	bool ret = false;
1568

1569 1570 1571 1572
	for_each_slot_rmap_range(range->slot, PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL,
				 range->start, range->end - 1, &iterator)
		ret |= handler(kvm, iterator.rmap, range->slot, iterator.gfn,
			       iterator.level, range->pte);
1573

1574
	return ret;
1575 1576
}

1577
bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
1578
{
1579
	bool flush = false;
1580

1581 1582
	if (kvm_memslots_have_rmaps(kvm))
		flush = kvm_handle_gfn_range(kvm, range, kvm_unmap_rmapp);
1583

1584
	if (is_tdp_mmu_enabled(kvm))
1585
		flush = kvm_tdp_mmu_unmap_gfn_range(kvm, range, flush);
1586

1587
	return flush;
1588 1589
}

1590
bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1591
{
1592
	bool flush = false;
1593

1594 1595
	if (kvm_memslots_have_rmaps(kvm))
		flush = kvm_handle_gfn_range(kvm, range, kvm_set_pte_rmapp);
1596

1597
	if (is_tdp_mmu_enabled(kvm))
1598
		flush |= kvm_tdp_mmu_set_spte_gfn(kvm, range);
1599

1600
	return flush;
1601 1602
}

1603 1604 1605
static bool kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			  struct kvm_memory_slot *slot, gfn_t gfn, int level,
			  pte_t unused)
1606
{
1607
	u64 *sptep;
1608
	struct rmap_iterator iter;
1609 1610
	int young = 0;

1611 1612
	for_each_rmap_spte(rmap_head, &iter, sptep)
		young |= mmu_spte_age(sptep);
1613

1614 1615 1616
	return young;
}

1617 1618 1619
static bool kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			       struct kvm_memory_slot *slot, gfn_t gfn,
			       int level, pte_t unused)
A
Andrea Arcangeli 已提交
1620
{
1621 1622
	u64 *sptep;
	struct rmap_iterator iter;
A
Andrea Arcangeli 已提交
1623

1624 1625
	for_each_rmap_spte(rmap_head, &iter, sptep)
		if (is_accessed_spte(*sptep))
1626 1627
			return true;
	return false;
A
Andrea Arcangeli 已提交
1628 1629
}

1630 1631
#define RMAP_RECYCLE_THRESHOLD 1000

1632 1633
static void rmap_add(struct kvm_vcpu *vcpu, struct kvm_memory_slot *slot,
		     u64 *spte, gfn_t gfn)
1634
{
1635
	struct kvm_mmu_page *sp;
1636 1637
	struct kvm_rmap_head *rmap_head;
	int rmap_count;
1638

1639
	sp = sptep_to_sp(spte);
1640
	kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1641
	rmap_head = gfn_to_rmap(gfn, sp->role.level, slot);
1642
	rmap_count = pte_list_add(vcpu, spte, rmap_head);
1643

1644 1645 1646 1647 1648
	if (rmap_count > RMAP_RECYCLE_THRESHOLD) {
		kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, __pte(0));
		kvm_flush_remote_tlbs_with_address(
				vcpu->kvm, sp->gfn, KVM_PAGES_PER_HPAGE(sp->role.level));
	}
1649 1650
}

1651
bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1652
{
1653
	bool young = false;
1654

1655 1656
	if (kvm_memslots_have_rmaps(kvm))
		young = kvm_handle_gfn_range(kvm, range, kvm_age_rmapp);
1657

1658
	if (is_tdp_mmu_enabled(kvm))
1659
		young |= kvm_tdp_mmu_age_gfn_range(kvm, range);
1660 1661

	return young;
1662 1663
}

1664
bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
A
Andrea Arcangeli 已提交
1665
{
1666
	bool young = false;
1667

1668 1669
	if (kvm_memslots_have_rmaps(kvm))
		young = kvm_handle_gfn_range(kvm, range, kvm_test_age_rmapp);
1670

1671
	if (is_tdp_mmu_enabled(kvm))
1672
		young |= kvm_tdp_mmu_test_age_gfn(kvm, range);
1673 1674

	return young;
A
Andrea Arcangeli 已提交
1675 1676
}

1677
#ifdef MMU_DEBUG
1678
static int is_empty_shadow_page(u64 *spt)
A
Avi Kivity 已提交
1679
{
1680 1681 1682
	u64 *pos;
	u64 *end;

1683
	for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1684
		if (is_shadow_present_pte(*pos)) {
1685
			printk(KERN_ERR "%s: %p %llx\n", __func__,
1686
			       pos, *pos);
A
Avi Kivity 已提交
1687
			return 0;
1688
		}
A
Avi Kivity 已提交
1689 1690
	return 1;
}
1691
#endif
A
Avi Kivity 已提交
1692

1693 1694 1695 1696 1697 1698
/*
 * This value is the sum of all of the kvm instances's
 * kvm->arch.n_used_mmu_pages values.  We need a global,
 * aggregate version in order to make the slab shrinker
 * faster
 */
1699
static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, long nr)
1700 1701 1702 1703 1704
{
	kvm->arch.n_used_mmu_pages += nr;
	percpu_counter_add(&kvm_total_used_mmu_pages, nr);
}

1705
static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1706
{
1707
	MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1708
	hlist_del(&sp->hash_link);
1709 1710
	list_del(&sp->link);
	free_page((unsigned long)sp->spt);
1711 1712
	if (!sp->role.direct)
		free_page((unsigned long)sp->gfns);
1713
	kmem_cache_free(mmu_page_header_cache, sp);
1714 1715
}

1716 1717
static unsigned kvm_page_table_hashfn(gfn_t gfn)
{
1718
	return hash_64(gfn, KVM_MMU_HASH_SHIFT);
1719 1720
}

1721
static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1722
				    struct kvm_mmu_page *sp, u64 *parent_pte)
1723 1724 1725 1726
{
	if (!parent_pte)
		return;

1727
	pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1728 1729
}

1730
static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1731 1732
				       u64 *parent_pte)
{
1733
	__pte_list_remove(parent_pte, &sp->parent_ptes);
1734 1735
}

1736 1737 1738 1739
static void drop_parent_pte(struct kvm_mmu_page *sp,
			    u64 *parent_pte)
{
	mmu_page_remove_parent_pte(sp, parent_pte);
1740
	mmu_spte_clear_no_track(parent_pte);
1741 1742
}

1743
static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
M
Marcelo Tosatti 已提交
1744
{
1745
	struct kvm_mmu_page *sp;
1746

1747 1748
	sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
	sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache);
1749
	if (!direct)
1750
		sp->gfns = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_gfn_array_cache);
1751
	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1752 1753 1754 1755 1756 1757

	/*
	 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
	 * depends on valid pages being added to the head of the list.  See
	 * comments in kvm_zap_obsolete_pages().
	 */
1758
	sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
1759 1760 1761
	list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
	kvm_mod_used_mmu_pages(vcpu->kvm, +1);
	return sp;
M
Marcelo Tosatti 已提交
1762 1763
}

1764
static void mark_unsync(u64 *spte);
1765
static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1766
{
1767 1768 1769 1770 1771 1772
	u64 *sptep;
	struct rmap_iterator iter;

	for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
		mark_unsync(sptep);
	}
1773 1774
}

1775
static void mark_unsync(u64 *spte)
1776
{
1777
	struct kvm_mmu_page *sp;
1778
	unsigned int index;
1779

1780
	sp = sptep_to_sp(spte);
1781 1782
	index = spte - sp->spt;
	if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1783
		return;
1784
	if (sp->unsync_children++)
1785
		return;
1786
	kvm_mmu_mark_parents_unsync(sp);
1787 1788
}

1789
static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1790
			       struct kvm_mmu_page *sp)
1791
{
1792
	return -1;
1793 1794
}

1795 1796 1797 1798 1799 1800 1801 1802 1803 1804
#define KVM_PAGE_ARRAY_NR 16

struct kvm_mmu_pages {
	struct mmu_page_and_offset {
		struct kvm_mmu_page *sp;
		unsigned int idx;
	} page[KVM_PAGE_ARRAY_NR];
	unsigned int nr;
};

1805 1806
static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
			 int idx)
1807
{
1808
	int i;
1809

1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820
	if (sp->unsync)
		for (i=0; i < pvec->nr; i++)
			if (pvec->page[i].sp == sp)
				return 0;

	pvec->page[pvec->nr].sp = sp;
	pvec->page[pvec->nr].idx = idx;
	pvec->nr++;
	return (pvec->nr == KVM_PAGE_ARRAY_NR);
}

1821 1822 1823 1824 1825 1826 1827
static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
{
	--sp->unsync_children;
	WARN_ON((int)sp->unsync_children < 0);
	__clear_bit(idx, sp->unsync_child_bitmap);
}

1828 1829 1830 1831
static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
	int i, ret, nr_unsync_leaf = 0;
1832

1833
	for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1834
		struct kvm_mmu_page *child;
1835 1836
		u64 ent = sp->spt[i];

1837 1838 1839 1840
		if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
			clear_unsync_child_bit(sp, i);
			continue;
		}
1841

1842
		child = to_shadow_page(ent & PT64_BASE_ADDR_MASK);
1843 1844 1845 1846 1847 1848

		if (child->unsync_children) {
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;

			ret = __mmu_unsync_walk(child, pvec);
1849 1850 1851 1852
			if (!ret) {
				clear_unsync_child_bit(sp, i);
				continue;
			} else if (ret > 0) {
1853
				nr_unsync_leaf += ret;
1854
			} else
1855 1856 1857 1858 1859 1860
				return ret;
		} else if (child->unsync) {
			nr_unsync_leaf++;
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;
		} else
1861
			clear_unsync_child_bit(sp, i);
1862 1863
	}

1864 1865 1866
	return nr_unsync_leaf;
}

1867 1868
#define INVALID_INDEX (-1)

1869 1870 1871
static int mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
P
Paolo Bonzini 已提交
1872
	pvec->nr = 0;
1873 1874 1875
	if (!sp->unsync_children)
		return 0;

1876
	mmu_pages_add(pvec, sp, INVALID_INDEX);
1877
	return __mmu_unsync_walk(sp, pvec);
1878 1879 1880 1881 1882
}

static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
{
	WARN_ON(!sp->unsync);
1883
	trace_kvm_mmu_sync_page(sp);
1884 1885 1886 1887
	sp->unsync = 0;
	--kvm->stat.mmu_unsync;
}

1888 1889
static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				     struct list_head *invalid_list);
1890 1891
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list);
1892

1893 1894
#define for_each_valid_sp(_kvm, _sp, _list)				\
	hlist_for_each_entry(_sp, _list, hash_link)			\
1895
		if (is_obsolete_sp((_kvm), (_sp))) {			\
1896
		} else
1897 1898

#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)			\
1899 1900
	for_each_valid_sp(_kvm, _sp,					\
	  &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)])	\
1901
		if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
1902

1903 1904
static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
			 struct list_head *invalid_list)
1905
{
1906 1907 1908
	int ret = vcpu->arch.mmu->sync_page(vcpu, sp);

	if (ret < 0) {
1909
		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1910
		return false;
1911 1912
	}

1913
	return !!ret;
1914 1915
}

1916 1917 1918 1919
static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
					struct list_head *invalid_list,
					bool remote_flush)
{
1920
	if (!remote_flush && list_empty(invalid_list))
1921 1922 1923 1924 1925 1926 1927 1928 1929
		return false;

	if (!list_empty(invalid_list))
		kvm_mmu_commit_zap_page(kvm, invalid_list);
	else
		kvm_flush_remote_tlbs(kvm);
	return true;
}

1930 1931 1932 1933 1934 1935 1936
#ifdef CONFIG_KVM_MMU_AUDIT
#include "mmu_audit.c"
#else
static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
static void mmu_audit_disable(void) { }
#endif

1937 1938
static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
{
1939 1940 1941 1942 1943
	if (sp->role.invalid)
		return true;

	/* TDP MMU pages due not use the MMU generation. */
	return !sp->tdp_mmu_page &&
1944
	       unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1945 1946
}

1947
struct mmu_page_path {
1948 1949
	struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
	unsigned int idx[PT64_ROOT_MAX_LEVEL];
1950 1951
};

1952
#define for_each_sp(pvec, sp, parents, i)			\
P
Paolo Bonzini 已提交
1953
		for (i = mmu_pages_first(&pvec, &parents);	\
1954 1955 1956
			i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});	\
			i = mmu_pages_next(&pvec, &parents, i))

1957 1958 1959
static int mmu_pages_next(struct kvm_mmu_pages *pvec,
			  struct mmu_page_path *parents,
			  int i)
1960 1961 1962 1963 1964
{
	int n;

	for (n = i+1; n < pvec->nr; n++) {
		struct kvm_mmu_page *sp = pvec->page[n].sp;
P
Paolo Bonzini 已提交
1965 1966
		unsigned idx = pvec->page[n].idx;
		int level = sp->role.level;
1967

P
Paolo Bonzini 已提交
1968
		parents->idx[level-1] = idx;
1969
		if (level == PG_LEVEL_4K)
P
Paolo Bonzini 已提交
1970
			break;
1971

P
Paolo Bonzini 已提交
1972
		parents->parent[level-2] = sp;
1973 1974 1975 1976 1977
	}

	return n;
}

P
Paolo Bonzini 已提交
1978 1979 1980 1981 1982 1983 1984 1985 1986
static int mmu_pages_first(struct kvm_mmu_pages *pvec,
			   struct mmu_page_path *parents)
{
	struct kvm_mmu_page *sp;
	int level;

	if (pvec->nr == 0)
		return 0;

1987 1988
	WARN_ON(pvec->page[0].idx != INVALID_INDEX);

P
Paolo Bonzini 已提交
1989 1990
	sp = pvec->page[0].sp;
	level = sp->role.level;
1991
	WARN_ON(level == PG_LEVEL_4K);
P
Paolo Bonzini 已提交
1992 1993 1994 1995 1996 1997 1998 1999 2000 2001

	parents->parent[level-2] = sp;

	/* Also set up a sentinel.  Further entries in pvec are all
	 * children of sp, so this element is never overwritten.
	 */
	parents->parent[level-1] = NULL;
	return mmu_pages_next(pvec, parents, 0);
}

2002
static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2003
{
2004 2005 2006 2007 2008 2009 2010 2011 2012
	struct kvm_mmu_page *sp;
	unsigned int level = 0;

	do {
		unsigned int idx = parents->idx[level];
		sp = parents->parent[level];
		if (!sp)
			return;

2013
		WARN_ON(idx == INVALID_INDEX);
2014
		clear_unsync_child_bit(sp, idx);
2015
		level++;
P
Paolo Bonzini 已提交
2016
	} while (!sp->unsync_children);
2017
}
2018

2019 2020
static int mmu_sync_children(struct kvm_vcpu *vcpu,
			     struct kvm_mmu_page *parent, bool can_yield)
2021 2022 2023 2024 2025
{
	int i;
	struct kvm_mmu_page *sp;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
2026
	LIST_HEAD(invalid_list);
2027
	bool flush = false;
2028 2029

	while (mmu_unsync_walk(parent, &pages)) {
2030
		bool protected = false;
2031 2032

		for_each_sp(pages, sp, parents, i)
2033
			protected |= rmap_write_protect(vcpu, sp->gfn);
2034

2035
		if (protected) {
2036
			kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, true);
2037 2038
			flush = false;
		}
2039

2040
		for_each_sp(pages, sp, parents, i) {
2041
			kvm_unlink_unsync_page(vcpu->kvm, sp);
2042
			flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2043 2044
			mmu_pages_clear_parents(&parents);
		}
2045
		if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) {
2046
			kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush);
2047 2048 2049 2050 2051
			if (!can_yield) {
				kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
				return -EINTR;
			}

2052
			cond_resched_rwlock_write(&vcpu->kvm->mmu_lock);
2053 2054
			flush = false;
		}
2055
	}
2056

2057
	kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush);
2058
	return 0;
2059 2060
}

2061 2062
static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
{
2063
	atomic_set(&sp->write_flooding_count,  0);
2064 2065 2066 2067
}

static void clear_sp_write_flooding_count(u64 *spte)
{
2068
	__clear_sp_write_flooding_count(sptep_to_sp(spte));
2069 2070
}

2071 2072 2073 2074
static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
					     gfn_t gfn,
					     gva_t gaddr,
					     unsigned level,
2075
					     int direct,
2076
					     unsigned int access)
2077
{
2078
	bool direct_mmu = vcpu->arch.mmu->direct_map;
2079
	union kvm_mmu_page_role role;
2080
	struct hlist_head *sp_list;
2081
	unsigned quadrant;
2082
	struct kvm_mmu_page *sp;
2083
	int collisions = 0;
2084
	LIST_HEAD(invalid_list);
2085

2086
	role = vcpu->arch.mmu->mmu_role.base;
2087
	role.level = level;
2088
	role.direct = direct;
2089
	if (role.direct)
2090
		role.gpte_is_8_bytes = true;
2091
	role.access = access;
2092
	if (!direct_mmu && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
2093 2094 2095 2096
		quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
		quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
		role.quadrant = quadrant;
	}
2097 2098 2099

	sp_list = &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)];
	for_each_valid_sp(vcpu->kvm, sp, sp_list) {
2100 2101 2102 2103 2104
		if (sp->gfn != gfn) {
			collisions++;
			continue;
		}

2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117
		if (sp->role.word != role.word) {
			/*
			 * If the guest is creating an upper-level page, zap
			 * unsync pages for the same gfn.  While it's possible
			 * the guest is using recursive page tables, in all
			 * likelihood the guest has stopped using the unsync
			 * page and is installing a completely unrelated page.
			 * Unsync pages must not be left as is, because the new
			 * upper-level page will be write-protected.
			 */
			if (level > PG_LEVEL_4K && sp->unsync)
				kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
							 &invalid_list);
2118
			continue;
2119
		}
2120

2121 2122 2123
		if (direct_mmu)
			goto trace_get_page;

2124
		if (sp->unsync) {
2125
			/*
2126
			 * The page is good, but is stale.  kvm_sync_page does
2127 2128 2129 2130 2131 2132 2133 2134 2135
			 * get the latest guest state, but (unlike mmu_unsync_children)
			 * it doesn't write-protect the page or mark it synchronized!
			 * This way the validity of the mapping is ensured, but the
			 * overhead of write protection is not incurred until the
			 * guest invalidates the TLB mapping.  This allows multiple
			 * SPs for a single gfn to be unsync.
			 *
			 * If the sync fails, the page is zapped.  If so, break
			 * in order to rebuild it.
2136
			 */
2137
			if (!kvm_sync_page(vcpu, sp, &invalid_list))
2138 2139 2140
				break;

			WARN_ON(!list_empty(&invalid_list));
2141
			kvm_flush_remote_tlbs(vcpu->kvm);
2142
		}
2143

2144
		__clear_sp_write_flooding_count(sp);
2145 2146

trace_get_page:
2147
		trace_kvm_mmu_get_page(sp, false);
2148
		goto out;
2149
	}
2150

A
Avi Kivity 已提交
2151
	++vcpu->kvm->stat.mmu_cache_miss;
2152 2153 2154

	sp = kvm_mmu_alloc_page(vcpu, direct);

2155 2156
	sp->gfn = gfn;
	sp->role = role;
2157
	hlist_add_head(&sp->hash_link, sp_list);
2158
	if (!direct) {
2159
		account_shadowed(vcpu->kvm, sp);
2160
		if (level == PG_LEVEL_4K && rmap_write_protect(vcpu, gfn))
2161
			kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
2162
	}
A
Avi Kivity 已提交
2163
	trace_kvm_mmu_get_page(sp, true);
2164
out:
2165 2166
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);

2167 2168
	if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
		vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2169
	return sp;
2170 2171
}

2172 2173 2174
static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
					struct kvm_vcpu *vcpu, hpa_t root,
					u64 addr)
2175 2176
{
	iterator->addr = addr;
2177
	iterator->shadow_addr = root;
2178
	iterator->level = vcpu->arch.mmu->shadow_root_level;
2179

2180
	if (iterator->level >= PT64_ROOT_4LEVEL &&
2181 2182
	    vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
	    !vcpu->arch.mmu->direct_map)
2183
		iterator->level = PT32E_ROOT_LEVEL;
2184

2185
	if (iterator->level == PT32E_ROOT_LEVEL) {
2186 2187 2188 2189
		/*
		 * prev_root is currently only used for 64-bit hosts. So only
		 * the active root_hpa is valid here.
		 */
2190
		BUG_ON(root != vcpu->arch.mmu->root_hpa);
2191

2192
		iterator->shadow_addr
2193
			= vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2194 2195 2196 2197 2198 2199 2200
		iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
		--iterator->level;
		if (!iterator->shadow_addr)
			iterator->level = 0;
	}
}

2201 2202 2203
static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
			     struct kvm_vcpu *vcpu, u64 addr)
{
2204
	shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
2205 2206 2207
				    addr);
}

2208 2209
static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
{
2210
	if (iterator->level < PG_LEVEL_4K)
2211
		return false;
2212

2213 2214 2215 2216 2217
	iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
	iterator->sptep	= ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
	return true;
}

2218 2219
static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
			       u64 spte)
2220
{
2221
	if (!is_shadow_present_pte(spte) || is_last_spte(spte, iterator->level)) {
2222 2223 2224 2225
		iterator->level = 0;
		return;
	}

2226
	iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2227 2228 2229
	--iterator->level;
}

2230 2231
static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
{
2232
	__shadow_walk_next(iterator, *iterator->sptep);
2233 2234
}

2235 2236 2237 2238 2239 2240 2241 2242 2243
static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
			     struct kvm_mmu_page *sp)
{
	u64 spte;

	BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);

	spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp));

2244
	mmu_spte_set(sptep, spte);
2245 2246 2247 2248 2249

	mmu_page_add_parent_pte(vcpu, sp, sptep);

	if (sp->unsync_children || sp->unsync)
		mark_unsync(sptep);
2250 2251
}

2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264
static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
				   unsigned direct_access)
{
	if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
		struct kvm_mmu_page *child;

		/*
		 * For the direct sp, if the guest pte's dirty bit
		 * changed form clean to dirty, it will corrupt the
		 * sp's access: allow writable in the read-only sp,
		 * so we should update the spte at this point to get
		 * a new sp with the correct access.
		 */
2265
		child = to_shadow_page(*sptep & PT64_BASE_ADDR_MASK);
2266 2267 2268
		if (child->role.access == direct_access)
			return;

2269
		drop_parent_pte(child, sptep);
2270
		kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
2271 2272 2273
	}
}

2274 2275 2276
/* Returns the number of zapped non-leaf child shadow pages. */
static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
			    u64 *spte, struct list_head *invalid_list)
2277 2278 2279 2280 2281 2282
{
	u64 pte;
	struct kvm_mmu_page *child;

	pte = *spte;
	if (is_shadow_present_pte(pte)) {
X
Xiao Guangrong 已提交
2283
		if (is_last_spte(pte, sp->role.level)) {
2284
			drop_spte(kvm, spte);
X
Xiao Guangrong 已提交
2285
		} else {
2286
			child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2287
			drop_parent_pte(child, spte);
2288 2289 2290 2291 2292 2293 2294 2295 2296 2297

			/*
			 * Recursively zap nested TDP SPs, parentless SPs are
			 * unlikely to be used again in the near future.  This
			 * avoids retaining a large number of stale nested SPs.
			 */
			if (tdp_enabled && invalid_list &&
			    child->role.guest_mode && !child->parent_ptes.val)
				return kvm_mmu_prepare_zap_page(kvm, child,
								invalid_list);
2298
		}
2299
	} else if (is_mmio_spte(pte)) {
2300
		mmu_spte_clear_no_track(spte);
2301
	}
2302
	return 0;
2303 2304
}

2305 2306 2307
static int kvm_mmu_page_unlink_children(struct kvm *kvm,
					struct kvm_mmu_page *sp,
					struct list_head *invalid_list)
2308
{
2309
	int zapped = 0;
2310 2311
	unsigned i;

2312
	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2313 2314 2315
		zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list);

	return zapped;
2316 2317
}

2318
static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2319
{
2320 2321
	u64 *sptep;
	struct rmap_iterator iter;
2322

2323
	while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2324
		drop_parent_pte(sp, sptep);
2325 2326
}

2327
static int mmu_zap_unsync_children(struct kvm *kvm,
2328 2329
				   struct kvm_mmu_page *parent,
				   struct list_head *invalid_list)
2330
{
2331 2332 2333
	int i, zapped = 0;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
2334

2335
	if (parent->role.level == PG_LEVEL_4K)
2336
		return 0;
2337 2338 2339 2340 2341

	while (mmu_unsync_walk(parent, &pages)) {
		struct kvm_mmu_page *sp;

		for_each_sp(pages, sp, parents, i) {
2342
			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2343
			mmu_pages_clear_parents(&parents);
2344
			zapped++;
2345 2346 2347 2348
		}
	}

	return zapped;
2349 2350
}

2351 2352 2353 2354
static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
				       struct kvm_mmu_page *sp,
				       struct list_head *invalid_list,
				       int *nr_zapped)
2355
{
2356
	bool list_unstable;
A
Avi Kivity 已提交
2357

2358
	trace_kvm_mmu_prepare_zap_page(sp);
2359
	++kvm->stat.mmu_shadow_zapped;
2360
	*nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2361
	*nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list);
2362
	kvm_mmu_unlink_parents(kvm, sp);
2363

2364 2365 2366
	/* Zapping children means active_mmu_pages has become unstable. */
	list_unstable = *nr_zapped;

2367
	if (!sp->role.invalid && !sp->role.direct)
2368
		unaccount_shadowed(kvm, sp);
2369

2370 2371
	if (sp->unsync)
		kvm_unlink_unsync_page(kvm, sp);
2372
	if (!sp->root_count) {
2373
		/* Count self */
2374
		(*nr_zapped)++;
2375 2376 2377 2378 2379 2380 2381 2382 2383 2384

		/*
		 * Already invalid pages (previously active roots) are not on
		 * the active page list.  See list_del() in the "else" case of
		 * !sp->root_count.
		 */
		if (sp->role.invalid)
			list_add(&sp->link, invalid_list);
		else
			list_move(&sp->link, invalid_list);
2385
		kvm_mod_used_mmu_pages(kvm, -1);
2386
	} else {
2387 2388 2389 2390 2391
		/*
		 * Remove the active root from the active page list, the root
		 * will be explicitly freed when the root_count hits zero.
		 */
		list_del(&sp->link);
2392

2393 2394 2395 2396 2397 2398
		/*
		 * Obsolete pages cannot be used on any vCPUs, see the comment
		 * in kvm_mmu_zap_all_fast().  Note, is_obsolete_sp() also
		 * treats invalid shadow pages as being obsolete.
		 */
		if (!is_obsolete_sp(kvm, sp))
2399
			kvm_reload_remote_mmus(kvm);
2400
	}
2401

P
Paolo Bonzini 已提交
2402 2403 2404
	if (sp->lpage_disallowed)
		unaccount_huge_nx_page(kvm, sp);

2405
	sp->role.invalid = 1;
2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
	return list_unstable;
}

static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				     struct list_head *invalid_list)
{
	int nr_zapped;

	__kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
	return nr_zapped;
2416 2417
}

2418 2419 2420
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list)
{
2421
	struct kvm_mmu_page *sp, *nsp;
2422 2423 2424 2425

	if (list_empty(invalid_list))
		return;

2426
	/*
2427 2428 2429 2430 2431 2432 2433
	 * We need to make sure everyone sees our modifications to
	 * the page tables and see changes to vcpu->mode here. The barrier
	 * in the kvm_flush_remote_tlbs() achieves this. This pairs
	 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
	 *
	 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
	 * guest mode and/or lockless shadow page table walks.
2434 2435
	 */
	kvm_flush_remote_tlbs(kvm);
2436

2437
	list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2438
		WARN_ON(!sp->role.invalid || sp->root_count);
2439
		kvm_mmu_free_page(sp);
2440
	}
2441 2442
}

2443 2444
static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm,
						  unsigned long nr_to_zap)
2445
{
2446 2447
	unsigned long total_zapped = 0;
	struct kvm_mmu_page *sp, *tmp;
2448
	LIST_HEAD(invalid_list);
2449 2450
	bool unstable;
	int nr_zapped;
2451 2452

	if (list_empty(&kvm->arch.active_mmu_pages))
2453 2454
		return 0;

2455
restart:
2456
	list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) {
2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467
		/*
		 * Don't zap active root pages, the page itself can't be freed
		 * and zapping it will just force vCPUs to realloc and reload.
		 */
		if (sp->root_count)
			continue;

		unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list,
						      &nr_zapped);
		total_zapped += nr_zapped;
		if (total_zapped >= nr_to_zap)
2468 2469
			break;

2470 2471
		if (unstable)
			goto restart;
2472
	}
2473

2474 2475 2476 2477 2478 2479
	kvm_mmu_commit_zap_page(kvm, &invalid_list);

	kvm->stat.mmu_recycled += total_zapped;
	return total_zapped;
}

2480 2481 2482 2483 2484 2485 2486
static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm)
{
	if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
		return kvm->arch.n_max_mmu_pages -
			kvm->arch.n_used_mmu_pages;

	return 0;
2487 2488
}

2489 2490
static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
{
2491
	unsigned long avail = kvm_mmu_available_pages(vcpu->kvm);
2492

2493
	if (likely(avail >= KVM_MIN_FREE_MMU_PAGES))
2494 2495
		return 0;

2496
	kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail);
2497

2498 2499 2500 2501 2502
	/*
	 * Note, this check is intentionally soft, it only guarantees that one
	 * page is available, while the caller may end up allocating as many as
	 * four pages, e.g. for PAE roots or for 5-level paging.  Temporarily
	 * exceeding the (arbitrary by default) limit will not harm the host,
I
Ingo Molnar 已提交
2503
	 * being too aggressive may unnecessarily kill the guest, and getting an
2504 2505 2506
	 * exact count is far more trouble than it's worth, especially in the
	 * page fault paths.
	 */
2507 2508 2509 2510 2511
	if (!kvm_mmu_available_pages(vcpu->kvm))
		return -ENOSPC;
	return 0;
}

2512 2513
/*
 * Changing the number of mmu pages allocated to the vm
2514
 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2515
 */
2516
void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2517
{
2518
	write_lock(&kvm->mmu_lock);
2519

2520
	if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2521 2522
		kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages -
						  goal_nr_mmu_pages);
2523

2524
		goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2525 2526
	}

2527
	kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2528

2529
	write_unlock(&kvm->mmu_lock);
2530 2531
}

2532
int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2533
{
2534
	struct kvm_mmu_page *sp;
2535
	LIST_HEAD(invalid_list);
2536 2537
	int r;

2538
	pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2539
	r = 0;
2540
	write_lock(&kvm->mmu_lock);
2541
	for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2542
		pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2543 2544
			 sp->role.word);
		r = 1;
2545
		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2546
	}
2547
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2548
	write_unlock(&kvm->mmu_lock);
2549

2550
	return r;
2551
}
2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566

static int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
{
	gpa_t gpa;
	int r;

	if (vcpu->arch.mmu->direct_map)
		return 0;

	gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);

	r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);

	return r;
}
2567

2568
static void kvm_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
2569 2570
{
	trace_kvm_mmu_unsync_page(sp);
2571
	++kvm->stat.mmu_unsync;
2572 2573 2574 2575 2576
	sp->unsync = 1;

	kvm_mmu_mark_parents_unsync(sp);
}

2577 2578 2579 2580 2581 2582
/*
 * Attempt to unsync any shadow pages that can be reached by the specified gfn,
 * KVM is creating a writable mapping for said gfn.  Returns 0 if all pages
 * were marked unsync (or if there is no shadow page), -EPERM if the SPTE must
 * be write-protected.
 */
2583
int mmu_try_to_unsync_pages(struct kvm *kvm, const struct kvm_memory_slot *slot,
2584
			    gfn_t gfn, bool can_unsync, bool prefetch)
2585
{
2586
	struct kvm_mmu_page *sp;
2587
	bool locked = false;
2588

2589 2590 2591 2592 2593
	/*
	 * Force write-protection if the page is being tracked.  Note, the page
	 * track machinery is used to write-protect upper-level shadow pages,
	 * i.e. this guards the role.level == 4K assertion below!
	 */
2594
	if (kvm_slot_page_track_is_active(kvm, slot, gfn, KVM_PAGE_TRACK_WRITE))
2595
		return -EPERM;
2596

2597 2598 2599 2600 2601 2602
	/*
	 * The page is not write-tracked, mark existing shadow pages unsync
	 * unless KVM is synchronizing an unsync SP (can_unsync = false).  In
	 * that case, KVM must complete emulation of the guest TLB flush before
	 * allowing shadow pages to become unsync (writable by the guest).
	 */
2603
	for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2604
		if (!can_unsync)
2605
			return -EPERM;
2606

2607 2608
		if (sp->unsync)
			continue;
2609

2610
		if (prefetch)
2611 2612
			return -EEXIST;

2613 2614 2615 2616 2617 2618 2619 2620 2621
		/*
		 * TDP MMU page faults require an additional spinlock as they
		 * run with mmu_lock held for read, not write, and the unsync
		 * logic is not thread safe.  Take the spinklock regardless of
		 * the MMU type to avoid extra conditionals/parameters, there's
		 * no meaningful penalty if mmu_lock is held for write.
		 */
		if (!locked) {
			locked = true;
2622
			spin_lock(&kvm->arch.mmu_unsync_pages_lock);
2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635

			/*
			 * Recheck after taking the spinlock, a different vCPU
			 * may have since marked the page unsync.  A false
			 * positive on the unprotected check above is not
			 * possible as clearing sp->unsync _must_ hold mmu_lock
			 * for write, i.e. unsync cannot transition from 0->1
			 * while this CPU holds mmu_lock for read (or write).
			 */
			if (READ_ONCE(sp->unsync))
				continue;
		}

2636
		WARN_ON(sp->role.level != PG_LEVEL_4K);
2637
		kvm_unsync_page(kvm, sp);
2638
	}
2639
	if (locked)
2640
		spin_unlock(&kvm->arch.mmu_unsync_pages_lock);
2641

2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663
	/*
	 * We need to ensure that the marking of unsync pages is visible
	 * before the SPTE is updated to allow writes because
	 * kvm_mmu_sync_roots() checks the unsync flags without holding
	 * the MMU lock and so can race with this. If the SPTE was updated
	 * before the page had been marked as unsync-ed, something like the
	 * following could happen:
	 *
	 * CPU 1                    CPU 2
	 * ---------------------------------------------------------------------
	 * 1.2 Host updates SPTE
	 *     to be writable
	 *                      2.1 Guest writes a GPTE for GVA X.
	 *                          (GPTE being in the guest page table shadowed
	 *                           by the SP from CPU 1.)
	 *                          This reads SPTE during the page table walk.
	 *                          Since SPTE.W is read as 1, there is no
	 *                          fault.
	 *
	 *                      2.2 Guest issues TLB flush.
	 *                          That causes a VM Exit.
	 *
2664 2665
	 *                      2.3 Walking of unsync pages sees sp->unsync is
	 *                          false and skips the page.
2666 2667 2668 2669 2670 2671 2672 2673 2674 2675
	 *
	 *                      2.4 Guest accesses GVA X.
	 *                          Since the mapping in the SP was not updated,
	 *                          so the old mapping for GVA X incorrectly
	 *                          gets used.
	 * 1.1 Host marks SP
	 *     as unsync
	 *     (sp->unsync = true)
	 *
	 * The write barrier below ensures that 1.1 happens before 1.2 and thus
2676 2677
	 * the situation in 2.4 does not arise.  It pairs with the read barrier
	 * in is_unsync_root(), placed between 2.1's load of SPTE.W and 2.3.
2678 2679 2680
	 */
	smp_wmb();

2681
	return 0;
2682 2683
}

2684 2685
static int mmu_set_spte(struct kvm_vcpu *vcpu, struct kvm_memory_slot *slot,
			u64 *sptep, unsigned int pte_access, gfn_t gfn,
2686
			kvm_pfn_t pfn, struct kvm_page_fault *fault)
M
Marcelo Tosatti 已提交
2687
{
2688
	struct kvm_mmu_page *sp = sptep_to_sp(sptep);
2689
	int level = sp->role.level;
M
Marcelo Tosatti 已提交
2690
	int was_rmapped = 0;
2691
	int ret = RET_PF_FIXED;
2692
	bool flush = false;
2693
	bool wrprot;
2694
	u64 spte;
M
Marcelo Tosatti 已提交
2695

2696 2697
	/* Prefetching always gets a writable pfn.  */
	bool host_writable = !fault || fault->map_writable;
2698
	bool prefetch = !fault || fault->prefetch;
2699
	bool write_fault = fault && fault->write;
M
Marcelo Tosatti 已提交
2700

2701 2702
	pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
		 *sptep, write_fault, gfn);
M
Marcelo Tosatti 已提交
2703

2704 2705 2706 2707 2708
	if (unlikely(is_noslot_pfn(pfn))) {
		mark_mmio_spte(vcpu, sptep, gfn, pte_access);
		return RET_PF_EMULATE;
	}

2709
	if (is_shadow_present_pte(*sptep)) {
M
Marcelo Tosatti 已提交
2710 2711 2712 2713
		/*
		 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
		 * the parent of the now unreachable PTE.
		 */
2714
		if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) {
M
Marcelo Tosatti 已提交
2715
			struct kvm_mmu_page *child;
A
Avi Kivity 已提交
2716
			u64 pte = *sptep;
M
Marcelo Tosatti 已提交
2717

2718
			child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2719
			drop_parent_pte(child, sptep);
2720
			flush = true;
A
Avi Kivity 已提交
2721
		} else if (pfn != spte_to_pfn(*sptep)) {
2722
			pgprintk("hfn old %llx new %llx\n",
A
Avi Kivity 已提交
2723
				 spte_to_pfn(*sptep), pfn);
2724
			drop_spte(vcpu->kvm, sptep);
2725
			flush = true;
2726 2727
		} else
			was_rmapped = 1;
M
Marcelo Tosatti 已提交
2728
	}
2729

2730
	wrprot = make_spte(vcpu, sp, slot, pte_access, gfn, pfn, *sptep, prefetch,
2731
			   true, host_writable, &spte);
2732 2733 2734 2735 2736 2737 2738 2739

	if (*sptep == spte) {
		ret = RET_PF_SPURIOUS;
	} else {
		trace_kvm_mmu_set_spte(level, gfn, sptep);
		flush |= mmu_spte_update(sptep, spte);
	}

2740
	if (wrprot) {
M
Marcelo Tosatti 已提交
2741
		if (write_fault)
2742
			ret = RET_PF_EMULATE;
2743
	}
2744

2745
	if (flush)
2746 2747
		kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
				KVM_PAGES_PER_HPAGE(level));
M
Marcelo Tosatti 已提交
2748

A
Avi Kivity 已提交
2749
	pgprintk("%s: setting spte %llx\n", __func__, *sptep);
M
Marcelo Tosatti 已提交
2750

2751
	if (!was_rmapped) {
2752
		WARN_ON_ONCE(ret == RET_PF_SPURIOUS);
2753
		kvm_update_page_stats(vcpu->kvm, level, 1);
2754
		rmap_add(vcpu, slot, sptep, gfn);
2755
	}
2756

2757
	return ret;
2758 2759
}

2760 2761 2762 2763 2764
static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
				    struct kvm_mmu_page *sp,
				    u64 *start, u64 *end)
{
	struct page *pages[PTE_PREFETCH_NUM];
2765
	struct kvm_memory_slot *slot;
2766
	unsigned int access = sp->role.access;
2767 2768 2769 2770
	int i, ret;
	gfn_t gfn;

	gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2771 2772
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
	if (!slot)
2773 2774
		return -1;

2775
	ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2776 2777 2778
	if (ret <= 0)
		return -1;

2779
	for (i = 0; i < ret; i++, gfn++, start++) {
2780
		mmu_set_spte(vcpu, slot, start, access, gfn,
2781
			     page_to_pfn(pages[i]), NULL);
2782 2783
		put_page(pages[i]);
	}
2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799

	return 0;
}

static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
				  struct kvm_mmu_page *sp, u64 *sptep)
{
	u64 *spte, *start = NULL;
	int i;

	WARN_ON(!sp->role.direct);

	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
	spte = sp->spt + i;

	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2800
		if (is_shadow_present_pte(*spte) || spte == sptep) {
2801 2802 2803
			if (!start)
				continue;
			if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2804
				return;
2805 2806 2807 2808
			start = NULL;
		} else if (!start)
			start = spte;
	}
2809 2810
	if (start)
		direct_pte_prefetch_many(vcpu, sp, start, spte);
2811 2812 2813 2814 2815 2816
}

static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
{
	struct kvm_mmu_page *sp;

2817
	sp = sptep_to_sp(sptep);
2818

2819
	/*
2820 2821 2822
	 * Without accessed bits, there's no way to distinguish between
	 * actually accessed translations and prefetched, so disable pte
	 * prefetch if accessed bits aren't available.
2823
	 */
2824
	if (sp_ad_disabled(sp))
2825 2826
		return;

2827
	if (sp->role.level > PG_LEVEL_4K)
2828 2829
		return;

2830 2831 2832 2833 2834 2835 2836
	/*
	 * If addresses are being invalidated, skip prefetching to avoid
	 * accidentally prefetching those addresses.
	 */
	if (unlikely(vcpu->kvm->mmu_notifier_count))
		return;

2837 2838 2839
	__direct_pte_prefetch(vcpu, sp, sptep);
}

2840
static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn,
2841
				  const struct kvm_memory_slot *slot)
2842 2843 2844 2845 2846
{
	unsigned long hva;
	pte_t *pte;
	int level;

2847
	if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn))
2848
		return PG_LEVEL_4K;
2849

2850 2851 2852 2853 2854 2855 2856 2857
	/*
	 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
	 * is not solely for performance, it's also necessary to avoid the
	 * "writable" check in __gfn_to_hva_many(), which will always fail on
	 * read-only memslots due to gfn_to_hva() assuming writes.  Earlier
	 * page fault steps have already verified the guest isn't writing a
	 * read-only memslot.
	 */
2858 2859
	hva = __gfn_to_hva_memslot(slot, gfn);

2860
	pte = lookup_address_in_mm(kvm->mm, hva, &level);
2861
	if (unlikely(!pte))
2862
		return PG_LEVEL_4K;
2863 2864 2865 2866

	return level;
}

2867 2868 2869
int kvm_mmu_max_mapping_level(struct kvm *kvm,
			      const struct kvm_memory_slot *slot, gfn_t gfn,
			      kvm_pfn_t pfn, int max_level)
2870 2871
{
	struct kvm_lpage_info *linfo;
2872
	int host_level;
2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883

	max_level = min(max_level, max_huge_page_level);
	for ( ; max_level > PG_LEVEL_4K; max_level--) {
		linfo = lpage_info_slot(gfn, slot, max_level);
		if (!linfo->disallow_lpage)
			break;
	}

	if (max_level == PG_LEVEL_4K)
		return PG_LEVEL_4K;

2884 2885
	host_level = host_pfn_mapping_level(kvm, gfn, pfn, slot);
	return min(host_level, max_level);
2886 2887
}

2888
void kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
2889
{
2890
	struct kvm_memory_slot *slot = fault->slot;
2891 2892
	kvm_pfn_t mask;

2893
	fault->huge_page_disallowed = fault->exec && fault->nx_huge_page_workaround_enabled;
2894

2895 2896
	if (unlikely(fault->max_level == PG_LEVEL_4K))
		return;
2897

2898 2899
	if (is_error_noslot_pfn(fault->pfn) || kvm_is_reserved_pfn(fault->pfn))
		return;
2900

2901
	if (kvm_slot_dirty_track_enabled(slot))
2902
		return;
2903

2904 2905 2906 2907
	/*
	 * Enforce the iTLB multihit workaround after capturing the requested
	 * level, which will be used to do precise, accurate accounting.
	 */
2908 2909 2910 2911 2912
	fault->req_level = kvm_mmu_max_mapping_level(vcpu->kvm, slot,
						     fault->gfn, fault->pfn,
						     fault->max_level);
	if (fault->req_level == PG_LEVEL_4K || fault->huge_page_disallowed)
		return;
2913 2914

	/*
2915 2916
	 * mmu_notifier_retry() was successful and mmu_lock is held, so
	 * the pmd can't be split from under us.
2917
	 */
2918 2919 2920 2921
	fault->goal_level = fault->req_level;
	mask = KVM_PAGES_PER_HPAGE(fault->goal_level) - 1;
	VM_BUG_ON((fault->gfn & mask) != (fault->pfn & mask));
	fault->pfn &= ~mask;
2922 2923
}

2924
void disallowed_hugepage_adjust(struct kvm_page_fault *fault, u64 spte, int cur_level)
P
Paolo Bonzini 已提交
2925
{
2926 2927
	if (cur_level > PG_LEVEL_4K &&
	    cur_level == fault->goal_level &&
P
Paolo Bonzini 已提交
2928 2929 2930 2931 2932 2933 2934 2935 2936
	    is_shadow_present_pte(spte) &&
	    !is_large_pte(spte)) {
		/*
		 * A small SPTE exists for this pfn, but FNAME(fetch)
		 * and __direct_map would like to create a large PTE
		 * instead: just force them to go down another level,
		 * patching back for them into pfn the next 9 bits of
		 * the address.
		 */
2937 2938 2939 2940
		u64 page_mask = KVM_PAGES_PER_HPAGE(cur_level) -
				KVM_PAGES_PER_HPAGE(cur_level - 1);
		fault->pfn |= fault->gfn & page_mask;
		fault->goal_level--;
P
Paolo Bonzini 已提交
2941 2942 2943
	}
}

2944
static int __direct_map(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
2945
{
2946
	struct kvm_shadow_walk_iterator it;
2947
	struct kvm_mmu_page *sp;
2948
	int ret;
2949
	gfn_t base_gfn = fault->gfn;
A
Avi Kivity 已提交
2950

2951
	kvm_mmu_hugepage_adjust(vcpu, fault);
2952

2953
	trace_kvm_mmu_spte_requested(fault);
2954
	for_each_shadow_entry(vcpu, fault->addr, it) {
P
Paolo Bonzini 已提交
2955 2956 2957 2958
		/*
		 * We cannot overwrite existing page tables with an NX
		 * large page, as the leaf could be executable.
		 */
2959
		if (fault->nx_huge_page_workaround_enabled)
2960
			disallowed_hugepage_adjust(fault, *it.sptep, it.level);
P
Paolo Bonzini 已提交
2961

2962
		base_gfn = fault->gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
2963
		if (it.level == fault->goal_level)
2964
			break;
A
Avi Kivity 已提交
2965

2966
		drop_large_spte(vcpu, it.sptep);
2967 2968 2969 2970 2971 2972 2973
		if (is_shadow_present_pte(*it.sptep))
			continue;

		sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
				      it.level - 1, true, ACC_ALL);

		link_shadow_page(vcpu, it.sptep, sp);
2974 2975
		if (fault->is_tdp && fault->huge_page_disallowed &&
		    fault->req_level >= it.level)
2976
			account_huge_nx_page(vcpu->kvm, sp);
2977
	}
2978

2979 2980 2981
	if (WARN_ON_ONCE(it.level != fault->goal_level))
		return -EFAULT;

2982
	ret = mmu_set_spte(vcpu, fault->slot, it.sptep, ACC_ALL,
2983
			   base_gfn, fault->pfn, fault);
2984 2985 2986
	if (ret == RET_PF_SPURIOUS)
		return ret;

2987 2988 2989
	direct_pte_prefetch(vcpu, it.sptep);
	++vcpu->stat.pf_fixed;
	return ret;
A
Avi Kivity 已提交
2990 2991
}

H
Huang Ying 已提交
2992
static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2993
{
2994
	send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
2995 2996
}

D
Dan Williams 已提交
2997
static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
2998
{
X
Xiao Guangrong 已提交
2999 3000 3001 3002 3003 3004
	/*
	 * Do not cache the mmio info caused by writing the readonly gfn
	 * into the spte otherwise read access on readonly gfn also can
	 * caused mmio page fault and treat it as mmio access.
	 */
	if (pfn == KVM_PFN_ERR_RO_FAULT)
3005
		return RET_PF_EMULATE;
X
Xiao Guangrong 已提交
3006

3007
	if (pfn == KVM_PFN_ERR_HWPOISON) {
3008
		kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
3009
		return RET_PF_RETRY;
3010
	}
3011

3012
	return -EFAULT;
3013 3014
}

3015 3016
static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault,
				unsigned int access, int *ret_val)
3017 3018
{
	/* The pfn is invalid, report the error! */
3019 3020
	if (unlikely(is_error_pfn(fault->pfn))) {
		*ret_val = kvm_handle_bad_page(vcpu, fault->gfn, fault->pfn);
3021
		return true;
3022 3023
	}

3024
	if (unlikely(!fault->slot)) {
3025 3026 3027
		gva_t gva = fault->is_tdp ? 0 : fault->addr;

		vcpu_cache_mmio_info(vcpu, gva, fault->gfn,
3028
				     access & shadow_mmio_access_mask);
3029 3030 3031 3032 3033 3034 3035 3036 3037 3038
		/*
		 * If MMIO caching is disabled, emulate immediately without
		 * touching the shadow page tables as attempting to install an
		 * MMIO SPTE will just be an expensive nop.
		 */
		if (unlikely(!shadow_mmio_value)) {
			*ret_val = RET_PF_EMULATE;
			return true;
		}
	}
3039

3040
	return false;
3041 3042
}

3043
static bool page_fault_can_be_fast(struct kvm_page_fault *fault)
3044
{
3045 3046 3047 3048
	/*
	 * Do not fix the mmio spte with invalid generation number which
	 * need to be updated by slow page fault path.
	 */
3049
	if (fault->rsvd)
3050 3051
		return false;

3052
	/* See if the page fault is due to an NX violation */
3053
	if (unlikely(fault->exec && fault->present))
3054 3055
		return false;

3056
	/*
3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067
	 * #PF can be fast if:
	 * 1. The shadow page table entry is not present, which could mean that
	 *    the fault is potentially caused by access tracking (if enabled).
	 * 2. The shadow page table entry is present and the fault
	 *    is caused by write-protect, that means we just need change the W
	 *    bit of the spte which can be done out of mmu-lock.
	 *
	 * However, if access tracking is disabled we know that a non-present
	 * page must be a genuine page fault where we have to create a new SPTE.
	 * So, if access tracking is disabled, we return true only for write
	 * accesses to a present page.
3068 3069
	 */

3070
	return shadow_acc_track_mask != 0 || (fault->write && fault->present);
3071 3072
}

3073 3074 3075 3076
/*
 * Returns true if the SPTE was fixed successfully. Otherwise,
 * someone else modified the SPTE from its original value.
 */
3077
static bool
3078
fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault,
3079
			u64 *sptep, u64 old_spte, u64 new_spte)
3080
{
3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092
	/*
	 * Theoretically we could also set dirty bit (and flush TLB) here in
	 * order to eliminate unnecessary PML logging. See comments in
	 * set_spte. But fast_page_fault is very unlikely to happen with PML
	 * enabled, so we do not do this. This might result in the same GPA
	 * to be logged in PML buffer again when the write really happens, and
	 * eventually to be called by mark_page_dirty twice. But it's also no
	 * harm. This also avoids the TLB flush needed after setting dirty bit
	 * so non-PML cases won't be impacted.
	 *
	 * Compare with set_spte where instead shadow_dirty_mask is set.
	 */
3093
	if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3094 3095
		return false;

3096 3097
	if (is_writable_pte(new_spte) && !is_writable_pte(old_spte))
		mark_page_dirty_in_slot(vcpu->kvm, fault->slot, fault->gfn);
3098 3099 3100 3101

	return true;
}

3102
static bool is_access_allowed(struct kvm_page_fault *fault, u64 spte)
3103
{
3104
	if (fault->exec)
3105 3106
		return is_executable_pte(spte);

3107
	if (fault->write)
3108 3109 3110 3111 3112 3113
		return is_writable_pte(spte);

	/* Fault was on Read access */
	return spte & PT_PRESENT_MASK;
}

3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136
/*
 * Returns the last level spte pointer of the shadow page walk for the given
 * gpa, and sets *spte to the spte value. This spte may be non-preset. If no
 * walk could be performed, returns NULL and *spte does not contain valid data.
 *
 * Contract:
 *  - Must be called between walk_shadow_page_lockless_{begin,end}.
 *  - The returned sptep must not be used after walk_shadow_page_lockless_end.
 */
static u64 *fast_pf_get_last_sptep(struct kvm_vcpu *vcpu, gpa_t gpa, u64 *spte)
{
	struct kvm_shadow_walk_iterator iterator;
	u64 old_spte;
	u64 *sptep = NULL;

	for_each_shadow_entry_lockless(vcpu, gpa, iterator, old_spte) {
		sptep = iterator.sptep;
		*spte = old_spte;
	}

	return sptep;
}

3137
/*
3138
 * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS.
3139
 */
3140
static int fast_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
3141
{
3142
	struct kvm_mmu_page *sp;
3143
	int ret = RET_PF_INVALID;
3144
	u64 spte = 0ull;
3145
	u64 *sptep = NULL;
3146
	uint retry_count = 0;
3147

3148
	if (!page_fault_can_be_fast(fault))
3149
		return ret;
3150 3151 3152

	walk_shadow_page_lockless_begin(vcpu);

3153
	do {
3154
		u64 new_spte;
3155

3156
		if (is_tdp_mmu(vcpu->arch.mmu))
3157
			sptep = kvm_tdp_mmu_fast_pf_get_last_sptep(vcpu, fault->addr, &spte);
3158
		else
3159
			sptep = fast_pf_get_last_sptep(vcpu, fault->addr, &spte);
3160

3161 3162 3163
		if (!is_shadow_present_pte(spte))
			break;

3164
		sp = sptep_to_sp(sptep);
3165 3166
		if (!is_last_spte(spte, sp->role.level))
			break;
3167

3168
		/*
3169 3170 3171 3172 3173
		 * Check whether the memory access that caused the fault would
		 * still cause it if it were to be performed right now. If not,
		 * then this is a spurious fault caused by TLB lazily flushed,
		 * or some other CPU has already fixed the PTE after the
		 * current CPU took the fault.
3174 3175 3176 3177
		 *
		 * Need not check the access of upper level table entries since
		 * they are always ACC_ALL.
		 */
3178
		if (is_access_allowed(fault, spte)) {
3179
			ret = RET_PF_SPURIOUS;
3180 3181
			break;
		}
3182

3183 3184 3185 3186 3187 3188 3189 3190 3191 3192
		new_spte = spte;

		if (is_access_track_spte(spte))
			new_spte = restore_acc_track_spte(new_spte);

		/*
		 * Currently, to simplify the code, write-protection can
		 * be removed in the fast path only if the SPTE was
		 * write-protected for dirty-logging or access tracking.
		 */
3193
		if (fault->write &&
3194
		    spte_can_locklessly_be_made_writable(spte)) {
3195
			new_spte |= PT_WRITABLE_MASK;
3196 3197

			/*
3198 3199 3200
			 * Do not fix write-permission on the large spte when
			 * dirty logging is enabled. Since we only dirty the
			 * first page into the dirty-bitmap in
3201 3202 3203 3204 3205
			 * fast_pf_fix_direct_spte(), other pages are missed
			 * if its slot has dirty logging enabled.
			 *
			 * Instead, we let the slow page fault path create a
			 * normal spte to fix the access.
3206
			 */
3207 3208
			if (sp->role.level > PG_LEVEL_4K &&
			    kvm_slot_dirty_track_enabled(fault->slot))
3209
				break;
3210
		}
3211

3212
		/* Verify that the fault can be handled in the fast path */
3213
		if (new_spte == spte ||
3214
		    !is_access_allowed(fault, new_spte))
3215 3216 3217 3218 3219
			break;

		/*
		 * Currently, fast page fault only works for direct mapping
		 * since the gfn is not stable for indirect shadow page. See
3220
		 * Documentation/virt/kvm/locking.rst to get more detail.
3221
		 */
3222
		if (fast_pf_fix_direct_spte(vcpu, fault, sptep, spte, new_spte)) {
3223
			ret = RET_PF_FIXED;
3224
			break;
3225
		}
3226 3227 3228 3229 3230 3231 3232 3233

		if (++retry_count > 4) {
			printk_once(KERN_WARNING
				"kvm: Fast #PF retrying more than 4 times.\n");
			break;
		}

	} while (true);
3234

3235
	trace_fast_page_fault(vcpu, fault, sptep, spte, ret);
3236 3237
	walk_shadow_page_lockless_end(vcpu);

3238
	return ret;
3239 3240
}

3241 3242
static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
			       struct list_head *invalid_list)
3243
{
3244
	struct kvm_mmu_page *sp;
3245

3246
	if (!VALID_PAGE(*root_hpa))
A
Avi Kivity 已提交
3247
		return;
3248

3249
	sp = to_shadow_page(*root_hpa & PT64_BASE_ADDR_MASK);
3250

3251
	if (is_tdp_mmu_page(sp))
3252
		kvm_tdp_mmu_put_root(kvm, sp, false);
3253 3254
	else if (!--sp->root_count && sp->role.invalid)
		kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3255

3256 3257 3258
	*root_hpa = INVALID_PAGE;
}

3259
/* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
3260 3261
void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
			ulong roots_to_free)
3262
{
3263
	struct kvm *kvm = vcpu->kvm;
3264 3265
	int i;
	LIST_HEAD(invalid_list);
3266
	bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
3267

3268
	BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3269

3270
	/* Before acquiring the MMU lock, see if we need to do any real work. */
3271 3272 3273 3274 3275 3276 3277 3278 3279
	if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
			if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
			    VALID_PAGE(mmu->prev_roots[i].hpa))
				break;

		if (i == KVM_MMU_NUM_PREV_ROOTS)
			return;
	}
3280

3281
	write_lock(&kvm->mmu_lock);
3282

3283 3284
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
		if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3285
			mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa,
3286
					   &invalid_list);
3287

3288 3289 3290
	if (free_active_root) {
		if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
		    (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3291
			mmu_free_root_page(kvm, &mmu->root_hpa, &invalid_list);
3292
		} else if (mmu->pae_root) {
3293 3294 3295 3296 3297 3298 3299 3300
			for (i = 0; i < 4; ++i) {
				if (!IS_VALID_PAE_ROOT(mmu->pae_root[i]))
					continue;

				mmu_free_root_page(kvm, &mmu->pae_root[i],
						   &invalid_list);
				mmu->pae_root[i] = INVALID_PAE_ROOT;
			}
3301
		}
3302
		mmu->root_hpa = INVALID_PAGE;
3303
		mmu->root_pgd = 0;
3304
	}
3305

3306
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
3307
	write_unlock(&kvm->mmu_lock);
3308
}
3309
EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3310

3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337
void kvm_mmu_free_guest_mode_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
{
	unsigned long roots_to_free = 0;
	hpa_t root_hpa;
	int i;

	/*
	 * This should not be called while L2 is active, L2 can't invalidate
	 * _only_ its own roots, e.g. INVVPID unconditionally exits.
	 */
	WARN_ON_ONCE(mmu->mmu_role.base.guest_mode);

	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
		root_hpa = mmu->prev_roots[i].hpa;
		if (!VALID_PAGE(root_hpa))
			continue;

		if (!to_shadow_page(root_hpa) ||
			to_shadow_page(root_hpa)->role.guest_mode)
			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
	}

	kvm_mmu_free_roots(vcpu, mmu, roots_to_free);
}
EXPORT_SYMBOL_GPL(kvm_mmu_free_guest_mode_roots);


3338 3339 3340 3341
static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
{
	int ret = 0;

3342
	if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) {
3343
		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3344 3345 3346 3347 3348 3349
		ret = 1;
	}

	return ret;
}

3350 3351
static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, gva_t gva,
			    u8 level, bool direct)
3352 3353
{
	struct kvm_mmu_page *sp;
3354 3355 3356 3357 3358 3359 3360 3361 3362

	sp = kvm_mmu_get_page(vcpu, gfn, gva, level, direct, ACC_ALL);
	++sp->root_count;

	return __pa(sp->spt);
}

static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
{
3363 3364
	struct kvm_mmu *mmu = vcpu->arch.mmu;
	u8 shadow_root_level = mmu->shadow_root_level;
3365
	hpa_t root;
3366
	unsigned i;
3367 3368 3369 3370 3371 3372
	int r;

	write_lock(&vcpu->kvm->mmu_lock);
	r = make_mmu_pages_available(vcpu);
	if (r < 0)
		goto out_unlock;
3373

3374
	if (is_tdp_mmu_enabled(vcpu->kvm)) {
3375
		root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu);
3376
		mmu->root_hpa = root;
3377
	} else if (shadow_root_level >= PT64_ROOT_4LEVEL) {
3378
		root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level, true);
3379
		mmu->root_hpa = root;
3380
	} else if (shadow_root_level == PT32E_ROOT_LEVEL) {
3381 3382 3383 3384
		if (WARN_ON_ONCE(!mmu->pae_root)) {
			r = -EIO;
			goto out_unlock;
		}
3385

3386
		for (i = 0; i < 4; ++i) {
3387
			WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3388

3389 3390
			root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT),
					      i << 30, PT32_ROOT_LEVEL, true);
3391 3392
			mmu->pae_root[i] = root | PT_PRESENT_MASK |
					   shadow_me_mask;
3393
		}
3394
		mmu->root_hpa = __pa(mmu->pae_root);
3395 3396
	} else {
		WARN_ONCE(1, "Bad TDP root level = %d\n", shadow_root_level);
3397 3398
		r = -EIO;
		goto out_unlock;
3399
	}
3400

3401
	/* root_pgd is ignored for direct MMUs. */
3402
	mmu->root_pgd = 0;
3403 3404 3405
out_unlock:
	write_unlock(&vcpu->kvm->mmu_lock);
	return r;
3406 3407
}

3408 3409 3410 3411
static int mmu_first_shadow_root_alloc(struct kvm *kvm)
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *slot;
3412
	int r = 0, i, bkt;
3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436

	/*
	 * Check if this is the first shadow root being allocated before
	 * taking the lock.
	 */
	if (kvm_shadow_root_allocated(kvm))
		return 0;

	mutex_lock(&kvm->slots_arch_lock);

	/* Recheck, under the lock, whether this is the first shadow root. */
	if (kvm_shadow_root_allocated(kvm))
		goto out_unlock;

	/*
	 * Check if anything actually needs to be allocated, e.g. all metadata
	 * will be allocated upfront if TDP is disabled.
	 */
	if (kvm_memslots_have_rmaps(kvm) &&
	    kvm_page_track_write_tracking_enabled(kvm))
		goto out_success;

	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
3437
		kvm_for_each_memslot(slot, bkt, slots) {
3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468
			/*
			 * Both of these functions are no-ops if the target is
			 * already allocated, so unconditionally calling both
			 * is safe.  Intentionally do NOT free allocations on
			 * failure to avoid having to track which allocations
			 * were made now versus when the memslot was created.
			 * The metadata is guaranteed to be freed when the slot
			 * is freed, and will be kept/used if userspace retries
			 * KVM_RUN instead of killing the VM.
			 */
			r = memslot_rmap_alloc(slot, slot->npages);
			if (r)
				goto out_unlock;
			r = kvm_page_track_write_tracking_alloc(slot);
			if (r)
				goto out_unlock;
		}
	}

	/*
	 * Ensure that shadow_root_allocated becomes true strictly after
	 * all the related pointers are set.
	 */
out_success:
	smp_store_release(&kvm->arch.shadow_root_allocated, true);

out_unlock:
	mutex_unlock(&kvm->slots_arch_lock);
	return r;
}

3469
static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3470
{
3471
	struct kvm_mmu *mmu = vcpu->arch.mmu;
3472
	u64 pdptrs[4], pm_mask;
3473
	gfn_t root_gfn, root_pgd;
3474
	hpa_t root;
3475 3476
	unsigned i;
	int r;
3477

3478
	root_pgd = mmu->get_guest_pgd(vcpu);
3479
	root_gfn = root_pgd >> PAGE_SHIFT;
3480

3481 3482 3483
	if (mmu_check_root(vcpu, root_gfn))
		return 1;

3484 3485 3486 3487
	/*
	 * On SVM, reading PDPTRs might access guest memory, which might fault
	 * and thus might sleep.  Grab the PDPTRs before acquiring mmu_lock.
	 */
3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498
	if (mmu->root_level == PT32E_ROOT_LEVEL) {
		for (i = 0; i < 4; ++i) {
			pdptrs[i] = mmu->get_pdptr(vcpu, i);
			if (!(pdptrs[i] & PT_PRESENT_MASK))
				continue;

			if (mmu_check_root(vcpu, pdptrs[i] >> PAGE_SHIFT))
				return 1;
		}
	}

3499
	r = mmu_first_shadow_root_alloc(vcpu->kvm);
3500 3501 3502
	if (r)
		return r;

3503 3504 3505 3506 3507
	write_lock(&vcpu->kvm->mmu_lock);
	r = make_mmu_pages_available(vcpu);
	if (r < 0)
		goto out_unlock;

3508 3509 3510 3511
	/*
	 * Do we shadow a long mode page table? If so we need to
	 * write-protect the guests page table root.
	 */
3512
	if (mmu->root_level >= PT64_ROOT_4LEVEL) {
3513
		root = mmu_alloc_root(vcpu, root_gfn, 0,
3514 3515
				      mmu->shadow_root_level, false);
		mmu->root_hpa = root;
3516
		goto set_root_pgd;
3517
	}
3518

3519 3520 3521 3522
	if (WARN_ON_ONCE(!mmu->pae_root)) {
		r = -EIO;
		goto out_unlock;
	}
3523

3524 3525
	/*
	 * We shadow a 32 bit page table. This may be a legacy 2-level
3526 3527
	 * or a PAE 3-level page table. In either case we need to be aware that
	 * the shadow page table may be a PAE or a long mode page table.
3528
	 */
3529
	pm_mask = PT_PRESENT_MASK | shadow_me_mask;
3530
	if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL) {
3531 3532
		pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;

3533
		if (WARN_ON_ONCE(!mmu->pml4_root)) {
3534 3535 3536
			r = -EIO;
			goto out_unlock;
		}
3537
		mmu->pml4_root[0] = __pa(mmu->pae_root) | pm_mask;
3538 3539 3540 3541 3542 3543 3544 3545

		if (mmu->shadow_root_level == PT64_ROOT_5LEVEL) {
			if (WARN_ON_ONCE(!mmu->pml5_root)) {
				r = -EIO;
				goto out_unlock;
			}
			mmu->pml5_root[0] = __pa(mmu->pml4_root) | pm_mask;
		}
3546 3547
	}

3548
	for (i = 0; i < 4; ++i) {
3549
		WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3550

3551
		if (mmu->root_level == PT32E_ROOT_LEVEL) {
3552
			if (!(pdptrs[i] & PT_PRESENT_MASK)) {
3553
				mmu->pae_root[i] = INVALID_PAE_ROOT;
A
Avi Kivity 已提交
3554 3555
				continue;
			}
3556
			root_gfn = pdptrs[i] >> PAGE_SHIFT;
3557
		}
3558

3559 3560
		root = mmu_alloc_root(vcpu, root_gfn, i << 30,
				      PT32_ROOT_LEVEL, false);
3561
		mmu->pae_root[i] = root | pm_mask;
3562
	}
3563

3564 3565 3566
	if (mmu->shadow_root_level == PT64_ROOT_5LEVEL)
		mmu->root_hpa = __pa(mmu->pml5_root);
	else if (mmu->shadow_root_level == PT64_ROOT_4LEVEL)
3567
		mmu->root_hpa = __pa(mmu->pml4_root);
3568 3569
	else
		mmu->root_hpa = __pa(mmu->pae_root);
3570

3571
set_root_pgd:
3572
	mmu->root_pgd = root_pgd;
3573 3574
out_unlock:
	write_unlock(&vcpu->kvm->mmu_lock);
3575

3576
	return 0;
3577 3578
}

3579 3580 3581
static int mmu_alloc_special_roots(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu *mmu = vcpu->arch.mmu;
3582
	bool need_pml5 = mmu->shadow_root_level > PT64_ROOT_4LEVEL;
3583 3584 3585
	u64 *pml5_root = NULL;
	u64 *pml4_root = NULL;
	u64 *pae_root;
3586 3587

	/*
3588 3589 3590 3591
	 * When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP
	 * tables are allocated and initialized at root creation as there is no
	 * equivalent level in the guest's NPT to shadow.  Allocate the tables
	 * on demand, as running a 32-bit L1 VMM on 64-bit KVM is very rare.
3592
	 */
3593 3594 3595
	if (mmu->direct_map || mmu->root_level >= PT64_ROOT_4LEVEL ||
	    mmu->shadow_root_level < PT64_ROOT_4LEVEL)
		return 0;
3596

3597 3598 3599 3600 3601 3602 3603 3604
	/*
	 * NPT, the only paging mode that uses this horror, uses a fixed number
	 * of levels for the shadow page tables, e.g. all MMUs are 4-level or
	 * all MMus are 5-level.  Thus, this can safely require that pml5_root
	 * is allocated if the other roots are valid and pml5 is needed, as any
	 * prior MMU would also have required pml5.
	 */
	if (mmu->pae_root && mmu->pml4_root && (!need_pml5 || mmu->pml5_root))
3605
		return 0;
3606

3607 3608 3609 3610
	/*
	 * The special roots should always be allocated in concert.  Yell and
	 * bail if KVM ends up in a state where only one of the roots is valid.
	 */
3611
	if (WARN_ON_ONCE(!tdp_enabled || mmu->pae_root || mmu->pml4_root ||
3612
			 (need_pml5 && mmu->pml5_root)))
3613
		return -EIO;
3614

3615 3616 3617 3618
	/*
	 * Unlike 32-bit NPT, the PDP table doesn't need to be in low mem, and
	 * doesn't need to be decrypted.
	 */
3619 3620 3621
	pae_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
	if (!pae_root)
		return -ENOMEM;
3622

3623
#ifdef CONFIG_X86_64
3624
	pml4_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3625 3626 3627
	if (!pml4_root)
		goto err_pml4;

3628
	if (need_pml5) {
3629 3630 3631
		pml5_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
		if (!pml5_root)
			goto err_pml5;
3632
	}
3633
#endif
3634

3635
	mmu->pae_root = pae_root;
3636
	mmu->pml4_root = pml4_root;
3637
	mmu->pml5_root = pml5_root;
3638

3639
	return 0;
3640 3641 3642 3643 3644 3645 3646 3647

#ifdef CONFIG_X86_64
err_pml5:
	free_page((unsigned long)pml4_root);
err_pml4:
	free_page((unsigned long)pae_root);
	return -ENOMEM;
#endif
3648 3649
}

3650 3651 3652 3653
static bool is_unsync_root(hpa_t root)
{
	struct kvm_mmu_page *sp;

3654 3655 3656
	if (!VALID_PAGE(root))
		return false;

3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676
	/*
	 * The read barrier orders the CPU's read of SPTE.W during the page table
	 * walk before the reads of sp->unsync/sp->unsync_children here.
	 *
	 * Even if another CPU was marking the SP as unsync-ed simultaneously,
	 * any guest page table changes are not guaranteed to be visible anyway
	 * until this VCPU issues a TLB flush strictly after those changes are
	 * made.  We only need to ensure that the other CPU sets these flags
	 * before any actual changes to the page tables are made.  The comments
	 * in mmu_try_to_unsync_pages() describe what could go wrong if this
	 * requirement isn't satisfied.
	 */
	smp_rmb();
	sp = to_shadow_page(root);
	if (sp->unsync || sp->unsync_children)
		return true;

	return false;
}

3677
void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3678 3679 3680 3681
{
	int i;
	struct kvm_mmu_page *sp;

3682
	if (vcpu->arch.mmu->direct_map)
3683 3684
		return;

3685
	if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3686
		return;
3687

3688
	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3689

3690 3691
	if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
		hpa_t root = vcpu->arch.mmu->root_hpa;
3692
		sp = to_shadow_page(root);
3693

3694
		if (!is_unsync_root(root))
3695 3696
			return;

3697
		write_lock(&vcpu->kvm->mmu_lock);
3698 3699
		kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);

3700
		mmu_sync_children(vcpu, sp, true);
3701

3702
		kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3703
		write_unlock(&vcpu->kvm->mmu_lock);
3704 3705
		return;
	}
3706

3707
	write_lock(&vcpu->kvm->mmu_lock);
3708 3709
	kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);

3710
	for (i = 0; i < 4; ++i) {
3711
		hpa_t root = vcpu->arch.mmu->pae_root[i];
3712

3713
		if (IS_VALID_PAE_ROOT(root)) {
3714
			root &= PT64_BASE_ADDR_MASK;
3715
			sp = to_shadow_page(root);
3716
			mmu_sync_children(vcpu, sp, true);
3717 3718 3719
		}
	}

3720
	kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3721
	write_unlock(&vcpu->kvm->mmu_lock);
3722 3723
}

3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736
void kvm_mmu_sync_prev_roots(struct kvm_vcpu *vcpu)
{
	unsigned long roots_to_free = 0;
	int i;

	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
		if (is_unsync_root(vcpu->arch.mmu->prev_roots[i].hpa))
			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);

	/* sync prev_roots by simply freeing them */
	kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, roots_to_free);
}

3737
static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr,
3738
				  u32 access, struct x86_exception *exception)
A
Avi Kivity 已提交
3739
{
3740 3741
	if (exception)
		exception->error_code = 0;
A
Avi Kivity 已提交
3742 3743 3744
	return vaddr;
}

3745
static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr,
3746 3747
					 u32 access,
					 struct x86_exception *exception)
3748
{
3749 3750
	if (exception)
		exception->error_code = 0;
3751
	return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3752 3753
}

3754
static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3755
{
3756 3757 3758 3759 3760 3761 3762
	/*
	 * A nested guest cannot use the MMIO cache if it is using nested
	 * page tables, because cr2 is a nGPA while the cache stores GPAs.
	 */
	if (mmu_is_nested(vcpu))
		return false;

3763 3764 3765 3766 3767 3768
	if (direct)
		return vcpu_match_mmio_gpa(vcpu, addr);

	return vcpu_match_mmio_gva(vcpu, addr);
}

3769 3770 3771
/*
 * Return the level of the lowest level SPTE added to sptes.
 * That SPTE may be non-present.
3772 3773
 *
 * Must be called between walk_shadow_page_lockless_{begin,end}.
3774
 */
3775
static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level)
3776 3777
{
	struct kvm_shadow_walk_iterator iterator;
3778
	int leaf = -1;
3779
	u64 spte;
3780

3781 3782
	for (shadow_walk_init(&iterator, vcpu, addr),
	     *root_level = iterator.level;
3783 3784
	     shadow_walk_okay(&iterator);
	     __shadow_walk_next(&iterator, spte)) {
3785
		leaf = iterator.level;
3786 3787
		spte = mmu_spte_get_lockless(iterator.sptep);

3788
		sptes[leaf] = spte;
3789 3790 3791 3792 3793
	}

	return leaf;
}

3794
/* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */
3795 3796
static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
{
3797
	u64 sptes[PT64_ROOT_MAX_LEVEL + 1];
3798
	struct rsvd_bits_validate *rsvd_check;
3799
	int root, leaf, level;
3800 3801
	bool reserved = false;

3802 3803
	walk_shadow_page_lockless_begin(vcpu);

3804
	if (is_tdp_mmu(vcpu->arch.mmu))
3805
		leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, &root);
3806
	else
3807
		leaf = get_walk(vcpu, addr, sptes, &root);
3808

3809 3810
	walk_shadow_page_lockless_end(vcpu);

3811 3812 3813 3814 3815
	if (unlikely(leaf < 0)) {
		*sptep = 0ull;
		return reserved;
	}

3816 3817 3818 3819 3820 3821 3822 3823 3824 3825
	*sptep = sptes[leaf];

	/*
	 * Skip reserved bits checks on the terminal leaf if it's not a valid
	 * SPTE.  Note, this also (intentionally) skips MMIO SPTEs, which, by
	 * design, always have reserved bits set.  The purpose of the checks is
	 * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs.
	 */
	if (!is_shadow_present_pte(sptes[leaf]))
		leaf++;
3826 3827 3828

	rsvd_check = &vcpu->arch.mmu->shadow_zero_check;

3829
	for (level = root; level >= leaf; level--)
3830
		reserved |= is_rsvd_spte(rsvd_check, sptes[level], level);
3831 3832

	if (reserved) {
3833
		pr_err("%s: reserved bits set on MMU-present spte, addr 0x%llx, hierarchy:\n",
3834
		       __func__, addr);
3835
		for (level = root; level >= leaf; level--)
3836 3837
			pr_err("------ spte = 0x%llx level = %d, rsvd bits = 0x%llx",
			       sptes[level], level,
3838
			       get_rsvd_bits(rsvd_check, sptes[level], level));
3839
	}
3840

3841
	return reserved;
3842 3843
}

P
Paolo Bonzini 已提交
3844
static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3845 3846
{
	u64 spte;
3847
	bool reserved;
3848

3849
	if (mmio_info_in_cache(vcpu, addr, direct))
3850
		return RET_PF_EMULATE;
3851

3852
	reserved = get_mmio_spte(vcpu, addr, &spte);
3853
	if (WARN_ON(reserved))
3854
		return -EINVAL;
3855 3856 3857

	if (is_mmio_spte(spte)) {
		gfn_t gfn = get_mmio_spte_gfn(spte);
3858
		unsigned int access = get_mmio_spte_access(spte);
3859

3860
		if (!check_mmio_spte(vcpu, spte))
3861
			return RET_PF_INVALID;
3862

3863 3864
		if (direct)
			addr = 0;
X
Xiao Guangrong 已提交
3865 3866

		trace_handle_mmio_page_fault(addr, gfn, access);
3867
		vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3868
		return RET_PF_EMULATE;
3869 3870 3871 3872 3873 3874
	}

	/*
	 * If the page table is zapped by other cpus, let CPU fault again on
	 * the address.
	 */
3875
	return RET_PF_RETRY;
3876 3877
}

3878
static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3879
					 struct kvm_page_fault *fault)
3880
{
3881
	if (unlikely(fault->rsvd))
3882 3883
		return false;

3884
	if (!fault->present || !fault->write)
3885 3886 3887 3888 3889 3890
		return false;

	/*
	 * guest is writing the page which is write tracked which can
	 * not be fixed by page fault handler.
	 */
3891
	if (kvm_slot_page_track_is_active(vcpu->kvm, fault->slot, fault->gfn, KVM_PAGE_TRACK_WRITE))
3892 3893 3894 3895 3896
		return true;

	return false;
}

3897 3898 3899 3900 3901 3902
static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
{
	struct kvm_shadow_walk_iterator iterator;
	u64 spte;

	walk_shadow_page_lockless_begin(vcpu);
3903
	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
3904 3905 3906 3907
		clear_sp_write_flooding_count(iterator.sptep);
	walk_shadow_page_lockless_end(vcpu);
}

3908 3909
static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
				    gfn_t gfn)
3910 3911
{
	struct kvm_arch_async_pf arch;
X
Xiao Guangrong 已提交
3912

3913
	arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3914
	arch.gfn = gfn;
3915
	arch.direct_map = vcpu->arch.mmu->direct_map;
3916
	arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu);
3917

3918 3919
	return kvm_setup_async_pf(vcpu, cr2_or_gpa,
				  kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3920 3921
}

3922
static bool kvm_faultin_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault, int *r)
3923
{
3924
	struct kvm_memory_slot *slot = fault->slot;
3925 3926
	bool async;

3927 3928 3929 3930 3931 3932
	/*
	 * Retry the page fault if the gfn hit a memslot that is being deleted
	 * or moved.  This ensures any existing SPTEs for the old memslot will
	 * be zapped before KVM inserts a new MMIO SPTE for the gfn.
	 */
	if (slot && (slot->flags & KVM_MEMSLOT_INVALID))
3933
		goto out_retry;
3934

3935 3936 3937
	if (!kvm_is_visible_memslot(slot)) {
		/* Don't expose private memslots to L2. */
		if (is_guest_mode(vcpu)) {
3938
			fault->slot = NULL;
3939 3940
			fault->pfn = KVM_PFN_NOSLOT;
			fault->map_writable = false;
3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953
			return false;
		}
		/*
		 * If the APIC access page exists but is disabled, go directly
		 * to emulation without caching the MMIO access or creating a
		 * MMIO SPTE.  That way the cache doesn't need to be purged
		 * when the AVIC is re-enabled.
		 */
		if (slot && slot->id == APIC_ACCESS_PAGE_PRIVATE_MEMSLOT &&
		    !kvm_apicv_activated(vcpu->kvm)) {
			*r = RET_PF_EMULATE;
			return true;
		}
3954 3955
	}

3956
	async = false;
3957 3958 3959
	fault->pfn = __gfn_to_pfn_memslot(slot, fault->gfn, false, &async,
					  fault->write, &fault->map_writable,
					  &fault->hva);
3960 3961 3962
	if (!async)
		return false; /* *pfn has correct page already */

3963
	if (!fault->prefetch && kvm_can_do_async_pf(vcpu)) {
3964 3965 3966
		trace_kvm_try_async_get_page(fault->addr, fault->gfn);
		if (kvm_find_async_pf_gfn(vcpu, fault->gfn)) {
			trace_kvm_async_pf_doublefault(fault->addr, fault->gfn);
3967
			kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3968
			goto out_retry;
3969
		} else if (kvm_arch_setup_async_pf(vcpu, fault->addr, fault->gfn))
3970
			goto out_retry;
3971 3972
	}

3973 3974 3975
	fault->pfn = __gfn_to_pfn_memslot(slot, fault->gfn, false, NULL,
					  fault->write, &fault->map_writable,
					  &fault->hva);
3976
	return false;
3977 3978 3979 3980

out_retry:
	*r = RET_PF_RETRY;
	return true;
3981 3982
}

3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996
/*
 * Returns true if the page fault is stale and needs to be retried, i.e. if the
 * root was invalidated by a memslot update or a relevant mmu_notifier fired.
 */
static bool is_page_fault_stale(struct kvm_vcpu *vcpu,
				struct kvm_page_fault *fault, int mmu_seq)
{
	if (is_obsolete_sp(vcpu->kvm, to_shadow_page(vcpu->arch.mmu->root_hpa)))
		return true;

	return fault->slot &&
	       mmu_notifier_retry_hva(vcpu->kvm, mmu_seq, fault->hva);
}

3997
static int direct_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
A
Avi Kivity 已提交
3998
{
3999
	bool is_tdp_mmu_fault = is_tdp_mmu(vcpu->arch.mmu);
A
Avi Kivity 已提交
4000

4001
	unsigned long mmu_seq;
4002
	int r;
4003

4004
	fault->gfn = fault->addr >> PAGE_SHIFT;
4005 4006
	fault->slot = kvm_vcpu_gfn_to_memslot(vcpu, fault->gfn);

4007
	if (page_fault_handle_page_track(vcpu, fault))
4008
		return RET_PF_EMULATE;
4009

4010
	r = fast_page_fault(vcpu, fault);
4011 4012
	if (r != RET_PF_INVALID)
		return r;
4013

4014
	r = mmu_topup_memory_caches(vcpu, false);
4015 4016
	if (r)
		return r;
4017

4018 4019 4020
	mmu_seq = vcpu->kvm->mmu_notifier_seq;
	smp_rmb();

4021
	if (kvm_faultin_pfn(vcpu, fault, &r))
4022
		return r;
4023

4024
	if (handle_abnormal_pfn(vcpu, fault, ACC_ALL, &r))
4025
		return r;
A
Avi Kivity 已提交
4026

4027
	r = RET_PF_RETRY;
4028

4029
	if (is_tdp_mmu_fault)
4030 4031 4032 4033
		read_lock(&vcpu->kvm->mmu_lock);
	else
		write_lock(&vcpu->kvm->mmu_lock);

4034
	if (is_page_fault_stale(vcpu, fault, mmu_seq))
4035
		goto out_unlock;
4036

4037 4038
	r = make_mmu_pages_available(vcpu);
	if (r)
4039
		goto out_unlock;
B
Ben Gardon 已提交
4040

4041
	if (is_tdp_mmu_fault)
4042
		r = kvm_tdp_mmu_map(vcpu, fault);
B
Ben Gardon 已提交
4043
	else
4044
		r = __direct_map(vcpu, fault);
4045

4046
out_unlock:
4047
	if (is_tdp_mmu_fault)
4048 4049 4050
		read_unlock(&vcpu->kvm->mmu_lock);
	else
		write_unlock(&vcpu->kvm->mmu_lock);
4051
	kvm_release_pfn_clean(fault->pfn);
4052
	return r;
A
Avi Kivity 已提交
4053 4054
}

4055 4056
static int nonpaging_page_fault(struct kvm_vcpu *vcpu,
				struct kvm_page_fault *fault)
4057
{
4058
	pgprintk("%s: gva %lx error %x\n", __func__, fault->addr, fault->error_code);
4059 4060

	/* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
4061 4062
	fault->max_level = PG_LEVEL_2M;
	return direct_page_fault(vcpu, fault);
4063 4064
}

4065
int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
4066
				u64 fault_address, char *insn, int insn_len)
4067 4068
{
	int r = 1;
4069
	u32 flags = vcpu->arch.apf.host_apf_flags;
4070

4071 4072 4073 4074 4075 4076
#ifndef CONFIG_X86_64
	/* A 64-bit CR2 should be impossible on 32-bit KVM. */
	if (WARN_ON_ONCE(fault_address >> 32))
		return -EFAULT;
#endif

P
Paolo Bonzini 已提交
4077
	vcpu->arch.l1tf_flush_l1d = true;
4078
	if (!flags) {
4079 4080
		trace_kvm_page_fault(fault_address, error_code);

4081
		if (kvm_event_needs_reinjection(vcpu))
4082 4083 4084
			kvm_mmu_unprotect_page_virt(vcpu, fault_address);
		r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
				insn_len);
4085
	} else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
4086
		vcpu->arch.apf.host_apf_flags = 0;
4087
		local_irq_disable();
4088
		kvm_async_pf_task_wait_schedule(fault_address);
4089
		local_irq_enable();
4090 4091
	} else {
		WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags);
4092
	}
4093

4094 4095 4096 4097
	return r;
}
EXPORT_SYMBOL_GPL(kvm_handle_page_fault);

4098
int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
4099
{
4100 4101 4102
	while (fault->max_level > PG_LEVEL_4K) {
		int page_num = KVM_PAGES_PER_HPAGE(fault->max_level);
		gfn_t base = (fault->addr >> PAGE_SHIFT) & ~(page_num - 1);
4103

4104 4105
		if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
			break;
4106 4107

		--fault->max_level;
4108
	}
4109

4110
	return direct_page_fault(vcpu, fault);
4111 4112
}

4113
static void nonpaging_init_context(struct kvm_mmu *context)
A
Avi Kivity 已提交
4114 4115 4116
{
	context->page_fault = nonpaging_page_fault;
	context->gva_to_gpa = nonpaging_gva_to_gpa;
4117
	context->sync_page = nonpaging_sync_page;
4118
	context->invlpg = NULL;
4119
	context->direct_map = true;
A
Avi Kivity 已提交
4120 4121
}

4122
static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd,
4123 4124
				  union kvm_mmu_page_role role)
{
4125
	return (role.direct || pgd == root->pgd) &&
4126 4127
	       VALID_PAGE(root->hpa) && to_shadow_page(root->hpa) &&
	       role.word == to_shadow_page(root->hpa)->role.word;
4128 4129
}

4130
/*
4131
 * Find out if a previously cached root matching the new pgd/role is available.
4132 4133 4134 4135 4136 4137
 * The current root is also inserted into the cache.
 * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
 * returned.
 * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
 * false is returned. This root should now be freed by the caller.
 */
4138
static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_pgd,
4139 4140 4141 4142
				  union kvm_mmu_page_role new_role)
{
	uint i;
	struct kvm_mmu_root_info root;
4143
	struct kvm_mmu *mmu = vcpu->arch.mmu;
4144

4145
	root.pgd = mmu->root_pgd;
4146 4147
	root.hpa = mmu->root_hpa;

4148
	if (is_root_usable(&root, new_pgd, new_role))
4149 4150
		return true;

4151 4152 4153
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
		swap(root, mmu->prev_roots[i]);

4154
		if (is_root_usable(&root, new_pgd, new_role))
4155 4156 4157 4158
			break;
	}

	mmu->root_hpa = root.hpa;
4159
	mmu->root_pgd = root.pgd;
4160 4161 4162 4163

	return i < KVM_MMU_NUM_PREV_ROOTS;
}

4164
static bool fast_pgd_switch(struct kvm_vcpu *vcpu, gpa_t new_pgd,
4165
			    union kvm_mmu_page_role new_role)
A
Avi Kivity 已提交
4166
{
4167
	struct kvm_mmu *mmu = vcpu->arch.mmu;
4168 4169 4170 4171 4172 4173 4174

	/*
	 * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
	 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
	 * later if necessary.
	 */
	if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
4175
	    mmu->root_level >= PT64_ROOT_4LEVEL)
4176
		return cached_root_available(vcpu, new_pgd, new_role);
4177 4178

	return false;
A
Avi Kivity 已提交
4179 4180
}

4181
static void __kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd,
4182
			      union kvm_mmu_page_role new_role)
A
Avi Kivity 已提交
4183
{
4184
	if (!fast_pgd_switch(vcpu, new_pgd, new_role)) {
4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196
		kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, KVM_MMU_ROOT_CURRENT);
		return;
	}

	/*
	 * It's possible that the cached previous root page is obsolete because
	 * of a change in the MMU generation number. However, changing the
	 * generation number is accompanied by KVM_REQ_MMU_RELOAD, which will
	 * free the root set here and allocate a new one.
	 */
	kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);

4197
	if (force_flush_and_sync_on_reuse) {
4198 4199
		kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
4200
	}
4201 4202 4203 4204 4205 4206 4207 4208 4209

	/*
	 * The last MMIO access's GVA and GPA are cached in the VCPU. When
	 * switching to a new CR3, that GVA->GPA mapping may no longer be
	 * valid. So clear any cached MMIO info even when we don't need to sync
	 * the shadow page tables.
	 */
	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);

4210 4211 4212 4213 4214 4215 4216
	/*
	 * If this is a direct root page, it doesn't have a write flooding
	 * count. Otherwise, clear the write flooding count.
	 */
	if (!new_role.direct)
		__clear_sp_write_flooding_count(
				to_shadow_page(vcpu->arch.mmu->root_hpa));
A
Avi Kivity 已提交
4217 4218
}

4219
void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd)
4220
{
4221
	__kvm_mmu_new_pgd(vcpu, new_pgd, kvm_mmu_calc_root_page_role(vcpu));
4222
}
4223
EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd);
4224

4225 4226
static unsigned long get_cr3(struct kvm_vcpu *vcpu)
{
4227
	return kvm_read_cr3(vcpu);
4228 4229
}

4230
static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
4231
			   unsigned int access)
4232 4233 4234 4235 4236 4237 4238
{
	if (unlikely(is_mmio_spte(*sptep))) {
		if (gfn != get_mmio_spte_gfn(*sptep)) {
			mmu_spte_clear_no_track(sptep);
			return true;
		}

4239
		mark_mmio_spte(vcpu, sptep, gfn, access);
4240 4241 4242 4243 4244 4245
		return true;
	}

	return false;
}

4246 4247 4248 4249 4250
#define PTTYPE_EPT 18 /* arbitrary */
#define PTTYPE PTTYPE_EPT
#include "paging_tmpl.h"
#undef PTTYPE

A
Avi Kivity 已提交
4251 4252 4253 4254 4255 4256 4257 4258
#define PTTYPE 64
#include "paging_tmpl.h"
#undef PTTYPE

#define PTTYPE 32
#include "paging_tmpl.h"
#undef PTTYPE

4259
static void
4260
__reset_rsvds_bits_mask(struct rsvd_bits_validate *rsvd_check,
4261
			u64 pa_bits_rsvd, int level, bool nx, bool gbpages,
4262
			bool pse, bool amd)
4263
{
4264
	u64 gbpages_bit_rsvd = 0;
4265
	u64 nonleaf_bit8_rsvd = 0;
4266
	u64 high_bits_rsvd;
4267

4268
	rsvd_check->bad_mt_xwr = 0;
4269

4270
	if (!gbpages)
4271
		gbpages_bit_rsvd = rsvd_bits(7, 7);
4272

4273 4274 4275 4276 4277 4278 4279 4280 4281
	if (level == PT32E_ROOT_LEVEL)
		high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 62);
	else
		high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);

	/* Note, NX doesn't exist in PDPTEs, this is handled below. */
	if (!nx)
		high_bits_rsvd |= rsvd_bits(63, 63);

4282 4283 4284 4285
	/*
	 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
	 * leaf entries) on AMD CPUs only.
	 */
4286
	if (amd)
4287 4288
		nonleaf_bit8_rsvd = rsvd_bits(8, 8);

4289
	switch (level) {
4290 4291
	case PT32_ROOT_LEVEL:
		/* no rsvd bits for 2 level 4K page table entries */
4292 4293 4294 4295
		rsvd_check->rsvd_bits_mask[0][1] = 0;
		rsvd_check->rsvd_bits_mask[0][0] = 0;
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
4296

4297
		if (!pse) {
4298
			rsvd_check->rsvd_bits_mask[1][1] = 0;
4299 4300 4301
			break;
		}

4302 4303
		if (is_cpuid_PSE36())
			/* 36bits PSE 4MB page */
4304
			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4305 4306
		else
			/* 32 bits PSE 4MB page */
4307
			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4308 4309
		break;
	case PT32E_ROOT_LEVEL:
4310 4311 4312 4313 4314 4315 4316 4317
		rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) |
						   high_bits_rsvd |
						   rsvd_bits(5, 8) |
						   rsvd_bits(1, 2);	/* PDPTE */
		rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;	/* PDE */
		rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;	/* PTE */
		rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
						   rsvd_bits(13, 20);	/* large page */
4318 4319
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
4320
		break;
4321
	case PT64_ROOT_5LEVEL:
4322 4323 4324
		rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd |
						   nonleaf_bit8_rsvd |
						   rsvd_bits(7, 7);
4325 4326
		rsvd_check->rsvd_bits_mask[1][4] =
			rsvd_check->rsvd_bits_mask[0][4];
4327
		fallthrough;
4328
	case PT64_ROOT_4LEVEL:
4329 4330 4331 4332 4333 4334 4335
		rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd |
						   nonleaf_bit8_rsvd |
						   rsvd_bits(7, 7);
		rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd |
						   gbpages_bit_rsvd;
		rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;
		rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4336 4337
		rsvd_check->rsvd_bits_mask[1][3] =
			rsvd_check->rsvd_bits_mask[0][3];
4338 4339 4340 4341 4342
		rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd |
						   gbpages_bit_rsvd |
						   rsvd_bits(13, 29);
		rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
						   rsvd_bits(13, 20); /* large page */
4343 4344
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
4345 4346 4347 4348
		break;
	}
}

4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363
static bool guest_can_use_gbpages(struct kvm_vcpu *vcpu)
{
	/*
	 * If TDP is enabled, let the guest use GBPAGES if they're supported in
	 * hardware.  The hardware page walker doesn't let KVM disable GBPAGES,
	 * i.e. won't treat them as reserved, and KVM doesn't redo the GVA->GPA
	 * walk for performance and complexity reasons.  Not to mention KVM
	 * _can't_ solve the problem because GVA->GPA walks aren't visible to
	 * KVM once a TDP translation is installed.  Mimic hardware behavior so
	 * that KVM's is at least consistent, i.e. doesn't randomly inject #PF.
	 */
	return tdp_enabled ? boot_cpu_has(X86_FEATURE_GBPAGES) :
			     guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES);
}

4364 4365 4366
static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
{
4367
	__reset_rsvds_bits_mask(&context->guest_rsvd_check,
4368
				vcpu->arch.reserved_gpa_bits,
4369
				context->root_level, is_efer_nx(context),
4370
				guest_can_use_gbpages(vcpu),
4371
				is_cr4_pse(context),
4372
				guest_cpuid_is_amd_or_hygon(vcpu));
4373 4374
}

4375 4376
static void
__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4377
			    u64 pa_bits_rsvd, bool execonly)
4378
{
4379
	u64 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
4380
	u64 bad_mt_xwr;
4381

4382 4383 4384 4385 4386
	rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7);
	rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7);
	rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6);
	rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6);
	rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4387 4388

	/* large page */
4389
	rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4390
	rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4391 4392
	rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29);
	rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20);
4393
	rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4394

4395 4396 4397 4398 4399 4400 4401 4402
	bad_mt_xwr = 0xFFull << (2 * 8);	/* bits 3..5 must not be 2 */
	bad_mt_xwr |= 0xFFull << (3 * 8);	/* bits 3..5 must not be 3 */
	bad_mt_xwr |= 0xFFull << (7 * 8);	/* bits 3..5 must not be 7 */
	bad_mt_xwr |= REPEAT_BYTE(1ull << 2);	/* bits 0..2 must not be 010 */
	bad_mt_xwr |= REPEAT_BYTE(1ull << 6);	/* bits 0..2 must not be 110 */
	if (!execonly) {
		/* bits 0..2 must not be 100 unless VMX capabilities allow it */
		bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4403
	}
4404
	rsvd_check->bad_mt_xwr = bad_mt_xwr;
4405 4406
}

4407 4408 4409 4410
static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
		struct kvm_mmu *context, bool execonly)
{
	__reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4411
				    vcpu->arch.reserved_gpa_bits, execonly);
4412 4413
}

4414 4415 4416 4417 4418
static inline u64 reserved_hpa_bits(void)
{
	return rsvd_bits(shadow_phys_bits, 63);
}

4419 4420 4421 4422 4423
/*
 * the page table on host is the shadow page table for the page
 * table in guest or amd nested guest, its mmu features completely
 * follow the features in guest.
 */
4424 4425
static void reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
					struct kvm_mmu *context)
4426
{
4427 4428 4429 4430 4431 4432 4433 4434
	/*
	 * KVM uses NX when TDP is disabled to handle a variety of scenarios,
	 * notably for huge SPTEs if iTLB multi-hit mitigation is enabled and
	 * to generate correct permissions for CR0.WP=0/CR4.SMEP=1/EFER.NX=0.
	 * The iTLB multi-hit workaround can be toggled at any time, so assume
	 * NX can be used by any non-nested shadow MMU to avoid having to reset
	 * MMU contexts.  Note, KVM forces EFER.NX=1 when TDP is disabled.
	 */
4435
	bool uses_nx = is_efer_nx(context) || !tdp_enabled;
4436 4437 4438 4439 4440

	/* @amd adds a check on bit of SPTEs, which KVM shouldn't use anyways. */
	bool is_amd = true;
	/* KVM doesn't use 2-level page tables for the shadow MMU. */
	bool is_pse = false;
4441 4442
	struct rsvd_bits_validate *shadow_zero_check;
	int i;
4443

4444 4445
	WARN_ON_ONCE(context->shadow_root_level < PT32E_ROOT_LEVEL);

4446
	shadow_zero_check = &context->shadow_zero_check;
4447
	__reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(),
4448
				context->shadow_root_level, uses_nx,
4449
				guest_can_use_gbpages(vcpu), is_pse, is_amd);
4450 4451 4452 4453 4454 4455 4456 4457 4458

	if (!shadow_me_mask)
		return;

	for (i = context->shadow_root_level; --i >= 0;) {
		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
	}

4459 4460
}

4461 4462 4463 4464 4465 4466
static inline bool boot_cpu_is_amd(void)
{
	WARN_ON_ONCE(!tdp_enabled);
	return shadow_x_mask == 0;
}

4467 4468 4469 4470 4471 4472 4473 4474
/*
 * the direct page table on host, use as much mmu features as
 * possible, however, kvm currently does not do execution-protection.
 */
static void
reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
				struct kvm_mmu *context)
{
4475 4476 4477 4478 4479
	struct rsvd_bits_validate *shadow_zero_check;
	int i;

	shadow_zero_check = &context->shadow_zero_check;

4480
	if (boot_cpu_is_amd())
4481
		__reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(),
4482
					context->shadow_root_level, false,
4483
					boot_cpu_has(X86_FEATURE_GBPAGES),
4484
					false, true);
4485
	else
4486
		__reset_rsvds_bits_mask_ept(shadow_zero_check,
4487
					    reserved_hpa_bits(), false);
4488

4489 4490 4491 4492 4493 4494 4495
	if (!shadow_me_mask)
		return;

	for (i = context->shadow_root_level; --i >= 0;) {
		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
	}
4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506
}

/*
 * as the comments in reset_shadow_zero_bits_mask() except it
 * is the shadow page table for intel nested guest.
 */
static void
reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
				struct kvm_mmu *context, bool execonly)
{
	__reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4507
				    reserved_hpa_bits(), execonly);
4508 4509
}

4510 4511 4512 4513 4514 4515 4516 4517 4518 4519
#define BYTE_MASK(access) \
	((1 & (access) ? 2 : 0) | \
	 (2 & (access) ? 4 : 0) | \
	 (3 & (access) ? 8 : 0) | \
	 (4 & (access) ? 16 : 0) | \
	 (5 & (access) ? 32 : 0) | \
	 (6 & (access) ? 64 : 0) | \
	 (7 & (access) ? 128 : 0))


4520
static void update_permission_bitmask(struct kvm_mmu *mmu, bool ept)
4521
{
4522 4523 4524 4525 4526 4527
	unsigned byte;

	const u8 x = BYTE_MASK(ACC_EXEC_MASK);
	const u8 w = BYTE_MASK(ACC_WRITE_MASK);
	const u8 u = BYTE_MASK(ACC_USER_MASK);

4528 4529 4530
	bool cr4_smep = is_cr4_smep(mmu);
	bool cr4_smap = is_cr4_smap(mmu);
	bool cr0_wp = is_cr0_wp(mmu);
4531
	bool efer_nx = is_efer_nx(mmu);
4532 4533

	for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4534 4535
		unsigned pfec = byte << 1;

F
Feng Wu 已提交
4536
		/*
4537 4538
		 * Each "*f" variable has a 1 bit for each UWX value
		 * that causes a fault with the given PFEC.
F
Feng Wu 已提交
4539
		 */
4540

4541
		/* Faults from writes to non-writable pages */
4542
		u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
4543
		/* Faults from user mode accesses to supervisor pages */
4544
		u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
4545
		/* Faults from fetches of non-executable pages*/
4546
		u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
4547 4548 4549 4550 4551 4552 4553 4554 4555 4556
		/* Faults from kernel mode fetches of user pages */
		u8 smepf = 0;
		/* Faults from kernel mode accesses of user pages */
		u8 smapf = 0;

		if (!ept) {
			/* Faults from kernel mode accesses to user pages */
			u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;

			/* Not really needed: !nx will cause pte.nx to fault */
4557
			if (!efer_nx)
4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571
				ff = 0;

			/* Allow supervisor writes if !cr0.wp */
			if (!cr0_wp)
				wf = (pfec & PFERR_USER_MASK) ? wf : 0;

			/* Disallow supervisor fetches of user code if cr4.smep */
			if (cr4_smep)
				smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;

			/*
			 * SMAP:kernel-mode data accesses from user-mode
			 * mappings should fault. A fault is considered
			 * as a SMAP violation if all of the following
P
Peng Hao 已提交
4572
			 * conditions are true:
4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585
			 *   - X86_CR4_SMAP is set in CR4
			 *   - A user page is accessed
			 *   - The access is not a fetch
			 *   - Page fault in kernel mode
			 *   - if CPL = 3 or X86_EFLAGS_AC is clear
			 *
			 * Here, we cover the first three conditions.
			 * The fourth is computed dynamically in permission_fault();
			 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
			 * *not* subject to SMAP restrictions.
			 */
			if (cr4_smap)
				smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4586
		}
4587 4588

		mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4589 4590 4591
	}
}

4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615
/*
* PKU is an additional mechanism by which the paging controls access to
* user-mode addresses based on the value in the PKRU register.  Protection
* key violations are reported through a bit in the page fault error code.
* Unlike other bits of the error code, the PK bit is not known at the
* call site of e.g. gva_to_gpa; it must be computed directly in
* permission_fault based on two bits of PKRU, on some machine state (CR4,
* CR0, EFER, CPL), and on other bits of the error code and the page tables.
*
* In particular the following conditions come from the error code, the
* page tables and the machine state:
* - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
* - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
* - PK is always zero if U=0 in the page tables
* - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
*
* The PKRU bitmask caches the result of these four conditions.  The error
* code (minus the P bit) and the page table's U bit form an index into the
* PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
* with the two bits of the PKRU register corresponding to the protection key.
* For the first three conditions above the bits will be 00, thus masking
* away both AD and WD.  For all reads or if the last condition holds, WD
* only will be masked away.
*/
4616
static void update_pkru_bitmask(struct kvm_mmu *mmu)
4617 4618 4619 4620
{
	unsigned bit;
	bool wp;

4621 4622 4623
	mmu->pkru_mask = 0;

	if (!is_cr4_pke(mmu))
4624 4625
		return;

4626
	wp = is_cr0_wp(mmu);
4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659

	for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
		unsigned pfec, pkey_bits;
		bool check_pkey, check_write, ff, uf, wf, pte_user;

		pfec = bit << 1;
		ff = pfec & PFERR_FETCH_MASK;
		uf = pfec & PFERR_USER_MASK;
		wf = pfec & PFERR_WRITE_MASK;

		/* PFEC.RSVD is replaced by ACC_USER_MASK. */
		pte_user = pfec & PFERR_RSVD_MASK;

		/*
		 * Only need to check the access which is not an
		 * instruction fetch and is to a user page.
		 */
		check_pkey = (!ff && pte_user);
		/*
		 * write access is controlled by PKRU if it is a
		 * user access or CR0.WP = 1.
		 */
		check_write = check_pkey && wf && (uf || wp);

		/* PKRU.AD stops both read and write access. */
		pkey_bits = !!check_pkey;
		/* PKRU.WD stops write access. */
		pkey_bits |= (!!check_write) << 1;

		mmu->pkru_mask |= (pkey_bits & 3) << pfec;
	}
}

4660 4661
static void reset_guest_paging_metadata(struct kvm_vcpu *vcpu,
					struct kvm_mmu *mmu)
A
Avi Kivity 已提交
4662
{
4663 4664
	if (!is_cr0_pg(mmu))
		return;
4665

4666 4667 4668
	reset_rsvds_bits_mask(vcpu, mmu);
	update_permission_bitmask(mmu, false);
	update_pkru_bitmask(mmu);
A
Avi Kivity 已提交
4669 4670
}

4671
static void paging64_init_context(struct kvm_mmu *context)
A
Avi Kivity 已提交
4672 4673 4674
{
	context->page_fault = paging64_page_fault;
	context->gva_to_gpa = paging64_gva_to_gpa;
4675
	context->sync_page = paging64_sync_page;
M
Marcelo Tosatti 已提交
4676
	context->invlpg = paging64_invlpg;
4677
	context->direct_map = false;
A
Avi Kivity 已提交
4678 4679
}

4680
static void paging32_init_context(struct kvm_mmu *context)
A
Avi Kivity 已提交
4681 4682 4683
{
	context->page_fault = paging32_page_fault;
	context->gva_to_gpa = paging32_gva_to_gpa;
4684
	context->sync_page = paging32_sync_page;
M
Marcelo Tosatti 已提交
4685
	context->invlpg = paging32_invlpg;
4686
	context->direct_map = false;
A
Avi Kivity 已提交
4687 4688
}

4689 4690
static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu,
							 struct kvm_mmu_role_regs *regs)
4691 4692 4693
{
	union kvm_mmu_extended_role ext = {0};

4694 4695 4696 4697 4698 4699
	if (____is_cr0_pg(regs)) {
		ext.cr0_pg = 1;
		ext.cr4_pae = ____is_cr4_pae(regs);
		ext.cr4_smep = ____is_cr4_smep(regs);
		ext.cr4_smap = ____is_cr4_smap(regs);
		ext.cr4_pse = ____is_cr4_pse(regs);
4700 4701 4702 4703

		/* PKEY and LA57 are active iff long mode is active. */
		ext.cr4_pke = ____is_efer_lma(regs) && ____is_cr4_pke(regs);
		ext.cr4_la57 = ____is_efer_lma(regs) && ____is_cr4_la57(regs);
4704
		ext.efer_lma = ____is_efer_lma(regs);
4705
	}
4706 4707 4708 4709 4710 4711

	ext.valid = 1;

	return ext;
}

4712
static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
4713
						   struct kvm_mmu_role_regs *regs,
4714 4715 4716 4717 4718
						   bool base_only)
{
	union kvm_mmu_role role = {0};

	role.base.access = ACC_ALL;
4719 4720 4721 4722
	if (____is_cr0_pg(regs)) {
		role.base.efer_nx = ____is_efer_nx(regs);
		role.base.cr0_wp = ____is_cr0_wp(regs);
	}
4723 4724 4725 4726 4727 4728
	role.base.smm = is_smm(vcpu);
	role.base.guest_mode = is_guest_mode(vcpu);

	if (base_only)
		return role;

4729
	role.ext = kvm_calc_mmu_role_ext(vcpu, regs);
4730 4731 4732 4733

	return role;
}

4734 4735
static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu)
{
4736 4737 4738 4739
	/* tdp_root_level is architecture forced level, use it if nonzero */
	if (tdp_root_level)
		return tdp_root_level;

4740
	/* Use 5-level TDP if and only if it's useful/necessary. */
4741
	if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48)
4742 4743
		return 4;

4744
	return max_tdp_level;
4745 4746
}

4747
static union kvm_mmu_role
4748 4749
kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu,
				struct kvm_mmu_role_regs *regs, bool base_only)
4750
{
4751
	union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, regs, base_only);
4752

4753
	role.base.ad_disabled = (shadow_accessed_mask == 0);
4754
	role.base.level = kvm_mmu_get_tdp_level(vcpu);
4755
	role.base.direct = true;
4756
	role.base.gpte_is_8_bytes = true;
4757 4758 4759 4760

	return role;
}

4761
static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4762
{
4763
	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4764
	struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
4765
	union kvm_mmu_role new_role =
4766
		kvm_calc_tdp_mmu_root_page_role(vcpu, &regs, false);
4767

4768 4769 4770 4771
	if (new_role.as_u64 == context->mmu_role.as_u64)
		return;

	context->mmu_role.as_u64 = new_role.as_u64;
4772
	context->page_fault = kvm_tdp_page_fault;
4773
	context->sync_page = nonpaging_sync_page;
4774
	context->invlpg = NULL;
4775
	context->shadow_root_level = kvm_mmu_get_tdp_level(vcpu);
4776
	context->direct_map = true;
4777
	context->get_guest_pgd = get_cr3;
4778
	context->get_pdptr = kvm_pdptr_read;
4779
	context->inject_page_fault = kvm_inject_page_fault;
4780
	context->root_level = role_regs_to_root_level(&regs);
4781

4782
	if (!is_cr0_pg(context))
4783
		context->gva_to_gpa = nonpaging_gva_to_gpa;
4784
	else if (is_cr4_pae(context))
4785
		context->gva_to_gpa = paging64_gva_to_gpa;
4786
	else
4787
		context->gva_to_gpa = paging32_gva_to_gpa;
4788

4789
	reset_guest_paging_metadata(vcpu, context);
4790
	reset_tdp_shadow_zero_bits_mask(vcpu, context);
4791 4792
}

4793
static union kvm_mmu_role
4794 4795
kvm_calc_shadow_root_page_role_common(struct kvm_vcpu *vcpu,
				      struct kvm_mmu_role_regs *regs, bool base_only)
4796
{
4797
	union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, regs, base_only);
4798

4799 4800
	role.base.smep_andnot_wp = role.ext.cr4_smep && !____is_cr0_wp(regs);
	role.base.smap_andnot_wp = role.ext.cr4_smap && !____is_cr0_wp(regs);
4801
	role.base.gpte_is_8_bytes = ____is_cr0_pg(regs) && ____is_cr4_pae(regs);
4802

4803 4804 4805 4806
	return role;
}

static union kvm_mmu_role
4807 4808
kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu,
				   struct kvm_mmu_role_regs *regs, bool base_only)
4809 4810
{
	union kvm_mmu_role role =
4811
		kvm_calc_shadow_root_page_role_common(vcpu, regs, base_only);
4812

4813
	role.base.direct = !____is_cr0_pg(regs);
4814

4815
	if (!____is_efer_lma(regs))
4816
		role.base.level = PT32E_ROOT_LEVEL;
4817
	else if (____is_cr4_la57(regs))
4818
		role.base.level = PT64_ROOT_5LEVEL;
4819
	else
4820
		role.base.level = PT64_ROOT_4LEVEL;
4821 4822 4823 4824

	return role;
}

4825
static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
4826
				    struct kvm_mmu_role_regs *regs,
4827
				    union kvm_mmu_role new_role)
4828
{
4829 4830
	if (new_role.as_u64 == context->mmu_role.as_u64)
		return;
4831

4832
	context->mmu_role.as_u64 = new_role.as_u64;
4833

4834
	if (!is_cr0_pg(context))
4835
		nonpaging_init_context(context);
4836
	else if (is_cr4_pae(context))
4837
		paging64_init_context(context);
A
Avi Kivity 已提交
4838
	else
4839
		paging32_init_context(context);
4840
	context->root_level = role_regs_to_root_level(regs);
4841

4842
	reset_guest_paging_metadata(vcpu, context);
4843 4844
	context->shadow_root_level = new_role.base.level;

4845
	reset_shadow_zero_bits_mask(vcpu, context);
4846
}
4847

4848 4849
static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu,
				struct kvm_mmu_role_regs *regs)
4850
{
4851
	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4852
	union kvm_mmu_role new_role =
4853
		kvm_calc_shadow_mmu_root_page_role(vcpu, regs, false);
4854

4855
	shadow_mmu_init_context(vcpu, context, regs, new_role);
4856 4857
}

4858
static union kvm_mmu_role
4859 4860
kvm_calc_shadow_npt_root_page_role(struct kvm_vcpu *vcpu,
				   struct kvm_mmu_role_regs *regs)
4861 4862
{
	union kvm_mmu_role role =
4863
		kvm_calc_shadow_root_page_role_common(vcpu, regs, false);
4864 4865

	role.base.direct = false;
4866
	role.base.level = kvm_mmu_get_tdp_level(vcpu);
4867 4868 4869 4870

	return role;
}

4871 4872
void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0,
			     unsigned long cr4, u64 efer, gpa_t nested_cr3)
4873
{
4874
	struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4875 4876
	struct kvm_mmu_role_regs regs = {
		.cr0 = cr0,
4877
		.cr4 = cr4 & ~X86_CR4_PKE,
4878 4879
		.efer = efer,
	};
4880
	union kvm_mmu_role new_role;
4881

4882
	new_role = kvm_calc_shadow_npt_root_page_role(vcpu, &regs);
4883

4884
	__kvm_mmu_new_pgd(vcpu, nested_cr3, new_role.base);
4885

4886
	shadow_mmu_init_context(vcpu, context, &regs, new_role);
4887 4888
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu);
4889

4890 4891
static union kvm_mmu_role
kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
4892
				   bool execonly, u8 level)
4893
{
4894
	union kvm_mmu_role role = {0};
4895

4896 4897
	/* SMM flag is inherited from root_mmu */
	role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
4898

4899
	role.base.level = level;
4900
	role.base.gpte_is_8_bytes = true;
4901 4902 4903 4904
	role.base.direct = false;
	role.base.ad_disabled = !accessed_dirty;
	role.base.guest_mode = true;
	role.base.access = ACC_ALL;
4905

4906 4907
	/* EPT, and thus nested EPT, does not consume CR0, CR4, nor EFER. */
	role.ext.word = 0;
4908
	role.ext.execonly = execonly;
4909
	role.ext.valid = 1;
4910 4911 4912 4913

	return role;
}

4914
void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
4915
			     bool accessed_dirty, gpa_t new_eptp)
N
Nadav Har'El 已提交
4916
{
4917
	struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4918
	u8 level = vmx_eptp_page_walk_level(new_eptp);
4919 4920
	union kvm_mmu_role new_role =
		kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
4921
						   execonly, level);
4922

4923
	__kvm_mmu_new_pgd(vcpu, new_eptp, new_role.base);
4924 4925 4926

	if (new_role.as_u64 == context->mmu_role.as_u64)
		return;
4927

4928 4929
	context->mmu_role.as_u64 = new_role.as_u64;

4930
	context->shadow_root_level = level;
N
Nadav Har'El 已提交
4931

4932
	context->ept_ad = accessed_dirty;
N
Nadav Har'El 已提交
4933 4934 4935 4936
	context->page_fault = ept_page_fault;
	context->gva_to_gpa = ept_gva_to_gpa;
	context->sync_page = ept_sync_page;
	context->invlpg = ept_invlpg;
4937
	context->root_level = level;
N
Nadav Har'El 已提交
4938
	context->direct_map = false;
4939

4940
	update_permission_bitmask(context, true);
4941
	context->pkru_mask = 0;
N
Nadav Har'El 已提交
4942
	reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4943
	reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
N
Nadav Har'El 已提交
4944 4945 4946
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);

4947
static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4948
{
4949
	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4950
	struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
4951

4952
	kvm_init_shadow_mmu(vcpu, &regs);
4953

4954
	context->get_guest_pgd     = get_cr3;
4955 4956
	context->get_pdptr         = kvm_pdptr_read;
	context->inject_page_fault = kvm_inject_page_fault;
A
Avi Kivity 已提交
4957 4958
}

4959 4960
static union kvm_mmu_role
kvm_calc_nested_mmu_role(struct kvm_vcpu *vcpu, struct kvm_mmu_role_regs *regs)
4961
{
4962 4963 4964
	union kvm_mmu_role role;

	role = kvm_calc_shadow_root_page_role_common(vcpu, regs, false);
4965 4966 4967 4968 4969 4970 4971

	/*
	 * Nested MMUs are used only for walking L2's gva->gpa, they never have
	 * shadow pages of their own and so "direct" has no meaning.   Set it
	 * to "true" to try to detect bogus usage of the nested MMU.
	 */
	role.base.direct = true;
4972
	role.base.level = role_regs_to_root_level(regs);
4973 4974 4975
	return role;
}

4976
static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4977
{
4978 4979
	struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
	union kvm_mmu_role new_role = kvm_calc_nested_mmu_role(vcpu, &regs);
4980 4981
	struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;

4982 4983 4984 4985
	if (new_role.as_u64 == g_context->mmu_role.as_u64)
		return;

	g_context->mmu_role.as_u64 = new_role.as_u64;
4986
	g_context->get_guest_pgd     = get_cr3;
4987
	g_context->get_pdptr         = kvm_pdptr_read;
4988
	g_context->inject_page_fault = kvm_inject_page_fault;
4989
	g_context->root_level        = new_role.base.level;
4990

4991 4992 4993 4994 4995 4996
	/*
	 * L2 page tables are never shadowed, so there is no need to sync
	 * SPTEs.
	 */
	g_context->invlpg            = NULL;

4997
	/*
4998
	 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
4999 5000 5001 5002 5003
	 * L1's nested page tables (e.g. EPT12). The nested translation
	 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
	 * L2's page tables as the first level of translation and L1's
	 * nested page tables as the second level of translation. Basically
	 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
5004
	 */
5005
	if (!is_paging(vcpu))
5006
		g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
5007
	else if (is_long_mode(vcpu))
5008
		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
5009
	else if (is_pae(vcpu))
5010
		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
5011
	else
5012 5013
		g_context->gva_to_gpa = paging32_gva_to_gpa_nested;

5014
	reset_guest_paging_metadata(vcpu, g_context);
5015 5016
}

5017
void kvm_init_mmu(struct kvm_vcpu *vcpu)
5018
{
5019
	if (mmu_is_nested(vcpu))
5020
		init_kvm_nested_mmu(vcpu);
5021
	else if (tdp_enabled)
5022
		init_kvm_tdp_mmu(vcpu);
5023
	else
5024
		init_kvm_softmmu(vcpu);
5025
}
5026
EXPORT_SYMBOL_GPL(kvm_init_mmu);
5027

5028 5029 5030
static union kvm_mmu_page_role
kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
{
5031
	struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
5032 5033
	union kvm_mmu_role role;

5034
	if (tdp_enabled)
5035
		role = kvm_calc_tdp_mmu_root_page_role(vcpu, &regs, true);
5036
	else
5037
		role = kvm_calc_shadow_mmu_root_page_role(vcpu, &regs, true);
5038 5039

	return role.base;
5040
}
5041

5042 5043 5044 5045 5046
void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu)
{
	/*
	 * Invalidate all MMU roles to force them to reinitialize as CPUID
	 * information is factored into reserved bit calculations.
5047 5048 5049 5050 5051 5052 5053 5054
	 *
	 * Correctly handling multiple vCPU models with respect to paging and
	 * physical address properties) in a single VM would require tracking
	 * all relevant CPUID information in kvm_mmu_page_role. That is very
	 * undesirable as it would increase the memory requirements for
	 * gfn_track (see struct kvm_mmu_page_role comments).  For now that
	 * problem is swept under the rug; KVM's CPUID API is horrific and
	 * it's all but impossible to solve it without introducing a new API.
5055 5056 5057 5058 5059
	 */
	vcpu->arch.root_mmu.mmu_role.ext.valid = 0;
	vcpu->arch.guest_mmu.mmu_role.ext.valid = 0;
	vcpu->arch.nested_mmu.mmu_role.ext.valid = 0;
	kvm_mmu_reset_context(vcpu);
5060 5061

	/*
5062 5063
	 * Changing guest CPUID after KVM_RUN is forbidden, see the comment in
	 * kvm_arch_vcpu_ioctl().
5064
	 */
5065
	KVM_BUG_ON(vcpu->arch.last_vmentry_cpu != -1, vcpu->kvm);
5066 5067
}

5068
void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
5069
{
5070
	kvm_mmu_unload(vcpu);
5071
	kvm_init_mmu(vcpu);
A
Avi Kivity 已提交
5072
}
5073
EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
A
Avi Kivity 已提交
5074 5075

int kvm_mmu_load(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
5076
{
5077 5078
	int r;

5079
	r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->direct_map);
A
Avi Kivity 已提交
5080 5081
	if (r)
		goto out;
5082
	r = mmu_alloc_special_roots(vcpu);
A
Avi Kivity 已提交
5083 5084
	if (r)
		goto out;
5085
	if (vcpu->arch.mmu->direct_map)
5086 5087 5088
		r = mmu_alloc_direct_roots(vcpu);
	else
		r = mmu_alloc_shadow_roots(vcpu);
5089 5090
	if (r)
		goto out;
5091 5092 5093

	kvm_mmu_sync_roots(vcpu);

5094
	kvm_mmu_load_pgd(vcpu);
5095
	static_call(kvm_x86_tlb_flush_current)(vcpu);
5096 5097
out:
	return r;
A
Avi Kivity 已提交
5098
}
A
Avi Kivity 已提交
5099 5100 5101

void kvm_mmu_unload(struct kvm_vcpu *vcpu)
{
5102 5103 5104 5105
	kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
	WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
	kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
	WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
A
Avi Kivity 已提交
5106
}
A
Avi Kivity 已提交
5107

5108 5109 5110 5111 5112 5113 5114 5115
static bool need_remote_flush(u64 old, u64 new)
{
	if (!is_shadow_present_pte(old))
		return false;
	if (!is_shadow_present_pte(new))
		return true;
	if ((old ^ new) & PT64_BASE_ADDR_MASK)
		return true;
5116 5117
	old ^= shadow_nx_mask;
	new ^= shadow_nx_mask;
5118 5119 5120
	return (old & ~new & PT64_PERM_MASK) != 0;
}

5121
static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
5122
				    int *bytes)
5123
{
5124
	u64 gentry = 0;
5125
	int r;
5126 5127 5128

	/*
	 * Assume that the pte write on a page table of the same type
5129 5130
	 * as the current vcpu paging mode since we update the sptes only
	 * when they have the same mode.
5131
	 */
5132
	if (is_pae(vcpu) && *bytes == 4) {
5133
		/* Handle a 32-bit guest writing two halves of a 64-bit gpte */
5134 5135
		*gpa &= ~(gpa_t)7;
		*bytes = 8;
5136 5137
	}

5138 5139 5140 5141
	if (*bytes == 4 || *bytes == 8) {
		r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
		if (r)
			gentry = 0;
5142 5143
	}

5144 5145 5146 5147 5148 5149 5150
	return gentry;
}

/*
 * If we're seeing too many writes to a page, it may no longer be a page table,
 * or we may be forking, in which case it is better to unmap the page.
 */
5151
static bool detect_write_flooding(struct kvm_mmu_page *sp)
5152
{
5153 5154 5155 5156
	/*
	 * Skip write-flooding detected for the sp whose level is 1, because
	 * it can become unsync, then the guest page is not write-protected.
	 */
5157
	if (sp->role.level == PG_LEVEL_4K)
5158
		return false;
5159

5160 5161
	atomic_inc(&sp->write_flooding_count);
	return atomic_read(&sp->write_flooding_count) >= 3;
5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176
}

/*
 * Misaligned accesses are too much trouble to fix up; also, they usually
 * indicate a page is not used as a page table.
 */
static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
				    int bytes)
{
	unsigned offset, pte_size, misaligned;

	pgprintk("misaligned: gpa %llx bytes %d role %x\n",
		 gpa, bytes, sp->role.word);

	offset = offset_in_page(gpa);
5177
	pte_size = sp->role.gpte_is_8_bytes ? 8 : 4;
5178 5179 5180 5181 5182 5183 5184 5185

	/*
	 * Sometimes, the OS only writes the last one bytes to update status
	 * bits, for example, in linux, andb instruction is used in clear_bit().
	 */
	if (!(offset & (pte_size - 1)) && bytes == 1)
		return false;

5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200
	misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
	misaligned |= bytes < 4;

	return misaligned;
}

static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
{
	unsigned page_offset, quadrant;
	u64 *spte;
	int level;

	page_offset = offset_in_page(gpa);
	level = sp->role.level;
	*nspte = 1;
5201
	if (!sp->role.gpte_is_8_bytes) {
5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222
		page_offset <<= 1;	/* 32->64 */
		/*
		 * A 32-bit pde maps 4MB while the shadow pdes map
		 * only 2MB.  So we need to double the offset again
		 * and zap two pdes instead of one.
		 */
		if (level == PT32_ROOT_LEVEL) {
			page_offset &= ~7; /* kill rounding error */
			page_offset <<= 1;
			*nspte = 2;
		}
		quadrant = page_offset >> PAGE_SHIFT;
		page_offset &= ~PAGE_MASK;
		if (quadrant != sp->role.quadrant)
			return NULL;
	}

	spte = &sp->spt[page_offset / sizeof(*spte)];
	return spte;
}

5223
static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
5224 5225
			      const u8 *new, int bytes,
			      struct kvm_page_track_notifier_node *node)
5226 5227 5228 5229 5230 5231
{
	gfn_t gfn = gpa >> PAGE_SHIFT;
	struct kvm_mmu_page *sp;
	LIST_HEAD(invalid_list);
	u64 entry, gentry, *spte;
	int npte;
5232
	bool flush = false;
5233 5234 5235 5236 5237

	/*
	 * If we don't have indirect shadow pages, it means no page is
	 * write-protected, so we can exit simply.
	 */
5238
	if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
5239 5240 5241 5242 5243 5244
		return;

	pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);

	/*
	 * No need to care whether allocation memory is successful
I
Ingo Molnar 已提交
5245
	 * or not since pte prefetch is skipped if it does not have
5246 5247
	 * enough objects in the cache.
	 */
5248
	mmu_topup_memory_caches(vcpu, true);
5249

5250
	write_lock(&vcpu->kvm->mmu_lock);
5251 5252 5253

	gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);

5254
	++vcpu->kvm->stat.mmu_pte_write;
5255
	kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
5256

5257
	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
5258
		if (detect_write_misaligned(sp, gpa, bytes) ||
5259
		      detect_write_flooding(sp)) {
5260
			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
A
Avi Kivity 已提交
5261
			++vcpu->kvm->stat.mmu_flooded;
5262 5263
			continue;
		}
5264 5265 5266 5267 5268

		spte = get_written_sptes(sp, gpa, &npte);
		if (!spte)
			continue;

5269
		while (npte--) {
5270
			entry = *spte;
5271
			mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL);
5272 5273
			if (gentry && sp->role.level != PG_LEVEL_4K)
				++vcpu->kvm->stat.mmu_pde_zapped;
G
Gleb Natapov 已提交
5274
			if (need_remote_flush(entry, *spte))
5275
				flush = true;
5276
			++spte;
5277 5278
		}
	}
5279
	kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush);
5280
	kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
5281
	write_unlock(&vcpu->kvm->mmu_lock);
5282 5283
}

5284
int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
5285
		       void *insn, int insn_len)
5286
{
5287
	int r, emulation_type = EMULTYPE_PF;
5288
	bool direct = vcpu->arch.mmu->direct_map;
5289

5290
	if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
5291 5292
		return RET_PF_RETRY;

5293
	r = RET_PF_INVALID;
5294
	if (unlikely(error_code & PFERR_RSVD_MASK)) {
5295
		r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
5296
		if (r == RET_PF_EMULATE)
5297 5298
			goto emulate;
	}
5299

5300
	if (r == RET_PF_INVALID) {
5301 5302
		r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
					  lower_32_bits(error_code), false);
5303
		if (KVM_BUG_ON(r == RET_PF_INVALID, vcpu->kvm))
5304
			return -EIO;
5305 5306
	}

5307
	if (r < 0)
5308
		return r;
5309 5310
	if (r != RET_PF_EMULATE)
		return 1;
5311

5312 5313 5314 5315 5316 5317 5318
	/*
	 * Before emulating the instruction, check if the error code
	 * was due to a RO violation while translating the guest page.
	 * This can occur when using nested virtualization with nested
	 * paging in both guests. If true, we simply unprotect the page
	 * and resume the guest.
	 */
5319
	if (vcpu->arch.mmu->direct_map &&
5320
	    (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5321
		kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
5322 5323 5324
		return 1;
	}

5325 5326 5327 5328 5329 5330
	/*
	 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
	 * optimistically try to just unprotect the page and let the processor
	 * re-execute the instruction that caused the page fault.  Do not allow
	 * retrying MMIO emulation, as it's not only pointless but could also
	 * cause us to enter an infinite loop because the processor will keep
5331 5332 5333 5334
	 * faulting on the non-existent MMIO address.  Retrying an instruction
	 * from a nested guest is also pointless and dangerous as we are only
	 * explicitly shadowing L1's page tables, i.e. unprotecting something
	 * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5335
	 */
5336
	if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
5337
		emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
5338
emulate:
5339
	return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
5340
				       insn_len);
5341 5342 5343
}
EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);

5344 5345
void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
			    gva_t gva, hpa_t root_hpa)
M
Marcelo Tosatti 已提交
5346
{
5347
	int i;
5348

5349 5350 5351 5352 5353 5354
	/* It's actually a GPA for vcpu->arch.guest_mmu.  */
	if (mmu != &vcpu->arch.guest_mmu) {
		/* INVLPG on a non-canonical address is a NOP according to the SDM.  */
		if (is_noncanonical_address(gva, vcpu))
			return;

5355
		static_call(kvm_x86_tlb_flush_gva)(vcpu, gva);
5356 5357 5358
	}

	if (!mmu->invlpg)
5359 5360
		return;

5361 5362
	if (root_hpa == INVALID_PAGE) {
		mmu->invlpg(vcpu, gva, mmu->root_hpa);
5363

5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381
		/*
		 * INVLPG is required to invalidate any global mappings for the VA,
		 * irrespective of PCID. Since it would take us roughly similar amount
		 * of work to determine whether any of the prev_root mappings of the VA
		 * is marked global, or to just sync it blindly, so we might as well
		 * just always sync it.
		 *
		 * Mappings not reachable via the current cr3 or the prev_roots will be
		 * synced when switching to that cr3, so nothing needs to be done here
		 * for them.
		 */
		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
			if (VALID_PAGE(mmu->prev_roots[i].hpa))
				mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
	} else {
		mmu->invlpg(vcpu, gva, root_hpa);
	}
}
5382

5383 5384
void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
{
5385
	kvm_mmu_invalidate_gva(vcpu, vcpu->arch.walk_mmu, gva, INVALID_PAGE);
M
Marcelo Tosatti 已提交
5386 5387 5388 5389
	++vcpu->stat.invlpg;
}
EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);

5390

5391 5392
void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
{
5393
	struct kvm_mmu *mmu = vcpu->arch.mmu;
5394
	bool tlb_flush = false;
5395
	uint i;
5396 5397

	if (pcid == kvm_get_active_pcid(vcpu)) {
5398
		mmu->invlpg(vcpu, gva, mmu->root_hpa);
5399
		tlb_flush = true;
5400 5401
	}

5402 5403
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
		if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5404
		    pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) {
5405 5406 5407
			mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
			tlb_flush = true;
		}
5408
	}
5409

5410
	if (tlb_flush)
5411
		static_call(kvm_x86_tlb_flush_gva)(vcpu, gva);
5412

5413 5414 5415
	++vcpu->stat.invlpg;

	/*
5416 5417 5418
	 * Mappings not reachable via the current cr3 or the prev_roots will be
	 * synced when switching to that cr3, so nothing needs to be done here
	 * for them.
5419 5420 5421
	 */
}

5422 5423
void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level,
		       int tdp_max_root_level, int tdp_huge_page_level)
5424
{
5425
	tdp_enabled = enable_tdp;
5426
	tdp_root_level = tdp_forced_root_level;
5427
	max_tdp_level = tdp_max_root_level;
5428 5429

	/*
5430
	 * max_huge_page_level reflects KVM's MMU capabilities irrespective
5431 5432 5433 5434 5435 5436
	 * of kernel support, e.g. KVM may be capable of using 1GB pages when
	 * the kernel is not.  But, KVM never creates a page size greater than
	 * what is used by the kernel for any given HVA, i.e. the kernel's
	 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
	 */
	if (tdp_enabled)
5437
		max_huge_page_level = tdp_huge_page_level;
5438
	else if (boot_cpu_has(X86_FEATURE_GBPAGES))
5439
		max_huge_page_level = PG_LEVEL_1G;
5440
	else
5441
		max_huge_page_level = PG_LEVEL_2M;
5442
}
5443
EXPORT_SYMBOL_GPL(kvm_configure_mmu);
5444 5445

/* The return value indicates if tlb flush on all vcpus is needed. */
5446 5447 5448
typedef bool (*slot_level_handler) (struct kvm *kvm,
				    struct kvm_rmap_head *rmap_head,
				    const struct kvm_memory_slot *slot);
5449 5450 5451

/* The caller should hold mmu-lock before calling this function. */
static __always_inline bool
5452
slot_handle_level_range(struct kvm *kvm, const struct kvm_memory_slot *memslot,
5453
			slot_level_handler fn, int start_level, int end_level,
5454 5455
			gfn_t start_gfn, gfn_t end_gfn, bool flush_on_yield,
			bool flush)
5456 5457 5458 5459 5460 5461
{
	struct slot_rmap_walk_iterator iterator;

	for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
			end_gfn, &iterator) {
		if (iterator.rmap)
5462
			flush |= fn(kvm, iterator.rmap, memslot);
5463

5464
		if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
5465
			if (flush && flush_on_yield) {
5466 5467 5468
				kvm_flush_remote_tlbs_with_address(kvm,
						start_gfn,
						iterator.gfn - start_gfn + 1);
5469 5470
				flush = false;
			}
5471
			cond_resched_rwlock_write(&kvm->mmu_lock);
5472 5473 5474 5475 5476 5477 5478
		}
	}

	return flush;
}

static __always_inline bool
5479
slot_handle_level(struct kvm *kvm, const struct kvm_memory_slot *memslot,
5480
		  slot_level_handler fn, int start_level, int end_level,
5481
		  bool flush_on_yield)
5482 5483 5484 5485
{
	return slot_handle_level_range(kvm, memslot, fn, start_level,
			end_level, memslot->base_gfn,
			memslot->base_gfn + memslot->npages - 1,
5486
			flush_on_yield, false);
5487 5488 5489
}

static __always_inline bool
5490 5491
slot_handle_level_4k(struct kvm *kvm, const struct kvm_memory_slot *memslot,
		     slot_level_handler fn, bool flush_on_yield)
5492
{
5493
	return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
5494
				 PG_LEVEL_4K, flush_on_yield);
5495 5496
}

5497
static void free_mmu_pages(struct kvm_mmu *mmu)
A
Avi Kivity 已提交
5498
{
5499 5500
	if (!tdp_enabled && mmu->pae_root)
		set_memory_encrypted((unsigned long)mmu->pae_root, 1);
5501
	free_page((unsigned long)mmu->pae_root);
5502
	free_page((unsigned long)mmu->pml4_root);
5503
	free_page((unsigned long)mmu->pml5_root);
A
Avi Kivity 已提交
5504 5505
}

5506
static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
A
Avi Kivity 已提交
5507
{
5508
	struct page *page;
A
Avi Kivity 已提交
5509 5510
	int i;

5511 5512 5513 5514 5515 5516
	mmu->root_hpa = INVALID_PAGE;
	mmu->root_pgd = 0;
	mmu->translate_gpa = translate_gpa;
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
		mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;

5517 5518 5519 5520
	/* vcpu->arch.guest_mmu isn't used when !tdp_enabled. */
	if (!tdp_enabled && mmu == &vcpu->arch.guest_mmu)
		return 0;

5521
	/*
5522 5523 5524 5525
	 * When using PAE paging, the four PDPTEs are treated as 'root' pages,
	 * while the PDP table is a per-vCPU construct that's allocated at MMU
	 * creation.  When emulating 32-bit mode, cr3 is only 32 bits even on
	 * x86_64.  Therefore we need to allocate the PDP table in the first
5526 5527 5528 5529 5530
	 * 4GB of memory, which happens to fit the DMA32 zone.  TDP paging
	 * generally doesn't use PAE paging and can skip allocating the PDP
	 * table.  The main exception, handled here, is SVM's 32-bit NPT.  The
	 * other exception is for shadowing L1's 32-bit or PAE NPT on 64-bit
	 * KVM; that horror is handled on-demand by mmu_alloc_shadow_roots().
5531
	 */
5532
	if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
5533 5534
		return 0;

5535
	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
5536
	if (!page)
5537 5538
		return -ENOMEM;

5539
	mmu->pae_root = page_address(page);
5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553

	/*
	 * CR3 is only 32 bits when PAE paging is used, thus it's impossible to
	 * get the CPU to treat the PDPTEs as encrypted.  Decrypt the page so
	 * that KVM's writes and the CPU's reads get along.  Note, this is
	 * only necessary when using shadow paging, as 64-bit NPT can get at
	 * the C-bit even when shadowing 32-bit NPT, and SME isn't supported
	 * by 32-bit kernels (when KVM itself uses 32-bit NPT).
	 */
	if (!tdp_enabled)
		set_memory_decrypted((unsigned long)mmu->pae_root, 1);
	else
		WARN_ON_ONCE(shadow_me_mask);

5554
	for (i = 0; i < 4; ++i)
5555
		mmu->pae_root[i] = INVALID_PAE_ROOT;
5556

A
Avi Kivity 已提交
5557 5558 5559
	return 0;
}

5560
int kvm_mmu_create(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
5561
{
5562
	int ret;
5563

5564
	vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache;
5565 5566
	vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO;

5567
	vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache;
5568
	vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO;
5569

5570 5571
	vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO;

5572 5573
	vcpu->arch.mmu = &vcpu->arch.root_mmu;
	vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
A
Avi Kivity 已提交
5574

5575
	vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5576

5577
	ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu);
5578 5579 5580
	if (ret)
		return ret;

5581
	ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu);
5582 5583 5584 5585 5586 5587 5588
	if (ret)
		goto fail_allocate_root;

	return ret;
 fail_allocate_root:
	free_mmu_pages(&vcpu->arch.guest_mmu);
	return ret;
A
Avi Kivity 已提交
5589 5590
}

5591
#define BATCH_ZAP_PAGES	10
5592 5593 5594
static void kvm_zap_obsolete_pages(struct kvm *kvm)
{
	struct kvm_mmu_page *sp, *node;
5595
	int nr_zapped, batch = 0;
5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607

restart:
	list_for_each_entry_safe_reverse(sp, node,
	      &kvm->arch.active_mmu_pages, link) {
		/*
		 * No obsolete valid page exists before a newly created page
		 * since active_mmu_pages is a FIFO list.
		 */
		if (!is_obsolete_sp(kvm, sp))
			break;

		/*
5608 5609 5610
		 * Invalid pages should never land back on the list of active
		 * pages.  Skip the bogus page, otherwise we'll get stuck in an
		 * infinite loop if the page gets put back on the list (again).
5611
		 */
5612
		if (WARN_ON(sp->role.invalid))
5613 5614
			continue;

5615 5616 5617 5618 5619 5620
		/*
		 * No need to flush the TLB since we're only zapping shadow
		 * pages with an obsolete generation number and all vCPUS have
		 * loaded a new root, i.e. the shadow pages being zapped cannot
		 * be in active use by the guest.
		 */
5621
		if (batch >= BATCH_ZAP_PAGES &&
5622
		    cond_resched_rwlock_write(&kvm->mmu_lock)) {
5623
			batch = 0;
5624 5625 5626
			goto restart;
		}

5627 5628
		if (__kvm_mmu_prepare_zap_page(kvm, sp,
				&kvm->arch.zapped_obsolete_pages, &nr_zapped)) {
5629
			batch += nr_zapped;
5630
			goto restart;
5631
		}
5632 5633
	}

5634 5635 5636 5637 5638
	/*
	 * Trigger a remote TLB flush before freeing the page tables to ensure
	 * KVM is not in the middle of a lockless shadow page table walk, which
	 * may reference the pages.
	 */
5639
	kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652
}

/*
 * Fast invalidate all shadow pages and use lock-break technique
 * to zap obsolete pages.
 *
 * It's required when memslot is being deleted or VM is being
 * destroyed, in these cases, we should ensure that KVM MMU does
 * not use any resource of the being-deleted slot or all slots
 * after calling the function.
 */
static void kvm_mmu_zap_all_fast(struct kvm *kvm)
{
5653 5654
	lockdep_assert_held(&kvm->slots_lock);

5655
	write_lock(&kvm->mmu_lock);
5656
	trace_kvm_mmu_zap_all_fast(kvm);
5657 5658 5659 5660 5661 5662 5663 5664 5665

	/*
	 * Toggle mmu_valid_gen between '0' and '1'.  Because slots_lock is
	 * held for the entire duration of zapping obsolete pages, it's
	 * impossible for there to be multiple invalid generations associated
	 * with *valid* shadow pages at any given time, i.e. there is exactly
	 * one valid generation and (at most) one invalid generation.
	 */
	kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
5666

5667 5668 5669 5670 5671 5672 5673 5674 5675
	/* In order to ensure all threads see this change when
	 * handling the MMU reload signal, this must happen in the
	 * same critical section as kvm_reload_remote_mmus, and
	 * before kvm_zap_obsolete_pages as kvm_zap_obsolete_pages
	 * could drop the MMU lock and yield.
	 */
	if (is_tdp_mmu_enabled(kvm))
		kvm_tdp_mmu_invalidate_all_roots(kvm);

5676 5677 5678 5679 5680 5681 5682 5683 5684 5685
	/*
	 * Notify all vcpus to reload its shadow page table and flush TLB.
	 * Then all vcpus will switch to new shadow page table with the new
	 * mmu_valid_gen.
	 *
	 * Note: we need to do this under the protection of mmu_lock,
	 * otherwise, vcpu would purge shadow page but miss tlb flush.
	 */
	kvm_reload_remote_mmus(kvm);

5686
	kvm_zap_obsolete_pages(kvm);
5687

5688
	write_unlock(&kvm->mmu_lock);
5689 5690 5691 5692 5693 5694

	if (is_tdp_mmu_enabled(kvm)) {
		read_lock(&kvm->mmu_lock);
		kvm_tdp_mmu_zap_invalidated_roots(kvm);
		read_unlock(&kvm->mmu_lock);
	}
5695 5696
}

5697 5698 5699 5700 5701
static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
{
	return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
}

5702
static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5703 5704
			struct kvm_memory_slot *slot,
			struct kvm_page_track_notifier_node *node)
5705
{
5706
	kvm_mmu_zap_all_fast(kvm);
5707 5708
}

5709
void kvm_mmu_init_vm(struct kvm *kvm)
5710
{
5711
	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5712

5713 5714
	spin_lock_init(&kvm->arch.mmu_unsync_pages_lock);

5715
	kvm_mmu_init_tdp_mmu(kvm);
5716

5717
	node->track_write = kvm_mmu_pte_write;
5718
	node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5719
	kvm_page_track_register_notifier(kvm, node);
5720 5721
}

5722
void kvm_mmu_uninit_vm(struct kvm *kvm)
5723
{
5724
	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5725

5726
	kvm_page_track_unregister_notifier(kvm, node);
5727 5728

	kvm_mmu_uninit_tdp_mmu(kvm);
5729 5730
}

5731 5732 5733 5734
static bool __kvm_zap_rmaps(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
{
	const struct kvm_memory_slot *memslot;
	struct kvm_memslots *slots;
5735
	struct kvm_memslot_iter iter;
5736 5737
	bool flush = false;
	gfn_t start, end;
5738
	int i;
5739 5740 5741 5742 5743 5744

	if (!kvm_memslots_have_rmaps(kvm))
		return flush;

	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
5745 5746 5747

		kvm_for_each_memslot_in_gfn_range(&iter, slots, gfn_start, gfn_end) {
			memslot = iter.slot;
5748 5749
			start = max(gfn_start, memslot->base_gfn);
			end = min(gfn_end, memslot->base_gfn + memslot->npages);
5750
			if (WARN_ON_ONCE(start >= end))
5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761
				continue;

			flush = slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
							PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL,
							start, end - 1, true, flush);
		}
	}

	return flush;
}

5762 5763 5764 5765
/*
 * Invalidate (zap) SPTEs that cover GFNs from gfn_start and up to gfn_end
 * (not including it)
 */
X
Xiao Guangrong 已提交
5766 5767
void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
{
5768
	bool flush;
5769
	int i;
X
Xiao Guangrong 已提交
5770

5771 5772 5773
	if (WARN_ON_ONCE(gfn_end <= gfn_start))
		return;

5774 5775
	write_lock(&kvm->mmu_lock);

5776 5777
	kvm_inc_notifier_count(kvm, gfn_start, gfn_end);

5778
	flush = __kvm_zap_rmaps(kvm, gfn_start, gfn_end);
X
Xiao Guangrong 已提交
5779

5780
	if (is_tdp_mmu_enabled(kvm)) {
5781 5782
		for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
			flush = kvm_tdp_mmu_zap_gfn_range(kvm, i, gfn_start,
5783
							  gfn_end, flush);
5784
	}
5785 5786

	if (flush)
5787 5788
		kvm_flush_remote_tlbs_with_address(kvm, gfn_start,
						   gfn_end - gfn_start);
5789

5790 5791
	kvm_dec_notifier_count(kvm, gfn_start, gfn_end);

5792
	write_unlock(&kvm->mmu_lock);
X
Xiao Guangrong 已提交
5793 5794
}

5795
static bool slot_rmap_write_protect(struct kvm *kvm,
5796
				    struct kvm_rmap_head *rmap_head,
5797
				    const struct kvm_memory_slot *slot)
5798
{
5799
	return __rmap_write_protect(kvm, rmap_head, false);
5800 5801
}

5802
void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5803
				      const struct kvm_memory_slot *memslot,
5804
				      int start_level)
A
Avi Kivity 已提交
5805
{
5806
	bool flush = false;
A
Avi Kivity 已提交
5807

5808 5809 5810 5811 5812 5813 5814
	if (kvm_memslots_have_rmaps(kvm)) {
		write_lock(&kvm->mmu_lock);
		flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect,
					  start_level, KVM_MAX_HUGEPAGE_LEVEL,
					  false);
		write_unlock(&kvm->mmu_lock);
	}
5815

5816 5817 5818 5819 5820 5821
	if (is_tdp_mmu_enabled(kvm)) {
		read_lock(&kvm->mmu_lock);
		flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, start_level);
		read_unlock(&kvm->mmu_lock);
	}

5822 5823 5824 5825 5826 5827 5828
	/*
	 * We can flush all the TLBs out of the mmu lock without TLB
	 * corruption since we just change the spte from writable to
	 * readonly so that we only need to care the case of changing
	 * spte from present to present (changing the spte from present
	 * to nonpresent will flush all the TLBs immediately), in other
	 * words, the only case we care is mmu_spte_update() where we
5829 5830 5831
	 * have checked Host-writable | MMU-writable instead of
	 * PT_WRITABLE_MASK, that means it does not depend on PT_WRITABLE_MASK
	 * anymore.
5832
	 */
5833
	if (flush)
5834
		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
A
Avi Kivity 已提交
5835
}
5836

5837
static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5838
					 struct kvm_rmap_head *rmap_head,
5839
					 const struct kvm_memory_slot *slot)
5840 5841 5842 5843
{
	u64 *sptep;
	struct rmap_iterator iter;
	int need_tlb_flush = 0;
D
Dan Williams 已提交
5844
	kvm_pfn_t pfn;
5845 5846
	struct kvm_mmu_page *sp;

5847
restart:
5848
	for_each_rmap_spte(rmap_head, &iter, sptep) {
5849
		sp = sptep_to_sp(sptep);
5850 5851 5852
		pfn = spte_to_pfn(*sptep);

		/*
5853 5854 5855 5856 5857
		 * We cannot do huge page mapping for indirect shadow pages,
		 * which are found on the last rmap (level = 1) when not using
		 * tdp; such shadow pages are synced with the page table in
		 * the guest, and the guest page table is using 4K page size
		 * mapping if the indirect sp has level = 1.
5858
		 */
5859
		if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
5860 5861
		    sp->role.level < kvm_mmu_max_mapping_level(kvm, slot, sp->gfn,
							       pfn, PG_LEVEL_NUM)) {
5862
			pte_list_remove(kvm, rmap_head, sptep);
5863 5864 5865 5866 5867 5868 5869

			if (kvm_available_flush_tlb_with_range())
				kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
					KVM_PAGES_PER_HPAGE(sp->role.level));
			else
				need_tlb_flush = 1;

5870 5871
			goto restart;
		}
5872 5873 5874 5875 5876 5877
	}

	return need_tlb_flush;
}

void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5878
				   const struct kvm_memory_slot *slot)
5879
{
5880 5881
	if (kvm_memslots_have_rmaps(kvm)) {
		write_lock(&kvm->mmu_lock);
5882 5883 5884 5885 5886
		/*
		 * Zap only 4k SPTEs since the legacy MMU only supports dirty
		 * logging at a 4k granularity and never creates collapsible
		 * 2m SPTEs during dirty logging.
		 */
5887
		if (slot_handle_level_4k(kvm, slot, kvm_mmu_zap_collapsible_spte, true))
5888 5889 5890
			kvm_arch_flush_remote_tlbs_memslot(kvm, slot);
		write_unlock(&kvm->mmu_lock);
	}
5891 5892 5893

	if (is_tdp_mmu_enabled(kvm)) {
		read_lock(&kvm->mmu_lock);
5894
		kvm_tdp_mmu_zap_collapsible_sptes(kvm, slot);
5895 5896
		read_unlock(&kvm->mmu_lock);
	}
5897 5898
}

5899
void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
5900
					const struct kvm_memory_slot *memslot)
5901 5902
{
	/*
5903
	 * All current use cases for flushing the TLBs for a specific memslot
5904
	 * related to dirty logging, and many do the TLB flush out of mmu_lock.
5905 5906 5907
	 * The interaction between the various operations on memslot must be
	 * serialized by slots_locks to ensure the TLB flush from one operation
	 * is observed by any other operation on the same memslot.
5908 5909
	 */
	lockdep_assert_held(&kvm->slots_lock);
5910 5911
	kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
					   memslot->npages);
5912 5913
}

5914
void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5915
				   const struct kvm_memory_slot *memslot)
5916
{
5917
	bool flush = false;
5918

5919 5920
	if (kvm_memslots_have_rmaps(kvm)) {
		write_lock(&kvm->mmu_lock);
5921 5922 5923 5924 5925
		/*
		 * Clear dirty bits only on 4k SPTEs since the legacy MMU only
		 * support dirty logging at a 4k granularity.
		 */
		flush = slot_handle_level_4k(kvm, memslot, __rmap_clear_dirty, false);
5926 5927
		write_unlock(&kvm->mmu_lock);
	}
5928

5929 5930 5931 5932 5933 5934
	if (is_tdp_mmu_enabled(kvm)) {
		read_lock(&kvm->mmu_lock);
		flush |= kvm_tdp_mmu_clear_dirty_slot(kvm, memslot);
		read_unlock(&kvm->mmu_lock);
	}

5935 5936 5937 5938 5939 5940 5941
	/*
	 * It's also safe to flush TLBs out of mmu lock here as currently this
	 * function is only used for dirty logging, in which case flushing TLB
	 * out of mmu lock also guarantees no dirty pages will be lost in
	 * dirty_bitmap.
	 */
	if (flush)
5942
		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5943 5944
}

5945
void kvm_mmu_zap_all(struct kvm *kvm)
5946 5947
{
	struct kvm_mmu_page *sp, *node;
5948
	LIST_HEAD(invalid_list);
5949
	int ign;
5950

5951
	write_lock(&kvm->mmu_lock);
5952
restart:
5953
	list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
5954
		if (WARN_ON(sp->role.invalid))
5955
			continue;
5956
		if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
5957
			goto restart;
5958
		if (cond_resched_rwlock_write(&kvm->mmu_lock))
5959 5960 5961
			goto restart;
	}

5962
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
5963

5964
	if (is_tdp_mmu_enabled(kvm))
5965 5966
		kvm_tdp_mmu_zap_all(kvm);

5967
	write_unlock(&kvm->mmu_lock);
5968 5969
}

5970
void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
5971
{
5972
	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
5973

5974
	gen &= MMIO_SPTE_GEN_MASK;
5975

5976
	/*
5977 5978 5979 5980 5981 5982 5983 5984
	 * Generation numbers are incremented in multiples of the number of
	 * address spaces in order to provide unique generations across all
	 * address spaces.  Strip what is effectively the address space
	 * modifier prior to checking for a wrap of the MMIO generation so
	 * that a wrap in any address space is detected.
	 */
	gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);

5985
	/*
5986
	 * The very rare case: if the MMIO generation number has wrapped,
5987 5988
	 * zap all shadow pages.
	 */
5989
	if (unlikely(gen == 0)) {
5990
		kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
5991
		kvm_mmu_zap_all_fast(kvm);
5992
	}
5993 5994
}

5995 5996
static unsigned long
mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
5997 5998
{
	struct kvm *kvm;
5999
	int nr_to_scan = sc->nr_to_scan;
6000
	unsigned long freed = 0;
6001

J
Junaid Shahid 已提交
6002
	mutex_lock(&kvm_lock);
6003 6004

	list_for_each_entry(kvm, &vm_list, vm_list) {
6005
		int idx;
6006
		LIST_HEAD(invalid_list);
6007

6008 6009 6010 6011 6012 6013 6014 6015
		/*
		 * Never scan more than sc->nr_to_scan VM instances.
		 * Will not hit this condition practically since we do not try
		 * to shrink more than one VM and it is very unlikely to see
		 * !n_used_mmu_pages so many times.
		 */
		if (!nr_to_scan--)
			break;
6016 6017 6018 6019 6020 6021
		/*
		 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
		 * here. We may skip a VM instance errorneosly, but we do not
		 * want to shrink a VM that only started to populate its MMU
		 * anyway.
		 */
6022 6023
		if (!kvm->arch.n_used_mmu_pages &&
		    !kvm_has_zapped_obsolete_pages(kvm))
6024 6025
			continue;

6026
		idx = srcu_read_lock(&kvm->srcu);
6027
		write_lock(&kvm->mmu_lock);
6028

6029 6030 6031 6032 6033 6034
		if (kvm_has_zapped_obsolete_pages(kvm)) {
			kvm_mmu_commit_zap_page(kvm,
			      &kvm->arch.zapped_obsolete_pages);
			goto unlock;
		}

6035
		freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan);
6036

6037
unlock:
6038
		write_unlock(&kvm->mmu_lock);
6039
		srcu_read_unlock(&kvm->srcu, idx);
6040

6041 6042 6043 6044 6045
		/*
		 * unfair on small ones
		 * per-vm shrinkers cry out
		 * sadness comes quickly
		 */
6046 6047
		list_move_tail(&kvm->vm_list, &vm_list);
		break;
6048 6049
	}

J
Junaid Shahid 已提交
6050
	mutex_unlock(&kvm_lock);
6051 6052 6053 6054 6055 6056
	return freed;
}

static unsigned long
mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
{
6057
	return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
6058 6059 6060
}

static struct shrinker mmu_shrinker = {
6061 6062
	.count_objects = mmu_shrink_count,
	.scan_objects = mmu_shrink_scan,
6063 6064 6065
	.seeks = DEFAULT_SEEKS * 10,
};

I
Ingo Molnar 已提交
6066
static void mmu_destroy_caches(void)
6067
{
6068 6069
	kmem_cache_destroy(pte_list_desc_cache);
	kmem_cache_destroy(mmu_page_header_cache);
6070 6071
}

P
Paolo Bonzini 已提交
6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105
static bool get_nx_auto_mode(void)
{
	/* Return true when CPU has the bug, and mitigations are ON */
	return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
}

static void __set_nx_huge_pages(bool val)
{
	nx_huge_pages = itlb_multihit_kvm_mitigation = val;
}

static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
{
	bool old_val = nx_huge_pages;
	bool new_val;

	/* In "auto" mode deploy workaround only if CPU has the bug. */
	if (sysfs_streq(val, "off"))
		new_val = 0;
	else if (sysfs_streq(val, "force"))
		new_val = 1;
	else if (sysfs_streq(val, "auto"))
		new_val = get_nx_auto_mode();
	else if (strtobool(val, &new_val) < 0)
		return -EINVAL;

	__set_nx_huge_pages(new_val);

	if (new_val != old_val) {
		struct kvm *kvm;

		mutex_lock(&kvm_lock);

		list_for_each_entry(kvm, &vm_list, vm_list) {
6106
			mutex_lock(&kvm->slots_lock);
P
Paolo Bonzini 已提交
6107
			kvm_mmu_zap_all_fast(kvm);
6108
			mutex_unlock(&kvm->slots_lock);
6109 6110

			wake_up_process(kvm->arch.nx_lpage_recovery_thread);
P
Paolo Bonzini 已提交
6111 6112 6113 6114 6115 6116 6117
		}
		mutex_unlock(&kvm_lock);
	}

	return 0;
}

6118 6119
int kvm_mmu_module_init(void)
{
6120 6121
	int ret = -ENOMEM;

P
Paolo Bonzini 已提交
6122 6123 6124
	if (nx_huge_pages == -1)
		__set_nx_huge_pages(get_nx_auto_mode());

6125 6126 6127 6128 6129 6130 6131 6132 6133 6134
	/*
	 * MMU roles use union aliasing which is, generally speaking, an
	 * undefined behavior. However, we supposedly know how compilers behave
	 * and the current status quo is unlikely to change. Guardians below are
	 * supposed to let us know if the assumption becomes false.
	 */
	BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
	BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
	BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));

6135
	kvm_mmu_reset_all_pte_masks();
6136

6137 6138
	pte_list_desc_cache = kmem_cache_create("pte_list_desc",
					    sizeof(struct pte_list_desc),
6139
					    0, SLAB_ACCOUNT, NULL);
6140
	if (!pte_list_desc_cache)
6141
		goto out;
6142

6143 6144
	mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
						  sizeof(struct kvm_mmu_page),
6145
						  0, SLAB_ACCOUNT, NULL);
6146
	if (!mmu_page_header_cache)
6147
		goto out;
6148

6149
	if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
6150
		goto out;
6151

6152 6153 6154
	ret = register_shrinker(&mmu_shrinker);
	if (ret)
		goto out;
6155

6156 6157
	return 0;

6158
out:
6159
	mmu_destroy_caches();
6160
	return ret;
6161 6162
}

6163 6164
void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
{
6165
	kvm_mmu_unload(vcpu);
6166 6167
	free_mmu_pages(&vcpu->arch.root_mmu);
	free_mmu_pages(&vcpu->arch.guest_mmu);
6168
	mmu_free_memory_caches(vcpu);
6169 6170 6171 6172 6173 6174 6175
}

void kvm_mmu_module_exit(void)
{
	mmu_destroy_caches();
	percpu_counter_destroy(&kvm_total_used_mmu_pages);
	unregister_shrinker(&mmu_shrinker);
6176 6177
	mmu_audit_disable();
}
6178

6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203
/*
 * Calculate the effective recovery period, accounting for '0' meaning "let KVM
 * select a halving time of 1 hour".  Returns true if recovery is enabled.
 */
static bool calc_nx_huge_pages_recovery_period(uint *period)
{
	/*
	 * Use READ_ONCE to get the params, this may be called outside of the
	 * param setters, e.g. by the kthread to compute its next timeout.
	 */
	bool enabled = READ_ONCE(nx_huge_pages);
	uint ratio = READ_ONCE(nx_huge_pages_recovery_ratio);

	if (!enabled || !ratio)
		return false;

	*period = READ_ONCE(nx_huge_pages_recovery_period_ms);
	if (!*period) {
		/* Make sure the period is not less than one second.  */
		ratio = min(ratio, 3600u);
		*period = 60 * 60 * 1000 / ratio;
	}
	return true;
}

6204
static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp)
6205
{
6206 6207
	bool was_recovery_enabled, is_recovery_enabled;
	uint old_period, new_period;
6208 6209
	int err;

6210
	was_recovery_enabled = calc_nx_huge_pages_recovery_period(&old_period);
6211

6212 6213 6214 6215
	err = param_set_uint(val, kp);
	if (err)
		return err;

6216
	is_recovery_enabled = calc_nx_huge_pages_recovery_period(&new_period);
6217

6218
	if (is_recovery_enabled &&
6219
	    (!was_recovery_enabled || old_period > new_period)) {
6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234
		struct kvm *kvm;

		mutex_lock(&kvm_lock);

		list_for_each_entry(kvm, &vm_list, vm_list)
			wake_up_process(kvm->arch.nx_lpage_recovery_thread);

		mutex_unlock(&kvm_lock);
	}

	return err;
}

static void kvm_recover_nx_lpages(struct kvm *kvm)
{
6235
	unsigned long nx_lpage_splits = kvm->stat.nx_lpage_splits;
6236 6237 6238 6239
	int rcu_idx;
	struct kvm_mmu_page *sp;
	unsigned int ratio;
	LIST_HEAD(invalid_list);
6240
	bool flush = false;
6241 6242 6243
	ulong to_zap;

	rcu_idx = srcu_read_lock(&kvm->srcu);
6244
	write_lock(&kvm->mmu_lock);
6245 6246

	ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
6247
	to_zap = ratio ? DIV_ROUND_UP(nx_lpage_splits, ratio) : 0;
6248 6249 6250 6251
	for ( ; to_zap; --to_zap) {
		if (list_empty(&kvm->arch.lpage_disallowed_mmu_pages))
			break;

6252 6253 6254 6255 6256 6257 6258 6259 6260
		/*
		 * We use a separate list instead of just using active_mmu_pages
		 * because the number of lpage_disallowed pages is expected to
		 * be relatively small compared to the total.
		 */
		sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
				      struct kvm_mmu_page,
				      lpage_disallowed_link);
		WARN_ON_ONCE(!sp->lpage_disallowed);
6261
		if (is_tdp_mmu_page(sp)) {
6262
			flush |= kvm_tdp_mmu_zap_sp(kvm, sp);
6263
		} else {
6264 6265 6266
			kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
			WARN_ON_ONCE(sp->lpage_disallowed);
		}
6267

6268
		if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
6269
			kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
6270
			cond_resched_rwlock_write(&kvm->mmu_lock);
6271
			flush = false;
6272 6273
		}
	}
6274
	kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
6275

6276
	write_unlock(&kvm->mmu_lock);
6277 6278 6279 6280 6281
	srcu_read_unlock(&kvm->srcu, rcu_idx);
}

static long get_nx_lpage_recovery_timeout(u64 start_time)
{
6282 6283
	bool enabled;
	uint period;
6284

6285
	enabled = calc_nx_huge_pages_recovery_period(&period);
6286

6287 6288
	return enabled ? start_time + msecs_to_jiffies(period) - get_jiffies_64()
		       : MAX_SCHEDULE_TIMEOUT;
6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333
}

static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
{
	u64 start_time;
	long remaining_time;

	while (true) {
		start_time = get_jiffies_64();
		remaining_time = get_nx_lpage_recovery_timeout(start_time);

		set_current_state(TASK_INTERRUPTIBLE);
		while (!kthread_should_stop() && remaining_time > 0) {
			schedule_timeout(remaining_time);
			remaining_time = get_nx_lpage_recovery_timeout(start_time);
			set_current_state(TASK_INTERRUPTIBLE);
		}

		set_current_state(TASK_RUNNING);

		if (kthread_should_stop())
			return 0;

		kvm_recover_nx_lpages(kvm);
	}
}

int kvm_mmu_post_init_vm(struct kvm *kvm)
{
	int err;

	err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
					  "kvm-nx-lpage-recovery",
					  &kvm->arch.nx_lpage_recovery_thread);
	if (!err)
		kthread_unpark(kvm->arch.nx_lpage_recovery_thread);

	return err;
}

void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
{
	if (kvm->arch.nx_lpage_recovery_thread)
		kthread_stop(kvm->arch.nx_lpage_recovery_thread);
}