mmu.c 170.2 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
A
Avi Kivity 已提交
2 3 4 5 6 7 8 9 10
/*
 * Kernel-based Virtual Machine driver for Linux
 *
 * This module enables machines with Intel VT-x extensions to run virtual
 * machines without emulation or binary translation.
 *
 * MMU support
 *
 * Copyright (C) 2006 Qumranet, Inc.
N
Nicolas Kaiser 已提交
11
 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
A
Avi Kivity 已提交
12 13 14 15 16
 *
 * Authors:
 *   Yaniv Kamay  <yaniv@qumranet.com>
 *   Avi Kivity   <avi@qumranet.com>
 */
A
Avi Kivity 已提交
17

18
#include "irq.h"
19
#include "mmu.h"
20
#include "x86.h"
A
Avi Kivity 已提交
21
#include "kvm_cache_regs.h"
22
#include "cpuid.h"
A
Avi Kivity 已提交
23

24
#include <linux/kvm_host.h>
A
Avi Kivity 已提交
25 26 27 28
#include <linux/types.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/highmem.h>
29 30
#include <linux/moduleparam.h>
#include <linux/export.h>
31
#include <linux/swap.h>
M
Marcelo Tosatti 已提交
32
#include <linux/hugetlb.h>
33
#include <linux/compiler.h>
34
#include <linux/srcu.h>
35
#include <linux/slab.h>
36
#include <linux/sched/signal.h>
37
#include <linux/uaccess.h>
38
#include <linux/hash.h>
39
#include <linux/kern_levels.h>
40
#include <linux/kthread.h>
A
Avi Kivity 已提交
41

A
Avi Kivity 已提交
42
#include <asm/page.h>
43
#include <asm/pat.h>
A
Avi Kivity 已提交
44
#include <asm/cmpxchg.h>
45
#include <asm/e820/api.h>
46
#include <asm/io.h>
47
#include <asm/vmx.h>
48
#include <asm/kvm_page_track.h>
49
#include "trace.h"
A
Avi Kivity 已提交
50

P
Paolo Bonzini 已提交
51 52 53
extern bool itlb_multihit_kvm_mitigation;

static int __read_mostly nx_huge_pages = -1;
54 55 56 57
#ifdef CONFIG_PREEMPT_RT
/* Recovery can cause latency spikes, disable it for PREEMPT_RT.  */
static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
#else
58
static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
59
#endif
P
Paolo Bonzini 已提交
60 61

static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
62
static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp);
P
Paolo Bonzini 已提交
63 64 65 66 67 68

static struct kernel_param_ops nx_huge_pages_ops = {
	.set = set_nx_huge_pages,
	.get = param_get_bool,
};

69 70 71 72 73
static struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = {
	.set = set_nx_huge_pages_recovery_ratio,
	.get = param_get_uint,
};

P
Paolo Bonzini 已提交
74 75
module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
__MODULE_PARM_TYPE(nx_huge_pages, "bool");
76 77 78
module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops,
		&nx_huge_pages_recovery_ratio, 0644);
__MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
P
Paolo Bonzini 已提交
79

80 81 82 83 84 85 86
/*
 * When setting this variable to true it enables Two-Dimensional-Paging
 * where the hardware walks 2 page tables:
 * 1. the guest-virtual to guest-physical
 * 2. while doing 1. it walks guest-physical to host-physical
 * If the hardware supports that we don't need to do shadow paging.
 */
87
bool tdp_enabled = false;
88

89 90 91 92
enum {
	AUDIT_PRE_PAGE_FAULT,
	AUDIT_POST_PAGE_FAULT,
	AUDIT_PRE_PTE_WRITE,
93 94 95
	AUDIT_POST_PTE_WRITE,
	AUDIT_PRE_SYNC,
	AUDIT_POST_SYNC
96
};
97

98
#undef MMU_DEBUG
99 100

#ifdef MMU_DEBUG
101 102
static bool dbg = 0;
module_param(dbg, bool, 0644);
103 104 105

#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
106
#define MMU_WARN_ON(x) WARN_ON(x)
107 108 109
#else
#define pgprintk(x...) do { } while (0)
#define rmap_printk(x...) do { } while (0)
110
#define MMU_WARN_ON(x) do { } while (0)
111
#endif
A
Avi Kivity 已提交
112

113 114
#define PTE_PREFETCH_NUM		8

115
#define PT_FIRST_AVAIL_BITS_SHIFT 10
116 117 118 119 120 121 122 123 124
#define PT64_SECOND_AVAIL_BITS_SHIFT 54

/*
 * The mask used to denote special SPTEs, which can be either MMIO SPTEs or
 * Access Tracking SPTEs.
 */
#define SPTE_SPECIAL_MASK (3ULL << 52)
#define SPTE_AD_ENABLED_MASK (0ULL << 52)
#define SPTE_AD_DISABLED_MASK (1ULL << 52)
125
#define SPTE_AD_WRPROT_ONLY_MASK (2ULL << 52)
126
#define SPTE_MMIO_MASK (3ULL << 52)
A
Avi Kivity 已提交
127 128 129 130

#define PT64_LEVEL_BITS 9

#define PT64_LEVEL_SHIFT(level) \
M
Mike Day 已提交
131
		(PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
A
Avi Kivity 已提交
132 133 134 135 136 137 138 139

#define PT64_INDEX(address, level)\
	(((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))


#define PT32_LEVEL_BITS 10

#define PT32_LEVEL_SHIFT(level) \
M
Mike Day 已提交
140
		(PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
A
Avi Kivity 已提交
141

142 143 144
#define PT32_LVL_OFFSET_MASK(level) \
	(PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
145 146 147 148 149

#define PT32_INDEX(address, level)\
	(((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))


150 151 152 153 154
#ifdef CONFIG_DYNAMIC_PHYSICAL_MASK
#define PT64_BASE_ADDR_MASK (physical_mask & ~(u64)(PAGE_SIZE-1))
#else
#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
#endif
155 156 157 158 159 160
#define PT64_LVL_ADDR_MASK(level) \
	(PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT64_LEVEL_BITS))) - 1))
#define PT64_LVL_OFFSET_MASK(level) \
	(PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT64_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
161 162 163 164

#define PT32_BASE_ADDR_MASK PAGE_MASK
#define PT32_DIR_BASE_ADDR_MASK \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
165 166 167
#define PT32_LVL_ADDR_MASK(level) \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
					    * PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
168

169
#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
170
			| shadow_x_mask | shadow_nx_mask | shadow_me_mask)
A
Avi Kivity 已提交
171

172 173 174 175 176
#define ACC_EXEC_MASK    1
#define ACC_WRITE_MASK   PT_WRITABLE_MASK
#define ACC_USER_MASK    PT_USER_MASK
#define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)

177 178 179 180
/* The mask for the R/X bits in EPT PTEs */
#define PT64_EPT_READABLE_MASK			0x1ull
#define PT64_EPT_EXECUTABLE_MASK		0x4ull

181 182
#include <trace/events/kvm.h>

183 184
#define SPTE_HOST_WRITEABLE	(1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
#define SPTE_MMU_WRITEABLE	(1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
185

186 187
#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)

188 189 190
/* make pte_list_desc fit well in cache line */
#define PTE_LIST_EXT 3

191 192 193 194 195 196 197 198 199 200 201 202 203 204
/*
 * Return values of handle_mmio_page_fault and mmu.page_fault:
 * RET_PF_RETRY: let CPU fault again on the address.
 * RET_PF_EMULATE: mmio page fault, emulate the instruction directly.
 *
 * For handle_mmio_page_fault only:
 * RET_PF_INVALID: the spte is invalid, let the real page fault path update it.
 */
enum {
	RET_PF_RETRY = 0,
	RET_PF_EMULATE = 1,
	RET_PF_INVALID = 2,
};

205 206 207
struct pte_list_desc {
	u64 *sptes[PTE_LIST_EXT];
	struct pte_list_desc *more;
208 209
};

210 211 212 213
struct kvm_shadow_walk_iterator {
	u64 addr;
	hpa_t shadow_addr;
	u64 *sptep;
214
	int level;
215 216 217
	unsigned index;
};

218 219
static const union kvm_mmu_page_role mmu_base_role_mask = {
	.cr0_wp = 1,
220
	.gpte_is_8_bytes = 1,
221 222 223 224 225 226 227 228
	.nxe = 1,
	.smep_andnot_wp = 1,
	.smap_andnot_wp = 1,
	.smm = 1,
	.guest_mode = 1,
	.ad_disabled = 1,
};

229 230 231 232 233 234 235
#define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker)     \
	for (shadow_walk_init_using_root(&(_walker), (_vcpu),              \
					 (_root), (_addr));                \
	     shadow_walk_okay(&(_walker));			           \
	     shadow_walk_next(&(_walker)))

#define for_each_shadow_entry(_vcpu, _addr, _walker)            \
236 237 238 239
	for (shadow_walk_init(&(_walker), _vcpu, _addr);	\
	     shadow_walk_okay(&(_walker));			\
	     shadow_walk_next(&(_walker)))

240 241 242 243 244 245
#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)	\
	for (shadow_walk_init(&(_walker), _vcpu, _addr);		\
	     shadow_walk_okay(&(_walker)) &&				\
		({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });	\
	     __shadow_walk_next(&(_walker), spte))

246
static struct kmem_cache *pte_list_desc_cache;
247
static struct kmem_cache *mmu_page_header_cache;
248
static struct percpu_counter kvm_total_used_mmu_pages;
249

S
Sheng Yang 已提交
250 251 252 253 254
static u64 __read_mostly shadow_nx_mask;
static u64 __read_mostly shadow_x_mask;	/* mutual exclusive with nx_mask */
static u64 __read_mostly shadow_user_mask;
static u64 __read_mostly shadow_accessed_mask;
static u64 __read_mostly shadow_dirty_mask;
255
static u64 __read_mostly shadow_mmio_mask;
256
static u64 __read_mostly shadow_mmio_value;
257
static u64 __read_mostly shadow_mmio_access_mask;
258
static u64 __read_mostly shadow_present_mask;
259
static u64 __read_mostly shadow_me_mask;
260

261
/*
262 263 264
 * SPTEs used by MMUs without A/D bits are marked with SPTE_AD_DISABLED_MASK;
 * shadow_acc_track_mask is the set of bits to be cleared in non-accessed
 * pages.
265 266 267 268 269 270 271 272 273 274 275 276 277
 */
static u64 __read_mostly shadow_acc_track_mask;

/*
 * The mask/shift to use for saving the original R/X bits when marking the PTE
 * as not-present for access tracking purposes. We do not save the W bit as the
 * PTEs being access tracked also need to be dirty tracked, so the W bit will be
 * restored only when a write is attempted to the page.
 */
static const u64 shadow_acc_track_saved_bits_mask = PT64_EPT_READABLE_MASK |
						    PT64_EPT_EXECUTABLE_MASK;
static const u64 shadow_acc_track_saved_bits_shift = PT64_SECOND_AVAIL_BITS_SHIFT;

278 279 280 281 282 283 284 285 286 287 288
/*
 * This mask must be set on all non-zero Non-Present or Reserved SPTEs in order
 * to guard against L1TF attacks.
 */
static u64 __read_mostly shadow_nonpresent_or_rsvd_mask;

/*
 * The number of high-order 1 bits to use in the mask above.
 */
static const u64 shadow_nonpresent_or_rsvd_mask_len = 5;

289 290 291 292 293 294 295 296 297 298
/*
 * In some cases, we need to preserve the GFN of a non-present or reserved
 * SPTE when we usurp the upper five bits of the physical address space to
 * defend against L1TF, e.g. for MMIO SPTEs.  To preserve the GFN, we'll
 * shift bits of the GFN that overlap with shadow_nonpresent_or_rsvd_mask
 * left into the reserved bits, i.e. the GFN in the SPTE will be split into
 * high and low parts.  This mask covers the lower bits of the GFN.
 */
static u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask;

299 300 301 302 303
/*
 * The number of non-reserved physical address bits irrespective of features
 * that repurpose legal bits, e.g. MKTME.
 */
static u8 __read_mostly shadow_phys_bits;
304

305
static void mmu_spte_set(u64 *sptep, u64 spte);
306
static bool is_executable_pte(u64 spte);
307 308
static union kvm_mmu_page_role
kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
309

310 311 312
#define CREATE_TRACE_POINTS
#include "mmutrace.h"

313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341

static inline bool kvm_available_flush_tlb_with_range(void)
{
	return kvm_x86_ops->tlb_remote_flush_with_range;
}

static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
		struct kvm_tlb_range *range)
{
	int ret = -ENOTSUPP;

	if (range && kvm_x86_ops->tlb_remote_flush_with_range)
		ret = kvm_x86_ops->tlb_remote_flush_with_range(kvm, range);

	if (ret)
		kvm_flush_remote_tlbs(kvm);
}

static void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
		u64 start_gfn, u64 pages)
{
	struct kvm_tlb_range range;

	range.start_gfn = start_gfn;
	range.pages = pages;

	kvm_flush_remote_tlbs_with_range(kvm, &range);
}

342
void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask, u64 mmio_value, u64 access_mask)
343
{
344
	BUG_ON((u64)(unsigned)access_mask != access_mask);
345
	BUG_ON((mmio_mask & mmio_value) != mmio_value);
346
	shadow_mmio_value = mmio_value | SPTE_MMIO_MASK;
347
	shadow_mmio_mask = mmio_mask | SPTE_SPECIAL_MASK;
348
	shadow_mmio_access_mask = access_mask;
349 350 351
}
EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);

352 353 354 355 356
static bool is_mmio_spte(u64 spte)
{
	return (spte & shadow_mmio_mask) == shadow_mmio_value;
}

357 358 359 360 361
static inline bool sp_ad_disabled(struct kvm_mmu_page *sp)
{
	return sp->role.ad_disabled;
}

362 363 364 365 366 367 368 369 370 371 372
static inline bool kvm_vcpu_ad_need_write_protect(struct kvm_vcpu *vcpu)
{
	/*
	 * When using the EPT page-modification log, the GPAs in the log
	 * would come from L2 rather than L1.  Therefore, we need to rely
	 * on write protection to record dirty pages.  This also bypasses
	 * PML, since writes now result in a vmexit.
	 */
	return vcpu->arch.mmu == &vcpu->arch.guest_mmu;
}

373 374
static inline bool spte_ad_enabled(u64 spte)
{
375
	MMU_WARN_ON(is_mmio_spte(spte));
376 377 378 379 380 381 382
	return (spte & SPTE_SPECIAL_MASK) != SPTE_AD_DISABLED_MASK;
}

static inline bool spte_ad_need_write_protect(u64 spte)
{
	MMU_WARN_ON(is_mmio_spte(spte));
	return (spte & SPTE_SPECIAL_MASK) != SPTE_AD_ENABLED_MASK;
383 384
}

P
Paolo Bonzini 已提交
385 386 387 388 389
static bool is_nx_huge_page_enabled(void)
{
	return READ_ONCE(nx_huge_pages);
}

390 391
static inline u64 spte_shadow_accessed_mask(u64 spte)
{
392
	MMU_WARN_ON(is_mmio_spte(spte));
393 394 395 396 397
	return spte_ad_enabled(spte) ? shadow_accessed_mask : 0;
}

static inline u64 spte_shadow_dirty_mask(u64 spte)
{
398
	MMU_WARN_ON(is_mmio_spte(spte));
399 400 401
	return spte_ad_enabled(spte) ? shadow_dirty_mask : 0;
}

402 403
static inline bool is_access_track_spte(u64 spte)
{
404
	return !spte_ad_enabled(spte) && (spte & shadow_acc_track_mask) == 0;
405 406
}

407
/*
408 409
 * Due to limited space in PTEs, the MMIO generation is a 19 bit subset of
 * the memslots generation and is derived as follows:
410
 *
411 412
 * Bits 0-8 of the MMIO generation are propagated to spte bits 3-11
 * Bits 9-18 of the MMIO generation are propagated to spte bits 52-61
413
 *
414 415 416 417 418 419
 * The KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS flag is intentionally not included in
 * the MMIO generation number, as doing so would require stealing a bit from
 * the "real" generation number and thus effectively halve the maximum number
 * of MMIO generations that can be handled before encountering a wrap (which
 * requires a full MMU zap).  The flag is instead explicitly queried when
 * checking for MMIO spte cache hits.
420
 */
421
#define MMIO_SPTE_GEN_MASK		GENMASK_ULL(17, 0)
422

423 424 425 426
#define MMIO_SPTE_GEN_LOW_START		3
#define MMIO_SPTE_GEN_LOW_END		11
#define MMIO_SPTE_GEN_LOW_MASK		GENMASK_ULL(MMIO_SPTE_GEN_LOW_END, \
						    MMIO_SPTE_GEN_LOW_START)
427

428 429
#define MMIO_SPTE_GEN_HIGH_START	PT64_SECOND_AVAIL_BITS_SHIFT
#define MMIO_SPTE_GEN_HIGH_END		62
430 431
#define MMIO_SPTE_GEN_HIGH_MASK		GENMASK_ULL(MMIO_SPTE_GEN_HIGH_END, \
						    MMIO_SPTE_GEN_HIGH_START)
432

433
static u64 generation_mmio_spte_mask(u64 gen)
434 435 436
{
	u64 mask;

437
	WARN_ON(gen & ~MMIO_SPTE_GEN_MASK);
438
	BUILD_BUG_ON((MMIO_SPTE_GEN_HIGH_MASK | MMIO_SPTE_GEN_LOW_MASK) & SPTE_SPECIAL_MASK);
439

440 441
	mask = (gen << MMIO_SPTE_GEN_LOW_START) & MMIO_SPTE_GEN_LOW_MASK;
	mask |= (gen << MMIO_SPTE_GEN_HIGH_START) & MMIO_SPTE_GEN_HIGH_MASK;
442 443 444
	return mask;
}

445
static u64 get_mmio_spte_generation(u64 spte)
446
{
447
	u64 gen;
448

449 450
	gen = (spte & MMIO_SPTE_GEN_LOW_MASK) >> MMIO_SPTE_GEN_LOW_START;
	gen |= (spte & MMIO_SPTE_GEN_HIGH_MASK) >> MMIO_SPTE_GEN_HIGH_START;
451 452 453
	return gen;
}

454
static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
455
			   unsigned access)
456
{
457
	u64 gen = kvm_vcpu_memslots(vcpu)->generation & MMIO_SPTE_GEN_MASK;
458
	u64 mask = generation_mmio_spte_mask(gen);
459
	u64 gpa = gfn << PAGE_SHIFT;
460

461
	access &= shadow_mmio_access_mask;
462 463 464 465
	mask |= shadow_mmio_value | access;
	mask |= gpa | shadow_nonpresent_or_rsvd_mask;
	mask |= (gpa & shadow_nonpresent_or_rsvd_mask)
		<< shadow_nonpresent_or_rsvd_mask_len;
466

467
	trace_mark_mmio_spte(sptep, gfn, access, gen);
468
	mmu_spte_set(sptep, mask);
469 470 471 472
}

static gfn_t get_mmio_spte_gfn(u64 spte)
{
473
	u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
474 475 476 477 478

	gpa |= (spte >> shadow_nonpresent_or_rsvd_mask_len)
	       & shadow_nonpresent_or_rsvd_mask;

	return gpa >> PAGE_SHIFT;
479 480 481 482
}

static unsigned get_mmio_spte_access(u64 spte)
{
483
	return spte & shadow_mmio_access_mask;
484 485
}

486
static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
D
Dan Williams 已提交
487
			  kvm_pfn_t pfn, unsigned access)
488 489
{
	if (unlikely(is_noslot_pfn(pfn))) {
490
		mark_mmio_spte(vcpu, sptep, gfn, access);
491 492 493 494 495
		return true;
	}

	return false;
}
496

497
static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
498
{
499
	u64 kvm_gen, spte_gen, gen;
500

501 502 503
	gen = kvm_vcpu_memslots(vcpu)->generation;
	if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
		return false;
504

505
	kvm_gen = gen & MMIO_SPTE_GEN_MASK;
506 507 508 509
	spte_gen = get_mmio_spte_generation(spte);

	trace_check_mmio_spte(spte, kvm_gen, spte_gen);
	return likely(kvm_gen == spte_gen);
510 511
}

512 513 514 515 516 517 518
/*
 * Sets the shadow PTE masks used by the MMU.
 *
 * Assumptions:
 *  - Setting either @accessed_mask or @dirty_mask requires setting both
 *  - At least one of @accessed_mask or @acc_track_mask must be set
 */
S
Sheng Yang 已提交
519
void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
520
		u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask,
521
		u64 acc_track_mask, u64 me_mask)
S
Sheng Yang 已提交
522
{
523 524
	BUG_ON(!dirty_mask != !accessed_mask);
	BUG_ON(!accessed_mask && !acc_track_mask);
525
	BUG_ON(acc_track_mask & SPTE_SPECIAL_MASK);
526

S
Sheng Yang 已提交
527 528 529 530 531
	shadow_user_mask = user_mask;
	shadow_accessed_mask = accessed_mask;
	shadow_dirty_mask = dirty_mask;
	shadow_nx_mask = nx_mask;
	shadow_x_mask = x_mask;
532
	shadow_present_mask = p_mask;
533
	shadow_acc_track_mask = acc_track_mask;
534
	shadow_me_mask = me_mask;
S
Sheng Yang 已提交
535 536 537
}
EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);

538 539 540
static u8 kvm_get_shadow_phys_bits(void)
{
	/*
541 542 543 544
	 * boot_cpu_data.x86_phys_bits is reduced when MKTME or SME are detected
	 * in CPU detection code, but the processor treats those reduced bits as
	 * 'keyID' thus they are not reserved bits. Therefore KVM needs to look at
	 * the physical address bits reported by CPUID.
545
	 */
546 547
	if (likely(boot_cpu_data.extended_cpuid_level >= 0x80000008))
		return cpuid_eax(0x80000008) & 0xff;
548

549 550 551 552 553 554
	/*
	 * Quite weird to have VMX or SVM but not MAXPHYADDR; probably a VM with
	 * custom CPUID.  Proceed with whatever the kernel found since these features
	 * aren't virtualizable (SME/SEV also require CPUIDs higher than 0x80000008).
	 */
	return boot_cpu_data.x86_phys_bits;
555 556
}

557
static void kvm_mmu_reset_all_pte_masks(void)
558
{
559 560
	u8 low_phys_bits;

561 562 563 564 565 566 567 568
	shadow_user_mask = 0;
	shadow_accessed_mask = 0;
	shadow_dirty_mask = 0;
	shadow_nx_mask = 0;
	shadow_x_mask = 0;
	shadow_mmio_mask = 0;
	shadow_present_mask = 0;
	shadow_acc_track_mask = 0;
569

570 571
	shadow_phys_bits = kvm_get_shadow_phys_bits();

572 573 574 575
	/*
	 * If the CPU has 46 or less physical address bits, then set an
	 * appropriate mask to guard against L1TF attacks. Otherwise, it is
	 * assumed that the CPU is not vulnerable to L1TF.
576 577 578 579 580
	 *
	 * Some Intel CPUs address the L1 cache using more PA bits than are
	 * reported by CPUID. Use the PA width of the L1 cache when possible
	 * to achieve more effective mitigation, e.g. if system RAM overlaps
	 * the most significant bits of legal physical address space.
581
	 */
582 583 584
	shadow_nonpresent_or_rsvd_mask = 0;
	low_phys_bits = boot_cpu_data.x86_cache_bits;
	if (boot_cpu_data.x86_cache_bits <
585
	    52 - shadow_nonpresent_or_rsvd_mask_len) {
586
		shadow_nonpresent_or_rsvd_mask =
587
			rsvd_bits(boot_cpu_data.x86_cache_bits -
588
				  shadow_nonpresent_or_rsvd_mask_len,
589
				  boot_cpu_data.x86_cache_bits - 1);
590
		low_phys_bits -= shadow_nonpresent_or_rsvd_mask_len;
591 592 593
	} else
		WARN_ON_ONCE(boot_cpu_has_bug(X86_BUG_L1TF));

594 595
	shadow_nonpresent_or_rsvd_lower_gfn_mask =
		GENMASK_ULL(low_phys_bits - 1, PAGE_SHIFT);
596 597
}

A
Avi Kivity 已提交
598 599 600 601 602
static int is_cpuid_PSE36(void)
{
	return 1;
}

603 604
static int is_nx(struct kvm_vcpu *vcpu)
{
605
	return vcpu->arch.efer & EFER_NX;
606 607
}

608 609
static int is_shadow_present_pte(u64 pte)
{
610
	return (pte != 0) && !is_mmio_spte(pte);
611 612
}

M
Marcelo Tosatti 已提交
613 614 615 616 617
static int is_large_pte(u64 pte)
{
	return pte & PT_PAGE_SIZE_MASK;
}

618 619 620 621
static int is_last_spte(u64 pte, int level)
{
	if (level == PT_PAGE_TABLE_LEVEL)
		return 1;
622
	if (is_large_pte(pte))
623 624 625 626
		return 1;
	return 0;
}

627 628 629 630 631
static bool is_executable_pte(u64 spte)
{
	return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask;
}

D
Dan Williams 已提交
632
static kvm_pfn_t spte_to_pfn(u64 pte)
633
{
634
	return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
635 636
}

637 638 639 640 641 642 643
static gfn_t pse36_gfn_delta(u32 gpte)
{
	int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;

	return (gpte & PT32_DIR_PSE36_MASK) << shift;
}

644
#ifdef CONFIG_X86_64
A
Avi Kivity 已提交
645
static void __set_spte(u64 *sptep, u64 spte)
646
{
647
	WRITE_ONCE(*sptep, spte);
648 649
}

650
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
651
{
652
	WRITE_ONCE(*sptep, spte);
653 654 655 656 657 658
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	return xchg(sptep, spte);
}
659 660 661

static u64 __get_spte_lockless(u64 *sptep)
{
662
	return READ_ONCE(*sptep);
663
}
664
#else
665 666 667 668 669 670 671
union split_spte {
	struct {
		u32 spte_low;
		u32 spte_high;
	};
	u64 spte;
};
672

673 674 675 676 677 678 679 680 681 682 683 684
static void count_spte_clear(u64 *sptep, u64 spte)
{
	struct kvm_mmu_page *sp =  page_header(__pa(sptep));

	if (is_shadow_present_pte(spte))
		return;

	/* Ensure the spte is completely set before we increase the count */
	smp_wmb();
	sp->clear_spte_count++;
}

685 686 687
static void __set_spte(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;
688

689 690 691 692 693 694 695 696 697 698 699 700
	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	ssptep->spte_high = sspte.spte_high;

	/*
	 * If we map the spte from nonpresent to present, We should store
	 * the high bits firstly, then set present bit, so cpu can not
	 * fetch this spte while we are setting the spte.
	 */
	smp_wmb();

701
	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
702 703
}

704 705 706 707 708 709 710
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

711
	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
712 713 714 715 716 717 718 719

	/*
	 * If we map the spte from present to nonpresent, we should clear
	 * present bit firstly to avoid vcpu fetch the old high bits.
	 */
	smp_wmb();

	ssptep->spte_high = sspte.spte_high;
720
	count_spte_clear(sptep, spte);
721 722 723 724 725 726 727 728 729 730 731
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte, orig;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	/* xchg acts as a barrier before the setting of the high bits */
	orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
732 733
	orig.spte_high = ssptep->spte_high;
	ssptep->spte_high = sspte.spte_high;
734
	count_spte_clear(sptep, spte);
735 736 737

	return orig.spte;
}
738 739 740

/*
 * The idea using the light way get the spte on x86_32 guest is from
741
 * gup_get_pte (mm/gup.c).
742 743 744 745 746 747 748 749 750 751 752 753 754 755
 *
 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
 * coalesces them and we are running out of the MMU lock.  Therefore
 * we need to protect against in-progress updates of the spte.
 *
 * Reading the spte while an update is in progress may get the old value
 * for the high part of the spte.  The race is fine for a present->non-present
 * change (because the high part of the spte is ignored for non-present spte),
 * but for a present->present change we must reread the spte.
 *
 * All such changes are done in two steps (present->non-present and
 * non-present->present), hence it is enough to count the number of
 * present->non-present updates: if it changed while reading the spte,
 * we might have hit the race.  This is done using clear_spte_count.
756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778
 */
static u64 __get_spte_lockless(u64 *sptep)
{
	struct kvm_mmu_page *sp =  page_header(__pa(sptep));
	union split_spte spte, *orig = (union split_spte *)sptep;
	int count;

retry:
	count = sp->clear_spte_count;
	smp_rmb();

	spte.spte_low = orig->spte_low;
	smp_rmb();

	spte.spte_high = orig->spte_high;
	smp_rmb();

	if (unlikely(spte.spte_low != orig->spte_low ||
	      count != sp->clear_spte_count))
		goto retry;

	return spte.spte;
}
779 780
#endif

781
static bool spte_can_locklessly_be_made_writable(u64 spte)
782
{
783 784
	return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
		(SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
785 786
}

787 788
static bool spte_has_volatile_bits(u64 spte)
{
789 790 791
	if (!is_shadow_present_pte(spte))
		return false;

792
	/*
793
	 * Always atomically update spte if it can be updated
794 795 796 797
	 * out of mmu-lock, it can ensure dirty bit is not lost,
	 * also, it can help us to get a stable is_writable_pte()
	 * to ensure tlb flush is not missed.
	 */
798 799
	if (spte_can_locklessly_be_made_writable(spte) ||
	    is_access_track_spte(spte))
800 801
		return true;

802
	if (spte_ad_enabled(spte)) {
803 804 805 806
		if ((spte & shadow_accessed_mask) == 0 ||
	    	    (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
			return true;
	}
807

808
	return false;
809 810
}

811
static bool is_accessed_spte(u64 spte)
812
{
813 814 815 816
	u64 accessed_mask = spte_shadow_accessed_mask(spte);

	return accessed_mask ? spte & accessed_mask
			     : !is_access_track_spte(spte);
817 818
}

819
static bool is_dirty_spte(u64 spte)
820
{
821 822 823
	u64 dirty_mask = spte_shadow_dirty_mask(spte);

	return dirty_mask ? spte & dirty_mask : spte & PT_WRITABLE_MASK;
824 825
}

826 827 828 829 830 831 832 833 834 835 836 837
/* Rules for using mmu_spte_set:
 * Set the sptep from nonpresent to present.
 * Note: the sptep being assigned *must* be either not present
 * or in a state where the hardware will not attempt to update
 * the spte.
 */
static void mmu_spte_set(u64 *sptep, u64 new_spte)
{
	WARN_ON(is_shadow_present_pte(*sptep));
	__set_spte(sptep, new_spte);
}

838 839 840
/*
 * Update the SPTE (excluding the PFN), but do not track changes in its
 * accessed/dirty status.
841
 */
842
static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
843
{
844
	u64 old_spte = *sptep;
845

846
	WARN_ON(!is_shadow_present_pte(new_spte));
847

848 849
	if (!is_shadow_present_pte(old_spte)) {
		mmu_spte_set(sptep, new_spte);
850
		return old_spte;
851
	}
852

853
	if (!spte_has_volatile_bits(old_spte))
854
		__update_clear_spte_fast(sptep, new_spte);
855
	else
856
		old_spte = __update_clear_spte_slow(sptep, new_spte);
857

858 859
	WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));

860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881
	return old_spte;
}

/* Rules for using mmu_spte_update:
 * Update the state bits, it means the mapped pfn is not changed.
 *
 * Whenever we overwrite a writable spte with a read-only one we
 * should flush remote TLBs. Otherwise rmap_write_protect
 * will find a read-only spte, even though the writable spte
 * might be cached on a CPU's TLB, the return value indicates this
 * case.
 *
 * Returns true if the TLB needs to be flushed
 */
static bool mmu_spte_update(u64 *sptep, u64 new_spte)
{
	bool flush = false;
	u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);

	if (!is_shadow_present_pte(old_spte))
		return false;

882 883
	/*
	 * For the spte updated out of mmu-lock is safe, since
884
	 * we always atomically update it, see the comments in
885 886
	 * spte_has_volatile_bits().
	 */
887
	if (spte_can_locklessly_be_made_writable(old_spte) &&
888
	      !is_writable_pte(new_spte))
889
		flush = true;
890

891
	/*
892
	 * Flush TLB when accessed/dirty states are changed in the page tables,
893 894 895
	 * to guarantee consistency between TLB and page tables.
	 */

896 897
	if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
		flush = true;
898
		kvm_set_pfn_accessed(spte_to_pfn(old_spte));
899 900 901 902
	}

	if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
		flush = true;
903
		kvm_set_pfn_dirty(spte_to_pfn(old_spte));
904
	}
905

906
	return flush;
907 908
}

909 910 911 912
/*
 * Rules for using mmu_spte_clear_track_bits:
 * It sets the sptep from present to nonpresent, and track the
 * state bits, it is used to clear the last level sptep.
913
 * Returns non-zero if the PTE was previously valid.
914 915 916
 */
static int mmu_spte_clear_track_bits(u64 *sptep)
{
D
Dan Williams 已提交
917
	kvm_pfn_t pfn;
918 919 920
	u64 old_spte = *sptep;

	if (!spte_has_volatile_bits(old_spte))
921
		__update_clear_spte_fast(sptep, 0ull);
922
	else
923
		old_spte = __update_clear_spte_slow(sptep, 0ull);
924

925
	if (!is_shadow_present_pte(old_spte))
926 927 928
		return 0;

	pfn = spte_to_pfn(old_spte);
929 930 931 932 933 934

	/*
	 * KVM does not hold the refcount of the page used by
	 * kvm mmu, before reclaiming the page, we should
	 * unmap it from mmu first.
	 */
935
	WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
936

937
	if (is_accessed_spte(old_spte))
938
		kvm_set_pfn_accessed(pfn);
939 940

	if (is_dirty_spte(old_spte))
941
		kvm_set_pfn_dirty(pfn);
942

943 944 945 946 947 948 949 950 951 952
	return 1;
}

/*
 * Rules for using mmu_spte_clear_no_track:
 * Directly clear spte without caring the state bits of sptep,
 * it is used to set the upper level spte.
 */
static void mmu_spte_clear_no_track(u64 *sptep)
{
953
	__update_clear_spte_fast(sptep, 0ull);
954 955
}

956 957 958 959 960
static u64 mmu_spte_get_lockless(u64 *sptep)
{
	return __get_spte_lockless(sptep);
}

961 962
static u64 mark_spte_for_access_track(u64 spte)
{
963
	if (spte_ad_enabled(spte))
964 965
		return spte & ~shadow_accessed_mask;

966
	if (is_access_track_spte(spte))
967 968 969
		return spte;

	/*
970 971 972
	 * Making an Access Tracking PTE will result in removal of write access
	 * from the PTE. So, verify that we will be able to restore the write
	 * access in the fast page fault path later on.
973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988
	 */
	WARN_ONCE((spte & PT_WRITABLE_MASK) &&
		  !spte_can_locklessly_be_made_writable(spte),
		  "kvm: Writable SPTE is not locklessly dirty-trackable\n");

	WARN_ONCE(spte & (shadow_acc_track_saved_bits_mask <<
			  shadow_acc_track_saved_bits_shift),
		  "kvm: Access Tracking saved bit locations are not zero\n");

	spte |= (spte & shadow_acc_track_saved_bits_mask) <<
		shadow_acc_track_saved_bits_shift;
	spte &= ~shadow_acc_track_mask;

	return spte;
}

989 990 991 992 993 994 995
/* Restore an acc-track PTE back to a regular PTE */
static u64 restore_acc_track_spte(u64 spte)
{
	u64 new_spte = spte;
	u64 saved_bits = (spte >> shadow_acc_track_saved_bits_shift)
			 & shadow_acc_track_saved_bits_mask;

996
	WARN_ON_ONCE(spte_ad_enabled(spte));
997 998 999 1000 1001 1002 1003 1004 1005 1006
	WARN_ON_ONCE(!is_access_track_spte(spte));

	new_spte &= ~shadow_acc_track_mask;
	new_spte &= ~(shadow_acc_track_saved_bits_mask <<
		      shadow_acc_track_saved_bits_shift);
	new_spte |= saved_bits;

	return new_spte;
}

1007 1008 1009 1010 1011 1012 1013 1014
/* Returns the Accessed status of the PTE and resets it at the same time. */
static bool mmu_spte_age(u64 *sptep)
{
	u64 spte = mmu_spte_get_lockless(sptep);

	if (!is_accessed_spte(spte))
		return false;

1015
	if (spte_ad_enabled(spte)) {
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
		clear_bit((ffs(shadow_accessed_mask) - 1),
			  (unsigned long *)sptep);
	} else {
		/*
		 * Capture the dirty status of the page, so that it doesn't get
		 * lost when the SPTE is marked for access tracking.
		 */
		if (is_writable_pte(spte))
			kvm_set_pfn_dirty(spte_to_pfn(spte));

		spte = mark_spte_for_access_track(spte);
		mmu_spte_update_no_track(sptep, spte);
	}

	return true;
}

1033 1034
static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
{
1035 1036 1037 1038 1039
	/*
	 * Prevent page table teardown by making any free-er wait during
	 * kvm_flush_remote_tlbs() IPI to all active vcpus.
	 */
	local_irq_disable();
1040

1041 1042 1043 1044
	/*
	 * Make sure a following spte read is not reordered ahead of the write
	 * to vcpu->mode.
	 */
1045
	smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
1046 1047 1048 1049
}

static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
{
1050 1051
	/*
	 * Make sure the write to vcpu->mode is not reordered in front of
1052
	 * reads to sptes.  If it does, kvm_mmu_commit_zap_page() can see us
1053 1054
	 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
	 */
1055
	smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
1056
	local_irq_enable();
1057 1058
}

1059
static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
1060
				  struct kmem_cache *base_cache, int min)
1061 1062 1063 1064
{
	void *obj;

	if (cache->nobjs >= min)
1065
		return 0;
1066
	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
1067
		obj = kmem_cache_zalloc(base_cache, GFP_KERNEL_ACCOUNT);
1068
		if (!obj)
1069
			return cache->nobjs >= min ? 0 : -ENOMEM;
1070 1071
		cache->objects[cache->nobjs++] = obj;
	}
1072
	return 0;
1073 1074
}

1075 1076 1077 1078 1079
static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
{
	return cache->nobjs;
}

1080 1081
static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
				  struct kmem_cache *cache)
1082 1083
{
	while (mc->nobjs)
1084
		kmem_cache_free(cache, mc->objects[--mc->nobjs]);
1085 1086
}

A
Avi Kivity 已提交
1087
static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
1088
				       int min)
A
Avi Kivity 已提交
1089
{
1090
	void *page;
A
Avi Kivity 已提交
1091 1092 1093 1094

	if (cache->nobjs >= min)
		return 0;
	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
1095
		page = (void *)__get_free_page(GFP_KERNEL_ACCOUNT);
A
Avi Kivity 已提交
1096
		if (!page)
1097
			return cache->nobjs >= min ? 0 : -ENOMEM;
1098
		cache->objects[cache->nobjs++] = page;
A
Avi Kivity 已提交
1099 1100 1101 1102 1103 1104 1105
	}
	return 0;
}

static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
{
	while (mc->nobjs)
1106
		free_page((unsigned long)mc->objects[--mc->nobjs]);
A
Avi Kivity 已提交
1107 1108
}

1109
static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
1110
{
1111 1112
	int r;

1113
	r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
1114
				   pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
1115 1116
	if (r)
		goto out;
1117
	r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
1118 1119
	if (r)
		goto out;
1120
	r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
1121
				   mmu_page_header_cache, 4);
1122 1123
out:
	return r;
1124 1125 1126 1127
}

static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
{
1128 1129
	mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
				pte_list_desc_cache);
1130
	mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
1131 1132
	mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
				mmu_page_header_cache);
1133 1134
}

1135
static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
1136 1137 1138 1139 1140 1141 1142 1143
{
	void *p;

	BUG_ON(!mc->nobjs);
	p = mc->objects[--mc->nobjs];
	return p;
}

1144
static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
1145
{
1146
	return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
1147 1148
}

1149
static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
1150
{
1151
	kmem_cache_free(pte_list_desc_cache, pte_list_desc);
1152 1153
}

1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
{
	if (!sp->role.direct)
		return sp->gfns[index];

	return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
}

static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
{
1164
	if (!sp->role.direct) {
1165
		sp->gfns[index] = gfn;
1166 1167 1168 1169 1170 1171 1172 1173
		return;
	}

	if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
		pr_err_ratelimited("gfn mismatch under direct page %llx "
				   "(expected %llx, got %llx)\n",
				   sp->gfn,
				   kvm_mmu_page_get_gfn(sp, index), gfn);
1174 1175
}

M
Marcelo Tosatti 已提交
1176
/*
1177 1178
 * Return the pointer to the large page information for a given gfn,
 * handling slots that are not large page aligned.
M
Marcelo Tosatti 已提交
1179
 */
1180 1181 1182
static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
					      struct kvm_memory_slot *slot,
					      int level)
M
Marcelo Tosatti 已提交
1183 1184 1185
{
	unsigned long idx;

1186
	idx = gfn_to_index(gfn, slot->base_gfn, level);
1187
	return &slot->arch.lpage_info[level - 2][idx];
M
Marcelo Tosatti 已提交
1188 1189
}

1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
					    gfn_t gfn, int count)
{
	struct kvm_lpage_info *linfo;
	int i;

	for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
		linfo = lpage_info_slot(gfn, slot, i);
		linfo->disallow_lpage += count;
		WARN_ON(linfo->disallow_lpage < 0);
	}
}

void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
{
	update_gfn_disallow_lpage_count(slot, gfn, 1);
}

void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
{
	update_gfn_disallow_lpage_count(slot, gfn, -1);
}

1213
static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
M
Marcelo Tosatti 已提交
1214
{
1215
	struct kvm_memslots *slots;
1216
	struct kvm_memory_slot *slot;
1217
	gfn_t gfn;
M
Marcelo Tosatti 已提交
1218

1219
	kvm->arch.indirect_shadow_pages++;
1220
	gfn = sp->gfn;
1221 1222
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
1223 1224 1225 1226 1227 1228

	/* the non-leaf shadow pages are keeping readonly. */
	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
		return kvm_slot_page_track_add_page(kvm, slot, gfn,
						    KVM_PAGE_TRACK_WRITE);

1229
	kvm_mmu_gfn_disallow_lpage(slot, gfn);
M
Marcelo Tosatti 已提交
1230 1231
}

P
Paolo Bonzini 已提交
1232 1233 1234 1235 1236 1237
static void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
{
	if (sp->lpage_disallowed)
		return;

	++kvm->stat.nx_lpage_splits;
1238 1239
	list_add_tail(&sp->lpage_disallowed_link,
		      &kvm->arch.lpage_disallowed_mmu_pages);
P
Paolo Bonzini 已提交
1240 1241 1242
	sp->lpage_disallowed = true;
}

1243
static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
M
Marcelo Tosatti 已提交
1244
{
1245
	struct kvm_memslots *slots;
1246
	struct kvm_memory_slot *slot;
1247
	gfn_t gfn;
M
Marcelo Tosatti 已提交
1248

1249
	kvm->arch.indirect_shadow_pages--;
1250
	gfn = sp->gfn;
1251 1252
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
1253 1254 1255 1256
	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
		return kvm_slot_page_track_remove_page(kvm, slot, gfn,
						       KVM_PAGE_TRACK_WRITE);

1257
	kvm_mmu_gfn_allow_lpage(slot, gfn);
M
Marcelo Tosatti 已提交
1258 1259
}

P
Paolo Bonzini 已提交
1260 1261 1262 1263
static void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
{
	--kvm->stat.nx_lpage_splits;
	sp->lpage_disallowed = false;
1264
	list_del(&sp->lpage_disallowed_link);
P
Paolo Bonzini 已提交
1265 1266
}

1267 1268
static bool __mmu_gfn_lpage_is_disallowed(gfn_t gfn, int level,
					  struct kvm_memory_slot *slot)
M
Marcelo Tosatti 已提交
1269
{
1270
	struct kvm_lpage_info *linfo;
M
Marcelo Tosatti 已提交
1271 1272

	if (slot) {
1273
		linfo = lpage_info_slot(gfn, slot, level);
1274
		return !!linfo->disallow_lpage;
M
Marcelo Tosatti 已提交
1275 1276
	}

1277
	return true;
M
Marcelo Tosatti 已提交
1278 1279
}

1280 1281
static bool mmu_gfn_lpage_is_disallowed(struct kvm_vcpu *vcpu, gfn_t gfn,
					int level)
1282 1283 1284 1285
{
	struct kvm_memory_slot *slot;

	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1286
	return __mmu_gfn_lpage_is_disallowed(gfn, level, slot);
1287 1288
}

1289
static int host_mapping_level(struct kvm_vcpu *vcpu, gfn_t gfn)
M
Marcelo Tosatti 已提交
1290
{
J
Joerg Roedel 已提交
1291
	unsigned long page_size;
1292
	int i, ret = 0;
M
Marcelo Tosatti 已提交
1293

1294
	page_size = kvm_host_page_size(vcpu, gfn);
M
Marcelo Tosatti 已提交
1295

1296
	for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1297 1298 1299 1300 1301 1302
		if (page_size >= KVM_HPAGE_SIZE(i))
			ret = i;
		else
			break;
	}

1303
	return ret;
M
Marcelo Tosatti 已提交
1304 1305
}

1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot,
					  bool no_dirty_log)
{
	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
		return false;
	if (no_dirty_log && slot->dirty_bitmap)
		return false;

	return true;
}

1317 1318 1319
static struct kvm_memory_slot *
gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
			    bool no_dirty_log)
M
Marcelo Tosatti 已提交
1320 1321
{
	struct kvm_memory_slot *slot;
1322

1323
	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1324
	if (!memslot_valid_for_gpte(slot, no_dirty_log))
1325 1326 1327 1328 1329
		slot = NULL;

	return slot;
}

1330
static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn,
1331
			 int *max_levelp)
1332
{
1333
	int host_level, max_level = *max_levelp;
1334 1335
	struct kvm_memory_slot *slot;

1336
	if (unlikely(max_level == PT_PAGE_TABLE_LEVEL))
1337
		return PT_PAGE_TABLE_LEVEL;
M
Marcelo Tosatti 已提交
1338

1339
	slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn);
1340 1341
	if (!memslot_valid_for_gpte(slot, true)) {
		*max_levelp = PT_PAGE_TABLE_LEVEL;
1342
		return PT_PAGE_TABLE_LEVEL;
1343
	}
1344

1345
	max_level = min(max_level, kvm_x86_ops->get_lpage_level());
1346 1347
	for ( ; max_level > PT_PAGE_TABLE_LEVEL; max_level--) {
		if (!__mmu_gfn_lpage_is_disallowed(large_gfn, max_level, slot))
1348
			break;
1349
	}
1350

1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
	*max_levelp = max_level;

	if (max_level == PT_PAGE_TABLE_LEVEL)
		return PT_PAGE_TABLE_LEVEL;

	/*
	 * Note, host_mapping_level() does *not* handle transparent huge pages.
	 * As suggested by "mapping", it reflects the page size established by
	 * the associated vma, if there is one, i.e. host_mapping_level() will
	 * return a huge page level if and only if a vma exists and the backing
	 * implementation for the vma uses huge pages, e.g. hugetlbfs and dax.
	 * So, do not propagate host_mapping_level() to max_level as KVM can
	 * still promote the guest mapping to a huge page in the THP case.
	 */
1365
	host_level = host_mapping_level(vcpu, large_gfn);
1366
	return min(host_level, max_level);
M
Marcelo Tosatti 已提交
1367 1368
}

1369
/*
1370
 * About rmap_head encoding:
1371
 *
1372 1373
 * If the bit zero of rmap_head->val is clear, then it points to the only spte
 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
1374
 * pte_list_desc containing more mappings.
1375 1376 1377 1378
 */

/*
 * Returns the number of pointers in the rmap chain, not counting the new one.
1379
 */
1380
static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
1381
			struct kvm_rmap_head *rmap_head)
1382
{
1383
	struct pte_list_desc *desc;
1384
	int i, count = 0;
1385

1386
	if (!rmap_head->val) {
1387
		rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
1388 1389
		rmap_head->val = (unsigned long)spte;
	} else if (!(rmap_head->val & 1)) {
1390 1391
		rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
		desc = mmu_alloc_pte_list_desc(vcpu);
1392
		desc->sptes[0] = (u64 *)rmap_head->val;
A
Avi Kivity 已提交
1393
		desc->sptes[1] = spte;
1394
		rmap_head->val = (unsigned long)desc | 1;
1395
		++count;
1396
	} else {
1397
		rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
1398
		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1399
		while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
1400
			desc = desc->more;
1401
			count += PTE_LIST_EXT;
1402
		}
1403 1404
		if (desc->sptes[PTE_LIST_EXT-1]) {
			desc->more = mmu_alloc_pte_list_desc(vcpu);
1405 1406
			desc = desc->more;
		}
A
Avi Kivity 已提交
1407
		for (i = 0; desc->sptes[i]; ++i)
1408
			++count;
A
Avi Kivity 已提交
1409
		desc->sptes[i] = spte;
1410
	}
1411
	return count;
1412 1413
}

1414
static void
1415 1416 1417
pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
			   struct pte_list_desc *desc, int i,
			   struct pte_list_desc *prev_desc)
1418 1419 1420
{
	int j;

1421
	for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
1422
		;
A
Avi Kivity 已提交
1423 1424
	desc->sptes[i] = desc->sptes[j];
	desc->sptes[j] = NULL;
1425 1426 1427
	if (j != 0)
		return;
	if (!prev_desc && !desc->more)
1428
		rmap_head->val = 0;
1429 1430 1431 1432
	else
		if (prev_desc)
			prev_desc->more = desc->more;
		else
1433
			rmap_head->val = (unsigned long)desc->more | 1;
1434
	mmu_free_pte_list_desc(desc);
1435 1436
}

1437
static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
1438
{
1439 1440
	struct pte_list_desc *desc;
	struct pte_list_desc *prev_desc;
1441 1442
	int i;

1443
	if (!rmap_head->val) {
1444
		pr_err("%s: %p 0->BUG\n", __func__, spte);
1445
		BUG();
1446
	} else if (!(rmap_head->val & 1)) {
1447
		rmap_printk("%s:  %p 1->0\n", __func__, spte);
1448
		if ((u64 *)rmap_head->val != spte) {
1449
			pr_err("%s:  %p 1->BUG\n", __func__, spte);
1450 1451
			BUG();
		}
1452
		rmap_head->val = 0;
1453
	} else {
1454
		rmap_printk("%s:  %p many->many\n", __func__, spte);
1455
		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1456 1457
		prev_desc = NULL;
		while (desc) {
1458
			for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
A
Avi Kivity 已提交
1459
				if (desc->sptes[i] == spte) {
1460 1461
					pte_list_desc_remove_entry(rmap_head,
							desc, i, prev_desc);
1462 1463
					return;
				}
1464
			}
1465 1466 1467
			prev_desc = desc;
			desc = desc->more;
		}
1468
		pr_err("%s: %p many->many\n", __func__, spte);
1469 1470 1471 1472
		BUG();
	}
}

1473 1474 1475 1476 1477 1478
static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep)
{
	mmu_spte_clear_track_bits(sptep);
	__pte_list_remove(sptep, rmap_head);
}

1479 1480
static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
					   struct kvm_memory_slot *slot)
1481
{
1482
	unsigned long idx;
1483

1484
	idx = gfn_to_index(gfn, slot->base_gfn, level);
1485
	return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1486 1487
}

1488 1489
static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
					 struct kvm_mmu_page *sp)
1490
{
1491
	struct kvm_memslots *slots;
1492 1493
	struct kvm_memory_slot *slot;

1494 1495
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
1496
	return __gfn_to_rmap(gfn, sp->role.level, slot);
1497 1498
}

1499 1500 1501 1502 1503 1504 1505 1506
static bool rmap_can_add(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu_memory_cache *cache;

	cache = &vcpu->arch.mmu_pte_list_desc_cache;
	return mmu_memory_cache_free_objects(cache);
}

1507 1508 1509
static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
{
	struct kvm_mmu_page *sp;
1510
	struct kvm_rmap_head *rmap_head;
1511 1512 1513

	sp = page_header(__pa(spte));
	kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1514 1515
	rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
	return pte_list_add(vcpu, spte, rmap_head);
1516 1517 1518 1519 1520 1521
}

static void rmap_remove(struct kvm *kvm, u64 *spte)
{
	struct kvm_mmu_page *sp;
	gfn_t gfn;
1522
	struct kvm_rmap_head *rmap_head;
1523 1524 1525

	sp = page_header(__pa(spte));
	gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1526
	rmap_head = gfn_to_rmap(kvm, gfn, sp);
1527
	__pte_list_remove(spte, rmap_head);
1528 1529
}

1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
/*
 * Used by the following functions to iterate through the sptes linked by a
 * rmap.  All fields are private and not assumed to be used outside.
 */
struct rmap_iterator {
	/* private fields */
	struct pte_list_desc *desc;	/* holds the sptep if not NULL */
	int pos;			/* index of the sptep */
};

/*
 * Iteration must be started by this function.  This should also be used after
 * removing/dropping sptes from the rmap link because in such cases the
M
Miaohe Lin 已提交
1543
 * information in the iterator may not be valid.
1544 1545 1546
 *
 * Returns sptep if found, NULL otherwise.
 */
1547 1548
static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
			   struct rmap_iterator *iter)
1549
{
1550 1551
	u64 *sptep;

1552
	if (!rmap_head->val)
1553 1554
		return NULL;

1555
	if (!(rmap_head->val & 1)) {
1556
		iter->desc = NULL;
1557 1558
		sptep = (u64 *)rmap_head->val;
		goto out;
1559 1560
	}

1561
	iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1562
	iter->pos = 0;
1563 1564 1565 1566
	sptep = iter->desc->sptes[iter->pos];
out:
	BUG_ON(!is_shadow_present_pte(*sptep));
	return sptep;
1567 1568 1569 1570 1571 1572 1573 1574 1575
}

/*
 * Must be used with a valid iterator: e.g. after rmap_get_first().
 *
 * Returns sptep if found, NULL otherwise.
 */
static u64 *rmap_get_next(struct rmap_iterator *iter)
{
1576 1577
	u64 *sptep;

1578 1579 1580 1581 1582
	if (iter->desc) {
		if (iter->pos < PTE_LIST_EXT - 1) {
			++iter->pos;
			sptep = iter->desc->sptes[iter->pos];
			if (sptep)
1583
				goto out;
1584 1585 1586 1587 1588 1589 1590
		}

		iter->desc = iter->desc->more;

		if (iter->desc) {
			iter->pos = 0;
			/* desc->sptes[0] cannot be NULL */
1591 1592
			sptep = iter->desc->sptes[iter->pos];
			goto out;
1593 1594 1595 1596
		}
	}

	return NULL;
1597 1598 1599
out:
	BUG_ON(!is_shadow_present_pte(*sptep));
	return sptep;
1600 1601
}

1602 1603
#define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)			\
	for (_spte_ = rmap_get_first(_rmap_head_, _iter_);		\
1604
	     _spte_; _spte_ = rmap_get_next(_iter_))
1605

1606
static void drop_spte(struct kvm *kvm, u64 *sptep)
1607
{
1608
	if (mmu_spte_clear_track_bits(sptep))
1609
		rmap_remove(kvm, sptep);
A
Avi Kivity 已提交
1610 1611
}

1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627

static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
{
	if (is_large_pte(*sptep)) {
		WARN_ON(page_header(__pa(sptep))->role.level ==
			PT_PAGE_TABLE_LEVEL);
		drop_spte(kvm, sptep);
		--kvm->stat.lpages;
		return true;
	}

	return false;
}

static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
{
1628 1629 1630 1631 1632 1633
	if (__drop_large_spte(vcpu->kvm, sptep)) {
		struct kvm_mmu_page *sp = page_header(__pa(sptep));

		kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
			KVM_PAGES_PER_HPAGE(sp->role.level));
	}
1634 1635 1636
}

/*
1637
 * Write-protect on the specified @sptep, @pt_protect indicates whether
1638
 * spte write-protection is caused by protecting shadow page table.
1639
 *
T
Tiejun Chen 已提交
1640
 * Note: write protection is difference between dirty logging and spte
1641 1642 1643 1644 1645
 * protection:
 * - for dirty logging, the spte can be set to writable at anytime if
 *   its dirty bitmap is properly set.
 * - for spte protection, the spte can be writable only after unsync-ing
 *   shadow page.
1646
 *
1647
 * Return true if tlb need be flushed.
1648
 */
1649
static bool spte_write_protect(u64 *sptep, bool pt_protect)
1650 1651 1652
{
	u64 spte = *sptep;

1653
	if (!is_writable_pte(spte) &&
1654
	      !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1655 1656 1657 1658
		return false;

	rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);

1659 1660
	if (pt_protect)
		spte &= ~SPTE_MMU_WRITEABLE;
1661
	spte = spte & ~PT_WRITABLE_MASK;
1662

1663
	return mmu_spte_update(sptep, spte);
1664 1665
}

1666 1667
static bool __rmap_write_protect(struct kvm *kvm,
				 struct kvm_rmap_head *rmap_head,
1668
				 bool pt_protect)
1669
{
1670 1671
	u64 *sptep;
	struct rmap_iterator iter;
1672
	bool flush = false;
1673

1674
	for_each_rmap_spte(rmap_head, &iter, sptep)
1675
		flush |= spte_write_protect(sptep, pt_protect);
1676

1677
	return flush;
1678 1679
}

1680
static bool spte_clear_dirty(u64 *sptep)
1681 1682 1683 1684 1685
{
	u64 spte = *sptep;

	rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);

1686
	MMU_WARN_ON(!spte_ad_enabled(spte));
1687 1688 1689 1690
	spte &= ~shadow_dirty_mask;
	return mmu_spte_update(sptep, spte);
}

1691
static bool spte_wrprot_for_clear_dirty(u64 *sptep)
1692 1693 1694
{
	bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
					       (unsigned long *)sptep);
1695
	if (was_writable && !spte_ad_enabled(*sptep))
1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706
		kvm_set_pfn_dirty(spte_to_pfn(*sptep));

	return was_writable;
}

/*
 * Gets the GFN ready for another round of dirty logging by clearing the
 *	- D bit on ad-enabled SPTEs, and
 *	- W bit on ad-disabled SPTEs.
 * Returns true iff any D or W bits were cleared.
 */
1707
static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1708 1709 1710 1711 1712
{
	u64 *sptep;
	struct rmap_iterator iter;
	bool flush = false;

1713
	for_each_rmap_spte(rmap_head, &iter, sptep)
1714 1715
		if (spte_ad_need_write_protect(*sptep))
			flush |= spte_wrprot_for_clear_dirty(sptep);
1716
		else
1717
			flush |= spte_clear_dirty(sptep);
1718 1719 1720 1721

	return flush;
}

1722
static bool spte_set_dirty(u64 *sptep)
1723 1724 1725 1726 1727
{
	u64 spte = *sptep;

	rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);

1728 1729 1730 1731 1732
	/*
	 * Similar to the !kvm_x86_ops->slot_disable_log_dirty case,
	 * do not bother adding back write access to pages marked
	 * SPTE_AD_WRPROT_ONLY_MASK.
	 */
1733 1734 1735 1736 1737
	spte |= shadow_dirty_mask;

	return mmu_spte_update(sptep, spte);
}

1738
static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1739 1740 1741 1742 1743
{
	u64 *sptep;
	struct rmap_iterator iter;
	bool flush = false;

1744
	for_each_rmap_spte(rmap_head, &iter, sptep)
1745 1746
		if (spte_ad_enabled(*sptep))
			flush |= spte_set_dirty(sptep);
1747 1748 1749 1750

	return flush;
}

1751
/**
1752
 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1753 1754 1755 1756 1757 1758 1759 1760
 * @kvm: kvm instance
 * @slot: slot to protect
 * @gfn_offset: start of the BITS_PER_LONG pages we care about
 * @mask: indicates which pages we should protect
 *
 * Used when we do not need to care about huge page mappings: e.g. during dirty
 * logging we do not have any such mappings.
 */
1761
static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1762 1763
				     struct kvm_memory_slot *slot,
				     gfn_t gfn_offset, unsigned long mask)
1764
{
1765
	struct kvm_rmap_head *rmap_head;
1766

1767
	while (mask) {
1768 1769 1770
		rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
					  PT_PAGE_TABLE_LEVEL, slot);
		__rmap_write_protect(kvm, rmap_head, false);
M
Marcelo Tosatti 已提交
1771

1772 1773 1774
		/* clear the first set bit */
		mask &= mask - 1;
	}
1775 1776
}

1777
/**
1778 1779
 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
 * protect the page if the D-bit isn't supported.
1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790
 * @kvm: kvm instance
 * @slot: slot to clear D-bit
 * @gfn_offset: start of the BITS_PER_LONG pages we care about
 * @mask: indicates which pages we should clear D-bit
 *
 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
 */
void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
				     struct kvm_memory_slot *slot,
				     gfn_t gfn_offset, unsigned long mask)
{
1791
	struct kvm_rmap_head *rmap_head;
1792 1793

	while (mask) {
1794 1795 1796
		rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
					  PT_PAGE_TABLE_LEVEL, slot);
		__rmap_clear_dirty(kvm, rmap_head);
1797 1798 1799 1800 1801 1802 1803

		/* clear the first set bit */
		mask &= mask - 1;
	}
}
EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);

1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817
/**
 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
 * PT level pages.
 *
 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
 * enable dirty logging for them.
 *
 * Used when we do not need to care about huge page mappings: e.g. during dirty
 * logging we do not have any such mappings.
 */
void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
				struct kvm_memory_slot *slot,
				gfn_t gfn_offset, unsigned long mask)
{
1818 1819 1820 1821 1822
	if (kvm_x86_ops->enable_log_dirty_pt_masked)
		kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
				mask);
	else
		kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1823 1824
}

1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
/**
 * kvm_arch_write_log_dirty - emulate dirty page logging
 * @vcpu: Guest mode vcpu
 *
 * Emulate arch specific page modification logging for the
 * nested hypervisor
 */
int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu)
{
	if (kvm_x86_ops->write_log_dirty)
		return kvm_x86_ops->write_log_dirty(vcpu);

	return 0;
}

1840 1841
bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
				    struct kvm_memory_slot *slot, u64 gfn)
1842
{
1843
	struct kvm_rmap_head *rmap_head;
1844
	int i;
1845
	bool write_protected = false;
1846

1847
	for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1848
		rmap_head = __gfn_to_rmap(gfn, i, slot);
1849
		write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1850 1851 1852
	}

	return write_protected;
1853 1854
}

1855 1856 1857 1858 1859 1860 1861 1862
static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
{
	struct kvm_memory_slot *slot;

	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
	return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
}

1863
static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1864
{
1865 1866
	u64 *sptep;
	struct rmap_iterator iter;
1867
	bool flush = false;
1868

1869
	while ((sptep = rmap_get_first(rmap_head, &iter))) {
1870
		rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1871

1872
		pte_list_remove(rmap_head, sptep);
1873
		flush = true;
1874
	}
1875

1876 1877 1878
	return flush;
}

1879
static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1880 1881 1882
			   struct kvm_memory_slot *slot, gfn_t gfn, int level,
			   unsigned long data)
{
1883
	return kvm_zap_rmapp(kvm, rmap_head);
1884 1885
}

1886
static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1887 1888
			     struct kvm_memory_slot *slot, gfn_t gfn, int level,
			     unsigned long data)
1889
{
1890 1891
	u64 *sptep;
	struct rmap_iterator iter;
1892
	int need_flush = 0;
1893
	u64 new_spte;
1894
	pte_t *ptep = (pte_t *)data;
D
Dan Williams 已提交
1895
	kvm_pfn_t new_pfn;
1896 1897 1898

	WARN_ON(pte_huge(*ptep));
	new_pfn = pte_pfn(*ptep);
1899

1900
restart:
1901
	for_each_rmap_spte(rmap_head, &iter, sptep) {
1902
		rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1903
			    sptep, *sptep, gfn, level);
1904

1905
		need_flush = 1;
1906

1907
		if (pte_write(*ptep)) {
1908
			pte_list_remove(rmap_head, sptep);
1909
			goto restart;
1910
		} else {
1911
			new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1912 1913 1914 1915
			new_spte |= (u64)new_pfn << PAGE_SHIFT;

			new_spte &= ~PT_WRITABLE_MASK;
			new_spte &= ~SPTE_HOST_WRITEABLE;
1916 1917

			new_spte = mark_spte_for_access_track(new_spte);
1918 1919 1920

			mmu_spte_clear_track_bits(sptep);
			mmu_spte_set(sptep, new_spte);
1921 1922
		}
	}
1923

1924 1925 1926 1927 1928
	if (need_flush && kvm_available_flush_tlb_with_range()) {
		kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
		return 0;
	}

1929
	return need_flush;
1930 1931
}

1932 1933 1934 1935 1936 1937 1938 1939 1940 1941
struct slot_rmap_walk_iterator {
	/* input fields. */
	struct kvm_memory_slot *slot;
	gfn_t start_gfn;
	gfn_t end_gfn;
	int start_level;
	int end_level;

	/* output fields. */
	gfn_t gfn;
1942
	struct kvm_rmap_head *rmap;
1943 1944 1945
	int level;

	/* private field. */
1946
	struct kvm_rmap_head *end_rmap;
1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
};

static void
rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
{
	iterator->level = level;
	iterator->gfn = iterator->start_gfn;
	iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
	iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
					   iterator->slot);
}

static void
slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
		    struct kvm_memory_slot *slot, int start_level,
		    int end_level, gfn_t start_gfn, gfn_t end_gfn)
{
	iterator->slot = slot;
	iterator->start_level = start_level;
	iterator->end_level = end_level;
	iterator->start_gfn = start_gfn;
	iterator->end_gfn = end_gfn;

	rmap_walk_init_level(iterator, iterator->start_level);
}

static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
{
	return !!iterator->rmap;
}

static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
{
	if (++iterator->rmap <= iterator->end_rmap) {
		iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
		return;
	}

	if (++iterator->level > iterator->end_level) {
		iterator->rmap = NULL;
		return;
	}

	rmap_walk_init_level(iterator, iterator->level);
}

#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,	\
	   _start_gfn, _end_gfn, _iter_)				\
	for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,		\
				 _end_level_, _start_gfn, _end_gfn);	\
	     slot_rmap_walk_okay(_iter_);				\
	     slot_rmap_walk_next(_iter_))

2000 2001 2002 2003 2004
static int kvm_handle_hva_range(struct kvm *kvm,
				unsigned long start,
				unsigned long end,
				unsigned long data,
				int (*handler)(struct kvm *kvm,
2005
					       struct kvm_rmap_head *rmap_head,
2006
					       struct kvm_memory_slot *slot,
2007 2008
					       gfn_t gfn,
					       int level,
2009
					       unsigned long data))
2010
{
2011
	struct kvm_memslots *slots;
2012
	struct kvm_memory_slot *memslot;
2013 2014
	struct slot_rmap_walk_iterator iterator;
	int ret = 0;
2015
	int i;
2016

2017 2018 2019 2020 2021
	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
		kvm_for_each_memslot(memslot, slots) {
			unsigned long hva_start, hva_end;
			gfn_t gfn_start, gfn_end;
2022

2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041
			hva_start = max(start, memslot->userspace_addr);
			hva_end = min(end, memslot->userspace_addr +
				      (memslot->npages << PAGE_SHIFT));
			if (hva_start >= hva_end)
				continue;
			/*
			 * {gfn(page) | page intersects with [hva_start, hva_end)} =
			 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
			 */
			gfn_start = hva_to_gfn_memslot(hva_start, memslot);
			gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);

			for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
						 PT_MAX_HUGEPAGE_LEVEL,
						 gfn_start, gfn_end - 1,
						 &iterator)
				ret |= handler(kvm, iterator.rmap, memslot,
					       iterator.gfn, iterator.level, data);
		}
2042 2043
	}

2044
	return ret;
2045 2046
}

2047 2048
static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
			  unsigned long data,
2049 2050
			  int (*handler)(struct kvm *kvm,
					 struct kvm_rmap_head *rmap_head,
2051
					 struct kvm_memory_slot *slot,
2052
					 gfn_t gfn, int level,
2053 2054 2055
					 unsigned long data))
{
	return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
2056 2057
}

2058 2059 2060 2061 2062
int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
{
	return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
}

2063
int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
2064
{
2065
	return kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
2066 2067
}

2068
static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
2069 2070
			 struct kvm_memory_slot *slot, gfn_t gfn, int level,
			 unsigned long data)
2071
{
2072
	u64 *sptep;
2073
	struct rmap_iterator uninitialized_var(iter);
2074 2075
	int young = 0;

2076 2077
	for_each_rmap_spte(rmap_head, &iter, sptep)
		young |= mmu_spte_age(sptep);
2078

2079
	trace_kvm_age_page(gfn, level, slot, young);
2080 2081 2082
	return young;
}

2083
static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
2084 2085
			      struct kvm_memory_slot *slot, gfn_t gfn,
			      int level, unsigned long data)
A
Andrea Arcangeli 已提交
2086
{
2087 2088
	u64 *sptep;
	struct rmap_iterator iter;
A
Andrea Arcangeli 已提交
2089

2090 2091 2092 2093
	for_each_rmap_spte(rmap_head, &iter, sptep)
		if (is_accessed_spte(*sptep))
			return 1;
	return 0;
A
Andrea Arcangeli 已提交
2094 2095
}

2096 2097
#define RMAP_RECYCLE_THRESHOLD 1000

2098
static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
2099
{
2100
	struct kvm_rmap_head *rmap_head;
2101 2102 2103
	struct kvm_mmu_page *sp;

	sp = page_header(__pa(spte));
2104

2105
	rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
2106

2107
	kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
2108 2109
	kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
			KVM_PAGES_PER_HPAGE(sp->role.level));
2110 2111
}

A
Andres Lagar-Cavilla 已提交
2112
int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
2113
{
A
Andres Lagar-Cavilla 已提交
2114
	return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
2115 2116
}

A
Andrea Arcangeli 已提交
2117 2118 2119 2120 2121
int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
{
	return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
}

2122
#ifdef MMU_DEBUG
2123
static int is_empty_shadow_page(u64 *spt)
A
Avi Kivity 已提交
2124
{
2125 2126 2127
	u64 *pos;
	u64 *end;

2128
	for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
2129
		if (is_shadow_present_pte(*pos)) {
2130
			printk(KERN_ERR "%s: %p %llx\n", __func__,
2131
			       pos, *pos);
A
Avi Kivity 已提交
2132
			return 0;
2133
		}
A
Avi Kivity 已提交
2134 2135
	return 1;
}
2136
#endif
A
Avi Kivity 已提交
2137

2138 2139 2140 2141 2142 2143
/*
 * This value is the sum of all of the kvm instances's
 * kvm->arch.n_used_mmu_pages values.  We need a global,
 * aggregate version in order to make the slab shrinker
 * faster
 */
2144
static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, unsigned long nr)
2145 2146 2147 2148 2149
{
	kvm->arch.n_used_mmu_pages += nr;
	percpu_counter_add(&kvm_total_used_mmu_pages, nr);
}

2150
static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
2151
{
2152
	MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
2153
	hlist_del(&sp->hash_link);
2154 2155
	list_del(&sp->link);
	free_page((unsigned long)sp->spt);
2156 2157
	if (!sp->role.direct)
		free_page((unsigned long)sp->gfns);
2158
	kmem_cache_free(mmu_page_header_cache, sp);
2159 2160
}

2161 2162
static unsigned kvm_page_table_hashfn(gfn_t gfn)
{
2163
	return hash_64(gfn, KVM_MMU_HASH_SHIFT);
2164 2165
}

2166
static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
2167
				    struct kvm_mmu_page *sp, u64 *parent_pte)
2168 2169 2170 2171
{
	if (!parent_pte)
		return;

2172
	pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
2173 2174
}

2175
static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
2176 2177
				       u64 *parent_pte)
{
2178
	__pte_list_remove(parent_pte, &sp->parent_ptes);
2179 2180
}

2181 2182 2183 2184
static void drop_parent_pte(struct kvm_mmu_page *sp,
			    u64 *parent_pte)
{
	mmu_page_remove_parent_pte(sp, parent_pte);
2185
	mmu_spte_clear_no_track(parent_pte);
2186 2187
}

2188
static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
M
Marcelo Tosatti 已提交
2189
{
2190
	struct kvm_mmu_page *sp;
2191

2192 2193
	sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
	sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
2194
	if (!direct)
2195
		sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
2196
	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
2197 2198 2199 2200 2201 2202

	/*
	 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
	 * depends on valid pages being added to the head of the list.  See
	 * comments in kvm_zap_obsolete_pages().
	 */
2203
	sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
2204 2205 2206
	list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
	kvm_mod_used_mmu_pages(vcpu->kvm, +1);
	return sp;
M
Marcelo Tosatti 已提交
2207 2208
}

2209
static void mark_unsync(u64 *spte);
2210
static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
2211
{
2212 2213 2214 2215 2216 2217
	u64 *sptep;
	struct rmap_iterator iter;

	for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
		mark_unsync(sptep);
	}
2218 2219
}

2220
static void mark_unsync(u64 *spte)
2221
{
2222
	struct kvm_mmu_page *sp;
2223
	unsigned int index;
2224

2225
	sp = page_header(__pa(spte));
2226 2227
	index = spte - sp->spt;
	if (__test_and_set_bit(index, sp->unsync_child_bitmap))
2228
		return;
2229
	if (sp->unsync_children++)
2230
		return;
2231
	kvm_mmu_mark_parents_unsync(sp);
2232 2233
}

2234
static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
2235
			       struct kvm_mmu_page *sp)
2236
{
2237
	return 0;
2238 2239
}

2240
static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root)
M
Marcelo Tosatti 已提交
2241 2242 2243
{
}

2244 2245
static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
				 struct kvm_mmu_page *sp, u64 *spte,
2246
				 const void *pte)
2247 2248 2249 2250
{
	WARN_ON(1);
}

2251 2252 2253 2254 2255 2256 2257 2258 2259 2260
#define KVM_PAGE_ARRAY_NR 16

struct kvm_mmu_pages {
	struct mmu_page_and_offset {
		struct kvm_mmu_page *sp;
		unsigned int idx;
	} page[KVM_PAGE_ARRAY_NR];
	unsigned int nr;
};

2261 2262
static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
			 int idx)
2263
{
2264
	int i;
2265

2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276
	if (sp->unsync)
		for (i=0; i < pvec->nr; i++)
			if (pvec->page[i].sp == sp)
				return 0;

	pvec->page[pvec->nr].sp = sp;
	pvec->page[pvec->nr].idx = idx;
	pvec->nr++;
	return (pvec->nr == KVM_PAGE_ARRAY_NR);
}

2277 2278 2279 2280 2281 2282 2283
static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
{
	--sp->unsync_children;
	WARN_ON((int)sp->unsync_children < 0);
	__clear_bit(idx, sp->unsync_child_bitmap);
}

2284 2285 2286 2287
static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
	int i, ret, nr_unsync_leaf = 0;
2288

2289
	for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
2290
		struct kvm_mmu_page *child;
2291 2292
		u64 ent = sp->spt[i];

2293 2294 2295 2296
		if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
			clear_unsync_child_bit(sp, i);
			continue;
		}
2297 2298 2299 2300 2301 2302 2303 2304

		child = page_header(ent & PT64_BASE_ADDR_MASK);

		if (child->unsync_children) {
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;

			ret = __mmu_unsync_walk(child, pvec);
2305 2306 2307 2308
			if (!ret) {
				clear_unsync_child_bit(sp, i);
				continue;
			} else if (ret > 0) {
2309
				nr_unsync_leaf += ret;
2310
			} else
2311 2312 2313 2314 2315 2316
				return ret;
		} else if (child->unsync) {
			nr_unsync_leaf++;
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;
		} else
2317
			clear_unsync_child_bit(sp, i);
2318 2319
	}

2320 2321 2322
	return nr_unsync_leaf;
}

2323 2324
#define INVALID_INDEX (-1)

2325 2326 2327
static int mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
P
Paolo Bonzini 已提交
2328
	pvec->nr = 0;
2329 2330 2331
	if (!sp->unsync_children)
		return 0;

2332
	mmu_pages_add(pvec, sp, INVALID_INDEX);
2333
	return __mmu_unsync_walk(sp, pvec);
2334 2335 2336 2337 2338
}

static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
{
	WARN_ON(!sp->unsync);
2339
	trace_kvm_mmu_sync_page(sp);
2340 2341 2342 2343
	sp->unsync = 0;
	--kvm->stat.mmu_unsync;
}

2344 2345
static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				     struct list_head *invalid_list);
2346 2347
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list);
2348

2349

2350
#define for_each_valid_sp(_kvm, _sp, _gfn)				\
2351 2352
	hlist_for_each_entry(_sp,					\
	  &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
2353
		if (is_obsolete_sp((_kvm), (_sp))) {			\
2354
		} else
2355 2356

#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)			\
2357 2358
	for_each_valid_sp(_kvm, _sp, _gfn)				\
		if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
2359

2360 2361 2362 2363 2364
static inline bool is_ept_sp(struct kvm_mmu_page *sp)
{
	return sp->role.cr0_wp && sp->role.smap_andnot_wp;
}

2365
/* @sp->gfn should be write-protected at the call site */
2366 2367
static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
			    struct list_head *invalid_list)
2368
{
2369 2370
	if ((!is_ept_sp(sp) && sp->role.gpte_is_8_bytes != !!is_pae(vcpu)) ||
	    vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
2371
		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
2372
		return false;
2373 2374
	}

2375
	return true;
2376 2377
}

2378 2379 2380 2381
static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
					struct list_head *invalid_list,
					bool remote_flush)
{
2382
	if (!remote_flush && list_empty(invalid_list))
2383 2384 2385 2386 2387 2388 2389 2390 2391
		return false;

	if (!list_empty(invalid_list))
		kvm_mmu_commit_zap_page(kvm, invalid_list);
	else
		kvm_flush_remote_tlbs(kvm);
	return true;
}

2392 2393 2394
static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
				 struct list_head *invalid_list,
				 bool remote_flush, bool local_flush)
2395
{
2396
	if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush))
2397
		return;
2398

2399
	if (local_flush)
2400
		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2401 2402
}

2403 2404 2405 2406 2407 2408 2409
#ifdef CONFIG_KVM_MMU_AUDIT
#include "mmu_audit.c"
#else
static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
static void mmu_audit_disable(void) { }
#endif

2410 2411
static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
{
2412 2413
	return sp->role.invalid ||
	       unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2414 2415
}

2416
static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2417
			 struct list_head *invalid_list)
2418
{
2419 2420
	kvm_unlink_unsync_page(vcpu->kvm, sp);
	return __kvm_sync_page(vcpu, sp, invalid_list);
2421 2422
}

2423
/* @gfn should be write-protected at the call site */
2424 2425
static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
			   struct list_head *invalid_list)
2426 2427
{
	struct kvm_mmu_page *s;
2428
	bool ret = false;
2429

2430
	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2431
		if (!s->unsync)
2432 2433 2434
			continue;

		WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2435
		ret |= kvm_sync_page(vcpu, s, invalid_list);
2436 2437
	}

2438
	return ret;
2439 2440
}

2441
struct mmu_page_path {
2442 2443
	struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
	unsigned int idx[PT64_ROOT_MAX_LEVEL];
2444 2445
};

2446
#define for_each_sp(pvec, sp, parents, i)			\
P
Paolo Bonzini 已提交
2447
		for (i = mmu_pages_first(&pvec, &parents);	\
2448 2449 2450
			i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});	\
			i = mmu_pages_next(&pvec, &parents, i))

2451 2452 2453
static int mmu_pages_next(struct kvm_mmu_pages *pvec,
			  struct mmu_page_path *parents,
			  int i)
2454 2455 2456 2457 2458
{
	int n;

	for (n = i+1; n < pvec->nr; n++) {
		struct kvm_mmu_page *sp = pvec->page[n].sp;
P
Paolo Bonzini 已提交
2459 2460
		unsigned idx = pvec->page[n].idx;
		int level = sp->role.level;
2461

P
Paolo Bonzini 已提交
2462 2463 2464
		parents->idx[level-1] = idx;
		if (level == PT_PAGE_TABLE_LEVEL)
			break;
2465

P
Paolo Bonzini 已提交
2466
		parents->parent[level-2] = sp;
2467 2468 2469 2470 2471
	}

	return n;
}

P
Paolo Bonzini 已提交
2472 2473 2474 2475 2476 2477 2478 2479 2480
static int mmu_pages_first(struct kvm_mmu_pages *pvec,
			   struct mmu_page_path *parents)
{
	struct kvm_mmu_page *sp;
	int level;

	if (pvec->nr == 0)
		return 0;

2481 2482
	WARN_ON(pvec->page[0].idx != INVALID_INDEX);

P
Paolo Bonzini 已提交
2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495
	sp = pvec->page[0].sp;
	level = sp->role.level;
	WARN_ON(level == PT_PAGE_TABLE_LEVEL);

	parents->parent[level-2] = sp;

	/* Also set up a sentinel.  Further entries in pvec are all
	 * children of sp, so this element is never overwritten.
	 */
	parents->parent[level-1] = NULL;
	return mmu_pages_next(pvec, parents, 0);
}

2496
static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2497
{
2498 2499 2500 2501 2502 2503 2504 2505 2506
	struct kvm_mmu_page *sp;
	unsigned int level = 0;

	do {
		unsigned int idx = parents->idx[level];
		sp = parents->parent[level];
		if (!sp)
			return;

2507
		WARN_ON(idx == INVALID_INDEX);
2508
		clear_unsync_child_bit(sp, idx);
2509
		level++;
P
Paolo Bonzini 已提交
2510
	} while (!sp->unsync_children);
2511
}
2512

2513 2514 2515 2516 2517 2518 2519
static void mmu_sync_children(struct kvm_vcpu *vcpu,
			      struct kvm_mmu_page *parent)
{
	int i;
	struct kvm_mmu_page *sp;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
2520
	LIST_HEAD(invalid_list);
2521
	bool flush = false;
2522 2523

	while (mmu_unsync_walk(parent, &pages)) {
2524
		bool protected = false;
2525 2526

		for_each_sp(pages, sp, parents, i)
2527
			protected |= rmap_write_protect(vcpu, sp->gfn);
2528

2529
		if (protected) {
2530
			kvm_flush_remote_tlbs(vcpu->kvm);
2531 2532
			flush = false;
		}
2533

2534
		for_each_sp(pages, sp, parents, i) {
2535
			flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2536 2537
			mmu_pages_clear_parents(&parents);
		}
2538 2539 2540 2541 2542
		if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
			kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
			cond_resched_lock(&vcpu->kvm->mmu_lock);
			flush = false;
		}
2543
	}
2544 2545

	kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2546 2547
}

2548 2549
static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
{
2550
	atomic_set(&sp->write_flooding_count,  0);
2551 2552 2553 2554 2555 2556 2557 2558 2559
}

static void clear_sp_write_flooding_count(u64 *spte)
{
	struct kvm_mmu_page *sp =  page_header(__pa(spte));

	__clear_sp_write_flooding_count(sp);
}

2560 2561 2562 2563
static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
					     gfn_t gfn,
					     gva_t gaddr,
					     unsigned level,
2564
					     int direct,
2565
					     unsigned access)
2566 2567 2568
{
	union kvm_mmu_page_role role;
	unsigned quadrant;
2569 2570
	struct kvm_mmu_page *sp;
	bool need_sync = false;
2571
	bool flush = false;
2572
	int collisions = 0;
2573
	LIST_HEAD(invalid_list);
2574

2575
	role = vcpu->arch.mmu->mmu_role.base;
2576
	role.level = level;
2577
	role.direct = direct;
2578
	if (role.direct)
2579
		role.gpte_is_8_bytes = true;
2580
	role.access = access;
2581 2582
	if (!vcpu->arch.mmu->direct_map
	    && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
2583 2584 2585 2586
		quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
		quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
		role.quadrant = quadrant;
	}
2587 2588 2589 2590 2591 2592
	for_each_valid_sp(vcpu->kvm, sp, gfn) {
		if (sp->gfn != gfn) {
			collisions++;
			continue;
		}

2593 2594
		if (!need_sync && sp->unsync)
			need_sync = true;
2595

2596 2597
		if (sp->role.word != role.word)
			continue;
2598

2599 2600 2601 2602 2603 2604 2605 2606 2607 2608
		if (sp->unsync) {
			/* The page is good, but __kvm_sync_page might still end
			 * up zapping it.  If so, break in order to rebuild it.
			 */
			if (!__kvm_sync_page(vcpu, sp, &invalid_list))
				break;

			WARN_ON(!list_empty(&invalid_list));
			kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
		}
2609

2610
		if (sp->unsync_children)
2611
			kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2612

2613
		__clear_sp_write_flooding_count(sp);
2614
		trace_kvm_mmu_get_page(sp, false);
2615
		goto out;
2616
	}
2617

A
Avi Kivity 已提交
2618
	++vcpu->kvm->stat.mmu_cache_miss;
2619 2620 2621

	sp = kvm_mmu_alloc_page(vcpu, direct);

2622 2623
	sp->gfn = gfn;
	sp->role = role;
2624 2625
	hlist_add_head(&sp->hash_link,
		&vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
2626
	if (!direct) {
2627 2628 2629 2630 2631 2632 2633 2634
		/*
		 * we should do write protection before syncing pages
		 * otherwise the content of the synced shadow page may
		 * be inconsistent with guest page table.
		 */
		account_shadowed(vcpu->kvm, sp);
		if (level == PT_PAGE_TABLE_LEVEL &&
		      rmap_write_protect(vcpu, gfn))
2635
			kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
2636 2637

		if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2638
			flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
2639
	}
2640
	clear_page(sp->spt);
A
Avi Kivity 已提交
2641
	trace_kvm_mmu_get_page(sp, true);
2642 2643

	kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2644 2645 2646
out:
	if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
		vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2647
	return sp;
2648 2649
}

2650 2651 2652
static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
					struct kvm_vcpu *vcpu, hpa_t root,
					u64 addr)
2653 2654
{
	iterator->addr = addr;
2655
	iterator->shadow_addr = root;
2656
	iterator->level = vcpu->arch.mmu->shadow_root_level;
2657

2658
	if (iterator->level == PT64_ROOT_4LEVEL &&
2659 2660
	    vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
	    !vcpu->arch.mmu->direct_map)
2661 2662
		--iterator->level;

2663
	if (iterator->level == PT32E_ROOT_LEVEL) {
2664 2665 2666 2667
		/*
		 * prev_root is currently only used for 64-bit hosts. So only
		 * the active root_hpa is valid here.
		 */
2668
		BUG_ON(root != vcpu->arch.mmu->root_hpa);
2669

2670
		iterator->shadow_addr
2671
			= vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2672 2673 2674 2675 2676 2677 2678
		iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
		--iterator->level;
		if (!iterator->shadow_addr)
			iterator->level = 0;
	}
}

2679 2680 2681
static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
			     struct kvm_vcpu *vcpu, u64 addr)
{
2682
	shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
2683 2684 2685
				    addr);
}

2686 2687 2688 2689
static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
{
	if (iterator->level < PT_PAGE_TABLE_LEVEL)
		return false;
2690

2691 2692 2693 2694 2695
	iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
	iterator->sptep	= ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
	return true;
}

2696 2697
static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
			       u64 spte)
2698
{
2699
	if (is_last_spte(spte, iterator->level)) {
2700 2701 2702 2703
		iterator->level = 0;
		return;
	}

2704
	iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2705 2706 2707
	--iterator->level;
}

2708 2709
static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
{
2710
	__shadow_walk_next(iterator, *iterator->sptep);
2711 2712
}

2713 2714
static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
			     struct kvm_mmu_page *sp)
2715 2716 2717
{
	u64 spte;

2718
	BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2719

2720
	spte = __pa(sp->spt) | shadow_present_mask | PT_WRITABLE_MASK |
2721
	       shadow_user_mask | shadow_x_mask | shadow_me_mask;
2722 2723

	if (sp_ad_disabled(sp))
2724
		spte |= SPTE_AD_DISABLED_MASK;
2725 2726
	else
		spte |= shadow_accessed_mask;
X
Xiao Guangrong 已提交
2727

2728
	mmu_spte_set(sptep, spte);
2729 2730 2731 2732 2733

	mmu_page_add_parent_pte(vcpu, sp, sptep);

	if (sp->unsync_children || sp->unsync)
		mark_unsync(sptep);
2734 2735
}

2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752
static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
				   unsigned direct_access)
{
	if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
		struct kvm_mmu_page *child;

		/*
		 * For the direct sp, if the guest pte's dirty bit
		 * changed form clean to dirty, it will corrupt the
		 * sp's access: allow writable in the read-only sp,
		 * so we should update the spte at this point to get
		 * a new sp with the correct access.
		 */
		child = page_header(*sptep & PT64_BASE_ADDR_MASK);
		if (child->role.access == direct_access)
			return;

2753
		drop_parent_pte(child, sptep);
2754
		kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
2755 2756 2757
	}
}

X
Xiao Guangrong 已提交
2758
static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2759 2760 2761 2762 2763 2764 2765
			     u64 *spte)
{
	u64 pte;
	struct kvm_mmu_page *child;

	pte = *spte;
	if (is_shadow_present_pte(pte)) {
X
Xiao Guangrong 已提交
2766
		if (is_last_spte(pte, sp->role.level)) {
2767
			drop_spte(kvm, spte);
X
Xiao Guangrong 已提交
2768 2769 2770
			if (is_large_pte(pte))
				--kvm->stat.lpages;
		} else {
2771
			child = page_header(pte & PT64_BASE_ADDR_MASK);
2772
			drop_parent_pte(child, spte);
2773
		}
X
Xiao Guangrong 已提交
2774 2775 2776 2777
		return true;
	}

	if (is_mmio_spte(pte))
2778
		mmu_spte_clear_no_track(spte);
2779

X
Xiao Guangrong 已提交
2780
	return false;
2781 2782
}

2783
static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2784
					 struct kvm_mmu_page *sp)
2785
{
2786 2787
	unsigned i;

2788 2789
	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
		mmu_page_zap_pte(kvm, sp, sp->spt + i);
2790 2791
}

2792
static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2793
{
2794 2795
	u64 *sptep;
	struct rmap_iterator iter;
2796

2797
	while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2798
		drop_parent_pte(sp, sptep);
2799 2800
}

2801
static int mmu_zap_unsync_children(struct kvm *kvm,
2802 2803
				   struct kvm_mmu_page *parent,
				   struct list_head *invalid_list)
2804
{
2805 2806 2807
	int i, zapped = 0;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
2808

2809
	if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2810
		return 0;
2811 2812 2813 2814 2815

	while (mmu_unsync_walk(parent, &pages)) {
		struct kvm_mmu_page *sp;

		for_each_sp(pages, sp, parents, i) {
2816
			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2817
			mmu_pages_clear_parents(&parents);
2818
			zapped++;
2819 2820 2821 2822
		}
	}

	return zapped;
2823 2824
}

2825 2826 2827 2828
static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
				       struct kvm_mmu_page *sp,
				       struct list_head *invalid_list,
				       int *nr_zapped)
2829
{
2830
	bool list_unstable;
A
Avi Kivity 已提交
2831

2832
	trace_kvm_mmu_prepare_zap_page(sp);
2833
	++kvm->stat.mmu_shadow_zapped;
2834
	*nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2835
	kvm_mmu_page_unlink_children(kvm, sp);
2836
	kvm_mmu_unlink_parents(kvm, sp);
2837

2838 2839 2840
	/* Zapping children means active_mmu_pages has become unstable. */
	list_unstable = *nr_zapped;

2841
	if (!sp->role.invalid && !sp->role.direct)
2842
		unaccount_shadowed(kvm, sp);
2843

2844 2845
	if (sp->unsync)
		kvm_unlink_unsync_page(kvm, sp);
2846
	if (!sp->root_count) {
2847
		/* Count self */
2848
		(*nr_zapped)++;
2849
		list_move(&sp->link, invalid_list);
2850
		kvm_mod_used_mmu_pages(kvm, -1);
2851
	} else {
A
Avi Kivity 已提交
2852
		list_move(&sp->link, &kvm->arch.active_mmu_pages);
2853

2854 2855 2856 2857 2858 2859
		/*
		 * Obsolete pages cannot be used on any vCPUs, see the comment
		 * in kvm_mmu_zap_all_fast().  Note, is_obsolete_sp() also
		 * treats invalid shadow pages as being obsolete.
		 */
		if (!is_obsolete_sp(kvm, sp))
2860
			kvm_reload_remote_mmus(kvm);
2861
	}
2862

P
Paolo Bonzini 已提交
2863 2864 2865
	if (sp->lpage_disallowed)
		unaccount_huge_nx_page(kvm, sp);

2866
	sp->role.invalid = 1;
2867 2868 2869 2870 2871 2872 2873 2874 2875 2876
	return list_unstable;
}

static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				     struct list_head *invalid_list)
{
	int nr_zapped;

	__kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
	return nr_zapped;
2877 2878
}

2879 2880 2881
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list)
{
2882
	struct kvm_mmu_page *sp, *nsp;
2883 2884 2885 2886

	if (list_empty(invalid_list))
		return;

2887
	/*
2888 2889 2890 2891 2892 2893 2894
	 * We need to make sure everyone sees our modifications to
	 * the page tables and see changes to vcpu->mode here. The barrier
	 * in the kvm_flush_remote_tlbs() achieves this. This pairs
	 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
	 *
	 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
	 * guest mode and/or lockless shadow page table walks.
2895 2896
	 */
	kvm_flush_remote_tlbs(kvm);
2897

2898
	list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2899
		WARN_ON(!sp->role.invalid || sp->root_count);
2900
		kvm_mmu_free_page(sp);
2901
	}
2902 2903
}

2904 2905 2906 2907 2908 2909 2910 2911
static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
					struct list_head *invalid_list)
{
	struct kvm_mmu_page *sp;

	if (list_empty(&kvm->arch.active_mmu_pages))
		return false;

G
Geliang Tang 已提交
2912 2913
	sp = list_last_entry(&kvm->arch.active_mmu_pages,
			     struct kvm_mmu_page, link);
2914
	return kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2915 2916
}

2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936
static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
{
	LIST_HEAD(invalid_list);

	if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
		return 0;

	while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
		if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
			break;

		++vcpu->kvm->stat.mmu_recycled;
	}
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);

	if (!kvm_mmu_available_pages(vcpu->kvm))
		return -ENOSPC;
	return 0;
}

2937 2938
/*
 * Changing the number of mmu pages allocated to the vm
2939
 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2940
 */
2941
void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2942
{
2943
	LIST_HEAD(invalid_list);
2944

2945 2946
	spin_lock(&kvm->mmu_lock);

2947
	if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2948 2949 2950 2951
		/* Need to free some mmu pages to achieve the goal. */
		while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
			if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
				break;
2952

2953
		kvm_mmu_commit_zap_page(kvm, &invalid_list);
2954
		goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2955 2956
	}

2957
	kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2958 2959

	spin_unlock(&kvm->mmu_lock);
2960 2961
}

2962
int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2963
{
2964
	struct kvm_mmu_page *sp;
2965
	LIST_HEAD(invalid_list);
2966 2967
	int r;

2968
	pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2969
	r = 0;
2970
	spin_lock(&kvm->mmu_lock);
2971
	for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2972
		pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2973 2974
			 sp->role.word);
		r = 1;
2975
		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2976
	}
2977
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2978 2979
	spin_unlock(&kvm->mmu_lock);

2980
	return r;
2981
}
2982
EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2983

2984
static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2985 2986 2987 2988 2989 2990 2991 2992
{
	trace_kvm_mmu_unsync_page(sp);
	++vcpu->kvm->stat.mmu_unsync;
	sp->unsync = 1;

	kvm_mmu_mark_parents_unsync(sp);
}

2993 2994
static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
				   bool can_unsync)
2995
{
2996
	struct kvm_mmu_page *sp;
2997

2998 2999
	if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
		return true;
3000

3001
	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
3002
		if (!can_unsync)
3003
			return true;
3004

3005 3006
		if (sp->unsync)
			continue;
3007

3008 3009
		WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
		kvm_unsync_page(vcpu, sp);
3010
	}
3011

3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050
	/*
	 * We need to ensure that the marking of unsync pages is visible
	 * before the SPTE is updated to allow writes because
	 * kvm_mmu_sync_roots() checks the unsync flags without holding
	 * the MMU lock and so can race with this. If the SPTE was updated
	 * before the page had been marked as unsync-ed, something like the
	 * following could happen:
	 *
	 * CPU 1                    CPU 2
	 * ---------------------------------------------------------------------
	 * 1.2 Host updates SPTE
	 *     to be writable
	 *                      2.1 Guest writes a GPTE for GVA X.
	 *                          (GPTE being in the guest page table shadowed
	 *                           by the SP from CPU 1.)
	 *                          This reads SPTE during the page table walk.
	 *                          Since SPTE.W is read as 1, there is no
	 *                          fault.
	 *
	 *                      2.2 Guest issues TLB flush.
	 *                          That causes a VM Exit.
	 *
	 *                      2.3 kvm_mmu_sync_pages() reads sp->unsync.
	 *                          Since it is false, so it just returns.
	 *
	 *                      2.4 Guest accesses GVA X.
	 *                          Since the mapping in the SP was not updated,
	 *                          so the old mapping for GVA X incorrectly
	 *                          gets used.
	 * 1.1 Host marks SP
	 *     as unsync
	 *     (sp->unsync = true)
	 *
	 * The write barrier below ensures that 1.1 happens before 1.2 and thus
	 * the situation in 2.4 does not arise. The implicit barrier in 2.2
	 * pairs with this write barrier.
	 */
	smp_wmb();

3051
	return false;
3052 3053
}

D
Dan Williams 已提交
3054
static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
3055 3056
{
	if (pfn_valid(pfn))
3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068
		return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)) &&
			/*
			 * Some reserved pages, such as those from NVDIMM
			 * DAX devices, are not for MMIO, and can be mapped
			 * with cached memory type for better performance.
			 * However, the above check misconceives those pages
			 * as MMIO, and results in KVM mapping them with UC
			 * memory type, which would hurt the performance.
			 * Therefore, we check the host memory type in addition
			 * and only treat UC/UC-/WC pages as MMIO.
			 */
			(!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn));
3069

3070 3071 3072
	return !e820__mapped_raw_any(pfn_to_hpa(pfn),
				     pfn_to_hpa(pfn + 1) - 1,
				     E820_TYPE_RAM);
3073 3074
}

3075 3076 3077 3078
/* Bits which may be returned by set_spte() */
#define SET_SPTE_WRITE_PROTECTED_PT	BIT(0)
#define SET_SPTE_NEED_REMOTE_TLB_FLUSH	BIT(1)

A
Avi Kivity 已提交
3079
static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
3080
		    unsigned pte_access, int level,
D
Dan Williams 已提交
3081
		    gfn_t gfn, kvm_pfn_t pfn, bool speculative,
3082
		    bool can_unsync, bool host_writable)
3083
{
3084
	u64 spte = 0;
M
Marcelo Tosatti 已提交
3085
	int ret = 0;
3086
	struct kvm_mmu_page *sp;
S
Sheng Yang 已提交
3087

3088
	if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
3089 3090
		return 0;

3091 3092
	sp = page_header(__pa(sptep));
	if (sp_ad_disabled(sp))
3093
		spte |= SPTE_AD_DISABLED_MASK;
3094 3095
	else if (kvm_vcpu_ad_need_write_protect(vcpu))
		spte |= SPTE_AD_WRPROT_ONLY_MASK;
3096

3097 3098 3099 3100 3101 3102
	/*
	 * For the EPT case, shadow_present_mask is 0 if hardware
	 * supports exec-only page table entries.  In that case,
	 * ACC_USER_MASK and shadow_user_mask are used to represent
	 * read access.  See FNAME(gpte_access) in paging_tmpl.h.
	 */
3103
	spte |= shadow_present_mask;
3104
	if (!speculative)
3105
		spte |= spte_shadow_accessed_mask(spte);
3106

P
Paolo Bonzini 已提交
3107 3108 3109 3110 3111
	if (level > PT_PAGE_TABLE_LEVEL && (pte_access & ACC_EXEC_MASK) &&
	    is_nx_huge_page_enabled()) {
		pte_access &= ~ACC_EXEC_MASK;
	}

S
Sheng Yang 已提交
3112 3113 3114 3115
	if (pte_access & ACC_EXEC_MASK)
		spte |= shadow_x_mask;
	else
		spte |= shadow_nx_mask;
3116

3117
	if (pte_access & ACC_USER_MASK)
S
Sheng Yang 已提交
3118
		spte |= shadow_user_mask;
3119

3120
	if (level > PT_PAGE_TABLE_LEVEL)
M
Marcelo Tosatti 已提交
3121
		spte |= PT_PAGE_SIZE_MASK;
3122
	if (tdp_enabled)
3123
		spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
3124
			kvm_is_mmio_pfn(pfn));
3125

3126
	if (host_writable)
3127
		spte |= SPTE_HOST_WRITEABLE;
3128 3129
	else
		pte_access &= ~ACC_WRITE_MASK;
3130

3131 3132 3133
	if (!kvm_is_mmio_pfn(pfn))
		spte |= shadow_me_mask;

3134
	spte |= (u64)pfn << PAGE_SHIFT;
3135

3136
	if (pte_access & ACC_WRITE_MASK) {
3137

X
Xiao Guangrong 已提交
3138
		/*
3139 3140 3141 3142
		 * Other vcpu creates new sp in the window between
		 * mapping_level() and acquiring mmu-lock. We can
		 * allow guest to retry the access, the mapping can
		 * be fixed if guest refault.
X
Xiao Guangrong 已提交
3143
		 */
3144
		if (level > PT_PAGE_TABLE_LEVEL &&
3145
		    mmu_gfn_lpage_is_disallowed(vcpu, gfn, level))
A
Avi Kivity 已提交
3146
			goto done;
3147

3148
		spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
3149

3150 3151 3152 3153 3154 3155
		/*
		 * Optimization: for pte sync, if spte was writable the hash
		 * lookup is unnecessary (and expensive). Write protection
		 * is responsibility of mmu_get_page / kvm_sync_page.
		 * Same reasoning can be applied to dirty page accounting.
		 */
3156
		if (!can_unsync && is_writable_pte(*sptep))
3157 3158
			goto set_pte;

3159
		if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
3160
			pgprintk("%s: found shadow page for %llx, marking ro\n",
3161
				 __func__, gfn);
3162
			ret |= SET_SPTE_WRITE_PROTECTED_PT;
3163
			pte_access &= ~ACC_WRITE_MASK;
3164
			spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
3165 3166 3167
		}
	}

3168
	if (pte_access & ACC_WRITE_MASK) {
3169
		kvm_vcpu_mark_page_dirty(vcpu, gfn);
3170
		spte |= spte_shadow_dirty_mask(spte);
3171
	}
3172

3173 3174 3175
	if (speculative)
		spte = mark_spte_for_access_track(spte);

3176
set_pte:
3177
	if (mmu_spte_update(sptep, spte))
3178
		ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
A
Avi Kivity 已提交
3179
done:
M
Marcelo Tosatti 已提交
3180 3181 3182
	return ret;
}

3183 3184 3185
static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned pte_access,
			int write_fault, int level, gfn_t gfn, kvm_pfn_t pfn,
		       	bool speculative, bool host_writable)
M
Marcelo Tosatti 已提交
3186 3187
{
	int was_rmapped = 0;
3188
	int rmap_count;
3189
	int set_spte_ret;
3190
	int ret = RET_PF_RETRY;
3191
	bool flush = false;
M
Marcelo Tosatti 已提交
3192

3193 3194
	pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
		 *sptep, write_fault, gfn);
M
Marcelo Tosatti 已提交
3195

3196
	if (is_shadow_present_pte(*sptep)) {
M
Marcelo Tosatti 已提交
3197 3198 3199 3200
		/*
		 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
		 * the parent of the now unreachable PTE.
		 */
3201 3202
		if (level > PT_PAGE_TABLE_LEVEL &&
		    !is_large_pte(*sptep)) {
M
Marcelo Tosatti 已提交
3203
			struct kvm_mmu_page *child;
A
Avi Kivity 已提交
3204
			u64 pte = *sptep;
M
Marcelo Tosatti 已提交
3205 3206

			child = page_header(pte & PT64_BASE_ADDR_MASK);
3207
			drop_parent_pte(child, sptep);
3208
			flush = true;
A
Avi Kivity 已提交
3209
		} else if (pfn != spte_to_pfn(*sptep)) {
3210
			pgprintk("hfn old %llx new %llx\n",
A
Avi Kivity 已提交
3211
				 spte_to_pfn(*sptep), pfn);
3212
			drop_spte(vcpu->kvm, sptep);
3213
			flush = true;
3214 3215
		} else
			was_rmapped = 1;
M
Marcelo Tosatti 已提交
3216
	}
3217

3218 3219 3220
	set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
				speculative, true, host_writable);
	if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
M
Marcelo Tosatti 已提交
3221
		if (write_fault)
3222
			ret = RET_PF_EMULATE;
3223
		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3224
	}
3225

3226
	if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
3227 3228
		kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
				KVM_PAGES_PER_HPAGE(level));
M
Marcelo Tosatti 已提交
3229

3230
	if (unlikely(is_mmio_spte(*sptep)))
3231
		ret = RET_PF_EMULATE;
3232

A
Avi Kivity 已提交
3233
	pgprintk("%s: setting spte %llx\n", __func__, *sptep);
3234
	trace_kvm_mmu_set_spte(level, gfn, sptep);
A
Avi Kivity 已提交
3235
	if (!was_rmapped && is_large_pte(*sptep))
M
Marcelo Tosatti 已提交
3236 3237
		++vcpu->kvm->stat.lpages;

3238 3239 3240 3241 3242 3243
	if (is_shadow_present_pte(*sptep)) {
		if (!was_rmapped) {
			rmap_count = rmap_add(vcpu, sptep, gfn);
			if (rmap_count > RMAP_RECYCLE_THRESHOLD)
				rmap_recycle(vcpu, sptep, gfn);
		}
3244
	}
3245

3246
	return ret;
3247 3248
}

D
Dan Williams 已提交
3249
static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
3250 3251 3252 3253
				     bool no_dirty_log)
{
	struct kvm_memory_slot *slot;

3254
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
3255
	if (!slot)
3256
		return KVM_PFN_ERR_FAULT;
3257

3258
	return gfn_to_pfn_memslot_atomic(slot, gfn);
3259 3260 3261 3262 3263 3264 3265
}

static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
				    struct kvm_mmu_page *sp,
				    u64 *start, u64 *end)
{
	struct page *pages[PTE_PREFETCH_NUM];
3266
	struct kvm_memory_slot *slot;
3267 3268 3269 3270 3271
	unsigned access = sp->role.access;
	int i, ret;
	gfn_t gfn;

	gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
3272 3273
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
	if (!slot)
3274 3275
		return -1;

3276
	ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
3277 3278 3279
	if (ret <= 0)
		return -1;

3280
	for (i = 0; i < ret; i++, gfn++, start++) {
3281 3282
		mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
			     page_to_pfn(pages[i]), true, true);
3283 3284
		put_page(pages[i]);
	}
3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300

	return 0;
}

static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
				  struct kvm_mmu_page *sp, u64 *sptep)
{
	u64 *spte, *start = NULL;
	int i;

	WARN_ON(!sp->role.direct);

	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
	spte = sp->spt + i;

	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
3301
		if (is_shadow_present_pte(*spte) || spte == sptep) {
3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315
			if (!start)
				continue;
			if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
				break;
			start = NULL;
		} else if (!start)
			start = spte;
	}
}

static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
{
	struct kvm_mmu_page *sp;

3316 3317
	sp = page_header(__pa(sptep));

3318
	/*
3319 3320 3321
	 * Without accessed bits, there's no way to distinguish between
	 * actually accessed translations and prefetched, so disable pte
	 * prefetch if accessed bits aren't available.
3322
	 */
3323
	if (sp_ad_disabled(sp))
3324 3325 3326 3327 3328 3329 3330 3331
		return;

	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
		return;

	__direct_pte_prefetch(vcpu, sp, sptep);
}

3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359
static int host_pfn_mapping_level(struct kvm_vcpu *vcpu, gfn_t gfn,
				  kvm_pfn_t pfn)
{
	struct kvm_memory_slot *slot;
	unsigned long hva;
	pte_t *pte;
	int level;

	BUILD_BUG_ON(PT_PAGE_TABLE_LEVEL != (int)PG_LEVEL_4K ||
		     PT_DIRECTORY_LEVEL != (int)PG_LEVEL_2M ||
		     PT_PDPE_LEVEL != (int)PG_LEVEL_1G);

	if (!PageCompound(pfn_to_page(pfn)))
		return PT_PAGE_TABLE_LEVEL;

	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, true);
	if (!slot)
		return PT_PAGE_TABLE_LEVEL;

	hva = __gfn_to_hva_memslot(slot, gfn);

	pte = lookup_address_in_mm(vcpu->kvm->mm, hva, &level);
	if (unlikely(!pte))
		return PT_PAGE_TABLE_LEVEL;

	return level;
}

3360 3361
static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu, gfn_t gfn,
					int max_level, kvm_pfn_t *pfnp,
3362 3363 3364 3365
					int *levelp)
{
	kvm_pfn_t pfn = *pfnp;
	int level = *levelp;
3366 3367 3368 3369 3370 3371 3372 3373 3374
	kvm_pfn_t mask;

	if (max_level == PT_PAGE_TABLE_LEVEL || level > PT_PAGE_TABLE_LEVEL)
		return;

	if (is_error_noslot_pfn(pfn) || kvm_is_reserved_pfn(pfn) ||
	    kvm_is_zone_device_pfn(pfn))
		return;

3375 3376
	level = host_pfn_mapping_level(vcpu, gfn, pfn);
	if (level == PT_PAGE_TABLE_LEVEL)
3377 3378
		return;

3379
	level = min(level, max_level);
3380 3381

	/*
3382 3383
	 * mmu_notifier_retry() was successful and mmu_lock is held, so
	 * the pmd can't be split from under us.
3384
	 */
3385 3386 3387 3388
	*levelp = level;
	mask = KVM_PAGES_PER_HPAGE(level) - 1;
	VM_BUG_ON((gfn & mask) != (pfn & mask));
	*pfnp = pfn & ~mask;
3389 3390
}

P
Paolo Bonzini 已提交
3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413
static void disallowed_hugepage_adjust(struct kvm_shadow_walk_iterator it,
				       gfn_t gfn, kvm_pfn_t *pfnp, int *levelp)
{
	int level = *levelp;
	u64 spte = *it.sptep;

	if (it.level == level && level > PT_PAGE_TABLE_LEVEL &&
	    is_nx_huge_page_enabled() &&
	    is_shadow_present_pte(spte) &&
	    !is_large_pte(spte)) {
		/*
		 * A small SPTE exists for this pfn, but FNAME(fetch)
		 * and __direct_map would like to create a large PTE
		 * instead: just force them to go down another level,
		 * patching back for them into pfn the next 9 bits of
		 * the address.
		 */
		u64 page_mask = KVM_PAGES_PER_HPAGE(level) - KVM_PAGES_PER_HPAGE(level - 1);
		*pfnp |= gfn & page_mask;
		(*levelp)--;
	}
}

3414
static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, int write,
3415 3416 3417
			int map_writable, int level, int max_level,
			kvm_pfn_t pfn, bool prefault,
			bool account_disallowed_nx_lpage)
3418
{
3419
	struct kvm_shadow_walk_iterator it;
3420
	struct kvm_mmu_page *sp;
3421 3422 3423
	int ret;
	gfn_t gfn = gpa >> PAGE_SHIFT;
	gfn_t base_gfn = gfn;
A
Avi Kivity 已提交
3424

3425
	if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
3426
		return RET_PF_RETRY;
3427

3428
	transparent_hugepage_adjust(vcpu, gfn, max_level, &pfn, &level);
3429

3430
	trace_kvm_mmu_spte_requested(gpa, level, pfn);
3431
	for_each_shadow_entry(vcpu, gpa, it) {
P
Paolo Bonzini 已提交
3432 3433 3434 3435 3436 3437
		/*
		 * We cannot overwrite existing page tables with an NX
		 * large page, as the leaf could be executable.
		 */
		disallowed_hugepage_adjust(it, gfn, &pfn, &level);

3438 3439
		base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
		if (it.level == level)
3440
			break;
A
Avi Kivity 已提交
3441

3442 3443 3444 3445
		drop_large_spte(vcpu, it.sptep);
		if (!is_shadow_present_pte(*it.sptep)) {
			sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
					      it.level - 1, true, ACC_ALL);
3446

3447
			link_shadow_page(vcpu, it.sptep, sp);
3448
			if (account_disallowed_nx_lpage)
P
Paolo Bonzini 已提交
3449
				account_huge_nx_page(vcpu->kvm, sp);
3450 3451
		}
	}
3452 3453 3454 3455 3456 3457 3458

	ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL,
			   write, level, base_gfn, pfn, prefault,
			   map_writable);
	direct_pte_prefetch(vcpu, it.sptep);
	++vcpu->stat.pf_fixed;
	return ret;
A
Avi Kivity 已提交
3459 3460
}

H
Huang Ying 已提交
3461
static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
3462
{
3463
	send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
3464 3465
}

D
Dan Williams 已提交
3466
static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
3467
{
X
Xiao Guangrong 已提交
3468 3469 3470 3471 3472 3473
	/*
	 * Do not cache the mmio info caused by writing the readonly gfn
	 * into the spte otherwise read access on readonly gfn also can
	 * caused mmio page fault and treat it as mmio access.
	 */
	if (pfn == KVM_PFN_ERR_RO_FAULT)
3474
		return RET_PF_EMULATE;
X
Xiao Guangrong 已提交
3475

3476
	if (pfn == KVM_PFN_ERR_HWPOISON) {
3477
		kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
3478
		return RET_PF_RETRY;
3479
	}
3480

3481
	return -EFAULT;
3482 3483
}

3484
static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
D
Dan Williams 已提交
3485
				kvm_pfn_t pfn, unsigned access, int *ret_val)
3486 3487
{
	/* The pfn is invalid, report the error! */
3488
	if (unlikely(is_error_pfn(pfn))) {
3489
		*ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
3490
		return true;
3491 3492
	}

3493
	if (unlikely(is_noslot_pfn(pfn)))
3494 3495
		vcpu_cache_mmio_info(vcpu, gva, gfn,
				     access & shadow_mmio_access_mask);
3496

3497
	return false;
3498 3499
}

3500
static bool page_fault_can_be_fast(u32 error_code)
3501
{
3502 3503 3504 3505 3506 3507 3508
	/*
	 * Do not fix the mmio spte with invalid generation number which
	 * need to be updated by slow page fault path.
	 */
	if (unlikely(error_code & PFERR_RSVD_MASK))
		return false;

3509 3510 3511 3512 3513
	/* See if the page fault is due to an NX violation */
	if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
		      == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
		return false;

3514
	/*
3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525
	 * #PF can be fast if:
	 * 1. The shadow page table entry is not present, which could mean that
	 *    the fault is potentially caused by access tracking (if enabled).
	 * 2. The shadow page table entry is present and the fault
	 *    is caused by write-protect, that means we just need change the W
	 *    bit of the spte which can be done out of mmu-lock.
	 *
	 * However, if access tracking is disabled we know that a non-present
	 * page must be a genuine page fault where we have to create a new SPTE.
	 * So, if access tracking is disabled, we return true only for write
	 * accesses to a present page.
3526 3527
	 */

3528 3529 3530
	return shadow_acc_track_mask != 0 ||
	       ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
		== (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
3531 3532
}

3533 3534 3535 3536
/*
 * Returns true if the SPTE was fixed successfully. Otherwise,
 * someone else modified the SPTE from its original value.
 */
3537
static bool
3538
fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
3539
			u64 *sptep, u64 old_spte, u64 new_spte)
3540 3541 3542 3543 3544
{
	gfn_t gfn;

	WARN_ON(!sp->role.direct);

3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556
	/*
	 * Theoretically we could also set dirty bit (and flush TLB) here in
	 * order to eliminate unnecessary PML logging. See comments in
	 * set_spte. But fast_page_fault is very unlikely to happen with PML
	 * enabled, so we do not do this. This might result in the same GPA
	 * to be logged in PML buffer again when the write really happens, and
	 * eventually to be called by mark_page_dirty twice. But it's also no
	 * harm. This also avoids the TLB flush needed after setting dirty bit
	 * so non-PML cases won't be impacted.
	 *
	 * Compare with set_spte where instead shadow_dirty_mask is set.
	 */
3557
	if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3558 3559
		return false;

3560
	if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
3561 3562 3563 3564 3565 3566 3567
		/*
		 * The gfn of direct spte is stable since it is
		 * calculated by sp->gfn.
		 */
		gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
		kvm_vcpu_mark_page_dirty(vcpu, gfn);
	}
3568 3569 3570 3571

	return true;
}

3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583
static bool is_access_allowed(u32 fault_err_code, u64 spte)
{
	if (fault_err_code & PFERR_FETCH_MASK)
		return is_executable_pte(spte);

	if (fault_err_code & PFERR_WRITE_MASK)
		return is_writable_pte(spte);

	/* Fault was on Read access */
	return spte & PT_PRESENT_MASK;
}

3584 3585 3586 3587 3588
/*
 * Return value:
 * - true: let the vcpu to access on the same address again.
 * - false: let the real page fault path to fix it.
 */
3589
static bool fast_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3590 3591 3592
			    u32 error_code)
{
	struct kvm_shadow_walk_iterator iterator;
3593
	struct kvm_mmu_page *sp;
3594
	bool fault_handled = false;
3595
	u64 spte = 0ull;
3596
	uint retry_count = 0;
3597

3598
	if (!page_fault_can_be_fast(error_code))
3599 3600 3601 3602
		return false;

	walk_shadow_page_lockless_begin(vcpu);

3603
	do {
3604
		u64 new_spte;
3605

3606
		for_each_shadow_entry_lockless(vcpu, cr2_or_gpa, iterator, spte)
3607
			if (!is_shadow_present_pte(spte))
3608 3609
				break;

3610 3611 3612
		sp = page_header(__pa(iterator.sptep));
		if (!is_last_spte(spte, sp->role.level))
			break;
3613

3614
		/*
3615 3616 3617 3618 3619
		 * Check whether the memory access that caused the fault would
		 * still cause it if it were to be performed right now. If not,
		 * then this is a spurious fault caused by TLB lazily flushed,
		 * or some other CPU has already fixed the PTE after the
		 * current CPU took the fault.
3620 3621 3622 3623
		 *
		 * Need not check the access of upper level table entries since
		 * they are always ACC_ALL.
		 */
3624 3625 3626 3627
		if (is_access_allowed(error_code, spte)) {
			fault_handled = true;
			break;
		}
3628

3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642
		new_spte = spte;

		if (is_access_track_spte(spte))
			new_spte = restore_acc_track_spte(new_spte);

		/*
		 * Currently, to simplify the code, write-protection can
		 * be removed in the fast path only if the SPTE was
		 * write-protected for dirty-logging or access tracking.
		 */
		if ((error_code & PFERR_WRITE_MASK) &&
		    spte_can_locklessly_be_made_writable(spte))
		{
			new_spte |= PT_WRITABLE_MASK;
3643 3644

			/*
3645 3646 3647 3648 3649 3650 3651 3652 3653
			 * Do not fix write-permission on the large spte.  Since
			 * we only dirty the first page into the dirty-bitmap in
			 * fast_pf_fix_direct_spte(), other pages are missed
			 * if its slot has dirty logging enabled.
			 *
			 * Instead, we let the slow page fault path create a
			 * normal spte to fix the access.
			 *
			 * See the comments in kvm_arch_commit_memory_region().
3654
			 */
3655
			if (sp->role.level > PT_PAGE_TABLE_LEVEL)
3656
				break;
3657
		}
3658

3659
		/* Verify that the fault can be handled in the fast path */
3660 3661
		if (new_spte == spte ||
		    !is_access_allowed(error_code, new_spte))
3662 3663 3664 3665 3666
			break;

		/*
		 * Currently, fast page fault only works for direct mapping
		 * since the gfn is not stable for indirect shadow page. See
3667
		 * Documentation/virt/kvm/locking.txt to get more detail.
3668 3669
		 */
		fault_handled = fast_pf_fix_direct_spte(vcpu, sp,
3670
							iterator.sptep, spte,
3671
							new_spte);
3672 3673 3674 3675 3676 3677 3678 3679 3680 3681
		if (fault_handled)
			break;

		if (++retry_count > 4) {
			printk_once(KERN_WARNING
				"kvm: Fast #PF retrying more than 4 times.\n");
			break;
		}

	} while (true);
3682

3683
	trace_fast_page_fault(vcpu, cr2_or_gpa, error_code, iterator.sptep,
3684
			      spte, fault_handled);
3685 3686
	walk_shadow_page_lockless_end(vcpu);

3687
	return fault_handled;
3688 3689
}

3690 3691
static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
			       struct list_head *invalid_list)
3692
{
3693
	struct kvm_mmu_page *sp;
3694

3695
	if (!VALID_PAGE(*root_hpa))
A
Avi Kivity 已提交
3696
		return;
3697

3698 3699 3700 3701
	sp = page_header(*root_hpa & PT64_BASE_ADDR_MASK);
	--sp->root_count;
	if (!sp->root_count && sp->role.invalid)
		kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3702

3703 3704 3705
	*root_hpa = INVALID_PAGE;
}

3706
/* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
3707 3708
void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
			ulong roots_to_free)
3709 3710 3711
{
	int i;
	LIST_HEAD(invalid_list);
3712
	bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
3713

3714
	BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3715

3716
	/* Before acquiring the MMU lock, see if we need to do any real work. */
3717 3718 3719 3720 3721 3722 3723 3724 3725
	if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
			if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
			    VALID_PAGE(mmu->prev_roots[i].hpa))
				break;

		if (i == KVM_MMU_NUM_PREV_ROOTS)
			return;
	}
3726 3727

	spin_lock(&vcpu->kvm->mmu_lock);
3728

3729 3730 3731 3732
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
		if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
			mmu_free_root_page(vcpu->kvm, &mmu->prev_roots[i].hpa,
					   &invalid_list);
3733

3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746
	if (free_active_root) {
		if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
		    (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
			mmu_free_root_page(vcpu->kvm, &mmu->root_hpa,
					   &invalid_list);
		} else {
			for (i = 0; i < 4; ++i)
				if (mmu->pae_root[i] != 0)
					mmu_free_root_page(vcpu->kvm,
							   &mmu->pae_root[i],
							   &invalid_list);
			mmu->root_hpa = INVALID_PAGE;
		}
3747
		mmu->root_cr3 = 0;
3748
	}
3749

3750
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3751
	spin_unlock(&vcpu->kvm->mmu_lock);
3752
}
3753
EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3754

3755 3756 3757 3758 3759
static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
{
	int ret = 0;

	if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3760
		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3761 3762 3763 3764 3765 3766
		ret = 1;
	}

	return ret;
}

3767 3768 3769
static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu_page *sp;
3770
	unsigned i;
3771

3772
	if (vcpu->arch.mmu->shadow_root_level >= PT64_ROOT_4LEVEL) {
3773
		spin_lock(&vcpu->kvm->mmu_lock);
3774 3775
		if(make_mmu_pages_available(vcpu) < 0) {
			spin_unlock(&vcpu->kvm->mmu_lock);
3776
			return -ENOSPC;
3777
		}
3778
		sp = kvm_mmu_get_page(vcpu, 0, 0,
3779
				vcpu->arch.mmu->shadow_root_level, 1, ACC_ALL);
3780 3781
		++sp->root_count;
		spin_unlock(&vcpu->kvm->mmu_lock);
3782 3783
		vcpu->arch.mmu->root_hpa = __pa(sp->spt);
	} else if (vcpu->arch.mmu->shadow_root_level == PT32E_ROOT_LEVEL) {
3784
		for (i = 0; i < 4; ++i) {
3785
			hpa_t root = vcpu->arch.mmu->pae_root[i];
3786

3787
			MMU_WARN_ON(VALID_PAGE(root));
3788
			spin_lock(&vcpu->kvm->mmu_lock);
3789 3790
			if (make_mmu_pages_available(vcpu) < 0) {
				spin_unlock(&vcpu->kvm->mmu_lock);
3791
				return -ENOSPC;
3792
			}
3793
			sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3794
					i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL);
3795 3796 3797
			root = __pa(sp->spt);
			++sp->root_count;
			spin_unlock(&vcpu->kvm->mmu_lock);
3798
			vcpu->arch.mmu->pae_root[i] = root | PT_PRESENT_MASK;
3799
		}
3800
		vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3801 3802
	} else
		BUG();
3803
	vcpu->arch.mmu->root_cr3 = vcpu->arch.mmu->get_cr3(vcpu);
3804 3805 3806 3807 3808

	return 0;
}

static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3809
{
3810
	struct kvm_mmu_page *sp;
3811
	u64 pdptr, pm_mask;
3812
	gfn_t root_gfn, root_cr3;
3813
	int i;
3814

3815 3816
	root_cr3 = vcpu->arch.mmu->get_cr3(vcpu);
	root_gfn = root_cr3 >> PAGE_SHIFT;
3817

3818 3819 3820 3821 3822 3823 3824
	if (mmu_check_root(vcpu, root_gfn))
		return 1;

	/*
	 * Do we shadow a long mode page table? If so we need to
	 * write-protect the guests page table root.
	 */
3825 3826
	if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
		hpa_t root = vcpu->arch.mmu->root_hpa;
3827

3828
		MMU_WARN_ON(VALID_PAGE(root));
3829

3830
		spin_lock(&vcpu->kvm->mmu_lock);
3831 3832
		if (make_mmu_pages_available(vcpu) < 0) {
			spin_unlock(&vcpu->kvm->mmu_lock);
3833
			return -ENOSPC;
3834
		}
3835
		sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
3836
				vcpu->arch.mmu->shadow_root_level, 0, ACC_ALL);
3837 3838
		root = __pa(sp->spt);
		++sp->root_count;
3839
		spin_unlock(&vcpu->kvm->mmu_lock);
3840
		vcpu->arch.mmu->root_hpa = root;
3841
		goto set_root_cr3;
3842
	}
3843

3844 3845
	/*
	 * We shadow a 32 bit page table. This may be a legacy 2-level
3846 3847
	 * or a PAE 3-level page table. In either case we need to be aware that
	 * the shadow page table may be a PAE or a long mode page table.
3848
	 */
3849
	pm_mask = PT_PRESENT_MASK;
3850
	if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL)
3851 3852
		pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;

3853
	for (i = 0; i < 4; ++i) {
3854
		hpa_t root = vcpu->arch.mmu->pae_root[i];
3855

3856
		MMU_WARN_ON(VALID_PAGE(root));
3857 3858
		if (vcpu->arch.mmu->root_level == PT32E_ROOT_LEVEL) {
			pdptr = vcpu->arch.mmu->get_pdptr(vcpu, i);
B
Bandan Das 已提交
3859
			if (!(pdptr & PT_PRESENT_MASK)) {
3860
				vcpu->arch.mmu->pae_root[i] = 0;
A
Avi Kivity 已提交
3861 3862
				continue;
			}
A
Avi Kivity 已提交
3863
			root_gfn = pdptr >> PAGE_SHIFT;
3864 3865
			if (mmu_check_root(vcpu, root_gfn))
				return 1;
3866
		}
3867
		spin_lock(&vcpu->kvm->mmu_lock);
3868 3869
		if (make_mmu_pages_available(vcpu) < 0) {
			spin_unlock(&vcpu->kvm->mmu_lock);
3870
			return -ENOSPC;
3871
		}
3872 3873
		sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL,
				      0, ACC_ALL);
3874 3875
		root = __pa(sp->spt);
		++sp->root_count;
3876 3877
		spin_unlock(&vcpu->kvm->mmu_lock);

3878
		vcpu->arch.mmu->pae_root[i] = root | pm_mask;
3879
	}
3880
	vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3881 3882 3883 3884 3885

	/*
	 * If we shadow a 32 bit page table with a long mode page
	 * table we enter this path.
	 */
3886 3887
	if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
		if (vcpu->arch.mmu->lm_root == NULL) {
3888 3889 3890 3891 3892 3893 3894
			/*
			 * The additional page necessary for this is only
			 * allocated on demand.
			 */

			u64 *lm_root;

3895
			lm_root = (void*)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3896 3897 3898
			if (lm_root == NULL)
				return 1;

3899
			lm_root[0] = __pa(vcpu->arch.mmu->pae_root) | pm_mask;
3900

3901
			vcpu->arch.mmu->lm_root = lm_root;
3902 3903
		}

3904
		vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->lm_root);
3905 3906
	}

3907 3908 3909
set_root_cr3:
	vcpu->arch.mmu->root_cr3 = root_cr3;

3910
	return 0;
3911 3912
}

3913 3914
static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
{
3915
	if (vcpu->arch.mmu->direct_map)
3916 3917 3918 3919 3920
		return mmu_alloc_direct_roots(vcpu);
	else
		return mmu_alloc_shadow_roots(vcpu);
}

3921
void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3922 3923 3924 3925
{
	int i;
	struct kvm_mmu_page *sp;

3926
	if (vcpu->arch.mmu->direct_map)
3927 3928
		return;

3929
	if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3930
		return;
3931

3932
	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3933

3934 3935
	if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
		hpa_t root = vcpu->arch.mmu->root_hpa;
3936
		sp = page_header(root);
3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954

		/*
		 * Even if another CPU was marking the SP as unsync-ed
		 * simultaneously, any guest page table changes are not
		 * guaranteed to be visible anyway until this VCPU issues a TLB
		 * flush strictly after those changes are made. We only need to
		 * ensure that the other CPU sets these flags before any actual
		 * changes to the page tables are made. The comments in
		 * mmu_need_write_protect() describe what could go wrong if this
		 * requirement isn't satisfied.
		 */
		if (!smp_load_acquire(&sp->unsync) &&
		    !smp_load_acquire(&sp->unsync_children))
			return;

		spin_lock(&vcpu->kvm->mmu_lock);
		kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);

3955
		mmu_sync_children(vcpu, sp);
3956

3957
		kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3958
		spin_unlock(&vcpu->kvm->mmu_lock);
3959 3960
		return;
	}
3961 3962 3963 3964

	spin_lock(&vcpu->kvm->mmu_lock);
	kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);

3965
	for (i = 0; i < 4; ++i) {
3966
		hpa_t root = vcpu->arch.mmu->pae_root[i];
3967

3968
		if (root && VALID_PAGE(root)) {
3969 3970 3971 3972 3973 3974
			root &= PT64_BASE_ADDR_MASK;
			sp = page_header(root);
			mmu_sync_children(vcpu, sp);
		}
	}

3975
	kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3976
	spin_unlock(&vcpu->kvm->mmu_lock);
3977
}
N
Nadav Har'El 已提交
3978
EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3979

3980
static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr,
3981
				  u32 access, struct x86_exception *exception)
A
Avi Kivity 已提交
3982
{
3983 3984
	if (exception)
		exception->error_code = 0;
A
Avi Kivity 已提交
3985 3986 3987
	return vaddr;
}

3988
static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr,
3989 3990
					 u32 access,
					 struct x86_exception *exception)
3991
{
3992 3993
	if (exception)
		exception->error_code = 0;
3994
	return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3995 3996
}

3997 3998 3999
static bool
__is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
{
4000
	int bit7 = (pte >> 7) & 1;
4001

4002
	return pte & rsvd_check->rsvd_bits_mask[bit7][level-1];
4003 4004
}

4005
static bool __is_bad_mt_xwr(struct rsvd_bits_validate *rsvd_check, u64 pte)
4006
{
4007
	return rsvd_check->bad_mt_xwr & BIT_ULL(pte & 0x3f);
4008 4009
}

4010
static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
4011
{
4012 4013 4014 4015 4016 4017 4018
	/*
	 * A nested guest cannot use the MMIO cache if it is using nested
	 * page tables, because cr2 is a nGPA while the cache stores GPAs.
	 */
	if (mmu_is_nested(vcpu))
		return false;

4019 4020 4021 4022 4023 4024
	if (direct)
		return vcpu_match_mmio_gpa(vcpu, addr);

	return vcpu_match_mmio_gva(vcpu, addr);
}

4025 4026 4027
/* return true if reserved bit is detected on spte. */
static bool
walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
4028 4029
{
	struct kvm_shadow_walk_iterator iterator;
4030
	u64 sptes[PT64_ROOT_MAX_LEVEL], spte = 0ull;
4031
	struct rsvd_bits_validate *rsvd_check;
4032 4033
	int root, leaf;
	bool reserved = false;
4034

4035 4036
	rsvd_check = &vcpu->arch.mmu->shadow_zero_check;

4037
	walk_shadow_page_lockless_begin(vcpu);
4038

4039 4040
	for (shadow_walk_init(&iterator, vcpu, addr),
		 leaf = root = iterator.level;
4041 4042 4043 4044 4045
	     shadow_walk_okay(&iterator);
	     __shadow_walk_next(&iterator, spte)) {
		spte = mmu_spte_get_lockless(iterator.sptep);

		sptes[leaf - 1] = spte;
4046
		leaf--;
4047

4048 4049
		if (!is_shadow_present_pte(spte))
			break;
4050

4051 4052 4053 4054 4055 4056 4057
		/*
		 * Use a bitwise-OR instead of a logical-OR to aggregate the
		 * reserved bit and EPT's invalid memtype/XWR checks to avoid
		 * adding a Jcc in the loop.
		 */
		reserved |= __is_bad_mt_xwr(rsvd_check, spte) |
			    __is_rsvd_bits_set(rsvd_check, spte, iterator.level);
4058 4059
	}

4060 4061
	walk_shadow_page_lockless_end(vcpu);

4062 4063 4064
	if (reserved) {
		pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
		       __func__, addr);
4065
		while (root > leaf) {
4066 4067 4068 4069 4070
			pr_err("------ spte 0x%llx level %d.\n",
			       sptes[root - 1], root);
			root--;
		}
	}
4071

4072 4073
	*sptep = spte;
	return reserved;
4074 4075
}

P
Paolo Bonzini 已提交
4076
static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
4077 4078
{
	u64 spte;
4079
	bool reserved;
4080

4081
	if (mmio_info_in_cache(vcpu, addr, direct))
4082
		return RET_PF_EMULATE;
4083

4084
	reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
4085
	if (WARN_ON(reserved))
4086
		return -EINVAL;
4087 4088 4089 4090 4091

	if (is_mmio_spte(spte)) {
		gfn_t gfn = get_mmio_spte_gfn(spte);
		unsigned access = get_mmio_spte_access(spte);

4092
		if (!check_mmio_spte(vcpu, spte))
4093
			return RET_PF_INVALID;
4094

4095 4096
		if (direct)
			addr = 0;
X
Xiao Guangrong 已提交
4097 4098

		trace_handle_mmio_page_fault(addr, gfn, access);
4099
		vcpu_cache_mmio_info(vcpu, addr, gfn, access);
4100
		return RET_PF_EMULATE;
4101 4102 4103 4104 4105 4106
	}

	/*
	 * If the page table is zapped by other cpus, let CPU fault again on
	 * the address.
	 */
4107
	return RET_PF_RETRY;
4108 4109
}

4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129
static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
					 u32 error_code, gfn_t gfn)
{
	if (unlikely(error_code & PFERR_RSVD_MASK))
		return false;

	if (!(error_code & PFERR_PRESENT_MASK) ||
	      !(error_code & PFERR_WRITE_MASK))
		return false;

	/*
	 * guest is writing the page which is write tracked which can
	 * not be fixed by page fault handler.
	 */
	if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
		return true;

	return false;
}

4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143
static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
{
	struct kvm_shadow_walk_iterator iterator;
	u64 spte;

	walk_shadow_page_lockless_begin(vcpu);
	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
		clear_sp_write_flooding_count(iterator.sptep);
		if (!is_shadow_present_pte(spte))
			break;
	}
	walk_shadow_page_lockless_end(vcpu);
}

4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192
static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
				   gfn_t gfn)
{
	struct kvm_arch_async_pf arch;

	arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
	arch.gfn = gfn;
	arch.direct_map = vcpu->arch.mmu->direct_map;
	arch.cr3 = vcpu->arch.mmu->get_cr3(vcpu);

	return kvm_setup_async_pf(vcpu, cr2_or_gpa,
				  kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
}

static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
			 gpa_t cr2_or_gpa, kvm_pfn_t *pfn, bool write,
			 bool *writable)
{
	struct kvm_memory_slot *slot;
	bool async;

	/*
	 * Don't expose private memslots to L2.
	 */
	if (is_guest_mode(vcpu) && !kvm_is_visible_gfn(vcpu->kvm, gfn)) {
		*pfn = KVM_PFN_NOSLOT;
		return false;
	}

	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
	async = false;
	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
	if (!async)
		return false; /* *pfn has correct page already */

	if (!prefault && kvm_can_do_async_pf(vcpu)) {
		trace_kvm_try_async_get_page(cr2_or_gpa, gfn);
		if (kvm_find_async_pf_gfn(vcpu, gfn)) {
			trace_kvm_async_pf_doublefault(cr2_or_gpa, gfn);
			kvm_make_request(KVM_REQ_APF_HALT, vcpu);
			return true;
		} else if (kvm_arch_setup_async_pf(vcpu, cr2_or_gpa, gfn))
			return true;
	}

	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
	return false;
}

4193 4194
static int direct_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
			     bool prefault, int max_level, bool is_tdp)
A
Avi Kivity 已提交
4195
{
4196 4197 4198
	bool write = error_code & PFERR_WRITE_MASK;
	bool exec = error_code & PFERR_FETCH_MASK;
	bool lpage_disallowed = exec && is_nx_huge_page_enabled();
4199
	bool map_writable;
A
Avi Kivity 已提交
4200

4201 4202 4203 4204
	gfn_t gfn = gpa >> PAGE_SHIFT;
	unsigned long mmu_seq;
	kvm_pfn_t pfn;
	int level, r;
4205

4206
	if (page_fault_handle_page_track(vcpu, error_code, gfn))
4207
		return RET_PF_EMULATE;
4208

4209 4210 4211
	r = mmu_topup_memory_caches(vcpu);
	if (r)
		return r;
4212

4213 4214
	if (lpage_disallowed)
		max_level = PT_PAGE_TABLE_LEVEL;
4215

4216 4217
	level = mapping_level(vcpu, gfn, &max_level);
	if (level > PT_PAGE_TABLE_LEVEL)
4218 4219
		gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);

4220
	if (fast_page_fault(vcpu, gpa, error_code))
4221 4222 4223 4224 4225 4226 4227 4228
		return RET_PF_RETRY;

	mmu_seq = vcpu->kvm->mmu_notifier_seq;
	smp_rmb();

	if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
		return RET_PF_RETRY;

4229
	if (handle_abnormal_pfn(vcpu, is_tdp ? 0 : gpa, gfn, pfn, ACC_ALL, &r))
4230
		return r;
A
Avi Kivity 已提交
4231

4232 4233 4234 4235 4236 4237
	r = RET_PF_RETRY;
	spin_lock(&vcpu->kvm->mmu_lock);
	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
		goto out_unlock;
	if (make_mmu_pages_available(vcpu) < 0)
		goto out_unlock;
4238 4239
	r = __direct_map(vcpu, gpa, write, map_writable, level, max_level, pfn,
			 prefault, is_tdp && lpage_disallowed);
4240

4241 4242 4243 4244
out_unlock:
	spin_unlock(&vcpu->kvm->mmu_lock);
	kvm_release_pfn_clean(pfn);
	return r;
A
Avi Kivity 已提交
4245 4246
}

4247 4248 4249 4250 4251 4252 4253 4254 4255 4256
static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa,
				u32 error_code, bool prefault)
{
	pgprintk("%s: gva %lx error %x\n", __func__, gpa, error_code);

	/* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
	return direct_page_fault(vcpu, gpa & PAGE_MASK, error_code, prefault,
				 PT_DIRECTORY_LEVEL, false);
}

4257
int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
4258
				u64 fault_address, char *insn, int insn_len)
4259 4260 4261
{
	int r = 1;

4262 4263 4264 4265 4266 4267
#ifndef CONFIG_X86_64
	/* A 64-bit CR2 should be impossible on 32-bit KVM. */
	if (WARN_ON_ONCE(fault_address >> 32))
		return -EFAULT;
#endif

P
Paolo Bonzini 已提交
4268
	vcpu->arch.l1tf_flush_l1d = true;
4269 4270 4271 4272
	switch (vcpu->arch.apf.host_apf_reason) {
	default:
		trace_kvm_page_fault(fault_address, error_code);

4273
		if (kvm_event_needs_reinjection(vcpu))
4274 4275 4276 4277 4278 4279 4280
			kvm_mmu_unprotect_page_virt(vcpu, fault_address);
		r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
				insn_len);
		break;
	case KVM_PV_REASON_PAGE_NOT_PRESENT:
		vcpu->arch.apf.host_apf_reason = 0;
		local_irq_disable();
4281
		kvm_async_pf_task_wait(fault_address, 0);
4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294
		local_irq_enable();
		break;
	case KVM_PV_REASON_PAGE_READY:
		vcpu->arch.apf.host_apf_reason = 0;
		local_irq_disable();
		kvm_async_pf_task_wake(fault_address);
		local_irq_enable();
		break;
	}
	return r;
}
EXPORT_SYMBOL_GPL(kvm_handle_page_fault);

4295
static int tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
4296
			  bool prefault)
4297
{
4298
	int max_level;
4299

4300 4301 4302 4303
	for (max_level = PT_MAX_HUGEPAGE_LEVEL;
	     max_level > PT_PAGE_TABLE_LEVEL;
	     max_level--) {
		int page_num = KVM_PAGES_PER_HPAGE(max_level);
4304
		gfn_t base = (gpa >> PAGE_SHIFT) & ~(page_num - 1);
4305 4306 4307 4308 4309

		if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
			break;
	}

4310 4311
	return direct_page_fault(vcpu, gpa, error_code, prefault,
				 max_level, true);
4312 4313
}

4314 4315
static void nonpaging_init_context(struct kvm_vcpu *vcpu,
				   struct kvm_mmu *context)
A
Avi Kivity 已提交
4316 4317 4318
{
	context->page_fault = nonpaging_page_fault;
	context->gva_to_gpa = nonpaging_gva_to_gpa;
4319
	context->sync_page = nonpaging_sync_page;
M
Marcelo Tosatti 已提交
4320
	context->invlpg = nonpaging_invlpg;
4321
	context->update_pte = nonpaging_update_pte;
4322
	context->root_level = 0;
A
Avi Kivity 已提交
4323
	context->shadow_root_level = PT32E_ROOT_LEVEL;
4324
	context->direct_map = true;
4325
	context->nx = false;
A
Avi Kivity 已提交
4326 4327
}

4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340
/*
 * Find out if a previously cached root matching the new CR3/role is available.
 * The current root is also inserted into the cache.
 * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
 * returned.
 * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
 * false is returned. This root should now be freed by the caller.
 */
static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_cr3,
				  union kvm_mmu_page_role new_role)
{
	uint i;
	struct kvm_mmu_root_info root;
4341
	struct kvm_mmu *mmu = vcpu->arch.mmu;
4342

4343
	root.cr3 = mmu->root_cr3;
4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355
	root.hpa = mmu->root_hpa;

	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
		swap(root, mmu->prev_roots[i]);

		if (new_cr3 == root.cr3 && VALID_PAGE(root.hpa) &&
		    page_header(root.hpa) != NULL &&
		    new_role.word == page_header(root.hpa)->role.word)
			break;
	}

	mmu->root_hpa = root.hpa;
4356
	mmu->root_cr3 = root.cr3;
4357 4358 4359 4360

	return i < KVM_MMU_NUM_PREV_ROOTS;
}

4361
static bool fast_cr3_switch(struct kvm_vcpu *vcpu, gpa_t new_cr3,
4362 4363
			    union kvm_mmu_page_role new_role,
			    bool skip_tlb_flush)
A
Avi Kivity 已提交
4364
{
4365
	struct kvm_mmu *mmu = vcpu->arch.mmu;
4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376

	/*
	 * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
	 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
	 * later if necessary.
	 */
	if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
	    mmu->root_level >= PT64_ROOT_4LEVEL) {
		if (mmu_check_root(vcpu, new_cr3 >> PAGE_SHIFT))
			return false;

4377
		if (cached_root_available(vcpu, new_cr3, new_role)) {
4378 4379 4380 4381 4382 4383 4384
			/*
			 * It is possible that the cached previous root page is
			 * obsolete because of a change in the MMU generation
			 * number. However, changing the generation number is
			 * accompanied by KVM_REQ_MMU_RELOAD, which will free
			 * the root set here and allocate a new one.
			 */
4385
			kvm_make_request(KVM_REQ_LOAD_CR3, vcpu);
4386 4387
			if (!skip_tlb_flush) {
				kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
4388
				kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4389 4390 4391 4392 4393 4394 4395 4396 4397 4398
			}

			/*
			 * The last MMIO access's GVA and GPA are cached in the
			 * VCPU. When switching to a new CR3, that GVA->GPA
			 * mapping may no longer be valid. So clear any cached
			 * MMIO info even when we don't need to sync the shadow
			 * page tables.
			 */
			vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
4399

4400 4401 4402 4403 4404 4405 4406 4407
			__clear_sp_write_flooding_count(
				page_header(mmu->root_hpa));

			return true;
		}
	}

	return false;
A
Avi Kivity 已提交
4408 4409
}

4410
static void __kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3,
4411 4412
			      union kvm_mmu_page_role new_role,
			      bool skip_tlb_flush)
A
Avi Kivity 已提交
4413
{
4414
	if (!fast_cr3_switch(vcpu, new_cr3, new_role, skip_tlb_flush))
4415 4416
		kvm_mmu_free_roots(vcpu, vcpu->arch.mmu,
				   KVM_MMU_ROOT_CURRENT);
A
Avi Kivity 已提交
4417 4418
}

4419
void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3, bool skip_tlb_flush)
4420
{
4421 4422
	__kvm_mmu_new_cr3(vcpu, new_cr3, kvm_mmu_calc_root_page_role(vcpu),
			  skip_tlb_flush);
4423
}
4424
EXPORT_SYMBOL_GPL(kvm_mmu_new_cr3);
4425

4426 4427
static unsigned long get_cr3(struct kvm_vcpu *vcpu)
{
4428
	return kvm_read_cr3(vcpu);
4429 4430
}

4431 4432
static void inject_page_fault(struct kvm_vcpu *vcpu,
			      struct x86_exception *fault)
A
Avi Kivity 已提交
4433
{
4434
	vcpu->arch.mmu->inject_page_fault(vcpu, fault);
A
Avi Kivity 已提交
4435 4436
}

4437
static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
4438
			   unsigned access, int *nr_present)
4439 4440 4441 4442 4443 4444 4445 4446
{
	if (unlikely(is_mmio_spte(*sptep))) {
		if (gfn != get_mmio_spte_gfn(*sptep)) {
			mmu_spte_clear_no_track(sptep);
			return true;
		}

		(*nr_present)++;
4447
		mark_mmio_spte(vcpu, sptep, gfn, access);
4448 4449 4450 4451 4452 4453
		return true;
	}

	return false;
}

4454 4455
static inline bool is_last_gpte(struct kvm_mmu *mmu,
				unsigned level, unsigned gpte)
A
Avi Kivity 已提交
4456
{
4457 4458 4459 4460 4461 4462 4463
	/*
	 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
	 * If it is clear, there are no large pages at this level, so clear
	 * PT_PAGE_SIZE_MASK in gpte if that is the case.
	 */
	gpte &= level - mmu->last_nonleaf_level;

4464 4465 4466 4467 4468 4469 4470
	/*
	 * PT_PAGE_TABLE_LEVEL always terminates.  The RHS has bit 7 set
	 * iff level <= PT_PAGE_TABLE_LEVEL, which for our purpose means
	 * level == PT_PAGE_TABLE_LEVEL; set PT_PAGE_SIZE_MASK in gpte then.
	 */
	gpte |= level - PT_PAGE_TABLE_LEVEL - 1;

4471
	return gpte & PT_PAGE_SIZE_MASK;
A
Avi Kivity 已提交
4472 4473
}

4474 4475 4476 4477 4478
#define PTTYPE_EPT 18 /* arbitrary */
#define PTTYPE PTTYPE_EPT
#include "paging_tmpl.h"
#undef PTTYPE

A
Avi Kivity 已提交
4479 4480 4481 4482 4483 4484 4485 4486
#define PTTYPE 64
#include "paging_tmpl.h"
#undef PTTYPE

#define PTTYPE 32
#include "paging_tmpl.h"
#undef PTTYPE

4487 4488 4489 4490
static void
__reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
			struct rsvd_bits_validate *rsvd_check,
			int maxphyaddr, int level, bool nx, bool gbpages,
4491
			bool pse, bool amd)
4492 4493
{
	u64 exb_bit_rsvd = 0;
4494
	u64 gbpages_bit_rsvd = 0;
4495
	u64 nonleaf_bit8_rsvd = 0;
4496

4497
	rsvd_check->bad_mt_xwr = 0;
4498

4499
	if (!nx)
4500
		exb_bit_rsvd = rsvd_bits(63, 63);
4501
	if (!gbpages)
4502
		gbpages_bit_rsvd = rsvd_bits(7, 7);
4503 4504 4505 4506 4507

	/*
	 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
	 * leaf entries) on AMD CPUs only.
	 */
4508
	if (amd)
4509 4510
		nonleaf_bit8_rsvd = rsvd_bits(8, 8);

4511
	switch (level) {
4512 4513
	case PT32_ROOT_LEVEL:
		/* no rsvd bits for 2 level 4K page table entries */
4514 4515 4516 4517
		rsvd_check->rsvd_bits_mask[0][1] = 0;
		rsvd_check->rsvd_bits_mask[0][0] = 0;
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
4518

4519
		if (!pse) {
4520
			rsvd_check->rsvd_bits_mask[1][1] = 0;
4521 4522 4523
			break;
		}

4524 4525
		if (is_cpuid_PSE36())
			/* 36bits PSE 4MB page */
4526
			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4527 4528
		else
			/* 32 bits PSE 4MB page */
4529
			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4530 4531
		break;
	case PT32E_ROOT_LEVEL:
4532
		rsvd_check->rsvd_bits_mask[0][2] =
4533
			rsvd_bits(maxphyaddr, 63) |
4534
			rsvd_bits(5, 8) | rsvd_bits(1, 2);	/* PDPTE */
4535
		rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4536
			rsvd_bits(maxphyaddr, 62);	/* PDE */
4537
		rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4538
			rsvd_bits(maxphyaddr, 62); 	/* PTE */
4539
		rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4540 4541
			rsvd_bits(maxphyaddr, 62) |
			rsvd_bits(13, 20);		/* large page */
4542 4543
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
4544
		break;
4545 4546 4547 4548 4549 4550
	case PT64_ROOT_5LEVEL:
		rsvd_check->rsvd_bits_mask[0][4] = exb_bit_rsvd |
			nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
			rsvd_bits(maxphyaddr, 51);
		rsvd_check->rsvd_bits_mask[1][4] =
			rsvd_check->rsvd_bits_mask[0][4];
4551
		/* fall through */
4552
	case PT64_ROOT_4LEVEL:
4553 4554
		rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
			nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4555
			rsvd_bits(maxphyaddr, 51);
4556 4557
		rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
			nonleaf_bit8_rsvd | gbpages_bit_rsvd |
4558
			rsvd_bits(maxphyaddr, 51);
4559 4560 4561 4562 4563 4564 4565
		rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
			rsvd_bits(maxphyaddr, 51);
		rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
			rsvd_bits(maxphyaddr, 51);
		rsvd_check->rsvd_bits_mask[1][3] =
			rsvd_check->rsvd_bits_mask[0][3];
		rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
4566
			gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
4567
			rsvd_bits(13, 29);
4568
		rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4569 4570
			rsvd_bits(maxphyaddr, 51) |
			rsvd_bits(13, 20);		/* large page */
4571 4572
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
4573 4574 4575 4576
		break;
	}
}

4577 4578 4579 4580 4581
static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
{
	__reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
				cpuid_maxphyaddr(vcpu), context->root_level,
4582 4583
				context->nx,
				guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4584
				is_pse(vcpu), guest_cpuid_is_amd(vcpu));
4585 4586
}

4587 4588 4589
static void
__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
			    int maxphyaddr, bool execonly)
4590
{
4591
	u64 bad_mt_xwr;
4592

4593 4594
	rsvd_check->rsvd_bits_mask[0][4] =
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4595
	rsvd_check->rsvd_bits_mask[0][3] =
4596
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4597
	rsvd_check->rsvd_bits_mask[0][2] =
4598
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4599
	rsvd_check->rsvd_bits_mask[0][1] =
4600
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4601
	rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
4602 4603

	/* large page */
4604
	rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4605 4606
	rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
	rsvd_check->rsvd_bits_mask[1][2] =
4607
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
4608
	rsvd_check->rsvd_bits_mask[1][1] =
4609
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
4610
	rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4611

4612 4613 4614 4615 4616 4617 4618 4619
	bad_mt_xwr = 0xFFull << (2 * 8);	/* bits 3..5 must not be 2 */
	bad_mt_xwr |= 0xFFull << (3 * 8);	/* bits 3..5 must not be 3 */
	bad_mt_xwr |= 0xFFull << (7 * 8);	/* bits 3..5 must not be 7 */
	bad_mt_xwr |= REPEAT_BYTE(1ull << 2);	/* bits 0..2 must not be 010 */
	bad_mt_xwr |= REPEAT_BYTE(1ull << 6);	/* bits 0..2 must not be 110 */
	if (!execonly) {
		/* bits 0..2 must not be 100 unless VMX capabilities allow it */
		bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4620
	}
4621
	rsvd_check->bad_mt_xwr = bad_mt_xwr;
4622 4623
}

4624 4625 4626 4627 4628 4629 4630
static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
		struct kvm_mmu *context, bool execonly)
{
	__reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
				    cpuid_maxphyaddr(vcpu), execonly);
}

4631 4632 4633 4634 4635 4636 4637 4638
/*
 * the page table on host is the shadow page table for the page
 * table in guest or amd nested guest, its mmu features completely
 * follow the features in guest.
 */
void
reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
{
4639 4640
	bool uses_nx = context->nx ||
		context->mmu_role.base.smep_andnot_wp;
4641 4642
	struct rsvd_bits_validate *shadow_zero_check;
	int i;
4643

4644 4645 4646 4647
	/*
	 * Passing "true" to the last argument is okay; it adds a check
	 * on bit 8 of the SPTEs which KVM doesn't use anyway.
	 */
4648 4649
	shadow_zero_check = &context->shadow_zero_check;
	__reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4650
				shadow_phys_bits,
4651
				context->shadow_root_level, uses_nx,
4652 4653
				guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
				is_pse(vcpu), true);
4654 4655 4656 4657 4658 4659 4660 4661 4662

	if (!shadow_me_mask)
		return;

	for (i = context->shadow_root_level; --i >= 0;) {
		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
	}

4663 4664 4665
}
EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);

4666 4667 4668 4669 4670 4671
static inline bool boot_cpu_is_amd(void)
{
	WARN_ON_ONCE(!tdp_enabled);
	return shadow_x_mask == 0;
}

4672 4673 4674 4675 4676 4677 4678 4679
/*
 * the direct page table on host, use as much mmu features as
 * possible, however, kvm currently does not do execution-protection.
 */
static void
reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
				struct kvm_mmu *context)
{
4680 4681 4682 4683 4684
	struct rsvd_bits_validate *shadow_zero_check;
	int i;

	shadow_zero_check = &context->shadow_zero_check;

4685
	if (boot_cpu_is_amd())
4686
		__reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4687
					shadow_phys_bits,
4688
					context->shadow_root_level, false,
4689 4690
					boot_cpu_has(X86_FEATURE_GBPAGES),
					true, true);
4691
	else
4692
		__reset_rsvds_bits_mask_ept(shadow_zero_check,
4693
					    shadow_phys_bits,
4694 4695
					    false);

4696 4697 4698 4699 4700 4701 4702
	if (!shadow_me_mask)
		return;

	for (i = context->shadow_root_level; --i >= 0;) {
		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
	}
4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713
}

/*
 * as the comments in reset_shadow_zero_bits_mask() except it
 * is the shadow page table for intel nested guest.
 */
static void
reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
				struct kvm_mmu *context, bool execonly)
{
	__reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4714
				    shadow_phys_bits, execonly);
4715 4716
}

4717 4718 4719 4720 4721 4722 4723 4724 4725 4726
#define BYTE_MASK(access) \
	((1 & (access) ? 2 : 0) | \
	 (2 & (access) ? 4 : 0) | \
	 (3 & (access) ? 8 : 0) | \
	 (4 & (access) ? 16 : 0) | \
	 (5 & (access) ? 32 : 0) | \
	 (6 & (access) ? 64 : 0) | \
	 (7 & (access) ? 128 : 0))


4727 4728
static void update_permission_bitmask(struct kvm_vcpu *vcpu,
				      struct kvm_mmu *mmu, bool ept)
4729
{
4730 4731 4732 4733 4734 4735 4736 4737 4738
	unsigned byte;

	const u8 x = BYTE_MASK(ACC_EXEC_MASK);
	const u8 w = BYTE_MASK(ACC_WRITE_MASK);
	const u8 u = BYTE_MASK(ACC_USER_MASK);

	bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
	bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
	bool cr0_wp = is_write_protection(vcpu);
4739 4740

	for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4741 4742
		unsigned pfec = byte << 1;

F
Feng Wu 已提交
4743
		/*
4744 4745
		 * Each "*f" variable has a 1 bit for each UWX value
		 * that causes a fault with the given PFEC.
F
Feng Wu 已提交
4746
		 */
4747

4748
		/* Faults from writes to non-writable pages */
4749
		u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
4750
		/* Faults from user mode accesses to supervisor pages */
4751
		u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
4752
		/* Faults from fetches of non-executable pages*/
4753
		u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778
		/* Faults from kernel mode fetches of user pages */
		u8 smepf = 0;
		/* Faults from kernel mode accesses of user pages */
		u8 smapf = 0;

		if (!ept) {
			/* Faults from kernel mode accesses to user pages */
			u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;

			/* Not really needed: !nx will cause pte.nx to fault */
			if (!mmu->nx)
				ff = 0;

			/* Allow supervisor writes if !cr0.wp */
			if (!cr0_wp)
				wf = (pfec & PFERR_USER_MASK) ? wf : 0;

			/* Disallow supervisor fetches of user code if cr4.smep */
			if (cr4_smep)
				smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;

			/*
			 * SMAP:kernel-mode data accesses from user-mode
			 * mappings should fault. A fault is considered
			 * as a SMAP violation if all of the following
P
Peng Hao 已提交
4779
			 * conditions are true:
4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792
			 *   - X86_CR4_SMAP is set in CR4
			 *   - A user page is accessed
			 *   - The access is not a fetch
			 *   - Page fault in kernel mode
			 *   - if CPL = 3 or X86_EFLAGS_AC is clear
			 *
			 * Here, we cover the first three conditions.
			 * The fourth is computed dynamically in permission_fault();
			 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
			 * *not* subject to SMAP restrictions.
			 */
			if (cr4_smap)
				smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4793
		}
4794 4795

		mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4796 4797 4798
	}
}

4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873
/*
* PKU is an additional mechanism by which the paging controls access to
* user-mode addresses based on the value in the PKRU register.  Protection
* key violations are reported through a bit in the page fault error code.
* Unlike other bits of the error code, the PK bit is not known at the
* call site of e.g. gva_to_gpa; it must be computed directly in
* permission_fault based on two bits of PKRU, on some machine state (CR4,
* CR0, EFER, CPL), and on other bits of the error code and the page tables.
*
* In particular the following conditions come from the error code, the
* page tables and the machine state:
* - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
* - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
* - PK is always zero if U=0 in the page tables
* - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
*
* The PKRU bitmask caches the result of these four conditions.  The error
* code (minus the P bit) and the page table's U bit form an index into the
* PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
* with the two bits of the PKRU register corresponding to the protection key.
* For the first three conditions above the bits will be 00, thus masking
* away both AD and WD.  For all reads or if the last condition holds, WD
* only will be masked away.
*/
static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
				bool ept)
{
	unsigned bit;
	bool wp;

	if (ept) {
		mmu->pkru_mask = 0;
		return;
	}

	/* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
	if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
		mmu->pkru_mask = 0;
		return;
	}

	wp = is_write_protection(vcpu);

	for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
		unsigned pfec, pkey_bits;
		bool check_pkey, check_write, ff, uf, wf, pte_user;

		pfec = bit << 1;
		ff = pfec & PFERR_FETCH_MASK;
		uf = pfec & PFERR_USER_MASK;
		wf = pfec & PFERR_WRITE_MASK;

		/* PFEC.RSVD is replaced by ACC_USER_MASK. */
		pte_user = pfec & PFERR_RSVD_MASK;

		/*
		 * Only need to check the access which is not an
		 * instruction fetch and is to a user page.
		 */
		check_pkey = (!ff && pte_user);
		/*
		 * write access is controlled by PKRU if it is a
		 * user access or CR0.WP = 1.
		 */
		check_write = check_pkey && wf && (uf || wp);

		/* PKRU.AD stops both read and write access. */
		pkey_bits = !!check_pkey;
		/* PKRU.WD stops write access. */
		pkey_bits |= (!!check_write) << 1;

		mmu->pkru_mask |= (pkey_bits & 3) << pfec;
	}
}

4874
static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
A
Avi Kivity 已提交
4875
{
4876 4877 4878 4879 4880
	unsigned root_level = mmu->root_level;

	mmu->last_nonleaf_level = root_level;
	if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
		mmu->last_nonleaf_level++;
A
Avi Kivity 已提交
4881 4882
}

4883 4884 4885
static void paging64_init_context_common(struct kvm_vcpu *vcpu,
					 struct kvm_mmu *context,
					 int level)
A
Avi Kivity 已提交
4886
{
4887
	context->nx = is_nx(vcpu);
4888
	context->root_level = level;
4889

4890
	reset_rsvds_bits_mask(vcpu, context);
4891
	update_permission_bitmask(vcpu, context, false);
4892
	update_pkru_bitmask(vcpu, context, false);
4893
	update_last_nonleaf_level(vcpu, context);
A
Avi Kivity 已提交
4894

4895
	MMU_WARN_ON(!is_pae(vcpu));
A
Avi Kivity 已提交
4896 4897
	context->page_fault = paging64_page_fault;
	context->gva_to_gpa = paging64_gva_to_gpa;
4898
	context->sync_page = paging64_sync_page;
M
Marcelo Tosatti 已提交
4899
	context->invlpg = paging64_invlpg;
4900
	context->update_pte = paging64_update_pte;
4901
	context->shadow_root_level = level;
4902
	context->direct_map = false;
A
Avi Kivity 已提交
4903 4904
}

4905 4906
static void paging64_init_context(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
4907
{
4908 4909 4910 4911
	int root_level = is_la57_mode(vcpu) ?
			 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;

	paging64_init_context_common(vcpu, context, root_level);
4912 4913
}

4914 4915
static void paging32_init_context(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
A
Avi Kivity 已提交
4916
{
4917
	context->nx = false;
4918
	context->root_level = PT32_ROOT_LEVEL;
4919

4920
	reset_rsvds_bits_mask(vcpu, context);
4921
	update_permission_bitmask(vcpu, context, false);
4922
	update_pkru_bitmask(vcpu, context, false);
4923
	update_last_nonleaf_level(vcpu, context);
A
Avi Kivity 已提交
4924 4925 4926

	context->page_fault = paging32_page_fault;
	context->gva_to_gpa = paging32_gva_to_gpa;
4927
	context->sync_page = paging32_sync_page;
M
Marcelo Tosatti 已提交
4928
	context->invlpg = paging32_invlpg;
4929
	context->update_pte = paging32_update_pte;
A
Avi Kivity 已提交
4930
	context->shadow_root_level = PT32E_ROOT_LEVEL;
4931
	context->direct_map = false;
A
Avi Kivity 已提交
4932 4933
}

4934 4935
static void paging32E_init_context(struct kvm_vcpu *vcpu,
				   struct kvm_mmu *context)
A
Avi Kivity 已提交
4936
{
4937
	paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
A
Avi Kivity 已提交
4938 4939
}

4940 4941 4942 4943
static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu)
{
	union kvm_mmu_extended_role ext = {0};

4944
	ext.cr0_pg = !!is_paging(vcpu);
4945
	ext.cr4_pae = !!is_pae(vcpu);
4946 4947 4948 4949
	ext.cr4_smep = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
	ext.cr4_smap = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
	ext.cr4_pse = !!is_pse(vcpu);
	ext.cr4_pke = !!kvm_read_cr4_bits(vcpu, X86_CR4_PKE);
4950
	ext.cr4_la57 = !!kvm_read_cr4_bits(vcpu, X86_CR4_LA57);
4951
	ext.maxphyaddr = cpuid_maxphyaddr(vcpu);
4952 4953 4954 4955 4956 4957

	ext.valid = 1;

	return ext;
}

4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978
static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
						   bool base_only)
{
	union kvm_mmu_role role = {0};

	role.base.access = ACC_ALL;
	role.base.nxe = !!is_nx(vcpu);
	role.base.cr0_wp = is_write_protection(vcpu);
	role.base.smm = is_smm(vcpu);
	role.base.guest_mode = is_guest_mode(vcpu);

	if (base_only)
		return role;

	role.ext = kvm_calc_mmu_role_ext(vcpu);

	return role;
}

static union kvm_mmu_role
kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4979
{
4980
	union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4981

4982 4983 4984
	role.base.ad_disabled = (shadow_accessed_mask == 0);
	role.base.level = kvm_x86_ops->get_tdp_level(vcpu);
	role.base.direct = true;
4985
	role.base.gpte_is_8_bytes = true;
4986 4987 4988 4989

	return role;
}

4990
static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4991
{
4992
	struct kvm_mmu *context = vcpu->arch.mmu;
4993 4994
	union kvm_mmu_role new_role =
		kvm_calc_tdp_mmu_root_page_role(vcpu, false);
4995

4996 4997 4998 4999 5000
	new_role.base.word &= mmu_base_role_mask.word;
	if (new_role.as_u64 == context->mmu_role.as_u64)
		return;

	context->mmu_role.as_u64 = new_role.as_u64;
5001
	context->page_fault = tdp_page_fault;
5002
	context->sync_page = nonpaging_sync_page;
M
Marcelo Tosatti 已提交
5003
	context->invlpg = nonpaging_invlpg;
5004
	context->update_pte = nonpaging_update_pte;
5005
	context->shadow_root_level = kvm_x86_ops->get_tdp_level(vcpu);
5006
	context->direct_map = true;
5007
	context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
5008
	context->get_cr3 = get_cr3;
5009
	context->get_pdptr = kvm_pdptr_read;
5010
	context->inject_page_fault = kvm_inject_page_fault;
5011 5012

	if (!is_paging(vcpu)) {
5013
		context->nx = false;
5014 5015 5016
		context->gva_to_gpa = nonpaging_gva_to_gpa;
		context->root_level = 0;
	} else if (is_long_mode(vcpu)) {
5017
		context->nx = is_nx(vcpu);
5018 5019
		context->root_level = is_la57_mode(vcpu) ?
				PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
5020 5021
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging64_gva_to_gpa;
5022
	} else if (is_pae(vcpu)) {
5023
		context->nx = is_nx(vcpu);
5024
		context->root_level = PT32E_ROOT_LEVEL;
5025 5026
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging64_gva_to_gpa;
5027
	} else {
5028
		context->nx = false;
5029
		context->root_level = PT32_ROOT_LEVEL;
5030 5031
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging32_gva_to_gpa;
5032 5033
	}

5034
	update_permission_bitmask(vcpu, context, false);
5035
	update_pkru_bitmask(vcpu, context, false);
5036
	update_last_nonleaf_level(vcpu, context);
5037
	reset_tdp_shadow_zero_bits_mask(vcpu, context);
5038 5039
}

5040 5041 5042 5043 5044 5045 5046 5047 5048 5049
static union kvm_mmu_role
kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
{
	union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);

	role.base.smep_andnot_wp = role.ext.cr4_smep &&
		!is_write_protection(vcpu);
	role.base.smap_andnot_wp = role.ext.cr4_smap &&
		!is_write_protection(vcpu);
	role.base.direct = !is_paging(vcpu);
5050
	role.base.gpte_is_8_bytes = !!is_pae(vcpu);
5051 5052

	if (!is_long_mode(vcpu))
5053
		role.base.level = PT32E_ROOT_LEVEL;
5054
	else if (is_la57_mode(vcpu))
5055
		role.base.level = PT64_ROOT_5LEVEL;
5056
	else
5057
		role.base.level = PT64_ROOT_4LEVEL;
5058 5059 5060 5061 5062 5063

	return role;
}

void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
{
5064
	struct kvm_mmu *context = vcpu->arch.mmu;
5065 5066 5067 5068 5069 5070
	union kvm_mmu_role new_role =
		kvm_calc_shadow_mmu_root_page_role(vcpu, false);

	new_role.base.word &= mmu_base_role_mask.word;
	if (new_role.as_u64 == context->mmu_role.as_u64)
		return;
A
Avi Kivity 已提交
5071 5072

	if (!is_paging(vcpu))
5073
		nonpaging_init_context(vcpu, context);
A
Avi Kivity 已提交
5074
	else if (is_long_mode(vcpu))
5075
		paging64_init_context(vcpu, context);
A
Avi Kivity 已提交
5076
	else if (is_pae(vcpu))
5077
		paging32E_init_context(vcpu, context);
A
Avi Kivity 已提交
5078
	else
5079
		paging32_init_context(vcpu, context);
5080

5081
	context->mmu_role.as_u64 = new_role.as_u64;
5082
	reset_shadow_zero_bits_mask(vcpu, context);
5083 5084 5085
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);

5086 5087 5088
static union kvm_mmu_role
kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
				   bool execonly)
5089
{
5090
	union kvm_mmu_role role = {0};
5091

5092 5093
	/* SMM flag is inherited from root_mmu */
	role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
5094

5095
	role.base.level = PT64_ROOT_4LEVEL;
5096
	role.base.gpte_is_8_bytes = true;
5097 5098 5099 5100
	role.base.direct = false;
	role.base.ad_disabled = !accessed_dirty;
	role.base.guest_mode = true;
	role.base.access = ACC_ALL;
5101

5102 5103 5104 5105 5106 5107 5108
	/*
	 * WP=1 and NOT_WP=1 is an impossible combination, use WP and the
	 * SMAP variation to denote shadow EPT entries.
	 */
	role.base.cr0_wp = true;
	role.base.smap_andnot_wp = true;

5109
	role.ext = kvm_calc_mmu_role_ext(vcpu);
5110
	role.ext.execonly = execonly;
5111 5112 5113 5114

	return role;
}

5115
void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
5116
			     bool accessed_dirty, gpa_t new_eptp)
N
Nadav Har'El 已提交
5117
{
5118
	struct kvm_mmu *context = vcpu->arch.mmu;
5119 5120 5121 5122 5123 5124 5125 5126 5127
	union kvm_mmu_role new_role =
		kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
						   execonly);

	__kvm_mmu_new_cr3(vcpu, new_eptp, new_role.base, false);

	new_role.base.word &= mmu_base_role_mask.word;
	if (new_role.as_u64 == context->mmu_role.as_u64)
		return;
5128

5129
	context->shadow_root_level = PT64_ROOT_4LEVEL;
N
Nadav Har'El 已提交
5130 5131

	context->nx = true;
5132
	context->ept_ad = accessed_dirty;
N
Nadav Har'El 已提交
5133 5134 5135 5136 5137
	context->page_fault = ept_page_fault;
	context->gva_to_gpa = ept_gva_to_gpa;
	context->sync_page = ept_sync_page;
	context->invlpg = ept_invlpg;
	context->update_pte = ept_update_pte;
5138
	context->root_level = PT64_ROOT_4LEVEL;
N
Nadav Har'El 已提交
5139
	context->direct_map = false;
5140
	context->mmu_role.as_u64 = new_role.as_u64;
5141

N
Nadav Har'El 已提交
5142
	update_permission_bitmask(vcpu, context, true);
5143
	update_pkru_bitmask(vcpu, context, true);
5144
	update_last_nonleaf_level(vcpu, context);
N
Nadav Har'El 已提交
5145
	reset_rsvds_bits_mask_ept(vcpu, context, execonly);
5146
	reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
N
Nadav Har'El 已提交
5147 5148 5149
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);

5150
static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
5151
{
5152
	struct kvm_mmu *context = vcpu->arch.mmu;
5153 5154 5155 5156 5157 5158

	kvm_init_shadow_mmu(vcpu);
	context->set_cr3           = kvm_x86_ops->set_cr3;
	context->get_cr3           = get_cr3;
	context->get_pdptr         = kvm_pdptr_read;
	context->inject_page_fault = kvm_inject_page_fault;
A
Avi Kivity 已提交
5159 5160
}

5161
static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
5162
{
5163
	union kvm_mmu_role new_role = kvm_calc_mmu_role_common(vcpu, false);
5164 5165
	struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;

5166 5167 5168 5169 5170
	new_role.base.word &= mmu_base_role_mask.word;
	if (new_role.as_u64 == g_context->mmu_role.as_u64)
		return;

	g_context->mmu_role.as_u64 = new_role.as_u64;
5171
	g_context->get_cr3           = get_cr3;
5172
	g_context->get_pdptr         = kvm_pdptr_read;
5173 5174 5175
	g_context->inject_page_fault = kvm_inject_page_fault;

	/*
5176
	 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
5177 5178 5179 5180 5181
	 * L1's nested page tables (e.g. EPT12). The nested translation
	 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
	 * L2's page tables as the first level of translation and L1's
	 * nested page tables as the second level of translation. Basically
	 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
5182 5183
	 */
	if (!is_paging(vcpu)) {
5184
		g_context->nx = false;
5185 5186 5187
		g_context->root_level = 0;
		g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
	} else if (is_long_mode(vcpu)) {
5188
		g_context->nx = is_nx(vcpu);
5189 5190
		g_context->root_level = is_la57_mode(vcpu) ?
					PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
5191
		reset_rsvds_bits_mask(vcpu, g_context);
5192 5193
		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
	} else if (is_pae(vcpu)) {
5194
		g_context->nx = is_nx(vcpu);
5195
		g_context->root_level = PT32E_ROOT_LEVEL;
5196
		reset_rsvds_bits_mask(vcpu, g_context);
5197 5198
		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
	} else {
5199
		g_context->nx = false;
5200
		g_context->root_level = PT32_ROOT_LEVEL;
5201
		reset_rsvds_bits_mask(vcpu, g_context);
5202 5203 5204
		g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
	}

5205
	update_permission_bitmask(vcpu, g_context, false);
5206
	update_pkru_bitmask(vcpu, g_context, false);
5207
	update_last_nonleaf_level(vcpu, g_context);
5208 5209
}

5210
void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots)
5211
{
5212
	if (reset_roots) {
5213 5214
		uint i;

5215
		vcpu->arch.mmu->root_hpa = INVALID_PAGE;
5216 5217

		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5218
			vcpu->arch.mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5219 5220
	}

5221
	if (mmu_is_nested(vcpu))
5222
		init_kvm_nested_mmu(vcpu);
5223
	else if (tdp_enabled)
5224
		init_kvm_tdp_mmu(vcpu);
5225
	else
5226
		init_kvm_softmmu(vcpu);
5227
}
5228
EXPORT_SYMBOL_GPL(kvm_init_mmu);
5229

5230 5231 5232
static union kvm_mmu_page_role
kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
{
5233 5234
	union kvm_mmu_role role;

5235
	if (tdp_enabled)
5236
		role = kvm_calc_tdp_mmu_root_page_role(vcpu, true);
5237
	else
5238 5239 5240
		role = kvm_calc_shadow_mmu_root_page_role(vcpu, true);

	return role.base;
5241
}
5242

5243
void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
5244
{
5245
	kvm_mmu_unload(vcpu);
5246
	kvm_init_mmu(vcpu, true);
A
Avi Kivity 已提交
5247
}
5248
EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
A
Avi Kivity 已提交
5249 5250

int kvm_mmu_load(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
5251
{
5252 5253
	int r;

5254
	r = mmu_topup_memory_caches(vcpu);
A
Avi Kivity 已提交
5255 5256
	if (r)
		goto out;
5257
	r = mmu_alloc_roots(vcpu);
5258
	kvm_mmu_sync_roots(vcpu);
5259 5260
	if (r)
		goto out;
5261
	kvm_mmu_load_cr3(vcpu);
5262
	kvm_x86_ops->tlb_flush(vcpu, true);
5263 5264
out:
	return r;
A
Avi Kivity 已提交
5265
}
A
Avi Kivity 已提交
5266 5267 5268 5269
EXPORT_SYMBOL_GPL(kvm_mmu_load);

void kvm_mmu_unload(struct kvm_vcpu *vcpu)
{
5270 5271 5272 5273
	kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
	WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
	kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
	WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
A
Avi Kivity 已提交
5274
}
5275
EXPORT_SYMBOL_GPL(kvm_mmu_unload);
A
Avi Kivity 已提交
5276

5277
static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
5278 5279
				  struct kvm_mmu_page *sp, u64 *spte,
				  const void *new)
5280
{
5281
	if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
5282 5283
		++vcpu->kvm->stat.mmu_pde_zapped;
		return;
5284
        }
5285

A
Avi Kivity 已提交
5286
	++vcpu->kvm->stat.mmu_pte_updated;
5287
	vcpu->arch.mmu->update_pte(vcpu, sp, spte, new);
5288 5289
}

5290 5291 5292 5293 5294 5295 5296 5297
static bool need_remote_flush(u64 old, u64 new)
{
	if (!is_shadow_present_pte(old))
		return false;
	if (!is_shadow_present_pte(new))
		return true;
	if ((old ^ new) & PT64_BASE_ADDR_MASK)
		return true;
5298 5299
	old ^= shadow_nx_mask;
	new ^= shadow_nx_mask;
5300 5301 5302
	return (old & ~new & PT64_PERM_MASK) != 0;
}

5303
static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
5304
				    int *bytes)
5305
{
5306
	u64 gentry = 0;
5307
	int r;
5308 5309 5310

	/*
	 * Assume that the pte write on a page table of the same type
5311 5312
	 * as the current vcpu paging mode since we update the sptes only
	 * when they have the same mode.
5313
	 */
5314
	if (is_pae(vcpu) && *bytes == 4) {
5315
		/* Handle a 32-bit guest writing two halves of a 64-bit gpte */
5316 5317
		*gpa &= ~(gpa_t)7;
		*bytes = 8;
5318 5319
	}

5320 5321 5322 5323
	if (*bytes == 4 || *bytes == 8) {
		r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
		if (r)
			gentry = 0;
5324 5325
	}

5326 5327 5328 5329 5330 5331 5332
	return gentry;
}

/*
 * If we're seeing too many writes to a page, it may no longer be a page table,
 * or we may be forking, in which case it is better to unmap the page.
 */
5333
static bool detect_write_flooding(struct kvm_mmu_page *sp)
5334
{
5335 5336 5337 5338
	/*
	 * Skip write-flooding detected for the sp whose level is 1, because
	 * it can become unsync, then the guest page is not write-protected.
	 */
5339
	if (sp->role.level == PT_PAGE_TABLE_LEVEL)
5340
		return false;
5341

5342 5343
	atomic_inc(&sp->write_flooding_count);
	return atomic_read(&sp->write_flooding_count) >= 3;
5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358
}

/*
 * Misaligned accesses are too much trouble to fix up; also, they usually
 * indicate a page is not used as a page table.
 */
static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
				    int bytes)
{
	unsigned offset, pte_size, misaligned;

	pgprintk("misaligned: gpa %llx bytes %d role %x\n",
		 gpa, bytes, sp->role.word);

	offset = offset_in_page(gpa);
5359
	pte_size = sp->role.gpte_is_8_bytes ? 8 : 4;
5360 5361 5362 5363 5364 5365 5366 5367

	/*
	 * Sometimes, the OS only writes the last one bytes to update status
	 * bits, for example, in linux, andb instruction is used in clear_bit().
	 */
	if (!(offset & (pte_size - 1)) && bytes == 1)
		return false;

5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382
	misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
	misaligned |= bytes < 4;

	return misaligned;
}

static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
{
	unsigned page_offset, quadrant;
	u64 *spte;
	int level;

	page_offset = offset_in_page(gpa);
	level = sp->role.level;
	*nspte = 1;
5383
	if (!sp->role.gpte_is_8_bytes) {
5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404
		page_offset <<= 1;	/* 32->64 */
		/*
		 * A 32-bit pde maps 4MB while the shadow pdes map
		 * only 2MB.  So we need to double the offset again
		 * and zap two pdes instead of one.
		 */
		if (level == PT32_ROOT_LEVEL) {
			page_offset &= ~7; /* kill rounding error */
			page_offset <<= 1;
			*nspte = 2;
		}
		quadrant = page_offset >> PAGE_SHIFT;
		page_offset &= ~PAGE_MASK;
		if (quadrant != sp->role.quadrant)
			return NULL;
	}

	spte = &sp->spt[page_offset / sizeof(*spte)];
	return spte;
}

5405
static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
5406 5407
			      const u8 *new, int bytes,
			      struct kvm_page_track_notifier_node *node)
5408 5409 5410 5411 5412 5413
{
	gfn_t gfn = gpa >> PAGE_SHIFT;
	struct kvm_mmu_page *sp;
	LIST_HEAD(invalid_list);
	u64 entry, gentry, *spte;
	int npte;
5414
	bool remote_flush, local_flush;
5415 5416 5417 5418 5419

	/*
	 * If we don't have indirect shadow pages, it means no page is
	 * write-protected, so we can exit simply.
	 */
5420
	if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
5421 5422
		return;

5423
	remote_flush = local_flush = false;
5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434

	pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);

	/*
	 * No need to care whether allocation memory is successful
	 * or not since pte prefetch is skiped if it does not have
	 * enough objects in the cache.
	 */
	mmu_topup_memory_caches(vcpu);

	spin_lock(&vcpu->kvm->mmu_lock);
5435 5436 5437

	gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);

5438
	++vcpu->kvm->stat.mmu_pte_write;
5439
	kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
5440

5441
	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
5442
		if (detect_write_misaligned(sp, gpa, bytes) ||
5443
		      detect_write_flooding(sp)) {
5444
			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
A
Avi Kivity 已提交
5445
			++vcpu->kvm->stat.mmu_flooded;
5446 5447
			continue;
		}
5448 5449 5450 5451 5452

		spte = get_written_sptes(sp, gpa, &npte);
		if (!spte)
			continue;

5453
		local_flush = true;
5454
		while (npte--) {
5455 5456
			u32 base_role = vcpu->arch.mmu->mmu_role.base.word;

5457
			entry = *spte;
5458
			mmu_page_zap_pte(vcpu->kvm, sp, spte);
5459
			if (gentry &&
5460
			      !((sp->role.word ^ base_role)
5461
			      & mmu_base_role_mask.word) && rmap_can_add(vcpu))
5462
				mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
G
Gleb Natapov 已提交
5463
			if (need_remote_flush(entry, *spte))
5464
				remote_flush = true;
5465
			++spte;
5466 5467
		}
	}
5468
	kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
5469
	kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
5470
	spin_unlock(&vcpu->kvm->mmu_lock);
5471 5472
}

5473 5474
int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
{
5475 5476
	gpa_t gpa;
	int r;
5477

5478
	if (vcpu->arch.mmu->direct_map)
5479 5480
		return 0;

5481
	gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
5482 5483

	r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
5484

5485
	return r;
5486
}
5487
EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
5488

5489
int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
5490
		       void *insn, int insn_len)
5491
{
5492
	int r, emulation_type = 0;
5493
	bool direct = vcpu->arch.mmu->direct_map;
5494

5495
	if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
5496 5497
		return RET_PF_RETRY;

5498
	/* With shadow page tables, fault_address contains a GVA or nGPA.  */
5499
	if (vcpu->arch.mmu->direct_map) {
5500
		vcpu->arch.gpa_available = true;
5501
		vcpu->arch.gpa_val = cr2_or_gpa;
5502
	}
5503

5504
	r = RET_PF_INVALID;
5505
	if (unlikely(error_code & PFERR_RSVD_MASK)) {
5506
		r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
5507
		if (r == RET_PF_EMULATE)
5508 5509
			goto emulate;
	}
5510

5511
	if (r == RET_PF_INVALID) {
5512
		r = vcpu->arch.mmu->page_fault(vcpu, cr2_or_gpa,
5513 5514
					       lower_32_bits(error_code),
					       false);
5515 5516 5517 5518 5519
		WARN_ON(r == RET_PF_INVALID);
	}

	if (r == RET_PF_RETRY)
		return 1;
5520
	if (r < 0)
5521
		return r;
5522

5523 5524 5525 5526 5527 5528 5529
	/*
	 * Before emulating the instruction, check if the error code
	 * was due to a RO violation while translating the guest page.
	 * This can occur when using nested virtualization with nested
	 * paging in both guests. If true, we simply unprotect the page
	 * and resume the guest.
	 */
5530
	if (vcpu->arch.mmu->direct_map &&
5531
	    (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5532
		kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
5533 5534 5535
		return 1;
	}

5536 5537 5538 5539 5540 5541
	/*
	 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
	 * optimistically try to just unprotect the page and let the processor
	 * re-execute the instruction that caused the page fault.  Do not allow
	 * retrying MMIO emulation, as it's not only pointless but could also
	 * cause us to enter an infinite loop because the processor will keep
5542 5543 5544 5545
	 * faulting on the non-existent MMIO address.  Retrying an instruction
	 * from a nested guest is also pointless and dangerous as we are only
	 * explicitly shadowing L1's page tables, i.e. unprotecting something
	 * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5546
	 */
5547
	if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
5548
		emulation_type = EMULTYPE_ALLOW_RETRY;
5549
emulate:
5550 5551 5552 5553 5554
	/*
	 * On AMD platforms, under certain conditions insn_len may be zero on #NPF.
	 * This can happen if a guest gets a page-fault on data access but the HW
	 * table walker is not able to read the instruction page (e.g instruction
	 * page is not present in memory). In those cases we simply restart the
5555
	 * guest, with the exception of AMD Erratum 1096 which is unrecoverable.
5556
	 */
5557 5558 5559 5560
	if (unlikely(insn && !insn_len)) {
		if (!kvm_x86_ops->need_emulation_on_page_fault(vcpu))
			return 1;
	}
5561

5562
	return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
5563
				       insn_len);
5564 5565 5566
}
EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);

M
Marcelo Tosatti 已提交
5567 5568
void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
{
5569
	struct kvm_mmu *mmu = vcpu->arch.mmu;
5570
	int i;
5571

5572 5573 5574 5575
	/* INVLPG on a * non-canonical address is a NOP according to the SDM.  */
	if (is_noncanonical_address(gva, vcpu))
		return;

5576
	mmu->invlpg(vcpu, gva, mmu->root_hpa);
5577 5578 5579 5580

	/*
	 * INVLPG is required to invalidate any global mappings for the VA,
	 * irrespective of PCID. Since it would take us roughly similar amount
5581 5582 5583
	 * of work to determine whether any of the prev_root mappings of the VA
	 * is marked global, or to just sync it blindly, so we might as well
	 * just always sync it.
5584
	 *
5585 5586 5587
	 * Mappings not reachable via the current cr3 or the prev_roots will be
	 * synced when switching to that cr3, so nothing needs to be done here
	 * for them.
5588
	 */
5589 5590 5591
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
		if (VALID_PAGE(mmu->prev_roots[i].hpa))
			mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5592

5593
	kvm_x86_ops->tlb_flush_gva(vcpu, gva);
M
Marcelo Tosatti 已提交
5594 5595 5596 5597
	++vcpu->stat.invlpg;
}
EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);

5598 5599
void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
{
5600
	struct kvm_mmu *mmu = vcpu->arch.mmu;
5601
	bool tlb_flush = false;
5602
	uint i;
5603 5604

	if (pcid == kvm_get_active_pcid(vcpu)) {
5605
		mmu->invlpg(vcpu, gva, mmu->root_hpa);
5606
		tlb_flush = true;
5607 5608
	}

5609 5610 5611 5612 5613 5614
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
		if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
		    pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].cr3)) {
			mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
			tlb_flush = true;
		}
5615
	}
5616

5617 5618 5619
	if (tlb_flush)
		kvm_x86_ops->tlb_flush_gva(vcpu, gva);

5620 5621 5622
	++vcpu->stat.invlpg;

	/*
5623 5624 5625
	 * Mappings not reachable via the current cr3 or the prev_roots will be
	 * synced when switching to that cr3, so nothing needs to be done here
	 * for them.
5626 5627 5628 5629
	 */
}
EXPORT_SYMBOL_GPL(kvm_mmu_invpcid_gva);

5630 5631 5632 5633 5634 5635
void kvm_enable_tdp(void)
{
	tdp_enabled = true;
}
EXPORT_SYMBOL_GPL(kvm_enable_tdp);

5636 5637 5638 5639 5640 5641
void kvm_disable_tdp(void)
{
	tdp_enabled = false;
}
EXPORT_SYMBOL_GPL(kvm_disable_tdp);

5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661

/* The return value indicates if tlb flush on all vcpus is needed. */
typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);

/* The caller should hold mmu-lock before calling this function. */
static __always_inline bool
slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
			slot_level_handler fn, int start_level, int end_level,
			gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
{
	struct slot_rmap_walk_iterator iterator;
	bool flush = false;

	for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
			end_gfn, &iterator) {
		if (iterator.rmap)
			flush |= fn(kvm, iterator.rmap);

		if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
			if (flush && lock_flush_tlb) {
5662 5663 5664
				kvm_flush_remote_tlbs_with_address(kvm,
						start_gfn,
						iterator.gfn - start_gfn + 1);
5665 5666 5667 5668 5669 5670 5671
				flush = false;
			}
			cond_resched_lock(&kvm->mmu_lock);
		}
	}

	if (flush && lock_flush_tlb) {
5672 5673
		kvm_flush_remote_tlbs_with_address(kvm, start_gfn,
						   end_gfn - start_gfn + 1);
5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714
		flush = false;
	}

	return flush;
}

static __always_inline bool
slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
		  slot_level_handler fn, int start_level, int end_level,
		  bool lock_flush_tlb)
{
	return slot_handle_level_range(kvm, memslot, fn, start_level,
			end_level, memslot->base_gfn,
			memslot->base_gfn + memslot->npages - 1,
			lock_flush_tlb);
}

static __always_inline bool
slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
		      slot_level_handler fn, bool lock_flush_tlb)
{
	return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
				 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
}

static __always_inline bool
slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
			slot_level_handler fn, bool lock_flush_tlb)
{
	return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
				 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
}

static __always_inline bool
slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
		 slot_level_handler fn, bool lock_flush_tlb)
{
	return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
				 PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
}

5715
static void free_mmu_pages(struct kvm_mmu *mmu)
A
Avi Kivity 已提交
5716
{
5717 5718
	free_page((unsigned long)mmu->pae_root);
	free_page((unsigned long)mmu->lm_root);
A
Avi Kivity 已提交
5719 5720
}

5721
static int alloc_mmu_pages(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
A
Avi Kivity 已提交
5722
{
5723
	struct page *page;
A
Avi Kivity 已提交
5724 5725
	int i;

5726
	/*
5727 5728 5729 5730 5731 5732 5733
	 * When using PAE paging, the four PDPTEs are treated as 'root' pages,
	 * while the PDP table is a per-vCPU construct that's allocated at MMU
	 * creation.  When emulating 32-bit mode, cr3 is only 32 bits even on
	 * x86_64.  Therefore we need to allocate the PDP table in the first
	 * 4GB of memory, which happens to fit the DMA32 zone.  Except for
	 * SVM's 32-bit NPT support, TDP paging doesn't use PAE paging and can
	 * skip allocating the PDP table.
5734
	 */
5735 5736 5737
	if (tdp_enabled && kvm_x86_ops->get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
		return 0;

5738
	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
5739
	if (!page)
5740 5741
		return -ENOMEM;

5742
	mmu->pae_root = page_address(page);
5743
	for (i = 0; i < 4; ++i)
5744
		mmu->pae_root[i] = INVALID_PAGE;
5745

A
Avi Kivity 已提交
5746 5747 5748
	return 0;
}

5749
int kvm_mmu_create(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
5750
{
5751
	uint i;
5752
	int ret;
5753

5754 5755
	vcpu->arch.mmu = &vcpu->arch.root_mmu;
	vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
A
Avi Kivity 已提交
5756

5757
	vcpu->arch.root_mmu.root_hpa = INVALID_PAGE;
5758
	vcpu->arch.root_mmu.root_cr3 = 0;
5759
	vcpu->arch.root_mmu.translate_gpa = translate_gpa;
5760
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5761
		vcpu->arch.root_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
A
Avi Kivity 已提交
5762

5763
	vcpu->arch.guest_mmu.root_hpa = INVALID_PAGE;
5764
	vcpu->arch.guest_mmu.root_cr3 = 0;
5765 5766 5767
	vcpu->arch.guest_mmu.translate_gpa = translate_gpa;
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
		vcpu->arch.guest_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5768

5769
	vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782

	ret = alloc_mmu_pages(vcpu, &vcpu->arch.guest_mmu);
	if (ret)
		return ret;

	ret = alloc_mmu_pages(vcpu, &vcpu->arch.root_mmu);
	if (ret)
		goto fail_allocate_root;

	return ret;
 fail_allocate_root:
	free_mmu_pages(&vcpu->arch.guest_mmu);
	return ret;
A
Avi Kivity 已提交
5783 5784
}

5785
#define BATCH_ZAP_PAGES	10
5786 5787 5788
static void kvm_zap_obsolete_pages(struct kvm *kvm)
{
	struct kvm_mmu_page *sp, *node;
5789
	int nr_zapped, batch = 0;
5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801

restart:
	list_for_each_entry_safe_reverse(sp, node,
	      &kvm->arch.active_mmu_pages, link) {
		/*
		 * No obsolete valid page exists before a newly created page
		 * since active_mmu_pages is a FIFO list.
		 */
		if (!is_obsolete_sp(kvm, sp))
			break;

		/*
5802 5803 5804 5805
		 * Skip invalid pages with a non-zero root count, zapping pages
		 * with a non-zero root count will never succeed, i.e. the page
		 * will get thrown back on active_mmu_pages and we'll get stuck
		 * in an infinite loop.
5806
		 */
5807
		if (sp->role.invalid && sp->root_count)
5808 5809
			continue;

5810 5811 5812 5813 5814 5815
		/*
		 * No need to flush the TLB since we're only zapping shadow
		 * pages with an obsolete generation number and all vCPUS have
		 * loaded a new root, i.e. the shadow pages being zapped cannot
		 * be in active use by the guest.
		 */
5816
		if (batch >= BATCH_ZAP_PAGES &&
5817
		    cond_resched_lock(&kvm->mmu_lock)) {
5818
			batch = 0;
5819 5820 5821
			goto restart;
		}

5822 5823
		if (__kvm_mmu_prepare_zap_page(kvm, sp,
				&kvm->arch.zapped_obsolete_pages, &nr_zapped)) {
5824
			batch += nr_zapped;
5825
			goto restart;
5826
		}
5827 5828
	}

5829 5830 5831 5832 5833
	/*
	 * Trigger a remote TLB flush before freeing the page tables to ensure
	 * KVM is not in the middle of a lockless shadow page table walk, which
	 * may reference the pages.
	 */
5834
	kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847
}

/*
 * Fast invalidate all shadow pages and use lock-break technique
 * to zap obsolete pages.
 *
 * It's required when memslot is being deleted or VM is being
 * destroyed, in these cases, we should ensure that KVM MMU does
 * not use any resource of the being-deleted slot or all slots
 * after calling the function.
 */
static void kvm_mmu_zap_all_fast(struct kvm *kvm)
{
5848 5849
	lockdep_assert_held(&kvm->slots_lock);

5850
	spin_lock(&kvm->mmu_lock);
5851
	trace_kvm_mmu_zap_all_fast(kvm);
5852 5853 5854 5855 5856 5857 5858 5859 5860

	/*
	 * Toggle mmu_valid_gen between '0' and '1'.  Because slots_lock is
	 * held for the entire duration of zapping obsolete pages, it's
	 * impossible for there to be multiple invalid generations associated
	 * with *valid* shadow pages at any given time, i.e. there is exactly
	 * one valid generation and (at most) one invalid generation.
	 */
	kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
5861

5862 5863 5864 5865 5866 5867 5868 5869 5870 5871
	/*
	 * Notify all vcpus to reload its shadow page table and flush TLB.
	 * Then all vcpus will switch to new shadow page table with the new
	 * mmu_valid_gen.
	 *
	 * Note: we need to do this under the protection of mmu_lock,
	 * otherwise, vcpu would purge shadow page but miss tlb flush.
	 */
	kvm_reload_remote_mmus(kvm);

5872 5873 5874 5875
	kvm_zap_obsolete_pages(kvm);
	spin_unlock(&kvm->mmu_lock);
}

5876 5877 5878 5879 5880
static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
{
	return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
}

5881
static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5882 5883
			struct kvm_memory_slot *slot,
			struct kvm_page_track_notifier_node *node)
5884
{
5885
	kvm_mmu_zap_all_fast(kvm);
5886 5887
}

5888
void kvm_mmu_init_vm(struct kvm *kvm)
5889
{
5890
	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5891

5892
	node->track_write = kvm_mmu_pte_write;
5893
	node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5894
	kvm_page_track_register_notifier(kvm, node);
5895 5896
}

5897
void kvm_mmu_uninit_vm(struct kvm *kvm)
5898
{
5899
	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5900

5901
	kvm_page_track_unregister_notifier(kvm, node);
5902 5903
}

X
Xiao Guangrong 已提交
5904 5905 5906 5907
void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;
5908
	int i;
X
Xiao Guangrong 已提交
5909 5910

	spin_lock(&kvm->mmu_lock);
5911 5912 5913 5914 5915 5916 5917 5918 5919
	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
		kvm_for_each_memslot(memslot, slots) {
			gfn_t start, end;

			start = max(gfn_start, memslot->base_gfn);
			end = min(gfn_end, memslot->base_gfn + memslot->npages);
			if (start >= end)
				continue;
X
Xiao Guangrong 已提交
5920

5921 5922 5923
			slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
						PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
						start, end - 1, true);
5924
		}
X
Xiao Guangrong 已提交
5925 5926 5927 5928 5929
	}

	spin_unlock(&kvm->mmu_lock);
}

5930 5931
static bool slot_rmap_write_protect(struct kvm *kvm,
				    struct kvm_rmap_head *rmap_head)
5932
{
5933
	return __rmap_write_protect(kvm, rmap_head, false);
5934 5935
}

5936 5937
void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
				      struct kvm_memory_slot *memslot)
A
Avi Kivity 已提交
5938
{
5939
	bool flush;
A
Avi Kivity 已提交
5940

5941
	spin_lock(&kvm->mmu_lock);
5942 5943
	flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
				      false);
5944
	spin_unlock(&kvm->mmu_lock);
5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959

	/*
	 * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
	 * which do tlb flush out of mmu-lock should be serialized by
	 * kvm->slots_lock otherwise tlb flush would be missed.
	 */
	lockdep_assert_held(&kvm->slots_lock);

	/*
	 * We can flush all the TLBs out of the mmu lock without TLB
	 * corruption since we just change the spte from writable to
	 * readonly so that we only need to care the case of changing
	 * spte from present to present (changing the spte from present
	 * to nonpresent will flush all the TLBs immediately), in other
	 * words, the only case we care is mmu_spte_update() where we
W
Wei Yang 已提交
5960
	 * have checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
5961 5962 5963
	 * instead of PT_WRITABLE_MASK, that means it does not depend
	 * on PT_WRITABLE_MASK anymore.
	 */
5964
	if (flush)
5965 5966
		kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
			memslot->npages);
A
Avi Kivity 已提交
5967
}
5968

5969
static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5970
					 struct kvm_rmap_head *rmap_head)
5971 5972 5973 5974
{
	u64 *sptep;
	struct rmap_iterator iter;
	int need_tlb_flush = 0;
D
Dan Williams 已提交
5975
	kvm_pfn_t pfn;
5976 5977
	struct kvm_mmu_page *sp;

5978
restart:
5979
	for_each_rmap_spte(rmap_head, &iter, sptep) {
5980 5981 5982 5983
		sp = page_header(__pa(sptep));
		pfn = spte_to_pfn(*sptep);

		/*
5984 5985 5986 5987 5988
		 * We cannot do huge page mapping for indirect shadow pages,
		 * which are found on the last rmap (level = 1) when not using
		 * tdp; such shadow pages are synced with the page table in
		 * the guest, and the guest page table is using 4K page size
		 * mapping if the indirect sp has level = 1.
5989
		 */
5990 5991
		if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
		    !kvm_is_zone_device_pfn(pfn) &&
5992
		    kvm_is_transparent_hugepage(pfn)) {
5993
			pte_list_remove(rmap_head, sptep);
5994 5995 5996 5997 5998 5999 6000

			if (kvm_available_flush_tlb_with_range())
				kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
					KVM_PAGES_PER_HPAGE(sp->role.level));
			else
				need_tlb_flush = 1;

6001 6002
			goto restart;
		}
6003 6004 6005 6006 6007 6008
	}

	return need_tlb_flush;
}

void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
6009
				   const struct kvm_memory_slot *memslot)
6010
{
6011
	/* FIXME: const-ify all uses of struct kvm_memory_slot.  */
6012
	spin_lock(&kvm->mmu_lock);
6013 6014
	slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
			 kvm_mmu_zap_collapsible_spte, true);
6015 6016 6017
	spin_unlock(&kvm->mmu_lock);
}

6018 6019 6020
void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
				   struct kvm_memory_slot *memslot)
{
6021
	bool flush;
6022 6023

	spin_lock(&kvm->mmu_lock);
6024
	flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035
	spin_unlock(&kvm->mmu_lock);

	lockdep_assert_held(&kvm->slots_lock);

	/*
	 * It's also safe to flush TLBs out of mmu lock here as currently this
	 * function is only used for dirty logging, in which case flushing TLB
	 * out of mmu lock also guarantees no dirty pages will be lost in
	 * dirty_bitmap.
	 */
	if (flush)
6036 6037
		kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
				memslot->npages);
6038 6039 6040 6041 6042 6043
}
EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);

void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
					struct kvm_memory_slot *memslot)
{
6044
	bool flush;
6045 6046

	spin_lock(&kvm->mmu_lock);
6047 6048
	flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
					false);
6049 6050 6051 6052 6053 6054
	spin_unlock(&kvm->mmu_lock);

	/* see kvm_mmu_slot_remove_write_access */
	lockdep_assert_held(&kvm->slots_lock);

	if (flush)
6055 6056
		kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
				memslot->npages);
6057 6058 6059 6060 6061 6062
}
EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);

void kvm_mmu_slot_set_dirty(struct kvm *kvm,
			    struct kvm_memory_slot *memslot)
{
6063
	bool flush;
6064 6065

	spin_lock(&kvm->mmu_lock);
6066
	flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
6067 6068 6069 6070 6071 6072
	spin_unlock(&kvm->mmu_lock);

	lockdep_assert_held(&kvm->slots_lock);

	/* see kvm_mmu_slot_leaf_clear_dirty */
	if (flush)
6073 6074
		kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
				memslot->npages);
6075 6076 6077
}
EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);

6078
void kvm_mmu_zap_all(struct kvm *kvm)
6079 6080
{
	struct kvm_mmu_page *sp, *node;
6081
	LIST_HEAD(invalid_list);
6082
	int ign;
6083

6084
	spin_lock(&kvm->mmu_lock);
6085
restart:
6086
	list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
6087
		if (sp->role.invalid && sp->root_count)
6088
			continue;
6089
		if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
6090
			goto restart;
6091
		if (cond_resched_lock(&kvm->mmu_lock))
6092 6093 6094
			goto restart;
	}

6095
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
6096 6097 6098
	spin_unlock(&kvm->mmu_lock);
}

6099
void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
6100
{
6101
	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
6102

6103
	gen &= MMIO_SPTE_GEN_MASK;
6104

6105
	/*
6106 6107 6108 6109 6110 6111 6112 6113
	 * Generation numbers are incremented in multiples of the number of
	 * address spaces in order to provide unique generations across all
	 * address spaces.  Strip what is effectively the address space
	 * modifier prior to checking for a wrap of the MMIO generation so
	 * that a wrap in any address space is detected.
	 */
	gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);

6114
	/*
6115
	 * The very rare case: if the MMIO generation number has wrapped,
6116 6117
	 * zap all shadow pages.
	 */
6118
	if (unlikely(gen == 0)) {
6119
		kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
6120
		kvm_mmu_zap_all_fast(kvm);
6121
	}
6122 6123
}

6124 6125
static unsigned long
mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
6126 6127
{
	struct kvm *kvm;
6128
	int nr_to_scan = sc->nr_to_scan;
6129
	unsigned long freed = 0;
6130

J
Junaid Shahid 已提交
6131
	mutex_lock(&kvm_lock);
6132 6133

	list_for_each_entry(kvm, &vm_list, vm_list) {
6134
		int idx;
6135
		LIST_HEAD(invalid_list);
6136

6137 6138 6139 6140 6141 6142 6143 6144
		/*
		 * Never scan more than sc->nr_to_scan VM instances.
		 * Will not hit this condition practically since we do not try
		 * to shrink more than one VM and it is very unlikely to see
		 * !n_used_mmu_pages so many times.
		 */
		if (!nr_to_scan--)
			break;
6145 6146 6147 6148 6149 6150
		/*
		 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
		 * here. We may skip a VM instance errorneosly, but we do not
		 * want to shrink a VM that only started to populate its MMU
		 * anyway.
		 */
6151 6152
		if (!kvm->arch.n_used_mmu_pages &&
		    !kvm_has_zapped_obsolete_pages(kvm))
6153 6154
			continue;

6155
		idx = srcu_read_lock(&kvm->srcu);
6156 6157
		spin_lock(&kvm->mmu_lock);

6158 6159 6160 6161 6162 6163
		if (kvm_has_zapped_obsolete_pages(kvm)) {
			kvm_mmu_commit_zap_page(kvm,
			      &kvm->arch.zapped_obsolete_pages);
			goto unlock;
		}

6164 6165
		if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
			freed++;
6166
		kvm_mmu_commit_zap_page(kvm, &invalid_list);
6167

6168
unlock:
6169
		spin_unlock(&kvm->mmu_lock);
6170
		srcu_read_unlock(&kvm->srcu, idx);
6171

6172 6173 6174 6175 6176
		/*
		 * unfair on small ones
		 * per-vm shrinkers cry out
		 * sadness comes quickly
		 */
6177 6178
		list_move_tail(&kvm->vm_list, &vm_list);
		break;
6179 6180
	}

J
Junaid Shahid 已提交
6181
	mutex_unlock(&kvm_lock);
6182 6183 6184 6185 6186 6187
	return freed;
}

static unsigned long
mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
{
6188
	return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
6189 6190 6191
}

static struct shrinker mmu_shrinker = {
6192 6193
	.count_objects = mmu_shrink_count,
	.scan_objects = mmu_shrink_scan,
6194 6195 6196
	.seeks = DEFAULT_SEEKS * 10,
};

I
Ingo Molnar 已提交
6197
static void mmu_destroy_caches(void)
6198
{
6199 6200
	kmem_cache_destroy(pte_list_desc_cache);
	kmem_cache_destroy(mmu_page_header_cache);
6201 6202
}

6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224
static void kvm_set_mmio_spte_mask(void)
{
	u64 mask;

	/*
	 * Set the reserved bits and the present bit of an paging-structure
	 * entry to generate page fault with PFER.RSV = 1.
	 */

	/*
	 * Mask the uppermost physical address bit, which would be reserved as
	 * long as the supported physical address width is less than 52.
	 */
	mask = 1ull << 51;

	/* Set the present bit. */
	mask |= 1ull;

	/*
	 * If reserved bit is not supported, clear the present bit to disable
	 * mmio page fault.
	 */
6225
	if (shadow_phys_bits == 52)
6226 6227
		mask &= ~1ull;

6228
	kvm_mmu_set_mmio_spte_mask(mask, mask, ACC_WRITE_MASK | ACC_USER_MASK);
6229 6230
}

P
Paolo Bonzini 已提交
6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264
static bool get_nx_auto_mode(void)
{
	/* Return true when CPU has the bug, and mitigations are ON */
	return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
}

static void __set_nx_huge_pages(bool val)
{
	nx_huge_pages = itlb_multihit_kvm_mitigation = val;
}

static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
{
	bool old_val = nx_huge_pages;
	bool new_val;

	/* In "auto" mode deploy workaround only if CPU has the bug. */
	if (sysfs_streq(val, "off"))
		new_val = 0;
	else if (sysfs_streq(val, "force"))
		new_val = 1;
	else if (sysfs_streq(val, "auto"))
		new_val = get_nx_auto_mode();
	else if (strtobool(val, &new_val) < 0)
		return -EINVAL;

	__set_nx_huge_pages(new_val);

	if (new_val != old_val) {
		struct kvm *kvm;

		mutex_lock(&kvm_lock);

		list_for_each_entry(kvm, &vm_list, vm_list) {
6265
			mutex_lock(&kvm->slots_lock);
P
Paolo Bonzini 已提交
6266
			kvm_mmu_zap_all_fast(kvm);
6267
			mutex_unlock(&kvm->slots_lock);
6268 6269

			wake_up_process(kvm->arch.nx_lpage_recovery_thread);
P
Paolo Bonzini 已提交
6270 6271 6272 6273 6274 6275 6276
		}
		mutex_unlock(&kvm_lock);
	}

	return 0;
}

6277 6278
int kvm_mmu_module_init(void)
{
6279 6280
	int ret = -ENOMEM;

P
Paolo Bonzini 已提交
6281 6282 6283
	if (nx_huge_pages == -1)
		__set_nx_huge_pages(get_nx_auto_mode());

6284 6285 6286 6287 6288 6289 6290 6291 6292 6293
	/*
	 * MMU roles use union aliasing which is, generally speaking, an
	 * undefined behavior. However, we supposedly know how compilers behave
	 * and the current status quo is unlikely to change. Guardians below are
	 * supposed to let us know if the assumption becomes false.
	 */
	BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
	BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
	BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));

6294
	kvm_mmu_reset_all_pte_masks();
6295

6296 6297
	kvm_set_mmio_spte_mask();

6298 6299
	pte_list_desc_cache = kmem_cache_create("pte_list_desc",
					    sizeof(struct pte_list_desc),
6300
					    0, SLAB_ACCOUNT, NULL);
6301
	if (!pte_list_desc_cache)
6302
		goto out;
6303

6304 6305
	mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
						  sizeof(struct kvm_mmu_page),
6306
						  0, SLAB_ACCOUNT, NULL);
6307
	if (!mmu_page_header_cache)
6308
		goto out;
6309

6310
	if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
6311
		goto out;
6312

6313 6314 6315
	ret = register_shrinker(&mmu_shrinker);
	if (ret)
		goto out;
6316

6317 6318
	return 0;

6319
out:
6320
	mmu_destroy_caches();
6321
	return ret;
6322 6323
}

6324
/*
P
Peng Hao 已提交
6325
 * Calculate mmu pages needed for kvm.
6326
 */
6327
unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm)
6328
{
6329 6330
	unsigned long nr_mmu_pages;
	unsigned long nr_pages = 0;
6331
	struct kvm_memslots *slots;
6332
	struct kvm_memory_slot *memslot;
6333
	int i;
6334

6335 6336
	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
6337

6338 6339 6340
		kvm_for_each_memslot(memslot, slots)
			nr_pages += memslot->npages;
	}
6341 6342

	nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
6343
	nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
6344 6345 6346 6347

	return nr_mmu_pages;
}

6348 6349
void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
{
6350
	kvm_mmu_unload(vcpu);
6351 6352
	free_mmu_pages(&vcpu->arch.root_mmu);
	free_mmu_pages(&vcpu->arch.guest_mmu);
6353
	mmu_free_memory_caches(vcpu);
6354 6355 6356 6357 6358 6359 6360
}

void kvm_mmu_module_exit(void)
{
	mmu_destroy_caches();
	percpu_counter_destroy(&kvm_total_used_mmu_pages);
	unregister_shrinker(&mmu_shrinker);
6361 6362
	mmu_audit_disable();
}
6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475

static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp)
{
	unsigned int old_val;
	int err;

	old_val = nx_huge_pages_recovery_ratio;
	err = param_set_uint(val, kp);
	if (err)
		return err;

	if (READ_ONCE(nx_huge_pages) &&
	    !old_val && nx_huge_pages_recovery_ratio) {
		struct kvm *kvm;

		mutex_lock(&kvm_lock);

		list_for_each_entry(kvm, &vm_list, vm_list)
			wake_up_process(kvm->arch.nx_lpage_recovery_thread);

		mutex_unlock(&kvm_lock);
	}

	return err;
}

static void kvm_recover_nx_lpages(struct kvm *kvm)
{
	int rcu_idx;
	struct kvm_mmu_page *sp;
	unsigned int ratio;
	LIST_HEAD(invalid_list);
	ulong to_zap;

	rcu_idx = srcu_read_lock(&kvm->srcu);
	spin_lock(&kvm->mmu_lock);

	ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
	to_zap = ratio ? DIV_ROUND_UP(kvm->stat.nx_lpage_splits, ratio) : 0;
	while (to_zap && !list_empty(&kvm->arch.lpage_disallowed_mmu_pages)) {
		/*
		 * We use a separate list instead of just using active_mmu_pages
		 * because the number of lpage_disallowed pages is expected to
		 * be relatively small compared to the total.
		 */
		sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
				      struct kvm_mmu_page,
				      lpage_disallowed_link);
		WARN_ON_ONCE(!sp->lpage_disallowed);
		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
		WARN_ON_ONCE(sp->lpage_disallowed);

		if (!--to_zap || need_resched() || spin_needbreak(&kvm->mmu_lock)) {
			kvm_mmu_commit_zap_page(kvm, &invalid_list);
			if (to_zap)
				cond_resched_lock(&kvm->mmu_lock);
		}
	}

	spin_unlock(&kvm->mmu_lock);
	srcu_read_unlock(&kvm->srcu, rcu_idx);
}

static long get_nx_lpage_recovery_timeout(u64 start_time)
{
	return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio)
		? start_time + 60 * HZ - get_jiffies_64()
		: MAX_SCHEDULE_TIMEOUT;
}

static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
{
	u64 start_time;
	long remaining_time;

	while (true) {
		start_time = get_jiffies_64();
		remaining_time = get_nx_lpage_recovery_timeout(start_time);

		set_current_state(TASK_INTERRUPTIBLE);
		while (!kthread_should_stop() && remaining_time > 0) {
			schedule_timeout(remaining_time);
			remaining_time = get_nx_lpage_recovery_timeout(start_time);
			set_current_state(TASK_INTERRUPTIBLE);
		}

		set_current_state(TASK_RUNNING);

		if (kthread_should_stop())
			return 0;

		kvm_recover_nx_lpages(kvm);
	}
}

int kvm_mmu_post_init_vm(struct kvm *kvm)
{
	int err;

	err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
					  "kvm-nx-lpage-recovery",
					  &kvm->arch.nx_lpage_recovery_thread);
	if (!err)
		kthread_unpark(kvm->arch.nx_lpage_recovery_thread);

	return err;
}

void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
{
	if (kvm->arch.nx_lpage_recovery_thread)
		kthread_stop(kvm->arch.nx_lpage_recovery_thread);
}