mmu.c 163.9 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
A
Avi Kivity 已提交
2 3 4 5 6 7 8 9 10
/*
 * Kernel-based Virtual Machine driver for Linux
 *
 * This module enables machines with Intel VT-x extensions to run virtual
 * machines without emulation or binary translation.
 *
 * MMU support
 *
 * Copyright (C) 2006 Qumranet, Inc.
N
Nicolas Kaiser 已提交
11
 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
A
Avi Kivity 已提交
12 13 14 15 16
 *
 * Authors:
 *   Yaniv Kamay  <yaniv@qumranet.com>
 *   Avi Kivity   <avi@qumranet.com>
 */
A
Avi Kivity 已提交
17

18
#include "irq.h"
19
#include "ioapic.h"
20
#include "mmu.h"
21
#include "mmu_internal.h"
22
#include "tdp_mmu.h"
23
#include "x86.h"
A
Avi Kivity 已提交
24
#include "kvm_cache_regs.h"
25
#include "kvm_emulate.h"
26
#include "cpuid.h"
27
#include "spte.h"
A
Avi Kivity 已提交
28

29
#include <linux/kvm_host.h>
A
Avi Kivity 已提交
30 31 32 33
#include <linux/types.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/highmem.h>
34 35
#include <linux/moduleparam.h>
#include <linux/export.h>
36
#include <linux/swap.h>
M
Marcelo Tosatti 已提交
37
#include <linux/hugetlb.h>
38
#include <linux/compiler.h>
39
#include <linux/srcu.h>
40
#include <linux/slab.h>
41
#include <linux/sched/signal.h>
42
#include <linux/uaccess.h>
43
#include <linux/hash.h>
44
#include <linux/kern_levels.h>
45
#include <linux/kthread.h>
A
Avi Kivity 已提交
46

A
Avi Kivity 已提交
47
#include <asm/page.h>
48
#include <asm/memtype.h>
A
Avi Kivity 已提交
49
#include <asm/cmpxchg.h>
50
#include <asm/io.h>
51
#include <asm/set_memory.h>
52
#include <asm/vmx.h>
53
#include <asm/kvm_page_track.h>
54
#include "trace.h"
A
Avi Kivity 已提交
55

P
Paolo Bonzini 已提交
56 57
extern bool itlb_multihit_kvm_mitigation;

58
int __read_mostly nx_huge_pages = -1;
59 60 61 62
#ifdef CONFIG_PREEMPT_RT
/* Recovery can cause latency spikes, disable it for PREEMPT_RT.  */
static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
#else
63
static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
64
#endif
P
Paolo Bonzini 已提交
65 66

static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
67
static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp);
P
Paolo Bonzini 已提交
68

69
static const struct kernel_param_ops nx_huge_pages_ops = {
P
Paolo Bonzini 已提交
70 71 72 73
	.set = set_nx_huge_pages,
	.get = param_get_bool,
};

74
static const struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = {
75 76 77 78
	.set = set_nx_huge_pages_recovery_ratio,
	.get = param_get_uint,
};

P
Paolo Bonzini 已提交
79 80
module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
__MODULE_PARM_TYPE(nx_huge_pages, "bool");
81 82 83
module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops,
		&nx_huge_pages_recovery_ratio, 0644);
__MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
P
Paolo Bonzini 已提交
84

85 86 87
static bool __read_mostly force_flush_and_sync_on_reuse;
module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644);

88 89 90 91 92 93 94
/*
 * When setting this variable to true it enables Two-Dimensional-Paging
 * where the hardware walks 2 page tables:
 * 1. the guest-virtual to guest-physical
 * 2. while doing 1. it walks guest-physical to host-physical
 * If the hardware supports that we don't need to do shadow paging.
 */
95
bool tdp_enabled = false;
96

97
static int max_huge_page_level __read_mostly;
98
static int max_tdp_level __read_mostly;
99

100 101 102 103
enum {
	AUDIT_PRE_PAGE_FAULT,
	AUDIT_POST_PAGE_FAULT,
	AUDIT_PRE_PTE_WRITE,
104 105 106
	AUDIT_POST_PTE_WRITE,
	AUDIT_PRE_SYNC,
	AUDIT_POST_SYNC
107
};
108 109

#ifdef MMU_DEBUG
110
bool dbg = 0;
111
module_param(dbg, bool, 0644);
112
#endif
A
Avi Kivity 已提交
113

114 115
#define PTE_PREFETCH_NUM		8

A
Avi Kivity 已提交
116 117 118
#define PT32_LEVEL_BITS 10

#define PT32_LEVEL_SHIFT(level) \
M
Mike Day 已提交
119
		(PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
A
Avi Kivity 已提交
120

121 122 123
#define PT32_LVL_OFFSET_MASK(level) \
	(PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
124 125 126 127 128 129 130 131

#define PT32_INDEX(address, level)\
	(((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))


#define PT32_BASE_ADDR_MASK PAGE_MASK
#define PT32_DIR_BASE_ADDR_MASK \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
132 133 134
#define PT32_LVL_ADDR_MASK(level) \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
					    * PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
135

136 137
#include <trace/events/kvm.h>

138 139 140
/* make pte_list_desc fit well in cache line */
#define PTE_LIST_EXT 3

141 142 143
struct pte_list_desc {
	u64 *sptes[PTE_LIST_EXT];
	struct pte_list_desc *more;
144 145
};

146 147 148 149
struct kvm_shadow_walk_iterator {
	u64 addr;
	hpa_t shadow_addr;
	u64 *sptep;
150
	int level;
151 152 153
	unsigned index;
};

154 155 156 157 158 159 160
#define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker)     \
	for (shadow_walk_init_using_root(&(_walker), (_vcpu),              \
					 (_root), (_addr));                \
	     shadow_walk_okay(&(_walker));			           \
	     shadow_walk_next(&(_walker)))

#define for_each_shadow_entry(_vcpu, _addr, _walker)            \
161 162 163 164
	for (shadow_walk_init(&(_walker), _vcpu, _addr);	\
	     shadow_walk_okay(&(_walker));			\
	     shadow_walk_next(&(_walker)))

165 166 167 168 169 170
#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)	\
	for (shadow_walk_init(&(_walker), _vcpu, _addr);		\
	     shadow_walk_okay(&(_walker)) &&				\
		({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });	\
	     __shadow_walk_next(&(_walker), spte))

171
static struct kmem_cache *pte_list_desc_cache;
172
struct kmem_cache *mmu_page_header_cache;
173
static struct percpu_counter kvm_total_used_mmu_pages;
174

175
static void mmu_spte_set(u64 *sptep, u64 spte);
176 177
static union kvm_mmu_page_role
kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
178

179 180 181 182 183 184
struct kvm_mmu_role_regs {
	const unsigned long cr0;
	const unsigned long cr4;
	const u64 efer;
};

185 186 187
#define CREATE_TRACE_POINTS
#include "mmutrace.h"

188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
/*
 * Yes, lot's of underscores.  They're a hint that you probably shouldn't be
 * reading from the role_regs.  Once the mmu_role is constructed, it becomes
 * the single source of truth for the MMU's state.
 */
#define BUILD_MMU_ROLE_REGS_ACCESSOR(reg, name, flag)			\
static inline bool ____is_##reg##_##name(struct kvm_mmu_role_regs *regs)\
{									\
	return !!(regs->reg & flag);					\
}
BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, pg, X86_CR0_PG);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, wp, X86_CR0_WP);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pse, X86_CR4_PSE);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pae, X86_CR4_PAE);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smep, X86_CR4_SMEP);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smap, X86_CR4_SMAP);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pke, X86_CR4_PKE);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, la57, X86_CR4_LA57);
BUILD_MMU_ROLE_REGS_ACCESSOR(efer, nx, EFER_NX);
BUILD_MMU_ROLE_REGS_ACCESSOR(efer, lma, EFER_LMA);

209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
/*
 * The MMU itself (with a valid role) is the single source of truth for the
 * MMU.  Do not use the regs used to build the MMU/role, nor the vCPU.  The
 * regs don't account for dependencies, e.g. clearing CR4 bits if CR0.PG=1,
 * and the vCPU may be incorrect/irrelevant.
 */
#define BUILD_MMU_ROLE_ACCESSOR(base_or_ext, reg, name)		\
static inline bool is_##reg##_##name(struct kvm_mmu *mmu)	\
{								\
	return !!(mmu->mmu_role. base_or_ext . reg##_##name);	\
}
BUILD_MMU_ROLE_ACCESSOR(ext,  cr0, pg);
BUILD_MMU_ROLE_ACCESSOR(base, cr0, wp);
BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, pse);
BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, pae);
BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, smep);
BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, smap);
BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, pke);
BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, la57);
BUILD_MMU_ROLE_ACCESSOR(base, efer, nx);

230 231 232 233 234 235 236 237 238 239
static struct kvm_mmu_role_regs vcpu_to_role_regs(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu_role_regs regs = {
		.cr0 = kvm_read_cr0_bits(vcpu, KVM_MMU_CR0_ROLE_BITS),
		.cr4 = kvm_read_cr4_bits(vcpu, KVM_MMU_CR4_ROLE_BITS),
		.efer = vcpu->arch.efer,
	};

	return regs;
}
240 241 242

static inline bool kvm_available_flush_tlb_with_range(void)
{
243
	return kvm_x86_ops.tlb_remote_flush_with_range;
244 245 246 247 248 249 250
}

static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
		struct kvm_tlb_range *range)
{
	int ret = -ENOTSUPP;

251
	if (range && kvm_x86_ops.tlb_remote_flush_with_range)
252
		ret = static_call(kvm_x86_tlb_remote_flush_with_range)(kvm, range);
253 254 255 256 257

	if (ret)
		kvm_flush_remote_tlbs(kvm);
}

258
void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
259 260 261 262 263 264 265 266 267 268
		u64 start_gfn, u64 pages)
{
	struct kvm_tlb_range range;

	range.start_gfn = start_gfn;
	range.pages = pages;

	kvm_flush_remote_tlbs_with_range(kvm, &range);
}

269 270 271
static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
			   unsigned int access)
{
272
	u64 spte = make_mmio_spte(vcpu, gfn, access);
273

274 275
	trace_mark_mmio_spte(sptep, gfn, spte);
	mmu_spte_set(sptep, spte);
276 277 278 279
}

static gfn_t get_mmio_spte_gfn(u64 spte)
{
280
	u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
281

282
	gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)
283 284 285
	       & shadow_nonpresent_or_rsvd_mask;

	return gpa >> PAGE_SHIFT;
286 287 288 289
}

static unsigned get_mmio_spte_access(u64 spte)
{
290
	return spte & shadow_mmio_access_mask;
291 292
}

293
static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
294
{
295
	u64 kvm_gen, spte_gen, gen;
296

297 298 299
	gen = kvm_vcpu_memslots(vcpu)->generation;
	if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
		return false;
300

301
	kvm_gen = gen & MMIO_SPTE_GEN_MASK;
302 303 304 305
	spte_gen = get_mmio_spte_generation(spte);

	trace_check_mmio_spte(spte, kvm_gen, spte_gen);
	return likely(kvm_gen == spte_gen);
306 307
}

308 309 310
static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
                                  struct x86_exception *exception)
{
311
	/* Check if guest physical address doesn't exceed guest maximum */
312
	if (kvm_vcpu_is_illegal_gpa(vcpu, gpa)) {
313 314 315 316
		exception->error_code |= PFERR_RSVD_MASK;
		return UNMAPPED_GVA;
	}

317 318 319
        return gpa;
}

A
Avi Kivity 已提交
320 321 322 323 324
static int is_cpuid_PSE36(void)
{
	return 1;
}

325 326 327 328 329 330 331
static gfn_t pse36_gfn_delta(u32 gpte)
{
	int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;

	return (gpte & PT32_DIR_PSE36_MASK) << shift;
}

332
#ifdef CONFIG_X86_64
A
Avi Kivity 已提交
333
static void __set_spte(u64 *sptep, u64 spte)
334
{
335
	WRITE_ONCE(*sptep, spte);
336 337
}

338
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
339
{
340
	WRITE_ONCE(*sptep, spte);
341 342 343 344 345 346
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	return xchg(sptep, spte);
}
347 348 349

static u64 __get_spte_lockless(u64 *sptep)
{
350
	return READ_ONCE(*sptep);
351
}
352
#else
353 354 355 356 357 358 359
union split_spte {
	struct {
		u32 spte_low;
		u32 spte_high;
	};
	u64 spte;
};
360

361 362
static void count_spte_clear(u64 *sptep, u64 spte)
{
363
	struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
364 365 366 367 368 369 370 371 372

	if (is_shadow_present_pte(spte))
		return;

	/* Ensure the spte is completely set before we increase the count */
	smp_wmb();
	sp->clear_spte_count++;
}

373 374 375
static void __set_spte(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;
376

377 378 379 380 381 382 383 384 385 386 387 388
	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	ssptep->spte_high = sspte.spte_high;

	/*
	 * If we map the spte from nonpresent to present, We should store
	 * the high bits firstly, then set present bit, so cpu can not
	 * fetch this spte while we are setting the spte.
	 */
	smp_wmb();

389
	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
390 391
}

392 393 394 395 396 397 398
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

399
	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
400 401 402 403 404 405 406 407

	/*
	 * If we map the spte from present to nonpresent, we should clear
	 * present bit firstly to avoid vcpu fetch the old high bits.
	 */
	smp_wmb();

	ssptep->spte_high = sspte.spte_high;
408
	count_spte_clear(sptep, spte);
409 410 411 412 413 414 415 416 417 418 419
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte, orig;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	/* xchg acts as a barrier before the setting of the high bits */
	orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
420 421
	orig.spte_high = ssptep->spte_high;
	ssptep->spte_high = sspte.spte_high;
422
	count_spte_clear(sptep, spte);
423 424 425

	return orig.spte;
}
426 427 428

/*
 * The idea using the light way get the spte on x86_32 guest is from
429
 * gup_get_pte (mm/gup.c).
430 431 432 433 434 435 436 437 438 439 440 441 442 443
 *
 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
 * coalesces them and we are running out of the MMU lock.  Therefore
 * we need to protect against in-progress updates of the spte.
 *
 * Reading the spte while an update is in progress may get the old value
 * for the high part of the spte.  The race is fine for a present->non-present
 * change (because the high part of the spte is ignored for non-present spte),
 * but for a present->present change we must reread the spte.
 *
 * All such changes are done in two steps (present->non-present and
 * non-present->present), hence it is enough to count the number of
 * present->non-present updates: if it changed while reading the spte,
 * we might have hit the race.  This is done using clear_spte_count.
444 445 446
 */
static u64 __get_spte_lockless(u64 *sptep)
{
447
	struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
	union split_spte spte, *orig = (union split_spte *)sptep;
	int count;

retry:
	count = sp->clear_spte_count;
	smp_rmb();

	spte.spte_low = orig->spte_low;
	smp_rmb();

	spte.spte_high = orig->spte_high;
	smp_rmb();

	if (unlikely(spte.spte_low != orig->spte_low ||
	      count != sp->clear_spte_count))
		goto retry;

	return spte.spte;
}
467 468
#endif

469 470
static bool spte_has_volatile_bits(u64 spte)
{
471 472 473
	if (!is_shadow_present_pte(spte))
		return false;

474
	/*
475
	 * Always atomically update spte if it can be updated
476 477 478 479
	 * out of mmu-lock, it can ensure dirty bit is not lost,
	 * also, it can help us to get a stable is_writable_pte()
	 * to ensure tlb flush is not missed.
	 */
480 481
	if (spte_can_locklessly_be_made_writable(spte) ||
	    is_access_track_spte(spte))
482 483
		return true;

484
	if (spte_ad_enabled(spte)) {
485 486 487 488
		if ((spte & shadow_accessed_mask) == 0 ||
	    	    (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
			return true;
	}
489

490
	return false;
491 492
}

493 494 495 496 497 498 499 500 501 502 503 504
/* Rules for using mmu_spte_set:
 * Set the sptep from nonpresent to present.
 * Note: the sptep being assigned *must* be either not present
 * or in a state where the hardware will not attempt to update
 * the spte.
 */
static void mmu_spte_set(u64 *sptep, u64 new_spte)
{
	WARN_ON(is_shadow_present_pte(*sptep));
	__set_spte(sptep, new_spte);
}

505 506 507
/*
 * Update the SPTE (excluding the PFN), but do not track changes in its
 * accessed/dirty status.
508
 */
509
static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
510
{
511
	u64 old_spte = *sptep;
512

513
	WARN_ON(!is_shadow_present_pte(new_spte));
514

515 516
	if (!is_shadow_present_pte(old_spte)) {
		mmu_spte_set(sptep, new_spte);
517
		return old_spte;
518
	}
519

520
	if (!spte_has_volatile_bits(old_spte))
521
		__update_clear_spte_fast(sptep, new_spte);
522
	else
523
		old_spte = __update_clear_spte_slow(sptep, new_spte);
524

525 526
	WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));

527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
	return old_spte;
}

/* Rules for using mmu_spte_update:
 * Update the state bits, it means the mapped pfn is not changed.
 *
 * Whenever we overwrite a writable spte with a read-only one we
 * should flush remote TLBs. Otherwise rmap_write_protect
 * will find a read-only spte, even though the writable spte
 * might be cached on a CPU's TLB, the return value indicates this
 * case.
 *
 * Returns true if the TLB needs to be flushed
 */
static bool mmu_spte_update(u64 *sptep, u64 new_spte)
{
	bool flush = false;
	u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);

	if (!is_shadow_present_pte(old_spte))
		return false;

549 550
	/*
	 * For the spte updated out of mmu-lock is safe, since
551
	 * we always atomically update it, see the comments in
552 553
	 * spte_has_volatile_bits().
	 */
554
	if (spte_can_locklessly_be_made_writable(old_spte) &&
555
	      !is_writable_pte(new_spte))
556
		flush = true;
557

558
	/*
559
	 * Flush TLB when accessed/dirty states are changed in the page tables,
560 561 562
	 * to guarantee consistency between TLB and page tables.
	 */

563 564
	if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
		flush = true;
565
		kvm_set_pfn_accessed(spte_to_pfn(old_spte));
566 567 568 569
	}

	if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
		flush = true;
570
		kvm_set_pfn_dirty(spte_to_pfn(old_spte));
571
	}
572

573
	return flush;
574 575
}

576 577 578 579
/*
 * Rules for using mmu_spte_clear_track_bits:
 * It sets the sptep from present to nonpresent, and track the
 * state bits, it is used to clear the last level sptep.
580
 * Returns non-zero if the PTE was previously valid.
581 582 583
 */
static int mmu_spte_clear_track_bits(u64 *sptep)
{
D
Dan Williams 已提交
584
	kvm_pfn_t pfn;
585 586 587
	u64 old_spte = *sptep;

	if (!spte_has_volatile_bits(old_spte))
588
		__update_clear_spte_fast(sptep, 0ull);
589
	else
590
		old_spte = __update_clear_spte_slow(sptep, 0ull);
591

592
	if (!is_shadow_present_pte(old_spte))
593 594 595
		return 0;

	pfn = spte_to_pfn(old_spte);
596 597 598 599 600 601

	/*
	 * KVM does not hold the refcount of the page used by
	 * kvm mmu, before reclaiming the page, we should
	 * unmap it from mmu first.
	 */
602
	WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
603

604
	if (is_accessed_spte(old_spte))
605
		kvm_set_pfn_accessed(pfn);
606 607

	if (is_dirty_spte(old_spte))
608
		kvm_set_pfn_dirty(pfn);
609

610 611 612 613 614 615 616 617 618 619
	return 1;
}

/*
 * Rules for using mmu_spte_clear_no_track:
 * Directly clear spte without caring the state bits of sptep,
 * it is used to set the upper level spte.
 */
static void mmu_spte_clear_no_track(u64 *sptep)
{
620
	__update_clear_spte_fast(sptep, 0ull);
621 622
}

623 624 625 626 627
static u64 mmu_spte_get_lockless(u64 *sptep)
{
	return __get_spte_lockless(sptep);
}

628 629 630 631
/* Restore an acc-track PTE back to a regular PTE */
static u64 restore_acc_track_spte(u64 spte)
{
	u64 new_spte = spte;
632 633
	u64 saved_bits = (spte >> SHADOW_ACC_TRACK_SAVED_BITS_SHIFT)
			 & SHADOW_ACC_TRACK_SAVED_BITS_MASK;
634

635
	WARN_ON_ONCE(spte_ad_enabled(spte));
636 637 638
	WARN_ON_ONCE(!is_access_track_spte(spte));

	new_spte &= ~shadow_acc_track_mask;
639 640
	new_spte &= ~(SHADOW_ACC_TRACK_SAVED_BITS_MASK <<
		      SHADOW_ACC_TRACK_SAVED_BITS_SHIFT);
641 642 643 644 645
	new_spte |= saved_bits;

	return new_spte;
}

646 647 648 649 650 651 652 653
/* Returns the Accessed status of the PTE and resets it at the same time. */
static bool mmu_spte_age(u64 *sptep)
{
	u64 spte = mmu_spte_get_lockless(sptep);

	if (!is_accessed_spte(spte))
		return false;

654
	if (spte_ad_enabled(spte)) {
655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
		clear_bit((ffs(shadow_accessed_mask) - 1),
			  (unsigned long *)sptep);
	} else {
		/*
		 * Capture the dirty status of the page, so that it doesn't get
		 * lost when the SPTE is marked for access tracking.
		 */
		if (is_writable_pte(spte))
			kvm_set_pfn_dirty(spte_to_pfn(spte));

		spte = mark_spte_for_access_track(spte);
		mmu_spte_update_no_track(sptep, spte);
	}

	return true;
}

672 673
static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
{
674 675 676 677 678
	/*
	 * Prevent page table teardown by making any free-er wait during
	 * kvm_flush_remote_tlbs() IPI to all active vcpus.
	 */
	local_irq_disable();
679

680 681 682 683
	/*
	 * Make sure a following spte read is not reordered ahead of the write
	 * to vcpu->mode.
	 */
684
	smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
685 686 687 688
}

static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
{
689 690
	/*
	 * Make sure the write to vcpu->mode is not reordered in front of
691
	 * reads to sptes.  If it does, kvm_mmu_commit_zap_page() can see us
692 693
	 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
	 */
694
	smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
695
	local_irq_enable();
696 697
}

698
static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect)
699
{
700 701
	int r;

702
	/* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */
703 704
	r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
				       1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM);
705
	if (r)
706
		return r;
707 708
	r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache,
				       PT64_ROOT_MAX_LEVEL);
709
	if (r)
710
		return r;
711
	if (maybe_indirect) {
712 713
		r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_gfn_array_cache,
					       PT64_ROOT_MAX_LEVEL);
714 715 716
		if (r)
			return r;
	}
717 718
	return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
					  PT64_ROOT_MAX_LEVEL);
719 720 721 722
}

static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
{
723 724 725 726
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache);
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache);
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_gfn_array_cache);
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
727 728
}

729
static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
730
{
731
	return kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
732 733
}

734
static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
735
{
736
	kmem_cache_free(pte_list_desc_cache, pte_list_desc);
737 738
}

739 740 741 742 743 744 745 746 747 748
static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
{
	if (!sp->role.direct)
		return sp->gfns[index];

	return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
}

static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
{
749
	if (!sp->role.direct) {
750
		sp->gfns[index] = gfn;
751 752 753 754 755 756 757 758
		return;
	}

	if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
		pr_err_ratelimited("gfn mismatch under direct page %llx "
				   "(expected %llx, got %llx)\n",
				   sp->gfn,
				   kvm_mmu_page_get_gfn(sp, index), gfn);
759 760
}

M
Marcelo Tosatti 已提交
761
/*
762 763
 * Return the pointer to the large page information for a given gfn,
 * handling slots that are not large page aligned.
M
Marcelo Tosatti 已提交
764
 */
765
static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
766
		const struct kvm_memory_slot *slot, int level)
M
Marcelo Tosatti 已提交
767 768 769
{
	unsigned long idx;

770
	idx = gfn_to_index(gfn, slot->base_gfn, level);
771
	return &slot->arch.lpage_info[level - 2][idx];
M
Marcelo Tosatti 已提交
772 773
}

774 775 776 777 778 779
static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
					    gfn_t gfn, int count)
{
	struct kvm_lpage_info *linfo;
	int i;

780
	for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796
		linfo = lpage_info_slot(gfn, slot, i);
		linfo->disallow_lpage += count;
		WARN_ON(linfo->disallow_lpage < 0);
	}
}

void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
{
	update_gfn_disallow_lpage_count(slot, gfn, 1);
}

void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
{
	update_gfn_disallow_lpage_count(slot, gfn, -1);
}

797
static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
M
Marcelo Tosatti 已提交
798
{
799
	struct kvm_memslots *slots;
800
	struct kvm_memory_slot *slot;
801
	gfn_t gfn;
M
Marcelo Tosatti 已提交
802

803
	kvm->arch.indirect_shadow_pages++;
804
	gfn = sp->gfn;
805 806
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
807 808

	/* the non-leaf shadow pages are keeping readonly. */
809
	if (sp->role.level > PG_LEVEL_4K)
810 811 812
		return kvm_slot_page_track_add_page(kvm, slot, gfn,
						    KVM_PAGE_TRACK_WRITE);

813
	kvm_mmu_gfn_disallow_lpage(slot, gfn);
M
Marcelo Tosatti 已提交
814 815
}

816
void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
P
Paolo Bonzini 已提交
817 818 819 820 821
{
	if (sp->lpage_disallowed)
		return;

	++kvm->stat.nx_lpage_splits;
822 823
	list_add_tail(&sp->lpage_disallowed_link,
		      &kvm->arch.lpage_disallowed_mmu_pages);
P
Paolo Bonzini 已提交
824 825 826
	sp->lpage_disallowed = true;
}

827
static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
M
Marcelo Tosatti 已提交
828
{
829
	struct kvm_memslots *slots;
830
	struct kvm_memory_slot *slot;
831
	gfn_t gfn;
M
Marcelo Tosatti 已提交
832

833
	kvm->arch.indirect_shadow_pages--;
834
	gfn = sp->gfn;
835 836
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
837
	if (sp->role.level > PG_LEVEL_4K)
838 839 840
		return kvm_slot_page_track_remove_page(kvm, slot, gfn,
						       KVM_PAGE_TRACK_WRITE);

841
	kvm_mmu_gfn_allow_lpage(slot, gfn);
M
Marcelo Tosatti 已提交
842 843
}

844
void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
P
Paolo Bonzini 已提交
845 846 847
{
	--kvm->stat.nx_lpage_splits;
	sp->lpage_disallowed = false;
848
	list_del(&sp->lpage_disallowed_link);
P
Paolo Bonzini 已提交
849 850
}

851 852 853
static struct kvm_memory_slot *
gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
			    bool no_dirty_log)
M
Marcelo Tosatti 已提交
854 855
{
	struct kvm_memory_slot *slot;
856

857
	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
858 859
	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
		return NULL;
860
	if (no_dirty_log && kvm_slot_dirty_track_enabled(slot))
861
		return NULL;
862 863 864 865

	return slot;
}

866
/*
867
 * About rmap_head encoding:
868
 *
869 870
 * If the bit zero of rmap_head->val is clear, then it points to the only spte
 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
871
 * pte_list_desc containing more mappings.
872 873 874 875
 */

/*
 * Returns the number of pointers in the rmap chain, not counting the new one.
876
 */
877
static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
878
			struct kvm_rmap_head *rmap_head)
879
{
880
	struct pte_list_desc *desc;
881
	int i, count = 0;
882

883
	if (!rmap_head->val) {
884
		rmap_printk("%p %llx 0->1\n", spte, *spte);
885 886
		rmap_head->val = (unsigned long)spte;
	} else if (!(rmap_head->val & 1)) {
887
		rmap_printk("%p %llx 1->many\n", spte, *spte);
888
		desc = mmu_alloc_pte_list_desc(vcpu);
889
		desc->sptes[0] = (u64 *)rmap_head->val;
A
Avi Kivity 已提交
890
		desc->sptes[1] = spte;
891
		rmap_head->val = (unsigned long)desc | 1;
892
		++count;
893
	} else {
894
		rmap_printk("%p %llx many->many\n", spte, *spte);
895
		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
896
		while (desc->sptes[PTE_LIST_EXT-1]) {
897
			count += PTE_LIST_EXT;
898 899 900 901 902 903

			if (!desc->more) {
				desc->more = mmu_alloc_pte_list_desc(vcpu);
				desc = desc->more;
				break;
			}
904 905
			desc = desc->more;
		}
A
Avi Kivity 已提交
906
		for (i = 0; desc->sptes[i]; ++i)
907
			++count;
A
Avi Kivity 已提交
908
		desc->sptes[i] = spte;
909
	}
910
	return count;
911 912
}

913
static void
914 915 916
pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
			   struct pte_list_desc *desc, int i,
			   struct pte_list_desc *prev_desc)
917 918 919
{
	int j;

920
	for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
921
		;
A
Avi Kivity 已提交
922 923
	desc->sptes[i] = desc->sptes[j];
	desc->sptes[j] = NULL;
924 925 926
	if (j != 0)
		return;
	if (!prev_desc && !desc->more)
927
		rmap_head->val = 0;
928 929 930 931
	else
		if (prev_desc)
			prev_desc->more = desc->more;
		else
932
			rmap_head->val = (unsigned long)desc->more | 1;
933
	mmu_free_pte_list_desc(desc);
934 935
}

936
static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
937
{
938 939
	struct pte_list_desc *desc;
	struct pte_list_desc *prev_desc;
940 941
	int i;

942
	if (!rmap_head->val) {
943
		pr_err("%s: %p 0->BUG\n", __func__, spte);
944
		BUG();
945
	} else if (!(rmap_head->val & 1)) {
946
		rmap_printk("%p 1->0\n", spte);
947
		if ((u64 *)rmap_head->val != spte) {
948
			pr_err("%s:  %p 1->BUG\n", __func__, spte);
949 950
			BUG();
		}
951
		rmap_head->val = 0;
952
	} else {
953
		rmap_printk("%p many->many\n", spte);
954
		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
955 956
		prev_desc = NULL;
		while (desc) {
957
			for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
A
Avi Kivity 已提交
958
				if (desc->sptes[i] == spte) {
959 960
					pte_list_desc_remove_entry(rmap_head,
							desc, i, prev_desc);
961 962
					return;
				}
963
			}
964 965 966
			prev_desc = desc;
			desc = desc->more;
		}
967
		pr_err("%s: %p many->many\n", __func__, spte);
968 969 970 971
		BUG();
	}
}

972 973 974 975 976 977
static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep)
{
	mmu_spte_clear_track_bits(sptep);
	__pte_list_remove(sptep, rmap_head);
}

978 979
static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
					   struct kvm_memory_slot *slot)
980
{
981
	unsigned long idx;
982

983
	idx = gfn_to_index(gfn, slot->base_gfn, level);
984
	return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
985 986
}

987 988
static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
					 struct kvm_mmu_page *sp)
989
{
990
	struct kvm_memslots *slots;
991 992
	struct kvm_memory_slot *slot;

993 994
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
995
	return __gfn_to_rmap(gfn, sp->role.level, slot);
996 997
}

998 999
static bool rmap_can_add(struct kvm_vcpu *vcpu)
{
1000
	struct kvm_mmu_memory_cache *mc;
1001

1002
	mc = &vcpu->arch.mmu_pte_list_desc_cache;
1003
	return kvm_mmu_memory_cache_nr_free_objects(mc);
1004 1005
}

1006 1007 1008
static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
{
	struct kvm_mmu_page *sp;
1009
	struct kvm_rmap_head *rmap_head;
1010

1011
	sp = sptep_to_sp(spte);
1012
	kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1013 1014
	rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
	return pte_list_add(vcpu, spte, rmap_head);
1015 1016 1017 1018 1019 1020
}

static void rmap_remove(struct kvm *kvm, u64 *spte)
{
	struct kvm_mmu_page *sp;
	gfn_t gfn;
1021
	struct kvm_rmap_head *rmap_head;
1022

1023
	sp = sptep_to_sp(spte);
1024
	gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1025
	rmap_head = gfn_to_rmap(kvm, gfn, sp);
1026
	__pte_list_remove(spte, rmap_head);
1027 1028
}

1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
/*
 * Used by the following functions to iterate through the sptes linked by a
 * rmap.  All fields are private and not assumed to be used outside.
 */
struct rmap_iterator {
	/* private fields */
	struct pte_list_desc *desc;	/* holds the sptep if not NULL */
	int pos;			/* index of the sptep */
};

/*
 * Iteration must be started by this function.  This should also be used after
 * removing/dropping sptes from the rmap link because in such cases the
M
Miaohe Lin 已提交
1042
 * information in the iterator may not be valid.
1043 1044 1045
 *
 * Returns sptep if found, NULL otherwise.
 */
1046 1047
static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
			   struct rmap_iterator *iter)
1048
{
1049 1050
	u64 *sptep;

1051
	if (!rmap_head->val)
1052 1053
		return NULL;

1054
	if (!(rmap_head->val & 1)) {
1055
		iter->desc = NULL;
1056 1057
		sptep = (u64 *)rmap_head->val;
		goto out;
1058 1059
	}

1060
	iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1061
	iter->pos = 0;
1062 1063 1064 1065
	sptep = iter->desc->sptes[iter->pos];
out:
	BUG_ON(!is_shadow_present_pte(*sptep));
	return sptep;
1066 1067 1068 1069 1070 1071 1072 1073 1074
}

/*
 * Must be used with a valid iterator: e.g. after rmap_get_first().
 *
 * Returns sptep if found, NULL otherwise.
 */
static u64 *rmap_get_next(struct rmap_iterator *iter)
{
1075 1076
	u64 *sptep;

1077 1078 1079 1080 1081
	if (iter->desc) {
		if (iter->pos < PTE_LIST_EXT - 1) {
			++iter->pos;
			sptep = iter->desc->sptes[iter->pos];
			if (sptep)
1082
				goto out;
1083 1084 1085 1086 1087 1088 1089
		}

		iter->desc = iter->desc->more;

		if (iter->desc) {
			iter->pos = 0;
			/* desc->sptes[0] cannot be NULL */
1090 1091
			sptep = iter->desc->sptes[iter->pos];
			goto out;
1092 1093 1094 1095
		}
	}

	return NULL;
1096 1097 1098
out:
	BUG_ON(!is_shadow_present_pte(*sptep));
	return sptep;
1099 1100
}

1101 1102
#define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)			\
	for (_spte_ = rmap_get_first(_rmap_head_, _iter_);		\
1103
	     _spte_; _spte_ = rmap_get_next(_iter_))
1104

1105
static void drop_spte(struct kvm *kvm, u64 *sptep)
1106
{
1107
	if (mmu_spte_clear_track_bits(sptep))
1108
		rmap_remove(kvm, sptep);
A
Avi Kivity 已提交
1109 1110
}

1111 1112 1113 1114

static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
{
	if (is_large_pte(*sptep)) {
1115
		WARN_ON(sptep_to_sp(sptep)->role.level == PG_LEVEL_4K);
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
		drop_spte(kvm, sptep);
		--kvm->stat.lpages;
		return true;
	}

	return false;
}

static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
{
1126
	if (__drop_large_spte(vcpu->kvm, sptep)) {
1127
		struct kvm_mmu_page *sp = sptep_to_sp(sptep);
1128 1129 1130 1131

		kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
			KVM_PAGES_PER_HPAGE(sp->role.level));
	}
1132 1133 1134
}

/*
1135
 * Write-protect on the specified @sptep, @pt_protect indicates whether
1136
 * spte write-protection is caused by protecting shadow page table.
1137
 *
T
Tiejun Chen 已提交
1138
 * Note: write protection is difference between dirty logging and spte
1139 1140 1141 1142 1143
 * protection:
 * - for dirty logging, the spte can be set to writable at anytime if
 *   its dirty bitmap is properly set.
 * - for spte protection, the spte can be writable only after unsync-ing
 *   shadow page.
1144
 *
1145
 * Return true if tlb need be flushed.
1146
 */
1147
static bool spte_write_protect(u64 *sptep, bool pt_protect)
1148 1149 1150
{
	u64 spte = *sptep;

1151
	if (!is_writable_pte(spte) &&
1152
	      !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1153 1154
		return false;

1155
	rmap_printk("spte %p %llx\n", sptep, *sptep);
1156

1157
	if (pt_protect)
1158
		spte &= ~shadow_mmu_writable_mask;
1159
	spte = spte & ~PT_WRITABLE_MASK;
1160

1161
	return mmu_spte_update(sptep, spte);
1162 1163
}

1164 1165
static bool __rmap_write_protect(struct kvm *kvm,
				 struct kvm_rmap_head *rmap_head,
1166
				 bool pt_protect)
1167
{
1168 1169
	u64 *sptep;
	struct rmap_iterator iter;
1170
	bool flush = false;
1171

1172
	for_each_rmap_spte(rmap_head, &iter, sptep)
1173
		flush |= spte_write_protect(sptep, pt_protect);
1174

1175
	return flush;
1176 1177
}

1178
static bool spte_clear_dirty(u64 *sptep)
1179 1180 1181
{
	u64 spte = *sptep;

1182
	rmap_printk("spte %p %llx\n", sptep, *sptep);
1183

1184
	MMU_WARN_ON(!spte_ad_enabled(spte));
1185 1186 1187 1188
	spte &= ~shadow_dirty_mask;
	return mmu_spte_update(sptep, spte);
}

1189
static bool spte_wrprot_for_clear_dirty(u64 *sptep)
1190 1191 1192
{
	bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
					       (unsigned long *)sptep);
1193
	if (was_writable && !spte_ad_enabled(*sptep))
1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
		kvm_set_pfn_dirty(spte_to_pfn(*sptep));

	return was_writable;
}

/*
 * Gets the GFN ready for another round of dirty logging by clearing the
 *	- D bit on ad-enabled SPTEs, and
 *	- W bit on ad-disabled SPTEs.
 * Returns true iff any D or W bits were cleared.
 */
1205 1206
static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			       struct kvm_memory_slot *slot)
1207 1208 1209 1210 1211
{
	u64 *sptep;
	struct rmap_iterator iter;
	bool flush = false;

1212
	for_each_rmap_spte(rmap_head, &iter, sptep)
1213 1214
		if (spte_ad_need_write_protect(*sptep))
			flush |= spte_wrprot_for_clear_dirty(sptep);
1215
		else
1216
			flush |= spte_clear_dirty(sptep);
1217 1218 1219 1220

	return flush;
}

1221
/**
1222
 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1223 1224 1225 1226 1227
 * @kvm: kvm instance
 * @slot: slot to protect
 * @gfn_offset: start of the BITS_PER_LONG pages we care about
 * @mask: indicates which pages we should protect
 *
1228
 * Used when we do not need to care about huge page mappings.
1229
 */
1230
static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1231 1232
				     struct kvm_memory_slot *slot,
				     gfn_t gfn_offset, unsigned long mask)
1233
{
1234
	struct kvm_rmap_head *rmap_head;
1235

1236
	if (is_tdp_mmu_enabled(kvm))
1237 1238
		kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
				slot->base_gfn + gfn_offset, mask, true);
1239 1240 1241 1242

	if (!kvm_memslots_have_rmaps(kvm))
		return;

1243
	while (mask) {
1244
		rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1245
					  PG_LEVEL_4K, slot);
1246
		__rmap_write_protect(kvm, rmap_head, false);
M
Marcelo Tosatti 已提交
1247

1248 1249 1250
		/* clear the first set bit */
		mask &= mask - 1;
	}
1251 1252
}

1253
/**
1254 1255
 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
 * protect the page if the D-bit isn't supported.
1256 1257 1258 1259 1260 1261 1262
 * @kvm: kvm instance
 * @slot: slot to clear D-bit
 * @gfn_offset: start of the BITS_PER_LONG pages we care about
 * @mask: indicates which pages we should clear D-bit
 *
 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
 */
1263 1264 1265
static void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
					 struct kvm_memory_slot *slot,
					 gfn_t gfn_offset, unsigned long mask)
1266
{
1267
	struct kvm_rmap_head *rmap_head;
1268

1269
	if (is_tdp_mmu_enabled(kvm))
1270 1271
		kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
				slot->base_gfn + gfn_offset, mask, false);
1272 1273 1274 1275

	if (!kvm_memslots_have_rmaps(kvm))
		return;

1276
	while (mask) {
1277
		rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1278
					  PG_LEVEL_4K, slot);
1279
		__rmap_clear_dirty(kvm, rmap_head, slot);
1280 1281 1282 1283 1284 1285

		/* clear the first set bit */
		mask &= mask - 1;
	}
}

1286 1287 1288 1289 1290 1291 1292
/**
 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
 * PT level pages.
 *
 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
 * enable dirty logging for them.
 *
1293 1294
 * We need to care about huge page mappings: e.g. during dirty logging we may
 * have such mappings.
1295 1296 1297 1298 1299
 */
void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
				struct kvm_memory_slot *slot,
				gfn_t gfn_offset, unsigned long mask)
{
1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
	/*
	 * Huge pages are NOT write protected when we start dirty logging in
	 * initially-all-set mode; must write protect them here so that they
	 * are split to 4K on the first write.
	 *
	 * The gfn_offset is guaranteed to be aligned to 64, but the base_gfn
	 * of memslot has no such restriction, so the range can cross two large
	 * pages.
	 */
	if (kvm_dirty_log_manual_protect_and_init_set(kvm)) {
		gfn_t start = slot->base_gfn + gfn_offset + __ffs(mask);
		gfn_t end = slot->base_gfn + gfn_offset + __fls(mask);

		kvm_mmu_slot_gfn_write_protect(kvm, slot, start, PG_LEVEL_2M);

		/* Cross two large pages? */
		if (ALIGN(start << PAGE_SHIFT, PMD_SIZE) !=
		    ALIGN(end << PAGE_SHIFT, PMD_SIZE))
			kvm_mmu_slot_gfn_write_protect(kvm, slot, end,
						       PG_LEVEL_2M);
	}

	/* Now handle 4K PTEs.  */
1323 1324
	if (kvm_x86_ops.cpu_dirty_log_size)
		kvm_mmu_clear_dirty_pt_masked(kvm, slot, gfn_offset, mask);
1325 1326
	else
		kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1327 1328
}

1329 1330
int kvm_cpu_dirty_log_size(void)
{
1331
	return kvm_x86_ops.cpu_dirty_log_size;
1332 1333
}

1334
bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1335 1336
				    struct kvm_memory_slot *slot, u64 gfn,
				    int min_level)
1337
{
1338
	struct kvm_rmap_head *rmap_head;
1339
	int i;
1340
	bool write_protected = false;
1341

1342 1343 1344 1345 1346
	if (kvm_memslots_have_rmaps(kvm)) {
		for (i = min_level; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
			rmap_head = __gfn_to_rmap(gfn, i, slot);
			write_protected |= __rmap_write_protect(kvm, rmap_head, true);
		}
1347 1348
	}

1349
	if (is_tdp_mmu_enabled(kvm))
1350
		write_protected |=
1351
			kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn, min_level);
1352

1353
	return write_protected;
1354 1355
}

1356 1357 1358 1359 1360
static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
{
	struct kvm_memory_slot *slot;

	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1361
	return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn, PG_LEVEL_4K);
1362 1363
}

1364 1365
static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			  struct kvm_memory_slot *slot)
1366
{
1367 1368
	u64 *sptep;
	struct rmap_iterator iter;
1369
	bool flush = false;
1370

1371
	while ((sptep = rmap_get_first(rmap_head, &iter))) {
1372
		rmap_printk("spte %p %llx.\n", sptep, *sptep);
1373

1374
		pte_list_remove(rmap_head, sptep);
1375
		flush = true;
1376
	}
1377

1378 1379 1380
	return flush;
}

1381 1382 1383
static bool kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			    struct kvm_memory_slot *slot, gfn_t gfn, int level,
			    pte_t unused)
1384
{
1385
	return kvm_zap_rmapp(kvm, rmap_head, slot);
1386 1387
}

1388 1389 1390
static bool kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			      struct kvm_memory_slot *slot, gfn_t gfn, int level,
			      pte_t pte)
1391
{
1392 1393
	u64 *sptep;
	struct rmap_iterator iter;
1394
	int need_flush = 0;
1395
	u64 new_spte;
D
Dan Williams 已提交
1396
	kvm_pfn_t new_pfn;
1397

1398 1399
	WARN_ON(pte_huge(pte));
	new_pfn = pte_pfn(pte);
1400

1401
restart:
1402
	for_each_rmap_spte(rmap_head, &iter, sptep) {
1403
		rmap_printk("spte %p %llx gfn %llx (%d)\n",
1404
			    sptep, *sptep, gfn, level);
1405

1406
		need_flush = 1;
1407

1408
		if (pte_write(pte)) {
1409
			pte_list_remove(rmap_head, sptep);
1410
			goto restart;
1411
		} else {
1412 1413
			new_spte = kvm_mmu_changed_pte_notifier_make_spte(
					*sptep, new_pfn);
1414 1415 1416

			mmu_spte_clear_track_bits(sptep);
			mmu_spte_set(sptep, new_spte);
1417 1418
		}
	}
1419

1420 1421 1422 1423 1424
	if (need_flush && kvm_available_flush_tlb_with_range()) {
		kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
		return 0;
	}

1425
	return need_flush;
1426 1427
}

1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
struct slot_rmap_walk_iterator {
	/* input fields. */
	struct kvm_memory_slot *slot;
	gfn_t start_gfn;
	gfn_t end_gfn;
	int start_level;
	int end_level;

	/* output fields. */
	gfn_t gfn;
1438
	struct kvm_rmap_head *rmap;
1439 1440 1441
	int level;

	/* private field. */
1442
	struct kvm_rmap_head *end_rmap;
1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495
};

static void
rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
{
	iterator->level = level;
	iterator->gfn = iterator->start_gfn;
	iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
	iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
					   iterator->slot);
}

static void
slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
		    struct kvm_memory_slot *slot, int start_level,
		    int end_level, gfn_t start_gfn, gfn_t end_gfn)
{
	iterator->slot = slot;
	iterator->start_level = start_level;
	iterator->end_level = end_level;
	iterator->start_gfn = start_gfn;
	iterator->end_gfn = end_gfn;

	rmap_walk_init_level(iterator, iterator->start_level);
}

static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
{
	return !!iterator->rmap;
}

static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
{
	if (++iterator->rmap <= iterator->end_rmap) {
		iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
		return;
	}

	if (++iterator->level > iterator->end_level) {
		iterator->rmap = NULL;
		return;
	}

	rmap_walk_init_level(iterator, iterator->level);
}

#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,	\
	   _start_gfn, _end_gfn, _iter_)				\
	for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,		\
				 _end_level_, _start_gfn, _end_gfn);	\
	     slot_rmap_walk_okay(_iter_);				\
	     slot_rmap_walk_next(_iter_))

1496 1497 1498
typedef bool (*rmap_handler_t)(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			       struct kvm_memory_slot *slot, gfn_t gfn,
			       int level, pte_t pte);
1499

1500 1501 1502
static __always_inline bool kvm_handle_gfn_range(struct kvm *kvm,
						 struct kvm_gfn_range *range,
						 rmap_handler_t handler)
1503
{
1504
	struct slot_rmap_walk_iterator iterator;
1505
	bool ret = false;
1506

1507 1508 1509 1510
	for_each_slot_rmap_range(range->slot, PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL,
				 range->start, range->end - 1, &iterator)
		ret |= handler(kvm, iterator.rmap, range->slot, iterator.gfn,
			       iterator.level, range->pte);
1511

1512
	return ret;
1513 1514
}

1515
bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
1516
{
1517
	bool flush = false;
1518

1519 1520
	if (kvm_memslots_have_rmaps(kvm))
		flush = kvm_handle_gfn_range(kvm, range, kvm_unmap_rmapp);
1521

1522
	if (is_tdp_mmu_enabled(kvm))
1523
		flush |= kvm_tdp_mmu_unmap_gfn_range(kvm, range, flush);
1524

1525
	return flush;
1526 1527
}

1528
bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1529
{
1530
	bool flush = false;
1531

1532 1533
	if (kvm_memslots_have_rmaps(kvm))
		flush = kvm_handle_gfn_range(kvm, range, kvm_set_pte_rmapp);
1534

1535
	if (is_tdp_mmu_enabled(kvm))
1536
		flush |= kvm_tdp_mmu_set_spte_gfn(kvm, range);
1537

1538
	return flush;
1539 1540
}

1541 1542 1543
static bool kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			  struct kvm_memory_slot *slot, gfn_t gfn, int level,
			  pte_t unused)
1544
{
1545
	u64 *sptep;
1546
	struct rmap_iterator iter;
1547 1548
	int young = 0;

1549 1550
	for_each_rmap_spte(rmap_head, &iter, sptep)
		young |= mmu_spte_age(sptep);
1551

1552 1553 1554
	return young;
}

1555 1556 1557
static bool kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			       struct kvm_memory_slot *slot, gfn_t gfn,
			       int level, pte_t unused)
A
Andrea Arcangeli 已提交
1558
{
1559 1560
	u64 *sptep;
	struct rmap_iterator iter;
A
Andrea Arcangeli 已提交
1561

1562 1563 1564 1565
	for_each_rmap_spte(rmap_head, &iter, sptep)
		if (is_accessed_spte(*sptep))
			return 1;
	return 0;
A
Andrea Arcangeli 已提交
1566 1567
}

1568 1569
#define RMAP_RECYCLE_THRESHOLD 1000

1570
static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1571
{
1572
	struct kvm_rmap_head *rmap_head;
1573 1574
	struct kvm_mmu_page *sp;

1575
	sp = sptep_to_sp(spte);
1576

1577
	rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1578

1579
	kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, __pte(0));
1580 1581
	kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
			KVM_PAGES_PER_HPAGE(sp->role.level));
1582 1583
}

1584
bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1585
{
1586
	bool young = false;
1587

1588 1589
	if (kvm_memslots_have_rmaps(kvm))
		young = kvm_handle_gfn_range(kvm, range, kvm_age_rmapp);
1590

1591
	if (is_tdp_mmu_enabled(kvm))
1592
		young |= kvm_tdp_mmu_age_gfn_range(kvm, range);
1593 1594

	return young;
1595 1596
}

1597
bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
A
Andrea Arcangeli 已提交
1598
{
1599
	bool young = false;
1600

1601 1602
	if (kvm_memslots_have_rmaps(kvm))
		young = kvm_handle_gfn_range(kvm, range, kvm_test_age_rmapp);
1603

1604
	if (is_tdp_mmu_enabled(kvm))
1605
		young |= kvm_tdp_mmu_test_age_gfn(kvm, range);
1606 1607

	return young;
A
Andrea Arcangeli 已提交
1608 1609
}

1610
#ifdef MMU_DEBUG
1611
static int is_empty_shadow_page(u64 *spt)
A
Avi Kivity 已提交
1612
{
1613 1614 1615
	u64 *pos;
	u64 *end;

1616
	for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1617
		if (is_shadow_present_pte(*pos)) {
1618
			printk(KERN_ERR "%s: %p %llx\n", __func__,
1619
			       pos, *pos);
A
Avi Kivity 已提交
1620
			return 0;
1621
		}
A
Avi Kivity 已提交
1622 1623
	return 1;
}
1624
#endif
A
Avi Kivity 已提交
1625

1626 1627 1628 1629 1630 1631
/*
 * This value is the sum of all of the kvm instances's
 * kvm->arch.n_used_mmu_pages values.  We need a global,
 * aggregate version in order to make the slab shrinker
 * faster
 */
1632
static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, unsigned long nr)
1633 1634 1635 1636 1637
{
	kvm->arch.n_used_mmu_pages += nr;
	percpu_counter_add(&kvm_total_used_mmu_pages, nr);
}

1638
static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1639
{
1640
	MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1641
	hlist_del(&sp->hash_link);
1642 1643
	list_del(&sp->link);
	free_page((unsigned long)sp->spt);
1644 1645
	if (!sp->role.direct)
		free_page((unsigned long)sp->gfns);
1646
	kmem_cache_free(mmu_page_header_cache, sp);
1647 1648
}

1649 1650
static unsigned kvm_page_table_hashfn(gfn_t gfn)
{
1651
	return hash_64(gfn, KVM_MMU_HASH_SHIFT);
1652 1653
}

1654
static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1655
				    struct kvm_mmu_page *sp, u64 *parent_pte)
1656 1657 1658 1659
{
	if (!parent_pte)
		return;

1660
	pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1661 1662
}

1663
static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1664 1665
				       u64 *parent_pte)
{
1666
	__pte_list_remove(parent_pte, &sp->parent_ptes);
1667 1668
}

1669 1670 1671 1672
static void drop_parent_pte(struct kvm_mmu_page *sp,
			    u64 *parent_pte)
{
	mmu_page_remove_parent_pte(sp, parent_pte);
1673
	mmu_spte_clear_no_track(parent_pte);
1674 1675
}

1676
static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
M
Marcelo Tosatti 已提交
1677
{
1678
	struct kvm_mmu_page *sp;
1679

1680 1681
	sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
	sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache);
1682
	if (!direct)
1683
		sp->gfns = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_gfn_array_cache);
1684
	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1685 1686 1687 1688 1689 1690

	/*
	 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
	 * depends on valid pages being added to the head of the list.  See
	 * comments in kvm_zap_obsolete_pages().
	 */
1691
	sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
1692 1693 1694
	list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
	kvm_mod_used_mmu_pages(vcpu->kvm, +1);
	return sp;
M
Marcelo Tosatti 已提交
1695 1696
}

1697
static void mark_unsync(u64 *spte);
1698
static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1699
{
1700 1701 1702 1703 1704 1705
	u64 *sptep;
	struct rmap_iterator iter;

	for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
		mark_unsync(sptep);
	}
1706 1707
}

1708
static void mark_unsync(u64 *spte)
1709
{
1710
	struct kvm_mmu_page *sp;
1711
	unsigned int index;
1712

1713
	sp = sptep_to_sp(spte);
1714 1715
	index = spte - sp->spt;
	if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1716
		return;
1717
	if (sp->unsync_children++)
1718
		return;
1719
	kvm_mmu_mark_parents_unsync(sp);
1720 1721
}

1722
static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1723
			       struct kvm_mmu_page *sp)
1724
{
1725
	return 0;
1726 1727
}

1728 1729 1730 1731 1732 1733 1734 1735 1736 1737
#define KVM_PAGE_ARRAY_NR 16

struct kvm_mmu_pages {
	struct mmu_page_and_offset {
		struct kvm_mmu_page *sp;
		unsigned int idx;
	} page[KVM_PAGE_ARRAY_NR];
	unsigned int nr;
};

1738 1739
static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
			 int idx)
1740
{
1741
	int i;
1742

1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753
	if (sp->unsync)
		for (i=0; i < pvec->nr; i++)
			if (pvec->page[i].sp == sp)
				return 0;

	pvec->page[pvec->nr].sp = sp;
	pvec->page[pvec->nr].idx = idx;
	pvec->nr++;
	return (pvec->nr == KVM_PAGE_ARRAY_NR);
}

1754 1755 1756 1757 1758 1759 1760
static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
{
	--sp->unsync_children;
	WARN_ON((int)sp->unsync_children < 0);
	__clear_bit(idx, sp->unsync_child_bitmap);
}

1761 1762 1763 1764
static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
	int i, ret, nr_unsync_leaf = 0;
1765

1766
	for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1767
		struct kvm_mmu_page *child;
1768 1769
		u64 ent = sp->spt[i];

1770 1771 1772 1773
		if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
			clear_unsync_child_bit(sp, i);
			continue;
		}
1774

1775
		child = to_shadow_page(ent & PT64_BASE_ADDR_MASK);
1776 1777 1778 1779 1780 1781

		if (child->unsync_children) {
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;

			ret = __mmu_unsync_walk(child, pvec);
1782 1783 1784 1785
			if (!ret) {
				clear_unsync_child_bit(sp, i);
				continue;
			} else if (ret > 0) {
1786
				nr_unsync_leaf += ret;
1787
			} else
1788 1789 1790 1791 1792 1793
				return ret;
		} else if (child->unsync) {
			nr_unsync_leaf++;
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;
		} else
1794
			clear_unsync_child_bit(sp, i);
1795 1796
	}

1797 1798 1799
	return nr_unsync_leaf;
}

1800 1801
#define INVALID_INDEX (-1)

1802 1803 1804
static int mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
P
Paolo Bonzini 已提交
1805
	pvec->nr = 0;
1806 1807 1808
	if (!sp->unsync_children)
		return 0;

1809
	mmu_pages_add(pvec, sp, INVALID_INDEX);
1810
	return __mmu_unsync_walk(sp, pvec);
1811 1812 1813 1814 1815
}

static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
{
	WARN_ON(!sp->unsync);
1816
	trace_kvm_mmu_sync_page(sp);
1817 1818 1819 1820
	sp->unsync = 0;
	--kvm->stat.mmu_unsync;
}

1821 1822
static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				     struct list_head *invalid_list);
1823 1824
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list);
1825

1826 1827
#define for_each_valid_sp(_kvm, _sp, _list)				\
	hlist_for_each_entry(_sp, _list, hash_link)			\
1828
		if (is_obsolete_sp((_kvm), (_sp))) {			\
1829
		} else
1830 1831

#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)			\
1832 1833
	for_each_valid_sp(_kvm, _sp,					\
	  &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)])	\
1834
		if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
1835

1836 1837
static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
			 struct list_head *invalid_list)
1838
{
1839
	if (vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
1840
		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1841
		return false;
1842 1843
	}

1844
	return true;
1845 1846
}

1847 1848 1849 1850
static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
					struct list_head *invalid_list,
					bool remote_flush)
{
1851
	if (!remote_flush && list_empty(invalid_list))
1852 1853 1854 1855 1856 1857 1858 1859 1860
		return false;

	if (!list_empty(invalid_list))
		kvm_mmu_commit_zap_page(kvm, invalid_list);
	else
		kvm_flush_remote_tlbs(kvm);
	return true;
}

1861 1862 1863
static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
				 struct list_head *invalid_list,
				 bool remote_flush, bool local_flush)
1864
{
1865
	if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush))
1866
		return;
1867

1868
	if (local_flush)
1869
		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1870 1871
}

1872 1873 1874 1875 1876 1877 1878
#ifdef CONFIG_KVM_MMU_AUDIT
#include "mmu_audit.c"
#else
static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
static void mmu_audit_disable(void) { }
#endif

1879 1880
static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
{
1881 1882
	return sp->role.invalid ||
	       unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1883 1884
}

1885
struct mmu_page_path {
1886 1887
	struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
	unsigned int idx[PT64_ROOT_MAX_LEVEL];
1888 1889
};

1890
#define for_each_sp(pvec, sp, parents, i)			\
P
Paolo Bonzini 已提交
1891
		for (i = mmu_pages_first(&pvec, &parents);	\
1892 1893 1894
			i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});	\
			i = mmu_pages_next(&pvec, &parents, i))

1895 1896 1897
static int mmu_pages_next(struct kvm_mmu_pages *pvec,
			  struct mmu_page_path *parents,
			  int i)
1898 1899 1900 1901 1902
{
	int n;

	for (n = i+1; n < pvec->nr; n++) {
		struct kvm_mmu_page *sp = pvec->page[n].sp;
P
Paolo Bonzini 已提交
1903 1904
		unsigned idx = pvec->page[n].idx;
		int level = sp->role.level;
1905

P
Paolo Bonzini 已提交
1906
		parents->idx[level-1] = idx;
1907
		if (level == PG_LEVEL_4K)
P
Paolo Bonzini 已提交
1908
			break;
1909

P
Paolo Bonzini 已提交
1910
		parents->parent[level-2] = sp;
1911 1912 1913 1914 1915
	}

	return n;
}

P
Paolo Bonzini 已提交
1916 1917 1918 1919 1920 1921 1922 1923 1924
static int mmu_pages_first(struct kvm_mmu_pages *pvec,
			   struct mmu_page_path *parents)
{
	struct kvm_mmu_page *sp;
	int level;

	if (pvec->nr == 0)
		return 0;

1925 1926
	WARN_ON(pvec->page[0].idx != INVALID_INDEX);

P
Paolo Bonzini 已提交
1927 1928
	sp = pvec->page[0].sp;
	level = sp->role.level;
1929
	WARN_ON(level == PG_LEVEL_4K);
P
Paolo Bonzini 已提交
1930 1931 1932 1933 1934 1935 1936 1937 1938 1939

	parents->parent[level-2] = sp;

	/* Also set up a sentinel.  Further entries in pvec are all
	 * children of sp, so this element is never overwritten.
	 */
	parents->parent[level-1] = NULL;
	return mmu_pages_next(pvec, parents, 0);
}

1940
static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1941
{
1942 1943 1944 1945 1946 1947 1948 1949 1950
	struct kvm_mmu_page *sp;
	unsigned int level = 0;

	do {
		unsigned int idx = parents->idx[level];
		sp = parents->parent[level];
		if (!sp)
			return;

1951
		WARN_ON(idx == INVALID_INDEX);
1952
		clear_unsync_child_bit(sp, idx);
1953
		level++;
P
Paolo Bonzini 已提交
1954
	} while (!sp->unsync_children);
1955
}
1956

1957 1958 1959 1960 1961 1962 1963
static void mmu_sync_children(struct kvm_vcpu *vcpu,
			      struct kvm_mmu_page *parent)
{
	int i;
	struct kvm_mmu_page *sp;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
1964
	LIST_HEAD(invalid_list);
1965
	bool flush = false;
1966 1967

	while (mmu_unsync_walk(parent, &pages)) {
1968
		bool protected = false;
1969 1970

		for_each_sp(pages, sp, parents, i)
1971
			protected |= rmap_write_protect(vcpu, sp->gfn);
1972

1973
		if (protected) {
1974
			kvm_flush_remote_tlbs(vcpu->kvm);
1975 1976
			flush = false;
		}
1977

1978
		for_each_sp(pages, sp, parents, i) {
1979
			kvm_unlink_unsync_page(vcpu->kvm, sp);
1980
			flush |= kvm_sync_page(vcpu, sp, &invalid_list);
1981 1982
			mmu_pages_clear_parents(&parents);
		}
1983
		if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) {
1984
			kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
1985
			cond_resched_rwlock_write(&vcpu->kvm->mmu_lock);
1986 1987
			flush = false;
		}
1988
	}
1989 1990

	kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
1991 1992
}

1993 1994
static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
{
1995
	atomic_set(&sp->write_flooding_count,  0);
1996 1997 1998 1999
}

static void clear_sp_write_flooding_count(u64 *spte)
{
2000
	__clear_sp_write_flooding_count(sptep_to_sp(spte));
2001 2002
}

2003 2004 2005 2006
static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
					     gfn_t gfn,
					     gva_t gaddr,
					     unsigned level,
2007
					     int direct,
2008
					     unsigned int access)
2009
{
2010
	bool direct_mmu = vcpu->arch.mmu->direct_map;
2011
	union kvm_mmu_page_role role;
2012
	struct hlist_head *sp_list;
2013
	unsigned quadrant;
2014
	struct kvm_mmu_page *sp;
2015
	int collisions = 0;
2016
	LIST_HEAD(invalid_list);
2017

2018
	role = vcpu->arch.mmu->mmu_role.base;
2019
	role.level = level;
2020
	role.direct = direct;
2021
	if (role.direct)
2022
		role.gpte_is_8_bytes = true;
2023
	role.access = access;
2024
	if (!direct_mmu && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
2025 2026 2027 2028
		quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
		quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
		role.quadrant = quadrant;
	}
2029 2030 2031

	sp_list = &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)];
	for_each_valid_sp(vcpu->kvm, sp, sp_list) {
2032 2033 2034 2035 2036
		if (sp->gfn != gfn) {
			collisions++;
			continue;
		}

2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049
		if (sp->role.word != role.word) {
			/*
			 * If the guest is creating an upper-level page, zap
			 * unsync pages for the same gfn.  While it's possible
			 * the guest is using recursive page tables, in all
			 * likelihood the guest has stopped using the unsync
			 * page and is installing a completely unrelated page.
			 * Unsync pages must not be left as is, because the new
			 * upper-level page will be write-protected.
			 */
			if (level > PG_LEVEL_4K && sp->unsync)
				kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
							 &invalid_list);
2050
			continue;
2051
		}
2052

2053 2054 2055
		if (direct_mmu)
			goto trace_get_page;

2056
		if (sp->unsync) {
2057
			/*
2058
			 * The page is good, but is stale.  kvm_sync_page does
2059 2060 2061 2062 2063 2064 2065 2066 2067
			 * get the latest guest state, but (unlike mmu_unsync_children)
			 * it doesn't write-protect the page or mark it synchronized!
			 * This way the validity of the mapping is ensured, but the
			 * overhead of write protection is not incurred until the
			 * guest invalidates the TLB mapping.  This allows multiple
			 * SPs for a single gfn to be unsync.
			 *
			 * If the sync fails, the page is zapped.  If so, break
			 * in order to rebuild it.
2068
			 */
2069
			if (!kvm_sync_page(vcpu, sp, &invalid_list))
2070 2071 2072
				break;

			WARN_ON(!list_empty(&invalid_list));
2073
			kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2074
		}
2075

2076
		if (sp->unsync_children)
2077
			kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2078

2079
		__clear_sp_write_flooding_count(sp);
2080 2081

trace_get_page:
2082
		trace_kvm_mmu_get_page(sp, false);
2083
		goto out;
2084
	}
2085

A
Avi Kivity 已提交
2086
	++vcpu->kvm->stat.mmu_cache_miss;
2087 2088 2089

	sp = kvm_mmu_alloc_page(vcpu, direct);

2090 2091
	sp->gfn = gfn;
	sp->role = role;
2092
	hlist_add_head(&sp->hash_link, sp_list);
2093
	if (!direct) {
2094
		account_shadowed(vcpu->kvm, sp);
2095
		if (level == PG_LEVEL_4K && rmap_write_protect(vcpu, gfn))
2096
			kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
2097
	}
A
Avi Kivity 已提交
2098
	trace_kvm_mmu_get_page(sp, true);
2099
out:
2100 2101
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);

2102 2103
	if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
		vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2104
	return sp;
2105 2106
}

2107 2108 2109
static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
					struct kvm_vcpu *vcpu, hpa_t root,
					u64 addr)
2110 2111
{
	iterator->addr = addr;
2112
	iterator->shadow_addr = root;
2113
	iterator->level = vcpu->arch.mmu->shadow_root_level;
2114

2115
	if (iterator->level == PT64_ROOT_4LEVEL &&
2116 2117
	    vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
	    !vcpu->arch.mmu->direct_map)
2118 2119
		--iterator->level;

2120
	if (iterator->level == PT32E_ROOT_LEVEL) {
2121 2122 2123 2124
		/*
		 * prev_root is currently only used for 64-bit hosts. So only
		 * the active root_hpa is valid here.
		 */
2125
		BUG_ON(root != vcpu->arch.mmu->root_hpa);
2126

2127
		iterator->shadow_addr
2128
			= vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2129 2130 2131 2132 2133 2134 2135
		iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
		--iterator->level;
		if (!iterator->shadow_addr)
			iterator->level = 0;
	}
}

2136 2137 2138
static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
			     struct kvm_vcpu *vcpu, u64 addr)
{
2139
	shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
2140 2141 2142
				    addr);
}

2143 2144
static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
{
2145
	if (iterator->level < PG_LEVEL_4K)
2146
		return false;
2147

2148 2149 2150 2151 2152
	iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
	iterator->sptep	= ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
	return true;
}

2153 2154
static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
			       u64 spte)
2155
{
2156
	if (is_last_spte(spte, iterator->level)) {
2157 2158 2159 2160
		iterator->level = 0;
		return;
	}

2161
	iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2162 2163 2164
	--iterator->level;
}

2165 2166
static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
{
2167
	__shadow_walk_next(iterator, *iterator->sptep);
2168 2169
}

2170 2171 2172 2173 2174 2175 2176 2177 2178
static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
			     struct kvm_mmu_page *sp)
{
	u64 spte;

	BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);

	spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp));

2179
	mmu_spte_set(sptep, spte);
2180 2181 2182 2183 2184

	mmu_page_add_parent_pte(vcpu, sp, sptep);

	if (sp->unsync_children || sp->unsync)
		mark_unsync(sptep);
2185 2186
}

2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199
static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
				   unsigned direct_access)
{
	if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
		struct kvm_mmu_page *child;

		/*
		 * For the direct sp, if the guest pte's dirty bit
		 * changed form clean to dirty, it will corrupt the
		 * sp's access: allow writable in the read-only sp,
		 * so we should update the spte at this point to get
		 * a new sp with the correct access.
		 */
2200
		child = to_shadow_page(*sptep & PT64_BASE_ADDR_MASK);
2201 2202 2203
		if (child->role.access == direct_access)
			return;

2204
		drop_parent_pte(child, sptep);
2205
		kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
2206 2207 2208
	}
}

2209 2210 2211
/* Returns the number of zapped non-leaf child shadow pages. */
static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
			    u64 *spte, struct list_head *invalid_list)
2212 2213 2214 2215 2216 2217
{
	u64 pte;
	struct kvm_mmu_page *child;

	pte = *spte;
	if (is_shadow_present_pte(pte)) {
X
Xiao Guangrong 已提交
2218
		if (is_last_spte(pte, sp->role.level)) {
2219
			drop_spte(kvm, spte);
X
Xiao Guangrong 已提交
2220 2221 2222
			if (is_large_pte(pte))
				--kvm->stat.lpages;
		} else {
2223
			child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2224
			drop_parent_pte(child, spte);
2225 2226 2227 2228 2229 2230 2231 2232 2233 2234

			/*
			 * Recursively zap nested TDP SPs, parentless SPs are
			 * unlikely to be used again in the near future.  This
			 * avoids retaining a large number of stale nested SPs.
			 */
			if (tdp_enabled && invalid_list &&
			    child->role.guest_mode && !child->parent_ptes.val)
				return kvm_mmu_prepare_zap_page(kvm, child,
								invalid_list);
2235
		}
2236
	} else if (is_mmio_spte(pte)) {
2237
		mmu_spte_clear_no_track(spte);
2238
	}
2239
	return 0;
2240 2241
}

2242 2243 2244
static int kvm_mmu_page_unlink_children(struct kvm *kvm,
					struct kvm_mmu_page *sp,
					struct list_head *invalid_list)
2245
{
2246
	int zapped = 0;
2247 2248
	unsigned i;

2249
	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2250 2251 2252
		zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list);

	return zapped;
2253 2254
}

2255
static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2256
{
2257 2258
	u64 *sptep;
	struct rmap_iterator iter;
2259

2260
	while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2261
		drop_parent_pte(sp, sptep);
2262 2263
}

2264
static int mmu_zap_unsync_children(struct kvm *kvm,
2265 2266
				   struct kvm_mmu_page *parent,
				   struct list_head *invalid_list)
2267
{
2268 2269 2270
	int i, zapped = 0;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
2271

2272
	if (parent->role.level == PG_LEVEL_4K)
2273
		return 0;
2274 2275 2276 2277 2278

	while (mmu_unsync_walk(parent, &pages)) {
		struct kvm_mmu_page *sp;

		for_each_sp(pages, sp, parents, i) {
2279
			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2280
			mmu_pages_clear_parents(&parents);
2281
			zapped++;
2282 2283 2284 2285
		}
	}

	return zapped;
2286 2287
}

2288 2289 2290 2291
static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
				       struct kvm_mmu_page *sp,
				       struct list_head *invalid_list,
				       int *nr_zapped)
2292
{
2293
	bool list_unstable;
A
Avi Kivity 已提交
2294

2295
	trace_kvm_mmu_prepare_zap_page(sp);
2296
	++kvm->stat.mmu_shadow_zapped;
2297
	*nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2298
	*nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list);
2299
	kvm_mmu_unlink_parents(kvm, sp);
2300

2301 2302 2303
	/* Zapping children means active_mmu_pages has become unstable. */
	list_unstable = *nr_zapped;

2304
	if (!sp->role.invalid && !sp->role.direct)
2305
		unaccount_shadowed(kvm, sp);
2306

2307 2308
	if (sp->unsync)
		kvm_unlink_unsync_page(kvm, sp);
2309
	if (!sp->root_count) {
2310
		/* Count self */
2311
		(*nr_zapped)++;
2312 2313 2314 2315 2316 2317 2318 2319 2320 2321

		/*
		 * Already invalid pages (previously active roots) are not on
		 * the active page list.  See list_del() in the "else" case of
		 * !sp->root_count.
		 */
		if (sp->role.invalid)
			list_add(&sp->link, invalid_list);
		else
			list_move(&sp->link, invalid_list);
2322
		kvm_mod_used_mmu_pages(kvm, -1);
2323
	} else {
2324 2325 2326 2327 2328
		/*
		 * Remove the active root from the active page list, the root
		 * will be explicitly freed when the root_count hits zero.
		 */
		list_del(&sp->link);
2329

2330 2331 2332 2333 2334 2335
		/*
		 * Obsolete pages cannot be used on any vCPUs, see the comment
		 * in kvm_mmu_zap_all_fast().  Note, is_obsolete_sp() also
		 * treats invalid shadow pages as being obsolete.
		 */
		if (!is_obsolete_sp(kvm, sp))
2336
			kvm_reload_remote_mmus(kvm);
2337
	}
2338

P
Paolo Bonzini 已提交
2339 2340 2341
	if (sp->lpage_disallowed)
		unaccount_huge_nx_page(kvm, sp);

2342
	sp->role.invalid = 1;
2343 2344 2345 2346 2347 2348 2349 2350 2351 2352
	return list_unstable;
}

static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				     struct list_head *invalid_list)
{
	int nr_zapped;

	__kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
	return nr_zapped;
2353 2354
}

2355 2356 2357
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list)
{
2358
	struct kvm_mmu_page *sp, *nsp;
2359 2360 2361 2362

	if (list_empty(invalid_list))
		return;

2363
	/*
2364 2365 2366 2367 2368 2369 2370
	 * We need to make sure everyone sees our modifications to
	 * the page tables and see changes to vcpu->mode here. The barrier
	 * in the kvm_flush_remote_tlbs() achieves this. This pairs
	 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
	 *
	 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
	 * guest mode and/or lockless shadow page table walks.
2371 2372
	 */
	kvm_flush_remote_tlbs(kvm);
2373

2374
	list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2375
		WARN_ON(!sp->role.invalid || sp->root_count);
2376
		kvm_mmu_free_page(sp);
2377
	}
2378 2379
}

2380 2381
static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm,
						  unsigned long nr_to_zap)
2382
{
2383 2384
	unsigned long total_zapped = 0;
	struct kvm_mmu_page *sp, *tmp;
2385
	LIST_HEAD(invalid_list);
2386 2387
	bool unstable;
	int nr_zapped;
2388 2389

	if (list_empty(&kvm->arch.active_mmu_pages))
2390 2391
		return 0;

2392
restart:
2393
	list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) {
2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404
		/*
		 * Don't zap active root pages, the page itself can't be freed
		 * and zapping it will just force vCPUs to realloc and reload.
		 */
		if (sp->root_count)
			continue;

		unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list,
						      &nr_zapped);
		total_zapped += nr_zapped;
		if (total_zapped >= nr_to_zap)
2405 2406
			break;

2407 2408
		if (unstable)
			goto restart;
2409
	}
2410

2411 2412 2413 2414 2415 2416
	kvm_mmu_commit_zap_page(kvm, &invalid_list);

	kvm->stat.mmu_recycled += total_zapped;
	return total_zapped;
}

2417 2418 2419 2420 2421 2422 2423
static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm)
{
	if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
		return kvm->arch.n_max_mmu_pages -
			kvm->arch.n_used_mmu_pages;

	return 0;
2424 2425
}

2426 2427
static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
{
2428
	unsigned long avail = kvm_mmu_available_pages(vcpu->kvm);
2429

2430
	if (likely(avail >= KVM_MIN_FREE_MMU_PAGES))
2431 2432
		return 0;

2433
	kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail);
2434

2435 2436 2437 2438 2439 2440 2441 2442 2443
	/*
	 * Note, this check is intentionally soft, it only guarantees that one
	 * page is available, while the caller may end up allocating as many as
	 * four pages, e.g. for PAE roots or for 5-level paging.  Temporarily
	 * exceeding the (arbitrary by default) limit will not harm the host,
	 * being too agressive may unnecessarily kill the guest, and getting an
	 * exact count is far more trouble than it's worth, especially in the
	 * page fault paths.
	 */
2444 2445 2446 2447 2448
	if (!kvm_mmu_available_pages(vcpu->kvm))
		return -ENOSPC;
	return 0;
}

2449 2450
/*
 * Changing the number of mmu pages allocated to the vm
2451
 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2452
 */
2453
void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2454
{
2455
	write_lock(&kvm->mmu_lock);
2456

2457
	if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2458 2459
		kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages -
						  goal_nr_mmu_pages);
2460

2461
		goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2462 2463
	}

2464
	kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2465

2466
	write_unlock(&kvm->mmu_lock);
2467 2468
}

2469
int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2470
{
2471
	struct kvm_mmu_page *sp;
2472
	LIST_HEAD(invalid_list);
2473 2474
	int r;

2475
	pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2476
	r = 0;
2477
	write_lock(&kvm->mmu_lock);
2478
	for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2479
		pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2480 2481
			 sp->role.word);
		r = 1;
2482
		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2483
	}
2484
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2485
	write_unlock(&kvm->mmu_lock);
2486

2487
	return r;
2488
}
2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503

static int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
{
	gpa_t gpa;
	int r;

	if (vcpu->arch.mmu->direct_map)
		return 0;

	gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);

	r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);

	return r;
}
2504

2505
static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2506 2507 2508 2509 2510 2511 2512 2513
{
	trace_kvm_mmu_unsync_page(sp);
	++vcpu->kvm->stat.mmu_unsync;
	sp->unsync = 1;

	kvm_mmu_mark_parents_unsync(sp);
}

2514 2515 2516 2517 2518 2519 2520
/*
 * Attempt to unsync any shadow pages that can be reached by the specified gfn,
 * KVM is creating a writable mapping for said gfn.  Returns 0 if all pages
 * were marked unsync (or if there is no shadow page), -EPERM if the SPTE must
 * be write-protected.
 */
int mmu_try_to_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn, bool can_unsync)
2521
{
2522
	struct kvm_mmu_page *sp;
2523

2524 2525 2526 2527 2528
	/*
	 * Force write-protection if the page is being tracked.  Note, the page
	 * track machinery is used to write-protect upper-level shadow pages,
	 * i.e. this guards the role.level == 4K assertion below!
	 */
2529
	if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2530
		return -EPERM;
2531

2532 2533 2534 2535 2536 2537
	/*
	 * The page is not write-tracked, mark existing shadow pages unsync
	 * unless KVM is synchronizing an unsync SP (can_unsync = false).  In
	 * that case, KVM must complete emulation of the guest TLB flush before
	 * allowing shadow pages to become unsync (writable by the guest).
	 */
2538
	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2539
		if (!can_unsync)
2540
			return -EPERM;
2541

2542 2543
		if (sp->unsync)
			continue;
2544

2545
		WARN_ON(sp->role.level != PG_LEVEL_4K);
2546
		kvm_unsync_page(vcpu, sp);
2547
	}
2548

2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570
	/*
	 * We need to ensure that the marking of unsync pages is visible
	 * before the SPTE is updated to allow writes because
	 * kvm_mmu_sync_roots() checks the unsync flags without holding
	 * the MMU lock and so can race with this. If the SPTE was updated
	 * before the page had been marked as unsync-ed, something like the
	 * following could happen:
	 *
	 * CPU 1                    CPU 2
	 * ---------------------------------------------------------------------
	 * 1.2 Host updates SPTE
	 *     to be writable
	 *                      2.1 Guest writes a GPTE for GVA X.
	 *                          (GPTE being in the guest page table shadowed
	 *                           by the SP from CPU 1.)
	 *                          This reads SPTE during the page table walk.
	 *                          Since SPTE.W is read as 1, there is no
	 *                          fault.
	 *
	 *                      2.2 Guest issues TLB flush.
	 *                          That causes a VM Exit.
	 *
2571 2572
	 *                      2.3 Walking of unsync pages sees sp->unsync is
	 *                          false and skips the page.
2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587
	 *
	 *                      2.4 Guest accesses GVA X.
	 *                          Since the mapping in the SP was not updated,
	 *                          so the old mapping for GVA X incorrectly
	 *                          gets used.
	 * 1.1 Host marks SP
	 *     as unsync
	 *     (sp->unsync = true)
	 *
	 * The write barrier below ensures that 1.1 happens before 1.2 and thus
	 * the situation in 2.4 does not arise. The implicit barrier in 2.2
	 * pairs with this write barrier.
	 */
	smp_wmb();

2588
	return 0;
2589 2590
}

2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607
static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
		    unsigned int pte_access, int level,
		    gfn_t gfn, kvm_pfn_t pfn, bool speculative,
		    bool can_unsync, bool host_writable)
{
	u64 spte;
	struct kvm_mmu_page *sp;
	int ret;

	sp = sptep_to_sp(sptep);

	ret = make_spte(vcpu, pte_access, level, gfn, pfn, *sptep, speculative,
			can_unsync, host_writable, sp_ad_disabled(sp), &spte);

	if (spte & PT_WRITABLE_MASK)
		kvm_vcpu_mark_page_dirty(vcpu, gfn);

2608 2609 2610
	if (*sptep == spte)
		ret |= SET_SPTE_SPURIOUS;
	else if (mmu_spte_update(sptep, spte))
2611
		ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
M
Marcelo Tosatti 已提交
2612 2613 2614
	return ret;
}

2615
static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2616
			unsigned int pte_access, bool write_fault, int level,
2617 2618
			gfn_t gfn, kvm_pfn_t pfn, bool speculative,
			bool host_writable)
M
Marcelo Tosatti 已提交
2619 2620
{
	int was_rmapped = 0;
2621
	int rmap_count;
2622
	int set_spte_ret;
2623
	int ret = RET_PF_FIXED;
2624
	bool flush = false;
M
Marcelo Tosatti 已提交
2625

2626 2627
	pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
		 *sptep, write_fault, gfn);
M
Marcelo Tosatti 已提交
2628

2629 2630 2631 2632 2633
	if (unlikely(is_noslot_pfn(pfn))) {
		mark_mmio_spte(vcpu, sptep, gfn, pte_access);
		return RET_PF_EMULATE;
	}

2634
	if (is_shadow_present_pte(*sptep)) {
M
Marcelo Tosatti 已提交
2635 2636 2637 2638
		/*
		 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
		 * the parent of the now unreachable PTE.
		 */
2639
		if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) {
M
Marcelo Tosatti 已提交
2640
			struct kvm_mmu_page *child;
A
Avi Kivity 已提交
2641
			u64 pte = *sptep;
M
Marcelo Tosatti 已提交
2642

2643
			child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2644
			drop_parent_pte(child, sptep);
2645
			flush = true;
A
Avi Kivity 已提交
2646
		} else if (pfn != spte_to_pfn(*sptep)) {
2647
			pgprintk("hfn old %llx new %llx\n",
A
Avi Kivity 已提交
2648
				 spte_to_pfn(*sptep), pfn);
2649
			drop_spte(vcpu->kvm, sptep);
2650
			flush = true;
2651 2652
		} else
			was_rmapped = 1;
M
Marcelo Tosatti 已提交
2653
	}
2654

2655 2656 2657
	set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
				speculative, true, host_writable);
	if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
M
Marcelo Tosatti 已提交
2658
		if (write_fault)
2659
			ret = RET_PF_EMULATE;
2660
		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2661
	}
2662

2663
	if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
2664 2665
		kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
				KVM_PAGES_PER_HPAGE(level));
M
Marcelo Tosatti 已提交
2666

2667 2668 2669 2670 2671 2672 2673 2674 2675
	/*
	 * The fault is fully spurious if and only if the new SPTE and old SPTE
	 * are identical, and emulation is not required.
	 */
	if ((set_spte_ret & SET_SPTE_SPURIOUS) && ret == RET_PF_FIXED) {
		WARN_ON_ONCE(!was_rmapped);
		return RET_PF_SPURIOUS;
	}

A
Avi Kivity 已提交
2676
	pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2677
	trace_kvm_mmu_set_spte(level, gfn, sptep);
A
Avi Kivity 已提交
2678
	if (!was_rmapped && is_large_pte(*sptep))
M
Marcelo Tosatti 已提交
2679 2680
		++vcpu->kvm->stat.lpages;

2681 2682 2683 2684 2685 2686
	if (is_shadow_present_pte(*sptep)) {
		if (!was_rmapped) {
			rmap_count = rmap_add(vcpu, sptep, gfn);
			if (rmap_count > RMAP_RECYCLE_THRESHOLD)
				rmap_recycle(vcpu, sptep, gfn);
		}
2687
	}
2688

2689
	return ret;
2690 2691
}

D
Dan Williams 已提交
2692
static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2693 2694 2695 2696
				     bool no_dirty_log)
{
	struct kvm_memory_slot *slot;

2697
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2698
	if (!slot)
2699
		return KVM_PFN_ERR_FAULT;
2700

2701
	return gfn_to_pfn_memslot_atomic(slot, gfn);
2702 2703 2704 2705 2706 2707 2708
}

static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
				    struct kvm_mmu_page *sp,
				    u64 *start, u64 *end)
{
	struct page *pages[PTE_PREFETCH_NUM];
2709
	struct kvm_memory_slot *slot;
2710
	unsigned int access = sp->role.access;
2711 2712 2713 2714
	int i, ret;
	gfn_t gfn;

	gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2715 2716
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
	if (!slot)
2717 2718
		return -1;

2719
	ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2720 2721 2722
	if (ret <= 0)
		return -1;

2723
	for (i = 0; i < ret; i++, gfn++, start++) {
2724
		mmu_set_spte(vcpu, start, access, false, sp->role.level, gfn,
2725
			     page_to_pfn(pages[i]), true, true);
2726 2727
		put_page(pages[i]);
	}
2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743

	return 0;
}

static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
				  struct kvm_mmu_page *sp, u64 *sptep)
{
	u64 *spte, *start = NULL;
	int i;

	WARN_ON(!sp->role.direct);

	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
	spte = sp->spt + i;

	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2744
		if (is_shadow_present_pte(*spte) || spte == sptep) {
2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758
			if (!start)
				continue;
			if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
				break;
			start = NULL;
		} else if (!start)
			start = spte;
	}
}

static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
{
	struct kvm_mmu_page *sp;

2759
	sp = sptep_to_sp(sptep);
2760

2761
	/*
2762 2763 2764
	 * Without accessed bits, there's no way to distinguish between
	 * actually accessed translations and prefetched, so disable pte
	 * prefetch if accessed bits aren't available.
2765
	 */
2766
	if (sp_ad_disabled(sp))
2767 2768
		return;

2769
	if (sp->role.level > PG_LEVEL_4K)
2770 2771
		return;

2772 2773 2774 2775 2776 2777 2778
	/*
	 * If addresses are being invalidated, skip prefetching to avoid
	 * accidentally prefetching those addresses.
	 */
	if (unlikely(vcpu->kvm->mmu_notifier_count))
		return;

2779 2780 2781
	__direct_pte_prefetch(vcpu, sp, sptep);
}

2782
static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn,
2783
				  const struct kvm_memory_slot *slot)
2784 2785 2786 2787 2788
{
	unsigned long hva;
	pte_t *pte;
	int level;

2789
	if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn))
2790
		return PG_LEVEL_4K;
2791

2792 2793 2794 2795 2796 2797 2798 2799
	/*
	 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
	 * is not solely for performance, it's also necessary to avoid the
	 * "writable" check in __gfn_to_hva_many(), which will always fail on
	 * read-only memslots due to gfn_to_hva() assuming writes.  Earlier
	 * page fault steps have already verified the guest isn't writing a
	 * read-only memslot.
	 */
2800 2801
	hva = __gfn_to_hva_memslot(slot, gfn);

2802
	pte = lookup_address_in_mm(kvm->mm, hva, &level);
2803
	if (unlikely(!pte))
2804
		return PG_LEVEL_4K;
2805 2806 2807 2808

	return level;
}

2809 2810 2811
int kvm_mmu_max_mapping_level(struct kvm *kvm,
			      const struct kvm_memory_slot *slot, gfn_t gfn,
			      kvm_pfn_t pfn, int max_level)
2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827
{
	struct kvm_lpage_info *linfo;

	max_level = min(max_level, max_huge_page_level);
	for ( ; max_level > PG_LEVEL_4K; max_level--) {
		linfo = lpage_info_slot(gfn, slot, max_level);
		if (!linfo->disallow_lpage)
			break;
	}

	if (max_level == PG_LEVEL_4K)
		return PG_LEVEL_4K;

	return host_pfn_mapping_level(kvm, gfn, pfn, slot);
}

B
Ben Gardon 已提交
2828 2829 2830
int kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, gfn_t gfn,
			    int max_level, kvm_pfn_t *pfnp,
			    bool huge_page_disallowed, int *req_level)
2831
{
2832
	struct kvm_memory_slot *slot;
2833
	kvm_pfn_t pfn = *pfnp;
2834
	kvm_pfn_t mask;
2835
	int level;
2836

2837 2838
	*req_level = PG_LEVEL_4K;

2839 2840
	if (unlikely(max_level == PG_LEVEL_4K))
		return PG_LEVEL_4K;
2841

2842
	if (is_error_noslot_pfn(pfn) || kvm_is_reserved_pfn(pfn))
2843
		return PG_LEVEL_4K;
2844

2845 2846
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, true);
	if (!slot)
2847
		return PG_LEVEL_4K;
2848

2849
	level = kvm_mmu_max_mapping_level(vcpu->kvm, slot, gfn, pfn, max_level);
2850
	if (level == PG_LEVEL_4K)
2851
		return level;
2852

2853 2854 2855 2856 2857 2858 2859 2860
	*req_level = level = min(level, max_level);

	/*
	 * Enforce the iTLB multihit workaround after capturing the requested
	 * level, which will be used to do precise, accurate accounting.
	 */
	if (huge_page_disallowed)
		return PG_LEVEL_4K;
2861 2862

	/*
2863 2864
	 * mmu_notifier_retry() was successful and mmu_lock is held, so
	 * the pmd can't be split from under us.
2865
	 */
2866 2867 2868
	mask = KVM_PAGES_PER_HPAGE(level) - 1;
	VM_BUG_ON((gfn & mask) != (pfn & mask));
	*pfnp = pfn & ~mask;
2869 2870

	return level;
2871 2872
}

B
Ben Gardon 已提交
2873 2874
void disallowed_hugepage_adjust(u64 spte, gfn_t gfn, int cur_level,
				kvm_pfn_t *pfnp, int *goal_levelp)
P
Paolo Bonzini 已提交
2875
{
B
Ben Gardon 已提交
2876
	int level = *goal_levelp;
P
Paolo Bonzini 已提交
2877

2878
	if (cur_level == level && level > PG_LEVEL_4K &&
P
Paolo Bonzini 已提交
2879 2880 2881 2882 2883 2884 2885 2886 2887
	    is_shadow_present_pte(spte) &&
	    !is_large_pte(spte)) {
		/*
		 * A small SPTE exists for this pfn, but FNAME(fetch)
		 * and __direct_map would like to create a large PTE
		 * instead: just force them to go down another level,
		 * patching back for them into pfn the next 9 bits of
		 * the address.
		 */
2888 2889
		u64 page_mask = KVM_PAGES_PER_HPAGE(level) -
				KVM_PAGES_PER_HPAGE(level - 1);
P
Paolo Bonzini 已提交
2890
		*pfnp |= gfn & page_mask;
B
Ben Gardon 已提交
2891
		(*goal_levelp)--;
P
Paolo Bonzini 已提交
2892 2893 2894
	}
}

2895
static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
2896
			int map_writable, int max_level, kvm_pfn_t pfn,
2897
			bool prefault, bool is_tdp)
2898
{
2899 2900 2901 2902
	bool nx_huge_page_workaround_enabled = is_nx_huge_page_enabled();
	bool write = error_code & PFERR_WRITE_MASK;
	bool exec = error_code & PFERR_FETCH_MASK;
	bool huge_page_disallowed = exec && nx_huge_page_workaround_enabled;
2903
	struct kvm_shadow_walk_iterator it;
2904
	struct kvm_mmu_page *sp;
2905
	int level, req_level, ret;
2906 2907
	gfn_t gfn = gpa >> PAGE_SHIFT;
	gfn_t base_gfn = gfn;
A
Avi Kivity 已提交
2908

2909 2910
	level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn,
					huge_page_disallowed, &req_level);
2911

2912
	trace_kvm_mmu_spte_requested(gpa, level, pfn);
2913
	for_each_shadow_entry(vcpu, gpa, it) {
P
Paolo Bonzini 已提交
2914 2915 2916 2917
		/*
		 * We cannot overwrite existing page tables with an NX
		 * large page, as the leaf could be executable.
		 */
2918
		if (nx_huge_page_workaround_enabled)
2919 2920
			disallowed_hugepage_adjust(*it.sptep, gfn, it.level,
						   &pfn, &level);
P
Paolo Bonzini 已提交
2921

2922 2923
		base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
		if (it.level == level)
2924
			break;
A
Avi Kivity 已提交
2925

2926 2927 2928 2929
		drop_large_spte(vcpu, it.sptep);
		if (!is_shadow_present_pte(*it.sptep)) {
			sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
					      it.level - 1, true, ACC_ALL);
2930

2931
			link_shadow_page(vcpu, it.sptep, sp);
2932 2933
			if (is_tdp && huge_page_disallowed &&
			    req_level >= it.level)
P
Paolo Bonzini 已提交
2934
				account_huge_nx_page(vcpu->kvm, sp);
2935 2936
		}
	}
2937 2938 2939 2940

	ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL,
			   write, level, base_gfn, pfn, prefault,
			   map_writable);
2941 2942 2943
	if (ret == RET_PF_SPURIOUS)
		return ret;

2944 2945 2946
	direct_pte_prefetch(vcpu, it.sptep);
	++vcpu->stat.pf_fixed;
	return ret;
A
Avi Kivity 已提交
2947 2948
}

H
Huang Ying 已提交
2949
static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2950
{
2951
	send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
2952 2953
}

D
Dan Williams 已提交
2954
static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
2955
{
X
Xiao Guangrong 已提交
2956 2957 2958 2959 2960 2961
	/*
	 * Do not cache the mmio info caused by writing the readonly gfn
	 * into the spte otherwise read access on readonly gfn also can
	 * caused mmio page fault and treat it as mmio access.
	 */
	if (pfn == KVM_PFN_ERR_RO_FAULT)
2962
		return RET_PF_EMULATE;
X
Xiao Guangrong 已提交
2963

2964
	if (pfn == KVM_PFN_ERR_HWPOISON) {
2965
		kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
2966
		return RET_PF_RETRY;
2967
	}
2968

2969
	return -EFAULT;
2970 2971
}

2972
static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2973 2974
				kvm_pfn_t pfn, unsigned int access,
				int *ret_val)
2975 2976
{
	/* The pfn is invalid, report the error! */
2977
	if (unlikely(is_error_pfn(pfn))) {
2978
		*ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2979
		return true;
2980 2981
	}

2982
	if (unlikely(is_noslot_pfn(pfn))) {
2983 2984
		vcpu_cache_mmio_info(vcpu, gva, gfn,
				     access & shadow_mmio_access_mask);
2985 2986 2987 2988 2989 2990 2991 2992 2993 2994
		/*
		 * If MMIO caching is disabled, emulate immediately without
		 * touching the shadow page tables as attempting to install an
		 * MMIO SPTE will just be an expensive nop.
		 */
		if (unlikely(!shadow_mmio_value)) {
			*ret_val = RET_PF_EMULATE;
			return true;
		}
	}
2995

2996
	return false;
2997 2998
}

2999
static bool page_fault_can_be_fast(u32 error_code)
3000
{
3001 3002 3003 3004 3005 3006 3007
	/*
	 * Do not fix the mmio spte with invalid generation number which
	 * need to be updated by slow page fault path.
	 */
	if (unlikely(error_code & PFERR_RSVD_MASK))
		return false;

3008 3009 3010 3011 3012
	/* See if the page fault is due to an NX violation */
	if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
		      == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
		return false;

3013
	/*
3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024
	 * #PF can be fast if:
	 * 1. The shadow page table entry is not present, which could mean that
	 *    the fault is potentially caused by access tracking (if enabled).
	 * 2. The shadow page table entry is present and the fault
	 *    is caused by write-protect, that means we just need change the W
	 *    bit of the spte which can be done out of mmu-lock.
	 *
	 * However, if access tracking is disabled we know that a non-present
	 * page must be a genuine page fault where we have to create a new SPTE.
	 * So, if access tracking is disabled, we return true only for write
	 * accesses to a present page.
3025 3026
	 */

3027 3028 3029
	return shadow_acc_track_mask != 0 ||
	       ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
		== (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
3030 3031
}

3032 3033 3034 3035
/*
 * Returns true if the SPTE was fixed successfully. Otherwise,
 * someone else modified the SPTE from its original value.
 */
3036
static bool
3037
fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
3038
			u64 *sptep, u64 old_spte, u64 new_spte)
3039 3040 3041 3042 3043
{
	gfn_t gfn;

	WARN_ON(!sp->role.direct);

3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
	/*
	 * Theoretically we could also set dirty bit (and flush TLB) here in
	 * order to eliminate unnecessary PML logging. See comments in
	 * set_spte. But fast_page_fault is very unlikely to happen with PML
	 * enabled, so we do not do this. This might result in the same GPA
	 * to be logged in PML buffer again when the write really happens, and
	 * eventually to be called by mark_page_dirty twice. But it's also no
	 * harm. This also avoids the TLB flush needed after setting dirty bit
	 * so non-PML cases won't be impacted.
	 *
	 * Compare with set_spte where instead shadow_dirty_mask is set.
	 */
3056
	if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3057 3058
		return false;

3059
	if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
3060 3061 3062 3063 3064 3065 3066
		/*
		 * The gfn of direct spte is stable since it is
		 * calculated by sp->gfn.
		 */
		gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
		kvm_vcpu_mark_page_dirty(vcpu, gfn);
	}
3067 3068 3069 3070

	return true;
}

3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082
static bool is_access_allowed(u32 fault_err_code, u64 spte)
{
	if (fault_err_code & PFERR_FETCH_MASK)
		return is_executable_pte(spte);

	if (fault_err_code & PFERR_WRITE_MASK)
		return is_writable_pte(spte);

	/* Fault was on Read access */
	return spte & PT_PRESENT_MASK;
}

3083
/*
3084
 * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS.
3085
 */
3086 3087
static int fast_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
			   u32 error_code)
3088 3089
{
	struct kvm_shadow_walk_iterator iterator;
3090
	struct kvm_mmu_page *sp;
3091
	int ret = RET_PF_INVALID;
3092
	u64 spte = 0ull;
3093
	uint retry_count = 0;
3094

3095
	if (!page_fault_can_be_fast(error_code))
3096
		return ret;
3097 3098 3099

	walk_shadow_page_lockless_begin(vcpu);

3100
	do {
3101
		u64 new_spte;
3102

3103
		for_each_shadow_entry_lockless(vcpu, cr2_or_gpa, iterator, spte)
3104
			if (!is_shadow_present_pte(spte))
3105 3106
				break;

3107 3108 3109
		if (!is_shadow_present_pte(spte))
			break;

3110
		sp = sptep_to_sp(iterator.sptep);
3111 3112
		if (!is_last_spte(spte, sp->role.level))
			break;
3113

3114
		/*
3115 3116 3117 3118 3119
		 * Check whether the memory access that caused the fault would
		 * still cause it if it were to be performed right now. If not,
		 * then this is a spurious fault caused by TLB lazily flushed,
		 * or some other CPU has already fixed the PTE after the
		 * current CPU took the fault.
3120 3121 3122 3123
		 *
		 * Need not check the access of upper level table entries since
		 * they are always ACC_ALL.
		 */
3124
		if (is_access_allowed(error_code, spte)) {
3125
			ret = RET_PF_SPURIOUS;
3126 3127
			break;
		}
3128

3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139
		new_spte = spte;

		if (is_access_track_spte(spte))
			new_spte = restore_acc_track_spte(new_spte);

		/*
		 * Currently, to simplify the code, write-protection can
		 * be removed in the fast path only if the SPTE was
		 * write-protected for dirty-logging or access tracking.
		 */
		if ((error_code & PFERR_WRITE_MASK) &&
3140
		    spte_can_locklessly_be_made_writable(spte)) {
3141
			new_spte |= PT_WRITABLE_MASK;
3142 3143

			/*
3144 3145 3146 3147 3148 3149 3150 3151 3152
			 * Do not fix write-permission on the large spte.  Since
			 * we only dirty the first page into the dirty-bitmap in
			 * fast_pf_fix_direct_spte(), other pages are missed
			 * if its slot has dirty logging enabled.
			 *
			 * Instead, we let the slow page fault path create a
			 * normal spte to fix the access.
			 *
			 * See the comments in kvm_arch_commit_memory_region().
3153
			 */
3154
			if (sp->role.level > PG_LEVEL_4K)
3155
				break;
3156
		}
3157

3158
		/* Verify that the fault can be handled in the fast path */
3159 3160
		if (new_spte == spte ||
		    !is_access_allowed(error_code, new_spte))
3161 3162 3163 3164 3165
			break;

		/*
		 * Currently, fast page fault only works for direct mapping
		 * since the gfn is not stable for indirect shadow page. See
3166
		 * Documentation/virt/kvm/locking.rst to get more detail.
3167
		 */
3168 3169 3170
		if (fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte,
					    new_spte)) {
			ret = RET_PF_FIXED;
3171
			break;
3172
		}
3173 3174 3175 3176 3177 3178 3179 3180

		if (++retry_count > 4) {
			printk_once(KERN_WARNING
				"kvm: Fast #PF retrying more than 4 times.\n");
			break;
		}

	} while (true);
3181

3182
	trace_fast_page_fault(vcpu, cr2_or_gpa, error_code, iterator.sptep,
3183
			      spte, ret);
3184 3185
	walk_shadow_page_lockless_end(vcpu);

3186
	return ret;
3187 3188
}

3189 3190
static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
			       struct list_head *invalid_list)
3191
{
3192
	struct kvm_mmu_page *sp;
3193

3194
	if (!VALID_PAGE(*root_hpa))
A
Avi Kivity 已提交
3195
		return;
3196

3197
	sp = to_shadow_page(*root_hpa & PT64_BASE_ADDR_MASK);
3198

3199
	if (is_tdp_mmu_page(sp))
3200
		kvm_tdp_mmu_put_root(kvm, sp, false);
3201 3202
	else if (!--sp->root_count && sp->role.invalid)
		kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3203

3204 3205 3206
	*root_hpa = INVALID_PAGE;
}

3207
/* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
3208 3209
void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
			ulong roots_to_free)
3210
{
3211
	struct kvm *kvm = vcpu->kvm;
3212 3213
	int i;
	LIST_HEAD(invalid_list);
3214
	bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
3215

3216
	BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3217

3218
	/* Before acquiring the MMU lock, see if we need to do any real work. */
3219 3220 3221 3222 3223 3224 3225 3226 3227
	if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
			if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
			    VALID_PAGE(mmu->prev_roots[i].hpa))
				break;

		if (i == KVM_MMU_NUM_PREV_ROOTS)
			return;
	}
3228

3229
	write_lock(&kvm->mmu_lock);
3230

3231 3232
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
		if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3233
			mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa,
3234
					   &invalid_list);
3235

3236 3237 3238
	if (free_active_root) {
		if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
		    (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3239
			mmu_free_root_page(kvm, &mmu->root_hpa, &invalid_list);
3240
		} else if (mmu->pae_root) {
3241 3242 3243 3244 3245 3246 3247 3248
			for (i = 0; i < 4; ++i) {
				if (!IS_VALID_PAE_ROOT(mmu->pae_root[i]))
					continue;

				mmu_free_root_page(kvm, &mmu->pae_root[i],
						   &invalid_list);
				mmu->pae_root[i] = INVALID_PAE_ROOT;
			}
3249
		}
3250
		mmu->root_hpa = INVALID_PAGE;
3251
		mmu->root_pgd = 0;
3252
	}
3253

3254
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
3255
	write_unlock(&kvm->mmu_lock);
3256
}
3257
EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3258

3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285
void kvm_mmu_free_guest_mode_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
{
	unsigned long roots_to_free = 0;
	hpa_t root_hpa;
	int i;

	/*
	 * This should not be called while L2 is active, L2 can't invalidate
	 * _only_ its own roots, e.g. INVVPID unconditionally exits.
	 */
	WARN_ON_ONCE(mmu->mmu_role.base.guest_mode);

	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
		root_hpa = mmu->prev_roots[i].hpa;
		if (!VALID_PAGE(root_hpa))
			continue;

		if (!to_shadow_page(root_hpa) ||
			to_shadow_page(root_hpa)->role.guest_mode)
			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
	}

	kvm_mmu_free_roots(vcpu, mmu, roots_to_free);
}
EXPORT_SYMBOL_GPL(kvm_mmu_free_guest_mode_roots);


3286 3287 3288 3289
static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
{
	int ret = 0;

3290
	if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) {
3291
		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3292 3293 3294 3295 3296 3297
		ret = 1;
	}

	return ret;
}

3298 3299
static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, gva_t gva,
			    u8 level, bool direct)
3300 3301
{
	struct kvm_mmu_page *sp;
3302 3303 3304 3305 3306 3307 3308 3309 3310

	sp = kvm_mmu_get_page(vcpu, gfn, gva, level, direct, ACC_ALL);
	++sp->root_count;

	return __pa(sp->spt);
}

static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
{
3311 3312
	struct kvm_mmu *mmu = vcpu->arch.mmu;
	u8 shadow_root_level = mmu->shadow_root_level;
3313
	hpa_t root;
3314
	unsigned i;
3315 3316 3317 3318 3319 3320
	int r;

	write_lock(&vcpu->kvm->mmu_lock);
	r = make_mmu_pages_available(vcpu);
	if (r < 0)
		goto out_unlock;
3321

3322
	if (is_tdp_mmu_enabled(vcpu->kvm)) {
3323
		root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu);
3324
		mmu->root_hpa = root;
3325
	} else if (shadow_root_level >= PT64_ROOT_4LEVEL) {
3326
		root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level, true);
3327
		mmu->root_hpa = root;
3328
	} else if (shadow_root_level == PT32E_ROOT_LEVEL) {
3329 3330 3331 3332
		if (WARN_ON_ONCE(!mmu->pae_root)) {
			r = -EIO;
			goto out_unlock;
		}
3333

3334
		for (i = 0; i < 4; ++i) {
3335
			WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3336

3337 3338
			root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT),
					      i << 30, PT32_ROOT_LEVEL, true);
3339 3340
			mmu->pae_root[i] = root | PT_PRESENT_MASK |
					   shadow_me_mask;
3341
		}
3342
		mmu->root_hpa = __pa(mmu->pae_root);
3343 3344
	} else {
		WARN_ONCE(1, "Bad TDP root level = %d\n", shadow_root_level);
3345 3346
		r = -EIO;
		goto out_unlock;
3347
	}
3348

3349
	/* root_pgd is ignored for direct MMUs. */
3350
	mmu->root_pgd = 0;
3351 3352 3353
out_unlock:
	write_unlock(&vcpu->kvm->mmu_lock);
	return r;
3354 3355 3356
}

static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3357
{
3358
	struct kvm_mmu *mmu = vcpu->arch.mmu;
3359
	u64 pdptrs[4], pm_mask;
3360
	gfn_t root_gfn, root_pgd;
3361
	hpa_t root;
3362 3363
	unsigned i;
	int r;
3364

3365
	root_pgd = mmu->get_guest_pgd(vcpu);
3366
	root_gfn = root_pgd >> PAGE_SHIFT;
3367

3368 3369 3370
	if (mmu_check_root(vcpu, root_gfn))
		return 1;

3371 3372 3373 3374
	/*
	 * On SVM, reading PDPTRs might access guest memory, which might fault
	 * and thus might sleep.  Grab the PDPTRs before acquiring mmu_lock.
	 */
3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385
	if (mmu->root_level == PT32E_ROOT_LEVEL) {
		for (i = 0; i < 4; ++i) {
			pdptrs[i] = mmu->get_pdptr(vcpu, i);
			if (!(pdptrs[i] & PT_PRESENT_MASK))
				continue;

			if (mmu_check_root(vcpu, pdptrs[i] >> PAGE_SHIFT))
				return 1;
		}
	}

3386 3387 3388 3389
	r = alloc_all_memslots_rmaps(vcpu->kvm);
	if (r)
		return r;

3390 3391 3392 3393 3394
	write_lock(&vcpu->kvm->mmu_lock);
	r = make_mmu_pages_available(vcpu);
	if (r < 0)
		goto out_unlock;

3395 3396 3397 3398
	/*
	 * Do we shadow a long mode page table? If so we need to
	 * write-protect the guests page table root.
	 */
3399
	if (mmu->root_level >= PT64_ROOT_4LEVEL) {
3400
		root = mmu_alloc_root(vcpu, root_gfn, 0,
3401 3402
				      mmu->shadow_root_level, false);
		mmu->root_hpa = root;
3403
		goto set_root_pgd;
3404
	}
3405

3406 3407 3408 3409
	if (WARN_ON_ONCE(!mmu->pae_root)) {
		r = -EIO;
		goto out_unlock;
	}
3410

3411 3412
	/*
	 * We shadow a 32 bit page table. This may be a legacy 2-level
3413 3414
	 * or a PAE 3-level page table. In either case we need to be aware that
	 * the shadow page table may be a PAE or a long mode page table.
3415
	 */
3416
	pm_mask = PT_PRESENT_MASK | shadow_me_mask;
3417
	if (mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
3418 3419
		pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;

3420
		if (WARN_ON_ONCE(!mmu->pml4_root)) {
3421 3422 3423
			r = -EIO;
			goto out_unlock;
		}
3424

3425
		mmu->pml4_root[0] = __pa(mmu->pae_root) | pm_mask;
3426 3427
	}

3428
	for (i = 0; i < 4; ++i) {
3429
		WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3430

3431
		if (mmu->root_level == PT32E_ROOT_LEVEL) {
3432
			if (!(pdptrs[i] & PT_PRESENT_MASK)) {
3433
				mmu->pae_root[i] = INVALID_PAE_ROOT;
A
Avi Kivity 已提交
3434 3435
				continue;
			}
3436
			root_gfn = pdptrs[i] >> PAGE_SHIFT;
3437
		}
3438

3439 3440
		root = mmu_alloc_root(vcpu, root_gfn, i << 30,
				      PT32_ROOT_LEVEL, false);
3441
		mmu->pae_root[i] = root | pm_mask;
3442
	}
3443

3444
	if (mmu->shadow_root_level == PT64_ROOT_4LEVEL)
3445
		mmu->root_hpa = __pa(mmu->pml4_root);
3446 3447
	else
		mmu->root_hpa = __pa(mmu->pae_root);
3448

3449
set_root_pgd:
3450
	mmu->root_pgd = root_pgd;
3451 3452
out_unlock:
	write_unlock(&vcpu->kvm->mmu_lock);
3453

3454
	return 0;
3455 3456
}

3457 3458 3459
static int mmu_alloc_special_roots(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu *mmu = vcpu->arch.mmu;
3460
	u64 *pml4_root, *pae_root;
3461 3462

	/*
3463 3464 3465 3466
	 * When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP
	 * tables are allocated and initialized at root creation as there is no
	 * equivalent level in the guest's NPT to shadow.  Allocate the tables
	 * on demand, as running a 32-bit L1 VMM on 64-bit KVM is very rare.
3467
	 */
3468 3469 3470
	if (mmu->direct_map || mmu->root_level >= PT64_ROOT_4LEVEL ||
	    mmu->shadow_root_level < PT64_ROOT_4LEVEL)
		return 0;
3471

3472 3473 3474 3475 3476 3477
	/*
	 * This mess only works with 4-level paging and needs to be updated to
	 * work with 5-level paging.
	 */
	if (WARN_ON_ONCE(mmu->shadow_root_level != PT64_ROOT_4LEVEL))
		return -EIO;
3478

3479
	if (mmu->pae_root && mmu->pml4_root)
3480
		return 0;
3481

3482 3483 3484 3485
	/*
	 * The special roots should always be allocated in concert.  Yell and
	 * bail if KVM ends up in a state where only one of the roots is valid.
	 */
3486
	if (WARN_ON_ONCE(!tdp_enabled || mmu->pae_root || mmu->pml4_root))
3487
		return -EIO;
3488

3489 3490 3491 3492
	/*
	 * Unlike 32-bit NPT, the PDP table doesn't need to be in low mem, and
	 * doesn't need to be decrypted.
	 */
3493 3494 3495
	pae_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
	if (!pae_root)
		return -ENOMEM;
3496

3497 3498
	pml4_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
	if (!pml4_root) {
3499 3500
		free_page((unsigned long)pae_root);
		return -ENOMEM;
3501 3502
	}

3503
	mmu->pae_root = pae_root;
3504
	mmu->pml4_root = pml4_root;
3505

3506
	return 0;
3507 3508
}

3509
void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3510 3511 3512 3513
{
	int i;
	struct kvm_mmu_page *sp;

3514
	if (vcpu->arch.mmu->direct_map)
3515 3516
		return;

3517
	if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3518
		return;
3519

3520
	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3521

3522 3523
	if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
		hpa_t root = vcpu->arch.mmu->root_hpa;
3524
		sp = to_shadow_page(root);
3525 3526 3527 3528 3529 3530 3531 3532

		/*
		 * Even if another CPU was marking the SP as unsync-ed
		 * simultaneously, any guest page table changes are not
		 * guaranteed to be visible anyway until this VCPU issues a TLB
		 * flush strictly after those changes are made. We only need to
		 * ensure that the other CPU sets these flags before any actual
		 * changes to the page tables are made. The comments in
3533 3534
		 * mmu_try_to_unsync_pages() describe what could go wrong if
		 * this requirement isn't satisfied.
3535 3536 3537 3538 3539
		 */
		if (!smp_load_acquire(&sp->unsync) &&
		    !smp_load_acquire(&sp->unsync_children))
			return;

3540
		write_lock(&vcpu->kvm->mmu_lock);
3541 3542
		kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);

3543
		mmu_sync_children(vcpu, sp);
3544

3545
		kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3546
		write_unlock(&vcpu->kvm->mmu_lock);
3547 3548
		return;
	}
3549

3550
	write_lock(&vcpu->kvm->mmu_lock);
3551 3552
	kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);

3553
	for (i = 0; i < 4; ++i) {
3554
		hpa_t root = vcpu->arch.mmu->pae_root[i];
3555

3556
		if (IS_VALID_PAE_ROOT(root)) {
3557
			root &= PT64_BASE_ADDR_MASK;
3558
			sp = to_shadow_page(root);
3559 3560 3561 3562
			mmu_sync_children(vcpu, sp);
		}
	}

3563
	kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3564
	write_unlock(&vcpu->kvm->mmu_lock);
3565 3566
}

3567
static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr,
3568
				  u32 access, struct x86_exception *exception)
A
Avi Kivity 已提交
3569
{
3570 3571
	if (exception)
		exception->error_code = 0;
A
Avi Kivity 已提交
3572 3573 3574
	return vaddr;
}

3575
static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr,
3576 3577
					 u32 access,
					 struct x86_exception *exception)
3578
{
3579 3580
	if (exception)
		exception->error_code = 0;
3581
	return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3582 3583
}

3584 3585 3586
static bool
__is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
{
3587
	int bit7 = (pte >> 7) & 1;
3588

3589
	return pte & rsvd_check->rsvd_bits_mask[bit7][level-1];
3590 3591
}

3592
static bool __is_bad_mt_xwr(struct rsvd_bits_validate *rsvd_check, u64 pte)
3593
{
3594
	return rsvd_check->bad_mt_xwr & BIT_ULL(pte & 0x3f);
3595 3596
}

3597
static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3598
{
3599 3600 3601 3602 3603 3604 3605
	/*
	 * A nested guest cannot use the MMIO cache if it is using nested
	 * page tables, because cr2 is a nGPA while the cache stores GPAs.
	 */
	if (mmu_is_nested(vcpu))
		return false;

3606 3607 3608 3609 3610 3611
	if (direct)
		return vcpu_match_mmio_gpa(vcpu, addr);

	return vcpu_match_mmio_gva(vcpu, addr);
}

3612 3613 3614 3615
/*
 * Return the level of the lowest level SPTE added to sptes.
 * That SPTE may be non-present.
 */
3616
static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level)
3617 3618
{
	struct kvm_shadow_walk_iterator iterator;
3619
	int leaf = -1;
3620
	u64 spte;
3621 3622

	walk_shadow_page_lockless_begin(vcpu);
3623

3624 3625
	for (shadow_walk_init(&iterator, vcpu, addr),
	     *root_level = iterator.level;
3626 3627
	     shadow_walk_okay(&iterator);
	     __shadow_walk_next(&iterator, spte)) {
3628
		leaf = iterator.level;
3629 3630
		spte = mmu_spte_get_lockless(iterator.sptep);

3631
		sptes[leaf] = spte;
3632

3633 3634
		if (!is_shadow_present_pte(spte))
			break;
3635 3636 3637 3638 3639 3640 3641
	}

	walk_shadow_page_lockless_end(vcpu);

	return leaf;
}

3642
/* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */
3643 3644
static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
{
3645
	u64 sptes[PT64_ROOT_MAX_LEVEL + 1];
3646
	struct rsvd_bits_validate *rsvd_check;
3647
	int root, leaf, level;
3648 3649
	bool reserved = false;

3650
	if (is_tdp_mmu(vcpu->arch.mmu))
3651
		leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, &root);
3652
	else
3653
		leaf = get_walk(vcpu, addr, sptes, &root);
3654

3655 3656 3657 3658 3659
	if (unlikely(leaf < 0)) {
		*sptep = 0ull;
		return reserved;
	}

3660 3661 3662 3663 3664 3665 3666 3667 3668 3669
	*sptep = sptes[leaf];

	/*
	 * Skip reserved bits checks on the terminal leaf if it's not a valid
	 * SPTE.  Note, this also (intentionally) skips MMIO SPTEs, which, by
	 * design, always have reserved bits set.  The purpose of the checks is
	 * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs.
	 */
	if (!is_shadow_present_pte(sptes[leaf]))
		leaf++;
3670 3671 3672

	rsvd_check = &vcpu->arch.mmu->shadow_zero_check;

3673
	for (level = root; level >= leaf; level--)
3674 3675 3676 3677 3678
		/*
		 * Use a bitwise-OR instead of a logical-OR to aggregate the
		 * reserved bit and EPT's invalid memtype/XWR checks to avoid
		 * adding a Jcc in the loop.
		 */
3679 3680
		reserved |= __is_bad_mt_xwr(rsvd_check, sptes[level]) |
			    __is_rsvd_bits_set(rsvd_check, sptes[level], level);
3681 3682

	if (reserved) {
3683
		pr_err("%s: reserved bits set on MMU-present spte, addr 0x%llx, hierarchy:\n",
3684
		       __func__, addr);
3685
		for (level = root; level >= leaf; level--)
3686 3687 3688
			pr_err("------ spte = 0x%llx level = %d, rsvd bits = 0x%llx",
			       sptes[level], level,
			       rsvd_check->rsvd_bits_mask[(sptes[level] >> 7) & 1][level-1]);
3689
	}
3690

3691
	return reserved;
3692 3693
}

P
Paolo Bonzini 已提交
3694
static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3695 3696
{
	u64 spte;
3697
	bool reserved;
3698

3699
	if (mmio_info_in_cache(vcpu, addr, direct))
3700
		return RET_PF_EMULATE;
3701

3702
	reserved = get_mmio_spte(vcpu, addr, &spte);
3703
	if (WARN_ON(reserved))
3704
		return -EINVAL;
3705 3706 3707

	if (is_mmio_spte(spte)) {
		gfn_t gfn = get_mmio_spte_gfn(spte);
3708
		unsigned int access = get_mmio_spte_access(spte);
3709

3710
		if (!check_mmio_spte(vcpu, spte))
3711
			return RET_PF_INVALID;
3712

3713 3714
		if (direct)
			addr = 0;
X
Xiao Guangrong 已提交
3715 3716

		trace_handle_mmio_page_fault(addr, gfn, access);
3717
		vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3718
		return RET_PF_EMULATE;
3719 3720 3721 3722 3723 3724
	}

	/*
	 * If the page table is zapped by other cpus, let CPU fault again on
	 * the address.
	 */
3725
	return RET_PF_RETRY;
3726 3727
}

3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747
static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
					 u32 error_code, gfn_t gfn)
{
	if (unlikely(error_code & PFERR_RSVD_MASK))
		return false;

	if (!(error_code & PFERR_PRESENT_MASK) ||
	      !(error_code & PFERR_WRITE_MASK))
		return false;

	/*
	 * guest is writing the page which is write tracked which can
	 * not be fixed by page fault handler.
	 */
	if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
		return true;

	return false;
}

3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761
static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
{
	struct kvm_shadow_walk_iterator iterator;
	u64 spte;

	walk_shadow_page_lockless_begin(vcpu);
	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
		clear_sp_write_flooding_count(iterator.sptep);
		if (!is_shadow_present_pte(spte))
			break;
	}
	walk_shadow_page_lockless_end(vcpu);
}

3762 3763
static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
				    gfn_t gfn)
3764 3765
{
	struct kvm_arch_async_pf arch;
X
Xiao Guangrong 已提交
3766

3767
	arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3768
	arch.gfn = gfn;
3769
	arch.direct_map = vcpu->arch.mmu->direct_map;
3770
	arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu);
3771

3772 3773
	return kvm_setup_async_pf(vcpu, cr2_or_gpa,
				  kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3774 3775
}

3776
static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3777 3778
			 gpa_t cr2_or_gpa, kvm_pfn_t *pfn, hva_t *hva,
			 bool write, bool *writable)
3779
{
3780
	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3781 3782
	bool async;

3783 3784 3785 3786 3787 3788 3789 3790
	/*
	 * Retry the page fault if the gfn hit a memslot that is being deleted
	 * or moved.  This ensures any existing SPTEs for the old memslot will
	 * be zapped before KVM inserts a new MMIO SPTE for the gfn.
	 */
	if (slot && (slot->flags & KVM_MEMSLOT_INVALID))
		return true;

3791 3792
	/* Don't expose private memslots to L2. */
	if (is_guest_mode(vcpu) && !kvm_is_visible_memslot(slot)) {
3793
		*pfn = KVM_PFN_NOSLOT;
3794
		*writable = false;
3795 3796 3797
		return false;
	}

3798
	async = false;
3799 3800
	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async,
				    write, writable, hva);
3801 3802 3803
	if (!async)
		return false; /* *pfn has correct page already */

3804
	if (!prefault && kvm_can_do_async_pf(vcpu)) {
3805
		trace_kvm_try_async_get_page(cr2_or_gpa, gfn);
3806
		if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3807
			trace_kvm_async_pf_doublefault(cr2_or_gpa, gfn);
3808 3809
			kvm_make_request(KVM_REQ_APF_HALT, vcpu);
			return true;
3810
		} else if (kvm_arch_setup_async_pf(vcpu, cr2_or_gpa, gfn))
3811 3812 3813
			return true;
	}

3814 3815
	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL,
				    write, writable, hva);
3816 3817 3818
	return false;
}

3819 3820
static int direct_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
			     bool prefault, int max_level, bool is_tdp)
A
Avi Kivity 已提交
3821
{
3822
	bool is_tdp_mmu_fault = is_tdp_mmu(vcpu->arch.mmu);
3823
	bool write = error_code & PFERR_WRITE_MASK;
3824
	bool map_writable;
A
Avi Kivity 已提交
3825

3826 3827 3828
	gfn_t gfn = gpa >> PAGE_SHIFT;
	unsigned long mmu_seq;
	kvm_pfn_t pfn;
3829
	hva_t hva;
3830
	int r;
3831

3832
	if (page_fault_handle_page_track(vcpu, error_code, gfn))
3833
		return RET_PF_EMULATE;
3834

3835
	if (!is_tdp_mmu_fault) {
B
Ben Gardon 已提交
3836 3837 3838 3839
		r = fast_page_fault(vcpu, gpa, error_code);
		if (r != RET_PF_INVALID)
			return r;
	}
3840

3841
	r = mmu_topup_memory_caches(vcpu, false);
3842 3843
	if (r)
		return r;
3844

3845 3846 3847
	mmu_seq = vcpu->kvm->mmu_notifier_seq;
	smp_rmb();

3848 3849
	if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, &hva,
			 write, &map_writable))
3850 3851
		return RET_PF_RETRY;

3852
	if (handle_abnormal_pfn(vcpu, is_tdp ? 0 : gpa, gfn, pfn, ACC_ALL, &r))
3853
		return r;
A
Avi Kivity 已提交
3854

3855
	r = RET_PF_RETRY;
3856

3857
	if (is_tdp_mmu_fault)
3858 3859 3860 3861
		read_lock(&vcpu->kvm->mmu_lock);
	else
		write_lock(&vcpu->kvm->mmu_lock);

3862
	if (!is_noslot_pfn(pfn) && mmu_notifier_retry_hva(vcpu->kvm, mmu_seq, hva))
3863
		goto out_unlock;
3864 3865
	r = make_mmu_pages_available(vcpu);
	if (r)
3866
		goto out_unlock;
B
Ben Gardon 已提交
3867

3868
	if (is_tdp_mmu_fault)
B
Ben Gardon 已提交
3869 3870 3871 3872 3873
		r = kvm_tdp_mmu_map(vcpu, gpa, error_code, map_writable, max_level,
				    pfn, prefault);
	else
		r = __direct_map(vcpu, gpa, error_code, map_writable, max_level, pfn,
				 prefault, is_tdp);
3874

3875
out_unlock:
3876
	if (is_tdp_mmu_fault)
3877 3878 3879
		read_unlock(&vcpu->kvm->mmu_lock);
	else
		write_unlock(&vcpu->kvm->mmu_lock);
3880 3881
	kvm_release_pfn_clean(pfn);
	return r;
A
Avi Kivity 已提交
3882 3883
}

3884 3885 3886 3887 3888 3889 3890
static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa,
				u32 error_code, bool prefault)
{
	pgprintk("%s: gva %lx error %x\n", __func__, gpa, error_code);

	/* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
	return direct_page_fault(vcpu, gpa & PAGE_MASK, error_code, prefault,
3891
				 PG_LEVEL_2M, false);
3892 3893
}

3894
int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
3895
				u64 fault_address, char *insn, int insn_len)
3896 3897
{
	int r = 1;
3898
	u32 flags = vcpu->arch.apf.host_apf_flags;
3899

3900 3901 3902 3903 3904 3905
#ifndef CONFIG_X86_64
	/* A 64-bit CR2 should be impossible on 32-bit KVM. */
	if (WARN_ON_ONCE(fault_address >> 32))
		return -EFAULT;
#endif

P
Paolo Bonzini 已提交
3906
	vcpu->arch.l1tf_flush_l1d = true;
3907
	if (!flags) {
3908 3909
		trace_kvm_page_fault(fault_address, error_code);

3910
		if (kvm_event_needs_reinjection(vcpu))
3911 3912 3913
			kvm_mmu_unprotect_page_virt(vcpu, fault_address);
		r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
				insn_len);
3914
	} else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
3915
		vcpu->arch.apf.host_apf_flags = 0;
3916
		local_irq_disable();
3917
		kvm_async_pf_task_wait_schedule(fault_address);
3918
		local_irq_enable();
3919 3920
	} else {
		WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags);
3921
	}
3922

3923 3924 3925 3926
	return r;
}
EXPORT_SYMBOL_GPL(kvm_handle_page_fault);

3927 3928
int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
		       bool prefault)
3929
{
3930
	int max_level;
3931

3932
	for (max_level = KVM_MAX_HUGEPAGE_LEVEL;
3933
	     max_level > PG_LEVEL_4K;
3934 3935
	     max_level--) {
		int page_num = KVM_PAGES_PER_HPAGE(max_level);
3936
		gfn_t base = (gpa >> PAGE_SHIFT) & ~(page_num - 1);
3937

3938 3939
		if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
			break;
3940
	}
3941

3942 3943
	return direct_page_fault(vcpu, gpa, error_code, prefault,
				 max_level, true);
3944 3945
}

3946
static void nonpaging_init_context(struct kvm_mmu *context)
A
Avi Kivity 已提交
3947 3948 3949
{
	context->page_fault = nonpaging_page_fault;
	context->gva_to_gpa = nonpaging_gva_to_gpa;
3950
	context->sync_page = nonpaging_sync_page;
3951
	context->invlpg = NULL;
3952
	context->root_level = 0;
3953
	context->direct_map = true;
A
Avi Kivity 已提交
3954 3955
}

3956
static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd,
3957 3958
				  union kvm_mmu_page_role role)
{
3959
	return (role.direct || pgd == root->pgd) &&
3960 3961
	       VALID_PAGE(root->hpa) && to_shadow_page(root->hpa) &&
	       role.word == to_shadow_page(root->hpa)->role.word;
3962 3963
}

3964
/*
3965
 * Find out if a previously cached root matching the new pgd/role is available.
3966 3967 3968 3969 3970 3971
 * The current root is also inserted into the cache.
 * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
 * returned.
 * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
 * false is returned. This root should now be freed by the caller.
 */
3972
static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3973 3974 3975 3976
				  union kvm_mmu_page_role new_role)
{
	uint i;
	struct kvm_mmu_root_info root;
3977
	struct kvm_mmu *mmu = vcpu->arch.mmu;
3978

3979
	root.pgd = mmu->root_pgd;
3980 3981
	root.hpa = mmu->root_hpa;

3982
	if (is_root_usable(&root, new_pgd, new_role))
3983 3984
		return true;

3985 3986 3987
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
		swap(root, mmu->prev_roots[i]);

3988
		if (is_root_usable(&root, new_pgd, new_role))
3989 3990 3991 3992
			break;
	}

	mmu->root_hpa = root.hpa;
3993
	mmu->root_pgd = root.pgd;
3994 3995 3996 3997

	return i < KVM_MMU_NUM_PREV_ROOTS;
}

3998
static bool fast_pgd_switch(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3999
			    union kvm_mmu_page_role new_role)
A
Avi Kivity 已提交
4000
{
4001
	struct kvm_mmu *mmu = vcpu->arch.mmu;
4002 4003 4004 4005 4006 4007 4008

	/*
	 * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
	 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
	 * later if necessary.
	 */
	if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
4009
	    mmu->root_level >= PT64_ROOT_4LEVEL)
4010
		return cached_root_available(vcpu, new_pgd, new_role);
4011 4012

	return false;
A
Avi Kivity 已提交
4013 4014
}

4015
static void __kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd,
4016
			      union kvm_mmu_page_role new_role)
A
Avi Kivity 已提交
4017
{
4018
	if (!fast_pgd_switch(vcpu, new_pgd, new_role)) {
4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030
		kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, KVM_MMU_ROOT_CURRENT);
		return;
	}

	/*
	 * It's possible that the cached previous root page is obsolete because
	 * of a change in the MMU generation number. However, changing the
	 * generation number is accompanied by KVM_REQ_MMU_RELOAD, which will
	 * free the root set here and allocate a new one.
	 */
	kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);

4031
	if (force_flush_and_sync_on_reuse) {
4032 4033
		kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
4034
	}
4035 4036 4037 4038 4039 4040 4041 4042 4043

	/*
	 * The last MMIO access's GVA and GPA are cached in the VCPU. When
	 * switching to a new CR3, that GVA->GPA mapping may no longer be
	 * valid. So clear any cached MMIO info even when we don't need to sync
	 * the shadow page tables.
	 */
	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);

4044 4045 4046 4047 4048 4049 4050
	/*
	 * If this is a direct root page, it doesn't have a write flooding
	 * count. Otherwise, clear the write flooding count.
	 */
	if (!new_role.direct)
		__clear_sp_write_flooding_count(
				to_shadow_page(vcpu->arch.mmu->root_hpa));
A
Avi Kivity 已提交
4051 4052
}

4053
void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd)
4054
{
4055
	__kvm_mmu_new_pgd(vcpu, new_pgd, kvm_mmu_calc_root_page_role(vcpu));
4056
}
4057
EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd);
4058

4059 4060
static unsigned long get_cr3(struct kvm_vcpu *vcpu)
{
4061
	return kvm_read_cr3(vcpu);
4062 4063
}

4064
static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
4065
			   unsigned int access, int *nr_present)
4066 4067 4068 4069 4070 4071 4072 4073
{
	if (unlikely(is_mmio_spte(*sptep))) {
		if (gfn != get_mmio_spte_gfn(*sptep)) {
			mmu_spte_clear_no_track(sptep);
			return true;
		}

		(*nr_present)++;
4074
		mark_mmio_spte(vcpu, sptep, gfn, access);
4075 4076 4077 4078 4079 4080
		return true;
	}

	return false;
}

4081 4082
static inline bool is_last_gpte(struct kvm_mmu *mmu,
				unsigned level, unsigned gpte)
A
Avi Kivity 已提交
4083
{
4084 4085 4086 4087 4088 4089 4090
	/*
	 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
	 * If it is clear, there are no large pages at this level, so clear
	 * PT_PAGE_SIZE_MASK in gpte if that is the case.
	 */
	gpte &= level - mmu->last_nonleaf_level;

4091
	/*
4092 4093 4094
	 * PG_LEVEL_4K always terminates.  The RHS has bit 7 set
	 * iff level <= PG_LEVEL_4K, which for our purpose means
	 * level == PG_LEVEL_4K; set PT_PAGE_SIZE_MASK in gpte then.
4095
	 */
4096
	gpte |= level - PG_LEVEL_4K - 1;
4097

4098
	return gpte & PT_PAGE_SIZE_MASK;
A
Avi Kivity 已提交
4099 4100
}

4101 4102 4103 4104 4105
#define PTTYPE_EPT 18 /* arbitrary */
#define PTTYPE PTTYPE_EPT
#include "paging_tmpl.h"
#undef PTTYPE

A
Avi Kivity 已提交
4106 4107 4108 4109 4110 4111 4112 4113
#define PTTYPE 64
#include "paging_tmpl.h"
#undef PTTYPE

#define PTTYPE 32
#include "paging_tmpl.h"
#undef PTTYPE

4114
static void
4115
__reset_rsvds_bits_mask(struct rsvd_bits_validate *rsvd_check,
4116
			u64 pa_bits_rsvd, int level, bool nx, bool gbpages,
4117
			bool pse, bool amd)
4118
{
4119
	u64 gbpages_bit_rsvd = 0;
4120
	u64 nonleaf_bit8_rsvd = 0;
4121
	u64 high_bits_rsvd;
4122

4123
	rsvd_check->bad_mt_xwr = 0;
4124

4125
	if (!gbpages)
4126
		gbpages_bit_rsvd = rsvd_bits(7, 7);
4127

4128 4129 4130 4131 4132 4133 4134 4135 4136
	if (level == PT32E_ROOT_LEVEL)
		high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 62);
	else
		high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);

	/* Note, NX doesn't exist in PDPTEs, this is handled below. */
	if (!nx)
		high_bits_rsvd |= rsvd_bits(63, 63);

4137 4138 4139 4140
	/*
	 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
	 * leaf entries) on AMD CPUs only.
	 */
4141
	if (amd)
4142 4143
		nonleaf_bit8_rsvd = rsvd_bits(8, 8);

4144
	switch (level) {
4145 4146
	case PT32_ROOT_LEVEL:
		/* no rsvd bits for 2 level 4K page table entries */
4147 4148 4149 4150
		rsvd_check->rsvd_bits_mask[0][1] = 0;
		rsvd_check->rsvd_bits_mask[0][0] = 0;
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
4151

4152
		if (!pse) {
4153
			rsvd_check->rsvd_bits_mask[1][1] = 0;
4154 4155 4156
			break;
		}

4157 4158
		if (is_cpuid_PSE36())
			/* 36bits PSE 4MB page */
4159
			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4160 4161
		else
			/* 32 bits PSE 4MB page */
4162
			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4163 4164
		break;
	case PT32E_ROOT_LEVEL:
4165 4166 4167 4168 4169 4170 4171 4172
		rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) |
						   high_bits_rsvd |
						   rsvd_bits(5, 8) |
						   rsvd_bits(1, 2);	/* PDPTE */
		rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;	/* PDE */
		rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;	/* PTE */
		rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
						   rsvd_bits(13, 20);	/* large page */
4173 4174
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
4175
		break;
4176
	case PT64_ROOT_5LEVEL:
4177 4178 4179
		rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd |
						   nonleaf_bit8_rsvd |
						   rsvd_bits(7, 7);
4180 4181
		rsvd_check->rsvd_bits_mask[1][4] =
			rsvd_check->rsvd_bits_mask[0][4];
4182
		fallthrough;
4183
	case PT64_ROOT_4LEVEL:
4184 4185 4186 4187 4188 4189 4190
		rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd |
						   nonleaf_bit8_rsvd |
						   rsvd_bits(7, 7);
		rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd |
						   gbpages_bit_rsvd;
		rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;
		rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4191 4192
		rsvd_check->rsvd_bits_mask[1][3] =
			rsvd_check->rsvd_bits_mask[0][3];
4193 4194 4195 4196 4197
		rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd |
						   gbpages_bit_rsvd |
						   rsvd_bits(13, 29);
		rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
						   rsvd_bits(13, 20); /* large page */
4198 4199
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
4200 4201 4202 4203
		break;
	}
}

4204 4205 4206
static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
{
4207
	__reset_rsvds_bits_mask(&context->guest_rsvd_check,
4208
				vcpu->arch.reserved_gpa_bits,
4209
				context->root_level, is_efer_nx(context),
4210
				guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4211
				is_cr4_pse(context),
4212
				guest_cpuid_is_amd_or_hygon(vcpu));
4213 4214
}

4215 4216
static void
__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4217
			    u64 pa_bits_rsvd, bool execonly)
4218
{
4219
	u64 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
4220
	u64 bad_mt_xwr;
4221

4222 4223 4224 4225 4226
	rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7);
	rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7);
	rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6);
	rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6);
	rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4227 4228

	/* large page */
4229
	rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4230
	rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4231 4232
	rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29);
	rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20);
4233
	rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4234

4235 4236 4237 4238 4239 4240 4241 4242
	bad_mt_xwr = 0xFFull << (2 * 8);	/* bits 3..5 must not be 2 */
	bad_mt_xwr |= 0xFFull << (3 * 8);	/* bits 3..5 must not be 3 */
	bad_mt_xwr |= 0xFFull << (7 * 8);	/* bits 3..5 must not be 7 */
	bad_mt_xwr |= REPEAT_BYTE(1ull << 2);	/* bits 0..2 must not be 010 */
	bad_mt_xwr |= REPEAT_BYTE(1ull << 6);	/* bits 0..2 must not be 110 */
	if (!execonly) {
		/* bits 0..2 must not be 100 unless VMX capabilities allow it */
		bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4243
	}
4244
	rsvd_check->bad_mt_xwr = bad_mt_xwr;
4245 4246
}

4247 4248 4249 4250
static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
		struct kvm_mmu *context, bool execonly)
{
	__reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4251
				    vcpu->arch.reserved_gpa_bits, execonly);
4252 4253
}

4254 4255 4256 4257 4258
static inline u64 reserved_hpa_bits(void)
{
	return rsvd_bits(shadow_phys_bits, 63);
}

4259 4260 4261 4262 4263
/*
 * the page table on host is the shadow page table for the page
 * table in guest or amd nested guest, its mmu features completely
 * follow the features in guest.
 */
4264 4265
static void reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
					struct kvm_mmu *context)
4266
{
4267 4268 4269 4270 4271 4272 4273 4274
	/*
	 * KVM uses NX when TDP is disabled to handle a variety of scenarios,
	 * notably for huge SPTEs if iTLB multi-hit mitigation is enabled and
	 * to generate correct permissions for CR0.WP=0/CR4.SMEP=1/EFER.NX=0.
	 * The iTLB multi-hit workaround can be toggled at any time, so assume
	 * NX can be used by any non-nested shadow MMU to avoid having to reset
	 * MMU contexts.  Note, KVM forces EFER.NX=1 when TDP is disabled.
	 */
4275
	bool uses_nx = is_efer_nx(context) || !tdp_enabled;
4276 4277 4278 4279 4280

	/* @amd adds a check on bit of SPTEs, which KVM shouldn't use anyways. */
	bool is_amd = true;
	/* KVM doesn't use 2-level page tables for the shadow MMU. */
	bool is_pse = false;
4281 4282
	struct rsvd_bits_validate *shadow_zero_check;
	int i;
4283

4284 4285
	WARN_ON_ONCE(context->shadow_root_level < PT32E_ROOT_LEVEL);

4286
	shadow_zero_check = &context->shadow_zero_check;
4287
	__reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(),
4288
				context->shadow_root_level, uses_nx,
4289
				guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4290
				is_pse, is_amd);
4291 4292 4293 4294 4295 4296 4297 4298 4299

	if (!shadow_me_mask)
		return;

	for (i = context->shadow_root_level; --i >= 0;) {
		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
	}

4300 4301
}

4302 4303 4304 4305 4306 4307
static inline bool boot_cpu_is_amd(void)
{
	WARN_ON_ONCE(!tdp_enabled);
	return shadow_x_mask == 0;
}

4308 4309 4310 4311 4312 4313 4314 4315
/*
 * the direct page table on host, use as much mmu features as
 * possible, however, kvm currently does not do execution-protection.
 */
static void
reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
				struct kvm_mmu *context)
{
4316 4317 4318 4319 4320
	struct rsvd_bits_validate *shadow_zero_check;
	int i;

	shadow_zero_check = &context->shadow_zero_check;

4321
	if (boot_cpu_is_amd())
4322
		__reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(),
4323
					context->shadow_root_level, false,
4324
					boot_cpu_has(X86_FEATURE_GBPAGES),
4325
					false, true);
4326
	else
4327
		__reset_rsvds_bits_mask_ept(shadow_zero_check,
4328
					    reserved_hpa_bits(), false);
4329

4330 4331 4332 4333 4334 4335 4336
	if (!shadow_me_mask)
		return;

	for (i = context->shadow_root_level; --i >= 0;) {
		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
	}
4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347
}

/*
 * as the comments in reset_shadow_zero_bits_mask() except it
 * is the shadow page table for intel nested guest.
 */
static void
reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
				struct kvm_mmu *context, bool execonly)
{
	__reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4348
				    reserved_hpa_bits(), execonly);
4349 4350
}

4351 4352 4353 4354 4355 4356 4357 4358 4359 4360
#define BYTE_MASK(access) \
	((1 & (access) ? 2 : 0) | \
	 (2 & (access) ? 4 : 0) | \
	 (3 & (access) ? 8 : 0) | \
	 (4 & (access) ? 16 : 0) | \
	 (5 & (access) ? 32 : 0) | \
	 (6 & (access) ? 64 : 0) | \
	 (7 & (access) ? 128 : 0))


4361
static void update_permission_bitmask(struct kvm_mmu *mmu, bool ept)
4362
{
4363 4364 4365 4366 4367 4368
	unsigned byte;

	const u8 x = BYTE_MASK(ACC_EXEC_MASK);
	const u8 w = BYTE_MASK(ACC_WRITE_MASK);
	const u8 u = BYTE_MASK(ACC_USER_MASK);

4369 4370 4371
	bool cr4_smep = is_cr4_smep(mmu);
	bool cr4_smap = is_cr4_smap(mmu);
	bool cr0_wp = is_cr0_wp(mmu);
4372
	bool efer_nx = is_efer_nx(mmu);
4373 4374

	for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4375 4376
		unsigned pfec = byte << 1;

F
Feng Wu 已提交
4377
		/*
4378 4379
		 * Each "*f" variable has a 1 bit for each UWX value
		 * that causes a fault with the given PFEC.
F
Feng Wu 已提交
4380
		 */
4381

4382
		/* Faults from writes to non-writable pages */
4383
		u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
4384
		/* Faults from user mode accesses to supervisor pages */
4385
		u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
4386
		/* Faults from fetches of non-executable pages*/
4387
		u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
4388 4389 4390 4391 4392 4393 4394 4395 4396 4397
		/* Faults from kernel mode fetches of user pages */
		u8 smepf = 0;
		/* Faults from kernel mode accesses of user pages */
		u8 smapf = 0;

		if (!ept) {
			/* Faults from kernel mode accesses to user pages */
			u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;

			/* Not really needed: !nx will cause pte.nx to fault */
4398
			if (!efer_nx)
4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412
				ff = 0;

			/* Allow supervisor writes if !cr0.wp */
			if (!cr0_wp)
				wf = (pfec & PFERR_USER_MASK) ? wf : 0;

			/* Disallow supervisor fetches of user code if cr4.smep */
			if (cr4_smep)
				smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;

			/*
			 * SMAP:kernel-mode data accesses from user-mode
			 * mappings should fault. A fault is considered
			 * as a SMAP violation if all of the following
P
Peng Hao 已提交
4413
			 * conditions are true:
4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426
			 *   - X86_CR4_SMAP is set in CR4
			 *   - A user page is accessed
			 *   - The access is not a fetch
			 *   - Page fault in kernel mode
			 *   - if CPL = 3 or X86_EFLAGS_AC is clear
			 *
			 * Here, we cover the first three conditions.
			 * The fourth is computed dynamically in permission_fault();
			 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
			 * *not* subject to SMAP restrictions.
			 */
			if (cr4_smap)
				smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4427
		}
4428 4429

		mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4430 4431 4432
	}
}

4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456
/*
* PKU is an additional mechanism by which the paging controls access to
* user-mode addresses based on the value in the PKRU register.  Protection
* key violations are reported through a bit in the page fault error code.
* Unlike other bits of the error code, the PK bit is not known at the
* call site of e.g. gva_to_gpa; it must be computed directly in
* permission_fault based on two bits of PKRU, on some machine state (CR4,
* CR0, EFER, CPL), and on other bits of the error code and the page tables.
*
* In particular the following conditions come from the error code, the
* page tables and the machine state:
* - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
* - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
* - PK is always zero if U=0 in the page tables
* - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
*
* The PKRU bitmask caches the result of these four conditions.  The error
* code (minus the P bit) and the page table's U bit form an index into the
* PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
* with the two bits of the PKRU register corresponding to the protection key.
* For the first three conditions above the bits will be 00, thus masking
* away both AD and WD.  For all reads or if the last condition holds, WD
* only will be masked away.
*/
4457
static void update_pkru_bitmask(struct kvm_mmu *mmu)
4458 4459 4460 4461
{
	unsigned bit;
	bool wp;

4462
	if (!is_cr4_pke(mmu)) {
4463 4464 4465 4466
		mmu->pkru_mask = 0;
		return;
	}

4467
	wp = is_cr0_wp(mmu);
4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500

	for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
		unsigned pfec, pkey_bits;
		bool check_pkey, check_write, ff, uf, wf, pte_user;

		pfec = bit << 1;
		ff = pfec & PFERR_FETCH_MASK;
		uf = pfec & PFERR_USER_MASK;
		wf = pfec & PFERR_WRITE_MASK;

		/* PFEC.RSVD is replaced by ACC_USER_MASK. */
		pte_user = pfec & PFERR_RSVD_MASK;

		/*
		 * Only need to check the access which is not an
		 * instruction fetch and is to a user page.
		 */
		check_pkey = (!ff && pte_user);
		/*
		 * write access is controlled by PKRU if it is a
		 * user access or CR0.WP = 1.
		 */
		check_write = check_pkey && wf && (uf || wp);

		/* PKRU.AD stops both read and write access. */
		pkey_bits = !!check_pkey;
		/* PKRU.WD stops write access. */
		pkey_bits |= (!!check_write) << 1;

		mmu->pkru_mask |= (pkey_bits & 3) << pfec;
	}
}

4501
static void update_last_nonleaf_level(struct kvm_mmu *mmu)
A
Avi Kivity 已提交
4502
{
4503 4504 4505
	unsigned root_level = mmu->root_level;

	mmu->last_nonleaf_level = root_level;
4506
	if (root_level == PT32_ROOT_LEVEL && is_cr4_pse(mmu))
4507
		mmu->last_nonleaf_level++;
A
Avi Kivity 已提交
4508 4509
}

4510
static void paging64_init_context_common(struct kvm_mmu *context,
4511
					 int root_level)
A
Avi Kivity 已提交
4512
{
4513
	context->root_level = root_level;
4514

4515
	WARN_ON_ONCE(!is_cr4_pae(context));
A
Avi Kivity 已提交
4516 4517
	context->page_fault = paging64_page_fault;
	context->gva_to_gpa = paging64_gva_to_gpa;
4518
	context->sync_page = paging64_sync_page;
M
Marcelo Tosatti 已提交
4519
	context->invlpg = paging64_invlpg;
4520
	context->direct_map = false;
A
Avi Kivity 已提交
4521 4522
}

4523 4524
static void paging64_init_context(struct kvm_mmu *context,
				  struct kvm_mmu_role_regs *regs)
4525
{
4526 4527
	int root_level = ____is_cr4_la57(regs) ? PT64_ROOT_5LEVEL :
						 PT64_ROOT_4LEVEL;
4528

4529
	paging64_init_context_common(context, root_level);
4530 4531
}

4532
static void paging32_init_context(struct kvm_mmu *context)
A
Avi Kivity 已提交
4533
{
4534
	context->root_level = PT32_ROOT_LEVEL;
A
Avi Kivity 已提交
4535 4536
	context->page_fault = paging32_page_fault;
	context->gva_to_gpa = paging32_gva_to_gpa;
4537
	context->sync_page = paging32_sync_page;
M
Marcelo Tosatti 已提交
4538
	context->invlpg = paging32_invlpg;
4539
	context->direct_map = false;
A
Avi Kivity 已提交
4540 4541
}

4542
static void paging32E_init_context(struct kvm_mmu *context)
A
Avi Kivity 已提交
4543
{
4544
	paging64_init_context_common(context, PT32E_ROOT_LEVEL);
A
Avi Kivity 已提交
4545 4546
}

4547 4548
static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu,
							 struct kvm_mmu_role_regs *regs)
4549 4550 4551
{
	union kvm_mmu_extended_role ext = {0};

4552 4553 4554 4555 4556 4557
	if (____is_cr0_pg(regs)) {
		ext.cr0_pg = 1;
		ext.cr4_pae = ____is_cr4_pae(regs);
		ext.cr4_smep = ____is_cr4_smep(regs);
		ext.cr4_smap = ____is_cr4_smap(regs);
		ext.cr4_pse = ____is_cr4_pse(regs);
4558 4559 4560 4561

		/* PKEY and LA57 are active iff long mode is active. */
		ext.cr4_pke = ____is_efer_lma(regs) && ____is_cr4_pke(regs);
		ext.cr4_la57 = ____is_efer_lma(regs) && ____is_cr4_la57(regs);
4562
	}
4563 4564 4565 4566 4567 4568

	ext.valid = 1;

	return ext;
}

4569
static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
4570
						   struct kvm_mmu_role_regs *regs,
4571 4572 4573 4574 4575
						   bool base_only)
{
	union kvm_mmu_role role = {0};

	role.base.access = ACC_ALL;
4576 4577 4578 4579
	if (____is_cr0_pg(regs)) {
		role.base.efer_nx = ____is_efer_nx(regs);
		role.base.cr0_wp = ____is_cr0_wp(regs);
	}
4580 4581 4582 4583 4584 4585
	role.base.smm = is_smm(vcpu);
	role.base.guest_mode = is_guest_mode(vcpu);

	if (base_only)
		return role;

4586
	role.ext = kvm_calc_mmu_role_ext(vcpu, regs);
4587 4588 4589 4590

	return role;
}

4591 4592 4593
static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu)
{
	/* Use 5-level TDP if and only if it's useful/necessary. */
4594
	if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48)
4595 4596
		return 4;

4597
	return max_tdp_level;
4598 4599
}

4600
static union kvm_mmu_role
4601 4602
kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu,
				struct kvm_mmu_role_regs *regs, bool base_only)
4603
{
4604
	union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, regs, base_only);
4605

4606
	role.base.ad_disabled = (shadow_accessed_mask == 0);
4607
	role.base.level = kvm_mmu_get_tdp_level(vcpu);
4608
	role.base.direct = true;
4609
	role.base.gpte_is_8_bytes = true;
4610 4611 4612 4613

	return role;
}

4614
static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4615
{
4616
	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4617
	struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
4618
	union kvm_mmu_role new_role =
4619
		kvm_calc_tdp_mmu_root_page_role(vcpu, &regs, false);
4620

4621 4622 4623 4624
	if (new_role.as_u64 == context->mmu_role.as_u64)
		return;

	context->mmu_role.as_u64 = new_role.as_u64;
4625
	context->page_fault = kvm_tdp_page_fault;
4626
	context->sync_page = nonpaging_sync_page;
4627
	context->invlpg = NULL;
4628
	context->shadow_root_level = kvm_mmu_get_tdp_level(vcpu);
4629
	context->direct_map = true;
4630
	context->get_guest_pgd = get_cr3;
4631
	context->get_pdptr = kvm_pdptr_read;
4632
	context->inject_page_fault = kvm_inject_page_fault;
4633 4634 4635 4636 4637

	if (!is_paging(vcpu)) {
		context->gva_to_gpa = nonpaging_gva_to_gpa;
		context->root_level = 0;
	} else if (is_long_mode(vcpu)) {
4638
		context->root_level = ____is_cr4_la57(&regs) ?
4639
				PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4640
		context->gva_to_gpa = paging64_gva_to_gpa;
4641 4642
	} else if (is_pae(vcpu)) {
		context->root_level = PT32E_ROOT_LEVEL;
4643
		context->gva_to_gpa = paging64_gva_to_gpa;
4644 4645
	} else {
		context->root_level = PT32_ROOT_LEVEL;
4646
		context->gva_to_gpa = paging32_gva_to_gpa;
4647 4648
	}

4649
	if (is_cr0_pg(context)) {
4650
		reset_rsvds_bits_mask(vcpu, context);
4651 4652 4653 4654
		update_permission_bitmask(context, false);
		update_pkru_bitmask(context);
		update_last_nonleaf_level(context);
	}
4655
	reset_tdp_shadow_zero_bits_mask(vcpu, context);
4656 4657
}

4658
static union kvm_mmu_role
4659 4660
kvm_calc_shadow_root_page_role_common(struct kvm_vcpu *vcpu,
				      struct kvm_mmu_role_regs *regs, bool base_only)
4661
{
4662
	union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, regs, base_only);
4663

4664 4665
	role.base.smep_andnot_wp = role.ext.cr4_smep && !____is_cr0_wp(regs);
	role.base.smap_andnot_wp = role.ext.cr4_smap && !____is_cr0_wp(regs);
4666
	role.base.gpte_is_8_bytes = ____is_cr0_pg(regs) && ____is_cr4_pae(regs);
4667

4668 4669 4670 4671
	return role;
}

static union kvm_mmu_role
4672 4673
kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu,
				   struct kvm_mmu_role_regs *regs, bool base_only)
4674 4675
{
	union kvm_mmu_role role =
4676
		kvm_calc_shadow_root_page_role_common(vcpu, regs, base_only);
4677

4678
	role.base.direct = !____is_cr0_pg(regs);
4679

4680
	if (!____is_efer_lma(regs))
4681
		role.base.level = PT32E_ROOT_LEVEL;
4682
	else if (____is_cr4_la57(regs))
4683
		role.base.level = PT64_ROOT_5LEVEL;
4684
	else
4685
		role.base.level = PT64_ROOT_4LEVEL;
4686 4687 4688 4689

	return role;
}

4690
static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
4691 4692
				    struct kvm_mmu_role_regs *regs,
				    union kvm_mmu_role new_role)
4693
{
4694 4695 4696 4697 4698
	if (new_role.as_u64 == context->mmu_role.as_u64)
		return;

	context->mmu_role.as_u64 = new_role.as_u64;

4699
	if (!____is_cr0_pg(regs))
4700
		nonpaging_init_context(context);
4701
	else if (____is_efer_lma(regs))
4702
		paging64_init_context(context, regs);
4703
	else if (____is_cr4_pae(regs))
4704
		paging32E_init_context(context);
A
Avi Kivity 已提交
4705
	else
4706
		paging32_init_context(context);
4707

4708 4709
	if (____is_cr0_pg(regs)) {
		reset_rsvds_bits_mask(vcpu, context);
4710
		update_permission_bitmask(context, false);
4711
		update_pkru_bitmask(context);
4712
		update_last_nonleaf_level(context);
4713
	}
4714 4715
	context->shadow_root_level = new_role.base.level;

4716
	reset_shadow_zero_bits_mask(vcpu, context);
4717
}
4718

4719 4720
static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu,
				struct kvm_mmu_role_regs *regs)
4721
{
4722
	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4723
	union kvm_mmu_role new_role =
4724
		kvm_calc_shadow_mmu_root_page_role(vcpu, regs, false);
4725

4726
	shadow_mmu_init_context(vcpu, context, regs, new_role);
4727 4728
}

4729
static union kvm_mmu_role
4730 4731
kvm_calc_shadow_npt_root_page_role(struct kvm_vcpu *vcpu,
				   struct kvm_mmu_role_regs *regs)
4732 4733
{
	union kvm_mmu_role role =
4734
		kvm_calc_shadow_root_page_role_common(vcpu, regs, false);
4735 4736

	role.base.direct = false;
4737
	role.base.level = kvm_mmu_get_tdp_level(vcpu);
4738 4739 4740 4741

	return role;
}

4742 4743
void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0,
			     unsigned long cr4, u64 efer, gpa_t nested_cr3)
4744
{
4745
	struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4746 4747 4748 4749 4750
	struct kvm_mmu_role_regs regs = {
		.cr0 = cr0,
		.cr4 = cr4,
		.efer = efer,
	};
4751 4752 4753
	union kvm_mmu_role new_role;

	new_role = kvm_calc_shadow_npt_root_page_role(vcpu, &regs);
4754

4755
	__kvm_mmu_new_pgd(vcpu, nested_cr3, new_role.base);
4756

4757
	shadow_mmu_init_context(vcpu, context, &regs, new_role);
4758

4759 4760 4761 4762 4763
	/*
	 * Redo the shadow bits, the reset done by shadow_mmu_init_context()
	 * (above) may use the wrong shadow_root_level.
	 */
	reset_shadow_zero_bits_mask(vcpu, context);
4764 4765
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu);
4766

4767 4768
static union kvm_mmu_role
kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
4769
				   bool execonly, u8 level)
4770
{
4771
	union kvm_mmu_role role = {0};
4772

4773 4774
	/* SMM flag is inherited from root_mmu */
	role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
4775

4776
	role.base.level = level;
4777
	role.base.gpte_is_8_bytes = true;
4778 4779 4780 4781
	role.base.direct = false;
	role.base.ad_disabled = !accessed_dirty;
	role.base.guest_mode = true;
	role.base.access = ACC_ALL;
4782

4783 4784
	/* EPT, and thus nested EPT, does not consume CR0, CR4, nor EFER. */
	role.ext.word = 0;
4785
	role.ext.execonly = execonly;
4786
	role.ext.valid = 1;
4787 4788 4789 4790

	return role;
}

4791
void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
4792
			     bool accessed_dirty, gpa_t new_eptp)
N
Nadav Har'El 已提交
4793
{
4794
	struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4795
	u8 level = vmx_eptp_page_walk_level(new_eptp);
4796 4797
	union kvm_mmu_role new_role =
		kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
4798
						   execonly, level);
4799

4800
	__kvm_mmu_new_pgd(vcpu, new_eptp, new_role.base);
4801 4802 4803

	if (new_role.as_u64 == context->mmu_role.as_u64)
		return;
4804

4805 4806
	context->mmu_role.as_u64 = new_role.as_u64;

4807
	context->shadow_root_level = level;
N
Nadav Har'El 已提交
4808

4809
	context->ept_ad = accessed_dirty;
N
Nadav Har'El 已提交
4810 4811 4812 4813
	context->page_fault = ept_page_fault;
	context->gva_to_gpa = ept_gva_to_gpa;
	context->sync_page = ept_sync_page;
	context->invlpg = ept_invlpg;
4814
	context->root_level = level;
N
Nadav Har'El 已提交
4815
	context->direct_map = false;
4816

4817
	update_permission_bitmask(context, true);
4818
	update_last_nonleaf_level(context);
4819
	update_pkru_bitmask(context);
N
Nadav Har'El 已提交
4820
	reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4821
	reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
N
Nadav Har'El 已提交
4822 4823 4824
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);

4825
static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4826
{
4827
	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4828
	struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
4829

4830
	kvm_init_shadow_mmu(vcpu, &regs);
4831

4832
	context->get_guest_pgd     = get_cr3;
4833 4834
	context->get_pdptr         = kvm_pdptr_read;
	context->inject_page_fault = kvm_inject_page_fault;
A
Avi Kivity 已提交
4835 4836
}

4837 4838
static union kvm_mmu_role
kvm_calc_nested_mmu_role(struct kvm_vcpu *vcpu, struct kvm_mmu_role_regs *regs)
4839
{
4840 4841 4842
	union kvm_mmu_role role;

	role = kvm_calc_shadow_root_page_role_common(vcpu, regs, false);
4843 4844 4845 4846 4847 4848 4849 4850

	/*
	 * Nested MMUs are used only for walking L2's gva->gpa, they never have
	 * shadow pages of their own and so "direct" has no meaning.   Set it
	 * to "true" to try to detect bogus usage of the nested MMU.
	 */
	role.base.direct = true;

4851
	if (!____is_cr0_pg(regs))
4852
		role.base.level = 0;
4853 4854 4855 4856
	else if (____is_efer_lma(regs))
		role.base.level = ____is_cr4_la57(regs) ? PT64_ROOT_5LEVEL :
							  PT64_ROOT_4LEVEL;
	else if (____is_cr4_pae(regs))
4857 4858 4859 4860 4861 4862 4863
		role.base.level = PT32E_ROOT_LEVEL;
	else
		role.base.level = PT32_ROOT_LEVEL;

	return role;
}

4864
static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4865
{
4866 4867
	struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
	union kvm_mmu_role new_role = kvm_calc_nested_mmu_role(vcpu, &regs);
4868 4869
	struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;

4870 4871 4872 4873
	if (new_role.as_u64 == g_context->mmu_role.as_u64)
		return;

	g_context->mmu_role.as_u64 = new_role.as_u64;
4874
	g_context->get_guest_pgd     = get_cr3;
4875
	g_context->get_pdptr         = kvm_pdptr_read;
4876
	g_context->inject_page_fault = kvm_inject_page_fault;
4877
	g_context->root_level        = new_role.base.level;
4878

4879 4880 4881 4882 4883 4884
	/*
	 * L2 page tables are never shadowed, so there is no need to sync
	 * SPTEs.
	 */
	g_context->invlpg            = NULL;

4885
	/*
4886
	 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
4887 4888 4889 4890 4891
	 * L1's nested page tables (e.g. EPT12). The nested translation
	 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
	 * L2's page tables as the first level of translation and L1's
	 * nested page tables as the second level of translation. Basically
	 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
4892
	 */
4893
	if (!is_paging(vcpu))
4894
		g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4895
	else if (is_long_mode(vcpu))
4896
		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4897
	else if (is_pae(vcpu))
4898
		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4899
	else
4900
		g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4901

4902
	if (is_cr0_pg(g_context)) {
4903
		reset_rsvds_bits_mask(vcpu, g_context);
4904 4905 4906 4907
		update_permission_bitmask(g_context, false);
		update_pkru_bitmask(g_context);
		update_last_nonleaf_level(g_context);
	}
4908 4909
}

4910
void kvm_init_mmu(struct kvm_vcpu *vcpu)
4911
{
4912
	if (mmu_is_nested(vcpu))
4913
		init_kvm_nested_mmu(vcpu);
4914
	else if (tdp_enabled)
4915
		init_kvm_tdp_mmu(vcpu);
4916
	else
4917
		init_kvm_softmmu(vcpu);
4918
}
4919
EXPORT_SYMBOL_GPL(kvm_init_mmu);
4920

4921 4922 4923
static union kvm_mmu_page_role
kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
{
4924
	struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
4925 4926
	union kvm_mmu_role role;

4927
	if (tdp_enabled)
4928
		role = kvm_calc_tdp_mmu_root_page_role(vcpu, &regs, true);
4929
	else
4930
		role = kvm_calc_shadow_mmu_root_page_role(vcpu, &regs, true);
4931 4932

	return role.base;
4933
}
4934

4935 4936 4937 4938 4939 4940 4941 4942 4943 4944
void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu)
{
	/*
	 * Invalidate all MMU roles to force them to reinitialize as CPUID
	 * information is factored into reserved bit calculations.
	 */
	vcpu->arch.root_mmu.mmu_role.ext.valid = 0;
	vcpu->arch.guest_mmu.mmu_role.ext.valid = 0;
	vcpu->arch.nested_mmu.mmu_role.ext.valid = 0;
	kvm_mmu_reset_context(vcpu);
4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964

	/*
	 * KVM does not correctly handle changing guest CPUID after KVM_RUN, as
	 * MAXPHYADDR, GBPAGES support, AMD reserved bit behavior, etc.. aren't
	 * tracked in kvm_mmu_page_role.  As a result, KVM may miss guest page
	 * faults due to reusing SPs/SPTEs.  Alert userspace, but otherwise
	 * sweep the problem under the rug.
	 *
	 * KVM's horrific CPUID ABI makes the problem all but impossible to
	 * solve, as correctly handling multiple vCPU models (with respect to
	 * paging and physical address properties) in a single VM would require
	 * tracking all relevant CPUID information in kvm_mmu_page_role.  That
	 * is very undesirable as it would double the memory requirements for
	 * gfn_track (see struct kvm_mmu_page_role comments), and in practice
	 * no sane VMM mucks with the core vCPU model on the fly.
	 */
	if (vcpu->arch.last_vmentry_cpu != -1) {
		pr_warn_ratelimited("KVM: KVM_SET_CPUID{,2} after KVM_RUN may cause guest instability\n");
		pr_warn_ratelimited("KVM: KVM_SET_CPUID{,2} will fail after KVM_RUN starting with Linux 5.16\n");
	}
4965 4966
}

4967
void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4968
{
4969
	kvm_mmu_unload(vcpu);
4970
	kvm_init_mmu(vcpu);
A
Avi Kivity 已提交
4971
}
4972
EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
A
Avi Kivity 已提交
4973 4974

int kvm_mmu_load(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4975
{
4976 4977
	int r;

4978
	r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->direct_map);
A
Avi Kivity 已提交
4979 4980
	if (r)
		goto out;
4981
	r = mmu_alloc_special_roots(vcpu);
A
Avi Kivity 已提交
4982 4983
	if (r)
		goto out;
4984
	if (vcpu->arch.mmu->direct_map)
4985 4986 4987
		r = mmu_alloc_direct_roots(vcpu);
	else
		r = mmu_alloc_shadow_roots(vcpu);
4988 4989
	if (r)
		goto out;
4990 4991 4992

	kvm_mmu_sync_roots(vcpu);

4993
	kvm_mmu_load_pgd(vcpu);
4994
	static_call(kvm_x86_tlb_flush_current)(vcpu);
4995 4996
out:
	return r;
A
Avi Kivity 已提交
4997
}
A
Avi Kivity 已提交
4998 4999 5000

void kvm_mmu_unload(struct kvm_vcpu *vcpu)
{
5001 5002 5003 5004
	kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
	WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
	kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
	WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
A
Avi Kivity 已提交
5005
}
A
Avi Kivity 已提交
5006

5007 5008 5009 5010 5011 5012 5013 5014
static bool need_remote_flush(u64 old, u64 new)
{
	if (!is_shadow_present_pte(old))
		return false;
	if (!is_shadow_present_pte(new))
		return true;
	if ((old ^ new) & PT64_BASE_ADDR_MASK)
		return true;
5015 5016
	old ^= shadow_nx_mask;
	new ^= shadow_nx_mask;
5017 5018 5019
	return (old & ~new & PT64_PERM_MASK) != 0;
}

5020
static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
5021
				    int *bytes)
5022
{
5023
	u64 gentry = 0;
5024
	int r;
5025 5026 5027

	/*
	 * Assume that the pte write on a page table of the same type
5028 5029
	 * as the current vcpu paging mode since we update the sptes only
	 * when they have the same mode.
5030
	 */
5031
	if (is_pae(vcpu) && *bytes == 4) {
5032
		/* Handle a 32-bit guest writing two halves of a 64-bit gpte */
5033 5034
		*gpa &= ~(gpa_t)7;
		*bytes = 8;
5035 5036
	}

5037 5038 5039 5040
	if (*bytes == 4 || *bytes == 8) {
		r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
		if (r)
			gentry = 0;
5041 5042
	}

5043 5044 5045 5046 5047 5048 5049
	return gentry;
}

/*
 * If we're seeing too many writes to a page, it may no longer be a page table,
 * or we may be forking, in which case it is better to unmap the page.
 */
5050
static bool detect_write_flooding(struct kvm_mmu_page *sp)
5051
{
5052 5053 5054 5055
	/*
	 * Skip write-flooding detected for the sp whose level is 1, because
	 * it can become unsync, then the guest page is not write-protected.
	 */
5056
	if (sp->role.level == PG_LEVEL_4K)
5057
		return false;
5058

5059 5060
	atomic_inc(&sp->write_flooding_count);
	return atomic_read(&sp->write_flooding_count) >= 3;
5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075
}

/*
 * Misaligned accesses are too much trouble to fix up; also, they usually
 * indicate a page is not used as a page table.
 */
static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
				    int bytes)
{
	unsigned offset, pte_size, misaligned;

	pgprintk("misaligned: gpa %llx bytes %d role %x\n",
		 gpa, bytes, sp->role.word);

	offset = offset_in_page(gpa);
5076
	pte_size = sp->role.gpte_is_8_bytes ? 8 : 4;
5077 5078 5079 5080 5081 5082 5083 5084

	/*
	 * Sometimes, the OS only writes the last one bytes to update status
	 * bits, for example, in linux, andb instruction is used in clear_bit().
	 */
	if (!(offset & (pte_size - 1)) && bytes == 1)
		return false;

5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099
	misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
	misaligned |= bytes < 4;

	return misaligned;
}

static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
{
	unsigned page_offset, quadrant;
	u64 *spte;
	int level;

	page_offset = offset_in_page(gpa);
	level = sp->role.level;
	*nspte = 1;
5100
	if (!sp->role.gpte_is_8_bytes) {
5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121
		page_offset <<= 1;	/* 32->64 */
		/*
		 * A 32-bit pde maps 4MB while the shadow pdes map
		 * only 2MB.  So we need to double the offset again
		 * and zap two pdes instead of one.
		 */
		if (level == PT32_ROOT_LEVEL) {
			page_offset &= ~7; /* kill rounding error */
			page_offset <<= 1;
			*nspte = 2;
		}
		quadrant = page_offset >> PAGE_SHIFT;
		page_offset &= ~PAGE_MASK;
		if (quadrant != sp->role.quadrant)
			return NULL;
	}

	spte = &sp->spt[page_offset / sizeof(*spte)];
	return spte;
}

5122
static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
5123 5124
			      const u8 *new, int bytes,
			      struct kvm_page_track_notifier_node *node)
5125 5126 5127 5128 5129 5130
{
	gfn_t gfn = gpa >> PAGE_SHIFT;
	struct kvm_mmu_page *sp;
	LIST_HEAD(invalid_list);
	u64 entry, gentry, *spte;
	int npte;
5131
	bool remote_flush, local_flush;
5132 5133 5134 5135 5136

	/*
	 * If we don't have indirect shadow pages, it means no page is
	 * write-protected, so we can exit simply.
	 */
5137
	if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
5138 5139
		return;

5140
	remote_flush = local_flush = false;
5141 5142 5143 5144 5145

	pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);

	/*
	 * No need to care whether allocation memory is successful
I
Ingo Molnar 已提交
5146
	 * or not since pte prefetch is skipped if it does not have
5147 5148
	 * enough objects in the cache.
	 */
5149
	mmu_topup_memory_caches(vcpu, true);
5150

5151
	write_lock(&vcpu->kvm->mmu_lock);
5152 5153 5154

	gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);

5155
	++vcpu->kvm->stat.mmu_pte_write;
5156
	kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
5157

5158
	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
5159
		if (detect_write_misaligned(sp, gpa, bytes) ||
5160
		      detect_write_flooding(sp)) {
5161
			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
A
Avi Kivity 已提交
5162
			++vcpu->kvm->stat.mmu_flooded;
5163 5164
			continue;
		}
5165 5166 5167 5168 5169

		spte = get_written_sptes(sp, gpa, &npte);
		if (!spte)
			continue;

5170
		local_flush = true;
5171
		while (npte--) {
5172
			entry = *spte;
5173
			mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL);
5174 5175
			if (gentry && sp->role.level != PG_LEVEL_4K)
				++vcpu->kvm->stat.mmu_pde_zapped;
G
Gleb Natapov 已提交
5176
			if (need_remote_flush(entry, *spte))
5177
				remote_flush = true;
5178
			++spte;
5179 5180
		}
	}
5181
	kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
5182
	kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
5183
	write_unlock(&vcpu->kvm->mmu_lock);
5184 5185
}

5186
int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
5187
		       void *insn, int insn_len)
5188
{
5189
	int r, emulation_type = EMULTYPE_PF;
5190
	bool direct = vcpu->arch.mmu->direct_map;
5191

5192
	if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
5193 5194
		return RET_PF_RETRY;

5195
	r = RET_PF_INVALID;
5196
	if (unlikely(error_code & PFERR_RSVD_MASK)) {
5197
		r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
5198
		if (r == RET_PF_EMULATE)
5199 5200
			goto emulate;
	}
5201

5202
	if (r == RET_PF_INVALID) {
5203 5204
		r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
					  lower_32_bits(error_code), false);
5205 5206
		if (WARN_ON_ONCE(r == RET_PF_INVALID))
			return -EIO;
5207 5208
	}

5209
	if (r < 0)
5210
		return r;
5211 5212
	if (r != RET_PF_EMULATE)
		return 1;
5213

5214 5215 5216 5217 5218 5219 5220
	/*
	 * Before emulating the instruction, check if the error code
	 * was due to a RO violation while translating the guest page.
	 * This can occur when using nested virtualization with nested
	 * paging in both guests. If true, we simply unprotect the page
	 * and resume the guest.
	 */
5221
	if (vcpu->arch.mmu->direct_map &&
5222
	    (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5223
		kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
5224 5225 5226
		return 1;
	}

5227 5228 5229 5230 5231 5232
	/*
	 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
	 * optimistically try to just unprotect the page and let the processor
	 * re-execute the instruction that caused the page fault.  Do not allow
	 * retrying MMIO emulation, as it's not only pointless but could also
	 * cause us to enter an infinite loop because the processor will keep
5233 5234 5235 5236
	 * faulting on the non-existent MMIO address.  Retrying an instruction
	 * from a nested guest is also pointless and dangerous as we are only
	 * explicitly shadowing L1's page tables, i.e. unprotecting something
	 * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5237
	 */
5238
	if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
5239
		emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
5240
emulate:
5241
	return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
5242
				       insn_len);
5243 5244 5245
}
EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);

5246 5247
void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
			    gva_t gva, hpa_t root_hpa)
M
Marcelo Tosatti 已提交
5248
{
5249
	int i;
5250

5251 5252 5253 5254 5255 5256
	/* It's actually a GPA for vcpu->arch.guest_mmu.  */
	if (mmu != &vcpu->arch.guest_mmu) {
		/* INVLPG on a non-canonical address is a NOP according to the SDM.  */
		if (is_noncanonical_address(gva, vcpu))
			return;

5257
		static_call(kvm_x86_tlb_flush_gva)(vcpu, gva);
5258 5259 5260
	}

	if (!mmu->invlpg)
5261 5262
		return;

5263 5264
	if (root_hpa == INVALID_PAGE) {
		mmu->invlpg(vcpu, gva, mmu->root_hpa);
5265

5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283
		/*
		 * INVLPG is required to invalidate any global mappings for the VA,
		 * irrespective of PCID. Since it would take us roughly similar amount
		 * of work to determine whether any of the prev_root mappings of the VA
		 * is marked global, or to just sync it blindly, so we might as well
		 * just always sync it.
		 *
		 * Mappings not reachable via the current cr3 or the prev_roots will be
		 * synced when switching to that cr3, so nothing needs to be done here
		 * for them.
		 */
		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
			if (VALID_PAGE(mmu->prev_roots[i].hpa))
				mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
	} else {
		mmu->invlpg(vcpu, gva, root_hpa);
	}
}
5284

5285 5286 5287
void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
{
	kvm_mmu_invalidate_gva(vcpu, vcpu->arch.mmu, gva, INVALID_PAGE);
M
Marcelo Tosatti 已提交
5288 5289 5290 5291
	++vcpu->stat.invlpg;
}
EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);

5292

5293 5294
void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
{
5295
	struct kvm_mmu *mmu = vcpu->arch.mmu;
5296
	bool tlb_flush = false;
5297
	uint i;
5298 5299

	if (pcid == kvm_get_active_pcid(vcpu)) {
5300
		mmu->invlpg(vcpu, gva, mmu->root_hpa);
5301
		tlb_flush = true;
5302 5303
	}

5304 5305
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
		if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5306
		    pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) {
5307 5308 5309
			mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
			tlb_flush = true;
		}
5310
	}
5311

5312
	if (tlb_flush)
5313
		static_call(kvm_x86_tlb_flush_gva)(vcpu, gva);
5314

5315 5316 5317
	++vcpu->stat.invlpg;

	/*
5318 5319 5320
	 * Mappings not reachable via the current cr3 or the prev_roots will be
	 * synced when switching to that cr3, so nothing needs to be done here
	 * for them.
5321 5322 5323
	 */
}

5324 5325
void kvm_configure_mmu(bool enable_tdp, int tdp_max_root_level,
		       int tdp_huge_page_level)
5326
{
5327
	tdp_enabled = enable_tdp;
5328
	max_tdp_level = tdp_max_root_level;
5329 5330

	/*
5331
	 * max_huge_page_level reflects KVM's MMU capabilities irrespective
5332 5333 5334 5335 5336 5337
	 * of kernel support, e.g. KVM may be capable of using 1GB pages when
	 * the kernel is not.  But, KVM never creates a page size greater than
	 * what is used by the kernel for any given HVA, i.e. the kernel's
	 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
	 */
	if (tdp_enabled)
5338
		max_huge_page_level = tdp_huge_page_level;
5339
	else if (boot_cpu_has(X86_FEATURE_GBPAGES))
5340
		max_huge_page_level = PG_LEVEL_1G;
5341
	else
5342
		max_huge_page_level = PG_LEVEL_2M;
5343
}
5344
EXPORT_SYMBOL_GPL(kvm_configure_mmu);
5345 5346

/* The return value indicates if tlb flush on all vcpus is needed. */
5347 5348
typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head,
				    struct kvm_memory_slot *slot);
5349 5350 5351 5352 5353

/* The caller should hold mmu-lock before calling this function. */
static __always_inline bool
slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
			slot_level_handler fn, int start_level, int end_level,
5354 5355
			gfn_t start_gfn, gfn_t end_gfn, bool flush_on_yield,
			bool flush)
5356 5357 5358 5359 5360 5361
{
	struct slot_rmap_walk_iterator iterator;

	for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
			end_gfn, &iterator) {
		if (iterator.rmap)
5362
			flush |= fn(kvm, iterator.rmap, memslot);
5363

5364
		if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
5365
			if (flush && flush_on_yield) {
5366 5367 5368
				kvm_flush_remote_tlbs_with_address(kvm,
						start_gfn,
						iterator.gfn - start_gfn + 1);
5369 5370
				flush = false;
			}
5371
			cond_resched_rwlock_write(&kvm->mmu_lock);
5372 5373 5374 5375 5376 5377 5378 5379 5380
		}
	}

	return flush;
}

static __always_inline bool
slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
		  slot_level_handler fn, int start_level, int end_level,
5381
		  bool flush_on_yield)
5382 5383 5384 5385
{
	return slot_handle_level_range(kvm, memslot, fn, start_level,
			end_level, memslot->base_gfn,
			memslot->base_gfn + memslot->npages - 1,
5386
			flush_on_yield, false);
5387 5388 5389 5390
}

static __always_inline bool
slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
5391
		 slot_level_handler fn, bool flush_on_yield)
5392
{
5393
	return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
5394
				 PG_LEVEL_4K, flush_on_yield);
5395 5396
}

5397
static void free_mmu_pages(struct kvm_mmu *mmu)
A
Avi Kivity 已提交
5398
{
5399 5400
	if (!tdp_enabled && mmu->pae_root)
		set_memory_encrypted((unsigned long)mmu->pae_root, 1);
5401
	free_page((unsigned long)mmu->pae_root);
5402
	free_page((unsigned long)mmu->pml4_root);
A
Avi Kivity 已提交
5403 5404
}

5405
static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
A
Avi Kivity 已提交
5406
{
5407
	struct page *page;
A
Avi Kivity 已提交
5408 5409
	int i;

5410 5411 5412 5413 5414 5415
	mmu->root_hpa = INVALID_PAGE;
	mmu->root_pgd = 0;
	mmu->translate_gpa = translate_gpa;
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
		mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;

5416
	/*
5417 5418 5419 5420
	 * When using PAE paging, the four PDPTEs are treated as 'root' pages,
	 * while the PDP table is a per-vCPU construct that's allocated at MMU
	 * creation.  When emulating 32-bit mode, cr3 is only 32 bits even on
	 * x86_64.  Therefore we need to allocate the PDP table in the first
5421 5422 5423 5424 5425
	 * 4GB of memory, which happens to fit the DMA32 zone.  TDP paging
	 * generally doesn't use PAE paging and can skip allocating the PDP
	 * table.  The main exception, handled here, is SVM's 32-bit NPT.  The
	 * other exception is for shadowing L1's 32-bit or PAE NPT on 64-bit
	 * KVM; that horror is handled on-demand by mmu_alloc_shadow_roots().
5426
	 */
5427
	if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
5428 5429
		return 0;

5430
	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
5431
	if (!page)
5432 5433
		return -ENOMEM;

5434
	mmu->pae_root = page_address(page);
5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448

	/*
	 * CR3 is only 32 bits when PAE paging is used, thus it's impossible to
	 * get the CPU to treat the PDPTEs as encrypted.  Decrypt the page so
	 * that KVM's writes and the CPU's reads get along.  Note, this is
	 * only necessary when using shadow paging, as 64-bit NPT can get at
	 * the C-bit even when shadowing 32-bit NPT, and SME isn't supported
	 * by 32-bit kernels (when KVM itself uses 32-bit NPT).
	 */
	if (!tdp_enabled)
		set_memory_decrypted((unsigned long)mmu->pae_root, 1);
	else
		WARN_ON_ONCE(shadow_me_mask);

5449
	for (i = 0; i < 4; ++i)
5450
		mmu->pae_root[i] = INVALID_PAE_ROOT;
5451

A
Avi Kivity 已提交
5452 5453 5454
	return 0;
}

5455
int kvm_mmu_create(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
5456
{
5457
	int ret;
5458

5459
	vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache;
5460 5461
	vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO;

5462
	vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache;
5463
	vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO;
5464

5465 5466
	vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO;

5467 5468
	vcpu->arch.mmu = &vcpu->arch.root_mmu;
	vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
A
Avi Kivity 已提交
5469

5470
	vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5471

5472
	ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu);
5473 5474 5475
	if (ret)
		return ret;

5476
	ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu);
5477 5478 5479 5480 5481 5482 5483
	if (ret)
		goto fail_allocate_root;

	return ret;
 fail_allocate_root:
	free_mmu_pages(&vcpu->arch.guest_mmu);
	return ret;
A
Avi Kivity 已提交
5484 5485
}

5486
#define BATCH_ZAP_PAGES	10
5487 5488 5489
static void kvm_zap_obsolete_pages(struct kvm *kvm)
{
	struct kvm_mmu_page *sp, *node;
5490
	int nr_zapped, batch = 0;
5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502

restart:
	list_for_each_entry_safe_reverse(sp, node,
	      &kvm->arch.active_mmu_pages, link) {
		/*
		 * No obsolete valid page exists before a newly created page
		 * since active_mmu_pages is a FIFO list.
		 */
		if (!is_obsolete_sp(kvm, sp))
			break;

		/*
5503 5504 5505
		 * Invalid pages should never land back on the list of active
		 * pages.  Skip the bogus page, otherwise we'll get stuck in an
		 * infinite loop if the page gets put back on the list (again).
5506
		 */
5507
		if (WARN_ON(sp->role.invalid))
5508 5509
			continue;

5510 5511 5512 5513 5514 5515
		/*
		 * No need to flush the TLB since we're only zapping shadow
		 * pages with an obsolete generation number and all vCPUS have
		 * loaded a new root, i.e. the shadow pages being zapped cannot
		 * be in active use by the guest.
		 */
5516
		if (batch >= BATCH_ZAP_PAGES &&
5517
		    cond_resched_rwlock_write(&kvm->mmu_lock)) {
5518
			batch = 0;
5519 5520 5521
			goto restart;
		}

5522 5523
		if (__kvm_mmu_prepare_zap_page(kvm, sp,
				&kvm->arch.zapped_obsolete_pages, &nr_zapped)) {
5524
			batch += nr_zapped;
5525
			goto restart;
5526
		}
5527 5528
	}

5529 5530 5531 5532 5533
	/*
	 * Trigger a remote TLB flush before freeing the page tables to ensure
	 * KVM is not in the middle of a lockless shadow page table walk, which
	 * may reference the pages.
	 */
5534
	kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547
}

/*
 * Fast invalidate all shadow pages and use lock-break technique
 * to zap obsolete pages.
 *
 * It's required when memslot is being deleted or VM is being
 * destroyed, in these cases, we should ensure that KVM MMU does
 * not use any resource of the being-deleted slot or all slots
 * after calling the function.
 */
static void kvm_mmu_zap_all_fast(struct kvm *kvm)
{
5548 5549
	lockdep_assert_held(&kvm->slots_lock);

5550
	write_lock(&kvm->mmu_lock);
5551
	trace_kvm_mmu_zap_all_fast(kvm);
5552 5553 5554 5555 5556 5557 5558 5559 5560

	/*
	 * Toggle mmu_valid_gen between '0' and '1'.  Because slots_lock is
	 * held for the entire duration of zapping obsolete pages, it's
	 * impossible for there to be multiple invalid generations associated
	 * with *valid* shadow pages at any given time, i.e. there is exactly
	 * one valid generation and (at most) one invalid generation.
	 */
	kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
5561

5562 5563 5564 5565 5566 5567 5568 5569 5570
	/* In order to ensure all threads see this change when
	 * handling the MMU reload signal, this must happen in the
	 * same critical section as kvm_reload_remote_mmus, and
	 * before kvm_zap_obsolete_pages as kvm_zap_obsolete_pages
	 * could drop the MMU lock and yield.
	 */
	if (is_tdp_mmu_enabled(kvm))
		kvm_tdp_mmu_invalidate_all_roots(kvm);

5571 5572 5573 5574 5575 5576 5577 5578 5579 5580
	/*
	 * Notify all vcpus to reload its shadow page table and flush TLB.
	 * Then all vcpus will switch to new shadow page table with the new
	 * mmu_valid_gen.
	 *
	 * Note: we need to do this under the protection of mmu_lock,
	 * otherwise, vcpu would purge shadow page but miss tlb flush.
	 */
	kvm_reload_remote_mmus(kvm);

5581
	kvm_zap_obsolete_pages(kvm);
5582

5583
	write_unlock(&kvm->mmu_lock);
5584 5585 5586 5587 5588 5589

	if (is_tdp_mmu_enabled(kvm)) {
		read_lock(&kvm->mmu_lock);
		kvm_tdp_mmu_zap_invalidated_roots(kvm);
		read_unlock(&kvm->mmu_lock);
	}
5590 5591
}

5592 5593 5594 5595 5596
static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
{
	return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
}

5597
static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5598 5599
			struct kvm_memory_slot *slot,
			struct kvm_page_track_notifier_node *node)
5600
{
5601
	kvm_mmu_zap_all_fast(kvm);
5602 5603
}

5604
void kvm_mmu_init_vm(struct kvm *kvm)
5605
{
5606
	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5607

5608 5609 5610 5611 5612 5613 5614
	if (!kvm_mmu_init_tdp_mmu(kvm))
		/*
		 * No smp_load/store wrappers needed here as we are in
		 * VM init and there cannot be any memslots / other threads
		 * accessing this struct kvm yet.
		 */
		kvm->arch.memslots_have_rmaps = true;
5615

5616
	node->track_write = kvm_mmu_pte_write;
5617
	node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5618
	kvm_page_track_register_notifier(kvm, node);
5619 5620
}

5621
void kvm_mmu_uninit_vm(struct kvm *kvm)
5622
{
5623
	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5624

5625
	kvm_page_track_unregister_notifier(kvm, node);
5626 5627

	kvm_mmu_uninit_tdp_mmu(kvm);
5628 5629
}

X
Xiao Guangrong 已提交
5630 5631 5632 5633
void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;
5634
	int i;
5635
	bool flush = false;
X
Xiao Guangrong 已提交
5636

5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647
	if (kvm_memslots_have_rmaps(kvm)) {
		write_lock(&kvm->mmu_lock);
		for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
			slots = __kvm_memslots(kvm, i);
			kvm_for_each_memslot(memslot, slots) {
				gfn_t start, end;

				start = max(gfn_start, memslot->base_gfn);
				end = min(gfn_end, memslot->base_gfn + memslot->npages);
				if (start >= end)
					continue;
X
Xiao Guangrong 已提交
5648

5649 5650 5651 5652 5653
				flush = slot_handle_level_range(kvm, memslot,
						kvm_zap_rmapp, PG_LEVEL_4K,
						KVM_MAX_HUGEPAGE_LEVEL, start,
						end - 1, true, flush);
			}
5654
		}
5655 5656 5657
		if (flush)
			kvm_flush_remote_tlbs_with_address(kvm, gfn_start, gfn_end);
		write_unlock(&kvm->mmu_lock);
X
Xiao Guangrong 已提交
5658 5659
	}

5660
	if (is_tdp_mmu_enabled(kvm)) {
5661 5662 5663 5664 5665 5666
		flush = false;

		read_lock(&kvm->mmu_lock);
		for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
			flush = kvm_tdp_mmu_zap_gfn_range(kvm, i, gfn_start,
							  gfn_end, flush, true);
5667
		if (flush)
5668 5669
			kvm_flush_remote_tlbs_with_address(kvm, gfn_start,
							   gfn_end);
5670

5671 5672
		read_unlock(&kvm->mmu_lock);
	}
X
Xiao Guangrong 已提交
5673 5674
}

5675
static bool slot_rmap_write_protect(struct kvm *kvm,
5676 5677
				    struct kvm_rmap_head *rmap_head,
				    struct kvm_memory_slot *slot)
5678
{
5679
	return __rmap_write_protect(kvm, rmap_head, false);
5680 5681
}

5682
void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5683 5684
				      struct kvm_memory_slot *memslot,
				      int start_level)
A
Avi Kivity 已提交
5685
{
5686
	bool flush = false;
A
Avi Kivity 已提交
5687

5688 5689 5690 5691 5692 5693 5694
	if (kvm_memslots_have_rmaps(kvm)) {
		write_lock(&kvm->mmu_lock);
		flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect,
					  start_level, KVM_MAX_HUGEPAGE_LEVEL,
					  false);
		write_unlock(&kvm->mmu_lock);
	}
5695

5696 5697 5698 5699 5700 5701
	if (is_tdp_mmu_enabled(kvm)) {
		read_lock(&kvm->mmu_lock);
		flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, start_level);
		read_unlock(&kvm->mmu_lock);
	}

5702 5703 5704 5705 5706 5707 5708
	/*
	 * We can flush all the TLBs out of the mmu lock without TLB
	 * corruption since we just change the spte from writable to
	 * readonly so that we only need to care the case of changing
	 * spte from present to present (changing the spte from present
	 * to nonpresent will flush all the TLBs immediately), in other
	 * words, the only case we care is mmu_spte_update() where we
5709 5710 5711
	 * have checked Host-writable | MMU-writable instead of
	 * PT_WRITABLE_MASK, that means it does not depend on PT_WRITABLE_MASK
	 * anymore.
5712
	 */
5713
	if (flush)
5714
		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
A
Avi Kivity 已提交
5715
}
5716

5717
static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5718 5719
					 struct kvm_rmap_head *rmap_head,
					 struct kvm_memory_slot *slot)
5720 5721 5722 5723
{
	u64 *sptep;
	struct rmap_iterator iter;
	int need_tlb_flush = 0;
D
Dan Williams 已提交
5724
	kvm_pfn_t pfn;
5725 5726
	struct kvm_mmu_page *sp;

5727
restart:
5728
	for_each_rmap_spte(rmap_head, &iter, sptep) {
5729
		sp = sptep_to_sp(sptep);
5730 5731 5732
		pfn = spte_to_pfn(*sptep);

		/*
5733 5734 5735 5736 5737
		 * We cannot do huge page mapping for indirect shadow pages,
		 * which are found on the last rmap (level = 1) when not using
		 * tdp; such shadow pages are synced with the page table in
		 * the guest, and the guest page table is using 4K page size
		 * mapping if the indirect sp has level = 1.
5738
		 */
5739
		if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
5740 5741
		    sp->role.level < kvm_mmu_max_mapping_level(kvm, slot, sp->gfn,
							       pfn, PG_LEVEL_NUM)) {
5742
			pte_list_remove(rmap_head, sptep);
5743 5744 5745 5746 5747 5748 5749

			if (kvm_available_flush_tlb_with_range())
				kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
					KVM_PAGES_PER_HPAGE(sp->role.level));
			else
				need_tlb_flush = 1;

5750 5751
			goto restart;
		}
5752 5753 5754 5755 5756 5757
	}

	return need_tlb_flush;
}

void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5758
				   const struct kvm_memory_slot *memslot)
5759
{
5760
	/* FIXME: const-ify all uses of struct kvm_memory_slot.  */
5761
	struct kvm_memory_slot *slot = (struct kvm_memory_slot *)memslot;
5762
	bool flush = false;
5763

5764 5765 5766 5767 5768 5769 5770
	if (kvm_memslots_have_rmaps(kvm)) {
		write_lock(&kvm->mmu_lock);
		flush = slot_handle_leaf(kvm, slot, kvm_mmu_zap_collapsible_spte, true);
		if (flush)
			kvm_arch_flush_remote_tlbs_memslot(kvm, slot);
		write_unlock(&kvm->mmu_lock);
	}
5771 5772 5773 5774 5775 5776 5777 5778

	if (is_tdp_mmu_enabled(kvm)) {
		read_lock(&kvm->mmu_lock);
		flush = kvm_tdp_mmu_zap_collapsible_sptes(kvm, slot, flush);
		if (flush)
			kvm_arch_flush_remote_tlbs_memslot(kvm, slot);
		read_unlock(&kvm->mmu_lock);
	}
5779 5780
}

5781
void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
5782
					const struct kvm_memory_slot *memslot)
5783 5784
{
	/*
5785
	 * All current use cases for flushing the TLBs for a specific memslot
5786
	 * related to dirty logging, and many do the TLB flush out of mmu_lock.
5787 5788 5789
	 * The interaction between the various operations on memslot must be
	 * serialized by slots_locks to ensure the TLB flush from one operation
	 * is observed by any other operation on the same memslot.
5790 5791
	 */
	lockdep_assert_held(&kvm->slots_lock);
5792 5793
	kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
					   memslot->npages);
5794 5795
}

5796 5797 5798
void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
				   struct kvm_memory_slot *memslot)
{
5799
	bool flush = false;
5800

5801 5802 5803 5804 5805 5806
	if (kvm_memslots_have_rmaps(kvm)) {
		write_lock(&kvm->mmu_lock);
		flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty,
					 false);
		write_unlock(&kvm->mmu_lock);
	}
5807

5808 5809 5810 5811 5812 5813
	if (is_tdp_mmu_enabled(kvm)) {
		read_lock(&kvm->mmu_lock);
		flush |= kvm_tdp_mmu_clear_dirty_slot(kvm, memslot);
		read_unlock(&kvm->mmu_lock);
	}

5814 5815 5816 5817 5818 5819 5820
	/*
	 * It's also safe to flush TLBs out of mmu lock here as currently this
	 * function is only used for dirty logging, in which case flushing TLB
	 * out of mmu lock also guarantees no dirty pages will be lost in
	 * dirty_bitmap.
	 */
	if (flush)
5821
		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5822 5823
}

5824
void kvm_mmu_zap_all(struct kvm *kvm)
5825 5826
{
	struct kvm_mmu_page *sp, *node;
5827
	LIST_HEAD(invalid_list);
5828
	int ign;
5829

5830
	write_lock(&kvm->mmu_lock);
5831
restart:
5832
	list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
5833
		if (WARN_ON(sp->role.invalid))
5834
			continue;
5835
		if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
5836
			goto restart;
5837
		if (cond_resched_rwlock_write(&kvm->mmu_lock))
5838 5839 5840
			goto restart;
	}

5841
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
5842

5843
	if (is_tdp_mmu_enabled(kvm))
5844 5845
		kvm_tdp_mmu_zap_all(kvm);

5846
	write_unlock(&kvm->mmu_lock);
5847 5848
}

5849
void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
5850
{
5851
	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
5852

5853
	gen &= MMIO_SPTE_GEN_MASK;
5854

5855
	/*
5856 5857 5858 5859 5860 5861 5862 5863
	 * Generation numbers are incremented in multiples of the number of
	 * address spaces in order to provide unique generations across all
	 * address spaces.  Strip what is effectively the address space
	 * modifier prior to checking for a wrap of the MMIO generation so
	 * that a wrap in any address space is detected.
	 */
	gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);

5864
	/*
5865
	 * The very rare case: if the MMIO generation number has wrapped,
5866 5867
	 * zap all shadow pages.
	 */
5868
	if (unlikely(gen == 0)) {
5869
		kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
5870
		kvm_mmu_zap_all_fast(kvm);
5871
	}
5872 5873
}

5874 5875
static unsigned long
mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
5876 5877
{
	struct kvm *kvm;
5878
	int nr_to_scan = sc->nr_to_scan;
5879
	unsigned long freed = 0;
5880

J
Junaid Shahid 已提交
5881
	mutex_lock(&kvm_lock);
5882 5883

	list_for_each_entry(kvm, &vm_list, vm_list) {
5884
		int idx;
5885
		LIST_HEAD(invalid_list);
5886

5887 5888 5889 5890 5891 5892 5893 5894
		/*
		 * Never scan more than sc->nr_to_scan VM instances.
		 * Will not hit this condition practically since we do not try
		 * to shrink more than one VM and it is very unlikely to see
		 * !n_used_mmu_pages so many times.
		 */
		if (!nr_to_scan--)
			break;
5895 5896 5897 5898 5899 5900
		/*
		 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
		 * here. We may skip a VM instance errorneosly, but we do not
		 * want to shrink a VM that only started to populate its MMU
		 * anyway.
		 */
5901 5902
		if (!kvm->arch.n_used_mmu_pages &&
		    !kvm_has_zapped_obsolete_pages(kvm))
5903 5904
			continue;

5905
		idx = srcu_read_lock(&kvm->srcu);
5906
		write_lock(&kvm->mmu_lock);
5907

5908 5909 5910 5911 5912 5913
		if (kvm_has_zapped_obsolete_pages(kvm)) {
			kvm_mmu_commit_zap_page(kvm,
			      &kvm->arch.zapped_obsolete_pages);
			goto unlock;
		}

5914
		freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan);
5915

5916
unlock:
5917
		write_unlock(&kvm->mmu_lock);
5918
		srcu_read_unlock(&kvm->srcu, idx);
5919

5920 5921 5922 5923 5924
		/*
		 * unfair on small ones
		 * per-vm shrinkers cry out
		 * sadness comes quickly
		 */
5925 5926
		list_move_tail(&kvm->vm_list, &vm_list);
		break;
5927 5928
	}

J
Junaid Shahid 已提交
5929
	mutex_unlock(&kvm_lock);
5930 5931 5932 5933 5934 5935
	return freed;
}

static unsigned long
mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
{
5936
	return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
5937 5938 5939
}

static struct shrinker mmu_shrinker = {
5940 5941
	.count_objects = mmu_shrink_count,
	.scan_objects = mmu_shrink_scan,
5942 5943 5944
	.seeks = DEFAULT_SEEKS * 10,
};

I
Ingo Molnar 已提交
5945
static void mmu_destroy_caches(void)
5946
{
5947 5948
	kmem_cache_destroy(pte_list_desc_cache);
	kmem_cache_destroy(mmu_page_header_cache);
5949 5950
}

P
Paolo Bonzini 已提交
5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984
static bool get_nx_auto_mode(void)
{
	/* Return true when CPU has the bug, and mitigations are ON */
	return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
}

static void __set_nx_huge_pages(bool val)
{
	nx_huge_pages = itlb_multihit_kvm_mitigation = val;
}

static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
{
	bool old_val = nx_huge_pages;
	bool new_val;

	/* In "auto" mode deploy workaround only if CPU has the bug. */
	if (sysfs_streq(val, "off"))
		new_val = 0;
	else if (sysfs_streq(val, "force"))
		new_val = 1;
	else if (sysfs_streq(val, "auto"))
		new_val = get_nx_auto_mode();
	else if (strtobool(val, &new_val) < 0)
		return -EINVAL;

	__set_nx_huge_pages(new_val);

	if (new_val != old_val) {
		struct kvm *kvm;

		mutex_lock(&kvm_lock);

		list_for_each_entry(kvm, &vm_list, vm_list) {
5985
			mutex_lock(&kvm->slots_lock);
P
Paolo Bonzini 已提交
5986
			kvm_mmu_zap_all_fast(kvm);
5987
			mutex_unlock(&kvm->slots_lock);
5988 5989

			wake_up_process(kvm->arch.nx_lpage_recovery_thread);
P
Paolo Bonzini 已提交
5990 5991 5992 5993 5994 5995 5996
		}
		mutex_unlock(&kvm_lock);
	}

	return 0;
}

5997 5998
int kvm_mmu_module_init(void)
{
5999 6000
	int ret = -ENOMEM;

P
Paolo Bonzini 已提交
6001 6002 6003
	if (nx_huge_pages == -1)
		__set_nx_huge_pages(get_nx_auto_mode());

6004 6005 6006 6007 6008 6009 6010 6011 6012 6013
	/*
	 * MMU roles use union aliasing which is, generally speaking, an
	 * undefined behavior. However, we supposedly know how compilers behave
	 * and the current status quo is unlikely to change. Guardians below are
	 * supposed to let us know if the assumption becomes false.
	 */
	BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
	BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
	BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));

6014
	kvm_mmu_reset_all_pte_masks();
6015

6016 6017
	pte_list_desc_cache = kmem_cache_create("pte_list_desc",
					    sizeof(struct pte_list_desc),
6018
					    0, SLAB_ACCOUNT, NULL);
6019
	if (!pte_list_desc_cache)
6020
		goto out;
6021

6022 6023
	mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
						  sizeof(struct kvm_mmu_page),
6024
						  0, SLAB_ACCOUNT, NULL);
6025
	if (!mmu_page_header_cache)
6026
		goto out;
6027

6028
	if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
6029
		goto out;
6030

6031 6032 6033
	ret = register_shrinker(&mmu_shrinker);
	if (ret)
		goto out;
6034

6035 6036
	return 0;

6037
out:
6038
	mmu_destroy_caches();
6039
	return ret;
6040 6041
}

6042
/*
P
Peng Hao 已提交
6043
 * Calculate mmu pages needed for kvm.
6044
 */
6045
unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm)
6046
{
6047 6048
	unsigned long nr_mmu_pages;
	unsigned long nr_pages = 0;
6049
	struct kvm_memslots *slots;
6050
	struct kvm_memory_slot *memslot;
6051
	int i;
6052

6053 6054
	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
6055

6056 6057 6058
		kvm_for_each_memslot(memslot, slots)
			nr_pages += memslot->npages;
	}
6059 6060

	nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
6061
	nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
6062 6063 6064 6065

	return nr_mmu_pages;
}

6066 6067
void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
{
6068
	kvm_mmu_unload(vcpu);
6069 6070
	free_mmu_pages(&vcpu->arch.root_mmu);
	free_mmu_pages(&vcpu->arch.guest_mmu);
6071
	mmu_free_memory_caches(vcpu);
6072 6073 6074 6075 6076 6077 6078
}

void kvm_mmu_module_exit(void)
{
	mmu_destroy_caches();
	percpu_counter_destroy(&kvm_total_used_mmu_pages);
	unregister_shrinker(&mmu_shrinker);
6079 6080
	mmu_audit_disable();
}
6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108

static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp)
{
	unsigned int old_val;
	int err;

	old_val = nx_huge_pages_recovery_ratio;
	err = param_set_uint(val, kp);
	if (err)
		return err;

	if (READ_ONCE(nx_huge_pages) &&
	    !old_val && nx_huge_pages_recovery_ratio) {
		struct kvm *kvm;

		mutex_lock(&kvm_lock);

		list_for_each_entry(kvm, &vm_list, vm_list)
			wake_up_process(kvm->arch.nx_lpage_recovery_thread);

		mutex_unlock(&kvm_lock);
	}

	return err;
}

static void kvm_recover_nx_lpages(struct kvm *kvm)
{
6109
	unsigned long nx_lpage_splits = kvm->stat.nx_lpage_splits;
6110 6111 6112 6113
	int rcu_idx;
	struct kvm_mmu_page *sp;
	unsigned int ratio;
	LIST_HEAD(invalid_list);
6114
	bool flush = false;
6115 6116 6117
	ulong to_zap;

	rcu_idx = srcu_read_lock(&kvm->srcu);
6118
	write_lock(&kvm->mmu_lock);
6119 6120

	ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
6121
	to_zap = ratio ? DIV_ROUND_UP(nx_lpage_splits, ratio) : 0;
6122 6123 6124 6125
	for ( ; to_zap; --to_zap) {
		if (list_empty(&kvm->arch.lpage_disallowed_mmu_pages))
			break;

6126 6127 6128 6129 6130 6131 6132 6133 6134
		/*
		 * We use a separate list instead of just using active_mmu_pages
		 * because the number of lpage_disallowed pages is expected to
		 * be relatively small compared to the total.
		 */
		sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
				      struct kvm_mmu_page,
				      lpage_disallowed_link);
		WARN_ON_ONCE(!sp->lpage_disallowed);
6135
		if (is_tdp_mmu_page(sp)) {
6136
			flush |= kvm_tdp_mmu_zap_sp(kvm, sp);
6137
		} else {
6138 6139 6140
			kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
			WARN_ON_ONCE(sp->lpage_disallowed);
		}
6141

6142
		if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
6143
			kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
6144
			cond_resched_rwlock_write(&kvm->mmu_lock);
6145
			flush = false;
6146 6147
		}
	}
6148
	kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
6149

6150
	write_unlock(&kvm->mmu_lock);
6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203
	srcu_read_unlock(&kvm->srcu, rcu_idx);
}

static long get_nx_lpage_recovery_timeout(u64 start_time)
{
	return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio)
		? start_time + 60 * HZ - get_jiffies_64()
		: MAX_SCHEDULE_TIMEOUT;
}

static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
{
	u64 start_time;
	long remaining_time;

	while (true) {
		start_time = get_jiffies_64();
		remaining_time = get_nx_lpage_recovery_timeout(start_time);

		set_current_state(TASK_INTERRUPTIBLE);
		while (!kthread_should_stop() && remaining_time > 0) {
			schedule_timeout(remaining_time);
			remaining_time = get_nx_lpage_recovery_timeout(start_time);
			set_current_state(TASK_INTERRUPTIBLE);
		}

		set_current_state(TASK_RUNNING);

		if (kthread_should_stop())
			return 0;

		kvm_recover_nx_lpages(kvm);
	}
}

int kvm_mmu_post_init_vm(struct kvm *kvm)
{
	int err;

	err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
					  "kvm-nx-lpage-recovery",
					  &kvm->arch.nx_lpage_recovery_thread);
	if (!err)
		kthread_unpark(kvm->arch.nx_lpage_recovery_thread);

	return err;
}

void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
{
	if (kvm->arch.nx_lpage_recovery_thread)
		kthread_stop(kvm->arch.nx_lpage_recovery_thread);
}