mmu.c 168.4 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
A
Avi Kivity 已提交
2 3 4 5 6 7 8 9 10
/*
 * Kernel-based Virtual Machine driver for Linux
 *
 * This module enables machines with Intel VT-x extensions to run virtual
 * machines without emulation or binary translation.
 *
 * MMU support
 *
 * Copyright (C) 2006 Qumranet, Inc.
N
Nicolas Kaiser 已提交
11
 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
A
Avi Kivity 已提交
12 13 14 15 16
 *
 * Authors:
 *   Yaniv Kamay  <yaniv@qumranet.com>
 *   Avi Kivity   <avi@qumranet.com>
 */
A
Avi Kivity 已提交
17

18
#include "irq.h"
19
#include "ioapic.h"
20
#include "mmu.h"
21
#include "mmu_internal.h"
22
#include "tdp_mmu.h"
23
#include "x86.h"
A
Avi Kivity 已提交
24
#include "kvm_cache_regs.h"
25
#include "kvm_emulate.h"
26
#include "cpuid.h"
27
#include "spte.h"
A
Avi Kivity 已提交
28

29
#include <linux/kvm_host.h>
A
Avi Kivity 已提交
30 31 32 33
#include <linux/types.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/highmem.h>
34 35
#include <linux/moduleparam.h>
#include <linux/export.h>
36
#include <linux/swap.h>
M
Marcelo Tosatti 已提交
37
#include <linux/hugetlb.h>
38
#include <linux/compiler.h>
39
#include <linux/srcu.h>
40
#include <linux/slab.h>
41
#include <linux/sched/signal.h>
42
#include <linux/uaccess.h>
43
#include <linux/hash.h>
44
#include <linux/kern_levels.h>
45
#include <linux/kthread.h>
A
Avi Kivity 已提交
46

A
Avi Kivity 已提交
47
#include <asm/page.h>
48
#include <asm/memtype.h>
A
Avi Kivity 已提交
49
#include <asm/cmpxchg.h>
50
#include <asm/io.h>
51
#include <asm/set_memory.h>
52
#include <asm/vmx.h>
53
#include <asm/kvm_page_track.h>
54
#include "trace.h"
A
Avi Kivity 已提交
55

56 57
#include "paging.h"

P
Paolo Bonzini 已提交
58 59
extern bool itlb_multihit_kvm_mitigation;

60
int __read_mostly nx_huge_pages = -1;
61
static uint __read_mostly nx_huge_pages_recovery_period_ms;
62 63 64 65
#ifdef CONFIG_PREEMPT_RT
/* Recovery can cause latency spikes, disable it for PREEMPT_RT.  */
static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
#else
66
static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
67
#endif
P
Paolo Bonzini 已提交
68 69

static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
70
static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp);
P
Paolo Bonzini 已提交
71

72
static const struct kernel_param_ops nx_huge_pages_ops = {
P
Paolo Bonzini 已提交
73 74 75 76
	.set = set_nx_huge_pages,
	.get = param_get_bool,
};

77 78
static const struct kernel_param_ops nx_huge_pages_recovery_param_ops = {
	.set = set_nx_huge_pages_recovery_param,
79 80 81
	.get = param_get_uint,
};

P
Paolo Bonzini 已提交
82 83
module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
__MODULE_PARM_TYPE(nx_huge_pages, "bool");
84
module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_param_ops,
85 86
		&nx_huge_pages_recovery_ratio, 0644);
__MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
87 88 89
module_param_cb(nx_huge_pages_recovery_period_ms, &nx_huge_pages_recovery_param_ops,
		&nx_huge_pages_recovery_period_ms, 0644);
__MODULE_PARM_TYPE(nx_huge_pages_recovery_period_ms, "uint");
P
Paolo Bonzini 已提交
90

91 92 93
static bool __read_mostly force_flush_and_sync_on_reuse;
module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644);

94 95 96 97 98 99 100
/*
 * When setting this variable to true it enables Two-Dimensional-Paging
 * where the hardware walks 2 page tables:
 * 1. the guest-virtual to guest-physical
 * 2. while doing 1. it walks guest-physical to host-physical
 * If the hardware supports that we don't need to do shadow paging.
 */
101
bool tdp_enabled = false;
102

103
static int max_huge_page_level __read_mostly;
104
static int tdp_root_level __read_mostly;
105
static int max_tdp_level __read_mostly;
106

107 108 109 110
enum {
	AUDIT_PRE_PAGE_FAULT,
	AUDIT_POST_PAGE_FAULT,
	AUDIT_PRE_PTE_WRITE,
111 112 113
	AUDIT_POST_PTE_WRITE,
	AUDIT_PRE_SYNC,
	AUDIT_POST_SYNC
114
};
115 116

#ifdef MMU_DEBUG
117
bool dbg = 0;
118
module_param(dbg, bool, 0644);
119
#endif
A
Avi Kivity 已提交
120

121 122
#define PTE_PREFETCH_NUM		8

A
Avi Kivity 已提交
123 124 125
#define PT32_LEVEL_BITS 10

#define PT32_LEVEL_SHIFT(level) \
M
Mike Day 已提交
126
		(PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
A
Avi Kivity 已提交
127

128 129 130
#define PT32_LVL_OFFSET_MASK(level) \
	(PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
131 132 133 134 135 136 137 138

#define PT32_INDEX(address, level)\
	(((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))


#define PT32_BASE_ADDR_MASK PAGE_MASK
#define PT32_DIR_BASE_ADDR_MASK \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
139 140 141
#define PT32_LVL_ADDR_MASK(level) \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
					    * PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
142

143 144
#include <trace/events/kvm.h>

145
/* make pte_list_desc fit well in cache lines */
146
#define PTE_LIST_EXT 14
147

148 149 150 151 152
/*
 * Slight optimization of cacheline layout, by putting `more' and `spte_count'
 * at the start; then accessing it will only use one single cacheline for
 * either full (entries==PTE_LIST_EXT) case or entries<=6.
 */
153 154
struct pte_list_desc {
	struct pte_list_desc *more;
155 156 157 158 159 160
	/*
	 * Stores number of entries stored in the pte_list_desc.  No need to be
	 * u64 but just for easier alignment.  When PTE_LIST_EXT, means full.
	 */
	u64 spte_count;
	u64 *sptes[PTE_LIST_EXT];
161 162
};

163 164 165 166
struct kvm_shadow_walk_iterator {
	u64 addr;
	hpa_t shadow_addr;
	u64 *sptep;
167
	int level;
168 169 170
	unsigned index;
};

171 172 173 174 175 176 177
#define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker)     \
	for (shadow_walk_init_using_root(&(_walker), (_vcpu),              \
					 (_root), (_addr));                \
	     shadow_walk_okay(&(_walker));			           \
	     shadow_walk_next(&(_walker)))

#define for_each_shadow_entry(_vcpu, _addr, _walker)            \
178 179 180 181
	for (shadow_walk_init(&(_walker), _vcpu, _addr);	\
	     shadow_walk_okay(&(_walker));			\
	     shadow_walk_next(&(_walker)))

182 183 184 185 186 187
#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)	\
	for (shadow_walk_init(&(_walker), _vcpu, _addr);		\
	     shadow_walk_okay(&(_walker)) &&				\
		({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });	\
	     __shadow_walk_next(&(_walker), spte))

188
static struct kmem_cache *pte_list_desc_cache;
189
struct kmem_cache *mmu_page_header_cache;
190
static struct percpu_counter kvm_total_used_mmu_pages;
191

192
static void mmu_spte_set(u64 *sptep, u64 spte);
193 194
static union kvm_mmu_page_role
kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
195

196 197 198 199 200 201
struct kvm_mmu_role_regs {
	const unsigned long cr0;
	const unsigned long cr4;
	const u64 efer;
};

202 203 204
#define CREATE_TRACE_POINTS
#include "mmutrace.h"

205 206 207 208 209 210
/*
 * Yes, lot's of underscores.  They're a hint that you probably shouldn't be
 * reading from the role_regs.  Once the mmu_role is constructed, it becomes
 * the single source of truth for the MMU's state.
 */
#define BUILD_MMU_ROLE_REGS_ACCESSOR(reg, name, flag)			\
211
static inline bool __maybe_unused ____is_##reg##_##name(struct kvm_mmu_role_regs *regs)\
212 213 214 215 216 217 218 219 220 221 222 223 224 225
{									\
	return !!(regs->reg & flag);					\
}
BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, pg, X86_CR0_PG);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, wp, X86_CR0_WP);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pse, X86_CR4_PSE);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pae, X86_CR4_PAE);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smep, X86_CR4_SMEP);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smap, X86_CR4_SMAP);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pke, X86_CR4_PKE);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, la57, X86_CR4_LA57);
BUILD_MMU_ROLE_REGS_ACCESSOR(efer, nx, EFER_NX);
BUILD_MMU_ROLE_REGS_ACCESSOR(efer, lma, EFER_LMA);

226 227 228 229 230 231 232
/*
 * The MMU itself (with a valid role) is the single source of truth for the
 * MMU.  Do not use the regs used to build the MMU/role, nor the vCPU.  The
 * regs don't account for dependencies, e.g. clearing CR4 bits if CR0.PG=1,
 * and the vCPU may be incorrect/irrelevant.
 */
#define BUILD_MMU_ROLE_ACCESSOR(base_or_ext, reg, name)		\
233
static inline bool __maybe_unused is_##reg##_##name(struct kvm_mmu *mmu)	\
234 235 236 237 238 239 240 241 242 243 244 245 246
{								\
	return !!(mmu->mmu_role. base_or_ext . reg##_##name);	\
}
BUILD_MMU_ROLE_ACCESSOR(ext,  cr0, pg);
BUILD_MMU_ROLE_ACCESSOR(base, cr0, wp);
BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, pse);
BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, pae);
BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, smep);
BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, smap);
BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, pke);
BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, la57);
BUILD_MMU_ROLE_ACCESSOR(base, efer, nx);

247 248 249 250 251 252 253 254 255 256
static struct kvm_mmu_role_regs vcpu_to_role_regs(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu_role_regs regs = {
		.cr0 = kvm_read_cr0_bits(vcpu, KVM_MMU_CR0_ROLE_BITS),
		.cr4 = kvm_read_cr4_bits(vcpu, KVM_MMU_CR4_ROLE_BITS),
		.efer = vcpu->arch.efer,
	};

	return regs;
}
257

258 259 260 261 262 263 264 265 266 267 268 269
static int role_regs_to_root_level(struct kvm_mmu_role_regs *regs)
{
	if (!____is_cr0_pg(regs))
		return 0;
	else if (____is_efer_lma(regs))
		return ____is_cr4_la57(regs) ? PT64_ROOT_5LEVEL :
					       PT64_ROOT_4LEVEL;
	else if (____is_cr4_pae(regs))
		return PT32E_ROOT_LEVEL;
	else
		return PT32_ROOT_LEVEL;
}
270 271 272

static inline bool kvm_available_flush_tlb_with_range(void)
{
273
	return kvm_x86_ops.tlb_remote_flush_with_range;
274 275 276 277 278 279 280
}

static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
		struct kvm_tlb_range *range)
{
	int ret = -ENOTSUPP;

281
	if (range && kvm_x86_ops.tlb_remote_flush_with_range)
282
		ret = static_call(kvm_x86_tlb_remote_flush_with_range)(kvm, range);
283 284 285 286 287

	if (ret)
		kvm_flush_remote_tlbs(kvm);
}

288
void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
289 290 291 292 293 294 295 296 297 298
		u64 start_gfn, u64 pages)
{
	struct kvm_tlb_range range;

	range.start_gfn = start_gfn;
	range.pages = pages;

	kvm_flush_remote_tlbs_with_range(kvm, &range);
}

299 300 301
static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
			   unsigned int access)
{
302
	u64 spte = make_mmio_spte(vcpu, gfn, access);
303

304 305
	trace_mark_mmio_spte(sptep, gfn, spte);
	mmu_spte_set(sptep, spte);
306 307 308 309
}

static gfn_t get_mmio_spte_gfn(u64 spte)
{
310
	u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
311

312
	gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)
313 314 315
	       & shadow_nonpresent_or_rsvd_mask;

	return gpa >> PAGE_SHIFT;
316 317 318 319
}

static unsigned get_mmio_spte_access(u64 spte)
{
320
	return spte & shadow_mmio_access_mask;
321 322
}

323
static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
324
{
325
	u64 kvm_gen, spte_gen, gen;
326

327 328 329
	gen = kvm_vcpu_memslots(vcpu)->generation;
	if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
		return false;
330

331
	kvm_gen = gen & MMIO_SPTE_GEN_MASK;
332 333 334 335
	spte_gen = get_mmio_spte_generation(spte);

	trace_check_mmio_spte(spte, kvm_gen, spte_gen);
	return likely(kvm_gen == spte_gen);
336 337
}

A
Avi Kivity 已提交
338 339 340 341 342
static int is_cpuid_PSE36(void)
{
	return 1;
}

343 344 345 346 347 348 349
static gfn_t pse36_gfn_delta(u32 gpte)
{
	int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;

	return (gpte & PT32_DIR_PSE36_MASK) << shift;
}

350
#ifdef CONFIG_X86_64
A
Avi Kivity 已提交
351
static void __set_spte(u64 *sptep, u64 spte)
352
{
353
	WRITE_ONCE(*sptep, spte);
354 355
}

356
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
357
{
358
	WRITE_ONCE(*sptep, spte);
359 360 361 362 363 364
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	return xchg(sptep, spte);
}
365 366 367

static u64 __get_spte_lockless(u64 *sptep)
{
368
	return READ_ONCE(*sptep);
369
}
370
#else
371 372 373 374 375 376 377
union split_spte {
	struct {
		u32 spte_low;
		u32 spte_high;
	};
	u64 spte;
};
378

379 380
static void count_spte_clear(u64 *sptep, u64 spte)
{
381
	struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
382 383 384 385 386 387 388 389 390

	if (is_shadow_present_pte(spte))
		return;

	/* Ensure the spte is completely set before we increase the count */
	smp_wmb();
	sp->clear_spte_count++;
}

391 392 393
static void __set_spte(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;
394

395 396 397 398 399 400 401 402 403 404 405 406
	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	ssptep->spte_high = sspte.spte_high;

	/*
	 * If we map the spte from nonpresent to present, We should store
	 * the high bits firstly, then set present bit, so cpu can not
	 * fetch this spte while we are setting the spte.
	 */
	smp_wmb();

407
	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
408 409
}

410 411 412 413 414 415 416
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

417
	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
418 419 420 421 422 423 424 425

	/*
	 * If we map the spte from present to nonpresent, we should clear
	 * present bit firstly to avoid vcpu fetch the old high bits.
	 */
	smp_wmb();

	ssptep->spte_high = sspte.spte_high;
426
	count_spte_clear(sptep, spte);
427 428 429 430 431 432 433 434 435 436 437
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte, orig;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	/* xchg acts as a barrier before the setting of the high bits */
	orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
438 439
	orig.spte_high = ssptep->spte_high;
	ssptep->spte_high = sspte.spte_high;
440
	count_spte_clear(sptep, spte);
441 442 443

	return orig.spte;
}
444 445 446

/*
 * The idea using the light way get the spte on x86_32 guest is from
447
 * gup_get_pte (mm/gup.c).
448 449 450 451 452 453 454 455 456 457 458 459 460 461
 *
 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
 * coalesces them and we are running out of the MMU lock.  Therefore
 * we need to protect against in-progress updates of the spte.
 *
 * Reading the spte while an update is in progress may get the old value
 * for the high part of the spte.  The race is fine for a present->non-present
 * change (because the high part of the spte is ignored for non-present spte),
 * but for a present->present change we must reread the spte.
 *
 * All such changes are done in two steps (present->non-present and
 * non-present->present), hence it is enough to count the number of
 * present->non-present updates: if it changed while reading the spte,
 * we might have hit the race.  This is done using clear_spte_count.
462 463 464
 */
static u64 __get_spte_lockless(u64 *sptep)
{
465
	struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
	union split_spte spte, *orig = (union split_spte *)sptep;
	int count;

retry:
	count = sp->clear_spte_count;
	smp_rmb();

	spte.spte_low = orig->spte_low;
	smp_rmb();

	spte.spte_high = orig->spte_high;
	smp_rmb();

	if (unlikely(spte.spte_low != orig->spte_low ||
	      count != sp->clear_spte_count))
		goto retry;

	return spte.spte;
}
485 486
#endif

487 488
static bool spte_has_volatile_bits(u64 spte)
{
489 490 491
	if (!is_shadow_present_pte(spte))
		return false;

492
	/*
493
	 * Always atomically update spte if it can be updated
494 495 496 497
	 * out of mmu-lock, it can ensure dirty bit is not lost,
	 * also, it can help us to get a stable is_writable_pte()
	 * to ensure tlb flush is not missed.
	 */
498 499
	if (spte_can_locklessly_be_made_writable(spte) ||
	    is_access_track_spte(spte))
500 501
		return true;

502
	if (spte_ad_enabled(spte)) {
503 504 505 506
		if ((spte & shadow_accessed_mask) == 0 ||
	    	    (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
			return true;
	}
507

508
	return false;
509 510
}

511 512 513 514 515 516 517 518 519 520 521 522
/* Rules for using mmu_spte_set:
 * Set the sptep from nonpresent to present.
 * Note: the sptep being assigned *must* be either not present
 * or in a state where the hardware will not attempt to update
 * the spte.
 */
static void mmu_spte_set(u64 *sptep, u64 new_spte)
{
	WARN_ON(is_shadow_present_pte(*sptep));
	__set_spte(sptep, new_spte);
}

523 524 525
/*
 * Update the SPTE (excluding the PFN), but do not track changes in its
 * accessed/dirty status.
526
 */
527
static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
528
{
529
	u64 old_spte = *sptep;
530

531
	WARN_ON(!is_shadow_present_pte(new_spte));
532

533 534
	if (!is_shadow_present_pte(old_spte)) {
		mmu_spte_set(sptep, new_spte);
535
		return old_spte;
536
	}
537

538
	if (!spte_has_volatile_bits(old_spte))
539
		__update_clear_spte_fast(sptep, new_spte);
540
	else
541
		old_spte = __update_clear_spte_slow(sptep, new_spte);
542

543 544
	WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));

545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
	return old_spte;
}

/* Rules for using mmu_spte_update:
 * Update the state bits, it means the mapped pfn is not changed.
 *
 * Whenever we overwrite a writable spte with a read-only one we
 * should flush remote TLBs. Otherwise rmap_write_protect
 * will find a read-only spte, even though the writable spte
 * might be cached on a CPU's TLB, the return value indicates this
 * case.
 *
 * Returns true if the TLB needs to be flushed
 */
static bool mmu_spte_update(u64 *sptep, u64 new_spte)
{
	bool flush = false;
	u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);

	if (!is_shadow_present_pte(old_spte))
		return false;

567 568
	/*
	 * For the spte updated out of mmu-lock is safe, since
569
	 * we always atomically update it, see the comments in
570 571
	 * spte_has_volatile_bits().
	 */
572
	if (spte_can_locklessly_be_made_writable(old_spte) &&
573
	      !is_writable_pte(new_spte))
574
		flush = true;
575

576
	/*
577
	 * Flush TLB when accessed/dirty states are changed in the page tables,
578 579 580
	 * to guarantee consistency between TLB and page tables.
	 */

581 582
	if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
		flush = true;
583
		kvm_set_pfn_accessed(spte_to_pfn(old_spte));
584 585 586 587
	}

	if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
		flush = true;
588
		kvm_set_pfn_dirty(spte_to_pfn(old_spte));
589
	}
590

591
	return flush;
592 593
}

594 595 596 597
/*
 * Rules for using mmu_spte_clear_track_bits:
 * It sets the sptep from present to nonpresent, and track the
 * state bits, it is used to clear the last level sptep.
598
 * Returns the old PTE.
599
 */
600
static int mmu_spte_clear_track_bits(struct kvm *kvm, u64 *sptep)
601
{
D
Dan Williams 已提交
602
	kvm_pfn_t pfn;
603
	u64 old_spte = *sptep;
604
	int level = sptep_to_sp(sptep)->role.level;
605 606

	if (!spte_has_volatile_bits(old_spte))
607
		__update_clear_spte_fast(sptep, 0ull);
608
	else
609
		old_spte = __update_clear_spte_slow(sptep, 0ull);
610

611
	if (!is_shadow_present_pte(old_spte))
612
		return old_spte;
613

614 615
	kvm_update_page_stats(kvm, level, -1);

616
	pfn = spte_to_pfn(old_spte);
617 618 619 620 621 622

	/*
	 * KVM does not hold the refcount of the page used by
	 * kvm mmu, before reclaiming the page, we should
	 * unmap it from mmu first.
	 */
623
	WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
624

625
	if (is_accessed_spte(old_spte))
626
		kvm_set_pfn_accessed(pfn);
627 628

	if (is_dirty_spte(old_spte))
629
		kvm_set_pfn_dirty(pfn);
630

631
	return old_spte;
632 633 634 635 636 637 638 639 640
}

/*
 * Rules for using mmu_spte_clear_no_track:
 * Directly clear spte without caring the state bits of sptep,
 * it is used to set the upper level spte.
 */
static void mmu_spte_clear_no_track(u64 *sptep)
{
641
	__update_clear_spte_fast(sptep, 0ull);
642 643
}

644 645 646 647 648
static u64 mmu_spte_get_lockless(u64 *sptep)
{
	return __get_spte_lockless(sptep);
}

649 650 651 652
/* Restore an acc-track PTE back to a regular PTE */
static u64 restore_acc_track_spte(u64 spte)
{
	u64 new_spte = spte;
653 654
	u64 saved_bits = (spte >> SHADOW_ACC_TRACK_SAVED_BITS_SHIFT)
			 & SHADOW_ACC_TRACK_SAVED_BITS_MASK;
655

656
	WARN_ON_ONCE(spte_ad_enabled(spte));
657 658 659
	WARN_ON_ONCE(!is_access_track_spte(spte));

	new_spte &= ~shadow_acc_track_mask;
660 661
	new_spte &= ~(SHADOW_ACC_TRACK_SAVED_BITS_MASK <<
		      SHADOW_ACC_TRACK_SAVED_BITS_SHIFT);
662 663 664 665 666
	new_spte |= saved_bits;

	return new_spte;
}

667 668 669 670 671 672 673 674
/* Returns the Accessed status of the PTE and resets it at the same time. */
static bool mmu_spte_age(u64 *sptep)
{
	u64 spte = mmu_spte_get_lockless(sptep);

	if (!is_accessed_spte(spte))
		return false;

675
	if (spte_ad_enabled(spte)) {
676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
		clear_bit((ffs(shadow_accessed_mask) - 1),
			  (unsigned long *)sptep);
	} else {
		/*
		 * Capture the dirty status of the page, so that it doesn't get
		 * lost when the SPTE is marked for access tracking.
		 */
		if (is_writable_pte(spte))
			kvm_set_pfn_dirty(spte_to_pfn(spte));

		spte = mark_spte_for_access_track(spte);
		mmu_spte_update_no_track(sptep, spte);
	}

	return true;
}

693 694
static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
{
695 696 697 698 699 700 701 702
	if (is_tdp_mmu(vcpu->arch.mmu)) {
		kvm_tdp_mmu_walk_lockless_begin();
	} else {
		/*
		 * Prevent page table teardown by making any free-er wait during
		 * kvm_flush_remote_tlbs() IPI to all active vcpus.
		 */
		local_irq_disable();
703

704 705 706 707 708 709
		/*
		 * Make sure a following spte read is not reordered ahead of the write
		 * to vcpu->mode.
		 */
		smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
	}
710 711 712 713
}

static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
{
714 715 716 717 718 719 720 721 722 723 724
	if (is_tdp_mmu(vcpu->arch.mmu)) {
		kvm_tdp_mmu_walk_lockless_end();
	} else {
		/*
		 * Make sure the write to vcpu->mode is not reordered in front of
		 * reads to sptes.  If it does, kvm_mmu_commit_zap_page() can see us
		 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
		 */
		smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
		local_irq_enable();
	}
725 726
}

727
static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect)
728
{
729 730
	int r;

731
	/* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */
732 733
	r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
				       1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM);
734
	if (r)
735
		return r;
736 737
	r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache,
				       PT64_ROOT_MAX_LEVEL);
738
	if (r)
739
		return r;
740
	if (maybe_indirect) {
741 742
		r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_gfn_array_cache,
					       PT64_ROOT_MAX_LEVEL);
743 744 745
		if (r)
			return r;
	}
746 747
	return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
					  PT64_ROOT_MAX_LEVEL);
748 749 750 751
}

static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
{
752 753 754 755
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache);
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache);
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_gfn_array_cache);
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
756 757
}

758
static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
759
{
760
	return kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
761 762
}

763
static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
764
{
765
	kmem_cache_free(pte_list_desc_cache, pte_list_desc);
766 767
}

768 769 770 771 772 773 774 775 776 777
static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
{
	if (!sp->role.direct)
		return sp->gfns[index];

	return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
}

static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
{
778
	if (!sp->role.direct) {
779
		sp->gfns[index] = gfn;
780 781 782 783 784 785 786 787
		return;
	}

	if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
		pr_err_ratelimited("gfn mismatch under direct page %llx "
				   "(expected %llx, got %llx)\n",
				   sp->gfn,
				   kvm_mmu_page_get_gfn(sp, index), gfn);
788 789
}

M
Marcelo Tosatti 已提交
790
/*
791 792
 * Return the pointer to the large page information for a given gfn,
 * handling slots that are not large page aligned.
M
Marcelo Tosatti 已提交
793
 */
794
static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
795
		const struct kvm_memory_slot *slot, int level)
M
Marcelo Tosatti 已提交
796 797 798
{
	unsigned long idx;

799
	idx = gfn_to_index(gfn, slot->base_gfn, level);
800
	return &slot->arch.lpage_info[level - 2][idx];
M
Marcelo Tosatti 已提交
801 802
}

803
static void update_gfn_disallow_lpage_count(const struct kvm_memory_slot *slot,
804 805 806 807 808
					    gfn_t gfn, int count)
{
	struct kvm_lpage_info *linfo;
	int i;

809
	for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
810 811 812 813 814 815
		linfo = lpage_info_slot(gfn, slot, i);
		linfo->disallow_lpage += count;
		WARN_ON(linfo->disallow_lpage < 0);
	}
}

816
void kvm_mmu_gfn_disallow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn)
817 818 819 820
{
	update_gfn_disallow_lpage_count(slot, gfn, 1);
}

821
void kvm_mmu_gfn_allow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn)
822 823 824 825
{
	update_gfn_disallow_lpage_count(slot, gfn, -1);
}

826
static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
M
Marcelo Tosatti 已提交
827
{
828
	struct kvm_memslots *slots;
829
	struct kvm_memory_slot *slot;
830
	gfn_t gfn;
M
Marcelo Tosatti 已提交
831

832
	kvm->arch.indirect_shadow_pages++;
833
	gfn = sp->gfn;
834 835
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
836 837

	/* the non-leaf shadow pages are keeping readonly. */
838
	if (sp->role.level > PG_LEVEL_4K)
839 840 841
		return kvm_slot_page_track_add_page(kvm, slot, gfn,
						    KVM_PAGE_TRACK_WRITE);

842
	kvm_mmu_gfn_disallow_lpage(slot, gfn);
M
Marcelo Tosatti 已提交
843 844
}

845
void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
P
Paolo Bonzini 已提交
846 847 848 849 850
{
	if (sp->lpage_disallowed)
		return;

	++kvm->stat.nx_lpage_splits;
851 852
	list_add_tail(&sp->lpage_disallowed_link,
		      &kvm->arch.lpage_disallowed_mmu_pages);
P
Paolo Bonzini 已提交
853 854 855
	sp->lpage_disallowed = true;
}

856
static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
M
Marcelo Tosatti 已提交
857
{
858
	struct kvm_memslots *slots;
859
	struct kvm_memory_slot *slot;
860
	gfn_t gfn;
M
Marcelo Tosatti 已提交
861

862
	kvm->arch.indirect_shadow_pages--;
863
	gfn = sp->gfn;
864 865
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
866
	if (sp->role.level > PG_LEVEL_4K)
867 868 869
		return kvm_slot_page_track_remove_page(kvm, slot, gfn,
						       KVM_PAGE_TRACK_WRITE);

870
	kvm_mmu_gfn_allow_lpage(slot, gfn);
M
Marcelo Tosatti 已提交
871 872
}

873
void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
P
Paolo Bonzini 已提交
874 875 876
{
	--kvm->stat.nx_lpage_splits;
	sp->lpage_disallowed = false;
877
	list_del(&sp->lpage_disallowed_link);
P
Paolo Bonzini 已提交
878 879
}

880 881 882
static struct kvm_memory_slot *
gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
			    bool no_dirty_log)
M
Marcelo Tosatti 已提交
883 884
{
	struct kvm_memory_slot *slot;
885

886
	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
887 888
	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
		return NULL;
889
	if (no_dirty_log && kvm_slot_dirty_track_enabled(slot))
890
		return NULL;
891 892 893 894

	return slot;
}

895
/*
896
 * About rmap_head encoding:
897
 *
898 899
 * If the bit zero of rmap_head->val is clear, then it points to the only spte
 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
900
 * pte_list_desc containing more mappings.
901 902 903 904
 */

/*
 * Returns the number of pointers in the rmap chain, not counting the new one.
905
 */
906
static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
907
			struct kvm_rmap_head *rmap_head)
908
{
909
	struct pte_list_desc *desc;
910
	int count = 0;
911

912
	if (!rmap_head->val) {
913
		rmap_printk("%p %llx 0->1\n", spte, *spte);
914 915
		rmap_head->val = (unsigned long)spte;
	} else if (!(rmap_head->val & 1)) {
916
		rmap_printk("%p %llx 1->many\n", spte, *spte);
917
		desc = mmu_alloc_pte_list_desc(vcpu);
918
		desc->sptes[0] = (u64 *)rmap_head->val;
A
Avi Kivity 已提交
919
		desc->sptes[1] = spte;
920
		desc->spte_count = 2;
921
		rmap_head->val = (unsigned long)desc | 1;
922
		++count;
923
	} else {
924
		rmap_printk("%p %llx many->many\n", spte, *spte);
925
		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
926
		while (desc->spte_count == PTE_LIST_EXT) {
927
			count += PTE_LIST_EXT;
928 929 930
			if (!desc->more) {
				desc->more = mmu_alloc_pte_list_desc(vcpu);
				desc = desc->more;
931
				desc->spte_count = 0;
932 933
				break;
			}
934 935
			desc = desc->more;
		}
936 937
		count += desc->spte_count;
		desc->sptes[desc->spte_count++] = spte;
938
	}
939
	return count;
940 941
}

942
static void
943 944 945
pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
			   struct pte_list_desc *desc, int i,
			   struct pte_list_desc *prev_desc)
946
{
947
	int j = desc->spte_count - 1;
948

A
Avi Kivity 已提交
949 950
	desc->sptes[i] = desc->sptes[j];
	desc->sptes[j] = NULL;
951 952
	desc->spte_count--;
	if (desc->spte_count)
953 954
		return;
	if (!prev_desc && !desc->more)
955
		rmap_head->val = 0;
956 957 958 959
	else
		if (prev_desc)
			prev_desc->more = desc->more;
		else
960
			rmap_head->val = (unsigned long)desc->more | 1;
961
	mmu_free_pte_list_desc(desc);
962 963
}

964
static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
965
{
966 967
	struct pte_list_desc *desc;
	struct pte_list_desc *prev_desc;
968 969
	int i;

970
	if (!rmap_head->val) {
971
		pr_err("%s: %p 0->BUG\n", __func__, spte);
972
		BUG();
973
	} else if (!(rmap_head->val & 1)) {
974
		rmap_printk("%p 1->0\n", spte);
975
		if ((u64 *)rmap_head->val != spte) {
976
			pr_err("%s:  %p 1->BUG\n", __func__, spte);
977 978
			BUG();
		}
979
		rmap_head->val = 0;
980
	} else {
981
		rmap_printk("%p many->many\n", spte);
982
		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
983 984
		prev_desc = NULL;
		while (desc) {
985
			for (i = 0; i < desc->spte_count; ++i) {
A
Avi Kivity 已提交
986
				if (desc->sptes[i] == spte) {
987 988
					pte_list_desc_remove_entry(rmap_head,
							desc, i, prev_desc);
989 990
					return;
				}
991
			}
992 993 994
			prev_desc = desc;
			desc = desc->more;
		}
995
		pr_err("%s: %p many->many\n", __func__, spte);
996 997 998 999
		BUG();
	}
}

1000 1001
static void pte_list_remove(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			    u64 *sptep)
1002
{
1003
	mmu_spte_clear_track_bits(kvm, sptep);
1004 1005 1006
	__pte_list_remove(sptep, rmap_head);
}

P
Peter Xu 已提交
1007
/* Return true if rmap existed, false otherwise */
1008
static bool pte_list_destroy(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
P
Peter Xu 已提交
1009 1010 1011 1012 1013 1014 1015 1016
{
	struct pte_list_desc *desc, *next;
	int i;

	if (!rmap_head->val)
		return false;

	if (!(rmap_head->val & 1)) {
1017
		mmu_spte_clear_track_bits(kvm, (u64 *)rmap_head->val);
P
Peter Xu 已提交
1018 1019 1020 1021 1022 1023 1024
		goto out;
	}

	desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);

	for (; desc; desc = next) {
		for (i = 0; i < desc->spte_count; i++)
1025
			mmu_spte_clear_track_bits(kvm, desc->sptes[i]);
P
Peter Xu 已提交
1026 1027 1028 1029 1030 1031 1032 1033 1034
		next = desc->more;
		mmu_free_pte_list_desc(desc);
	}
out:
	/* rmap_head is meaningless now, remember to reset it */
	rmap_head->val = 0;
	return true;
}

1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
unsigned int pte_list_count(struct kvm_rmap_head *rmap_head)
{
	struct pte_list_desc *desc;
	unsigned int count = 0;

	if (!rmap_head->val)
		return 0;
	else if (!(rmap_head->val & 1))
		return 1;

	desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);

	while (desc) {
		count += desc->spte_count;
		desc = desc->more;
	}

	return count;
}

1055 1056
static struct kvm_rmap_head *gfn_to_rmap(gfn_t gfn, int level,
					 const struct kvm_memory_slot *slot)
1057
{
1058
	unsigned long idx;
1059

1060
	idx = gfn_to_index(gfn, slot->base_gfn, level);
1061
	return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
1062 1063
}

1064 1065
static bool rmap_can_add(struct kvm_vcpu *vcpu)
{
1066
	struct kvm_mmu_memory_cache *mc;
1067

1068
	mc = &vcpu->arch.mmu_pte_list_desc_cache;
1069
	return kvm_mmu_memory_cache_nr_free_objects(mc);
1070 1071
}

1072 1073
static void rmap_remove(struct kvm *kvm, u64 *spte)
{
1074 1075
	struct kvm_memslots *slots;
	struct kvm_memory_slot *slot;
1076 1077
	struct kvm_mmu_page *sp;
	gfn_t gfn;
1078
	struct kvm_rmap_head *rmap_head;
1079

1080
	sp = sptep_to_sp(spte);
1081
	gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1082 1083

	/*
1084 1085 1086
	 * Unlike rmap_add, rmap_remove does not run in the context of a vCPU
	 * so we have to determine which memslots to use based on context
	 * information in sp->role.
1087 1088 1089 1090
	 */
	slots = kvm_memslots_for_spte_role(kvm, sp->role);

	slot = __gfn_to_memslot(slots, gfn);
1091
	rmap_head = gfn_to_rmap(gfn, sp->role.level, slot);
1092

1093
	__pte_list_remove(spte, rmap_head);
1094 1095
}

1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
/*
 * Used by the following functions to iterate through the sptes linked by a
 * rmap.  All fields are private and not assumed to be used outside.
 */
struct rmap_iterator {
	/* private fields */
	struct pte_list_desc *desc;	/* holds the sptep if not NULL */
	int pos;			/* index of the sptep */
};

/*
 * Iteration must be started by this function.  This should also be used after
 * removing/dropping sptes from the rmap link because in such cases the
M
Miaohe Lin 已提交
1109
 * information in the iterator may not be valid.
1110 1111 1112
 *
 * Returns sptep if found, NULL otherwise.
 */
1113 1114
static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
			   struct rmap_iterator *iter)
1115
{
1116 1117
	u64 *sptep;

1118
	if (!rmap_head->val)
1119 1120
		return NULL;

1121
	if (!(rmap_head->val & 1)) {
1122
		iter->desc = NULL;
1123 1124
		sptep = (u64 *)rmap_head->val;
		goto out;
1125 1126
	}

1127
	iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1128
	iter->pos = 0;
1129 1130 1131 1132
	sptep = iter->desc->sptes[iter->pos];
out:
	BUG_ON(!is_shadow_present_pte(*sptep));
	return sptep;
1133 1134 1135 1136 1137 1138 1139 1140 1141
}

/*
 * Must be used with a valid iterator: e.g. after rmap_get_first().
 *
 * Returns sptep if found, NULL otherwise.
 */
static u64 *rmap_get_next(struct rmap_iterator *iter)
{
1142 1143
	u64 *sptep;

1144 1145 1146 1147 1148
	if (iter->desc) {
		if (iter->pos < PTE_LIST_EXT - 1) {
			++iter->pos;
			sptep = iter->desc->sptes[iter->pos];
			if (sptep)
1149
				goto out;
1150 1151 1152 1153 1154 1155 1156
		}

		iter->desc = iter->desc->more;

		if (iter->desc) {
			iter->pos = 0;
			/* desc->sptes[0] cannot be NULL */
1157 1158
			sptep = iter->desc->sptes[iter->pos];
			goto out;
1159 1160 1161 1162
		}
	}

	return NULL;
1163 1164 1165
out:
	BUG_ON(!is_shadow_present_pte(*sptep));
	return sptep;
1166 1167
}

1168 1169
#define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)			\
	for (_spte_ = rmap_get_first(_rmap_head_, _iter_);		\
1170
	     _spte_; _spte_ = rmap_get_next(_iter_))
1171

1172
static void drop_spte(struct kvm *kvm, u64 *sptep)
1173
{
1174
	u64 old_spte = mmu_spte_clear_track_bits(kvm, sptep);
1175 1176

	if (is_shadow_present_pte(old_spte))
1177
		rmap_remove(kvm, sptep);
A
Avi Kivity 已提交
1178 1179
}

1180 1181 1182 1183

static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
{
	if (is_large_pte(*sptep)) {
1184
		WARN_ON(sptep_to_sp(sptep)->role.level == PG_LEVEL_4K);
1185 1186 1187 1188 1189 1190 1191 1192 1193
		drop_spte(kvm, sptep);
		return true;
	}

	return false;
}

static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
{
1194
	if (__drop_large_spte(vcpu->kvm, sptep)) {
1195
		struct kvm_mmu_page *sp = sptep_to_sp(sptep);
1196 1197 1198 1199

		kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
			KVM_PAGES_PER_HPAGE(sp->role.level));
	}
1200 1201 1202
}

/*
1203
 * Write-protect on the specified @sptep, @pt_protect indicates whether
1204
 * spte write-protection is caused by protecting shadow page table.
1205
 *
T
Tiejun Chen 已提交
1206
 * Note: write protection is difference between dirty logging and spte
1207 1208 1209 1210 1211
 * protection:
 * - for dirty logging, the spte can be set to writable at anytime if
 *   its dirty bitmap is properly set.
 * - for spte protection, the spte can be writable only after unsync-ing
 *   shadow page.
1212
 *
1213
 * Return true if tlb need be flushed.
1214
 */
1215
static bool spte_write_protect(u64 *sptep, bool pt_protect)
1216 1217 1218
{
	u64 spte = *sptep;

1219
	if (!is_writable_pte(spte) &&
1220
	      !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1221 1222
		return false;

1223
	rmap_printk("spte %p %llx\n", sptep, *sptep);
1224

1225
	if (pt_protect)
1226
		spte &= ~shadow_mmu_writable_mask;
1227
	spte = spte & ~PT_WRITABLE_MASK;
1228

1229
	return mmu_spte_update(sptep, spte);
1230 1231
}

1232 1233
static bool __rmap_write_protect(struct kvm *kvm,
				 struct kvm_rmap_head *rmap_head,
1234
				 bool pt_protect)
1235
{
1236 1237
	u64 *sptep;
	struct rmap_iterator iter;
1238
	bool flush = false;
1239

1240
	for_each_rmap_spte(rmap_head, &iter, sptep)
1241
		flush |= spte_write_protect(sptep, pt_protect);
1242

1243
	return flush;
1244 1245
}

1246
static bool spte_clear_dirty(u64 *sptep)
1247 1248 1249
{
	u64 spte = *sptep;

1250
	rmap_printk("spte %p %llx\n", sptep, *sptep);
1251

1252
	MMU_WARN_ON(!spte_ad_enabled(spte));
1253 1254 1255 1256
	spte &= ~shadow_dirty_mask;
	return mmu_spte_update(sptep, spte);
}

1257
static bool spte_wrprot_for_clear_dirty(u64 *sptep)
1258 1259 1260
{
	bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
					       (unsigned long *)sptep);
1261
	if (was_writable && !spte_ad_enabled(*sptep))
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
		kvm_set_pfn_dirty(spte_to_pfn(*sptep));

	return was_writable;
}

/*
 * Gets the GFN ready for another round of dirty logging by clearing the
 *	- D bit on ad-enabled SPTEs, and
 *	- W bit on ad-disabled SPTEs.
 * Returns true iff any D or W bits were cleared.
 */
1273
static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1274
			       const struct kvm_memory_slot *slot)
1275 1276 1277 1278 1279
{
	u64 *sptep;
	struct rmap_iterator iter;
	bool flush = false;

1280
	for_each_rmap_spte(rmap_head, &iter, sptep)
1281 1282
		if (spte_ad_need_write_protect(*sptep))
			flush |= spte_wrprot_for_clear_dirty(sptep);
1283
		else
1284
			flush |= spte_clear_dirty(sptep);
1285 1286 1287 1288

	return flush;
}

1289
/**
1290
 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1291 1292 1293 1294 1295
 * @kvm: kvm instance
 * @slot: slot to protect
 * @gfn_offset: start of the BITS_PER_LONG pages we care about
 * @mask: indicates which pages we should protect
 *
1296
 * Used when we do not need to care about huge page mappings.
1297
 */
1298
static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1299 1300
				     struct kvm_memory_slot *slot,
				     gfn_t gfn_offset, unsigned long mask)
1301
{
1302
	struct kvm_rmap_head *rmap_head;
1303

1304
	if (is_tdp_mmu_enabled(kvm))
1305 1306
		kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
				slot->base_gfn + gfn_offset, mask, true);
1307 1308 1309 1310

	if (!kvm_memslots_have_rmaps(kvm))
		return;

1311
	while (mask) {
1312 1313
		rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
					PG_LEVEL_4K, slot);
1314
		__rmap_write_protect(kvm, rmap_head, false);
M
Marcelo Tosatti 已提交
1315

1316 1317 1318
		/* clear the first set bit */
		mask &= mask - 1;
	}
1319 1320
}

1321
/**
1322 1323
 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
 * protect the page if the D-bit isn't supported.
1324 1325 1326 1327 1328 1329 1330
 * @kvm: kvm instance
 * @slot: slot to clear D-bit
 * @gfn_offset: start of the BITS_PER_LONG pages we care about
 * @mask: indicates which pages we should clear D-bit
 *
 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
 */
1331 1332 1333
static void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
					 struct kvm_memory_slot *slot,
					 gfn_t gfn_offset, unsigned long mask)
1334
{
1335
	struct kvm_rmap_head *rmap_head;
1336

1337
	if (is_tdp_mmu_enabled(kvm))
1338 1339
		kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
				slot->base_gfn + gfn_offset, mask, false);
1340 1341 1342 1343

	if (!kvm_memslots_have_rmaps(kvm))
		return;

1344
	while (mask) {
1345 1346
		rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
					PG_LEVEL_4K, slot);
1347
		__rmap_clear_dirty(kvm, rmap_head, slot);
1348 1349 1350 1351 1352 1353

		/* clear the first set bit */
		mask &= mask - 1;
	}
}

1354 1355 1356 1357 1358 1359 1360
/**
 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
 * PT level pages.
 *
 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
 * enable dirty logging for them.
 *
1361 1362
 * We need to care about huge page mappings: e.g. during dirty logging we may
 * have such mappings.
1363 1364 1365 1366 1367
 */
void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
				struct kvm_memory_slot *slot,
				gfn_t gfn_offset, unsigned long mask)
{
1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
	/*
	 * Huge pages are NOT write protected when we start dirty logging in
	 * initially-all-set mode; must write protect them here so that they
	 * are split to 4K on the first write.
	 *
	 * The gfn_offset is guaranteed to be aligned to 64, but the base_gfn
	 * of memslot has no such restriction, so the range can cross two large
	 * pages.
	 */
	if (kvm_dirty_log_manual_protect_and_init_set(kvm)) {
		gfn_t start = slot->base_gfn + gfn_offset + __ffs(mask);
		gfn_t end = slot->base_gfn + gfn_offset + __fls(mask);

		kvm_mmu_slot_gfn_write_protect(kvm, slot, start, PG_LEVEL_2M);

		/* Cross two large pages? */
		if (ALIGN(start << PAGE_SHIFT, PMD_SIZE) !=
		    ALIGN(end << PAGE_SHIFT, PMD_SIZE))
			kvm_mmu_slot_gfn_write_protect(kvm, slot, end,
						       PG_LEVEL_2M);
	}

	/* Now handle 4K PTEs.  */
1391 1392
	if (kvm_x86_ops.cpu_dirty_log_size)
		kvm_mmu_clear_dirty_pt_masked(kvm, slot, gfn_offset, mask);
1393 1394
	else
		kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1395 1396
}

1397 1398
int kvm_cpu_dirty_log_size(void)
{
1399
	return kvm_x86_ops.cpu_dirty_log_size;
1400 1401
}

1402
bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1403 1404
				    struct kvm_memory_slot *slot, u64 gfn,
				    int min_level)
1405
{
1406
	struct kvm_rmap_head *rmap_head;
1407
	int i;
1408
	bool write_protected = false;
1409

1410 1411
	if (kvm_memslots_have_rmaps(kvm)) {
		for (i = min_level; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
1412
			rmap_head = gfn_to_rmap(gfn, i, slot);
1413 1414
			write_protected |= __rmap_write_protect(kvm, rmap_head, true);
		}
1415 1416
	}

1417
	if (is_tdp_mmu_enabled(kvm))
1418
		write_protected |=
1419
			kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn, min_level);
1420

1421
	return write_protected;
1422 1423
}

1424 1425 1426 1427 1428
static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
{
	struct kvm_memory_slot *slot;

	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1429
	return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn, PG_LEVEL_4K);
1430 1431
}

1432
static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1433
			  const struct kvm_memory_slot *slot)
1434
{
1435
	return pte_list_destroy(kvm, rmap_head);
1436 1437
}

1438 1439 1440
static bool kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			    struct kvm_memory_slot *slot, gfn_t gfn, int level,
			    pte_t unused)
1441
{
1442
	return kvm_zap_rmapp(kvm, rmap_head, slot);
1443 1444
}

1445 1446 1447
static bool kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			      struct kvm_memory_slot *slot, gfn_t gfn, int level,
			      pte_t pte)
1448
{
1449 1450
	u64 *sptep;
	struct rmap_iterator iter;
1451
	bool need_flush = false;
1452
	u64 new_spte;
D
Dan Williams 已提交
1453
	kvm_pfn_t new_pfn;
1454

1455 1456
	WARN_ON(pte_huge(pte));
	new_pfn = pte_pfn(pte);
1457

1458
restart:
1459
	for_each_rmap_spte(rmap_head, &iter, sptep) {
1460
		rmap_printk("spte %p %llx gfn %llx (%d)\n",
1461
			    sptep, *sptep, gfn, level);
1462

1463
		need_flush = true;
1464

1465
		if (pte_write(pte)) {
1466
			pte_list_remove(kvm, rmap_head, sptep);
1467
			goto restart;
1468
		} else {
1469 1470
			new_spte = kvm_mmu_changed_pte_notifier_make_spte(
					*sptep, new_pfn);
1471

1472
			mmu_spte_clear_track_bits(kvm, sptep);
1473
			mmu_spte_set(sptep, new_spte);
1474 1475
		}
	}
1476

1477 1478
	if (need_flush && kvm_available_flush_tlb_with_range()) {
		kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
1479
		return false;
1480 1481
	}

1482
	return need_flush;
1483 1484
}

1485 1486
struct slot_rmap_walk_iterator {
	/* input fields. */
1487
	const struct kvm_memory_slot *slot;
1488 1489 1490 1491 1492 1493 1494
	gfn_t start_gfn;
	gfn_t end_gfn;
	int start_level;
	int end_level;

	/* output fields. */
	gfn_t gfn;
1495
	struct kvm_rmap_head *rmap;
1496 1497 1498
	int level;

	/* private field. */
1499
	struct kvm_rmap_head *end_rmap;
1500 1501 1502 1503 1504 1505 1506
};

static void
rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
{
	iterator->level = level;
	iterator->gfn = iterator->start_gfn;
1507 1508
	iterator->rmap = gfn_to_rmap(iterator->gfn, level, iterator->slot);
	iterator->end_rmap = gfn_to_rmap(iterator->end_gfn, level, iterator->slot);
1509 1510 1511 1512
}

static void
slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1513
		    const struct kvm_memory_slot *slot, int start_level,
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
		    int end_level, gfn_t start_gfn, gfn_t end_gfn)
{
	iterator->slot = slot;
	iterator->start_level = start_level;
	iterator->end_level = end_level;
	iterator->start_gfn = start_gfn;
	iterator->end_gfn = end_gfn;

	rmap_walk_init_level(iterator, iterator->start_level);
}

static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
{
	return !!iterator->rmap;
}

static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
{
	if (++iterator->rmap <= iterator->end_rmap) {
		iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
		return;
	}

	if (++iterator->level > iterator->end_level) {
		iterator->rmap = NULL;
		return;
	}

	rmap_walk_init_level(iterator, iterator->level);
}

#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,	\
	   _start_gfn, _end_gfn, _iter_)				\
	for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,		\
				 _end_level_, _start_gfn, _end_gfn);	\
	     slot_rmap_walk_okay(_iter_);				\
	     slot_rmap_walk_next(_iter_))

1552 1553 1554
typedef bool (*rmap_handler_t)(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			       struct kvm_memory_slot *slot, gfn_t gfn,
			       int level, pte_t pte);
1555

1556 1557 1558
static __always_inline bool kvm_handle_gfn_range(struct kvm *kvm,
						 struct kvm_gfn_range *range,
						 rmap_handler_t handler)
1559
{
1560
	struct slot_rmap_walk_iterator iterator;
1561
	bool ret = false;
1562

1563 1564 1565 1566
	for_each_slot_rmap_range(range->slot, PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL,
				 range->start, range->end - 1, &iterator)
		ret |= handler(kvm, iterator.rmap, range->slot, iterator.gfn,
			       iterator.level, range->pte);
1567

1568
	return ret;
1569 1570
}

1571
bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
1572
{
1573
	bool flush = false;
1574

1575 1576
	if (kvm_memslots_have_rmaps(kvm))
		flush = kvm_handle_gfn_range(kvm, range, kvm_unmap_rmapp);
1577

1578
	if (is_tdp_mmu_enabled(kvm))
1579
		flush = kvm_tdp_mmu_unmap_gfn_range(kvm, range, flush);
1580

1581
	return flush;
1582 1583
}

1584
bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1585
{
1586
	bool flush = false;
1587

1588 1589
	if (kvm_memslots_have_rmaps(kvm))
		flush = kvm_handle_gfn_range(kvm, range, kvm_set_pte_rmapp);
1590

1591
	if (is_tdp_mmu_enabled(kvm))
1592
		flush |= kvm_tdp_mmu_set_spte_gfn(kvm, range);
1593

1594
	return flush;
1595 1596
}

1597 1598 1599
static bool kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			  struct kvm_memory_slot *slot, gfn_t gfn, int level,
			  pte_t unused)
1600
{
1601
	u64 *sptep;
1602
	struct rmap_iterator iter;
1603 1604
	int young = 0;

1605 1606
	for_each_rmap_spte(rmap_head, &iter, sptep)
		young |= mmu_spte_age(sptep);
1607

1608 1609 1610
	return young;
}

1611 1612 1613
static bool kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			       struct kvm_memory_slot *slot, gfn_t gfn,
			       int level, pte_t unused)
A
Andrea Arcangeli 已提交
1614
{
1615 1616
	u64 *sptep;
	struct rmap_iterator iter;
A
Andrea Arcangeli 已提交
1617

1618 1619
	for_each_rmap_spte(rmap_head, &iter, sptep)
		if (is_accessed_spte(*sptep))
1620 1621
			return true;
	return false;
A
Andrea Arcangeli 已提交
1622 1623
}

1624 1625
#define RMAP_RECYCLE_THRESHOLD 1000

1626 1627
static void rmap_add(struct kvm_vcpu *vcpu, struct kvm_memory_slot *slot,
		     u64 *spte, gfn_t gfn)
1628
{
1629
	struct kvm_mmu_page *sp;
1630 1631
	struct kvm_rmap_head *rmap_head;
	int rmap_count;
1632

1633
	sp = sptep_to_sp(spte);
1634
	kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1635
	rmap_head = gfn_to_rmap(gfn, sp->role.level, slot);
1636
	rmap_count = pte_list_add(vcpu, spte, rmap_head);
1637

1638 1639 1640 1641 1642
	if (rmap_count > RMAP_RECYCLE_THRESHOLD) {
		kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, __pte(0));
		kvm_flush_remote_tlbs_with_address(
				vcpu->kvm, sp->gfn, KVM_PAGES_PER_HPAGE(sp->role.level));
	}
1643 1644
}

1645
bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1646
{
1647
	bool young = false;
1648

1649 1650
	if (kvm_memslots_have_rmaps(kvm))
		young = kvm_handle_gfn_range(kvm, range, kvm_age_rmapp);
1651

1652
	if (is_tdp_mmu_enabled(kvm))
1653
		young |= kvm_tdp_mmu_age_gfn_range(kvm, range);
1654 1655

	return young;
1656 1657
}

1658
bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
A
Andrea Arcangeli 已提交
1659
{
1660
	bool young = false;
1661

1662 1663
	if (kvm_memslots_have_rmaps(kvm))
		young = kvm_handle_gfn_range(kvm, range, kvm_test_age_rmapp);
1664

1665
	if (is_tdp_mmu_enabled(kvm))
1666
		young |= kvm_tdp_mmu_test_age_gfn(kvm, range);
1667 1668

	return young;
A
Andrea Arcangeli 已提交
1669 1670
}

1671
#ifdef MMU_DEBUG
1672
static int is_empty_shadow_page(u64 *spt)
A
Avi Kivity 已提交
1673
{
1674 1675 1676
	u64 *pos;
	u64 *end;

1677
	for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1678
		if (is_shadow_present_pte(*pos)) {
1679
			printk(KERN_ERR "%s: %p %llx\n", __func__,
1680
			       pos, *pos);
A
Avi Kivity 已提交
1681
			return 0;
1682
		}
A
Avi Kivity 已提交
1683 1684
	return 1;
}
1685
#endif
A
Avi Kivity 已提交
1686

1687 1688 1689 1690 1691 1692
/*
 * This value is the sum of all of the kvm instances's
 * kvm->arch.n_used_mmu_pages values.  We need a global,
 * aggregate version in order to make the slab shrinker
 * faster
 */
1693
static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, long nr)
1694 1695 1696 1697 1698
{
	kvm->arch.n_used_mmu_pages += nr;
	percpu_counter_add(&kvm_total_used_mmu_pages, nr);
}

1699
static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1700
{
1701
	MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1702
	hlist_del(&sp->hash_link);
1703 1704
	list_del(&sp->link);
	free_page((unsigned long)sp->spt);
1705 1706
	if (!sp->role.direct)
		free_page((unsigned long)sp->gfns);
1707
	kmem_cache_free(mmu_page_header_cache, sp);
1708 1709
}

1710 1711
static unsigned kvm_page_table_hashfn(gfn_t gfn)
{
1712
	return hash_64(gfn, KVM_MMU_HASH_SHIFT);
1713 1714
}

1715
static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1716
				    struct kvm_mmu_page *sp, u64 *parent_pte)
1717 1718 1719 1720
{
	if (!parent_pte)
		return;

1721
	pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1722 1723
}

1724
static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1725 1726
				       u64 *parent_pte)
{
1727
	__pte_list_remove(parent_pte, &sp->parent_ptes);
1728 1729
}

1730 1731 1732 1733
static void drop_parent_pte(struct kvm_mmu_page *sp,
			    u64 *parent_pte)
{
	mmu_page_remove_parent_pte(sp, parent_pte);
1734
	mmu_spte_clear_no_track(parent_pte);
1735 1736
}

1737
static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
M
Marcelo Tosatti 已提交
1738
{
1739
	struct kvm_mmu_page *sp;
1740

1741 1742
	sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
	sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache);
1743
	if (!direct)
1744
		sp->gfns = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_gfn_array_cache);
1745
	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1746 1747 1748 1749 1750 1751

	/*
	 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
	 * depends on valid pages being added to the head of the list.  See
	 * comments in kvm_zap_obsolete_pages().
	 */
1752
	sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
1753 1754 1755
	list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
	kvm_mod_used_mmu_pages(vcpu->kvm, +1);
	return sp;
M
Marcelo Tosatti 已提交
1756 1757
}

1758
static void mark_unsync(u64 *spte);
1759
static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1760
{
1761 1762 1763 1764 1765 1766
	u64 *sptep;
	struct rmap_iterator iter;

	for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
		mark_unsync(sptep);
	}
1767 1768
}

1769
static void mark_unsync(u64 *spte)
1770
{
1771
	struct kvm_mmu_page *sp;
1772
	unsigned int index;
1773

1774
	sp = sptep_to_sp(spte);
1775 1776
	index = spte - sp->spt;
	if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1777
		return;
1778
	if (sp->unsync_children++)
1779
		return;
1780
	kvm_mmu_mark_parents_unsync(sp);
1781 1782
}

1783
static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1784
			       struct kvm_mmu_page *sp)
1785
{
1786
	return -1;
1787 1788
}

1789 1790 1791 1792 1793 1794 1795 1796 1797 1798
#define KVM_PAGE_ARRAY_NR 16

struct kvm_mmu_pages {
	struct mmu_page_and_offset {
		struct kvm_mmu_page *sp;
		unsigned int idx;
	} page[KVM_PAGE_ARRAY_NR];
	unsigned int nr;
};

1799 1800
static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
			 int idx)
1801
{
1802
	int i;
1803

1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814
	if (sp->unsync)
		for (i=0; i < pvec->nr; i++)
			if (pvec->page[i].sp == sp)
				return 0;

	pvec->page[pvec->nr].sp = sp;
	pvec->page[pvec->nr].idx = idx;
	pvec->nr++;
	return (pvec->nr == KVM_PAGE_ARRAY_NR);
}

1815 1816 1817 1818 1819 1820 1821
static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
{
	--sp->unsync_children;
	WARN_ON((int)sp->unsync_children < 0);
	__clear_bit(idx, sp->unsync_child_bitmap);
}

1822 1823 1824 1825
static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
	int i, ret, nr_unsync_leaf = 0;
1826

1827
	for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1828
		struct kvm_mmu_page *child;
1829 1830
		u64 ent = sp->spt[i];

1831 1832 1833 1834
		if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
			clear_unsync_child_bit(sp, i);
			continue;
		}
1835

1836
		child = to_shadow_page(ent & PT64_BASE_ADDR_MASK);
1837 1838 1839 1840 1841 1842

		if (child->unsync_children) {
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;

			ret = __mmu_unsync_walk(child, pvec);
1843 1844 1845 1846
			if (!ret) {
				clear_unsync_child_bit(sp, i);
				continue;
			} else if (ret > 0) {
1847
				nr_unsync_leaf += ret;
1848
			} else
1849 1850 1851 1852 1853 1854
				return ret;
		} else if (child->unsync) {
			nr_unsync_leaf++;
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;
		} else
1855
			clear_unsync_child_bit(sp, i);
1856 1857
	}

1858 1859 1860
	return nr_unsync_leaf;
}

1861 1862
#define INVALID_INDEX (-1)

1863 1864 1865
static int mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
P
Paolo Bonzini 已提交
1866
	pvec->nr = 0;
1867 1868 1869
	if (!sp->unsync_children)
		return 0;

1870
	mmu_pages_add(pvec, sp, INVALID_INDEX);
1871
	return __mmu_unsync_walk(sp, pvec);
1872 1873 1874 1875 1876
}

static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
{
	WARN_ON(!sp->unsync);
1877
	trace_kvm_mmu_sync_page(sp);
1878 1879 1880 1881
	sp->unsync = 0;
	--kvm->stat.mmu_unsync;
}

1882 1883
static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				     struct list_head *invalid_list);
1884 1885
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list);
1886

1887 1888
#define for_each_valid_sp(_kvm, _sp, _list)				\
	hlist_for_each_entry(_sp, _list, hash_link)			\
1889
		if (is_obsolete_sp((_kvm), (_sp))) {			\
1890
		} else
1891 1892

#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)			\
1893 1894
	for_each_valid_sp(_kvm, _sp,					\
	  &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)])	\
1895
		if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
1896

1897 1898
static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
			 struct list_head *invalid_list)
1899
{
1900 1901 1902
	int ret = vcpu->arch.mmu->sync_page(vcpu, sp);

	if (ret < 0) {
1903
		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1904
		return false;
1905 1906
	}

1907
	return !!ret;
1908 1909
}

1910 1911 1912 1913
static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
					struct list_head *invalid_list,
					bool remote_flush)
{
1914
	if (!remote_flush && list_empty(invalid_list))
1915 1916 1917 1918 1919 1920 1921 1922 1923
		return false;

	if (!list_empty(invalid_list))
		kvm_mmu_commit_zap_page(kvm, invalid_list);
	else
		kvm_flush_remote_tlbs(kvm);
	return true;
}

1924 1925 1926 1927 1928 1929 1930
#ifdef CONFIG_KVM_MMU_AUDIT
#include "mmu_audit.c"
#else
static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
static void mmu_audit_disable(void) { }
#endif

1931 1932
static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
{
1933 1934 1935 1936 1937
	if (sp->role.invalid)
		return true;

	/* TDP MMU pages due not use the MMU generation. */
	return !sp->tdp_mmu_page &&
1938
	       unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1939 1940
}

1941
struct mmu_page_path {
1942 1943
	struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
	unsigned int idx[PT64_ROOT_MAX_LEVEL];
1944 1945
};

1946
#define for_each_sp(pvec, sp, parents, i)			\
P
Paolo Bonzini 已提交
1947
		for (i = mmu_pages_first(&pvec, &parents);	\
1948 1949 1950
			i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});	\
			i = mmu_pages_next(&pvec, &parents, i))

1951 1952 1953
static int mmu_pages_next(struct kvm_mmu_pages *pvec,
			  struct mmu_page_path *parents,
			  int i)
1954 1955 1956 1957 1958
{
	int n;

	for (n = i+1; n < pvec->nr; n++) {
		struct kvm_mmu_page *sp = pvec->page[n].sp;
P
Paolo Bonzini 已提交
1959 1960
		unsigned idx = pvec->page[n].idx;
		int level = sp->role.level;
1961

P
Paolo Bonzini 已提交
1962
		parents->idx[level-1] = idx;
1963
		if (level == PG_LEVEL_4K)
P
Paolo Bonzini 已提交
1964
			break;
1965

P
Paolo Bonzini 已提交
1966
		parents->parent[level-2] = sp;
1967 1968 1969 1970 1971
	}

	return n;
}

P
Paolo Bonzini 已提交
1972 1973 1974 1975 1976 1977 1978 1979 1980
static int mmu_pages_first(struct kvm_mmu_pages *pvec,
			   struct mmu_page_path *parents)
{
	struct kvm_mmu_page *sp;
	int level;

	if (pvec->nr == 0)
		return 0;

1981 1982
	WARN_ON(pvec->page[0].idx != INVALID_INDEX);

P
Paolo Bonzini 已提交
1983 1984
	sp = pvec->page[0].sp;
	level = sp->role.level;
1985
	WARN_ON(level == PG_LEVEL_4K);
P
Paolo Bonzini 已提交
1986 1987 1988 1989 1990 1991 1992 1993 1994 1995

	parents->parent[level-2] = sp;

	/* Also set up a sentinel.  Further entries in pvec are all
	 * children of sp, so this element is never overwritten.
	 */
	parents->parent[level-1] = NULL;
	return mmu_pages_next(pvec, parents, 0);
}

1996
static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1997
{
1998 1999 2000 2001 2002 2003 2004 2005 2006
	struct kvm_mmu_page *sp;
	unsigned int level = 0;

	do {
		unsigned int idx = parents->idx[level];
		sp = parents->parent[level];
		if (!sp)
			return;

2007
		WARN_ON(idx == INVALID_INDEX);
2008
		clear_unsync_child_bit(sp, idx);
2009
		level++;
P
Paolo Bonzini 已提交
2010
	} while (!sp->unsync_children);
2011
}
2012

2013 2014
static int mmu_sync_children(struct kvm_vcpu *vcpu,
			     struct kvm_mmu_page *parent, bool can_yield)
2015 2016 2017 2018 2019
{
	int i;
	struct kvm_mmu_page *sp;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
2020
	LIST_HEAD(invalid_list);
2021
	bool flush = false;
2022 2023

	while (mmu_unsync_walk(parent, &pages)) {
2024
		bool protected = false;
2025 2026

		for_each_sp(pages, sp, parents, i)
2027
			protected |= rmap_write_protect(vcpu, sp->gfn);
2028

2029
		if (protected) {
2030
			kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, true);
2031 2032
			flush = false;
		}
2033

2034
		for_each_sp(pages, sp, parents, i) {
2035
			kvm_unlink_unsync_page(vcpu->kvm, sp);
2036
			flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2037 2038
			mmu_pages_clear_parents(&parents);
		}
2039
		if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) {
2040
			kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush);
2041 2042 2043 2044 2045
			if (!can_yield) {
				kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
				return -EINTR;
			}

2046
			cond_resched_rwlock_write(&vcpu->kvm->mmu_lock);
2047 2048
			flush = false;
		}
2049
	}
2050

2051
	kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush);
2052
	return 0;
2053 2054
}

2055 2056
static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
{
2057
	atomic_set(&sp->write_flooding_count,  0);
2058 2059 2060 2061
}

static void clear_sp_write_flooding_count(u64 *spte)
{
2062
	__clear_sp_write_flooding_count(sptep_to_sp(spte));
2063 2064
}

2065 2066 2067 2068
static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
					     gfn_t gfn,
					     gva_t gaddr,
					     unsigned level,
2069
					     int direct,
2070
					     unsigned int access)
2071
{
2072
	bool direct_mmu = vcpu->arch.mmu->direct_map;
2073
	union kvm_mmu_page_role role;
2074
	struct hlist_head *sp_list;
2075
	unsigned quadrant;
2076
	struct kvm_mmu_page *sp;
2077
	int collisions = 0;
2078
	LIST_HEAD(invalid_list);
2079

2080
	role = vcpu->arch.mmu->mmu_role.base;
2081
	role.level = level;
2082
	role.direct = direct;
2083
	role.access = access;
2084
	if (role.has_4_byte_gpte) {
2085 2086 2087 2088
		quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
		quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
		role.quadrant = quadrant;
	}
2089 2090 2091

	sp_list = &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)];
	for_each_valid_sp(vcpu->kvm, sp, sp_list) {
2092 2093 2094 2095 2096
		if (sp->gfn != gfn) {
			collisions++;
			continue;
		}

2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109
		if (sp->role.word != role.word) {
			/*
			 * If the guest is creating an upper-level page, zap
			 * unsync pages for the same gfn.  While it's possible
			 * the guest is using recursive page tables, in all
			 * likelihood the guest has stopped using the unsync
			 * page and is installing a completely unrelated page.
			 * Unsync pages must not be left as is, because the new
			 * upper-level page will be write-protected.
			 */
			if (level > PG_LEVEL_4K && sp->unsync)
				kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
							 &invalid_list);
2110
			continue;
2111
		}
2112

2113 2114 2115
		if (direct_mmu)
			goto trace_get_page;

2116
		if (sp->unsync) {
2117
			/*
2118
			 * The page is good, but is stale.  kvm_sync_page does
2119 2120 2121 2122 2123 2124 2125 2126 2127
			 * get the latest guest state, but (unlike mmu_unsync_children)
			 * it doesn't write-protect the page or mark it synchronized!
			 * This way the validity of the mapping is ensured, but the
			 * overhead of write protection is not incurred until the
			 * guest invalidates the TLB mapping.  This allows multiple
			 * SPs for a single gfn to be unsync.
			 *
			 * If the sync fails, the page is zapped.  If so, break
			 * in order to rebuild it.
2128
			 */
2129
			if (!kvm_sync_page(vcpu, sp, &invalid_list))
2130 2131 2132
				break;

			WARN_ON(!list_empty(&invalid_list));
2133
			kvm_flush_remote_tlbs(vcpu->kvm);
2134
		}
2135

2136
		__clear_sp_write_flooding_count(sp);
2137 2138

trace_get_page:
2139
		trace_kvm_mmu_get_page(sp, false);
2140
		goto out;
2141
	}
2142

A
Avi Kivity 已提交
2143
	++vcpu->kvm->stat.mmu_cache_miss;
2144 2145 2146

	sp = kvm_mmu_alloc_page(vcpu, direct);

2147 2148
	sp->gfn = gfn;
	sp->role = role;
2149
	hlist_add_head(&sp->hash_link, sp_list);
2150
	if (!direct) {
2151
		account_shadowed(vcpu->kvm, sp);
2152
		if (level == PG_LEVEL_4K && rmap_write_protect(vcpu, gfn))
2153
			kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
2154
	}
A
Avi Kivity 已提交
2155
	trace_kvm_mmu_get_page(sp, true);
2156
out:
2157 2158
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);

2159 2160
	if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
		vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2161
	return sp;
2162 2163
}

2164 2165 2166
static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
					struct kvm_vcpu *vcpu, hpa_t root,
					u64 addr)
2167 2168
{
	iterator->addr = addr;
2169
	iterator->shadow_addr = root;
2170
	iterator->level = vcpu->arch.mmu->shadow_root_level;
2171

2172
	if (iterator->level >= PT64_ROOT_4LEVEL &&
2173 2174
	    vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
	    !vcpu->arch.mmu->direct_map)
2175
		iterator->level = PT32E_ROOT_LEVEL;
2176

2177
	if (iterator->level == PT32E_ROOT_LEVEL) {
2178 2179 2180 2181
		/*
		 * prev_root is currently only used for 64-bit hosts. So only
		 * the active root_hpa is valid here.
		 */
2182
		BUG_ON(root != vcpu->arch.mmu->root_hpa);
2183

2184
		iterator->shadow_addr
2185
			= vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2186 2187 2188 2189 2190 2191 2192
		iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
		--iterator->level;
		if (!iterator->shadow_addr)
			iterator->level = 0;
	}
}

2193 2194 2195
static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
			     struct kvm_vcpu *vcpu, u64 addr)
{
2196
	shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
2197 2198 2199
				    addr);
}

2200 2201
static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
{
2202
	if (iterator->level < PG_LEVEL_4K)
2203
		return false;
2204

2205 2206 2207 2208 2209
	iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
	iterator->sptep	= ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
	return true;
}

2210 2211
static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
			       u64 spte)
2212
{
2213
	if (!is_shadow_present_pte(spte) || is_last_spte(spte, iterator->level)) {
2214 2215 2216 2217
		iterator->level = 0;
		return;
	}

2218
	iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2219 2220 2221
	--iterator->level;
}

2222 2223
static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
{
2224
	__shadow_walk_next(iterator, *iterator->sptep);
2225 2226
}

2227 2228 2229 2230 2231 2232 2233 2234 2235
static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
			     struct kvm_mmu_page *sp)
{
	u64 spte;

	BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);

	spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp));

2236
	mmu_spte_set(sptep, spte);
2237 2238 2239 2240 2241

	mmu_page_add_parent_pte(vcpu, sp, sptep);

	if (sp->unsync_children || sp->unsync)
		mark_unsync(sptep);
2242 2243
}

2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256
static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
				   unsigned direct_access)
{
	if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
		struct kvm_mmu_page *child;

		/*
		 * For the direct sp, if the guest pte's dirty bit
		 * changed form clean to dirty, it will corrupt the
		 * sp's access: allow writable in the read-only sp,
		 * so we should update the spte at this point to get
		 * a new sp with the correct access.
		 */
2257
		child = to_shadow_page(*sptep & PT64_BASE_ADDR_MASK);
2258 2259 2260
		if (child->role.access == direct_access)
			return;

2261
		drop_parent_pte(child, sptep);
2262
		kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
2263 2264 2265
	}
}

2266 2267 2268
/* Returns the number of zapped non-leaf child shadow pages. */
static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
			    u64 *spte, struct list_head *invalid_list)
2269 2270 2271 2272 2273 2274
{
	u64 pte;
	struct kvm_mmu_page *child;

	pte = *spte;
	if (is_shadow_present_pte(pte)) {
X
Xiao Guangrong 已提交
2275
		if (is_last_spte(pte, sp->role.level)) {
2276
			drop_spte(kvm, spte);
X
Xiao Guangrong 已提交
2277
		} else {
2278
			child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2279
			drop_parent_pte(child, spte);
2280 2281 2282 2283 2284 2285 2286 2287 2288 2289

			/*
			 * Recursively zap nested TDP SPs, parentless SPs are
			 * unlikely to be used again in the near future.  This
			 * avoids retaining a large number of stale nested SPs.
			 */
			if (tdp_enabled && invalid_list &&
			    child->role.guest_mode && !child->parent_ptes.val)
				return kvm_mmu_prepare_zap_page(kvm, child,
								invalid_list);
2290
		}
2291
	} else if (is_mmio_spte(pte)) {
2292
		mmu_spte_clear_no_track(spte);
2293
	}
2294
	return 0;
2295 2296
}

2297 2298 2299
static int kvm_mmu_page_unlink_children(struct kvm *kvm,
					struct kvm_mmu_page *sp,
					struct list_head *invalid_list)
2300
{
2301
	int zapped = 0;
2302 2303
	unsigned i;

2304
	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2305 2306 2307
		zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list);

	return zapped;
2308 2309
}

2310
static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2311
{
2312 2313
	u64 *sptep;
	struct rmap_iterator iter;
2314

2315
	while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2316
		drop_parent_pte(sp, sptep);
2317 2318
}

2319
static int mmu_zap_unsync_children(struct kvm *kvm,
2320 2321
				   struct kvm_mmu_page *parent,
				   struct list_head *invalid_list)
2322
{
2323 2324 2325
	int i, zapped = 0;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
2326

2327
	if (parent->role.level == PG_LEVEL_4K)
2328
		return 0;
2329 2330 2331 2332 2333

	while (mmu_unsync_walk(parent, &pages)) {
		struct kvm_mmu_page *sp;

		for_each_sp(pages, sp, parents, i) {
2334
			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2335
			mmu_pages_clear_parents(&parents);
2336
			zapped++;
2337 2338 2339 2340
		}
	}

	return zapped;
2341 2342
}

2343 2344 2345 2346
static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
				       struct kvm_mmu_page *sp,
				       struct list_head *invalid_list,
				       int *nr_zapped)
2347
{
2348
	bool list_unstable;
A
Avi Kivity 已提交
2349

2350
	trace_kvm_mmu_prepare_zap_page(sp);
2351
	++kvm->stat.mmu_shadow_zapped;
2352
	*nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2353
	*nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list);
2354
	kvm_mmu_unlink_parents(kvm, sp);
2355

2356 2357 2358
	/* Zapping children means active_mmu_pages has become unstable. */
	list_unstable = *nr_zapped;

2359
	if (!sp->role.invalid && !sp->role.direct)
2360
		unaccount_shadowed(kvm, sp);
2361

2362 2363
	if (sp->unsync)
		kvm_unlink_unsync_page(kvm, sp);
2364
	if (!sp->root_count) {
2365
		/* Count self */
2366
		(*nr_zapped)++;
2367 2368 2369 2370 2371 2372 2373 2374 2375 2376

		/*
		 * Already invalid pages (previously active roots) are not on
		 * the active page list.  See list_del() in the "else" case of
		 * !sp->root_count.
		 */
		if (sp->role.invalid)
			list_add(&sp->link, invalid_list);
		else
			list_move(&sp->link, invalid_list);
2377
		kvm_mod_used_mmu_pages(kvm, -1);
2378
	} else {
2379 2380 2381 2382 2383
		/*
		 * Remove the active root from the active page list, the root
		 * will be explicitly freed when the root_count hits zero.
		 */
		list_del(&sp->link);
2384

2385 2386 2387 2388 2389 2390
		/*
		 * Obsolete pages cannot be used on any vCPUs, see the comment
		 * in kvm_mmu_zap_all_fast().  Note, is_obsolete_sp() also
		 * treats invalid shadow pages as being obsolete.
		 */
		if (!is_obsolete_sp(kvm, sp))
2391
			kvm_reload_remote_mmus(kvm);
2392
	}
2393

P
Paolo Bonzini 已提交
2394 2395 2396
	if (sp->lpage_disallowed)
		unaccount_huge_nx_page(kvm, sp);

2397
	sp->role.invalid = 1;
2398 2399 2400 2401 2402 2403 2404 2405 2406 2407
	return list_unstable;
}

static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				     struct list_head *invalid_list)
{
	int nr_zapped;

	__kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
	return nr_zapped;
2408 2409
}

2410 2411 2412
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list)
{
2413
	struct kvm_mmu_page *sp, *nsp;
2414 2415 2416 2417

	if (list_empty(invalid_list))
		return;

2418
	/*
2419 2420 2421 2422 2423 2424 2425
	 * We need to make sure everyone sees our modifications to
	 * the page tables and see changes to vcpu->mode here. The barrier
	 * in the kvm_flush_remote_tlbs() achieves this. This pairs
	 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
	 *
	 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
	 * guest mode and/or lockless shadow page table walks.
2426 2427
	 */
	kvm_flush_remote_tlbs(kvm);
2428

2429
	list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2430
		WARN_ON(!sp->role.invalid || sp->root_count);
2431
		kvm_mmu_free_page(sp);
2432
	}
2433 2434
}

2435 2436
static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm,
						  unsigned long nr_to_zap)
2437
{
2438 2439
	unsigned long total_zapped = 0;
	struct kvm_mmu_page *sp, *tmp;
2440
	LIST_HEAD(invalid_list);
2441 2442
	bool unstable;
	int nr_zapped;
2443 2444

	if (list_empty(&kvm->arch.active_mmu_pages))
2445 2446
		return 0;

2447
restart:
2448
	list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) {
2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459
		/*
		 * Don't zap active root pages, the page itself can't be freed
		 * and zapping it will just force vCPUs to realloc and reload.
		 */
		if (sp->root_count)
			continue;

		unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list,
						      &nr_zapped);
		total_zapped += nr_zapped;
		if (total_zapped >= nr_to_zap)
2460 2461
			break;

2462 2463
		if (unstable)
			goto restart;
2464
	}
2465

2466 2467 2468 2469 2470 2471
	kvm_mmu_commit_zap_page(kvm, &invalid_list);

	kvm->stat.mmu_recycled += total_zapped;
	return total_zapped;
}

2472 2473 2474 2475 2476 2477 2478
static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm)
{
	if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
		return kvm->arch.n_max_mmu_pages -
			kvm->arch.n_used_mmu_pages;

	return 0;
2479 2480
}

2481 2482
static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
{
2483
	unsigned long avail = kvm_mmu_available_pages(vcpu->kvm);
2484

2485
	if (likely(avail >= KVM_MIN_FREE_MMU_PAGES))
2486 2487
		return 0;

2488
	kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail);
2489

2490 2491 2492 2493 2494
	/*
	 * Note, this check is intentionally soft, it only guarantees that one
	 * page is available, while the caller may end up allocating as many as
	 * four pages, e.g. for PAE roots or for 5-level paging.  Temporarily
	 * exceeding the (arbitrary by default) limit will not harm the host,
I
Ingo Molnar 已提交
2495
	 * being too aggressive may unnecessarily kill the guest, and getting an
2496 2497 2498
	 * exact count is far more trouble than it's worth, especially in the
	 * page fault paths.
	 */
2499 2500 2501 2502 2503
	if (!kvm_mmu_available_pages(vcpu->kvm))
		return -ENOSPC;
	return 0;
}

2504 2505
/*
 * Changing the number of mmu pages allocated to the vm
2506
 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2507
 */
2508
void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2509
{
2510
	write_lock(&kvm->mmu_lock);
2511

2512
	if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2513 2514
		kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages -
						  goal_nr_mmu_pages);
2515

2516
		goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2517 2518
	}

2519
	kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2520

2521
	write_unlock(&kvm->mmu_lock);
2522 2523
}

2524
int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2525
{
2526
	struct kvm_mmu_page *sp;
2527
	LIST_HEAD(invalid_list);
2528 2529
	int r;

2530
	pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2531
	r = 0;
2532
	write_lock(&kvm->mmu_lock);
2533
	for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2534
		pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2535 2536
			 sp->role.word);
		r = 1;
2537
		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2538
	}
2539
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2540
	write_unlock(&kvm->mmu_lock);
2541

2542
	return r;
2543
}
2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558

static int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
{
	gpa_t gpa;
	int r;

	if (vcpu->arch.mmu->direct_map)
		return 0;

	gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);

	r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);

	return r;
}
2559

2560
static void kvm_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
2561 2562
{
	trace_kvm_mmu_unsync_page(sp);
2563
	++kvm->stat.mmu_unsync;
2564 2565 2566 2567 2568
	sp->unsync = 1;

	kvm_mmu_mark_parents_unsync(sp);
}

2569 2570 2571 2572 2573 2574
/*
 * Attempt to unsync any shadow pages that can be reached by the specified gfn,
 * KVM is creating a writable mapping for said gfn.  Returns 0 if all pages
 * were marked unsync (or if there is no shadow page), -EPERM if the SPTE must
 * be write-protected.
 */
2575
int mmu_try_to_unsync_pages(struct kvm *kvm, const struct kvm_memory_slot *slot,
2576
			    gfn_t gfn, bool can_unsync, bool prefetch)
2577
{
2578
	struct kvm_mmu_page *sp;
2579
	bool locked = false;
2580

2581 2582 2583 2584 2585
	/*
	 * Force write-protection if the page is being tracked.  Note, the page
	 * track machinery is used to write-protect upper-level shadow pages,
	 * i.e. this guards the role.level == 4K assertion below!
	 */
2586
	if (kvm_slot_page_track_is_active(kvm, slot, gfn, KVM_PAGE_TRACK_WRITE))
2587
		return -EPERM;
2588

2589 2590 2591 2592 2593 2594
	/*
	 * The page is not write-tracked, mark existing shadow pages unsync
	 * unless KVM is synchronizing an unsync SP (can_unsync = false).  In
	 * that case, KVM must complete emulation of the guest TLB flush before
	 * allowing shadow pages to become unsync (writable by the guest).
	 */
2595
	for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2596
		if (!can_unsync)
2597
			return -EPERM;
2598

2599 2600
		if (sp->unsync)
			continue;
2601

2602
		if (prefetch)
2603 2604
			return -EEXIST;

2605 2606 2607 2608 2609 2610 2611 2612 2613
		/*
		 * TDP MMU page faults require an additional spinlock as they
		 * run with mmu_lock held for read, not write, and the unsync
		 * logic is not thread safe.  Take the spinklock regardless of
		 * the MMU type to avoid extra conditionals/parameters, there's
		 * no meaningful penalty if mmu_lock is held for write.
		 */
		if (!locked) {
			locked = true;
2614
			spin_lock(&kvm->arch.mmu_unsync_pages_lock);
2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627

			/*
			 * Recheck after taking the spinlock, a different vCPU
			 * may have since marked the page unsync.  A false
			 * positive on the unprotected check above is not
			 * possible as clearing sp->unsync _must_ hold mmu_lock
			 * for write, i.e. unsync cannot transition from 0->1
			 * while this CPU holds mmu_lock for read (or write).
			 */
			if (READ_ONCE(sp->unsync))
				continue;
		}

2628
		WARN_ON(sp->role.level != PG_LEVEL_4K);
2629
		kvm_unsync_page(kvm, sp);
2630
	}
2631
	if (locked)
2632
		spin_unlock(&kvm->arch.mmu_unsync_pages_lock);
2633

2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
	/*
	 * We need to ensure that the marking of unsync pages is visible
	 * before the SPTE is updated to allow writes because
	 * kvm_mmu_sync_roots() checks the unsync flags without holding
	 * the MMU lock and so can race with this. If the SPTE was updated
	 * before the page had been marked as unsync-ed, something like the
	 * following could happen:
	 *
	 * CPU 1                    CPU 2
	 * ---------------------------------------------------------------------
	 * 1.2 Host updates SPTE
	 *     to be writable
	 *                      2.1 Guest writes a GPTE for GVA X.
	 *                          (GPTE being in the guest page table shadowed
	 *                           by the SP from CPU 1.)
	 *                          This reads SPTE during the page table walk.
	 *                          Since SPTE.W is read as 1, there is no
	 *                          fault.
	 *
	 *                      2.2 Guest issues TLB flush.
	 *                          That causes a VM Exit.
	 *
2656 2657
	 *                      2.3 Walking of unsync pages sees sp->unsync is
	 *                          false and skips the page.
2658 2659 2660 2661 2662 2663 2664 2665 2666 2667
	 *
	 *                      2.4 Guest accesses GVA X.
	 *                          Since the mapping in the SP was not updated,
	 *                          so the old mapping for GVA X incorrectly
	 *                          gets used.
	 * 1.1 Host marks SP
	 *     as unsync
	 *     (sp->unsync = true)
	 *
	 * The write barrier below ensures that 1.1 happens before 1.2 and thus
2668 2669
	 * the situation in 2.4 does not arise.  It pairs with the read barrier
	 * in is_unsync_root(), placed between 2.1's load of SPTE.W and 2.3.
2670 2671 2672
	 */
	smp_wmb();

2673
	return 0;
2674 2675
}

2676 2677
static int mmu_set_spte(struct kvm_vcpu *vcpu, struct kvm_memory_slot *slot,
			u64 *sptep, unsigned int pte_access, gfn_t gfn,
2678
			kvm_pfn_t pfn, struct kvm_page_fault *fault)
M
Marcelo Tosatti 已提交
2679
{
2680
	struct kvm_mmu_page *sp = sptep_to_sp(sptep);
2681
	int level = sp->role.level;
M
Marcelo Tosatti 已提交
2682
	int was_rmapped = 0;
2683
	int ret = RET_PF_FIXED;
2684
	bool flush = false;
2685
	bool wrprot;
2686
	u64 spte;
M
Marcelo Tosatti 已提交
2687

2688 2689
	/* Prefetching always gets a writable pfn.  */
	bool host_writable = !fault || fault->map_writable;
2690
	bool prefetch = !fault || fault->prefetch;
2691
	bool write_fault = fault && fault->write;
M
Marcelo Tosatti 已提交
2692

2693 2694
	pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
		 *sptep, write_fault, gfn);
M
Marcelo Tosatti 已提交
2695

2696 2697 2698 2699 2700
	if (unlikely(is_noslot_pfn(pfn))) {
		mark_mmio_spte(vcpu, sptep, gfn, pte_access);
		return RET_PF_EMULATE;
	}

2701
	if (is_shadow_present_pte(*sptep)) {
M
Marcelo Tosatti 已提交
2702 2703 2704 2705
		/*
		 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
		 * the parent of the now unreachable PTE.
		 */
2706
		if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) {
M
Marcelo Tosatti 已提交
2707
			struct kvm_mmu_page *child;
A
Avi Kivity 已提交
2708
			u64 pte = *sptep;
M
Marcelo Tosatti 已提交
2709

2710
			child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2711
			drop_parent_pte(child, sptep);
2712
			flush = true;
A
Avi Kivity 已提交
2713
		} else if (pfn != spte_to_pfn(*sptep)) {
2714
			pgprintk("hfn old %llx new %llx\n",
A
Avi Kivity 已提交
2715
				 spte_to_pfn(*sptep), pfn);
2716
			drop_spte(vcpu->kvm, sptep);
2717
			flush = true;
2718 2719
		} else
			was_rmapped = 1;
M
Marcelo Tosatti 已提交
2720
	}
2721

2722
	wrprot = make_spte(vcpu, sp, slot, pte_access, gfn, pfn, *sptep, prefetch,
2723
			   true, host_writable, &spte);
2724 2725 2726 2727 2728 2729 2730 2731

	if (*sptep == spte) {
		ret = RET_PF_SPURIOUS;
	} else {
		trace_kvm_mmu_set_spte(level, gfn, sptep);
		flush |= mmu_spte_update(sptep, spte);
	}

2732
	if (wrprot) {
M
Marcelo Tosatti 已提交
2733
		if (write_fault)
2734
			ret = RET_PF_EMULATE;
2735
	}
2736

2737
	if (flush)
2738 2739
		kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
				KVM_PAGES_PER_HPAGE(level));
M
Marcelo Tosatti 已提交
2740

A
Avi Kivity 已提交
2741
	pgprintk("%s: setting spte %llx\n", __func__, *sptep);
M
Marcelo Tosatti 已提交
2742

2743
	if (!was_rmapped) {
2744
		WARN_ON_ONCE(ret == RET_PF_SPURIOUS);
2745
		kvm_update_page_stats(vcpu->kvm, level, 1);
2746
		rmap_add(vcpu, slot, sptep, gfn);
2747
	}
2748

2749
	return ret;
2750 2751
}

2752 2753 2754 2755 2756
static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
				    struct kvm_mmu_page *sp,
				    u64 *start, u64 *end)
{
	struct page *pages[PTE_PREFETCH_NUM];
2757
	struct kvm_memory_slot *slot;
2758
	unsigned int access = sp->role.access;
2759 2760 2761 2762
	int i, ret;
	gfn_t gfn;

	gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2763 2764
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
	if (!slot)
2765 2766
		return -1;

2767
	ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2768 2769 2770
	if (ret <= 0)
		return -1;

2771
	for (i = 0; i < ret; i++, gfn++, start++) {
2772
		mmu_set_spte(vcpu, slot, start, access, gfn,
2773
			     page_to_pfn(pages[i]), NULL);
2774 2775
		put_page(pages[i]);
	}
2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791

	return 0;
}

static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
				  struct kvm_mmu_page *sp, u64 *sptep)
{
	u64 *spte, *start = NULL;
	int i;

	WARN_ON(!sp->role.direct);

	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
	spte = sp->spt + i;

	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2792
		if (is_shadow_present_pte(*spte) || spte == sptep) {
2793 2794 2795
			if (!start)
				continue;
			if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2796
				return;
2797 2798 2799 2800
			start = NULL;
		} else if (!start)
			start = spte;
	}
2801 2802
	if (start)
		direct_pte_prefetch_many(vcpu, sp, start, spte);
2803 2804 2805 2806 2807 2808
}

static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
{
	struct kvm_mmu_page *sp;

2809
	sp = sptep_to_sp(sptep);
2810

2811
	/*
2812 2813 2814
	 * Without accessed bits, there's no way to distinguish between
	 * actually accessed translations and prefetched, so disable pte
	 * prefetch if accessed bits aren't available.
2815
	 */
2816
	if (sp_ad_disabled(sp))
2817 2818
		return;

2819
	if (sp->role.level > PG_LEVEL_4K)
2820 2821
		return;

2822 2823 2824 2825 2826 2827 2828
	/*
	 * If addresses are being invalidated, skip prefetching to avoid
	 * accidentally prefetching those addresses.
	 */
	if (unlikely(vcpu->kvm->mmu_notifier_count))
		return;

2829 2830 2831
	__direct_pte_prefetch(vcpu, sp, sptep);
}

2832
static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn,
2833
				  const struct kvm_memory_slot *slot)
2834 2835 2836 2837 2838
{
	unsigned long hva;
	pte_t *pte;
	int level;

2839
	if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn))
2840
		return PG_LEVEL_4K;
2841

2842 2843 2844 2845 2846 2847 2848 2849
	/*
	 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
	 * is not solely for performance, it's also necessary to avoid the
	 * "writable" check in __gfn_to_hva_many(), which will always fail on
	 * read-only memslots due to gfn_to_hva() assuming writes.  Earlier
	 * page fault steps have already verified the guest isn't writing a
	 * read-only memslot.
	 */
2850 2851
	hva = __gfn_to_hva_memslot(slot, gfn);

2852
	pte = lookup_address_in_mm(kvm->mm, hva, &level);
2853
	if (unlikely(!pte))
2854
		return PG_LEVEL_4K;
2855 2856 2857 2858

	return level;
}

2859 2860 2861
int kvm_mmu_max_mapping_level(struct kvm *kvm,
			      const struct kvm_memory_slot *slot, gfn_t gfn,
			      kvm_pfn_t pfn, int max_level)
2862 2863
{
	struct kvm_lpage_info *linfo;
2864
	int host_level;
2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875

	max_level = min(max_level, max_huge_page_level);
	for ( ; max_level > PG_LEVEL_4K; max_level--) {
		linfo = lpage_info_slot(gfn, slot, max_level);
		if (!linfo->disallow_lpage)
			break;
	}

	if (max_level == PG_LEVEL_4K)
		return PG_LEVEL_4K;

2876 2877
	host_level = host_pfn_mapping_level(kvm, gfn, pfn, slot);
	return min(host_level, max_level);
2878 2879
}

2880
void kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
2881
{
2882
	struct kvm_memory_slot *slot = fault->slot;
2883 2884
	kvm_pfn_t mask;

2885
	fault->huge_page_disallowed = fault->exec && fault->nx_huge_page_workaround_enabled;
2886

2887 2888
	if (unlikely(fault->max_level == PG_LEVEL_4K))
		return;
2889

2890 2891
	if (is_error_noslot_pfn(fault->pfn) || kvm_is_reserved_pfn(fault->pfn))
		return;
2892

2893
	if (kvm_slot_dirty_track_enabled(slot))
2894
		return;
2895

2896 2897 2898 2899
	/*
	 * Enforce the iTLB multihit workaround after capturing the requested
	 * level, which will be used to do precise, accurate accounting.
	 */
2900 2901 2902 2903 2904
	fault->req_level = kvm_mmu_max_mapping_level(vcpu->kvm, slot,
						     fault->gfn, fault->pfn,
						     fault->max_level);
	if (fault->req_level == PG_LEVEL_4K || fault->huge_page_disallowed)
		return;
2905 2906

	/*
2907 2908
	 * mmu_notifier_retry() was successful and mmu_lock is held, so
	 * the pmd can't be split from under us.
2909
	 */
2910 2911 2912 2913
	fault->goal_level = fault->req_level;
	mask = KVM_PAGES_PER_HPAGE(fault->goal_level) - 1;
	VM_BUG_ON((fault->gfn & mask) != (fault->pfn & mask));
	fault->pfn &= ~mask;
2914 2915
}

2916
void disallowed_hugepage_adjust(struct kvm_page_fault *fault, u64 spte, int cur_level)
P
Paolo Bonzini 已提交
2917
{
2918 2919
	if (cur_level > PG_LEVEL_4K &&
	    cur_level == fault->goal_level &&
P
Paolo Bonzini 已提交
2920 2921 2922 2923 2924 2925 2926 2927 2928
	    is_shadow_present_pte(spte) &&
	    !is_large_pte(spte)) {
		/*
		 * A small SPTE exists for this pfn, but FNAME(fetch)
		 * and __direct_map would like to create a large PTE
		 * instead: just force them to go down another level,
		 * patching back for them into pfn the next 9 bits of
		 * the address.
		 */
2929 2930 2931 2932
		u64 page_mask = KVM_PAGES_PER_HPAGE(cur_level) -
				KVM_PAGES_PER_HPAGE(cur_level - 1);
		fault->pfn |= fault->gfn & page_mask;
		fault->goal_level--;
P
Paolo Bonzini 已提交
2933 2934 2935
	}
}

2936
static int __direct_map(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
2937
{
2938
	struct kvm_shadow_walk_iterator it;
2939
	struct kvm_mmu_page *sp;
2940
	int ret;
2941
	gfn_t base_gfn = fault->gfn;
A
Avi Kivity 已提交
2942

2943
	kvm_mmu_hugepage_adjust(vcpu, fault);
2944

2945
	trace_kvm_mmu_spte_requested(fault);
2946
	for_each_shadow_entry(vcpu, fault->addr, it) {
P
Paolo Bonzini 已提交
2947 2948 2949 2950
		/*
		 * We cannot overwrite existing page tables with an NX
		 * large page, as the leaf could be executable.
		 */
2951
		if (fault->nx_huge_page_workaround_enabled)
2952
			disallowed_hugepage_adjust(fault, *it.sptep, it.level);
P
Paolo Bonzini 已提交
2953

2954
		base_gfn = fault->gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
2955
		if (it.level == fault->goal_level)
2956
			break;
A
Avi Kivity 已提交
2957

2958
		drop_large_spte(vcpu, it.sptep);
2959 2960 2961 2962 2963 2964 2965
		if (is_shadow_present_pte(*it.sptep))
			continue;

		sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
				      it.level - 1, true, ACC_ALL);

		link_shadow_page(vcpu, it.sptep, sp);
2966 2967
		if (fault->is_tdp && fault->huge_page_disallowed &&
		    fault->req_level >= it.level)
2968
			account_huge_nx_page(vcpu->kvm, sp);
2969
	}
2970

2971 2972 2973
	if (WARN_ON_ONCE(it.level != fault->goal_level))
		return -EFAULT;

2974
	ret = mmu_set_spte(vcpu, fault->slot, it.sptep, ACC_ALL,
2975
			   base_gfn, fault->pfn, fault);
2976 2977 2978
	if (ret == RET_PF_SPURIOUS)
		return ret;

2979 2980 2981
	direct_pte_prefetch(vcpu, it.sptep);
	++vcpu->stat.pf_fixed;
	return ret;
A
Avi Kivity 已提交
2982 2983
}

H
Huang Ying 已提交
2984
static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2985
{
2986
	send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
2987 2988
}

D
Dan Williams 已提交
2989
static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
2990
{
X
Xiao Guangrong 已提交
2991 2992 2993 2994 2995 2996
	/*
	 * Do not cache the mmio info caused by writing the readonly gfn
	 * into the spte otherwise read access on readonly gfn also can
	 * caused mmio page fault and treat it as mmio access.
	 */
	if (pfn == KVM_PFN_ERR_RO_FAULT)
2997
		return RET_PF_EMULATE;
X
Xiao Guangrong 已提交
2998

2999
	if (pfn == KVM_PFN_ERR_HWPOISON) {
3000
		kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
3001
		return RET_PF_RETRY;
3002
	}
3003

3004
	return -EFAULT;
3005 3006
}

3007 3008
static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault,
				unsigned int access, int *ret_val)
3009 3010
{
	/* The pfn is invalid, report the error! */
3011 3012
	if (unlikely(is_error_pfn(fault->pfn))) {
		*ret_val = kvm_handle_bad_page(vcpu, fault->gfn, fault->pfn);
3013
		return true;
3014 3015
	}

3016
	if (unlikely(!fault->slot)) {
3017 3018 3019
		gva_t gva = fault->is_tdp ? 0 : fault->addr;

		vcpu_cache_mmio_info(vcpu, gva, fault->gfn,
3020
				     access & shadow_mmio_access_mask);
3021 3022 3023 3024 3025 3026 3027 3028 3029 3030
		/*
		 * If MMIO caching is disabled, emulate immediately without
		 * touching the shadow page tables as attempting to install an
		 * MMIO SPTE will just be an expensive nop.
		 */
		if (unlikely(!shadow_mmio_value)) {
			*ret_val = RET_PF_EMULATE;
			return true;
		}
	}
3031

3032
	return false;
3033 3034
}

3035
static bool page_fault_can_be_fast(struct kvm_page_fault *fault)
3036
{
3037 3038 3039 3040
	/*
	 * Do not fix the mmio spte with invalid generation number which
	 * need to be updated by slow page fault path.
	 */
3041
	if (fault->rsvd)
3042 3043
		return false;

3044
	/* See if the page fault is due to an NX violation */
3045
	if (unlikely(fault->exec && fault->present))
3046 3047
		return false;

3048
	/*
3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059
	 * #PF can be fast if:
	 * 1. The shadow page table entry is not present, which could mean that
	 *    the fault is potentially caused by access tracking (if enabled).
	 * 2. The shadow page table entry is present and the fault
	 *    is caused by write-protect, that means we just need change the W
	 *    bit of the spte which can be done out of mmu-lock.
	 *
	 * However, if access tracking is disabled we know that a non-present
	 * page must be a genuine page fault where we have to create a new SPTE.
	 * So, if access tracking is disabled, we return true only for write
	 * accesses to a present page.
3060 3061
	 */

3062
	return shadow_acc_track_mask != 0 || (fault->write && fault->present);
3063 3064
}

3065 3066 3067 3068
/*
 * Returns true if the SPTE was fixed successfully. Otherwise,
 * someone else modified the SPTE from its original value.
 */
3069
static bool
3070
fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault,
3071
			u64 *sptep, u64 old_spte, u64 new_spte)
3072
{
3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084
	/*
	 * Theoretically we could also set dirty bit (and flush TLB) here in
	 * order to eliminate unnecessary PML logging. See comments in
	 * set_spte. But fast_page_fault is very unlikely to happen with PML
	 * enabled, so we do not do this. This might result in the same GPA
	 * to be logged in PML buffer again when the write really happens, and
	 * eventually to be called by mark_page_dirty twice. But it's also no
	 * harm. This also avoids the TLB flush needed after setting dirty bit
	 * so non-PML cases won't be impacted.
	 *
	 * Compare with set_spte where instead shadow_dirty_mask is set.
	 */
3085
	if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3086 3087
		return false;

3088 3089
	if (is_writable_pte(new_spte) && !is_writable_pte(old_spte))
		mark_page_dirty_in_slot(vcpu->kvm, fault->slot, fault->gfn);
3090 3091 3092 3093

	return true;
}

3094
static bool is_access_allowed(struct kvm_page_fault *fault, u64 spte)
3095
{
3096
	if (fault->exec)
3097 3098
		return is_executable_pte(spte);

3099
	if (fault->write)
3100 3101 3102 3103 3104 3105
		return is_writable_pte(spte);

	/* Fault was on Read access */
	return spte & PT_PRESENT_MASK;
}

3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128
/*
 * Returns the last level spte pointer of the shadow page walk for the given
 * gpa, and sets *spte to the spte value. This spte may be non-preset. If no
 * walk could be performed, returns NULL and *spte does not contain valid data.
 *
 * Contract:
 *  - Must be called between walk_shadow_page_lockless_{begin,end}.
 *  - The returned sptep must not be used after walk_shadow_page_lockless_end.
 */
static u64 *fast_pf_get_last_sptep(struct kvm_vcpu *vcpu, gpa_t gpa, u64 *spte)
{
	struct kvm_shadow_walk_iterator iterator;
	u64 old_spte;
	u64 *sptep = NULL;

	for_each_shadow_entry_lockless(vcpu, gpa, iterator, old_spte) {
		sptep = iterator.sptep;
		*spte = old_spte;
	}

	return sptep;
}

3129
/*
3130
 * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS.
3131
 */
3132
static int fast_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
3133
{
3134
	struct kvm_mmu_page *sp;
3135
	int ret = RET_PF_INVALID;
3136
	u64 spte = 0ull;
3137
	u64 *sptep = NULL;
3138
	uint retry_count = 0;
3139

3140
	if (!page_fault_can_be_fast(fault))
3141
		return ret;
3142 3143 3144

	walk_shadow_page_lockless_begin(vcpu);

3145
	do {
3146
		u64 new_spte;
3147

3148
		if (is_tdp_mmu(vcpu->arch.mmu))
3149
			sptep = kvm_tdp_mmu_fast_pf_get_last_sptep(vcpu, fault->addr, &spte);
3150
		else
3151
			sptep = fast_pf_get_last_sptep(vcpu, fault->addr, &spte);
3152

3153 3154 3155
		if (!is_shadow_present_pte(spte))
			break;

3156
		sp = sptep_to_sp(sptep);
3157 3158
		if (!is_last_spte(spte, sp->role.level))
			break;
3159

3160
		/*
3161 3162 3163 3164 3165
		 * Check whether the memory access that caused the fault would
		 * still cause it if it were to be performed right now. If not,
		 * then this is a spurious fault caused by TLB lazily flushed,
		 * or some other CPU has already fixed the PTE after the
		 * current CPU took the fault.
3166 3167 3168 3169
		 *
		 * Need not check the access of upper level table entries since
		 * they are always ACC_ALL.
		 */
3170
		if (is_access_allowed(fault, spte)) {
3171
			ret = RET_PF_SPURIOUS;
3172 3173
			break;
		}
3174

3175 3176 3177 3178 3179 3180 3181 3182 3183 3184
		new_spte = spte;

		if (is_access_track_spte(spte))
			new_spte = restore_acc_track_spte(new_spte);

		/*
		 * Currently, to simplify the code, write-protection can
		 * be removed in the fast path only if the SPTE was
		 * write-protected for dirty-logging or access tracking.
		 */
3185
		if (fault->write &&
3186
		    spte_can_locklessly_be_made_writable(spte)) {
3187
			new_spte |= PT_WRITABLE_MASK;
3188 3189

			/*
3190 3191 3192
			 * Do not fix write-permission on the large spte when
			 * dirty logging is enabled. Since we only dirty the
			 * first page into the dirty-bitmap in
3193 3194 3195 3196 3197
			 * fast_pf_fix_direct_spte(), other pages are missed
			 * if its slot has dirty logging enabled.
			 *
			 * Instead, we let the slow page fault path create a
			 * normal spte to fix the access.
3198
			 */
3199 3200
			if (sp->role.level > PG_LEVEL_4K &&
			    kvm_slot_dirty_track_enabled(fault->slot))
3201
				break;
3202
		}
3203

3204
		/* Verify that the fault can be handled in the fast path */
3205
		if (new_spte == spte ||
3206
		    !is_access_allowed(fault, new_spte))
3207 3208 3209 3210 3211
			break;

		/*
		 * Currently, fast page fault only works for direct mapping
		 * since the gfn is not stable for indirect shadow page. See
3212
		 * Documentation/virt/kvm/locking.rst to get more detail.
3213
		 */
3214
		if (fast_pf_fix_direct_spte(vcpu, fault, sptep, spte, new_spte)) {
3215
			ret = RET_PF_FIXED;
3216
			break;
3217
		}
3218 3219 3220 3221 3222 3223 3224 3225

		if (++retry_count > 4) {
			printk_once(KERN_WARNING
				"kvm: Fast #PF retrying more than 4 times.\n");
			break;
		}

	} while (true);
3226

3227
	trace_fast_page_fault(vcpu, fault, sptep, spte, ret);
3228 3229
	walk_shadow_page_lockless_end(vcpu);

3230
	return ret;
3231 3232
}

3233 3234
static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
			       struct list_head *invalid_list)
3235
{
3236
	struct kvm_mmu_page *sp;
3237

3238
	if (!VALID_PAGE(*root_hpa))
A
Avi Kivity 已提交
3239
		return;
3240

3241
	sp = to_shadow_page(*root_hpa & PT64_BASE_ADDR_MASK);
3242

3243
	if (is_tdp_mmu_page(sp))
3244
		kvm_tdp_mmu_put_root(kvm, sp, false);
3245 3246
	else if (!--sp->root_count && sp->role.invalid)
		kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3247

3248 3249 3250
	*root_hpa = INVALID_PAGE;
}

3251
/* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
3252 3253
void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
			ulong roots_to_free)
3254
{
3255
	struct kvm *kvm = vcpu->kvm;
3256 3257
	int i;
	LIST_HEAD(invalid_list);
3258
	bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
3259

3260
	BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3261

3262
	/* Before acquiring the MMU lock, see if we need to do any real work. */
3263 3264 3265 3266 3267 3268 3269 3270 3271
	if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
			if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
			    VALID_PAGE(mmu->prev_roots[i].hpa))
				break;

		if (i == KVM_MMU_NUM_PREV_ROOTS)
			return;
	}
3272

3273
	write_lock(&kvm->mmu_lock);
3274

3275 3276
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
		if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3277
			mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa,
3278
					   &invalid_list);
3279

3280 3281 3282
	if (free_active_root) {
		if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
		    (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3283
			mmu_free_root_page(kvm, &mmu->root_hpa, &invalid_list);
3284
		} else if (mmu->pae_root) {
3285 3286 3287 3288 3289 3290 3291 3292
			for (i = 0; i < 4; ++i) {
				if (!IS_VALID_PAE_ROOT(mmu->pae_root[i]))
					continue;

				mmu_free_root_page(kvm, &mmu->pae_root[i],
						   &invalid_list);
				mmu->pae_root[i] = INVALID_PAE_ROOT;
			}
3293
		}
3294
		mmu->root_hpa = INVALID_PAGE;
3295
		mmu->root_pgd = 0;
3296
	}
3297

3298
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
3299
	write_unlock(&kvm->mmu_lock);
3300
}
3301
EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3302

3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329
void kvm_mmu_free_guest_mode_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
{
	unsigned long roots_to_free = 0;
	hpa_t root_hpa;
	int i;

	/*
	 * This should not be called while L2 is active, L2 can't invalidate
	 * _only_ its own roots, e.g. INVVPID unconditionally exits.
	 */
	WARN_ON_ONCE(mmu->mmu_role.base.guest_mode);

	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
		root_hpa = mmu->prev_roots[i].hpa;
		if (!VALID_PAGE(root_hpa))
			continue;

		if (!to_shadow_page(root_hpa) ||
			to_shadow_page(root_hpa)->role.guest_mode)
			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
	}

	kvm_mmu_free_roots(vcpu, mmu, roots_to_free);
}
EXPORT_SYMBOL_GPL(kvm_mmu_free_guest_mode_roots);


3330 3331 3332 3333
static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
{
	int ret = 0;

3334
	if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) {
3335
		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3336 3337 3338 3339 3340 3341
		ret = 1;
	}

	return ret;
}

3342 3343
static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, gva_t gva,
			    u8 level, bool direct)
3344 3345
{
	struct kvm_mmu_page *sp;
3346 3347 3348 3349 3350 3351 3352 3353 3354

	sp = kvm_mmu_get_page(vcpu, gfn, gva, level, direct, ACC_ALL);
	++sp->root_count;

	return __pa(sp->spt);
}

static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
{
3355 3356
	struct kvm_mmu *mmu = vcpu->arch.mmu;
	u8 shadow_root_level = mmu->shadow_root_level;
3357
	hpa_t root;
3358
	unsigned i;
3359 3360 3361 3362 3363 3364
	int r;

	write_lock(&vcpu->kvm->mmu_lock);
	r = make_mmu_pages_available(vcpu);
	if (r < 0)
		goto out_unlock;
3365

3366
	if (is_tdp_mmu_enabled(vcpu->kvm)) {
3367
		root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu);
3368
		mmu->root_hpa = root;
3369
	} else if (shadow_root_level >= PT64_ROOT_4LEVEL) {
3370
		root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level, true);
3371
		mmu->root_hpa = root;
3372
	} else if (shadow_root_level == PT32E_ROOT_LEVEL) {
3373 3374 3375 3376
		if (WARN_ON_ONCE(!mmu->pae_root)) {
			r = -EIO;
			goto out_unlock;
		}
3377

3378
		for (i = 0; i < 4; ++i) {
3379
			WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3380

3381 3382
			root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT),
					      i << 30, PT32_ROOT_LEVEL, true);
3383 3384
			mmu->pae_root[i] = root | PT_PRESENT_MASK |
					   shadow_me_mask;
3385
		}
3386
		mmu->root_hpa = __pa(mmu->pae_root);
3387 3388
	} else {
		WARN_ONCE(1, "Bad TDP root level = %d\n", shadow_root_level);
3389 3390
		r = -EIO;
		goto out_unlock;
3391
	}
3392

3393
	/* root_pgd is ignored for direct MMUs. */
3394
	mmu->root_pgd = 0;
3395 3396 3397
out_unlock:
	write_unlock(&vcpu->kvm->mmu_lock);
	return r;
3398 3399
}

3400 3401 3402 3403
static int mmu_first_shadow_root_alloc(struct kvm *kvm)
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *slot;
3404
	int r = 0, i, bkt;
3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428

	/*
	 * Check if this is the first shadow root being allocated before
	 * taking the lock.
	 */
	if (kvm_shadow_root_allocated(kvm))
		return 0;

	mutex_lock(&kvm->slots_arch_lock);

	/* Recheck, under the lock, whether this is the first shadow root. */
	if (kvm_shadow_root_allocated(kvm))
		goto out_unlock;

	/*
	 * Check if anything actually needs to be allocated, e.g. all metadata
	 * will be allocated upfront if TDP is disabled.
	 */
	if (kvm_memslots_have_rmaps(kvm) &&
	    kvm_page_track_write_tracking_enabled(kvm))
		goto out_success;

	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
3429
		kvm_for_each_memslot(slot, bkt, slots) {
3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460
			/*
			 * Both of these functions are no-ops if the target is
			 * already allocated, so unconditionally calling both
			 * is safe.  Intentionally do NOT free allocations on
			 * failure to avoid having to track which allocations
			 * were made now versus when the memslot was created.
			 * The metadata is guaranteed to be freed when the slot
			 * is freed, and will be kept/used if userspace retries
			 * KVM_RUN instead of killing the VM.
			 */
			r = memslot_rmap_alloc(slot, slot->npages);
			if (r)
				goto out_unlock;
			r = kvm_page_track_write_tracking_alloc(slot);
			if (r)
				goto out_unlock;
		}
	}

	/*
	 * Ensure that shadow_root_allocated becomes true strictly after
	 * all the related pointers are set.
	 */
out_success:
	smp_store_release(&kvm->arch.shadow_root_allocated, true);

out_unlock:
	mutex_unlock(&kvm->slots_arch_lock);
	return r;
}

3461
static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3462
{
3463
	struct kvm_mmu *mmu = vcpu->arch.mmu;
3464
	u64 pdptrs[4], pm_mask;
3465
	gfn_t root_gfn, root_pgd;
3466
	hpa_t root;
3467 3468
	unsigned i;
	int r;
3469

3470
	root_pgd = mmu->get_guest_pgd(vcpu);
3471
	root_gfn = root_pgd >> PAGE_SHIFT;
3472

3473 3474 3475
	if (mmu_check_root(vcpu, root_gfn))
		return 1;

3476 3477 3478 3479
	/*
	 * On SVM, reading PDPTRs might access guest memory, which might fault
	 * and thus might sleep.  Grab the PDPTRs before acquiring mmu_lock.
	 */
3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490
	if (mmu->root_level == PT32E_ROOT_LEVEL) {
		for (i = 0; i < 4; ++i) {
			pdptrs[i] = mmu->get_pdptr(vcpu, i);
			if (!(pdptrs[i] & PT_PRESENT_MASK))
				continue;

			if (mmu_check_root(vcpu, pdptrs[i] >> PAGE_SHIFT))
				return 1;
		}
	}

3491
	r = mmu_first_shadow_root_alloc(vcpu->kvm);
3492 3493 3494
	if (r)
		return r;

3495 3496 3497 3498 3499
	write_lock(&vcpu->kvm->mmu_lock);
	r = make_mmu_pages_available(vcpu);
	if (r < 0)
		goto out_unlock;

3500 3501 3502 3503
	/*
	 * Do we shadow a long mode page table? If so we need to
	 * write-protect the guests page table root.
	 */
3504
	if (mmu->root_level >= PT64_ROOT_4LEVEL) {
3505
		root = mmu_alloc_root(vcpu, root_gfn, 0,
3506 3507
				      mmu->shadow_root_level, false);
		mmu->root_hpa = root;
3508
		goto set_root_pgd;
3509
	}
3510

3511 3512 3513 3514
	if (WARN_ON_ONCE(!mmu->pae_root)) {
		r = -EIO;
		goto out_unlock;
	}
3515

3516 3517
	/*
	 * We shadow a 32 bit page table. This may be a legacy 2-level
3518 3519
	 * or a PAE 3-level page table. In either case we need to be aware that
	 * the shadow page table may be a PAE or a long mode page table.
3520
	 */
3521
	pm_mask = PT_PRESENT_MASK | shadow_me_mask;
3522
	if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL) {
3523 3524
		pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;

3525
		if (WARN_ON_ONCE(!mmu->pml4_root)) {
3526 3527 3528
			r = -EIO;
			goto out_unlock;
		}
3529
		mmu->pml4_root[0] = __pa(mmu->pae_root) | pm_mask;
3530 3531 3532 3533 3534 3535 3536 3537

		if (mmu->shadow_root_level == PT64_ROOT_5LEVEL) {
			if (WARN_ON_ONCE(!mmu->pml5_root)) {
				r = -EIO;
				goto out_unlock;
			}
			mmu->pml5_root[0] = __pa(mmu->pml4_root) | pm_mask;
		}
3538 3539
	}

3540
	for (i = 0; i < 4; ++i) {
3541
		WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3542

3543
		if (mmu->root_level == PT32E_ROOT_LEVEL) {
3544
			if (!(pdptrs[i] & PT_PRESENT_MASK)) {
3545
				mmu->pae_root[i] = INVALID_PAE_ROOT;
A
Avi Kivity 已提交
3546 3547
				continue;
			}
3548
			root_gfn = pdptrs[i] >> PAGE_SHIFT;
3549
		}
3550

3551 3552
		root = mmu_alloc_root(vcpu, root_gfn, i << 30,
				      PT32_ROOT_LEVEL, false);
3553
		mmu->pae_root[i] = root | pm_mask;
3554
	}
3555

3556 3557 3558
	if (mmu->shadow_root_level == PT64_ROOT_5LEVEL)
		mmu->root_hpa = __pa(mmu->pml5_root);
	else if (mmu->shadow_root_level == PT64_ROOT_4LEVEL)
3559
		mmu->root_hpa = __pa(mmu->pml4_root);
3560 3561
	else
		mmu->root_hpa = __pa(mmu->pae_root);
3562

3563
set_root_pgd:
3564
	mmu->root_pgd = root_pgd;
3565 3566
out_unlock:
	write_unlock(&vcpu->kvm->mmu_lock);
3567

3568
	return 0;
3569 3570
}

3571 3572 3573
static int mmu_alloc_special_roots(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu *mmu = vcpu->arch.mmu;
3574
	bool need_pml5 = mmu->shadow_root_level > PT64_ROOT_4LEVEL;
3575 3576 3577
	u64 *pml5_root = NULL;
	u64 *pml4_root = NULL;
	u64 *pae_root;
3578 3579

	/*
3580 3581 3582 3583
	 * When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP
	 * tables are allocated and initialized at root creation as there is no
	 * equivalent level in the guest's NPT to shadow.  Allocate the tables
	 * on demand, as running a 32-bit L1 VMM on 64-bit KVM is very rare.
3584
	 */
3585 3586 3587
	if (mmu->direct_map || mmu->root_level >= PT64_ROOT_4LEVEL ||
	    mmu->shadow_root_level < PT64_ROOT_4LEVEL)
		return 0;
3588

3589 3590 3591 3592 3593 3594 3595 3596
	/*
	 * NPT, the only paging mode that uses this horror, uses a fixed number
	 * of levels for the shadow page tables, e.g. all MMUs are 4-level or
	 * all MMus are 5-level.  Thus, this can safely require that pml5_root
	 * is allocated if the other roots are valid and pml5 is needed, as any
	 * prior MMU would also have required pml5.
	 */
	if (mmu->pae_root && mmu->pml4_root && (!need_pml5 || mmu->pml5_root))
3597
		return 0;
3598

3599 3600 3601 3602
	/*
	 * The special roots should always be allocated in concert.  Yell and
	 * bail if KVM ends up in a state where only one of the roots is valid.
	 */
3603
	if (WARN_ON_ONCE(!tdp_enabled || mmu->pae_root || mmu->pml4_root ||
3604
			 (need_pml5 && mmu->pml5_root)))
3605
		return -EIO;
3606

3607 3608 3609 3610
	/*
	 * Unlike 32-bit NPT, the PDP table doesn't need to be in low mem, and
	 * doesn't need to be decrypted.
	 */
3611 3612 3613
	pae_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
	if (!pae_root)
		return -ENOMEM;
3614

3615
#ifdef CONFIG_X86_64
3616
	pml4_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3617 3618 3619
	if (!pml4_root)
		goto err_pml4;

3620
	if (need_pml5) {
3621 3622 3623
		pml5_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
		if (!pml5_root)
			goto err_pml5;
3624
	}
3625
#endif
3626

3627
	mmu->pae_root = pae_root;
3628
	mmu->pml4_root = pml4_root;
3629
	mmu->pml5_root = pml5_root;
3630

3631
	return 0;
3632 3633 3634 3635 3636 3637 3638 3639

#ifdef CONFIG_X86_64
err_pml5:
	free_page((unsigned long)pml4_root);
err_pml4:
	free_page((unsigned long)pae_root);
	return -ENOMEM;
#endif
3640 3641
}

3642 3643 3644 3645
static bool is_unsync_root(hpa_t root)
{
	struct kvm_mmu_page *sp;

3646 3647 3648
	if (!VALID_PAGE(root))
		return false;

3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668
	/*
	 * The read barrier orders the CPU's read of SPTE.W during the page table
	 * walk before the reads of sp->unsync/sp->unsync_children here.
	 *
	 * Even if another CPU was marking the SP as unsync-ed simultaneously,
	 * any guest page table changes are not guaranteed to be visible anyway
	 * until this VCPU issues a TLB flush strictly after those changes are
	 * made.  We only need to ensure that the other CPU sets these flags
	 * before any actual changes to the page tables are made.  The comments
	 * in mmu_try_to_unsync_pages() describe what could go wrong if this
	 * requirement isn't satisfied.
	 */
	smp_rmb();
	sp = to_shadow_page(root);
	if (sp->unsync || sp->unsync_children)
		return true;

	return false;
}

3669
void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3670 3671 3672 3673
{
	int i;
	struct kvm_mmu_page *sp;

3674
	if (vcpu->arch.mmu->direct_map)
3675 3676
		return;

3677
	if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3678
		return;
3679

3680
	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3681

3682 3683
	if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
		hpa_t root = vcpu->arch.mmu->root_hpa;
3684
		sp = to_shadow_page(root);
3685

3686
		if (!is_unsync_root(root))
3687 3688
			return;

3689
		write_lock(&vcpu->kvm->mmu_lock);
3690 3691
		kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);

3692
		mmu_sync_children(vcpu, sp, true);
3693

3694
		kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3695
		write_unlock(&vcpu->kvm->mmu_lock);
3696 3697
		return;
	}
3698

3699
	write_lock(&vcpu->kvm->mmu_lock);
3700 3701
	kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);

3702
	for (i = 0; i < 4; ++i) {
3703
		hpa_t root = vcpu->arch.mmu->pae_root[i];
3704

3705
		if (IS_VALID_PAE_ROOT(root)) {
3706
			root &= PT64_BASE_ADDR_MASK;
3707
			sp = to_shadow_page(root);
3708
			mmu_sync_children(vcpu, sp, true);
3709 3710 3711
		}
	}

3712
	kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3713
	write_unlock(&vcpu->kvm->mmu_lock);
3714 3715
}

3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728
void kvm_mmu_sync_prev_roots(struct kvm_vcpu *vcpu)
{
	unsigned long roots_to_free = 0;
	int i;

	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
		if (is_unsync_root(vcpu->arch.mmu->prev_roots[i].hpa))
			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);

	/* sync prev_roots by simply freeing them */
	kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, roots_to_free);
}

3729 3730 3731
static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
				  gpa_t vaddr, u32 access,
				  struct x86_exception *exception)
A
Avi Kivity 已提交
3732
{
3733 3734
	if (exception)
		exception->error_code = 0;
3735
	return kvm_translate_gpa(vcpu, mmu, vaddr, access, exception);
3736 3737
}

3738
static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3739
{
3740 3741 3742 3743 3744 3745 3746
	/*
	 * A nested guest cannot use the MMIO cache if it is using nested
	 * page tables, because cr2 is a nGPA while the cache stores GPAs.
	 */
	if (mmu_is_nested(vcpu))
		return false;

3747 3748 3749 3750 3751 3752
	if (direct)
		return vcpu_match_mmio_gpa(vcpu, addr);

	return vcpu_match_mmio_gva(vcpu, addr);
}

3753 3754 3755
/*
 * Return the level of the lowest level SPTE added to sptes.
 * That SPTE may be non-present.
3756 3757
 *
 * Must be called between walk_shadow_page_lockless_{begin,end}.
3758
 */
3759
static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level)
3760 3761
{
	struct kvm_shadow_walk_iterator iterator;
3762
	int leaf = -1;
3763
	u64 spte;
3764

3765 3766
	for (shadow_walk_init(&iterator, vcpu, addr),
	     *root_level = iterator.level;
3767 3768
	     shadow_walk_okay(&iterator);
	     __shadow_walk_next(&iterator, spte)) {
3769
		leaf = iterator.level;
3770 3771
		spte = mmu_spte_get_lockless(iterator.sptep);

3772
		sptes[leaf] = spte;
3773 3774 3775 3776 3777
	}

	return leaf;
}

3778
/* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */
3779 3780
static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
{
3781
	u64 sptes[PT64_ROOT_MAX_LEVEL + 1];
3782
	struct rsvd_bits_validate *rsvd_check;
3783
	int root, leaf, level;
3784 3785
	bool reserved = false;

3786 3787
	walk_shadow_page_lockless_begin(vcpu);

3788
	if (is_tdp_mmu(vcpu->arch.mmu))
3789
		leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, &root);
3790
	else
3791
		leaf = get_walk(vcpu, addr, sptes, &root);
3792

3793 3794
	walk_shadow_page_lockless_end(vcpu);

3795 3796 3797 3798 3799
	if (unlikely(leaf < 0)) {
		*sptep = 0ull;
		return reserved;
	}

3800 3801 3802 3803 3804 3805 3806 3807 3808 3809
	*sptep = sptes[leaf];

	/*
	 * Skip reserved bits checks on the terminal leaf if it's not a valid
	 * SPTE.  Note, this also (intentionally) skips MMIO SPTEs, which, by
	 * design, always have reserved bits set.  The purpose of the checks is
	 * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs.
	 */
	if (!is_shadow_present_pte(sptes[leaf]))
		leaf++;
3810 3811 3812

	rsvd_check = &vcpu->arch.mmu->shadow_zero_check;

3813
	for (level = root; level >= leaf; level--)
3814
		reserved |= is_rsvd_spte(rsvd_check, sptes[level], level);
3815 3816

	if (reserved) {
3817
		pr_err("%s: reserved bits set on MMU-present spte, addr 0x%llx, hierarchy:\n",
3818
		       __func__, addr);
3819
		for (level = root; level >= leaf; level--)
3820 3821
			pr_err("------ spte = 0x%llx level = %d, rsvd bits = 0x%llx",
			       sptes[level], level,
3822
			       get_rsvd_bits(rsvd_check, sptes[level], level));
3823
	}
3824

3825
	return reserved;
3826 3827
}

P
Paolo Bonzini 已提交
3828
static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3829 3830
{
	u64 spte;
3831
	bool reserved;
3832

3833
	if (mmio_info_in_cache(vcpu, addr, direct))
3834
		return RET_PF_EMULATE;
3835

3836
	reserved = get_mmio_spte(vcpu, addr, &spte);
3837
	if (WARN_ON(reserved))
3838
		return -EINVAL;
3839 3840 3841

	if (is_mmio_spte(spte)) {
		gfn_t gfn = get_mmio_spte_gfn(spte);
3842
		unsigned int access = get_mmio_spte_access(spte);
3843

3844
		if (!check_mmio_spte(vcpu, spte))
3845
			return RET_PF_INVALID;
3846

3847 3848
		if (direct)
			addr = 0;
X
Xiao Guangrong 已提交
3849 3850

		trace_handle_mmio_page_fault(addr, gfn, access);
3851
		vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3852
		return RET_PF_EMULATE;
3853 3854 3855 3856 3857 3858
	}

	/*
	 * If the page table is zapped by other cpus, let CPU fault again on
	 * the address.
	 */
3859
	return RET_PF_RETRY;
3860 3861
}

3862
static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3863
					 struct kvm_page_fault *fault)
3864
{
3865
	if (unlikely(fault->rsvd))
3866 3867
		return false;

3868
	if (!fault->present || !fault->write)
3869 3870 3871 3872 3873 3874
		return false;

	/*
	 * guest is writing the page which is write tracked which can
	 * not be fixed by page fault handler.
	 */
3875
	if (kvm_slot_page_track_is_active(vcpu->kvm, fault->slot, fault->gfn, KVM_PAGE_TRACK_WRITE))
3876 3877 3878 3879 3880
		return true;

	return false;
}

3881 3882 3883 3884 3885 3886
static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
{
	struct kvm_shadow_walk_iterator iterator;
	u64 spte;

	walk_shadow_page_lockless_begin(vcpu);
3887
	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
3888 3889 3890 3891
		clear_sp_write_flooding_count(iterator.sptep);
	walk_shadow_page_lockless_end(vcpu);
}

3892 3893
static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
				    gfn_t gfn)
3894 3895
{
	struct kvm_arch_async_pf arch;
X
Xiao Guangrong 已提交
3896

3897
	arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3898
	arch.gfn = gfn;
3899
	arch.direct_map = vcpu->arch.mmu->direct_map;
3900
	arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu);
3901

3902 3903
	return kvm_setup_async_pf(vcpu, cr2_or_gpa,
				  kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3904 3905
}

3906
static bool kvm_faultin_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault, int *r)
3907
{
3908
	struct kvm_memory_slot *slot = fault->slot;
3909 3910
	bool async;

3911 3912 3913 3914 3915 3916
	/*
	 * Retry the page fault if the gfn hit a memslot that is being deleted
	 * or moved.  This ensures any existing SPTEs for the old memslot will
	 * be zapped before KVM inserts a new MMIO SPTE for the gfn.
	 */
	if (slot && (slot->flags & KVM_MEMSLOT_INVALID))
3917
		goto out_retry;
3918

3919 3920 3921
	if (!kvm_is_visible_memslot(slot)) {
		/* Don't expose private memslots to L2. */
		if (is_guest_mode(vcpu)) {
3922
			fault->slot = NULL;
3923 3924
			fault->pfn = KVM_PFN_NOSLOT;
			fault->map_writable = false;
3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937
			return false;
		}
		/*
		 * If the APIC access page exists but is disabled, go directly
		 * to emulation without caching the MMIO access or creating a
		 * MMIO SPTE.  That way the cache doesn't need to be purged
		 * when the AVIC is re-enabled.
		 */
		if (slot && slot->id == APIC_ACCESS_PAGE_PRIVATE_MEMSLOT &&
		    !kvm_apicv_activated(vcpu->kvm)) {
			*r = RET_PF_EMULATE;
			return true;
		}
3938 3939
	}

3940
	async = false;
3941 3942 3943
	fault->pfn = __gfn_to_pfn_memslot(slot, fault->gfn, false, &async,
					  fault->write, &fault->map_writable,
					  &fault->hva);
3944 3945 3946
	if (!async)
		return false; /* *pfn has correct page already */

3947
	if (!fault->prefetch && kvm_can_do_async_pf(vcpu)) {
3948 3949 3950
		trace_kvm_try_async_get_page(fault->addr, fault->gfn);
		if (kvm_find_async_pf_gfn(vcpu, fault->gfn)) {
			trace_kvm_async_pf_doublefault(fault->addr, fault->gfn);
3951
			kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3952
			goto out_retry;
3953
		} else if (kvm_arch_setup_async_pf(vcpu, fault->addr, fault->gfn))
3954
			goto out_retry;
3955 3956
	}

3957 3958 3959
	fault->pfn = __gfn_to_pfn_memslot(slot, fault->gfn, false, NULL,
					  fault->write, &fault->map_writable,
					  &fault->hva);
3960
	return false;
3961 3962 3963 3964

out_retry:
	*r = RET_PF_RETRY;
	return true;
3965 3966
}

3967 3968 3969 3970 3971 3972 3973
/*
 * Returns true if the page fault is stale and needs to be retried, i.e. if the
 * root was invalidated by a memslot update or a relevant mmu_notifier fired.
 */
static bool is_page_fault_stale(struct kvm_vcpu *vcpu,
				struct kvm_page_fault *fault, int mmu_seq)
{
3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988
	struct kvm_mmu_page *sp = to_shadow_page(vcpu->arch.mmu->root_hpa);

	/* Special roots, e.g. pae_root, are not backed by shadow pages. */
	if (sp && is_obsolete_sp(vcpu->kvm, sp))
		return true;

	/*
	 * Roots without an associated shadow page are considered invalid if
	 * there is a pending request to free obsolete roots.  The request is
	 * only a hint that the current root _may_ be obsolete and needs to be
	 * reloaded, e.g. if the guest frees a PGD that KVM is tracking as a
	 * previous root, then __kvm_mmu_prepare_zap_page() signals all vCPUs
	 * to reload even if no vCPU is actively using the root.
	 */
	if (!sp && kvm_test_request(KVM_REQ_MMU_RELOAD, vcpu))
3989 3990 3991 3992 3993 3994
		return true;

	return fault->slot &&
	       mmu_notifier_retry_hva(vcpu->kvm, mmu_seq, fault->hva);
}

3995
static int direct_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
A
Avi Kivity 已提交
3996
{
3997
	bool is_tdp_mmu_fault = is_tdp_mmu(vcpu->arch.mmu);
A
Avi Kivity 已提交
3998

3999
	unsigned long mmu_seq;
4000
	int r;
4001

4002
	fault->gfn = fault->addr >> PAGE_SHIFT;
4003 4004
	fault->slot = kvm_vcpu_gfn_to_memslot(vcpu, fault->gfn);

4005
	if (page_fault_handle_page_track(vcpu, fault))
4006
		return RET_PF_EMULATE;
4007

4008
	r = fast_page_fault(vcpu, fault);
4009 4010
	if (r != RET_PF_INVALID)
		return r;
4011

4012
	r = mmu_topup_memory_caches(vcpu, false);
4013 4014
	if (r)
		return r;
4015

4016 4017 4018
	mmu_seq = vcpu->kvm->mmu_notifier_seq;
	smp_rmb();

4019
	if (kvm_faultin_pfn(vcpu, fault, &r))
4020
		return r;
4021

4022
	if (handle_abnormal_pfn(vcpu, fault, ACC_ALL, &r))
4023
		return r;
A
Avi Kivity 已提交
4024

4025
	r = RET_PF_RETRY;
4026

4027
	if (is_tdp_mmu_fault)
4028 4029 4030 4031
		read_lock(&vcpu->kvm->mmu_lock);
	else
		write_lock(&vcpu->kvm->mmu_lock);

4032
	if (is_page_fault_stale(vcpu, fault, mmu_seq))
4033
		goto out_unlock;
4034

4035 4036
	r = make_mmu_pages_available(vcpu);
	if (r)
4037
		goto out_unlock;
B
Ben Gardon 已提交
4038

4039
	if (is_tdp_mmu_fault)
4040
		r = kvm_tdp_mmu_map(vcpu, fault);
B
Ben Gardon 已提交
4041
	else
4042
		r = __direct_map(vcpu, fault);
4043

4044
out_unlock:
4045
	if (is_tdp_mmu_fault)
4046 4047 4048
		read_unlock(&vcpu->kvm->mmu_lock);
	else
		write_unlock(&vcpu->kvm->mmu_lock);
4049
	kvm_release_pfn_clean(fault->pfn);
4050
	return r;
A
Avi Kivity 已提交
4051 4052
}

4053 4054
static int nonpaging_page_fault(struct kvm_vcpu *vcpu,
				struct kvm_page_fault *fault)
4055
{
4056
	pgprintk("%s: gva %lx error %x\n", __func__, fault->addr, fault->error_code);
4057 4058

	/* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
4059 4060
	fault->max_level = PG_LEVEL_2M;
	return direct_page_fault(vcpu, fault);
4061 4062
}

4063
int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
4064
				u64 fault_address, char *insn, int insn_len)
4065 4066
{
	int r = 1;
4067
	u32 flags = vcpu->arch.apf.host_apf_flags;
4068

4069 4070 4071 4072 4073 4074
#ifndef CONFIG_X86_64
	/* A 64-bit CR2 should be impossible on 32-bit KVM. */
	if (WARN_ON_ONCE(fault_address >> 32))
		return -EFAULT;
#endif

P
Paolo Bonzini 已提交
4075
	vcpu->arch.l1tf_flush_l1d = true;
4076
	if (!flags) {
4077 4078
		trace_kvm_page_fault(fault_address, error_code);

4079
		if (kvm_event_needs_reinjection(vcpu))
4080 4081 4082
			kvm_mmu_unprotect_page_virt(vcpu, fault_address);
		r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
				insn_len);
4083
	} else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
4084
		vcpu->arch.apf.host_apf_flags = 0;
4085
		local_irq_disable();
4086
		kvm_async_pf_task_wait_schedule(fault_address);
4087
		local_irq_enable();
4088 4089
	} else {
		WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags);
4090
	}
4091

4092 4093 4094 4095
	return r;
}
EXPORT_SYMBOL_GPL(kvm_handle_page_fault);

4096
int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
4097
{
4098 4099 4100
	while (fault->max_level > PG_LEVEL_4K) {
		int page_num = KVM_PAGES_PER_HPAGE(fault->max_level);
		gfn_t base = (fault->addr >> PAGE_SHIFT) & ~(page_num - 1);
4101

4102 4103
		if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
			break;
4104 4105

		--fault->max_level;
4106
	}
4107

4108
	return direct_page_fault(vcpu, fault);
4109 4110
}

4111
static void nonpaging_init_context(struct kvm_mmu *context)
A
Avi Kivity 已提交
4112 4113 4114
{
	context->page_fault = nonpaging_page_fault;
	context->gva_to_gpa = nonpaging_gva_to_gpa;
4115
	context->sync_page = nonpaging_sync_page;
4116
	context->invlpg = NULL;
4117
	context->direct_map = true;
A
Avi Kivity 已提交
4118 4119
}

4120
static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd,
4121 4122
				  union kvm_mmu_page_role role)
{
4123
	return (role.direct || pgd == root->pgd) &&
4124 4125
	       VALID_PAGE(root->hpa) && to_shadow_page(root->hpa) &&
	       role.word == to_shadow_page(root->hpa)->role.word;
4126 4127
}

4128
/*
4129
 * Find out if a previously cached root matching the new pgd/role is available.
4130 4131 4132 4133 4134 4135
 * The current root is also inserted into the cache.
 * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
 * returned.
 * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
 * false is returned. This root should now be freed by the caller.
 */
4136
static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_pgd,
4137 4138 4139 4140
				  union kvm_mmu_page_role new_role)
{
	uint i;
	struct kvm_mmu_root_info root;
4141
	struct kvm_mmu *mmu = vcpu->arch.mmu;
4142

4143
	root.pgd = mmu->root_pgd;
4144 4145
	root.hpa = mmu->root_hpa;

4146
	if (is_root_usable(&root, new_pgd, new_role))
4147 4148
		return true;

4149 4150 4151
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
		swap(root, mmu->prev_roots[i]);

4152
		if (is_root_usable(&root, new_pgd, new_role))
4153 4154 4155 4156
			break;
	}

	mmu->root_hpa = root.hpa;
4157
	mmu->root_pgd = root.pgd;
4158 4159 4160 4161

	return i < KVM_MMU_NUM_PREV_ROOTS;
}

4162
static bool fast_pgd_switch(struct kvm_vcpu *vcpu, gpa_t new_pgd,
4163
			    union kvm_mmu_page_role new_role)
A
Avi Kivity 已提交
4164
{
4165
	struct kvm_mmu *mmu = vcpu->arch.mmu;
4166 4167 4168 4169 4170 4171 4172

	/*
	 * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
	 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
	 * later if necessary.
	 */
	if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
4173
	    mmu->root_level >= PT64_ROOT_4LEVEL)
4174
		return cached_root_available(vcpu, new_pgd, new_role);
4175 4176

	return false;
A
Avi Kivity 已提交
4177 4178
}

4179
static void __kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd,
4180
			      union kvm_mmu_page_role new_role)
A
Avi Kivity 已提交
4181
{
4182
	if (!fast_pgd_switch(vcpu, new_pgd, new_role)) {
4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194
		kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, KVM_MMU_ROOT_CURRENT);
		return;
	}

	/*
	 * It's possible that the cached previous root page is obsolete because
	 * of a change in the MMU generation number. However, changing the
	 * generation number is accompanied by KVM_REQ_MMU_RELOAD, which will
	 * free the root set here and allocate a new one.
	 */
	kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);

4195
	if (force_flush_and_sync_on_reuse) {
4196 4197
		kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
4198
	}
4199 4200 4201 4202 4203 4204 4205 4206 4207

	/*
	 * The last MMIO access's GVA and GPA are cached in the VCPU. When
	 * switching to a new CR3, that GVA->GPA mapping may no longer be
	 * valid. So clear any cached MMIO info even when we don't need to sync
	 * the shadow page tables.
	 */
	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);

4208 4209 4210 4211 4212 4213 4214
	/*
	 * If this is a direct root page, it doesn't have a write flooding
	 * count. Otherwise, clear the write flooding count.
	 */
	if (!new_role.direct)
		__clear_sp_write_flooding_count(
				to_shadow_page(vcpu->arch.mmu->root_hpa));
A
Avi Kivity 已提交
4215 4216
}

4217
void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd)
4218
{
4219
	__kvm_mmu_new_pgd(vcpu, new_pgd, kvm_mmu_calc_root_page_role(vcpu));
4220
}
4221
EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd);
4222

4223 4224
static unsigned long get_cr3(struct kvm_vcpu *vcpu)
{
4225
	return kvm_read_cr3(vcpu);
4226 4227
}

4228
static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
4229
			   unsigned int access)
4230 4231 4232 4233 4234 4235 4236
{
	if (unlikely(is_mmio_spte(*sptep))) {
		if (gfn != get_mmio_spte_gfn(*sptep)) {
			mmu_spte_clear_no_track(sptep);
			return true;
		}

4237
		mark_mmio_spte(vcpu, sptep, gfn, access);
4238 4239 4240 4241 4242 4243
		return true;
	}

	return false;
}

4244 4245 4246 4247 4248
#define PTTYPE_EPT 18 /* arbitrary */
#define PTTYPE PTTYPE_EPT
#include "paging_tmpl.h"
#undef PTTYPE

A
Avi Kivity 已提交
4249 4250 4251 4252 4253 4254 4255 4256
#define PTTYPE 64
#include "paging_tmpl.h"
#undef PTTYPE

#define PTTYPE 32
#include "paging_tmpl.h"
#undef PTTYPE

4257
static void
4258
__reset_rsvds_bits_mask(struct rsvd_bits_validate *rsvd_check,
4259
			u64 pa_bits_rsvd, int level, bool nx, bool gbpages,
4260
			bool pse, bool amd)
4261
{
4262
	u64 gbpages_bit_rsvd = 0;
4263
	u64 nonleaf_bit8_rsvd = 0;
4264
	u64 high_bits_rsvd;
4265

4266
	rsvd_check->bad_mt_xwr = 0;
4267

4268
	if (!gbpages)
4269
		gbpages_bit_rsvd = rsvd_bits(7, 7);
4270

4271 4272 4273 4274 4275 4276 4277 4278 4279
	if (level == PT32E_ROOT_LEVEL)
		high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 62);
	else
		high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);

	/* Note, NX doesn't exist in PDPTEs, this is handled below. */
	if (!nx)
		high_bits_rsvd |= rsvd_bits(63, 63);

4280 4281 4282 4283
	/*
	 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
	 * leaf entries) on AMD CPUs only.
	 */
4284
	if (amd)
4285 4286
		nonleaf_bit8_rsvd = rsvd_bits(8, 8);

4287
	switch (level) {
4288 4289
	case PT32_ROOT_LEVEL:
		/* no rsvd bits for 2 level 4K page table entries */
4290 4291 4292 4293
		rsvd_check->rsvd_bits_mask[0][1] = 0;
		rsvd_check->rsvd_bits_mask[0][0] = 0;
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
4294

4295
		if (!pse) {
4296
			rsvd_check->rsvd_bits_mask[1][1] = 0;
4297 4298 4299
			break;
		}

4300 4301
		if (is_cpuid_PSE36())
			/* 36bits PSE 4MB page */
4302
			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4303 4304
		else
			/* 32 bits PSE 4MB page */
4305
			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4306 4307
		break;
	case PT32E_ROOT_LEVEL:
4308 4309 4310 4311 4312 4313 4314 4315
		rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) |
						   high_bits_rsvd |
						   rsvd_bits(5, 8) |
						   rsvd_bits(1, 2);	/* PDPTE */
		rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;	/* PDE */
		rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;	/* PTE */
		rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
						   rsvd_bits(13, 20);	/* large page */
4316 4317
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
4318
		break;
4319
	case PT64_ROOT_5LEVEL:
4320 4321 4322
		rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd |
						   nonleaf_bit8_rsvd |
						   rsvd_bits(7, 7);
4323 4324
		rsvd_check->rsvd_bits_mask[1][4] =
			rsvd_check->rsvd_bits_mask[0][4];
4325
		fallthrough;
4326
	case PT64_ROOT_4LEVEL:
4327 4328 4329 4330 4331 4332 4333
		rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd |
						   nonleaf_bit8_rsvd |
						   rsvd_bits(7, 7);
		rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd |
						   gbpages_bit_rsvd;
		rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;
		rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4334 4335
		rsvd_check->rsvd_bits_mask[1][3] =
			rsvd_check->rsvd_bits_mask[0][3];
4336 4337 4338 4339 4340
		rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd |
						   gbpages_bit_rsvd |
						   rsvd_bits(13, 29);
		rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
						   rsvd_bits(13, 20); /* large page */
4341 4342
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
4343 4344 4345 4346
		break;
	}
}

4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361
static bool guest_can_use_gbpages(struct kvm_vcpu *vcpu)
{
	/*
	 * If TDP is enabled, let the guest use GBPAGES if they're supported in
	 * hardware.  The hardware page walker doesn't let KVM disable GBPAGES,
	 * i.e. won't treat them as reserved, and KVM doesn't redo the GVA->GPA
	 * walk for performance and complexity reasons.  Not to mention KVM
	 * _can't_ solve the problem because GVA->GPA walks aren't visible to
	 * KVM once a TDP translation is installed.  Mimic hardware behavior so
	 * that KVM's is at least consistent, i.e. doesn't randomly inject #PF.
	 */
	return tdp_enabled ? boot_cpu_has(X86_FEATURE_GBPAGES) :
			     guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES);
}

4362 4363 4364
static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
{
4365
	__reset_rsvds_bits_mask(&context->guest_rsvd_check,
4366
				vcpu->arch.reserved_gpa_bits,
4367
				context->root_level, is_efer_nx(context),
4368
				guest_can_use_gbpages(vcpu),
4369
				is_cr4_pse(context),
4370
				guest_cpuid_is_amd_or_hygon(vcpu));
4371 4372
}

4373 4374
static void
__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4375
			    u64 pa_bits_rsvd, bool execonly, int huge_page_level)
4376
{
4377
	u64 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
4378
	u64 large_1g_rsvd = 0, large_2m_rsvd = 0;
4379
	u64 bad_mt_xwr;
4380

4381 4382 4383 4384 4385
	if (huge_page_level < PG_LEVEL_1G)
		large_1g_rsvd = rsvd_bits(7, 7);
	if (huge_page_level < PG_LEVEL_2M)
		large_2m_rsvd = rsvd_bits(7, 7);

4386 4387
	rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7);
	rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7);
4388 4389
	rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6) | large_1g_rsvd;
	rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6) | large_2m_rsvd;
4390
	rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4391 4392

	/* large page */
4393
	rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4394
	rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4395 4396
	rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29) | large_1g_rsvd;
	rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20) | large_2m_rsvd;
4397
	rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4398

4399 4400 4401 4402 4403 4404 4405 4406
	bad_mt_xwr = 0xFFull << (2 * 8);	/* bits 3..5 must not be 2 */
	bad_mt_xwr |= 0xFFull << (3 * 8);	/* bits 3..5 must not be 3 */
	bad_mt_xwr |= 0xFFull << (7 * 8);	/* bits 3..5 must not be 7 */
	bad_mt_xwr |= REPEAT_BYTE(1ull << 2);	/* bits 0..2 must not be 010 */
	bad_mt_xwr |= REPEAT_BYTE(1ull << 6);	/* bits 0..2 must not be 110 */
	if (!execonly) {
		/* bits 0..2 must not be 100 unless VMX capabilities allow it */
		bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4407
	}
4408
	rsvd_check->bad_mt_xwr = bad_mt_xwr;
4409 4410
}

4411
static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4412
		struct kvm_mmu *context, bool execonly, int huge_page_level)
4413 4414
{
	__reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4415 4416
				    vcpu->arch.reserved_gpa_bits, execonly,
				    huge_page_level);
4417 4418
}

4419 4420 4421 4422 4423
static inline u64 reserved_hpa_bits(void)
{
	return rsvd_bits(shadow_phys_bits, 63);
}

4424 4425 4426 4427 4428
/*
 * the page table on host is the shadow page table for the page
 * table in guest or amd nested guest, its mmu features completely
 * follow the features in guest.
 */
4429 4430
static void reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
					struct kvm_mmu *context)
4431
{
4432 4433 4434 4435 4436 4437 4438 4439
	/*
	 * KVM uses NX when TDP is disabled to handle a variety of scenarios,
	 * notably for huge SPTEs if iTLB multi-hit mitigation is enabled and
	 * to generate correct permissions for CR0.WP=0/CR4.SMEP=1/EFER.NX=0.
	 * The iTLB multi-hit workaround can be toggled at any time, so assume
	 * NX can be used by any non-nested shadow MMU to avoid having to reset
	 * MMU contexts.  Note, KVM forces EFER.NX=1 when TDP is disabled.
	 */
4440
	bool uses_nx = is_efer_nx(context) || !tdp_enabled;
4441 4442 4443 4444 4445

	/* @amd adds a check on bit of SPTEs, which KVM shouldn't use anyways. */
	bool is_amd = true;
	/* KVM doesn't use 2-level page tables for the shadow MMU. */
	bool is_pse = false;
4446 4447
	struct rsvd_bits_validate *shadow_zero_check;
	int i;
4448

4449 4450
	WARN_ON_ONCE(context->shadow_root_level < PT32E_ROOT_LEVEL);

4451
	shadow_zero_check = &context->shadow_zero_check;
4452
	__reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(),
4453
				context->shadow_root_level, uses_nx,
4454
				guest_can_use_gbpages(vcpu), is_pse, is_amd);
4455 4456 4457 4458 4459 4460 4461 4462 4463

	if (!shadow_me_mask)
		return;

	for (i = context->shadow_root_level; --i >= 0;) {
		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
	}

4464 4465
}

4466 4467 4468 4469 4470 4471
static inline bool boot_cpu_is_amd(void)
{
	WARN_ON_ONCE(!tdp_enabled);
	return shadow_x_mask == 0;
}

4472 4473 4474 4475 4476 4477 4478 4479
/*
 * the direct page table on host, use as much mmu features as
 * possible, however, kvm currently does not do execution-protection.
 */
static void
reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
				struct kvm_mmu *context)
{
4480 4481 4482 4483 4484
	struct rsvd_bits_validate *shadow_zero_check;
	int i;

	shadow_zero_check = &context->shadow_zero_check;

4485
	if (boot_cpu_is_amd())
4486
		__reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(),
4487
					context->shadow_root_level, false,
4488
					boot_cpu_has(X86_FEATURE_GBPAGES),
4489
					false, true);
4490
	else
4491
		__reset_rsvds_bits_mask_ept(shadow_zero_check,
4492 4493
					    reserved_hpa_bits(), false,
					    max_huge_page_level);
4494

4495 4496 4497 4498 4499 4500 4501
	if (!shadow_me_mask)
		return;

	for (i = context->shadow_root_level; --i >= 0;) {
		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
	}
4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512
}

/*
 * as the comments in reset_shadow_zero_bits_mask() except it
 * is the shadow page table for intel nested guest.
 */
static void
reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
				struct kvm_mmu *context, bool execonly)
{
	__reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4513 4514
				    reserved_hpa_bits(), execonly,
				    max_huge_page_level);
4515 4516
}

4517 4518 4519 4520 4521 4522 4523 4524 4525 4526
#define BYTE_MASK(access) \
	((1 & (access) ? 2 : 0) | \
	 (2 & (access) ? 4 : 0) | \
	 (3 & (access) ? 8 : 0) | \
	 (4 & (access) ? 16 : 0) | \
	 (5 & (access) ? 32 : 0) | \
	 (6 & (access) ? 64 : 0) | \
	 (7 & (access) ? 128 : 0))


4527
static void update_permission_bitmask(struct kvm_mmu *mmu, bool ept)
4528
{
4529 4530 4531 4532 4533 4534
	unsigned byte;

	const u8 x = BYTE_MASK(ACC_EXEC_MASK);
	const u8 w = BYTE_MASK(ACC_WRITE_MASK);
	const u8 u = BYTE_MASK(ACC_USER_MASK);

4535 4536 4537
	bool cr4_smep = is_cr4_smep(mmu);
	bool cr4_smap = is_cr4_smap(mmu);
	bool cr0_wp = is_cr0_wp(mmu);
4538
	bool efer_nx = is_efer_nx(mmu);
4539 4540

	for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4541 4542
		unsigned pfec = byte << 1;

F
Feng Wu 已提交
4543
		/*
4544 4545
		 * Each "*f" variable has a 1 bit for each UWX value
		 * that causes a fault with the given PFEC.
F
Feng Wu 已提交
4546
		 */
4547

4548
		/* Faults from writes to non-writable pages */
4549
		u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
4550
		/* Faults from user mode accesses to supervisor pages */
4551
		u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
4552
		/* Faults from fetches of non-executable pages*/
4553
		u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
4554 4555 4556 4557 4558 4559 4560 4561 4562 4563
		/* Faults from kernel mode fetches of user pages */
		u8 smepf = 0;
		/* Faults from kernel mode accesses of user pages */
		u8 smapf = 0;

		if (!ept) {
			/* Faults from kernel mode accesses to user pages */
			u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;

			/* Not really needed: !nx will cause pte.nx to fault */
4564
			if (!efer_nx)
4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578
				ff = 0;

			/* Allow supervisor writes if !cr0.wp */
			if (!cr0_wp)
				wf = (pfec & PFERR_USER_MASK) ? wf : 0;

			/* Disallow supervisor fetches of user code if cr4.smep */
			if (cr4_smep)
				smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;

			/*
			 * SMAP:kernel-mode data accesses from user-mode
			 * mappings should fault. A fault is considered
			 * as a SMAP violation if all of the following
P
Peng Hao 已提交
4579
			 * conditions are true:
4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592
			 *   - X86_CR4_SMAP is set in CR4
			 *   - A user page is accessed
			 *   - The access is not a fetch
			 *   - Page fault in kernel mode
			 *   - if CPL = 3 or X86_EFLAGS_AC is clear
			 *
			 * Here, we cover the first three conditions.
			 * The fourth is computed dynamically in permission_fault();
			 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
			 * *not* subject to SMAP restrictions.
			 */
			if (cr4_smap)
				smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4593
		}
4594 4595

		mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4596 4597 4598
	}
}

4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622
/*
* PKU is an additional mechanism by which the paging controls access to
* user-mode addresses based on the value in the PKRU register.  Protection
* key violations are reported through a bit in the page fault error code.
* Unlike other bits of the error code, the PK bit is not known at the
* call site of e.g. gva_to_gpa; it must be computed directly in
* permission_fault based on two bits of PKRU, on some machine state (CR4,
* CR0, EFER, CPL), and on other bits of the error code and the page tables.
*
* In particular the following conditions come from the error code, the
* page tables and the machine state:
* - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
* - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
* - PK is always zero if U=0 in the page tables
* - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
*
* The PKRU bitmask caches the result of these four conditions.  The error
* code (minus the P bit) and the page table's U bit form an index into the
* PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
* with the two bits of the PKRU register corresponding to the protection key.
* For the first three conditions above the bits will be 00, thus masking
* away both AD and WD.  For all reads or if the last condition holds, WD
* only will be masked away.
*/
4623
static void update_pkru_bitmask(struct kvm_mmu *mmu)
4624 4625 4626 4627
{
	unsigned bit;
	bool wp;

4628 4629 4630
	mmu->pkru_mask = 0;

	if (!is_cr4_pke(mmu))
4631 4632
		return;

4633
	wp = is_cr0_wp(mmu);
4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666

	for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
		unsigned pfec, pkey_bits;
		bool check_pkey, check_write, ff, uf, wf, pte_user;

		pfec = bit << 1;
		ff = pfec & PFERR_FETCH_MASK;
		uf = pfec & PFERR_USER_MASK;
		wf = pfec & PFERR_WRITE_MASK;

		/* PFEC.RSVD is replaced by ACC_USER_MASK. */
		pte_user = pfec & PFERR_RSVD_MASK;

		/*
		 * Only need to check the access which is not an
		 * instruction fetch and is to a user page.
		 */
		check_pkey = (!ff && pte_user);
		/*
		 * write access is controlled by PKRU if it is a
		 * user access or CR0.WP = 1.
		 */
		check_write = check_pkey && wf && (uf || wp);

		/* PKRU.AD stops both read and write access. */
		pkey_bits = !!check_pkey;
		/* PKRU.WD stops write access. */
		pkey_bits |= (!!check_write) << 1;

		mmu->pkru_mask |= (pkey_bits & 3) << pfec;
	}
}

4667 4668
static void reset_guest_paging_metadata(struct kvm_vcpu *vcpu,
					struct kvm_mmu *mmu)
A
Avi Kivity 已提交
4669
{
4670 4671
	if (!is_cr0_pg(mmu))
		return;
4672

4673 4674 4675
	reset_rsvds_bits_mask(vcpu, mmu);
	update_permission_bitmask(mmu, false);
	update_pkru_bitmask(mmu);
A
Avi Kivity 已提交
4676 4677
}

4678
static void paging64_init_context(struct kvm_mmu *context)
A
Avi Kivity 已提交
4679 4680 4681
{
	context->page_fault = paging64_page_fault;
	context->gva_to_gpa = paging64_gva_to_gpa;
4682
	context->sync_page = paging64_sync_page;
M
Marcelo Tosatti 已提交
4683
	context->invlpg = paging64_invlpg;
4684
	context->direct_map = false;
A
Avi Kivity 已提交
4685 4686
}

4687
static void paging32_init_context(struct kvm_mmu *context)
A
Avi Kivity 已提交
4688 4689 4690
{
	context->page_fault = paging32_page_fault;
	context->gva_to_gpa = paging32_gva_to_gpa;
4691
	context->sync_page = paging32_sync_page;
M
Marcelo Tosatti 已提交
4692
	context->invlpg = paging32_invlpg;
4693
	context->direct_map = false;
A
Avi Kivity 已提交
4694 4695
}

4696 4697
static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu,
							 struct kvm_mmu_role_regs *regs)
4698 4699 4700
{
	union kvm_mmu_extended_role ext = {0};

4701 4702 4703 4704 4705 4706
	if (____is_cr0_pg(regs)) {
		ext.cr0_pg = 1;
		ext.cr4_pae = ____is_cr4_pae(regs);
		ext.cr4_smep = ____is_cr4_smep(regs);
		ext.cr4_smap = ____is_cr4_smap(regs);
		ext.cr4_pse = ____is_cr4_pse(regs);
4707 4708 4709 4710

		/* PKEY and LA57 are active iff long mode is active. */
		ext.cr4_pke = ____is_efer_lma(regs) && ____is_cr4_pke(regs);
		ext.cr4_la57 = ____is_efer_lma(regs) && ____is_cr4_la57(regs);
4711
		ext.efer_lma = ____is_efer_lma(regs);
4712
	}
4713 4714 4715 4716 4717 4718

	ext.valid = 1;

	return ext;
}

4719
static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
4720
						   struct kvm_mmu_role_regs *regs,
4721 4722 4723 4724 4725
						   bool base_only)
{
	union kvm_mmu_role role = {0};

	role.base.access = ACC_ALL;
4726 4727 4728 4729
	if (____is_cr0_pg(regs)) {
		role.base.efer_nx = ____is_efer_nx(regs);
		role.base.cr0_wp = ____is_cr0_wp(regs);
	}
4730 4731 4732 4733 4734 4735
	role.base.smm = is_smm(vcpu);
	role.base.guest_mode = is_guest_mode(vcpu);

	if (base_only)
		return role;

4736
	role.ext = kvm_calc_mmu_role_ext(vcpu, regs);
4737 4738 4739 4740

	return role;
}

4741 4742
static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu)
{
4743 4744 4745 4746
	/* tdp_root_level is architecture forced level, use it if nonzero */
	if (tdp_root_level)
		return tdp_root_level;

4747
	/* Use 5-level TDP if and only if it's useful/necessary. */
4748
	if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48)
4749 4750
		return 4;

4751
	return max_tdp_level;
4752 4753
}

4754
static union kvm_mmu_role
4755 4756
kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu,
				struct kvm_mmu_role_regs *regs, bool base_only)
4757
{
4758
	union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, regs, base_only);
4759

4760
	role.base.ad_disabled = (shadow_accessed_mask == 0);
4761
	role.base.level = kvm_mmu_get_tdp_level(vcpu);
4762
	role.base.direct = true;
4763
	role.base.has_4_byte_gpte = false;
4764 4765 4766 4767

	return role;
}

4768
static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4769
{
4770
	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4771
	struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
4772
	union kvm_mmu_role new_role =
4773
		kvm_calc_tdp_mmu_root_page_role(vcpu, &regs, false);
4774

4775 4776 4777 4778
	if (new_role.as_u64 == context->mmu_role.as_u64)
		return;

	context->mmu_role.as_u64 = new_role.as_u64;
4779
	context->page_fault = kvm_tdp_page_fault;
4780
	context->sync_page = nonpaging_sync_page;
4781
	context->invlpg = NULL;
4782
	context->shadow_root_level = kvm_mmu_get_tdp_level(vcpu);
4783
	context->direct_map = true;
4784
	context->get_guest_pgd = get_cr3;
4785
	context->get_pdptr = kvm_pdptr_read;
4786
	context->inject_page_fault = kvm_inject_page_fault;
4787
	context->root_level = role_regs_to_root_level(&regs);
4788

4789
	if (!is_cr0_pg(context))
4790
		context->gva_to_gpa = nonpaging_gva_to_gpa;
4791
	else if (is_cr4_pae(context))
4792
		context->gva_to_gpa = paging64_gva_to_gpa;
4793
	else
4794
		context->gva_to_gpa = paging32_gva_to_gpa;
4795

4796
	reset_guest_paging_metadata(vcpu, context);
4797
	reset_tdp_shadow_zero_bits_mask(vcpu, context);
4798 4799
}

4800
static union kvm_mmu_role
4801 4802
kvm_calc_shadow_root_page_role_common(struct kvm_vcpu *vcpu,
				      struct kvm_mmu_role_regs *regs, bool base_only)
4803
{
4804
	union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, regs, base_only);
4805

4806 4807
	role.base.smep_andnot_wp = role.ext.cr4_smep && !____is_cr0_wp(regs);
	role.base.smap_andnot_wp = role.ext.cr4_smap && !____is_cr0_wp(regs);
4808
	role.base.has_4_byte_gpte = ____is_cr0_pg(regs) && !____is_cr4_pae(regs);
4809

4810 4811 4812 4813
	return role;
}

static union kvm_mmu_role
4814 4815
kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu,
				   struct kvm_mmu_role_regs *regs, bool base_only)
4816 4817
{
	union kvm_mmu_role role =
4818
		kvm_calc_shadow_root_page_role_common(vcpu, regs, base_only);
4819

4820
	role.base.direct = !____is_cr0_pg(regs);
4821

4822
	if (!____is_efer_lma(regs))
4823
		role.base.level = PT32E_ROOT_LEVEL;
4824
	else if (____is_cr4_la57(regs))
4825
		role.base.level = PT64_ROOT_5LEVEL;
4826
	else
4827
		role.base.level = PT64_ROOT_4LEVEL;
4828 4829 4830 4831

	return role;
}

4832
static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
4833
				    struct kvm_mmu_role_regs *regs,
4834
				    union kvm_mmu_role new_role)
4835
{
4836 4837
	if (new_role.as_u64 == context->mmu_role.as_u64)
		return;
4838

4839
	context->mmu_role.as_u64 = new_role.as_u64;
4840

4841
	if (!is_cr0_pg(context))
4842
		nonpaging_init_context(context);
4843
	else if (is_cr4_pae(context))
4844
		paging64_init_context(context);
A
Avi Kivity 已提交
4845
	else
4846
		paging32_init_context(context);
4847
	context->root_level = role_regs_to_root_level(regs);
4848

4849
	reset_guest_paging_metadata(vcpu, context);
4850 4851
	context->shadow_root_level = new_role.base.level;

4852
	reset_shadow_zero_bits_mask(vcpu, context);
4853
}
4854

4855 4856
static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu,
				struct kvm_mmu_role_regs *regs)
4857
{
4858
	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4859
	union kvm_mmu_role new_role =
4860
		kvm_calc_shadow_mmu_root_page_role(vcpu, regs, false);
4861

4862
	shadow_mmu_init_context(vcpu, context, regs, new_role);
4863 4864
}

4865
static union kvm_mmu_role
4866 4867
kvm_calc_shadow_npt_root_page_role(struct kvm_vcpu *vcpu,
				   struct kvm_mmu_role_regs *regs)
4868 4869
{
	union kvm_mmu_role role =
4870
		kvm_calc_shadow_root_page_role_common(vcpu, regs, false);
4871 4872

	role.base.direct = false;
4873
	role.base.level = kvm_mmu_get_tdp_level(vcpu);
4874 4875 4876 4877

	return role;
}

4878 4879
void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0,
			     unsigned long cr4, u64 efer, gpa_t nested_cr3)
4880
{
4881
	struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4882 4883
	struct kvm_mmu_role_regs regs = {
		.cr0 = cr0,
4884
		.cr4 = cr4 & ~X86_CR4_PKE,
4885 4886
		.efer = efer,
	};
4887
	union kvm_mmu_role new_role;
4888

4889
	new_role = kvm_calc_shadow_npt_root_page_role(vcpu, &regs);
4890

4891
	__kvm_mmu_new_pgd(vcpu, nested_cr3, new_role.base);
4892

4893
	shadow_mmu_init_context(vcpu, context, &regs, new_role);
4894 4895
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu);
4896

4897 4898
static union kvm_mmu_role
kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
4899
				   bool execonly, u8 level)
4900
{
4901
	union kvm_mmu_role role = {0};
4902

4903 4904
	/* SMM flag is inherited from root_mmu */
	role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
4905

4906
	role.base.level = level;
4907
	role.base.has_4_byte_gpte = false;
4908 4909 4910 4911
	role.base.direct = false;
	role.base.ad_disabled = !accessed_dirty;
	role.base.guest_mode = true;
	role.base.access = ACC_ALL;
4912

4913 4914
	/* EPT, and thus nested EPT, does not consume CR0, CR4, nor EFER. */
	role.ext.word = 0;
4915
	role.ext.execonly = execonly;
4916
	role.ext.valid = 1;
4917 4918 4919 4920

	return role;
}

4921
void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
4922 4923
			     int huge_page_level, bool accessed_dirty,
			     gpa_t new_eptp)
N
Nadav Har'El 已提交
4924
{
4925
	struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4926
	u8 level = vmx_eptp_page_walk_level(new_eptp);
4927 4928
	union kvm_mmu_role new_role =
		kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
4929
						   execonly, level);
4930

4931
	__kvm_mmu_new_pgd(vcpu, new_eptp, new_role.base);
4932 4933 4934

	if (new_role.as_u64 == context->mmu_role.as_u64)
		return;
4935

4936 4937
	context->mmu_role.as_u64 = new_role.as_u64;

4938
	context->shadow_root_level = level;
N
Nadav Har'El 已提交
4939

4940
	context->ept_ad = accessed_dirty;
N
Nadav Har'El 已提交
4941 4942 4943 4944
	context->page_fault = ept_page_fault;
	context->gva_to_gpa = ept_gva_to_gpa;
	context->sync_page = ept_sync_page;
	context->invlpg = ept_invlpg;
4945
	context->root_level = level;
N
Nadav Har'El 已提交
4946
	context->direct_map = false;
4947

4948
	update_permission_bitmask(context, true);
4949
	context->pkru_mask = 0;
4950
	reset_rsvds_bits_mask_ept(vcpu, context, execonly, huge_page_level);
4951
	reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
N
Nadav Har'El 已提交
4952 4953 4954
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);

4955
static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4956
{
4957
	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4958
	struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
4959

4960
	kvm_init_shadow_mmu(vcpu, &regs);
4961

4962
	context->get_guest_pgd     = get_cr3;
4963 4964
	context->get_pdptr         = kvm_pdptr_read;
	context->inject_page_fault = kvm_inject_page_fault;
A
Avi Kivity 已提交
4965 4966
}

4967 4968
static union kvm_mmu_role
kvm_calc_nested_mmu_role(struct kvm_vcpu *vcpu, struct kvm_mmu_role_regs *regs)
4969
{
4970 4971 4972
	union kvm_mmu_role role;

	role = kvm_calc_shadow_root_page_role_common(vcpu, regs, false);
4973 4974 4975 4976 4977 4978 4979

	/*
	 * Nested MMUs are used only for walking L2's gva->gpa, they never have
	 * shadow pages of their own and so "direct" has no meaning.   Set it
	 * to "true" to try to detect bogus usage of the nested MMU.
	 */
	role.base.direct = true;
4980
	role.base.level = role_regs_to_root_level(regs);
4981 4982 4983
	return role;
}

4984
static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4985
{
4986 4987
	struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
	union kvm_mmu_role new_role = kvm_calc_nested_mmu_role(vcpu, &regs);
4988 4989
	struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;

4990 4991 4992 4993
	if (new_role.as_u64 == g_context->mmu_role.as_u64)
		return;

	g_context->mmu_role.as_u64 = new_role.as_u64;
4994
	g_context->get_guest_pgd     = get_cr3;
4995
	g_context->get_pdptr         = kvm_pdptr_read;
4996
	g_context->inject_page_fault = kvm_inject_page_fault;
4997
	g_context->root_level        = new_role.base.level;
4998

4999 5000 5001 5002 5003 5004
	/*
	 * L2 page tables are never shadowed, so there is no need to sync
	 * SPTEs.
	 */
	g_context->invlpg            = NULL;

5005
	/*
5006
	 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
5007 5008 5009 5010 5011
	 * L1's nested page tables (e.g. EPT12). The nested translation
	 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
	 * L2's page tables as the first level of translation and L1's
	 * nested page tables as the second level of translation. Basically
	 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
5012
	 */
5013
	if (!is_paging(vcpu))
5014
		g_context->gva_to_gpa = nonpaging_gva_to_gpa;
5015
	else if (is_long_mode(vcpu))
5016
		g_context->gva_to_gpa = paging64_gva_to_gpa;
5017
	else if (is_pae(vcpu))
5018
		g_context->gva_to_gpa = paging64_gva_to_gpa;
5019
	else
5020
		g_context->gva_to_gpa = paging32_gva_to_gpa;
5021

5022
	reset_guest_paging_metadata(vcpu, g_context);
5023 5024
}

5025
void kvm_init_mmu(struct kvm_vcpu *vcpu)
5026
{
5027
	if (mmu_is_nested(vcpu))
5028
		init_kvm_nested_mmu(vcpu);
5029
	else if (tdp_enabled)
5030
		init_kvm_tdp_mmu(vcpu);
5031
	else
5032
		init_kvm_softmmu(vcpu);
5033
}
5034
EXPORT_SYMBOL_GPL(kvm_init_mmu);
5035

5036 5037 5038
static union kvm_mmu_page_role
kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
{
5039
	struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
5040 5041
	union kvm_mmu_role role;

5042
	if (tdp_enabled)
5043
		role = kvm_calc_tdp_mmu_root_page_role(vcpu, &regs, true);
5044
	else
5045
		role = kvm_calc_shadow_mmu_root_page_role(vcpu, &regs, true);
5046 5047

	return role.base;
5048
}
5049

5050 5051 5052 5053 5054
void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu)
{
	/*
	 * Invalidate all MMU roles to force them to reinitialize as CPUID
	 * information is factored into reserved bit calculations.
5055 5056 5057 5058 5059 5060 5061 5062
	 *
	 * Correctly handling multiple vCPU models with respect to paging and
	 * physical address properties) in a single VM would require tracking
	 * all relevant CPUID information in kvm_mmu_page_role. That is very
	 * undesirable as it would increase the memory requirements for
	 * gfn_track (see struct kvm_mmu_page_role comments).  For now that
	 * problem is swept under the rug; KVM's CPUID API is horrific and
	 * it's all but impossible to solve it without introducing a new API.
5063 5064 5065 5066 5067
	 */
	vcpu->arch.root_mmu.mmu_role.ext.valid = 0;
	vcpu->arch.guest_mmu.mmu_role.ext.valid = 0;
	vcpu->arch.nested_mmu.mmu_role.ext.valid = 0;
	kvm_mmu_reset_context(vcpu);
5068 5069

	/*
5070 5071
	 * Changing guest CPUID after KVM_RUN is forbidden, see the comment in
	 * kvm_arch_vcpu_ioctl().
5072
	 */
5073
	KVM_BUG_ON(vcpu->arch.last_vmentry_cpu != -1, vcpu->kvm);
5074 5075
}

5076
void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
5077
{
5078
	kvm_mmu_unload(vcpu);
5079
	kvm_init_mmu(vcpu);
A
Avi Kivity 已提交
5080
}
5081
EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
A
Avi Kivity 已提交
5082 5083

int kvm_mmu_load(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
5084
{
5085 5086
	int r;

5087
	r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->direct_map);
A
Avi Kivity 已提交
5088 5089
	if (r)
		goto out;
5090
	r = mmu_alloc_special_roots(vcpu);
A
Avi Kivity 已提交
5091 5092
	if (r)
		goto out;
5093
	if (vcpu->arch.mmu->direct_map)
5094 5095 5096
		r = mmu_alloc_direct_roots(vcpu);
	else
		r = mmu_alloc_shadow_roots(vcpu);
5097 5098
	if (r)
		goto out;
5099 5100 5101

	kvm_mmu_sync_roots(vcpu);

5102
	kvm_mmu_load_pgd(vcpu);
5103
	static_call(kvm_x86_tlb_flush_current)(vcpu);
5104 5105
out:
	return r;
A
Avi Kivity 已提交
5106
}
A
Avi Kivity 已提交
5107 5108 5109

void kvm_mmu_unload(struct kvm_vcpu *vcpu)
{
5110 5111 5112 5113
	kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
	WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
	kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
	WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
A
Avi Kivity 已提交
5114
}
A
Avi Kivity 已提交
5115

5116 5117 5118 5119 5120 5121 5122 5123
static bool need_remote_flush(u64 old, u64 new)
{
	if (!is_shadow_present_pte(old))
		return false;
	if (!is_shadow_present_pte(new))
		return true;
	if ((old ^ new) & PT64_BASE_ADDR_MASK)
		return true;
5124 5125
	old ^= shadow_nx_mask;
	new ^= shadow_nx_mask;
5126 5127 5128
	return (old & ~new & PT64_PERM_MASK) != 0;
}

5129
static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
5130
				    int *bytes)
5131
{
5132
	u64 gentry = 0;
5133
	int r;
5134 5135 5136

	/*
	 * Assume that the pte write on a page table of the same type
5137 5138
	 * as the current vcpu paging mode since we update the sptes only
	 * when they have the same mode.
5139
	 */
5140
	if (is_pae(vcpu) && *bytes == 4) {
5141
		/* Handle a 32-bit guest writing two halves of a 64-bit gpte */
5142 5143
		*gpa &= ~(gpa_t)7;
		*bytes = 8;
5144 5145
	}

5146 5147 5148 5149
	if (*bytes == 4 || *bytes == 8) {
		r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
		if (r)
			gentry = 0;
5150 5151
	}

5152 5153 5154 5155 5156 5157 5158
	return gentry;
}

/*
 * If we're seeing too many writes to a page, it may no longer be a page table,
 * or we may be forking, in which case it is better to unmap the page.
 */
5159
static bool detect_write_flooding(struct kvm_mmu_page *sp)
5160
{
5161 5162 5163 5164
	/*
	 * Skip write-flooding detected for the sp whose level is 1, because
	 * it can become unsync, then the guest page is not write-protected.
	 */
5165
	if (sp->role.level == PG_LEVEL_4K)
5166
		return false;
5167

5168 5169
	atomic_inc(&sp->write_flooding_count);
	return atomic_read(&sp->write_flooding_count) >= 3;
5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184
}

/*
 * Misaligned accesses are too much trouble to fix up; also, they usually
 * indicate a page is not used as a page table.
 */
static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
				    int bytes)
{
	unsigned offset, pte_size, misaligned;

	pgprintk("misaligned: gpa %llx bytes %d role %x\n",
		 gpa, bytes, sp->role.word);

	offset = offset_in_page(gpa);
5185
	pte_size = sp->role.has_4_byte_gpte ? 4 : 8;
5186 5187 5188 5189 5190 5191 5192 5193

	/*
	 * Sometimes, the OS only writes the last one bytes to update status
	 * bits, for example, in linux, andb instruction is used in clear_bit().
	 */
	if (!(offset & (pte_size - 1)) && bytes == 1)
		return false;

5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208
	misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
	misaligned |= bytes < 4;

	return misaligned;
}

static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
{
	unsigned page_offset, quadrant;
	u64 *spte;
	int level;

	page_offset = offset_in_page(gpa);
	level = sp->role.level;
	*nspte = 1;
5209
	if (sp->role.has_4_byte_gpte) {
5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230
		page_offset <<= 1;	/* 32->64 */
		/*
		 * A 32-bit pde maps 4MB while the shadow pdes map
		 * only 2MB.  So we need to double the offset again
		 * and zap two pdes instead of one.
		 */
		if (level == PT32_ROOT_LEVEL) {
			page_offset &= ~7; /* kill rounding error */
			page_offset <<= 1;
			*nspte = 2;
		}
		quadrant = page_offset >> PAGE_SHIFT;
		page_offset &= ~PAGE_MASK;
		if (quadrant != sp->role.quadrant)
			return NULL;
	}

	spte = &sp->spt[page_offset / sizeof(*spte)];
	return spte;
}

5231
static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
5232 5233
			      const u8 *new, int bytes,
			      struct kvm_page_track_notifier_node *node)
5234 5235 5236 5237 5238 5239
{
	gfn_t gfn = gpa >> PAGE_SHIFT;
	struct kvm_mmu_page *sp;
	LIST_HEAD(invalid_list);
	u64 entry, gentry, *spte;
	int npte;
5240
	bool flush = false;
5241 5242 5243 5244 5245

	/*
	 * If we don't have indirect shadow pages, it means no page is
	 * write-protected, so we can exit simply.
	 */
5246
	if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
5247 5248 5249 5250 5251 5252
		return;

	pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);

	/*
	 * No need to care whether allocation memory is successful
I
Ingo Molnar 已提交
5253
	 * or not since pte prefetch is skipped if it does not have
5254 5255
	 * enough objects in the cache.
	 */
5256
	mmu_topup_memory_caches(vcpu, true);
5257

5258
	write_lock(&vcpu->kvm->mmu_lock);
5259 5260 5261

	gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);

5262
	++vcpu->kvm->stat.mmu_pte_write;
5263
	kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
5264

5265
	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
5266
		if (detect_write_misaligned(sp, gpa, bytes) ||
5267
		      detect_write_flooding(sp)) {
5268
			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
A
Avi Kivity 已提交
5269
			++vcpu->kvm->stat.mmu_flooded;
5270 5271
			continue;
		}
5272 5273 5274 5275 5276

		spte = get_written_sptes(sp, gpa, &npte);
		if (!spte)
			continue;

5277
		while (npte--) {
5278
			entry = *spte;
5279
			mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL);
5280 5281
			if (gentry && sp->role.level != PG_LEVEL_4K)
				++vcpu->kvm->stat.mmu_pde_zapped;
G
Gleb Natapov 已提交
5282
			if (need_remote_flush(entry, *spte))
5283
				flush = true;
5284
			++spte;
5285 5286
		}
	}
5287
	kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush);
5288
	kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
5289
	write_unlock(&vcpu->kvm->mmu_lock);
5290 5291
}

5292
int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
5293
		       void *insn, int insn_len)
5294
{
5295
	int r, emulation_type = EMULTYPE_PF;
5296
	bool direct = vcpu->arch.mmu->direct_map;
5297

5298
	if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
5299 5300
		return RET_PF_RETRY;

5301
	r = RET_PF_INVALID;
5302
	if (unlikely(error_code & PFERR_RSVD_MASK)) {
5303
		r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
5304
		if (r == RET_PF_EMULATE)
5305 5306
			goto emulate;
	}
5307

5308
	if (r == RET_PF_INVALID) {
5309 5310
		r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
					  lower_32_bits(error_code), false);
5311
		if (KVM_BUG_ON(r == RET_PF_INVALID, vcpu->kvm))
5312
			return -EIO;
5313 5314
	}

5315
	if (r < 0)
5316
		return r;
5317 5318
	if (r != RET_PF_EMULATE)
		return 1;
5319

5320 5321 5322 5323 5324 5325 5326
	/*
	 * Before emulating the instruction, check if the error code
	 * was due to a RO violation while translating the guest page.
	 * This can occur when using nested virtualization with nested
	 * paging in both guests. If true, we simply unprotect the page
	 * and resume the guest.
	 */
5327
	if (vcpu->arch.mmu->direct_map &&
5328
	    (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5329
		kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
5330 5331 5332
		return 1;
	}

5333 5334 5335 5336 5337 5338
	/*
	 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
	 * optimistically try to just unprotect the page and let the processor
	 * re-execute the instruction that caused the page fault.  Do not allow
	 * retrying MMIO emulation, as it's not only pointless but could also
	 * cause us to enter an infinite loop because the processor will keep
5339 5340 5341 5342
	 * faulting on the non-existent MMIO address.  Retrying an instruction
	 * from a nested guest is also pointless and dangerous as we are only
	 * explicitly shadowing L1's page tables, i.e. unprotecting something
	 * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5343
	 */
5344
	if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
5345
		emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
5346
emulate:
5347
	return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
5348
				       insn_len);
5349 5350 5351
}
EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);

5352 5353
void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
			    gva_t gva, hpa_t root_hpa)
M
Marcelo Tosatti 已提交
5354
{
5355
	int i;
5356

5357 5358 5359 5360 5361 5362
	/* It's actually a GPA for vcpu->arch.guest_mmu.  */
	if (mmu != &vcpu->arch.guest_mmu) {
		/* INVLPG on a non-canonical address is a NOP according to the SDM.  */
		if (is_noncanonical_address(gva, vcpu))
			return;

5363
		static_call(kvm_x86_tlb_flush_gva)(vcpu, gva);
5364 5365 5366
	}

	if (!mmu->invlpg)
5367 5368
		return;

5369 5370
	if (root_hpa == INVALID_PAGE) {
		mmu->invlpg(vcpu, gva, mmu->root_hpa);
5371

5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389
		/*
		 * INVLPG is required to invalidate any global mappings for the VA,
		 * irrespective of PCID. Since it would take us roughly similar amount
		 * of work to determine whether any of the prev_root mappings of the VA
		 * is marked global, or to just sync it blindly, so we might as well
		 * just always sync it.
		 *
		 * Mappings not reachable via the current cr3 or the prev_roots will be
		 * synced when switching to that cr3, so nothing needs to be done here
		 * for them.
		 */
		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
			if (VALID_PAGE(mmu->prev_roots[i].hpa))
				mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
	} else {
		mmu->invlpg(vcpu, gva, root_hpa);
	}
}
5390

5391 5392
void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
{
5393
	kvm_mmu_invalidate_gva(vcpu, vcpu->arch.walk_mmu, gva, INVALID_PAGE);
M
Marcelo Tosatti 已提交
5394 5395 5396 5397
	++vcpu->stat.invlpg;
}
EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);

5398

5399 5400
void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
{
5401
	struct kvm_mmu *mmu = vcpu->arch.mmu;
5402
	bool tlb_flush = false;
5403
	uint i;
5404 5405

	if (pcid == kvm_get_active_pcid(vcpu)) {
5406
		mmu->invlpg(vcpu, gva, mmu->root_hpa);
5407
		tlb_flush = true;
5408 5409
	}

5410 5411
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
		if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5412
		    pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) {
5413 5414 5415
			mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
			tlb_flush = true;
		}
5416
	}
5417

5418
	if (tlb_flush)
5419
		static_call(kvm_x86_tlb_flush_gva)(vcpu, gva);
5420

5421 5422 5423
	++vcpu->stat.invlpg;

	/*
5424 5425 5426
	 * Mappings not reachable via the current cr3 or the prev_roots will be
	 * synced when switching to that cr3, so nothing needs to be done here
	 * for them.
5427 5428 5429
	 */
}

5430 5431
void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level,
		       int tdp_max_root_level, int tdp_huge_page_level)
5432
{
5433
	tdp_enabled = enable_tdp;
5434
	tdp_root_level = tdp_forced_root_level;
5435
	max_tdp_level = tdp_max_root_level;
5436 5437

	/*
5438
	 * max_huge_page_level reflects KVM's MMU capabilities irrespective
5439 5440 5441 5442 5443 5444
	 * of kernel support, e.g. KVM may be capable of using 1GB pages when
	 * the kernel is not.  But, KVM never creates a page size greater than
	 * what is used by the kernel for any given HVA, i.e. the kernel's
	 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
	 */
	if (tdp_enabled)
5445
		max_huge_page_level = tdp_huge_page_level;
5446
	else if (boot_cpu_has(X86_FEATURE_GBPAGES))
5447
		max_huge_page_level = PG_LEVEL_1G;
5448
	else
5449
		max_huge_page_level = PG_LEVEL_2M;
5450
}
5451
EXPORT_SYMBOL_GPL(kvm_configure_mmu);
5452 5453

/* The return value indicates if tlb flush on all vcpus is needed. */
5454 5455 5456
typedef bool (*slot_level_handler) (struct kvm *kvm,
				    struct kvm_rmap_head *rmap_head,
				    const struct kvm_memory_slot *slot);
5457 5458 5459

/* The caller should hold mmu-lock before calling this function. */
static __always_inline bool
5460
slot_handle_level_range(struct kvm *kvm, const struct kvm_memory_slot *memslot,
5461
			slot_level_handler fn, int start_level, int end_level,
5462 5463
			gfn_t start_gfn, gfn_t end_gfn, bool flush_on_yield,
			bool flush)
5464 5465 5466 5467 5468 5469
{
	struct slot_rmap_walk_iterator iterator;

	for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
			end_gfn, &iterator) {
		if (iterator.rmap)
5470
			flush |= fn(kvm, iterator.rmap, memslot);
5471

5472
		if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
5473
			if (flush && flush_on_yield) {
5474 5475 5476
				kvm_flush_remote_tlbs_with_address(kvm,
						start_gfn,
						iterator.gfn - start_gfn + 1);
5477 5478
				flush = false;
			}
5479
			cond_resched_rwlock_write(&kvm->mmu_lock);
5480 5481 5482 5483 5484 5485 5486
		}
	}

	return flush;
}

static __always_inline bool
5487
slot_handle_level(struct kvm *kvm, const struct kvm_memory_slot *memslot,
5488
		  slot_level_handler fn, int start_level, int end_level,
5489
		  bool flush_on_yield)
5490 5491 5492 5493
{
	return slot_handle_level_range(kvm, memslot, fn, start_level,
			end_level, memslot->base_gfn,
			memslot->base_gfn + memslot->npages - 1,
5494
			flush_on_yield, false);
5495 5496 5497
}

static __always_inline bool
5498 5499
slot_handle_level_4k(struct kvm *kvm, const struct kvm_memory_slot *memslot,
		     slot_level_handler fn, bool flush_on_yield)
5500
{
5501
	return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
5502
				 PG_LEVEL_4K, flush_on_yield);
5503 5504
}

5505
static void free_mmu_pages(struct kvm_mmu *mmu)
A
Avi Kivity 已提交
5506
{
5507 5508
	if (!tdp_enabled && mmu->pae_root)
		set_memory_encrypted((unsigned long)mmu->pae_root, 1);
5509
	free_page((unsigned long)mmu->pae_root);
5510
	free_page((unsigned long)mmu->pml4_root);
5511
	free_page((unsigned long)mmu->pml5_root);
A
Avi Kivity 已提交
5512 5513
}

5514
static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
A
Avi Kivity 已提交
5515
{
5516
	struct page *page;
A
Avi Kivity 已提交
5517 5518
	int i;

5519 5520 5521 5522 5523
	mmu->root_hpa = INVALID_PAGE;
	mmu->root_pgd = 0;
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
		mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;

5524 5525 5526 5527
	/* vcpu->arch.guest_mmu isn't used when !tdp_enabled. */
	if (!tdp_enabled && mmu == &vcpu->arch.guest_mmu)
		return 0;

5528
	/*
5529 5530 5531 5532
	 * When using PAE paging, the four PDPTEs are treated as 'root' pages,
	 * while the PDP table is a per-vCPU construct that's allocated at MMU
	 * creation.  When emulating 32-bit mode, cr3 is only 32 bits even on
	 * x86_64.  Therefore we need to allocate the PDP table in the first
5533 5534 5535 5536
	 * 4GB of memory, which happens to fit the DMA32 zone.  TDP paging
	 * generally doesn't use PAE paging and can skip allocating the PDP
	 * table.  The main exception, handled here, is SVM's 32-bit NPT.  The
	 * other exception is for shadowing L1's 32-bit or PAE NPT on 64-bit
5537
	 * KVM; that horror is handled on-demand by mmu_alloc_special_roots().
5538
	 */
5539
	if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
5540 5541
		return 0;

5542
	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
5543
	if (!page)
5544 5545
		return -ENOMEM;

5546
	mmu->pae_root = page_address(page);
5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560

	/*
	 * CR3 is only 32 bits when PAE paging is used, thus it's impossible to
	 * get the CPU to treat the PDPTEs as encrypted.  Decrypt the page so
	 * that KVM's writes and the CPU's reads get along.  Note, this is
	 * only necessary when using shadow paging, as 64-bit NPT can get at
	 * the C-bit even when shadowing 32-bit NPT, and SME isn't supported
	 * by 32-bit kernels (when KVM itself uses 32-bit NPT).
	 */
	if (!tdp_enabled)
		set_memory_decrypted((unsigned long)mmu->pae_root, 1);
	else
		WARN_ON_ONCE(shadow_me_mask);

5561
	for (i = 0; i < 4; ++i)
5562
		mmu->pae_root[i] = INVALID_PAE_ROOT;
5563

A
Avi Kivity 已提交
5564 5565 5566
	return 0;
}

5567
int kvm_mmu_create(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
5568
{
5569
	int ret;
5570

5571
	vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache;
5572 5573
	vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO;

5574
	vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache;
5575
	vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO;
5576

5577 5578
	vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO;

5579 5580
	vcpu->arch.mmu = &vcpu->arch.root_mmu;
	vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
A
Avi Kivity 已提交
5581

5582
	ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu);
5583 5584 5585
	if (ret)
		return ret;

5586
	ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu);
5587 5588 5589 5590 5591 5592 5593
	if (ret)
		goto fail_allocate_root;

	return ret;
 fail_allocate_root:
	free_mmu_pages(&vcpu->arch.guest_mmu);
	return ret;
A
Avi Kivity 已提交
5594 5595
}

5596
#define BATCH_ZAP_PAGES	10
5597 5598 5599
static void kvm_zap_obsolete_pages(struct kvm *kvm)
{
	struct kvm_mmu_page *sp, *node;
5600
	int nr_zapped, batch = 0;
5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612

restart:
	list_for_each_entry_safe_reverse(sp, node,
	      &kvm->arch.active_mmu_pages, link) {
		/*
		 * No obsolete valid page exists before a newly created page
		 * since active_mmu_pages is a FIFO list.
		 */
		if (!is_obsolete_sp(kvm, sp))
			break;

		/*
5613 5614 5615
		 * Invalid pages should never land back on the list of active
		 * pages.  Skip the bogus page, otherwise we'll get stuck in an
		 * infinite loop if the page gets put back on the list (again).
5616
		 */
5617
		if (WARN_ON(sp->role.invalid))
5618 5619
			continue;

5620 5621 5622 5623 5624 5625
		/*
		 * No need to flush the TLB since we're only zapping shadow
		 * pages with an obsolete generation number and all vCPUS have
		 * loaded a new root, i.e. the shadow pages being zapped cannot
		 * be in active use by the guest.
		 */
5626
		if (batch >= BATCH_ZAP_PAGES &&
5627
		    cond_resched_rwlock_write(&kvm->mmu_lock)) {
5628
			batch = 0;
5629 5630 5631
			goto restart;
		}

5632 5633
		if (__kvm_mmu_prepare_zap_page(kvm, sp,
				&kvm->arch.zapped_obsolete_pages, &nr_zapped)) {
5634
			batch += nr_zapped;
5635
			goto restart;
5636
		}
5637 5638
	}

5639 5640 5641 5642 5643
	/*
	 * Trigger a remote TLB flush before freeing the page tables to ensure
	 * KVM is not in the middle of a lockless shadow page table walk, which
	 * may reference the pages.
	 */
5644
	kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657
}

/*
 * Fast invalidate all shadow pages and use lock-break technique
 * to zap obsolete pages.
 *
 * It's required when memslot is being deleted or VM is being
 * destroyed, in these cases, we should ensure that KVM MMU does
 * not use any resource of the being-deleted slot or all slots
 * after calling the function.
 */
static void kvm_mmu_zap_all_fast(struct kvm *kvm)
{
5658 5659
	lockdep_assert_held(&kvm->slots_lock);

5660
	write_lock(&kvm->mmu_lock);
5661
	trace_kvm_mmu_zap_all_fast(kvm);
5662 5663 5664 5665 5666 5667 5668 5669 5670

	/*
	 * Toggle mmu_valid_gen between '0' and '1'.  Because slots_lock is
	 * held for the entire duration of zapping obsolete pages, it's
	 * impossible for there to be multiple invalid generations associated
	 * with *valid* shadow pages at any given time, i.e. there is exactly
	 * one valid generation and (at most) one invalid generation.
	 */
	kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
5671

5672 5673 5674 5675 5676 5677 5678 5679 5680
	/* In order to ensure all threads see this change when
	 * handling the MMU reload signal, this must happen in the
	 * same critical section as kvm_reload_remote_mmus, and
	 * before kvm_zap_obsolete_pages as kvm_zap_obsolete_pages
	 * could drop the MMU lock and yield.
	 */
	if (is_tdp_mmu_enabled(kvm))
		kvm_tdp_mmu_invalidate_all_roots(kvm);

5681 5682 5683 5684 5685 5686 5687 5688 5689 5690
	/*
	 * Notify all vcpus to reload its shadow page table and flush TLB.
	 * Then all vcpus will switch to new shadow page table with the new
	 * mmu_valid_gen.
	 *
	 * Note: we need to do this under the protection of mmu_lock,
	 * otherwise, vcpu would purge shadow page but miss tlb flush.
	 */
	kvm_reload_remote_mmus(kvm);

5691
	kvm_zap_obsolete_pages(kvm);
5692

5693
	write_unlock(&kvm->mmu_lock);
5694 5695 5696 5697 5698 5699

	if (is_tdp_mmu_enabled(kvm)) {
		read_lock(&kvm->mmu_lock);
		kvm_tdp_mmu_zap_invalidated_roots(kvm);
		read_unlock(&kvm->mmu_lock);
	}
5700 5701
}

5702 5703 5704 5705 5706
static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
{
	return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
}

5707
static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5708 5709
			struct kvm_memory_slot *slot,
			struct kvm_page_track_notifier_node *node)
5710
{
5711
	kvm_mmu_zap_all_fast(kvm);
5712 5713
}

5714
void kvm_mmu_init_vm(struct kvm *kvm)
5715
{
5716
	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5717

5718 5719
	spin_lock_init(&kvm->arch.mmu_unsync_pages_lock);

5720
	kvm_mmu_init_tdp_mmu(kvm);
5721

5722
	node->track_write = kvm_mmu_pte_write;
5723
	node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5724
	kvm_page_track_register_notifier(kvm, node);
5725 5726
}

5727
void kvm_mmu_uninit_vm(struct kvm *kvm)
5728
{
5729
	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5730

5731
	kvm_page_track_unregister_notifier(kvm, node);
5732 5733

	kvm_mmu_uninit_tdp_mmu(kvm);
5734 5735
}

5736 5737 5738 5739
static bool __kvm_zap_rmaps(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
{
	const struct kvm_memory_slot *memslot;
	struct kvm_memslots *slots;
5740
	struct kvm_memslot_iter iter;
5741 5742
	bool flush = false;
	gfn_t start, end;
5743
	int i;
5744 5745 5746 5747 5748 5749

	if (!kvm_memslots_have_rmaps(kvm))
		return flush;

	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
5750 5751 5752

		kvm_for_each_memslot_in_gfn_range(&iter, slots, gfn_start, gfn_end) {
			memslot = iter.slot;
5753 5754
			start = max(gfn_start, memslot->base_gfn);
			end = min(gfn_end, memslot->base_gfn + memslot->npages);
5755
			if (WARN_ON_ONCE(start >= end))
5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766
				continue;

			flush = slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
							PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL,
							start, end - 1, true, flush);
		}
	}

	return flush;
}

5767 5768 5769 5770
/*
 * Invalidate (zap) SPTEs that cover GFNs from gfn_start and up to gfn_end
 * (not including it)
 */
X
Xiao Guangrong 已提交
5771 5772
void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
{
5773
	bool flush;
5774
	int i;
X
Xiao Guangrong 已提交
5775

5776 5777 5778
	if (WARN_ON_ONCE(gfn_end <= gfn_start))
		return;

5779 5780
	write_lock(&kvm->mmu_lock);

5781 5782
	kvm_inc_notifier_count(kvm, gfn_start, gfn_end);

5783
	flush = __kvm_zap_rmaps(kvm, gfn_start, gfn_end);
X
Xiao Guangrong 已提交
5784

5785
	if (is_tdp_mmu_enabled(kvm)) {
5786 5787
		for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
			flush = kvm_tdp_mmu_zap_gfn_range(kvm, i, gfn_start,
5788
							  gfn_end, flush);
5789
	}
5790 5791

	if (flush)
5792 5793
		kvm_flush_remote_tlbs_with_address(kvm, gfn_start,
						   gfn_end - gfn_start);
5794

5795 5796
	kvm_dec_notifier_count(kvm, gfn_start, gfn_end);

5797
	write_unlock(&kvm->mmu_lock);
X
Xiao Guangrong 已提交
5798 5799
}

5800
static bool slot_rmap_write_protect(struct kvm *kvm,
5801
				    struct kvm_rmap_head *rmap_head,
5802
				    const struct kvm_memory_slot *slot)
5803
{
5804
	return __rmap_write_protect(kvm, rmap_head, false);
5805 5806
}

5807
void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5808
				      const struct kvm_memory_slot *memslot,
5809
				      int start_level)
A
Avi Kivity 已提交
5810
{
5811
	bool flush = false;
A
Avi Kivity 已提交
5812

5813 5814 5815 5816 5817 5818 5819
	if (kvm_memslots_have_rmaps(kvm)) {
		write_lock(&kvm->mmu_lock);
		flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect,
					  start_level, KVM_MAX_HUGEPAGE_LEVEL,
					  false);
		write_unlock(&kvm->mmu_lock);
	}
5820

5821 5822 5823 5824 5825 5826
	if (is_tdp_mmu_enabled(kvm)) {
		read_lock(&kvm->mmu_lock);
		flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, start_level);
		read_unlock(&kvm->mmu_lock);
	}

5827 5828 5829 5830 5831 5832 5833
	/*
	 * We can flush all the TLBs out of the mmu lock without TLB
	 * corruption since we just change the spte from writable to
	 * readonly so that we only need to care the case of changing
	 * spte from present to present (changing the spte from present
	 * to nonpresent will flush all the TLBs immediately), in other
	 * words, the only case we care is mmu_spte_update() where we
5834 5835 5836
	 * have checked Host-writable | MMU-writable instead of
	 * PT_WRITABLE_MASK, that means it does not depend on PT_WRITABLE_MASK
	 * anymore.
5837
	 */
5838
	if (flush)
5839
		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
A
Avi Kivity 已提交
5840
}
5841

5842
static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5843
					 struct kvm_rmap_head *rmap_head,
5844
					 const struct kvm_memory_slot *slot)
5845 5846 5847 5848
{
	u64 *sptep;
	struct rmap_iterator iter;
	int need_tlb_flush = 0;
D
Dan Williams 已提交
5849
	kvm_pfn_t pfn;
5850 5851
	struct kvm_mmu_page *sp;

5852
restart:
5853
	for_each_rmap_spte(rmap_head, &iter, sptep) {
5854
		sp = sptep_to_sp(sptep);
5855 5856 5857
		pfn = spte_to_pfn(*sptep);

		/*
5858 5859 5860 5861 5862
		 * We cannot do huge page mapping for indirect shadow pages,
		 * which are found on the last rmap (level = 1) when not using
		 * tdp; such shadow pages are synced with the page table in
		 * the guest, and the guest page table is using 4K page size
		 * mapping if the indirect sp has level = 1.
5863
		 */
5864
		if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
5865 5866
		    sp->role.level < kvm_mmu_max_mapping_level(kvm, slot, sp->gfn,
							       pfn, PG_LEVEL_NUM)) {
5867
			pte_list_remove(kvm, rmap_head, sptep);
5868 5869 5870 5871 5872 5873 5874

			if (kvm_available_flush_tlb_with_range())
				kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
					KVM_PAGES_PER_HPAGE(sp->role.level));
			else
				need_tlb_flush = 1;

5875 5876
			goto restart;
		}
5877 5878 5879 5880 5881 5882
	}

	return need_tlb_flush;
}

void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5883
				   const struct kvm_memory_slot *slot)
5884
{
5885 5886
	if (kvm_memslots_have_rmaps(kvm)) {
		write_lock(&kvm->mmu_lock);
5887 5888 5889 5890 5891
		/*
		 * Zap only 4k SPTEs since the legacy MMU only supports dirty
		 * logging at a 4k granularity and never creates collapsible
		 * 2m SPTEs during dirty logging.
		 */
5892
		if (slot_handle_level_4k(kvm, slot, kvm_mmu_zap_collapsible_spte, true))
5893 5894 5895
			kvm_arch_flush_remote_tlbs_memslot(kvm, slot);
		write_unlock(&kvm->mmu_lock);
	}
5896 5897 5898

	if (is_tdp_mmu_enabled(kvm)) {
		read_lock(&kvm->mmu_lock);
5899
		kvm_tdp_mmu_zap_collapsible_sptes(kvm, slot);
5900 5901
		read_unlock(&kvm->mmu_lock);
	}
5902 5903
}

5904
void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
5905
					const struct kvm_memory_slot *memslot)
5906 5907
{
	/*
5908
	 * All current use cases for flushing the TLBs for a specific memslot
5909
	 * related to dirty logging, and many do the TLB flush out of mmu_lock.
5910 5911 5912
	 * The interaction between the various operations on memslot must be
	 * serialized by slots_locks to ensure the TLB flush from one operation
	 * is observed by any other operation on the same memslot.
5913 5914
	 */
	lockdep_assert_held(&kvm->slots_lock);
5915 5916
	kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
					   memslot->npages);
5917 5918
}

5919
void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5920
				   const struct kvm_memory_slot *memslot)
5921
{
5922
	bool flush = false;
5923

5924 5925
	if (kvm_memslots_have_rmaps(kvm)) {
		write_lock(&kvm->mmu_lock);
5926 5927 5928 5929 5930
		/*
		 * Clear dirty bits only on 4k SPTEs since the legacy MMU only
		 * support dirty logging at a 4k granularity.
		 */
		flush = slot_handle_level_4k(kvm, memslot, __rmap_clear_dirty, false);
5931 5932
		write_unlock(&kvm->mmu_lock);
	}
5933

5934 5935 5936 5937 5938 5939
	if (is_tdp_mmu_enabled(kvm)) {
		read_lock(&kvm->mmu_lock);
		flush |= kvm_tdp_mmu_clear_dirty_slot(kvm, memslot);
		read_unlock(&kvm->mmu_lock);
	}

5940 5941 5942 5943 5944 5945 5946
	/*
	 * It's also safe to flush TLBs out of mmu lock here as currently this
	 * function is only used for dirty logging, in which case flushing TLB
	 * out of mmu lock also guarantees no dirty pages will be lost in
	 * dirty_bitmap.
	 */
	if (flush)
5947
		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5948 5949
}

5950
void kvm_mmu_zap_all(struct kvm *kvm)
5951 5952
{
	struct kvm_mmu_page *sp, *node;
5953
	LIST_HEAD(invalid_list);
5954
	int ign;
5955

5956
	write_lock(&kvm->mmu_lock);
5957
restart:
5958
	list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
5959
		if (WARN_ON(sp->role.invalid))
5960
			continue;
5961
		if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
5962
			goto restart;
5963
		if (cond_resched_rwlock_write(&kvm->mmu_lock))
5964 5965 5966
			goto restart;
	}

5967
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
5968

5969
	if (is_tdp_mmu_enabled(kvm))
5970 5971
		kvm_tdp_mmu_zap_all(kvm);

5972
	write_unlock(&kvm->mmu_lock);
5973 5974
}

5975
void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
5976
{
5977
	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
5978

5979
	gen &= MMIO_SPTE_GEN_MASK;
5980

5981
	/*
5982 5983 5984 5985 5986 5987 5988 5989
	 * Generation numbers are incremented in multiples of the number of
	 * address spaces in order to provide unique generations across all
	 * address spaces.  Strip what is effectively the address space
	 * modifier prior to checking for a wrap of the MMIO generation so
	 * that a wrap in any address space is detected.
	 */
	gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);

5990
	/*
5991
	 * The very rare case: if the MMIO generation number has wrapped,
5992 5993
	 * zap all shadow pages.
	 */
5994
	if (unlikely(gen == 0)) {
5995
		kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
5996
		kvm_mmu_zap_all_fast(kvm);
5997
	}
5998 5999
}

6000 6001
static unsigned long
mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
6002 6003
{
	struct kvm *kvm;
6004
	int nr_to_scan = sc->nr_to_scan;
6005
	unsigned long freed = 0;
6006

J
Junaid Shahid 已提交
6007
	mutex_lock(&kvm_lock);
6008 6009

	list_for_each_entry(kvm, &vm_list, vm_list) {
6010
		int idx;
6011
		LIST_HEAD(invalid_list);
6012

6013 6014 6015 6016 6017 6018 6019 6020
		/*
		 * Never scan more than sc->nr_to_scan VM instances.
		 * Will not hit this condition practically since we do not try
		 * to shrink more than one VM and it is very unlikely to see
		 * !n_used_mmu_pages so many times.
		 */
		if (!nr_to_scan--)
			break;
6021 6022 6023 6024 6025 6026
		/*
		 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
		 * here. We may skip a VM instance errorneosly, but we do not
		 * want to shrink a VM that only started to populate its MMU
		 * anyway.
		 */
6027 6028
		if (!kvm->arch.n_used_mmu_pages &&
		    !kvm_has_zapped_obsolete_pages(kvm))
6029 6030
			continue;

6031
		idx = srcu_read_lock(&kvm->srcu);
6032
		write_lock(&kvm->mmu_lock);
6033

6034 6035 6036 6037 6038 6039
		if (kvm_has_zapped_obsolete_pages(kvm)) {
			kvm_mmu_commit_zap_page(kvm,
			      &kvm->arch.zapped_obsolete_pages);
			goto unlock;
		}

6040
		freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan);
6041

6042
unlock:
6043
		write_unlock(&kvm->mmu_lock);
6044
		srcu_read_unlock(&kvm->srcu, idx);
6045

6046 6047 6048 6049 6050
		/*
		 * unfair on small ones
		 * per-vm shrinkers cry out
		 * sadness comes quickly
		 */
6051 6052
		list_move_tail(&kvm->vm_list, &vm_list);
		break;
6053 6054
	}

J
Junaid Shahid 已提交
6055
	mutex_unlock(&kvm_lock);
6056 6057 6058 6059 6060 6061
	return freed;
}

static unsigned long
mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
{
6062
	return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
6063 6064 6065
}

static struct shrinker mmu_shrinker = {
6066 6067
	.count_objects = mmu_shrink_count,
	.scan_objects = mmu_shrink_scan,
6068 6069 6070
	.seeks = DEFAULT_SEEKS * 10,
};

I
Ingo Molnar 已提交
6071
static void mmu_destroy_caches(void)
6072
{
6073 6074
	kmem_cache_destroy(pte_list_desc_cache);
	kmem_cache_destroy(mmu_page_header_cache);
6075 6076
}

P
Paolo Bonzini 已提交
6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110
static bool get_nx_auto_mode(void)
{
	/* Return true when CPU has the bug, and mitigations are ON */
	return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
}

static void __set_nx_huge_pages(bool val)
{
	nx_huge_pages = itlb_multihit_kvm_mitigation = val;
}

static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
{
	bool old_val = nx_huge_pages;
	bool new_val;

	/* In "auto" mode deploy workaround only if CPU has the bug. */
	if (sysfs_streq(val, "off"))
		new_val = 0;
	else if (sysfs_streq(val, "force"))
		new_val = 1;
	else if (sysfs_streq(val, "auto"))
		new_val = get_nx_auto_mode();
	else if (strtobool(val, &new_val) < 0)
		return -EINVAL;

	__set_nx_huge_pages(new_val);

	if (new_val != old_val) {
		struct kvm *kvm;

		mutex_lock(&kvm_lock);

		list_for_each_entry(kvm, &vm_list, vm_list) {
6111
			mutex_lock(&kvm->slots_lock);
P
Paolo Bonzini 已提交
6112
			kvm_mmu_zap_all_fast(kvm);
6113
			mutex_unlock(&kvm->slots_lock);
6114 6115

			wake_up_process(kvm->arch.nx_lpage_recovery_thread);
P
Paolo Bonzini 已提交
6116 6117 6118 6119 6120 6121 6122
		}
		mutex_unlock(&kvm_lock);
	}

	return 0;
}

6123 6124
int kvm_mmu_module_init(void)
{
6125 6126
	int ret = -ENOMEM;

P
Paolo Bonzini 已提交
6127 6128 6129
	if (nx_huge_pages == -1)
		__set_nx_huge_pages(get_nx_auto_mode());

6130 6131 6132 6133 6134 6135 6136 6137 6138 6139
	/*
	 * MMU roles use union aliasing which is, generally speaking, an
	 * undefined behavior. However, we supposedly know how compilers behave
	 * and the current status quo is unlikely to change. Guardians below are
	 * supposed to let us know if the assumption becomes false.
	 */
	BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
	BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
	BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));

6140
	kvm_mmu_reset_all_pte_masks();
6141

6142 6143
	pte_list_desc_cache = kmem_cache_create("pte_list_desc",
					    sizeof(struct pte_list_desc),
6144
					    0, SLAB_ACCOUNT, NULL);
6145
	if (!pte_list_desc_cache)
6146
		goto out;
6147

6148 6149
	mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
						  sizeof(struct kvm_mmu_page),
6150
						  0, SLAB_ACCOUNT, NULL);
6151
	if (!mmu_page_header_cache)
6152
		goto out;
6153

6154
	if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
6155
		goto out;
6156

6157 6158 6159
	ret = register_shrinker(&mmu_shrinker);
	if (ret)
		goto out;
6160

6161 6162
	return 0;

6163
out:
6164
	mmu_destroy_caches();
6165
	return ret;
6166 6167
}

6168 6169
void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
{
6170
	kvm_mmu_unload(vcpu);
6171 6172
	free_mmu_pages(&vcpu->arch.root_mmu);
	free_mmu_pages(&vcpu->arch.guest_mmu);
6173
	mmu_free_memory_caches(vcpu);
6174 6175 6176 6177 6178 6179 6180
}

void kvm_mmu_module_exit(void)
{
	mmu_destroy_caches();
	percpu_counter_destroy(&kvm_total_used_mmu_pages);
	unregister_shrinker(&mmu_shrinker);
6181 6182
	mmu_audit_disable();
}
6183

6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208
/*
 * Calculate the effective recovery period, accounting for '0' meaning "let KVM
 * select a halving time of 1 hour".  Returns true if recovery is enabled.
 */
static bool calc_nx_huge_pages_recovery_period(uint *period)
{
	/*
	 * Use READ_ONCE to get the params, this may be called outside of the
	 * param setters, e.g. by the kthread to compute its next timeout.
	 */
	bool enabled = READ_ONCE(nx_huge_pages);
	uint ratio = READ_ONCE(nx_huge_pages_recovery_ratio);

	if (!enabled || !ratio)
		return false;

	*period = READ_ONCE(nx_huge_pages_recovery_period_ms);
	if (!*period) {
		/* Make sure the period is not less than one second.  */
		ratio = min(ratio, 3600u);
		*period = 60 * 60 * 1000 / ratio;
	}
	return true;
}

6209
static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp)
6210
{
6211 6212
	bool was_recovery_enabled, is_recovery_enabled;
	uint old_period, new_period;
6213 6214
	int err;

6215
	was_recovery_enabled = calc_nx_huge_pages_recovery_period(&old_period);
6216

6217 6218 6219 6220
	err = param_set_uint(val, kp);
	if (err)
		return err;

6221
	is_recovery_enabled = calc_nx_huge_pages_recovery_period(&new_period);
6222

6223
	if (is_recovery_enabled &&
6224
	    (!was_recovery_enabled || old_period > new_period)) {
6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239
		struct kvm *kvm;

		mutex_lock(&kvm_lock);

		list_for_each_entry(kvm, &vm_list, vm_list)
			wake_up_process(kvm->arch.nx_lpage_recovery_thread);

		mutex_unlock(&kvm_lock);
	}

	return err;
}

static void kvm_recover_nx_lpages(struct kvm *kvm)
{
6240
	unsigned long nx_lpage_splits = kvm->stat.nx_lpage_splits;
6241 6242 6243 6244
	int rcu_idx;
	struct kvm_mmu_page *sp;
	unsigned int ratio;
	LIST_HEAD(invalid_list);
6245
	bool flush = false;
6246 6247 6248
	ulong to_zap;

	rcu_idx = srcu_read_lock(&kvm->srcu);
6249
	write_lock(&kvm->mmu_lock);
6250 6251

	ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
6252
	to_zap = ratio ? DIV_ROUND_UP(nx_lpage_splits, ratio) : 0;
6253 6254 6255 6256
	for ( ; to_zap; --to_zap) {
		if (list_empty(&kvm->arch.lpage_disallowed_mmu_pages))
			break;

6257 6258 6259 6260 6261 6262 6263 6264 6265
		/*
		 * We use a separate list instead of just using active_mmu_pages
		 * because the number of lpage_disallowed pages is expected to
		 * be relatively small compared to the total.
		 */
		sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
				      struct kvm_mmu_page,
				      lpage_disallowed_link);
		WARN_ON_ONCE(!sp->lpage_disallowed);
6266
		if (is_tdp_mmu_page(sp)) {
6267
			flush |= kvm_tdp_mmu_zap_sp(kvm, sp);
6268
		} else {
6269 6270 6271
			kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
			WARN_ON_ONCE(sp->lpage_disallowed);
		}
6272

6273
		if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
6274
			kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
6275
			cond_resched_rwlock_write(&kvm->mmu_lock);
6276
			flush = false;
6277 6278
		}
	}
6279
	kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
6280

6281
	write_unlock(&kvm->mmu_lock);
6282 6283 6284 6285 6286
	srcu_read_unlock(&kvm->srcu, rcu_idx);
}

static long get_nx_lpage_recovery_timeout(u64 start_time)
{
6287 6288
	bool enabled;
	uint period;
6289

6290
	enabled = calc_nx_huge_pages_recovery_period(&period);
6291

6292 6293
	return enabled ? start_time + msecs_to_jiffies(period) - get_jiffies_64()
		       : MAX_SCHEDULE_TIMEOUT;
6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338
}

static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
{
	u64 start_time;
	long remaining_time;

	while (true) {
		start_time = get_jiffies_64();
		remaining_time = get_nx_lpage_recovery_timeout(start_time);

		set_current_state(TASK_INTERRUPTIBLE);
		while (!kthread_should_stop() && remaining_time > 0) {
			schedule_timeout(remaining_time);
			remaining_time = get_nx_lpage_recovery_timeout(start_time);
			set_current_state(TASK_INTERRUPTIBLE);
		}

		set_current_state(TASK_RUNNING);

		if (kthread_should_stop())
			return 0;

		kvm_recover_nx_lpages(kvm);
	}
}

int kvm_mmu_post_init_vm(struct kvm *kvm)
{
	int err;

	err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
					  "kvm-nx-lpage-recovery",
					  &kvm->arch.nx_lpage_recovery_thread);
	if (!err)
		kthread_unpark(kvm->arch.nx_lpage_recovery_thread);

	return err;
}

void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
{
	if (kvm->arch.nx_lpage_recovery_thread)
		kthread_stop(kvm->arch.nx_lpage_recovery_thread);
}