mmu.c 156.9 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
A
Avi Kivity 已提交
2 3 4 5 6 7 8 9 10
/*
 * Kernel-based Virtual Machine driver for Linux
 *
 * This module enables machines with Intel VT-x extensions to run virtual
 * machines without emulation or binary translation.
 *
 * MMU support
 *
 * Copyright (C) 2006 Qumranet, Inc.
N
Nicolas Kaiser 已提交
11
 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
A
Avi Kivity 已提交
12 13 14 15 16
 *
 * Authors:
 *   Yaniv Kamay  <yaniv@qumranet.com>
 *   Avi Kivity   <avi@qumranet.com>
 */
A
Avi Kivity 已提交
17

18
#include "irq.h"
19
#include "ioapic.h"
20
#include "mmu.h"
21
#include "mmu_internal.h"
22
#include "tdp_mmu.h"
23
#include "x86.h"
A
Avi Kivity 已提交
24
#include "kvm_cache_regs.h"
25
#include "kvm_emulate.h"
26
#include "cpuid.h"
27
#include "spte.h"
A
Avi Kivity 已提交
28

29
#include <linux/kvm_host.h>
A
Avi Kivity 已提交
30 31 32 33
#include <linux/types.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/highmem.h>
34 35
#include <linux/moduleparam.h>
#include <linux/export.h>
36
#include <linux/swap.h>
M
Marcelo Tosatti 已提交
37
#include <linux/hugetlb.h>
38
#include <linux/compiler.h>
39
#include <linux/srcu.h>
40
#include <linux/slab.h>
41
#include <linux/sched/signal.h>
42
#include <linux/uaccess.h>
43
#include <linux/hash.h>
44
#include <linux/kern_levels.h>
45
#include <linux/kthread.h>
A
Avi Kivity 已提交
46

A
Avi Kivity 已提交
47
#include <asm/page.h>
48
#include <asm/memtype.h>
A
Avi Kivity 已提交
49
#include <asm/cmpxchg.h>
50
#include <asm/io.h>
51
#include <asm/vmx.h>
52
#include <asm/kvm_page_track.h>
53
#include "trace.h"
A
Avi Kivity 已提交
54

P
Paolo Bonzini 已提交
55 56 57
extern bool itlb_multihit_kvm_mitigation;

static int __read_mostly nx_huge_pages = -1;
58 59 60 61
#ifdef CONFIG_PREEMPT_RT
/* Recovery can cause latency spikes, disable it for PREEMPT_RT.  */
static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
#else
62
static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
63
#endif
P
Paolo Bonzini 已提交
64 65

static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
66
static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp);
P
Paolo Bonzini 已提交
67

68
static const struct kernel_param_ops nx_huge_pages_ops = {
P
Paolo Bonzini 已提交
69 70 71 72
	.set = set_nx_huge_pages,
	.get = param_get_bool,
};

73
static const struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = {
74 75 76 77
	.set = set_nx_huge_pages_recovery_ratio,
	.get = param_get_uint,
};

P
Paolo Bonzini 已提交
78 79
module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
__MODULE_PARM_TYPE(nx_huge_pages, "bool");
80 81 82
module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops,
		&nx_huge_pages_recovery_ratio, 0644);
__MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
P
Paolo Bonzini 已提交
83

84 85 86
static bool __read_mostly force_flush_and_sync_on_reuse;
module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644);

87 88 89 90 91 92 93
/*
 * When setting this variable to true it enables Two-Dimensional-Paging
 * where the hardware walks 2 page tables:
 * 1. the guest-virtual to guest-physical
 * 2. while doing 1. it walks guest-physical to host-physical
 * If the hardware supports that we don't need to do shadow paging.
 */
94
bool tdp_enabled = false;
95

96
static int max_huge_page_level __read_mostly;
97
static int max_tdp_level __read_mostly;
98

99 100 101 102
enum {
	AUDIT_PRE_PAGE_FAULT,
	AUDIT_POST_PAGE_FAULT,
	AUDIT_PRE_PTE_WRITE,
103 104 105
	AUDIT_POST_PTE_WRITE,
	AUDIT_PRE_SYNC,
	AUDIT_POST_SYNC
106
};
107 108

#ifdef MMU_DEBUG
109
bool dbg = 0;
110
module_param(dbg, bool, 0644);
111
#endif
A
Avi Kivity 已提交
112

113 114
#define PTE_PREFETCH_NUM		8

A
Avi Kivity 已提交
115 116 117
#define PT32_LEVEL_BITS 10

#define PT32_LEVEL_SHIFT(level) \
M
Mike Day 已提交
118
		(PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
A
Avi Kivity 已提交
119

120 121 122
#define PT32_LVL_OFFSET_MASK(level) \
	(PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
123 124 125 126 127 128 129 130

#define PT32_INDEX(address, level)\
	(((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))


#define PT32_BASE_ADDR_MASK PAGE_MASK
#define PT32_DIR_BASE_ADDR_MASK \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
131 132 133
#define PT32_LVL_ADDR_MASK(level) \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
					    * PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
134

135 136
#include <trace/events/kvm.h>

137 138 139
/* make pte_list_desc fit well in cache line */
#define PTE_LIST_EXT 3

140 141 142
struct pte_list_desc {
	u64 *sptes[PTE_LIST_EXT];
	struct pte_list_desc *more;
143 144
};

145 146 147 148
struct kvm_shadow_walk_iterator {
	u64 addr;
	hpa_t shadow_addr;
	u64 *sptep;
149
	int level;
150 151 152
	unsigned index;
};

153 154 155 156 157 158 159
#define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker)     \
	for (shadow_walk_init_using_root(&(_walker), (_vcpu),              \
					 (_root), (_addr));                \
	     shadow_walk_okay(&(_walker));			           \
	     shadow_walk_next(&(_walker)))

#define for_each_shadow_entry(_vcpu, _addr, _walker)            \
160 161 162 163
	for (shadow_walk_init(&(_walker), _vcpu, _addr);	\
	     shadow_walk_okay(&(_walker));			\
	     shadow_walk_next(&(_walker)))

164 165 166 167 168 169
#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)	\
	for (shadow_walk_init(&(_walker), _vcpu, _addr);		\
	     shadow_walk_okay(&(_walker)) &&				\
		({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });	\
	     __shadow_walk_next(&(_walker), spte))

170
static struct kmem_cache *pte_list_desc_cache;
171
struct kmem_cache *mmu_page_header_cache;
172
static struct percpu_counter kvm_total_used_mmu_pages;
173

174
static void mmu_spte_set(u64 *sptep, u64 spte);
175 176
static union kvm_mmu_page_role
kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
177

178 179 180
#define CREATE_TRACE_POINTS
#include "mmutrace.h"

181 182 183

static inline bool kvm_available_flush_tlb_with_range(void)
{
184
	return kvm_x86_ops.tlb_remote_flush_with_range;
185 186 187 188 189 190 191
}

static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
		struct kvm_tlb_range *range)
{
	int ret = -ENOTSUPP;

192
	if (range && kvm_x86_ops.tlb_remote_flush_with_range)
193
		ret = static_call(kvm_x86_tlb_remote_flush_with_range)(kvm, range);
194 195 196 197 198

	if (ret)
		kvm_flush_remote_tlbs(kvm);
}

199
void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
200 201 202 203 204 205 206 207 208 209
		u64 start_gfn, u64 pages)
{
	struct kvm_tlb_range range;

	range.start_gfn = start_gfn;
	range.pages = pages;

	kvm_flush_remote_tlbs_with_range(kvm, &range);
}

210
bool is_nx_huge_page_enabled(void)
P
Paolo Bonzini 已提交
211 212 213 214
{
	return READ_ONCE(nx_huge_pages);
}

215 216 217 218 219
static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
			   unsigned int access)
{
	u64 mask = make_mmio_spte(vcpu, gfn, access);

B
Ben Gardon 已提交
220
	trace_mark_mmio_spte(sptep, gfn, mask);
221
	mmu_spte_set(sptep, mask);
222 223 224 225
}

static gfn_t get_mmio_spte_gfn(u64 spte)
{
226
	u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
227

228
	gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)
229 230 231
	       & shadow_nonpresent_or_rsvd_mask;

	return gpa >> PAGE_SHIFT;
232 233 234 235
}

static unsigned get_mmio_spte_access(u64 spte)
{
236
	return spte & shadow_mmio_access_mask;
237 238
}

239
static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
240
			  kvm_pfn_t pfn, unsigned int access)
241 242
{
	if (unlikely(is_noslot_pfn(pfn))) {
243
		mark_mmio_spte(vcpu, sptep, gfn, access);
244 245 246 247 248
		return true;
	}

	return false;
}
249

250
static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
251
{
252
	u64 kvm_gen, spte_gen, gen;
253

254 255 256
	gen = kvm_vcpu_memslots(vcpu)->generation;
	if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
		return false;
257

258
	kvm_gen = gen & MMIO_SPTE_GEN_MASK;
259 260 261 262
	spte_gen = get_mmio_spte_generation(spte);

	trace_check_mmio_spte(spte, kvm_gen, spte_gen);
	return likely(kvm_gen == spte_gen);
263 264
}

265 266 267
static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
                                  struct x86_exception *exception)
{
268
	/* Check if guest physical address doesn't exceed guest maximum */
269
	if (kvm_vcpu_is_illegal_gpa(vcpu, gpa)) {
270 271 272 273
		exception->error_code |= PFERR_RSVD_MASK;
		return UNMAPPED_GVA;
	}

274 275 276
        return gpa;
}

A
Avi Kivity 已提交
277 278 279 280 281
static int is_cpuid_PSE36(void)
{
	return 1;
}

282 283
static int is_nx(struct kvm_vcpu *vcpu)
{
284
	return vcpu->arch.efer & EFER_NX;
285 286
}

287 288 289 290 291 292 293
static gfn_t pse36_gfn_delta(u32 gpte)
{
	int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;

	return (gpte & PT32_DIR_PSE36_MASK) << shift;
}

294
#ifdef CONFIG_X86_64
A
Avi Kivity 已提交
295
static void __set_spte(u64 *sptep, u64 spte)
296
{
297
	WRITE_ONCE(*sptep, spte);
298 299
}

300
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
301
{
302
	WRITE_ONCE(*sptep, spte);
303 304 305 306 307 308
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	return xchg(sptep, spte);
}
309 310 311

static u64 __get_spte_lockless(u64 *sptep)
{
312
	return READ_ONCE(*sptep);
313
}
314
#else
315 316 317 318 319 320 321
union split_spte {
	struct {
		u32 spte_low;
		u32 spte_high;
	};
	u64 spte;
};
322

323 324
static void count_spte_clear(u64 *sptep, u64 spte)
{
325
	struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
326 327 328 329 330 331 332 333 334

	if (is_shadow_present_pte(spte))
		return;

	/* Ensure the spte is completely set before we increase the count */
	smp_wmb();
	sp->clear_spte_count++;
}

335 336 337
static void __set_spte(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;
338

339 340 341 342 343 344 345 346 347 348 349 350
	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	ssptep->spte_high = sspte.spte_high;

	/*
	 * If we map the spte from nonpresent to present, We should store
	 * the high bits firstly, then set present bit, so cpu can not
	 * fetch this spte while we are setting the spte.
	 */
	smp_wmb();

351
	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
352 353
}

354 355 356 357 358 359 360
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

361
	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
362 363 364 365 366 367 368 369

	/*
	 * If we map the spte from present to nonpresent, we should clear
	 * present bit firstly to avoid vcpu fetch the old high bits.
	 */
	smp_wmb();

	ssptep->spte_high = sspte.spte_high;
370
	count_spte_clear(sptep, spte);
371 372 373 374 375 376 377 378 379 380 381
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte, orig;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	/* xchg acts as a barrier before the setting of the high bits */
	orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
382 383
	orig.spte_high = ssptep->spte_high;
	ssptep->spte_high = sspte.spte_high;
384
	count_spte_clear(sptep, spte);
385 386 387

	return orig.spte;
}
388 389 390

/*
 * The idea using the light way get the spte on x86_32 guest is from
391
 * gup_get_pte (mm/gup.c).
392 393 394 395 396 397 398 399 400 401 402 403 404 405
 *
 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
 * coalesces them and we are running out of the MMU lock.  Therefore
 * we need to protect against in-progress updates of the spte.
 *
 * Reading the spte while an update is in progress may get the old value
 * for the high part of the spte.  The race is fine for a present->non-present
 * change (because the high part of the spte is ignored for non-present spte),
 * but for a present->present change we must reread the spte.
 *
 * All such changes are done in two steps (present->non-present and
 * non-present->present), hence it is enough to count the number of
 * present->non-present updates: if it changed while reading the spte,
 * we might have hit the race.  This is done using clear_spte_count.
406 407 408
 */
static u64 __get_spte_lockless(u64 *sptep)
{
409
	struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
	union split_spte spte, *orig = (union split_spte *)sptep;
	int count;

retry:
	count = sp->clear_spte_count;
	smp_rmb();

	spte.spte_low = orig->spte_low;
	smp_rmb();

	spte.spte_high = orig->spte_high;
	smp_rmb();

	if (unlikely(spte.spte_low != orig->spte_low ||
	      count != sp->clear_spte_count))
		goto retry;

	return spte.spte;
}
429 430
#endif

431 432
static bool spte_has_volatile_bits(u64 spte)
{
433 434 435
	if (!is_shadow_present_pte(spte))
		return false;

436
	/*
437
	 * Always atomically update spte if it can be updated
438 439 440 441
	 * out of mmu-lock, it can ensure dirty bit is not lost,
	 * also, it can help us to get a stable is_writable_pte()
	 * to ensure tlb flush is not missed.
	 */
442 443
	if (spte_can_locklessly_be_made_writable(spte) ||
	    is_access_track_spte(spte))
444 445
		return true;

446
	if (spte_ad_enabled(spte)) {
447 448 449 450
		if ((spte & shadow_accessed_mask) == 0 ||
	    	    (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
			return true;
	}
451

452
	return false;
453 454
}

455 456 457 458 459 460 461 462 463 464 465 466
/* Rules for using mmu_spte_set:
 * Set the sptep from nonpresent to present.
 * Note: the sptep being assigned *must* be either not present
 * or in a state where the hardware will not attempt to update
 * the spte.
 */
static void mmu_spte_set(u64 *sptep, u64 new_spte)
{
	WARN_ON(is_shadow_present_pte(*sptep));
	__set_spte(sptep, new_spte);
}

467 468 469
/*
 * Update the SPTE (excluding the PFN), but do not track changes in its
 * accessed/dirty status.
470
 */
471
static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
472
{
473
	u64 old_spte = *sptep;
474

475
	WARN_ON(!is_shadow_present_pte(new_spte));
476

477 478
	if (!is_shadow_present_pte(old_spte)) {
		mmu_spte_set(sptep, new_spte);
479
		return old_spte;
480
	}
481

482
	if (!spte_has_volatile_bits(old_spte))
483
		__update_clear_spte_fast(sptep, new_spte);
484
	else
485
		old_spte = __update_clear_spte_slow(sptep, new_spte);
486

487 488
	WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));

489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
	return old_spte;
}

/* Rules for using mmu_spte_update:
 * Update the state bits, it means the mapped pfn is not changed.
 *
 * Whenever we overwrite a writable spte with a read-only one we
 * should flush remote TLBs. Otherwise rmap_write_protect
 * will find a read-only spte, even though the writable spte
 * might be cached on a CPU's TLB, the return value indicates this
 * case.
 *
 * Returns true if the TLB needs to be flushed
 */
static bool mmu_spte_update(u64 *sptep, u64 new_spte)
{
	bool flush = false;
	u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);

	if (!is_shadow_present_pte(old_spte))
		return false;

511 512
	/*
	 * For the spte updated out of mmu-lock is safe, since
513
	 * we always atomically update it, see the comments in
514 515
	 * spte_has_volatile_bits().
	 */
516
	if (spte_can_locklessly_be_made_writable(old_spte) &&
517
	      !is_writable_pte(new_spte))
518
		flush = true;
519

520
	/*
521
	 * Flush TLB when accessed/dirty states are changed in the page tables,
522 523 524
	 * to guarantee consistency between TLB and page tables.
	 */

525 526
	if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
		flush = true;
527
		kvm_set_pfn_accessed(spte_to_pfn(old_spte));
528 529 530 531
	}

	if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
		flush = true;
532
		kvm_set_pfn_dirty(spte_to_pfn(old_spte));
533
	}
534

535
	return flush;
536 537
}

538 539 540 541
/*
 * Rules for using mmu_spte_clear_track_bits:
 * It sets the sptep from present to nonpresent, and track the
 * state bits, it is used to clear the last level sptep.
542
 * Returns non-zero if the PTE was previously valid.
543 544 545
 */
static int mmu_spte_clear_track_bits(u64 *sptep)
{
D
Dan Williams 已提交
546
	kvm_pfn_t pfn;
547 548 549
	u64 old_spte = *sptep;

	if (!spte_has_volatile_bits(old_spte))
550
		__update_clear_spte_fast(sptep, 0ull);
551
	else
552
		old_spte = __update_clear_spte_slow(sptep, 0ull);
553

554
	if (!is_shadow_present_pte(old_spte))
555 556 557
		return 0;

	pfn = spte_to_pfn(old_spte);
558 559 560 561 562 563

	/*
	 * KVM does not hold the refcount of the page used by
	 * kvm mmu, before reclaiming the page, we should
	 * unmap it from mmu first.
	 */
564
	WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
565

566
	if (is_accessed_spte(old_spte))
567
		kvm_set_pfn_accessed(pfn);
568 569

	if (is_dirty_spte(old_spte))
570
		kvm_set_pfn_dirty(pfn);
571

572 573 574 575 576 577 578 579 580 581
	return 1;
}

/*
 * Rules for using mmu_spte_clear_no_track:
 * Directly clear spte without caring the state bits of sptep,
 * it is used to set the upper level spte.
 */
static void mmu_spte_clear_no_track(u64 *sptep)
{
582
	__update_clear_spte_fast(sptep, 0ull);
583 584
}

585 586 587 588 589
static u64 mmu_spte_get_lockless(u64 *sptep)
{
	return __get_spte_lockless(sptep);
}

590 591 592 593
/* Restore an acc-track PTE back to a regular PTE */
static u64 restore_acc_track_spte(u64 spte)
{
	u64 new_spte = spte;
594 595
	u64 saved_bits = (spte >> SHADOW_ACC_TRACK_SAVED_BITS_SHIFT)
			 & SHADOW_ACC_TRACK_SAVED_BITS_MASK;
596

597
	WARN_ON_ONCE(spte_ad_enabled(spte));
598 599 600
	WARN_ON_ONCE(!is_access_track_spte(spte));

	new_spte &= ~shadow_acc_track_mask;
601 602
	new_spte &= ~(SHADOW_ACC_TRACK_SAVED_BITS_MASK <<
		      SHADOW_ACC_TRACK_SAVED_BITS_SHIFT);
603 604 605 606 607
	new_spte |= saved_bits;

	return new_spte;
}

608 609 610 611 612 613 614 615
/* Returns the Accessed status of the PTE and resets it at the same time. */
static bool mmu_spte_age(u64 *sptep)
{
	u64 spte = mmu_spte_get_lockless(sptep);

	if (!is_accessed_spte(spte))
		return false;

616
	if (spte_ad_enabled(spte)) {
617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
		clear_bit((ffs(shadow_accessed_mask) - 1),
			  (unsigned long *)sptep);
	} else {
		/*
		 * Capture the dirty status of the page, so that it doesn't get
		 * lost when the SPTE is marked for access tracking.
		 */
		if (is_writable_pte(spte))
			kvm_set_pfn_dirty(spte_to_pfn(spte));

		spte = mark_spte_for_access_track(spte);
		mmu_spte_update_no_track(sptep, spte);
	}

	return true;
}

634 635
static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
{
636 637 638 639 640
	/*
	 * Prevent page table teardown by making any free-er wait during
	 * kvm_flush_remote_tlbs() IPI to all active vcpus.
	 */
	local_irq_disable();
641

642 643 644 645
	/*
	 * Make sure a following spte read is not reordered ahead of the write
	 * to vcpu->mode.
	 */
646
	smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
647 648 649 650
}

static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
{
651 652
	/*
	 * Make sure the write to vcpu->mode is not reordered in front of
653
	 * reads to sptes.  If it does, kvm_mmu_commit_zap_page() can see us
654 655
	 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
	 */
656
	smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
657
	local_irq_enable();
658 659
}

660
static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect)
661
{
662 663
	int r;

664
	/* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */
665 666
	r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
				       1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM);
667
	if (r)
668
		return r;
669 670
	r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache,
				       PT64_ROOT_MAX_LEVEL);
671
	if (r)
672
		return r;
673
	if (maybe_indirect) {
674 675
		r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_gfn_array_cache,
					       PT64_ROOT_MAX_LEVEL);
676 677 678
		if (r)
			return r;
	}
679 680
	return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
					  PT64_ROOT_MAX_LEVEL);
681 682 683 684
}

static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
{
685 686 687 688
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache);
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache);
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_gfn_array_cache);
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
689 690
}

691
static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
692
{
693
	return kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
694 695
}

696
static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
697
{
698
	kmem_cache_free(pte_list_desc_cache, pte_list_desc);
699 700
}

701 702 703 704 705 706 707 708 709 710
static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
{
	if (!sp->role.direct)
		return sp->gfns[index];

	return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
}

static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
{
711
	if (!sp->role.direct) {
712
		sp->gfns[index] = gfn;
713 714 715 716 717 718 719 720
		return;
	}

	if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
		pr_err_ratelimited("gfn mismatch under direct page %llx "
				   "(expected %llx, got %llx)\n",
				   sp->gfn,
				   kvm_mmu_page_get_gfn(sp, index), gfn);
721 722
}

M
Marcelo Tosatti 已提交
723
/*
724 725
 * Return the pointer to the large page information for a given gfn,
 * handling slots that are not large page aligned.
M
Marcelo Tosatti 已提交
726
 */
727 728 729
static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
					      struct kvm_memory_slot *slot,
					      int level)
M
Marcelo Tosatti 已提交
730 731 732
{
	unsigned long idx;

733
	idx = gfn_to_index(gfn, slot->base_gfn, level);
734
	return &slot->arch.lpage_info[level - 2][idx];
M
Marcelo Tosatti 已提交
735 736
}

737 738 739 740 741 742
static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
					    gfn_t gfn, int count)
{
	struct kvm_lpage_info *linfo;
	int i;

743
	for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
		linfo = lpage_info_slot(gfn, slot, i);
		linfo->disallow_lpage += count;
		WARN_ON(linfo->disallow_lpage < 0);
	}
}

void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
{
	update_gfn_disallow_lpage_count(slot, gfn, 1);
}

void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
{
	update_gfn_disallow_lpage_count(slot, gfn, -1);
}

760
static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
M
Marcelo Tosatti 已提交
761
{
762
	struct kvm_memslots *slots;
763
	struct kvm_memory_slot *slot;
764
	gfn_t gfn;
M
Marcelo Tosatti 已提交
765

766
	kvm->arch.indirect_shadow_pages++;
767
	gfn = sp->gfn;
768 769
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
770 771

	/* the non-leaf shadow pages are keeping readonly. */
772
	if (sp->role.level > PG_LEVEL_4K)
773 774 775
		return kvm_slot_page_track_add_page(kvm, slot, gfn,
						    KVM_PAGE_TRACK_WRITE);

776
	kvm_mmu_gfn_disallow_lpage(slot, gfn);
M
Marcelo Tosatti 已提交
777 778
}

779
void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
P
Paolo Bonzini 已提交
780 781 782 783 784
{
	if (sp->lpage_disallowed)
		return;

	++kvm->stat.nx_lpage_splits;
785 786
	list_add_tail(&sp->lpage_disallowed_link,
		      &kvm->arch.lpage_disallowed_mmu_pages);
P
Paolo Bonzini 已提交
787 788 789
	sp->lpage_disallowed = true;
}

790
static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
M
Marcelo Tosatti 已提交
791
{
792
	struct kvm_memslots *slots;
793
	struct kvm_memory_slot *slot;
794
	gfn_t gfn;
M
Marcelo Tosatti 已提交
795

796
	kvm->arch.indirect_shadow_pages--;
797
	gfn = sp->gfn;
798 799
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
800
	if (sp->role.level > PG_LEVEL_4K)
801 802 803
		return kvm_slot_page_track_remove_page(kvm, slot, gfn,
						       KVM_PAGE_TRACK_WRITE);

804
	kvm_mmu_gfn_allow_lpage(slot, gfn);
M
Marcelo Tosatti 已提交
805 806
}

807
void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
P
Paolo Bonzini 已提交
808 809 810
{
	--kvm->stat.nx_lpage_splits;
	sp->lpage_disallowed = false;
811
	list_del(&sp->lpage_disallowed_link);
P
Paolo Bonzini 已提交
812 813
}

814 815 816
static struct kvm_memory_slot *
gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
			    bool no_dirty_log)
M
Marcelo Tosatti 已提交
817 818
{
	struct kvm_memory_slot *slot;
819

820
	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
821 822
	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
		return NULL;
823
	if (no_dirty_log && kvm_slot_dirty_track_enabled(slot))
824
		return NULL;
825 826 827 828

	return slot;
}

829
/*
830
 * About rmap_head encoding:
831
 *
832 833
 * If the bit zero of rmap_head->val is clear, then it points to the only spte
 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
834
 * pte_list_desc containing more mappings.
835 836 837 838
 */

/*
 * Returns the number of pointers in the rmap chain, not counting the new one.
839
 */
840
static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
841
			struct kvm_rmap_head *rmap_head)
842
{
843
	struct pte_list_desc *desc;
844
	int i, count = 0;
845

846
	if (!rmap_head->val) {
847
		rmap_printk("%p %llx 0->1\n", spte, *spte);
848 849
		rmap_head->val = (unsigned long)spte;
	} else if (!(rmap_head->val & 1)) {
850
		rmap_printk("%p %llx 1->many\n", spte, *spte);
851
		desc = mmu_alloc_pte_list_desc(vcpu);
852
		desc->sptes[0] = (u64 *)rmap_head->val;
A
Avi Kivity 已提交
853
		desc->sptes[1] = spte;
854
		rmap_head->val = (unsigned long)desc | 1;
855
		++count;
856
	} else {
857
		rmap_printk("%p %llx many->many\n", spte, *spte);
858
		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
859
		while (desc->sptes[PTE_LIST_EXT-1]) {
860
			count += PTE_LIST_EXT;
861 862 863 864 865 866

			if (!desc->more) {
				desc->more = mmu_alloc_pte_list_desc(vcpu);
				desc = desc->more;
				break;
			}
867 868
			desc = desc->more;
		}
A
Avi Kivity 已提交
869
		for (i = 0; desc->sptes[i]; ++i)
870
			++count;
A
Avi Kivity 已提交
871
		desc->sptes[i] = spte;
872
	}
873
	return count;
874 875
}

876
static void
877 878 879
pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
			   struct pte_list_desc *desc, int i,
			   struct pte_list_desc *prev_desc)
880 881 882
{
	int j;

883
	for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
884
		;
A
Avi Kivity 已提交
885 886
	desc->sptes[i] = desc->sptes[j];
	desc->sptes[j] = NULL;
887 888 889
	if (j != 0)
		return;
	if (!prev_desc && !desc->more)
890
		rmap_head->val = 0;
891 892 893 894
	else
		if (prev_desc)
			prev_desc->more = desc->more;
		else
895
			rmap_head->val = (unsigned long)desc->more | 1;
896
	mmu_free_pte_list_desc(desc);
897 898
}

899
static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
900
{
901 902
	struct pte_list_desc *desc;
	struct pte_list_desc *prev_desc;
903 904
	int i;

905
	if (!rmap_head->val) {
906
		pr_err("%s: %p 0->BUG\n", __func__, spte);
907
		BUG();
908
	} else if (!(rmap_head->val & 1)) {
909
		rmap_printk("%p 1->0\n", spte);
910
		if ((u64 *)rmap_head->val != spte) {
911
			pr_err("%s:  %p 1->BUG\n", __func__, spte);
912 913
			BUG();
		}
914
		rmap_head->val = 0;
915
	} else {
916
		rmap_printk("%p many->many\n", spte);
917
		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
918 919
		prev_desc = NULL;
		while (desc) {
920
			for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
A
Avi Kivity 已提交
921
				if (desc->sptes[i] == spte) {
922 923
					pte_list_desc_remove_entry(rmap_head,
							desc, i, prev_desc);
924 925
					return;
				}
926
			}
927 928 929
			prev_desc = desc;
			desc = desc->more;
		}
930
		pr_err("%s: %p many->many\n", __func__, spte);
931 932 933 934
		BUG();
	}
}

935 936 937 938 939 940
static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep)
{
	mmu_spte_clear_track_bits(sptep);
	__pte_list_remove(sptep, rmap_head);
}

941 942
static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
					   struct kvm_memory_slot *slot)
943
{
944
	unsigned long idx;
945

946
	idx = gfn_to_index(gfn, slot->base_gfn, level);
947
	return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
948 949
}

950 951
static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
					 struct kvm_mmu_page *sp)
952
{
953
	struct kvm_memslots *slots;
954 955
	struct kvm_memory_slot *slot;

956 957
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
958
	return __gfn_to_rmap(gfn, sp->role.level, slot);
959 960
}

961 962
static bool rmap_can_add(struct kvm_vcpu *vcpu)
{
963
	struct kvm_mmu_memory_cache *mc;
964

965
	mc = &vcpu->arch.mmu_pte_list_desc_cache;
966
	return kvm_mmu_memory_cache_nr_free_objects(mc);
967 968
}

969 970 971
static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
{
	struct kvm_mmu_page *sp;
972
	struct kvm_rmap_head *rmap_head;
973

974
	sp = sptep_to_sp(spte);
975
	kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
976 977
	rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
	return pte_list_add(vcpu, spte, rmap_head);
978 979 980 981 982 983
}

static void rmap_remove(struct kvm *kvm, u64 *spte)
{
	struct kvm_mmu_page *sp;
	gfn_t gfn;
984
	struct kvm_rmap_head *rmap_head;
985

986
	sp = sptep_to_sp(spte);
987
	gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
988
	rmap_head = gfn_to_rmap(kvm, gfn, sp);
989
	__pte_list_remove(spte, rmap_head);
990 991
}

992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004
/*
 * Used by the following functions to iterate through the sptes linked by a
 * rmap.  All fields are private and not assumed to be used outside.
 */
struct rmap_iterator {
	/* private fields */
	struct pte_list_desc *desc;	/* holds the sptep if not NULL */
	int pos;			/* index of the sptep */
};

/*
 * Iteration must be started by this function.  This should also be used after
 * removing/dropping sptes from the rmap link because in such cases the
M
Miaohe Lin 已提交
1005
 * information in the iterator may not be valid.
1006 1007 1008
 *
 * Returns sptep if found, NULL otherwise.
 */
1009 1010
static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
			   struct rmap_iterator *iter)
1011
{
1012 1013
	u64 *sptep;

1014
	if (!rmap_head->val)
1015 1016
		return NULL;

1017
	if (!(rmap_head->val & 1)) {
1018
		iter->desc = NULL;
1019 1020
		sptep = (u64 *)rmap_head->val;
		goto out;
1021 1022
	}

1023
	iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1024
	iter->pos = 0;
1025 1026 1027 1028
	sptep = iter->desc->sptes[iter->pos];
out:
	BUG_ON(!is_shadow_present_pte(*sptep));
	return sptep;
1029 1030 1031 1032 1033 1034 1035 1036 1037
}

/*
 * Must be used with a valid iterator: e.g. after rmap_get_first().
 *
 * Returns sptep if found, NULL otherwise.
 */
static u64 *rmap_get_next(struct rmap_iterator *iter)
{
1038 1039
	u64 *sptep;

1040 1041 1042 1043 1044
	if (iter->desc) {
		if (iter->pos < PTE_LIST_EXT - 1) {
			++iter->pos;
			sptep = iter->desc->sptes[iter->pos];
			if (sptep)
1045
				goto out;
1046 1047 1048 1049 1050 1051 1052
		}

		iter->desc = iter->desc->more;

		if (iter->desc) {
			iter->pos = 0;
			/* desc->sptes[0] cannot be NULL */
1053 1054
			sptep = iter->desc->sptes[iter->pos];
			goto out;
1055 1056 1057 1058
		}
	}

	return NULL;
1059 1060 1061
out:
	BUG_ON(!is_shadow_present_pte(*sptep));
	return sptep;
1062 1063
}

1064 1065
#define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)			\
	for (_spte_ = rmap_get_first(_rmap_head_, _iter_);		\
1066
	     _spte_; _spte_ = rmap_get_next(_iter_))
1067

1068
static void drop_spte(struct kvm *kvm, u64 *sptep)
1069
{
1070
	if (mmu_spte_clear_track_bits(sptep))
1071
		rmap_remove(kvm, sptep);
A
Avi Kivity 已提交
1072 1073
}

1074 1075 1076 1077

static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
{
	if (is_large_pte(*sptep)) {
1078
		WARN_ON(sptep_to_sp(sptep)->role.level == PG_LEVEL_4K);
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
		drop_spte(kvm, sptep);
		--kvm->stat.lpages;
		return true;
	}

	return false;
}

static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
{
1089
	if (__drop_large_spte(vcpu->kvm, sptep)) {
1090
		struct kvm_mmu_page *sp = sptep_to_sp(sptep);
1091 1092 1093 1094

		kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
			KVM_PAGES_PER_HPAGE(sp->role.level));
	}
1095 1096 1097
}

/*
1098
 * Write-protect on the specified @sptep, @pt_protect indicates whether
1099
 * spte write-protection is caused by protecting shadow page table.
1100
 *
T
Tiejun Chen 已提交
1101
 * Note: write protection is difference between dirty logging and spte
1102 1103 1104 1105 1106
 * protection:
 * - for dirty logging, the spte can be set to writable at anytime if
 *   its dirty bitmap is properly set.
 * - for spte protection, the spte can be writable only after unsync-ing
 *   shadow page.
1107
 *
1108
 * Return true if tlb need be flushed.
1109
 */
1110
static bool spte_write_protect(u64 *sptep, bool pt_protect)
1111 1112 1113
{
	u64 spte = *sptep;

1114
	if (!is_writable_pte(spte) &&
1115
	      !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1116 1117
		return false;

1118
	rmap_printk("spte %p %llx\n", sptep, *sptep);
1119

1120 1121
	if (pt_protect)
		spte &= ~SPTE_MMU_WRITEABLE;
1122
	spte = spte & ~PT_WRITABLE_MASK;
1123

1124
	return mmu_spte_update(sptep, spte);
1125 1126
}

1127 1128
static bool __rmap_write_protect(struct kvm *kvm,
				 struct kvm_rmap_head *rmap_head,
1129
				 bool pt_protect)
1130
{
1131 1132
	u64 *sptep;
	struct rmap_iterator iter;
1133
	bool flush = false;
1134

1135
	for_each_rmap_spte(rmap_head, &iter, sptep)
1136
		flush |= spte_write_protect(sptep, pt_protect);
1137

1138
	return flush;
1139 1140
}

1141
static bool spte_clear_dirty(u64 *sptep)
1142 1143 1144
{
	u64 spte = *sptep;

1145
	rmap_printk("spte %p %llx\n", sptep, *sptep);
1146

1147
	MMU_WARN_ON(!spte_ad_enabled(spte));
1148 1149 1150 1151
	spte &= ~shadow_dirty_mask;
	return mmu_spte_update(sptep, spte);
}

1152
static bool spte_wrprot_for_clear_dirty(u64 *sptep)
1153 1154 1155
{
	bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
					       (unsigned long *)sptep);
1156
	if (was_writable && !spte_ad_enabled(*sptep))
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
		kvm_set_pfn_dirty(spte_to_pfn(*sptep));

	return was_writable;
}

/*
 * Gets the GFN ready for another round of dirty logging by clearing the
 *	- D bit on ad-enabled SPTEs, and
 *	- W bit on ad-disabled SPTEs.
 * Returns true iff any D or W bits were cleared.
 */
1168 1169
static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			       struct kvm_memory_slot *slot)
1170 1171 1172 1173 1174
{
	u64 *sptep;
	struct rmap_iterator iter;
	bool flush = false;

1175
	for_each_rmap_spte(rmap_head, &iter, sptep)
1176 1177
		if (spte_ad_need_write_protect(*sptep))
			flush |= spte_wrprot_for_clear_dirty(sptep);
1178
		else
1179
			flush |= spte_clear_dirty(sptep);
1180 1181 1182 1183

	return flush;
}

1184
/**
1185
 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1186 1187 1188 1189 1190 1191 1192 1193
 * @kvm: kvm instance
 * @slot: slot to protect
 * @gfn_offset: start of the BITS_PER_LONG pages we care about
 * @mask: indicates which pages we should protect
 *
 * Used when we do not need to care about huge page mappings: e.g. during dirty
 * logging we do not have any such mappings.
 */
1194
static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1195 1196
				     struct kvm_memory_slot *slot,
				     gfn_t gfn_offset, unsigned long mask)
1197
{
1198
	struct kvm_rmap_head *rmap_head;
1199

1200
	if (is_tdp_mmu_enabled(kvm))
1201 1202
		kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
				slot->base_gfn + gfn_offset, mask, true);
1203
	while (mask) {
1204
		rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1205
					  PG_LEVEL_4K, slot);
1206
		__rmap_write_protect(kvm, rmap_head, false);
M
Marcelo Tosatti 已提交
1207

1208 1209 1210
		/* clear the first set bit */
		mask &= mask - 1;
	}
1211 1212
}

1213
/**
1214 1215
 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
 * protect the page if the D-bit isn't supported.
1216 1217 1218 1219 1220 1221 1222
 * @kvm: kvm instance
 * @slot: slot to clear D-bit
 * @gfn_offset: start of the BITS_PER_LONG pages we care about
 * @mask: indicates which pages we should clear D-bit
 *
 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
 */
1223 1224 1225
static void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
					 struct kvm_memory_slot *slot,
					 gfn_t gfn_offset, unsigned long mask)
1226
{
1227
	struct kvm_rmap_head *rmap_head;
1228

1229
	if (is_tdp_mmu_enabled(kvm))
1230 1231
		kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
				slot->base_gfn + gfn_offset, mask, false);
1232
	while (mask) {
1233
		rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1234
					  PG_LEVEL_4K, slot);
1235
		__rmap_clear_dirty(kvm, rmap_head, slot);
1236 1237 1238 1239 1240 1241

		/* clear the first set bit */
		mask &= mask - 1;
	}
}

1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
/**
 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
 * PT level pages.
 *
 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
 * enable dirty logging for them.
 *
 * Used when we do not need to care about huge page mappings: e.g. during dirty
 * logging we do not have any such mappings.
 */
void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
				struct kvm_memory_slot *slot,
				gfn_t gfn_offset, unsigned long mask)
{
1256 1257
	if (kvm_x86_ops.cpu_dirty_log_size)
		kvm_mmu_clear_dirty_pt_masked(kvm, slot, gfn_offset, mask);
1258 1259
	else
		kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1260 1261
}

1262 1263
int kvm_cpu_dirty_log_size(void)
{
1264
	return kvm_x86_ops.cpu_dirty_log_size;
1265 1266
}

1267 1268
bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
				    struct kvm_memory_slot *slot, u64 gfn)
1269
{
1270
	struct kvm_rmap_head *rmap_head;
1271
	int i;
1272
	bool write_protected = false;
1273

1274
	for (i = PG_LEVEL_4K; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
1275
		rmap_head = __gfn_to_rmap(gfn, i, slot);
1276
		write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1277 1278
	}

1279
	if (is_tdp_mmu_enabled(kvm))
1280 1281 1282
		write_protected |=
			kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn);

1283
	return write_protected;
1284 1285
}

1286 1287 1288 1289 1290 1291 1292 1293
static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
{
	struct kvm_memory_slot *slot;

	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
	return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
}

1294 1295
static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			  struct kvm_memory_slot *slot)
1296
{
1297 1298
	u64 *sptep;
	struct rmap_iterator iter;
1299
	bool flush = false;
1300

1301
	while ((sptep = rmap_get_first(rmap_head, &iter))) {
1302
		rmap_printk("spte %p %llx.\n", sptep, *sptep);
1303

1304
		pte_list_remove(rmap_head, sptep);
1305
		flush = true;
1306
	}
1307

1308 1309 1310
	return flush;
}

1311
static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1312 1313 1314
			   struct kvm_memory_slot *slot, gfn_t gfn, int level,
			   unsigned long data)
{
1315
	return kvm_zap_rmapp(kvm, rmap_head, slot);
1316 1317
}

1318
static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1319 1320
			     struct kvm_memory_slot *slot, gfn_t gfn, int level,
			     unsigned long data)
1321
{
1322 1323
	u64 *sptep;
	struct rmap_iterator iter;
1324
	int need_flush = 0;
1325
	u64 new_spte;
1326
	pte_t *ptep = (pte_t *)data;
D
Dan Williams 已提交
1327
	kvm_pfn_t new_pfn;
1328 1329 1330

	WARN_ON(pte_huge(*ptep));
	new_pfn = pte_pfn(*ptep);
1331

1332
restart:
1333
	for_each_rmap_spte(rmap_head, &iter, sptep) {
1334
		rmap_printk("spte %p %llx gfn %llx (%d)\n",
1335
			    sptep, *sptep, gfn, level);
1336

1337
		need_flush = 1;
1338

1339
		if (pte_write(*ptep)) {
1340
			pte_list_remove(rmap_head, sptep);
1341
			goto restart;
1342
		} else {
1343 1344
			new_spte = kvm_mmu_changed_pte_notifier_make_spte(
					*sptep, new_pfn);
1345 1346 1347

			mmu_spte_clear_track_bits(sptep);
			mmu_spte_set(sptep, new_spte);
1348 1349
		}
	}
1350

1351 1352 1353 1354 1355
	if (need_flush && kvm_available_flush_tlb_with_range()) {
		kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
		return 0;
	}

1356
	return need_flush;
1357 1358
}

1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
struct slot_rmap_walk_iterator {
	/* input fields. */
	struct kvm_memory_slot *slot;
	gfn_t start_gfn;
	gfn_t end_gfn;
	int start_level;
	int end_level;

	/* output fields. */
	gfn_t gfn;
1369
	struct kvm_rmap_head *rmap;
1370 1371 1372
	int level;

	/* private field. */
1373
	struct kvm_rmap_head *end_rmap;
1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
};

static void
rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
{
	iterator->level = level;
	iterator->gfn = iterator->start_gfn;
	iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
	iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
					   iterator->slot);
}

static void
slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
		    struct kvm_memory_slot *slot, int start_level,
		    int end_level, gfn_t start_gfn, gfn_t end_gfn)
{
	iterator->slot = slot;
	iterator->start_level = start_level;
	iterator->end_level = end_level;
	iterator->start_gfn = start_gfn;
	iterator->end_gfn = end_gfn;

	rmap_walk_init_level(iterator, iterator->start_level);
}

static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
{
	return !!iterator->rmap;
}

static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
{
	if (++iterator->rmap <= iterator->end_rmap) {
		iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
		return;
	}

	if (++iterator->level > iterator->end_level) {
		iterator->rmap = NULL;
		return;
	}

	rmap_walk_init_level(iterator, iterator->level);
}

#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,	\
	   _start_gfn, _end_gfn, _iter_)				\
	for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,		\
				 _end_level_, _start_gfn, _end_gfn);	\
	     slot_rmap_walk_okay(_iter_);				\
	     slot_rmap_walk_next(_iter_))

1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
static __always_inline int
kvm_handle_hva_range(struct kvm *kvm,
		     unsigned long start,
		     unsigned long end,
		     unsigned long data,
		     int (*handler)(struct kvm *kvm,
				    struct kvm_rmap_head *rmap_head,
				    struct kvm_memory_slot *slot,
				    gfn_t gfn,
				    int level,
				    unsigned long data))
1438
{
1439
	struct kvm_memslots *slots;
1440
	struct kvm_memory_slot *memslot;
1441 1442
	struct slot_rmap_walk_iterator iterator;
	int ret = 0;
1443
	int i;
1444

1445 1446 1447 1448 1449
	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
		kvm_for_each_memslot(memslot, slots) {
			unsigned long hva_start, hva_end;
			gfn_t gfn_start, gfn_end;
1450

1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
			hva_start = max(start, memslot->userspace_addr);
			hva_end = min(end, memslot->userspace_addr +
				      (memslot->npages << PAGE_SHIFT));
			if (hva_start >= hva_end)
				continue;
			/*
			 * {gfn(page) | page intersects with [hva_start, hva_end)} =
			 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
			 */
			gfn_start = hva_to_gfn_memslot(hva_start, memslot);
			gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);

1463
			for_each_slot_rmap_range(memslot, PG_LEVEL_4K,
1464
						 KVM_MAX_HUGEPAGE_LEVEL,
1465 1466 1467 1468 1469
						 gfn_start, gfn_end - 1,
						 &iterator)
				ret |= handler(kvm, iterator.rmap, memslot,
					       iterator.gfn, iterator.level, data);
		}
1470 1471
	}

1472
	return ret;
1473 1474
}

1475 1476
static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
			  unsigned long data,
1477 1478
			  int (*handler)(struct kvm *kvm,
					 struct kvm_rmap_head *rmap_head,
1479
					 struct kvm_memory_slot *slot,
1480
					 gfn_t gfn, int level,
1481 1482 1483
					 unsigned long data))
{
	return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1484 1485
}

1486 1487
int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end,
			unsigned flags)
1488
{
1489 1490 1491 1492
	int r;

	r = kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);

1493
	if (is_tdp_mmu_enabled(kvm))
1494 1495 1496
		r |= kvm_tdp_mmu_zap_hva_range(kvm, start, end);

	return r;
1497 1498
}

1499
int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1500
{
1501 1502 1503 1504
	int r;

	r = kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);

1505
	if (is_tdp_mmu_enabled(kvm))
1506 1507 1508
		r |= kvm_tdp_mmu_set_spte_hva(kvm, hva, &pte);

	return r;
1509 1510
}

1511
static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1512 1513
			 struct kvm_memory_slot *slot, gfn_t gfn, int level,
			 unsigned long data)
1514
{
1515
	u64 *sptep;
1516
	struct rmap_iterator iter;
1517 1518
	int young = 0;

1519 1520
	for_each_rmap_spte(rmap_head, &iter, sptep)
		young |= mmu_spte_age(sptep);
1521

1522
	trace_kvm_age_page(gfn, level, slot, young);
1523 1524 1525
	return young;
}

1526
static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1527 1528
			      struct kvm_memory_slot *slot, gfn_t gfn,
			      int level, unsigned long data)
A
Andrea Arcangeli 已提交
1529
{
1530 1531
	u64 *sptep;
	struct rmap_iterator iter;
A
Andrea Arcangeli 已提交
1532

1533 1534 1535 1536
	for_each_rmap_spte(rmap_head, &iter, sptep)
		if (is_accessed_spte(*sptep))
			return 1;
	return 0;
A
Andrea Arcangeli 已提交
1537 1538
}

1539 1540
#define RMAP_RECYCLE_THRESHOLD 1000

1541
static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1542
{
1543
	struct kvm_rmap_head *rmap_head;
1544 1545
	struct kvm_mmu_page *sp;

1546
	sp = sptep_to_sp(spte);
1547

1548
	rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1549

1550
	kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
1551 1552
	kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
			KVM_PAGES_PER_HPAGE(sp->role.level));
1553 1554
}

A
Andres Lagar-Cavilla 已提交
1555
int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1556
{
1557 1558 1559
	int young = false;

	young = kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1560
	if (is_tdp_mmu_enabled(kvm))
1561 1562 1563
		young |= kvm_tdp_mmu_age_hva_range(kvm, start, end);

	return young;
1564 1565
}

A
Andrea Arcangeli 已提交
1566 1567
int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
{
1568 1569 1570
	int young = false;

	young = kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1571
	if (is_tdp_mmu_enabled(kvm))
1572 1573 1574
		young |= kvm_tdp_mmu_test_age_hva(kvm, hva);

	return young;
A
Andrea Arcangeli 已提交
1575 1576
}

1577
#ifdef MMU_DEBUG
1578
static int is_empty_shadow_page(u64 *spt)
A
Avi Kivity 已提交
1579
{
1580 1581 1582
	u64 *pos;
	u64 *end;

1583
	for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1584
		if (is_shadow_present_pte(*pos)) {
1585
			printk(KERN_ERR "%s: %p %llx\n", __func__,
1586
			       pos, *pos);
A
Avi Kivity 已提交
1587
			return 0;
1588
		}
A
Avi Kivity 已提交
1589 1590
	return 1;
}
1591
#endif
A
Avi Kivity 已提交
1592

1593 1594 1595 1596 1597 1598
/*
 * This value is the sum of all of the kvm instances's
 * kvm->arch.n_used_mmu_pages values.  We need a global,
 * aggregate version in order to make the slab shrinker
 * faster
 */
1599
static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, unsigned long nr)
1600 1601 1602 1603 1604
{
	kvm->arch.n_used_mmu_pages += nr;
	percpu_counter_add(&kvm_total_used_mmu_pages, nr);
}

1605
static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1606
{
1607
	MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1608
	hlist_del(&sp->hash_link);
1609 1610
	list_del(&sp->link);
	free_page((unsigned long)sp->spt);
1611 1612
	if (!sp->role.direct)
		free_page((unsigned long)sp->gfns);
1613
	kmem_cache_free(mmu_page_header_cache, sp);
1614 1615
}

1616 1617
static unsigned kvm_page_table_hashfn(gfn_t gfn)
{
1618
	return hash_64(gfn, KVM_MMU_HASH_SHIFT);
1619 1620
}

1621
static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1622
				    struct kvm_mmu_page *sp, u64 *parent_pte)
1623 1624 1625 1626
{
	if (!parent_pte)
		return;

1627
	pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1628 1629
}

1630
static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1631 1632
				       u64 *parent_pte)
{
1633
	__pte_list_remove(parent_pte, &sp->parent_ptes);
1634 1635
}

1636 1637 1638 1639
static void drop_parent_pte(struct kvm_mmu_page *sp,
			    u64 *parent_pte)
{
	mmu_page_remove_parent_pte(sp, parent_pte);
1640
	mmu_spte_clear_no_track(parent_pte);
1641 1642
}

1643
static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
M
Marcelo Tosatti 已提交
1644
{
1645
	struct kvm_mmu_page *sp;
1646

1647 1648
	sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
	sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache);
1649
	if (!direct)
1650
		sp->gfns = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_gfn_array_cache);
1651
	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1652 1653 1654 1655 1656 1657

	/*
	 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
	 * depends on valid pages being added to the head of the list.  See
	 * comments in kvm_zap_obsolete_pages().
	 */
1658
	sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
1659 1660 1661
	list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
	kvm_mod_used_mmu_pages(vcpu->kvm, +1);
	return sp;
M
Marcelo Tosatti 已提交
1662 1663
}

1664
static void mark_unsync(u64 *spte);
1665
static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1666
{
1667 1668 1669 1670 1671 1672
	u64 *sptep;
	struct rmap_iterator iter;

	for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
		mark_unsync(sptep);
	}
1673 1674
}

1675
static void mark_unsync(u64 *spte)
1676
{
1677
	struct kvm_mmu_page *sp;
1678
	unsigned int index;
1679

1680
	sp = sptep_to_sp(spte);
1681 1682
	index = spte - sp->spt;
	if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1683
		return;
1684
	if (sp->unsync_children++)
1685
		return;
1686
	kvm_mmu_mark_parents_unsync(sp);
1687 1688
}

1689
static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1690
			       struct kvm_mmu_page *sp)
1691
{
1692
	return 0;
1693 1694
}

1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
#define KVM_PAGE_ARRAY_NR 16

struct kvm_mmu_pages {
	struct mmu_page_and_offset {
		struct kvm_mmu_page *sp;
		unsigned int idx;
	} page[KVM_PAGE_ARRAY_NR];
	unsigned int nr;
};

1705 1706
static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
			 int idx)
1707
{
1708
	int i;
1709

1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720
	if (sp->unsync)
		for (i=0; i < pvec->nr; i++)
			if (pvec->page[i].sp == sp)
				return 0;

	pvec->page[pvec->nr].sp = sp;
	pvec->page[pvec->nr].idx = idx;
	pvec->nr++;
	return (pvec->nr == KVM_PAGE_ARRAY_NR);
}

1721 1722 1723 1724 1725 1726 1727
static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
{
	--sp->unsync_children;
	WARN_ON((int)sp->unsync_children < 0);
	__clear_bit(idx, sp->unsync_child_bitmap);
}

1728 1729 1730 1731
static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
	int i, ret, nr_unsync_leaf = 0;
1732

1733
	for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1734
		struct kvm_mmu_page *child;
1735 1736
		u64 ent = sp->spt[i];

1737 1738 1739 1740
		if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
			clear_unsync_child_bit(sp, i);
			continue;
		}
1741

1742
		child = to_shadow_page(ent & PT64_BASE_ADDR_MASK);
1743 1744 1745 1746 1747 1748

		if (child->unsync_children) {
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;

			ret = __mmu_unsync_walk(child, pvec);
1749 1750 1751 1752
			if (!ret) {
				clear_unsync_child_bit(sp, i);
				continue;
			} else if (ret > 0) {
1753
				nr_unsync_leaf += ret;
1754
			} else
1755 1756 1757 1758 1759 1760
				return ret;
		} else if (child->unsync) {
			nr_unsync_leaf++;
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;
		} else
1761
			clear_unsync_child_bit(sp, i);
1762 1763
	}

1764 1765 1766
	return nr_unsync_leaf;
}

1767 1768
#define INVALID_INDEX (-1)

1769 1770 1771
static int mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
P
Paolo Bonzini 已提交
1772
	pvec->nr = 0;
1773 1774 1775
	if (!sp->unsync_children)
		return 0;

1776
	mmu_pages_add(pvec, sp, INVALID_INDEX);
1777
	return __mmu_unsync_walk(sp, pvec);
1778 1779 1780 1781 1782
}

static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
{
	WARN_ON(!sp->unsync);
1783
	trace_kvm_mmu_sync_page(sp);
1784 1785 1786 1787
	sp->unsync = 0;
	--kvm->stat.mmu_unsync;
}

1788 1789
static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				     struct list_head *invalid_list);
1790 1791
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list);
1792

1793 1794
#define for_each_valid_sp(_kvm, _sp, _list)				\
	hlist_for_each_entry(_sp, _list, hash_link)			\
1795
		if (is_obsolete_sp((_kvm), (_sp))) {			\
1796
		} else
1797 1798

#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)			\
1799 1800
	for_each_valid_sp(_kvm, _sp,					\
	  &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)])	\
1801
		if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
1802

1803 1804 1805 1806 1807
static inline bool is_ept_sp(struct kvm_mmu_page *sp)
{
	return sp->role.cr0_wp && sp->role.smap_andnot_wp;
}

1808
/* @sp->gfn should be write-protected at the call site */
1809 1810
static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
			    struct list_head *invalid_list)
1811
{
1812 1813
	if ((!is_ept_sp(sp) && sp->role.gpte_is_8_bytes != !!is_pae(vcpu)) ||
	    vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
1814
		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1815
		return false;
1816 1817
	}

1818
	return true;
1819 1820
}

1821 1822 1823 1824
static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
					struct list_head *invalid_list,
					bool remote_flush)
{
1825
	if (!remote_flush && list_empty(invalid_list))
1826 1827 1828 1829 1830 1831 1832 1833 1834
		return false;

	if (!list_empty(invalid_list))
		kvm_mmu_commit_zap_page(kvm, invalid_list);
	else
		kvm_flush_remote_tlbs(kvm);
	return true;
}

1835 1836 1837
static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
				 struct list_head *invalid_list,
				 bool remote_flush, bool local_flush)
1838
{
1839
	if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush))
1840
		return;
1841

1842
	if (local_flush)
1843
		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1844 1845
}

1846 1847 1848 1849 1850 1851 1852
#ifdef CONFIG_KVM_MMU_AUDIT
#include "mmu_audit.c"
#else
static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
static void mmu_audit_disable(void) { }
#endif

1853 1854
static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
{
1855 1856
	return sp->role.invalid ||
	       unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1857 1858
}

1859
static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1860
			 struct list_head *invalid_list)
1861
{
1862 1863
	kvm_unlink_unsync_page(vcpu->kvm, sp);
	return __kvm_sync_page(vcpu, sp, invalid_list);
1864 1865
}

1866
/* @gfn should be write-protected at the call site */
1867 1868
static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
			   struct list_head *invalid_list)
1869 1870
{
	struct kvm_mmu_page *s;
1871
	bool ret = false;
1872

1873
	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1874
		if (!s->unsync)
1875 1876
			continue;

1877
		WARN_ON(s->role.level != PG_LEVEL_4K);
1878
		ret |= kvm_sync_page(vcpu, s, invalid_list);
1879 1880
	}

1881
	return ret;
1882 1883
}

1884
struct mmu_page_path {
1885 1886
	struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
	unsigned int idx[PT64_ROOT_MAX_LEVEL];
1887 1888
};

1889
#define for_each_sp(pvec, sp, parents, i)			\
P
Paolo Bonzini 已提交
1890
		for (i = mmu_pages_first(&pvec, &parents);	\
1891 1892 1893
			i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});	\
			i = mmu_pages_next(&pvec, &parents, i))

1894 1895 1896
static int mmu_pages_next(struct kvm_mmu_pages *pvec,
			  struct mmu_page_path *parents,
			  int i)
1897 1898 1899 1900 1901
{
	int n;

	for (n = i+1; n < pvec->nr; n++) {
		struct kvm_mmu_page *sp = pvec->page[n].sp;
P
Paolo Bonzini 已提交
1902 1903
		unsigned idx = pvec->page[n].idx;
		int level = sp->role.level;
1904

P
Paolo Bonzini 已提交
1905
		parents->idx[level-1] = idx;
1906
		if (level == PG_LEVEL_4K)
P
Paolo Bonzini 已提交
1907
			break;
1908

P
Paolo Bonzini 已提交
1909
		parents->parent[level-2] = sp;
1910 1911 1912 1913 1914
	}

	return n;
}

P
Paolo Bonzini 已提交
1915 1916 1917 1918 1919 1920 1921 1922 1923
static int mmu_pages_first(struct kvm_mmu_pages *pvec,
			   struct mmu_page_path *parents)
{
	struct kvm_mmu_page *sp;
	int level;

	if (pvec->nr == 0)
		return 0;

1924 1925
	WARN_ON(pvec->page[0].idx != INVALID_INDEX);

P
Paolo Bonzini 已提交
1926 1927
	sp = pvec->page[0].sp;
	level = sp->role.level;
1928
	WARN_ON(level == PG_LEVEL_4K);
P
Paolo Bonzini 已提交
1929 1930 1931 1932 1933 1934 1935 1936 1937 1938

	parents->parent[level-2] = sp;

	/* Also set up a sentinel.  Further entries in pvec are all
	 * children of sp, so this element is never overwritten.
	 */
	parents->parent[level-1] = NULL;
	return mmu_pages_next(pvec, parents, 0);
}

1939
static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1940
{
1941 1942 1943 1944 1945 1946 1947 1948 1949
	struct kvm_mmu_page *sp;
	unsigned int level = 0;

	do {
		unsigned int idx = parents->idx[level];
		sp = parents->parent[level];
		if (!sp)
			return;

1950
		WARN_ON(idx == INVALID_INDEX);
1951
		clear_unsync_child_bit(sp, idx);
1952
		level++;
P
Paolo Bonzini 已提交
1953
	} while (!sp->unsync_children);
1954
}
1955

1956 1957 1958 1959 1960 1961 1962
static void mmu_sync_children(struct kvm_vcpu *vcpu,
			      struct kvm_mmu_page *parent)
{
	int i;
	struct kvm_mmu_page *sp;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
1963
	LIST_HEAD(invalid_list);
1964
	bool flush = false;
1965 1966

	while (mmu_unsync_walk(parent, &pages)) {
1967
		bool protected = false;
1968 1969

		for_each_sp(pages, sp, parents, i)
1970
			protected |= rmap_write_protect(vcpu, sp->gfn);
1971

1972
		if (protected) {
1973
			kvm_flush_remote_tlbs(vcpu->kvm);
1974 1975
			flush = false;
		}
1976

1977
		for_each_sp(pages, sp, parents, i) {
1978
			flush |= kvm_sync_page(vcpu, sp, &invalid_list);
1979 1980
			mmu_pages_clear_parents(&parents);
		}
1981
		if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) {
1982
			kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
1983
			cond_resched_rwlock_write(&vcpu->kvm->mmu_lock);
1984 1985
			flush = false;
		}
1986
	}
1987 1988

	kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
1989 1990
}

1991 1992
static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
{
1993
	atomic_set(&sp->write_flooding_count,  0);
1994 1995 1996 1997
}

static void clear_sp_write_flooding_count(u64 *spte)
{
1998
	__clear_sp_write_flooding_count(sptep_to_sp(spte));
1999 2000
}

2001 2002 2003 2004
static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
					     gfn_t gfn,
					     gva_t gaddr,
					     unsigned level,
2005
					     int direct,
2006
					     unsigned int access)
2007
{
2008
	bool direct_mmu = vcpu->arch.mmu->direct_map;
2009
	union kvm_mmu_page_role role;
2010
	struct hlist_head *sp_list;
2011
	unsigned quadrant;
2012 2013
	struct kvm_mmu_page *sp;
	bool need_sync = false;
2014
	bool flush = false;
2015
	int collisions = 0;
2016
	LIST_HEAD(invalid_list);
2017

2018
	role = vcpu->arch.mmu->mmu_role.base;
2019
	role.level = level;
2020
	role.direct = direct;
2021
	if (role.direct)
2022
		role.gpte_is_8_bytes = true;
2023
	role.access = access;
2024
	if (!direct_mmu && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
2025 2026 2027 2028
		quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
		quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
		role.quadrant = quadrant;
	}
2029 2030 2031

	sp_list = &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)];
	for_each_valid_sp(vcpu->kvm, sp, sp_list) {
2032 2033 2034 2035 2036
		if (sp->gfn != gfn) {
			collisions++;
			continue;
		}

2037 2038
		if (!need_sync && sp->unsync)
			need_sync = true;
2039

2040 2041
		if (sp->role.word != role.word)
			continue;
2042

2043 2044 2045
		if (direct_mmu)
			goto trace_get_page;

2046 2047 2048 2049 2050 2051 2052 2053
		if (sp->unsync) {
			/* The page is good, but __kvm_sync_page might still end
			 * up zapping it.  If so, break in order to rebuild it.
			 */
			if (!__kvm_sync_page(vcpu, sp, &invalid_list))
				break;

			WARN_ON(!list_empty(&invalid_list));
2054
			kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2055
		}
2056

2057
		if (sp->unsync_children)
2058
			kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2059

2060
		__clear_sp_write_flooding_count(sp);
2061 2062

trace_get_page:
2063
		trace_kvm_mmu_get_page(sp, false);
2064
		goto out;
2065
	}
2066

A
Avi Kivity 已提交
2067
	++vcpu->kvm->stat.mmu_cache_miss;
2068 2069 2070

	sp = kvm_mmu_alloc_page(vcpu, direct);

2071 2072
	sp->gfn = gfn;
	sp->role = role;
2073
	hlist_add_head(&sp->hash_link, sp_list);
2074
	if (!direct) {
2075 2076 2077 2078 2079 2080
		/*
		 * we should do write protection before syncing pages
		 * otherwise the content of the synced shadow page may
		 * be inconsistent with guest page table.
		 */
		account_shadowed(vcpu->kvm, sp);
2081
		if (level == PG_LEVEL_4K && rmap_write_protect(vcpu, gfn))
2082
			kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
2083

2084
		if (level > PG_LEVEL_4K && need_sync)
2085
			flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
2086
	}
A
Avi Kivity 已提交
2087
	trace_kvm_mmu_get_page(sp, true);
2088 2089

	kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2090 2091 2092
out:
	if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
		vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2093
	return sp;
2094 2095
}

2096 2097 2098
static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
					struct kvm_vcpu *vcpu, hpa_t root,
					u64 addr)
2099 2100
{
	iterator->addr = addr;
2101
	iterator->shadow_addr = root;
2102
	iterator->level = vcpu->arch.mmu->shadow_root_level;
2103

2104
	if (iterator->level == PT64_ROOT_4LEVEL &&
2105 2106
	    vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
	    !vcpu->arch.mmu->direct_map)
2107 2108
		--iterator->level;

2109
	if (iterator->level == PT32E_ROOT_LEVEL) {
2110 2111 2112 2113
		/*
		 * prev_root is currently only used for 64-bit hosts. So only
		 * the active root_hpa is valid here.
		 */
2114
		BUG_ON(root != vcpu->arch.mmu->root_hpa);
2115

2116
		iterator->shadow_addr
2117
			= vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2118 2119 2120 2121 2122 2123 2124
		iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
		--iterator->level;
		if (!iterator->shadow_addr)
			iterator->level = 0;
	}
}

2125 2126 2127
static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
			     struct kvm_vcpu *vcpu, u64 addr)
{
2128
	shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
2129 2130 2131
				    addr);
}

2132 2133
static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
{
2134
	if (iterator->level < PG_LEVEL_4K)
2135
		return false;
2136

2137 2138 2139 2140 2141
	iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
	iterator->sptep	= ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
	return true;
}

2142 2143
static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
			       u64 spte)
2144
{
2145
	if (is_last_spte(spte, iterator->level)) {
2146 2147 2148 2149
		iterator->level = 0;
		return;
	}

2150
	iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2151 2152 2153
	--iterator->level;
}

2154 2155
static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
{
2156
	__shadow_walk_next(iterator, *iterator->sptep);
2157 2158
}

2159 2160 2161 2162 2163 2164 2165 2166 2167
static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
			     struct kvm_mmu_page *sp)
{
	u64 spte;

	BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);

	spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp));

2168
	mmu_spte_set(sptep, spte);
2169 2170 2171 2172 2173

	mmu_page_add_parent_pte(vcpu, sp, sptep);

	if (sp->unsync_children || sp->unsync)
		mark_unsync(sptep);
2174 2175
}

2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188
static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
				   unsigned direct_access)
{
	if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
		struct kvm_mmu_page *child;

		/*
		 * For the direct sp, if the guest pte's dirty bit
		 * changed form clean to dirty, it will corrupt the
		 * sp's access: allow writable in the read-only sp,
		 * so we should update the spte at this point to get
		 * a new sp with the correct access.
		 */
2189
		child = to_shadow_page(*sptep & PT64_BASE_ADDR_MASK);
2190 2191 2192
		if (child->role.access == direct_access)
			return;

2193
		drop_parent_pte(child, sptep);
2194
		kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
2195 2196 2197
	}
}

2198 2199 2200
/* Returns the number of zapped non-leaf child shadow pages. */
static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
			    u64 *spte, struct list_head *invalid_list)
2201 2202 2203 2204 2205 2206
{
	u64 pte;
	struct kvm_mmu_page *child;

	pte = *spte;
	if (is_shadow_present_pte(pte)) {
X
Xiao Guangrong 已提交
2207
		if (is_last_spte(pte, sp->role.level)) {
2208
			drop_spte(kvm, spte);
X
Xiao Guangrong 已提交
2209 2210 2211
			if (is_large_pte(pte))
				--kvm->stat.lpages;
		} else {
2212
			child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2213
			drop_parent_pte(child, spte);
2214 2215 2216 2217 2218 2219 2220 2221 2222 2223

			/*
			 * Recursively zap nested TDP SPs, parentless SPs are
			 * unlikely to be used again in the near future.  This
			 * avoids retaining a large number of stale nested SPs.
			 */
			if (tdp_enabled && invalid_list &&
			    child->role.guest_mode && !child->parent_ptes.val)
				return kvm_mmu_prepare_zap_page(kvm, child,
								invalid_list);
2224
		}
2225
	} else if (is_mmio_spte(pte)) {
2226
		mmu_spte_clear_no_track(spte);
2227
	}
2228
	return 0;
2229 2230
}

2231 2232 2233
static int kvm_mmu_page_unlink_children(struct kvm *kvm,
					struct kvm_mmu_page *sp,
					struct list_head *invalid_list)
2234
{
2235
	int zapped = 0;
2236 2237
	unsigned i;

2238
	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2239 2240 2241
		zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list);

	return zapped;
2242 2243
}

2244
static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2245
{
2246 2247
	u64 *sptep;
	struct rmap_iterator iter;
2248

2249
	while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2250
		drop_parent_pte(sp, sptep);
2251 2252
}

2253
static int mmu_zap_unsync_children(struct kvm *kvm,
2254 2255
				   struct kvm_mmu_page *parent,
				   struct list_head *invalid_list)
2256
{
2257 2258 2259
	int i, zapped = 0;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
2260

2261
	if (parent->role.level == PG_LEVEL_4K)
2262
		return 0;
2263 2264 2265 2266 2267

	while (mmu_unsync_walk(parent, &pages)) {
		struct kvm_mmu_page *sp;

		for_each_sp(pages, sp, parents, i) {
2268
			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2269
			mmu_pages_clear_parents(&parents);
2270
			zapped++;
2271 2272 2273 2274
		}
	}

	return zapped;
2275 2276
}

2277 2278 2279 2280
static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
				       struct kvm_mmu_page *sp,
				       struct list_head *invalid_list,
				       int *nr_zapped)
2281
{
2282
	bool list_unstable;
A
Avi Kivity 已提交
2283

2284
	trace_kvm_mmu_prepare_zap_page(sp);
2285
	++kvm->stat.mmu_shadow_zapped;
2286
	*nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2287
	*nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list);
2288
	kvm_mmu_unlink_parents(kvm, sp);
2289

2290 2291 2292
	/* Zapping children means active_mmu_pages has become unstable. */
	list_unstable = *nr_zapped;

2293
	if (!sp->role.invalid && !sp->role.direct)
2294
		unaccount_shadowed(kvm, sp);
2295

2296 2297
	if (sp->unsync)
		kvm_unlink_unsync_page(kvm, sp);
2298
	if (!sp->root_count) {
2299
		/* Count self */
2300
		(*nr_zapped)++;
2301 2302 2303 2304 2305 2306 2307 2308 2309 2310

		/*
		 * Already invalid pages (previously active roots) are not on
		 * the active page list.  See list_del() in the "else" case of
		 * !sp->root_count.
		 */
		if (sp->role.invalid)
			list_add(&sp->link, invalid_list);
		else
			list_move(&sp->link, invalid_list);
2311
		kvm_mod_used_mmu_pages(kvm, -1);
2312
	} else {
2313 2314 2315 2316 2317
		/*
		 * Remove the active root from the active page list, the root
		 * will be explicitly freed when the root_count hits zero.
		 */
		list_del(&sp->link);
2318

2319 2320 2321 2322 2323 2324
		/*
		 * Obsolete pages cannot be used on any vCPUs, see the comment
		 * in kvm_mmu_zap_all_fast().  Note, is_obsolete_sp() also
		 * treats invalid shadow pages as being obsolete.
		 */
		if (!is_obsolete_sp(kvm, sp))
2325
			kvm_reload_remote_mmus(kvm);
2326
	}
2327

P
Paolo Bonzini 已提交
2328 2329 2330
	if (sp->lpage_disallowed)
		unaccount_huge_nx_page(kvm, sp);

2331
	sp->role.invalid = 1;
2332 2333 2334 2335 2336 2337 2338 2339 2340 2341
	return list_unstable;
}

static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				     struct list_head *invalid_list)
{
	int nr_zapped;

	__kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
	return nr_zapped;
2342 2343
}

2344 2345 2346
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list)
{
2347
	struct kvm_mmu_page *sp, *nsp;
2348 2349 2350 2351

	if (list_empty(invalid_list))
		return;

2352
	/*
2353 2354 2355 2356 2357 2358 2359
	 * We need to make sure everyone sees our modifications to
	 * the page tables and see changes to vcpu->mode here. The barrier
	 * in the kvm_flush_remote_tlbs() achieves this. This pairs
	 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
	 *
	 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
	 * guest mode and/or lockless shadow page table walks.
2360 2361
	 */
	kvm_flush_remote_tlbs(kvm);
2362

2363
	list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2364
		WARN_ON(!sp->role.invalid || sp->root_count);
2365
		kvm_mmu_free_page(sp);
2366
	}
2367 2368
}

2369 2370
static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm,
						  unsigned long nr_to_zap)
2371
{
2372 2373
	unsigned long total_zapped = 0;
	struct kvm_mmu_page *sp, *tmp;
2374
	LIST_HEAD(invalid_list);
2375 2376
	bool unstable;
	int nr_zapped;
2377 2378

	if (list_empty(&kvm->arch.active_mmu_pages))
2379 2380
		return 0;

2381
restart:
2382
	list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) {
2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393
		/*
		 * Don't zap active root pages, the page itself can't be freed
		 * and zapping it will just force vCPUs to realloc and reload.
		 */
		if (sp->root_count)
			continue;

		unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list,
						      &nr_zapped);
		total_zapped += nr_zapped;
		if (total_zapped >= nr_to_zap)
2394 2395
			break;

2396 2397
		if (unstable)
			goto restart;
2398
	}
2399

2400 2401 2402 2403 2404 2405
	kvm_mmu_commit_zap_page(kvm, &invalid_list);

	kvm->stat.mmu_recycled += total_zapped;
	return total_zapped;
}

2406 2407 2408 2409 2410 2411 2412
static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm)
{
	if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
		return kvm->arch.n_max_mmu_pages -
			kvm->arch.n_used_mmu_pages;

	return 0;
2413 2414
}

2415 2416
static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
{
2417
	unsigned long avail = kvm_mmu_available_pages(vcpu->kvm);
2418

2419
	if (likely(avail >= KVM_MIN_FREE_MMU_PAGES))
2420 2421
		return 0;

2422
	kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail);
2423

2424 2425 2426 2427 2428 2429 2430 2431 2432
	/*
	 * Note, this check is intentionally soft, it only guarantees that one
	 * page is available, while the caller may end up allocating as many as
	 * four pages, e.g. for PAE roots or for 5-level paging.  Temporarily
	 * exceeding the (arbitrary by default) limit will not harm the host,
	 * being too agressive may unnecessarily kill the guest, and getting an
	 * exact count is far more trouble than it's worth, especially in the
	 * page fault paths.
	 */
2433 2434 2435 2436 2437
	if (!kvm_mmu_available_pages(vcpu->kvm))
		return -ENOSPC;
	return 0;
}

2438 2439
/*
 * Changing the number of mmu pages allocated to the vm
2440
 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2441
 */
2442
void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2443
{
2444
	write_lock(&kvm->mmu_lock);
2445

2446
	if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2447 2448
		kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages -
						  goal_nr_mmu_pages);
2449

2450
		goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2451 2452
	}

2453
	kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2454

2455
	write_unlock(&kvm->mmu_lock);
2456 2457
}

2458
int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2459
{
2460
	struct kvm_mmu_page *sp;
2461
	LIST_HEAD(invalid_list);
2462 2463
	int r;

2464
	pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2465
	r = 0;
2466
	write_lock(&kvm->mmu_lock);
2467
	for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2468
		pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2469 2470
			 sp->role.word);
		r = 1;
2471
		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2472
	}
2473
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2474
	write_unlock(&kvm->mmu_lock);
2475

2476
	return r;
2477
}
2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492

static int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
{
	gpa_t gpa;
	int r;

	if (vcpu->arch.mmu->direct_map)
		return 0;

	gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);

	r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);

	return r;
}
2493

2494
static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2495 2496 2497 2498 2499 2500 2501 2502
{
	trace_kvm_mmu_unsync_page(sp);
	++vcpu->kvm->stat.mmu_unsync;
	sp->unsync = 1;

	kvm_mmu_mark_parents_unsync(sp);
}

2503 2504
bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
			    bool can_unsync)
2505
{
2506
	struct kvm_mmu_page *sp;
2507

2508 2509
	if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
		return true;
2510

2511
	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2512
		if (!can_unsync)
2513
			return true;
2514

2515 2516
		if (sp->unsync)
			continue;
2517

2518
		WARN_ON(sp->role.level != PG_LEVEL_4K);
2519
		kvm_unsync_page(vcpu, sp);
2520
	}
2521

2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560
	/*
	 * We need to ensure that the marking of unsync pages is visible
	 * before the SPTE is updated to allow writes because
	 * kvm_mmu_sync_roots() checks the unsync flags without holding
	 * the MMU lock and so can race with this. If the SPTE was updated
	 * before the page had been marked as unsync-ed, something like the
	 * following could happen:
	 *
	 * CPU 1                    CPU 2
	 * ---------------------------------------------------------------------
	 * 1.2 Host updates SPTE
	 *     to be writable
	 *                      2.1 Guest writes a GPTE for GVA X.
	 *                          (GPTE being in the guest page table shadowed
	 *                           by the SP from CPU 1.)
	 *                          This reads SPTE during the page table walk.
	 *                          Since SPTE.W is read as 1, there is no
	 *                          fault.
	 *
	 *                      2.2 Guest issues TLB flush.
	 *                          That causes a VM Exit.
	 *
	 *                      2.3 kvm_mmu_sync_pages() reads sp->unsync.
	 *                          Since it is false, so it just returns.
	 *
	 *                      2.4 Guest accesses GVA X.
	 *                          Since the mapping in the SP was not updated,
	 *                          so the old mapping for GVA X incorrectly
	 *                          gets used.
	 * 1.1 Host marks SP
	 *     as unsync
	 *     (sp->unsync = true)
	 *
	 * The write barrier below ensures that 1.1 happens before 1.2 and thus
	 * the situation in 2.4 does not arise. The implicit barrier in 2.2
	 * pairs with this write barrier.
	 */
	smp_wmb();

2561
	return false;
2562 2563
}

2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583
static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
		    unsigned int pte_access, int level,
		    gfn_t gfn, kvm_pfn_t pfn, bool speculative,
		    bool can_unsync, bool host_writable)
{
	u64 spte;
	struct kvm_mmu_page *sp;
	int ret;

	if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
		return 0;

	sp = sptep_to_sp(sptep);

	ret = make_spte(vcpu, pte_access, level, gfn, pfn, *sptep, speculative,
			can_unsync, host_writable, sp_ad_disabled(sp), &spte);

	if (spte & PT_WRITABLE_MASK)
		kvm_vcpu_mark_page_dirty(vcpu, gfn);

2584 2585 2586
	if (*sptep == spte)
		ret |= SET_SPTE_SPURIOUS;
	else if (mmu_spte_update(sptep, spte))
2587
		ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
M
Marcelo Tosatti 已提交
2588 2589 2590
	return ret;
}

2591
static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2592
			unsigned int pte_access, bool write_fault, int level,
2593 2594
			gfn_t gfn, kvm_pfn_t pfn, bool speculative,
			bool host_writable)
M
Marcelo Tosatti 已提交
2595 2596
{
	int was_rmapped = 0;
2597
	int rmap_count;
2598
	int set_spte_ret;
2599
	int ret = RET_PF_FIXED;
2600
	bool flush = false;
M
Marcelo Tosatti 已提交
2601

2602 2603
	pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
		 *sptep, write_fault, gfn);
M
Marcelo Tosatti 已提交
2604

2605
	if (is_shadow_present_pte(*sptep)) {
M
Marcelo Tosatti 已提交
2606 2607 2608 2609
		/*
		 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
		 * the parent of the now unreachable PTE.
		 */
2610
		if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) {
M
Marcelo Tosatti 已提交
2611
			struct kvm_mmu_page *child;
A
Avi Kivity 已提交
2612
			u64 pte = *sptep;
M
Marcelo Tosatti 已提交
2613

2614
			child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2615
			drop_parent_pte(child, sptep);
2616
			flush = true;
A
Avi Kivity 已提交
2617
		} else if (pfn != spte_to_pfn(*sptep)) {
2618
			pgprintk("hfn old %llx new %llx\n",
A
Avi Kivity 已提交
2619
				 spte_to_pfn(*sptep), pfn);
2620
			drop_spte(vcpu->kvm, sptep);
2621
			flush = true;
2622 2623
		} else
			was_rmapped = 1;
M
Marcelo Tosatti 已提交
2624
	}
2625

2626 2627 2628
	set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
				speculative, true, host_writable);
	if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
M
Marcelo Tosatti 已提交
2629
		if (write_fault)
2630
			ret = RET_PF_EMULATE;
2631
		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2632
	}
2633

2634
	if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
2635 2636
		kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
				KVM_PAGES_PER_HPAGE(level));
M
Marcelo Tosatti 已提交
2637

2638
	if (unlikely(is_mmio_spte(*sptep)))
2639
		ret = RET_PF_EMULATE;
2640

2641 2642 2643 2644 2645 2646 2647 2648 2649
	/*
	 * The fault is fully spurious if and only if the new SPTE and old SPTE
	 * are identical, and emulation is not required.
	 */
	if ((set_spte_ret & SET_SPTE_SPURIOUS) && ret == RET_PF_FIXED) {
		WARN_ON_ONCE(!was_rmapped);
		return RET_PF_SPURIOUS;
	}

A
Avi Kivity 已提交
2650
	pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2651
	trace_kvm_mmu_set_spte(level, gfn, sptep);
A
Avi Kivity 已提交
2652
	if (!was_rmapped && is_large_pte(*sptep))
M
Marcelo Tosatti 已提交
2653 2654
		++vcpu->kvm->stat.lpages;

2655 2656 2657 2658 2659 2660
	if (is_shadow_present_pte(*sptep)) {
		if (!was_rmapped) {
			rmap_count = rmap_add(vcpu, sptep, gfn);
			if (rmap_count > RMAP_RECYCLE_THRESHOLD)
				rmap_recycle(vcpu, sptep, gfn);
		}
2661
	}
2662

2663
	return ret;
2664 2665
}

D
Dan Williams 已提交
2666
static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2667 2668 2669 2670
				     bool no_dirty_log)
{
	struct kvm_memory_slot *slot;

2671
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2672
	if (!slot)
2673
		return KVM_PFN_ERR_FAULT;
2674

2675
	return gfn_to_pfn_memslot_atomic(slot, gfn);
2676 2677 2678 2679 2680 2681 2682
}

static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
				    struct kvm_mmu_page *sp,
				    u64 *start, u64 *end)
{
	struct page *pages[PTE_PREFETCH_NUM];
2683
	struct kvm_memory_slot *slot;
2684
	unsigned int access = sp->role.access;
2685 2686 2687 2688
	int i, ret;
	gfn_t gfn;

	gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2689 2690
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
	if (!slot)
2691 2692
		return -1;

2693
	ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2694 2695 2696
	if (ret <= 0)
		return -1;

2697
	for (i = 0; i < ret; i++, gfn++, start++) {
2698
		mmu_set_spte(vcpu, start, access, false, sp->role.level, gfn,
2699
			     page_to_pfn(pages[i]), true, true);
2700 2701
		put_page(pages[i]);
	}
2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717

	return 0;
}

static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
				  struct kvm_mmu_page *sp, u64 *sptep)
{
	u64 *spte, *start = NULL;
	int i;

	WARN_ON(!sp->role.direct);

	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
	spte = sp->spt + i;

	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2718
		if (is_shadow_present_pte(*spte) || spte == sptep) {
2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732
			if (!start)
				continue;
			if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
				break;
			start = NULL;
		} else if (!start)
			start = spte;
	}
}

static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
{
	struct kvm_mmu_page *sp;

2733
	sp = sptep_to_sp(sptep);
2734

2735
	/*
2736 2737 2738
	 * Without accessed bits, there's no way to distinguish between
	 * actually accessed translations and prefetched, so disable pte
	 * prefetch if accessed bits aren't available.
2739
	 */
2740
	if (sp_ad_disabled(sp))
2741 2742
		return;

2743
	if (sp->role.level > PG_LEVEL_4K)
2744 2745
		return;

2746 2747 2748 2749 2750 2751 2752
	/*
	 * If addresses are being invalidated, skip prefetching to avoid
	 * accidentally prefetching those addresses.
	 */
	if (unlikely(vcpu->kvm->mmu_notifier_count))
		return;

2753 2754 2755
	__direct_pte_prefetch(vcpu, sp, sptep);
}

2756 2757
static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn,
				  struct kvm_memory_slot *slot)
2758 2759 2760 2761 2762
{
	unsigned long hva;
	pte_t *pte;
	int level;

2763
	if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn))
2764
		return PG_LEVEL_4K;
2765

2766 2767 2768 2769 2770 2771 2772 2773
	/*
	 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
	 * is not solely for performance, it's also necessary to avoid the
	 * "writable" check in __gfn_to_hva_many(), which will always fail on
	 * read-only memslots due to gfn_to_hva() assuming writes.  Earlier
	 * page fault steps have already verified the guest isn't writing a
	 * read-only memslot.
	 */
2774 2775
	hva = __gfn_to_hva_memslot(slot, gfn);

2776
	pte = lookup_address_in_mm(kvm->mm, hva, &level);
2777
	if (unlikely(!pte))
2778
		return PG_LEVEL_4K;
2779 2780 2781 2782

	return level;
}

2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800
int kvm_mmu_max_mapping_level(struct kvm *kvm, struct kvm_memory_slot *slot,
			      gfn_t gfn, kvm_pfn_t pfn, int max_level)
{
	struct kvm_lpage_info *linfo;

	max_level = min(max_level, max_huge_page_level);
	for ( ; max_level > PG_LEVEL_4K; max_level--) {
		linfo = lpage_info_slot(gfn, slot, max_level);
		if (!linfo->disallow_lpage)
			break;
	}

	if (max_level == PG_LEVEL_4K)
		return PG_LEVEL_4K;

	return host_pfn_mapping_level(kvm, gfn, pfn, slot);
}

B
Ben Gardon 已提交
2801 2802 2803
int kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, gfn_t gfn,
			    int max_level, kvm_pfn_t *pfnp,
			    bool huge_page_disallowed, int *req_level)
2804
{
2805
	struct kvm_memory_slot *slot;
2806
	kvm_pfn_t pfn = *pfnp;
2807
	kvm_pfn_t mask;
2808
	int level;
2809

2810 2811
	*req_level = PG_LEVEL_4K;

2812 2813
	if (unlikely(max_level == PG_LEVEL_4K))
		return PG_LEVEL_4K;
2814

2815
	if (is_error_noslot_pfn(pfn) || kvm_is_reserved_pfn(pfn))
2816
		return PG_LEVEL_4K;
2817

2818 2819
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, true);
	if (!slot)
2820
		return PG_LEVEL_4K;
2821

2822
	level = kvm_mmu_max_mapping_level(vcpu->kvm, slot, gfn, pfn, max_level);
2823
	if (level == PG_LEVEL_4K)
2824
		return level;
2825

2826 2827 2828 2829 2830 2831 2832 2833
	*req_level = level = min(level, max_level);

	/*
	 * Enforce the iTLB multihit workaround after capturing the requested
	 * level, which will be used to do precise, accurate accounting.
	 */
	if (huge_page_disallowed)
		return PG_LEVEL_4K;
2834 2835

	/*
2836 2837
	 * mmu_notifier_retry() was successful and mmu_lock is held, so
	 * the pmd can't be split from under us.
2838
	 */
2839 2840 2841
	mask = KVM_PAGES_PER_HPAGE(level) - 1;
	VM_BUG_ON((gfn & mask) != (pfn & mask));
	*pfnp = pfn & ~mask;
2842 2843

	return level;
2844 2845
}

B
Ben Gardon 已提交
2846 2847
void disallowed_hugepage_adjust(u64 spte, gfn_t gfn, int cur_level,
				kvm_pfn_t *pfnp, int *goal_levelp)
P
Paolo Bonzini 已提交
2848
{
B
Ben Gardon 已提交
2849
	int level = *goal_levelp;
P
Paolo Bonzini 已提交
2850

2851
	if (cur_level == level && level > PG_LEVEL_4K &&
P
Paolo Bonzini 已提交
2852 2853 2854 2855 2856 2857 2858 2859 2860
	    is_shadow_present_pte(spte) &&
	    !is_large_pte(spte)) {
		/*
		 * A small SPTE exists for this pfn, but FNAME(fetch)
		 * and __direct_map would like to create a large PTE
		 * instead: just force them to go down another level,
		 * patching back for them into pfn the next 9 bits of
		 * the address.
		 */
2861 2862
		u64 page_mask = KVM_PAGES_PER_HPAGE(level) -
				KVM_PAGES_PER_HPAGE(level - 1);
P
Paolo Bonzini 已提交
2863
		*pfnp |= gfn & page_mask;
B
Ben Gardon 已提交
2864
		(*goal_levelp)--;
P
Paolo Bonzini 已提交
2865 2866 2867
	}
}

2868
static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
2869
			int map_writable, int max_level, kvm_pfn_t pfn,
2870
			bool prefault, bool is_tdp)
2871
{
2872 2873 2874 2875
	bool nx_huge_page_workaround_enabled = is_nx_huge_page_enabled();
	bool write = error_code & PFERR_WRITE_MASK;
	bool exec = error_code & PFERR_FETCH_MASK;
	bool huge_page_disallowed = exec && nx_huge_page_workaround_enabled;
2876
	struct kvm_shadow_walk_iterator it;
2877
	struct kvm_mmu_page *sp;
2878
	int level, req_level, ret;
2879 2880
	gfn_t gfn = gpa >> PAGE_SHIFT;
	gfn_t base_gfn = gfn;
A
Avi Kivity 已提交
2881

2882
	if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
2883
		return RET_PF_RETRY;
2884

2885 2886
	level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn,
					huge_page_disallowed, &req_level);
2887

2888
	trace_kvm_mmu_spte_requested(gpa, level, pfn);
2889
	for_each_shadow_entry(vcpu, gpa, it) {
P
Paolo Bonzini 已提交
2890 2891 2892 2893
		/*
		 * We cannot overwrite existing page tables with an NX
		 * large page, as the leaf could be executable.
		 */
2894
		if (nx_huge_page_workaround_enabled)
2895 2896
			disallowed_hugepage_adjust(*it.sptep, gfn, it.level,
						   &pfn, &level);
P
Paolo Bonzini 已提交
2897

2898 2899
		base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
		if (it.level == level)
2900
			break;
A
Avi Kivity 已提交
2901

2902 2903 2904 2905
		drop_large_spte(vcpu, it.sptep);
		if (!is_shadow_present_pte(*it.sptep)) {
			sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
					      it.level - 1, true, ACC_ALL);
2906

2907
			link_shadow_page(vcpu, it.sptep, sp);
2908 2909
			if (is_tdp && huge_page_disallowed &&
			    req_level >= it.level)
P
Paolo Bonzini 已提交
2910
				account_huge_nx_page(vcpu->kvm, sp);
2911 2912
		}
	}
2913 2914 2915 2916

	ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL,
			   write, level, base_gfn, pfn, prefault,
			   map_writable);
2917 2918 2919
	if (ret == RET_PF_SPURIOUS)
		return ret;

2920 2921 2922
	direct_pte_prefetch(vcpu, it.sptep);
	++vcpu->stat.pf_fixed;
	return ret;
A
Avi Kivity 已提交
2923 2924
}

H
Huang Ying 已提交
2925
static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2926
{
2927
	send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
2928 2929
}

D
Dan Williams 已提交
2930
static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
2931
{
X
Xiao Guangrong 已提交
2932 2933 2934 2935 2936 2937
	/*
	 * Do not cache the mmio info caused by writing the readonly gfn
	 * into the spte otherwise read access on readonly gfn also can
	 * caused mmio page fault and treat it as mmio access.
	 */
	if (pfn == KVM_PFN_ERR_RO_FAULT)
2938
		return RET_PF_EMULATE;
X
Xiao Guangrong 已提交
2939

2940
	if (pfn == KVM_PFN_ERR_HWPOISON) {
2941
		kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
2942
		return RET_PF_RETRY;
2943
	}
2944

2945
	return -EFAULT;
2946 2947
}

2948
static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2949 2950
				kvm_pfn_t pfn, unsigned int access,
				int *ret_val)
2951 2952
{
	/* The pfn is invalid, report the error! */
2953
	if (unlikely(is_error_pfn(pfn))) {
2954
		*ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2955
		return true;
2956 2957
	}

2958
	if (unlikely(is_noslot_pfn(pfn)))
2959 2960
		vcpu_cache_mmio_info(vcpu, gva, gfn,
				     access & shadow_mmio_access_mask);
2961

2962
	return false;
2963 2964
}

2965
static bool page_fault_can_be_fast(u32 error_code)
2966
{
2967 2968 2969 2970 2971 2972 2973
	/*
	 * Do not fix the mmio spte with invalid generation number which
	 * need to be updated by slow page fault path.
	 */
	if (unlikely(error_code & PFERR_RSVD_MASK))
		return false;

2974 2975 2976 2977 2978
	/* See if the page fault is due to an NX violation */
	if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
		      == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
		return false;

2979
	/*
2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990
	 * #PF can be fast if:
	 * 1. The shadow page table entry is not present, which could mean that
	 *    the fault is potentially caused by access tracking (if enabled).
	 * 2. The shadow page table entry is present and the fault
	 *    is caused by write-protect, that means we just need change the W
	 *    bit of the spte which can be done out of mmu-lock.
	 *
	 * However, if access tracking is disabled we know that a non-present
	 * page must be a genuine page fault where we have to create a new SPTE.
	 * So, if access tracking is disabled, we return true only for write
	 * accesses to a present page.
2991 2992
	 */

2993 2994 2995
	return shadow_acc_track_mask != 0 ||
	       ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
		== (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
2996 2997
}

2998 2999 3000 3001
/*
 * Returns true if the SPTE was fixed successfully. Otherwise,
 * someone else modified the SPTE from its original value.
 */
3002
static bool
3003
fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
3004
			u64 *sptep, u64 old_spte, u64 new_spte)
3005 3006 3007 3008 3009
{
	gfn_t gfn;

	WARN_ON(!sp->role.direct);

3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021
	/*
	 * Theoretically we could also set dirty bit (and flush TLB) here in
	 * order to eliminate unnecessary PML logging. See comments in
	 * set_spte. But fast_page_fault is very unlikely to happen with PML
	 * enabled, so we do not do this. This might result in the same GPA
	 * to be logged in PML buffer again when the write really happens, and
	 * eventually to be called by mark_page_dirty twice. But it's also no
	 * harm. This also avoids the TLB flush needed after setting dirty bit
	 * so non-PML cases won't be impacted.
	 *
	 * Compare with set_spte where instead shadow_dirty_mask is set.
	 */
3022
	if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3023 3024
		return false;

3025
	if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
3026 3027 3028 3029 3030 3031 3032
		/*
		 * The gfn of direct spte is stable since it is
		 * calculated by sp->gfn.
		 */
		gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
		kvm_vcpu_mark_page_dirty(vcpu, gfn);
	}
3033 3034 3035 3036

	return true;
}

3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048
static bool is_access_allowed(u32 fault_err_code, u64 spte)
{
	if (fault_err_code & PFERR_FETCH_MASK)
		return is_executable_pte(spte);

	if (fault_err_code & PFERR_WRITE_MASK)
		return is_writable_pte(spte);

	/* Fault was on Read access */
	return spte & PT_PRESENT_MASK;
}

3049
/*
3050
 * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS.
3051
 */
3052 3053
static int fast_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
			   u32 error_code)
3054 3055
{
	struct kvm_shadow_walk_iterator iterator;
3056
	struct kvm_mmu_page *sp;
3057
	int ret = RET_PF_INVALID;
3058
	u64 spte = 0ull;
3059
	uint retry_count = 0;
3060

3061
	if (!page_fault_can_be_fast(error_code))
3062
		return ret;
3063 3064 3065

	walk_shadow_page_lockless_begin(vcpu);

3066
	do {
3067
		u64 new_spte;
3068

3069
		for_each_shadow_entry_lockless(vcpu, cr2_or_gpa, iterator, spte)
3070
			if (!is_shadow_present_pte(spte))
3071 3072
				break;

3073
		sp = sptep_to_sp(iterator.sptep);
3074 3075
		if (!is_last_spte(spte, sp->role.level))
			break;
3076

3077
		/*
3078 3079 3080 3081 3082
		 * Check whether the memory access that caused the fault would
		 * still cause it if it were to be performed right now. If not,
		 * then this is a spurious fault caused by TLB lazily flushed,
		 * or some other CPU has already fixed the PTE after the
		 * current CPU took the fault.
3083 3084 3085 3086
		 *
		 * Need not check the access of upper level table entries since
		 * they are always ACC_ALL.
		 */
3087
		if (is_access_allowed(error_code, spte)) {
3088
			ret = RET_PF_SPURIOUS;
3089 3090
			break;
		}
3091

3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102
		new_spte = spte;

		if (is_access_track_spte(spte))
			new_spte = restore_acc_track_spte(new_spte);

		/*
		 * Currently, to simplify the code, write-protection can
		 * be removed in the fast path only if the SPTE was
		 * write-protected for dirty-logging or access tracking.
		 */
		if ((error_code & PFERR_WRITE_MASK) &&
3103
		    spte_can_locklessly_be_made_writable(spte)) {
3104
			new_spte |= PT_WRITABLE_MASK;
3105 3106

			/*
3107 3108 3109 3110 3111 3112 3113 3114 3115
			 * Do not fix write-permission on the large spte.  Since
			 * we only dirty the first page into the dirty-bitmap in
			 * fast_pf_fix_direct_spte(), other pages are missed
			 * if its slot has dirty logging enabled.
			 *
			 * Instead, we let the slow page fault path create a
			 * normal spte to fix the access.
			 *
			 * See the comments in kvm_arch_commit_memory_region().
3116
			 */
3117
			if (sp->role.level > PG_LEVEL_4K)
3118
				break;
3119
		}
3120

3121
		/* Verify that the fault can be handled in the fast path */
3122 3123
		if (new_spte == spte ||
		    !is_access_allowed(error_code, new_spte))
3124 3125 3126 3127 3128
			break;

		/*
		 * Currently, fast page fault only works for direct mapping
		 * since the gfn is not stable for indirect shadow page. See
3129
		 * Documentation/virt/kvm/locking.rst to get more detail.
3130
		 */
3131 3132 3133
		if (fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte,
					    new_spte)) {
			ret = RET_PF_FIXED;
3134
			break;
3135
		}
3136 3137 3138 3139 3140 3141 3142 3143

		if (++retry_count > 4) {
			printk_once(KERN_WARNING
				"kvm: Fast #PF retrying more than 4 times.\n");
			break;
		}

	} while (true);
3144

3145
	trace_fast_page_fault(vcpu, cr2_or_gpa, error_code, iterator.sptep,
3146
			      spte, ret);
3147 3148
	walk_shadow_page_lockless_end(vcpu);

3149
	return ret;
3150 3151
}

3152 3153
static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
			       struct list_head *invalid_list)
3154
{
3155
	struct kvm_mmu_page *sp;
3156

3157
	if (!VALID_PAGE(*root_hpa))
A
Avi Kivity 已提交
3158
		return;
3159

3160
	sp = to_shadow_page(*root_hpa & PT64_BASE_ADDR_MASK);
3161 3162

	if (kvm_mmu_put_root(kvm, sp)) {
3163
		if (is_tdp_mmu_page(sp))
3164 3165 3166 3167
			kvm_tdp_mmu_free_root(kvm, sp);
		else if (sp->role.invalid)
			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
	}
3168

3169 3170 3171
	*root_hpa = INVALID_PAGE;
}

3172
/* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
3173 3174
void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
			ulong roots_to_free)
3175
{
3176
	struct kvm *kvm = vcpu->kvm;
3177 3178
	int i;
	LIST_HEAD(invalid_list);
3179
	bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
3180

3181
	BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3182

3183
	/* Before acquiring the MMU lock, see if we need to do any real work. */
3184 3185 3186 3187 3188 3189 3190 3191 3192
	if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
			if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
			    VALID_PAGE(mmu->prev_roots[i].hpa))
				break;

		if (i == KVM_MMU_NUM_PREV_ROOTS)
			return;
	}
3193

3194
	write_lock(&kvm->mmu_lock);
3195

3196 3197
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
		if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3198
			mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa,
3199
					   &invalid_list);
3200

3201 3202 3203
	if (free_active_root) {
		if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
		    (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3204
			mmu_free_root_page(kvm, &mmu->root_hpa, &invalid_list);
3205
		} else if (mmu->pae_root) {
3206 3207
			for (i = 0; i < 4; ++i)
				if (mmu->pae_root[i] != 0)
3208
					mmu_free_root_page(kvm,
3209 3210 3211
							   &mmu->pae_root[i],
							   &invalid_list);
		}
3212
		mmu->root_hpa = INVALID_PAGE;
3213
		mmu->root_pgd = 0;
3214
	}
3215

3216
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
3217
	write_unlock(&kvm->mmu_lock);
3218
}
3219
EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3220

3221 3222 3223 3224
static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
{
	int ret = 0;

3225
	if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) {
3226
		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3227 3228 3229 3230 3231 3232
		ret = 1;
	}

	return ret;
}

3233 3234
static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, gva_t gva,
			    u8 level, bool direct)
3235 3236
{
	struct kvm_mmu_page *sp;
3237 3238 3239 3240 3241 3242 3243 3244 3245

	sp = kvm_mmu_get_page(vcpu, gfn, gva, level, direct, ACC_ALL);
	++sp->root_count;

	return __pa(sp->spt);
}

static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
{
3246 3247
	struct kvm_mmu *mmu = vcpu->arch.mmu;
	u8 shadow_root_level = mmu->shadow_root_level;
3248
	hpa_t root;
3249
	unsigned i;
3250

3251
	if (is_tdp_mmu_enabled(vcpu->kvm)) {
3252
		root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu);
3253
		mmu->root_hpa = root;
3254
	} else if (shadow_root_level >= PT64_ROOT_4LEVEL) {
3255
		root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level, true);
3256
		mmu->root_hpa = root;
3257
	} else if (shadow_root_level == PT32E_ROOT_LEVEL) {
3258
		for (i = 0; i < 4; ++i) {
3259 3260
			WARN_ON_ONCE(mmu->pae_root[i] &&
				     VALID_PAGE(mmu->pae_root[i]));
3261

3262 3263
			root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT),
					      i << 30, PT32_ROOT_LEVEL, true);
3264 3265
			mmu->pae_root[i] = root | PT_PRESENT_MASK |
					   shadow_me_mask;
3266
		}
3267
		mmu->root_hpa = __pa(mmu->pae_root);
3268 3269
	} else
		BUG();
3270

3271
	/* root_pgd is ignored for direct MMUs. */
3272
	mmu->root_pgd = 0;
3273 3274 3275 3276 3277

	return 0;
}

static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3278
{
3279
	struct kvm_mmu *mmu = vcpu->arch.mmu;
3280
	u64 pdptrs[4], pm_mask;
3281
	gfn_t root_gfn, root_pgd;
3282
	hpa_t root;
3283
	int i;
3284

3285
	root_pgd = mmu->get_guest_pgd(vcpu);
3286
	root_gfn = root_pgd >> PAGE_SHIFT;
3287

3288 3289 3290
	if (mmu_check_root(vcpu, root_gfn))
		return 1;

3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301
	if (mmu->root_level == PT32E_ROOT_LEVEL) {
		for (i = 0; i < 4; ++i) {
			pdptrs[i] = mmu->get_pdptr(vcpu, i);
			if (!(pdptrs[i] & PT_PRESENT_MASK))
				continue;

			if (mmu_check_root(vcpu, pdptrs[i] >> PAGE_SHIFT))
				return 1;
		}
	}

3302 3303 3304 3305
	/*
	 * Do we shadow a long mode page table? If so we need to
	 * write-protect the guests page table root.
	 */
3306
	if (mmu->root_level >= PT64_ROOT_4LEVEL) {
3307
		root = mmu_alloc_root(vcpu, root_gfn, 0,
3308 3309
				      mmu->shadow_root_level, false);
		mmu->root_hpa = root;
3310
		goto set_root_pgd;
3311
	}
3312

3313 3314
	/*
	 * We shadow a 32 bit page table. This may be a legacy 2-level
3315 3316
	 * or a PAE 3-level page table. In either case we need to be aware that
	 * the shadow page table may be a PAE or a long mode page table.
3317
	 */
3318
	pm_mask = PT_PRESENT_MASK | shadow_me_mask;
3319
	if (mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
3320 3321
		pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;

3322
		mmu->lm_root[0] = __pa(mmu->pae_root) | pm_mask;
3323 3324
	}

3325
	for (i = 0; i < 4; ++i) {
3326
		WARN_ON_ONCE(mmu->pae_root[i] && VALID_PAGE(mmu->pae_root[i]));
3327

3328
		if (mmu->root_level == PT32E_ROOT_LEVEL) {
3329
			if (!(pdptrs[i] & PT_PRESENT_MASK)) {
3330
				mmu->pae_root[i] = 0;
A
Avi Kivity 已提交
3331 3332
				continue;
			}
3333
			root_gfn = pdptrs[i] >> PAGE_SHIFT;
3334
		}
3335

3336 3337
		root = mmu_alloc_root(vcpu, root_gfn, i << 30,
				      PT32_ROOT_LEVEL, false);
3338
		mmu->pae_root[i] = root | pm_mask;
3339
	}
3340

3341
	if (mmu->shadow_root_level == PT64_ROOT_4LEVEL)
3342
		mmu->root_hpa = __pa(mmu->lm_root);
3343 3344
	else
		mmu->root_hpa = __pa(mmu->pae_root);
3345

3346
set_root_pgd:
3347
	mmu->root_pgd = root_pgd;
3348

3349
	return 0;
3350 3351
}

3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400
static int mmu_alloc_special_roots(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu *mmu = vcpu->arch.mmu;
	u64 *lm_root, *pae_root;

	/*
	 * When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP
	 * tables are allocated and initialized at root creation as there is no
	 * equivalent level in the guest's NPT to shadow.  Allocate the tables
	 * on demand, as running a 32-bit L1 VMM on 64-bit KVM is very rare.
	 */
	if (mmu->direct_map || mmu->root_level >= PT64_ROOT_4LEVEL ||
	    mmu->shadow_root_level < PT64_ROOT_4LEVEL)
		return 0;

	/*
	 * This mess only works with 4-level paging and needs to be updated to
	 * work with 5-level paging.
	 */
	if (WARN_ON_ONCE(mmu->shadow_root_level != PT64_ROOT_4LEVEL))
		return -EIO;

	if (mmu->pae_root && mmu->lm_root)
		return 0;

	/*
	 * The special roots should always be allocated in concert.  Yell and
	 * bail if KVM ends up in a state where only one of the roots is valid.
	 */
	if (WARN_ON_ONCE(!tdp_enabled || mmu->pae_root || mmu->lm_root))
		return -EIO;

	/* Unlike 32-bit NPT, the PDP table doesn't need to be in low mem. */
	pae_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
	if (!pae_root)
		return -ENOMEM;

	lm_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
	if (!lm_root) {
		free_page((unsigned long)pae_root);
		return -ENOMEM;
	}

	mmu->pae_root = pae_root;
	mmu->lm_root = lm_root;

	return 0;
}

3401
void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3402 3403 3404 3405
{
	int i;
	struct kvm_mmu_page *sp;

3406
	if (vcpu->arch.mmu->direct_map)
3407 3408
		return;

3409
	if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3410
		return;
3411

3412
	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3413

3414 3415
	if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
		hpa_t root = vcpu->arch.mmu->root_hpa;
3416
		sp = to_shadow_page(root);
3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431

		/*
		 * Even if another CPU was marking the SP as unsync-ed
		 * simultaneously, any guest page table changes are not
		 * guaranteed to be visible anyway until this VCPU issues a TLB
		 * flush strictly after those changes are made. We only need to
		 * ensure that the other CPU sets these flags before any actual
		 * changes to the page tables are made. The comments in
		 * mmu_need_write_protect() describe what could go wrong if this
		 * requirement isn't satisfied.
		 */
		if (!smp_load_acquire(&sp->unsync) &&
		    !smp_load_acquire(&sp->unsync_children))
			return;

3432
		write_lock(&vcpu->kvm->mmu_lock);
3433 3434
		kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);

3435
		mmu_sync_children(vcpu, sp);
3436

3437
		kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3438
		write_unlock(&vcpu->kvm->mmu_lock);
3439 3440
		return;
	}
3441

3442
	write_lock(&vcpu->kvm->mmu_lock);
3443 3444
	kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);

3445
	for (i = 0; i < 4; ++i) {
3446
		hpa_t root = vcpu->arch.mmu->pae_root[i];
3447

3448
		if (root && VALID_PAGE(root)) {
3449
			root &= PT64_BASE_ADDR_MASK;
3450
			sp = to_shadow_page(root);
3451 3452 3453 3454
			mmu_sync_children(vcpu, sp);
		}
	}

3455
	kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3456
	write_unlock(&vcpu->kvm->mmu_lock);
3457 3458
}

3459
static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr,
3460
				  u32 access, struct x86_exception *exception)
A
Avi Kivity 已提交
3461
{
3462 3463
	if (exception)
		exception->error_code = 0;
A
Avi Kivity 已提交
3464 3465 3466
	return vaddr;
}

3467
static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr,
3468 3469
					 u32 access,
					 struct x86_exception *exception)
3470
{
3471 3472
	if (exception)
		exception->error_code = 0;
3473
	return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3474 3475
}

3476 3477 3478
static bool
__is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
{
3479
	int bit7 = (pte >> 7) & 1;
3480

3481
	return pte & rsvd_check->rsvd_bits_mask[bit7][level-1];
3482 3483
}

3484
static bool __is_bad_mt_xwr(struct rsvd_bits_validate *rsvd_check, u64 pte)
3485
{
3486
	return rsvd_check->bad_mt_xwr & BIT_ULL(pte & 0x3f);
3487 3488
}

3489
static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3490
{
3491 3492 3493 3494 3495 3496 3497
	/*
	 * A nested guest cannot use the MMIO cache if it is using nested
	 * page tables, because cr2 is a nGPA while the cache stores GPAs.
	 */
	if (mmu_is_nested(vcpu))
		return false;

3498 3499 3500 3501 3502 3503
	if (direct)
		return vcpu_match_mmio_gpa(vcpu, addr);

	return vcpu_match_mmio_gva(vcpu, addr);
}

3504 3505 3506 3507
/*
 * Return the level of the lowest level SPTE added to sptes.
 * That SPTE may be non-present.
 */
3508
static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level)
3509 3510
{
	struct kvm_shadow_walk_iterator iterator;
3511
	int leaf = -1;
3512
	u64 spte;
3513 3514

	walk_shadow_page_lockless_begin(vcpu);
3515

3516 3517
	for (shadow_walk_init(&iterator, vcpu, addr),
	     *root_level = iterator.level;
3518 3519
	     shadow_walk_okay(&iterator);
	     __shadow_walk_next(&iterator, spte)) {
3520
		leaf = iterator.level;
3521 3522
		spte = mmu_spte_get_lockless(iterator.sptep);

3523
		sptes[leaf] = spte;
3524

3525 3526
		if (!is_shadow_present_pte(spte))
			break;
3527 3528 3529 3530 3531 3532 3533
	}

	walk_shadow_page_lockless_end(vcpu);

	return leaf;
}

3534
/* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */
3535 3536
static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
{
3537
	u64 sptes[PT64_ROOT_MAX_LEVEL + 1];
3538
	struct rsvd_bits_validate *rsvd_check;
3539
	int root, leaf, level;
3540 3541 3542 3543 3544 3545 3546 3547
	bool reserved = false;

	if (!VALID_PAGE(vcpu->arch.mmu->root_hpa)) {
		*sptep = 0ull;
		return reserved;
	}

	if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa))
3548
		leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, &root);
3549
	else
3550
		leaf = get_walk(vcpu, addr, sptes, &root);
3551

3552 3553 3554 3555 3556
	if (unlikely(leaf < 0)) {
		*sptep = 0ull;
		return reserved;
	}

3557 3558 3559 3560 3561 3562 3563 3564 3565 3566
	*sptep = sptes[leaf];

	/*
	 * Skip reserved bits checks on the terminal leaf if it's not a valid
	 * SPTE.  Note, this also (intentionally) skips MMIO SPTEs, which, by
	 * design, always have reserved bits set.  The purpose of the checks is
	 * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs.
	 */
	if (!is_shadow_present_pte(sptes[leaf]))
		leaf++;
3567 3568 3569

	rsvd_check = &vcpu->arch.mmu->shadow_zero_check;

3570
	for (level = root; level >= leaf; level--)
3571 3572 3573 3574 3575
		/*
		 * Use a bitwise-OR instead of a logical-OR to aggregate the
		 * reserved bit and EPT's invalid memtype/XWR checks to avoid
		 * adding a Jcc in the loop.
		 */
3576 3577
		reserved |= __is_bad_mt_xwr(rsvd_check, sptes[level]) |
			    __is_rsvd_bits_set(rsvd_check, sptes[level], level);
3578 3579 3580 3581

	if (reserved) {
		pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
		       __func__, addr);
3582
		for (level = root; level >= leaf; level--)
3583
			pr_err("------ spte 0x%llx level %d.\n",
3584
			       sptes[level], level);
3585
	}
3586

3587
	return reserved;
3588 3589
}

P
Paolo Bonzini 已提交
3590
static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3591 3592
{
	u64 spte;
3593
	bool reserved;
3594

3595
	if (mmio_info_in_cache(vcpu, addr, direct))
3596
		return RET_PF_EMULATE;
3597

3598
	reserved = get_mmio_spte(vcpu, addr, &spte);
3599
	if (WARN_ON(reserved))
3600
		return -EINVAL;
3601 3602 3603

	if (is_mmio_spte(spte)) {
		gfn_t gfn = get_mmio_spte_gfn(spte);
3604
		unsigned int access = get_mmio_spte_access(spte);
3605

3606
		if (!check_mmio_spte(vcpu, spte))
3607
			return RET_PF_INVALID;
3608

3609 3610
		if (direct)
			addr = 0;
X
Xiao Guangrong 已提交
3611 3612

		trace_handle_mmio_page_fault(addr, gfn, access);
3613
		vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3614
		return RET_PF_EMULATE;
3615 3616 3617 3618 3619 3620
	}

	/*
	 * If the page table is zapped by other cpus, let CPU fault again on
	 * the address.
	 */
3621
	return RET_PF_RETRY;
3622 3623
}

3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643
static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
					 u32 error_code, gfn_t gfn)
{
	if (unlikely(error_code & PFERR_RSVD_MASK))
		return false;

	if (!(error_code & PFERR_PRESENT_MASK) ||
	      !(error_code & PFERR_WRITE_MASK))
		return false;

	/*
	 * guest is writing the page which is write tracked which can
	 * not be fixed by page fault handler.
	 */
	if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
		return true;

	return false;
}

3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657
static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
{
	struct kvm_shadow_walk_iterator iterator;
	u64 spte;

	walk_shadow_page_lockless_begin(vcpu);
	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
		clear_sp_write_flooding_count(iterator.sptep);
		if (!is_shadow_present_pte(spte))
			break;
	}
	walk_shadow_page_lockless_end(vcpu);
}

3658 3659
static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
				    gfn_t gfn)
3660 3661
{
	struct kvm_arch_async_pf arch;
X
Xiao Guangrong 已提交
3662

3663
	arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3664
	arch.gfn = gfn;
3665
	arch.direct_map = vcpu->arch.mmu->direct_map;
3666
	arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu);
3667

3668 3669
	return kvm_setup_async_pf(vcpu, cr2_or_gpa,
				  kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3670 3671
}

3672
static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3673 3674
			 gpa_t cr2_or_gpa, kvm_pfn_t *pfn, hva_t *hva,
			 bool write, bool *writable)
3675
{
3676
	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3677 3678
	bool async;

3679 3680
	/* Don't expose private memslots to L2. */
	if (is_guest_mode(vcpu) && !kvm_is_visible_memslot(slot)) {
3681
		*pfn = KVM_PFN_NOSLOT;
3682
		*writable = false;
3683 3684 3685
		return false;
	}

3686
	async = false;
3687 3688
	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async,
				    write, writable, hva);
3689 3690 3691
	if (!async)
		return false; /* *pfn has correct page already */

3692
	if (!prefault && kvm_can_do_async_pf(vcpu)) {
3693
		trace_kvm_try_async_get_page(cr2_or_gpa, gfn);
3694
		if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3695
			trace_kvm_async_pf_doublefault(cr2_or_gpa, gfn);
3696 3697
			kvm_make_request(KVM_REQ_APF_HALT, vcpu);
			return true;
3698
		} else if (kvm_arch_setup_async_pf(vcpu, cr2_or_gpa, gfn))
3699 3700 3701
			return true;
	}

3702 3703
	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL,
				    write, writable, hva);
3704 3705 3706
	return false;
}

3707 3708
static int direct_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
			     bool prefault, int max_level, bool is_tdp)
A
Avi Kivity 已提交
3709
{
3710
	bool write = error_code & PFERR_WRITE_MASK;
3711
	bool map_writable;
A
Avi Kivity 已提交
3712

3713 3714 3715
	gfn_t gfn = gpa >> PAGE_SHIFT;
	unsigned long mmu_seq;
	kvm_pfn_t pfn;
3716
	hva_t hva;
3717
	int r;
3718

3719
	if (page_fault_handle_page_track(vcpu, error_code, gfn))
3720
		return RET_PF_EMULATE;
3721

B
Ben Gardon 已提交
3722 3723 3724 3725 3726
	if (!is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa)) {
		r = fast_page_fault(vcpu, gpa, error_code);
		if (r != RET_PF_INVALID)
			return r;
	}
3727

3728
	r = mmu_topup_memory_caches(vcpu, false);
3729 3730
	if (r)
		return r;
3731

3732 3733 3734
	mmu_seq = vcpu->kvm->mmu_notifier_seq;
	smp_rmb();

3735 3736
	if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, &hva,
			 write, &map_writable))
3737 3738
		return RET_PF_RETRY;

3739
	if (handle_abnormal_pfn(vcpu, is_tdp ? 0 : gpa, gfn, pfn, ACC_ALL, &r))
3740
		return r;
A
Avi Kivity 已提交
3741

3742
	r = RET_PF_RETRY;
3743 3744 3745 3746 3747 3748

	if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa))
		read_lock(&vcpu->kvm->mmu_lock);
	else
		write_lock(&vcpu->kvm->mmu_lock);

3749
	if (!is_noslot_pfn(pfn) && mmu_notifier_retry_hva(vcpu->kvm, mmu_seq, hva))
3750
		goto out_unlock;
3751 3752
	r = make_mmu_pages_available(vcpu);
	if (r)
3753
		goto out_unlock;
B
Ben Gardon 已提交
3754 3755 3756 3757 3758 3759 3760

	if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa))
		r = kvm_tdp_mmu_map(vcpu, gpa, error_code, map_writable, max_level,
				    pfn, prefault);
	else
		r = __direct_map(vcpu, gpa, error_code, map_writable, max_level, pfn,
				 prefault, is_tdp);
3761

3762
out_unlock:
3763 3764 3765 3766
	if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa))
		read_unlock(&vcpu->kvm->mmu_lock);
	else
		write_unlock(&vcpu->kvm->mmu_lock);
3767 3768
	kvm_release_pfn_clean(pfn);
	return r;
A
Avi Kivity 已提交
3769 3770
}

3771 3772 3773 3774 3775 3776 3777
static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa,
				u32 error_code, bool prefault)
{
	pgprintk("%s: gva %lx error %x\n", __func__, gpa, error_code);

	/* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
	return direct_page_fault(vcpu, gpa & PAGE_MASK, error_code, prefault,
3778
				 PG_LEVEL_2M, false);
3779 3780
}

3781
int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
3782
				u64 fault_address, char *insn, int insn_len)
3783 3784
{
	int r = 1;
3785
	u32 flags = vcpu->arch.apf.host_apf_flags;
3786

3787 3788 3789 3790 3791 3792
#ifndef CONFIG_X86_64
	/* A 64-bit CR2 should be impossible on 32-bit KVM. */
	if (WARN_ON_ONCE(fault_address >> 32))
		return -EFAULT;
#endif

P
Paolo Bonzini 已提交
3793
	vcpu->arch.l1tf_flush_l1d = true;
3794
	if (!flags) {
3795 3796
		trace_kvm_page_fault(fault_address, error_code);

3797
		if (kvm_event_needs_reinjection(vcpu))
3798 3799 3800
			kvm_mmu_unprotect_page_virt(vcpu, fault_address);
		r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
				insn_len);
3801
	} else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
3802
		vcpu->arch.apf.host_apf_flags = 0;
3803
		local_irq_disable();
3804
		kvm_async_pf_task_wait_schedule(fault_address);
3805
		local_irq_enable();
3806 3807
	} else {
		WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags);
3808
	}
3809

3810 3811 3812 3813
	return r;
}
EXPORT_SYMBOL_GPL(kvm_handle_page_fault);

3814 3815
int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
		       bool prefault)
3816
{
3817
	int max_level;
3818

3819
	for (max_level = KVM_MAX_HUGEPAGE_LEVEL;
3820
	     max_level > PG_LEVEL_4K;
3821 3822
	     max_level--) {
		int page_num = KVM_PAGES_PER_HPAGE(max_level);
3823
		gfn_t base = (gpa >> PAGE_SHIFT) & ~(page_num - 1);
3824

3825 3826
		if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
			break;
3827
	}
3828

3829 3830
	return direct_page_fault(vcpu, gpa, error_code, prefault,
				 max_level, true);
3831 3832
}

3833 3834
static void nonpaging_init_context(struct kvm_vcpu *vcpu,
				   struct kvm_mmu *context)
A
Avi Kivity 已提交
3835 3836 3837
{
	context->page_fault = nonpaging_page_fault;
	context->gva_to_gpa = nonpaging_gva_to_gpa;
3838
	context->sync_page = nonpaging_sync_page;
3839
	context->invlpg = NULL;
3840
	context->root_level = 0;
A
Avi Kivity 已提交
3841
	context->shadow_root_level = PT32E_ROOT_LEVEL;
3842
	context->direct_map = true;
3843
	context->nx = false;
A
Avi Kivity 已提交
3844 3845
}

3846
static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd,
3847 3848
				  union kvm_mmu_page_role role)
{
3849
	return (role.direct || pgd == root->pgd) &&
3850 3851
	       VALID_PAGE(root->hpa) && to_shadow_page(root->hpa) &&
	       role.word == to_shadow_page(root->hpa)->role.word;
3852 3853
}

3854
/*
3855
 * Find out if a previously cached root matching the new pgd/role is available.
3856 3857 3858 3859 3860 3861
 * The current root is also inserted into the cache.
 * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
 * returned.
 * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
 * false is returned. This root should now be freed by the caller.
 */
3862
static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3863 3864 3865 3866
				  union kvm_mmu_page_role new_role)
{
	uint i;
	struct kvm_mmu_root_info root;
3867
	struct kvm_mmu *mmu = vcpu->arch.mmu;
3868

3869
	root.pgd = mmu->root_pgd;
3870 3871
	root.hpa = mmu->root_hpa;

3872
	if (is_root_usable(&root, new_pgd, new_role))
3873 3874
		return true;

3875 3876 3877
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
		swap(root, mmu->prev_roots[i]);

3878
		if (is_root_usable(&root, new_pgd, new_role))
3879 3880 3881 3882
			break;
	}

	mmu->root_hpa = root.hpa;
3883
	mmu->root_pgd = root.pgd;
3884 3885 3886 3887

	return i < KVM_MMU_NUM_PREV_ROOTS;
}

3888
static bool fast_pgd_switch(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3889
			    union kvm_mmu_page_role new_role)
A
Avi Kivity 已提交
3890
{
3891
	struct kvm_mmu *mmu = vcpu->arch.mmu;
3892 3893 3894 3895 3896 3897 3898

	/*
	 * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
	 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
	 * later if necessary.
	 */
	if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3899
	    mmu->root_level >= PT64_ROOT_4LEVEL)
3900
		return cached_root_available(vcpu, new_pgd, new_role);
3901 3902

	return false;
A
Avi Kivity 已提交
3903 3904
}

3905
static void __kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3906
			      union kvm_mmu_page_role new_role,
3907
			      bool skip_tlb_flush, bool skip_mmu_sync)
A
Avi Kivity 已提交
3908
{
3909
	if (!fast_pgd_switch(vcpu, new_pgd, new_role)) {
3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921
		kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, KVM_MMU_ROOT_CURRENT);
		return;
	}

	/*
	 * It's possible that the cached previous root page is obsolete because
	 * of a change in the MMU generation number. However, changing the
	 * generation number is accompanied by KVM_REQ_MMU_RELOAD, which will
	 * free the root set here and allocate a new one.
	 */
	kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);

3922
	if (!skip_mmu_sync || force_flush_and_sync_on_reuse)
3923
		kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
3924
	if (!skip_tlb_flush || force_flush_and_sync_on_reuse)
3925 3926 3927 3928 3929 3930 3931 3932 3933 3934
		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);

	/*
	 * The last MMIO access's GVA and GPA are cached in the VCPU. When
	 * switching to a new CR3, that GVA->GPA mapping may no longer be
	 * valid. So clear any cached MMIO info even when we don't need to sync
	 * the shadow page tables.
	 */
	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);

3935 3936 3937 3938 3939 3940 3941
	/*
	 * If this is a direct root page, it doesn't have a write flooding
	 * count. Otherwise, clear the write flooding count.
	 */
	if (!new_role.direct)
		__clear_sp_write_flooding_count(
				to_shadow_page(vcpu->arch.mmu->root_hpa));
A
Avi Kivity 已提交
3942 3943
}

3944
void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd, bool skip_tlb_flush,
3945
		     bool skip_mmu_sync)
3946
{
3947
	__kvm_mmu_new_pgd(vcpu, new_pgd, kvm_mmu_calc_root_page_role(vcpu),
3948
			  skip_tlb_flush, skip_mmu_sync);
3949
}
3950
EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd);
3951

3952 3953
static unsigned long get_cr3(struct kvm_vcpu *vcpu)
{
3954
	return kvm_read_cr3(vcpu);
3955 3956
}

3957
static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
3958
			   unsigned int access, int *nr_present)
3959 3960 3961 3962 3963 3964 3965 3966
{
	if (unlikely(is_mmio_spte(*sptep))) {
		if (gfn != get_mmio_spte_gfn(*sptep)) {
			mmu_spte_clear_no_track(sptep);
			return true;
		}

		(*nr_present)++;
3967
		mark_mmio_spte(vcpu, sptep, gfn, access);
3968 3969 3970 3971 3972 3973
		return true;
	}

	return false;
}

3974 3975
static inline bool is_last_gpte(struct kvm_mmu *mmu,
				unsigned level, unsigned gpte)
A
Avi Kivity 已提交
3976
{
3977 3978 3979 3980 3981 3982 3983
	/*
	 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
	 * If it is clear, there are no large pages at this level, so clear
	 * PT_PAGE_SIZE_MASK in gpte if that is the case.
	 */
	gpte &= level - mmu->last_nonleaf_level;

3984
	/*
3985 3986 3987
	 * PG_LEVEL_4K always terminates.  The RHS has bit 7 set
	 * iff level <= PG_LEVEL_4K, which for our purpose means
	 * level == PG_LEVEL_4K; set PT_PAGE_SIZE_MASK in gpte then.
3988
	 */
3989
	gpte |= level - PG_LEVEL_4K - 1;
3990

3991
	return gpte & PT_PAGE_SIZE_MASK;
A
Avi Kivity 已提交
3992 3993
}

3994 3995 3996 3997 3998
#define PTTYPE_EPT 18 /* arbitrary */
#define PTTYPE PTTYPE_EPT
#include "paging_tmpl.h"
#undef PTTYPE

A
Avi Kivity 已提交
3999 4000 4001 4002 4003 4004 4005 4006
#define PTTYPE 64
#include "paging_tmpl.h"
#undef PTTYPE

#define PTTYPE 32
#include "paging_tmpl.h"
#undef PTTYPE

4007 4008 4009
static void
__reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
			struct rsvd_bits_validate *rsvd_check,
4010
			u64 pa_bits_rsvd, int level, bool nx, bool gbpages,
4011
			bool pse, bool amd)
4012
{
4013
	u64 gbpages_bit_rsvd = 0;
4014
	u64 nonleaf_bit8_rsvd = 0;
4015
	u64 high_bits_rsvd;
4016

4017
	rsvd_check->bad_mt_xwr = 0;
4018

4019
	if (!gbpages)
4020
		gbpages_bit_rsvd = rsvd_bits(7, 7);
4021

4022 4023 4024 4025 4026 4027 4028 4029 4030
	if (level == PT32E_ROOT_LEVEL)
		high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 62);
	else
		high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);

	/* Note, NX doesn't exist in PDPTEs, this is handled below. */
	if (!nx)
		high_bits_rsvd |= rsvd_bits(63, 63);

4031 4032 4033 4034
	/*
	 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
	 * leaf entries) on AMD CPUs only.
	 */
4035
	if (amd)
4036 4037
		nonleaf_bit8_rsvd = rsvd_bits(8, 8);

4038
	switch (level) {
4039 4040
	case PT32_ROOT_LEVEL:
		/* no rsvd bits for 2 level 4K page table entries */
4041 4042 4043 4044
		rsvd_check->rsvd_bits_mask[0][1] = 0;
		rsvd_check->rsvd_bits_mask[0][0] = 0;
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
4045

4046
		if (!pse) {
4047
			rsvd_check->rsvd_bits_mask[1][1] = 0;
4048 4049 4050
			break;
		}

4051 4052
		if (is_cpuid_PSE36())
			/* 36bits PSE 4MB page */
4053
			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4054 4055
		else
			/* 32 bits PSE 4MB page */
4056
			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4057 4058
		break;
	case PT32E_ROOT_LEVEL:
4059 4060 4061 4062 4063 4064 4065 4066
		rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) |
						   high_bits_rsvd |
						   rsvd_bits(5, 8) |
						   rsvd_bits(1, 2);	/* PDPTE */
		rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;	/* PDE */
		rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;	/* PTE */
		rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
						   rsvd_bits(13, 20);	/* large page */
4067 4068
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
4069
		break;
4070
	case PT64_ROOT_5LEVEL:
4071 4072 4073
		rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd |
						   nonleaf_bit8_rsvd |
						   rsvd_bits(7, 7);
4074 4075
		rsvd_check->rsvd_bits_mask[1][4] =
			rsvd_check->rsvd_bits_mask[0][4];
4076
		fallthrough;
4077
	case PT64_ROOT_4LEVEL:
4078 4079 4080 4081 4082 4083 4084
		rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd |
						   nonleaf_bit8_rsvd |
						   rsvd_bits(7, 7);
		rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd |
						   gbpages_bit_rsvd;
		rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;
		rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4085 4086
		rsvd_check->rsvd_bits_mask[1][3] =
			rsvd_check->rsvd_bits_mask[0][3];
4087 4088 4089 4090 4091
		rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd |
						   gbpages_bit_rsvd |
						   rsvd_bits(13, 29);
		rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
						   rsvd_bits(13, 20); /* large page */
4092 4093
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
4094 4095 4096 4097
		break;
	}
}

4098 4099 4100 4101
static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
{
	__reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
4102 4103
				vcpu->arch.reserved_gpa_bits,
				context->root_level, context->nx,
4104
				guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4105 4106
				is_pse(vcpu),
				guest_cpuid_is_amd_or_hygon(vcpu));
4107 4108
}

4109 4110
static void
__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4111
			    u64 pa_bits_rsvd, bool execonly)
4112
{
4113
	u64 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
4114
	u64 bad_mt_xwr;
4115

4116 4117 4118 4119 4120
	rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7);
	rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7);
	rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6);
	rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6);
	rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4121 4122

	/* large page */
4123
	rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4124
	rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4125 4126
	rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29);
	rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20);
4127
	rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4128

4129 4130 4131 4132 4133 4134 4135 4136
	bad_mt_xwr = 0xFFull << (2 * 8);	/* bits 3..5 must not be 2 */
	bad_mt_xwr |= 0xFFull << (3 * 8);	/* bits 3..5 must not be 3 */
	bad_mt_xwr |= 0xFFull << (7 * 8);	/* bits 3..5 must not be 7 */
	bad_mt_xwr |= REPEAT_BYTE(1ull << 2);	/* bits 0..2 must not be 010 */
	bad_mt_xwr |= REPEAT_BYTE(1ull << 6);	/* bits 0..2 must not be 110 */
	if (!execonly) {
		/* bits 0..2 must not be 100 unless VMX capabilities allow it */
		bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4137
	}
4138
	rsvd_check->bad_mt_xwr = bad_mt_xwr;
4139 4140
}

4141 4142 4143 4144
static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
		struct kvm_mmu *context, bool execonly)
{
	__reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4145
				    vcpu->arch.reserved_gpa_bits, execonly);
4146 4147
}

4148 4149 4150 4151 4152
static inline u64 reserved_hpa_bits(void)
{
	return rsvd_bits(shadow_phys_bits, 63);
}

4153 4154 4155 4156 4157 4158 4159 4160
/*
 * the page table on host is the shadow page table for the page
 * table in guest or amd nested guest, its mmu features completely
 * follow the features in guest.
 */
void
reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
{
4161 4162
	bool uses_nx = context->nx ||
		context->mmu_role.base.smep_andnot_wp;
4163 4164
	struct rsvd_bits_validate *shadow_zero_check;
	int i;
4165

4166 4167 4168 4169
	/*
	 * Passing "true" to the last argument is okay; it adds a check
	 * on bit 8 of the SPTEs which KVM doesn't use anyway.
	 */
4170 4171
	shadow_zero_check = &context->shadow_zero_check;
	__reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4172
				reserved_hpa_bits(),
4173
				context->shadow_root_level, uses_nx,
4174 4175
				guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
				is_pse(vcpu), true);
4176 4177 4178 4179 4180 4181 4182 4183 4184

	if (!shadow_me_mask)
		return;

	for (i = context->shadow_root_level; --i >= 0;) {
		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
	}

4185 4186 4187
}
EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);

4188 4189 4190 4191 4192 4193
static inline bool boot_cpu_is_amd(void)
{
	WARN_ON_ONCE(!tdp_enabled);
	return shadow_x_mask == 0;
}

4194 4195 4196 4197 4198 4199 4200 4201
/*
 * the direct page table on host, use as much mmu features as
 * possible, however, kvm currently does not do execution-protection.
 */
static void
reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
				struct kvm_mmu *context)
{
4202 4203 4204 4205 4206
	struct rsvd_bits_validate *shadow_zero_check;
	int i;

	shadow_zero_check = &context->shadow_zero_check;

4207
	if (boot_cpu_is_amd())
4208
		__reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4209
					reserved_hpa_bits(),
4210
					context->shadow_root_level, false,
4211 4212
					boot_cpu_has(X86_FEATURE_GBPAGES),
					true, true);
4213
	else
4214
		__reset_rsvds_bits_mask_ept(shadow_zero_check,
4215
					    reserved_hpa_bits(), false);
4216

4217 4218 4219 4220 4221 4222 4223
	if (!shadow_me_mask)
		return;

	for (i = context->shadow_root_level; --i >= 0;) {
		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
	}
4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234
}

/*
 * as the comments in reset_shadow_zero_bits_mask() except it
 * is the shadow page table for intel nested guest.
 */
static void
reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
				struct kvm_mmu *context, bool execonly)
{
	__reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4235
				    reserved_hpa_bits(), execonly);
4236 4237
}

4238 4239 4240 4241 4242 4243 4244 4245 4246 4247
#define BYTE_MASK(access) \
	((1 & (access) ? 2 : 0) | \
	 (2 & (access) ? 4 : 0) | \
	 (3 & (access) ? 8 : 0) | \
	 (4 & (access) ? 16 : 0) | \
	 (5 & (access) ? 32 : 0) | \
	 (6 & (access) ? 64 : 0) | \
	 (7 & (access) ? 128 : 0))


4248 4249
static void update_permission_bitmask(struct kvm_vcpu *vcpu,
				      struct kvm_mmu *mmu, bool ept)
4250
{
4251 4252 4253 4254 4255 4256 4257 4258 4259
	unsigned byte;

	const u8 x = BYTE_MASK(ACC_EXEC_MASK);
	const u8 w = BYTE_MASK(ACC_WRITE_MASK);
	const u8 u = BYTE_MASK(ACC_USER_MASK);

	bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
	bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
	bool cr0_wp = is_write_protection(vcpu);
4260 4261

	for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4262 4263
		unsigned pfec = byte << 1;

F
Feng Wu 已提交
4264
		/*
4265 4266
		 * Each "*f" variable has a 1 bit for each UWX value
		 * that causes a fault with the given PFEC.
F
Feng Wu 已提交
4267
		 */
4268

4269
		/* Faults from writes to non-writable pages */
4270
		u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
4271
		/* Faults from user mode accesses to supervisor pages */
4272
		u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
4273
		/* Faults from fetches of non-executable pages*/
4274
		u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299
		/* Faults from kernel mode fetches of user pages */
		u8 smepf = 0;
		/* Faults from kernel mode accesses of user pages */
		u8 smapf = 0;

		if (!ept) {
			/* Faults from kernel mode accesses to user pages */
			u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;

			/* Not really needed: !nx will cause pte.nx to fault */
			if (!mmu->nx)
				ff = 0;

			/* Allow supervisor writes if !cr0.wp */
			if (!cr0_wp)
				wf = (pfec & PFERR_USER_MASK) ? wf : 0;

			/* Disallow supervisor fetches of user code if cr4.smep */
			if (cr4_smep)
				smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;

			/*
			 * SMAP:kernel-mode data accesses from user-mode
			 * mappings should fault. A fault is considered
			 * as a SMAP violation if all of the following
P
Peng Hao 已提交
4300
			 * conditions are true:
4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313
			 *   - X86_CR4_SMAP is set in CR4
			 *   - A user page is accessed
			 *   - The access is not a fetch
			 *   - Page fault in kernel mode
			 *   - if CPL = 3 or X86_EFLAGS_AC is clear
			 *
			 * Here, we cover the first three conditions.
			 * The fourth is computed dynamically in permission_fault();
			 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
			 * *not* subject to SMAP restrictions.
			 */
			if (cr4_smap)
				smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4314
		}
4315 4316

		mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4317 4318 4319
	}
}

4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394
/*
* PKU is an additional mechanism by which the paging controls access to
* user-mode addresses based on the value in the PKRU register.  Protection
* key violations are reported through a bit in the page fault error code.
* Unlike other bits of the error code, the PK bit is not known at the
* call site of e.g. gva_to_gpa; it must be computed directly in
* permission_fault based on two bits of PKRU, on some machine state (CR4,
* CR0, EFER, CPL), and on other bits of the error code and the page tables.
*
* In particular the following conditions come from the error code, the
* page tables and the machine state:
* - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
* - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
* - PK is always zero if U=0 in the page tables
* - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
*
* The PKRU bitmask caches the result of these four conditions.  The error
* code (minus the P bit) and the page table's U bit form an index into the
* PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
* with the two bits of the PKRU register corresponding to the protection key.
* For the first three conditions above the bits will be 00, thus masking
* away both AD and WD.  For all reads or if the last condition holds, WD
* only will be masked away.
*/
static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
				bool ept)
{
	unsigned bit;
	bool wp;

	if (ept) {
		mmu->pkru_mask = 0;
		return;
	}

	/* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
	if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
		mmu->pkru_mask = 0;
		return;
	}

	wp = is_write_protection(vcpu);

	for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
		unsigned pfec, pkey_bits;
		bool check_pkey, check_write, ff, uf, wf, pte_user;

		pfec = bit << 1;
		ff = pfec & PFERR_FETCH_MASK;
		uf = pfec & PFERR_USER_MASK;
		wf = pfec & PFERR_WRITE_MASK;

		/* PFEC.RSVD is replaced by ACC_USER_MASK. */
		pte_user = pfec & PFERR_RSVD_MASK;

		/*
		 * Only need to check the access which is not an
		 * instruction fetch and is to a user page.
		 */
		check_pkey = (!ff && pte_user);
		/*
		 * write access is controlled by PKRU if it is a
		 * user access or CR0.WP = 1.
		 */
		check_write = check_pkey && wf && (uf || wp);

		/* PKRU.AD stops both read and write access. */
		pkey_bits = !!check_pkey;
		/* PKRU.WD stops write access. */
		pkey_bits |= (!!check_write) << 1;

		mmu->pkru_mask |= (pkey_bits & 3) << pfec;
	}
}

4395
static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
A
Avi Kivity 已提交
4396
{
4397 4398 4399 4400 4401
	unsigned root_level = mmu->root_level;

	mmu->last_nonleaf_level = root_level;
	if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
		mmu->last_nonleaf_level++;
A
Avi Kivity 已提交
4402 4403
}

4404 4405 4406
static void paging64_init_context_common(struct kvm_vcpu *vcpu,
					 struct kvm_mmu *context,
					 int level)
A
Avi Kivity 已提交
4407
{
4408
	context->nx = is_nx(vcpu);
4409
	context->root_level = level;
4410

4411
	reset_rsvds_bits_mask(vcpu, context);
4412
	update_permission_bitmask(vcpu, context, false);
4413
	update_pkru_bitmask(vcpu, context, false);
4414
	update_last_nonleaf_level(vcpu, context);
A
Avi Kivity 已提交
4415

4416
	MMU_WARN_ON(!is_pae(vcpu));
A
Avi Kivity 已提交
4417 4418
	context->page_fault = paging64_page_fault;
	context->gva_to_gpa = paging64_gva_to_gpa;
4419
	context->sync_page = paging64_sync_page;
M
Marcelo Tosatti 已提交
4420
	context->invlpg = paging64_invlpg;
4421
	context->shadow_root_level = level;
4422
	context->direct_map = false;
A
Avi Kivity 已提交
4423 4424
}

4425 4426
static void paging64_init_context(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
4427
{
4428 4429 4430 4431
	int root_level = is_la57_mode(vcpu) ?
			 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;

	paging64_init_context_common(vcpu, context, root_level);
4432 4433
}

4434 4435
static void paging32_init_context(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
A
Avi Kivity 已提交
4436
{
4437
	context->nx = false;
4438
	context->root_level = PT32_ROOT_LEVEL;
4439

4440
	reset_rsvds_bits_mask(vcpu, context);
4441
	update_permission_bitmask(vcpu, context, false);
4442
	update_pkru_bitmask(vcpu, context, false);
4443
	update_last_nonleaf_level(vcpu, context);
A
Avi Kivity 已提交
4444 4445 4446

	context->page_fault = paging32_page_fault;
	context->gva_to_gpa = paging32_gva_to_gpa;
4447
	context->sync_page = paging32_sync_page;
M
Marcelo Tosatti 已提交
4448
	context->invlpg = paging32_invlpg;
A
Avi Kivity 已提交
4449
	context->shadow_root_level = PT32E_ROOT_LEVEL;
4450
	context->direct_map = false;
A
Avi Kivity 已提交
4451 4452
}

4453 4454
static void paging32E_init_context(struct kvm_vcpu *vcpu,
				   struct kvm_mmu *context)
A
Avi Kivity 已提交
4455
{
4456
	paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
A
Avi Kivity 已提交
4457 4458
}

4459 4460 4461 4462
static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu)
{
	union kvm_mmu_extended_role ext = {0};

4463
	ext.cr0_pg = !!is_paging(vcpu);
4464
	ext.cr4_pae = !!is_pae(vcpu);
4465 4466 4467 4468
	ext.cr4_smep = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
	ext.cr4_smap = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
	ext.cr4_pse = !!is_pse(vcpu);
	ext.cr4_pke = !!kvm_read_cr4_bits(vcpu, X86_CR4_PKE);
4469
	ext.maxphyaddr = cpuid_maxphyaddr(vcpu);
4470 4471 4472 4473 4474 4475

	ext.valid = 1;

	return ext;
}

4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494
static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
						   bool base_only)
{
	union kvm_mmu_role role = {0};

	role.base.access = ACC_ALL;
	role.base.nxe = !!is_nx(vcpu);
	role.base.cr0_wp = is_write_protection(vcpu);
	role.base.smm = is_smm(vcpu);
	role.base.guest_mode = is_guest_mode(vcpu);

	if (base_only)
		return role;

	role.ext = kvm_calc_mmu_role_ext(vcpu);

	return role;
}

4495 4496 4497
static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu)
{
	/* Use 5-level TDP if and only if it's useful/necessary. */
4498
	if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48)
4499 4500
		return 4;

4501
	return max_tdp_level;
4502 4503
}

4504 4505
static union kvm_mmu_role
kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4506
{
4507
	union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4508

4509
	role.base.ad_disabled = (shadow_accessed_mask == 0);
4510
	role.base.level = kvm_mmu_get_tdp_level(vcpu);
4511
	role.base.direct = true;
4512
	role.base.gpte_is_8_bytes = true;
4513 4514 4515 4516

	return role;
}

4517
static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4518
{
4519
	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4520 4521
	union kvm_mmu_role new_role =
		kvm_calc_tdp_mmu_root_page_role(vcpu, false);
4522

4523 4524 4525 4526
	if (new_role.as_u64 == context->mmu_role.as_u64)
		return;

	context->mmu_role.as_u64 = new_role.as_u64;
4527
	context->page_fault = kvm_tdp_page_fault;
4528
	context->sync_page = nonpaging_sync_page;
4529
	context->invlpg = NULL;
4530
	context->shadow_root_level = kvm_mmu_get_tdp_level(vcpu);
4531
	context->direct_map = true;
4532
	context->get_guest_pgd = get_cr3;
4533
	context->get_pdptr = kvm_pdptr_read;
4534
	context->inject_page_fault = kvm_inject_page_fault;
4535 4536

	if (!is_paging(vcpu)) {
4537
		context->nx = false;
4538 4539 4540
		context->gva_to_gpa = nonpaging_gva_to_gpa;
		context->root_level = 0;
	} else if (is_long_mode(vcpu)) {
4541
		context->nx = is_nx(vcpu);
4542 4543
		context->root_level = is_la57_mode(vcpu) ?
				PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4544 4545
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging64_gva_to_gpa;
4546
	} else if (is_pae(vcpu)) {
4547
		context->nx = is_nx(vcpu);
4548
		context->root_level = PT32E_ROOT_LEVEL;
4549 4550
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging64_gva_to_gpa;
4551
	} else {
4552
		context->nx = false;
4553
		context->root_level = PT32_ROOT_LEVEL;
4554 4555
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging32_gva_to_gpa;
4556 4557
	}

4558
	update_permission_bitmask(vcpu, context, false);
4559
	update_pkru_bitmask(vcpu, context, false);
4560
	update_last_nonleaf_level(vcpu, context);
4561
	reset_tdp_shadow_zero_bits_mask(vcpu, context);
4562 4563
}

4564
static union kvm_mmu_role
4565
kvm_calc_shadow_root_page_role_common(struct kvm_vcpu *vcpu, bool base_only)
4566 4567 4568 4569 4570 4571 4572
{
	union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);

	role.base.smep_andnot_wp = role.ext.cr4_smep &&
		!is_write_protection(vcpu);
	role.base.smap_andnot_wp = role.ext.cr4_smap &&
		!is_write_protection(vcpu);
4573
	role.base.gpte_is_8_bytes = !!is_pae(vcpu);
4574

4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585
	return role;
}

static union kvm_mmu_role
kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
{
	union kvm_mmu_role role =
		kvm_calc_shadow_root_page_role_common(vcpu, base_only);

	role.base.direct = !is_paging(vcpu);

4586
	if (!is_long_mode(vcpu))
4587
		role.base.level = PT32E_ROOT_LEVEL;
4588
	else if (is_la57_mode(vcpu))
4589
		role.base.level = PT64_ROOT_5LEVEL;
4590
	else
4591
		role.base.level = PT64_ROOT_4LEVEL;
4592 4593 4594 4595

	return role;
}

4596 4597 4598
static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
				    u32 cr0, u32 cr4, u32 efer,
				    union kvm_mmu_role new_role)
4599
{
4600
	if (!(cr0 & X86_CR0_PG))
4601
		nonpaging_init_context(vcpu, context);
4602
	else if (efer & EFER_LMA)
4603
		paging64_init_context(vcpu, context);
4604
	else if (cr4 & X86_CR4_PAE)
4605
		paging32E_init_context(vcpu, context);
A
Avi Kivity 已提交
4606
	else
4607
		paging32_init_context(vcpu, context);
4608

4609
	context->mmu_role.as_u64 = new_role.as_u64;
4610
	reset_shadow_zero_bits_mask(vcpu, context);
4611
}
4612 4613 4614

static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer)
{
4615
	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4616 4617 4618 4619
	union kvm_mmu_role new_role =
		kvm_calc_shadow_mmu_root_page_role(vcpu, false);

	if (new_role.as_u64 != context->mmu_role.as_u64)
4620
		shadow_mmu_init_context(vcpu, context, cr0, cr4, efer, new_role);
4621 4622
}

4623 4624 4625 4626 4627 4628 4629
static union kvm_mmu_role
kvm_calc_shadow_npt_root_page_role(struct kvm_vcpu *vcpu)
{
	union kvm_mmu_role role =
		kvm_calc_shadow_root_page_role_common(vcpu, false);

	role.base.direct = false;
4630
	role.base.level = kvm_mmu_get_tdp_level(vcpu);
4631 4632 4633 4634

	return role;
}

4635 4636 4637
void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer,
			     gpa_t nested_cr3)
{
4638
	struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4639
	union kvm_mmu_role new_role = kvm_calc_shadow_npt_root_page_role(vcpu);
4640

4641 4642
	context->shadow_root_level = new_role.base.level;

4643 4644
	__kvm_mmu_new_pgd(vcpu, nested_cr3, new_role.base, false, false);

4645
	if (new_role.as_u64 != context->mmu_role.as_u64)
4646
		shadow_mmu_init_context(vcpu, context, cr0, cr4, efer, new_role);
4647 4648
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu);
4649

4650 4651
static union kvm_mmu_role
kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
4652
				   bool execonly, u8 level)
4653
{
4654
	union kvm_mmu_role role = {0};
4655

4656 4657
	/* SMM flag is inherited from root_mmu */
	role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
4658

4659
	role.base.level = level;
4660
	role.base.gpte_is_8_bytes = true;
4661 4662 4663 4664
	role.base.direct = false;
	role.base.ad_disabled = !accessed_dirty;
	role.base.guest_mode = true;
	role.base.access = ACC_ALL;
4665

4666 4667 4668 4669 4670 4671 4672
	/*
	 * WP=1 and NOT_WP=1 is an impossible combination, use WP and the
	 * SMAP variation to denote shadow EPT entries.
	 */
	role.base.cr0_wp = true;
	role.base.smap_andnot_wp = true;

4673
	role.ext = kvm_calc_mmu_role_ext(vcpu);
4674
	role.ext.execonly = execonly;
4675 4676 4677 4678

	return role;
}

4679
void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
4680
			     bool accessed_dirty, gpa_t new_eptp)
N
Nadav Har'El 已提交
4681
{
4682
	struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4683
	u8 level = vmx_eptp_page_walk_level(new_eptp);
4684 4685
	union kvm_mmu_role new_role =
		kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
4686
						   execonly, level);
4687

4688
	__kvm_mmu_new_pgd(vcpu, new_eptp, new_role.base, true, true);
4689 4690 4691

	if (new_role.as_u64 == context->mmu_role.as_u64)
		return;
4692

4693
	context->shadow_root_level = level;
N
Nadav Har'El 已提交
4694 4695

	context->nx = true;
4696
	context->ept_ad = accessed_dirty;
N
Nadav Har'El 已提交
4697 4698 4699 4700
	context->page_fault = ept_page_fault;
	context->gva_to_gpa = ept_gva_to_gpa;
	context->sync_page = ept_sync_page;
	context->invlpg = ept_invlpg;
4701
	context->root_level = level;
N
Nadav Har'El 已提交
4702
	context->direct_map = false;
4703
	context->mmu_role.as_u64 = new_role.as_u64;
4704

N
Nadav Har'El 已提交
4705
	update_permission_bitmask(vcpu, context, true);
4706
	update_pkru_bitmask(vcpu, context, true);
4707
	update_last_nonleaf_level(vcpu, context);
N
Nadav Har'El 已提交
4708
	reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4709
	reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
N
Nadav Har'El 已提交
4710 4711 4712
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);

4713
static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4714
{
4715
	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4716

4717 4718 4719 4720 4721
	kvm_init_shadow_mmu(vcpu,
			    kvm_read_cr0_bits(vcpu, X86_CR0_PG),
			    kvm_read_cr4_bits(vcpu, X86_CR4_PAE),
			    vcpu->arch.efer);

4722
	context->get_guest_pgd     = get_cr3;
4723 4724
	context->get_pdptr         = kvm_pdptr_read;
	context->inject_page_fault = kvm_inject_page_fault;
A
Avi Kivity 已提交
4725 4726
}

4727
static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4728
{
4729
	union kvm_mmu_role new_role = kvm_calc_mmu_role_common(vcpu, false);
4730 4731
	struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;

4732 4733 4734 4735
	if (new_role.as_u64 == g_context->mmu_role.as_u64)
		return;

	g_context->mmu_role.as_u64 = new_role.as_u64;
4736
	g_context->get_guest_pgd     = get_cr3;
4737
	g_context->get_pdptr         = kvm_pdptr_read;
4738 4739
	g_context->inject_page_fault = kvm_inject_page_fault;

4740 4741 4742 4743 4744 4745
	/*
	 * L2 page tables are never shadowed, so there is no need to sync
	 * SPTEs.
	 */
	g_context->invlpg            = NULL;

4746
	/*
4747
	 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
4748 4749 4750 4751 4752
	 * L1's nested page tables (e.g. EPT12). The nested translation
	 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
	 * L2's page tables as the first level of translation and L1's
	 * nested page tables as the second level of translation. Basically
	 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
4753 4754
	 */
	if (!is_paging(vcpu)) {
4755
		g_context->nx = false;
4756 4757 4758
		g_context->root_level = 0;
		g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
	} else if (is_long_mode(vcpu)) {
4759
		g_context->nx = is_nx(vcpu);
4760 4761
		g_context->root_level = is_la57_mode(vcpu) ?
					PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4762
		reset_rsvds_bits_mask(vcpu, g_context);
4763 4764
		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
	} else if (is_pae(vcpu)) {
4765
		g_context->nx = is_nx(vcpu);
4766
		g_context->root_level = PT32E_ROOT_LEVEL;
4767
		reset_rsvds_bits_mask(vcpu, g_context);
4768 4769
		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
	} else {
4770
		g_context->nx = false;
4771
		g_context->root_level = PT32_ROOT_LEVEL;
4772
		reset_rsvds_bits_mask(vcpu, g_context);
4773 4774 4775
		g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
	}

4776
	update_permission_bitmask(vcpu, g_context, false);
4777
	update_pkru_bitmask(vcpu, g_context, false);
4778
	update_last_nonleaf_level(vcpu, g_context);
4779 4780
}

4781
void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots)
4782
{
4783
	if (reset_roots) {
4784 4785
		uint i;

4786
		vcpu->arch.mmu->root_hpa = INVALID_PAGE;
4787 4788

		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
4789
			vcpu->arch.mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
4790 4791
	}

4792
	if (mmu_is_nested(vcpu))
4793
		init_kvm_nested_mmu(vcpu);
4794
	else if (tdp_enabled)
4795
		init_kvm_tdp_mmu(vcpu);
4796
	else
4797
		init_kvm_softmmu(vcpu);
4798
}
4799
EXPORT_SYMBOL_GPL(kvm_init_mmu);
4800

4801 4802 4803
static union kvm_mmu_page_role
kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
{
4804 4805
	union kvm_mmu_role role;

4806
	if (tdp_enabled)
4807
		role = kvm_calc_tdp_mmu_root_page_role(vcpu, true);
4808
	else
4809 4810 4811
		role = kvm_calc_shadow_mmu_root_page_role(vcpu, true);

	return role.base;
4812
}
4813

4814
void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4815
{
4816
	kvm_mmu_unload(vcpu);
4817
	kvm_init_mmu(vcpu, true);
A
Avi Kivity 已提交
4818
}
4819
EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
A
Avi Kivity 已提交
4820 4821

int kvm_mmu_load(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4822
{
4823 4824
	int r;

4825
	r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->direct_map);
4826 4827 4828
	if (r)
		goto out;
	r = mmu_alloc_special_roots(vcpu);
A
Avi Kivity 已提交
4829 4830
	if (r)
		goto out;
4831 4832 4833 4834 4835 4836 4837 4838
	write_lock(&vcpu->kvm->mmu_lock);
	if (make_mmu_pages_available(vcpu))
		r = -ENOSPC;
	else if (vcpu->arch.mmu->direct_map)
		r = mmu_alloc_direct_roots(vcpu);
	else
		r = mmu_alloc_shadow_roots(vcpu);
	write_unlock(&vcpu->kvm->mmu_lock);
4839 4840
	if (r)
		goto out;
4841 4842 4843

	kvm_mmu_sync_roots(vcpu);

4844
	kvm_mmu_load_pgd(vcpu);
4845
	static_call(kvm_x86_tlb_flush_current)(vcpu);
4846 4847
out:
	return r;
A
Avi Kivity 已提交
4848
}
A
Avi Kivity 已提交
4849 4850 4851

void kvm_mmu_unload(struct kvm_vcpu *vcpu)
{
4852 4853 4854 4855
	kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
	WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
	kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
	WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
A
Avi Kivity 已提交
4856
}
A
Avi Kivity 已提交
4857

4858 4859 4860 4861 4862 4863 4864 4865
static bool need_remote_flush(u64 old, u64 new)
{
	if (!is_shadow_present_pte(old))
		return false;
	if (!is_shadow_present_pte(new))
		return true;
	if ((old ^ new) & PT64_BASE_ADDR_MASK)
		return true;
4866 4867
	old ^= shadow_nx_mask;
	new ^= shadow_nx_mask;
4868 4869 4870
	return (old & ~new & PT64_PERM_MASK) != 0;
}

4871
static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4872
				    int *bytes)
4873
{
4874
	u64 gentry = 0;
4875
	int r;
4876 4877 4878

	/*
	 * Assume that the pte write on a page table of the same type
4879 4880
	 * as the current vcpu paging mode since we update the sptes only
	 * when they have the same mode.
4881
	 */
4882
	if (is_pae(vcpu) && *bytes == 4) {
4883
		/* Handle a 32-bit guest writing two halves of a 64-bit gpte */
4884 4885
		*gpa &= ~(gpa_t)7;
		*bytes = 8;
4886 4887
	}

4888 4889 4890 4891
	if (*bytes == 4 || *bytes == 8) {
		r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
		if (r)
			gentry = 0;
4892 4893
	}

4894 4895 4896 4897 4898 4899 4900
	return gentry;
}

/*
 * If we're seeing too many writes to a page, it may no longer be a page table,
 * or we may be forking, in which case it is better to unmap the page.
 */
4901
static bool detect_write_flooding(struct kvm_mmu_page *sp)
4902
{
4903 4904 4905 4906
	/*
	 * Skip write-flooding detected for the sp whose level is 1, because
	 * it can become unsync, then the guest page is not write-protected.
	 */
4907
	if (sp->role.level == PG_LEVEL_4K)
4908
		return false;
4909

4910 4911
	atomic_inc(&sp->write_flooding_count);
	return atomic_read(&sp->write_flooding_count) >= 3;
4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926
}

/*
 * Misaligned accesses are too much trouble to fix up; also, they usually
 * indicate a page is not used as a page table.
 */
static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
				    int bytes)
{
	unsigned offset, pte_size, misaligned;

	pgprintk("misaligned: gpa %llx bytes %d role %x\n",
		 gpa, bytes, sp->role.word);

	offset = offset_in_page(gpa);
4927
	pte_size = sp->role.gpte_is_8_bytes ? 8 : 4;
4928 4929 4930 4931 4932 4933 4934 4935

	/*
	 * Sometimes, the OS only writes the last one bytes to update status
	 * bits, for example, in linux, andb instruction is used in clear_bit().
	 */
	if (!(offset & (pte_size - 1)) && bytes == 1)
		return false;

4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950
	misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
	misaligned |= bytes < 4;

	return misaligned;
}

static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
{
	unsigned page_offset, quadrant;
	u64 *spte;
	int level;

	page_offset = offset_in_page(gpa);
	level = sp->role.level;
	*nspte = 1;
4951
	if (!sp->role.gpte_is_8_bytes) {
4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972
		page_offset <<= 1;	/* 32->64 */
		/*
		 * A 32-bit pde maps 4MB while the shadow pdes map
		 * only 2MB.  So we need to double the offset again
		 * and zap two pdes instead of one.
		 */
		if (level == PT32_ROOT_LEVEL) {
			page_offset &= ~7; /* kill rounding error */
			page_offset <<= 1;
			*nspte = 2;
		}
		quadrant = page_offset >> PAGE_SHIFT;
		page_offset &= ~PAGE_MASK;
		if (quadrant != sp->role.quadrant)
			return NULL;
	}

	spte = &sp->spt[page_offset / sizeof(*spte)];
	return spte;
}

4973
static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4974 4975
			      const u8 *new, int bytes,
			      struct kvm_page_track_notifier_node *node)
4976 4977 4978 4979 4980 4981
{
	gfn_t gfn = gpa >> PAGE_SHIFT;
	struct kvm_mmu_page *sp;
	LIST_HEAD(invalid_list);
	u64 entry, gentry, *spte;
	int npte;
4982
	bool remote_flush, local_flush;
4983 4984 4985 4986 4987

	/*
	 * If we don't have indirect shadow pages, it means no page is
	 * write-protected, so we can exit simply.
	 */
4988
	if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4989 4990
		return;

4991
	remote_flush = local_flush = false;
4992 4993 4994 4995 4996 4997 4998 4999

	pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);

	/*
	 * No need to care whether allocation memory is successful
	 * or not since pte prefetch is skiped if it does not have
	 * enough objects in the cache.
	 */
5000
	mmu_topup_memory_caches(vcpu, true);
5001

5002
	write_lock(&vcpu->kvm->mmu_lock);
5003 5004 5005

	gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);

5006
	++vcpu->kvm->stat.mmu_pte_write;
5007
	kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
5008

5009
	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
5010
		if (detect_write_misaligned(sp, gpa, bytes) ||
5011
		      detect_write_flooding(sp)) {
5012
			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
A
Avi Kivity 已提交
5013
			++vcpu->kvm->stat.mmu_flooded;
5014 5015
			continue;
		}
5016 5017 5018 5019 5020

		spte = get_written_sptes(sp, gpa, &npte);
		if (!spte)
			continue;

5021
		local_flush = true;
5022
		while (npte--) {
5023
			entry = *spte;
5024
			mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL);
5025 5026
			if (gentry && sp->role.level != PG_LEVEL_4K)
				++vcpu->kvm->stat.mmu_pde_zapped;
G
Gleb Natapov 已提交
5027
			if (need_remote_flush(entry, *spte))
5028
				remote_flush = true;
5029
			++spte;
5030 5031
		}
	}
5032
	kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
5033
	kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
5034
	write_unlock(&vcpu->kvm->mmu_lock);
5035 5036
}

5037
int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
5038
		       void *insn, int insn_len)
5039
{
5040
	int r, emulation_type = EMULTYPE_PF;
5041
	bool direct = vcpu->arch.mmu->direct_map;
5042

5043
	if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
5044 5045
		return RET_PF_RETRY;

5046
	r = RET_PF_INVALID;
5047
	if (unlikely(error_code & PFERR_RSVD_MASK)) {
5048
		r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
5049
		if (r == RET_PF_EMULATE)
5050 5051
			goto emulate;
	}
5052

5053
	if (r == RET_PF_INVALID) {
5054 5055
		r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
					  lower_32_bits(error_code), false);
5056 5057
		if (WARN_ON_ONCE(r == RET_PF_INVALID))
			return -EIO;
5058 5059
	}

5060
	if (r < 0)
5061
		return r;
5062 5063
	if (r != RET_PF_EMULATE)
		return 1;
5064

5065 5066 5067 5068 5069 5070 5071
	/*
	 * Before emulating the instruction, check if the error code
	 * was due to a RO violation while translating the guest page.
	 * This can occur when using nested virtualization with nested
	 * paging in both guests. If true, we simply unprotect the page
	 * and resume the guest.
	 */
5072
	if (vcpu->arch.mmu->direct_map &&
5073
	    (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5074
		kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
5075 5076 5077
		return 1;
	}

5078 5079 5080 5081 5082 5083
	/*
	 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
	 * optimistically try to just unprotect the page and let the processor
	 * re-execute the instruction that caused the page fault.  Do not allow
	 * retrying MMIO emulation, as it's not only pointless but could also
	 * cause us to enter an infinite loop because the processor will keep
5084 5085 5086 5087
	 * faulting on the non-existent MMIO address.  Retrying an instruction
	 * from a nested guest is also pointless and dangerous as we are only
	 * explicitly shadowing L1's page tables, i.e. unprotecting something
	 * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5088
	 */
5089
	if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
5090
		emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
5091
emulate:
5092
	return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
5093
				       insn_len);
5094 5095 5096
}
EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);

5097 5098
void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
			    gva_t gva, hpa_t root_hpa)
M
Marcelo Tosatti 已提交
5099
{
5100
	int i;
5101

5102 5103 5104 5105 5106 5107
	/* It's actually a GPA for vcpu->arch.guest_mmu.  */
	if (mmu != &vcpu->arch.guest_mmu) {
		/* INVLPG on a non-canonical address is a NOP according to the SDM.  */
		if (is_noncanonical_address(gva, vcpu))
			return;

5108
		static_call(kvm_x86_tlb_flush_gva)(vcpu, gva);
5109 5110 5111
	}

	if (!mmu->invlpg)
5112 5113
		return;

5114 5115
	if (root_hpa == INVALID_PAGE) {
		mmu->invlpg(vcpu, gva, mmu->root_hpa);
5116

5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134
		/*
		 * INVLPG is required to invalidate any global mappings for the VA,
		 * irrespective of PCID. Since it would take us roughly similar amount
		 * of work to determine whether any of the prev_root mappings of the VA
		 * is marked global, or to just sync it blindly, so we might as well
		 * just always sync it.
		 *
		 * Mappings not reachable via the current cr3 or the prev_roots will be
		 * synced when switching to that cr3, so nothing needs to be done here
		 * for them.
		 */
		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
			if (VALID_PAGE(mmu->prev_roots[i].hpa))
				mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
	} else {
		mmu->invlpg(vcpu, gva, root_hpa);
	}
}
5135

5136 5137 5138
void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
{
	kvm_mmu_invalidate_gva(vcpu, vcpu->arch.mmu, gva, INVALID_PAGE);
M
Marcelo Tosatti 已提交
5139 5140 5141 5142
	++vcpu->stat.invlpg;
}
EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);

5143

5144 5145
void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
{
5146
	struct kvm_mmu *mmu = vcpu->arch.mmu;
5147
	bool tlb_flush = false;
5148
	uint i;
5149 5150

	if (pcid == kvm_get_active_pcid(vcpu)) {
5151
		mmu->invlpg(vcpu, gva, mmu->root_hpa);
5152
		tlb_flush = true;
5153 5154
	}

5155 5156
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
		if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5157
		    pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) {
5158 5159 5160
			mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
			tlb_flush = true;
		}
5161
	}
5162

5163
	if (tlb_flush)
5164
		static_call(kvm_x86_tlb_flush_gva)(vcpu, gva);
5165

5166 5167 5168
	++vcpu->stat.invlpg;

	/*
5169 5170 5171
	 * Mappings not reachable via the current cr3 or the prev_roots will be
	 * synced when switching to that cr3, so nothing needs to be done here
	 * for them.
5172 5173 5174
	 */
}

5175 5176
void kvm_configure_mmu(bool enable_tdp, int tdp_max_root_level,
		       int tdp_huge_page_level)
5177
{
5178
	tdp_enabled = enable_tdp;
5179
	max_tdp_level = tdp_max_root_level;
5180 5181

	/*
5182
	 * max_huge_page_level reflects KVM's MMU capabilities irrespective
5183 5184 5185 5186 5187 5188
	 * of kernel support, e.g. KVM may be capable of using 1GB pages when
	 * the kernel is not.  But, KVM never creates a page size greater than
	 * what is used by the kernel for any given HVA, i.e. the kernel's
	 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
	 */
	if (tdp_enabled)
5189
		max_huge_page_level = tdp_huge_page_level;
5190
	else if (boot_cpu_has(X86_FEATURE_GBPAGES))
5191
		max_huge_page_level = PG_LEVEL_1G;
5192
	else
5193
		max_huge_page_level = PG_LEVEL_2M;
5194
}
5195
EXPORT_SYMBOL_GPL(kvm_configure_mmu);
5196 5197

/* The return value indicates if tlb flush on all vcpus is needed. */
5198 5199
typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head,
				    struct kvm_memory_slot *slot);
5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212

/* The caller should hold mmu-lock before calling this function. */
static __always_inline bool
slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
			slot_level_handler fn, int start_level, int end_level,
			gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
{
	struct slot_rmap_walk_iterator iterator;
	bool flush = false;

	for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
			end_gfn, &iterator) {
		if (iterator.rmap)
5213
			flush |= fn(kvm, iterator.rmap, memslot);
5214

5215
		if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
5216
			if (flush && lock_flush_tlb) {
5217 5218 5219
				kvm_flush_remote_tlbs_with_address(kvm,
						start_gfn,
						iterator.gfn - start_gfn + 1);
5220 5221
				flush = false;
			}
5222
			cond_resched_rwlock_write(&kvm->mmu_lock);
5223 5224 5225 5226
		}
	}

	if (flush && lock_flush_tlb) {
5227 5228
		kvm_flush_remote_tlbs_with_address(kvm, start_gfn,
						   end_gfn - start_gfn + 1);
5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249
		flush = false;
	}

	return flush;
}

static __always_inline bool
slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
		  slot_level_handler fn, int start_level, int end_level,
		  bool lock_flush_tlb)
{
	return slot_handle_level_range(kvm, memslot, fn, start_level,
			end_level, memslot->base_gfn,
			memslot->base_gfn + memslot->npages - 1,
			lock_flush_tlb);
}

static __always_inline bool
slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
		 slot_level_handler fn, bool lock_flush_tlb)
{
5250 5251
	return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
				 PG_LEVEL_4K, lock_flush_tlb);
5252 5253
}

5254
static void free_mmu_pages(struct kvm_mmu *mmu)
A
Avi Kivity 已提交
5255
{
5256 5257
	free_page((unsigned long)mmu->pae_root);
	free_page((unsigned long)mmu->lm_root);
A
Avi Kivity 已提交
5258 5259
}

5260
static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
A
Avi Kivity 已提交
5261
{
5262
	struct page *page;
A
Avi Kivity 已提交
5263 5264
	int i;

5265 5266 5267 5268 5269 5270
	mmu->root_hpa = INVALID_PAGE;
	mmu->root_pgd = 0;
	mmu->translate_gpa = translate_gpa;
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
		mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;

5271
	/*
5272 5273 5274 5275
	 * When using PAE paging, the four PDPTEs are treated as 'root' pages,
	 * while the PDP table is a per-vCPU construct that's allocated at MMU
	 * creation.  When emulating 32-bit mode, cr3 is only 32 bits even on
	 * x86_64.  Therefore we need to allocate the PDP table in the first
5276 5277 5278 5279 5280
	 * 4GB of memory, which happens to fit the DMA32 zone.  TDP paging
	 * generally doesn't use PAE paging and can skip allocating the PDP
	 * table.  The main exception, handled here, is SVM's 32-bit NPT.  The
	 * other exception is for shadowing L1's 32-bit or PAE NPT on 64-bit
	 * KVM; that horror is handled on-demand by mmu_alloc_shadow_roots().
5281
	 */
5282
	if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
5283 5284
		return 0;

5285
	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
5286
	if (!page)
5287 5288
		return -ENOMEM;

5289
	mmu->pae_root = page_address(page);
5290
	for (i = 0; i < 4; ++i)
5291
		mmu->pae_root[i] = INVALID_PAGE;
5292

A
Avi Kivity 已提交
5293 5294 5295
	return 0;
}

5296
int kvm_mmu_create(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
5297
{
5298
	int ret;
5299

5300
	vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache;
5301 5302
	vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO;

5303
	vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache;
5304
	vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO;
5305

5306 5307
	vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO;

5308 5309
	vcpu->arch.mmu = &vcpu->arch.root_mmu;
	vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
A
Avi Kivity 已提交
5310

5311
	vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5312

5313
	ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu);
5314 5315 5316
	if (ret)
		return ret;

5317
	ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu);
5318 5319 5320 5321 5322 5323 5324
	if (ret)
		goto fail_allocate_root;

	return ret;
 fail_allocate_root:
	free_mmu_pages(&vcpu->arch.guest_mmu);
	return ret;
A
Avi Kivity 已提交
5325 5326
}

5327
#define BATCH_ZAP_PAGES	10
5328 5329 5330
static void kvm_zap_obsolete_pages(struct kvm *kvm)
{
	struct kvm_mmu_page *sp, *node;
5331
	int nr_zapped, batch = 0;
5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343

restart:
	list_for_each_entry_safe_reverse(sp, node,
	      &kvm->arch.active_mmu_pages, link) {
		/*
		 * No obsolete valid page exists before a newly created page
		 * since active_mmu_pages is a FIFO list.
		 */
		if (!is_obsolete_sp(kvm, sp))
			break;

		/*
5344 5345 5346
		 * Invalid pages should never land back on the list of active
		 * pages.  Skip the bogus page, otherwise we'll get stuck in an
		 * infinite loop if the page gets put back on the list (again).
5347
		 */
5348
		if (WARN_ON(sp->role.invalid))
5349 5350
			continue;

5351 5352 5353 5354 5355 5356
		/*
		 * No need to flush the TLB since we're only zapping shadow
		 * pages with an obsolete generation number and all vCPUS have
		 * loaded a new root, i.e. the shadow pages being zapped cannot
		 * be in active use by the guest.
		 */
5357
		if (batch >= BATCH_ZAP_PAGES &&
5358
		    cond_resched_rwlock_write(&kvm->mmu_lock)) {
5359
			batch = 0;
5360 5361 5362
			goto restart;
		}

5363 5364
		if (__kvm_mmu_prepare_zap_page(kvm, sp,
				&kvm->arch.zapped_obsolete_pages, &nr_zapped)) {
5365
			batch += nr_zapped;
5366
			goto restart;
5367
		}
5368 5369
	}

5370 5371 5372 5373 5374
	/*
	 * Trigger a remote TLB flush before freeing the page tables to ensure
	 * KVM is not in the middle of a lockless shadow page table walk, which
	 * may reference the pages.
	 */
5375
	kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388
}

/*
 * Fast invalidate all shadow pages and use lock-break technique
 * to zap obsolete pages.
 *
 * It's required when memslot is being deleted or VM is being
 * destroyed, in these cases, we should ensure that KVM MMU does
 * not use any resource of the being-deleted slot or all slots
 * after calling the function.
 */
static void kvm_mmu_zap_all_fast(struct kvm *kvm)
{
5389 5390
	lockdep_assert_held(&kvm->slots_lock);

5391
	write_lock(&kvm->mmu_lock);
5392
	trace_kvm_mmu_zap_all_fast(kvm);
5393 5394 5395 5396 5397 5398 5399 5400 5401

	/*
	 * Toggle mmu_valid_gen between '0' and '1'.  Because slots_lock is
	 * held for the entire duration of zapping obsolete pages, it's
	 * impossible for there to be multiple invalid generations associated
	 * with *valid* shadow pages at any given time, i.e. there is exactly
	 * one valid generation and (at most) one invalid generation.
	 */
	kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
5402

5403 5404 5405 5406 5407 5408 5409 5410 5411 5412
	/*
	 * Notify all vcpus to reload its shadow page table and flush TLB.
	 * Then all vcpus will switch to new shadow page table with the new
	 * mmu_valid_gen.
	 *
	 * Note: we need to do this under the protection of mmu_lock,
	 * otherwise, vcpu would purge shadow page but miss tlb flush.
	 */
	kvm_reload_remote_mmus(kvm);

5413
	kvm_zap_obsolete_pages(kvm);
5414

5415
	if (is_tdp_mmu_enabled(kvm))
5416 5417
		kvm_tdp_mmu_zap_all(kvm);

5418
	write_unlock(&kvm->mmu_lock);
5419 5420
}

5421 5422 5423 5424 5425
static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
{
	return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
}

5426
static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5427 5428
			struct kvm_memory_slot *slot,
			struct kvm_page_track_notifier_node *node)
5429
{
5430
	kvm_mmu_zap_all_fast(kvm);
5431 5432
}

5433
void kvm_mmu_init_vm(struct kvm *kvm)
5434
{
5435
	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5436

5437 5438
	kvm_mmu_init_tdp_mmu(kvm);

5439
	node->track_write = kvm_mmu_pte_write;
5440
	node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5441
	kvm_page_track_register_notifier(kvm, node);
5442 5443
}

5444
void kvm_mmu_uninit_vm(struct kvm *kvm)
5445
{
5446
	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5447

5448
	kvm_page_track_unregister_notifier(kvm, node);
5449 5450

	kvm_mmu_uninit_tdp_mmu(kvm);
5451 5452
}

X
Xiao Guangrong 已提交
5453 5454 5455 5456
void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;
5457
	int i;
5458
	bool flush;
X
Xiao Guangrong 已提交
5459

5460
	write_lock(&kvm->mmu_lock);
5461 5462 5463 5464 5465 5466 5467 5468 5469
	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
		kvm_for_each_memslot(memslot, slots) {
			gfn_t start, end;

			start = max(gfn_start, memslot->base_gfn);
			end = min(gfn_end, memslot->base_gfn + memslot->npages);
			if (start >= end)
				continue;
X
Xiao Guangrong 已提交
5470

5471
			slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
5472
						PG_LEVEL_4K,
5473
						KVM_MAX_HUGEPAGE_LEVEL,
5474
						start, end - 1, true);
5475
		}
X
Xiao Guangrong 已提交
5476 5477
	}

5478
	if (is_tdp_mmu_enabled(kvm)) {
5479 5480 5481 5482 5483
		flush = kvm_tdp_mmu_zap_gfn_range(kvm, gfn_start, gfn_end);
		if (flush)
			kvm_flush_remote_tlbs(kvm);
	}

5484
	write_unlock(&kvm->mmu_lock);
X
Xiao Guangrong 已提交
5485 5486
}

5487
static bool slot_rmap_write_protect(struct kvm *kvm,
5488 5489
				    struct kvm_rmap_head *rmap_head,
				    struct kvm_memory_slot *slot)
5490
{
5491
	return __rmap_write_protect(kvm, rmap_head, false);
5492 5493
}

5494
void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5495 5496
				      struct kvm_memory_slot *memslot,
				      int start_level)
A
Avi Kivity 已提交
5497
{
5498
	bool flush;
A
Avi Kivity 已提交
5499

5500
	write_lock(&kvm->mmu_lock);
5501
	flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect,
5502
				start_level, KVM_MAX_HUGEPAGE_LEVEL, false);
5503
	if (is_tdp_mmu_enabled(kvm))
5504
		flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, PG_LEVEL_4K);
5505
	write_unlock(&kvm->mmu_lock);
5506 5507 5508 5509 5510 5511 5512 5513

	/*
	 * We can flush all the TLBs out of the mmu lock without TLB
	 * corruption since we just change the spte from writable to
	 * readonly so that we only need to care the case of changing
	 * spte from present to present (changing the spte from present
	 * to nonpresent will flush all the TLBs immediately), in other
	 * words, the only case we care is mmu_spte_update() where we
W
Wei Yang 已提交
5514
	 * have checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
5515 5516 5517
	 * instead of PT_WRITABLE_MASK, that means it does not depend
	 * on PT_WRITABLE_MASK anymore.
	 */
5518
	if (flush)
5519
		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
A
Avi Kivity 已提交
5520
}
5521

5522
static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5523 5524
					 struct kvm_rmap_head *rmap_head,
					 struct kvm_memory_slot *slot)
5525 5526 5527 5528
{
	u64 *sptep;
	struct rmap_iterator iter;
	int need_tlb_flush = 0;
D
Dan Williams 已提交
5529
	kvm_pfn_t pfn;
5530 5531
	struct kvm_mmu_page *sp;

5532
restart:
5533
	for_each_rmap_spte(rmap_head, &iter, sptep) {
5534
		sp = sptep_to_sp(sptep);
5535 5536 5537
		pfn = spte_to_pfn(*sptep);

		/*
5538 5539 5540 5541 5542
		 * We cannot do huge page mapping for indirect shadow pages,
		 * which are found on the last rmap (level = 1) when not using
		 * tdp; such shadow pages are synced with the page table in
		 * the guest, and the guest page table is using 4K page size
		 * mapping if the indirect sp has level = 1.
5543
		 */
5544
		if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
5545 5546
		    sp->role.level < kvm_mmu_max_mapping_level(kvm, slot, sp->gfn,
							       pfn, PG_LEVEL_NUM)) {
5547
			pte_list_remove(rmap_head, sptep);
5548 5549 5550 5551 5552 5553 5554

			if (kvm_available_flush_tlb_with_range())
				kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
					KVM_PAGES_PER_HPAGE(sp->role.level));
			else
				need_tlb_flush = 1;

5555 5556
			goto restart;
		}
5557 5558 5559 5560 5561 5562
	}

	return need_tlb_flush;
}

void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5563
				   const struct kvm_memory_slot *memslot)
5564
{
5565
	/* FIXME: const-ify all uses of struct kvm_memory_slot.  */
5566 5567
	struct kvm_memory_slot *slot = (struct kvm_memory_slot *)memslot;

5568
	write_lock(&kvm->mmu_lock);
5569
	slot_handle_leaf(kvm, slot, kvm_mmu_zap_collapsible_spte, true);
5570

5571
	if (is_tdp_mmu_enabled(kvm))
5572
		kvm_tdp_mmu_zap_collapsible_sptes(kvm, slot);
5573
	write_unlock(&kvm->mmu_lock);
5574 5575
}

5576 5577 5578 5579
void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
					struct kvm_memory_slot *memslot)
{
	/*
5580 5581 5582 5583 5584
	 * All current use cases for flushing the TLBs for a specific memslot
	 * are related to dirty logging, and do the TLB flush out of mmu_lock.
	 * The interaction between the various operations on memslot must be
	 * serialized by slots_locks to ensure the TLB flush from one operation
	 * is observed by any other operation on the same memslot.
5585 5586
	 */
	lockdep_assert_held(&kvm->slots_lock);
5587 5588
	kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
					   memslot->npages);
5589 5590
}

5591 5592 5593
void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
				   struct kvm_memory_slot *memslot)
{
5594
	bool flush;
5595

5596
	write_lock(&kvm->mmu_lock);
5597
	flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
5598
	if (is_tdp_mmu_enabled(kvm))
5599
		flush |= kvm_tdp_mmu_clear_dirty_slot(kvm, memslot);
5600
	write_unlock(&kvm->mmu_lock);
5601 5602 5603 5604 5605 5606 5607 5608

	/*
	 * It's also safe to flush TLBs out of mmu lock here as currently this
	 * function is only used for dirty logging, in which case flushing TLB
	 * out of mmu lock also guarantees no dirty pages will be lost in
	 * dirty_bitmap.
	 */
	if (flush)
5609
		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5610 5611
}

5612
void kvm_mmu_zap_all(struct kvm *kvm)
5613 5614
{
	struct kvm_mmu_page *sp, *node;
5615
	LIST_HEAD(invalid_list);
5616
	int ign;
5617

5618
	write_lock(&kvm->mmu_lock);
5619
restart:
5620
	list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
5621
		if (WARN_ON(sp->role.invalid))
5622
			continue;
5623
		if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
5624
			goto restart;
5625
		if (cond_resched_rwlock_write(&kvm->mmu_lock))
5626 5627 5628
			goto restart;
	}

5629
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
5630

5631
	if (is_tdp_mmu_enabled(kvm))
5632 5633
		kvm_tdp_mmu_zap_all(kvm);

5634
	write_unlock(&kvm->mmu_lock);
5635 5636
}

5637
void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
5638
{
5639
	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
5640

5641
	gen &= MMIO_SPTE_GEN_MASK;
5642

5643
	/*
5644 5645 5646 5647 5648 5649 5650 5651
	 * Generation numbers are incremented in multiples of the number of
	 * address spaces in order to provide unique generations across all
	 * address spaces.  Strip what is effectively the address space
	 * modifier prior to checking for a wrap of the MMIO generation so
	 * that a wrap in any address space is detected.
	 */
	gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);

5652
	/*
5653
	 * The very rare case: if the MMIO generation number has wrapped,
5654 5655
	 * zap all shadow pages.
	 */
5656
	if (unlikely(gen == 0)) {
5657
		kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
5658
		kvm_mmu_zap_all_fast(kvm);
5659
	}
5660 5661
}

5662 5663
static unsigned long
mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
5664 5665
{
	struct kvm *kvm;
5666
	int nr_to_scan = sc->nr_to_scan;
5667
	unsigned long freed = 0;
5668

J
Junaid Shahid 已提交
5669
	mutex_lock(&kvm_lock);
5670 5671

	list_for_each_entry(kvm, &vm_list, vm_list) {
5672
		int idx;
5673
		LIST_HEAD(invalid_list);
5674

5675 5676 5677 5678 5679 5680 5681 5682
		/*
		 * Never scan more than sc->nr_to_scan VM instances.
		 * Will not hit this condition practically since we do not try
		 * to shrink more than one VM and it is very unlikely to see
		 * !n_used_mmu_pages so many times.
		 */
		if (!nr_to_scan--)
			break;
5683 5684 5685 5686 5687 5688
		/*
		 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
		 * here. We may skip a VM instance errorneosly, but we do not
		 * want to shrink a VM that only started to populate its MMU
		 * anyway.
		 */
5689 5690
		if (!kvm->arch.n_used_mmu_pages &&
		    !kvm_has_zapped_obsolete_pages(kvm))
5691 5692
			continue;

5693
		idx = srcu_read_lock(&kvm->srcu);
5694
		write_lock(&kvm->mmu_lock);
5695

5696 5697 5698 5699 5700 5701
		if (kvm_has_zapped_obsolete_pages(kvm)) {
			kvm_mmu_commit_zap_page(kvm,
			      &kvm->arch.zapped_obsolete_pages);
			goto unlock;
		}

5702
		freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan);
5703

5704
unlock:
5705
		write_unlock(&kvm->mmu_lock);
5706
		srcu_read_unlock(&kvm->srcu, idx);
5707

5708 5709 5710 5711 5712
		/*
		 * unfair on small ones
		 * per-vm shrinkers cry out
		 * sadness comes quickly
		 */
5713 5714
		list_move_tail(&kvm->vm_list, &vm_list);
		break;
5715 5716
	}

J
Junaid Shahid 已提交
5717
	mutex_unlock(&kvm_lock);
5718 5719 5720 5721 5722 5723
	return freed;
}

static unsigned long
mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
{
5724
	return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
5725 5726 5727
}

static struct shrinker mmu_shrinker = {
5728 5729
	.count_objects = mmu_shrink_count,
	.scan_objects = mmu_shrink_scan,
5730 5731 5732
	.seeks = DEFAULT_SEEKS * 10,
};

I
Ingo Molnar 已提交
5733
static void mmu_destroy_caches(void)
5734
{
5735 5736
	kmem_cache_destroy(pte_list_desc_cache);
	kmem_cache_destroy(mmu_page_header_cache);
5737 5738
}

5739 5740 5741 5742 5743
static void kvm_set_mmio_spte_mask(void)
{
	u64 mask;

	/*
5744 5745 5746 5747 5748
	 * Set a reserved PA bit in MMIO SPTEs to generate page faults with
	 * PFEC.RSVD=1 on MMIO accesses.  64-bit PTEs (PAE, x86-64, and EPT
	 * paging) support a maximum of 52 bits of PA, i.e. if the CPU supports
	 * 52-bit physical addresses then there are no reserved PA bits in the
	 * PTEs and so the reserved PA approach must be disabled.
5749
	 */
5750 5751 5752 5753
	if (shadow_phys_bits < 52)
		mask = BIT_ULL(51) | PT_PRESENT_MASK;
	else
		mask = 0;
5754

P
Paolo Bonzini 已提交
5755
	kvm_mmu_set_mmio_spte_mask(mask, ACC_WRITE_MASK | ACC_USER_MASK);
5756 5757
}

P
Paolo Bonzini 已提交
5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791
static bool get_nx_auto_mode(void)
{
	/* Return true when CPU has the bug, and mitigations are ON */
	return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
}

static void __set_nx_huge_pages(bool val)
{
	nx_huge_pages = itlb_multihit_kvm_mitigation = val;
}

static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
{
	bool old_val = nx_huge_pages;
	bool new_val;

	/* In "auto" mode deploy workaround only if CPU has the bug. */
	if (sysfs_streq(val, "off"))
		new_val = 0;
	else if (sysfs_streq(val, "force"))
		new_val = 1;
	else if (sysfs_streq(val, "auto"))
		new_val = get_nx_auto_mode();
	else if (strtobool(val, &new_val) < 0)
		return -EINVAL;

	__set_nx_huge_pages(new_val);

	if (new_val != old_val) {
		struct kvm *kvm;

		mutex_lock(&kvm_lock);

		list_for_each_entry(kvm, &vm_list, vm_list) {
5792
			mutex_lock(&kvm->slots_lock);
P
Paolo Bonzini 已提交
5793
			kvm_mmu_zap_all_fast(kvm);
5794
			mutex_unlock(&kvm->slots_lock);
5795 5796

			wake_up_process(kvm->arch.nx_lpage_recovery_thread);
P
Paolo Bonzini 已提交
5797 5798 5799 5800 5801 5802 5803
		}
		mutex_unlock(&kvm_lock);
	}

	return 0;
}

5804 5805
int kvm_mmu_module_init(void)
{
5806 5807
	int ret = -ENOMEM;

P
Paolo Bonzini 已提交
5808 5809 5810
	if (nx_huge_pages == -1)
		__set_nx_huge_pages(get_nx_auto_mode());

5811 5812 5813 5814 5815 5816 5817 5818 5819 5820
	/*
	 * MMU roles use union aliasing which is, generally speaking, an
	 * undefined behavior. However, we supposedly know how compilers behave
	 * and the current status quo is unlikely to change. Guardians below are
	 * supposed to let us know if the assumption becomes false.
	 */
	BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
	BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
	BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));

5821
	kvm_mmu_reset_all_pte_masks();
5822

5823 5824
	kvm_set_mmio_spte_mask();

5825 5826
	pte_list_desc_cache = kmem_cache_create("pte_list_desc",
					    sizeof(struct pte_list_desc),
5827
					    0, SLAB_ACCOUNT, NULL);
5828
	if (!pte_list_desc_cache)
5829
		goto out;
5830

5831 5832
	mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
						  sizeof(struct kvm_mmu_page),
5833
						  0, SLAB_ACCOUNT, NULL);
5834
	if (!mmu_page_header_cache)
5835
		goto out;
5836

5837
	if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
5838
		goto out;
5839

5840 5841 5842
	ret = register_shrinker(&mmu_shrinker);
	if (ret)
		goto out;
5843

5844 5845
	return 0;

5846
out:
5847
	mmu_destroy_caches();
5848
	return ret;
5849 5850
}

5851
/*
P
Peng Hao 已提交
5852
 * Calculate mmu pages needed for kvm.
5853
 */
5854
unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm)
5855
{
5856 5857
	unsigned long nr_mmu_pages;
	unsigned long nr_pages = 0;
5858
	struct kvm_memslots *slots;
5859
	struct kvm_memory_slot *memslot;
5860
	int i;
5861

5862 5863
	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
5864

5865 5866 5867
		kvm_for_each_memslot(memslot, slots)
			nr_pages += memslot->npages;
	}
5868 5869

	nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
5870
	nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
5871 5872 5873 5874

	return nr_mmu_pages;
}

5875 5876
void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
{
5877
	kvm_mmu_unload(vcpu);
5878 5879
	free_mmu_pages(&vcpu->arch.root_mmu);
	free_mmu_pages(&vcpu->arch.guest_mmu);
5880
	mmu_free_memory_caches(vcpu);
5881 5882 5883 5884 5885 5886 5887
}

void kvm_mmu_module_exit(void)
{
	mmu_destroy_caches();
	percpu_counter_destroy(&kvm_total_used_mmu_pages);
	unregister_shrinker(&mmu_shrinker);
5888 5889
	mmu_audit_disable();
}
5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924

static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp)
{
	unsigned int old_val;
	int err;

	old_val = nx_huge_pages_recovery_ratio;
	err = param_set_uint(val, kp);
	if (err)
		return err;

	if (READ_ONCE(nx_huge_pages) &&
	    !old_val && nx_huge_pages_recovery_ratio) {
		struct kvm *kvm;

		mutex_lock(&kvm_lock);

		list_for_each_entry(kvm, &vm_list, vm_list)
			wake_up_process(kvm->arch.nx_lpage_recovery_thread);

		mutex_unlock(&kvm_lock);
	}

	return err;
}

static void kvm_recover_nx_lpages(struct kvm *kvm)
{
	int rcu_idx;
	struct kvm_mmu_page *sp;
	unsigned int ratio;
	LIST_HEAD(invalid_list);
	ulong to_zap;

	rcu_idx = srcu_read_lock(&kvm->srcu);
5925
	write_lock(&kvm->mmu_lock);
5926 5927 5928

	ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
	to_zap = ratio ? DIV_ROUND_UP(kvm->stat.nx_lpage_splits, ratio) : 0;
5929 5930 5931 5932
	for ( ; to_zap; --to_zap) {
		if (list_empty(&kvm->arch.lpage_disallowed_mmu_pages))
			break;

5933 5934 5935 5936 5937 5938 5939 5940 5941
		/*
		 * We use a separate list instead of just using active_mmu_pages
		 * because the number of lpage_disallowed pages is expected to
		 * be relatively small compared to the total.
		 */
		sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
				      struct kvm_mmu_page,
				      lpage_disallowed_link);
		WARN_ON_ONCE(!sp->lpage_disallowed);
5942
		if (is_tdp_mmu_page(sp)) {
5943 5944
			kvm_tdp_mmu_zap_gfn_range(kvm, sp->gfn,
				sp->gfn + KVM_PAGES_PER_HPAGE(sp->role.level));
5945
		} else {
5946 5947 5948
			kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
			WARN_ON_ONCE(sp->lpage_disallowed);
		}
5949

5950
		if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
5951
			kvm_mmu_commit_zap_page(kvm, &invalid_list);
5952
			cond_resched_rwlock_write(&kvm->mmu_lock);
5953 5954
		}
	}
5955
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
5956

5957
	write_unlock(&kvm->mmu_lock);
5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010
	srcu_read_unlock(&kvm->srcu, rcu_idx);
}

static long get_nx_lpage_recovery_timeout(u64 start_time)
{
	return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio)
		? start_time + 60 * HZ - get_jiffies_64()
		: MAX_SCHEDULE_TIMEOUT;
}

static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
{
	u64 start_time;
	long remaining_time;

	while (true) {
		start_time = get_jiffies_64();
		remaining_time = get_nx_lpage_recovery_timeout(start_time);

		set_current_state(TASK_INTERRUPTIBLE);
		while (!kthread_should_stop() && remaining_time > 0) {
			schedule_timeout(remaining_time);
			remaining_time = get_nx_lpage_recovery_timeout(start_time);
			set_current_state(TASK_INTERRUPTIBLE);
		}

		set_current_state(TASK_RUNNING);

		if (kthread_should_stop())
			return 0;

		kvm_recover_nx_lpages(kvm);
	}
}

int kvm_mmu_post_init_vm(struct kvm *kvm)
{
	int err;

	err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
					  "kvm-nx-lpage-recovery",
					  &kvm->arch.nx_lpage_recovery_thread);
	if (!err)
		kthread_unpark(kvm->arch.nx_lpage_recovery_thread);

	return err;
}

void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
{
	if (kvm->arch.nx_lpage_recovery_thread)
		kthread_stop(kvm->arch.nx_lpage_recovery_thread);
}