mmu.c 169.2 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
A
Avi Kivity 已提交
2 3 4 5 6 7 8 9 10
/*
 * Kernel-based Virtual Machine driver for Linux
 *
 * This module enables machines with Intel VT-x extensions to run virtual
 * machines without emulation or binary translation.
 *
 * MMU support
 *
 * Copyright (C) 2006 Qumranet, Inc.
N
Nicolas Kaiser 已提交
11
 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
A
Avi Kivity 已提交
12 13 14 15 16
 *
 * Authors:
 *   Yaniv Kamay  <yaniv@qumranet.com>
 *   Avi Kivity   <avi@qumranet.com>
 */
A
Avi Kivity 已提交
17

18
#include "irq.h"
19
#include "ioapic.h"
20
#include "mmu.h"
21
#include "mmu_internal.h"
22
#include "tdp_mmu.h"
23
#include "x86.h"
A
Avi Kivity 已提交
24
#include "kvm_cache_regs.h"
25
#include "kvm_emulate.h"
26
#include "cpuid.h"
27
#include "spte.h"
A
Avi Kivity 已提交
28

29
#include <linux/kvm_host.h>
A
Avi Kivity 已提交
30 31 32 33
#include <linux/types.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/highmem.h>
34 35
#include <linux/moduleparam.h>
#include <linux/export.h>
36
#include <linux/swap.h>
M
Marcelo Tosatti 已提交
37
#include <linux/hugetlb.h>
38
#include <linux/compiler.h>
39
#include <linux/srcu.h>
40
#include <linux/slab.h>
41
#include <linux/sched/signal.h>
42
#include <linux/uaccess.h>
43
#include <linux/hash.h>
44
#include <linux/kern_levels.h>
45
#include <linux/kthread.h>
A
Avi Kivity 已提交
46

A
Avi Kivity 已提交
47
#include <asm/page.h>
48
#include <asm/memtype.h>
A
Avi Kivity 已提交
49
#include <asm/cmpxchg.h>
50
#include <asm/io.h>
51
#include <asm/set_memory.h>
52
#include <asm/vmx.h>
53
#include <asm/kvm_page_track.h>
54
#include "trace.h"
A
Avi Kivity 已提交
55

56 57
#include "paging.h"

P
Paolo Bonzini 已提交
58 59
extern bool itlb_multihit_kvm_mitigation;

60
int __read_mostly nx_huge_pages = -1;
61
static uint __read_mostly nx_huge_pages_recovery_period_ms;
62 63 64 65
#ifdef CONFIG_PREEMPT_RT
/* Recovery can cause latency spikes, disable it for PREEMPT_RT.  */
static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
#else
66
static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
67
#endif
P
Paolo Bonzini 已提交
68 69

static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
70
static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp);
P
Paolo Bonzini 已提交
71

72
static const struct kernel_param_ops nx_huge_pages_ops = {
P
Paolo Bonzini 已提交
73 74 75 76
	.set = set_nx_huge_pages,
	.get = param_get_bool,
};

77 78
static const struct kernel_param_ops nx_huge_pages_recovery_param_ops = {
	.set = set_nx_huge_pages_recovery_param,
79 80 81
	.get = param_get_uint,
};

P
Paolo Bonzini 已提交
82 83
module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
__MODULE_PARM_TYPE(nx_huge_pages, "bool");
84
module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_param_ops,
85 86
		&nx_huge_pages_recovery_ratio, 0644);
__MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
87 88 89
module_param_cb(nx_huge_pages_recovery_period_ms, &nx_huge_pages_recovery_param_ops,
		&nx_huge_pages_recovery_period_ms, 0644);
__MODULE_PARM_TYPE(nx_huge_pages_recovery_period_ms, "uint");
P
Paolo Bonzini 已提交
90

91 92 93
static bool __read_mostly force_flush_and_sync_on_reuse;
module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644);

94 95 96 97 98 99 100
/*
 * When setting this variable to true it enables Two-Dimensional-Paging
 * where the hardware walks 2 page tables:
 * 1. the guest-virtual to guest-physical
 * 2. while doing 1. it walks guest-physical to host-physical
 * If the hardware supports that we don't need to do shadow paging.
 */
101
bool tdp_enabled = false;
102

103
static int max_huge_page_level __read_mostly;
104
static int tdp_root_level __read_mostly;
105
static int max_tdp_level __read_mostly;
106

107 108 109 110
enum {
	AUDIT_PRE_PAGE_FAULT,
	AUDIT_POST_PAGE_FAULT,
	AUDIT_PRE_PTE_WRITE,
111 112 113
	AUDIT_POST_PTE_WRITE,
	AUDIT_PRE_SYNC,
	AUDIT_POST_SYNC
114
};
115 116

#ifdef MMU_DEBUG
117
bool dbg = 0;
118
module_param(dbg, bool, 0644);
119
#endif
A
Avi Kivity 已提交
120

121 122
#define PTE_PREFETCH_NUM		8

A
Avi Kivity 已提交
123 124 125
#define PT32_LEVEL_BITS 10

#define PT32_LEVEL_SHIFT(level) \
M
Mike Day 已提交
126
		(PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
A
Avi Kivity 已提交
127

128 129 130
#define PT32_LVL_OFFSET_MASK(level) \
	(PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
131 132 133 134 135 136 137 138

#define PT32_INDEX(address, level)\
	(((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))


#define PT32_BASE_ADDR_MASK PAGE_MASK
#define PT32_DIR_BASE_ADDR_MASK \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
139 140 141
#define PT32_LVL_ADDR_MASK(level) \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
					    * PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
142

143 144
#include <trace/events/kvm.h>

145
/* make pte_list_desc fit well in cache lines */
146
#define PTE_LIST_EXT 14
147

148 149 150 151 152
/*
 * Slight optimization of cacheline layout, by putting `more' and `spte_count'
 * at the start; then accessing it will only use one single cacheline for
 * either full (entries==PTE_LIST_EXT) case or entries<=6.
 */
153 154
struct pte_list_desc {
	struct pte_list_desc *more;
155 156 157 158 159 160
	/*
	 * Stores number of entries stored in the pte_list_desc.  No need to be
	 * u64 but just for easier alignment.  When PTE_LIST_EXT, means full.
	 */
	u64 spte_count;
	u64 *sptes[PTE_LIST_EXT];
161 162
};

163 164 165 166
struct kvm_shadow_walk_iterator {
	u64 addr;
	hpa_t shadow_addr;
	u64 *sptep;
167
	int level;
168 169 170
	unsigned index;
};

171 172 173 174 175 176 177
#define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker)     \
	for (shadow_walk_init_using_root(&(_walker), (_vcpu),              \
					 (_root), (_addr));                \
	     shadow_walk_okay(&(_walker));			           \
	     shadow_walk_next(&(_walker)))

#define for_each_shadow_entry(_vcpu, _addr, _walker)            \
178 179 180 181
	for (shadow_walk_init(&(_walker), _vcpu, _addr);	\
	     shadow_walk_okay(&(_walker));			\
	     shadow_walk_next(&(_walker)))

182 183 184 185 186 187
#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)	\
	for (shadow_walk_init(&(_walker), _vcpu, _addr);		\
	     shadow_walk_okay(&(_walker)) &&				\
		({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });	\
	     __shadow_walk_next(&(_walker), spte))

188
static struct kmem_cache *pte_list_desc_cache;
189
struct kmem_cache *mmu_page_header_cache;
190
static struct percpu_counter kvm_total_used_mmu_pages;
191

192
static void mmu_spte_set(u64 *sptep, u64 spte);
193 194
static union kvm_mmu_page_role
kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
195

196 197 198 199 200 201
struct kvm_mmu_role_regs {
	const unsigned long cr0;
	const unsigned long cr4;
	const u64 efer;
};

202 203 204
#define CREATE_TRACE_POINTS
#include "mmutrace.h"

205 206 207 208 209 210
/*
 * Yes, lot's of underscores.  They're a hint that you probably shouldn't be
 * reading from the role_regs.  Once the mmu_role is constructed, it becomes
 * the single source of truth for the MMU's state.
 */
#define BUILD_MMU_ROLE_REGS_ACCESSOR(reg, name, flag)			\
211
static inline bool __maybe_unused ____is_##reg##_##name(struct kvm_mmu_role_regs *regs)\
212 213 214 215 216 217 218 219 220 221 222 223 224 225
{									\
	return !!(regs->reg & flag);					\
}
BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, pg, X86_CR0_PG);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, wp, X86_CR0_WP);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pse, X86_CR4_PSE);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pae, X86_CR4_PAE);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smep, X86_CR4_SMEP);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smap, X86_CR4_SMAP);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pke, X86_CR4_PKE);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, la57, X86_CR4_LA57);
BUILD_MMU_ROLE_REGS_ACCESSOR(efer, nx, EFER_NX);
BUILD_MMU_ROLE_REGS_ACCESSOR(efer, lma, EFER_LMA);

226 227 228 229 230 231 232
/*
 * The MMU itself (with a valid role) is the single source of truth for the
 * MMU.  Do not use the regs used to build the MMU/role, nor the vCPU.  The
 * regs don't account for dependencies, e.g. clearing CR4 bits if CR0.PG=1,
 * and the vCPU may be incorrect/irrelevant.
 */
#define BUILD_MMU_ROLE_ACCESSOR(base_or_ext, reg, name)		\
233
static inline bool __maybe_unused is_##reg##_##name(struct kvm_mmu *mmu)	\
234 235 236 237 238 239 240 241 242 243 244 245 246
{								\
	return !!(mmu->mmu_role. base_or_ext . reg##_##name);	\
}
BUILD_MMU_ROLE_ACCESSOR(ext,  cr0, pg);
BUILD_MMU_ROLE_ACCESSOR(base, cr0, wp);
BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, pse);
BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, pae);
BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, smep);
BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, smap);
BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, pke);
BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, la57);
BUILD_MMU_ROLE_ACCESSOR(base, efer, nx);

247 248 249 250 251 252 253 254 255 256
static struct kvm_mmu_role_regs vcpu_to_role_regs(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu_role_regs regs = {
		.cr0 = kvm_read_cr0_bits(vcpu, KVM_MMU_CR0_ROLE_BITS),
		.cr4 = kvm_read_cr4_bits(vcpu, KVM_MMU_CR4_ROLE_BITS),
		.efer = vcpu->arch.efer,
	};

	return regs;
}
257

258 259 260 261 262 263 264 265 266 267 268 269
static int role_regs_to_root_level(struct kvm_mmu_role_regs *regs)
{
	if (!____is_cr0_pg(regs))
		return 0;
	else if (____is_efer_lma(regs))
		return ____is_cr4_la57(regs) ? PT64_ROOT_5LEVEL :
					       PT64_ROOT_4LEVEL;
	else if (____is_cr4_pae(regs))
		return PT32E_ROOT_LEVEL;
	else
		return PT32_ROOT_LEVEL;
}
270 271 272

static inline bool kvm_available_flush_tlb_with_range(void)
{
273
	return kvm_x86_ops.tlb_remote_flush_with_range;
274 275 276 277 278 279 280
}

static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
		struct kvm_tlb_range *range)
{
	int ret = -ENOTSUPP;

281
	if (range && kvm_x86_ops.tlb_remote_flush_with_range)
282
		ret = static_call(kvm_x86_tlb_remote_flush_with_range)(kvm, range);
283 284 285 286 287

	if (ret)
		kvm_flush_remote_tlbs(kvm);
}

288
void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
289 290 291 292 293 294 295 296 297 298
		u64 start_gfn, u64 pages)
{
	struct kvm_tlb_range range;

	range.start_gfn = start_gfn;
	range.pages = pages;

	kvm_flush_remote_tlbs_with_range(kvm, &range);
}

299 300 301
static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
			   unsigned int access)
{
302
	u64 spte = make_mmio_spte(vcpu, gfn, access);
303

304 305
	trace_mark_mmio_spte(sptep, gfn, spte);
	mmu_spte_set(sptep, spte);
306 307 308 309
}

static gfn_t get_mmio_spte_gfn(u64 spte)
{
310
	u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
311

312
	gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)
313 314 315
	       & shadow_nonpresent_or_rsvd_mask;

	return gpa >> PAGE_SHIFT;
316 317 318 319
}

static unsigned get_mmio_spte_access(u64 spte)
{
320
	return spte & shadow_mmio_access_mask;
321 322
}

323
static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
324
{
325
	u64 kvm_gen, spte_gen, gen;
326

327 328 329
	gen = kvm_vcpu_memslots(vcpu)->generation;
	if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
		return false;
330

331
	kvm_gen = gen & MMIO_SPTE_GEN_MASK;
332 333 334 335
	spte_gen = get_mmio_spte_generation(spte);

	trace_check_mmio_spte(spte, kvm_gen, spte_gen);
	return likely(kvm_gen == spte_gen);
336 337
}

A
Avi Kivity 已提交
338 339 340 341 342
static int is_cpuid_PSE36(void)
{
	return 1;
}

343 344 345 346 347 348 349
static gfn_t pse36_gfn_delta(u32 gpte)
{
	int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;

	return (gpte & PT32_DIR_PSE36_MASK) << shift;
}

350
#ifdef CONFIG_X86_64
A
Avi Kivity 已提交
351
static void __set_spte(u64 *sptep, u64 spte)
352
{
353
	WRITE_ONCE(*sptep, spte);
354 355
}

356
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
357
{
358
	WRITE_ONCE(*sptep, spte);
359 360 361 362 363 364
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	return xchg(sptep, spte);
}
365 366 367

static u64 __get_spte_lockless(u64 *sptep)
{
368
	return READ_ONCE(*sptep);
369
}
370
#else
371 372 373 374 375 376 377
union split_spte {
	struct {
		u32 spte_low;
		u32 spte_high;
	};
	u64 spte;
};
378

379 380
static void count_spte_clear(u64 *sptep, u64 spte)
{
381
	struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
382 383 384 385 386 387 388 389 390

	if (is_shadow_present_pte(spte))
		return;

	/* Ensure the spte is completely set before we increase the count */
	smp_wmb();
	sp->clear_spte_count++;
}

391 392 393
static void __set_spte(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;
394

395 396 397 398 399 400 401 402 403 404 405 406
	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	ssptep->spte_high = sspte.spte_high;

	/*
	 * If we map the spte from nonpresent to present, We should store
	 * the high bits firstly, then set present bit, so cpu can not
	 * fetch this spte while we are setting the spte.
	 */
	smp_wmb();

407
	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
408 409
}

410 411 412 413 414 415 416
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

417
	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
418 419 420 421 422 423 424 425

	/*
	 * If we map the spte from present to nonpresent, we should clear
	 * present bit firstly to avoid vcpu fetch the old high bits.
	 */
	smp_wmb();

	ssptep->spte_high = sspte.spte_high;
426
	count_spte_clear(sptep, spte);
427 428 429 430 431 432 433 434 435 436 437
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte, orig;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	/* xchg acts as a barrier before the setting of the high bits */
	orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
438 439
	orig.spte_high = ssptep->spte_high;
	ssptep->spte_high = sspte.spte_high;
440
	count_spte_clear(sptep, spte);
441 442 443

	return orig.spte;
}
444 445 446

/*
 * The idea using the light way get the spte on x86_32 guest is from
447
 * gup_get_pte (mm/gup.c).
448 449 450 451 452 453 454 455 456 457 458 459 460 461
 *
 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
 * coalesces them and we are running out of the MMU lock.  Therefore
 * we need to protect against in-progress updates of the spte.
 *
 * Reading the spte while an update is in progress may get the old value
 * for the high part of the spte.  The race is fine for a present->non-present
 * change (because the high part of the spte is ignored for non-present spte),
 * but for a present->present change we must reread the spte.
 *
 * All such changes are done in two steps (present->non-present and
 * non-present->present), hence it is enough to count the number of
 * present->non-present updates: if it changed while reading the spte,
 * we might have hit the race.  This is done using clear_spte_count.
462 463 464
 */
static u64 __get_spte_lockless(u64 *sptep)
{
465
	struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
	union split_spte spte, *orig = (union split_spte *)sptep;
	int count;

retry:
	count = sp->clear_spte_count;
	smp_rmb();

	spte.spte_low = orig->spte_low;
	smp_rmb();

	spte.spte_high = orig->spte_high;
	smp_rmb();

	if (unlikely(spte.spte_low != orig->spte_low ||
	      count != sp->clear_spte_count))
		goto retry;

	return spte.spte;
}
485 486
#endif

487 488
static bool spte_has_volatile_bits(u64 spte)
{
489 490 491
	if (!is_shadow_present_pte(spte))
		return false;

492
	/*
493
	 * Always atomically update spte if it can be updated
494 495 496 497
	 * out of mmu-lock, it can ensure dirty bit is not lost,
	 * also, it can help us to get a stable is_writable_pte()
	 * to ensure tlb flush is not missed.
	 */
498 499
	if (spte_can_locklessly_be_made_writable(spte) ||
	    is_access_track_spte(spte))
500 501
		return true;

502
	if (spte_ad_enabled(spte)) {
503 504 505 506
		if ((spte & shadow_accessed_mask) == 0 ||
	    	    (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
			return true;
	}
507

508
	return false;
509 510
}

511 512 513 514 515 516 517 518 519 520 521 522
/* Rules for using mmu_spte_set:
 * Set the sptep from nonpresent to present.
 * Note: the sptep being assigned *must* be either not present
 * or in a state where the hardware will not attempt to update
 * the spte.
 */
static void mmu_spte_set(u64 *sptep, u64 new_spte)
{
	WARN_ON(is_shadow_present_pte(*sptep));
	__set_spte(sptep, new_spte);
}

523 524 525
/*
 * Update the SPTE (excluding the PFN), but do not track changes in its
 * accessed/dirty status.
526
 */
527
static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
528
{
529
	u64 old_spte = *sptep;
530

531
	WARN_ON(!is_shadow_present_pte(new_spte));
532
	check_spte_writable_invariants(new_spte);
533

534 535
	if (!is_shadow_present_pte(old_spte)) {
		mmu_spte_set(sptep, new_spte);
536
		return old_spte;
537
	}
538

539
	if (!spte_has_volatile_bits(old_spte))
540
		__update_clear_spte_fast(sptep, new_spte);
541
	else
542
		old_spte = __update_clear_spte_slow(sptep, new_spte);
543

544 545
	WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));

546 547 548 549 550 551
	return old_spte;
}

/* Rules for using mmu_spte_update:
 * Update the state bits, it means the mapped pfn is not changed.
 *
552 553 554
 * Whenever an MMU-writable SPTE is overwritten with a read-only SPTE, remote
 * TLBs must be flushed. Otherwise rmap_write_protect will find a read-only
 * spte, even though the writable spte might be cached on a CPU's TLB.
555 556 557 558 559 560 561 562 563 564 565
 *
 * Returns true if the TLB needs to be flushed
 */
static bool mmu_spte_update(u64 *sptep, u64 new_spte)
{
	bool flush = false;
	u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);

	if (!is_shadow_present_pte(old_spte))
		return false;

566 567
	/*
	 * For the spte updated out of mmu-lock is safe, since
568
	 * we always atomically update it, see the comments in
569 570
	 * spte_has_volatile_bits().
	 */
571
	if (spte_can_locklessly_be_made_writable(old_spte) &&
572
	      !is_writable_pte(new_spte))
573
		flush = true;
574

575
	/*
576
	 * Flush TLB when accessed/dirty states are changed in the page tables,
577 578 579
	 * to guarantee consistency between TLB and page tables.
	 */

580 581
	if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
		flush = true;
582
		kvm_set_pfn_accessed(spte_to_pfn(old_spte));
583 584 585 586
	}

	if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
		flush = true;
587
		kvm_set_pfn_dirty(spte_to_pfn(old_spte));
588
	}
589

590
	return flush;
591 592
}

593 594 595 596
/*
 * Rules for using mmu_spte_clear_track_bits:
 * It sets the sptep from present to nonpresent, and track the
 * state bits, it is used to clear the last level sptep.
597
 * Returns the old PTE.
598
 */
599
static int mmu_spte_clear_track_bits(struct kvm *kvm, u64 *sptep)
600
{
D
Dan Williams 已提交
601
	kvm_pfn_t pfn;
602
	u64 old_spte = *sptep;
603
	int level = sptep_to_sp(sptep)->role.level;
604 605

	if (!spte_has_volatile_bits(old_spte))
606
		__update_clear_spte_fast(sptep, 0ull);
607
	else
608
		old_spte = __update_clear_spte_slow(sptep, 0ull);
609

610
	if (!is_shadow_present_pte(old_spte))
611
		return old_spte;
612

613 614
	kvm_update_page_stats(kvm, level, -1);

615
	pfn = spte_to_pfn(old_spte);
616 617 618 619 620 621

	/*
	 * KVM does not hold the refcount of the page used by
	 * kvm mmu, before reclaiming the page, we should
	 * unmap it from mmu first.
	 */
622
	WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
623

624
	if (is_accessed_spte(old_spte))
625
		kvm_set_pfn_accessed(pfn);
626 627

	if (is_dirty_spte(old_spte))
628
		kvm_set_pfn_dirty(pfn);
629

630
	return old_spte;
631 632 633 634 635 636 637 638 639
}

/*
 * Rules for using mmu_spte_clear_no_track:
 * Directly clear spte without caring the state bits of sptep,
 * it is used to set the upper level spte.
 */
static void mmu_spte_clear_no_track(u64 *sptep)
{
640
	__update_clear_spte_fast(sptep, 0ull);
641 642
}

643 644 645 646 647
static u64 mmu_spte_get_lockless(u64 *sptep)
{
	return __get_spte_lockless(sptep);
}

648 649 650 651 652 653 654 655
/* Returns the Accessed status of the PTE and resets it at the same time. */
static bool mmu_spte_age(u64 *sptep)
{
	u64 spte = mmu_spte_get_lockless(sptep);

	if (!is_accessed_spte(spte))
		return false;

656
	if (spte_ad_enabled(spte)) {
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673
		clear_bit((ffs(shadow_accessed_mask) - 1),
			  (unsigned long *)sptep);
	} else {
		/*
		 * Capture the dirty status of the page, so that it doesn't get
		 * lost when the SPTE is marked for access tracking.
		 */
		if (is_writable_pte(spte))
			kvm_set_pfn_dirty(spte_to_pfn(spte));

		spte = mark_spte_for_access_track(spte);
		mmu_spte_update_no_track(sptep, spte);
	}

	return true;
}

674 675
static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
{
676 677 678 679 680 681 682 683
	if (is_tdp_mmu(vcpu->arch.mmu)) {
		kvm_tdp_mmu_walk_lockless_begin();
	} else {
		/*
		 * Prevent page table teardown by making any free-er wait during
		 * kvm_flush_remote_tlbs() IPI to all active vcpus.
		 */
		local_irq_disable();
684

685 686 687 688 689 690
		/*
		 * Make sure a following spte read is not reordered ahead of the write
		 * to vcpu->mode.
		 */
		smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
	}
691 692 693 694
}

static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
{
695 696 697 698 699 700 701 702 703 704 705
	if (is_tdp_mmu(vcpu->arch.mmu)) {
		kvm_tdp_mmu_walk_lockless_end();
	} else {
		/*
		 * Make sure the write to vcpu->mode is not reordered in front of
		 * reads to sptes.  If it does, kvm_mmu_commit_zap_page() can see us
		 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
		 */
		smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
		local_irq_enable();
	}
706 707
}

708
static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect)
709
{
710 711
	int r;

712
	/* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */
713 714
	r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
				       1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM);
715
	if (r)
716
		return r;
717 718
	r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache,
				       PT64_ROOT_MAX_LEVEL);
719
	if (r)
720
		return r;
721
	if (maybe_indirect) {
722 723
		r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_gfn_array_cache,
					       PT64_ROOT_MAX_LEVEL);
724 725 726
		if (r)
			return r;
	}
727 728
	return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
					  PT64_ROOT_MAX_LEVEL);
729 730 731 732
}

static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
{
733 734 735 736
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache);
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache);
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_gfn_array_cache);
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
737 738
}

739
static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
740
{
741
	return kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
742 743
}

744
static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
745
{
746
	kmem_cache_free(pte_list_desc_cache, pte_list_desc);
747 748
}

749 750 751 752 753 754 755 756 757 758
static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
{
	if (!sp->role.direct)
		return sp->gfns[index];

	return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
}

static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
{
759
	if (!sp->role.direct) {
760
		sp->gfns[index] = gfn;
761 762 763 764 765 766 767 768
		return;
	}

	if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
		pr_err_ratelimited("gfn mismatch under direct page %llx "
				   "(expected %llx, got %llx)\n",
				   sp->gfn,
				   kvm_mmu_page_get_gfn(sp, index), gfn);
769 770
}

M
Marcelo Tosatti 已提交
771
/*
772 773
 * Return the pointer to the large page information for a given gfn,
 * handling slots that are not large page aligned.
M
Marcelo Tosatti 已提交
774
 */
775
static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
776
		const struct kvm_memory_slot *slot, int level)
M
Marcelo Tosatti 已提交
777 778 779
{
	unsigned long idx;

780
	idx = gfn_to_index(gfn, slot->base_gfn, level);
781
	return &slot->arch.lpage_info[level - 2][idx];
M
Marcelo Tosatti 已提交
782 783
}

784
static void update_gfn_disallow_lpage_count(const struct kvm_memory_slot *slot,
785 786 787 788 789
					    gfn_t gfn, int count)
{
	struct kvm_lpage_info *linfo;
	int i;

790
	for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
791 792 793 794 795 796
		linfo = lpage_info_slot(gfn, slot, i);
		linfo->disallow_lpage += count;
		WARN_ON(linfo->disallow_lpage < 0);
	}
}

797
void kvm_mmu_gfn_disallow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn)
798 799 800 801
{
	update_gfn_disallow_lpage_count(slot, gfn, 1);
}

802
void kvm_mmu_gfn_allow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn)
803 804 805 806
{
	update_gfn_disallow_lpage_count(slot, gfn, -1);
}

807
static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
M
Marcelo Tosatti 已提交
808
{
809
	struct kvm_memslots *slots;
810
	struct kvm_memory_slot *slot;
811
	gfn_t gfn;
M
Marcelo Tosatti 已提交
812

813
	kvm->arch.indirect_shadow_pages++;
814
	gfn = sp->gfn;
815 816
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
817 818

	/* the non-leaf shadow pages are keeping readonly. */
819
	if (sp->role.level > PG_LEVEL_4K)
820 821 822
		return kvm_slot_page_track_add_page(kvm, slot, gfn,
						    KVM_PAGE_TRACK_WRITE);

823
	kvm_mmu_gfn_disallow_lpage(slot, gfn);
M
Marcelo Tosatti 已提交
824 825
}

826
void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
P
Paolo Bonzini 已提交
827 828 829 830 831
{
	if (sp->lpage_disallowed)
		return;

	++kvm->stat.nx_lpage_splits;
832 833
	list_add_tail(&sp->lpage_disallowed_link,
		      &kvm->arch.lpage_disallowed_mmu_pages);
P
Paolo Bonzini 已提交
834 835 836
	sp->lpage_disallowed = true;
}

837
static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
M
Marcelo Tosatti 已提交
838
{
839
	struct kvm_memslots *slots;
840
	struct kvm_memory_slot *slot;
841
	gfn_t gfn;
M
Marcelo Tosatti 已提交
842

843
	kvm->arch.indirect_shadow_pages--;
844
	gfn = sp->gfn;
845 846
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
847
	if (sp->role.level > PG_LEVEL_4K)
848 849 850
		return kvm_slot_page_track_remove_page(kvm, slot, gfn,
						       KVM_PAGE_TRACK_WRITE);

851
	kvm_mmu_gfn_allow_lpage(slot, gfn);
M
Marcelo Tosatti 已提交
852 853
}

854
void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
P
Paolo Bonzini 已提交
855 856 857
{
	--kvm->stat.nx_lpage_splits;
	sp->lpage_disallowed = false;
858
	list_del(&sp->lpage_disallowed_link);
P
Paolo Bonzini 已提交
859 860
}

861 862 863
static struct kvm_memory_slot *
gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
			    bool no_dirty_log)
M
Marcelo Tosatti 已提交
864 865
{
	struct kvm_memory_slot *slot;
866

867
	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
868 869
	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
		return NULL;
870
	if (no_dirty_log && kvm_slot_dirty_track_enabled(slot))
871
		return NULL;
872 873 874 875

	return slot;
}

876
/*
877
 * About rmap_head encoding:
878
 *
879 880
 * If the bit zero of rmap_head->val is clear, then it points to the only spte
 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
881
 * pte_list_desc containing more mappings.
882 883 884 885
 */

/*
 * Returns the number of pointers in the rmap chain, not counting the new one.
886
 */
887
static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
888
			struct kvm_rmap_head *rmap_head)
889
{
890
	struct pte_list_desc *desc;
891
	int count = 0;
892

893
	if (!rmap_head->val) {
894
		rmap_printk("%p %llx 0->1\n", spte, *spte);
895 896
		rmap_head->val = (unsigned long)spte;
	} else if (!(rmap_head->val & 1)) {
897
		rmap_printk("%p %llx 1->many\n", spte, *spte);
898
		desc = mmu_alloc_pte_list_desc(vcpu);
899
		desc->sptes[0] = (u64 *)rmap_head->val;
A
Avi Kivity 已提交
900
		desc->sptes[1] = spte;
901
		desc->spte_count = 2;
902
		rmap_head->val = (unsigned long)desc | 1;
903
		++count;
904
	} else {
905
		rmap_printk("%p %llx many->many\n", spte, *spte);
906
		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
907
		while (desc->spte_count == PTE_LIST_EXT) {
908
			count += PTE_LIST_EXT;
909 910 911
			if (!desc->more) {
				desc->more = mmu_alloc_pte_list_desc(vcpu);
				desc = desc->more;
912
				desc->spte_count = 0;
913 914
				break;
			}
915 916
			desc = desc->more;
		}
917 918
		count += desc->spte_count;
		desc->sptes[desc->spte_count++] = spte;
919
	}
920
	return count;
921 922
}

923
static void
924 925 926
pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
			   struct pte_list_desc *desc, int i,
			   struct pte_list_desc *prev_desc)
927
{
928
	int j = desc->spte_count - 1;
929

A
Avi Kivity 已提交
930 931
	desc->sptes[i] = desc->sptes[j];
	desc->sptes[j] = NULL;
932 933
	desc->spte_count--;
	if (desc->spte_count)
934 935
		return;
	if (!prev_desc && !desc->more)
936
		rmap_head->val = 0;
937 938 939 940
	else
		if (prev_desc)
			prev_desc->more = desc->more;
		else
941
			rmap_head->val = (unsigned long)desc->more | 1;
942
	mmu_free_pte_list_desc(desc);
943 944
}

945
static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
946
{
947 948
	struct pte_list_desc *desc;
	struct pte_list_desc *prev_desc;
949 950
	int i;

951
	if (!rmap_head->val) {
952
		pr_err("%s: %p 0->BUG\n", __func__, spte);
953
		BUG();
954
	} else if (!(rmap_head->val & 1)) {
955
		rmap_printk("%p 1->0\n", spte);
956
		if ((u64 *)rmap_head->val != spte) {
957
			pr_err("%s:  %p 1->BUG\n", __func__, spte);
958 959
			BUG();
		}
960
		rmap_head->val = 0;
961
	} else {
962
		rmap_printk("%p many->many\n", spte);
963
		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
964 965
		prev_desc = NULL;
		while (desc) {
966
			for (i = 0; i < desc->spte_count; ++i) {
A
Avi Kivity 已提交
967
				if (desc->sptes[i] == spte) {
968 969
					pte_list_desc_remove_entry(rmap_head,
							desc, i, prev_desc);
970 971
					return;
				}
972
			}
973 974 975
			prev_desc = desc;
			desc = desc->more;
		}
976
		pr_err("%s: %p many->many\n", __func__, spte);
977 978 979 980
		BUG();
	}
}

981 982
static void pte_list_remove(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			    u64 *sptep)
983
{
984
	mmu_spte_clear_track_bits(kvm, sptep);
985 986 987
	__pte_list_remove(sptep, rmap_head);
}

P
Peter Xu 已提交
988
/* Return true if rmap existed, false otherwise */
989
static bool pte_list_destroy(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
P
Peter Xu 已提交
990 991 992 993 994 995 996 997
{
	struct pte_list_desc *desc, *next;
	int i;

	if (!rmap_head->val)
		return false;

	if (!(rmap_head->val & 1)) {
998
		mmu_spte_clear_track_bits(kvm, (u64 *)rmap_head->val);
P
Peter Xu 已提交
999 1000 1001 1002 1003 1004 1005
		goto out;
	}

	desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);

	for (; desc; desc = next) {
		for (i = 0; i < desc->spte_count; i++)
1006
			mmu_spte_clear_track_bits(kvm, desc->sptes[i]);
P
Peter Xu 已提交
1007 1008 1009 1010 1011 1012 1013 1014 1015
		next = desc->more;
		mmu_free_pte_list_desc(desc);
	}
out:
	/* rmap_head is meaningless now, remember to reset it */
	rmap_head->val = 0;
	return true;
}

1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
unsigned int pte_list_count(struct kvm_rmap_head *rmap_head)
{
	struct pte_list_desc *desc;
	unsigned int count = 0;

	if (!rmap_head->val)
		return 0;
	else if (!(rmap_head->val & 1))
		return 1;

	desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);

	while (desc) {
		count += desc->spte_count;
		desc = desc->more;
	}

	return count;
}

1036 1037
static struct kvm_rmap_head *gfn_to_rmap(gfn_t gfn, int level,
					 const struct kvm_memory_slot *slot)
1038
{
1039
	unsigned long idx;
1040

1041
	idx = gfn_to_index(gfn, slot->base_gfn, level);
1042
	return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
1043 1044
}

1045 1046
static bool rmap_can_add(struct kvm_vcpu *vcpu)
{
1047
	struct kvm_mmu_memory_cache *mc;
1048

1049
	mc = &vcpu->arch.mmu_pte_list_desc_cache;
1050
	return kvm_mmu_memory_cache_nr_free_objects(mc);
1051 1052
}

1053 1054
static void rmap_remove(struct kvm *kvm, u64 *spte)
{
1055 1056
	struct kvm_memslots *slots;
	struct kvm_memory_slot *slot;
1057 1058
	struct kvm_mmu_page *sp;
	gfn_t gfn;
1059
	struct kvm_rmap_head *rmap_head;
1060

1061
	sp = sptep_to_sp(spte);
1062
	gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1063 1064

	/*
1065 1066 1067
	 * Unlike rmap_add, rmap_remove does not run in the context of a vCPU
	 * so we have to determine which memslots to use based on context
	 * information in sp->role.
1068 1069 1070 1071
	 */
	slots = kvm_memslots_for_spte_role(kvm, sp->role);

	slot = __gfn_to_memslot(slots, gfn);
1072
	rmap_head = gfn_to_rmap(gfn, sp->role.level, slot);
1073

1074
	__pte_list_remove(spte, rmap_head);
1075 1076
}

1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
/*
 * Used by the following functions to iterate through the sptes linked by a
 * rmap.  All fields are private and not assumed to be used outside.
 */
struct rmap_iterator {
	/* private fields */
	struct pte_list_desc *desc;	/* holds the sptep if not NULL */
	int pos;			/* index of the sptep */
};

/*
 * Iteration must be started by this function.  This should also be used after
 * removing/dropping sptes from the rmap link because in such cases the
M
Miaohe Lin 已提交
1090
 * information in the iterator may not be valid.
1091 1092 1093
 *
 * Returns sptep if found, NULL otherwise.
 */
1094 1095
static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
			   struct rmap_iterator *iter)
1096
{
1097 1098
	u64 *sptep;

1099
	if (!rmap_head->val)
1100 1101
		return NULL;

1102
	if (!(rmap_head->val & 1)) {
1103
		iter->desc = NULL;
1104 1105
		sptep = (u64 *)rmap_head->val;
		goto out;
1106 1107
	}

1108
	iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1109
	iter->pos = 0;
1110 1111 1112 1113
	sptep = iter->desc->sptes[iter->pos];
out:
	BUG_ON(!is_shadow_present_pte(*sptep));
	return sptep;
1114 1115 1116 1117 1118 1119 1120 1121 1122
}

/*
 * Must be used with a valid iterator: e.g. after rmap_get_first().
 *
 * Returns sptep if found, NULL otherwise.
 */
static u64 *rmap_get_next(struct rmap_iterator *iter)
{
1123 1124
	u64 *sptep;

1125 1126 1127 1128 1129
	if (iter->desc) {
		if (iter->pos < PTE_LIST_EXT - 1) {
			++iter->pos;
			sptep = iter->desc->sptes[iter->pos];
			if (sptep)
1130
				goto out;
1131 1132 1133 1134 1135 1136 1137
		}

		iter->desc = iter->desc->more;

		if (iter->desc) {
			iter->pos = 0;
			/* desc->sptes[0] cannot be NULL */
1138 1139
			sptep = iter->desc->sptes[iter->pos];
			goto out;
1140 1141 1142 1143
		}
	}

	return NULL;
1144 1145 1146
out:
	BUG_ON(!is_shadow_present_pte(*sptep));
	return sptep;
1147 1148
}

1149 1150
#define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)			\
	for (_spte_ = rmap_get_first(_rmap_head_, _iter_);		\
1151
	     _spte_; _spte_ = rmap_get_next(_iter_))
1152

1153
static void drop_spte(struct kvm *kvm, u64 *sptep)
1154
{
1155
	u64 old_spte = mmu_spte_clear_track_bits(kvm, sptep);
1156 1157

	if (is_shadow_present_pte(old_spte))
1158
		rmap_remove(kvm, sptep);
A
Avi Kivity 已提交
1159 1160
}

1161 1162 1163 1164

static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
{
	if (is_large_pte(*sptep)) {
1165
		WARN_ON(sptep_to_sp(sptep)->role.level == PG_LEVEL_4K);
1166 1167 1168 1169 1170 1171 1172 1173 1174
		drop_spte(kvm, sptep);
		return true;
	}

	return false;
}

static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
{
1175
	if (__drop_large_spte(vcpu->kvm, sptep)) {
1176
		struct kvm_mmu_page *sp = sptep_to_sp(sptep);
1177 1178 1179 1180

		kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
			KVM_PAGES_PER_HPAGE(sp->role.level));
	}
1181 1182 1183
}

/*
1184
 * Write-protect on the specified @sptep, @pt_protect indicates whether
1185
 * spte write-protection is caused by protecting shadow page table.
1186
 *
T
Tiejun Chen 已提交
1187
 * Note: write protection is difference between dirty logging and spte
1188 1189 1190 1191 1192
 * protection:
 * - for dirty logging, the spte can be set to writable at anytime if
 *   its dirty bitmap is properly set.
 * - for spte protection, the spte can be writable only after unsync-ing
 *   shadow page.
1193
 *
1194
 * Return true if tlb need be flushed.
1195
 */
1196
static bool spte_write_protect(u64 *sptep, bool pt_protect)
1197 1198 1199
{
	u64 spte = *sptep;

1200
	if (!is_writable_pte(spte) &&
1201
	      !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1202 1203
		return false;

1204
	rmap_printk("spte %p %llx\n", sptep, *sptep);
1205

1206
	if (pt_protect)
1207
		spte &= ~shadow_mmu_writable_mask;
1208
	spte = spte & ~PT_WRITABLE_MASK;
1209

1210
	return mmu_spte_update(sptep, spte);
1211 1212
}

1213 1214
static bool rmap_write_protect(struct kvm_rmap_head *rmap_head,
			       bool pt_protect)
1215
{
1216 1217
	u64 *sptep;
	struct rmap_iterator iter;
1218
	bool flush = false;
1219

1220
	for_each_rmap_spte(rmap_head, &iter, sptep)
1221
		flush |= spte_write_protect(sptep, pt_protect);
1222

1223
	return flush;
1224 1225
}

1226
static bool spte_clear_dirty(u64 *sptep)
1227 1228 1229
{
	u64 spte = *sptep;

1230
	rmap_printk("spte %p %llx\n", sptep, *sptep);
1231

1232
	MMU_WARN_ON(!spte_ad_enabled(spte));
1233 1234 1235 1236
	spte &= ~shadow_dirty_mask;
	return mmu_spte_update(sptep, spte);
}

1237
static bool spte_wrprot_for_clear_dirty(u64 *sptep)
1238 1239 1240
{
	bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
					       (unsigned long *)sptep);
1241
	if (was_writable && !spte_ad_enabled(*sptep))
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
		kvm_set_pfn_dirty(spte_to_pfn(*sptep));

	return was_writable;
}

/*
 * Gets the GFN ready for another round of dirty logging by clearing the
 *	- D bit on ad-enabled SPTEs, and
 *	- W bit on ad-disabled SPTEs.
 * Returns true iff any D or W bits were cleared.
 */
1253
static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1254
			       const struct kvm_memory_slot *slot)
1255 1256 1257 1258 1259
{
	u64 *sptep;
	struct rmap_iterator iter;
	bool flush = false;

1260
	for_each_rmap_spte(rmap_head, &iter, sptep)
1261 1262
		if (spte_ad_need_write_protect(*sptep))
			flush |= spte_wrprot_for_clear_dirty(sptep);
1263
		else
1264
			flush |= spte_clear_dirty(sptep);
1265 1266 1267 1268

	return flush;
}

1269
/**
1270
 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1271 1272 1273 1274 1275
 * @kvm: kvm instance
 * @slot: slot to protect
 * @gfn_offset: start of the BITS_PER_LONG pages we care about
 * @mask: indicates which pages we should protect
 *
1276
 * Used when we do not need to care about huge page mappings.
1277
 */
1278
static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1279 1280
				     struct kvm_memory_slot *slot,
				     gfn_t gfn_offset, unsigned long mask)
1281
{
1282
	struct kvm_rmap_head *rmap_head;
1283

1284
	if (is_tdp_mmu_enabled(kvm))
1285 1286
		kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
				slot->base_gfn + gfn_offset, mask, true);
1287 1288 1289 1290

	if (!kvm_memslots_have_rmaps(kvm))
		return;

1291
	while (mask) {
1292 1293
		rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
					PG_LEVEL_4K, slot);
1294
		rmap_write_protect(rmap_head, false);
M
Marcelo Tosatti 已提交
1295

1296 1297 1298
		/* clear the first set bit */
		mask &= mask - 1;
	}
1299 1300
}

1301
/**
1302 1303
 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
 * protect the page if the D-bit isn't supported.
1304 1305 1306 1307 1308 1309 1310
 * @kvm: kvm instance
 * @slot: slot to clear D-bit
 * @gfn_offset: start of the BITS_PER_LONG pages we care about
 * @mask: indicates which pages we should clear D-bit
 *
 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
 */
1311 1312 1313
static void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
					 struct kvm_memory_slot *slot,
					 gfn_t gfn_offset, unsigned long mask)
1314
{
1315
	struct kvm_rmap_head *rmap_head;
1316

1317
	if (is_tdp_mmu_enabled(kvm))
1318 1319
		kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
				slot->base_gfn + gfn_offset, mask, false);
1320 1321 1322 1323

	if (!kvm_memslots_have_rmaps(kvm))
		return;

1324
	while (mask) {
1325 1326
		rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
					PG_LEVEL_4K, slot);
1327
		__rmap_clear_dirty(kvm, rmap_head, slot);
1328 1329 1330 1331 1332 1333

		/* clear the first set bit */
		mask &= mask - 1;
	}
}

1334 1335 1336 1337 1338 1339 1340
/**
 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
 * PT level pages.
 *
 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
 * enable dirty logging for them.
 *
1341 1342
 * We need to care about huge page mappings: e.g. during dirty logging we may
 * have such mappings.
1343 1344 1345 1346 1347
 */
void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
				struct kvm_memory_slot *slot,
				gfn_t gfn_offset, unsigned long mask)
{
1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
	/*
	 * Huge pages are NOT write protected when we start dirty logging in
	 * initially-all-set mode; must write protect them here so that they
	 * are split to 4K on the first write.
	 *
	 * The gfn_offset is guaranteed to be aligned to 64, but the base_gfn
	 * of memslot has no such restriction, so the range can cross two large
	 * pages.
	 */
	if (kvm_dirty_log_manual_protect_and_init_set(kvm)) {
		gfn_t start = slot->base_gfn + gfn_offset + __ffs(mask);
		gfn_t end = slot->base_gfn + gfn_offset + __fls(mask);

		kvm_mmu_slot_gfn_write_protect(kvm, slot, start, PG_LEVEL_2M);

		/* Cross two large pages? */
		if (ALIGN(start << PAGE_SHIFT, PMD_SIZE) !=
		    ALIGN(end << PAGE_SHIFT, PMD_SIZE))
			kvm_mmu_slot_gfn_write_protect(kvm, slot, end,
						       PG_LEVEL_2M);
	}

	/* Now handle 4K PTEs.  */
1371 1372
	if (kvm_x86_ops.cpu_dirty_log_size)
		kvm_mmu_clear_dirty_pt_masked(kvm, slot, gfn_offset, mask);
1373 1374
	else
		kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1375 1376
}

1377 1378
int kvm_cpu_dirty_log_size(void)
{
1379
	return kvm_x86_ops.cpu_dirty_log_size;
1380 1381
}

1382
bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1383 1384
				    struct kvm_memory_slot *slot, u64 gfn,
				    int min_level)
1385
{
1386
	struct kvm_rmap_head *rmap_head;
1387
	int i;
1388
	bool write_protected = false;
1389

1390 1391
	if (kvm_memslots_have_rmaps(kvm)) {
		for (i = min_level; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
1392
			rmap_head = gfn_to_rmap(gfn, i, slot);
1393
			write_protected |= rmap_write_protect(rmap_head, true);
1394
		}
1395 1396
	}

1397
	if (is_tdp_mmu_enabled(kvm))
1398
		write_protected |=
1399
			kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn, min_level);
1400

1401
	return write_protected;
1402 1403
}

1404
static bool kvm_vcpu_write_protect_gfn(struct kvm_vcpu *vcpu, u64 gfn)
1405 1406 1407 1408
{
	struct kvm_memory_slot *slot;

	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1409
	return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn, PG_LEVEL_4K);
1410 1411
}

1412
static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1413
			  const struct kvm_memory_slot *slot)
1414
{
1415
	return pte_list_destroy(kvm, rmap_head);
1416 1417
}

1418 1419 1420
static bool kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			    struct kvm_memory_slot *slot, gfn_t gfn, int level,
			    pte_t unused)
1421
{
1422
	return kvm_zap_rmapp(kvm, rmap_head, slot);
1423 1424
}

1425 1426 1427
static bool kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			      struct kvm_memory_slot *slot, gfn_t gfn, int level,
			      pte_t pte)
1428
{
1429 1430
	u64 *sptep;
	struct rmap_iterator iter;
1431
	bool need_flush = false;
1432
	u64 new_spte;
D
Dan Williams 已提交
1433
	kvm_pfn_t new_pfn;
1434

1435 1436
	WARN_ON(pte_huge(pte));
	new_pfn = pte_pfn(pte);
1437

1438
restart:
1439
	for_each_rmap_spte(rmap_head, &iter, sptep) {
1440
		rmap_printk("spte %p %llx gfn %llx (%d)\n",
1441
			    sptep, *sptep, gfn, level);
1442

1443
		need_flush = true;
1444

1445
		if (pte_write(pte)) {
1446
			pte_list_remove(kvm, rmap_head, sptep);
1447
			goto restart;
1448
		} else {
1449 1450
			new_spte = kvm_mmu_changed_pte_notifier_make_spte(
					*sptep, new_pfn);
1451

1452
			mmu_spte_clear_track_bits(kvm, sptep);
1453
			mmu_spte_set(sptep, new_spte);
1454 1455
		}
	}
1456

1457 1458
	if (need_flush && kvm_available_flush_tlb_with_range()) {
		kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
1459
		return false;
1460 1461
	}

1462
	return need_flush;
1463 1464
}

1465 1466
struct slot_rmap_walk_iterator {
	/* input fields. */
1467
	const struct kvm_memory_slot *slot;
1468 1469 1470 1471 1472 1473 1474
	gfn_t start_gfn;
	gfn_t end_gfn;
	int start_level;
	int end_level;

	/* output fields. */
	gfn_t gfn;
1475
	struct kvm_rmap_head *rmap;
1476 1477 1478
	int level;

	/* private field. */
1479
	struct kvm_rmap_head *end_rmap;
1480 1481 1482 1483 1484 1485 1486
};

static void
rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
{
	iterator->level = level;
	iterator->gfn = iterator->start_gfn;
1487 1488
	iterator->rmap = gfn_to_rmap(iterator->gfn, level, iterator->slot);
	iterator->end_rmap = gfn_to_rmap(iterator->end_gfn, level, iterator->slot);
1489 1490 1491 1492
}

static void
slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1493
		    const struct kvm_memory_slot *slot, int start_level,
1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
		    int end_level, gfn_t start_gfn, gfn_t end_gfn)
{
	iterator->slot = slot;
	iterator->start_level = start_level;
	iterator->end_level = end_level;
	iterator->start_gfn = start_gfn;
	iterator->end_gfn = end_gfn;

	rmap_walk_init_level(iterator, iterator->start_level);
}

static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
{
	return !!iterator->rmap;
}

static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
{
	if (++iterator->rmap <= iterator->end_rmap) {
		iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
		return;
	}

	if (++iterator->level > iterator->end_level) {
		iterator->rmap = NULL;
		return;
	}

	rmap_walk_init_level(iterator, iterator->level);
}

#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,	\
	   _start_gfn, _end_gfn, _iter_)				\
	for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,		\
				 _end_level_, _start_gfn, _end_gfn);	\
	     slot_rmap_walk_okay(_iter_);				\
	     slot_rmap_walk_next(_iter_))

1532 1533 1534
typedef bool (*rmap_handler_t)(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			       struct kvm_memory_slot *slot, gfn_t gfn,
			       int level, pte_t pte);
1535

1536 1537 1538
static __always_inline bool kvm_handle_gfn_range(struct kvm *kvm,
						 struct kvm_gfn_range *range,
						 rmap_handler_t handler)
1539
{
1540
	struct slot_rmap_walk_iterator iterator;
1541
	bool ret = false;
1542

1543 1544 1545 1546
	for_each_slot_rmap_range(range->slot, PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL,
				 range->start, range->end - 1, &iterator)
		ret |= handler(kvm, iterator.rmap, range->slot, iterator.gfn,
			       iterator.level, range->pte);
1547

1548
	return ret;
1549 1550
}

1551
bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
1552
{
1553
	bool flush = false;
1554

1555 1556
	if (kvm_memslots_have_rmaps(kvm))
		flush = kvm_handle_gfn_range(kvm, range, kvm_unmap_rmapp);
1557

1558
	if (is_tdp_mmu_enabled(kvm))
1559
		flush = kvm_tdp_mmu_unmap_gfn_range(kvm, range, flush);
1560

1561
	return flush;
1562 1563
}

1564
bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1565
{
1566
	bool flush = false;
1567

1568 1569
	if (kvm_memslots_have_rmaps(kvm))
		flush = kvm_handle_gfn_range(kvm, range, kvm_set_pte_rmapp);
1570

1571
	if (is_tdp_mmu_enabled(kvm))
1572
		flush |= kvm_tdp_mmu_set_spte_gfn(kvm, range);
1573

1574
	return flush;
1575 1576
}

1577 1578 1579
static bool kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			  struct kvm_memory_slot *slot, gfn_t gfn, int level,
			  pte_t unused)
1580
{
1581
	u64 *sptep;
1582
	struct rmap_iterator iter;
1583 1584
	int young = 0;

1585 1586
	for_each_rmap_spte(rmap_head, &iter, sptep)
		young |= mmu_spte_age(sptep);
1587

1588 1589 1590
	return young;
}

1591 1592 1593
static bool kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			       struct kvm_memory_slot *slot, gfn_t gfn,
			       int level, pte_t unused)
A
Andrea Arcangeli 已提交
1594
{
1595 1596
	u64 *sptep;
	struct rmap_iterator iter;
A
Andrea Arcangeli 已提交
1597

1598 1599
	for_each_rmap_spte(rmap_head, &iter, sptep)
		if (is_accessed_spte(*sptep))
1600 1601
			return true;
	return false;
A
Andrea Arcangeli 已提交
1602 1603
}

1604 1605
#define RMAP_RECYCLE_THRESHOLD 1000

1606 1607
static void rmap_add(struct kvm_vcpu *vcpu, struct kvm_memory_slot *slot,
		     u64 *spte, gfn_t gfn)
1608
{
1609
	struct kvm_mmu_page *sp;
1610 1611
	struct kvm_rmap_head *rmap_head;
	int rmap_count;
1612

1613
	sp = sptep_to_sp(spte);
1614
	kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1615
	rmap_head = gfn_to_rmap(gfn, sp->role.level, slot);
1616
	rmap_count = pte_list_add(vcpu, spte, rmap_head);
1617

1618 1619 1620 1621 1622
	if (rmap_count > RMAP_RECYCLE_THRESHOLD) {
		kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, __pte(0));
		kvm_flush_remote_tlbs_with_address(
				vcpu->kvm, sp->gfn, KVM_PAGES_PER_HPAGE(sp->role.level));
	}
1623 1624
}

1625
bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1626
{
1627
	bool young = false;
1628

1629 1630
	if (kvm_memslots_have_rmaps(kvm))
		young = kvm_handle_gfn_range(kvm, range, kvm_age_rmapp);
1631

1632
	if (is_tdp_mmu_enabled(kvm))
1633
		young |= kvm_tdp_mmu_age_gfn_range(kvm, range);
1634 1635

	return young;
1636 1637
}

1638
bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
A
Andrea Arcangeli 已提交
1639
{
1640
	bool young = false;
1641

1642 1643
	if (kvm_memslots_have_rmaps(kvm))
		young = kvm_handle_gfn_range(kvm, range, kvm_test_age_rmapp);
1644

1645
	if (is_tdp_mmu_enabled(kvm))
1646
		young |= kvm_tdp_mmu_test_age_gfn(kvm, range);
1647 1648

	return young;
A
Andrea Arcangeli 已提交
1649 1650
}

1651
#ifdef MMU_DEBUG
1652
static int is_empty_shadow_page(u64 *spt)
A
Avi Kivity 已提交
1653
{
1654 1655 1656
	u64 *pos;
	u64 *end;

1657
	for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1658
		if (is_shadow_present_pte(*pos)) {
1659
			printk(KERN_ERR "%s: %p %llx\n", __func__,
1660
			       pos, *pos);
A
Avi Kivity 已提交
1661
			return 0;
1662
		}
A
Avi Kivity 已提交
1663 1664
	return 1;
}
1665
#endif
A
Avi Kivity 已提交
1666

1667 1668 1669 1670 1671 1672
/*
 * This value is the sum of all of the kvm instances's
 * kvm->arch.n_used_mmu_pages values.  We need a global,
 * aggregate version in order to make the slab shrinker
 * faster
 */
1673
static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, long nr)
1674 1675 1676 1677 1678
{
	kvm->arch.n_used_mmu_pages += nr;
	percpu_counter_add(&kvm_total_used_mmu_pages, nr);
}

1679
static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1680
{
1681
	MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1682
	hlist_del(&sp->hash_link);
1683 1684
	list_del(&sp->link);
	free_page((unsigned long)sp->spt);
1685 1686
	if (!sp->role.direct)
		free_page((unsigned long)sp->gfns);
1687
	kmem_cache_free(mmu_page_header_cache, sp);
1688 1689
}

1690 1691
static unsigned kvm_page_table_hashfn(gfn_t gfn)
{
1692
	return hash_64(gfn, KVM_MMU_HASH_SHIFT);
1693 1694
}

1695
static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1696
				    struct kvm_mmu_page *sp, u64 *parent_pte)
1697 1698 1699 1700
{
	if (!parent_pte)
		return;

1701
	pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1702 1703
}

1704
static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1705 1706
				       u64 *parent_pte)
{
1707
	__pte_list_remove(parent_pte, &sp->parent_ptes);
1708 1709
}

1710 1711 1712 1713
static void drop_parent_pte(struct kvm_mmu_page *sp,
			    u64 *parent_pte)
{
	mmu_page_remove_parent_pte(sp, parent_pte);
1714
	mmu_spte_clear_no_track(parent_pte);
1715 1716
}

1717
static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
M
Marcelo Tosatti 已提交
1718
{
1719
	struct kvm_mmu_page *sp;
1720

1721 1722
	sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
	sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache);
1723
	if (!direct)
1724
		sp->gfns = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_gfn_array_cache);
1725
	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1726 1727 1728 1729 1730 1731

	/*
	 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
	 * depends on valid pages being added to the head of the list.  See
	 * comments in kvm_zap_obsolete_pages().
	 */
1732
	sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
1733 1734 1735
	list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
	kvm_mod_used_mmu_pages(vcpu->kvm, +1);
	return sp;
M
Marcelo Tosatti 已提交
1736 1737
}

1738
static void mark_unsync(u64 *spte);
1739
static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1740
{
1741 1742 1743 1744 1745 1746
	u64 *sptep;
	struct rmap_iterator iter;

	for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
		mark_unsync(sptep);
	}
1747 1748
}

1749
static void mark_unsync(u64 *spte)
1750
{
1751
	struct kvm_mmu_page *sp;
1752
	unsigned int index;
1753

1754
	sp = sptep_to_sp(spte);
1755 1756
	index = spte - sp->spt;
	if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1757
		return;
1758
	if (sp->unsync_children++)
1759
		return;
1760
	kvm_mmu_mark_parents_unsync(sp);
1761 1762
}

1763
static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1764
			       struct kvm_mmu_page *sp)
1765
{
1766
	return -1;
1767 1768
}

1769 1770 1771 1772 1773 1774 1775 1776 1777 1778
#define KVM_PAGE_ARRAY_NR 16

struct kvm_mmu_pages {
	struct mmu_page_and_offset {
		struct kvm_mmu_page *sp;
		unsigned int idx;
	} page[KVM_PAGE_ARRAY_NR];
	unsigned int nr;
};

1779 1780
static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
			 int idx)
1781
{
1782
	int i;
1783

1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794
	if (sp->unsync)
		for (i=0; i < pvec->nr; i++)
			if (pvec->page[i].sp == sp)
				return 0;

	pvec->page[pvec->nr].sp = sp;
	pvec->page[pvec->nr].idx = idx;
	pvec->nr++;
	return (pvec->nr == KVM_PAGE_ARRAY_NR);
}

1795 1796 1797 1798 1799 1800 1801
static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
{
	--sp->unsync_children;
	WARN_ON((int)sp->unsync_children < 0);
	__clear_bit(idx, sp->unsync_child_bitmap);
}

1802 1803 1804 1805
static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
	int i, ret, nr_unsync_leaf = 0;
1806

1807
	for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1808
		struct kvm_mmu_page *child;
1809 1810
		u64 ent = sp->spt[i];

1811 1812 1813 1814
		if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
			clear_unsync_child_bit(sp, i);
			continue;
		}
1815

1816
		child = to_shadow_page(ent & PT64_BASE_ADDR_MASK);
1817 1818 1819 1820 1821 1822

		if (child->unsync_children) {
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;

			ret = __mmu_unsync_walk(child, pvec);
1823 1824 1825 1826
			if (!ret) {
				clear_unsync_child_bit(sp, i);
				continue;
			} else if (ret > 0) {
1827
				nr_unsync_leaf += ret;
1828
			} else
1829 1830 1831 1832 1833 1834
				return ret;
		} else if (child->unsync) {
			nr_unsync_leaf++;
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;
		} else
1835
			clear_unsync_child_bit(sp, i);
1836 1837
	}

1838 1839 1840
	return nr_unsync_leaf;
}

1841 1842
#define INVALID_INDEX (-1)

1843 1844 1845
static int mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
P
Paolo Bonzini 已提交
1846
	pvec->nr = 0;
1847 1848 1849
	if (!sp->unsync_children)
		return 0;

1850
	mmu_pages_add(pvec, sp, INVALID_INDEX);
1851
	return __mmu_unsync_walk(sp, pvec);
1852 1853 1854 1855 1856
}

static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
{
	WARN_ON(!sp->unsync);
1857
	trace_kvm_mmu_sync_page(sp);
1858 1859 1860 1861
	sp->unsync = 0;
	--kvm->stat.mmu_unsync;
}

1862 1863
static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				     struct list_head *invalid_list);
1864 1865
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list);
1866

1867 1868
#define for_each_valid_sp(_kvm, _sp, _list)				\
	hlist_for_each_entry(_sp, _list, hash_link)			\
1869
		if (is_obsolete_sp((_kvm), (_sp))) {			\
1870
		} else
1871 1872

#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)			\
1873 1874
	for_each_valid_sp(_kvm, _sp,					\
	  &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)])	\
1875
		if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
1876

1877 1878
static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
			 struct list_head *invalid_list)
1879
{
1880 1881 1882
	int ret = vcpu->arch.mmu->sync_page(vcpu, sp);

	if (ret < 0) {
1883
		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1884
		return false;
1885 1886
	}

1887
	return !!ret;
1888 1889
}

1890 1891 1892 1893
static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
					struct list_head *invalid_list,
					bool remote_flush)
{
1894
	if (!remote_flush && list_empty(invalid_list))
1895 1896 1897 1898 1899 1900 1901 1902 1903
		return false;

	if (!list_empty(invalid_list))
		kvm_mmu_commit_zap_page(kvm, invalid_list);
	else
		kvm_flush_remote_tlbs(kvm);
	return true;
}

1904 1905 1906 1907 1908 1909 1910
#ifdef CONFIG_KVM_MMU_AUDIT
#include "mmu_audit.c"
#else
static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
static void mmu_audit_disable(void) { }
#endif

1911 1912
static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
{
1913 1914 1915 1916 1917
	if (sp->role.invalid)
		return true;

	/* TDP MMU pages due not use the MMU generation. */
	return !sp->tdp_mmu_page &&
1918
	       unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1919 1920
}

1921
struct mmu_page_path {
1922 1923
	struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
	unsigned int idx[PT64_ROOT_MAX_LEVEL];
1924 1925
};

1926
#define for_each_sp(pvec, sp, parents, i)			\
P
Paolo Bonzini 已提交
1927
		for (i = mmu_pages_first(&pvec, &parents);	\
1928 1929 1930
			i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});	\
			i = mmu_pages_next(&pvec, &parents, i))

1931 1932 1933
static int mmu_pages_next(struct kvm_mmu_pages *pvec,
			  struct mmu_page_path *parents,
			  int i)
1934 1935 1936 1937 1938
{
	int n;

	for (n = i+1; n < pvec->nr; n++) {
		struct kvm_mmu_page *sp = pvec->page[n].sp;
P
Paolo Bonzini 已提交
1939 1940
		unsigned idx = pvec->page[n].idx;
		int level = sp->role.level;
1941

P
Paolo Bonzini 已提交
1942
		parents->idx[level-1] = idx;
1943
		if (level == PG_LEVEL_4K)
P
Paolo Bonzini 已提交
1944
			break;
1945

P
Paolo Bonzini 已提交
1946
		parents->parent[level-2] = sp;
1947 1948 1949 1950 1951
	}

	return n;
}

P
Paolo Bonzini 已提交
1952 1953 1954 1955 1956 1957 1958 1959 1960
static int mmu_pages_first(struct kvm_mmu_pages *pvec,
			   struct mmu_page_path *parents)
{
	struct kvm_mmu_page *sp;
	int level;

	if (pvec->nr == 0)
		return 0;

1961 1962
	WARN_ON(pvec->page[0].idx != INVALID_INDEX);

P
Paolo Bonzini 已提交
1963 1964
	sp = pvec->page[0].sp;
	level = sp->role.level;
1965
	WARN_ON(level == PG_LEVEL_4K);
P
Paolo Bonzini 已提交
1966 1967 1968 1969 1970 1971 1972 1973 1974 1975

	parents->parent[level-2] = sp;

	/* Also set up a sentinel.  Further entries in pvec are all
	 * children of sp, so this element is never overwritten.
	 */
	parents->parent[level-1] = NULL;
	return mmu_pages_next(pvec, parents, 0);
}

1976
static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1977
{
1978 1979 1980 1981 1982 1983 1984 1985 1986
	struct kvm_mmu_page *sp;
	unsigned int level = 0;

	do {
		unsigned int idx = parents->idx[level];
		sp = parents->parent[level];
		if (!sp)
			return;

1987
		WARN_ON(idx == INVALID_INDEX);
1988
		clear_unsync_child_bit(sp, idx);
1989
		level++;
P
Paolo Bonzini 已提交
1990
	} while (!sp->unsync_children);
1991
}
1992

1993 1994
static int mmu_sync_children(struct kvm_vcpu *vcpu,
			     struct kvm_mmu_page *parent, bool can_yield)
1995 1996 1997 1998 1999
{
	int i;
	struct kvm_mmu_page *sp;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
2000
	LIST_HEAD(invalid_list);
2001
	bool flush = false;
2002 2003

	while (mmu_unsync_walk(parent, &pages)) {
2004
		bool protected = false;
2005 2006

		for_each_sp(pages, sp, parents, i)
2007
			protected |= kvm_vcpu_write_protect_gfn(vcpu, sp->gfn);
2008

2009
		if (protected) {
2010
			kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, true);
2011 2012
			flush = false;
		}
2013

2014
		for_each_sp(pages, sp, parents, i) {
2015
			kvm_unlink_unsync_page(vcpu->kvm, sp);
2016
			flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2017 2018
			mmu_pages_clear_parents(&parents);
		}
2019
		if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) {
2020
			kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush);
2021 2022 2023 2024 2025
			if (!can_yield) {
				kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
				return -EINTR;
			}

2026
			cond_resched_rwlock_write(&vcpu->kvm->mmu_lock);
2027 2028
			flush = false;
		}
2029
	}
2030

2031
	kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush);
2032
	return 0;
2033 2034
}

2035 2036
static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
{
2037
	atomic_set(&sp->write_flooding_count,  0);
2038 2039 2040 2041
}

static void clear_sp_write_flooding_count(u64 *spte)
{
2042
	__clear_sp_write_flooding_count(sptep_to_sp(spte));
2043 2044
}

2045 2046 2047 2048
static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
					     gfn_t gfn,
					     gva_t gaddr,
					     unsigned level,
2049
					     int direct,
2050
					     unsigned int access)
2051
{
2052
	bool direct_mmu = vcpu->arch.mmu->direct_map;
2053
	union kvm_mmu_page_role role;
2054
	struct hlist_head *sp_list;
2055
	unsigned quadrant;
2056
	struct kvm_mmu_page *sp;
2057
	int collisions = 0;
2058
	LIST_HEAD(invalid_list);
2059

2060
	role = vcpu->arch.mmu->mmu_role.base;
2061
	role.level = level;
2062
	role.direct = direct;
2063
	role.access = access;
2064
	if (role.has_4_byte_gpte) {
2065 2066 2067 2068
		quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
		quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
		role.quadrant = quadrant;
	}
2069 2070 2071

	sp_list = &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)];
	for_each_valid_sp(vcpu->kvm, sp, sp_list) {
2072 2073 2074 2075 2076
		if (sp->gfn != gfn) {
			collisions++;
			continue;
		}

2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089
		if (sp->role.word != role.word) {
			/*
			 * If the guest is creating an upper-level page, zap
			 * unsync pages for the same gfn.  While it's possible
			 * the guest is using recursive page tables, in all
			 * likelihood the guest has stopped using the unsync
			 * page and is installing a completely unrelated page.
			 * Unsync pages must not be left as is, because the new
			 * upper-level page will be write-protected.
			 */
			if (level > PG_LEVEL_4K && sp->unsync)
				kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
							 &invalid_list);
2090
			continue;
2091
		}
2092

2093 2094 2095
		if (direct_mmu)
			goto trace_get_page;

2096
		if (sp->unsync) {
2097
			/*
2098
			 * The page is good, but is stale.  kvm_sync_page does
2099 2100 2101 2102 2103 2104 2105 2106 2107
			 * get the latest guest state, but (unlike mmu_unsync_children)
			 * it doesn't write-protect the page or mark it synchronized!
			 * This way the validity of the mapping is ensured, but the
			 * overhead of write protection is not incurred until the
			 * guest invalidates the TLB mapping.  This allows multiple
			 * SPs for a single gfn to be unsync.
			 *
			 * If the sync fails, the page is zapped.  If so, break
			 * in order to rebuild it.
2108
			 */
2109
			if (!kvm_sync_page(vcpu, sp, &invalid_list))
2110 2111 2112
				break;

			WARN_ON(!list_empty(&invalid_list));
2113
			kvm_flush_remote_tlbs(vcpu->kvm);
2114
		}
2115

2116
		__clear_sp_write_flooding_count(sp);
2117 2118

trace_get_page:
2119
		trace_kvm_mmu_get_page(sp, false);
2120
		goto out;
2121
	}
2122

A
Avi Kivity 已提交
2123
	++vcpu->kvm->stat.mmu_cache_miss;
2124 2125 2126

	sp = kvm_mmu_alloc_page(vcpu, direct);

2127 2128
	sp->gfn = gfn;
	sp->role = role;
2129
	hlist_add_head(&sp->hash_link, sp_list);
2130
	if (!direct) {
2131
		account_shadowed(vcpu->kvm, sp);
2132
		if (level == PG_LEVEL_4K && kvm_vcpu_write_protect_gfn(vcpu, gfn))
2133
			kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
2134
	}
A
Avi Kivity 已提交
2135
	trace_kvm_mmu_get_page(sp, true);
2136
out:
2137 2138
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);

2139 2140
	if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
		vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2141
	return sp;
2142 2143
}

2144 2145 2146
static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
					struct kvm_vcpu *vcpu, hpa_t root,
					u64 addr)
2147 2148
{
	iterator->addr = addr;
2149
	iterator->shadow_addr = root;
2150
	iterator->level = vcpu->arch.mmu->shadow_root_level;
2151

2152
	if (iterator->level >= PT64_ROOT_4LEVEL &&
2153 2154
	    vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
	    !vcpu->arch.mmu->direct_map)
2155
		iterator->level = PT32E_ROOT_LEVEL;
2156

2157
	if (iterator->level == PT32E_ROOT_LEVEL) {
2158 2159 2160 2161
		/*
		 * prev_root is currently only used for 64-bit hosts. So only
		 * the active root_hpa is valid here.
		 */
2162
		BUG_ON(root != vcpu->arch.mmu->root_hpa);
2163

2164
		iterator->shadow_addr
2165
			= vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2166 2167 2168 2169 2170 2171 2172
		iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
		--iterator->level;
		if (!iterator->shadow_addr)
			iterator->level = 0;
	}
}

2173 2174 2175
static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
			     struct kvm_vcpu *vcpu, u64 addr)
{
2176
	shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
2177 2178 2179
				    addr);
}

2180 2181
static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
{
2182
	if (iterator->level < PG_LEVEL_4K)
2183
		return false;
2184

2185 2186 2187 2188 2189
	iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
	iterator->sptep	= ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
	return true;
}

2190 2191
static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
			       u64 spte)
2192
{
2193
	if (!is_shadow_present_pte(spte) || is_last_spte(spte, iterator->level)) {
2194 2195 2196 2197
		iterator->level = 0;
		return;
	}

2198
	iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2199 2200 2201
	--iterator->level;
}

2202 2203
static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
{
2204
	__shadow_walk_next(iterator, *iterator->sptep);
2205 2206
}

2207 2208 2209 2210 2211 2212 2213 2214 2215
static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
			     struct kvm_mmu_page *sp)
{
	u64 spte;

	BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);

	spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp));

2216
	mmu_spte_set(sptep, spte);
2217 2218 2219 2220 2221

	mmu_page_add_parent_pte(vcpu, sp, sptep);

	if (sp->unsync_children || sp->unsync)
		mark_unsync(sptep);
2222 2223
}

2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236
static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
				   unsigned direct_access)
{
	if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
		struct kvm_mmu_page *child;

		/*
		 * For the direct sp, if the guest pte's dirty bit
		 * changed form clean to dirty, it will corrupt the
		 * sp's access: allow writable in the read-only sp,
		 * so we should update the spte at this point to get
		 * a new sp with the correct access.
		 */
2237
		child = to_shadow_page(*sptep & PT64_BASE_ADDR_MASK);
2238 2239 2240
		if (child->role.access == direct_access)
			return;

2241
		drop_parent_pte(child, sptep);
2242
		kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
2243 2244 2245
	}
}

2246 2247 2248
/* Returns the number of zapped non-leaf child shadow pages. */
static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
			    u64 *spte, struct list_head *invalid_list)
2249 2250 2251 2252 2253 2254
{
	u64 pte;
	struct kvm_mmu_page *child;

	pte = *spte;
	if (is_shadow_present_pte(pte)) {
X
Xiao Guangrong 已提交
2255
		if (is_last_spte(pte, sp->role.level)) {
2256
			drop_spte(kvm, spte);
X
Xiao Guangrong 已提交
2257
		} else {
2258
			child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2259
			drop_parent_pte(child, spte);
2260 2261 2262 2263 2264 2265 2266 2267 2268 2269

			/*
			 * Recursively zap nested TDP SPs, parentless SPs are
			 * unlikely to be used again in the near future.  This
			 * avoids retaining a large number of stale nested SPs.
			 */
			if (tdp_enabled && invalid_list &&
			    child->role.guest_mode && !child->parent_ptes.val)
				return kvm_mmu_prepare_zap_page(kvm, child,
								invalid_list);
2270
		}
2271
	} else if (is_mmio_spte(pte)) {
2272
		mmu_spte_clear_no_track(spte);
2273
	}
2274
	return 0;
2275 2276
}

2277 2278 2279
static int kvm_mmu_page_unlink_children(struct kvm *kvm,
					struct kvm_mmu_page *sp,
					struct list_head *invalid_list)
2280
{
2281
	int zapped = 0;
2282 2283
	unsigned i;

2284
	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2285 2286 2287
		zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list);

	return zapped;
2288 2289
}

2290
static void kvm_mmu_unlink_parents(struct kvm_mmu_page *sp)
2291
{
2292 2293
	u64 *sptep;
	struct rmap_iterator iter;
2294

2295
	while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2296
		drop_parent_pte(sp, sptep);
2297 2298
}

2299
static int mmu_zap_unsync_children(struct kvm *kvm,
2300 2301
				   struct kvm_mmu_page *parent,
				   struct list_head *invalid_list)
2302
{
2303 2304 2305
	int i, zapped = 0;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
2306

2307
	if (parent->role.level == PG_LEVEL_4K)
2308
		return 0;
2309 2310 2311 2312 2313

	while (mmu_unsync_walk(parent, &pages)) {
		struct kvm_mmu_page *sp;

		for_each_sp(pages, sp, parents, i) {
2314
			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2315
			mmu_pages_clear_parents(&parents);
2316
			zapped++;
2317 2318 2319 2320
		}
	}

	return zapped;
2321 2322
}

2323 2324 2325 2326
static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
				       struct kvm_mmu_page *sp,
				       struct list_head *invalid_list,
				       int *nr_zapped)
2327
{
2328
	bool list_unstable;
A
Avi Kivity 已提交
2329

2330
	trace_kvm_mmu_prepare_zap_page(sp);
2331
	++kvm->stat.mmu_shadow_zapped;
2332
	*nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2333
	*nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list);
2334
	kvm_mmu_unlink_parents(sp);
2335

2336 2337 2338
	/* Zapping children means active_mmu_pages has become unstable. */
	list_unstable = *nr_zapped;

2339
	if (!sp->role.invalid && !sp->role.direct)
2340
		unaccount_shadowed(kvm, sp);
2341

2342 2343
	if (sp->unsync)
		kvm_unlink_unsync_page(kvm, sp);
2344
	if (!sp->root_count) {
2345
		/* Count self */
2346
		(*nr_zapped)++;
2347 2348 2349 2350 2351 2352 2353 2354 2355 2356

		/*
		 * Already invalid pages (previously active roots) are not on
		 * the active page list.  See list_del() in the "else" case of
		 * !sp->root_count.
		 */
		if (sp->role.invalid)
			list_add(&sp->link, invalid_list);
		else
			list_move(&sp->link, invalid_list);
2357
		kvm_mod_used_mmu_pages(kvm, -1);
2358
	} else {
2359 2360 2361 2362 2363
		/*
		 * Remove the active root from the active page list, the root
		 * will be explicitly freed when the root_count hits zero.
		 */
		list_del(&sp->link);
2364

2365 2366 2367 2368 2369 2370
		/*
		 * Obsolete pages cannot be used on any vCPUs, see the comment
		 * in kvm_mmu_zap_all_fast().  Note, is_obsolete_sp() also
		 * treats invalid shadow pages as being obsolete.
		 */
		if (!is_obsolete_sp(kvm, sp))
2371
			kvm_reload_remote_mmus(kvm);
2372
	}
2373

P
Paolo Bonzini 已提交
2374 2375 2376
	if (sp->lpage_disallowed)
		unaccount_huge_nx_page(kvm, sp);

2377
	sp->role.invalid = 1;
2378 2379 2380 2381 2382 2383 2384 2385 2386 2387
	return list_unstable;
}

static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				     struct list_head *invalid_list)
{
	int nr_zapped;

	__kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
	return nr_zapped;
2388 2389
}

2390 2391 2392
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list)
{
2393
	struct kvm_mmu_page *sp, *nsp;
2394 2395 2396 2397

	if (list_empty(invalid_list))
		return;

2398
	/*
2399 2400 2401 2402 2403 2404 2405
	 * We need to make sure everyone sees our modifications to
	 * the page tables and see changes to vcpu->mode here. The barrier
	 * in the kvm_flush_remote_tlbs() achieves this. This pairs
	 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
	 *
	 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
	 * guest mode and/or lockless shadow page table walks.
2406 2407
	 */
	kvm_flush_remote_tlbs(kvm);
2408

2409
	list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2410
		WARN_ON(!sp->role.invalid || sp->root_count);
2411
		kvm_mmu_free_page(sp);
2412
	}
2413 2414
}

2415 2416
static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm,
						  unsigned long nr_to_zap)
2417
{
2418 2419
	unsigned long total_zapped = 0;
	struct kvm_mmu_page *sp, *tmp;
2420
	LIST_HEAD(invalid_list);
2421 2422
	bool unstable;
	int nr_zapped;
2423 2424

	if (list_empty(&kvm->arch.active_mmu_pages))
2425 2426
		return 0;

2427
restart:
2428
	list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) {
2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439
		/*
		 * Don't zap active root pages, the page itself can't be freed
		 * and zapping it will just force vCPUs to realloc and reload.
		 */
		if (sp->root_count)
			continue;

		unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list,
						      &nr_zapped);
		total_zapped += nr_zapped;
		if (total_zapped >= nr_to_zap)
2440 2441
			break;

2442 2443
		if (unstable)
			goto restart;
2444
	}
2445

2446 2447 2448 2449 2450 2451
	kvm_mmu_commit_zap_page(kvm, &invalid_list);

	kvm->stat.mmu_recycled += total_zapped;
	return total_zapped;
}

2452 2453 2454 2455 2456 2457 2458
static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm)
{
	if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
		return kvm->arch.n_max_mmu_pages -
			kvm->arch.n_used_mmu_pages;

	return 0;
2459 2460
}

2461 2462
static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
{
2463
	unsigned long avail = kvm_mmu_available_pages(vcpu->kvm);
2464

2465
	if (likely(avail >= KVM_MIN_FREE_MMU_PAGES))
2466 2467
		return 0;

2468
	kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail);
2469

2470 2471 2472 2473 2474
	/*
	 * Note, this check is intentionally soft, it only guarantees that one
	 * page is available, while the caller may end up allocating as many as
	 * four pages, e.g. for PAE roots or for 5-level paging.  Temporarily
	 * exceeding the (arbitrary by default) limit will not harm the host,
I
Ingo Molnar 已提交
2475
	 * being too aggressive may unnecessarily kill the guest, and getting an
2476 2477 2478
	 * exact count is far more trouble than it's worth, especially in the
	 * page fault paths.
	 */
2479 2480 2481 2482 2483
	if (!kvm_mmu_available_pages(vcpu->kvm))
		return -ENOSPC;
	return 0;
}

2484 2485
/*
 * Changing the number of mmu pages allocated to the vm
2486
 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2487
 */
2488
void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2489
{
2490
	write_lock(&kvm->mmu_lock);
2491

2492
	if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2493 2494
		kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages -
						  goal_nr_mmu_pages);
2495

2496
		goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2497 2498
	}

2499
	kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2500

2501
	write_unlock(&kvm->mmu_lock);
2502 2503
}

2504
int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2505
{
2506
	struct kvm_mmu_page *sp;
2507
	LIST_HEAD(invalid_list);
2508 2509
	int r;

2510
	pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2511
	r = 0;
2512
	write_lock(&kvm->mmu_lock);
2513
	for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2514
		pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2515 2516
			 sp->role.word);
		r = 1;
2517
		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2518
	}
2519
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2520
	write_unlock(&kvm->mmu_lock);
2521

2522
	return r;
2523
}
2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538

static int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
{
	gpa_t gpa;
	int r;

	if (vcpu->arch.mmu->direct_map)
		return 0;

	gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);

	r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);

	return r;
}
2539

2540
static void kvm_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
2541 2542
{
	trace_kvm_mmu_unsync_page(sp);
2543
	++kvm->stat.mmu_unsync;
2544 2545 2546 2547 2548
	sp->unsync = 1;

	kvm_mmu_mark_parents_unsync(sp);
}

2549 2550 2551 2552 2553 2554
/*
 * Attempt to unsync any shadow pages that can be reached by the specified gfn,
 * KVM is creating a writable mapping for said gfn.  Returns 0 if all pages
 * were marked unsync (or if there is no shadow page), -EPERM if the SPTE must
 * be write-protected.
 */
2555
int mmu_try_to_unsync_pages(struct kvm *kvm, const struct kvm_memory_slot *slot,
2556
			    gfn_t gfn, bool can_unsync, bool prefetch)
2557
{
2558
	struct kvm_mmu_page *sp;
2559
	bool locked = false;
2560

2561 2562 2563 2564 2565
	/*
	 * Force write-protection if the page is being tracked.  Note, the page
	 * track machinery is used to write-protect upper-level shadow pages,
	 * i.e. this guards the role.level == 4K assertion below!
	 */
2566
	if (kvm_slot_page_track_is_active(kvm, slot, gfn, KVM_PAGE_TRACK_WRITE))
2567
		return -EPERM;
2568

2569 2570 2571 2572 2573 2574
	/*
	 * The page is not write-tracked, mark existing shadow pages unsync
	 * unless KVM is synchronizing an unsync SP (can_unsync = false).  In
	 * that case, KVM must complete emulation of the guest TLB flush before
	 * allowing shadow pages to become unsync (writable by the guest).
	 */
2575
	for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2576
		if (!can_unsync)
2577
			return -EPERM;
2578

2579 2580
		if (sp->unsync)
			continue;
2581

2582
		if (prefetch)
2583 2584
			return -EEXIST;

2585 2586 2587 2588 2589 2590 2591 2592 2593
		/*
		 * TDP MMU page faults require an additional spinlock as they
		 * run with mmu_lock held for read, not write, and the unsync
		 * logic is not thread safe.  Take the spinklock regardless of
		 * the MMU type to avoid extra conditionals/parameters, there's
		 * no meaningful penalty if mmu_lock is held for write.
		 */
		if (!locked) {
			locked = true;
2594
			spin_lock(&kvm->arch.mmu_unsync_pages_lock);
2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607

			/*
			 * Recheck after taking the spinlock, a different vCPU
			 * may have since marked the page unsync.  A false
			 * positive on the unprotected check above is not
			 * possible as clearing sp->unsync _must_ hold mmu_lock
			 * for write, i.e. unsync cannot transition from 0->1
			 * while this CPU holds mmu_lock for read (or write).
			 */
			if (READ_ONCE(sp->unsync))
				continue;
		}

2608
		WARN_ON(sp->role.level != PG_LEVEL_4K);
2609
		kvm_unsync_page(kvm, sp);
2610
	}
2611
	if (locked)
2612
		spin_unlock(&kvm->arch.mmu_unsync_pages_lock);
2613

2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635
	/*
	 * We need to ensure that the marking of unsync pages is visible
	 * before the SPTE is updated to allow writes because
	 * kvm_mmu_sync_roots() checks the unsync flags without holding
	 * the MMU lock and so can race with this. If the SPTE was updated
	 * before the page had been marked as unsync-ed, something like the
	 * following could happen:
	 *
	 * CPU 1                    CPU 2
	 * ---------------------------------------------------------------------
	 * 1.2 Host updates SPTE
	 *     to be writable
	 *                      2.1 Guest writes a GPTE for GVA X.
	 *                          (GPTE being in the guest page table shadowed
	 *                           by the SP from CPU 1.)
	 *                          This reads SPTE during the page table walk.
	 *                          Since SPTE.W is read as 1, there is no
	 *                          fault.
	 *
	 *                      2.2 Guest issues TLB flush.
	 *                          That causes a VM Exit.
	 *
2636 2637
	 *                      2.3 Walking of unsync pages sees sp->unsync is
	 *                          false and skips the page.
2638 2639 2640 2641 2642 2643 2644 2645 2646 2647
	 *
	 *                      2.4 Guest accesses GVA X.
	 *                          Since the mapping in the SP was not updated,
	 *                          so the old mapping for GVA X incorrectly
	 *                          gets used.
	 * 1.1 Host marks SP
	 *     as unsync
	 *     (sp->unsync = true)
	 *
	 * The write barrier below ensures that 1.1 happens before 1.2 and thus
2648 2649
	 * the situation in 2.4 does not arise.  It pairs with the read barrier
	 * in is_unsync_root(), placed between 2.1's load of SPTE.W and 2.3.
2650 2651 2652
	 */
	smp_wmb();

2653
	return 0;
2654 2655
}

2656 2657
static int mmu_set_spte(struct kvm_vcpu *vcpu, struct kvm_memory_slot *slot,
			u64 *sptep, unsigned int pte_access, gfn_t gfn,
2658
			kvm_pfn_t pfn, struct kvm_page_fault *fault)
M
Marcelo Tosatti 已提交
2659
{
2660
	struct kvm_mmu_page *sp = sptep_to_sp(sptep);
2661
	int level = sp->role.level;
M
Marcelo Tosatti 已提交
2662
	int was_rmapped = 0;
2663
	int ret = RET_PF_FIXED;
2664
	bool flush = false;
2665
	bool wrprot;
2666
	u64 spte;
M
Marcelo Tosatti 已提交
2667

2668 2669
	/* Prefetching always gets a writable pfn.  */
	bool host_writable = !fault || fault->map_writable;
2670
	bool prefetch = !fault || fault->prefetch;
2671
	bool write_fault = fault && fault->write;
M
Marcelo Tosatti 已提交
2672

2673 2674
	pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
		 *sptep, write_fault, gfn);
M
Marcelo Tosatti 已提交
2675

2676 2677 2678 2679 2680
	if (unlikely(is_noslot_pfn(pfn))) {
		mark_mmio_spte(vcpu, sptep, gfn, pte_access);
		return RET_PF_EMULATE;
	}

2681
	if (is_shadow_present_pte(*sptep)) {
M
Marcelo Tosatti 已提交
2682 2683 2684 2685
		/*
		 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
		 * the parent of the now unreachable PTE.
		 */
2686
		if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) {
M
Marcelo Tosatti 已提交
2687
			struct kvm_mmu_page *child;
A
Avi Kivity 已提交
2688
			u64 pte = *sptep;
M
Marcelo Tosatti 已提交
2689

2690
			child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2691
			drop_parent_pte(child, sptep);
2692
			flush = true;
A
Avi Kivity 已提交
2693
		} else if (pfn != spte_to_pfn(*sptep)) {
2694
			pgprintk("hfn old %llx new %llx\n",
A
Avi Kivity 已提交
2695
				 spte_to_pfn(*sptep), pfn);
2696
			drop_spte(vcpu->kvm, sptep);
2697
			flush = true;
2698 2699
		} else
			was_rmapped = 1;
M
Marcelo Tosatti 已提交
2700
	}
2701

2702
	wrprot = make_spte(vcpu, sp, slot, pte_access, gfn, pfn, *sptep, prefetch,
2703
			   true, host_writable, &spte);
2704 2705 2706 2707 2708 2709 2710 2711

	if (*sptep == spte) {
		ret = RET_PF_SPURIOUS;
	} else {
		trace_kvm_mmu_set_spte(level, gfn, sptep);
		flush |= mmu_spte_update(sptep, spte);
	}

2712
	if (wrprot) {
M
Marcelo Tosatti 已提交
2713
		if (write_fault)
2714
			ret = RET_PF_EMULATE;
2715
	}
2716

2717
	if (flush)
2718 2719
		kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
				KVM_PAGES_PER_HPAGE(level));
M
Marcelo Tosatti 已提交
2720

A
Avi Kivity 已提交
2721
	pgprintk("%s: setting spte %llx\n", __func__, *sptep);
M
Marcelo Tosatti 已提交
2722

2723
	if (!was_rmapped) {
2724
		WARN_ON_ONCE(ret == RET_PF_SPURIOUS);
2725
		kvm_update_page_stats(vcpu->kvm, level, 1);
2726
		rmap_add(vcpu, slot, sptep, gfn);
2727
	}
2728

2729
	return ret;
2730 2731
}

2732 2733 2734 2735 2736
static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
				    struct kvm_mmu_page *sp,
				    u64 *start, u64 *end)
{
	struct page *pages[PTE_PREFETCH_NUM];
2737
	struct kvm_memory_slot *slot;
2738
	unsigned int access = sp->role.access;
2739 2740 2741 2742
	int i, ret;
	gfn_t gfn;

	gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2743 2744
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
	if (!slot)
2745 2746
		return -1;

2747
	ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2748 2749 2750
	if (ret <= 0)
		return -1;

2751
	for (i = 0; i < ret; i++, gfn++, start++) {
2752
		mmu_set_spte(vcpu, slot, start, access, gfn,
2753
			     page_to_pfn(pages[i]), NULL);
2754 2755
		put_page(pages[i]);
	}
2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771

	return 0;
}

static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
				  struct kvm_mmu_page *sp, u64 *sptep)
{
	u64 *spte, *start = NULL;
	int i;

	WARN_ON(!sp->role.direct);

	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
	spte = sp->spt + i;

	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2772
		if (is_shadow_present_pte(*spte) || spte == sptep) {
2773 2774 2775
			if (!start)
				continue;
			if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2776
				return;
2777 2778 2779 2780
			start = NULL;
		} else if (!start)
			start = spte;
	}
2781 2782
	if (start)
		direct_pte_prefetch_many(vcpu, sp, start, spte);
2783 2784 2785 2786 2787 2788
}

static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
{
	struct kvm_mmu_page *sp;

2789
	sp = sptep_to_sp(sptep);
2790

2791
	/*
2792 2793 2794
	 * Without accessed bits, there's no way to distinguish between
	 * actually accessed translations and prefetched, so disable pte
	 * prefetch if accessed bits aren't available.
2795
	 */
2796
	if (sp_ad_disabled(sp))
2797 2798
		return;

2799
	if (sp->role.level > PG_LEVEL_4K)
2800 2801
		return;

2802 2803 2804 2805 2806 2807 2808
	/*
	 * If addresses are being invalidated, skip prefetching to avoid
	 * accidentally prefetching those addresses.
	 */
	if (unlikely(vcpu->kvm->mmu_notifier_count))
		return;

2809 2810 2811
	__direct_pte_prefetch(vcpu, sp, sptep);
}

2812
static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn,
2813
				  const struct kvm_memory_slot *slot)
2814 2815 2816 2817 2818
{
	unsigned long hva;
	pte_t *pte;
	int level;

2819
	if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn))
2820
		return PG_LEVEL_4K;
2821

2822 2823 2824 2825 2826 2827 2828 2829
	/*
	 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
	 * is not solely for performance, it's also necessary to avoid the
	 * "writable" check in __gfn_to_hva_many(), which will always fail on
	 * read-only memslots due to gfn_to_hva() assuming writes.  Earlier
	 * page fault steps have already verified the guest isn't writing a
	 * read-only memslot.
	 */
2830 2831
	hva = __gfn_to_hva_memslot(slot, gfn);

2832
	pte = lookup_address_in_mm(kvm->mm, hva, &level);
2833
	if (unlikely(!pte))
2834
		return PG_LEVEL_4K;
2835 2836 2837 2838

	return level;
}

2839 2840 2841
int kvm_mmu_max_mapping_level(struct kvm *kvm,
			      const struct kvm_memory_slot *slot, gfn_t gfn,
			      kvm_pfn_t pfn, int max_level)
2842 2843
{
	struct kvm_lpage_info *linfo;
2844
	int host_level;
2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855

	max_level = min(max_level, max_huge_page_level);
	for ( ; max_level > PG_LEVEL_4K; max_level--) {
		linfo = lpage_info_slot(gfn, slot, max_level);
		if (!linfo->disallow_lpage)
			break;
	}

	if (max_level == PG_LEVEL_4K)
		return PG_LEVEL_4K;

2856 2857
	host_level = host_pfn_mapping_level(kvm, gfn, pfn, slot);
	return min(host_level, max_level);
2858 2859
}

2860
void kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
2861
{
2862
	struct kvm_memory_slot *slot = fault->slot;
2863 2864
	kvm_pfn_t mask;

2865
	fault->huge_page_disallowed = fault->exec && fault->nx_huge_page_workaround_enabled;
2866

2867 2868
	if (unlikely(fault->max_level == PG_LEVEL_4K))
		return;
2869

2870 2871
	if (is_error_noslot_pfn(fault->pfn) || kvm_is_reserved_pfn(fault->pfn))
		return;
2872

2873
	if (kvm_slot_dirty_track_enabled(slot))
2874
		return;
2875

2876 2877 2878 2879
	/*
	 * Enforce the iTLB multihit workaround after capturing the requested
	 * level, which will be used to do precise, accurate accounting.
	 */
2880 2881 2882 2883 2884
	fault->req_level = kvm_mmu_max_mapping_level(vcpu->kvm, slot,
						     fault->gfn, fault->pfn,
						     fault->max_level);
	if (fault->req_level == PG_LEVEL_4K || fault->huge_page_disallowed)
		return;
2885 2886

	/*
2887 2888
	 * mmu_notifier_retry() was successful and mmu_lock is held, so
	 * the pmd can't be split from under us.
2889
	 */
2890 2891 2892 2893
	fault->goal_level = fault->req_level;
	mask = KVM_PAGES_PER_HPAGE(fault->goal_level) - 1;
	VM_BUG_ON((fault->gfn & mask) != (fault->pfn & mask));
	fault->pfn &= ~mask;
2894 2895
}

2896
void disallowed_hugepage_adjust(struct kvm_page_fault *fault, u64 spte, int cur_level)
P
Paolo Bonzini 已提交
2897
{
2898 2899
	if (cur_level > PG_LEVEL_4K &&
	    cur_level == fault->goal_level &&
P
Paolo Bonzini 已提交
2900 2901 2902 2903 2904 2905 2906 2907 2908
	    is_shadow_present_pte(spte) &&
	    !is_large_pte(spte)) {
		/*
		 * A small SPTE exists for this pfn, but FNAME(fetch)
		 * and __direct_map would like to create a large PTE
		 * instead: just force them to go down another level,
		 * patching back for them into pfn the next 9 bits of
		 * the address.
		 */
2909 2910 2911 2912
		u64 page_mask = KVM_PAGES_PER_HPAGE(cur_level) -
				KVM_PAGES_PER_HPAGE(cur_level - 1);
		fault->pfn |= fault->gfn & page_mask;
		fault->goal_level--;
P
Paolo Bonzini 已提交
2913 2914 2915
	}
}

2916
static int __direct_map(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
2917
{
2918
	struct kvm_shadow_walk_iterator it;
2919
	struct kvm_mmu_page *sp;
2920
	int ret;
2921
	gfn_t base_gfn = fault->gfn;
A
Avi Kivity 已提交
2922

2923
	kvm_mmu_hugepage_adjust(vcpu, fault);
2924

2925
	trace_kvm_mmu_spte_requested(fault);
2926
	for_each_shadow_entry(vcpu, fault->addr, it) {
P
Paolo Bonzini 已提交
2927 2928 2929 2930
		/*
		 * We cannot overwrite existing page tables with an NX
		 * large page, as the leaf could be executable.
		 */
2931
		if (fault->nx_huge_page_workaround_enabled)
2932
			disallowed_hugepage_adjust(fault, *it.sptep, it.level);
P
Paolo Bonzini 已提交
2933

2934
		base_gfn = fault->gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
2935
		if (it.level == fault->goal_level)
2936
			break;
A
Avi Kivity 已提交
2937

2938
		drop_large_spte(vcpu, it.sptep);
2939 2940 2941 2942 2943 2944 2945
		if (is_shadow_present_pte(*it.sptep))
			continue;

		sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
				      it.level - 1, true, ACC_ALL);

		link_shadow_page(vcpu, it.sptep, sp);
2946 2947
		if (fault->is_tdp && fault->huge_page_disallowed &&
		    fault->req_level >= it.level)
2948
			account_huge_nx_page(vcpu->kvm, sp);
2949
	}
2950

2951 2952 2953
	if (WARN_ON_ONCE(it.level != fault->goal_level))
		return -EFAULT;

2954
	ret = mmu_set_spte(vcpu, fault->slot, it.sptep, ACC_ALL,
2955
			   base_gfn, fault->pfn, fault);
2956 2957 2958
	if (ret == RET_PF_SPURIOUS)
		return ret;

2959 2960 2961
	direct_pte_prefetch(vcpu, it.sptep);
	++vcpu->stat.pf_fixed;
	return ret;
A
Avi Kivity 已提交
2962 2963
}

H
Huang Ying 已提交
2964
static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2965
{
2966
	send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
2967 2968
}

D
Dan Williams 已提交
2969
static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
2970
{
X
Xiao Guangrong 已提交
2971 2972 2973 2974 2975 2976
	/*
	 * Do not cache the mmio info caused by writing the readonly gfn
	 * into the spte otherwise read access on readonly gfn also can
	 * caused mmio page fault and treat it as mmio access.
	 */
	if (pfn == KVM_PFN_ERR_RO_FAULT)
2977
		return RET_PF_EMULATE;
X
Xiao Guangrong 已提交
2978

2979
	if (pfn == KVM_PFN_ERR_HWPOISON) {
2980
		kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
2981
		return RET_PF_RETRY;
2982
	}
2983

2984
	return -EFAULT;
2985 2986
}

2987 2988
static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault,
				unsigned int access, int *ret_val)
2989 2990
{
	/* The pfn is invalid, report the error! */
2991 2992
	if (unlikely(is_error_pfn(fault->pfn))) {
		*ret_val = kvm_handle_bad_page(vcpu, fault->gfn, fault->pfn);
2993
		return true;
2994 2995
	}

2996
	if (unlikely(!fault->slot)) {
2997 2998 2999
		gva_t gva = fault->is_tdp ? 0 : fault->addr;

		vcpu_cache_mmio_info(vcpu, gva, fault->gfn,
3000
				     access & shadow_mmio_access_mask);
3001 3002 3003 3004 3005 3006 3007 3008 3009 3010
		/*
		 * If MMIO caching is disabled, emulate immediately without
		 * touching the shadow page tables as attempting to install an
		 * MMIO SPTE will just be an expensive nop.
		 */
		if (unlikely(!shadow_mmio_value)) {
			*ret_val = RET_PF_EMULATE;
			return true;
		}
	}
3011

3012
	return false;
3013 3014
}

3015
static bool page_fault_can_be_fast(struct kvm_page_fault *fault)
3016
{
3017 3018 3019 3020
	/*
	 * Do not fix the mmio spte with invalid generation number which
	 * need to be updated by slow page fault path.
	 */
3021
	if (fault->rsvd)
3022 3023
		return false;

3024
	/* See if the page fault is due to an NX violation */
3025
	if (unlikely(fault->exec && fault->present))
3026 3027
		return false;

3028
	/*
3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039
	 * #PF can be fast if:
	 * 1. The shadow page table entry is not present, which could mean that
	 *    the fault is potentially caused by access tracking (if enabled).
	 * 2. The shadow page table entry is present and the fault
	 *    is caused by write-protect, that means we just need change the W
	 *    bit of the spte which can be done out of mmu-lock.
	 *
	 * However, if access tracking is disabled we know that a non-present
	 * page must be a genuine page fault where we have to create a new SPTE.
	 * So, if access tracking is disabled, we return true only for write
	 * accesses to a present page.
3040 3041
	 */

3042
	return shadow_acc_track_mask != 0 || (fault->write && fault->present);
3043 3044
}

3045 3046 3047 3048
/*
 * Returns true if the SPTE was fixed successfully. Otherwise,
 * someone else modified the SPTE from its original value.
 */
3049
static bool
3050
fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault,
3051
			u64 *sptep, u64 old_spte, u64 new_spte)
3052
{
3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064
	/*
	 * Theoretically we could also set dirty bit (and flush TLB) here in
	 * order to eliminate unnecessary PML logging. See comments in
	 * set_spte. But fast_page_fault is very unlikely to happen with PML
	 * enabled, so we do not do this. This might result in the same GPA
	 * to be logged in PML buffer again when the write really happens, and
	 * eventually to be called by mark_page_dirty twice. But it's also no
	 * harm. This also avoids the TLB flush needed after setting dirty bit
	 * so non-PML cases won't be impacted.
	 *
	 * Compare with set_spte where instead shadow_dirty_mask is set.
	 */
3065
	if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3066 3067
		return false;

3068 3069
	if (is_writable_pte(new_spte) && !is_writable_pte(old_spte))
		mark_page_dirty_in_slot(vcpu->kvm, fault->slot, fault->gfn);
3070 3071 3072 3073

	return true;
}

3074
static bool is_access_allowed(struct kvm_page_fault *fault, u64 spte)
3075
{
3076
	if (fault->exec)
3077 3078
		return is_executable_pte(spte);

3079
	if (fault->write)
3080 3081 3082 3083 3084 3085
		return is_writable_pte(spte);

	/* Fault was on Read access */
	return spte & PT_PRESENT_MASK;
}

3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108
/*
 * Returns the last level spte pointer of the shadow page walk for the given
 * gpa, and sets *spte to the spte value. This spte may be non-preset. If no
 * walk could be performed, returns NULL and *spte does not contain valid data.
 *
 * Contract:
 *  - Must be called between walk_shadow_page_lockless_{begin,end}.
 *  - The returned sptep must not be used after walk_shadow_page_lockless_end.
 */
static u64 *fast_pf_get_last_sptep(struct kvm_vcpu *vcpu, gpa_t gpa, u64 *spte)
{
	struct kvm_shadow_walk_iterator iterator;
	u64 old_spte;
	u64 *sptep = NULL;

	for_each_shadow_entry_lockless(vcpu, gpa, iterator, old_spte) {
		sptep = iterator.sptep;
		*spte = old_spte;
	}

	return sptep;
}

3109
/*
3110
 * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS.
3111
 */
3112
static int fast_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
3113
{
3114
	struct kvm_mmu_page *sp;
3115
	int ret = RET_PF_INVALID;
3116
	u64 spte = 0ull;
3117
	u64 *sptep = NULL;
3118
	uint retry_count = 0;
3119

3120
	if (!page_fault_can_be_fast(fault))
3121
		return ret;
3122 3123 3124

	walk_shadow_page_lockless_begin(vcpu);

3125
	do {
3126
		u64 new_spte;
3127

3128
		if (is_tdp_mmu(vcpu->arch.mmu))
3129
			sptep = kvm_tdp_mmu_fast_pf_get_last_sptep(vcpu, fault->addr, &spte);
3130
		else
3131
			sptep = fast_pf_get_last_sptep(vcpu, fault->addr, &spte);
3132

3133 3134 3135
		if (!is_shadow_present_pte(spte))
			break;

3136
		sp = sptep_to_sp(sptep);
3137 3138
		if (!is_last_spte(spte, sp->role.level))
			break;
3139

3140
		/*
3141 3142 3143 3144 3145
		 * Check whether the memory access that caused the fault would
		 * still cause it if it were to be performed right now. If not,
		 * then this is a spurious fault caused by TLB lazily flushed,
		 * or some other CPU has already fixed the PTE after the
		 * current CPU took the fault.
3146 3147 3148 3149
		 *
		 * Need not check the access of upper level table entries since
		 * they are always ACC_ALL.
		 */
3150
		if (is_access_allowed(fault, spte)) {
3151
			ret = RET_PF_SPURIOUS;
3152 3153
			break;
		}
3154

3155 3156 3157 3158 3159 3160 3161 3162 3163 3164
		new_spte = spte;

		if (is_access_track_spte(spte))
			new_spte = restore_acc_track_spte(new_spte);

		/*
		 * Currently, to simplify the code, write-protection can
		 * be removed in the fast path only if the SPTE was
		 * write-protected for dirty-logging or access tracking.
		 */
3165
		if (fault->write &&
3166
		    spte_can_locklessly_be_made_writable(spte)) {
3167
			new_spte |= PT_WRITABLE_MASK;
3168 3169

			/*
3170 3171 3172
			 * Do not fix write-permission on the large spte when
			 * dirty logging is enabled. Since we only dirty the
			 * first page into the dirty-bitmap in
3173 3174 3175 3176 3177
			 * fast_pf_fix_direct_spte(), other pages are missed
			 * if its slot has dirty logging enabled.
			 *
			 * Instead, we let the slow page fault path create a
			 * normal spte to fix the access.
3178
			 */
3179 3180
			if (sp->role.level > PG_LEVEL_4K &&
			    kvm_slot_dirty_track_enabled(fault->slot))
3181
				break;
3182
		}
3183

3184
		/* Verify that the fault can be handled in the fast path */
3185
		if (new_spte == spte ||
3186
		    !is_access_allowed(fault, new_spte))
3187 3188 3189 3190 3191
			break;

		/*
		 * Currently, fast page fault only works for direct mapping
		 * since the gfn is not stable for indirect shadow page. See
3192
		 * Documentation/virt/kvm/locking.rst to get more detail.
3193
		 */
3194
		if (fast_pf_fix_direct_spte(vcpu, fault, sptep, spte, new_spte)) {
3195
			ret = RET_PF_FIXED;
3196
			break;
3197
		}
3198 3199 3200 3201 3202 3203 3204 3205

		if (++retry_count > 4) {
			printk_once(KERN_WARNING
				"kvm: Fast #PF retrying more than 4 times.\n");
			break;
		}

	} while (true);
3206

3207
	trace_fast_page_fault(vcpu, fault, sptep, spte, ret);
3208 3209
	walk_shadow_page_lockless_end(vcpu);

3210
	return ret;
3211 3212
}

3213 3214
static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
			       struct list_head *invalid_list)
3215
{
3216
	struct kvm_mmu_page *sp;
3217

3218
	if (!VALID_PAGE(*root_hpa))
A
Avi Kivity 已提交
3219
		return;
3220

3221
	sp = to_shadow_page(*root_hpa & PT64_BASE_ADDR_MASK);
3222

3223
	if (is_tdp_mmu_page(sp))
3224
		kvm_tdp_mmu_put_root(kvm, sp, false);
3225 3226
	else if (!--sp->root_count && sp->role.invalid)
		kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3227

3228 3229 3230
	*root_hpa = INVALID_PAGE;
}

3231
/* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
3232 3233
void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
			ulong roots_to_free)
3234
{
3235
	struct kvm *kvm = vcpu->kvm;
3236 3237
	int i;
	LIST_HEAD(invalid_list);
3238
	bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
3239

3240
	BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3241

3242
	/* Before acquiring the MMU lock, see if we need to do any real work. */
3243 3244 3245 3246 3247 3248 3249 3250 3251
	if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
			if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
			    VALID_PAGE(mmu->prev_roots[i].hpa))
				break;

		if (i == KVM_MMU_NUM_PREV_ROOTS)
			return;
	}
3252

3253
	write_lock(&kvm->mmu_lock);
3254

3255 3256
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
		if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3257
			mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa,
3258
					   &invalid_list);
3259

3260 3261 3262
	if (free_active_root) {
		if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
		    (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3263
			mmu_free_root_page(kvm, &mmu->root_hpa, &invalid_list);
3264
		} else if (mmu->pae_root) {
3265 3266 3267 3268 3269 3270 3271 3272
			for (i = 0; i < 4; ++i) {
				if (!IS_VALID_PAE_ROOT(mmu->pae_root[i]))
					continue;

				mmu_free_root_page(kvm, &mmu->pae_root[i],
						   &invalid_list);
				mmu->pae_root[i] = INVALID_PAE_ROOT;
			}
3273
		}
3274
		mmu->root_hpa = INVALID_PAGE;
3275
		mmu->root_pgd = 0;
3276
	}
3277

3278
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
3279
	write_unlock(&kvm->mmu_lock);
3280
}
3281
EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3282

3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309
void kvm_mmu_free_guest_mode_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
{
	unsigned long roots_to_free = 0;
	hpa_t root_hpa;
	int i;

	/*
	 * This should not be called while L2 is active, L2 can't invalidate
	 * _only_ its own roots, e.g. INVVPID unconditionally exits.
	 */
	WARN_ON_ONCE(mmu->mmu_role.base.guest_mode);

	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
		root_hpa = mmu->prev_roots[i].hpa;
		if (!VALID_PAGE(root_hpa))
			continue;

		if (!to_shadow_page(root_hpa) ||
			to_shadow_page(root_hpa)->role.guest_mode)
			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
	}

	kvm_mmu_free_roots(vcpu, mmu, roots_to_free);
}
EXPORT_SYMBOL_GPL(kvm_mmu_free_guest_mode_roots);


3310 3311 3312 3313
static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
{
	int ret = 0;

3314
	if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) {
3315
		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3316 3317 3318 3319 3320 3321
		ret = 1;
	}

	return ret;
}

3322 3323
static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, gva_t gva,
			    u8 level, bool direct)
3324 3325
{
	struct kvm_mmu_page *sp;
3326 3327 3328 3329 3330 3331 3332 3333 3334

	sp = kvm_mmu_get_page(vcpu, gfn, gva, level, direct, ACC_ALL);
	++sp->root_count;

	return __pa(sp->spt);
}

static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
{
3335 3336
	struct kvm_mmu *mmu = vcpu->arch.mmu;
	u8 shadow_root_level = mmu->shadow_root_level;
3337
	hpa_t root;
3338
	unsigned i;
3339 3340 3341 3342 3343 3344
	int r;

	write_lock(&vcpu->kvm->mmu_lock);
	r = make_mmu_pages_available(vcpu);
	if (r < 0)
		goto out_unlock;
3345

3346
	if (is_tdp_mmu_enabled(vcpu->kvm)) {
3347
		root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu);
3348
		mmu->root_hpa = root;
3349
	} else if (shadow_root_level >= PT64_ROOT_4LEVEL) {
3350
		root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level, true);
3351
		mmu->root_hpa = root;
3352
	} else if (shadow_root_level == PT32E_ROOT_LEVEL) {
3353 3354 3355 3356
		if (WARN_ON_ONCE(!mmu->pae_root)) {
			r = -EIO;
			goto out_unlock;
		}
3357

3358
		for (i = 0; i < 4; ++i) {
3359
			WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3360

3361 3362
			root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT),
					      i << 30, PT32_ROOT_LEVEL, true);
3363 3364
			mmu->pae_root[i] = root | PT_PRESENT_MASK |
					   shadow_me_mask;
3365
		}
3366
		mmu->root_hpa = __pa(mmu->pae_root);
3367 3368
	} else {
		WARN_ONCE(1, "Bad TDP root level = %d\n", shadow_root_level);
3369 3370
		r = -EIO;
		goto out_unlock;
3371
	}
3372

3373
	/* root_pgd is ignored for direct MMUs. */
3374
	mmu->root_pgd = 0;
3375 3376 3377
out_unlock:
	write_unlock(&vcpu->kvm->mmu_lock);
	return r;
3378 3379
}

3380 3381 3382 3383
static int mmu_first_shadow_root_alloc(struct kvm *kvm)
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *slot;
3384
	int r = 0, i, bkt;
3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408

	/*
	 * Check if this is the first shadow root being allocated before
	 * taking the lock.
	 */
	if (kvm_shadow_root_allocated(kvm))
		return 0;

	mutex_lock(&kvm->slots_arch_lock);

	/* Recheck, under the lock, whether this is the first shadow root. */
	if (kvm_shadow_root_allocated(kvm))
		goto out_unlock;

	/*
	 * Check if anything actually needs to be allocated, e.g. all metadata
	 * will be allocated upfront if TDP is disabled.
	 */
	if (kvm_memslots_have_rmaps(kvm) &&
	    kvm_page_track_write_tracking_enabled(kvm))
		goto out_success;

	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
3409
		kvm_for_each_memslot(slot, bkt, slots) {
3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440
			/*
			 * Both of these functions are no-ops if the target is
			 * already allocated, so unconditionally calling both
			 * is safe.  Intentionally do NOT free allocations on
			 * failure to avoid having to track which allocations
			 * were made now versus when the memslot was created.
			 * The metadata is guaranteed to be freed when the slot
			 * is freed, and will be kept/used if userspace retries
			 * KVM_RUN instead of killing the VM.
			 */
			r = memslot_rmap_alloc(slot, slot->npages);
			if (r)
				goto out_unlock;
			r = kvm_page_track_write_tracking_alloc(slot);
			if (r)
				goto out_unlock;
		}
	}

	/*
	 * Ensure that shadow_root_allocated becomes true strictly after
	 * all the related pointers are set.
	 */
out_success:
	smp_store_release(&kvm->arch.shadow_root_allocated, true);

out_unlock:
	mutex_unlock(&kvm->slots_arch_lock);
	return r;
}

3441
static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3442
{
3443
	struct kvm_mmu *mmu = vcpu->arch.mmu;
3444
	u64 pdptrs[4], pm_mask;
3445
	gfn_t root_gfn, root_pgd;
3446
	hpa_t root;
3447 3448
	unsigned i;
	int r;
3449

3450
	root_pgd = mmu->get_guest_pgd(vcpu);
3451
	root_gfn = root_pgd >> PAGE_SHIFT;
3452

3453 3454 3455
	if (mmu_check_root(vcpu, root_gfn))
		return 1;

3456 3457 3458 3459
	/*
	 * On SVM, reading PDPTRs might access guest memory, which might fault
	 * and thus might sleep.  Grab the PDPTRs before acquiring mmu_lock.
	 */
3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470
	if (mmu->root_level == PT32E_ROOT_LEVEL) {
		for (i = 0; i < 4; ++i) {
			pdptrs[i] = mmu->get_pdptr(vcpu, i);
			if (!(pdptrs[i] & PT_PRESENT_MASK))
				continue;

			if (mmu_check_root(vcpu, pdptrs[i] >> PAGE_SHIFT))
				return 1;
		}
	}

3471
	r = mmu_first_shadow_root_alloc(vcpu->kvm);
3472 3473 3474
	if (r)
		return r;

3475 3476 3477 3478 3479
	write_lock(&vcpu->kvm->mmu_lock);
	r = make_mmu_pages_available(vcpu);
	if (r < 0)
		goto out_unlock;

3480 3481 3482 3483
	/*
	 * Do we shadow a long mode page table? If so we need to
	 * write-protect the guests page table root.
	 */
3484
	if (mmu->root_level >= PT64_ROOT_4LEVEL) {
3485
		root = mmu_alloc_root(vcpu, root_gfn, 0,
3486 3487
				      mmu->shadow_root_level, false);
		mmu->root_hpa = root;
3488
		goto set_root_pgd;
3489
	}
3490

3491 3492 3493 3494
	if (WARN_ON_ONCE(!mmu->pae_root)) {
		r = -EIO;
		goto out_unlock;
	}
3495

3496 3497
	/*
	 * We shadow a 32 bit page table. This may be a legacy 2-level
3498 3499
	 * or a PAE 3-level page table. In either case we need to be aware that
	 * the shadow page table may be a PAE or a long mode page table.
3500
	 */
3501
	pm_mask = PT_PRESENT_MASK | shadow_me_mask;
3502
	if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL) {
3503 3504
		pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;

3505
		if (WARN_ON_ONCE(!mmu->pml4_root)) {
3506 3507 3508
			r = -EIO;
			goto out_unlock;
		}
3509
		mmu->pml4_root[0] = __pa(mmu->pae_root) | pm_mask;
3510 3511 3512 3513 3514 3515 3516 3517

		if (mmu->shadow_root_level == PT64_ROOT_5LEVEL) {
			if (WARN_ON_ONCE(!mmu->pml5_root)) {
				r = -EIO;
				goto out_unlock;
			}
			mmu->pml5_root[0] = __pa(mmu->pml4_root) | pm_mask;
		}
3518 3519
	}

3520
	for (i = 0; i < 4; ++i) {
3521
		WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3522

3523
		if (mmu->root_level == PT32E_ROOT_LEVEL) {
3524
			if (!(pdptrs[i] & PT_PRESENT_MASK)) {
3525
				mmu->pae_root[i] = INVALID_PAE_ROOT;
A
Avi Kivity 已提交
3526 3527
				continue;
			}
3528
			root_gfn = pdptrs[i] >> PAGE_SHIFT;
3529
		}
3530

3531 3532
		root = mmu_alloc_root(vcpu, root_gfn, i << 30,
				      PT32_ROOT_LEVEL, false);
3533
		mmu->pae_root[i] = root | pm_mask;
3534
	}
3535

3536 3537 3538
	if (mmu->shadow_root_level == PT64_ROOT_5LEVEL)
		mmu->root_hpa = __pa(mmu->pml5_root);
	else if (mmu->shadow_root_level == PT64_ROOT_4LEVEL)
3539
		mmu->root_hpa = __pa(mmu->pml4_root);
3540 3541
	else
		mmu->root_hpa = __pa(mmu->pae_root);
3542

3543
set_root_pgd:
3544
	mmu->root_pgd = root_pgd;
3545 3546
out_unlock:
	write_unlock(&vcpu->kvm->mmu_lock);
3547

3548
	return 0;
3549 3550
}

3551 3552 3553
static int mmu_alloc_special_roots(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu *mmu = vcpu->arch.mmu;
3554
	bool need_pml5 = mmu->shadow_root_level > PT64_ROOT_4LEVEL;
3555 3556 3557
	u64 *pml5_root = NULL;
	u64 *pml4_root = NULL;
	u64 *pae_root;
3558 3559

	/*
3560 3561 3562 3563
	 * When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP
	 * tables are allocated and initialized at root creation as there is no
	 * equivalent level in the guest's NPT to shadow.  Allocate the tables
	 * on demand, as running a 32-bit L1 VMM on 64-bit KVM is very rare.
3564
	 */
3565 3566 3567
	if (mmu->direct_map || mmu->root_level >= PT64_ROOT_4LEVEL ||
	    mmu->shadow_root_level < PT64_ROOT_4LEVEL)
		return 0;
3568

3569 3570 3571 3572 3573 3574 3575 3576
	/*
	 * NPT, the only paging mode that uses this horror, uses a fixed number
	 * of levels for the shadow page tables, e.g. all MMUs are 4-level or
	 * all MMus are 5-level.  Thus, this can safely require that pml5_root
	 * is allocated if the other roots are valid and pml5 is needed, as any
	 * prior MMU would also have required pml5.
	 */
	if (mmu->pae_root && mmu->pml4_root && (!need_pml5 || mmu->pml5_root))
3577
		return 0;
3578

3579 3580 3581 3582
	/*
	 * The special roots should always be allocated in concert.  Yell and
	 * bail if KVM ends up in a state where only one of the roots is valid.
	 */
3583
	if (WARN_ON_ONCE(!tdp_enabled || mmu->pae_root || mmu->pml4_root ||
3584
			 (need_pml5 && mmu->pml5_root)))
3585
		return -EIO;
3586

3587 3588 3589 3590
	/*
	 * Unlike 32-bit NPT, the PDP table doesn't need to be in low mem, and
	 * doesn't need to be decrypted.
	 */
3591 3592 3593
	pae_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
	if (!pae_root)
		return -ENOMEM;
3594

3595
#ifdef CONFIG_X86_64
3596
	pml4_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3597 3598 3599
	if (!pml4_root)
		goto err_pml4;

3600
	if (need_pml5) {
3601 3602 3603
		pml5_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
		if (!pml5_root)
			goto err_pml5;
3604
	}
3605
#endif
3606

3607
	mmu->pae_root = pae_root;
3608
	mmu->pml4_root = pml4_root;
3609
	mmu->pml5_root = pml5_root;
3610

3611
	return 0;
3612 3613 3614 3615 3616 3617 3618 3619

#ifdef CONFIG_X86_64
err_pml5:
	free_page((unsigned long)pml4_root);
err_pml4:
	free_page((unsigned long)pae_root);
	return -ENOMEM;
#endif
3620 3621
}

3622 3623 3624 3625
static bool is_unsync_root(hpa_t root)
{
	struct kvm_mmu_page *sp;

3626 3627 3628
	if (!VALID_PAGE(root))
		return false;

3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648
	/*
	 * The read barrier orders the CPU's read of SPTE.W during the page table
	 * walk before the reads of sp->unsync/sp->unsync_children here.
	 *
	 * Even if another CPU was marking the SP as unsync-ed simultaneously,
	 * any guest page table changes are not guaranteed to be visible anyway
	 * until this VCPU issues a TLB flush strictly after those changes are
	 * made.  We only need to ensure that the other CPU sets these flags
	 * before any actual changes to the page tables are made.  The comments
	 * in mmu_try_to_unsync_pages() describe what could go wrong if this
	 * requirement isn't satisfied.
	 */
	smp_rmb();
	sp = to_shadow_page(root);
	if (sp->unsync || sp->unsync_children)
		return true;

	return false;
}

3649
void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3650 3651 3652 3653
{
	int i;
	struct kvm_mmu_page *sp;

3654
	if (vcpu->arch.mmu->direct_map)
3655 3656
		return;

3657
	if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3658
		return;
3659

3660
	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3661

3662 3663
	if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
		hpa_t root = vcpu->arch.mmu->root_hpa;
3664
		sp = to_shadow_page(root);
3665

3666
		if (!is_unsync_root(root))
3667 3668
			return;

3669
		write_lock(&vcpu->kvm->mmu_lock);
3670 3671
		kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);

3672
		mmu_sync_children(vcpu, sp, true);
3673

3674
		kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3675
		write_unlock(&vcpu->kvm->mmu_lock);
3676 3677
		return;
	}
3678

3679
	write_lock(&vcpu->kvm->mmu_lock);
3680 3681
	kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);

3682
	for (i = 0; i < 4; ++i) {
3683
		hpa_t root = vcpu->arch.mmu->pae_root[i];
3684

3685
		if (IS_VALID_PAE_ROOT(root)) {
3686
			root &= PT64_BASE_ADDR_MASK;
3687
			sp = to_shadow_page(root);
3688
			mmu_sync_children(vcpu, sp, true);
3689 3690 3691
		}
	}

3692
	kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3693
	write_unlock(&vcpu->kvm->mmu_lock);
3694 3695
}

3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708
void kvm_mmu_sync_prev_roots(struct kvm_vcpu *vcpu)
{
	unsigned long roots_to_free = 0;
	int i;

	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
		if (is_unsync_root(vcpu->arch.mmu->prev_roots[i].hpa))
			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);

	/* sync prev_roots by simply freeing them */
	kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, roots_to_free);
}

3709 3710 3711
static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
				  gpa_t vaddr, u32 access,
				  struct x86_exception *exception)
A
Avi Kivity 已提交
3712
{
3713 3714
	if (exception)
		exception->error_code = 0;
3715
	return kvm_translate_gpa(vcpu, mmu, vaddr, access, exception);
3716 3717
}

3718
static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3719
{
3720 3721 3722 3723 3724 3725 3726
	/*
	 * A nested guest cannot use the MMIO cache if it is using nested
	 * page tables, because cr2 is a nGPA while the cache stores GPAs.
	 */
	if (mmu_is_nested(vcpu))
		return false;

3727 3728 3729 3730 3731 3732
	if (direct)
		return vcpu_match_mmio_gpa(vcpu, addr);

	return vcpu_match_mmio_gva(vcpu, addr);
}

3733 3734 3735
/*
 * Return the level of the lowest level SPTE added to sptes.
 * That SPTE may be non-present.
3736 3737
 *
 * Must be called between walk_shadow_page_lockless_{begin,end}.
3738
 */
3739
static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level)
3740 3741
{
	struct kvm_shadow_walk_iterator iterator;
3742
	int leaf = -1;
3743
	u64 spte;
3744

3745 3746
	for (shadow_walk_init(&iterator, vcpu, addr),
	     *root_level = iterator.level;
3747 3748
	     shadow_walk_okay(&iterator);
	     __shadow_walk_next(&iterator, spte)) {
3749
		leaf = iterator.level;
3750 3751
		spte = mmu_spte_get_lockless(iterator.sptep);

3752
		sptes[leaf] = spte;
3753 3754 3755 3756 3757
	}

	return leaf;
}

3758
/* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */
3759 3760
static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
{
3761
	u64 sptes[PT64_ROOT_MAX_LEVEL + 1];
3762
	struct rsvd_bits_validate *rsvd_check;
3763
	int root, leaf, level;
3764 3765
	bool reserved = false;

3766 3767
	walk_shadow_page_lockless_begin(vcpu);

3768
	if (is_tdp_mmu(vcpu->arch.mmu))
3769
		leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, &root);
3770
	else
3771
		leaf = get_walk(vcpu, addr, sptes, &root);
3772

3773 3774
	walk_shadow_page_lockless_end(vcpu);

3775 3776 3777 3778 3779
	if (unlikely(leaf < 0)) {
		*sptep = 0ull;
		return reserved;
	}

3780 3781 3782 3783 3784 3785 3786 3787 3788 3789
	*sptep = sptes[leaf];

	/*
	 * Skip reserved bits checks on the terminal leaf if it's not a valid
	 * SPTE.  Note, this also (intentionally) skips MMIO SPTEs, which, by
	 * design, always have reserved bits set.  The purpose of the checks is
	 * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs.
	 */
	if (!is_shadow_present_pte(sptes[leaf]))
		leaf++;
3790 3791 3792

	rsvd_check = &vcpu->arch.mmu->shadow_zero_check;

3793
	for (level = root; level >= leaf; level--)
3794
		reserved |= is_rsvd_spte(rsvd_check, sptes[level], level);
3795 3796

	if (reserved) {
3797
		pr_err("%s: reserved bits set on MMU-present spte, addr 0x%llx, hierarchy:\n",
3798
		       __func__, addr);
3799
		for (level = root; level >= leaf; level--)
3800 3801
			pr_err("------ spte = 0x%llx level = %d, rsvd bits = 0x%llx",
			       sptes[level], level,
3802
			       get_rsvd_bits(rsvd_check, sptes[level], level));
3803
	}
3804

3805
	return reserved;
3806 3807
}

P
Paolo Bonzini 已提交
3808
static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3809 3810
{
	u64 spte;
3811
	bool reserved;
3812

3813
	if (mmio_info_in_cache(vcpu, addr, direct))
3814
		return RET_PF_EMULATE;
3815

3816
	reserved = get_mmio_spte(vcpu, addr, &spte);
3817
	if (WARN_ON(reserved))
3818
		return -EINVAL;
3819 3820 3821

	if (is_mmio_spte(spte)) {
		gfn_t gfn = get_mmio_spte_gfn(spte);
3822
		unsigned int access = get_mmio_spte_access(spte);
3823

3824
		if (!check_mmio_spte(vcpu, spte))
3825
			return RET_PF_INVALID;
3826

3827 3828
		if (direct)
			addr = 0;
X
Xiao Guangrong 已提交
3829 3830

		trace_handle_mmio_page_fault(addr, gfn, access);
3831
		vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3832
		return RET_PF_EMULATE;
3833 3834 3835 3836 3837 3838
	}

	/*
	 * If the page table is zapped by other cpus, let CPU fault again on
	 * the address.
	 */
3839
	return RET_PF_RETRY;
3840 3841
}

3842
static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3843
					 struct kvm_page_fault *fault)
3844
{
3845
	if (unlikely(fault->rsvd))
3846 3847
		return false;

3848
	if (!fault->present || !fault->write)
3849 3850 3851 3852 3853 3854
		return false;

	/*
	 * guest is writing the page which is write tracked which can
	 * not be fixed by page fault handler.
	 */
3855
	if (kvm_slot_page_track_is_active(vcpu->kvm, fault->slot, fault->gfn, KVM_PAGE_TRACK_WRITE))
3856 3857 3858 3859 3860
		return true;

	return false;
}

3861 3862 3863 3864 3865 3866
static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
{
	struct kvm_shadow_walk_iterator iterator;
	u64 spte;

	walk_shadow_page_lockless_begin(vcpu);
3867
	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
3868 3869 3870 3871
		clear_sp_write_flooding_count(iterator.sptep);
	walk_shadow_page_lockless_end(vcpu);
}

3872 3873
static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
				    gfn_t gfn)
3874 3875
{
	struct kvm_arch_async_pf arch;
X
Xiao Guangrong 已提交
3876

3877
	arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3878
	arch.gfn = gfn;
3879
	arch.direct_map = vcpu->arch.mmu->direct_map;
3880
	arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu);
3881

3882 3883
	return kvm_setup_async_pf(vcpu, cr2_or_gpa,
				  kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3884 3885
}

3886
static bool kvm_faultin_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault, int *r)
3887
{
3888
	struct kvm_memory_slot *slot = fault->slot;
3889 3890
	bool async;

3891 3892 3893 3894 3895 3896
	/*
	 * Retry the page fault if the gfn hit a memslot that is being deleted
	 * or moved.  This ensures any existing SPTEs for the old memslot will
	 * be zapped before KVM inserts a new MMIO SPTE for the gfn.
	 */
	if (slot && (slot->flags & KVM_MEMSLOT_INVALID))
3897
		goto out_retry;
3898

3899 3900 3901
	if (!kvm_is_visible_memslot(slot)) {
		/* Don't expose private memslots to L2. */
		if (is_guest_mode(vcpu)) {
3902
			fault->slot = NULL;
3903 3904
			fault->pfn = KVM_PFN_NOSLOT;
			fault->map_writable = false;
3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917
			return false;
		}
		/*
		 * If the APIC access page exists but is disabled, go directly
		 * to emulation without caching the MMIO access or creating a
		 * MMIO SPTE.  That way the cache doesn't need to be purged
		 * when the AVIC is re-enabled.
		 */
		if (slot && slot->id == APIC_ACCESS_PAGE_PRIVATE_MEMSLOT &&
		    !kvm_apicv_activated(vcpu->kvm)) {
			*r = RET_PF_EMULATE;
			return true;
		}
3918 3919
	}

3920
	async = false;
3921 3922 3923
	fault->pfn = __gfn_to_pfn_memslot(slot, fault->gfn, false, &async,
					  fault->write, &fault->map_writable,
					  &fault->hva);
3924 3925 3926
	if (!async)
		return false; /* *pfn has correct page already */

3927
	if (!fault->prefetch && kvm_can_do_async_pf(vcpu)) {
3928 3929 3930
		trace_kvm_try_async_get_page(fault->addr, fault->gfn);
		if (kvm_find_async_pf_gfn(vcpu, fault->gfn)) {
			trace_kvm_async_pf_doublefault(fault->addr, fault->gfn);
3931
			kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3932
			goto out_retry;
3933
		} else if (kvm_arch_setup_async_pf(vcpu, fault->addr, fault->gfn))
3934
			goto out_retry;
3935 3936
	}

3937 3938 3939
	fault->pfn = __gfn_to_pfn_memslot(slot, fault->gfn, false, NULL,
					  fault->write, &fault->map_writable,
					  &fault->hva);
3940
	return false;
3941 3942 3943 3944

out_retry:
	*r = RET_PF_RETRY;
	return true;
3945 3946
}

3947 3948 3949 3950 3951 3952 3953
/*
 * Returns true if the page fault is stale and needs to be retried, i.e. if the
 * root was invalidated by a memslot update or a relevant mmu_notifier fired.
 */
static bool is_page_fault_stale(struct kvm_vcpu *vcpu,
				struct kvm_page_fault *fault, int mmu_seq)
{
3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968
	struct kvm_mmu_page *sp = to_shadow_page(vcpu->arch.mmu->root_hpa);

	/* Special roots, e.g. pae_root, are not backed by shadow pages. */
	if (sp && is_obsolete_sp(vcpu->kvm, sp))
		return true;

	/*
	 * Roots without an associated shadow page are considered invalid if
	 * there is a pending request to free obsolete roots.  The request is
	 * only a hint that the current root _may_ be obsolete and needs to be
	 * reloaded, e.g. if the guest frees a PGD that KVM is tracking as a
	 * previous root, then __kvm_mmu_prepare_zap_page() signals all vCPUs
	 * to reload even if no vCPU is actively using the root.
	 */
	if (!sp && kvm_test_request(KVM_REQ_MMU_RELOAD, vcpu))
3969 3970 3971 3972 3973 3974
		return true;

	return fault->slot &&
	       mmu_notifier_retry_hva(vcpu->kvm, mmu_seq, fault->hva);
}

3975
static int direct_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
A
Avi Kivity 已提交
3976
{
3977
	bool is_tdp_mmu_fault = is_tdp_mmu(vcpu->arch.mmu);
A
Avi Kivity 已提交
3978

3979
	unsigned long mmu_seq;
3980
	int r;
3981

3982
	fault->gfn = fault->addr >> PAGE_SHIFT;
3983 3984
	fault->slot = kvm_vcpu_gfn_to_memslot(vcpu, fault->gfn);

3985
	if (page_fault_handle_page_track(vcpu, fault))
3986
		return RET_PF_EMULATE;
3987

3988
	r = fast_page_fault(vcpu, fault);
3989 3990
	if (r != RET_PF_INVALID)
		return r;
3991

3992
	r = mmu_topup_memory_caches(vcpu, false);
3993 3994
	if (r)
		return r;
3995

3996 3997 3998
	mmu_seq = vcpu->kvm->mmu_notifier_seq;
	smp_rmb();

3999
	if (kvm_faultin_pfn(vcpu, fault, &r))
4000
		return r;
4001

4002
	if (handle_abnormal_pfn(vcpu, fault, ACC_ALL, &r))
4003
		return r;
A
Avi Kivity 已提交
4004

4005
	r = RET_PF_RETRY;
4006

4007
	if (is_tdp_mmu_fault)
4008 4009 4010 4011
		read_lock(&vcpu->kvm->mmu_lock);
	else
		write_lock(&vcpu->kvm->mmu_lock);

4012
	if (is_page_fault_stale(vcpu, fault, mmu_seq))
4013
		goto out_unlock;
4014

4015 4016
	r = make_mmu_pages_available(vcpu);
	if (r)
4017
		goto out_unlock;
B
Ben Gardon 已提交
4018

4019
	if (is_tdp_mmu_fault)
4020
		r = kvm_tdp_mmu_map(vcpu, fault);
B
Ben Gardon 已提交
4021
	else
4022
		r = __direct_map(vcpu, fault);
4023

4024
out_unlock:
4025
	if (is_tdp_mmu_fault)
4026 4027 4028
		read_unlock(&vcpu->kvm->mmu_lock);
	else
		write_unlock(&vcpu->kvm->mmu_lock);
4029
	kvm_release_pfn_clean(fault->pfn);
4030
	return r;
A
Avi Kivity 已提交
4031 4032
}

4033 4034
static int nonpaging_page_fault(struct kvm_vcpu *vcpu,
				struct kvm_page_fault *fault)
4035
{
4036
	pgprintk("%s: gva %lx error %x\n", __func__, fault->addr, fault->error_code);
4037 4038

	/* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
4039 4040
	fault->max_level = PG_LEVEL_2M;
	return direct_page_fault(vcpu, fault);
4041 4042
}

4043
int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
4044
				u64 fault_address, char *insn, int insn_len)
4045 4046
{
	int r = 1;
4047
	u32 flags = vcpu->arch.apf.host_apf_flags;
4048

4049 4050 4051 4052 4053 4054
#ifndef CONFIG_X86_64
	/* A 64-bit CR2 should be impossible on 32-bit KVM. */
	if (WARN_ON_ONCE(fault_address >> 32))
		return -EFAULT;
#endif

P
Paolo Bonzini 已提交
4055
	vcpu->arch.l1tf_flush_l1d = true;
4056
	if (!flags) {
4057 4058
		trace_kvm_page_fault(fault_address, error_code);

4059
		if (kvm_event_needs_reinjection(vcpu))
4060 4061 4062
			kvm_mmu_unprotect_page_virt(vcpu, fault_address);
		r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
				insn_len);
4063
	} else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
4064
		vcpu->arch.apf.host_apf_flags = 0;
4065
		local_irq_disable();
4066
		kvm_async_pf_task_wait_schedule(fault_address);
4067
		local_irq_enable();
4068 4069
	} else {
		WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags);
4070
	}
4071

4072 4073 4074 4075
	return r;
}
EXPORT_SYMBOL_GPL(kvm_handle_page_fault);

4076
int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
4077
{
4078 4079 4080
	while (fault->max_level > PG_LEVEL_4K) {
		int page_num = KVM_PAGES_PER_HPAGE(fault->max_level);
		gfn_t base = (fault->addr >> PAGE_SHIFT) & ~(page_num - 1);
4081

4082 4083
		if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
			break;
4084 4085

		--fault->max_level;
4086
	}
4087

4088
	return direct_page_fault(vcpu, fault);
4089 4090
}

4091
static void nonpaging_init_context(struct kvm_mmu *context)
A
Avi Kivity 已提交
4092 4093 4094
{
	context->page_fault = nonpaging_page_fault;
	context->gva_to_gpa = nonpaging_gva_to_gpa;
4095
	context->sync_page = nonpaging_sync_page;
4096
	context->invlpg = NULL;
4097
	context->direct_map = true;
A
Avi Kivity 已提交
4098 4099
}

4100
static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd,
4101 4102
				  union kvm_mmu_page_role role)
{
4103
	return (role.direct || pgd == root->pgd) &&
4104 4105
	       VALID_PAGE(root->hpa) && to_shadow_page(root->hpa) &&
	       role.word == to_shadow_page(root->hpa)->role.word;
4106 4107
}

4108
/*
4109
 * Find out if a previously cached root matching the new pgd/role is available.
4110 4111 4112 4113 4114 4115
 * The current root is also inserted into the cache.
 * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
 * returned.
 * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
 * false is returned. This root should now be freed by the caller.
 */
4116
static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_pgd,
4117 4118 4119 4120
				  union kvm_mmu_page_role new_role)
{
	uint i;
	struct kvm_mmu_root_info root;
4121
	struct kvm_mmu *mmu = vcpu->arch.mmu;
4122

4123
	root.pgd = mmu->root_pgd;
4124 4125
	root.hpa = mmu->root_hpa;

4126
	if (is_root_usable(&root, new_pgd, new_role))
4127 4128
		return true;

4129 4130 4131
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
		swap(root, mmu->prev_roots[i]);

4132
		if (is_root_usable(&root, new_pgd, new_role))
4133 4134 4135 4136
			break;
	}

	mmu->root_hpa = root.hpa;
4137
	mmu->root_pgd = root.pgd;
4138 4139 4140 4141

	return i < KVM_MMU_NUM_PREV_ROOTS;
}

4142
static bool fast_pgd_switch(struct kvm_vcpu *vcpu, gpa_t new_pgd,
4143
			    union kvm_mmu_page_role new_role)
A
Avi Kivity 已提交
4144
{
4145
	struct kvm_mmu *mmu = vcpu->arch.mmu;
4146 4147 4148 4149 4150 4151 4152

	/*
	 * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
	 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
	 * later if necessary.
	 */
	if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
4153
	    mmu->root_level >= PT64_ROOT_4LEVEL)
4154
		return cached_root_available(vcpu, new_pgd, new_role);
4155 4156

	return false;
A
Avi Kivity 已提交
4157 4158
}

4159
static void __kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd,
4160
			      union kvm_mmu_page_role new_role)
A
Avi Kivity 已提交
4161
{
4162
	if (!fast_pgd_switch(vcpu, new_pgd, new_role)) {
4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174
		kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, KVM_MMU_ROOT_CURRENT);
		return;
	}

	/*
	 * It's possible that the cached previous root page is obsolete because
	 * of a change in the MMU generation number. However, changing the
	 * generation number is accompanied by KVM_REQ_MMU_RELOAD, which will
	 * free the root set here and allocate a new one.
	 */
	kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);

4175
	if (force_flush_and_sync_on_reuse) {
4176 4177
		kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
4178
	}
4179 4180 4181 4182 4183 4184 4185 4186 4187

	/*
	 * The last MMIO access's GVA and GPA are cached in the VCPU. When
	 * switching to a new CR3, that GVA->GPA mapping may no longer be
	 * valid. So clear any cached MMIO info even when we don't need to sync
	 * the shadow page tables.
	 */
	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);

4188 4189 4190 4191 4192 4193 4194
	/*
	 * If this is a direct root page, it doesn't have a write flooding
	 * count. Otherwise, clear the write flooding count.
	 */
	if (!new_role.direct)
		__clear_sp_write_flooding_count(
				to_shadow_page(vcpu->arch.mmu->root_hpa));
A
Avi Kivity 已提交
4195 4196
}

4197
void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd)
4198
{
4199
	__kvm_mmu_new_pgd(vcpu, new_pgd, kvm_mmu_calc_root_page_role(vcpu));
4200
}
4201
EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd);
4202

4203 4204
static unsigned long get_cr3(struct kvm_vcpu *vcpu)
{
4205
	return kvm_read_cr3(vcpu);
4206 4207
}

4208
static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
4209
			   unsigned int access)
4210 4211 4212 4213 4214 4215 4216
{
	if (unlikely(is_mmio_spte(*sptep))) {
		if (gfn != get_mmio_spte_gfn(*sptep)) {
			mmu_spte_clear_no_track(sptep);
			return true;
		}

4217
		mark_mmio_spte(vcpu, sptep, gfn, access);
4218 4219 4220 4221 4222 4223
		return true;
	}

	return false;
}

4224 4225 4226 4227 4228
#define PTTYPE_EPT 18 /* arbitrary */
#define PTTYPE PTTYPE_EPT
#include "paging_tmpl.h"
#undef PTTYPE

A
Avi Kivity 已提交
4229 4230 4231 4232 4233 4234 4235 4236
#define PTTYPE 64
#include "paging_tmpl.h"
#undef PTTYPE

#define PTTYPE 32
#include "paging_tmpl.h"
#undef PTTYPE

4237
static void
4238
__reset_rsvds_bits_mask(struct rsvd_bits_validate *rsvd_check,
4239
			u64 pa_bits_rsvd, int level, bool nx, bool gbpages,
4240
			bool pse, bool amd)
4241
{
4242
	u64 gbpages_bit_rsvd = 0;
4243
	u64 nonleaf_bit8_rsvd = 0;
4244
	u64 high_bits_rsvd;
4245

4246
	rsvd_check->bad_mt_xwr = 0;
4247

4248
	if (!gbpages)
4249
		gbpages_bit_rsvd = rsvd_bits(7, 7);
4250

4251 4252 4253 4254 4255 4256 4257 4258 4259
	if (level == PT32E_ROOT_LEVEL)
		high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 62);
	else
		high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);

	/* Note, NX doesn't exist in PDPTEs, this is handled below. */
	if (!nx)
		high_bits_rsvd |= rsvd_bits(63, 63);

4260 4261 4262 4263
	/*
	 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
	 * leaf entries) on AMD CPUs only.
	 */
4264
	if (amd)
4265 4266
		nonleaf_bit8_rsvd = rsvd_bits(8, 8);

4267
	switch (level) {
4268 4269
	case PT32_ROOT_LEVEL:
		/* no rsvd bits for 2 level 4K page table entries */
4270 4271 4272 4273
		rsvd_check->rsvd_bits_mask[0][1] = 0;
		rsvd_check->rsvd_bits_mask[0][0] = 0;
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
4274

4275
		if (!pse) {
4276
			rsvd_check->rsvd_bits_mask[1][1] = 0;
4277 4278 4279
			break;
		}

4280 4281
		if (is_cpuid_PSE36())
			/* 36bits PSE 4MB page */
4282
			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4283 4284
		else
			/* 32 bits PSE 4MB page */
4285
			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4286 4287
		break;
	case PT32E_ROOT_LEVEL:
4288 4289 4290 4291 4292 4293 4294 4295
		rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) |
						   high_bits_rsvd |
						   rsvd_bits(5, 8) |
						   rsvd_bits(1, 2);	/* PDPTE */
		rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;	/* PDE */
		rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;	/* PTE */
		rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
						   rsvd_bits(13, 20);	/* large page */
4296 4297
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
4298
		break;
4299
	case PT64_ROOT_5LEVEL:
4300 4301 4302
		rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd |
						   nonleaf_bit8_rsvd |
						   rsvd_bits(7, 7);
4303 4304
		rsvd_check->rsvd_bits_mask[1][4] =
			rsvd_check->rsvd_bits_mask[0][4];
4305
		fallthrough;
4306
	case PT64_ROOT_4LEVEL:
4307 4308 4309 4310 4311 4312 4313
		rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd |
						   nonleaf_bit8_rsvd |
						   rsvd_bits(7, 7);
		rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd |
						   gbpages_bit_rsvd;
		rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;
		rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4314 4315
		rsvd_check->rsvd_bits_mask[1][3] =
			rsvd_check->rsvd_bits_mask[0][3];
4316 4317 4318 4319 4320
		rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd |
						   gbpages_bit_rsvd |
						   rsvd_bits(13, 29);
		rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
						   rsvd_bits(13, 20); /* large page */
4321 4322
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
4323 4324 4325 4326
		break;
	}
}

4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341
static bool guest_can_use_gbpages(struct kvm_vcpu *vcpu)
{
	/*
	 * If TDP is enabled, let the guest use GBPAGES if they're supported in
	 * hardware.  The hardware page walker doesn't let KVM disable GBPAGES,
	 * i.e. won't treat them as reserved, and KVM doesn't redo the GVA->GPA
	 * walk for performance and complexity reasons.  Not to mention KVM
	 * _can't_ solve the problem because GVA->GPA walks aren't visible to
	 * KVM once a TDP translation is installed.  Mimic hardware behavior so
	 * that KVM's is at least consistent, i.e. doesn't randomly inject #PF.
	 */
	return tdp_enabled ? boot_cpu_has(X86_FEATURE_GBPAGES) :
			     guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES);
}

4342 4343 4344
static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
{
4345
	__reset_rsvds_bits_mask(&context->guest_rsvd_check,
4346
				vcpu->arch.reserved_gpa_bits,
4347
				context->root_level, is_efer_nx(context),
4348
				guest_can_use_gbpages(vcpu),
4349
				is_cr4_pse(context),
4350
				guest_cpuid_is_amd_or_hygon(vcpu));
4351 4352
}

4353 4354
static void
__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4355
			    u64 pa_bits_rsvd, bool execonly, int huge_page_level)
4356
{
4357
	u64 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
4358
	u64 large_1g_rsvd = 0, large_2m_rsvd = 0;
4359
	u64 bad_mt_xwr;
4360

4361 4362 4363 4364 4365
	if (huge_page_level < PG_LEVEL_1G)
		large_1g_rsvd = rsvd_bits(7, 7);
	if (huge_page_level < PG_LEVEL_2M)
		large_2m_rsvd = rsvd_bits(7, 7);

4366 4367
	rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7);
	rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7);
4368 4369
	rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6) | large_1g_rsvd;
	rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6) | large_2m_rsvd;
4370
	rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4371 4372

	/* large page */
4373
	rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4374
	rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4375 4376
	rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29) | large_1g_rsvd;
	rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20) | large_2m_rsvd;
4377
	rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4378

4379 4380 4381 4382 4383 4384 4385 4386
	bad_mt_xwr = 0xFFull << (2 * 8);	/* bits 3..5 must not be 2 */
	bad_mt_xwr |= 0xFFull << (3 * 8);	/* bits 3..5 must not be 3 */
	bad_mt_xwr |= 0xFFull << (7 * 8);	/* bits 3..5 must not be 7 */
	bad_mt_xwr |= REPEAT_BYTE(1ull << 2);	/* bits 0..2 must not be 010 */
	bad_mt_xwr |= REPEAT_BYTE(1ull << 6);	/* bits 0..2 must not be 110 */
	if (!execonly) {
		/* bits 0..2 must not be 100 unless VMX capabilities allow it */
		bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4387
	}
4388
	rsvd_check->bad_mt_xwr = bad_mt_xwr;
4389 4390
}

4391
static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4392
		struct kvm_mmu *context, bool execonly, int huge_page_level)
4393 4394
{
	__reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4395 4396
				    vcpu->arch.reserved_gpa_bits, execonly,
				    huge_page_level);
4397 4398
}

4399 4400 4401 4402 4403
static inline u64 reserved_hpa_bits(void)
{
	return rsvd_bits(shadow_phys_bits, 63);
}

4404 4405 4406 4407 4408
/*
 * the page table on host is the shadow page table for the page
 * table in guest or amd nested guest, its mmu features completely
 * follow the features in guest.
 */
4409 4410
static void reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
					struct kvm_mmu *context)
4411
{
4412 4413 4414 4415 4416 4417 4418 4419
	/*
	 * KVM uses NX when TDP is disabled to handle a variety of scenarios,
	 * notably for huge SPTEs if iTLB multi-hit mitigation is enabled and
	 * to generate correct permissions for CR0.WP=0/CR4.SMEP=1/EFER.NX=0.
	 * The iTLB multi-hit workaround can be toggled at any time, so assume
	 * NX can be used by any non-nested shadow MMU to avoid having to reset
	 * MMU contexts.  Note, KVM forces EFER.NX=1 when TDP is disabled.
	 */
4420
	bool uses_nx = is_efer_nx(context) || !tdp_enabled;
4421 4422 4423 4424 4425

	/* @amd adds a check on bit of SPTEs, which KVM shouldn't use anyways. */
	bool is_amd = true;
	/* KVM doesn't use 2-level page tables for the shadow MMU. */
	bool is_pse = false;
4426 4427
	struct rsvd_bits_validate *shadow_zero_check;
	int i;
4428

4429 4430
	WARN_ON_ONCE(context->shadow_root_level < PT32E_ROOT_LEVEL);

4431
	shadow_zero_check = &context->shadow_zero_check;
4432
	__reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(),
4433
				context->shadow_root_level, uses_nx,
4434
				guest_can_use_gbpages(vcpu), is_pse, is_amd);
4435 4436 4437 4438 4439 4440 4441 4442 4443

	if (!shadow_me_mask)
		return;

	for (i = context->shadow_root_level; --i >= 0;) {
		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
	}

4444 4445
}

4446 4447 4448 4449 4450 4451
static inline bool boot_cpu_is_amd(void)
{
	WARN_ON_ONCE(!tdp_enabled);
	return shadow_x_mask == 0;
}

4452 4453 4454 4455 4456
/*
 * the direct page table on host, use as much mmu features as
 * possible, however, kvm currently does not do execution-protection.
 */
static void
4457
reset_tdp_shadow_zero_bits_mask(struct kvm_mmu *context)
4458
{
4459 4460 4461 4462 4463
	struct rsvd_bits_validate *shadow_zero_check;
	int i;

	shadow_zero_check = &context->shadow_zero_check;

4464
	if (boot_cpu_is_amd())
4465
		__reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(),
4466
					context->shadow_root_level, false,
4467
					boot_cpu_has(X86_FEATURE_GBPAGES),
4468
					false, true);
4469
	else
4470
		__reset_rsvds_bits_mask_ept(shadow_zero_check,
4471 4472
					    reserved_hpa_bits(), false,
					    max_huge_page_level);
4473

4474 4475 4476 4477 4478 4479 4480
	if (!shadow_me_mask)
		return;

	for (i = context->shadow_root_level; --i >= 0;) {
		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
	}
4481 4482 4483 4484 4485 4486 4487
}

/*
 * as the comments in reset_shadow_zero_bits_mask() except it
 * is the shadow page table for intel nested guest.
 */
static void
4488
reset_ept_shadow_zero_bits_mask(struct kvm_mmu *context, bool execonly)
4489 4490
{
	__reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4491 4492
				    reserved_hpa_bits(), execonly,
				    max_huge_page_level);
4493 4494
}

4495 4496 4497 4498 4499 4500 4501 4502 4503 4504
#define BYTE_MASK(access) \
	((1 & (access) ? 2 : 0) | \
	 (2 & (access) ? 4 : 0) | \
	 (3 & (access) ? 8 : 0) | \
	 (4 & (access) ? 16 : 0) | \
	 (5 & (access) ? 32 : 0) | \
	 (6 & (access) ? 64 : 0) | \
	 (7 & (access) ? 128 : 0))


4505
static void update_permission_bitmask(struct kvm_mmu *mmu, bool ept)
4506
{
4507 4508 4509 4510 4511 4512
	unsigned byte;

	const u8 x = BYTE_MASK(ACC_EXEC_MASK);
	const u8 w = BYTE_MASK(ACC_WRITE_MASK);
	const u8 u = BYTE_MASK(ACC_USER_MASK);

4513 4514 4515
	bool cr4_smep = is_cr4_smep(mmu);
	bool cr4_smap = is_cr4_smap(mmu);
	bool cr0_wp = is_cr0_wp(mmu);
4516
	bool efer_nx = is_efer_nx(mmu);
4517 4518

	for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4519 4520
		unsigned pfec = byte << 1;

F
Feng Wu 已提交
4521
		/*
4522 4523
		 * Each "*f" variable has a 1 bit for each UWX value
		 * that causes a fault with the given PFEC.
F
Feng Wu 已提交
4524
		 */
4525

4526
		/* Faults from writes to non-writable pages */
4527
		u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
4528
		/* Faults from user mode accesses to supervisor pages */
4529
		u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
4530
		/* Faults from fetches of non-executable pages*/
4531
		u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
4532 4533 4534 4535 4536 4537 4538 4539 4540 4541
		/* Faults from kernel mode fetches of user pages */
		u8 smepf = 0;
		/* Faults from kernel mode accesses of user pages */
		u8 smapf = 0;

		if (!ept) {
			/* Faults from kernel mode accesses to user pages */
			u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;

			/* Not really needed: !nx will cause pte.nx to fault */
4542
			if (!efer_nx)
4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556
				ff = 0;

			/* Allow supervisor writes if !cr0.wp */
			if (!cr0_wp)
				wf = (pfec & PFERR_USER_MASK) ? wf : 0;

			/* Disallow supervisor fetches of user code if cr4.smep */
			if (cr4_smep)
				smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;

			/*
			 * SMAP:kernel-mode data accesses from user-mode
			 * mappings should fault. A fault is considered
			 * as a SMAP violation if all of the following
P
Peng Hao 已提交
4557
			 * conditions are true:
4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570
			 *   - X86_CR4_SMAP is set in CR4
			 *   - A user page is accessed
			 *   - The access is not a fetch
			 *   - Page fault in kernel mode
			 *   - if CPL = 3 or X86_EFLAGS_AC is clear
			 *
			 * Here, we cover the first three conditions.
			 * The fourth is computed dynamically in permission_fault();
			 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
			 * *not* subject to SMAP restrictions.
			 */
			if (cr4_smap)
				smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4571
		}
4572 4573

		mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4574 4575 4576
	}
}

4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600
/*
* PKU is an additional mechanism by which the paging controls access to
* user-mode addresses based on the value in the PKRU register.  Protection
* key violations are reported through a bit in the page fault error code.
* Unlike other bits of the error code, the PK bit is not known at the
* call site of e.g. gva_to_gpa; it must be computed directly in
* permission_fault based on two bits of PKRU, on some machine state (CR4,
* CR0, EFER, CPL), and on other bits of the error code and the page tables.
*
* In particular the following conditions come from the error code, the
* page tables and the machine state:
* - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
* - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
* - PK is always zero if U=0 in the page tables
* - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
*
* The PKRU bitmask caches the result of these four conditions.  The error
* code (minus the P bit) and the page table's U bit form an index into the
* PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
* with the two bits of the PKRU register corresponding to the protection key.
* For the first three conditions above the bits will be 00, thus masking
* away both AD and WD.  For all reads or if the last condition holds, WD
* only will be masked away.
*/
4601
static void update_pkru_bitmask(struct kvm_mmu *mmu)
4602 4603 4604 4605
{
	unsigned bit;
	bool wp;

4606 4607 4608
	mmu->pkru_mask = 0;

	if (!is_cr4_pke(mmu))
4609 4610
		return;

4611
	wp = is_cr0_wp(mmu);
4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644

	for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
		unsigned pfec, pkey_bits;
		bool check_pkey, check_write, ff, uf, wf, pte_user;

		pfec = bit << 1;
		ff = pfec & PFERR_FETCH_MASK;
		uf = pfec & PFERR_USER_MASK;
		wf = pfec & PFERR_WRITE_MASK;

		/* PFEC.RSVD is replaced by ACC_USER_MASK. */
		pte_user = pfec & PFERR_RSVD_MASK;

		/*
		 * Only need to check the access which is not an
		 * instruction fetch and is to a user page.
		 */
		check_pkey = (!ff && pte_user);
		/*
		 * write access is controlled by PKRU if it is a
		 * user access or CR0.WP = 1.
		 */
		check_write = check_pkey && wf && (uf || wp);

		/* PKRU.AD stops both read and write access. */
		pkey_bits = !!check_pkey;
		/* PKRU.WD stops write access. */
		pkey_bits |= (!!check_write) << 1;

		mmu->pkru_mask |= (pkey_bits & 3) << pfec;
	}
}

4645 4646
static void reset_guest_paging_metadata(struct kvm_vcpu *vcpu,
					struct kvm_mmu *mmu)
A
Avi Kivity 已提交
4647
{
4648 4649
	if (!is_cr0_pg(mmu))
		return;
4650

4651 4652 4653
	reset_rsvds_bits_mask(vcpu, mmu);
	update_permission_bitmask(mmu, false);
	update_pkru_bitmask(mmu);
A
Avi Kivity 已提交
4654 4655
}

4656
static void paging64_init_context(struct kvm_mmu *context)
A
Avi Kivity 已提交
4657 4658 4659
{
	context->page_fault = paging64_page_fault;
	context->gva_to_gpa = paging64_gva_to_gpa;
4660
	context->sync_page = paging64_sync_page;
M
Marcelo Tosatti 已提交
4661
	context->invlpg = paging64_invlpg;
4662
	context->direct_map = false;
A
Avi Kivity 已提交
4663 4664
}

4665
static void paging32_init_context(struct kvm_mmu *context)
A
Avi Kivity 已提交
4666 4667 4668
{
	context->page_fault = paging32_page_fault;
	context->gva_to_gpa = paging32_gva_to_gpa;
4669
	context->sync_page = paging32_sync_page;
M
Marcelo Tosatti 已提交
4670
	context->invlpg = paging32_invlpg;
4671
	context->direct_map = false;
A
Avi Kivity 已提交
4672 4673
}

4674 4675
static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu,
							 struct kvm_mmu_role_regs *regs)
4676 4677 4678
{
	union kvm_mmu_extended_role ext = {0};

4679 4680 4681 4682 4683 4684
	if (____is_cr0_pg(regs)) {
		ext.cr0_pg = 1;
		ext.cr4_pae = ____is_cr4_pae(regs);
		ext.cr4_smep = ____is_cr4_smep(regs);
		ext.cr4_smap = ____is_cr4_smap(regs);
		ext.cr4_pse = ____is_cr4_pse(regs);
4685 4686 4687 4688

		/* PKEY and LA57 are active iff long mode is active. */
		ext.cr4_pke = ____is_efer_lma(regs) && ____is_cr4_pke(regs);
		ext.cr4_la57 = ____is_efer_lma(regs) && ____is_cr4_la57(regs);
4689
		ext.efer_lma = ____is_efer_lma(regs);
4690
	}
4691 4692 4693 4694 4695 4696

	ext.valid = 1;

	return ext;
}

4697
static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
4698
						   struct kvm_mmu_role_regs *regs,
4699 4700 4701 4702 4703
						   bool base_only)
{
	union kvm_mmu_role role = {0};

	role.base.access = ACC_ALL;
4704 4705 4706 4707
	if (____is_cr0_pg(regs)) {
		role.base.efer_nx = ____is_efer_nx(regs);
		role.base.cr0_wp = ____is_cr0_wp(regs);
	}
4708 4709 4710 4711 4712 4713
	role.base.smm = is_smm(vcpu);
	role.base.guest_mode = is_guest_mode(vcpu);

	if (base_only)
		return role;

4714
	role.ext = kvm_calc_mmu_role_ext(vcpu, regs);
4715 4716 4717 4718

	return role;
}

4719 4720
static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu)
{
4721 4722 4723 4724
	/* tdp_root_level is architecture forced level, use it if nonzero */
	if (tdp_root_level)
		return tdp_root_level;

4725
	/* Use 5-level TDP if and only if it's useful/necessary. */
4726
	if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48)
4727 4728
		return 4;

4729
	return max_tdp_level;
4730 4731
}

4732
static union kvm_mmu_role
4733 4734
kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu,
				struct kvm_mmu_role_regs *regs, bool base_only)
4735
{
4736
	union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, regs, base_only);
4737

4738
	role.base.ad_disabled = (shadow_accessed_mask == 0);
4739
	role.base.level = kvm_mmu_get_tdp_level(vcpu);
4740
	role.base.direct = true;
4741
	role.base.has_4_byte_gpte = false;
4742 4743 4744 4745

	return role;
}

4746
static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4747
{
4748
	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4749
	struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
4750
	union kvm_mmu_role new_role =
4751
		kvm_calc_tdp_mmu_root_page_role(vcpu, &regs, false);
4752

4753 4754 4755 4756
	if (new_role.as_u64 == context->mmu_role.as_u64)
		return;

	context->mmu_role.as_u64 = new_role.as_u64;
4757
	context->page_fault = kvm_tdp_page_fault;
4758
	context->sync_page = nonpaging_sync_page;
4759
	context->invlpg = NULL;
4760
	context->shadow_root_level = kvm_mmu_get_tdp_level(vcpu);
4761
	context->direct_map = true;
4762
	context->get_guest_pgd = get_cr3;
4763
	context->get_pdptr = kvm_pdptr_read;
4764
	context->inject_page_fault = kvm_inject_page_fault;
4765
	context->root_level = role_regs_to_root_level(&regs);
4766

4767
	if (!is_cr0_pg(context))
4768
		context->gva_to_gpa = nonpaging_gva_to_gpa;
4769
	else if (is_cr4_pae(context))
4770
		context->gva_to_gpa = paging64_gva_to_gpa;
4771
	else
4772
		context->gva_to_gpa = paging32_gva_to_gpa;
4773

4774
	reset_guest_paging_metadata(vcpu, context);
4775
	reset_tdp_shadow_zero_bits_mask(context);
4776 4777
}

4778
static union kvm_mmu_role
4779 4780
kvm_calc_shadow_root_page_role_common(struct kvm_vcpu *vcpu,
				      struct kvm_mmu_role_regs *regs, bool base_only)
4781
{
4782
	union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, regs, base_only);
4783

4784 4785
	role.base.smep_andnot_wp = role.ext.cr4_smep && !____is_cr0_wp(regs);
	role.base.smap_andnot_wp = role.ext.cr4_smap && !____is_cr0_wp(regs);
4786
	role.base.has_4_byte_gpte = ____is_cr0_pg(regs) && !____is_cr4_pae(regs);
4787

4788 4789 4790 4791
	return role;
}

static union kvm_mmu_role
4792 4793
kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu,
				   struct kvm_mmu_role_regs *regs, bool base_only)
4794 4795
{
	union kvm_mmu_role role =
4796
		kvm_calc_shadow_root_page_role_common(vcpu, regs, base_only);
4797

4798
	role.base.direct = !____is_cr0_pg(regs);
4799

4800
	if (!____is_efer_lma(regs))
4801
		role.base.level = PT32E_ROOT_LEVEL;
4802
	else if (____is_cr4_la57(regs))
4803
		role.base.level = PT64_ROOT_5LEVEL;
4804
	else
4805
		role.base.level = PT64_ROOT_4LEVEL;
4806 4807 4808 4809

	return role;
}

4810
static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
4811
				    struct kvm_mmu_role_regs *regs,
4812
				    union kvm_mmu_role new_role)
4813
{
4814 4815
	if (new_role.as_u64 == context->mmu_role.as_u64)
		return;
4816

4817
	context->mmu_role.as_u64 = new_role.as_u64;
4818

4819
	if (!is_cr0_pg(context))
4820
		nonpaging_init_context(context);
4821
	else if (is_cr4_pae(context))
4822
		paging64_init_context(context);
A
Avi Kivity 已提交
4823
	else
4824
		paging32_init_context(context);
4825
	context->root_level = role_regs_to_root_level(regs);
4826

4827
	reset_guest_paging_metadata(vcpu, context);
4828 4829
	context->shadow_root_level = new_role.base.level;

4830
	reset_shadow_zero_bits_mask(vcpu, context);
4831
}
4832

4833 4834
static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu,
				struct kvm_mmu_role_regs *regs)
4835
{
4836
	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4837
	union kvm_mmu_role new_role =
4838
		kvm_calc_shadow_mmu_root_page_role(vcpu, regs, false);
4839

4840
	shadow_mmu_init_context(vcpu, context, regs, new_role);
4841 4842
}

4843
static union kvm_mmu_role
4844 4845
kvm_calc_shadow_npt_root_page_role(struct kvm_vcpu *vcpu,
				   struct kvm_mmu_role_regs *regs)
4846 4847
{
	union kvm_mmu_role role =
4848
		kvm_calc_shadow_root_page_role_common(vcpu, regs, false);
4849 4850

	role.base.direct = false;
4851
	role.base.level = kvm_mmu_get_tdp_level(vcpu);
4852 4853 4854 4855

	return role;
}

4856 4857
void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0,
			     unsigned long cr4, u64 efer, gpa_t nested_cr3)
4858
{
4859
	struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4860 4861
	struct kvm_mmu_role_regs regs = {
		.cr0 = cr0,
4862
		.cr4 = cr4 & ~X86_CR4_PKE,
4863 4864
		.efer = efer,
	};
4865
	union kvm_mmu_role new_role;
4866

4867
	new_role = kvm_calc_shadow_npt_root_page_role(vcpu, &regs);
4868

4869
	__kvm_mmu_new_pgd(vcpu, nested_cr3, new_role.base);
4870

4871
	shadow_mmu_init_context(vcpu, context, &regs, new_role);
4872 4873
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu);
4874

4875 4876
static union kvm_mmu_role
kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
4877
				   bool execonly, u8 level)
4878
{
4879
	union kvm_mmu_role role = {0};
4880

4881 4882
	/* SMM flag is inherited from root_mmu */
	role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
4883

4884
	role.base.level = level;
4885
	role.base.has_4_byte_gpte = false;
4886 4887 4888 4889
	role.base.direct = false;
	role.base.ad_disabled = !accessed_dirty;
	role.base.guest_mode = true;
	role.base.access = ACC_ALL;
4890

4891 4892
	/* EPT, and thus nested EPT, does not consume CR0, CR4, nor EFER. */
	role.ext.word = 0;
4893
	role.ext.execonly = execonly;
4894
	role.ext.valid = 1;
4895 4896 4897 4898

	return role;
}

4899
void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
4900 4901
			     int huge_page_level, bool accessed_dirty,
			     gpa_t new_eptp)
N
Nadav Har'El 已提交
4902
{
4903
	struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4904
	u8 level = vmx_eptp_page_walk_level(new_eptp);
4905 4906
	union kvm_mmu_role new_role =
		kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
4907
						   execonly, level);
4908

4909
	__kvm_mmu_new_pgd(vcpu, new_eptp, new_role.base);
4910 4911 4912

	if (new_role.as_u64 == context->mmu_role.as_u64)
		return;
4913

4914 4915
	context->mmu_role.as_u64 = new_role.as_u64;

4916
	context->shadow_root_level = level;
N
Nadav Har'El 已提交
4917

4918
	context->ept_ad = accessed_dirty;
N
Nadav Har'El 已提交
4919 4920 4921 4922
	context->page_fault = ept_page_fault;
	context->gva_to_gpa = ept_gva_to_gpa;
	context->sync_page = ept_sync_page;
	context->invlpg = ept_invlpg;
4923
	context->root_level = level;
N
Nadav Har'El 已提交
4924
	context->direct_map = false;
4925

4926
	update_permission_bitmask(context, true);
4927
	context->pkru_mask = 0;
4928
	reset_rsvds_bits_mask_ept(vcpu, context, execonly, huge_page_level);
4929
	reset_ept_shadow_zero_bits_mask(context, execonly);
N
Nadav Har'El 已提交
4930 4931 4932
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);

4933
static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4934
{
4935
	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4936
	struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
4937

4938
	kvm_init_shadow_mmu(vcpu, &regs);
4939

4940
	context->get_guest_pgd     = get_cr3;
4941 4942
	context->get_pdptr         = kvm_pdptr_read;
	context->inject_page_fault = kvm_inject_page_fault;
A
Avi Kivity 已提交
4943 4944
}

4945 4946
static union kvm_mmu_role
kvm_calc_nested_mmu_role(struct kvm_vcpu *vcpu, struct kvm_mmu_role_regs *regs)
4947
{
4948 4949 4950
	union kvm_mmu_role role;

	role = kvm_calc_shadow_root_page_role_common(vcpu, regs, false);
4951 4952 4953 4954 4955 4956 4957

	/*
	 * Nested MMUs are used only for walking L2's gva->gpa, they never have
	 * shadow pages of their own and so "direct" has no meaning.   Set it
	 * to "true" to try to detect bogus usage of the nested MMU.
	 */
	role.base.direct = true;
4958
	role.base.level = role_regs_to_root_level(regs);
4959 4960 4961
	return role;
}

4962
static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4963
{
4964 4965
	struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
	union kvm_mmu_role new_role = kvm_calc_nested_mmu_role(vcpu, &regs);
4966 4967
	struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;

4968 4969 4970 4971
	if (new_role.as_u64 == g_context->mmu_role.as_u64)
		return;

	g_context->mmu_role.as_u64 = new_role.as_u64;
4972
	g_context->get_guest_pgd     = get_cr3;
4973
	g_context->get_pdptr         = kvm_pdptr_read;
4974
	g_context->inject_page_fault = kvm_inject_page_fault;
4975
	g_context->root_level        = new_role.base.level;
4976

4977 4978 4979 4980 4981 4982
	/*
	 * L2 page tables are never shadowed, so there is no need to sync
	 * SPTEs.
	 */
	g_context->invlpg            = NULL;

4983
	/*
4984
	 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
4985 4986 4987 4988 4989
	 * L1's nested page tables (e.g. EPT12). The nested translation
	 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
	 * L2's page tables as the first level of translation and L1's
	 * nested page tables as the second level of translation. Basically
	 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
4990
	 */
4991
	if (!is_paging(vcpu))
4992
		g_context->gva_to_gpa = nonpaging_gva_to_gpa;
4993
	else if (is_long_mode(vcpu))
4994
		g_context->gva_to_gpa = paging64_gva_to_gpa;
4995
	else if (is_pae(vcpu))
4996
		g_context->gva_to_gpa = paging64_gva_to_gpa;
4997
	else
4998
		g_context->gva_to_gpa = paging32_gva_to_gpa;
4999

5000
	reset_guest_paging_metadata(vcpu, g_context);
5001 5002
}

5003
void kvm_init_mmu(struct kvm_vcpu *vcpu)
5004
{
5005
	if (mmu_is_nested(vcpu))
5006
		init_kvm_nested_mmu(vcpu);
5007
	else if (tdp_enabled)
5008
		init_kvm_tdp_mmu(vcpu);
5009
	else
5010
		init_kvm_softmmu(vcpu);
5011
}
5012
EXPORT_SYMBOL_GPL(kvm_init_mmu);
5013

5014 5015 5016
static union kvm_mmu_page_role
kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
{
5017
	struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
5018 5019
	union kvm_mmu_role role;

5020
	if (tdp_enabled)
5021
		role = kvm_calc_tdp_mmu_root_page_role(vcpu, &regs, true);
5022
	else
5023
		role = kvm_calc_shadow_mmu_root_page_role(vcpu, &regs, true);
5024 5025

	return role.base;
5026
}
5027

5028 5029 5030 5031 5032
void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu)
{
	/*
	 * Invalidate all MMU roles to force them to reinitialize as CPUID
	 * information is factored into reserved bit calculations.
5033 5034 5035 5036 5037 5038 5039 5040
	 *
	 * Correctly handling multiple vCPU models with respect to paging and
	 * physical address properties) in a single VM would require tracking
	 * all relevant CPUID information in kvm_mmu_page_role. That is very
	 * undesirable as it would increase the memory requirements for
	 * gfn_track (see struct kvm_mmu_page_role comments).  For now that
	 * problem is swept under the rug; KVM's CPUID API is horrific and
	 * it's all but impossible to solve it without introducing a new API.
5041 5042 5043 5044 5045
	 */
	vcpu->arch.root_mmu.mmu_role.ext.valid = 0;
	vcpu->arch.guest_mmu.mmu_role.ext.valid = 0;
	vcpu->arch.nested_mmu.mmu_role.ext.valid = 0;
	kvm_mmu_reset_context(vcpu);
5046 5047

	/*
5048 5049
	 * Changing guest CPUID after KVM_RUN is forbidden, see the comment in
	 * kvm_arch_vcpu_ioctl().
5050
	 */
5051
	KVM_BUG_ON(vcpu->arch.last_vmentry_cpu != -1, vcpu->kvm);
5052 5053
}

5054
void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
5055
{
5056
	kvm_mmu_unload(vcpu);
5057
	kvm_init_mmu(vcpu);
A
Avi Kivity 已提交
5058
}
5059
EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
A
Avi Kivity 已提交
5060 5061

int kvm_mmu_load(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
5062
{
5063 5064
	int r;

5065
	r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->direct_map);
A
Avi Kivity 已提交
5066 5067
	if (r)
		goto out;
5068
	r = mmu_alloc_special_roots(vcpu);
A
Avi Kivity 已提交
5069 5070
	if (r)
		goto out;
5071
	if (vcpu->arch.mmu->direct_map)
5072 5073 5074
		r = mmu_alloc_direct_roots(vcpu);
	else
		r = mmu_alloc_shadow_roots(vcpu);
5075 5076
	if (r)
		goto out;
5077 5078 5079

	kvm_mmu_sync_roots(vcpu);

5080
	kvm_mmu_load_pgd(vcpu);
5081
	static_call(kvm_x86_flush_tlb_current)(vcpu);
5082 5083
out:
	return r;
A
Avi Kivity 已提交
5084
}
A
Avi Kivity 已提交
5085 5086 5087

void kvm_mmu_unload(struct kvm_vcpu *vcpu)
{
5088 5089 5090 5091
	kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
	WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
	kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
	WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
A
Avi Kivity 已提交
5092
}
A
Avi Kivity 已提交
5093

5094 5095 5096 5097 5098 5099 5100 5101
static bool need_remote_flush(u64 old, u64 new)
{
	if (!is_shadow_present_pte(old))
		return false;
	if (!is_shadow_present_pte(new))
		return true;
	if ((old ^ new) & PT64_BASE_ADDR_MASK)
		return true;
5102 5103
	old ^= shadow_nx_mask;
	new ^= shadow_nx_mask;
5104 5105 5106
	return (old & ~new & PT64_PERM_MASK) != 0;
}

5107
static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
5108
				    int *bytes)
5109
{
5110
	u64 gentry = 0;
5111
	int r;
5112 5113 5114

	/*
	 * Assume that the pte write on a page table of the same type
5115 5116
	 * as the current vcpu paging mode since we update the sptes only
	 * when they have the same mode.
5117
	 */
5118
	if (is_pae(vcpu) && *bytes == 4) {
5119
		/* Handle a 32-bit guest writing two halves of a 64-bit gpte */
5120 5121
		*gpa &= ~(gpa_t)7;
		*bytes = 8;
5122 5123
	}

5124 5125 5126 5127
	if (*bytes == 4 || *bytes == 8) {
		r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
		if (r)
			gentry = 0;
5128 5129
	}

5130 5131 5132 5133 5134 5135 5136
	return gentry;
}

/*
 * If we're seeing too many writes to a page, it may no longer be a page table,
 * or we may be forking, in which case it is better to unmap the page.
 */
5137
static bool detect_write_flooding(struct kvm_mmu_page *sp)
5138
{
5139 5140 5141 5142
	/*
	 * Skip write-flooding detected for the sp whose level is 1, because
	 * it can become unsync, then the guest page is not write-protected.
	 */
5143
	if (sp->role.level == PG_LEVEL_4K)
5144
		return false;
5145

5146 5147
	atomic_inc(&sp->write_flooding_count);
	return atomic_read(&sp->write_flooding_count) >= 3;
5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162
}

/*
 * Misaligned accesses are too much trouble to fix up; also, they usually
 * indicate a page is not used as a page table.
 */
static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
				    int bytes)
{
	unsigned offset, pte_size, misaligned;

	pgprintk("misaligned: gpa %llx bytes %d role %x\n",
		 gpa, bytes, sp->role.word);

	offset = offset_in_page(gpa);
5163
	pte_size = sp->role.has_4_byte_gpte ? 4 : 8;
5164 5165 5166 5167 5168 5169 5170 5171

	/*
	 * Sometimes, the OS only writes the last one bytes to update status
	 * bits, for example, in linux, andb instruction is used in clear_bit().
	 */
	if (!(offset & (pte_size - 1)) && bytes == 1)
		return false;

5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186
	misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
	misaligned |= bytes < 4;

	return misaligned;
}

static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
{
	unsigned page_offset, quadrant;
	u64 *spte;
	int level;

	page_offset = offset_in_page(gpa);
	level = sp->role.level;
	*nspte = 1;
5187
	if (sp->role.has_4_byte_gpte) {
5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208
		page_offset <<= 1;	/* 32->64 */
		/*
		 * A 32-bit pde maps 4MB while the shadow pdes map
		 * only 2MB.  So we need to double the offset again
		 * and zap two pdes instead of one.
		 */
		if (level == PT32_ROOT_LEVEL) {
			page_offset &= ~7; /* kill rounding error */
			page_offset <<= 1;
			*nspte = 2;
		}
		quadrant = page_offset >> PAGE_SHIFT;
		page_offset &= ~PAGE_MASK;
		if (quadrant != sp->role.quadrant)
			return NULL;
	}

	spte = &sp->spt[page_offset / sizeof(*spte)];
	return spte;
}

5209
static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
5210 5211
			      const u8 *new, int bytes,
			      struct kvm_page_track_notifier_node *node)
5212 5213 5214 5215 5216 5217
{
	gfn_t gfn = gpa >> PAGE_SHIFT;
	struct kvm_mmu_page *sp;
	LIST_HEAD(invalid_list);
	u64 entry, gentry, *spte;
	int npte;
5218
	bool flush = false;
5219 5220 5221 5222 5223

	/*
	 * If we don't have indirect shadow pages, it means no page is
	 * write-protected, so we can exit simply.
	 */
5224
	if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
5225 5226 5227 5228 5229 5230
		return;

	pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);

	/*
	 * No need to care whether allocation memory is successful
I
Ingo Molnar 已提交
5231
	 * or not since pte prefetch is skipped if it does not have
5232 5233
	 * enough objects in the cache.
	 */
5234
	mmu_topup_memory_caches(vcpu, true);
5235

5236
	write_lock(&vcpu->kvm->mmu_lock);
5237 5238 5239

	gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);

5240
	++vcpu->kvm->stat.mmu_pte_write;
5241
	kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
5242

5243
	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
5244
		if (detect_write_misaligned(sp, gpa, bytes) ||
5245
		      detect_write_flooding(sp)) {
5246
			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
A
Avi Kivity 已提交
5247
			++vcpu->kvm->stat.mmu_flooded;
5248 5249
			continue;
		}
5250 5251 5252 5253 5254

		spte = get_written_sptes(sp, gpa, &npte);
		if (!spte)
			continue;

5255
		while (npte--) {
5256
			entry = *spte;
5257
			mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL);
5258 5259
			if (gentry && sp->role.level != PG_LEVEL_4K)
				++vcpu->kvm->stat.mmu_pde_zapped;
G
Gleb Natapov 已提交
5260
			if (need_remote_flush(entry, *spte))
5261
				flush = true;
5262
			++spte;
5263 5264
		}
	}
5265
	kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush);
5266
	kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
5267
	write_unlock(&vcpu->kvm->mmu_lock);
5268 5269
}

5270
int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
5271
		       void *insn, int insn_len)
5272
{
5273
	int r, emulation_type = EMULTYPE_PF;
5274
	bool direct = vcpu->arch.mmu->direct_map;
5275

5276
	if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
5277 5278
		return RET_PF_RETRY;

5279
	r = RET_PF_INVALID;
5280
	if (unlikely(error_code & PFERR_RSVD_MASK)) {
5281
		r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
5282
		if (r == RET_PF_EMULATE)
5283 5284
			goto emulate;
	}
5285

5286
	if (r == RET_PF_INVALID) {
5287 5288
		r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
					  lower_32_bits(error_code), false);
5289
		if (KVM_BUG_ON(r == RET_PF_INVALID, vcpu->kvm))
5290
			return -EIO;
5291 5292
	}

5293
	if (r < 0)
5294
		return r;
5295 5296
	if (r != RET_PF_EMULATE)
		return 1;
5297

5298 5299 5300 5301 5302 5303 5304
	/*
	 * Before emulating the instruction, check if the error code
	 * was due to a RO violation while translating the guest page.
	 * This can occur when using nested virtualization with nested
	 * paging in both guests. If true, we simply unprotect the page
	 * and resume the guest.
	 */
5305
	if (vcpu->arch.mmu->direct_map &&
5306
	    (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5307
		kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
5308 5309 5310
		return 1;
	}

5311 5312 5313 5314 5315 5316
	/*
	 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
	 * optimistically try to just unprotect the page and let the processor
	 * re-execute the instruction that caused the page fault.  Do not allow
	 * retrying MMIO emulation, as it's not only pointless but could also
	 * cause us to enter an infinite loop because the processor will keep
5317 5318 5319 5320
	 * faulting on the non-existent MMIO address.  Retrying an instruction
	 * from a nested guest is also pointless and dangerous as we are only
	 * explicitly shadowing L1's page tables, i.e. unprotecting something
	 * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5321
	 */
5322
	if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
5323
		emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
5324
emulate:
5325
	return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
5326
				       insn_len);
5327 5328 5329
}
EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);

5330 5331
void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
			    gva_t gva, hpa_t root_hpa)
M
Marcelo Tosatti 已提交
5332
{
5333
	int i;
5334

5335 5336 5337 5338 5339 5340
	/* It's actually a GPA for vcpu->arch.guest_mmu.  */
	if (mmu != &vcpu->arch.guest_mmu) {
		/* INVLPG on a non-canonical address is a NOP according to the SDM.  */
		if (is_noncanonical_address(gva, vcpu))
			return;

5341
		static_call(kvm_x86_flush_tlb_gva)(vcpu, gva);
5342 5343 5344
	}

	if (!mmu->invlpg)
5345 5346
		return;

5347 5348
	if (root_hpa == INVALID_PAGE) {
		mmu->invlpg(vcpu, gva, mmu->root_hpa);
5349

5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367
		/*
		 * INVLPG is required to invalidate any global mappings for the VA,
		 * irrespective of PCID. Since it would take us roughly similar amount
		 * of work to determine whether any of the prev_root mappings of the VA
		 * is marked global, or to just sync it blindly, so we might as well
		 * just always sync it.
		 *
		 * Mappings not reachable via the current cr3 or the prev_roots will be
		 * synced when switching to that cr3, so nothing needs to be done here
		 * for them.
		 */
		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
			if (VALID_PAGE(mmu->prev_roots[i].hpa))
				mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
	} else {
		mmu->invlpg(vcpu, gva, root_hpa);
	}
}
5368

5369 5370
void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
{
5371
	kvm_mmu_invalidate_gva(vcpu, vcpu->arch.walk_mmu, gva, INVALID_PAGE);
M
Marcelo Tosatti 已提交
5372 5373 5374 5375
	++vcpu->stat.invlpg;
}
EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);

5376

5377 5378
void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
{
5379
	struct kvm_mmu *mmu = vcpu->arch.mmu;
5380
	bool tlb_flush = false;
5381
	uint i;
5382 5383

	if (pcid == kvm_get_active_pcid(vcpu)) {
5384
		mmu->invlpg(vcpu, gva, mmu->root_hpa);
5385
		tlb_flush = true;
5386 5387
	}

5388 5389
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
		if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5390
		    pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) {
5391 5392 5393
			mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
			tlb_flush = true;
		}
5394
	}
5395

5396
	if (tlb_flush)
5397
		static_call(kvm_x86_flush_tlb_gva)(vcpu, gva);
5398

5399 5400 5401
	++vcpu->stat.invlpg;

	/*
5402 5403 5404
	 * Mappings not reachable via the current cr3 or the prev_roots will be
	 * synced when switching to that cr3, so nothing needs to be done here
	 * for them.
5405 5406 5407
	 */
}

5408 5409
void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level,
		       int tdp_max_root_level, int tdp_huge_page_level)
5410
{
5411
	tdp_enabled = enable_tdp;
5412
	tdp_root_level = tdp_forced_root_level;
5413
	max_tdp_level = tdp_max_root_level;
5414 5415

	/*
5416
	 * max_huge_page_level reflects KVM's MMU capabilities irrespective
5417 5418 5419 5420 5421 5422
	 * of kernel support, e.g. KVM may be capable of using 1GB pages when
	 * the kernel is not.  But, KVM never creates a page size greater than
	 * what is used by the kernel for any given HVA, i.e. the kernel's
	 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
	 */
	if (tdp_enabled)
5423
		max_huge_page_level = tdp_huge_page_level;
5424
	else if (boot_cpu_has(X86_FEATURE_GBPAGES))
5425
		max_huge_page_level = PG_LEVEL_1G;
5426
	else
5427
		max_huge_page_level = PG_LEVEL_2M;
5428
}
5429
EXPORT_SYMBOL_GPL(kvm_configure_mmu);
5430 5431

/* The return value indicates if tlb flush on all vcpus is needed. */
5432 5433 5434
typedef bool (*slot_level_handler) (struct kvm *kvm,
				    struct kvm_rmap_head *rmap_head,
				    const struct kvm_memory_slot *slot);
5435 5436 5437

/* The caller should hold mmu-lock before calling this function. */
static __always_inline bool
5438
slot_handle_level_range(struct kvm *kvm, const struct kvm_memory_slot *memslot,
5439
			slot_level_handler fn, int start_level, int end_level,
5440 5441
			gfn_t start_gfn, gfn_t end_gfn, bool flush_on_yield,
			bool flush)
5442 5443 5444 5445 5446 5447
{
	struct slot_rmap_walk_iterator iterator;

	for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
			end_gfn, &iterator) {
		if (iterator.rmap)
5448
			flush |= fn(kvm, iterator.rmap, memslot);
5449

5450
		if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
5451
			if (flush && flush_on_yield) {
5452 5453 5454
				kvm_flush_remote_tlbs_with_address(kvm,
						start_gfn,
						iterator.gfn - start_gfn + 1);
5455 5456
				flush = false;
			}
5457
			cond_resched_rwlock_write(&kvm->mmu_lock);
5458 5459 5460 5461 5462 5463 5464
		}
	}

	return flush;
}

static __always_inline bool
5465
slot_handle_level(struct kvm *kvm, const struct kvm_memory_slot *memslot,
5466
		  slot_level_handler fn, int start_level, int end_level,
5467
		  bool flush_on_yield)
5468 5469 5470 5471
{
	return slot_handle_level_range(kvm, memslot, fn, start_level,
			end_level, memslot->base_gfn,
			memslot->base_gfn + memslot->npages - 1,
5472
			flush_on_yield, false);
5473 5474 5475
}

static __always_inline bool
5476 5477
slot_handle_level_4k(struct kvm *kvm, const struct kvm_memory_slot *memslot,
		     slot_level_handler fn, bool flush_on_yield)
5478
{
5479
	return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
5480
				 PG_LEVEL_4K, flush_on_yield);
5481 5482
}

5483
static void free_mmu_pages(struct kvm_mmu *mmu)
A
Avi Kivity 已提交
5484
{
5485 5486
	if (!tdp_enabled && mmu->pae_root)
		set_memory_encrypted((unsigned long)mmu->pae_root, 1);
5487
	free_page((unsigned long)mmu->pae_root);
5488
	free_page((unsigned long)mmu->pml4_root);
5489
	free_page((unsigned long)mmu->pml5_root);
A
Avi Kivity 已提交
5490 5491
}

5492
static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
A
Avi Kivity 已提交
5493
{
5494
	struct page *page;
A
Avi Kivity 已提交
5495 5496
	int i;

5497 5498 5499 5500 5501
	mmu->root_hpa = INVALID_PAGE;
	mmu->root_pgd = 0;
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
		mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;

5502 5503 5504 5505
	/* vcpu->arch.guest_mmu isn't used when !tdp_enabled. */
	if (!tdp_enabled && mmu == &vcpu->arch.guest_mmu)
		return 0;

5506
	/*
5507 5508 5509 5510
	 * When using PAE paging, the four PDPTEs are treated as 'root' pages,
	 * while the PDP table is a per-vCPU construct that's allocated at MMU
	 * creation.  When emulating 32-bit mode, cr3 is only 32 bits even on
	 * x86_64.  Therefore we need to allocate the PDP table in the first
5511 5512 5513 5514
	 * 4GB of memory, which happens to fit the DMA32 zone.  TDP paging
	 * generally doesn't use PAE paging and can skip allocating the PDP
	 * table.  The main exception, handled here, is SVM's 32-bit NPT.  The
	 * other exception is for shadowing L1's 32-bit or PAE NPT on 64-bit
5515
	 * KVM; that horror is handled on-demand by mmu_alloc_special_roots().
5516
	 */
5517
	if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
5518 5519
		return 0;

5520
	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
5521
	if (!page)
5522 5523
		return -ENOMEM;

5524
	mmu->pae_root = page_address(page);
5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538

	/*
	 * CR3 is only 32 bits when PAE paging is used, thus it's impossible to
	 * get the CPU to treat the PDPTEs as encrypted.  Decrypt the page so
	 * that KVM's writes and the CPU's reads get along.  Note, this is
	 * only necessary when using shadow paging, as 64-bit NPT can get at
	 * the C-bit even when shadowing 32-bit NPT, and SME isn't supported
	 * by 32-bit kernels (when KVM itself uses 32-bit NPT).
	 */
	if (!tdp_enabled)
		set_memory_decrypted((unsigned long)mmu->pae_root, 1);
	else
		WARN_ON_ONCE(shadow_me_mask);

5539
	for (i = 0; i < 4; ++i)
5540
		mmu->pae_root[i] = INVALID_PAE_ROOT;
5541

A
Avi Kivity 已提交
5542 5543 5544
	return 0;
}

5545
int kvm_mmu_create(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
5546
{
5547
	int ret;
5548

5549
	vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache;
5550 5551
	vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO;

5552
	vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache;
5553
	vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO;
5554

5555 5556
	vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO;

5557 5558
	vcpu->arch.mmu = &vcpu->arch.root_mmu;
	vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
A
Avi Kivity 已提交
5559

5560
	ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu);
5561 5562 5563
	if (ret)
		return ret;

5564
	ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu);
5565 5566 5567 5568 5569 5570 5571
	if (ret)
		goto fail_allocate_root;

	return ret;
 fail_allocate_root:
	free_mmu_pages(&vcpu->arch.guest_mmu);
	return ret;
A
Avi Kivity 已提交
5572 5573
}

5574
#define BATCH_ZAP_PAGES	10
5575 5576 5577
static void kvm_zap_obsolete_pages(struct kvm *kvm)
{
	struct kvm_mmu_page *sp, *node;
5578
	int nr_zapped, batch = 0;
5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590

restart:
	list_for_each_entry_safe_reverse(sp, node,
	      &kvm->arch.active_mmu_pages, link) {
		/*
		 * No obsolete valid page exists before a newly created page
		 * since active_mmu_pages is a FIFO list.
		 */
		if (!is_obsolete_sp(kvm, sp))
			break;

		/*
5591 5592 5593
		 * Invalid pages should never land back on the list of active
		 * pages.  Skip the bogus page, otherwise we'll get stuck in an
		 * infinite loop if the page gets put back on the list (again).
5594
		 */
5595
		if (WARN_ON(sp->role.invalid))
5596 5597
			continue;

5598 5599 5600 5601 5602 5603
		/*
		 * No need to flush the TLB since we're only zapping shadow
		 * pages with an obsolete generation number and all vCPUS have
		 * loaded a new root, i.e. the shadow pages being zapped cannot
		 * be in active use by the guest.
		 */
5604
		if (batch >= BATCH_ZAP_PAGES &&
5605
		    cond_resched_rwlock_write(&kvm->mmu_lock)) {
5606
			batch = 0;
5607 5608 5609
			goto restart;
		}

5610 5611
		if (__kvm_mmu_prepare_zap_page(kvm, sp,
				&kvm->arch.zapped_obsolete_pages, &nr_zapped)) {
5612
			batch += nr_zapped;
5613
			goto restart;
5614
		}
5615 5616
	}

5617 5618 5619 5620 5621
	/*
	 * Trigger a remote TLB flush before freeing the page tables to ensure
	 * KVM is not in the middle of a lockless shadow page table walk, which
	 * may reference the pages.
	 */
5622
	kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635
}

/*
 * Fast invalidate all shadow pages and use lock-break technique
 * to zap obsolete pages.
 *
 * It's required when memslot is being deleted or VM is being
 * destroyed, in these cases, we should ensure that KVM MMU does
 * not use any resource of the being-deleted slot or all slots
 * after calling the function.
 */
static void kvm_mmu_zap_all_fast(struct kvm *kvm)
{
5636 5637
	lockdep_assert_held(&kvm->slots_lock);

5638
	write_lock(&kvm->mmu_lock);
5639
	trace_kvm_mmu_zap_all_fast(kvm);
5640 5641 5642 5643 5644 5645 5646 5647 5648

	/*
	 * Toggle mmu_valid_gen between '0' and '1'.  Because slots_lock is
	 * held for the entire duration of zapping obsolete pages, it's
	 * impossible for there to be multiple invalid generations associated
	 * with *valid* shadow pages at any given time, i.e. there is exactly
	 * one valid generation and (at most) one invalid generation.
	 */
	kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
5649

5650 5651 5652 5653 5654 5655 5656 5657 5658
	/* In order to ensure all threads see this change when
	 * handling the MMU reload signal, this must happen in the
	 * same critical section as kvm_reload_remote_mmus, and
	 * before kvm_zap_obsolete_pages as kvm_zap_obsolete_pages
	 * could drop the MMU lock and yield.
	 */
	if (is_tdp_mmu_enabled(kvm))
		kvm_tdp_mmu_invalidate_all_roots(kvm);

5659 5660 5661 5662 5663 5664 5665 5666 5667 5668
	/*
	 * Notify all vcpus to reload its shadow page table and flush TLB.
	 * Then all vcpus will switch to new shadow page table with the new
	 * mmu_valid_gen.
	 *
	 * Note: we need to do this under the protection of mmu_lock,
	 * otherwise, vcpu would purge shadow page but miss tlb flush.
	 */
	kvm_reload_remote_mmus(kvm);

5669
	kvm_zap_obsolete_pages(kvm);
5670

5671
	write_unlock(&kvm->mmu_lock);
5672 5673 5674 5675 5676 5677

	if (is_tdp_mmu_enabled(kvm)) {
		read_lock(&kvm->mmu_lock);
		kvm_tdp_mmu_zap_invalidated_roots(kvm);
		read_unlock(&kvm->mmu_lock);
	}
5678 5679
}

5680 5681 5682 5683 5684
static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
{
	return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
}

5685
static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5686 5687
			struct kvm_memory_slot *slot,
			struct kvm_page_track_notifier_node *node)
5688
{
5689
	kvm_mmu_zap_all_fast(kvm);
5690 5691
}

5692
void kvm_mmu_init_vm(struct kvm *kvm)
5693
{
5694
	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5695

5696 5697
	spin_lock_init(&kvm->arch.mmu_unsync_pages_lock);

5698
	kvm_mmu_init_tdp_mmu(kvm);
5699

5700
	node->track_write = kvm_mmu_pte_write;
5701
	node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5702
	kvm_page_track_register_notifier(kvm, node);
5703 5704
}

5705
void kvm_mmu_uninit_vm(struct kvm *kvm)
5706
{
5707
	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5708

5709
	kvm_page_track_unregister_notifier(kvm, node);
5710 5711

	kvm_mmu_uninit_tdp_mmu(kvm);
5712 5713
}

5714 5715 5716 5717
static bool __kvm_zap_rmaps(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
{
	const struct kvm_memory_slot *memslot;
	struct kvm_memslots *slots;
5718
	struct kvm_memslot_iter iter;
5719 5720
	bool flush = false;
	gfn_t start, end;
5721
	int i;
5722 5723 5724 5725 5726 5727

	if (!kvm_memslots_have_rmaps(kvm))
		return flush;

	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
5728 5729 5730

		kvm_for_each_memslot_in_gfn_range(&iter, slots, gfn_start, gfn_end) {
			memslot = iter.slot;
5731 5732
			start = max(gfn_start, memslot->base_gfn);
			end = min(gfn_end, memslot->base_gfn + memslot->npages);
5733
			if (WARN_ON_ONCE(start >= end))
5734 5735 5736
				continue;

			flush = slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
5737

5738 5739 5740 5741 5742 5743 5744 5745
							PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL,
							start, end - 1, true, flush);
		}
	}

	return flush;
}

5746 5747 5748 5749
/*
 * Invalidate (zap) SPTEs that cover GFNs from gfn_start and up to gfn_end
 * (not including it)
 */
X
Xiao Guangrong 已提交
5750 5751
void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
{
5752
	bool flush;
5753
	int i;
X
Xiao Guangrong 已提交
5754

5755 5756 5757
	if (WARN_ON_ONCE(gfn_end <= gfn_start))
		return;

5758 5759
	write_lock(&kvm->mmu_lock);

5760 5761
	kvm_inc_notifier_count(kvm, gfn_start, gfn_end);

5762
	flush = __kvm_zap_rmaps(kvm, gfn_start, gfn_end);
X
Xiao Guangrong 已提交
5763

5764
	if (is_tdp_mmu_enabled(kvm)) {
5765 5766
		for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
			flush = kvm_tdp_mmu_zap_gfn_range(kvm, i, gfn_start,
5767
							  gfn_end, flush);
5768
	}
5769 5770

	if (flush)
5771 5772
		kvm_flush_remote_tlbs_with_address(kvm, gfn_start,
						   gfn_end - gfn_start);
5773

5774 5775
	kvm_dec_notifier_count(kvm, gfn_start, gfn_end);

5776
	write_unlock(&kvm->mmu_lock);
X
Xiao Guangrong 已提交
5777 5778
}

5779
static bool slot_rmap_write_protect(struct kvm *kvm,
5780
				    struct kvm_rmap_head *rmap_head,
5781
				    const struct kvm_memory_slot *slot)
5782
{
5783
	return rmap_write_protect(rmap_head, false);
5784 5785
}

5786
void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5787
				      const struct kvm_memory_slot *memslot,
5788
				      int start_level)
A
Avi Kivity 已提交
5789
{
5790
	bool flush = false;
A
Avi Kivity 已提交
5791

5792 5793 5794 5795 5796 5797 5798
	if (kvm_memslots_have_rmaps(kvm)) {
		write_lock(&kvm->mmu_lock);
		flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect,
					  start_level, KVM_MAX_HUGEPAGE_LEVEL,
					  false);
		write_unlock(&kvm->mmu_lock);
	}
5799

5800 5801 5802 5803 5804 5805
	if (is_tdp_mmu_enabled(kvm)) {
		read_lock(&kvm->mmu_lock);
		flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, start_level);
		read_unlock(&kvm->mmu_lock);
	}

5806
	/*
5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826
	 * Flush TLBs if any SPTEs had to be write-protected to ensure that
	 * guest writes are reflected in the dirty bitmap before the memslot
	 * update completes, i.e. before enabling dirty logging is visible to
	 * userspace.
	 *
	 * Perform the TLB flush outside the mmu_lock to reduce the amount of
	 * time the lock is held. However, this does mean that another CPU can
	 * now grab mmu_lock and encounter a write-protected SPTE while CPUs
	 * still have a writable mapping for the associated GFN in their TLB.
	 *
	 * This is safe but requires KVM to be careful when making decisions
	 * based on the write-protection status of an SPTE. Specifically, KVM
	 * also write-protects SPTEs to monitor changes to guest page tables
	 * during shadow paging, and must guarantee no CPUs can write to those
	 * page before the lock is dropped. As mentioned in the previous
	 * paragraph, a write-protected SPTE is no guarantee that CPU cannot
	 * perform writes. So to determine if a TLB flush is truly required, KVM
	 * will clear a separate software-only bit (MMU-writable) and skip the
	 * flush if-and-only-if this bit was already clear.
	 *
5827
	 * See is_writable_pte() for more details.
5828
	 */
5829
	if (flush)
5830
		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
A
Avi Kivity 已提交
5831
}
5832

5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856
void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm,
				       const struct kvm_memory_slot *memslot,
				       int target_level)
{
	u64 start = memslot->base_gfn;
	u64 end = start + memslot->npages;

	if (is_tdp_mmu_enabled(kvm)) {
		read_lock(&kvm->mmu_lock);
		kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level);
		read_unlock(&kvm->mmu_lock);
	}

	/*
	 * No TLB flush is necessary here. KVM will flush TLBs after
	 * write-protecting and/or clearing dirty on the newly split SPTEs to
	 * ensure that guest writes are reflected in the dirty log before the
	 * ioctl to enable dirty logging on this memslot completes. Since the
	 * split SPTEs retain the write and dirty bits of the huge SPTE, it is
	 * safe for KVM to decide if a TLB flush is necessary based on the split
	 * SPTEs.
	 */
}

5857
static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5858
					 struct kvm_rmap_head *rmap_head,
5859
					 const struct kvm_memory_slot *slot)
5860 5861 5862 5863
{
	u64 *sptep;
	struct rmap_iterator iter;
	int need_tlb_flush = 0;
D
Dan Williams 已提交
5864
	kvm_pfn_t pfn;
5865 5866
	struct kvm_mmu_page *sp;

5867
restart:
5868
	for_each_rmap_spte(rmap_head, &iter, sptep) {
5869
		sp = sptep_to_sp(sptep);
5870 5871 5872
		pfn = spte_to_pfn(*sptep);

		/*
5873 5874 5875 5876 5877
		 * We cannot do huge page mapping for indirect shadow pages,
		 * which are found on the last rmap (level = 1) when not using
		 * tdp; such shadow pages are synced with the page table in
		 * the guest, and the guest page table is using 4K page size
		 * mapping if the indirect sp has level = 1.
5878
		 */
5879
		if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
5880 5881
		    sp->role.level < kvm_mmu_max_mapping_level(kvm, slot, sp->gfn,
							       pfn, PG_LEVEL_NUM)) {
5882
			pte_list_remove(kvm, rmap_head, sptep);
5883 5884 5885 5886 5887 5888 5889

			if (kvm_available_flush_tlb_with_range())
				kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
					KVM_PAGES_PER_HPAGE(sp->role.level));
			else
				need_tlb_flush = 1;

5890 5891
			goto restart;
		}
5892 5893 5894 5895 5896 5897
	}

	return need_tlb_flush;
}

void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5898
				   const struct kvm_memory_slot *slot)
5899
{
5900 5901
	if (kvm_memslots_have_rmaps(kvm)) {
		write_lock(&kvm->mmu_lock);
5902 5903 5904 5905 5906
		/*
		 * Zap only 4k SPTEs since the legacy MMU only supports dirty
		 * logging at a 4k granularity and never creates collapsible
		 * 2m SPTEs during dirty logging.
		 */
5907
		if (slot_handle_level_4k(kvm, slot, kvm_mmu_zap_collapsible_spte, true))
5908 5909 5910
			kvm_arch_flush_remote_tlbs_memslot(kvm, slot);
		write_unlock(&kvm->mmu_lock);
	}
5911 5912 5913

	if (is_tdp_mmu_enabled(kvm)) {
		read_lock(&kvm->mmu_lock);
5914
		kvm_tdp_mmu_zap_collapsible_sptes(kvm, slot);
5915 5916
		read_unlock(&kvm->mmu_lock);
	}
5917 5918
}

5919
void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
5920
					const struct kvm_memory_slot *memslot)
5921 5922
{
	/*
5923
	 * All current use cases for flushing the TLBs for a specific memslot
5924
	 * related to dirty logging, and many do the TLB flush out of mmu_lock.
5925 5926 5927
	 * The interaction between the various operations on memslot must be
	 * serialized by slots_locks to ensure the TLB flush from one operation
	 * is observed by any other operation on the same memslot.
5928 5929
	 */
	lockdep_assert_held(&kvm->slots_lock);
5930 5931
	kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
					   memslot->npages);
5932 5933
}

5934
void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5935
				   const struct kvm_memory_slot *memslot)
5936
{
5937
	bool flush = false;
5938

5939 5940
	if (kvm_memslots_have_rmaps(kvm)) {
		write_lock(&kvm->mmu_lock);
5941 5942 5943 5944 5945
		/*
		 * Clear dirty bits only on 4k SPTEs since the legacy MMU only
		 * support dirty logging at a 4k granularity.
		 */
		flush = slot_handle_level_4k(kvm, memslot, __rmap_clear_dirty, false);
5946 5947
		write_unlock(&kvm->mmu_lock);
	}
5948

5949 5950 5951 5952 5953 5954
	if (is_tdp_mmu_enabled(kvm)) {
		read_lock(&kvm->mmu_lock);
		flush |= kvm_tdp_mmu_clear_dirty_slot(kvm, memslot);
		read_unlock(&kvm->mmu_lock);
	}

5955 5956 5957 5958 5959 5960 5961
	/*
	 * It's also safe to flush TLBs out of mmu lock here as currently this
	 * function is only used for dirty logging, in which case flushing TLB
	 * out of mmu lock also guarantees no dirty pages will be lost in
	 * dirty_bitmap.
	 */
	if (flush)
5962
		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5963 5964
}

5965
void kvm_mmu_zap_all(struct kvm *kvm)
5966 5967
{
	struct kvm_mmu_page *sp, *node;
5968
	LIST_HEAD(invalid_list);
5969
	int ign;
5970

5971
	write_lock(&kvm->mmu_lock);
5972
restart:
5973
	list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
5974
		if (WARN_ON(sp->role.invalid))
5975
			continue;
5976
		if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
5977
			goto restart;
5978
		if (cond_resched_rwlock_write(&kvm->mmu_lock))
5979 5980 5981
			goto restart;
	}

5982
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
5983

5984
	if (is_tdp_mmu_enabled(kvm))
5985 5986
		kvm_tdp_mmu_zap_all(kvm);

5987
	write_unlock(&kvm->mmu_lock);
5988 5989
}

5990
void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
5991
{
5992
	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
5993

5994
	gen &= MMIO_SPTE_GEN_MASK;
5995

5996
	/*
5997 5998 5999 6000 6001 6002 6003 6004
	 * Generation numbers are incremented in multiples of the number of
	 * address spaces in order to provide unique generations across all
	 * address spaces.  Strip what is effectively the address space
	 * modifier prior to checking for a wrap of the MMIO generation so
	 * that a wrap in any address space is detected.
	 */
	gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);

6005
	/*
6006
	 * The very rare case: if the MMIO generation number has wrapped,
6007 6008
	 * zap all shadow pages.
	 */
6009
	if (unlikely(gen == 0)) {
6010
		kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
6011
		kvm_mmu_zap_all_fast(kvm);
6012
	}
6013 6014
}

6015 6016
static unsigned long
mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
6017 6018
{
	struct kvm *kvm;
6019
	int nr_to_scan = sc->nr_to_scan;
6020
	unsigned long freed = 0;
6021

J
Junaid Shahid 已提交
6022
	mutex_lock(&kvm_lock);
6023 6024

	list_for_each_entry(kvm, &vm_list, vm_list) {
6025
		int idx;
6026
		LIST_HEAD(invalid_list);
6027

6028 6029 6030 6031 6032 6033 6034 6035
		/*
		 * Never scan more than sc->nr_to_scan VM instances.
		 * Will not hit this condition practically since we do not try
		 * to shrink more than one VM and it is very unlikely to see
		 * !n_used_mmu_pages so many times.
		 */
		if (!nr_to_scan--)
			break;
6036 6037 6038 6039 6040 6041
		/*
		 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
		 * here. We may skip a VM instance errorneosly, but we do not
		 * want to shrink a VM that only started to populate its MMU
		 * anyway.
		 */
6042 6043
		if (!kvm->arch.n_used_mmu_pages &&
		    !kvm_has_zapped_obsolete_pages(kvm))
6044 6045
			continue;

6046
		idx = srcu_read_lock(&kvm->srcu);
6047
		write_lock(&kvm->mmu_lock);
6048

6049 6050 6051 6052 6053 6054
		if (kvm_has_zapped_obsolete_pages(kvm)) {
			kvm_mmu_commit_zap_page(kvm,
			      &kvm->arch.zapped_obsolete_pages);
			goto unlock;
		}

6055
		freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan);
6056

6057
unlock:
6058
		write_unlock(&kvm->mmu_lock);
6059
		srcu_read_unlock(&kvm->srcu, idx);
6060

6061 6062 6063 6064 6065
		/*
		 * unfair on small ones
		 * per-vm shrinkers cry out
		 * sadness comes quickly
		 */
6066 6067
		list_move_tail(&kvm->vm_list, &vm_list);
		break;
6068 6069
	}

J
Junaid Shahid 已提交
6070
	mutex_unlock(&kvm_lock);
6071 6072 6073 6074 6075 6076
	return freed;
}

static unsigned long
mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
{
6077
	return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
6078 6079 6080
}

static struct shrinker mmu_shrinker = {
6081 6082
	.count_objects = mmu_shrink_count,
	.scan_objects = mmu_shrink_scan,
6083 6084 6085
	.seeks = DEFAULT_SEEKS * 10,
};

I
Ingo Molnar 已提交
6086
static void mmu_destroy_caches(void)
6087
{
6088 6089
	kmem_cache_destroy(pte_list_desc_cache);
	kmem_cache_destroy(mmu_page_header_cache);
6090 6091
}

P
Paolo Bonzini 已提交
6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125
static bool get_nx_auto_mode(void)
{
	/* Return true when CPU has the bug, and mitigations are ON */
	return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
}

static void __set_nx_huge_pages(bool val)
{
	nx_huge_pages = itlb_multihit_kvm_mitigation = val;
}

static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
{
	bool old_val = nx_huge_pages;
	bool new_val;

	/* In "auto" mode deploy workaround only if CPU has the bug. */
	if (sysfs_streq(val, "off"))
		new_val = 0;
	else if (sysfs_streq(val, "force"))
		new_val = 1;
	else if (sysfs_streq(val, "auto"))
		new_val = get_nx_auto_mode();
	else if (strtobool(val, &new_val) < 0)
		return -EINVAL;

	__set_nx_huge_pages(new_val);

	if (new_val != old_val) {
		struct kvm *kvm;

		mutex_lock(&kvm_lock);

		list_for_each_entry(kvm, &vm_list, vm_list) {
6126
			mutex_lock(&kvm->slots_lock);
P
Paolo Bonzini 已提交
6127
			kvm_mmu_zap_all_fast(kvm);
6128
			mutex_unlock(&kvm->slots_lock);
6129 6130

			wake_up_process(kvm->arch.nx_lpage_recovery_thread);
P
Paolo Bonzini 已提交
6131 6132 6133 6134 6135 6136 6137
		}
		mutex_unlock(&kvm_lock);
	}

	return 0;
}

6138 6139
int kvm_mmu_module_init(void)
{
6140 6141
	int ret = -ENOMEM;

P
Paolo Bonzini 已提交
6142 6143 6144
	if (nx_huge_pages == -1)
		__set_nx_huge_pages(get_nx_auto_mode());

6145 6146 6147 6148 6149 6150 6151 6152 6153 6154
	/*
	 * MMU roles use union aliasing which is, generally speaking, an
	 * undefined behavior. However, we supposedly know how compilers behave
	 * and the current status quo is unlikely to change. Guardians below are
	 * supposed to let us know if the assumption becomes false.
	 */
	BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
	BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
	BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));

6155
	kvm_mmu_reset_all_pte_masks();
6156

6157 6158
	pte_list_desc_cache = kmem_cache_create("pte_list_desc",
					    sizeof(struct pte_list_desc),
6159
					    0, SLAB_ACCOUNT, NULL);
6160
	if (!pte_list_desc_cache)
6161
		goto out;
6162

6163 6164
	mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
						  sizeof(struct kvm_mmu_page),
6165
						  0, SLAB_ACCOUNT, NULL);
6166
	if (!mmu_page_header_cache)
6167
		goto out;
6168

6169
	if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
6170
		goto out;
6171

6172 6173 6174
	ret = register_shrinker(&mmu_shrinker);
	if (ret)
		goto out;
6175

6176 6177
	return 0;

6178
out:
6179
	mmu_destroy_caches();
6180
	return ret;
6181 6182
}

6183 6184
void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
{
6185
	kvm_mmu_unload(vcpu);
6186 6187
	free_mmu_pages(&vcpu->arch.root_mmu);
	free_mmu_pages(&vcpu->arch.guest_mmu);
6188
	mmu_free_memory_caches(vcpu);
6189 6190 6191 6192 6193 6194 6195
}

void kvm_mmu_module_exit(void)
{
	mmu_destroy_caches();
	percpu_counter_destroy(&kvm_total_used_mmu_pages);
	unregister_shrinker(&mmu_shrinker);
6196 6197
	mmu_audit_disable();
}
6198

6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223
/*
 * Calculate the effective recovery period, accounting for '0' meaning "let KVM
 * select a halving time of 1 hour".  Returns true if recovery is enabled.
 */
static bool calc_nx_huge_pages_recovery_period(uint *period)
{
	/*
	 * Use READ_ONCE to get the params, this may be called outside of the
	 * param setters, e.g. by the kthread to compute its next timeout.
	 */
	bool enabled = READ_ONCE(nx_huge_pages);
	uint ratio = READ_ONCE(nx_huge_pages_recovery_ratio);

	if (!enabled || !ratio)
		return false;

	*period = READ_ONCE(nx_huge_pages_recovery_period_ms);
	if (!*period) {
		/* Make sure the period is not less than one second.  */
		ratio = min(ratio, 3600u);
		*period = 60 * 60 * 1000 / ratio;
	}
	return true;
}

6224
static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp)
6225
{
6226 6227
	bool was_recovery_enabled, is_recovery_enabled;
	uint old_period, new_period;
6228 6229
	int err;

6230
	was_recovery_enabled = calc_nx_huge_pages_recovery_period(&old_period);
6231

6232 6233 6234 6235
	err = param_set_uint(val, kp);
	if (err)
		return err;

6236
	is_recovery_enabled = calc_nx_huge_pages_recovery_period(&new_period);
6237

6238
	if (is_recovery_enabled &&
6239
	    (!was_recovery_enabled || old_period > new_period)) {
6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254
		struct kvm *kvm;

		mutex_lock(&kvm_lock);

		list_for_each_entry(kvm, &vm_list, vm_list)
			wake_up_process(kvm->arch.nx_lpage_recovery_thread);

		mutex_unlock(&kvm_lock);
	}

	return err;
}

static void kvm_recover_nx_lpages(struct kvm *kvm)
{
6255
	unsigned long nx_lpage_splits = kvm->stat.nx_lpage_splits;
6256 6257 6258 6259
	int rcu_idx;
	struct kvm_mmu_page *sp;
	unsigned int ratio;
	LIST_HEAD(invalid_list);
6260
	bool flush = false;
6261 6262 6263
	ulong to_zap;

	rcu_idx = srcu_read_lock(&kvm->srcu);
6264
	write_lock(&kvm->mmu_lock);
6265 6266

	ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
6267
	to_zap = ratio ? DIV_ROUND_UP(nx_lpage_splits, ratio) : 0;
6268 6269 6270 6271
	for ( ; to_zap; --to_zap) {
		if (list_empty(&kvm->arch.lpage_disallowed_mmu_pages))
			break;

6272 6273 6274 6275 6276 6277 6278 6279 6280
		/*
		 * We use a separate list instead of just using active_mmu_pages
		 * because the number of lpage_disallowed pages is expected to
		 * be relatively small compared to the total.
		 */
		sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
				      struct kvm_mmu_page,
				      lpage_disallowed_link);
		WARN_ON_ONCE(!sp->lpage_disallowed);
6281
		if (is_tdp_mmu_page(sp)) {
6282
			flush |= kvm_tdp_mmu_zap_sp(kvm, sp);
6283
		} else {
6284 6285 6286
			kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
			WARN_ON_ONCE(sp->lpage_disallowed);
		}
6287

6288
		if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
6289
			kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
6290
			cond_resched_rwlock_write(&kvm->mmu_lock);
6291
			flush = false;
6292 6293
		}
	}
6294
	kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
6295

6296
	write_unlock(&kvm->mmu_lock);
6297 6298 6299 6300 6301
	srcu_read_unlock(&kvm->srcu, rcu_idx);
}

static long get_nx_lpage_recovery_timeout(u64 start_time)
{
6302 6303
	bool enabled;
	uint period;
6304

6305
	enabled = calc_nx_huge_pages_recovery_period(&period);
6306

6307 6308
	return enabled ? start_time + msecs_to_jiffies(period) - get_jiffies_64()
		       : MAX_SCHEDULE_TIMEOUT;
6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353
}

static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
{
	u64 start_time;
	long remaining_time;

	while (true) {
		start_time = get_jiffies_64();
		remaining_time = get_nx_lpage_recovery_timeout(start_time);

		set_current_state(TASK_INTERRUPTIBLE);
		while (!kthread_should_stop() && remaining_time > 0) {
			schedule_timeout(remaining_time);
			remaining_time = get_nx_lpage_recovery_timeout(start_time);
			set_current_state(TASK_INTERRUPTIBLE);
		}

		set_current_state(TASK_RUNNING);

		if (kthread_should_stop())
			return 0;

		kvm_recover_nx_lpages(kvm);
	}
}

int kvm_mmu_post_init_vm(struct kvm *kvm)
{
	int err;

	err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
					  "kvm-nx-lpage-recovery",
					  &kvm->arch.nx_lpage_recovery_thread);
	if (!err)
		kthread_unpark(kvm->arch.nx_lpage_recovery_thread);

	return err;
}

void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
{
	if (kvm->arch.nx_lpage_recovery_thread)
		kthread_stop(kvm->arch.nx_lpage_recovery_thread);
}