mmu.c 168.4 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
A
Avi Kivity 已提交
2 3 4 5 6 7 8 9 10
/*
 * Kernel-based Virtual Machine driver for Linux
 *
 * This module enables machines with Intel VT-x extensions to run virtual
 * machines without emulation or binary translation.
 *
 * MMU support
 *
 * Copyright (C) 2006 Qumranet, Inc.
N
Nicolas Kaiser 已提交
11
 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
A
Avi Kivity 已提交
12 13 14 15 16
 *
 * Authors:
 *   Yaniv Kamay  <yaniv@qumranet.com>
 *   Avi Kivity   <avi@qumranet.com>
 */
A
Avi Kivity 已提交
17

18
#include "irq.h"
19
#include "mmu.h"
20
#include "x86.h"
A
Avi Kivity 已提交
21
#include "kvm_cache_regs.h"
22
#include "cpuid.h"
A
Avi Kivity 已提交
23

24
#include <linux/kvm_host.h>
A
Avi Kivity 已提交
25 26 27 28
#include <linux/types.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/highmem.h>
29 30
#include <linux/moduleparam.h>
#include <linux/export.h>
31
#include <linux/swap.h>
M
Marcelo Tosatti 已提交
32
#include <linux/hugetlb.h>
33
#include <linux/compiler.h>
34
#include <linux/srcu.h>
35
#include <linux/slab.h>
36
#include <linux/sched/signal.h>
37
#include <linux/uaccess.h>
38
#include <linux/hash.h>
39
#include <linux/kern_levels.h>
40
#include <linux/kthread.h>
A
Avi Kivity 已提交
41

A
Avi Kivity 已提交
42
#include <asm/page.h>
43
#include <asm/memtype.h>
A
Avi Kivity 已提交
44
#include <asm/cmpxchg.h>
45
#include <asm/e820/api.h>
46
#include <asm/io.h>
47
#include <asm/vmx.h>
48
#include <asm/kvm_page_track.h>
49
#include "trace.h"
A
Avi Kivity 已提交
50

P
Paolo Bonzini 已提交
51 52 53
extern bool itlb_multihit_kvm_mitigation;

static int __read_mostly nx_huge_pages = -1;
54 55 56 57
#ifdef CONFIG_PREEMPT_RT
/* Recovery can cause latency spikes, disable it for PREEMPT_RT.  */
static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
#else
58
static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
59
#endif
P
Paolo Bonzini 已提交
60 61

static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
62
static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp);
P
Paolo Bonzini 已提交
63 64 65 66 67 68

static struct kernel_param_ops nx_huge_pages_ops = {
	.set = set_nx_huge_pages,
	.get = param_get_bool,
};

69 70 71 72 73
static struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = {
	.set = set_nx_huge_pages_recovery_ratio,
	.get = param_get_uint,
};

P
Paolo Bonzini 已提交
74 75
module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
__MODULE_PARM_TYPE(nx_huge_pages, "bool");
76 77 78
module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops,
		&nx_huge_pages_recovery_ratio, 0644);
__MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
P
Paolo Bonzini 已提交
79

80 81 82 83 84 85 86
/*
 * When setting this variable to true it enables Two-Dimensional-Paging
 * where the hardware walks 2 page tables:
 * 1. the guest-virtual to guest-physical
 * 2. while doing 1. it walks guest-physical to host-physical
 * If the hardware supports that we don't need to do shadow paging.
 */
87
bool tdp_enabled = false;
88

89 90 91 92
enum {
	AUDIT_PRE_PAGE_FAULT,
	AUDIT_POST_PAGE_FAULT,
	AUDIT_PRE_PTE_WRITE,
93 94 95
	AUDIT_POST_PTE_WRITE,
	AUDIT_PRE_SYNC,
	AUDIT_POST_SYNC
96
};
97

98
#undef MMU_DEBUG
99 100

#ifdef MMU_DEBUG
101 102
static bool dbg = 0;
module_param(dbg, bool, 0644);
103 104 105

#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
106
#define MMU_WARN_ON(x) WARN_ON(x)
107 108 109
#else
#define pgprintk(x...) do { } while (0)
#define rmap_printk(x...) do { } while (0)
110
#define MMU_WARN_ON(x) do { } while (0)
111
#endif
A
Avi Kivity 已提交
112

113 114
#define PTE_PREFETCH_NUM		8

115
#define PT_FIRST_AVAIL_BITS_SHIFT 10
116 117 118 119 120 121 122 123 124
#define PT64_SECOND_AVAIL_BITS_SHIFT 54

/*
 * The mask used to denote special SPTEs, which can be either MMIO SPTEs or
 * Access Tracking SPTEs.
 */
#define SPTE_SPECIAL_MASK (3ULL << 52)
#define SPTE_AD_ENABLED_MASK (0ULL << 52)
#define SPTE_AD_DISABLED_MASK (1ULL << 52)
125
#define SPTE_AD_WRPROT_ONLY_MASK (2ULL << 52)
126
#define SPTE_MMIO_MASK (3ULL << 52)
A
Avi Kivity 已提交
127 128 129 130

#define PT64_LEVEL_BITS 9

#define PT64_LEVEL_SHIFT(level) \
M
Mike Day 已提交
131
		(PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
A
Avi Kivity 已提交
132 133 134 135 136 137 138 139

#define PT64_INDEX(address, level)\
	(((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))


#define PT32_LEVEL_BITS 10

#define PT32_LEVEL_SHIFT(level) \
M
Mike Day 已提交
140
		(PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
A
Avi Kivity 已提交
141

142 143 144
#define PT32_LVL_OFFSET_MASK(level) \
	(PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
145 146 147 148 149

#define PT32_INDEX(address, level)\
	(((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))


150 151 152 153 154
#ifdef CONFIG_DYNAMIC_PHYSICAL_MASK
#define PT64_BASE_ADDR_MASK (physical_mask & ~(u64)(PAGE_SIZE-1))
#else
#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
#endif
155 156 157 158 159 160
#define PT64_LVL_ADDR_MASK(level) \
	(PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT64_LEVEL_BITS))) - 1))
#define PT64_LVL_OFFSET_MASK(level) \
	(PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT64_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
161 162 163 164

#define PT32_BASE_ADDR_MASK PAGE_MASK
#define PT32_DIR_BASE_ADDR_MASK \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
165 166 167
#define PT32_LVL_ADDR_MASK(level) \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
					    * PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
168

169
#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
170
			| shadow_x_mask | shadow_nx_mask | shadow_me_mask)
A
Avi Kivity 已提交
171

172 173 174 175 176
#define ACC_EXEC_MASK    1
#define ACC_WRITE_MASK   PT_WRITABLE_MASK
#define ACC_USER_MASK    PT_USER_MASK
#define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)

177 178 179 180
/* The mask for the R/X bits in EPT PTEs */
#define PT64_EPT_READABLE_MASK			0x1ull
#define PT64_EPT_EXECUTABLE_MASK		0x4ull

181 182
#include <trace/events/kvm.h>

183 184
#define SPTE_HOST_WRITEABLE	(1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
#define SPTE_MMU_WRITEABLE	(1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
185

186 187
#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)

188 189 190
/* make pte_list_desc fit well in cache line */
#define PTE_LIST_EXT 3

191 192 193 194 195 196 197 198 199 200 201 202 203 204
/*
 * Return values of handle_mmio_page_fault and mmu.page_fault:
 * RET_PF_RETRY: let CPU fault again on the address.
 * RET_PF_EMULATE: mmio page fault, emulate the instruction directly.
 *
 * For handle_mmio_page_fault only:
 * RET_PF_INVALID: the spte is invalid, let the real page fault path update it.
 */
enum {
	RET_PF_RETRY = 0,
	RET_PF_EMULATE = 1,
	RET_PF_INVALID = 2,
};

205 206 207
struct pte_list_desc {
	u64 *sptes[PTE_LIST_EXT];
	struct pte_list_desc *more;
208 209
};

210 211 212 213
struct kvm_shadow_walk_iterator {
	u64 addr;
	hpa_t shadow_addr;
	u64 *sptep;
214
	int level;
215 216 217
	unsigned index;
};

218 219
static const union kvm_mmu_page_role mmu_base_role_mask = {
	.cr0_wp = 1,
220
	.gpte_is_8_bytes = 1,
221 222 223 224 225 226 227 228
	.nxe = 1,
	.smep_andnot_wp = 1,
	.smap_andnot_wp = 1,
	.smm = 1,
	.guest_mode = 1,
	.ad_disabled = 1,
};

229 230 231 232 233 234 235
#define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker)     \
	for (shadow_walk_init_using_root(&(_walker), (_vcpu),              \
					 (_root), (_addr));                \
	     shadow_walk_okay(&(_walker));			           \
	     shadow_walk_next(&(_walker)))

#define for_each_shadow_entry(_vcpu, _addr, _walker)            \
236 237 238 239
	for (shadow_walk_init(&(_walker), _vcpu, _addr);	\
	     shadow_walk_okay(&(_walker));			\
	     shadow_walk_next(&(_walker)))

240 241 242 243 244 245
#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)	\
	for (shadow_walk_init(&(_walker), _vcpu, _addr);		\
	     shadow_walk_okay(&(_walker)) &&				\
		({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });	\
	     __shadow_walk_next(&(_walker), spte))

246
static struct kmem_cache *pte_list_desc_cache;
247
static struct kmem_cache *mmu_page_header_cache;
248
static struct percpu_counter kvm_total_used_mmu_pages;
249

S
Sheng Yang 已提交
250 251 252 253 254
static u64 __read_mostly shadow_nx_mask;
static u64 __read_mostly shadow_x_mask;	/* mutual exclusive with nx_mask */
static u64 __read_mostly shadow_user_mask;
static u64 __read_mostly shadow_accessed_mask;
static u64 __read_mostly shadow_dirty_mask;
255
static u64 __read_mostly shadow_mmio_mask;
256
static u64 __read_mostly shadow_mmio_value;
257
static u64 __read_mostly shadow_mmio_access_mask;
258
static u64 __read_mostly shadow_present_mask;
259
static u64 __read_mostly shadow_me_mask;
260

261
/*
262 263 264
 * SPTEs used by MMUs without A/D bits are marked with SPTE_AD_DISABLED_MASK;
 * shadow_acc_track_mask is the set of bits to be cleared in non-accessed
 * pages.
265 266 267 268 269 270 271 272 273 274 275 276 277
 */
static u64 __read_mostly shadow_acc_track_mask;

/*
 * The mask/shift to use for saving the original R/X bits when marking the PTE
 * as not-present for access tracking purposes. We do not save the W bit as the
 * PTEs being access tracked also need to be dirty tracked, so the W bit will be
 * restored only when a write is attempted to the page.
 */
static const u64 shadow_acc_track_saved_bits_mask = PT64_EPT_READABLE_MASK |
						    PT64_EPT_EXECUTABLE_MASK;
static const u64 shadow_acc_track_saved_bits_shift = PT64_SECOND_AVAIL_BITS_SHIFT;

278 279 280 281 282 283 284 285 286 287 288
/*
 * This mask must be set on all non-zero Non-Present or Reserved SPTEs in order
 * to guard against L1TF attacks.
 */
static u64 __read_mostly shadow_nonpresent_or_rsvd_mask;

/*
 * The number of high-order 1 bits to use in the mask above.
 */
static const u64 shadow_nonpresent_or_rsvd_mask_len = 5;

289 290 291 292 293 294 295 296 297 298
/*
 * In some cases, we need to preserve the GFN of a non-present or reserved
 * SPTE when we usurp the upper five bits of the physical address space to
 * defend against L1TF, e.g. for MMIO SPTEs.  To preserve the GFN, we'll
 * shift bits of the GFN that overlap with shadow_nonpresent_or_rsvd_mask
 * left into the reserved bits, i.e. the GFN in the SPTE will be split into
 * high and low parts.  This mask covers the lower bits of the GFN.
 */
static u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask;

299 300 301 302 303
/*
 * The number of non-reserved physical address bits irrespective of features
 * that repurpose legal bits, e.g. MKTME.
 */
static u8 __read_mostly shadow_phys_bits;
304

305
static void mmu_spte_set(u64 *sptep, u64 spte);
306
static bool is_executable_pte(u64 spte);
307 308
static union kvm_mmu_page_role
kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
309

310 311 312
#define CREATE_TRACE_POINTS
#include "mmutrace.h"

313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341

static inline bool kvm_available_flush_tlb_with_range(void)
{
	return kvm_x86_ops->tlb_remote_flush_with_range;
}

static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
		struct kvm_tlb_range *range)
{
	int ret = -ENOTSUPP;

	if (range && kvm_x86_ops->tlb_remote_flush_with_range)
		ret = kvm_x86_ops->tlb_remote_flush_with_range(kvm, range);

	if (ret)
		kvm_flush_remote_tlbs(kvm);
}

static void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
		u64 start_gfn, u64 pages)
{
	struct kvm_tlb_range range;

	range.start_gfn = start_gfn;
	range.pages = pages;

	kvm_flush_remote_tlbs_with_range(kvm, &range);
}

342
void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask, u64 mmio_value, u64 access_mask)
343
{
344
	BUG_ON((u64)(unsigned)access_mask != access_mask);
345
	BUG_ON((mmio_mask & mmio_value) != mmio_value);
346
	shadow_mmio_value = mmio_value | SPTE_MMIO_MASK;
347
	shadow_mmio_mask = mmio_mask | SPTE_SPECIAL_MASK;
348
	shadow_mmio_access_mask = access_mask;
349 350 351
}
EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);

352 353 354 355 356
static bool is_mmio_spte(u64 spte)
{
	return (spte & shadow_mmio_mask) == shadow_mmio_value;
}

357 358 359 360 361
static inline bool sp_ad_disabled(struct kvm_mmu_page *sp)
{
	return sp->role.ad_disabled;
}

362 363 364 365 366 367 368 369 370 371 372
static inline bool kvm_vcpu_ad_need_write_protect(struct kvm_vcpu *vcpu)
{
	/*
	 * When using the EPT page-modification log, the GPAs in the log
	 * would come from L2 rather than L1.  Therefore, we need to rely
	 * on write protection to record dirty pages.  This also bypasses
	 * PML, since writes now result in a vmexit.
	 */
	return vcpu->arch.mmu == &vcpu->arch.guest_mmu;
}

373 374
static inline bool spte_ad_enabled(u64 spte)
{
375
	MMU_WARN_ON(is_mmio_spte(spte));
376 377 378 379 380 381 382
	return (spte & SPTE_SPECIAL_MASK) != SPTE_AD_DISABLED_MASK;
}

static inline bool spte_ad_need_write_protect(u64 spte)
{
	MMU_WARN_ON(is_mmio_spte(spte));
	return (spte & SPTE_SPECIAL_MASK) != SPTE_AD_ENABLED_MASK;
383 384
}

P
Paolo Bonzini 已提交
385 386 387 388 389
static bool is_nx_huge_page_enabled(void)
{
	return READ_ONCE(nx_huge_pages);
}

390 391
static inline u64 spte_shadow_accessed_mask(u64 spte)
{
392
	MMU_WARN_ON(is_mmio_spte(spte));
393 394 395 396 397
	return spte_ad_enabled(spte) ? shadow_accessed_mask : 0;
}

static inline u64 spte_shadow_dirty_mask(u64 spte)
{
398
	MMU_WARN_ON(is_mmio_spte(spte));
399 400 401
	return spte_ad_enabled(spte) ? shadow_dirty_mask : 0;
}

402 403
static inline bool is_access_track_spte(u64 spte)
{
404
	return !spte_ad_enabled(spte) && (spte & shadow_acc_track_mask) == 0;
405 406
}

407
/*
408 409
 * Due to limited space in PTEs, the MMIO generation is a 19 bit subset of
 * the memslots generation and is derived as follows:
410
 *
411 412
 * Bits 0-8 of the MMIO generation are propagated to spte bits 3-11
 * Bits 9-18 of the MMIO generation are propagated to spte bits 52-61
413
 *
414 415 416 417 418 419
 * The KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS flag is intentionally not included in
 * the MMIO generation number, as doing so would require stealing a bit from
 * the "real" generation number and thus effectively halve the maximum number
 * of MMIO generations that can be handled before encountering a wrap (which
 * requires a full MMU zap).  The flag is instead explicitly queried when
 * checking for MMIO spte cache hits.
420
 */
421
#define MMIO_SPTE_GEN_MASK		GENMASK_ULL(17, 0)
422

423 424 425 426
#define MMIO_SPTE_GEN_LOW_START		3
#define MMIO_SPTE_GEN_LOW_END		11
#define MMIO_SPTE_GEN_LOW_MASK		GENMASK_ULL(MMIO_SPTE_GEN_LOW_END, \
						    MMIO_SPTE_GEN_LOW_START)
427

428 429
#define MMIO_SPTE_GEN_HIGH_START	PT64_SECOND_AVAIL_BITS_SHIFT
#define MMIO_SPTE_GEN_HIGH_END		62
430 431
#define MMIO_SPTE_GEN_HIGH_MASK		GENMASK_ULL(MMIO_SPTE_GEN_HIGH_END, \
						    MMIO_SPTE_GEN_HIGH_START)
432

433
static u64 generation_mmio_spte_mask(u64 gen)
434 435 436
{
	u64 mask;

437
	WARN_ON(gen & ~MMIO_SPTE_GEN_MASK);
438
	BUILD_BUG_ON((MMIO_SPTE_GEN_HIGH_MASK | MMIO_SPTE_GEN_LOW_MASK) & SPTE_SPECIAL_MASK);
439

440 441
	mask = (gen << MMIO_SPTE_GEN_LOW_START) & MMIO_SPTE_GEN_LOW_MASK;
	mask |= (gen << MMIO_SPTE_GEN_HIGH_START) & MMIO_SPTE_GEN_HIGH_MASK;
442 443 444
	return mask;
}

445
static u64 get_mmio_spte_generation(u64 spte)
446
{
447
	u64 gen;
448

449 450
	gen = (spte & MMIO_SPTE_GEN_LOW_MASK) >> MMIO_SPTE_GEN_LOW_START;
	gen |= (spte & MMIO_SPTE_GEN_HIGH_MASK) >> MMIO_SPTE_GEN_HIGH_START;
451 452 453
	return gen;
}

454
static u64 make_mmio_spte(struct kvm_vcpu *vcpu, u64 gfn, unsigned int access)
455
{
456

457
	u64 gen = kvm_vcpu_memslots(vcpu)->generation & MMIO_SPTE_GEN_MASK;
458
	u64 mask = generation_mmio_spte_mask(gen);
459
	u64 gpa = gfn << PAGE_SHIFT;
460

461
	access &= shadow_mmio_access_mask;
462 463 464 465
	mask |= shadow_mmio_value | access;
	mask |= gpa | shadow_nonpresent_or_rsvd_mask;
	mask |= (gpa & shadow_nonpresent_or_rsvd_mask)
		<< shadow_nonpresent_or_rsvd_mask_len;
466

467 468 469 470 471 472 473 474 475 476 477
	return mask;
}

static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
			   unsigned int access)
{
	u64 mask = make_mmio_spte(vcpu, gfn, access);
	unsigned int gen = get_mmio_spte_generation(mask);

	access = mask & ACC_ALL;

478
	trace_mark_mmio_spte(sptep, gfn, access, gen);
479
	mmu_spte_set(sptep, mask);
480 481 482 483
}

static gfn_t get_mmio_spte_gfn(u64 spte)
{
484
	u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
485 486 487 488 489

	gpa |= (spte >> shadow_nonpresent_or_rsvd_mask_len)
	       & shadow_nonpresent_or_rsvd_mask;

	return gpa >> PAGE_SHIFT;
490 491 492 493
}

static unsigned get_mmio_spte_access(u64 spte)
{
494
	return spte & shadow_mmio_access_mask;
495 496
}

497
static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
498
			  kvm_pfn_t pfn, unsigned int access)
499 500
{
	if (unlikely(is_noslot_pfn(pfn))) {
501
		mark_mmio_spte(vcpu, sptep, gfn, access);
502 503 504 505 506
		return true;
	}

	return false;
}
507

508
static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
509
{
510
	u64 kvm_gen, spte_gen, gen;
511

512 513 514
	gen = kvm_vcpu_memslots(vcpu)->generation;
	if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
		return false;
515

516
	kvm_gen = gen & MMIO_SPTE_GEN_MASK;
517 518 519 520
	spte_gen = get_mmio_spte_generation(spte);

	trace_check_mmio_spte(spte, kvm_gen, spte_gen);
	return likely(kvm_gen == spte_gen);
521 522
}

523 524 525 526 527 528 529
/*
 * Sets the shadow PTE masks used by the MMU.
 *
 * Assumptions:
 *  - Setting either @accessed_mask or @dirty_mask requires setting both
 *  - At least one of @accessed_mask or @acc_track_mask must be set
 */
S
Sheng Yang 已提交
530
void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
531
		u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask,
532
		u64 acc_track_mask, u64 me_mask)
S
Sheng Yang 已提交
533
{
534 535
	BUG_ON(!dirty_mask != !accessed_mask);
	BUG_ON(!accessed_mask && !acc_track_mask);
536
	BUG_ON(acc_track_mask & SPTE_SPECIAL_MASK);
537

S
Sheng Yang 已提交
538 539 540 541 542
	shadow_user_mask = user_mask;
	shadow_accessed_mask = accessed_mask;
	shadow_dirty_mask = dirty_mask;
	shadow_nx_mask = nx_mask;
	shadow_x_mask = x_mask;
543
	shadow_present_mask = p_mask;
544
	shadow_acc_track_mask = acc_track_mask;
545
	shadow_me_mask = me_mask;
S
Sheng Yang 已提交
546 547 548
}
EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);

549 550 551
static u8 kvm_get_shadow_phys_bits(void)
{
	/*
552 553 554 555
	 * boot_cpu_data.x86_phys_bits is reduced when MKTME or SME are detected
	 * in CPU detection code, but the processor treats those reduced bits as
	 * 'keyID' thus they are not reserved bits. Therefore KVM needs to look at
	 * the physical address bits reported by CPUID.
556
	 */
557 558
	if (likely(boot_cpu_data.extended_cpuid_level >= 0x80000008))
		return cpuid_eax(0x80000008) & 0xff;
559

560 561 562 563 564 565
	/*
	 * Quite weird to have VMX or SVM but not MAXPHYADDR; probably a VM with
	 * custom CPUID.  Proceed with whatever the kernel found since these features
	 * aren't virtualizable (SME/SEV also require CPUIDs higher than 0x80000008).
	 */
	return boot_cpu_data.x86_phys_bits;
566 567
}

568
static void kvm_mmu_reset_all_pte_masks(void)
569
{
570 571
	u8 low_phys_bits;

572 573 574 575 576 577 578 579
	shadow_user_mask = 0;
	shadow_accessed_mask = 0;
	shadow_dirty_mask = 0;
	shadow_nx_mask = 0;
	shadow_x_mask = 0;
	shadow_mmio_mask = 0;
	shadow_present_mask = 0;
	shadow_acc_track_mask = 0;
580

581 582
	shadow_phys_bits = kvm_get_shadow_phys_bits();

583 584 585 586
	/*
	 * If the CPU has 46 or less physical address bits, then set an
	 * appropriate mask to guard against L1TF attacks. Otherwise, it is
	 * assumed that the CPU is not vulnerable to L1TF.
587 588 589 590 591
	 *
	 * Some Intel CPUs address the L1 cache using more PA bits than are
	 * reported by CPUID. Use the PA width of the L1 cache when possible
	 * to achieve more effective mitigation, e.g. if system RAM overlaps
	 * the most significant bits of legal physical address space.
592
	 */
593 594 595
	shadow_nonpresent_or_rsvd_mask = 0;
	low_phys_bits = boot_cpu_data.x86_cache_bits;
	if (boot_cpu_data.x86_cache_bits <
596
	    52 - shadow_nonpresent_or_rsvd_mask_len) {
597
		shadow_nonpresent_or_rsvd_mask =
598
			rsvd_bits(boot_cpu_data.x86_cache_bits -
599
				  shadow_nonpresent_or_rsvd_mask_len,
600
				  boot_cpu_data.x86_cache_bits - 1);
601
		low_phys_bits -= shadow_nonpresent_or_rsvd_mask_len;
602 603 604
	} else
		WARN_ON_ONCE(boot_cpu_has_bug(X86_BUG_L1TF));

605 606
	shadow_nonpresent_or_rsvd_lower_gfn_mask =
		GENMASK_ULL(low_phys_bits - 1, PAGE_SHIFT);
607 608
}

A
Avi Kivity 已提交
609 610 611 612 613
static int is_cpuid_PSE36(void)
{
	return 1;
}

614 615
static int is_nx(struct kvm_vcpu *vcpu)
{
616
	return vcpu->arch.efer & EFER_NX;
617 618
}

619 620
static int is_shadow_present_pte(u64 pte)
{
621
	return (pte != 0) && !is_mmio_spte(pte);
622 623
}

M
Marcelo Tosatti 已提交
624 625 626 627 628
static int is_large_pte(u64 pte)
{
	return pte & PT_PAGE_SIZE_MASK;
}

629 630 631 632
static int is_last_spte(u64 pte, int level)
{
	if (level == PT_PAGE_TABLE_LEVEL)
		return 1;
633
	if (is_large_pte(pte))
634 635 636 637
		return 1;
	return 0;
}

638 639 640 641 642
static bool is_executable_pte(u64 spte)
{
	return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask;
}

D
Dan Williams 已提交
643
static kvm_pfn_t spte_to_pfn(u64 pte)
644
{
645
	return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
646 647
}

648 649 650 651 652 653 654
static gfn_t pse36_gfn_delta(u32 gpte)
{
	int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;

	return (gpte & PT32_DIR_PSE36_MASK) << shift;
}

655
#ifdef CONFIG_X86_64
A
Avi Kivity 已提交
656
static void __set_spte(u64 *sptep, u64 spte)
657
{
658
	WRITE_ONCE(*sptep, spte);
659 660
}

661
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
662
{
663
	WRITE_ONCE(*sptep, spte);
664 665 666 667 668 669
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	return xchg(sptep, spte);
}
670 671 672

static u64 __get_spte_lockless(u64 *sptep)
{
673
	return READ_ONCE(*sptep);
674
}
675
#else
676 677 678 679 680 681 682
union split_spte {
	struct {
		u32 spte_low;
		u32 spte_high;
	};
	u64 spte;
};
683

684 685 686 687 688 689 690 691 692 693 694 695
static void count_spte_clear(u64 *sptep, u64 spte)
{
	struct kvm_mmu_page *sp =  page_header(__pa(sptep));

	if (is_shadow_present_pte(spte))
		return;

	/* Ensure the spte is completely set before we increase the count */
	smp_wmb();
	sp->clear_spte_count++;
}

696 697 698
static void __set_spte(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;
699

700 701 702 703 704 705 706 707 708 709 710 711
	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	ssptep->spte_high = sspte.spte_high;

	/*
	 * If we map the spte from nonpresent to present, We should store
	 * the high bits firstly, then set present bit, so cpu can not
	 * fetch this spte while we are setting the spte.
	 */
	smp_wmb();

712
	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
713 714
}

715 716 717 718 719 720 721
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

722
	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
723 724 725 726 727 728 729 730

	/*
	 * If we map the spte from present to nonpresent, we should clear
	 * present bit firstly to avoid vcpu fetch the old high bits.
	 */
	smp_wmb();

	ssptep->spte_high = sspte.spte_high;
731
	count_spte_clear(sptep, spte);
732 733 734 735 736 737 738 739 740 741 742
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte, orig;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	/* xchg acts as a barrier before the setting of the high bits */
	orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
743 744
	orig.spte_high = ssptep->spte_high;
	ssptep->spte_high = sspte.spte_high;
745
	count_spte_clear(sptep, spte);
746 747 748

	return orig.spte;
}
749 750 751

/*
 * The idea using the light way get the spte on x86_32 guest is from
752
 * gup_get_pte (mm/gup.c).
753 754 755 756 757 758 759 760 761 762 763 764 765 766
 *
 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
 * coalesces them and we are running out of the MMU lock.  Therefore
 * we need to protect against in-progress updates of the spte.
 *
 * Reading the spte while an update is in progress may get the old value
 * for the high part of the spte.  The race is fine for a present->non-present
 * change (because the high part of the spte is ignored for non-present spte),
 * but for a present->present change we must reread the spte.
 *
 * All such changes are done in two steps (present->non-present and
 * non-present->present), hence it is enough to count the number of
 * present->non-present updates: if it changed while reading the spte,
 * we might have hit the race.  This is done using clear_spte_count.
767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789
 */
static u64 __get_spte_lockless(u64 *sptep)
{
	struct kvm_mmu_page *sp =  page_header(__pa(sptep));
	union split_spte spte, *orig = (union split_spte *)sptep;
	int count;

retry:
	count = sp->clear_spte_count;
	smp_rmb();

	spte.spte_low = orig->spte_low;
	smp_rmb();

	spte.spte_high = orig->spte_high;
	smp_rmb();

	if (unlikely(spte.spte_low != orig->spte_low ||
	      count != sp->clear_spte_count))
		goto retry;

	return spte.spte;
}
790 791
#endif

792
static bool spte_can_locklessly_be_made_writable(u64 spte)
793
{
794 795
	return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
		(SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
796 797
}

798 799
static bool spte_has_volatile_bits(u64 spte)
{
800 801 802
	if (!is_shadow_present_pte(spte))
		return false;

803
	/*
804
	 * Always atomically update spte if it can be updated
805 806 807 808
	 * out of mmu-lock, it can ensure dirty bit is not lost,
	 * also, it can help us to get a stable is_writable_pte()
	 * to ensure tlb flush is not missed.
	 */
809 810
	if (spte_can_locklessly_be_made_writable(spte) ||
	    is_access_track_spte(spte))
811 812
		return true;

813
	if (spte_ad_enabled(spte)) {
814 815 816 817
		if ((spte & shadow_accessed_mask) == 0 ||
	    	    (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
			return true;
	}
818

819
	return false;
820 821
}

822
static bool is_accessed_spte(u64 spte)
823
{
824 825 826 827
	u64 accessed_mask = spte_shadow_accessed_mask(spte);

	return accessed_mask ? spte & accessed_mask
			     : !is_access_track_spte(spte);
828 829
}

830
static bool is_dirty_spte(u64 spte)
831
{
832 833 834
	u64 dirty_mask = spte_shadow_dirty_mask(spte);

	return dirty_mask ? spte & dirty_mask : spte & PT_WRITABLE_MASK;
835 836
}

837 838 839 840 841 842 843 844 845 846 847 848
/* Rules for using mmu_spte_set:
 * Set the sptep from nonpresent to present.
 * Note: the sptep being assigned *must* be either not present
 * or in a state where the hardware will not attempt to update
 * the spte.
 */
static void mmu_spte_set(u64 *sptep, u64 new_spte)
{
	WARN_ON(is_shadow_present_pte(*sptep));
	__set_spte(sptep, new_spte);
}

849 850 851
/*
 * Update the SPTE (excluding the PFN), but do not track changes in its
 * accessed/dirty status.
852
 */
853
static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
854
{
855
	u64 old_spte = *sptep;
856

857
	WARN_ON(!is_shadow_present_pte(new_spte));
858

859 860
	if (!is_shadow_present_pte(old_spte)) {
		mmu_spte_set(sptep, new_spte);
861
		return old_spte;
862
	}
863

864
	if (!spte_has_volatile_bits(old_spte))
865
		__update_clear_spte_fast(sptep, new_spte);
866
	else
867
		old_spte = __update_clear_spte_slow(sptep, new_spte);
868

869 870
	WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));

871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892
	return old_spte;
}

/* Rules for using mmu_spte_update:
 * Update the state bits, it means the mapped pfn is not changed.
 *
 * Whenever we overwrite a writable spte with a read-only one we
 * should flush remote TLBs. Otherwise rmap_write_protect
 * will find a read-only spte, even though the writable spte
 * might be cached on a CPU's TLB, the return value indicates this
 * case.
 *
 * Returns true if the TLB needs to be flushed
 */
static bool mmu_spte_update(u64 *sptep, u64 new_spte)
{
	bool flush = false;
	u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);

	if (!is_shadow_present_pte(old_spte))
		return false;

893 894
	/*
	 * For the spte updated out of mmu-lock is safe, since
895
	 * we always atomically update it, see the comments in
896 897
	 * spte_has_volatile_bits().
	 */
898
	if (spte_can_locklessly_be_made_writable(old_spte) &&
899
	      !is_writable_pte(new_spte))
900
		flush = true;
901

902
	/*
903
	 * Flush TLB when accessed/dirty states are changed in the page tables,
904 905 906
	 * to guarantee consistency between TLB and page tables.
	 */

907 908
	if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
		flush = true;
909
		kvm_set_pfn_accessed(spte_to_pfn(old_spte));
910 911 912 913
	}

	if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
		flush = true;
914
		kvm_set_pfn_dirty(spte_to_pfn(old_spte));
915
	}
916

917
	return flush;
918 919
}

920 921 922 923
/*
 * Rules for using mmu_spte_clear_track_bits:
 * It sets the sptep from present to nonpresent, and track the
 * state bits, it is used to clear the last level sptep.
924
 * Returns non-zero if the PTE was previously valid.
925 926 927
 */
static int mmu_spte_clear_track_bits(u64 *sptep)
{
D
Dan Williams 已提交
928
	kvm_pfn_t pfn;
929 930 931
	u64 old_spte = *sptep;

	if (!spte_has_volatile_bits(old_spte))
932
		__update_clear_spte_fast(sptep, 0ull);
933
	else
934
		old_spte = __update_clear_spte_slow(sptep, 0ull);
935

936
	if (!is_shadow_present_pte(old_spte))
937 938 939
		return 0;

	pfn = spte_to_pfn(old_spte);
940 941 942 943 944 945

	/*
	 * KVM does not hold the refcount of the page used by
	 * kvm mmu, before reclaiming the page, we should
	 * unmap it from mmu first.
	 */
946
	WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
947

948
	if (is_accessed_spte(old_spte))
949
		kvm_set_pfn_accessed(pfn);
950 951

	if (is_dirty_spte(old_spte))
952
		kvm_set_pfn_dirty(pfn);
953

954 955 956 957 958 959 960 961 962 963
	return 1;
}

/*
 * Rules for using mmu_spte_clear_no_track:
 * Directly clear spte without caring the state bits of sptep,
 * it is used to set the upper level spte.
 */
static void mmu_spte_clear_no_track(u64 *sptep)
{
964
	__update_clear_spte_fast(sptep, 0ull);
965 966
}

967 968 969 970 971
static u64 mmu_spte_get_lockless(u64 *sptep)
{
	return __get_spte_lockless(sptep);
}

972 973
static u64 mark_spte_for_access_track(u64 spte)
{
974
	if (spte_ad_enabled(spte))
975 976
		return spte & ~shadow_accessed_mask;

977
	if (is_access_track_spte(spte))
978 979 980
		return spte;

	/*
981 982 983
	 * Making an Access Tracking PTE will result in removal of write access
	 * from the PTE. So, verify that we will be able to restore the write
	 * access in the fast page fault path later on.
984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999
	 */
	WARN_ONCE((spte & PT_WRITABLE_MASK) &&
		  !spte_can_locklessly_be_made_writable(spte),
		  "kvm: Writable SPTE is not locklessly dirty-trackable\n");

	WARN_ONCE(spte & (shadow_acc_track_saved_bits_mask <<
			  shadow_acc_track_saved_bits_shift),
		  "kvm: Access Tracking saved bit locations are not zero\n");

	spte |= (spte & shadow_acc_track_saved_bits_mask) <<
		shadow_acc_track_saved_bits_shift;
	spte &= ~shadow_acc_track_mask;

	return spte;
}

1000 1001 1002 1003 1004 1005 1006
/* Restore an acc-track PTE back to a regular PTE */
static u64 restore_acc_track_spte(u64 spte)
{
	u64 new_spte = spte;
	u64 saved_bits = (spte >> shadow_acc_track_saved_bits_shift)
			 & shadow_acc_track_saved_bits_mask;

1007
	WARN_ON_ONCE(spte_ad_enabled(spte));
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
	WARN_ON_ONCE(!is_access_track_spte(spte));

	new_spte &= ~shadow_acc_track_mask;
	new_spte &= ~(shadow_acc_track_saved_bits_mask <<
		      shadow_acc_track_saved_bits_shift);
	new_spte |= saved_bits;

	return new_spte;
}

1018 1019 1020 1021 1022 1023 1024 1025
/* Returns the Accessed status of the PTE and resets it at the same time. */
static bool mmu_spte_age(u64 *sptep)
{
	u64 spte = mmu_spte_get_lockless(sptep);

	if (!is_accessed_spte(spte))
		return false;

1026
	if (spte_ad_enabled(spte)) {
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
		clear_bit((ffs(shadow_accessed_mask) - 1),
			  (unsigned long *)sptep);
	} else {
		/*
		 * Capture the dirty status of the page, so that it doesn't get
		 * lost when the SPTE is marked for access tracking.
		 */
		if (is_writable_pte(spte))
			kvm_set_pfn_dirty(spte_to_pfn(spte));

		spte = mark_spte_for_access_track(spte);
		mmu_spte_update_no_track(sptep, spte);
	}

	return true;
}

1044 1045
static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
{
1046 1047 1048 1049 1050
	/*
	 * Prevent page table teardown by making any free-er wait during
	 * kvm_flush_remote_tlbs() IPI to all active vcpus.
	 */
	local_irq_disable();
1051

1052 1053 1054 1055
	/*
	 * Make sure a following spte read is not reordered ahead of the write
	 * to vcpu->mode.
	 */
1056
	smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
1057 1058 1059 1060
}

static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
{
1061 1062
	/*
	 * Make sure the write to vcpu->mode is not reordered in front of
1063
	 * reads to sptes.  If it does, kvm_mmu_commit_zap_page() can see us
1064 1065
	 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
	 */
1066
	smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
1067
	local_irq_enable();
1068 1069
}

1070
static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
1071
				  struct kmem_cache *base_cache, int min)
1072 1073 1074 1075
{
	void *obj;

	if (cache->nobjs >= min)
1076
		return 0;
1077
	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
1078
		obj = kmem_cache_zalloc(base_cache, GFP_KERNEL_ACCOUNT);
1079
		if (!obj)
1080
			return cache->nobjs >= min ? 0 : -ENOMEM;
1081 1082
		cache->objects[cache->nobjs++] = obj;
	}
1083
	return 0;
1084 1085
}

1086 1087 1088 1089 1090
static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
{
	return cache->nobjs;
}

1091 1092
static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
				  struct kmem_cache *cache)
1093 1094
{
	while (mc->nobjs)
1095
		kmem_cache_free(cache, mc->objects[--mc->nobjs]);
1096 1097
}

A
Avi Kivity 已提交
1098
static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
1099
				       int min)
A
Avi Kivity 已提交
1100
{
1101
	void *page;
A
Avi Kivity 已提交
1102 1103 1104 1105

	if (cache->nobjs >= min)
		return 0;
	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
1106
		page = (void *)__get_free_page(GFP_KERNEL_ACCOUNT);
A
Avi Kivity 已提交
1107
		if (!page)
1108
			return cache->nobjs >= min ? 0 : -ENOMEM;
1109
		cache->objects[cache->nobjs++] = page;
A
Avi Kivity 已提交
1110 1111 1112 1113 1114 1115 1116
	}
	return 0;
}

static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
{
	while (mc->nobjs)
1117
		free_page((unsigned long)mc->objects[--mc->nobjs]);
A
Avi Kivity 已提交
1118 1119
}

1120
static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
1121
{
1122 1123
	int r;

1124
	r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
1125
				   pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
1126 1127
	if (r)
		goto out;
1128
	r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
1129 1130
	if (r)
		goto out;
1131
	r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
1132
				   mmu_page_header_cache, 4);
1133 1134
out:
	return r;
1135 1136 1137 1138
}

static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
{
1139 1140
	mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
				pte_list_desc_cache);
1141
	mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
1142 1143
	mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
				mmu_page_header_cache);
1144 1145
}

1146
static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
1147 1148 1149 1150 1151 1152 1153 1154
{
	void *p;

	BUG_ON(!mc->nobjs);
	p = mc->objects[--mc->nobjs];
	return p;
}

1155
static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
1156
{
1157
	return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
1158 1159
}

1160
static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
1161
{
1162
	kmem_cache_free(pte_list_desc_cache, pte_list_desc);
1163 1164
}

1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
{
	if (!sp->role.direct)
		return sp->gfns[index];

	return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
}

static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
{
1175
	if (!sp->role.direct) {
1176
		sp->gfns[index] = gfn;
1177 1178 1179 1180 1181 1182 1183 1184
		return;
	}

	if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
		pr_err_ratelimited("gfn mismatch under direct page %llx "
				   "(expected %llx, got %llx)\n",
				   sp->gfn,
				   kvm_mmu_page_get_gfn(sp, index), gfn);
1185 1186
}

M
Marcelo Tosatti 已提交
1187
/*
1188 1189
 * Return the pointer to the large page information for a given gfn,
 * handling slots that are not large page aligned.
M
Marcelo Tosatti 已提交
1190
 */
1191 1192 1193
static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
					      struct kvm_memory_slot *slot,
					      int level)
M
Marcelo Tosatti 已提交
1194 1195 1196
{
	unsigned long idx;

1197
	idx = gfn_to_index(gfn, slot->base_gfn, level);
1198
	return &slot->arch.lpage_info[level - 2][idx];
M
Marcelo Tosatti 已提交
1199 1200
}

1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
					    gfn_t gfn, int count)
{
	struct kvm_lpage_info *linfo;
	int i;

	for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
		linfo = lpage_info_slot(gfn, slot, i);
		linfo->disallow_lpage += count;
		WARN_ON(linfo->disallow_lpage < 0);
	}
}

void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
{
	update_gfn_disallow_lpage_count(slot, gfn, 1);
}

void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
{
	update_gfn_disallow_lpage_count(slot, gfn, -1);
}

1224
static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
M
Marcelo Tosatti 已提交
1225
{
1226
	struct kvm_memslots *slots;
1227
	struct kvm_memory_slot *slot;
1228
	gfn_t gfn;
M
Marcelo Tosatti 已提交
1229

1230
	kvm->arch.indirect_shadow_pages++;
1231
	gfn = sp->gfn;
1232 1233
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
1234 1235 1236 1237 1238 1239

	/* the non-leaf shadow pages are keeping readonly. */
	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
		return kvm_slot_page_track_add_page(kvm, slot, gfn,
						    KVM_PAGE_TRACK_WRITE);

1240
	kvm_mmu_gfn_disallow_lpage(slot, gfn);
M
Marcelo Tosatti 已提交
1241 1242
}

P
Paolo Bonzini 已提交
1243 1244 1245 1246 1247 1248
static void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
{
	if (sp->lpage_disallowed)
		return;

	++kvm->stat.nx_lpage_splits;
1249 1250
	list_add_tail(&sp->lpage_disallowed_link,
		      &kvm->arch.lpage_disallowed_mmu_pages);
P
Paolo Bonzini 已提交
1251 1252 1253
	sp->lpage_disallowed = true;
}

1254
static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
M
Marcelo Tosatti 已提交
1255
{
1256
	struct kvm_memslots *slots;
1257
	struct kvm_memory_slot *slot;
1258
	gfn_t gfn;
M
Marcelo Tosatti 已提交
1259

1260
	kvm->arch.indirect_shadow_pages--;
1261
	gfn = sp->gfn;
1262 1263
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
1264 1265 1266 1267
	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
		return kvm_slot_page_track_remove_page(kvm, slot, gfn,
						       KVM_PAGE_TRACK_WRITE);

1268
	kvm_mmu_gfn_allow_lpage(slot, gfn);
M
Marcelo Tosatti 已提交
1269 1270
}

P
Paolo Bonzini 已提交
1271 1272 1273 1274
static void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
{
	--kvm->stat.nx_lpage_splits;
	sp->lpage_disallowed = false;
1275
	list_del(&sp->lpage_disallowed_link);
P
Paolo Bonzini 已提交
1276 1277
}

1278 1279 1280
static struct kvm_memory_slot *
gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
			    bool no_dirty_log)
M
Marcelo Tosatti 已提交
1281 1282
{
	struct kvm_memory_slot *slot;
1283

1284
	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1285 1286 1287 1288
	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
		return NULL;
	if (no_dirty_log && slot->dirty_bitmap)
		return NULL;
1289 1290 1291 1292

	return slot;
}

1293
/*
1294
 * About rmap_head encoding:
1295
 *
1296 1297
 * If the bit zero of rmap_head->val is clear, then it points to the only spte
 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
1298
 * pte_list_desc containing more mappings.
1299 1300 1301 1302
 */

/*
 * Returns the number of pointers in the rmap chain, not counting the new one.
1303
 */
1304
static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
1305
			struct kvm_rmap_head *rmap_head)
1306
{
1307
	struct pte_list_desc *desc;
1308
	int i, count = 0;
1309

1310
	if (!rmap_head->val) {
1311
		rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
1312 1313
		rmap_head->val = (unsigned long)spte;
	} else if (!(rmap_head->val & 1)) {
1314 1315
		rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
		desc = mmu_alloc_pte_list_desc(vcpu);
1316
		desc->sptes[0] = (u64 *)rmap_head->val;
A
Avi Kivity 已提交
1317
		desc->sptes[1] = spte;
1318
		rmap_head->val = (unsigned long)desc | 1;
1319
		++count;
1320
	} else {
1321
		rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
1322
		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1323
		while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
1324
			desc = desc->more;
1325
			count += PTE_LIST_EXT;
1326
		}
1327 1328
		if (desc->sptes[PTE_LIST_EXT-1]) {
			desc->more = mmu_alloc_pte_list_desc(vcpu);
1329 1330
			desc = desc->more;
		}
A
Avi Kivity 已提交
1331
		for (i = 0; desc->sptes[i]; ++i)
1332
			++count;
A
Avi Kivity 已提交
1333
		desc->sptes[i] = spte;
1334
	}
1335
	return count;
1336 1337
}

1338
static void
1339 1340 1341
pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
			   struct pte_list_desc *desc, int i,
			   struct pte_list_desc *prev_desc)
1342 1343 1344
{
	int j;

1345
	for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
1346
		;
A
Avi Kivity 已提交
1347 1348
	desc->sptes[i] = desc->sptes[j];
	desc->sptes[j] = NULL;
1349 1350 1351
	if (j != 0)
		return;
	if (!prev_desc && !desc->more)
1352
		rmap_head->val = 0;
1353 1354 1355 1356
	else
		if (prev_desc)
			prev_desc->more = desc->more;
		else
1357
			rmap_head->val = (unsigned long)desc->more | 1;
1358
	mmu_free_pte_list_desc(desc);
1359 1360
}

1361
static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
1362
{
1363 1364
	struct pte_list_desc *desc;
	struct pte_list_desc *prev_desc;
1365 1366
	int i;

1367
	if (!rmap_head->val) {
1368
		pr_err("%s: %p 0->BUG\n", __func__, spte);
1369
		BUG();
1370
	} else if (!(rmap_head->val & 1)) {
1371
		rmap_printk("%s:  %p 1->0\n", __func__, spte);
1372
		if ((u64 *)rmap_head->val != spte) {
1373
			pr_err("%s:  %p 1->BUG\n", __func__, spte);
1374 1375
			BUG();
		}
1376
		rmap_head->val = 0;
1377
	} else {
1378
		rmap_printk("%s:  %p many->many\n", __func__, spte);
1379
		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1380 1381
		prev_desc = NULL;
		while (desc) {
1382
			for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
A
Avi Kivity 已提交
1383
				if (desc->sptes[i] == spte) {
1384 1385
					pte_list_desc_remove_entry(rmap_head,
							desc, i, prev_desc);
1386 1387
					return;
				}
1388
			}
1389 1390 1391
			prev_desc = desc;
			desc = desc->more;
		}
1392
		pr_err("%s: %p many->many\n", __func__, spte);
1393 1394 1395 1396
		BUG();
	}
}

1397 1398 1399 1400 1401 1402
static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep)
{
	mmu_spte_clear_track_bits(sptep);
	__pte_list_remove(sptep, rmap_head);
}

1403 1404
static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
					   struct kvm_memory_slot *slot)
1405
{
1406
	unsigned long idx;
1407

1408
	idx = gfn_to_index(gfn, slot->base_gfn, level);
1409
	return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1410 1411
}

1412 1413
static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
					 struct kvm_mmu_page *sp)
1414
{
1415
	struct kvm_memslots *slots;
1416 1417
	struct kvm_memory_slot *slot;

1418 1419
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
1420
	return __gfn_to_rmap(gfn, sp->role.level, slot);
1421 1422
}

1423 1424 1425 1426 1427 1428 1429 1430
static bool rmap_can_add(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu_memory_cache *cache;

	cache = &vcpu->arch.mmu_pte_list_desc_cache;
	return mmu_memory_cache_free_objects(cache);
}

1431 1432 1433
static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
{
	struct kvm_mmu_page *sp;
1434
	struct kvm_rmap_head *rmap_head;
1435 1436 1437

	sp = page_header(__pa(spte));
	kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1438 1439
	rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
	return pte_list_add(vcpu, spte, rmap_head);
1440 1441 1442 1443 1444 1445
}

static void rmap_remove(struct kvm *kvm, u64 *spte)
{
	struct kvm_mmu_page *sp;
	gfn_t gfn;
1446
	struct kvm_rmap_head *rmap_head;
1447 1448 1449

	sp = page_header(__pa(spte));
	gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1450
	rmap_head = gfn_to_rmap(kvm, gfn, sp);
1451
	__pte_list_remove(spte, rmap_head);
1452 1453
}

1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
/*
 * Used by the following functions to iterate through the sptes linked by a
 * rmap.  All fields are private and not assumed to be used outside.
 */
struct rmap_iterator {
	/* private fields */
	struct pte_list_desc *desc;	/* holds the sptep if not NULL */
	int pos;			/* index of the sptep */
};

/*
 * Iteration must be started by this function.  This should also be used after
 * removing/dropping sptes from the rmap link because in such cases the
M
Miaohe Lin 已提交
1467
 * information in the iterator may not be valid.
1468 1469 1470
 *
 * Returns sptep if found, NULL otherwise.
 */
1471 1472
static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
			   struct rmap_iterator *iter)
1473
{
1474 1475
	u64 *sptep;

1476
	if (!rmap_head->val)
1477 1478
		return NULL;

1479
	if (!(rmap_head->val & 1)) {
1480
		iter->desc = NULL;
1481 1482
		sptep = (u64 *)rmap_head->val;
		goto out;
1483 1484
	}

1485
	iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1486
	iter->pos = 0;
1487 1488 1489 1490
	sptep = iter->desc->sptes[iter->pos];
out:
	BUG_ON(!is_shadow_present_pte(*sptep));
	return sptep;
1491 1492 1493 1494 1495 1496 1497 1498 1499
}

/*
 * Must be used with a valid iterator: e.g. after rmap_get_first().
 *
 * Returns sptep if found, NULL otherwise.
 */
static u64 *rmap_get_next(struct rmap_iterator *iter)
{
1500 1501
	u64 *sptep;

1502 1503 1504 1505 1506
	if (iter->desc) {
		if (iter->pos < PTE_LIST_EXT - 1) {
			++iter->pos;
			sptep = iter->desc->sptes[iter->pos];
			if (sptep)
1507
				goto out;
1508 1509 1510 1511 1512 1513 1514
		}

		iter->desc = iter->desc->more;

		if (iter->desc) {
			iter->pos = 0;
			/* desc->sptes[0] cannot be NULL */
1515 1516
			sptep = iter->desc->sptes[iter->pos];
			goto out;
1517 1518 1519 1520
		}
	}

	return NULL;
1521 1522 1523
out:
	BUG_ON(!is_shadow_present_pte(*sptep));
	return sptep;
1524 1525
}

1526 1527
#define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)			\
	for (_spte_ = rmap_get_first(_rmap_head_, _iter_);		\
1528
	     _spte_; _spte_ = rmap_get_next(_iter_))
1529

1530
static void drop_spte(struct kvm *kvm, u64 *sptep)
1531
{
1532
	if (mmu_spte_clear_track_bits(sptep))
1533
		rmap_remove(kvm, sptep);
A
Avi Kivity 已提交
1534 1535
}

1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551

static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
{
	if (is_large_pte(*sptep)) {
		WARN_ON(page_header(__pa(sptep))->role.level ==
			PT_PAGE_TABLE_LEVEL);
		drop_spte(kvm, sptep);
		--kvm->stat.lpages;
		return true;
	}

	return false;
}

static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
{
1552 1553 1554 1555 1556 1557
	if (__drop_large_spte(vcpu->kvm, sptep)) {
		struct kvm_mmu_page *sp = page_header(__pa(sptep));

		kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
			KVM_PAGES_PER_HPAGE(sp->role.level));
	}
1558 1559 1560
}

/*
1561
 * Write-protect on the specified @sptep, @pt_protect indicates whether
1562
 * spte write-protection is caused by protecting shadow page table.
1563
 *
T
Tiejun Chen 已提交
1564
 * Note: write protection is difference between dirty logging and spte
1565 1566 1567 1568 1569
 * protection:
 * - for dirty logging, the spte can be set to writable at anytime if
 *   its dirty bitmap is properly set.
 * - for spte protection, the spte can be writable only after unsync-ing
 *   shadow page.
1570
 *
1571
 * Return true if tlb need be flushed.
1572
 */
1573
static bool spte_write_protect(u64 *sptep, bool pt_protect)
1574 1575 1576
{
	u64 spte = *sptep;

1577
	if (!is_writable_pte(spte) &&
1578
	      !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1579 1580 1581 1582
		return false;

	rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);

1583 1584
	if (pt_protect)
		spte &= ~SPTE_MMU_WRITEABLE;
1585
	spte = spte & ~PT_WRITABLE_MASK;
1586

1587
	return mmu_spte_update(sptep, spte);
1588 1589
}

1590 1591
static bool __rmap_write_protect(struct kvm *kvm,
				 struct kvm_rmap_head *rmap_head,
1592
				 bool pt_protect)
1593
{
1594 1595
	u64 *sptep;
	struct rmap_iterator iter;
1596
	bool flush = false;
1597

1598
	for_each_rmap_spte(rmap_head, &iter, sptep)
1599
		flush |= spte_write_protect(sptep, pt_protect);
1600

1601
	return flush;
1602 1603
}

1604
static bool spte_clear_dirty(u64 *sptep)
1605 1606 1607 1608 1609
{
	u64 spte = *sptep;

	rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);

1610
	MMU_WARN_ON(!spte_ad_enabled(spte));
1611 1612 1613 1614
	spte &= ~shadow_dirty_mask;
	return mmu_spte_update(sptep, spte);
}

1615
static bool spte_wrprot_for_clear_dirty(u64 *sptep)
1616 1617 1618
{
	bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
					       (unsigned long *)sptep);
1619
	if (was_writable && !spte_ad_enabled(*sptep))
1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630
		kvm_set_pfn_dirty(spte_to_pfn(*sptep));

	return was_writable;
}

/*
 * Gets the GFN ready for another round of dirty logging by clearing the
 *	- D bit on ad-enabled SPTEs, and
 *	- W bit on ad-disabled SPTEs.
 * Returns true iff any D or W bits were cleared.
 */
1631
static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1632 1633 1634 1635 1636
{
	u64 *sptep;
	struct rmap_iterator iter;
	bool flush = false;

1637
	for_each_rmap_spte(rmap_head, &iter, sptep)
1638 1639
		if (spte_ad_need_write_protect(*sptep))
			flush |= spte_wrprot_for_clear_dirty(sptep);
1640
		else
1641
			flush |= spte_clear_dirty(sptep);
1642 1643 1644 1645

	return flush;
}

1646
static bool spte_set_dirty(u64 *sptep)
1647 1648 1649 1650 1651
{
	u64 spte = *sptep;

	rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);

1652 1653 1654 1655 1656
	/*
	 * Similar to the !kvm_x86_ops->slot_disable_log_dirty case,
	 * do not bother adding back write access to pages marked
	 * SPTE_AD_WRPROT_ONLY_MASK.
	 */
1657 1658 1659 1660 1661
	spte |= shadow_dirty_mask;

	return mmu_spte_update(sptep, spte);
}

1662
static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1663 1664 1665 1666 1667
{
	u64 *sptep;
	struct rmap_iterator iter;
	bool flush = false;

1668
	for_each_rmap_spte(rmap_head, &iter, sptep)
1669 1670
		if (spte_ad_enabled(*sptep))
			flush |= spte_set_dirty(sptep);
1671 1672 1673 1674

	return flush;
}

1675
/**
1676
 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1677 1678 1679 1680 1681 1682 1683 1684
 * @kvm: kvm instance
 * @slot: slot to protect
 * @gfn_offset: start of the BITS_PER_LONG pages we care about
 * @mask: indicates which pages we should protect
 *
 * Used when we do not need to care about huge page mappings: e.g. during dirty
 * logging we do not have any such mappings.
 */
1685
static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1686 1687
				     struct kvm_memory_slot *slot,
				     gfn_t gfn_offset, unsigned long mask)
1688
{
1689
	struct kvm_rmap_head *rmap_head;
1690

1691
	while (mask) {
1692 1693 1694
		rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
					  PT_PAGE_TABLE_LEVEL, slot);
		__rmap_write_protect(kvm, rmap_head, false);
M
Marcelo Tosatti 已提交
1695

1696 1697 1698
		/* clear the first set bit */
		mask &= mask - 1;
	}
1699 1700
}

1701
/**
1702 1703
 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
 * protect the page if the D-bit isn't supported.
1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714
 * @kvm: kvm instance
 * @slot: slot to clear D-bit
 * @gfn_offset: start of the BITS_PER_LONG pages we care about
 * @mask: indicates which pages we should clear D-bit
 *
 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
 */
void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
				     struct kvm_memory_slot *slot,
				     gfn_t gfn_offset, unsigned long mask)
{
1715
	struct kvm_rmap_head *rmap_head;
1716 1717

	while (mask) {
1718 1719 1720
		rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
					  PT_PAGE_TABLE_LEVEL, slot);
		__rmap_clear_dirty(kvm, rmap_head);
1721 1722 1723 1724 1725 1726 1727

		/* clear the first set bit */
		mask &= mask - 1;
	}
}
EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);

1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741
/**
 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
 * PT level pages.
 *
 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
 * enable dirty logging for them.
 *
 * Used when we do not need to care about huge page mappings: e.g. during dirty
 * logging we do not have any such mappings.
 */
void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
				struct kvm_memory_slot *slot,
				gfn_t gfn_offset, unsigned long mask)
{
1742 1743 1744 1745 1746
	if (kvm_x86_ops->enable_log_dirty_pt_masked)
		kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
				mask);
	else
		kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1747 1748
}

1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763
/**
 * kvm_arch_write_log_dirty - emulate dirty page logging
 * @vcpu: Guest mode vcpu
 *
 * Emulate arch specific page modification logging for the
 * nested hypervisor
 */
int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu)
{
	if (kvm_x86_ops->write_log_dirty)
		return kvm_x86_ops->write_log_dirty(vcpu);

	return 0;
}

1764 1765
bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
				    struct kvm_memory_slot *slot, u64 gfn)
1766
{
1767
	struct kvm_rmap_head *rmap_head;
1768
	int i;
1769
	bool write_protected = false;
1770

1771
	for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1772
		rmap_head = __gfn_to_rmap(gfn, i, slot);
1773
		write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1774 1775 1776
	}

	return write_protected;
1777 1778
}

1779 1780 1781 1782 1783 1784 1785 1786
static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
{
	struct kvm_memory_slot *slot;

	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
	return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
}

1787
static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1788
{
1789 1790
	u64 *sptep;
	struct rmap_iterator iter;
1791
	bool flush = false;
1792

1793
	while ((sptep = rmap_get_first(rmap_head, &iter))) {
1794
		rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1795

1796
		pte_list_remove(rmap_head, sptep);
1797
		flush = true;
1798
	}
1799

1800 1801 1802
	return flush;
}

1803
static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1804 1805 1806
			   struct kvm_memory_slot *slot, gfn_t gfn, int level,
			   unsigned long data)
{
1807
	return kvm_zap_rmapp(kvm, rmap_head);
1808 1809
}

1810
static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1811 1812
			     struct kvm_memory_slot *slot, gfn_t gfn, int level,
			     unsigned long data)
1813
{
1814 1815
	u64 *sptep;
	struct rmap_iterator iter;
1816
	int need_flush = 0;
1817
	u64 new_spte;
1818
	pte_t *ptep = (pte_t *)data;
D
Dan Williams 已提交
1819
	kvm_pfn_t new_pfn;
1820 1821 1822

	WARN_ON(pte_huge(*ptep));
	new_pfn = pte_pfn(*ptep);
1823

1824
restart:
1825
	for_each_rmap_spte(rmap_head, &iter, sptep) {
1826
		rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1827
			    sptep, *sptep, gfn, level);
1828

1829
		need_flush = 1;
1830

1831
		if (pte_write(*ptep)) {
1832
			pte_list_remove(rmap_head, sptep);
1833
			goto restart;
1834
		} else {
1835
			new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1836 1837 1838 1839
			new_spte |= (u64)new_pfn << PAGE_SHIFT;

			new_spte &= ~PT_WRITABLE_MASK;
			new_spte &= ~SPTE_HOST_WRITEABLE;
1840 1841

			new_spte = mark_spte_for_access_track(new_spte);
1842 1843 1844

			mmu_spte_clear_track_bits(sptep);
			mmu_spte_set(sptep, new_spte);
1845 1846
		}
	}
1847

1848 1849 1850 1851 1852
	if (need_flush && kvm_available_flush_tlb_with_range()) {
		kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
		return 0;
	}

1853
	return need_flush;
1854 1855
}

1856 1857 1858 1859 1860 1861 1862 1863 1864 1865
struct slot_rmap_walk_iterator {
	/* input fields. */
	struct kvm_memory_slot *slot;
	gfn_t start_gfn;
	gfn_t end_gfn;
	int start_level;
	int end_level;

	/* output fields. */
	gfn_t gfn;
1866
	struct kvm_rmap_head *rmap;
1867 1868 1869
	int level;

	/* private field. */
1870
	struct kvm_rmap_head *end_rmap;
1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923
};

static void
rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
{
	iterator->level = level;
	iterator->gfn = iterator->start_gfn;
	iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
	iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
					   iterator->slot);
}

static void
slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
		    struct kvm_memory_slot *slot, int start_level,
		    int end_level, gfn_t start_gfn, gfn_t end_gfn)
{
	iterator->slot = slot;
	iterator->start_level = start_level;
	iterator->end_level = end_level;
	iterator->start_gfn = start_gfn;
	iterator->end_gfn = end_gfn;

	rmap_walk_init_level(iterator, iterator->start_level);
}

static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
{
	return !!iterator->rmap;
}

static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
{
	if (++iterator->rmap <= iterator->end_rmap) {
		iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
		return;
	}

	if (++iterator->level > iterator->end_level) {
		iterator->rmap = NULL;
		return;
	}

	rmap_walk_init_level(iterator, iterator->level);
}

#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,	\
	   _start_gfn, _end_gfn, _iter_)				\
	for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,		\
				 _end_level_, _start_gfn, _end_gfn);	\
	     slot_rmap_walk_okay(_iter_);				\
	     slot_rmap_walk_next(_iter_))

1924 1925 1926 1927 1928
static int kvm_handle_hva_range(struct kvm *kvm,
				unsigned long start,
				unsigned long end,
				unsigned long data,
				int (*handler)(struct kvm *kvm,
1929
					       struct kvm_rmap_head *rmap_head,
1930
					       struct kvm_memory_slot *slot,
1931 1932
					       gfn_t gfn,
					       int level,
1933
					       unsigned long data))
1934
{
1935
	struct kvm_memslots *slots;
1936
	struct kvm_memory_slot *memslot;
1937 1938
	struct slot_rmap_walk_iterator iterator;
	int ret = 0;
1939
	int i;
1940

1941 1942 1943 1944 1945
	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
		kvm_for_each_memslot(memslot, slots) {
			unsigned long hva_start, hva_end;
			gfn_t gfn_start, gfn_end;
1946

1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965
			hva_start = max(start, memslot->userspace_addr);
			hva_end = min(end, memslot->userspace_addr +
				      (memslot->npages << PAGE_SHIFT));
			if (hva_start >= hva_end)
				continue;
			/*
			 * {gfn(page) | page intersects with [hva_start, hva_end)} =
			 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
			 */
			gfn_start = hva_to_gfn_memslot(hva_start, memslot);
			gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);

			for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
						 PT_MAX_HUGEPAGE_LEVEL,
						 gfn_start, gfn_end - 1,
						 &iterator)
				ret |= handler(kvm, iterator.rmap, memslot,
					       iterator.gfn, iterator.level, data);
		}
1966 1967
	}

1968
	return ret;
1969 1970
}

1971 1972
static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
			  unsigned long data,
1973 1974
			  int (*handler)(struct kvm *kvm,
					 struct kvm_rmap_head *rmap_head,
1975
					 struct kvm_memory_slot *slot,
1976
					 gfn_t gfn, int level,
1977 1978 1979
					 unsigned long data))
{
	return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1980 1981
}

1982 1983 1984 1985 1986
int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
{
	return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
}

1987
int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1988
{
1989
	return kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1990 1991
}

1992
static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1993 1994
			 struct kvm_memory_slot *slot, gfn_t gfn, int level,
			 unsigned long data)
1995
{
1996
	u64 *sptep;
1997
	struct rmap_iterator uninitialized_var(iter);
1998 1999
	int young = 0;

2000 2001
	for_each_rmap_spte(rmap_head, &iter, sptep)
		young |= mmu_spte_age(sptep);
2002

2003
	trace_kvm_age_page(gfn, level, slot, young);
2004 2005 2006
	return young;
}

2007
static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
2008 2009
			      struct kvm_memory_slot *slot, gfn_t gfn,
			      int level, unsigned long data)
A
Andrea Arcangeli 已提交
2010
{
2011 2012
	u64 *sptep;
	struct rmap_iterator iter;
A
Andrea Arcangeli 已提交
2013

2014 2015 2016 2017
	for_each_rmap_spte(rmap_head, &iter, sptep)
		if (is_accessed_spte(*sptep))
			return 1;
	return 0;
A
Andrea Arcangeli 已提交
2018 2019
}

2020 2021
#define RMAP_RECYCLE_THRESHOLD 1000

2022
static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
2023
{
2024
	struct kvm_rmap_head *rmap_head;
2025 2026 2027
	struct kvm_mmu_page *sp;

	sp = page_header(__pa(spte));
2028

2029
	rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
2030

2031
	kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
2032 2033
	kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
			KVM_PAGES_PER_HPAGE(sp->role.level));
2034 2035
}

A
Andres Lagar-Cavilla 已提交
2036
int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
2037
{
A
Andres Lagar-Cavilla 已提交
2038
	return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
2039 2040
}

A
Andrea Arcangeli 已提交
2041 2042 2043 2044 2045
int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
{
	return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
}

2046
#ifdef MMU_DEBUG
2047
static int is_empty_shadow_page(u64 *spt)
A
Avi Kivity 已提交
2048
{
2049 2050 2051
	u64 *pos;
	u64 *end;

2052
	for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
2053
		if (is_shadow_present_pte(*pos)) {
2054
			printk(KERN_ERR "%s: %p %llx\n", __func__,
2055
			       pos, *pos);
A
Avi Kivity 已提交
2056
			return 0;
2057
		}
A
Avi Kivity 已提交
2058 2059
	return 1;
}
2060
#endif
A
Avi Kivity 已提交
2061

2062 2063 2064 2065 2066 2067
/*
 * This value is the sum of all of the kvm instances's
 * kvm->arch.n_used_mmu_pages values.  We need a global,
 * aggregate version in order to make the slab shrinker
 * faster
 */
2068
static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, unsigned long nr)
2069 2070 2071 2072 2073
{
	kvm->arch.n_used_mmu_pages += nr;
	percpu_counter_add(&kvm_total_used_mmu_pages, nr);
}

2074
static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
2075
{
2076
	MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
2077
	hlist_del(&sp->hash_link);
2078 2079
	list_del(&sp->link);
	free_page((unsigned long)sp->spt);
2080 2081
	if (!sp->role.direct)
		free_page((unsigned long)sp->gfns);
2082
	kmem_cache_free(mmu_page_header_cache, sp);
2083 2084
}

2085 2086
static unsigned kvm_page_table_hashfn(gfn_t gfn)
{
2087
	return hash_64(gfn, KVM_MMU_HASH_SHIFT);
2088 2089
}

2090
static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
2091
				    struct kvm_mmu_page *sp, u64 *parent_pte)
2092 2093 2094 2095
{
	if (!parent_pte)
		return;

2096
	pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
2097 2098
}

2099
static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
2100 2101
				       u64 *parent_pte)
{
2102
	__pte_list_remove(parent_pte, &sp->parent_ptes);
2103 2104
}

2105 2106 2107 2108
static void drop_parent_pte(struct kvm_mmu_page *sp,
			    u64 *parent_pte)
{
	mmu_page_remove_parent_pte(sp, parent_pte);
2109
	mmu_spte_clear_no_track(parent_pte);
2110 2111
}

2112
static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
M
Marcelo Tosatti 已提交
2113
{
2114
	struct kvm_mmu_page *sp;
2115

2116 2117
	sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
	sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
2118
	if (!direct)
2119
		sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
2120
	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
2121 2122 2123 2124 2125 2126

	/*
	 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
	 * depends on valid pages being added to the head of the list.  See
	 * comments in kvm_zap_obsolete_pages().
	 */
2127
	sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
2128 2129 2130
	list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
	kvm_mod_used_mmu_pages(vcpu->kvm, +1);
	return sp;
M
Marcelo Tosatti 已提交
2131 2132
}

2133
static void mark_unsync(u64 *spte);
2134
static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
2135
{
2136 2137 2138 2139 2140 2141
	u64 *sptep;
	struct rmap_iterator iter;

	for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
		mark_unsync(sptep);
	}
2142 2143
}

2144
static void mark_unsync(u64 *spte)
2145
{
2146
	struct kvm_mmu_page *sp;
2147
	unsigned int index;
2148

2149
	sp = page_header(__pa(spte));
2150 2151
	index = spte - sp->spt;
	if (__test_and_set_bit(index, sp->unsync_child_bitmap))
2152
		return;
2153
	if (sp->unsync_children++)
2154
		return;
2155
	kvm_mmu_mark_parents_unsync(sp);
2156 2157
}

2158
static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
2159
			       struct kvm_mmu_page *sp)
2160
{
2161
	return 0;
2162 2163
}

2164
static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root)
M
Marcelo Tosatti 已提交
2165 2166 2167
{
}

2168 2169
static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
				 struct kvm_mmu_page *sp, u64 *spte,
2170
				 const void *pte)
2171 2172 2173 2174
{
	WARN_ON(1);
}

2175 2176 2177 2178 2179 2180 2181 2182 2183 2184
#define KVM_PAGE_ARRAY_NR 16

struct kvm_mmu_pages {
	struct mmu_page_and_offset {
		struct kvm_mmu_page *sp;
		unsigned int idx;
	} page[KVM_PAGE_ARRAY_NR];
	unsigned int nr;
};

2185 2186
static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
			 int idx)
2187
{
2188
	int i;
2189

2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200
	if (sp->unsync)
		for (i=0; i < pvec->nr; i++)
			if (pvec->page[i].sp == sp)
				return 0;

	pvec->page[pvec->nr].sp = sp;
	pvec->page[pvec->nr].idx = idx;
	pvec->nr++;
	return (pvec->nr == KVM_PAGE_ARRAY_NR);
}

2201 2202 2203 2204 2205 2206 2207
static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
{
	--sp->unsync_children;
	WARN_ON((int)sp->unsync_children < 0);
	__clear_bit(idx, sp->unsync_child_bitmap);
}

2208 2209 2210 2211
static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
	int i, ret, nr_unsync_leaf = 0;
2212

2213
	for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
2214
		struct kvm_mmu_page *child;
2215 2216
		u64 ent = sp->spt[i];

2217 2218 2219 2220
		if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
			clear_unsync_child_bit(sp, i);
			continue;
		}
2221 2222 2223 2224 2225 2226 2227 2228

		child = page_header(ent & PT64_BASE_ADDR_MASK);

		if (child->unsync_children) {
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;

			ret = __mmu_unsync_walk(child, pvec);
2229 2230 2231 2232
			if (!ret) {
				clear_unsync_child_bit(sp, i);
				continue;
			} else if (ret > 0) {
2233
				nr_unsync_leaf += ret;
2234
			} else
2235 2236 2237 2238 2239 2240
				return ret;
		} else if (child->unsync) {
			nr_unsync_leaf++;
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;
		} else
2241
			clear_unsync_child_bit(sp, i);
2242 2243
	}

2244 2245 2246
	return nr_unsync_leaf;
}

2247 2248
#define INVALID_INDEX (-1)

2249 2250 2251
static int mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
P
Paolo Bonzini 已提交
2252
	pvec->nr = 0;
2253 2254 2255
	if (!sp->unsync_children)
		return 0;

2256
	mmu_pages_add(pvec, sp, INVALID_INDEX);
2257
	return __mmu_unsync_walk(sp, pvec);
2258 2259 2260 2261 2262
}

static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
{
	WARN_ON(!sp->unsync);
2263
	trace_kvm_mmu_sync_page(sp);
2264 2265 2266 2267
	sp->unsync = 0;
	--kvm->stat.mmu_unsync;
}

2268 2269
static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				     struct list_head *invalid_list);
2270 2271
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list);
2272

2273

2274
#define for_each_valid_sp(_kvm, _sp, _gfn)				\
2275 2276
	hlist_for_each_entry(_sp,					\
	  &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
2277
		if (is_obsolete_sp((_kvm), (_sp))) {			\
2278
		} else
2279 2280

#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)			\
2281 2282
	for_each_valid_sp(_kvm, _sp, _gfn)				\
		if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
2283

2284 2285 2286 2287 2288
static inline bool is_ept_sp(struct kvm_mmu_page *sp)
{
	return sp->role.cr0_wp && sp->role.smap_andnot_wp;
}

2289
/* @sp->gfn should be write-protected at the call site */
2290 2291
static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
			    struct list_head *invalid_list)
2292
{
2293 2294
	if ((!is_ept_sp(sp) && sp->role.gpte_is_8_bytes != !!is_pae(vcpu)) ||
	    vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
2295
		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
2296
		return false;
2297 2298
	}

2299
	return true;
2300 2301
}

2302 2303 2304 2305
static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
					struct list_head *invalid_list,
					bool remote_flush)
{
2306
	if (!remote_flush && list_empty(invalid_list))
2307 2308 2309 2310 2311 2312 2313 2314 2315
		return false;

	if (!list_empty(invalid_list))
		kvm_mmu_commit_zap_page(kvm, invalid_list);
	else
		kvm_flush_remote_tlbs(kvm);
	return true;
}

2316 2317 2318
static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
				 struct list_head *invalid_list,
				 bool remote_flush, bool local_flush)
2319
{
2320
	if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush))
2321
		return;
2322

2323
	if (local_flush)
2324
		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2325 2326
}

2327 2328 2329 2330 2331 2332 2333
#ifdef CONFIG_KVM_MMU_AUDIT
#include "mmu_audit.c"
#else
static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
static void mmu_audit_disable(void) { }
#endif

2334 2335
static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
{
2336 2337
	return sp->role.invalid ||
	       unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2338 2339
}

2340
static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2341
			 struct list_head *invalid_list)
2342
{
2343 2344
	kvm_unlink_unsync_page(vcpu->kvm, sp);
	return __kvm_sync_page(vcpu, sp, invalid_list);
2345 2346
}

2347
/* @gfn should be write-protected at the call site */
2348 2349
static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
			   struct list_head *invalid_list)
2350 2351
{
	struct kvm_mmu_page *s;
2352
	bool ret = false;
2353

2354
	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2355
		if (!s->unsync)
2356 2357 2358
			continue;

		WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2359
		ret |= kvm_sync_page(vcpu, s, invalid_list);
2360 2361
	}

2362
	return ret;
2363 2364
}

2365
struct mmu_page_path {
2366 2367
	struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
	unsigned int idx[PT64_ROOT_MAX_LEVEL];
2368 2369
};

2370
#define for_each_sp(pvec, sp, parents, i)			\
P
Paolo Bonzini 已提交
2371
		for (i = mmu_pages_first(&pvec, &parents);	\
2372 2373 2374
			i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});	\
			i = mmu_pages_next(&pvec, &parents, i))

2375 2376 2377
static int mmu_pages_next(struct kvm_mmu_pages *pvec,
			  struct mmu_page_path *parents,
			  int i)
2378 2379 2380 2381 2382
{
	int n;

	for (n = i+1; n < pvec->nr; n++) {
		struct kvm_mmu_page *sp = pvec->page[n].sp;
P
Paolo Bonzini 已提交
2383 2384
		unsigned idx = pvec->page[n].idx;
		int level = sp->role.level;
2385

P
Paolo Bonzini 已提交
2386 2387 2388
		parents->idx[level-1] = idx;
		if (level == PT_PAGE_TABLE_LEVEL)
			break;
2389

P
Paolo Bonzini 已提交
2390
		parents->parent[level-2] = sp;
2391 2392 2393 2394 2395
	}

	return n;
}

P
Paolo Bonzini 已提交
2396 2397 2398 2399 2400 2401 2402 2403 2404
static int mmu_pages_first(struct kvm_mmu_pages *pvec,
			   struct mmu_page_path *parents)
{
	struct kvm_mmu_page *sp;
	int level;

	if (pvec->nr == 0)
		return 0;

2405 2406
	WARN_ON(pvec->page[0].idx != INVALID_INDEX);

P
Paolo Bonzini 已提交
2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419
	sp = pvec->page[0].sp;
	level = sp->role.level;
	WARN_ON(level == PT_PAGE_TABLE_LEVEL);

	parents->parent[level-2] = sp;

	/* Also set up a sentinel.  Further entries in pvec are all
	 * children of sp, so this element is never overwritten.
	 */
	parents->parent[level-1] = NULL;
	return mmu_pages_next(pvec, parents, 0);
}

2420
static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2421
{
2422 2423 2424 2425 2426 2427 2428 2429 2430
	struct kvm_mmu_page *sp;
	unsigned int level = 0;

	do {
		unsigned int idx = parents->idx[level];
		sp = parents->parent[level];
		if (!sp)
			return;

2431
		WARN_ON(idx == INVALID_INDEX);
2432
		clear_unsync_child_bit(sp, idx);
2433
		level++;
P
Paolo Bonzini 已提交
2434
	} while (!sp->unsync_children);
2435
}
2436

2437 2438 2439 2440 2441 2442 2443
static void mmu_sync_children(struct kvm_vcpu *vcpu,
			      struct kvm_mmu_page *parent)
{
	int i;
	struct kvm_mmu_page *sp;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
2444
	LIST_HEAD(invalid_list);
2445
	bool flush = false;
2446 2447

	while (mmu_unsync_walk(parent, &pages)) {
2448
		bool protected = false;
2449 2450

		for_each_sp(pages, sp, parents, i)
2451
			protected |= rmap_write_protect(vcpu, sp->gfn);
2452

2453
		if (protected) {
2454
			kvm_flush_remote_tlbs(vcpu->kvm);
2455 2456
			flush = false;
		}
2457

2458
		for_each_sp(pages, sp, parents, i) {
2459
			flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2460 2461
			mmu_pages_clear_parents(&parents);
		}
2462 2463 2464 2465 2466
		if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
			kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
			cond_resched_lock(&vcpu->kvm->mmu_lock);
			flush = false;
		}
2467
	}
2468 2469

	kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2470 2471
}

2472 2473
static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
{
2474
	atomic_set(&sp->write_flooding_count,  0);
2475 2476 2477 2478 2479 2480 2481 2482 2483
}

static void clear_sp_write_flooding_count(u64 *spte)
{
	struct kvm_mmu_page *sp =  page_header(__pa(spte));

	__clear_sp_write_flooding_count(sp);
}

2484 2485 2486 2487
static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
					     gfn_t gfn,
					     gva_t gaddr,
					     unsigned level,
2488
					     int direct,
2489
					     unsigned int access)
2490 2491 2492
{
	union kvm_mmu_page_role role;
	unsigned quadrant;
2493 2494
	struct kvm_mmu_page *sp;
	bool need_sync = false;
2495
	bool flush = false;
2496
	int collisions = 0;
2497
	LIST_HEAD(invalid_list);
2498

2499
	role = vcpu->arch.mmu->mmu_role.base;
2500
	role.level = level;
2501
	role.direct = direct;
2502
	if (role.direct)
2503
		role.gpte_is_8_bytes = true;
2504
	role.access = access;
2505 2506
	if (!vcpu->arch.mmu->direct_map
	    && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
2507 2508 2509 2510
		quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
		quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
		role.quadrant = quadrant;
	}
2511 2512 2513 2514 2515 2516
	for_each_valid_sp(vcpu->kvm, sp, gfn) {
		if (sp->gfn != gfn) {
			collisions++;
			continue;
		}

2517 2518
		if (!need_sync && sp->unsync)
			need_sync = true;
2519

2520 2521
		if (sp->role.word != role.word)
			continue;
2522

2523 2524 2525 2526 2527 2528 2529 2530 2531 2532
		if (sp->unsync) {
			/* The page is good, but __kvm_sync_page might still end
			 * up zapping it.  If so, break in order to rebuild it.
			 */
			if (!__kvm_sync_page(vcpu, sp, &invalid_list))
				break;

			WARN_ON(!list_empty(&invalid_list));
			kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
		}
2533

2534
		if (sp->unsync_children)
2535
			kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2536

2537
		__clear_sp_write_flooding_count(sp);
2538
		trace_kvm_mmu_get_page(sp, false);
2539
		goto out;
2540
	}
2541

A
Avi Kivity 已提交
2542
	++vcpu->kvm->stat.mmu_cache_miss;
2543 2544 2545

	sp = kvm_mmu_alloc_page(vcpu, direct);

2546 2547
	sp->gfn = gfn;
	sp->role = role;
2548 2549
	hlist_add_head(&sp->hash_link,
		&vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
2550
	if (!direct) {
2551 2552 2553 2554 2555 2556 2557 2558
		/*
		 * we should do write protection before syncing pages
		 * otherwise the content of the synced shadow page may
		 * be inconsistent with guest page table.
		 */
		account_shadowed(vcpu->kvm, sp);
		if (level == PT_PAGE_TABLE_LEVEL &&
		      rmap_write_protect(vcpu, gfn))
2559
			kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
2560 2561

		if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2562
			flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
2563
	}
2564
	clear_page(sp->spt);
A
Avi Kivity 已提交
2565
	trace_kvm_mmu_get_page(sp, true);
2566 2567

	kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2568 2569 2570
out:
	if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
		vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2571
	return sp;
2572 2573
}

2574 2575 2576
static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
					struct kvm_vcpu *vcpu, hpa_t root,
					u64 addr)
2577 2578
{
	iterator->addr = addr;
2579
	iterator->shadow_addr = root;
2580
	iterator->level = vcpu->arch.mmu->shadow_root_level;
2581

2582
	if (iterator->level == PT64_ROOT_4LEVEL &&
2583 2584
	    vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
	    !vcpu->arch.mmu->direct_map)
2585 2586
		--iterator->level;

2587
	if (iterator->level == PT32E_ROOT_LEVEL) {
2588 2589 2590 2591
		/*
		 * prev_root is currently only used for 64-bit hosts. So only
		 * the active root_hpa is valid here.
		 */
2592
		BUG_ON(root != vcpu->arch.mmu->root_hpa);
2593

2594
		iterator->shadow_addr
2595
			= vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2596 2597 2598 2599 2600 2601 2602
		iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
		--iterator->level;
		if (!iterator->shadow_addr)
			iterator->level = 0;
	}
}

2603 2604 2605
static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
			     struct kvm_vcpu *vcpu, u64 addr)
{
2606
	shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
2607 2608 2609
				    addr);
}

2610 2611 2612 2613
static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
{
	if (iterator->level < PT_PAGE_TABLE_LEVEL)
		return false;
2614

2615 2616 2617 2618 2619
	iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
	iterator->sptep	= ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
	return true;
}

2620 2621
static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
			       u64 spte)
2622
{
2623
	if (is_last_spte(spte, iterator->level)) {
2624 2625 2626 2627
		iterator->level = 0;
		return;
	}

2628
	iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2629 2630 2631
	--iterator->level;
}

2632 2633
static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
{
2634
	__shadow_walk_next(iterator, *iterator->sptep);
2635 2636
}

2637 2638
static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
			     struct kvm_mmu_page *sp)
2639 2640 2641
{
	u64 spte;

2642
	BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2643

2644
	spte = __pa(sp->spt) | shadow_present_mask | PT_WRITABLE_MASK |
2645
	       shadow_user_mask | shadow_x_mask | shadow_me_mask;
2646 2647

	if (sp_ad_disabled(sp))
2648
		spte |= SPTE_AD_DISABLED_MASK;
2649 2650
	else
		spte |= shadow_accessed_mask;
X
Xiao Guangrong 已提交
2651

2652
	mmu_spte_set(sptep, spte);
2653 2654 2655 2656 2657

	mmu_page_add_parent_pte(vcpu, sp, sptep);

	if (sp->unsync_children || sp->unsync)
		mark_unsync(sptep);
2658 2659
}

2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676
static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
				   unsigned direct_access)
{
	if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
		struct kvm_mmu_page *child;

		/*
		 * For the direct sp, if the guest pte's dirty bit
		 * changed form clean to dirty, it will corrupt the
		 * sp's access: allow writable in the read-only sp,
		 * so we should update the spte at this point to get
		 * a new sp with the correct access.
		 */
		child = page_header(*sptep & PT64_BASE_ADDR_MASK);
		if (child->role.access == direct_access)
			return;

2677
		drop_parent_pte(child, sptep);
2678
		kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
2679 2680 2681
	}
}

X
Xiao Guangrong 已提交
2682
static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2683 2684 2685 2686 2687 2688 2689
			     u64 *spte)
{
	u64 pte;
	struct kvm_mmu_page *child;

	pte = *spte;
	if (is_shadow_present_pte(pte)) {
X
Xiao Guangrong 已提交
2690
		if (is_last_spte(pte, sp->role.level)) {
2691
			drop_spte(kvm, spte);
X
Xiao Guangrong 已提交
2692 2693 2694
			if (is_large_pte(pte))
				--kvm->stat.lpages;
		} else {
2695
			child = page_header(pte & PT64_BASE_ADDR_MASK);
2696
			drop_parent_pte(child, spte);
2697
		}
X
Xiao Guangrong 已提交
2698 2699 2700 2701
		return true;
	}

	if (is_mmio_spte(pte))
2702
		mmu_spte_clear_no_track(spte);
2703

X
Xiao Guangrong 已提交
2704
	return false;
2705 2706
}

2707
static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2708
					 struct kvm_mmu_page *sp)
2709
{
2710 2711
	unsigned i;

2712 2713
	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
		mmu_page_zap_pte(kvm, sp, sp->spt + i);
2714 2715
}

2716
static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2717
{
2718 2719
	u64 *sptep;
	struct rmap_iterator iter;
2720

2721
	while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2722
		drop_parent_pte(sp, sptep);
2723 2724
}

2725
static int mmu_zap_unsync_children(struct kvm *kvm,
2726 2727
				   struct kvm_mmu_page *parent,
				   struct list_head *invalid_list)
2728
{
2729 2730 2731
	int i, zapped = 0;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
2732

2733
	if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2734
		return 0;
2735 2736 2737 2738 2739

	while (mmu_unsync_walk(parent, &pages)) {
		struct kvm_mmu_page *sp;

		for_each_sp(pages, sp, parents, i) {
2740
			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2741
			mmu_pages_clear_parents(&parents);
2742
			zapped++;
2743 2744 2745 2746
		}
	}

	return zapped;
2747 2748
}

2749 2750 2751 2752
static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
				       struct kvm_mmu_page *sp,
				       struct list_head *invalid_list,
				       int *nr_zapped)
2753
{
2754
	bool list_unstable;
A
Avi Kivity 已提交
2755

2756
	trace_kvm_mmu_prepare_zap_page(sp);
2757
	++kvm->stat.mmu_shadow_zapped;
2758
	*nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2759
	kvm_mmu_page_unlink_children(kvm, sp);
2760
	kvm_mmu_unlink_parents(kvm, sp);
2761

2762 2763 2764
	/* Zapping children means active_mmu_pages has become unstable. */
	list_unstable = *nr_zapped;

2765
	if (!sp->role.invalid && !sp->role.direct)
2766
		unaccount_shadowed(kvm, sp);
2767

2768 2769
	if (sp->unsync)
		kvm_unlink_unsync_page(kvm, sp);
2770
	if (!sp->root_count) {
2771
		/* Count self */
2772
		(*nr_zapped)++;
2773
		list_move(&sp->link, invalid_list);
2774
		kvm_mod_used_mmu_pages(kvm, -1);
2775
	} else {
A
Avi Kivity 已提交
2776
		list_move(&sp->link, &kvm->arch.active_mmu_pages);
2777

2778 2779 2780 2781 2782 2783
		/*
		 * Obsolete pages cannot be used on any vCPUs, see the comment
		 * in kvm_mmu_zap_all_fast().  Note, is_obsolete_sp() also
		 * treats invalid shadow pages as being obsolete.
		 */
		if (!is_obsolete_sp(kvm, sp))
2784
			kvm_reload_remote_mmus(kvm);
2785
	}
2786

P
Paolo Bonzini 已提交
2787 2788 2789
	if (sp->lpage_disallowed)
		unaccount_huge_nx_page(kvm, sp);

2790
	sp->role.invalid = 1;
2791 2792 2793 2794 2795 2796 2797 2798 2799 2800
	return list_unstable;
}

static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				     struct list_head *invalid_list)
{
	int nr_zapped;

	__kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
	return nr_zapped;
2801 2802
}

2803 2804 2805
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list)
{
2806
	struct kvm_mmu_page *sp, *nsp;
2807 2808 2809 2810

	if (list_empty(invalid_list))
		return;

2811
	/*
2812 2813 2814 2815 2816 2817 2818
	 * We need to make sure everyone sees our modifications to
	 * the page tables and see changes to vcpu->mode here. The barrier
	 * in the kvm_flush_remote_tlbs() achieves this. This pairs
	 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
	 *
	 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
	 * guest mode and/or lockless shadow page table walks.
2819 2820
	 */
	kvm_flush_remote_tlbs(kvm);
2821

2822
	list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2823
		WARN_ON(!sp->role.invalid || sp->root_count);
2824
		kvm_mmu_free_page(sp);
2825
	}
2826 2827
}

2828 2829 2830 2831 2832 2833 2834 2835
static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
					struct list_head *invalid_list)
{
	struct kvm_mmu_page *sp;

	if (list_empty(&kvm->arch.active_mmu_pages))
		return false;

G
Geliang Tang 已提交
2836 2837
	sp = list_last_entry(&kvm->arch.active_mmu_pages,
			     struct kvm_mmu_page, link);
2838
	return kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2839 2840
}

2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860
static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
{
	LIST_HEAD(invalid_list);

	if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
		return 0;

	while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
		if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
			break;

		++vcpu->kvm->stat.mmu_recycled;
	}
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);

	if (!kvm_mmu_available_pages(vcpu->kvm))
		return -ENOSPC;
	return 0;
}

2861 2862
/*
 * Changing the number of mmu pages allocated to the vm
2863
 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2864
 */
2865
void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2866
{
2867
	LIST_HEAD(invalid_list);
2868

2869 2870
	spin_lock(&kvm->mmu_lock);

2871
	if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2872 2873 2874 2875
		/* Need to free some mmu pages to achieve the goal. */
		while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
			if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
				break;
2876

2877
		kvm_mmu_commit_zap_page(kvm, &invalid_list);
2878
		goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2879 2880
	}

2881
	kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2882 2883

	spin_unlock(&kvm->mmu_lock);
2884 2885
}

2886
int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2887
{
2888
	struct kvm_mmu_page *sp;
2889
	LIST_HEAD(invalid_list);
2890 2891
	int r;

2892
	pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2893
	r = 0;
2894
	spin_lock(&kvm->mmu_lock);
2895
	for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2896
		pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2897 2898
			 sp->role.word);
		r = 1;
2899
		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2900
	}
2901
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2902 2903
	spin_unlock(&kvm->mmu_lock);

2904
	return r;
2905
}
2906
EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2907

2908
static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2909 2910 2911 2912 2913 2914 2915 2916
{
	trace_kvm_mmu_unsync_page(sp);
	++vcpu->kvm->stat.mmu_unsync;
	sp->unsync = 1;

	kvm_mmu_mark_parents_unsync(sp);
}

2917 2918
static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
				   bool can_unsync)
2919
{
2920
	struct kvm_mmu_page *sp;
2921

2922 2923
	if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
		return true;
2924

2925
	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2926
		if (!can_unsync)
2927
			return true;
2928

2929 2930
		if (sp->unsync)
			continue;
2931

2932 2933
		WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
		kvm_unsync_page(vcpu, sp);
2934
	}
2935

2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974
	/*
	 * We need to ensure that the marking of unsync pages is visible
	 * before the SPTE is updated to allow writes because
	 * kvm_mmu_sync_roots() checks the unsync flags without holding
	 * the MMU lock and so can race with this. If the SPTE was updated
	 * before the page had been marked as unsync-ed, something like the
	 * following could happen:
	 *
	 * CPU 1                    CPU 2
	 * ---------------------------------------------------------------------
	 * 1.2 Host updates SPTE
	 *     to be writable
	 *                      2.1 Guest writes a GPTE for GVA X.
	 *                          (GPTE being in the guest page table shadowed
	 *                           by the SP from CPU 1.)
	 *                          This reads SPTE during the page table walk.
	 *                          Since SPTE.W is read as 1, there is no
	 *                          fault.
	 *
	 *                      2.2 Guest issues TLB flush.
	 *                          That causes a VM Exit.
	 *
	 *                      2.3 kvm_mmu_sync_pages() reads sp->unsync.
	 *                          Since it is false, so it just returns.
	 *
	 *                      2.4 Guest accesses GVA X.
	 *                          Since the mapping in the SP was not updated,
	 *                          so the old mapping for GVA X incorrectly
	 *                          gets used.
	 * 1.1 Host marks SP
	 *     as unsync
	 *     (sp->unsync = true)
	 *
	 * The write barrier below ensures that 1.1 happens before 1.2 and thus
	 * the situation in 2.4 does not arise. The implicit barrier in 2.2
	 * pairs with this write barrier.
	 */
	smp_wmb();

2975
	return false;
2976 2977
}

D
Dan Williams 已提交
2978
static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
2979 2980
{
	if (pfn_valid(pfn))
2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992
		return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)) &&
			/*
			 * Some reserved pages, such as those from NVDIMM
			 * DAX devices, are not for MMIO, and can be mapped
			 * with cached memory type for better performance.
			 * However, the above check misconceives those pages
			 * as MMIO, and results in KVM mapping them with UC
			 * memory type, which would hurt the performance.
			 * Therefore, we check the host memory type in addition
			 * and only treat UC/UC-/WC pages as MMIO.
			 */
			(!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn));
2993

2994 2995 2996
	return !e820__mapped_raw_any(pfn_to_hpa(pfn),
				     pfn_to_hpa(pfn + 1) - 1,
				     E820_TYPE_RAM);
2997 2998
}

2999 3000 3001 3002
/* Bits which may be returned by set_spte() */
#define SET_SPTE_WRITE_PROTECTED_PT	BIT(0)
#define SET_SPTE_NEED_REMOTE_TLB_FLUSH	BIT(1)

A
Avi Kivity 已提交
3003
static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
3004
		    unsigned int pte_access, int level,
D
Dan Williams 已提交
3005
		    gfn_t gfn, kvm_pfn_t pfn, bool speculative,
3006
		    bool can_unsync, bool host_writable)
3007
{
3008
	u64 spte = 0;
M
Marcelo Tosatti 已提交
3009
	int ret = 0;
3010
	struct kvm_mmu_page *sp;
S
Sheng Yang 已提交
3011

3012
	if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
3013 3014
		return 0;

3015 3016
	sp = page_header(__pa(sptep));
	if (sp_ad_disabled(sp))
3017
		spte |= SPTE_AD_DISABLED_MASK;
3018 3019
	else if (kvm_vcpu_ad_need_write_protect(vcpu))
		spte |= SPTE_AD_WRPROT_ONLY_MASK;
3020

3021 3022 3023 3024 3025 3026
	/*
	 * For the EPT case, shadow_present_mask is 0 if hardware
	 * supports exec-only page table entries.  In that case,
	 * ACC_USER_MASK and shadow_user_mask are used to represent
	 * read access.  See FNAME(gpte_access) in paging_tmpl.h.
	 */
3027
	spte |= shadow_present_mask;
3028
	if (!speculative)
3029
		spte |= spte_shadow_accessed_mask(spte);
3030

P
Paolo Bonzini 已提交
3031 3032 3033 3034 3035
	if (level > PT_PAGE_TABLE_LEVEL && (pte_access & ACC_EXEC_MASK) &&
	    is_nx_huge_page_enabled()) {
		pte_access &= ~ACC_EXEC_MASK;
	}

S
Sheng Yang 已提交
3036 3037 3038 3039
	if (pte_access & ACC_EXEC_MASK)
		spte |= shadow_x_mask;
	else
		spte |= shadow_nx_mask;
3040

3041
	if (pte_access & ACC_USER_MASK)
S
Sheng Yang 已提交
3042
		spte |= shadow_user_mask;
3043

3044
	if (level > PT_PAGE_TABLE_LEVEL)
M
Marcelo Tosatti 已提交
3045
		spte |= PT_PAGE_SIZE_MASK;
3046
	if (tdp_enabled)
3047
		spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
3048
			kvm_is_mmio_pfn(pfn));
3049

3050
	if (host_writable)
3051
		spte |= SPTE_HOST_WRITEABLE;
3052 3053
	else
		pte_access &= ~ACC_WRITE_MASK;
3054

3055 3056 3057
	if (!kvm_is_mmio_pfn(pfn))
		spte |= shadow_me_mask;

3058
	spte |= (u64)pfn << PAGE_SHIFT;
3059

3060
	if (pte_access & ACC_WRITE_MASK) {
3061
		spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
3062

3063 3064 3065 3066 3067 3068
		/*
		 * Optimization: for pte sync, if spte was writable the hash
		 * lookup is unnecessary (and expensive). Write protection
		 * is responsibility of mmu_get_page / kvm_sync_page.
		 * Same reasoning can be applied to dirty page accounting.
		 */
3069
		if (!can_unsync && is_writable_pte(*sptep))
3070 3071
			goto set_pte;

3072
		if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
3073
			pgprintk("%s: found shadow page for %llx, marking ro\n",
3074
				 __func__, gfn);
3075
			ret |= SET_SPTE_WRITE_PROTECTED_PT;
3076
			pte_access &= ~ACC_WRITE_MASK;
3077
			spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
3078 3079 3080
		}
	}

3081
	if (pte_access & ACC_WRITE_MASK) {
3082
		kvm_vcpu_mark_page_dirty(vcpu, gfn);
3083
		spte |= spte_shadow_dirty_mask(spte);
3084
	}
3085

3086 3087 3088
	if (speculative)
		spte = mark_spte_for_access_track(spte);

3089
set_pte:
3090
	if (mmu_spte_update(sptep, spte))
3091
		ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
M
Marcelo Tosatti 已提交
3092 3093 3094
	return ret;
}

3095 3096 3097 3098
static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
			unsigned int pte_access, int write_fault, int level,
			gfn_t gfn, kvm_pfn_t pfn, bool speculative,
			bool host_writable)
M
Marcelo Tosatti 已提交
3099 3100
{
	int was_rmapped = 0;
3101
	int rmap_count;
3102
	int set_spte_ret;
3103
	int ret = RET_PF_RETRY;
3104
	bool flush = false;
M
Marcelo Tosatti 已提交
3105

3106 3107
	pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
		 *sptep, write_fault, gfn);
M
Marcelo Tosatti 已提交
3108

3109
	if (is_shadow_present_pte(*sptep)) {
M
Marcelo Tosatti 已提交
3110 3111 3112 3113
		/*
		 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
		 * the parent of the now unreachable PTE.
		 */
3114 3115
		if (level > PT_PAGE_TABLE_LEVEL &&
		    !is_large_pte(*sptep)) {
M
Marcelo Tosatti 已提交
3116
			struct kvm_mmu_page *child;
A
Avi Kivity 已提交
3117
			u64 pte = *sptep;
M
Marcelo Tosatti 已提交
3118 3119

			child = page_header(pte & PT64_BASE_ADDR_MASK);
3120
			drop_parent_pte(child, sptep);
3121
			flush = true;
A
Avi Kivity 已提交
3122
		} else if (pfn != spte_to_pfn(*sptep)) {
3123
			pgprintk("hfn old %llx new %llx\n",
A
Avi Kivity 已提交
3124
				 spte_to_pfn(*sptep), pfn);
3125
			drop_spte(vcpu->kvm, sptep);
3126
			flush = true;
3127 3128
		} else
			was_rmapped = 1;
M
Marcelo Tosatti 已提交
3129
	}
3130

3131 3132 3133
	set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
				speculative, true, host_writable);
	if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
M
Marcelo Tosatti 已提交
3134
		if (write_fault)
3135
			ret = RET_PF_EMULATE;
3136
		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3137
	}
3138

3139
	if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
3140 3141
		kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
				KVM_PAGES_PER_HPAGE(level));
M
Marcelo Tosatti 已提交
3142

3143
	if (unlikely(is_mmio_spte(*sptep)))
3144
		ret = RET_PF_EMULATE;
3145

A
Avi Kivity 已提交
3146
	pgprintk("%s: setting spte %llx\n", __func__, *sptep);
3147
	trace_kvm_mmu_set_spte(level, gfn, sptep);
A
Avi Kivity 已提交
3148
	if (!was_rmapped && is_large_pte(*sptep))
M
Marcelo Tosatti 已提交
3149 3150
		++vcpu->kvm->stat.lpages;

3151 3152 3153 3154 3155 3156
	if (is_shadow_present_pte(*sptep)) {
		if (!was_rmapped) {
			rmap_count = rmap_add(vcpu, sptep, gfn);
			if (rmap_count > RMAP_RECYCLE_THRESHOLD)
				rmap_recycle(vcpu, sptep, gfn);
		}
3157
	}
3158

3159
	return ret;
3160 3161
}

D
Dan Williams 已提交
3162
static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
3163 3164 3165 3166
				     bool no_dirty_log)
{
	struct kvm_memory_slot *slot;

3167
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
3168
	if (!slot)
3169
		return KVM_PFN_ERR_FAULT;
3170

3171
	return gfn_to_pfn_memslot_atomic(slot, gfn);
3172 3173 3174 3175 3176 3177 3178
}

static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
				    struct kvm_mmu_page *sp,
				    u64 *start, u64 *end)
{
	struct page *pages[PTE_PREFETCH_NUM];
3179
	struct kvm_memory_slot *slot;
3180
	unsigned int access = sp->role.access;
3181 3182 3183 3184
	int i, ret;
	gfn_t gfn;

	gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
3185 3186
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
	if (!slot)
3187 3188
		return -1;

3189
	ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
3190 3191 3192
	if (ret <= 0)
		return -1;

3193
	for (i = 0; i < ret; i++, gfn++, start++) {
3194 3195
		mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
			     page_to_pfn(pages[i]), true, true);
3196 3197
		put_page(pages[i]);
	}
3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213

	return 0;
}

static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
				  struct kvm_mmu_page *sp, u64 *sptep)
{
	u64 *spte, *start = NULL;
	int i;

	WARN_ON(!sp->role.direct);

	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
	spte = sp->spt + i;

	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
3214
		if (is_shadow_present_pte(*spte) || spte == sptep) {
3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228
			if (!start)
				continue;
			if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
				break;
			start = NULL;
		} else if (!start)
			start = spte;
	}
}

static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
{
	struct kvm_mmu_page *sp;

3229 3230
	sp = page_header(__pa(sptep));

3231
	/*
3232 3233 3234
	 * Without accessed bits, there's no way to distinguish between
	 * actually accessed translations and prefetched, so disable pte
	 * prefetch if accessed bits aren't available.
3235
	 */
3236
	if (sp_ad_disabled(sp))
3237 3238 3239 3240 3241 3242 3243 3244
		return;

	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
		return;

	__direct_pte_prefetch(vcpu, sp, sptep);
}

3245
static int host_pfn_mapping_level(struct kvm_vcpu *vcpu, gfn_t gfn,
3246
				  kvm_pfn_t pfn, struct kvm_memory_slot *slot)
3247 3248 3249 3250 3251 3252 3253 3254 3255
{
	unsigned long hva;
	pte_t *pte;
	int level;

	BUILD_BUG_ON(PT_PAGE_TABLE_LEVEL != (int)PG_LEVEL_4K ||
		     PT_DIRECTORY_LEVEL != (int)PG_LEVEL_2M ||
		     PT_PDPE_LEVEL != (int)PG_LEVEL_1G);

3256
	if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn))
3257 3258
		return PT_PAGE_TABLE_LEVEL;

3259 3260 3261 3262 3263 3264 3265 3266
	/*
	 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
	 * is not solely for performance, it's also necessary to avoid the
	 * "writable" check in __gfn_to_hva_many(), which will always fail on
	 * read-only memslots due to gfn_to_hva() assuming writes.  Earlier
	 * page fault steps have already verified the guest isn't writing a
	 * read-only memslot.
	 */
3267 3268 3269 3270 3271 3272 3273 3274 3275
	hva = __gfn_to_hva_memslot(slot, gfn);

	pte = lookup_address_in_mm(vcpu->kvm->mm, hva, &level);
	if (unlikely(!pte))
		return PT_PAGE_TABLE_LEVEL;

	return level;
}

3276 3277
static int kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, gfn_t gfn,
				   int max_level, kvm_pfn_t *pfnp)
3278
{
3279
	struct kvm_memory_slot *slot;
3280
	struct kvm_lpage_info *linfo;
3281
	kvm_pfn_t pfn = *pfnp;
3282
	kvm_pfn_t mask;
3283
	int level;
3284

3285
	if (unlikely(max_level == PT_PAGE_TABLE_LEVEL))
3286
		return PT_PAGE_TABLE_LEVEL;
3287

3288
	if (is_error_noslot_pfn(pfn) || kvm_is_reserved_pfn(pfn))
3289
		return PT_PAGE_TABLE_LEVEL;
3290

3291 3292 3293 3294 3295 3296
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, true);
	if (!slot)
		return PT_PAGE_TABLE_LEVEL;

	max_level = min(max_level, kvm_x86_ops->get_lpage_level());
	for ( ; max_level > PT_PAGE_TABLE_LEVEL; max_level--) {
3297 3298
		linfo = lpage_info_slot(gfn, slot, max_level);
		if (!linfo->disallow_lpage)
3299 3300 3301 3302 3303 3304 3305
			break;
	}

	if (max_level == PT_PAGE_TABLE_LEVEL)
		return PT_PAGE_TABLE_LEVEL;

	level = host_pfn_mapping_level(vcpu, gfn, pfn, slot);
3306
	if (level == PT_PAGE_TABLE_LEVEL)
3307
		return level;
3308

3309
	level = min(level, max_level);
3310 3311

	/*
3312 3313
	 * mmu_notifier_retry() was successful and mmu_lock is held, so
	 * the pmd can't be split from under us.
3314
	 */
3315 3316 3317
	mask = KVM_PAGES_PER_HPAGE(level) - 1;
	VM_BUG_ON((gfn & mask) != (pfn & mask));
	*pfnp = pfn & ~mask;
3318 3319

	return level;
3320 3321
}

P
Paolo Bonzini 已提交
3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344
static void disallowed_hugepage_adjust(struct kvm_shadow_walk_iterator it,
				       gfn_t gfn, kvm_pfn_t *pfnp, int *levelp)
{
	int level = *levelp;
	u64 spte = *it.sptep;

	if (it.level == level && level > PT_PAGE_TABLE_LEVEL &&
	    is_nx_huge_page_enabled() &&
	    is_shadow_present_pte(spte) &&
	    !is_large_pte(spte)) {
		/*
		 * A small SPTE exists for this pfn, but FNAME(fetch)
		 * and __direct_map would like to create a large PTE
		 * instead: just force them to go down another level,
		 * patching back for them into pfn the next 9 bits of
		 * the address.
		 */
		u64 page_mask = KVM_PAGES_PER_HPAGE(level) - KVM_PAGES_PER_HPAGE(level - 1);
		*pfnp |= gfn & page_mask;
		(*levelp)--;
	}
}

3345
static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, int write,
3346 3347
			int map_writable, int max_level, kvm_pfn_t pfn,
			bool prefault, bool account_disallowed_nx_lpage)
3348
{
3349
	struct kvm_shadow_walk_iterator it;
3350
	struct kvm_mmu_page *sp;
3351
	int level, ret;
3352 3353
	gfn_t gfn = gpa >> PAGE_SHIFT;
	gfn_t base_gfn = gfn;
A
Avi Kivity 已提交
3354

3355
	if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
3356
		return RET_PF_RETRY;
3357

3358
	level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn);
3359

3360
	trace_kvm_mmu_spte_requested(gpa, level, pfn);
3361
	for_each_shadow_entry(vcpu, gpa, it) {
P
Paolo Bonzini 已提交
3362 3363 3364 3365 3366 3367
		/*
		 * We cannot overwrite existing page tables with an NX
		 * large page, as the leaf could be executable.
		 */
		disallowed_hugepage_adjust(it, gfn, &pfn, &level);

3368 3369
		base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
		if (it.level == level)
3370
			break;
A
Avi Kivity 已提交
3371

3372 3373 3374 3375
		drop_large_spte(vcpu, it.sptep);
		if (!is_shadow_present_pte(*it.sptep)) {
			sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
					      it.level - 1, true, ACC_ALL);
3376

3377
			link_shadow_page(vcpu, it.sptep, sp);
3378
			if (account_disallowed_nx_lpage)
P
Paolo Bonzini 已提交
3379
				account_huge_nx_page(vcpu->kvm, sp);
3380 3381
		}
	}
3382 3383 3384 3385 3386 3387 3388

	ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL,
			   write, level, base_gfn, pfn, prefault,
			   map_writable);
	direct_pte_prefetch(vcpu, it.sptep);
	++vcpu->stat.pf_fixed;
	return ret;
A
Avi Kivity 已提交
3389 3390
}

H
Huang Ying 已提交
3391
static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
3392
{
3393
	send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
3394 3395
}

D
Dan Williams 已提交
3396
static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
3397
{
X
Xiao Guangrong 已提交
3398 3399 3400 3401 3402 3403
	/*
	 * Do not cache the mmio info caused by writing the readonly gfn
	 * into the spte otherwise read access on readonly gfn also can
	 * caused mmio page fault and treat it as mmio access.
	 */
	if (pfn == KVM_PFN_ERR_RO_FAULT)
3404
		return RET_PF_EMULATE;
X
Xiao Guangrong 已提交
3405

3406
	if (pfn == KVM_PFN_ERR_HWPOISON) {
3407
		kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
3408
		return RET_PF_RETRY;
3409
	}
3410

3411
	return -EFAULT;
3412 3413
}

3414
static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
3415 3416
				kvm_pfn_t pfn, unsigned int access,
				int *ret_val)
3417 3418
{
	/* The pfn is invalid, report the error! */
3419
	if (unlikely(is_error_pfn(pfn))) {
3420
		*ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
3421
		return true;
3422 3423
	}

3424
	if (unlikely(is_noslot_pfn(pfn)))
3425 3426
		vcpu_cache_mmio_info(vcpu, gva, gfn,
				     access & shadow_mmio_access_mask);
3427

3428
	return false;
3429 3430
}

3431
static bool page_fault_can_be_fast(u32 error_code)
3432
{
3433 3434 3435 3436 3437 3438 3439
	/*
	 * Do not fix the mmio spte with invalid generation number which
	 * need to be updated by slow page fault path.
	 */
	if (unlikely(error_code & PFERR_RSVD_MASK))
		return false;

3440 3441 3442 3443 3444
	/* See if the page fault is due to an NX violation */
	if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
		      == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
		return false;

3445
	/*
3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456
	 * #PF can be fast if:
	 * 1. The shadow page table entry is not present, which could mean that
	 *    the fault is potentially caused by access tracking (if enabled).
	 * 2. The shadow page table entry is present and the fault
	 *    is caused by write-protect, that means we just need change the W
	 *    bit of the spte which can be done out of mmu-lock.
	 *
	 * However, if access tracking is disabled we know that a non-present
	 * page must be a genuine page fault where we have to create a new SPTE.
	 * So, if access tracking is disabled, we return true only for write
	 * accesses to a present page.
3457 3458
	 */

3459 3460 3461
	return shadow_acc_track_mask != 0 ||
	       ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
		== (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
3462 3463
}

3464 3465 3466 3467
/*
 * Returns true if the SPTE was fixed successfully. Otherwise,
 * someone else modified the SPTE from its original value.
 */
3468
static bool
3469
fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
3470
			u64 *sptep, u64 old_spte, u64 new_spte)
3471 3472 3473 3474 3475
{
	gfn_t gfn;

	WARN_ON(!sp->role.direct);

3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487
	/*
	 * Theoretically we could also set dirty bit (and flush TLB) here in
	 * order to eliminate unnecessary PML logging. See comments in
	 * set_spte. But fast_page_fault is very unlikely to happen with PML
	 * enabled, so we do not do this. This might result in the same GPA
	 * to be logged in PML buffer again when the write really happens, and
	 * eventually to be called by mark_page_dirty twice. But it's also no
	 * harm. This also avoids the TLB flush needed after setting dirty bit
	 * so non-PML cases won't be impacted.
	 *
	 * Compare with set_spte where instead shadow_dirty_mask is set.
	 */
3488
	if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3489 3490
		return false;

3491
	if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
3492 3493 3494 3495 3496 3497 3498
		/*
		 * The gfn of direct spte is stable since it is
		 * calculated by sp->gfn.
		 */
		gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
		kvm_vcpu_mark_page_dirty(vcpu, gfn);
	}
3499 3500 3501 3502

	return true;
}

3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514
static bool is_access_allowed(u32 fault_err_code, u64 spte)
{
	if (fault_err_code & PFERR_FETCH_MASK)
		return is_executable_pte(spte);

	if (fault_err_code & PFERR_WRITE_MASK)
		return is_writable_pte(spte);

	/* Fault was on Read access */
	return spte & PT_PRESENT_MASK;
}

3515 3516 3517 3518 3519
/*
 * Return value:
 * - true: let the vcpu to access on the same address again.
 * - false: let the real page fault path to fix it.
 */
3520
static bool fast_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3521 3522 3523
			    u32 error_code)
{
	struct kvm_shadow_walk_iterator iterator;
3524
	struct kvm_mmu_page *sp;
3525
	bool fault_handled = false;
3526
	u64 spte = 0ull;
3527
	uint retry_count = 0;
3528

3529
	if (!page_fault_can_be_fast(error_code))
3530 3531 3532 3533
		return false;

	walk_shadow_page_lockless_begin(vcpu);

3534
	do {
3535
		u64 new_spte;
3536

3537
		for_each_shadow_entry_lockless(vcpu, cr2_or_gpa, iterator, spte)
3538
			if (!is_shadow_present_pte(spte))
3539 3540
				break;

3541 3542 3543
		sp = page_header(__pa(iterator.sptep));
		if (!is_last_spte(spte, sp->role.level))
			break;
3544

3545
		/*
3546 3547 3548 3549 3550
		 * Check whether the memory access that caused the fault would
		 * still cause it if it were to be performed right now. If not,
		 * then this is a spurious fault caused by TLB lazily flushed,
		 * or some other CPU has already fixed the PTE after the
		 * current CPU took the fault.
3551 3552 3553 3554
		 *
		 * Need not check the access of upper level table entries since
		 * they are always ACC_ALL.
		 */
3555 3556 3557 3558
		if (is_access_allowed(error_code, spte)) {
			fault_handled = true;
			break;
		}
3559

3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570
		new_spte = spte;

		if (is_access_track_spte(spte))
			new_spte = restore_acc_track_spte(new_spte);

		/*
		 * Currently, to simplify the code, write-protection can
		 * be removed in the fast path only if the SPTE was
		 * write-protected for dirty-logging or access tracking.
		 */
		if ((error_code & PFERR_WRITE_MASK) &&
3571
		    spte_can_locklessly_be_made_writable(spte)) {
3572
			new_spte |= PT_WRITABLE_MASK;
3573 3574

			/*
3575 3576 3577 3578 3579 3580 3581 3582 3583
			 * Do not fix write-permission on the large spte.  Since
			 * we only dirty the first page into the dirty-bitmap in
			 * fast_pf_fix_direct_spte(), other pages are missed
			 * if its slot has dirty logging enabled.
			 *
			 * Instead, we let the slow page fault path create a
			 * normal spte to fix the access.
			 *
			 * See the comments in kvm_arch_commit_memory_region().
3584
			 */
3585
			if (sp->role.level > PT_PAGE_TABLE_LEVEL)
3586
				break;
3587
		}
3588

3589
		/* Verify that the fault can be handled in the fast path */
3590 3591
		if (new_spte == spte ||
		    !is_access_allowed(error_code, new_spte))
3592 3593 3594 3595 3596
			break;

		/*
		 * Currently, fast page fault only works for direct mapping
		 * since the gfn is not stable for indirect shadow page. See
3597
		 * Documentation/virt/kvm/locking.txt to get more detail.
3598 3599
		 */
		fault_handled = fast_pf_fix_direct_spte(vcpu, sp,
3600
							iterator.sptep, spte,
3601
							new_spte);
3602 3603 3604 3605 3606 3607 3608 3609 3610 3611
		if (fault_handled)
			break;

		if (++retry_count > 4) {
			printk_once(KERN_WARNING
				"kvm: Fast #PF retrying more than 4 times.\n");
			break;
		}

	} while (true);
3612

3613
	trace_fast_page_fault(vcpu, cr2_or_gpa, error_code, iterator.sptep,
3614
			      spte, fault_handled);
3615 3616
	walk_shadow_page_lockless_end(vcpu);

3617
	return fault_handled;
3618 3619
}

3620 3621
static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
			       struct list_head *invalid_list)
3622
{
3623
	struct kvm_mmu_page *sp;
3624

3625
	if (!VALID_PAGE(*root_hpa))
A
Avi Kivity 已提交
3626
		return;
3627

3628 3629 3630 3631
	sp = page_header(*root_hpa & PT64_BASE_ADDR_MASK);
	--sp->root_count;
	if (!sp->root_count && sp->role.invalid)
		kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3632

3633 3634 3635
	*root_hpa = INVALID_PAGE;
}

3636
/* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
3637 3638
void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
			ulong roots_to_free)
3639 3640 3641
{
	int i;
	LIST_HEAD(invalid_list);
3642
	bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
3643

3644
	BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3645

3646
	/* Before acquiring the MMU lock, see if we need to do any real work. */
3647 3648 3649 3650 3651 3652 3653 3654 3655
	if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
			if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
			    VALID_PAGE(mmu->prev_roots[i].hpa))
				break;

		if (i == KVM_MMU_NUM_PREV_ROOTS)
			return;
	}
3656 3657

	spin_lock(&vcpu->kvm->mmu_lock);
3658

3659 3660 3661 3662
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
		if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
			mmu_free_root_page(vcpu->kvm, &mmu->prev_roots[i].hpa,
					   &invalid_list);
3663

3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676
	if (free_active_root) {
		if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
		    (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
			mmu_free_root_page(vcpu->kvm, &mmu->root_hpa,
					   &invalid_list);
		} else {
			for (i = 0; i < 4; ++i)
				if (mmu->pae_root[i] != 0)
					mmu_free_root_page(vcpu->kvm,
							   &mmu->pae_root[i],
							   &invalid_list);
			mmu->root_hpa = INVALID_PAGE;
		}
3677
		mmu->root_cr3 = 0;
3678
	}
3679

3680
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3681
	spin_unlock(&vcpu->kvm->mmu_lock);
3682
}
3683
EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3684

3685 3686 3687 3688 3689
static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
{
	int ret = 0;

	if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3690
		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3691 3692 3693 3694 3695 3696
		ret = 1;
	}

	return ret;
}

3697 3698 3699
static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu_page *sp;
3700
	unsigned i;
3701

3702
	if (vcpu->arch.mmu->shadow_root_level >= PT64_ROOT_4LEVEL) {
3703
		spin_lock(&vcpu->kvm->mmu_lock);
3704 3705
		if(make_mmu_pages_available(vcpu) < 0) {
			spin_unlock(&vcpu->kvm->mmu_lock);
3706
			return -ENOSPC;
3707
		}
3708
		sp = kvm_mmu_get_page(vcpu, 0, 0,
3709
				vcpu->arch.mmu->shadow_root_level, 1, ACC_ALL);
3710 3711
		++sp->root_count;
		spin_unlock(&vcpu->kvm->mmu_lock);
3712 3713
		vcpu->arch.mmu->root_hpa = __pa(sp->spt);
	} else if (vcpu->arch.mmu->shadow_root_level == PT32E_ROOT_LEVEL) {
3714
		for (i = 0; i < 4; ++i) {
3715
			hpa_t root = vcpu->arch.mmu->pae_root[i];
3716

3717
			MMU_WARN_ON(VALID_PAGE(root));
3718
			spin_lock(&vcpu->kvm->mmu_lock);
3719 3720
			if (make_mmu_pages_available(vcpu) < 0) {
				spin_unlock(&vcpu->kvm->mmu_lock);
3721
				return -ENOSPC;
3722
			}
3723
			sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3724
					i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL);
3725 3726 3727
			root = __pa(sp->spt);
			++sp->root_count;
			spin_unlock(&vcpu->kvm->mmu_lock);
3728
			vcpu->arch.mmu->pae_root[i] = root | PT_PRESENT_MASK;
3729
		}
3730
		vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3731 3732
	} else
		BUG();
3733 3734 3735

	/* root_cr3 is ignored for direct MMUs. */
	vcpu->arch.mmu->root_cr3 = 0;
3736 3737 3738 3739 3740

	return 0;
}

static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3741
{
3742
	struct kvm_mmu_page *sp;
3743
	u64 pdptr, pm_mask;
3744
	gfn_t root_gfn, root_cr3;
3745
	int i;
3746

3747 3748
	root_cr3 = vcpu->arch.mmu->get_cr3(vcpu);
	root_gfn = root_cr3 >> PAGE_SHIFT;
3749

3750 3751 3752 3753 3754 3755 3756
	if (mmu_check_root(vcpu, root_gfn))
		return 1;

	/*
	 * Do we shadow a long mode page table? If so we need to
	 * write-protect the guests page table root.
	 */
3757 3758
	if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
		hpa_t root = vcpu->arch.mmu->root_hpa;
3759

3760
		MMU_WARN_ON(VALID_PAGE(root));
3761

3762
		spin_lock(&vcpu->kvm->mmu_lock);
3763 3764
		if (make_mmu_pages_available(vcpu) < 0) {
			spin_unlock(&vcpu->kvm->mmu_lock);
3765
			return -ENOSPC;
3766
		}
3767
		sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
3768
				vcpu->arch.mmu->shadow_root_level, 0, ACC_ALL);
3769 3770
		root = __pa(sp->spt);
		++sp->root_count;
3771
		spin_unlock(&vcpu->kvm->mmu_lock);
3772
		vcpu->arch.mmu->root_hpa = root;
3773
		goto set_root_cr3;
3774
	}
3775

3776 3777
	/*
	 * We shadow a 32 bit page table. This may be a legacy 2-level
3778 3779
	 * or a PAE 3-level page table. In either case we need to be aware that
	 * the shadow page table may be a PAE or a long mode page table.
3780
	 */
3781
	pm_mask = PT_PRESENT_MASK;
3782
	if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL)
3783 3784
		pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;

3785
	for (i = 0; i < 4; ++i) {
3786
		hpa_t root = vcpu->arch.mmu->pae_root[i];
3787

3788
		MMU_WARN_ON(VALID_PAGE(root));
3789 3790
		if (vcpu->arch.mmu->root_level == PT32E_ROOT_LEVEL) {
			pdptr = vcpu->arch.mmu->get_pdptr(vcpu, i);
B
Bandan Das 已提交
3791
			if (!(pdptr & PT_PRESENT_MASK)) {
3792
				vcpu->arch.mmu->pae_root[i] = 0;
A
Avi Kivity 已提交
3793 3794
				continue;
			}
A
Avi Kivity 已提交
3795
			root_gfn = pdptr >> PAGE_SHIFT;
3796 3797
			if (mmu_check_root(vcpu, root_gfn))
				return 1;
3798
		}
3799
		spin_lock(&vcpu->kvm->mmu_lock);
3800 3801
		if (make_mmu_pages_available(vcpu) < 0) {
			spin_unlock(&vcpu->kvm->mmu_lock);
3802
			return -ENOSPC;
3803
		}
3804 3805
		sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL,
				      0, ACC_ALL);
3806 3807
		root = __pa(sp->spt);
		++sp->root_count;
3808 3809
		spin_unlock(&vcpu->kvm->mmu_lock);

3810
		vcpu->arch.mmu->pae_root[i] = root | pm_mask;
3811
	}
3812
	vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3813 3814 3815 3816 3817

	/*
	 * If we shadow a 32 bit page table with a long mode page
	 * table we enter this path.
	 */
3818 3819
	if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
		if (vcpu->arch.mmu->lm_root == NULL) {
3820 3821 3822 3823 3824 3825 3826
			/*
			 * The additional page necessary for this is only
			 * allocated on demand.
			 */

			u64 *lm_root;

3827
			lm_root = (void*)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3828 3829 3830
			if (lm_root == NULL)
				return 1;

3831
			lm_root[0] = __pa(vcpu->arch.mmu->pae_root) | pm_mask;
3832

3833
			vcpu->arch.mmu->lm_root = lm_root;
3834 3835
		}

3836
		vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->lm_root);
3837 3838
	}

3839 3840 3841
set_root_cr3:
	vcpu->arch.mmu->root_cr3 = root_cr3;

3842
	return 0;
3843 3844
}

3845 3846
static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
{
3847
	if (vcpu->arch.mmu->direct_map)
3848 3849 3850 3851 3852
		return mmu_alloc_direct_roots(vcpu);
	else
		return mmu_alloc_shadow_roots(vcpu);
}

3853
void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3854 3855 3856 3857
{
	int i;
	struct kvm_mmu_page *sp;

3858
	if (vcpu->arch.mmu->direct_map)
3859 3860
		return;

3861
	if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3862
		return;
3863

3864
	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3865

3866 3867
	if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
		hpa_t root = vcpu->arch.mmu->root_hpa;
3868
		sp = page_header(root);
3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886

		/*
		 * Even if another CPU was marking the SP as unsync-ed
		 * simultaneously, any guest page table changes are not
		 * guaranteed to be visible anyway until this VCPU issues a TLB
		 * flush strictly after those changes are made. We only need to
		 * ensure that the other CPU sets these flags before any actual
		 * changes to the page tables are made. The comments in
		 * mmu_need_write_protect() describe what could go wrong if this
		 * requirement isn't satisfied.
		 */
		if (!smp_load_acquire(&sp->unsync) &&
		    !smp_load_acquire(&sp->unsync_children))
			return;

		spin_lock(&vcpu->kvm->mmu_lock);
		kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);

3887
		mmu_sync_children(vcpu, sp);
3888

3889
		kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3890
		spin_unlock(&vcpu->kvm->mmu_lock);
3891 3892
		return;
	}
3893 3894 3895 3896

	spin_lock(&vcpu->kvm->mmu_lock);
	kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);

3897
	for (i = 0; i < 4; ++i) {
3898
		hpa_t root = vcpu->arch.mmu->pae_root[i];
3899

3900
		if (root && VALID_PAGE(root)) {
3901 3902 3903 3904 3905 3906
			root &= PT64_BASE_ADDR_MASK;
			sp = page_header(root);
			mmu_sync_children(vcpu, sp);
		}
	}

3907
	kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3908
	spin_unlock(&vcpu->kvm->mmu_lock);
3909
}
N
Nadav Har'El 已提交
3910
EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3911

3912
static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr,
3913
				  u32 access, struct x86_exception *exception)
A
Avi Kivity 已提交
3914
{
3915 3916
	if (exception)
		exception->error_code = 0;
A
Avi Kivity 已提交
3917 3918 3919
	return vaddr;
}

3920
static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr,
3921 3922
					 u32 access,
					 struct x86_exception *exception)
3923
{
3924 3925
	if (exception)
		exception->error_code = 0;
3926
	return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3927 3928
}

3929 3930 3931
static bool
__is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
{
3932
	int bit7 = (pte >> 7) & 1;
3933

3934
	return pte & rsvd_check->rsvd_bits_mask[bit7][level-1];
3935 3936
}

3937
static bool __is_bad_mt_xwr(struct rsvd_bits_validate *rsvd_check, u64 pte)
3938
{
3939
	return rsvd_check->bad_mt_xwr & BIT_ULL(pte & 0x3f);
3940 3941
}

3942
static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3943
{
3944 3945 3946 3947 3948 3949 3950
	/*
	 * A nested guest cannot use the MMIO cache if it is using nested
	 * page tables, because cr2 is a nGPA while the cache stores GPAs.
	 */
	if (mmu_is_nested(vcpu))
		return false;

3951 3952 3953 3954 3955 3956
	if (direct)
		return vcpu_match_mmio_gpa(vcpu, addr);

	return vcpu_match_mmio_gva(vcpu, addr);
}

3957 3958 3959
/* return true if reserved bit is detected on spte. */
static bool
walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3960 3961
{
	struct kvm_shadow_walk_iterator iterator;
3962
	u64 sptes[PT64_ROOT_MAX_LEVEL], spte = 0ull;
3963
	struct rsvd_bits_validate *rsvd_check;
3964 3965
	int root, leaf;
	bool reserved = false;
3966

3967
	rsvd_check = &vcpu->arch.mmu->shadow_zero_check;
3968

3969
	walk_shadow_page_lockless_begin(vcpu);
3970

3971 3972
	for (shadow_walk_init(&iterator, vcpu, addr),
		 leaf = root = iterator.level;
3973 3974 3975 3976 3977
	     shadow_walk_okay(&iterator);
	     __shadow_walk_next(&iterator, spte)) {
		spte = mmu_spte_get_lockless(iterator.sptep);

		sptes[leaf - 1] = spte;
3978
		leaf--;
3979

3980 3981
		if (!is_shadow_present_pte(spte))
			break;
3982

3983 3984 3985 3986 3987 3988 3989
		/*
		 * Use a bitwise-OR instead of a logical-OR to aggregate the
		 * reserved bit and EPT's invalid memtype/XWR checks to avoid
		 * adding a Jcc in the loop.
		 */
		reserved |= __is_bad_mt_xwr(rsvd_check, spte) |
			    __is_rsvd_bits_set(rsvd_check, spte, iterator.level);
3990 3991
	}

3992 3993
	walk_shadow_page_lockless_end(vcpu);

3994 3995 3996
	if (reserved) {
		pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
		       __func__, addr);
3997
		while (root > leaf) {
3998 3999 4000 4001 4002
			pr_err("------ spte 0x%llx level %d.\n",
			       sptes[root - 1], root);
			root--;
		}
	}
4003

4004 4005
	*sptep = spte;
	return reserved;
4006 4007
}

P
Paolo Bonzini 已提交
4008
static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
4009 4010
{
	u64 spte;
4011
	bool reserved;
4012

4013
	if (mmio_info_in_cache(vcpu, addr, direct))
4014
		return RET_PF_EMULATE;
4015

4016
	reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
4017
	if (WARN_ON(reserved))
4018
		return -EINVAL;
4019 4020 4021

	if (is_mmio_spte(spte)) {
		gfn_t gfn = get_mmio_spte_gfn(spte);
4022
		unsigned int access = get_mmio_spte_access(spte);
4023

4024
		if (!check_mmio_spte(vcpu, spte))
4025
			return RET_PF_INVALID;
4026

4027 4028
		if (direct)
			addr = 0;
X
Xiao Guangrong 已提交
4029 4030

		trace_handle_mmio_page_fault(addr, gfn, access);
4031
		vcpu_cache_mmio_info(vcpu, addr, gfn, access);
4032
		return RET_PF_EMULATE;
4033 4034 4035 4036 4037 4038
	}

	/*
	 * If the page table is zapped by other cpus, let CPU fault again on
	 * the address.
	 */
4039
	return RET_PF_RETRY;
4040 4041
}

4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061
static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
					 u32 error_code, gfn_t gfn)
{
	if (unlikely(error_code & PFERR_RSVD_MASK))
		return false;

	if (!(error_code & PFERR_PRESENT_MASK) ||
	      !(error_code & PFERR_WRITE_MASK))
		return false;

	/*
	 * guest is writing the page which is write tracked which can
	 * not be fixed by page fault handler.
	 */
	if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
		return true;

	return false;
}

4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075
static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
{
	struct kvm_shadow_walk_iterator iterator;
	u64 spte;

	walk_shadow_page_lockless_begin(vcpu);
	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
		clear_sp_write_flooding_count(iterator.sptep);
		if (!is_shadow_present_pte(spte))
			break;
	}
	walk_shadow_page_lockless_end(vcpu);
}

4076 4077
static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
				   gfn_t gfn)
4078 4079
{
	struct kvm_arch_async_pf arch;
X
Xiao Guangrong 已提交
4080

4081
	arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
4082
	arch.gfn = gfn;
4083 4084
	arch.direct_map = vcpu->arch.mmu->direct_map;
	arch.cr3 = vcpu->arch.mmu->get_cr3(vcpu);
4085

4086 4087
	return kvm_setup_async_pf(vcpu, cr2_or_gpa,
				  kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
4088 4089
}

4090
static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
4091 4092
			 gpa_t cr2_or_gpa, kvm_pfn_t *pfn, bool write,
			 bool *writable)
4093
{
4094
	struct kvm_memory_slot *slot;
4095 4096
	bool async;

4097 4098 4099 4100 4101 4102 4103 4104
	/*
	 * Don't expose private memslots to L2.
	 */
	if (is_guest_mode(vcpu) && !kvm_is_visible_gfn(vcpu->kvm, gfn)) {
		*pfn = KVM_PFN_NOSLOT;
		return false;
	}

4105
	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
4106 4107
	async = false;
	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
4108 4109 4110
	if (!async)
		return false; /* *pfn has correct page already */

4111
	if (!prefault && kvm_can_do_async_pf(vcpu)) {
4112
		trace_kvm_try_async_get_page(cr2_or_gpa, gfn);
4113
		if (kvm_find_async_pf_gfn(vcpu, gfn)) {
4114
			trace_kvm_async_pf_doublefault(cr2_or_gpa, gfn);
4115 4116
			kvm_make_request(KVM_REQ_APF_HALT, vcpu);
			return true;
4117
		} else if (kvm_arch_setup_async_pf(vcpu, cr2_or_gpa, gfn))
4118 4119 4120
			return true;
	}

4121
	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
4122 4123 4124
	return false;
}

4125 4126
static int direct_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
			     bool prefault, int max_level, bool is_tdp)
A
Avi Kivity 已提交
4127
{
4128 4129 4130
	bool write = error_code & PFERR_WRITE_MASK;
	bool exec = error_code & PFERR_FETCH_MASK;
	bool lpage_disallowed = exec && is_nx_huge_page_enabled();
4131
	bool map_writable;
A
Avi Kivity 已提交
4132

4133 4134 4135
	gfn_t gfn = gpa >> PAGE_SHIFT;
	unsigned long mmu_seq;
	kvm_pfn_t pfn;
4136
	int r;
4137

4138
	if (page_fault_handle_page_track(vcpu, error_code, gfn))
4139
		return RET_PF_EMULATE;
4140

4141 4142 4143
	r = mmu_topup_memory_caches(vcpu);
	if (r)
		return r;
4144

4145 4146
	if (lpage_disallowed)
		max_level = PT_PAGE_TABLE_LEVEL;
4147

4148
	if (fast_page_fault(vcpu, gpa, error_code))
4149 4150 4151 4152 4153 4154 4155 4156
		return RET_PF_RETRY;

	mmu_seq = vcpu->kvm->mmu_notifier_seq;
	smp_rmb();

	if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
		return RET_PF_RETRY;

4157
	if (handle_abnormal_pfn(vcpu, is_tdp ? 0 : gpa, gfn, pfn, ACC_ALL, &r))
4158
		return r;
A
Avi Kivity 已提交
4159

4160 4161 4162 4163 4164 4165
	r = RET_PF_RETRY;
	spin_lock(&vcpu->kvm->mmu_lock);
	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
		goto out_unlock;
	if (make_mmu_pages_available(vcpu) < 0)
		goto out_unlock;
4166
	r = __direct_map(vcpu, gpa, write, map_writable, max_level, pfn,
4167
			 prefault, is_tdp && lpage_disallowed);
4168

4169 4170 4171 4172
out_unlock:
	spin_unlock(&vcpu->kvm->mmu_lock);
	kvm_release_pfn_clean(pfn);
	return r;
A
Avi Kivity 已提交
4173 4174
}

4175 4176 4177 4178 4179 4180 4181 4182 4183 4184
static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa,
				u32 error_code, bool prefault)
{
	pgprintk("%s: gva %lx error %x\n", __func__, gpa, error_code);

	/* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
	return direct_page_fault(vcpu, gpa & PAGE_MASK, error_code, prefault,
				 PT_DIRECTORY_LEVEL, false);
}

4185
int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
4186
				u64 fault_address, char *insn, int insn_len)
4187 4188 4189
{
	int r = 1;

4190 4191 4192 4193 4194 4195
#ifndef CONFIG_X86_64
	/* A 64-bit CR2 should be impossible on 32-bit KVM. */
	if (WARN_ON_ONCE(fault_address >> 32))
		return -EFAULT;
#endif

P
Paolo Bonzini 已提交
4196
	vcpu->arch.l1tf_flush_l1d = true;
4197 4198 4199 4200
	switch (vcpu->arch.apf.host_apf_reason) {
	default:
		trace_kvm_page_fault(fault_address, error_code);

4201
		if (kvm_event_needs_reinjection(vcpu))
4202 4203 4204 4205 4206 4207 4208
			kvm_mmu_unprotect_page_virt(vcpu, fault_address);
		r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
				insn_len);
		break;
	case KVM_PV_REASON_PAGE_NOT_PRESENT:
		vcpu->arch.apf.host_apf_reason = 0;
		local_irq_disable();
4209
		kvm_async_pf_task_wait(fault_address, 0);
4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222
		local_irq_enable();
		break;
	case KVM_PV_REASON_PAGE_READY:
		vcpu->arch.apf.host_apf_reason = 0;
		local_irq_disable();
		kvm_async_pf_task_wake(fault_address);
		local_irq_enable();
		break;
	}
	return r;
}
EXPORT_SYMBOL_GPL(kvm_handle_page_fault);

4223 4224
int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
		       bool prefault)
4225
{
4226
	int max_level;
4227

4228 4229 4230 4231
	for (max_level = PT_MAX_HUGEPAGE_LEVEL;
	     max_level > PT_PAGE_TABLE_LEVEL;
	     max_level--) {
		int page_num = KVM_PAGES_PER_HPAGE(max_level);
4232
		gfn_t base = (gpa >> PAGE_SHIFT) & ~(page_num - 1);
4233

4234 4235
		if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
			break;
4236
	}
4237

4238 4239
	return direct_page_fault(vcpu, gpa, error_code, prefault,
				 max_level, true);
4240 4241
}

4242 4243
static void nonpaging_init_context(struct kvm_vcpu *vcpu,
				   struct kvm_mmu *context)
A
Avi Kivity 已提交
4244 4245 4246
{
	context->page_fault = nonpaging_page_fault;
	context->gva_to_gpa = nonpaging_gva_to_gpa;
4247
	context->sync_page = nonpaging_sync_page;
M
Marcelo Tosatti 已提交
4248
	context->invlpg = nonpaging_invlpg;
4249
	context->update_pte = nonpaging_update_pte;
4250
	context->root_level = 0;
A
Avi Kivity 已提交
4251
	context->shadow_root_level = PT32E_ROOT_LEVEL;
4252
	context->direct_map = true;
4253
	context->nx = false;
A
Avi Kivity 已提交
4254 4255
}

4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268
/*
 * Find out if a previously cached root matching the new CR3/role is available.
 * The current root is also inserted into the cache.
 * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
 * returned.
 * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
 * false is returned. This root should now be freed by the caller.
 */
static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_cr3,
				  union kvm_mmu_page_role new_role)
{
	uint i;
	struct kvm_mmu_root_info root;
4269
	struct kvm_mmu *mmu = vcpu->arch.mmu;
4270

4271
	root.cr3 = mmu->root_cr3;
4272 4273 4274 4275 4276
	root.hpa = mmu->root_hpa;

	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
		swap(root, mmu->prev_roots[i]);

4277 4278
		if ((new_role.direct || new_cr3 == root.cr3) &&
		    VALID_PAGE(root.hpa) && page_header(root.hpa) &&
4279 4280 4281 4282 4283
		    new_role.word == page_header(root.hpa)->role.word)
			break;
	}

	mmu->root_hpa = root.hpa;
4284
	mmu->root_cr3 = root.cr3;
4285 4286 4287 4288

	return i < KVM_MMU_NUM_PREV_ROOTS;
}

4289
static bool fast_cr3_switch(struct kvm_vcpu *vcpu, gpa_t new_cr3,
4290 4291
			    union kvm_mmu_page_role new_role,
			    bool skip_tlb_flush)
A
Avi Kivity 已提交
4292
{
4293
	struct kvm_mmu *mmu = vcpu->arch.mmu;
4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304

	/*
	 * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
	 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
	 * later if necessary.
	 */
	if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
	    mmu->root_level >= PT64_ROOT_4LEVEL) {
		if (mmu_check_root(vcpu, new_cr3 >> PAGE_SHIFT))
			return false;

4305
		if (cached_root_available(vcpu, new_cr3, new_role)) {
4306 4307 4308 4309 4310 4311 4312
			/*
			 * It is possible that the cached previous root page is
			 * obsolete because of a change in the MMU generation
			 * number. However, changing the generation number is
			 * accompanied by KVM_REQ_MMU_RELOAD, which will free
			 * the root set here and allocate a new one.
			 */
4313
			kvm_make_request(KVM_REQ_LOAD_CR3, vcpu);
4314 4315
			if (!skip_tlb_flush) {
				kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
4316
				kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4317 4318 4319 4320 4321 4322 4323 4324 4325 4326
			}

			/*
			 * The last MMIO access's GVA and GPA are cached in the
			 * VCPU. When switching to a new CR3, that GVA->GPA
			 * mapping may no longer be valid. So clear any cached
			 * MMIO info even when we don't need to sync the shadow
			 * page tables.
			 */
			vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
4327

4328 4329 4330 4331 4332 4333 4334 4335
			__clear_sp_write_flooding_count(
				page_header(mmu->root_hpa));

			return true;
		}
	}

	return false;
A
Avi Kivity 已提交
4336 4337
}

4338
static void __kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3,
4339 4340
			      union kvm_mmu_page_role new_role,
			      bool skip_tlb_flush)
A
Avi Kivity 已提交
4341
{
4342
	if (!fast_cr3_switch(vcpu, new_cr3, new_role, skip_tlb_flush))
4343 4344
		kvm_mmu_free_roots(vcpu, vcpu->arch.mmu,
				   KVM_MMU_ROOT_CURRENT);
A
Avi Kivity 已提交
4345 4346
}

4347
void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3, bool skip_tlb_flush)
4348
{
4349 4350
	__kvm_mmu_new_cr3(vcpu, new_cr3, kvm_mmu_calc_root_page_role(vcpu),
			  skip_tlb_flush);
4351
}
4352
EXPORT_SYMBOL_GPL(kvm_mmu_new_cr3);
4353

4354 4355
static unsigned long get_cr3(struct kvm_vcpu *vcpu)
{
4356
	return kvm_read_cr3(vcpu);
4357 4358
}

4359 4360
static void inject_page_fault(struct kvm_vcpu *vcpu,
			      struct x86_exception *fault)
A
Avi Kivity 已提交
4361
{
4362
	vcpu->arch.mmu->inject_page_fault(vcpu, fault);
A
Avi Kivity 已提交
4363 4364
}

4365
static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
4366
			   unsigned int access, int *nr_present)
4367 4368 4369 4370 4371 4372 4373 4374
{
	if (unlikely(is_mmio_spte(*sptep))) {
		if (gfn != get_mmio_spte_gfn(*sptep)) {
			mmu_spte_clear_no_track(sptep);
			return true;
		}

		(*nr_present)++;
4375
		mark_mmio_spte(vcpu, sptep, gfn, access);
4376 4377 4378 4379 4380 4381
		return true;
	}

	return false;
}

4382 4383
static inline bool is_last_gpte(struct kvm_mmu *mmu,
				unsigned level, unsigned gpte)
A
Avi Kivity 已提交
4384
{
4385 4386 4387 4388 4389 4390 4391
	/*
	 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
	 * If it is clear, there are no large pages at this level, so clear
	 * PT_PAGE_SIZE_MASK in gpte if that is the case.
	 */
	gpte &= level - mmu->last_nonleaf_level;

4392 4393 4394 4395 4396 4397 4398
	/*
	 * PT_PAGE_TABLE_LEVEL always terminates.  The RHS has bit 7 set
	 * iff level <= PT_PAGE_TABLE_LEVEL, which for our purpose means
	 * level == PT_PAGE_TABLE_LEVEL; set PT_PAGE_SIZE_MASK in gpte then.
	 */
	gpte |= level - PT_PAGE_TABLE_LEVEL - 1;

4399
	return gpte & PT_PAGE_SIZE_MASK;
A
Avi Kivity 已提交
4400 4401
}

4402 4403 4404 4405 4406
#define PTTYPE_EPT 18 /* arbitrary */
#define PTTYPE PTTYPE_EPT
#include "paging_tmpl.h"
#undef PTTYPE

A
Avi Kivity 已提交
4407 4408 4409 4410 4411 4412 4413 4414
#define PTTYPE 64
#include "paging_tmpl.h"
#undef PTTYPE

#define PTTYPE 32
#include "paging_tmpl.h"
#undef PTTYPE

4415 4416 4417 4418
static void
__reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
			struct rsvd_bits_validate *rsvd_check,
			int maxphyaddr, int level, bool nx, bool gbpages,
4419
			bool pse, bool amd)
4420 4421
{
	u64 exb_bit_rsvd = 0;
4422
	u64 gbpages_bit_rsvd = 0;
4423
	u64 nonleaf_bit8_rsvd = 0;
4424

4425
	rsvd_check->bad_mt_xwr = 0;
4426

4427
	if (!nx)
4428
		exb_bit_rsvd = rsvd_bits(63, 63);
4429
	if (!gbpages)
4430
		gbpages_bit_rsvd = rsvd_bits(7, 7);
4431 4432 4433 4434 4435

	/*
	 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
	 * leaf entries) on AMD CPUs only.
	 */
4436
	if (amd)
4437 4438
		nonleaf_bit8_rsvd = rsvd_bits(8, 8);

4439
	switch (level) {
4440 4441
	case PT32_ROOT_LEVEL:
		/* no rsvd bits for 2 level 4K page table entries */
4442 4443 4444 4445
		rsvd_check->rsvd_bits_mask[0][1] = 0;
		rsvd_check->rsvd_bits_mask[0][0] = 0;
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
4446

4447
		if (!pse) {
4448
			rsvd_check->rsvd_bits_mask[1][1] = 0;
4449 4450 4451
			break;
		}

4452 4453
		if (is_cpuid_PSE36())
			/* 36bits PSE 4MB page */
4454
			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4455 4456
		else
			/* 32 bits PSE 4MB page */
4457
			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4458 4459
		break;
	case PT32E_ROOT_LEVEL:
4460
		rsvd_check->rsvd_bits_mask[0][2] =
4461
			rsvd_bits(maxphyaddr, 63) |
4462
			rsvd_bits(5, 8) | rsvd_bits(1, 2);	/* PDPTE */
4463
		rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4464
			rsvd_bits(maxphyaddr, 62);	/* PDE */
4465
		rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4466
			rsvd_bits(maxphyaddr, 62); 	/* PTE */
4467
		rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4468 4469
			rsvd_bits(maxphyaddr, 62) |
			rsvd_bits(13, 20);		/* large page */
4470 4471
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
4472
		break;
4473 4474 4475 4476 4477 4478
	case PT64_ROOT_5LEVEL:
		rsvd_check->rsvd_bits_mask[0][4] = exb_bit_rsvd |
			nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
			rsvd_bits(maxphyaddr, 51);
		rsvd_check->rsvd_bits_mask[1][4] =
			rsvd_check->rsvd_bits_mask[0][4];
4479
		/* fall through */
4480
	case PT64_ROOT_4LEVEL:
4481 4482
		rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
			nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4483
			rsvd_bits(maxphyaddr, 51);
4484 4485
		rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
			nonleaf_bit8_rsvd | gbpages_bit_rsvd |
4486
			rsvd_bits(maxphyaddr, 51);
4487 4488 4489 4490 4491 4492 4493
		rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
			rsvd_bits(maxphyaddr, 51);
		rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
			rsvd_bits(maxphyaddr, 51);
		rsvd_check->rsvd_bits_mask[1][3] =
			rsvd_check->rsvd_bits_mask[0][3];
		rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
4494
			gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
4495
			rsvd_bits(13, 29);
4496
		rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4497 4498
			rsvd_bits(maxphyaddr, 51) |
			rsvd_bits(13, 20);		/* large page */
4499 4500
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
4501 4502 4503 4504
		break;
	}
}

4505 4506 4507 4508 4509
static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
{
	__reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
				cpuid_maxphyaddr(vcpu), context->root_level,
4510 4511
				context->nx,
				guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4512
				is_pse(vcpu), guest_cpuid_is_amd(vcpu));
4513 4514
}

4515 4516 4517
static void
__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
			    int maxphyaddr, bool execonly)
4518
{
4519
	u64 bad_mt_xwr;
4520

4521 4522
	rsvd_check->rsvd_bits_mask[0][4] =
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4523
	rsvd_check->rsvd_bits_mask[0][3] =
4524
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4525
	rsvd_check->rsvd_bits_mask[0][2] =
4526
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4527
	rsvd_check->rsvd_bits_mask[0][1] =
4528
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4529
	rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
4530 4531

	/* large page */
4532
	rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4533 4534
	rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
	rsvd_check->rsvd_bits_mask[1][2] =
4535
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
4536
	rsvd_check->rsvd_bits_mask[1][1] =
4537
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
4538
	rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4539

4540 4541 4542 4543 4544 4545 4546 4547
	bad_mt_xwr = 0xFFull << (2 * 8);	/* bits 3..5 must not be 2 */
	bad_mt_xwr |= 0xFFull << (3 * 8);	/* bits 3..5 must not be 3 */
	bad_mt_xwr |= 0xFFull << (7 * 8);	/* bits 3..5 must not be 7 */
	bad_mt_xwr |= REPEAT_BYTE(1ull << 2);	/* bits 0..2 must not be 010 */
	bad_mt_xwr |= REPEAT_BYTE(1ull << 6);	/* bits 0..2 must not be 110 */
	if (!execonly) {
		/* bits 0..2 must not be 100 unless VMX capabilities allow it */
		bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4548
	}
4549
	rsvd_check->bad_mt_xwr = bad_mt_xwr;
4550 4551
}

4552 4553 4554 4555 4556 4557 4558
static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
		struct kvm_mmu *context, bool execonly)
{
	__reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
				    cpuid_maxphyaddr(vcpu), execonly);
}

4559 4560 4561 4562 4563 4564 4565 4566
/*
 * the page table on host is the shadow page table for the page
 * table in guest or amd nested guest, its mmu features completely
 * follow the features in guest.
 */
void
reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
{
4567 4568
	bool uses_nx = context->nx ||
		context->mmu_role.base.smep_andnot_wp;
4569 4570
	struct rsvd_bits_validate *shadow_zero_check;
	int i;
4571

4572 4573 4574 4575
	/*
	 * Passing "true" to the last argument is okay; it adds a check
	 * on bit 8 of the SPTEs which KVM doesn't use anyway.
	 */
4576 4577
	shadow_zero_check = &context->shadow_zero_check;
	__reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4578
				shadow_phys_bits,
4579
				context->shadow_root_level, uses_nx,
4580 4581
				guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
				is_pse(vcpu), true);
4582 4583 4584 4585 4586 4587 4588 4589 4590

	if (!shadow_me_mask)
		return;

	for (i = context->shadow_root_level; --i >= 0;) {
		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
	}

4591 4592 4593
}
EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);

4594 4595 4596 4597 4598 4599
static inline bool boot_cpu_is_amd(void)
{
	WARN_ON_ONCE(!tdp_enabled);
	return shadow_x_mask == 0;
}

4600 4601 4602 4603 4604 4605 4606 4607
/*
 * the direct page table on host, use as much mmu features as
 * possible, however, kvm currently does not do execution-protection.
 */
static void
reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
				struct kvm_mmu *context)
{
4608 4609 4610 4611 4612
	struct rsvd_bits_validate *shadow_zero_check;
	int i;

	shadow_zero_check = &context->shadow_zero_check;

4613
	if (boot_cpu_is_amd())
4614
		__reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4615
					shadow_phys_bits,
4616
					context->shadow_root_level, false,
4617 4618
					boot_cpu_has(X86_FEATURE_GBPAGES),
					true, true);
4619
	else
4620
		__reset_rsvds_bits_mask_ept(shadow_zero_check,
4621
					    shadow_phys_bits,
4622 4623
					    false);

4624 4625 4626 4627 4628 4629 4630
	if (!shadow_me_mask)
		return;

	for (i = context->shadow_root_level; --i >= 0;) {
		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
	}
4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641
}

/*
 * as the comments in reset_shadow_zero_bits_mask() except it
 * is the shadow page table for intel nested guest.
 */
static void
reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
				struct kvm_mmu *context, bool execonly)
{
	__reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4642
				    shadow_phys_bits, execonly);
4643 4644
}

4645 4646 4647 4648 4649 4650 4651 4652 4653 4654
#define BYTE_MASK(access) \
	((1 & (access) ? 2 : 0) | \
	 (2 & (access) ? 4 : 0) | \
	 (3 & (access) ? 8 : 0) | \
	 (4 & (access) ? 16 : 0) | \
	 (5 & (access) ? 32 : 0) | \
	 (6 & (access) ? 64 : 0) | \
	 (7 & (access) ? 128 : 0))


4655 4656
static void update_permission_bitmask(struct kvm_vcpu *vcpu,
				      struct kvm_mmu *mmu, bool ept)
4657
{
4658 4659 4660 4661 4662 4663 4664 4665 4666
	unsigned byte;

	const u8 x = BYTE_MASK(ACC_EXEC_MASK);
	const u8 w = BYTE_MASK(ACC_WRITE_MASK);
	const u8 u = BYTE_MASK(ACC_USER_MASK);

	bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
	bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
	bool cr0_wp = is_write_protection(vcpu);
4667 4668

	for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4669 4670
		unsigned pfec = byte << 1;

F
Feng Wu 已提交
4671
		/*
4672 4673
		 * Each "*f" variable has a 1 bit for each UWX value
		 * that causes a fault with the given PFEC.
F
Feng Wu 已提交
4674
		 */
4675

4676
		/* Faults from writes to non-writable pages */
4677
		u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
4678
		/* Faults from user mode accesses to supervisor pages */
4679
		u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
4680
		/* Faults from fetches of non-executable pages*/
4681
		u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706
		/* Faults from kernel mode fetches of user pages */
		u8 smepf = 0;
		/* Faults from kernel mode accesses of user pages */
		u8 smapf = 0;

		if (!ept) {
			/* Faults from kernel mode accesses to user pages */
			u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;

			/* Not really needed: !nx will cause pte.nx to fault */
			if (!mmu->nx)
				ff = 0;

			/* Allow supervisor writes if !cr0.wp */
			if (!cr0_wp)
				wf = (pfec & PFERR_USER_MASK) ? wf : 0;

			/* Disallow supervisor fetches of user code if cr4.smep */
			if (cr4_smep)
				smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;

			/*
			 * SMAP:kernel-mode data accesses from user-mode
			 * mappings should fault. A fault is considered
			 * as a SMAP violation if all of the following
P
Peng Hao 已提交
4707
			 * conditions are true:
4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720
			 *   - X86_CR4_SMAP is set in CR4
			 *   - A user page is accessed
			 *   - The access is not a fetch
			 *   - Page fault in kernel mode
			 *   - if CPL = 3 or X86_EFLAGS_AC is clear
			 *
			 * Here, we cover the first three conditions.
			 * The fourth is computed dynamically in permission_fault();
			 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
			 * *not* subject to SMAP restrictions.
			 */
			if (cr4_smap)
				smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4721
		}
4722 4723

		mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4724 4725 4726
	}
}

4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801
/*
* PKU is an additional mechanism by which the paging controls access to
* user-mode addresses based on the value in the PKRU register.  Protection
* key violations are reported through a bit in the page fault error code.
* Unlike other bits of the error code, the PK bit is not known at the
* call site of e.g. gva_to_gpa; it must be computed directly in
* permission_fault based on two bits of PKRU, on some machine state (CR4,
* CR0, EFER, CPL), and on other bits of the error code and the page tables.
*
* In particular the following conditions come from the error code, the
* page tables and the machine state:
* - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
* - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
* - PK is always zero if U=0 in the page tables
* - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
*
* The PKRU bitmask caches the result of these four conditions.  The error
* code (minus the P bit) and the page table's U bit form an index into the
* PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
* with the two bits of the PKRU register corresponding to the protection key.
* For the first three conditions above the bits will be 00, thus masking
* away both AD and WD.  For all reads or if the last condition holds, WD
* only will be masked away.
*/
static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
				bool ept)
{
	unsigned bit;
	bool wp;

	if (ept) {
		mmu->pkru_mask = 0;
		return;
	}

	/* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
	if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
		mmu->pkru_mask = 0;
		return;
	}

	wp = is_write_protection(vcpu);

	for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
		unsigned pfec, pkey_bits;
		bool check_pkey, check_write, ff, uf, wf, pte_user;

		pfec = bit << 1;
		ff = pfec & PFERR_FETCH_MASK;
		uf = pfec & PFERR_USER_MASK;
		wf = pfec & PFERR_WRITE_MASK;

		/* PFEC.RSVD is replaced by ACC_USER_MASK. */
		pte_user = pfec & PFERR_RSVD_MASK;

		/*
		 * Only need to check the access which is not an
		 * instruction fetch and is to a user page.
		 */
		check_pkey = (!ff && pte_user);
		/*
		 * write access is controlled by PKRU if it is a
		 * user access or CR0.WP = 1.
		 */
		check_write = check_pkey && wf && (uf || wp);

		/* PKRU.AD stops both read and write access. */
		pkey_bits = !!check_pkey;
		/* PKRU.WD stops write access. */
		pkey_bits |= (!!check_write) << 1;

		mmu->pkru_mask |= (pkey_bits & 3) << pfec;
	}
}

4802
static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
A
Avi Kivity 已提交
4803
{
4804 4805 4806 4807 4808
	unsigned root_level = mmu->root_level;

	mmu->last_nonleaf_level = root_level;
	if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
		mmu->last_nonleaf_level++;
A
Avi Kivity 已提交
4809 4810
}

4811 4812 4813
static void paging64_init_context_common(struct kvm_vcpu *vcpu,
					 struct kvm_mmu *context,
					 int level)
A
Avi Kivity 已提交
4814
{
4815
	context->nx = is_nx(vcpu);
4816
	context->root_level = level;
4817

4818
	reset_rsvds_bits_mask(vcpu, context);
4819
	update_permission_bitmask(vcpu, context, false);
4820
	update_pkru_bitmask(vcpu, context, false);
4821
	update_last_nonleaf_level(vcpu, context);
A
Avi Kivity 已提交
4822

4823
	MMU_WARN_ON(!is_pae(vcpu));
A
Avi Kivity 已提交
4824 4825
	context->page_fault = paging64_page_fault;
	context->gva_to_gpa = paging64_gva_to_gpa;
4826
	context->sync_page = paging64_sync_page;
M
Marcelo Tosatti 已提交
4827
	context->invlpg = paging64_invlpg;
4828
	context->update_pte = paging64_update_pte;
4829
	context->shadow_root_level = level;
4830
	context->direct_map = false;
A
Avi Kivity 已提交
4831 4832
}

4833 4834
static void paging64_init_context(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
4835
{
4836 4837 4838 4839
	int root_level = is_la57_mode(vcpu) ?
			 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;

	paging64_init_context_common(vcpu, context, root_level);
4840 4841
}

4842 4843
static void paging32_init_context(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
A
Avi Kivity 已提交
4844
{
4845
	context->nx = false;
4846
	context->root_level = PT32_ROOT_LEVEL;
4847

4848
	reset_rsvds_bits_mask(vcpu, context);
4849
	update_permission_bitmask(vcpu, context, false);
4850
	update_pkru_bitmask(vcpu, context, false);
4851
	update_last_nonleaf_level(vcpu, context);
A
Avi Kivity 已提交
4852 4853 4854

	context->page_fault = paging32_page_fault;
	context->gva_to_gpa = paging32_gva_to_gpa;
4855
	context->sync_page = paging32_sync_page;
M
Marcelo Tosatti 已提交
4856
	context->invlpg = paging32_invlpg;
4857
	context->update_pte = paging32_update_pte;
A
Avi Kivity 已提交
4858
	context->shadow_root_level = PT32E_ROOT_LEVEL;
4859
	context->direct_map = false;
A
Avi Kivity 已提交
4860 4861
}

4862 4863
static void paging32E_init_context(struct kvm_vcpu *vcpu,
				   struct kvm_mmu *context)
A
Avi Kivity 已提交
4864
{
4865
	paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
A
Avi Kivity 已提交
4866 4867
}

4868 4869 4870 4871
static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu)
{
	union kvm_mmu_extended_role ext = {0};

4872
	ext.cr0_pg = !!is_paging(vcpu);
4873
	ext.cr4_pae = !!is_pae(vcpu);
4874 4875 4876 4877
	ext.cr4_smep = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
	ext.cr4_smap = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
	ext.cr4_pse = !!is_pse(vcpu);
	ext.cr4_pke = !!kvm_read_cr4_bits(vcpu, X86_CR4_PKE);
4878
	ext.cr4_la57 = !!kvm_read_cr4_bits(vcpu, X86_CR4_LA57);
4879
	ext.maxphyaddr = cpuid_maxphyaddr(vcpu);
4880 4881 4882 4883 4884 4885

	ext.valid = 1;

	return ext;
}

4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906
static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
						   bool base_only)
{
	union kvm_mmu_role role = {0};

	role.base.access = ACC_ALL;
	role.base.nxe = !!is_nx(vcpu);
	role.base.cr0_wp = is_write_protection(vcpu);
	role.base.smm = is_smm(vcpu);
	role.base.guest_mode = is_guest_mode(vcpu);

	if (base_only)
		return role;

	role.ext = kvm_calc_mmu_role_ext(vcpu);

	return role;
}

static union kvm_mmu_role
kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4907
{
4908
	union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4909

4910 4911 4912
	role.base.ad_disabled = (shadow_accessed_mask == 0);
	role.base.level = kvm_x86_ops->get_tdp_level(vcpu);
	role.base.direct = true;
4913
	role.base.gpte_is_8_bytes = true;
4914 4915 4916 4917

	return role;
}

4918
static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4919
{
4920
	struct kvm_mmu *context = vcpu->arch.mmu;
4921 4922
	union kvm_mmu_role new_role =
		kvm_calc_tdp_mmu_root_page_role(vcpu, false);
4923

4924 4925 4926 4927 4928
	new_role.base.word &= mmu_base_role_mask.word;
	if (new_role.as_u64 == context->mmu_role.as_u64)
		return;

	context->mmu_role.as_u64 = new_role.as_u64;
4929
	context->page_fault = kvm_tdp_page_fault;
4930
	context->sync_page = nonpaging_sync_page;
M
Marcelo Tosatti 已提交
4931
	context->invlpg = nonpaging_invlpg;
4932
	context->update_pte = nonpaging_update_pte;
4933
	context->shadow_root_level = kvm_x86_ops->get_tdp_level(vcpu);
4934
	context->direct_map = true;
4935
	context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
4936
	context->get_cr3 = get_cr3;
4937
	context->get_pdptr = kvm_pdptr_read;
4938
	context->inject_page_fault = kvm_inject_page_fault;
4939 4940

	if (!is_paging(vcpu)) {
4941
		context->nx = false;
4942 4943 4944
		context->gva_to_gpa = nonpaging_gva_to_gpa;
		context->root_level = 0;
	} else if (is_long_mode(vcpu)) {
4945
		context->nx = is_nx(vcpu);
4946 4947
		context->root_level = is_la57_mode(vcpu) ?
				PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4948 4949
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging64_gva_to_gpa;
4950
	} else if (is_pae(vcpu)) {
4951
		context->nx = is_nx(vcpu);
4952
		context->root_level = PT32E_ROOT_LEVEL;
4953 4954
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging64_gva_to_gpa;
4955
	} else {
4956
		context->nx = false;
4957
		context->root_level = PT32_ROOT_LEVEL;
4958 4959
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging32_gva_to_gpa;
4960 4961
	}

4962
	update_permission_bitmask(vcpu, context, false);
4963
	update_pkru_bitmask(vcpu, context, false);
4964
	update_last_nonleaf_level(vcpu, context);
4965
	reset_tdp_shadow_zero_bits_mask(vcpu, context);
4966 4967
}

4968 4969 4970 4971 4972 4973 4974 4975 4976 4977
static union kvm_mmu_role
kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
{
	union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);

	role.base.smep_andnot_wp = role.ext.cr4_smep &&
		!is_write_protection(vcpu);
	role.base.smap_andnot_wp = role.ext.cr4_smap &&
		!is_write_protection(vcpu);
	role.base.direct = !is_paging(vcpu);
4978
	role.base.gpte_is_8_bytes = !!is_pae(vcpu);
4979 4980

	if (!is_long_mode(vcpu))
4981
		role.base.level = PT32E_ROOT_LEVEL;
4982
	else if (is_la57_mode(vcpu))
4983
		role.base.level = PT64_ROOT_5LEVEL;
4984
	else
4985
		role.base.level = PT64_ROOT_4LEVEL;
4986 4987 4988 4989 4990 4991

	return role;
}

void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
{
4992
	struct kvm_mmu *context = vcpu->arch.mmu;
4993 4994 4995 4996 4997 4998
	union kvm_mmu_role new_role =
		kvm_calc_shadow_mmu_root_page_role(vcpu, false);

	new_role.base.word &= mmu_base_role_mask.word;
	if (new_role.as_u64 == context->mmu_role.as_u64)
		return;
A
Avi Kivity 已提交
4999 5000

	if (!is_paging(vcpu))
5001
		nonpaging_init_context(vcpu, context);
A
Avi Kivity 已提交
5002
	else if (is_long_mode(vcpu))
5003
		paging64_init_context(vcpu, context);
A
Avi Kivity 已提交
5004
	else if (is_pae(vcpu))
5005
		paging32E_init_context(vcpu, context);
A
Avi Kivity 已提交
5006
	else
5007
		paging32_init_context(vcpu, context);
5008

5009
	context->mmu_role.as_u64 = new_role.as_u64;
5010
	reset_shadow_zero_bits_mask(vcpu, context);
5011 5012 5013
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);

5014 5015 5016
static union kvm_mmu_role
kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
				   bool execonly)
5017
{
5018
	union kvm_mmu_role role = {0};
5019

5020 5021
	/* SMM flag is inherited from root_mmu */
	role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
5022

5023
	role.base.level = PT64_ROOT_4LEVEL;
5024
	role.base.gpte_is_8_bytes = true;
5025 5026 5027 5028
	role.base.direct = false;
	role.base.ad_disabled = !accessed_dirty;
	role.base.guest_mode = true;
	role.base.access = ACC_ALL;
5029

5030 5031 5032 5033 5034 5035 5036
	/*
	 * WP=1 and NOT_WP=1 is an impossible combination, use WP and the
	 * SMAP variation to denote shadow EPT entries.
	 */
	role.base.cr0_wp = true;
	role.base.smap_andnot_wp = true;

5037
	role.ext = kvm_calc_mmu_role_ext(vcpu);
5038
	role.ext.execonly = execonly;
5039 5040 5041 5042

	return role;
}

5043
void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
5044
			     bool accessed_dirty, gpa_t new_eptp)
N
Nadav Har'El 已提交
5045
{
5046
	struct kvm_mmu *context = vcpu->arch.mmu;
5047 5048 5049 5050 5051 5052 5053 5054 5055
	union kvm_mmu_role new_role =
		kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
						   execonly);

	__kvm_mmu_new_cr3(vcpu, new_eptp, new_role.base, false);

	new_role.base.word &= mmu_base_role_mask.word;
	if (new_role.as_u64 == context->mmu_role.as_u64)
		return;
5056

5057
	context->shadow_root_level = PT64_ROOT_4LEVEL;
N
Nadav Har'El 已提交
5058 5059

	context->nx = true;
5060
	context->ept_ad = accessed_dirty;
N
Nadav Har'El 已提交
5061 5062 5063 5064 5065
	context->page_fault = ept_page_fault;
	context->gva_to_gpa = ept_gva_to_gpa;
	context->sync_page = ept_sync_page;
	context->invlpg = ept_invlpg;
	context->update_pte = ept_update_pte;
5066
	context->root_level = PT64_ROOT_4LEVEL;
N
Nadav Har'El 已提交
5067
	context->direct_map = false;
5068
	context->mmu_role.as_u64 = new_role.as_u64;
5069

N
Nadav Har'El 已提交
5070
	update_permission_bitmask(vcpu, context, true);
5071
	update_pkru_bitmask(vcpu, context, true);
5072
	update_last_nonleaf_level(vcpu, context);
N
Nadav Har'El 已提交
5073
	reset_rsvds_bits_mask_ept(vcpu, context, execonly);
5074
	reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
N
Nadav Har'El 已提交
5075 5076 5077
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);

5078
static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
5079
{
5080
	struct kvm_mmu *context = vcpu->arch.mmu;
5081 5082 5083 5084 5085 5086

	kvm_init_shadow_mmu(vcpu);
	context->set_cr3           = kvm_x86_ops->set_cr3;
	context->get_cr3           = get_cr3;
	context->get_pdptr         = kvm_pdptr_read;
	context->inject_page_fault = kvm_inject_page_fault;
A
Avi Kivity 已提交
5087 5088
}

5089
static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
5090
{
5091
	union kvm_mmu_role new_role = kvm_calc_mmu_role_common(vcpu, false);
5092 5093
	struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;

5094 5095 5096 5097 5098
	new_role.base.word &= mmu_base_role_mask.word;
	if (new_role.as_u64 == g_context->mmu_role.as_u64)
		return;

	g_context->mmu_role.as_u64 = new_role.as_u64;
5099
	g_context->get_cr3           = get_cr3;
5100
	g_context->get_pdptr         = kvm_pdptr_read;
5101 5102 5103
	g_context->inject_page_fault = kvm_inject_page_fault;

	/*
5104
	 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
5105 5106 5107 5108 5109
	 * L1's nested page tables (e.g. EPT12). The nested translation
	 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
	 * L2's page tables as the first level of translation and L1's
	 * nested page tables as the second level of translation. Basically
	 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
5110 5111
	 */
	if (!is_paging(vcpu)) {
5112
		g_context->nx = false;
5113 5114 5115
		g_context->root_level = 0;
		g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
	} else if (is_long_mode(vcpu)) {
5116
		g_context->nx = is_nx(vcpu);
5117 5118
		g_context->root_level = is_la57_mode(vcpu) ?
					PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
5119
		reset_rsvds_bits_mask(vcpu, g_context);
5120 5121
		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
	} else if (is_pae(vcpu)) {
5122
		g_context->nx = is_nx(vcpu);
5123
		g_context->root_level = PT32E_ROOT_LEVEL;
5124
		reset_rsvds_bits_mask(vcpu, g_context);
5125 5126
		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
	} else {
5127
		g_context->nx = false;
5128
		g_context->root_level = PT32_ROOT_LEVEL;
5129
		reset_rsvds_bits_mask(vcpu, g_context);
5130 5131 5132
		g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
	}

5133
	update_permission_bitmask(vcpu, g_context, false);
5134
	update_pkru_bitmask(vcpu, g_context, false);
5135
	update_last_nonleaf_level(vcpu, g_context);
5136 5137
}

5138
void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots)
5139
{
5140
	if (reset_roots) {
5141 5142
		uint i;

5143
		vcpu->arch.mmu->root_hpa = INVALID_PAGE;
5144 5145

		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5146
			vcpu->arch.mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5147 5148
	}

5149
	if (mmu_is_nested(vcpu))
5150
		init_kvm_nested_mmu(vcpu);
5151
	else if (tdp_enabled)
5152
		init_kvm_tdp_mmu(vcpu);
5153
	else
5154
		init_kvm_softmmu(vcpu);
5155
}
5156
EXPORT_SYMBOL_GPL(kvm_init_mmu);
5157

5158 5159 5160
static union kvm_mmu_page_role
kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
{
5161 5162
	union kvm_mmu_role role;

5163
	if (tdp_enabled)
5164
		role = kvm_calc_tdp_mmu_root_page_role(vcpu, true);
5165
	else
5166 5167 5168
		role = kvm_calc_shadow_mmu_root_page_role(vcpu, true);

	return role.base;
5169
}
5170

5171
void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
5172
{
5173
	kvm_mmu_unload(vcpu);
5174
	kvm_init_mmu(vcpu, true);
A
Avi Kivity 已提交
5175
}
5176
EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
A
Avi Kivity 已提交
5177 5178

int kvm_mmu_load(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
5179
{
5180 5181
	int r;

5182
	r = mmu_topup_memory_caches(vcpu);
A
Avi Kivity 已提交
5183 5184
	if (r)
		goto out;
5185
	r = mmu_alloc_roots(vcpu);
5186
	kvm_mmu_sync_roots(vcpu);
5187 5188
	if (r)
		goto out;
5189
	kvm_mmu_load_cr3(vcpu);
5190
	kvm_x86_ops->tlb_flush(vcpu, true);
5191 5192
out:
	return r;
A
Avi Kivity 已提交
5193
}
A
Avi Kivity 已提交
5194 5195 5196 5197
EXPORT_SYMBOL_GPL(kvm_mmu_load);

void kvm_mmu_unload(struct kvm_vcpu *vcpu)
{
5198 5199 5200 5201
	kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
	WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
	kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
	WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
A
Avi Kivity 已提交
5202
}
5203
EXPORT_SYMBOL_GPL(kvm_mmu_unload);
A
Avi Kivity 已提交
5204

5205
static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
5206 5207
				  struct kvm_mmu_page *sp, u64 *spte,
				  const void *new)
5208
{
5209
	if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
5210 5211
		++vcpu->kvm->stat.mmu_pde_zapped;
		return;
5212
        }
5213

A
Avi Kivity 已提交
5214
	++vcpu->kvm->stat.mmu_pte_updated;
5215
	vcpu->arch.mmu->update_pte(vcpu, sp, spte, new);
5216 5217
}

5218 5219 5220 5221 5222 5223 5224 5225
static bool need_remote_flush(u64 old, u64 new)
{
	if (!is_shadow_present_pte(old))
		return false;
	if (!is_shadow_present_pte(new))
		return true;
	if ((old ^ new) & PT64_BASE_ADDR_MASK)
		return true;
5226 5227
	old ^= shadow_nx_mask;
	new ^= shadow_nx_mask;
5228 5229 5230
	return (old & ~new & PT64_PERM_MASK) != 0;
}

5231
static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
5232
				    int *bytes)
5233
{
5234
	u64 gentry = 0;
5235
	int r;
5236 5237 5238

	/*
	 * Assume that the pte write on a page table of the same type
5239 5240
	 * as the current vcpu paging mode since we update the sptes only
	 * when they have the same mode.
5241
	 */
5242
	if (is_pae(vcpu) && *bytes == 4) {
5243
		/* Handle a 32-bit guest writing two halves of a 64-bit gpte */
5244 5245
		*gpa &= ~(gpa_t)7;
		*bytes = 8;
5246 5247
	}

5248 5249 5250 5251
	if (*bytes == 4 || *bytes == 8) {
		r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
		if (r)
			gentry = 0;
5252 5253
	}

5254 5255 5256 5257 5258 5259 5260
	return gentry;
}

/*
 * If we're seeing too many writes to a page, it may no longer be a page table,
 * or we may be forking, in which case it is better to unmap the page.
 */
5261
static bool detect_write_flooding(struct kvm_mmu_page *sp)
5262
{
5263 5264 5265 5266
	/*
	 * Skip write-flooding detected for the sp whose level is 1, because
	 * it can become unsync, then the guest page is not write-protected.
	 */
5267
	if (sp->role.level == PT_PAGE_TABLE_LEVEL)
5268
		return false;
5269

5270 5271
	atomic_inc(&sp->write_flooding_count);
	return atomic_read(&sp->write_flooding_count) >= 3;
5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286
}

/*
 * Misaligned accesses are too much trouble to fix up; also, they usually
 * indicate a page is not used as a page table.
 */
static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
				    int bytes)
{
	unsigned offset, pte_size, misaligned;

	pgprintk("misaligned: gpa %llx bytes %d role %x\n",
		 gpa, bytes, sp->role.word);

	offset = offset_in_page(gpa);
5287
	pte_size = sp->role.gpte_is_8_bytes ? 8 : 4;
5288 5289 5290 5291 5292 5293 5294 5295

	/*
	 * Sometimes, the OS only writes the last one bytes to update status
	 * bits, for example, in linux, andb instruction is used in clear_bit().
	 */
	if (!(offset & (pte_size - 1)) && bytes == 1)
		return false;

5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310
	misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
	misaligned |= bytes < 4;

	return misaligned;
}

static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
{
	unsigned page_offset, quadrant;
	u64 *spte;
	int level;

	page_offset = offset_in_page(gpa);
	level = sp->role.level;
	*nspte = 1;
5311
	if (!sp->role.gpte_is_8_bytes) {
5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332
		page_offset <<= 1;	/* 32->64 */
		/*
		 * A 32-bit pde maps 4MB while the shadow pdes map
		 * only 2MB.  So we need to double the offset again
		 * and zap two pdes instead of one.
		 */
		if (level == PT32_ROOT_LEVEL) {
			page_offset &= ~7; /* kill rounding error */
			page_offset <<= 1;
			*nspte = 2;
		}
		quadrant = page_offset >> PAGE_SHIFT;
		page_offset &= ~PAGE_MASK;
		if (quadrant != sp->role.quadrant)
			return NULL;
	}

	spte = &sp->spt[page_offset / sizeof(*spte)];
	return spte;
}

5333
static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
5334 5335
			      const u8 *new, int bytes,
			      struct kvm_page_track_notifier_node *node)
5336 5337 5338 5339 5340 5341
{
	gfn_t gfn = gpa >> PAGE_SHIFT;
	struct kvm_mmu_page *sp;
	LIST_HEAD(invalid_list);
	u64 entry, gentry, *spte;
	int npte;
5342
	bool remote_flush, local_flush;
5343 5344 5345 5346 5347

	/*
	 * If we don't have indirect shadow pages, it means no page is
	 * write-protected, so we can exit simply.
	 */
5348
	if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
5349 5350
		return;

5351
	remote_flush = local_flush = false;
5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362

	pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);

	/*
	 * No need to care whether allocation memory is successful
	 * or not since pte prefetch is skiped if it does not have
	 * enough objects in the cache.
	 */
	mmu_topup_memory_caches(vcpu);

	spin_lock(&vcpu->kvm->mmu_lock);
5363 5364 5365

	gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);

5366
	++vcpu->kvm->stat.mmu_pte_write;
5367
	kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
5368

5369
	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
5370
		if (detect_write_misaligned(sp, gpa, bytes) ||
5371
		      detect_write_flooding(sp)) {
5372
			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
A
Avi Kivity 已提交
5373
			++vcpu->kvm->stat.mmu_flooded;
5374 5375
			continue;
		}
5376 5377 5378 5379 5380

		spte = get_written_sptes(sp, gpa, &npte);
		if (!spte)
			continue;

5381
		local_flush = true;
5382
		while (npte--) {
5383 5384
			u32 base_role = vcpu->arch.mmu->mmu_role.base.word;

5385
			entry = *spte;
5386
			mmu_page_zap_pte(vcpu->kvm, sp, spte);
5387
			if (gentry &&
5388
			      !((sp->role.word ^ base_role)
5389
			      & mmu_base_role_mask.word) && rmap_can_add(vcpu))
5390
				mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
G
Gleb Natapov 已提交
5391
			if (need_remote_flush(entry, *spte))
5392
				remote_flush = true;
5393
			++spte;
5394 5395
		}
	}
5396
	kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
5397
	kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
5398
	spin_unlock(&vcpu->kvm->mmu_lock);
5399 5400
}

5401 5402
int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
{
5403 5404
	gpa_t gpa;
	int r;
5405

5406
	if (vcpu->arch.mmu->direct_map)
5407 5408
		return 0;

5409
	gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
5410 5411

	r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
5412

5413
	return r;
5414
}
5415
EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
5416

5417
int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
5418
		       void *insn, int insn_len)
5419
{
5420
	int r, emulation_type = EMULTYPE_PF;
5421
	bool direct = vcpu->arch.mmu->direct_map;
5422

5423
	if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
5424 5425
		return RET_PF_RETRY;

5426
	r = RET_PF_INVALID;
5427
	if (unlikely(error_code & PFERR_RSVD_MASK)) {
5428
		r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
5429
		if (r == RET_PF_EMULATE)
5430 5431
			goto emulate;
	}
5432

5433
	if (r == RET_PF_INVALID) {
5434 5435
		r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
					  lower_32_bits(error_code), false);
5436 5437 5438 5439 5440
		WARN_ON(r == RET_PF_INVALID);
	}

	if (r == RET_PF_RETRY)
		return 1;
5441
	if (r < 0)
5442
		return r;
5443

5444 5445 5446 5447 5448 5449 5450
	/*
	 * Before emulating the instruction, check if the error code
	 * was due to a RO violation while translating the guest page.
	 * This can occur when using nested virtualization with nested
	 * paging in both guests. If true, we simply unprotect the page
	 * and resume the guest.
	 */
5451
	if (vcpu->arch.mmu->direct_map &&
5452
	    (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5453
		kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
5454 5455 5456
		return 1;
	}

5457 5458 5459 5460 5461 5462
	/*
	 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
	 * optimistically try to just unprotect the page and let the processor
	 * re-execute the instruction that caused the page fault.  Do not allow
	 * retrying MMIO emulation, as it's not only pointless but could also
	 * cause us to enter an infinite loop because the processor will keep
5463 5464 5465 5466
	 * faulting on the non-existent MMIO address.  Retrying an instruction
	 * from a nested guest is also pointless and dangerous as we are only
	 * explicitly shadowing L1's page tables, i.e. unprotecting something
	 * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5467
	 */
5468
	if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
5469
		emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
5470
emulate:
5471 5472 5473 5474 5475
	/*
	 * On AMD platforms, under certain conditions insn_len may be zero on #NPF.
	 * This can happen if a guest gets a page-fault on data access but the HW
	 * table walker is not able to read the instruction page (e.g instruction
	 * page is not present in memory). In those cases we simply restart the
5476
	 * guest, with the exception of AMD Erratum 1096 which is unrecoverable.
5477
	 */
5478 5479 5480 5481
	if (unlikely(insn && !insn_len)) {
		if (!kvm_x86_ops->need_emulation_on_page_fault(vcpu))
			return 1;
	}
5482

5483
	return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
5484
				       insn_len);
5485 5486 5487
}
EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);

M
Marcelo Tosatti 已提交
5488 5489
void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
{
5490
	struct kvm_mmu *mmu = vcpu->arch.mmu;
5491
	int i;
5492

5493 5494 5495 5496
	/* INVLPG on a * non-canonical address is a NOP according to the SDM.  */
	if (is_noncanonical_address(gva, vcpu))
		return;

5497
	mmu->invlpg(vcpu, gva, mmu->root_hpa);
5498 5499 5500 5501

	/*
	 * INVLPG is required to invalidate any global mappings for the VA,
	 * irrespective of PCID. Since it would take us roughly similar amount
5502 5503 5504
	 * of work to determine whether any of the prev_root mappings of the VA
	 * is marked global, or to just sync it blindly, so we might as well
	 * just always sync it.
5505
	 *
5506 5507 5508
	 * Mappings not reachable via the current cr3 or the prev_roots will be
	 * synced when switching to that cr3, so nothing needs to be done here
	 * for them.
5509
	 */
5510 5511 5512
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
		if (VALID_PAGE(mmu->prev_roots[i].hpa))
			mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5513

5514
	kvm_x86_ops->tlb_flush_gva(vcpu, gva);
M
Marcelo Tosatti 已提交
5515 5516 5517 5518
	++vcpu->stat.invlpg;
}
EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);

5519 5520
void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
{
5521
	struct kvm_mmu *mmu = vcpu->arch.mmu;
5522
	bool tlb_flush = false;
5523
	uint i;
5524 5525

	if (pcid == kvm_get_active_pcid(vcpu)) {
5526
		mmu->invlpg(vcpu, gva, mmu->root_hpa);
5527
		tlb_flush = true;
5528 5529
	}

5530 5531 5532 5533 5534 5535
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
		if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
		    pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].cr3)) {
			mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
			tlb_flush = true;
		}
5536
	}
5537

5538 5539 5540
	if (tlb_flush)
		kvm_x86_ops->tlb_flush_gva(vcpu, gva);

5541 5542 5543
	++vcpu->stat.invlpg;

	/*
5544 5545 5546
	 * Mappings not reachable via the current cr3 or the prev_roots will be
	 * synced when switching to that cr3, so nothing needs to be done here
	 * for them.
5547 5548 5549 5550
	 */
}
EXPORT_SYMBOL_GPL(kvm_mmu_invpcid_gva);

5551 5552 5553 5554 5555 5556
void kvm_enable_tdp(void)
{
	tdp_enabled = true;
}
EXPORT_SYMBOL_GPL(kvm_enable_tdp);

5557 5558 5559 5560 5561 5562
void kvm_disable_tdp(void)
{
	tdp_enabled = false;
}
EXPORT_SYMBOL_GPL(kvm_disable_tdp);

5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582

/* The return value indicates if tlb flush on all vcpus is needed. */
typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);

/* The caller should hold mmu-lock before calling this function. */
static __always_inline bool
slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
			slot_level_handler fn, int start_level, int end_level,
			gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
{
	struct slot_rmap_walk_iterator iterator;
	bool flush = false;

	for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
			end_gfn, &iterator) {
		if (iterator.rmap)
			flush |= fn(kvm, iterator.rmap);

		if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
			if (flush && lock_flush_tlb) {
5583 5584 5585
				kvm_flush_remote_tlbs_with_address(kvm,
						start_gfn,
						iterator.gfn - start_gfn + 1);
5586 5587 5588 5589 5590 5591 5592
				flush = false;
			}
			cond_resched_lock(&kvm->mmu_lock);
		}
	}

	if (flush && lock_flush_tlb) {
5593 5594
		kvm_flush_remote_tlbs_with_address(kvm, start_gfn,
						   end_gfn - start_gfn + 1);
5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635
		flush = false;
	}

	return flush;
}

static __always_inline bool
slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
		  slot_level_handler fn, int start_level, int end_level,
		  bool lock_flush_tlb)
{
	return slot_handle_level_range(kvm, memslot, fn, start_level,
			end_level, memslot->base_gfn,
			memslot->base_gfn + memslot->npages - 1,
			lock_flush_tlb);
}

static __always_inline bool
slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
		      slot_level_handler fn, bool lock_flush_tlb)
{
	return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
				 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
}

static __always_inline bool
slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
			slot_level_handler fn, bool lock_flush_tlb)
{
	return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
				 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
}

static __always_inline bool
slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
		 slot_level_handler fn, bool lock_flush_tlb)
{
	return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
				 PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
}

5636
static void free_mmu_pages(struct kvm_mmu *mmu)
A
Avi Kivity 已提交
5637
{
5638 5639
	free_page((unsigned long)mmu->pae_root);
	free_page((unsigned long)mmu->lm_root);
A
Avi Kivity 已提交
5640 5641
}

5642
static int alloc_mmu_pages(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
A
Avi Kivity 已提交
5643
{
5644
	struct page *page;
A
Avi Kivity 已提交
5645 5646
	int i;

5647
	/*
5648 5649 5650 5651 5652 5653 5654
	 * When using PAE paging, the four PDPTEs are treated as 'root' pages,
	 * while the PDP table is a per-vCPU construct that's allocated at MMU
	 * creation.  When emulating 32-bit mode, cr3 is only 32 bits even on
	 * x86_64.  Therefore we need to allocate the PDP table in the first
	 * 4GB of memory, which happens to fit the DMA32 zone.  Except for
	 * SVM's 32-bit NPT support, TDP paging doesn't use PAE paging and can
	 * skip allocating the PDP table.
5655
	 */
5656 5657 5658
	if (tdp_enabled && kvm_x86_ops->get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
		return 0;

5659
	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
5660
	if (!page)
5661 5662
		return -ENOMEM;

5663
	mmu->pae_root = page_address(page);
5664
	for (i = 0; i < 4; ++i)
5665
		mmu->pae_root[i] = INVALID_PAGE;
5666

A
Avi Kivity 已提交
5667 5668 5669
	return 0;
}

5670
int kvm_mmu_create(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
5671
{
5672
	uint i;
5673
	int ret;
5674

5675 5676
	vcpu->arch.mmu = &vcpu->arch.root_mmu;
	vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
A
Avi Kivity 已提交
5677

5678
	vcpu->arch.root_mmu.root_hpa = INVALID_PAGE;
5679
	vcpu->arch.root_mmu.root_cr3 = 0;
5680
	vcpu->arch.root_mmu.translate_gpa = translate_gpa;
5681
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5682
		vcpu->arch.root_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
A
Avi Kivity 已提交
5683

5684
	vcpu->arch.guest_mmu.root_hpa = INVALID_PAGE;
5685
	vcpu->arch.guest_mmu.root_cr3 = 0;
5686 5687 5688
	vcpu->arch.guest_mmu.translate_gpa = translate_gpa;
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
		vcpu->arch.guest_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5689

5690
	vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703

	ret = alloc_mmu_pages(vcpu, &vcpu->arch.guest_mmu);
	if (ret)
		return ret;

	ret = alloc_mmu_pages(vcpu, &vcpu->arch.root_mmu);
	if (ret)
		goto fail_allocate_root;

	return ret;
 fail_allocate_root:
	free_mmu_pages(&vcpu->arch.guest_mmu);
	return ret;
A
Avi Kivity 已提交
5704 5705
}

5706
#define BATCH_ZAP_PAGES	10
5707 5708 5709
static void kvm_zap_obsolete_pages(struct kvm *kvm)
{
	struct kvm_mmu_page *sp, *node;
5710
	int nr_zapped, batch = 0;
5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722

restart:
	list_for_each_entry_safe_reverse(sp, node,
	      &kvm->arch.active_mmu_pages, link) {
		/*
		 * No obsolete valid page exists before a newly created page
		 * since active_mmu_pages is a FIFO list.
		 */
		if (!is_obsolete_sp(kvm, sp))
			break;

		/*
5723 5724 5725 5726
		 * Skip invalid pages with a non-zero root count, zapping pages
		 * with a non-zero root count will never succeed, i.e. the page
		 * will get thrown back on active_mmu_pages and we'll get stuck
		 * in an infinite loop.
5727
		 */
5728
		if (sp->role.invalid && sp->root_count)
5729 5730
			continue;

5731 5732 5733 5734 5735 5736
		/*
		 * No need to flush the TLB since we're only zapping shadow
		 * pages with an obsolete generation number and all vCPUS have
		 * loaded a new root, i.e. the shadow pages being zapped cannot
		 * be in active use by the guest.
		 */
5737
		if (batch >= BATCH_ZAP_PAGES &&
5738
		    cond_resched_lock(&kvm->mmu_lock)) {
5739
			batch = 0;
5740 5741 5742
			goto restart;
		}

5743 5744
		if (__kvm_mmu_prepare_zap_page(kvm, sp,
				&kvm->arch.zapped_obsolete_pages, &nr_zapped)) {
5745
			batch += nr_zapped;
5746
			goto restart;
5747
		}
5748 5749
	}

5750 5751 5752 5753 5754
	/*
	 * Trigger a remote TLB flush before freeing the page tables to ensure
	 * KVM is not in the middle of a lockless shadow page table walk, which
	 * may reference the pages.
	 */
5755
	kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768
}

/*
 * Fast invalidate all shadow pages and use lock-break technique
 * to zap obsolete pages.
 *
 * It's required when memslot is being deleted or VM is being
 * destroyed, in these cases, we should ensure that KVM MMU does
 * not use any resource of the being-deleted slot or all slots
 * after calling the function.
 */
static void kvm_mmu_zap_all_fast(struct kvm *kvm)
{
5769 5770
	lockdep_assert_held(&kvm->slots_lock);

5771
	spin_lock(&kvm->mmu_lock);
5772
	trace_kvm_mmu_zap_all_fast(kvm);
5773 5774 5775 5776 5777 5778 5779 5780 5781

	/*
	 * Toggle mmu_valid_gen between '0' and '1'.  Because slots_lock is
	 * held for the entire duration of zapping obsolete pages, it's
	 * impossible for there to be multiple invalid generations associated
	 * with *valid* shadow pages at any given time, i.e. there is exactly
	 * one valid generation and (at most) one invalid generation.
	 */
	kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
5782

5783 5784 5785 5786 5787 5788 5789 5790 5791 5792
	/*
	 * Notify all vcpus to reload its shadow page table and flush TLB.
	 * Then all vcpus will switch to new shadow page table with the new
	 * mmu_valid_gen.
	 *
	 * Note: we need to do this under the protection of mmu_lock,
	 * otherwise, vcpu would purge shadow page but miss tlb flush.
	 */
	kvm_reload_remote_mmus(kvm);

5793 5794 5795 5796
	kvm_zap_obsolete_pages(kvm);
	spin_unlock(&kvm->mmu_lock);
}

5797 5798 5799 5800 5801
static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
{
	return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
}

5802
static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5803 5804
			struct kvm_memory_slot *slot,
			struct kvm_page_track_notifier_node *node)
5805
{
5806
	kvm_mmu_zap_all_fast(kvm);
5807 5808
}

5809
void kvm_mmu_init_vm(struct kvm *kvm)
5810
{
5811
	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5812

5813
	node->track_write = kvm_mmu_pte_write;
5814
	node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5815
	kvm_page_track_register_notifier(kvm, node);
5816 5817
}

5818
void kvm_mmu_uninit_vm(struct kvm *kvm)
5819
{
5820
	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5821

5822
	kvm_page_track_unregister_notifier(kvm, node);
5823 5824
}

X
Xiao Guangrong 已提交
5825 5826 5827 5828
void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;
5829
	int i;
X
Xiao Guangrong 已提交
5830 5831

	spin_lock(&kvm->mmu_lock);
5832 5833 5834 5835 5836 5837 5838 5839 5840
	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
		kvm_for_each_memslot(memslot, slots) {
			gfn_t start, end;

			start = max(gfn_start, memslot->base_gfn);
			end = min(gfn_end, memslot->base_gfn + memslot->npages);
			if (start >= end)
				continue;
X
Xiao Guangrong 已提交
5841

5842 5843 5844
			slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
						PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
						start, end - 1, true);
5845
		}
X
Xiao Guangrong 已提交
5846 5847 5848 5849 5850
	}

	spin_unlock(&kvm->mmu_lock);
}

5851 5852
static bool slot_rmap_write_protect(struct kvm *kvm,
				    struct kvm_rmap_head *rmap_head)
5853
{
5854
	return __rmap_write_protect(kvm, rmap_head, false);
5855 5856
}

5857 5858
void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
				      struct kvm_memory_slot *memslot)
A
Avi Kivity 已提交
5859
{
5860
	bool flush;
A
Avi Kivity 已提交
5861

5862
	spin_lock(&kvm->mmu_lock);
5863 5864
	flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
				      false);
5865
	spin_unlock(&kvm->mmu_lock);
5866 5867 5868 5869 5870 5871 5872 5873

	/*
	 * We can flush all the TLBs out of the mmu lock without TLB
	 * corruption since we just change the spte from writable to
	 * readonly so that we only need to care the case of changing
	 * spte from present to present (changing the spte from present
	 * to nonpresent will flush all the TLBs immediately), in other
	 * words, the only case we care is mmu_spte_update() where we
W
Wei Yang 已提交
5874
	 * have checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
5875 5876 5877
	 * instead of PT_WRITABLE_MASK, that means it does not depend
	 * on PT_WRITABLE_MASK anymore.
	 */
5878
	if (flush)
5879
		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
A
Avi Kivity 已提交
5880
}
5881

5882
static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5883
					 struct kvm_rmap_head *rmap_head)
5884 5885 5886 5887
{
	u64 *sptep;
	struct rmap_iterator iter;
	int need_tlb_flush = 0;
D
Dan Williams 已提交
5888
	kvm_pfn_t pfn;
5889 5890
	struct kvm_mmu_page *sp;

5891
restart:
5892
	for_each_rmap_spte(rmap_head, &iter, sptep) {
5893 5894 5895 5896
		sp = page_header(__pa(sptep));
		pfn = spte_to_pfn(*sptep);

		/*
5897 5898 5899 5900 5901
		 * We cannot do huge page mapping for indirect shadow pages,
		 * which are found on the last rmap (level = 1) when not using
		 * tdp; such shadow pages are synced with the page table in
		 * the guest, and the guest page table is using 4K page size
		 * mapping if the indirect sp has level = 1.
5902
		 */
5903
		if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
5904 5905
		    (kvm_is_zone_device_pfn(pfn) ||
		     PageCompound(pfn_to_page(pfn)))) {
5906
			pte_list_remove(rmap_head, sptep);
5907 5908 5909 5910 5911 5912 5913

			if (kvm_available_flush_tlb_with_range())
				kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
					KVM_PAGES_PER_HPAGE(sp->role.level));
			else
				need_tlb_flush = 1;

5914 5915
			goto restart;
		}
5916 5917 5918 5919 5920 5921
	}

	return need_tlb_flush;
}

void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5922
				   const struct kvm_memory_slot *memslot)
5923
{
5924
	/* FIXME: const-ify all uses of struct kvm_memory_slot.  */
5925
	spin_lock(&kvm->mmu_lock);
5926 5927
	slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
			 kvm_mmu_zap_collapsible_spte, true);
5928 5929 5930
	spin_unlock(&kvm->mmu_lock);
}

5931 5932 5933 5934
void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
					struct kvm_memory_slot *memslot)
{
	/*
5935 5936 5937 5938 5939
	 * All current use cases for flushing the TLBs for a specific memslot
	 * are related to dirty logging, and do the TLB flush out of mmu_lock.
	 * The interaction between the various operations on memslot must be
	 * serialized by slots_locks to ensure the TLB flush from one operation
	 * is observed by any other operation on the same memslot.
5940 5941
	 */
	lockdep_assert_held(&kvm->slots_lock);
5942 5943
	kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
					   memslot->npages);
5944 5945
}

5946 5947 5948
void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
				   struct kvm_memory_slot *memslot)
{
5949
	bool flush;
5950 5951

	spin_lock(&kvm->mmu_lock);
5952
	flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
5953 5954 5955 5956 5957 5958 5959 5960 5961
	spin_unlock(&kvm->mmu_lock);

	/*
	 * It's also safe to flush TLBs out of mmu lock here as currently this
	 * function is only used for dirty logging, in which case flushing TLB
	 * out of mmu lock also guarantees no dirty pages will be lost in
	 * dirty_bitmap.
	 */
	if (flush)
5962
		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5963 5964 5965 5966 5967 5968
}
EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);

void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
					struct kvm_memory_slot *memslot)
{
5969
	bool flush;
5970 5971

	spin_lock(&kvm->mmu_lock);
5972 5973
	flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
					false);
5974 5975 5976
	spin_unlock(&kvm->mmu_lock);

	if (flush)
5977
		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5978 5979 5980 5981 5982 5983
}
EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);

void kvm_mmu_slot_set_dirty(struct kvm *kvm,
			    struct kvm_memory_slot *memslot)
{
5984
	bool flush;
5985 5986

	spin_lock(&kvm->mmu_lock);
5987
	flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
5988 5989 5990
	spin_unlock(&kvm->mmu_lock);

	if (flush)
5991
		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5992 5993 5994
}
EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);

5995
void kvm_mmu_zap_all(struct kvm *kvm)
5996 5997
{
	struct kvm_mmu_page *sp, *node;
5998
	LIST_HEAD(invalid_list);
5999
	int ign;
6000

6001
	spin_lock(&kvm->mmu_lock);
6002
restart:
6003
	list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
6004
		if (sp->role.invalid && sp->root_count)
6005
			continue;
6006
		if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
6007
			goto restart;
6008
		if (cond_resched_lock(&kvm->mmu_lock))
6009 6010 6011
			goto restart;
	}

6012
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
6013 6014 6015
	spin_unlock(&kvm->mmu_lock);
}

6016
void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
6017
{
6018
	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
6019

6020
	gen &= MMIO_SPTE_GEN_MASK;
6021

6022
	/*
6023 6024 6025 6026 6027 6028 6029 6030
	 * Generation numbers are incremented in multiples of the number of
	 * address spaces in order to provide unique generations across all
	 * address spaces.  Strip what is effectively the address space
	 * modifier prior to checking for a wrap of the MMIO generation so
	 * that a wrap in any address space is detected.
	 */
	gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);

6031
	/*
6032
	 * The very rare case: if the MMIO generation number has wrapped,
6033 6034
	 * zap all shadow pages.
	 */
6035
	if (unlikely(gen == 0)) {
6036
		kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
6037
		kvm_mmu_zap_all_fast(kvm);
6038
	}
6039 6040
}

6041 6042
static unsigned long
mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
6043 6044
{
	struct kvm *kvm;
6045
	int nr_to_scan = sc->nr_to_scan;
6046
	unsigned long freed = 0;
6047

J
Junaid Shahid 已提交
6048
	mutex_lock(&kvm_lock);
6049 6050

	list_for_each_entry(kvm, &vm_list, vm_list) {
6051
		int idx;
6052
		LIST_HEAD(invalid_list);
6053

6054 6055 6056 6057 6058 6059 6060 6061
		/*
		 * Never scan more than sc->nr_to_scan VM instances.
		 * Will not hit this condition practically since we do not try
		 * to shrink more than one VM and it is very unlikely to see
		 * !n_used_mmu_pages so many times.
		 */
		if (!nr_to_scan--)
			break;
6062 6063 6064 6065 6066 6067
		/*
		 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
		 * here. We may skip a VM instance errorneosly, but we do not
		 * want to shrink a VM that only started to populate its MMU
		 * anyway.
		 */
6068 6069
		if (!kvm->arch.n_used_mmu_pages &&
		    !kvm_has_zapped_obsolete_pages(kvm))
6070 6071
			continue;

6072
		idx = srcu_read_lock(&kvm->srcu);
6073 6074
		spin_lock(&kvm->mmu_lock);

6075 6076 6077 6078 6079 6080
		if (kvm_has_zapped_obsolete_pages(kvm)) {
			kvm_mmu_commit_zap_page(kvm,
			      &kvm->arch.zapped_obsolete_pages);
			goto unlock;
		}

6081 6082
		if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
			freed++;
6083
		kvm_mmu_commit_zap_page(kvm, &invalid_list);
6084

6085
unlock:
6086
		spin_unlock(&kvm->mmu_lock);
6087
		srcu_read_unlock(&kvm->srcu, idx);
6088

6089 6090 6091 6092 6093
		/*
		 * unfair on small ones
		 * per-vm shrinkers cry out
		 * sadness comes quickly
		 */
6094 6095
		list_move_tail(&kvm->vm_list, &vm_list);
		break;
6096 6097
	}

J
Junaid Shahid 已提交
6098
	mutex_unlock(&kvm_lock);
6099 6100 6101 6102 6103 6104
	return freed;
}

static unsigned long
mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
{
6105
	return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
6106 6107 6108
}

static struct shrinker mmu_shrinker = {
6109 6110
	.count_objects = mmu_shrink_count,
	.scan_objects = mmu_shrink_scan,
6111 6112 6113
	.seeks = DEFAULT_SEEKS * 10,
};

I
Ingo Molnar 已提交
6114
static void mmu_destroy_caches(void)
6115
{
6116 6117
	kmem_cache_destroy(pte_list_desc_cache);
	kmem_cache_destroy(mmu_page_header_cache);
6118 6119
}

6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141
static void kvm_set_mmio_spte_mask(void)
{
	u64 mask;

	/*
	 * Set the reserved bits and the present bit of an paging-structure
	 * entry to generate page fault with PFER.RSV = 1.
	 */

	/*
	 * Mask the uppermost physical address bit, which would be reserved as
	 * long as the supported physical address width is less than 52.
	 */
	mask = 1ull << 51;

	/* Set the present bit. */
	mask |= 1ull;

	/*
	 * If reserved bit is not supported, clear the present bit to disable
	 * mmio page fault.
	 */
6142
	if (shadow_phys_bits == 52)
6143 6144
		mask &= ~1ull;

6145
	kvm_mmu_set_mmio_spte_mask(mask, mask, ACC_WRITE_MASK | ACC_USER_MASK);
6146 6147
}

P
Paolo Bonzini 已提交
6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181
static bool get_nx_auto_mode(void)
{
	/* Return true when CPU has the bug, and mitigations are ON */
	return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
}

static void __set_nx_huge_pages(bool val)
{
	nx_huge_pages = itlb_multihit_kvm_mitigation = val;
}

static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
{
	bool old_val = nx_huge_pages;
	bool new_val;

	/* In "auto" mode deploy workaround only if CPU has the bug. */
	if (sysfs_streq(val, "off"))
		new_val = 0;
	else if (sysfs_streq(val, "force"))
		new_val = 1;
	else if (sysfs_streq(val, "auto"))
		new_val = get_nx_auto_mode();
	else if (strtobool(val, &new_val) < 0)
		return -EINVAL;

	__set_nx_huge_pages(new_val);

	if (new_val != old_val) {
		struct kvm *kvm;

		mutex_lock(&kvm_lock);

		list_for_each_entry(kvm, &vm_list, vm_list) {
6182
			mutex_lock(&kvm->slots_lock);
P
Paolo Bonzini 已提交
6183
			kvm_mmu_zap_all_fast(kvm);
6184
			mutex_unlock(&kvm->slots_lock);
6185 6186

			wake_up_process(kvm->arch.nx_lpage_recovery_thread);
P
Paolo Bonzini 已提交
6187 6188 6189 6190 6191 6192 6193
		}
		mutex_unlock(&kvm_lock);
	}

	return 0;
}

6194 6195
int kvm_mmu_module_init(void)
{
6196 6197
	int ret = -ENOMEM;

P
Paolo Bonzini 已提交
6198 6199 6200
	if (nx_huge_pages == -1)
		__set_nx_huge_pages(get_nx_auto_mode());

6201 6202 6203 6204 6205 6206 6207 6208 6209 6210
	/*
	 * MMU roles use union aliasing which is, generally speaking, an
	 * undefined behavior. However, we supposedly know how compilers behave
	 * and the current status quo is unlikely to change. Guardians below are
	 * supposed to let us know if the assumption becomes false.
	 */
	BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
	BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
	BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));

6211
	kvm_mmu_reset_all_pte_masks();
6212

6213 6214
	kvm_set_mmio_spte_mask();

6215 6216
	pte_list_desc_cache = kmem_cache_create("pte_list_desc",
					    sizeof(struct pte_list_desc),
6217
					    0, SLAB_ACCOUNT, NULL);
6218
	if (!pte_list_desc_cache)
6219
		goto out;
6220

6221 6222
	mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
						  sizeof(struct kvm_mmu_page),
6223
						  0, SLAB_ACCOUNT, NULL);
6224
	if (!mmu_page_header_cache)
6225
		goto out;
6226

6227
	if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
6228
		goto out;
6229

6230 6231 6232
	ret = register_shrinker(&mmu_shrinker);
	if (ret)
		goto out;
6233

6234 6235
	return 0;

6236
out:
6237
	mmu_destroy_caches();
6238
	return ret;
6239 6240
}

6241
/*
P
Peng Hao 已提交
6242
 * Calculate mmu pages needed for kvm.
6243
 */
6244
unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm)
6245
{
6246 6247
	unsigned long nr_mmu_pages;
	unsigned long nr_pages = 0;
6248
	struct kvm_memslots *slots;
6249
	struct kvm_memory_slot *memslot;
6250
	int i;
6251

6252 6253
	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
6254

6255 6256 6257
		kvm_for_each_memslot(memslot, slots)
			nr_pages += memslot->npages;
	}
6258 6259

	nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
6260
	nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
6261 6262 6263 6264

	return nr_mmu_pages;
}

6265 6266
void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
{
6267
	kvm_mmu_unload(vcpu);
6268 6269
	free_mmu_pages(&vcpu->arch.root_mmu);
	free_mmu_pages(&vcpu->arch.guest_mmu);
6270
	mmu_free_memory_caches(vcpu);
6271 6272 6273 6274 6275 6276 6277
}

void kvm_mmu_module_exit(void)
{
	mmu_destroy_caches();
	percpu_counter_destroy(&kvm_total_used_mmu_pages);
	unregister_shrinker(&mmu_shrinker);
6278 6279
	mmu_audit_disable();
}
6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392

static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp)
{
	unsigned int old_val;
	int err;

	old_val = nx_huge_pages_recovery_ratio;
	err = param_set_uint(val, kp);
	if (err)
		return err;

	if (READ_ONCE(nx_huge_pages) &&
	    !old_val && nx_huge_pages_recovery_ratio) {
		struct kvm *kvm;

		mutex_lock(&kvm_lock);

		list_for_each_entry(kvm, &vm_list, vm_list)
			wake_up_process(kvm->arch.nx_lpage_recovery_thread);

		mutex_unlock(&kvm_lock);
	}

	return err;
}

static void kvm_recover_nx_lpages(struct kvm *kvm)
{
	int rcu_idx;
	struct kvm_mmu_page *sp;
	unsigned int ratio;
	LIST_HEAD(invalid_list);
	ulong to_zap;

	rcu_idx = srcu_read_lock(&kvm->srcu);
	spin_lock(&kvm->mmu_lock);

	ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
	to_zap = ratio ? DIV_ROUND_UP(kvm->stat.nx_lpage_splits, ratio) : 0;
	while (to_zap && !list_empty(&kvm->arch.lpage_disallowed_mmu_pages)) {
		/*
		 * We use a separate list instead of just using active_mmu_pages
		 * because the number of lpage_disallowed pages is expected to
		 * be relatively small compared to the total.
		 */
		sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
				      struct kvm_mmu_page,
				      lpage_disallowed_link);
		WARN_ON_ONCE(!sp->lpage_disallowed);
		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
		WARN_ON_ONCE(sp->lpage_disallowed);

		if (!--to_zap || need_resched() || spin_needbreak(&kvm->mmu_lock)) {
			kvm_mmu_commit_zap_page(kvm, &invalid_list);
			if (to_zap)
				cond_resched_lock(&kvm->mmu_lock);
		}
	}

	spin_unlock(&kvm->mmu_lock);
	srcu_read_unlock(&kvm->srcu, rcu_idx);
}

static long get_nx_lpage_recovery_timeout(u64 start_time)
{
	return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio)
		? start_time + 60 * HZ - get_jiffies_64()
		: MAX_SCHEDULE_TIMEOUT;
}

static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
{
	u64 start_time;
	long remaining_time;

	while (true) {
		start_time = get_jiffies_64();
		remaining_time = get_nx_lpage_recovery_timeout(start_time);

		set_current_state(TASK_INTERRUPTIBLE);
		while (!kthread_should_stop() && remaining_time > 0) {
			schedule_timeout(remaining_time);
			remaining_time = get_nx_lpage_recovery_timeout(start_time);
			set_current_state(TASK_INTERRUPTIBLE);
		}

		set_current_state(TASK_RUNNING);

		if (kthread_should_stop())
			return 0;

		kvm_recover_nx_lpages(kvm);
	}
}

int kvm_mmu_post_init_vm(struct kvm *kvm)
{
	int err;

	err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
					  "kvm-nx-lpage-recovery",
					  &kvm->arch.nx_lpage_recovery_thread);
	if (!err)
		kthread_unpark(kvm->arch.nx_lpage_recovery_thread);

	return err;
}

void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
{
	if (kvm->arch.nx_lpage_recovery_thread)
		kthread_stop(kvm->arch.nx_lpage_recovery_thread);
}