mmu.c 167.6 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
A
Avi Kivity 已提交
2 3 4 5 6 7 8 9 10
/*
 * Kernel-based Virtual Machine driver for Linux
 *
 * This module enables machines with Intel VT-x extensions to run virtual
 * machines without emulation or binary translation.
 *
 * MMU support
 *
 * Copyright (C) 2006 Qumranet, Inc.
N
Nicolas Kaiser 已提交
11
 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
A
Avi Kivity 已提交
12 13 14 15 16
 *
 * Authors:
 *   Yaniv Kamay  <yaniv@qumranet.com>
 *   Avi Kivity   <avi@qumranet.com>
 */
A
Avi Kivity 已提交
17

18
#include "irq.h"
19
#include "ioapic.h"
20
#include "mmu.h"
21
#include "mmu_internal.h"
22
#include "tdp_mmu.h"
23
#include "x86.h"
A
Avi Kivity 已提交
24
#include "kvm_cache_regs.h"
25
#include "kvm_emulate.h"
26
#include "cpuid.h"
27
#include "spte.h"
A
Avi Kivity 已提交
28

29
#include <linux/kvm_host.h>
A
Avi Kivity 已提交
30 31 32 33
#include <linux/types.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/highmem.h>
34 35
#include <linux/moduleparam.h>
#include <linux/export.h>
36
#include <linux/swap.h>
M
Marcelo Tosatti 已提交
37
#include <linux/hugetlb.h>
38
#include <linux/compiler.h>
39
#include <linux/srcu.h>
40
#include <linux/slab.h>
41
#include <linux/sched/signal.h>
42
#include <linux/uaccess.h>
43
#include <linux/hash.h>
44
#include <linux/kern_levels.h>
45
#include <linux/kthread.h>
A
Avi Kivity 已提交
46

A
Avi Kivity 已提交
47
#include <asm/page.h>
48
#include <asm/memtype.h>
A
Avi Kivity 已提交
49
#include <asm/cmpxchg.h>
50
#include <asm/io.h>
51
#include <asm/set_memory.h>
52
#include <asm/vmx.h>
53
#include <asm/kvm_page_track.h>
54
#include "trace.h"
A
Avi Kivity 已提交
55

56 57
#include "paging.h"

P
Paolo Bonzini 已提交
58 59
extern bool itlb_multihit_kvm_mitigation;

60
int __read_mostly nx_huge_pages = -1;
61
static uint __read_mostly nx_huge_pages_recovery_period_ms;
62 63 64 65
#ifdef CONFIG_PREEMPT_RT
/* Recovery can cause latency spikes, disable it for PREEMPT_RT.  */
static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
#else
66
static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
67
#endif
P
Paolo Bonzini 已提交
68 69

static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
70
static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp);
P
Paolo Bonzini 已提交
71

72
static const struct kernel_param_ops nx_huge_pages_ops = {
P
Paolo Bonzini 已提交
73 74 75 76
	.set = set_nx_huge_pages,
	.get = param_get_bool,
};

77 78
static const struct kernel_param_ops nx_huge_pages_recovery_param_ops = {
	.set = set_nx_huge_pages_recovery_param,
79 80 81
	.get = param_get_uint,
};

P
Paolo Bonzini 已提交
82 83
module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
__MODULE_PARM_TYPE(nx_huge_pages, "bool");
84
module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_param_ops,
85 86
		&nx_huge_pages_recovery_ratio, 0644);
__MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
87 88 89
module_param_cb(nx_huge_pages_recovery_period_ms, &nx_huge_pages_recovery_param_ops,
		&nx_huge_pages_recovery_period_ms, 0644);
__MODULE_PARM_TYPE(nx_huge_pages_recovery_period_ms, "uint");
P
Paolo Bonzini 已提交
90

91 92 93
static bool __read_mostly force_flush_and_sync_on_reuse;
module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644);

94 95 96 97 98 99 100
/*
 * When setting this variable to true it enables Two-Dimensional-Paging
 * where the hardware walks 2 page tables:
 * 1. the guest-virtual to guest-physical
 * 2. while doing 1. it walks guest-physical to host-physical
 * If the hardware supports that we don't need to do shadow paging.
 */
101
bool tdp_enabled = false;
102

103
static int max_huge_page_level __read_mostly;
104
static int tdp_root_level __read_mostly;
105
static int max_tdp_level __read_mostly;
106

107 108 109 110
enum {
	AUDIT_PRE_PAGE_FAULT,
	AUDIT_POST_PAGE_FAULT,
	AUDIT_PRE_PTE_WRITE,
111 112 113
	AUDIT_POST_PTE_WRITE,
	AUDIT_PRE_SYNC,
	AUDIT_POST_SYNC
114
};
115 116

#ifdef MMU_DEBUG
117
bool dbg = 0;
118
module_param(dbg, bool, 0644);
119
#endif
A
Avi Kivity 已提交
120

121 122
#define PTE_PREFETCH_NUM		8

A
Avi Kivity 已提交
123 124 125
#define PT32_LEVEL_BITS 10

#define PT32_LEVEL_SHIFT(level) \
M
Mike Day 已提交
126
		(PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
A
Avi Kivity 已提交
127

128 129 130
#define PT32_LVL_OFFSET_MASK(level) \
	(PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
131 132 133 134 135 136 137 138

#define PT32_INDEX(address, level)\
	(((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))


#define PT32_BASE_ADDR_MASK PAGE_MASK
#define PT32_DIR_BASE_ADDR_MASK \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
139 140 141
#define PT32_LVL_ADDR_MASK(level) \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
					    * PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
142

143 144
#include <trace/events/kvm.h>

145
/* make pte_list_desc fit well in cache lines */
146
#define PTE_LIST_EXT 14
147

148 149 150 151 152
/*
 * Slight optimization of cacheline layout, by putting `more' and `spte_count'
 * at the start; then accessing it will only use one single cacheline for
 * either full (entries==PTE_LIST_EXT) case or entries<=6.
 */
153 154
struct pte_list_desc {
	struct pte_list_desc *more;
155 156 157 158 159 160
	/*
	 * Stores number of entries stored in the pte_list_desc.  No need to be
	 * u64 but just for easier alignment.  When PTE_LIST_EXT, means full.
	 */
	u64 spte_count;
	u64 *sptes[PTE_LIST_EXT];
161 162
};

163 164 165 166
struct kvm_shadow_walk_iterator {
	u64 addr;
	hpa_t shadow_addr;
	u64 *sptep;
167
	int level;
168 169 170
	unsigned index;
};

171 172 173 174 175 176 177
#define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker)     \
	for (shadow_walk_init_using_root(&(_walker), (_vcpu),              \
					 (_root), (_addr));                \
	     shadow_walk_okay(&(_walker));			           \
	     shadow_walk_next(&(_walker)))

#define for_each_shadow_entry(_vcpu, _addr, _walker)            \
178 179 180 181
	for (shadow_walk_init(&(_walker), _vcpu, _addr);	\
	     shadow_walk_okay(&(_walker));			\
	     shadow_walk_next(&(_walker)))

182 183 184 185 186 187
#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)	\
	for (shadow_walk_init(&(_walker), _vcpu, _addr);		\
	     shadow_walk_okay(&(_walker)) &&				\
		({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });	\
	     __shadow_walk_next(&(_walker), spte))

188
static struct kmem_cache *pte_list_desc_cache;
189
struct kmem_cache *mmu_page_header_cache;
190
static struct percpu_counter kvm_total_used_mmu_pages;
191

192
static void mmu_spte_set(u64 *sptep, u64 spte);
193 194
static union kvm_mmu_page_role
kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
195

196 197 198 199 200 201
struct kvm_mmu_role_regs {
	const unsigned long cr0;
	const unsigned long cr4;
	const u64 efer;
};

202 203 204
#define CREATE_TRACE_POINTS
#include "mmutrace.h"

205 206 207 208 209 210
/*
 * Yes, lot's of underscores.  They're a hint that you probably shouldn't be
 * reading from the role_regs.  Once the mmu_role is constructed, it becomes
 * the single source of truth for the MMU's state.
 */
#define BUILD_MMU_ROLE_REGS_ACCESSOR(reg, name, flag)			\
211
static inline bool __maybe_unused ____is_##reg##_##name(struct kvm_mmu_role_regs *regs)\
212 213 214 215 216 217 218 219 220 221 222 223 224 225
{									\
	return !!(regs->reg & flag);					\
}
BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, pg, X86_CR0_PG);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, wp, X86_CR0_WP);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pse, X86_CR4_PSE);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pae, X86_CR4_PAE);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smep, X86_CR4_SMEP);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smap, X86_CR4_SMAP);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pke, X86_CR4_PKE);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, la57, X86_CR4_LA57);
BUILD_MMU_ROLE_REGS_ACCESSOR(efer, nx, EFER_NX);
BUILD_MMU_ROLE_REGS_ACCESSOR(efer, lma, EFER_LMA);

226 227 228 229 230 231 232
/*
 * The MMU itself (with a valid role) is the single source of truth for the
 * MMU.  Do not use the regs used to build the MMU/role, nor the vCPU.  The
 * regs don't account for dependencies, e.g. clearing CR4 bits if CR0.PG=1,
 * and the vCPU may be incorrect/irrelevant.
 */
#define BUILD_MMU_ROLE_ACCESSOR(base_or_ext, reg, name)		\
233
static inline bool __maybe_unused is_##reg##_##name(struct kvm_mmu *mmu)	\
234 235 236 237 238 239 240 241 242 243 244 245 246
{								\
	return !!(mmu->mmu_role. base_or_ext . reg##_##name);	\
}
BUILD_MMU_ROLE_ACCESSOR(ext,  cr0, pg);
BUILD_MMU_ROLE_ACCESSOR(base, cr0, wp);
BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, pse);
BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, pae);
BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, smep);
BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, smap);
BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, pke);
BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, la57);
BUILD_MMU_ROLE_ACCESSOR(base, efer, nx);

247 248 249 250 251 252 253 254 255 256
static struct kvm_mmu_role_regs vcpu_to_role_regs(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu_role_regs regs = {
		.cr0 = kvm_read_cr0_bits(vcpu, KVM_MMU_CR0_ROLE_BITS),
		.cr4 = kvm_read_cr4_bits(vcpu, KVM_MMU_CR4_ROLE_BITS),
		.efer = vcpu->arch.efer,
	};

	return regs;
}
257

258 259 260 261 262 263 264 265 266 267 268 269
static int role_regs_to_root_level(struct kvm_mmu_role_regs *regs)
{
	if (!____is_cr0_pg(regs))
		return 0;
	else if (____is_efer_lma(regs))
		return ____is_cr4_la57(regs) ? PT64_ROOT_5LEVEL :
					       PT64_ROOT_4LEVEL;
	else if (____is_cr4_pae(regs))
		return PT32E_ROOT_LEVEL;
	else
		return PT32_ROOT_LEVEL;
}
270 271 272

static inline bool kvm_available_flush_tlb_with_range(void)
{
273
	return kvm_x86_ops.tlb_remote_flush_with_range;
274 275 276 277 278 279 280
}

static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
		struct kvm_tlb_range *range)
{
	int ret = -ENOTSUPP;

281
	if (range && kvm_x86_ops.tlb_remote_flush_with_range)
282
		ret = static_call(kvm_x86_tlb_remote_flush_with_range)(kvm, range);
283 284 285 286 287

	if (ret)
		kvm_flush_remote_tlbs(kvm);
}

288
void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
289 290 291 292 293 294 295 296 297 298
		u64 start_gfn, u64 pages)
{
	struct kvm_tlb_range range;

	range.start_gfn = start_gfn;
	range.pages = pages;

	kvm_flush_remote_tlbs_with_range(kvm, &range);
}

299 300 301
static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
			   unsigned int access)
{
302
	u64 spte = make_mmio_spte(vcpu, gfn, access);
303

304 305
	trace_mark_mmio_spte(sptep, gfn, spte);
	mmu_spte_set(sptep, spte);
306 307 308 309
}

static gfn_t get_mmio_spte_gfn(u64 spte)
{
310
	u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
311

312
	gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)
313 314 315
	       & shadow_nonpresent_or_rsvd_mask;

	return gpa >> PAGE_SHIFT;
316 317 318 319
}

static unsigned get_mmio_spte_access(u64 spte)
{
320
	return spte & shadow_mmio_access_mask;
321 322
}

323
static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
324
{
325
	u64 kvm_gen, spte_gen, gen;
326

327 328 329
	gen = kvm_vcpu_memslots(vcpu)->generation;
	if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
		return false;
330

331
	kvm_gen = gen & MMIO_SPTE_GEN_MASK;
332 333 334 335
	spte_gen = get_mmio_spte_generation(spte);

	trace_check_mmio_spte(spte, kvm_gen, spte_gen);
	return likely(kvm_gen == spte_gen);
336 337
}

338 339 340 341 342 343
static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
                                  struct x86_exception *exception)
{
        return gpa;
}

A
Avi Kivity 已提交
344 345 346 347 348
static int is_cpuid_PSE36(void)
{
	return 1;
}

349 350 351 352 353 354 355
static gfn_t pse36_gfn_delta(u32 gpte)
{
	int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;

	return (gpte & PT32_DIR_PSE36_MASK) << shift;
}

356
#ifdef CONFIG_X86_64
A
Avi Kivity 已提交
357
static void __set_spte(u64 *sptep, u64 spte)
358
{
359
	WRITE_ONCE(*sptep, spte);
360 361
}

362
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
363
{
364
	WRITE_ONCE(*sptep, spte);
365 366 367 368 369 370
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	return xchg(sptep, spte);
}
371 372 373

static u64 __get_spte_lockless(u64 *sptep)
{
374
	return READ_ONCE(*sptep);
375
}
376
#else
377 378 379 380 381 382 383
union split_spte {
	struct {
		u32 spte_low;
		u32 spte_high;
	};
	u64 spte;
};
384

385 386
static void count_spte_clear(u64 *sptep, u64 spte)
{
387
	struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
388 389 390 391 392 393 394 395 396

	if (is_shadow_present_pte(spte))
		return;

	/* Ensure the spte is completely set before we increase the count */
	smp_wmb();
	sp->clear_spte_count++;
}

397 398 399
static void __set_spte(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;
400

401 402 403 404 405 406 407 408 409 410 411 412
	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	ssptep->spte_high = sspte.spte_high;

	/*
	 * If we map the spte from nonpresent to present, We should store
	 * the high bits firstly, then set present bit, so cpu can not
	 * fetch this spte while we are setting the spte.
	 */
	smp_wmb();

413
	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
414 415
}

416 417 418 419 420 421 422
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

423
	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
424 425 426 427 428 429 430 431

	/*
	 * If we map the spte from present to nonpresent, we should clear
	 * present bit firstly to avoid vcpu fetch the old high bits.
	 */
	smp_wmb();

	ssptep->spte_high = sspte.spte_high;
432
	count_spte_clear(sptep, spte);
433 434 435 436 437 438 439 440 441 442 443
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte, orig;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	/* xchg acts as a barrier before the setting of the high bits */
	orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
444 445
	orig.spte_high = ssptep->spte_high;
	ssptep->spte_high = sspte.spte_high;
446
	count_spte_clear(sptep, spte);
447 448 449

	return orig.spte;
}
450 451 452

/*
 * The idea using the light way get the spte on x86_32 guest is from
453
 * gup_get_pte (mm/gup.c).
454 455 456 457 458 459 460 461 462 463 464 465 466 467
 *
 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
 * coalesces them and we are running out of the MMU lock.  Therefore
 * we need to protect against in-progress updates of the spte.
 *
 * Reading the spte while an update is in progress may get the old value
 * for the high part of the spte.  The race is fine for a present->non-present
 * change (because the high part of the spte is ignored for non-present spte),
 * but for a present->present change we must reread the spte.
 *
 * All such changes are done in two steps (present->non-present and
 * non-present->present), hence it is enough to count the number of
 * present->non-present updates: if it changed while reading the spte,
 * we might have hit the race.  This is done using clear_spte_count.
468 469 470
 */
static u64 __get_spte_lockless(u64 *sptep)
{
471
	struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
	union split_spte spte, *orig = (union split_spte *)sptep;
	int count;

retry:
	count = sp->clear_spte_count;
	smp_rmb();

	spte.spte_low = orig->spte_low;
	smp_rmb();

	spte.spte_high = orig->spte_high;
	smp_rmb();

	if (unlikely(spte.spte_low != orig->spte_low ||
	      count != sp->clear_spte_count))
		goto retry;

	return spte.spte;
}
491 492
#endif

493 494
static bool spte_has_volatile_bits(u64 spte)
{
495 496 497
	if (!is_shadow_present_pte(spte))
		return false;

498
	/*
499
	 * Always atomically update spte if it can be updated
500 501 502 503
	 * out of mmu-lock, it can ensure dirty bit is not lost,
	 * also, it can help us to get a stable is_writable_pte()
	 * to ensure tlb flush is not missed.
	 */
504 505
	if (spte_can_locklessly_be_made_writable(spte) ||
	    is_access_track_spte(spte))
506 507
		return true;

508
	if (spte_ad_enabled(spte)) {
509 510 511 512
		if ((spte & shadow_accessed_mask) == 0 ||
	    	    (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
			return true;
	}
513

514
	return false;
515 516
}

517 518 519 520 521 522 523 524 525 526 527 528
/* Rules for using mmu_spte_set:
 * Set the sptep from nonpresent to present.
 * Note: the sptep being assigned *must* be either not present
 * or in a state where the hardware will not attempt to update
 * the spte.
 */
static void mmu_spte_set(u64 *sptep, u64 new_spte)
{
	WARN_ON(is_shadow_present_pte(*sptep));
	__set_spte(sptep, new_spte);
}

529 530 531
/*
 * Update the SPTE (excluding the PFN), but do not track changes in its
 * accessed/dirty status.
532
 */
533
static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
534
{
535
	u64 old_spte = *sptep;
536

537
	WARN_ON(!is_shadow_present_pte(new_spte));
538

539 540
	if (!is_shadow_present_pte(old_spte)) {
		mmu_spte_set(sptep, new_spte);
541
		return old_spte;
542
	}
543

544
	if (!spte_has_volatile_bits(old_spte))
545
		__update_clear_spte_fast(sptep, new_spte);
546
	else
547
		old_spte = __update_clear_spte_slow(sptep, new_spte);
548

549 550
	WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));

551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
	return old_spte;
}

/* Rules for using mmu_spte_update:
 * Update the state bits, it means the mapped pfn is not changed.
 *
 * Whenever we overwrite a writable spte with a read-only one we
 * should flush remote TLBs. Otherwise rmap_write_protect
 * will find a read-only spte, even though the writable spte
 * might be cached on a CPU's TLB, the return value indicates this
 * case.
 *
 * Returns true if the TLB needs to be flushed
 */
static bool mmu_spte_update(u64 *sptep, u64 new_spte)
{
	bool flush = false;
	u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);

	if (!is_shadow_present_pte(old_spte))
		return false;

573 574
	/*
	 * For the spte updated out of mmu-lock is safe, since
575
	 * we always atomically update it, see the comments in
576 577
	 * spte_has_volatile_bits().
	 */
578
	if (spte_can_locklessly_be_made_writable(old_spte) &&
579
	      !is_writable_pte(new_spte))
580
		flush = true;
581

582
	/*
583
	 * Flush TLB when accessed/dirty states are changed in the page tables,
584 585 586
	 * to guarantee consistency between TLB and page tables.
	 */

587 588
	if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
		flush = true;
589
		kvm_set_pfn_accessed(spte_to_pfn(old_spte));
590 591 592 593
	}

	if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
		flush = true;
594
		kvm_set_pfn_dirty(spte_to_pfn(old_spte));
595
	}
596

597
	return flush;
598 599
}

600 601 602 603
/*
 * Rules for using mmu_spte_clear_track_bits:
 * It sets the sptep from present to nonpresent, and track the
 * state bits, it is used to clear the last level sptep.
604
 * Returns the old PTE.
605
 */
606
static int mmu_spte_clear_track_bits(struct kvm *kvm, u64 *sptep)
607
{
D
Dan Williams 已提交
608
	kvm_pfn_t pfn;
609
	u64 old_spte = *sptep;
610
	int level = sptep_to_sp(sptep)->role.level;
611 612

	if (!spte_has_volatile_bits(old_spte))
613
		__update_clear_spte_fast(sptep, 0ull);
614
	else
615
		old_spte = __update_clear_spte_slow(sptep, 0ull);
616

617
	if (!is_shadow_present_pte(old_spte))
618
		return old_spte;
619

620 621
	kvm_update_page_stats(kvm, level, -1);

622
	pfn = spte_to_pfn(old_spte);
623 624 625 626 627 628

	/*
	 * KVM does not hold the refcount of the page used by
	 * kvm mmu, before reclaiming the page, we should
	 * unmap it from mmu first.
	 */
629
	WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
630

631
	if (is_accessed_spte(old_spte))
632
		kvm_set_pfn_accessed(pfn);
633 634

	if (is_dirty_spte(old_spte))
635
		kvm_set_pfn_dirty(pfn);
636

637
	return old_spte;
638 639 640 641 642 643 644 645 646
}

/*
 * Rules for using mmu_spte_clear_no_track:
 * Directly clear spte without caring the state bits of sptep,
 * it is used to set the upper level spte.
 */
static void mmu_spte_clear_no_track(u64 *sptep)
{
647
	__update_clear_spte_fast(sptep, 0ull);
648 649
}

650 651 652 653 654
static u64 mmu_spte_get_lockless(u64 *sptep)
{
	return __get_spte_lockless(sptep);
}

655 656 657 658
/* Restore an acc-track PTE back to a regular PTE */
static u64 restore_acc_track_spte(u64 spte)
{
	u64 new_spte = spte;
659 660
	u64 saved_bits = (spte >> SHADOW_ACC_TRACK_SAVED_BITS_SHIFT)
			 & SHADOW_ACC_TRACK_SAVED_BITS_MASK;
661

662
	WARN_ON_ONCE(spte_ad_enabled(spte));
663 664 665
	WARN_ON_ONCE(!is_access_track_spte(spte));

	new_spte &= ~shadow_acc_track_mask;
666 667
	new_spte &= ~(SHADOW_ACC_TRACK_SAVED_BITS_MASK <<
		      SHADOW_ACC_TRACK_SAVED_BITS_SHIFT);
668 669 670 671 672
	new_spte |= saved_bits;

	return new_spte;
}

673 674 675 676 677 678 679 680
/* Returns the Accessed status of the PTE and resets it at the same time. */
static bool mmu_spte_age(u64 *sptep)
{
	u64 spte = mmu_spte_get_lockless(sptep);

	if (!is_accessed_spte(spte))
		return false;

681
	if (spte_ad_enabled(spte)) {
682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
		clear_bit((ffs(shadow_accessed_mask) - 1),
			  (unsigned long *)sptep);
	} else {
		/*
		 * Capture the dirty status of the page, so that it doesn't get
		 * lost when the SPTE is marked for access tracking.
		 */
		if (is_writable_pte(spte))
			kvm_set_pfn_dirty(spte_to_pfn(spte));

		spte = mark_spte_for_access_track(spte);
		mmu_spte_update_no_track(sptep, spte);
	}

	return true;
}

699 700
static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
{
701 702 703 704 705 706 707 708
	if (is_tdp_mmu(vcpu->arch.mmu)) {
		kvm_tdp_mmu_walk_lockless_begin();
	} else {
		/*
		 * Prevent page table teardown by making any free-er wait during
		 * kvm_flush_remote_tlbs() IPI to all active vcpus.
		 */
		local_irq_disable();
709

710 711 712 713 714 715
		/*
		 * Make sure a following spte read is not reordered ahead of the write
		 * to vcpu->mode.
		 */
		smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
	}
716 717 718 719
}

static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
{
720 721 722 723 724 725 726 727 728 729 730
	if (is_tdp_mmu(vcpu->arch.mmu)) {
		kvm_tdp_mmu_walk_lockless_end();
	} else {
		/*
		 * Make sure the write to vcpu->mode is not reordered in front of
		 * reads to sptes.  If it does, kvm_mmu_commit_zap_page() can see us
		 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
		 */
		smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
		local_irq_enable();
	}
731 732
}

733
static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect)
734
{
735 736
	int r;

737
	/* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */
738 739
	r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
				       1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM);
740
	if (r)
741
		return r;
742 743
	r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache,
				       PT64_ROOT_MAX_LEVEL);
744
	if (r)
745
		return r;
746
	if (maybe_indirect) {
747 748
		r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_gfn_array_cache,
					       PT64_ROOT_MAX_LEVEL);
749 750 751
		if (r)
			return r;
	}
752 753
	return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
					  PT64_ROOT_MAX_LEVEL);
754 755 756 757
}

static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
{
758 759 760 761
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache);
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache);
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_gfn_array_cache);
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
762 763
}

764
static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
765
{
766
	return kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
767 768
}

769
static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
770
{
771
	kmem_cache_free(pte_list_desc_cache, pte_list_desc);
772 773
}

774 775 776 777 778 779 780 781 782 783
static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
{
	if (!sp->role.direct)
		return sp->gfns[index];

	return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
}

static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
{
784
	if (!sp->role.direct) {
785
		sp->gfns[index] = gfn;
786 787 788 789 790 791 792 793
		return;
	}

	if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
		pr_err_ratelimited("gfn mismatch under direct page %llx "
				   "(expected %llx, got %llx)\n",
				   sp->gfn,
				   kvm_mmu_page_get_gfn(sp, index), gfn);
794 795
}

M
Marcelo Tosatti 已提交
796
/*
797 798
 * Return the pointer to the large page information for a given gfn,
 * handling slots that are not large page aligned.
M
Marcelo Tosatti 已提交
799
 */
800
static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
801
		const struct kvm_memory_slot *slot, int level)
M
Marcelo Tosatti 已提交
802 803 804
{
	unsigned long idx;

805
	idx = gfn_to_index(gfn, slot->base_gfn, level);
806
	return &slot->arch.lpage_info[level - 2][idx];
M
Marcelo Tosatti 已提交
807 808
}

809
static void update_gfn_disallow_lpage_count(const struct kvm_memory_slot *slot,
810 811 812 813 814
					    gfn_t gfn, int count)
{
	struct kvm_lpage_info *linfo;
	int i;

815
	for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
816 817 818 819 820 821
		linfo = lpage_info_slot(gfn, slot, i);
		linfo->disallow_lpage += count;
		WARN_ON(linfo->disallow_lpage < 0);
	}
}

822
void kvm_mmu_gfn_disallow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn)
823 824 825 826
{
	update_gfn_disallow_lpage_count(slot, gfn, 1);
}

827
void kvm_mmu_gfn_allow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn)
828 829 830 831
{
	update_gfn_disallow_lpage_count(slot, gfn, -1);
}

832
static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
M
Marcelo Tosatti 已提交
833
{
834
	struct kvm_memslots *slots;
835
	struct kvm_memory_slot *slot;
836
	gfn_t gfn;
M
Marcelo Tosatti 已提交
837

838
	kvm->arch.indirect_shadow_pages++;
839
	gfn = sp->gfn;
840 841
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
842 843

	/* the non-leaf shadow pages are keeping readonly. */
844
	if (sp->role.level > PG_LEVEL_4K)
845 846 847
		return kvm_slot_page_track_add_page(kvm, slot, gfn,
						    KVM_PAGE_TRACK_WRITE);

848
	kvm_mmu_gfn_disallow_lpage(slot, gfn);
M
Marcelo Tosatti 已提交
849 850
}

851
void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
P
Paolo Bonzini 已提交
852 853 854 855 856
{
	if (sp->lpage_disallowed)
		return;

	++kvm->stat.nx_lpage_splits;
857 858
	list_add_tail(&sp->lpage_disallowed_link,
		      &kvm->arch.lpage_disallowed_mmu_pages);
P
Paolo Bonzini 已提交
859 860 861
	sp->lpage_disallowed = true;
}

862
static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
M
Marcelo Tosatti 已提交
863
{
864
	struct kvm_memslots *slots;
865
	struct kvm_memory_slot *slot;
866
	gfn_t gfn;
M
Marcelo Tosatti 已提交
867

868
	kvm->arch.indirect_shadow_pages--;
869
	gfn = sp->gfn;
870 871
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
872
	if (sp->role.level > PG_LEVEL_4K)
873 874 875
		return kvm_slot_page_track_remove_page(kvm, slot, gfn,
						       KVM_PAGE_TRACK_WRITE);

876
	kvm_mmu_gfn_allow_lpage(slot, gfn);
M
Marcelo Tosatti 已提交
877 878
}

879
void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
P
Paolo Bonzini 已提交
880 881 882
{
	--kvm->stat.nx_lpage_splits;
	sp->lpage_disallowed = false;
883
	list_del(&sp->lpage_disallowed_link);
P
Paolo Bonzini 已提交
884 885
}

886 887 888
static struct kvm_memory_slot *
gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
			    bool no_dirty_log)
M
Marcelo Tosatti 已提交
889 890
{
	struct kvm_memory_slot *slot;
891

892
	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
893 894
	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
		return NULL;
895
	if (no_dirty_log && kvm_slot_dirty_track_enabled(slot))
896
		return NULL;
897 898 899 900

	return slot;
}

901
/*
902
 * About rmap_head encoding:
903
 *
904 905
 * If the bit zero of rmap_head->val is clear, then it points to the only spte
 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
906
 * pte_list_desc containing more mappings.
907 908 909 910
 */

/*
 * Returns the number of pointers in the rmap chain, not counting the new one.
911
 */
912
static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
913
			struct kvm_rmap_head *rmap_head)
914
{
915
	struct pte_list_desc *desc;
916
	int count = 0;
917

918
	if (!rmap_head->val) {
919
		rmap_printk("%p %llx 0->1\n", spte, *spte);
920 921
		rmap_head->val = (unsigned long)spte;
	} else if (!(rmap_head->val & 1)) {
922
		rmap_printk("%p %llx 1->many\n", spte, *spte);
923
		desc = mmu_alloc_pte_list_desc(vcpu);
924
		desc->sptes[0] = (u64 *)rmap_head->val;
A
Avi Kivity 已提交
925
		desc->sptes[1] = spte;
926
		desc->spte_count = 2;
927
		rmap_head->val = (unsigned long)desc | 1;
928
		++count;
929
	} else {
930
		rmap_printk("%p %llx many->many\n", spte, *spte);
931
		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
932
		while (desc->spte_count == PTE_LIST_EXT) {
933
			count += PTE_LIST_EXT;
934 935 936
			if (!desc->more) {
				desc->more = mmu_alloc_pte_list_desc(vcpu);
				desc = desc->more;
937
				desc->spte_count = 0;
938 939
				break;
			}
940 941
			desc = desc->more;
		}
942 943
		count += desc->spte_count;
		desc->sptes[desc->spte_count++] = spte;
944
	}
945
	return count;
946 947
}

948
static void
949 950 951
pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
			   struct pte_list_desc *desc, int i,
			   struct pte_list_desc *prev_desc)
952
{
953
	int j = desc->spte_count - 1;
954

A
Avi Kivity 已提交
955 956
	desc->sptes[i] = desc->sptes[j];
	desc->sptes[j] = NULL;
957 958
	desc->spte_count--;
	if (desc->spte_count)
959 960
		return;
	if (!prev_desc && !desc->more)
961
		rmap_head->val = 0;
962 963 964 965
	else
		if (prev_desc)
			prev_desc->more = desc->more;
		else
966
			rmap_head->val = (unsigned long)desc->more | 1;
967
	mmu_free_pte_list_desc(desc);
968 969
}

970
static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
971
{
972 973
	struct pte_list_desc *desc;
	struct pte_list_desc *prev_desc;
974 975
	int i;

976
	if (!rmap_head->val) {
977
		pr_err("%s: %p 0->BUG\n", __func__, spte);
978
		BUG();
979
	} else if (!(rmap_head->val & 1)) {
980
		rmap_printk("%p 1->0\n", spte);
981
		if ((u64 *)rmap_head->val != spte) {
982
			pr_err("%s:  %p 1->BUG\n", __func__, spte);
983 984
			BUG();
		}
985
		rmap_head->val = 0;
986
	} else {
987
		rmap_printk("%p many->many\n", spte);
988
		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
989 990
		prev_desc = NULL;
		while (desc) {
991
			for (i = 0; i < desc->spte_count; ++i) {
A
Avi Kivity 已提交
992
				if (desc->sptes[i] == spte) {
993 994
					pte_list_desc_remove_entry(rmap_head,
							desc, i, prev_desc);
995 996
					return;
				}
997
			}
998 999 1000
			prev_desc = desc;
			desc = desc->more;
		}
1001
		pr_err("%s: %p many->many\n", __func__, spte);
1002 1003 1004 1005
		BUG();
	}
}

1006 1007
static void pte_list_remove(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			    u64 *sptep)
1008
{
1009
	mmu_spte_clear_track_bits(kvm, sptep);
1010 1011 1012
	__pte_list_remove(sptep, rmap_head);
}

P
Peter Xu 已提交
1013
/* Return true if rmap existed, false otherwise */
1014
static bool pte_list_destroy(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
P
Peter Xu 已提交
1015 1016 1017 1018 1019 1020 1021 1022
{
	struct pte_list_desc *desc, *next;
	int i;

	if (!rmap_head->val)
		return false;

	if (!(rmap_head->val & 1)) {
1023
		mmu_spte_clear_track_bits(kvm, (u64 *)rmap_head->val);
P
Peter Xu 已提交
1024 1025 1026 1027 1028 1029 1030
		goto out;
	}

	desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);

	for (; desc; desc = next) {
		for (i = 0; i < desc->spte_count; i++)
1031
			mmu_spte_clear_track_bits(kvm, desc->sptes[i]);
P
Peter Xu 已提交
1032 1033 1034 1035 1036 1037 1038 1039 1040
		next = desc->more;
		mmu_free_pte_list_desc(desc);
	}
out:
	/* rmap_head is meaningless now, remember to reset it */
	rmap_head->val = 0;
	return true;
}

1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
unsigned int pte_list_count(struct kvm_rmap_head *rmap_head)
{
	struct pte_list_desc *desc;
	unsigned int count = 0;

	if (!rmap_head->val)
		return 0;
	else if (!(rmap_head->val & 1))
		return 1;

	desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);

	while (desc) {
		count += desc->spte_count;
		desc = desc->more;
	}

	return count;
}

1061 1062
static struct kvm_rmap_head *gfn_to_rmap(gfn_t gfn, int level,
					 const struct kvm_memory_slot *slot)
1063
{
1064
	unsigned long idx;
1065

1066
	idx = gfn_to_index(gfn, slot->base_gfn, level);
1067
	return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
1068 1069
}

1070 1071
static bool rmap_can_add(struct kvm_vcpu *vcpu)
{
1072
	struct kvm_mmu_memory_cache *mc;
1073

1074
	mc = &vcpu->arch.mmu_pte_list_desc_cache;
1075
	return kvm_mmu_memory_cache_nr_free_objects(mc);
1076 1077
}

1078 1079
static void rmap_remove(struct kvm *kvm, u64 *spte)
{
1080 1081
	struct kvm_memslots *slots;
	struct kvm_memory_slot *slot;
1082 1083
	struct kvm_mmu_page *sp;
	gfn_t gfn;
1084
	struct kvm_rmap_head *rmap_head;
1085

1086
	sp = sptep_to_sp(spte);
1087
	gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1088 1089

	/*
1090 1091 1092
	 * Unlike rmap_add, rmap_remove does not run in the context of a vCPU
	 * so we have to determine which memslots to use based on context
	 * information in sp->role.
1093 1094 1095 1096
	 */
	slots = kvm_memslots_for_spte_role(kvm, sp->role);

	slot = __gfn_to_memslot(slots, gfn);
1097
	rmap_head = gfn_to_rmap(gfn, sp->role.level, slot);
1098

1099
	__pte_list_remove(spte, rmap_head);
1100 1101
}

1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
/*
 * Used by the following functions to iterate through the sptes linked by a
 * rmap.  All fields are private and not assumed to be used outside.
 */
struct rmap_iterator {
	/* private fields */
	struct pte_list_desc *desc;	/* holds the sptep if not NULL */
	int pos;			/* index of the sptep */
};

/*
 * Iteration must be started by this function.  This should also be used after
 * removing/dropping sptes from the rmap link because in such cases the
M
Miaohe Lin 已提交
1115
 * information in the iterator may not be valid.
1116 1117 1118
 *
 * Returns sptep if found, NULL otherwise.
 */
1119 1120
static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
			   struct rmap_iterator *iter)
1121
{
1122 1123
	u64 *sptep;

1124
	if (!rmap_head->val)
1125 1126
		return NULL;

1127
	if (!(rmap_head->val & 1)) {
1128
		iter->desc = NULL;
1129 1130
		sptep = (u64 *)rmap_head->val;
		goto out;
1131 1132
	}

1133
	iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1134
	iter->pos = 0;
1135 1136 1137 1138
	sptep = iter->desc->sptes[iter->pos];
out:
	BUG_ON(!is_shadow_present_pte(*sptep));
	return sptep;
1139 1140 1141 1142 1143 1144 1145 1146 1147
}

/*
 * Must be used with a valid iterator: e.g. after rmap_get_first().
 *
 * Returns sptep if found, NULL otherwise.
 */
static u64 *rmap_get_next(struct rmap_iterator *iter)
{
1148 1149
	u64 *sptep;

1150 1151 1152 1153 1154
	if (iter->desc) {
		if (iter->pos < PTE_LIST_EXT - 1) {
			++iter->pos;
			sptep = iter->desc->sptes[iter->pos];
			if (sptep)
1155
				goto out;
1156 1157 1158 1159 1160 1161 1162
		}

		iter->desc = iter->desc->more;

		if (iter->desc) {
			iter->pos = 0;
			/* desc->sptes[0] cannot be NULL */
1163 1164
			sptep = iter->desc->sptes[iter->pos];
			goto out;
1165 1166 1167 1168
		}
	}

	return NULL;
1169 1170 1171
out:
	BUG_ON(!is_shadow_present_pte(*sptep));
	return sptep;
1172 1173
}

1174 1175
#define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)			\
	for (_spte_ = rmap_get_first(_rmap_head_, _iter_);		\
1176
	     _spte_; _spte_ = rmap_get_next(_iter_))
1177

1178
static void drop_spte(struct kvm *kvm, u64 *sptep)
1179
{
1180
	u64 old_spte = mmu_spte_clear_track_bits(kvm, sptep);
1181 1182

	if (is_shadow_present_pte(old_spte))
1183
		rmap_remove(kvm, sptep);
A
Avi Kivity 已提交
1184 1185
}

1186 1187 1188 1189

static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
{
	if (is_large_pte(*sptep)) {
1190
		WARN_ON(sptep_to_sp(sptep)->role.level == PG_LEVEL_4K);
1191 1192 1193 1194 1195 1196 1197 1198 1199
		drop_spte(kvm, sptep);
		return true;
	}

	return false;
}

static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
{
1200
	if (__drop_large_spte(vcpu->kvm, sptep)) {
1201
		struct kvm_mmu_page *sp = sptep_to_sp(sptep);
1202 1203 1204 1205

		kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
			KVM_PAGES_PER_HPAGE(sp->role.level));
	}
1206 1207 1208
}

/*
1209
 * Write-protect on the specified @sptep, @pt_protect indicates whether
1210
 * spte write-protection is caused by protecting shadow page table.
1211
 *
T
Tiejun Chen 已提交
1212
 * Note: write protection is difference between dirty logging and spte
1213 1214 1215 1216 1217
 * protection:
 * - for dirty logging, the spte can be set to writable at anytime if
 *   its dirty bitmap is properly set.
 * - for spte protection, the spte can be writable only after unsync-ing
 *   shadow page.
1218
 *
1219
 * Return true if tlb need be flushed.
1220
 */
1221
static bool spte_write_protect(u64 *sptep, bool pt_protect)
1222 1223 1224
{
	u64 spte = *sptep;

1225
	if (!is_writable_pte(spte) &&
1226
	      !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1227 1228
		return false;

1229
	rmap_printk("spte %p %llx\n", sptep, *sptep);
1230

1231
	if (pt_protect)
1232
		spte &= ~shadow_mmu_writable_mask;
1233
	spte = spte & ~PT_WRITABLE_MASK;
1234

1235
	return mmu_spte_update(sptep, spte);
1236 1237
}

1238 1239
static bool __rmap_write_protect(struct kvm *kvm,
				 struct kvm_rmap_head *rmap_head,
1240
				 bool pt_protect)
1241
{
1242 1243
	u64 *sptep;
	struct rmap_iterator iter;
1244
	bool flush = false;
1245

1246
	for_each_rmap_spte(rmap_head, &iter, sptep)
1247
		flush |= spte_write_protect(sptep, pt_protect);
1248

1249
	return flush;
1250 1251
}

1252
static bool spte_clear_dirty(u64 *sptep)
1253 1254 1255
{
	u64 spte = *sptep;

1256
	rmap_printk("spte %p %llx\n", sptep, *sptep);
1257

1258
	MMU_WARN_ON(!spte_ad_enabled(spte));
1259 1260 1261 1262
	spte &= ~shadow_dirty_mask;
	return mmu_spte_update(sptep, spte);
}

1263
static bool spte_wrprot_for_clear_dirty(u64 *sptep)
1264 1265 1266
{
	bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
					       (unsigned long *)sptep);
1267
	if (was_writable && !spte_ad_enabled(*sptep))
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
		kvm_set_pfn_dirty(spte_to_pfn(*sptep));

	return was_writable;
}

/*
 * Gets the GFN ready for another round of dirty logging by clearing the
 *	- D bit on ad-enabled SPTEs, and
 *	- W bit on ad-disabled SPTEs.
 * Returns true iff any D or W bits were cleared.
 */
1279
static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1280
			       const struct kvm_memory_slot *slot)
1281 1282 1283 1284 1285
{
	u64 *sptep;
	struct rmap_iterator iter;
	bool flush = false;

1286
	for_each_rmap_spte(rmap_head, &iter, sptep)
1287 1288
		if (spte_ad_need_write_protect(*sptep))
			flush |= spte_wrprot_for_clear_dirty(sptep);
1289
		else
1290
			flush |= spte_clear_dirty(sptep);
1291 1292 1293 1294

	return flush;
}

1295
/**
1296
 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1297 1298 1299 1300 1301
 * @kvm: kvm instance
 * @slot: slot to protect
 * @gfn_offset: start of the BITS_PER_LONG pages we care about
 * @mask: indicates which pages we should protect
 *
1302
 * Used when we do not need to care about huge page mappings.
1303
 */
1304
static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1305 1306
				     struct kvm_memory_slot *slot,
				     gfn_t gfn_offset, unsigned long mask)
1307
{
1308
	struct kvm_rmap_head *rmap_head;
1309

1310
	if (is_tdp_mmu_enabled(kvm))
1311 1312
		kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
				slot->base_gfn + gfn_offset, mask, true);
1313 1314 1315 1316

	if (!kvm_memslots_have_rmaps(kvm))
		return;

1317
	while (mask) {
1318 1319
		rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
					PG_LEVEL_4K, slot);
1320
		__rmap_write_protect(kvm, rmap_head, false);
M
Marcelo Tosatti 已提交
1321

1322 1323 1324
		/* clear the first set bit */
		mask &= mask - 1;
	}
1325 1326
}

1327
/**
1328 1329
 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
 * protect the page if the D-bit isn't supported.
1330 1331 1332 1333 1334 1335 1336
 * @kvm: kvm instance
 * @slot: slot to clear D-bit
 * @gfn_offset: start of the BITS_PER_LONG pages we care about
 * @mask: indicates which pages we should clear D-bit
 *
 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
 */
1337 1338 1339
static void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
					 struct kvm_memory_slot *slot,
					 gfn_t gfn_offset, unsigned long mask)
1340
{
1341
	struct kvm_rmap_head *rmap_head;
1342

1343
	if (is_tdp_mmu_enabled(kvm))
1344 1345
		kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
				slot->base_gfn + gfn_offset, mask, false);
1346 1347 1348 1349

	if (!kvm_memslots_have_rmaps(kvm))
		return;

1350
	while (mask) {
1351 1352
		rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
					PG_LEVEL_4K, slot);
1353
		__rmap_clear_dirty(kvm, rmap_head, slot);
1354 1355 1356 1357 1358 1359

		/* clear the first set bit */
		mask &= mask - 1;
	}
}

1360 1361 1362 1363 1364 1365 1366
/**
 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
 * PT level pages.
 *
 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
 * enable dirty logging for them.
 *
1367 1368
 * We need to care about huge page mappings: e.g. during dirty logging we may
 * have such mappings.
1369 1370 1371 1372 1373
 */
void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
				struct kvm_memory_slot *slot,
				gfn_t gfn_offset, unsigned long mask)
{
1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
	/*
	 * Huge pages are NOT write protected when we start dirty logging in
	 * initially-all-set mode; must write protect them here so that they
	 * are split to 4K on the first write.
	 *
	 * The gfn_offset is guaranteed to be aligned to 64, but the base_gfn
	 * of memslot has no such restriction, so the range can cross two large
	 * pages.
	 */
	if (kvm_dirty_log_manual_protect_and_init_set(kvm)) {
		gfn_t start = slot->base_gfn + gfn_offset + __ffs(mask);
		gfn_t end = slot->base_gfn + gfn_offset + __fls(mask);

		kvm_mmu_slot_gfn_write_protect(kvm, slot, start, PG_LEVEL_2M);

		/* Cross two large pages? */
		if (ALIGN(start << PAGE_SHIFT, PMD_SIZE) !=
		    ALIGN(end << PAGE_SHIFT, PMD_SIZE))
			kvm_mmu_slot_gfn_write_protect(kvm, slot, end,
						       PG_LEVEL_2M);
	}

	/* Now handle 4K PTEs.  */
1397 1398
	if (kvm_x86_ops.cpu_dirty_log_size)
		kvm_mmu_clear_dirty_pt_masked(kvm, slot, gfn_offset, mask);
1399 1400
	else
		kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1401 1402
}

1403 1404
int kvm_cpu_dirty_log_size(void)
{
1405
	return kvm_x86_ops.cpu_dirty_log_size;
1406 1407
}

1408
bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1409 1410
				    struct kvm_memory_slot *slot, u64 gfn,
				    int min_level)
1411
{
1412
	struct kvm_rmap_head *rmap_head;
1413
	int i;
1414
	bool write_protected = false;
1415

1416 1417
	if (kvm_memslots_have_rmaps(kvm)) {
		for (i = min_level; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
1418
			rmap_head = gfn_to_rmap(gfn, i, slot);
1419 1420
			write_protected |= __rmap_write_protect(kvm, rmap_head, true);
		}
1421 1422
	}

1423
	if (is_tdp_mmu_enabled(kvm))
1424
		write_protected |=
1425
			kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn, min_level);
1426

1427
	return write_protected;
1428 1429
}

1430 1431 1432 1433 1434
static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
{
	struct kvm_memory_slot *slot;

	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1435
	return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn, PG_LEVEL_4K);
1436 1437
}

1438
static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1439
			  const struct kvm_memory_slot *slot)
1440
{
1441
	return pte_list_destroy(kvm, rmap_head);
1442 1443
}

1444 1445 1446
static bool kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			    struct kvm_memory_slot *slot, gfn_t gfn, int level,
			    pte_t unused)
1447
{
1448
	return kvm_zap_rmapp(kvm, rmap_head, slot);
1449 1450
}

1451 1452 1453
static bool kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			      struct kvm_memory_slot *slot, gfn_t gfn, int level,
			      pte_t pte)
1454
{
1455 1456
	u64 *sptep;
	struct rmap_iterator iter;
1457
	bool need_flush = false;
1458
	u64 new_spte;
D
Dan Williams 已提交
1459
	kvm_pfn_t new_pfn;
1460

1461 1462
	WARN_ON(pte_huge(pte));
	new_pfn = pte_pfn(pte);
1463

1464
restart:
1465
	for_each_rmap_spte(rmap_head, &iter, sptep) {
1466
		rmap_printk("spte %p %llx gfn %llx (%d)\n",
1467
			    sptep, *sptep, gfn, level);
1468

1469
		need_flush = true;
1470

1471
		if (pte_write(pte)) {
1472
			pte_list_remove(kvm, rmap_head, sptep);
1473
			goto restart;
1474
		} else {
1475 1476
			new_spte = kvm_mmu_changed_pte_notifier_make_spte(
					*sptep, new_pfn);
1477

1478
			mmu_spte_clear_track_bits(kvm, sptep);
1479
			mmu_spte_set(sptep, new_spte);
1480 1481
		}
	}
1482

1483 1484
	if (need_flush && kvm_available_flush_tlb_with_range()) {
		kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
1485
		return false;
1486 1487
	}

1488
	return need_flush;
1489 1490
}

1491 1492
struct slot_rmap_walk_iterator {
	/* input fields. */
1493
	const struct kvm_memory_slot *slot;
1494 1495 1496 1497 1498 1499 1500
	gfn_t start_gfn;
	gfn_t end_gfn;
	int start_level;
	int end_level;

	/* output fields. */
	gfn_t gfn;
1501
	struct kvm_rmap_head *rmap;
1502 1503 1504
	int level;

	/* private field. */
1505
	struct kvm_rmap_head *end_rmap;
1506 1507 1508 1509 1510 1511 1512
};

static void
rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
{
	iterator->level = level;
	iterator->gfn = iterator->start_gfn;
1513 1514
	iterator->rmap = gfn_to_rmap(iterator->gfn, level, iterator->slot);
	iterator->end_rmap = gfn_to_rmap(iterator->end_gfn, level, iterator->slot);
1515 1516 1517 1518
}

static void
slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1519
		    const struct kvm_memory_slot *slot, int start_level,
1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
		    int end_level, gfn_t start_gfn, gfn_t end_gfn)
{
	iterator->slot = slot;
	iterator->start_level = start_level;
	iterator->end_level = end_level;
	iterator->start_gfn = start_gfn;
	iterator->end_gfn = end_gfn;

	rmap_walk_init_level(iterator, iterator->start_level);
}

static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
{
	return !!iterator->rmap;
}

static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
{
	if (++iterator->rmap <= iterator->end_rmap) {
		iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
		return;
	}

	if (++iterator->level > iterator->end_level) {
		iterator->rmap = NULL;
		return;
	}

	rmap_walk_init_level(iterator, iterator->level);
}

#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,	\
	   _start_gfn, _end_gfn, _iter_)				\
	for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,		\
				 _end_level_, _start_gfn, _end_gfn);	\
	     slot_rmap_walk_okay(_iter_);				\
	     slot_rmap_walk_next(_iter_))

1558 1559 1560
typedef bool (*rmap_handler_t)(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			       struct kvm_memory_slot *slot, gfn_t gfn,
			       int level, pte_t pte);
1561

1562 1563 1564
static __always_inline bool kvm_handle_gfn_range(struct kvm *kvm,
						 struct kvm_gfn_range *range,
						 rmap_handler_t handler)
1565
{
1566
	struct slot_rmap_walk_iterator iterator;
1567
	bool ret = false;
1568

1569 1570 1571 1572
	for_each_slot_rmap_range(range->slot, PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL,
				 range->start, range->end - 1, &iterator)
		ret |= handler(kvm, iterator.rmap, range->slot, iterator.gfn,
			       iterator.level, range->pte);
1573

1574
	return ret;
1575 1576
}

1577
bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
1578
{
1579
	bool flush = false;
1580

1581 1582
	if (kvm_memslots_have_rmaps(kvm))
		flush = kvm_handle_gfn_range(kvm, range, kvm_unmap_rmapp);
1583

1584
	if (is_tdp_mmu_enabled(kvm))
1585
		flush = kvm_tdp_mmu_unmap_gfn_range(kvm, range, flush);
1586

1587
	return flush;
1588 1589
}

1590
bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1591
{
1592
	bool flush = false;
1593

1594 1595
	if (kvm_memslots_have_rmaps(kvm))
		flush = kvm_handle_gfn_range(kvm, range, kvm_set_pte_rmapp);
1596

1597
	if (is_tdp_mmu_enabled(kvm))
1598
		flush |= kvm_tdp_mmu_set_spte_gfn(kvm, range);
1599

1600
	return flush;
1601 1602
}

1603 1604 1605
static bool kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			  struct kvm_memory_slot *slot, gfn_t gfn, int level,
			  pte_t unused)
1606
{
1607
	u64 *sptep;
1608
	struct rmap_iterator iter;
1609 1610
	int young = 0;

1611 1612
	for_each_rmap_spte(rmap_head, &iter, sptep)
		young |= mmu_spte_age(sptep);
1613

1614 1615 1616
	return young;
}

1617 1618 1619
static bool kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			       struct kvm_memory_slot *slot, gfn_t gfn,
			       int level, pte_t unused)
A
Andrea Arcangeli 已提交
1620
{
1621 1622
	u64 *sptep;
	struct rmap_iterator iter;
A
Andrea Arcangeli 已提交
1623

1624 1625
	for_each_rmap_spte(rmap_head, &iter, sptep)
		if (is_accessed_spte(*sptep))
1626 1627
			return true;
	return false;
A
Andrea Arcangeli 已提交
1628 1629
}

1630 1631
#define RMAP_RECYCLE_THRESHOLD 1000

1632 1633
static void rmap_add(struct kvm_vcpu *vcpu, struct kvm_memory_slot *slot,
		     u64 *spte, gfn_t gfn)
1634
{
1635
	struct kvm_mmu_page *sp;
1636 1637
	struct kvm_rmap_head *rmap_head;
	int rmap_count;
1638

1639
	sp = sptep_to_sp(spte);
1640
	kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1641
	rmap_head = gfn_to_rmap(gfn, sp->role.level, slot);
1642
	rmap_count = pte_list_add(vcpu, spte, rmap_head);
1643

1644 1645 1646 1647 1648
	if (rmap_count > RMAP_RECYCLE_THRESHOLD) {
		kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, __pte(0));
		kvm_flush_remote_tlbs_with_address(
				vcpu->kvm, sp->gfn, KVM_PAGES_PER_HPAGE(sp->role.level));
	}
1649 1650
}

1651
bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1652
{
1653
	bool young = false;
1654

1655 1656
	if (kvm_memslots_have_rmaps(kvm))
		young = kvm_handle_gfn_range(kvm, range, kvm_age_rmapp);
1657

1658
	if (is_tdp_mmu_enabled(kvm))
1659
		young |= kvm_tdp_mmu_age_gfn_range(kvm, range);
1660 1661

	return young;
1662 1663
}

1664
bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
A
Andrea Arcangeli 已提交
1665
{
1666
	bool young = false;
1667

1668 1669
	if (kvm_memslots_have_rmaps(kvm))
		young = kvm_handle_gfn_range(kvm, range, kvm_test_age_rmapp);
1670

1671
	if (is_tdp_mmu_enabled(kvm))
1672
		young |= kvm_tdp_mmu_test_age_gfn(kvm, range);
1673 1674

	return young;
A
Andrea Arcangeli 已提交
1675 1676
}

1677
#ifdef MMU_DEBUG
1678
static int is_empty_shadow_page(u64 *spt)
A
Avi Kivity 已提交
1679
{
1680 1681 1682
	u64 *pos;
	u64 *end;

1683
	for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1684
		if (is_shadow_present_pte(*pos)) {
1685
			printk(KERN_ERR "%s: %p %llx\n", __func__,
1686
			       pos, *pos);
A
Avi Kivity 已提交
1687
			return 0;
1688
		}
A
Avi Kivity 已提交
1689 1690
	return 1;
}
1691
#endif
A
Avi Kivity 已提交
1692

1693 1694 1695 1696 1697 1698
/*
 * This value is the sum of all of the kvm instances's
 * kvm->arch.n_used_mmu_pages values.  We need a global,
 * aggregate version in order to make the slab shrinker
 * faster
 */
1699
static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, long nr)
1700 1701 1702 1703 1704
{
	kvm->arch.n_used_mmu_pages += nr;
	percpu_counter_add(&kvm_total_used_mmu_pages, nr);
}

1705
static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1706
{
1707
	MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1708
	hlist_del(&sp->hash_link);
1709 1710
	list_del(&sp->link);
	free_page((unsigned long)sp->spt);
1711 1712
	if (!sp->role.direct)
		free_page((unsigned long)sp->gfns);
1713
	kmem_cache_free(mmu_page_header_cache, sp);
1714 1715
}

1716 1717
static unsigned kvm_page_table_hashfn(gfn_t gfn)
{
1718
	return hash_64(gfn, KVM_MMU_HASH_SHIFT);
1719 1720
}

1721
static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1722
				    struct kvm_mmu_page *sp, u64 *parent_pte)
1723 1724 1725 1726
{
	if (!parent_pte)
		return;

1727
	pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1728 1729
}

1730
static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1731 1732
				       u64 *parent_pte)
{
1733
	__pte_list_remove(parent_pte, &sp->parent_ptes);
1734 1735
}

1736 1737 1738 1739
static void drop_parent_pte(struct kvm_mmu_page *sp,
			    u64 *parent_pte)
{
	mmu_page_remove_parent_pte(sp, parent_pte);
1740
	mmu_spte_clear_no_track(parent_pte);
1741 1742
}

1743
static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
M
Marcelo Tosatti 已提交
1744
{
1745
	struct kvm_mmu_page *sp;
1746

1747 1748
	sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
	sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache);
1749
	if (!direct)
1750
		sp->gfns = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_gfn_array_cache);
1751
	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1752 1753 1754 1755 1756 1757

	/*
	 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
	 * depends on valid pages being added to the head of the list.  See
	 * comments in kvm_zap_obsolete_pages().
	 */
1758
	sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
1759 1760 1761
	list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
	kvm_mod_used_mmu_pages(vcpu->kvm, +1);
	return sp;
M
Marcelo Tosatti 已提交
1762 1763
}

1764
static void mark_unsync(u64 *spte);
1765
static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1766
{
1767 1768 1769 1770 1771 1772
	u64 *sptep;
	struct rmap_iterator iter;

	for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
		mark_unsync(sptep);
	}
1773 1774
}

1775
static void mark_unsync(u64 *spte)
1776
{
1777
	struct kvm_mmu_page *sp;
1778
	unsigned int index;
1779

1780
	sp = sptep_to_sp(spte);
1781 1782
	index = spte - sp->spt;
	if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1783
		return;
1784
	if (sp->unsync_children++)
1785
		return;
1786
	kvm_mmu_mark_parents_unsync(sp);
1787 1788
}

1789
static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1790
			       struct kvm_mmu_page *sp)
1791
{
1792
	return -1;
1793 1794
}

1795 1796 1797 1798 1799 1800 1801 1802 1803 1804
#define KVM_PAGE_ARRAY_NR 16

struct kvm_mmu_pages {
	struct mmu_page_and_offset {
		struct kvm_mmu_page *sp;
		unsigned int idx;
	} page[KVM_PAGE_ARRAY_NR];
	unsigned int nr;
};

1805 1806
static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
			 int idx)
1807
{
1808
	int i;
1809

1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820
	if (sp->unsync)
		for (i=0; i < pvec->nr; i++)
			if (pvec->page[i].sp == sp)
				return 0;

	pvec->page[pvec->nr].sp = sp;
	pvec->page[pvec->nr].idx = idx;
	pvec->nr++;
	return (pvec->nr == KVM_PAGE_ARRAY_NR);
}

1821 1822 1823 1824 1825 1826 1827
static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
{
	--sp->unsync_children;
	WARN_ON((int)sp->unsync_children < 0);
	__clear_bit(idx, sp->unsync_child_bitmap);
}

1828 1829 1830 1831
static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
	int i, ret, nr_unsync_leaf = 0;
1832

1833
	for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1834
		struct kvm_mmu_page *child;
1835 1836
		u64 ent = sp->spt[i];

1837 1838 1839 1840
		if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
			clear_unsync_child_bit(sp, i);
			continue;
		}
1841

1842
		child = to_shadow_page(ent & PT64_BASE_ADDR_MASK);
1843 1844 1845 1846 1847 1848

		if (child->unsync_children) {
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;

			ret = __mmu_unsync_walk(child, pvec);
1849 1850 1851 1852
			if (!ret) {
				clear_unsync_child_bit(sp, i);
				continue;
			} else if (ret > 0) {
1853
				nr_unsync_leaf += ret;
1854
			} else
1855 1856 1857 1858 1859 1860
				return ret;
		} else if (child->unsync) {
			nr_unsync_leaf++;
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;
		} else
1861
			clear_unsync_child_bit(sp, i);
1862 1863
	}

1864 1865 1866
	return nr_unsync_leaf;
}

1867 1868
#define INVALID_INDEX (-1)

1869 1870 1871
static int mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
P
Paolo Bonzini 已提交
1872
	pvec->nr = 0;
1873 1874 1875
	if (!sp->unsync_children)
		return 0;

1876
	mmu_pages_add(pvec, sp, INVALID_INDEX);
1877
	return __mmu_unsync_walk(sp, pvec);
1878 1879 1880 1881 1882
}

static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
{
	WARN_ON(!sp->unsync);
1883
	trace_kvm_mmu_sync_page(sp);
1884 1885 1886 1887
	sp->unsync = 0;
	--kvm->stat.mmu_unsync;
}

1888 1889
static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				     struct list_head *invalid_list);
1890 1891
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list);
1892

1893 1894
#define for_each_valid_sp(_kvm, _sp, _list)				\
	hlist_for_each_entry(_sp, _list, hash_link)			\
1895
		if (is_obsolete_sp((_kvm), (_sp))) {			\
1896
		} else
1897 1898

#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)			\
1899 1900
	for_each_valid_sp(_kvm, _sp,					\
	  &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)])	\
1901
		if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
1902

1903 1904
static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
			 struct list_head *invalid_list)
1905
{
1906 1907 1908
	int ret = vcpu->arch.mmu->sync_page(vcpu, sp);

	if (ret < 0) {
1909
		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1910
		return false;
1911 1912
	}

1913
	return !!ret;
1914 1915
}

1916 1917 1918 1919
static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
					struct list_head *invalid_list,
					bool remote_flush)
{
1920
	if (!remote_flush && list_empty(invalid_list))
1921 1922 1923 1924 1925 1926 1927 1928 1929
		return false;

	if (!list_empty(invalid_list))
		kvm_mmu_commit_zap_page(kvm, invalid_list);
	else
		kvm_flush_remote_tlbs(kvm);
	return true;
}

1930 1931 1932 1933 1934 1935 1936
#ifdef CONFIG_KVM_MMU_AUDIT
#include "mmu_audit.c"
#else
static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
static void mmu_audit_disable(void) { }
#endif

1937 1938
static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
{
1939 1940 1941 1942 1943
	if (sp->role.invalid)
		return true;

	/* TDP MMU pages due not use the MMU generation. */
	return !sp->tdp_mmu_page &&
1944
	       unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1945 1946
}

1947
struct mmu_page_path {
1948 1949
	struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
	unsigned int idx[PT64_ROOT_MAX_LEVEL];
1950 1951
};

1952
#define for_each_sp(pvec, sp, parents, i)			\
P
Paolo Bonzini 已提交
1953
		for (i = mmu_pages_first(&pvec, &parents);	\
1954 1955 1956
			i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});	\
			i = mmu_pages_next(&pvec, &parents, i))

1957 1958 1959
static int mmu_pages_next(struct kvm_mmu_pages *pvec,
			  struct mmu_page_path *parents,
			  int i)
1960 1961 1962 1963 1964
{
	int n;

	for (n = i+1; n < pvec->nr; n++) {
		struct kvm_mmu_page *sp = pvec->page[n].sp;
P
Paolo Bonzini 已提交
1965 1966
		unsigned idx = pvec->page[n].idx;
		int level = sp->role.level;
1967

P
Paolo Bonzini 已提交
1968
		parents->idx[level-1] = idx;
1969
		if (level == PG_LEVEL_4K)
P
Paolo Bonzini 已提交
1970
			break;
1971

P
Paolo Bonzini 已提交
1972
		parents->parent[level-2] = sp;
1973 1974 1975 1976 1977
	}

	return n;
}

P
Paolo Bonzini 已提交
1978 1979 1980 1981 1982 1983 1984 1985 1986
static int mmu_pages_first(struct kvm_mmu_pages *pvec,
			   struct mmu_page_path *parents)
{
	struct kvm_mmu_page *sp;
	int level;

	if (pvec->nr == 0)
		return 0;

1987 1988
	WARN_ON(pvec->page[0].idx != INVALID_INDEX);

P
Paolo Bonzini 已提交
1989 1990
	sp = pvec->page[0].sp;
	level = sp->role.level;
1991
	WARN_ON(level == PG_LEVEL_4K);
P
Paolo Bonzini 已提交
1992 1993 1994 1995 1996 1997 1998 1999 2000 2001

	parents->parent[level-2] = sp;

	/* Also set up a sentinel.  Further entries in pvec are all
	 * children of sp, so this element is never overwritten.
	 */
	parents->parent[level-1] = NULL;
	return mmu_pages_next(pvec, parents, 0);
}

2002
static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2003
{
2004 2005 2006 2007 2008 2009 2010 2011 2012
	struct kvm_mmu_page *sp;
	unsigned int level = 0;

	do {
		unsigned int idx = parents->idx[level];
		sp = parents->parent[level];
		if (!sp)
			return;

2013
		WARN_ON(idx == INVALID_INDEX);
2014
		clear_unsync_child_bit(sp, idx);
2015
		level++;
P
Paolo Bonzini 已提交
2016
	} while (!sp->unsync_children);
2017
}
2018

2019 2020
static int mmu_sync_children(struct kvm_vcpu *vcpu,
			     struct kvm_mmu_page *parent, bool can_yield)
2021 2022 2023 2024 2025
{
	int i;
	struct kvm_mmu_page *sp;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
2026
	LIST_HEAD(invalid_list);
2027
	bool flush = false;
2028 2029

	while (mmu_unsync_walk(parent, &pages)) {
2030
		bool protected = false;
2031 2032

		for_each_sp(pages, sp, parents, i)
2033
			protected |= rmap_write_protect(vcpu, sp->gfn);
2034

2035
		if (protected) {
2036
			kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, true);
2037 2038
			flush = false;
		}
2039

2040
		for_each_sp(pages, sp, parents, i) {
2041
			kvm_unlink_unsync_page(vcpu->kvm, sp);
2042
			flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2043 2044
			mmu_pages_clear_parents(&parents);
		}
2045
		if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) {
2046
			kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush);
2047 2048 2049 2050 2051
			if (!can_yield) {
				kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
				return -EINTR;
			}

2052
			cond_resched_rwlock_write(&vcpu->kvm->mmu_lock);
2053 2054
			flush = false;
		}
2055
	}
2056

2057
	kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush);
2058
	return 0;
2059 2060
}

2061 2062
static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
{
2063
	atomic_set(&sp->write_flooding_count,  0);
2064 2065 2066 2067
}

static void clear_sp_write_flooding_count(u64 *spte)
{
2068
	__clear_sp_write_flooding_count(sptep_to_sp(spte));
2069 2070
}

2071 2072 2073 2074
static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
					     gfn_t gfn,
					     gva_t gaddr,
					     unsigned level,
2075
					     int direct,
2076
					     unsigned int access)
2077
{
2078
	bool direct_mmu = vcpu->arch.mmu->direct_map;
2079
	union kvm_mmu_page_role role;
2080
	struct hlist_head *sp_list;
2081
	unsigned quadrant;
2082
	struct kvm_mmu_page *sp;
2083
	int collisions = 0;
2084
	LIST_HEAD(invalid_list);
2085

2086
	role = vcpu->arch.mmu->mmu_role.base;
2087
	role.level = level;
2088
	role.direct = direct;
2089
	role.access = access;
2090
	if (!direct_mmu && !role.gpte_is_8_bytes) {
2091 2092 2093 2094
		quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
		quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
		role.quadrant = quadrant;
	}
2095 2096 2097

	sp_list = &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)];
	for_each_valid_sp(vcpu->kvm, sp, sp_list) {
2098 2099 2100 2101 2102
		if (sp->gfn != gfn) {
			collisions++;
			continue;
		}

2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115
		if (sp->role.word != role.word) {
			/*
			 * If the guest is creating an upper-level page, zap
			 * unsync pages for the same gfn.  While it's possible
			 * the guest is using recursive page tables, in all
			 * likelihood the guest has stopped using the unsync
			 * page and is installing a completely unrelated page.
			 * Unsync pages must not be left as is, because the new
			 * upper-level page will be write-protected.
			 */
			if (level > PG_LEVEL_4K && sp->unsync)
				kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
							 &invalid_list);
2116
			continue;
2117
		}
2118

2119 2120 2121
		if (direct_mmu)
			goto trace_get_page;

2122
		if (sp->unsync) {
2123
			/*
2124
			 * The page is good, but is stale.  kvm_sync_page does
2125 2126 2127 2128 2129 2130 2131 2132 2133
			 * get the latest guest state, but (unlike mmu_unsync_children)
			 * it doesn't write-protect the page or mark it synchronized!
			 * This way the validity of the mapping is ensured, but the
			 * overhead of write protection is not incurred until the
			 * guest invalidates the TLB mapping.  This allows multiple
			 * SPs for a single gfn to be unsync.
			 *
			 * If the sync fails, the page is zapped.  If so, break
			 * in order to rebuild it.
2134
			 */
2135
			if (!kvm_sync_page(vcpu, sp, &invalid_list))
2136 2137 2138
				break;

			WARN_ON(!list_empty(&invalid_list));
2139
			kvm_flush_remote_tlbs(vcpu->kvm);
2140
		}
2141

2142
		__clear_sp_write_flooding_count(sp);
2143 2144

trace_get_page:
2145
		trace_kvm_mmu_get_page(sp, false);
2146
		goto out;
2147
	}
2148

A
Avi Kivity 已提交
2149
	++vcpu->kvm->stat.mmu_cache_miss;
2150 2151 2152

	sp = kvm_mmu_alloc_page(vcpu, direct);

2153 2154
	sp->gfn = gfn;
	sp->role = role;
2155
	hlist_add_head(&sp->hash_link, sp_list);
2156
	if (!direct) {
2157
		account_shadowed(vcpu->kvm, sp);
2158
		if (level == PG_LEVEL_4K && rmap_write_protect(vcpu, gfn))
2159
			kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
2160
	}
A
Avi Kivity 已提交
2161
	trace_kvm_mmu_get_page(sp, true);
2162
out:
2163 2164
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);

2165 2166
	if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
		vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2167
	return sp;
2168 2169
}

2170 2171 2172
static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
					struct kvm_vcpu *vcpu, hpa_t root,
					u64 addr)
2173 2174
{
	iterator->addr = addr;
2175
	iterator->shadow_addr = root;
2176
	iterator->level = vcpu->arch.mmu->shadow_root_level;
2177

2178
	if (iterator->level >= PT64_ROOT_4LEVEL &&
2179 2180
	    vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
	    !vcpu->arch.mmu->direct_map)
2181
		iterator->level = PT32E_ROOT_LEVEL;
2182

2183
	if (iterator->level == PT32E_ROOT_LEVEL) {
2184 2185 2186 2187
		/*
		 * prev_root is currently only used for 64-bit hosts. So only
		 * the active root_hpa is valid here.
		 */
2188
		BUG_ON(root != vcpu->arch.mmu->root_hpa);
2189

2190
		iterator->shadow_addr
2191
			= vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2192 2193 2194 2195 2196 2197 2198
		iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
		--iterator->level;
		if (!iterator->shadow_addr)
			iterator->level = 0;
	}
}

2199 2200 2201
static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
			     struct kvm_vcpu *vcpu, u64 addr)
{
2202
	shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
2203 2204 2205
				    addr);
}

2206 2207
static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
{
2208
	if (iterator->level < PG_LEVEL_4K)
2209
		return false;
2210

2211 2212 2213 2214 2215
	iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
	iterator->sptep	= ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
	return true;
}

2216 2217
static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
			       u64 spte)
2218
{
2219
	if (!is_shadow_present_pte(spte) || is_last_spte(spte, iterator->level)) {
2220 2221 2222 2223
		iterator->level = 0;
		return;
	}

2224
	iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2225 2226 2227
	--iterator->level;
}

2228 2229
static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
{
2230
	__shadow_walk_next(iterator, *iterator->sptep);
2231 2232
}

2233 2234 2235 2236 2237 2238 2239 2240 2241
static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
			     struct kvm_mmu_page *sp)
{
	u64 spte;

	BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);

	spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp));

2242
	mmu_spte_set(sptep, spte);
2243 2244 2245 2246 2247

	mmu_page_add_parent_pte(vcpu, sp, sptep);

	if (sp->unsync_children || sp->unsync)
		mark_unsync(sptep);
2248 2249
}

2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262
static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
				   unsigned direct_access)
{
	if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
		struct kvm_mmu_page *child;

		/*
		 * For the direct sp, if the guest pte's dirty bit
		 * changed form clean to dirty, it will corrupt the
		 * sp's access: allow writable in the read-only sp,
		 * so we should update the spte at this point to get
		 * a new sp with the correct access.
		 */
2263
		child = to_shadow_page(*sptep & PT64_BASE_ADDR_MASK);
2264 2265 2266
		if (child->role.access == direct_access)
			return;

2267
		drop_parent_pte(child, sptep);
2268
		kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
2269 2270 2271
	}
}

2272 2273 2274
/* Returns the number of zapped non-leaf child shadow pages. */
static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
			    u64 *spte, struct list_head *invalid_list)
2275 2276 2277 2278 2279 2280
{
	u64 pte;
	struct kvm_mmu_page *child;

	pte = *spte;
	if (is_shadow_present_pte(pte)) {
X
Xiao Guangrong 已提交
2281
		if (is_last_spte(pte, sp->role.level)) {
2282
			drop_spte(kvm, spte);
X
Xiao Guangrong 已提交
2283
		} else {
2284
			child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2285
			drop_parent_pte(child, spte);
2286 2287 2288 2289 2290 2291 2292 2293 2294 2295

			/*
			 * Recursively zap nested TDP SPs, parentless SPs are
			 * unlikely to be used again in the near future.  This
			 * avoids retaining a large number of stale nested SPs.
			 */
			if (tdp_enabled && invalid_list &&
			    child->role.guest_mode && !child->parent_ptes.val)
				return kvm_mmu_prepare_zap_page(kvm, child,
								invalid_list);
2296
		}
2297
	} else if (is_mmio_spte(pte)) {
2298
		mmu_spte_clear_no_track(spte);
2299
	}
2300
	return 0;
2301 2302
}

2303 2304 2305
static int kvm_mmu_page_unlink_children(struct kvm *kvm,
					struct kvm_mmu_page *sp,
					struct list_head *invalid_list)
2306
{
2307
	int zapped = 0;
2308 2309
	unsigned i;

2310
	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2311 2312 2313
		zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list);

	return zapped;
2314 2315
}

2316
static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2317
{
2318 2319
	u64 *sptep;
	struct rmap_iterator iter;
2320

2321
	while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2322
		drop_parent_pte(sp, sptep);
2323 2324
}

2325
static int mmu_zap_unsync_children(struct kvm *kvm,
2326 2327
				   struct kvm_mmu_page *parent,
				   struct list_head *invalid_list)
2328
{
2329 2330 2331
	int i, zapped = 0;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
2332

2333
	if (parent->role.level == PG_LEVEL_4K)
2334
		return 0;
2335 2336 2337 2338 2339

	while (mmu_unsync_walk(parent, &pages)) {
		struct kvm_mmu_page *sp;

		for_each_sp(pages, sp, parents, i) {
2340
			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2341
			mmu_pages_clear_parents(&parents);
2342
			zapped++;
2343 2344 2345 2346
		}
	}

	return zapped;
2347 2348
}

2349 2350 2351 2352
static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
				       struct kvm_mmu_page *sp,
				       struct list_head *invalid_list,
				       int *nr_zapped)
2353
{
2354
	bool list_unstable;
A
Avi Kivity 已提交
2355

2356
	trace_kvm_mmu_prepare_zap_page(sp);
2357
	++kvm->stat.mmu_shadow_zapped;
2358
	*nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2359
	*nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list);
2360
	kvm_mmu_unlink_parents(kvm, sp);
2361

2362 2363 2364
	/* Zapping children means active_mmu_pages has become unstable. */
	list_unstable = *nr_zapped;

2365
	if (!sp->role.invalid && !sp->role.direct)
2366
		unaccount_shadowed(kvm, sp);
2367

2368 2369
	if (sp->unsync)
		kvm_unlink_unsync_page(kvm, sp);
2370
	if (!sp->root_count) {
2371
		/* Count self */
2372
		(*nr_zapped)++;
2373 2374 2375 2376 2377 2378 2379 2380 2381 2382

		/*
		 * Already invalid pages (previously active roots) are not on
		 * the active page list.  See list_del() in the "else" case of
		 * !sp->root_count.
		 */
		if (sp->role.invalid)
			list_add(&sp->link, invalid_list);
		else
			list_move(&sp->link, invalid_list);
2383
		kvm_mod_used_mmu_pages(kvm, -1);
2384
	} else {
2385 2386 2387 2388 2389
		/*
		 * Remove the active root from the active page list, the root
		 * will be explicitly freed when the root_count hits zero.
		 */
		list_del(&sp->link);
2390

2391 2392 2393 2394 2395 2396
		/*
		 * Obsolete pages cannot be used on any vCPUs, see the comment
		 * in kvm_mmu_zap_all_fast().  Note, is_obsolete_sp() also
		 * treats invalid shadow pages as being obsolete.
		 */
		if (!is_obsolete_sp(kvm, sp))
2397
			kvm_reload_remote_mmus(kvm);
2398
	}
2399

P
Paolo Bonzini 已提交
2400 2401 2402
	if (sp->lpage_disallowed)
		unaccount_huge_nx_page(kvm, sp);

2403
	sp->role.invalid = 1;
2404 2405 2406 2407 2408 2409 2410 2411 2412 2413
	return list_unstable;
}

static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				     struct list_head *invalid_list)
{
	int nr_zapped;

	__kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
	return nr_zapped;
2414 2415
}

2416 2417 2418
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list)
{
2419
	struct kvm_mmu_page *sp, *nsp;
2420 2421 2422 2423

	if (list_empty(invalid_list))
		return;

2424
	/*
2425 2426 2427 2428 2429 2430 2431
	 * We need to make sure everyone sees our modifications to
	 * the page tables and see changes to vcpu->mode here. The barrier
	 * in the kvm_flush_remote_tlbs() achieves this. This pairs
	 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
	 *
	 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
	 * guest mode and/or lockless shadow page table walks.
2432 2433
	 */
	kvm_flush_remote_tlbs(kvm);
2434

2435
	list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2436
		WARN_ON(!sp->role.invalid || sp->root_count);
2437
		kvm_mmu_free_page(sp);
2438
	}
2439 2440
}

2441 2442
static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm,
						  unsigned long nr_to_zap)
2443
{
2444 2445
	unsigned long total_zapped = 0;
	struct kvm_mmu_page *sp, *tmp;
2446
	LIST_HEAD(invalid_list);
2447 2448
	bool unstable;
	int nr_zapped;
2449 2450

	if (list_empty(&kvm->arch.active_mmu_pages))
2451 2452
		return 0;

2453
restart:
2454
	list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) {
2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465
		/*
		 * Don't zap active root pages, the page itself can't be freed
		 * and zapping it will just force vCPUs to realloc and reload.
		 */
		if (sp->root_count)
			continue;

		unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list,
						      &nr_zapped);
		total_zapped += nr_zapped;
		if (total_zapped >= nr_to_zap)
2466 2467
			break;

2468 2469
		if (unstable)
			goto restart;
2470
	}
2471

2472 2473 2474 2475 2476 2477
	kvm_mmu_commit_zap_page(kvm, &invalid_list);

	kvm->stat.mmu_recycled += total_zapped;
	return total_zapped;
}

2478 2479 2480 2481 2482 2483 2484
static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm)
{
	if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
		return kvm->arch.n_max_mmu_pages -
			kvm->arch.n_used_mmu_pages;

	return 0;
2485 2486
}

2487 2488
static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
{
2489
	unsigned long avail = kvm_mmu_available_pages(vcpu->kvm);
2490

2491
	if (likely(avail >= KVM_MIN_FREE_MMU_PAGES))
2492 2493
		return 0;

2494
	kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail);
2495

2496 2497 2498 2499 2500
	/*
	 * Note, this check is intentionally soft, it only guarantees that one
	 * page is available, while the caller may end up allocating as many as
	 * four pages, e.g. for PAE roots or for 5-level paging.  Temporarily
	 * exceeding the (arbitrary by default) limit will not harm the host,
I
Ingo Molnar 已提交
2501
	 * being too aggressive may unnecessarily kill the guest, and getting an
2502 2503 2504
	 * exact count is far more trouble than it's worth, especially in the
	 * page fault paths.
	 */
2505 2506 2507 2508 2509
	if (!kvm_mmu_available_pages(vcpu->kvm))
		return -ENOSPC;
	return 0;
}

2510 2511
/*
 * Changing the number of mmu pages allocated to the vm
2512
 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2513
 */
2514
void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2515
{
2516
	write_lock(&kvm->mmu_lock);
2517

2518
	if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2519 2520
		kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages -
						  goal_nr_mmu_pages);
2521

2522
		goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2523 2524
	}

2525
	kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2526

2527
	write_unlock(&kvm->mmu_lock);
2528 2529
}

2530
int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2531
{
2532
	struct kvm_mmu_page *sp;
2533
	LIST_HEAD(invalid_list);
2534 2535
	int r;

2536
	pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2537
	r = 0;
2538
	write_lock(&kvm->mmu_lock);
2539
	for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2540
		pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2541 2542
			 sp->role.word);
		r = 1;
2543
		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2544
	}
2545
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2546
	write_unlock(&kvm->mmu_lock);
2547

2548
	return r;
2549
}
2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564

static int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
{
	gpa_t gpa;
	int r;

	if (vcpu->arch.mmu->direct_map)
		return 0;

	gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);

	r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);

	return r;
}
2565

2566
static void kvm_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
2567 2568
{
	trace_kvm_mmu_unsync_page(sp);
2569
	++kvm->stat.mmu_unsync;
2570 2571 2572 2573 2574
	sp->unsync = 1;

	kvm_mmu_mark_parents_unsync(sp);
}

2575 2576 2577 2578 2579 2580
/*
 * Attempt to unsync any shadow pages that can be reached by the specified gfn,
 * KVM is creating a writable mapping for said gfn.  Returns 0 if all pages
 * were marked unsync (or if there is no shadow page), -EPERM if the SPTE must
 * be write-protected.
 */
2581
int mmu_try_to_unsync_pages(struct kvm *kvm, const struct kvm_memory_slot *slot,
2582
			    gfn_t gfn, bool can_unsync, bool prefetch)
2583
{
2584
	struct kvm_mmu_page *sp;
2585
	bool locked = false;
2586

2587 2588 2589 2590 2591
	/*
	 * Force write-protection if the page is being tracked.  Note, the page
	 * track machinery is used to write-protect upper-level shadow pages,
	 * i.e. this guards the role.level == 4K assertion below!
	 */
2592
	if (kvm_slot_page_track_is_active(kvm, slot, gfn, KVM_PAGE_TRACK_WRITE))
2593
		return -EPERM;
2594

2595 2596 2597 2598 2599 2600
	/*
	 * The page is not write-tracked, mark existing shadow pages unsync
	 * unless KVM is synchronizing an unsync SP (can_unsync = false).  In
	 * that case, KVM must complete emulation of the guest TLB flush before
	 * allowing shadow pages to become unsync (writable by the guest).
	 */
2601
	for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2602
		if (!can_unsync)
2603
			return -EPERM;
2604

2605 2606
		if (sp->unsync)
			continue;
2607

2608
		if (prefetch)
2609 2610
			return -EEXIST;

2611 2612 2613 2614 2615 2616 2617 2618 2619
		/*
		 * TDP MMU page faults require an additional spinlock as they
		 * run with mmu_lock held for read, not write, and the unsync
		 * logic is not thread safe.  Take the spinklock regardless of
		 * the MMU type to avoid extra conditionals/parameters, there's
		 * no meaningful penalty if mmu_lock is held for write.
		 */
		if (!locked) {
			locked = true;
2620
			spin_lock(&kvm->arch.mmu_unsync_pages_lock);
2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633

			/*
			 * Recheck after taking the spinlock, a different vCPU
			 * may have since marked the page unsync.  A false
			 * positive on the unprotected check above is not
			 * possible as clearing sp->unsync _must_ hold mmu_lock
			 * for write, i.e. unsync cannot transition from 0->1
			 * while this CPU holds mmu_lock for read (or write).
			 */
			if (READ_ONCE(sp->unsync))
				continue;
		}

2634
		WARN_ON(sp->role.level != PG_LEVEL_4K);
2635
		kvm_unsync_page(kvm, sp);
2636
	}
2637
	if (locked)
2638
		spin_unlock(&kvm->arch.mmu_unsync_pages_lock);
2639

2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661
	/*
	 * We need to ensure that the marking of unsync pages is visible
	 * before the SPTE is updated to allow writes because
	 * kvm_mmu_sync_roots() checks the unsync flags without holding
	 * the MMU lock and so can race with this. If the SPTE was updated
	 * before the page had been marked as unsync-ed, something like the
	 * following could happen:
	 *
	 * CPU 1                    CPU 2
	 * ---------------------------------------------------------------------
	 * 1.2 Host updates SPTE
	 *     to be writable
	 *                      2.1 Guest writes a GPTE for GVA X.
	 *                          (GPTE being in the guest page table shadowed
	 *                           by the SP from CPU 1.)
	 *                          This reads SPTE during the page table walk.
	 *                          Since SPTE.W is read as 1, there is no
	 *                          fault.
	 *
	 *                      2.2 Guest issues TLB flush.
	 *                          That causes a VM Exit.
	 *
2662 2663
	 *                      2.3 Walking of unsync pages sees sp->unsync is
	 *                          false and skips the page.
2664 2665 2666 2667 2668 2669 2670 2671 2672 2673
	 *
	 *                      2.4 Guest accesses GVA X.
	 *                          Since the mapping in the SP was not updated,
	 *                          so the old mapping for GVA X incorrectly
	 *                          gets used.
	 * 1.1 Host marks SP
	 *     as unsync
	 *     (sp->unsync = true)
	 *
	 * The write barrier below ensures that 1.1 happens before 1.2 and thus
2674 2675
	 * the situation in 2.4 does not arise.  It pairs with the read barrier
	 * in is_unsync_root(), placed between 2.1's load of SPTE.W and 2.3.
2676 2677 2678
	 */
	smp_wmb();

2679
	return 0;
2680 2681
}

2682 2683
static int mmu_set_spte(struct kvm_vcpu *vcpu, struct kvm_memory_slot *slot,
			u64 *sptep, unsigned int pte_access, gfn_t gfn,
2684
			kvm_pfn_t pfn, struct kvm_page_fault *fault)
M
Marcelo Tosatti 已提交
2685
{
2686
	struct kvm_mmu_page *sp = sptep_to_sp(sptep);
2687
	int level = sp->role.level;
M
Marcelo Tosatti 已提交
2688
	int was_rmapped = 0;
2689
	int ret = RET_PF_FIXED;
2690
	bool flush = false;
2691
	bool wrprot;
2692
	u64 spte;
M
Marcelo Tosatti 已提交
2693

2694 2695
	/* Prefetching always gets a writable pfn.  */
	bool host_writable = !fault || fault->map_writable;
2696
	bool prefetch = !fault || fault->prefetch;
2697
	bool write_fault = fault && fault->write;
M
Marcelo Tosatti 已提交
2698

2699 2700
	pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
		 *sptep, write_fault, gfn);
M
Marcelo Tosatti 已提交
2701

2702 2703 2704 2705 2706
	if (unlikely(is_noslot_pfn(pfn))) {
		mark_mmio_spte(vcpu, sptep, gfn, pte_access);
		return RET_PF_EMULATE;
	}

2707
	if (is_shadow_present_pte(*sptep)) {
M
Marcelo Tosatti 已提交
2708 2709 2710 2711
		/*
		 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
		 * the parent of the now unreachable PTE.
		 */
2712
		if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) {
M
Marcelo Tosatti 已提交
2713
			struct kvm_mmu_page *child;
A
Avi Kivity 已提交
2714
			u64 pte = *sptep;
M
Marcelo Tosatti 已提交
2715

2716
			child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2717
			drop_parent_pte(child, sptep);
2718
			flush = true;
A
Avi Kivity 已提交
2719
		} else if (pfn != spte_to_pfn(*sptep)) {
2720
			pgprintk("hfn old %llx new %llx\n",
A
Avi Kivity 已提交
2721
				 spte_to_pfn(*sptep), pfn);
2722
			drop_spte(vcpu->kvm, sptep);
2723
			flush = true;
2724 2725
		} else
			was_rmapped = 1;
M
Marcelo Tosatti 已提交
2726
	}
2727

2728
	wrprot = make_spte(vcpu, sp, slot, pte_access, gfn, pfn, *sptep, prefetch,
2729
			   true, host_writable, &spte);
2730 2731 2732 2733 2734 2735 2736 2737

	if (*sptep == spte) {
		ret = RET_PF_SPURIOUS;
	} else {
		trace_kvm_mmu_set_spte(level, gfn, sptep);
		flush |= mmu_spte_update(sptep, spte);
	}

2738
	if (wrprot) {
M
Marcelo Tosatti 已提交
2739
		if (write_fault)
2740
			ret = RET_PF_EMULATE;
2741
	}
2742

2743
	if (flush)
2744 2745
		kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
				KVM_PAGES_PER_HPAGE(level));
M
Marcelo Tosatti 已提交
2746

A
Avi Kivity 已提交
2747
	pgprintk("%s: setting spte %llx\n", __func__, *sptep);
M
Marcelo Tosatti 已提交
2748

2749
	if (!was_rmapped) {
2750
		WARN_ON_ONCE(ret == RET_PF_SPURIOUS);
2751
		kvm_update_page_stats(vcpu->kvm, level, 1);
2752
		rmap_add(vcpu, slot, sptep, gfn);
2753
	}
2754

2755
	return ret;
2756 2757
}

2758 2759 2760 2761 2762
static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
				    struct kvm_mmu_page *sp,
				    u64 *start, u64 *end)
{
	struct page *pages[PTE_PREFETCH_NUM];
2763
	struct kvm_memory_slot *slot;
2764
	unsigned int access = sp->role.access;
2765 2766 2767 2768
	int i, ret;
	gfn_t gfn;

	gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2769 2770
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
	if (!slot)
2771 2772
		return -1;

2773
	ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2774 2775 2776
	if (ret <= 0)
		return -1;

2777
	for (i = 0; i < ret; i++, gfn++, start++) {
2778
		mmu_set_spte(vcpu, slot, start, access, gfn,
2779
			     page_to_pfn(pages[i]), NULL);
2780 2781
		put_page(pages[i]);
	}
2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797

	return 0;
}

static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
				  struct kvm_mmu_page *sp, u64 *sptep)
{
	u64 *spte, *start = NULL;
	int i;

	WARN_ON(!sp->role.direct);

	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
	spte = sp->spt + i;

	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2798
		if (is_shadow_present_pte(*spte) || spte == sptep) {
2799 2800 2801
			if (!start)
				continue;
			if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2802
				return;
2803 2804 2805 2806
			start = NULL;
		} else if (!start)
			start = spte;
	}
2807 2808
	if (start)
		direct_pte_prefetch_many(vcpu, sp, start, spte);
2809 2810 2811 2812 2813 2814
}

static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
{
	struct kvm_mmu_page *sp;

2815
	sp = sptep_to_sp(sptep);
2816

2817
	/*
2818 2819 2820
	 * Without accessed bits, there's no way to distinguish between
	 * actually accessed translations and prefetched, so disable pte
	 * prefetch if accessed bits aren't available.
2821
	 */
2822
	if (sp_ad_disabled(sp))
2823 2824
		return;

2825
	if (sp->role.level > PG_LEVEL_4K)
2826 2827
		return;

2828 2829 2830 2831 2832 2833 2834
	/*
	 * If addresses are being invalidated, skip prefetching to avoid
	 * accidentally prefetching those addresses.
	 */
	if (unlikely(vcpu->kvm->mmu_notifier_count))
		return;

2835 2836 2837
	__direct_pte_prefetch(vcpu, sp, sptep);
}

2838
static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn,
2839
				  const struct kvm_memory_slot *slot)
2840 2841 2842 2843 2844
{
	unsigned long hva;
	pte_t *pte;
	int level;

2845
	if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn))
2846
		return PG_LEVEL_4K;
2847

2848 2849 2850 2851 2852 2853 2854 2855
	/*
	 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
	 * is not solely for performance, it's also necessary to avoid the
	 * "writable" check in __gfn_to_hva_many(), which will always fail on
	 * read-only memslots due to gfn_to_hva() assuming writes.  Earlier
	 * page fault steps have already verified the guest isn't writing a
	 * read-only memslot.
	 */
2856 2857
	hva = __gfn_to_hva_memslot(slot, gfn);

2858
	pte = lookup_address_in_mm(kvm->mm, hva, &level);
2859
	if (unlikely(!pte))
2860
		return PG_LEVEL_4K;
2861 2862 2863 2864

	return level;
}

2865 2866 2867
int kvm_mmu_max_mapping_level(struct kvm *kvm,
			      const struct kvm_memory_slot *slot, gfn_t gfn,
			      kvm_pfn_t pfn, int max_level)
2868 2869
{
	struct kvm_lpage_info *linfo;
2870
	int host_level;
2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881

	max_level = min(max_level, max_huge_page_level);
	for ( ; max_level > PG_LEVEL_4K; max_level--) {
		linfo = lpage_info_slot(gfn, slot, max_level);
		if (!linfo->disallow_lpage)
			break;
	}

	if (max_level == PG_LEVEL_4K)
		return PG_LEVEL_4K;

2882 2883
	host_level = host_pfn_mapping_level(kvm, gfn, pfn, slot);
	return min(host_level, max_level);
2884 2885
}

2886
void kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
2887
{
2888
	struct kvm_memory_slot *slot = fault->slot;
2889 2890
	kvm_pfn_t mask;

2891
	fault->huge_page_disallowed = fault->exec && fault->nx_huge_page_workaround_enabled;
2892

2893 2894
	if (unlikely(fault->max_level == PG_LEVEL_4K))
		return;
2895

2896 2897
	if (is_error_noslot_pfn(fault->pfn) || kvm_is_reserved_pfn(fault->pfn))
		return;
2898

2899
	if (kvm_slot_dirty_track_enabled(slot))
2900
		return;
2901

2902 2903 2904 2905
	/*
	 * Enforce the iTLB multihit workaround after capturing the requested
	 * level, which will be used to do precise, accurate accounting.
	 */
2906 2907 2908 2909 2910
	fault->req_level = kvm_mmu_max_mapping_level(vcpu->kvm, slot,
						     fault->gfn, fault->pfn,
						     fault->max_level);
	if (fault->req_level == PG_LEVEL_4K || fault->huge_page_disallowed)
		return;
2911 2912

	/*
2913 2914
	 * mmu_notifier_retry() was successful and mmu_lock is held, so
	 * the pmd can't be split from under us.
2915
	 */
2916 2917 2918 2919
	fault->goal_level = fault->req_level;
	mask = KVM_PAGES_PER_HPAGE(fault->goal_level) - 1;
	VM_BUG_ON((fault->gfn & mask) != (fault->pfn & mask));
	fault->pfn &= ~mask;
2920 2921
}

2922
void disallowed_hugepage_adjust(struct kvm_page_fault *fault, u64 spte, int cur_level)
P
Paolo Bonzini 已提交
2923
{
2924 2925
	if (cur_level > PG_LEVEL_4K &&
	    cur_level == fault->goal_level &&
P
Paolo Bonzini 已提交
2926 2927 2928 2929 2930 2931 2932 2933 2934
	    is_shadow_present_pte(spte) &&
	    !is_large_pte(spte)) {
		/*
		 * A small SPTE exists for this pfn, but FNAME(fetch)
		 * and __direct_map would like to create a large PTE
		 * instead: just force them to go down another level,
		 * patching back for them into pfn the next 9 bits of
		 * the address.
		 */
2935 2936 2937 2938
		u64 page_mask = KVM_PAGES_PER_HPAGE(cur_level) -
				KVM_PAGES_PER_HPAGE(cur_level - 1);
		fault->pfn |= fault->gfn & page_mask;
		fault->goal_level--;
P
Paolo Bonzini 已提交
2939 2940 2941
	}
}

2942
static int __direct_map(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
2943
{
2944
	struct kvm_shadow_walk_iterator it;
2945
	struct kvm_mmu_page *sp;
2946
	int ret;
2947
	gfn_t base_gfn = fault->gfn;
A
Avi Kivity 已提交
2948

2949
	kvm_mmu_hugepage_adjust(vcpu, fault);
2950

2951
	trace_kvm_mmu_spte_requested(fault);
2952
	for_each_shadow_entry(vcpu, fault->addr, it) {
P
Paolo Bonzini 已提交
2953 2954 2955 2956
		/*
		 * We cannot overwrite existing page tables with an NX
		 * large page, as the leaf could be executable.
		 */
2957
		if (fault->nx_huge_page_workaround_enabled)
2958
			disallowed_hugepage_adjust(fault, *it.sptep, it.level);
P
Paolo Bonzini 已提交
2959

2960
		base_gfn = fault->gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
2961
		if (it.level == fault->goal_level)
2962
			break;
A
Avi Kivity 已提交
2963

2964
		drop_large_spte(vcpu, it.sptep);
2965 2966 2967 2968 2969 2970 2971
		if (is_shadow_present_pte(*it.sptep))
			continue;

		sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
				      it.level - 1, true, ACC_ALL);

		link_shadow_page(vcpu, it.sptep, sp);
2972 2973
		if (fault->is_tdp && fault->huge_page_disallowed &&
		    fault->req_level >= it.level)
2974
			account_huge_nx_page(vcpu->kvm, sp);
2975
	}
2976

2977 2978 2979
	if (WARN_ON_ONCE(it.level != fault->goal_level))
		return -EFAULT;

2980
	ret = mmu_set_spte(vcpu, fault->slot, it.sptep, ACC_ALL,
2981
			   base_gfn, fault->pfn, fault);
2982 2983 2984
	if (ret == RET_PF_SPURIOUS)
		return ret;

2985 2986 2987
	direct_pte_prefetch(vcpu, it.sptep);
	++vcpu->stat.pf_fixed;
	return ret;
A
Avi Kivity 已提交
2988 2989
}

H
Huang Ying 已提交
2990
static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2991
{
2992
	send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
2993 2994
}

D
Dan Williams 已提交
2995
static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
2996
{
X
Xiao Guangrong 已提交
2997 2998 2999 3000 3001 3002
	/*
	 * Do not cache the mmio info caused by writing the readonly gfn
	 * into the spte otherwise read access on readonly gfn also can
	 * caused mmio page fault and treat it as mmio access.
	 */
	if (pfn == KVM_PFN_ERR_RO_FAULT)
3003
		return RET_PF_EMULATE;
X
Xiao Guangrong 已提交
3004

3005
	if (pfn == KVM_PFN_ERR_HWPOISON) {
3006
		kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
3007
		return RET_PF_RETRY;
3008
	}
3009

3010
	return -EFAULT;
3011 3012
}

3013 3014
static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault,
				unsigned int access, int *ret_val)
3015 3016
{
	/* The pfn is invalid, report the error! */
3017 3018
	if (unlikely(is_error_pfn(fault->pfn))) {
		*ret_val = kvm_handle_bad_page(vcpu, fault->gfn, fault->pfn);
3019
		return true;
3020 3021
	}

3022
	if (unlikely(!fault->slot)) {
3023 3024 3025
		gva_t gva = fault->is_tdp ? 0 : fault->addr;

		vcpu_cache_mmio_info(vcpu, gva, fault->gfn,
3026
				     access & shadow_mmio_access_mask);
3027 3028 3029 3030 3031 3032 3033 3034 3035 3036
		/*
		 * If MMIO caching is disabled, emulate immediately without
		 * touching the shadow page tables as attempting to install an
		 * MMIO SPTE will just be an expensive nop.
		 */
		if (unlikely(!shadow_mmio_value)) {
			*ret_val = RET_PF_EMULATE;
			return true;
		}
	}
3037

3038
	return false;
3039 3040
}

3041
static bool page_fault_can_be_fast(struct kvm_page_fault *fault)
3042
{
3043 3044 3045 3046
	/*
	 * Do not fix the mmio spte with invalid generation number which
	 * need to be updated by slow page fault path.
	 */
3047
	if (fault->rsvd)
3048 3049
		return false;

3050
	/* See if the page fault is due to an NX violation */
3051
	if (unlikely(fault->exec && fault->present))
3052 3053
		return false;

3054
	/*
3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065
	 * #PF can be fast if:
	 * 1. The shadow page table entry is not present, which could mean that
	 *    the fault is potentially caused by access tracking (if enabled).
	 * 2. The shadow page table entry is present and the fault
	 *    is caused by write-protect, that means we just need change the W
	 *    bit of the spte which can be done out of mmu-lock.
	 *
	 * However, if access tracking is disabled we know that a non-present
	 * page must be a genuine page fault where we have to create a new SPTE.
	 * So, if access tracking is disabled, we return true only for write
	 * accesses to a present page.
3066 3067
	 */

3068
	return shadow_acc_track_mask != 0 || (fault->write && fault->present);
3069 3070
}

3071 3072 3073 3074
/*
 * Returns true if the SPTE was fixed successfully. Otherwise,
 * someone else modified the SPTE from its original value.
 */
3075
static bool
3076
fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault,
3077
			u64 *sptep, u64 old_spte, u64 new_spte)
3078
{
3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090
	/*
	 * Theoretically we could also set dirty bit (and flush TLB) here in
	 * order to eliminate unnecessary PML logging. See comments in
	 * set_spte. But fast_page_fault is very unlikely to happen with PML
	 * enabled, so we do not do this. This might result in the same GPA
	 * to be logged in PML buffer again when the write really happens, and
	 * eventually to be called by mark_page_dirty twice. But it's also no
	 * harm. This also avoids the TLB flush needed after setting dirty bit
	 * so non-PML cases won't be impacted.
	 *
	 * Compare with set_spte where instead shadow_dirty_mask is set.
	 */
3091
	if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3092 3093
		return false;

3094 3095
	if (is_writable_pte(new_spte) && !is_writable_pte(old_spte))
		mark_page_dirty_in_slot(vcpu->kvm, fault->slot, fault->gfn);
3096 3097 3098 3099

	return true;
}

3100
static bool is_access_allowed(struct kvm_page_fault *fault, u64 spte)
3101
{
3102
	if (fault->exec)
3103 3104
		return is_executable_pte(spte);

3105
	if (fault->write)
3106 3107 3108 3109 3110 3111
		return is_writable_pte(spte);

	/* Fault was on Read access */
	return spte & PT_PRESENT_MASK;
}

3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134
/*
 * Returns the last level spte pointer of the shadow page walk for the given
 * gpa, and sets *spte to the spte value. This spte may be non-preset. If no
 * walk could be performed, returns NULL and *spte does not contain valid data.
 *
 * Contract:
 *  - Must be called between walk_shadow_page_lockless_{begin,end}.
 *  - The returned sptep must not be used after walk_shadow_page_lockless_end.
 */
static u64 *fast_pf_get_last_sptep(struct kvm_vcpu *vcpu, gpa_t gpa, u64 *spte)
{
	struct kvm_shadow_walk_iterator iterator;
	u64 old_spte;
	u64 *sptep = NULL;

	for_each_shadow_entry_lockless(vcpu, gpa, iterator, old_spte) {
		sptep = iterator.sptep;
		*spte = old_spte;
	}

	return sptep;
}

3135
/*
3136
 * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS.
3137
 */
3138
static int fast_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
3139
{
3140
	struct kvm_mmu_page *sp;
3141
	int ret = RET_PF_INVALID;
3142
	u64 spte = 0ull;
3143
	u64 *sptep = NULL;
3144
	uint retry_count = 0;
3145

3146
	if (!page_fault_can_be_fast(fault))
3147
		return ret;
3148 3149 3150

	walk_shadow_page_lockless_begin(vcpu);

3151
	do {
3152
		u64 new_spte;
3153

3154
		if (is_tdp_mmu(vcpu->arch.mmu))
3155
			sptep = kvm_tdp_mmu_fast_pf_get_last_sptep(vcpu, fault->addr, &spte);
3156
		else
3157
			sptep = fast_pf_get_last_sptep(vcpu, fault->addr, &spte);
3158

3159 3160 3161
		if (!is_shadow_present_pte(spte))
			break;

3162
		sp = sptep_to_sp(sptep);
3163 3164
		if (!is_last_spte(spte, sp->role.level))
			break;
3165

3166
		/*
3167 3168 3169 3170 3171
		 * Check whether the memory access that caused the fault would
		 * still cause it if it were to be performed right now. If not,
		 * then this is a spurious fault caused by TLB lazily flushed,
		 * or some other CPU has already fixed the PTE after the
		 * current CPU took the fault.
3172 3173 3174 3175
		 *
		 * Need not check the access of upper level table entries since
		 * they are always ACC_ALL.
		 */
3176
		if (is_access_allowed(fault, spte)) {
3177
			ret = RET_PF_SPURIOUS;
3178 3179
			break;
		}
3180

3181 3182 3183 3184 3185 3186 3187 3188 3189 3190
		new_spte = spte;

		if (is_access_track_spte(spte))
			new_spte = restore_acc_track_spte(new_spte);

		/*
		 * Currently, to simplify the code, write-protection can
		 * be removed in the fast path only if the SPTE was
		 * write-protected for dirty-logging or access tracking.
		 */
3191
		if (fault->write &&
3192
		    spte_can_locklessly_be_made_writable(spte)) {
3193
			new_spte |= PT_WRITABLE_MASK;
3194 3195

			/*
3196 3197 3198
			 * Do not fix write-permission on the large spte when
			 * dirty logging is enabled. Since we only dirty the
			 * first page into the dirty-bitmap in
3199 3200 3201 3202 3203
			 * fast_pf_fix_direct_spte(), other pages are missed
			 * if its slot has dirty logging enabled.
			 *
			 * Instead, we let the slow page fault path create a
			 * normal spte to fix the access.
3204
			 */
3205 3206
			if (sp->role.level > PG_LEVEL_4K &&
			    kvm_slot_dirty_track_enabled(fault->slot))
3207
				break;
3208
		}
3209

3210
		/* Verify that the fault can be handled in the fast path */
3211
		if (new_spte == spte ||
3212
		    !is_access_allowed(fault, new_spte))
3213 3214 3215 3216 3217
			break;

		/*
		 * Currently, fast page fault only works for direct mapping
		 * since the gfn is not stable for indirect shadow page. See
3218
		 * Documentation/virt/kvm/locking.rst to get more detail.
3219
		 */
3220
		if (fast_pf_fix_direct_spte(vcpu, fault, sptep, spte, new_spte)) {
3221
			ret = RET_PF_FIXED;
3222
			break;
3223
		}
3224 3225 3226 3227 3228 3229 3230 3231

		if (++retry_count > 4) {
			printk_once(KERN_WARNING
				"kvm: Fast #PF retrying more than 4 times.\n");
			break;
		}

	} while (true);
3232

3233
	trace_fast_page_fault(vcpu, fault, sptep, spte, ret);
3234 3235
	walk_shadow_page_lockless_end(vcpu);

3236
	return ret;
3237 3238
}

3239 3240
static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
			       struct list_head *invalid_list)
3241
{
3242
	struct kvm_mmu_page *sp;
3243

3244
	if (!VALID_PAGE(*root_hpa))
A
Avi Kivity 已提交
3245
		return;
3246

3247
	sp = to_shadow_page(*root_hpa & PT64_BASE_ADDR_MASK);
3248

3249
	if (is_tdp_mmu_page(sp))
3250
		kvm_tdp_mmu_put_root(kvm, sp, false);
3251 3252
	else if (!--sp->root_count && sp->role.invalid)
		kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3253

3254 3255 3256
	*root_hpa = INVALID_PAGE;
}

3257
/* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
3258 3259
void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
			ulong roots_to_free)
3260
{
3261
	struct kvm *kvm = vcpu->kvm;
3262 3263
	int i;
	LIST_HEAD(invalid_list);
3264
	bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
3265

3266
	BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3267

3268
	/* Before acquiring the MMU lock, see if we need to do any real work. */
3269 3270 3271 3272 3273 3274 3275 3276 3277
	if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
			if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
			    VALID_PAGE(mmu->prev_roots[i].hpa))
				break;

		if (i == KVM_MMU_NUM_PREV_ROOTS)
			return;
	}
3278

3279
	write_lock(&kvm->mmu_lock);
3280

3281 3282
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
		if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3283
			mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa,
3284
					   &invalid_list);
3285

3286 3287 3288
	if (free_active_root) {
		if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
		    (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3289
			mmu_free_root_page(kvm, &mmu->root_hpa, &invalid_list);
3290
		} else if (mmu->pae_root) {
3291 3292 3293 3294 3295 3296 3297 3298
			for (i = 0; i < 4; ++i) {
				if (!IS_VALID_PAE_ROOT(mmu->pae_root[i]))
					continue;

				mmu_free_root_page(kvm, &mmu->pae_root[i],
						   &invalid_list);
				mmu->pae_root[i] = INVALID_PAE_ROOT;
			}
3299
		}
3300
		mmu->root_hpa = INVALID_PAGE;
3301
		mmu->root_pgd = 0;
3302
	}
3303

3304
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
3305
	write_unlock(&kvm->mmu_lock);
3306
}
3307
EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3308

3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335
void kvm_mmu_free_guest_mode_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
{
	unsigned long roots_to_free = 0;
	hpa_t root_hpa;
	int i;

	/*
	 * This should not be called while L2 is active, L2 can't invalidate
	 * _only_ its own roots, e.g. INVVPID unconditionally exits.
	 */
	WARN_ON_ONCE(mmu->mmu_role.base.guest_mode);

	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
		root_hpa = mmu->prev_roots[i].hpa;
		if (!VALID_PAGE(root_hpa))
			continue;

		if (!to_shadow_page(root_hpa) ||
			to_shadow_page(root_hpa)->role.guest_mode)
			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
	}

	kvm_mmu_free_roots(vcpu, mmu, roots_to_free);
}
EXPORT_SYMBOL_GPL(kvm_mmu_free_guest_mode_roots);


3336 3337 3338 3339
static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
{
	int ret = 0;

3340
	if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) {
3341
		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3342 3343 3344 3345 3346 3347
		ret = 1;
	}

	return ret;
}

3348 3349
static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, gva_t gva,
			    u8 level, bool direct)
3350 3351
{
	struct kvm_mmu_page *sp;
3352 3353 3354 3355 3356 3357 3358 3359 3360

	sp = kvm_mmu_get_page(vcpu, gfn, gva, level, direct, ACC_ALL);
	++sp->root_count;

	return __pa(sp->spt);
}

static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
{
3361 3362
	struct kvm_mmu *mmu = vcpu->arch.mmu;
	u8 shadow_root_level = mmu->shadow_root_level;
3363
	hpa_t root;
3364
	unsigned i;
3365 3366 3367 3368 3369 3370
	int r;

	write_lock(&vcpu->kvm->mmu_lock);
	r = make_mmu_pages_available(vcpu);
	if (r < 0)
		goto out_unlock;
3371

3372
	if (is_tdp_mmu_enabled(vcpu->kvm)) {
3373
		root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu);
3374
		mmu->root_hpa = root;
3375
	} else if (shadow_root_level >= PT64_ROOT_4LEVEL) {
3376
		root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level, true);
3377
		mmu->root_hpa = root;
3378
	} else if (shadow_root_level == PT32E_ROOT_LEVEL) {
3379 3380 3381 3382
		if (WARN_ON_ONCE(!mmu->pae_root)) {
			r = -EIO;
			goto out_unlock;
		}
3383

3384
		for (i = 0; i < 4; ++i) {
3385
			WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3386

3387 3388
			root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT),
					      i << 30, PT32_ROOT_LEVEL, true);
3389 3390
			mmu->pae_root[i] = root | PT_PRESENT_MASK |
					   shadow_me_mask;
3391
		}
3392
		mmu->root_hpa = __pa(mmu->pae_root);
3393 3394
	} else {
		WARN_ONCE(1, "Bad TDP root level = %d\n", shadow_root_level);
3395 3396
		r = -EIO;
		goto out_unlock;
3397
	}
3398

3399
	/* root_pgd is ignored for direct MMUs. */
3400
	mmu->root_pgd = 0;
3401 3402 3403
out_unlock:
	write_unlock(&vcpu->kvm->mmu_lock);
	return r;
3404 3405
}

3406 3407 3408 3409
static int mmu_first_shadow_root_alloc(struct kvm *kvm)
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *slot;
3410
	int r = 0, i, bkt;
3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434

	/*
	 * Check if this is the first shadow root being allocated before
	 * taking the lock.
	 */
	if (kvm_shadow_root_allocated(kvm))
		return 0;

	mutex_lock(&kvm->slots_arch_lock);

	/* Recheck, under the lock, whether this is the first shadow root. */
	if (kvm_shadow_root_allocated(kvm))
		goto out_unlock;

	/*
	 * Check if anything actually needs to be allocated, e.g. all metadata
	 * will be allocated upfront if TDP is disabled.
	 */
	if (kvm_memslots_have_rmaps(kvm) &&
	    kvm_page_track_write_tracking_enabled(kvm))
		goto out_success;

	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
3435
		kvm_for_each_memslot(slot, bkt, slots) {
3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466
			/*
			 * Both of these functions are no-ops if the target is
			 * already allocated, so unconditionally calling both
			 * is safe.  Intentionally do NOT free allocations on
			 * failure to avoid having to track which allocations
			 * were made now versus when the memslot was created.
			 * The metadata is guaranteed to be freed when the slot
			 * is freed, and will be kept/used if userspace retries
			 * KVM_RUN instead of killing the VM.
			 */
			r = memslot_rmap_alloc(slot, slot->npages);
			if (r)
				goto out_unlock;
			r = kvm_page_track_write_tracking_alloc(slot);
			if (r)
				goto out_unlock;
		}
	}

	/*
	 * Ensure that shadow_root_allocated becomes true strictly after
	 * all the related pointers are set.
	 */
out_success:
	smp_store_release(&kvm->arch.shadow_root_allocated, true);

out_unlock:
	mutex_unlock(&kvm->slots_arch_lock);
	return r;
}

3467
static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3468
{
3469
	struct kvm_mmu *mmu = vcpu->arch.mmu;
3470
	u64 pdptrs[4], pm_mask;
3471
	gfn_t root_gfn, root_pgd;
3472
	hpa_t root;
3473 3474
	unsigned i;
	int r;
3475

3476
	root_pgd = mmu->get_guest_pgd(vcpu);
3477
	root_gfn = root_pgd >> PAGE_SHIFT;
3478

3479 3480 3481
	if (mmu_check_root(vcpu, root_gfn))
		return 1;

3482 3483 3484 3485
	/*
	 * On SVM, reading PDPTRs might access guest memory, which might fault
	 * and thus might sleep.  Grab the PDPTRs before acquiring mmu_lock.
	 */
3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496
	if (mmu->root_level == PT32E_ROOT_LEVEL) {
		for (i = 0; i < 4; ++i) {
			pdptrs[i] = mmu->get_pdptr(vcpu, i);
			if (!(pdptrs[i] & PT_PRESENT_MASK))
				continue;

			if (mmu_check_root(vcpu, pdptrs[i] >> PAGE_SHIFT))
				return 1;
		}
	}

3497
	r = mmu_first_shadow_root_alloc(vcpu->kvm);
3498 3499 3500
	if (r)
		return r;

3501 3502 3503 3504 3505
	write_lock(&vcpu->kvm->mmu_lock);
	r = make_mmu_pages_available(vcpu);
	if (r < 0)
		goto out_unlock;

3506 3507 3508 3509
	/*
	 * Do we shadow a long mode page table? If so we need to
	 * write-protect the guests page table root.
	 */
3510
	if (mmu->root_level >= PT64_ROOT_4LEVEL) {
3511
		root = mmu_alloc_root(vcpu, root_gfn, 0,
3512 3513
				      mmu->shadow_root_level, false);
		mmu->root_hpa = root;
3514
		goto set_root_pgd;
3515
	}
3516

3517 3518 3519 3520
	if (WARN_ON_ONCE(!mmu->pae_root)) {
		r = -EIO;
		goto out_unlock;
	}
3521

3522 3523
	/*
	 * We shadow a 32 bit page table. This may be a legacy 2-level
3524 3525
	 * or a PAE 3-level page table. In either case we need to be aware that
	 * the shadow page table may be a PAE or a long mode page table.
3526
	 */
3527
	pm_mask = PT_PRESENT_MASK | shadow_me_mask;
3528
	if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL) {
3529 3530
		pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;

3531
		if (WARN_ON_ONCE(!mmu->pml4_root)) {
3532 3533 3534
			r = -EIO;
			goto out_unlock;
		}
3535
		mmu->pml4_root[0] = __pa(mmu->pae_root) | pm_mask;
3536 3537 3538 3539 3540 3541 3542 3543

		if (mmu->shadow_root_level == PT64_ROOT_5LEVEL) {
			if (WARN_ON_ONCE(!mmu->pml5_root)) {
				r = -EIO;
				goto out_unlock;
			}
			mmu->pml5_root[0] = __pa(mmu->pml4_root) | pm_mask;
		}
3544 3545
	}

3546
	for (i = 0; i < 4; ++i) {
3547
		WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3548

3549
		if (mmu->root_level == PT32E_ROOT_LEVEL) {
3550
			if (!(pdptrs[i] & PT_PRESENT_MASK)) {
3551
				mmu->pae_root[i] = INVALID_PAE_ROOT;
A
Avi Kivity 已提交
3552 3553
				continue;
			}
3554
			root_gfn = pdptrs[i] >> PAGE_SHIFT;
3555
		}
3556

3557 3558
		root = mmu_alloc_root(vcpu, root_gfn, i << 30,
				      PT32_ROOT_LEVEL, false);
3559
		mmu->pae_root[i] = root | pm_mask;
3560
	}
3561

3562 3563 3564
	if (mmu->shadow_root_level == PT64_ROOT_5LEVEL)
		mmu->root_hpa = __pa(mmu->pml5_root);
	else if (mmu->shadow_root_level == PT64_ROOT_4LEVEL)
3565
		mmu->root_hpa = __pa(mmu->pml4_root);
3566 3567
	else
		mmu->root_hpa = __pa(mmu->pae_root);
3568

3569
set_root_pgd:
3570
	mmu->root_pgd = root_pgd;
3571 3572
out_unlock:
	write_unlock(&vcpu->kvm->mmu_lock);
3573

3574
	return 0;
3575 3576
}

3577 3578 3579
static int mmu_alloc_special_roots(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu *mmu = vcpu->arch.mmu;
3580
	bool need_pml5 = mmu->shadow_root_level > PT64_ROOT_4LEVEL;
3581 3582 3583
	u64 *pml5_root = NULL;
	u64 *pml4_root = NULL;
	u64 *pae_root;
3584 3585

	/*
3586 3587 3588 3589
	 * When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP
	 * tables are allocated and initialized at root creation as there is no
	 * equivalent level in the guest's NPT to shadow.  Allocate the tables
	 * on demand, as running a 32-bit L1 VMM on 64-bit KVM is very rare.
3590
	 */
3591 3592 3593
	if (mmu->direct_map || mmu->root_level >= PT64_ROOT_4LEVEL ||
	    mmu->shadow_root_level < PT64_ROOT_4LEVEL)
		return 0;
3594

3595 3596 3597 3598 3599 3600 3601 3602
	/*
	 * NPT, the only paging mode that uses this horror, uses a fixed number
	 * of levels for the shadow page tables, e.g. all MMUs are 4-level or
	 * all MMus are 5-level.  Thus, this can safely require that pml5_root
	 * is allocated if the other roots are valid and pml5 is needed, as any
	 * prior MMU would also have required pml5.
	 */
	if (mmu->pae_root && mmu->pml4_root && (!need_pml5 || mmu->pml5_root))
3603
		return 0;
3604

3605 3606 3607 3608
	/*
	 * The special roots should always be allocated in concert.  Yell and
	 * bail if KVM ends up in a state where only one of the roots is valid.
	 */
3609
	if (WARN_ON_ONCE(!tdp_enabled || mmu->pae_root || mmu->pml4_root ||
3610
			 (need_pml5 && mmu->pml5_root)))
3611
		return -EIO;
3612

3613 3614 3615 3616
	/*
	 * Unlike 32-bit NPT, the PDP table doesn't need to be in low mem, and
	 * doesn't need to be decrypted.
	 */
3617 3618 3619
	pae_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
	if (!pae_root)
		return -ENOMEM;
3620

3621
#ifdef CONFIG_X86_64
3622
	pml4_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3623 3624 3625
	if (!pml4_root)
		goto err_pml4;

3626
	if (need_pml5) {
3627 3628 3629
		pml5_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
		if (!pml5_root)
			goto err_pml5;
3630
	}
3631
#endif
3632

3633
	mmu->pae_root = pae_root;
3634
	mmu->pml4_root = pml4_root;
3635
	mmu->pml5_root = pml5_root;
3636

3637
	return 0;
3638 3639 3640 3641 3642 3643 3644 3645

#ifdef CONFIG_X86_64
err_pml5:
	free_page((unsigned long)pml4_root);
err_pml4:
	free_page((unsigned long)pae_root);
	return -ENOMEM;
#endif
3646 3647
}

3648 3649 3650 3651
static bool is_unsync_root(hpa_t root)
{
	struct kvm_mmu_page *sp;

3652 3653 3654
	if (!VALID_PAGE(root))
		return false;

3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674
	/*
	 * The read barrier orders the CPU's read of SPTE.W during the page table
	 * walk before the reads of sp->unsync/sp->unsync_children here.
	 *
	 * Even if another CPU was marking the SP as unsync-ed simultaneously,
	 * any guest page table changes are not guaranteed to be visible anyway
	 * until this VCPU issues a TLB flush strictly after those changes are
	 * made.  We only need to ensure that the other CPU sets these flags
	 * before any actual changes to the page tables are made.  The comments
	 * in mmu_try_to_unsync_pages() describe what could go wrong if this
	 * requirement isn't satisfied.
	 */
	smp_rmb();
	sp = to_shadow_page(root);
	if (sp->unsync || sp->unsync_children)
		return true;

	return false;
}

3675
void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3676 3677 3678 3679
{
	int i;
	struct kvm_mmu_page *sp;

3680
	if (vcpu->arch.mmu->direct_map)
3681 3682
		return;

3683
	if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3684
		return;
3685

3686
	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3687

3688 3689
	if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
		hpa_t root = vcpu->arch.mmu->root_hpa;
3690
		sp = to_shadow_page(root);
3691

3692
		if (!is_unsync_root(root))
3693 3694
			return;

3695
		write_lock(&vcpu->kvm->mmu_lock);
3696 3697
		kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);

3698
		mmu_sync_children(vcpu, sp, true);
3699

3700
		kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3701
		write_unlock(&vcpu->kvm->mmu_lock);
3702 3703
		return;
	}
3704

3705
	write_lock(&vcpu->kvm->mmu_lock);
3706 3707
	kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);

3708
	for (i = 0; i < 4; ++i) {
3709
		hpa_t root = vcpu->arch.mmu->pae_root[i];
3710

3711
		if (IS_VALID_PAE_ROOT(root)) {
3712
			root &= PT64_BASE_ADDR_MASK;
3713
			sp = to_shadow_page(root);
3714
			mmu_sync_children(vcpu, sp, true);
3715 3716 3717
		}
	}

3718
	kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3719
	write_unlock(&vcpu->kvm->mmu_lock);
3720 3721
}

3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734
void kvm_mmu_sync_prev_roots(struct kvm_vcpu *vcpu)
{
	unsigned long roots_to_free = 0;
	int i;

	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
		if (is_unsync_root(vcpu->arch.mmu->prev_roots[i].hpa))
			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);

	/* sync prev_roots by simply freeing them */
	kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, roots_to_free);
}

3735 3736 3737
static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
				  gpa_t vaddr, u32 access,
				  struct x86_exception *exception)
A
Avi Kivity 已提交
3738
{
3739 3740
	if (exception)
		exception->error_code = 0;
3741
	return mmu->translate_gpa(vcpu, vaddr, access, exception);
3742 3743
}

3744
static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3745
{
3746 3747 3748 3749 3750 3751 3752
	/*
	 * A nested guest cannot use the MMIO cache if it is using nested
	 * page tables, because cr2 is a nGPA while the cache stores GPAs.
	 */
	if (mmu_is_nested(vcpu))
		return false;

3753 3754 3755 3756 3757 3758
	if (direct)
		return vcpu_match_mmio_gpa(vcpu, addr);

	return vcpu_match_mmio_gva(vcpu, addr);
}

3759 3760 3761
/*
 * Return the level of the lowest level SPTE added to sptes.
 * That SPTE may be non-present.
3762 3763
 *
 * Must be called between walk_shadow_page_lockless_{begin,end}.
3764
 */
3765
static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level)
3766 3767
{
	struct kvm_shadow_walk_iterator iterator;
3768
	int leaf = -1;
3769
	u64 spte;
3770

3771 3772
	for (shadow_walk_init(&iterator, vcpu, addr),
	     *root_level = iterator.level;
3773 3774
	     shadow_walk_okay(&iterator);
	     __shadow_walk_next(&iterator, spte)) {
3775
		leaf = iterator.level;
3776 3777
		spte = mmu_spte_get_lockless(iterator.sptep);

3778
		sptes[leaf] = spte;
3779 3780 3781 3782 3783
	}

	return leaf;
}

3784
/* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */
3785 3786
static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
{
3787
	u64 sptes[PT64_ROOT_MAX_LEVEL + 1];
3788
	struct rsvd_bits_validate *rsvd_check;
3789
	int root, leaf, level;
3790 3791
	bool reserved = false;

3792 3793
	walk_shadow_page_lockless_begin(vcpu);

3794
	if (is_tdp_mmu(vcpu->arch.mmu))
3795
		leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, &root);
3796
	else
3797
		leaf = get_walk(vcpu, addr, sptes, &root);
3798

3799 3800
	walk_shadow_page_lockless_end(vcpu);

3801 3802 3803 3804 3805
	if (unlikely(leaf < 0)) {
		*sptep = 0ull;
		return reserved;
	}

3806 3807 3808 3809 3810 3811 3812 3813 3814 3815
	*sptep = sptes[leaf];

	/*
	 * Skip reserved bits checks on the terminal leaf if it's not a valid
	 * SPTE.  Note, this also (intentionally) skips MMIO SPTEs, which, by
	 * design, always have reserved bits set.  The purpose of the checks is
	 * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs.
	 */
	if (!is_shadow_present_pte(sptes[leaf]))
		leaf++;
3816 3817 3818

	rsvd_check = &vcpu->arch.mmu->shadow_zero_check;

3819
	for (level = root; level >= leaf; level--)
3820
		reserved |= is_rsvd_spte(rsvd_check, sptes[level], level);
3821 3822

	if (reserved) {
3823
		pr_err("%s: reserved bits set on MMU-present spte, addr 0x%llx, hierarchy:\n",
3824
		       __func__, addr);
3825
		for (level = root; level >= leaf; level--)
3826 3827
			pr_err("------ spte = 0x%llx level = %d, rsvd bits = 0x%llx",
			       sptes[level], level,
3828
			       get_rsvd_bits(rsvd_check, sptes[level], level));
3829
	}
3830

3831
	return reserved;
3832 3833
}

P
Paolo Bonzini 已提交
3834
static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3835 3836
{
	u64 spte;
3837
	bool reserved;
3838

3839
	if (mmio_info_in_cache(vcpu, addr, direct))
3840
		return RET_PF_EMULATE;
3841

3842
	reserved = get_mmio_spte(vcpu, addr, &spte);
3843
	if (WARN_ON(reserved))
3844
		return -EINVAL;
3845 3846 3847

	if (is_mmio_spte(spte)) {
		gfn_t gfn = get_mmio_spte_gfn(spte);
3848
		unsigned int access = get_mmio_spte_access(spte);
3849

3850
		if (!check_mmio_spte(vcpu, spte))
3851
			return RET_PF_INVALID;
3852

3853 3854
		if (direct)
			addr = 0;
X
Xiao Guangrong 已提交
3855 3856

		trace_handle_mmio_page_fault(addr, gfn, access);
3857
		vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3858
		return RET_PF_EMULATE;
3859 3860 3861 3862 3863 3864
	}

	/*
	 * If the page table is zapped by other cpus, let CPU fault again on
	 * the address.
	 */
3865
	return RET_PF_RETRY;
3866 3867
}

3868
static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3869
					 struct kvm_page_fault *fault)
3870
{
3871
	if (unlikely(fault->rsvd))
3872 3873
		return false;

3874
	if (!fault->present || !fault->write)
3875 3876 3877 3878 3879 3880
		return false;

	/*
	 * guest is writing the page which is write tracked which can
	 * not be fixed by page fault handler.
	 */
3881
	if (kvm_slot_page_track_is_active(vcpu->kvm, fault->slot, fault->gfn, KVM_PAGE_TRACK_WRITE))
3882 3883 3884 3885 3886
		return true;

	return false;
}

3887 3888 3889 3890 3891 3892
static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
{
	struct kvm_shadow_walk_iterator iterator;
	u64 spte;

	walk_shadow_page_lockless_begin(vcpu);
3893
	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
3894 3895 3896 3897
		clear_sp_write_flooding_count(iterator.sptep);
	walk_shadow_page_lockless_end(vcpu);
}

3898 3899
static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
				    gfn_t gfn)
3900 3901
{
	struct kvm_arch_async_pf arch;
X
Xiao Guangrong 已提交
3902

3903
	arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3904
	arch.gfn = gfn;
3905
	arch.direct_map = vcpu->arch.mmu->direct_map;
3906
	arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu);
3907

3908 3909
	return kvm_setup_async_pf(vcpu, cr2_or_gpa,
				  kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3910 3911
}

3912
static bool kvm_faultin_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault, int *r)
3913
{
3914
	struct kvm_memory_slot *slot = fault->slot;
3915 3916
	bool async;

3917 3918 3919 3920 3921 3922
	/*
	 * Retry the page fault if the gfn hit a memslot that is being deleted
	 * or moved.  This ensures any existing SPTEs for the old memslot will
	 * be zapped before KVM inserts a new MMIO SPTE for the gfn.
	 */
	if (slot && (slot->flags & KVM_MEMSLOT_INVALID))
3923
		goto out_retry;
3924

3925 3926 3927
	if (!kvm_is_visible_memslot(slot)) {
		/* Don't expose private memslots to L2. */
		if (is_guest_mode(vcpu)) {
3928
			fault->slot = NULL;
3929 3930
			fault->pfn = KVM_PFN_NOSLOT;
			fault->map_writable = false;
3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943
			return false;
		}
		/*
		 * If the APIC access page exists but is disabled, go directly
		 * to emulation without caching the MMIO access or creating a
		 * MMIO SPTE.  That way the cache doesn't need to be purged
		 * when the AVIC is re-enabled.
		 */
		if (slot && slot->id == APIC_ACCESS_PAGE_PRIVATE_MEMSLOT &&
		    !kvm_apicv_activated(vcpu->kvm)) {
			*r = RET_PF_EMULATE;
			return true;
		}
3944 3945
	}

3946
	async = false;
3947 3948 3949
	fault->pfn = __gfn_to_pfn_memslot(slot, fault->gfn, false, &async,
					  fault->write, &fault->map_writable,
					  &fault->hva);
3950 3951 3952
	if (!async)
		return false; /* *pfn has correct page already */

3953
	if (!fault->prefetch && kvm_can_do_async_pf(vcpu)) {
3954 3955 3956
		trace_kvm_try_async_get_page(fault->addr, fault->gfn);
		if (kvm_find_async_pf_gfn(vcpu, fault->gfn)) {
			trace_kvm_async_pf_doublefault(fault->addr, fault->gfn);
3957
			kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3958
			goto out_retry;
3959
		} else if (kvm_arch_setup_async_pf(vcpu, fault->addr, fault->gfn))
3960
			goto out_retry;
3961 3962
	}

3963 3964 3965
	fault->pfn = __gfn_to_pfn_memslot(slot, fault->gfn, false, NULL,
					  fault->write, &fault->map_writable,
					  &fault->hva);
3966
	return false;
3967 3968 3969 3970

out_retry:
	*r = RET_PF_RETRY;
	return true;
3971 3972
}

3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986
/*
 * Returns true if the page fault is stale and needs to be retried, i.e. if the
 * root was invalidated by a memslot update or a relevant mmu_notifier fired.
 */
static bool is_page_fault_stale(struct kvm_vcpu *vcpu,
				struct kvm_page_fault *fault, int mmu_seq)
{
	if (is_obsolete_sp(vcpu->kvm, to_shadow_page(vcpu->arch.mmu->root_hpa)))
		return true;

	return fault->slot &&
	       mmu_notifier_retry_hva(vcpu->kvm, mmu_seq, fault->hva);
}

3987
static int direct_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
A
Avi Kivity 已提交
3988
{
3989
	bool is_tdp_mmu_fault = is_tdp_mmu(vcpu->arch.mmu);
A
Avi Kivity 已提交
3990

3991
	unsigned long mmu_seq;
3992
	int r;
3993

3994
	fault->gfn = fault->addr >> PAGE_SHIFT;
3995 3996
	fault->slot = kvm_vcpu_gfn_to_memslot(vcpu, fault->gfn);

3997
	if (page_fault_handle_page_track(vcpu, fault))
3998
		return RET_PF_EMULATE;
3999

4000
	r = fast_page_fault(vcpu, fault);
4001 4002
	if (r != RET_PF_INVALID)
		return r;
4003

4004
	r = mmu_topup_memory_caches(vcpu, false);
4005 4006
	if (r)
		return r;
4007

4008 4009 4010
	mmu_seq = vcpu->kvm->mmu_notifier_seq;
	smp_rmb();

4011
	if (kvm_faultin_pfn(vcpu, fault, &r))
4012
		return r;
4013

4014
	if (handle_abnormal_pfn(vcpu, fault, ACC_ALL, &r))
4015
		return r;
A
Avi Kivity 已提交
4016

4017
	r = RET_PF_RETRY;
4018

4019
	if (is_tdp_mmu_fault)
4020 4021 4022 4023
		read_lock(&vcpu->kvm->mmu_lock);
	else
		write_lock(&vcpu->kvm->mmu_lock);

4024
	if (is_page_fault_stale(vcpu, fault, mmu_seq))
4025
		goto out_unlock;
4026

4027 4028
	r = make_mmu_pages_available(vcpu);
	if (r)
4029
		goto out_unlock;
B
Ben Gardon 已提交
4030

4031
	if (is_tdp_mmu_fault)
4032
		r = kvm_tdp_mmu_map(vcpu, fault);
B
Ben Gardon 已提交
4033
	else
4034
		r = __direct_map(vcpu, fault);
4035

4036
out_unlock:
4037
	if (is_tdp_mmu_fault)
4038 4039 4040
		read_unlock(&vcpu->kvm->mmu_lock);
	else
		write_unlock(&vcpu->kvm->mmu_lock);
4041
	kvm_release_pfn_clean(fault->pfn);
4042
	return r;
A
Avi Kivity 已提交
4043 4044
}

4045 4046
static int nonpaging_page_fault(struct kvm_vcpu *vcpu,
				struct kvm_page_fault *fault)
4047
{
4048
	pgprintk("%s: gva %lx error %x\n", __func__, fault->addr, fault->error_code);
4049 4050

	/* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
4051 4052
	fault->max_level = PG_LEVEL_2M;
	return direct_page_fault(vcpu, fault);
4053 4054
}

4055
int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
4056
				u64 fault_address, char *insn, int insn_len)
4057 4058
{
	int r = 1;
4059
	u32 flags = vcpu->arch.apf.host_apf_flags;
4060

4061 4062 4063 4064 4065 4066
#ifndef CONFIG_X86_64
	/* A 64-bit CR2 should be impossible on 32-bit KVM. */
	if (WARN_ON_ONCE(fault_address >> 32))
		return -EFAULT;
#endif

P
Paolo Bonzini 已提交
4067
	vcpu->arch.l1tf_flush_l1d = true;
4068
	if (!flags) {
4069 4070
		trace_kvm_page_fault(fault_address, error_code);

4071
		if (kvm_event_needs_reinjection(vcpu))
4072 4073 4074
			kvm_mmu_unprotect_page_virt(vcpu, fault_address);
		r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
				insn_len);
4075
	} else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
4076
		vcpu->arch.apf.host_apf_flags = 0;
4077
		local_irq_disable();
4078
		kvm_async_pf_task_wait_schedule(fault_address);
4079
		local_irq_enable();
4080 4081
	} else {
		WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags);
4082
	}
4083

4084 4085 4086 4087
	return r;
}
EXPORT_SYMBOL_GPL(kvm_handle_page_fault);

4088
int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
4089
{
4090 4091 4092
	while (fault->max_level > PG_LEVEL_4K) {
		int page_num = KVM_PAGES_PER_HPAGE(fault->max_level);
		gfn_t base = (fault->addr >> PAGE_SHIFT) & ~(page_num - 1);
4093

4094 4095
		if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
			break;
4096 4097

		--fault->max_level;
4098
	}
4099

4100
	return direct_page_fault(vcpu, fault);
4101 4102
}

4103
static void nonpaging_init_context(struct kvm_mmu *context)
A
Avi Kivity 已提交
4104 4105 4106
{
	context->page_fault = nonpaging_page_fault;
	context->gva_to_gpa = nonpaging_gva_to_gpa;
4107
	context->sync_page = nonpaging_sync_page;
4108
	context->invlpg = NULL;
4109
	context->direct_map = true;
A
Avi Kivity 已提交
4110 4111
}

4112
static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd,
4113 4114
				  union kvm_mmu_page_role role)
{
4115
	return (role.direct || pgd == root->pgd) &&
4116 4117
	       VALID_PAGE(root->hpa) && to_shadow_page(root->hpa) &&
	       role.word == to_shadow_page(root->hpa)->role.word;
4118 4119
}

4120
/*
4121
 * Find out if a previously cached root matching the new pgd/role is available.
4122 4123 4124 4125 4126 4127
 * The current root is also inserted into the cache.
 * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
 * returned.
 * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
 * false is returned. This root should now be freed by the caller.
 */
4128
static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_pgd,
4129 4130 4131 4132
				  union kvm_mmu_page_role new_role)
{
	uint i;
	struct kvm_mmu_root_info root;
4133
	struct kvm_mmu *mmu = vcpu->arch.mmu;
4134

4135
	root.pgd = mmu->root_pgd;
4136 4137
	root.hpa = mmu->root_hpa;

4138
	if (is_root_usable(&root, new_pgd, new_role))
4139 4140
		return true;

4141 4142 4143
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
		swap(root, mmu->prev_roots[i]);

4144
		if (is_root_usable(&root, new_pgd, new_role))
4145 4146 4147 4148
			break;
	}

	mmu->root_hpa = root.hpa;
4149
	mmu->root_pgd = root.pgd;
4150 4151 4152 4153

	return i < KVM_MMU_NUM_PREV_ROOTS;
}

4154
static bool fast_pgd_switch(struct kvm_vcpu *vcpu, gpa_t new_pgd,
4155
			    union kvm_mmu_page_role new_role)
A
Avi Kivity 已提交
4156
{
4157
	struct kvm_mmu *mmu = vcpu->arch.mmu;
4158 4159 4160 4161 4162 4163 4164

	/*
	 * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
	 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
	 * later if necessary.
	 */
	if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
4165
	    mmu->root_level >= PT64_ROOT_4LEVEL)
4166
		return cached_root_available(vcpu, new_pgd, new_role);
4167 4168

	return false;
A
Avi Kivity 已提交
4169 4170
}

4171
static void __kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd,
4172
			      union kvm_mmu_page_role new_role)
A
Avi Kivity 已提交
4173
{
4174
	if (!fast_pgd_switch(vcpu, new_pgd, new_role)) {
4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186
		kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, KVM_MMU_ROOT_CURRENT);
		return;
	}

	/*
	 * It's possible that the cached previous root page is obsolete because
	 * of a change in the MMU generation number. However, changing the
	 * generation number is accompanied by KVM_REQ_MMU_RELOAD, which will
	 * free the root set here and allocate a new one.
	 */
	kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);

4187
	if (force_flush_and_sync_on_reuse) {
4188 4189
		kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
4190
	}
4191 4192 4193 4194 4195 4196 4197 4198 4199

	/*
	 * The last MMIO access's GVA and GPA are cached in the VCPU. When
	 * switching to a new CR3, that GVA->GPA mapping may no longer be
	 * valid. So clear any cached MMIO info even when we don't need to sync
	 * the shadow page tables.
	 */
	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);

4200 4201 4202 4203 4204 4205 4206
	/*
	 * If this is a direct root page, it doesn't have a write flooding
	 * count. Otherwise, clear the write flooding count.
	 */
	if (!new_role.direct)
		__clear_sp_write_flooding_count(
				to_shadow_page(vcpu->arch.mmu->root_hpa));
A
Avi Kivity 已提交
4207 4208
}

4209
void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd)
4210
{
4211
	__kvm_mmu_new_pgd(vcpu, new_pgd, kvm_mmu_calc_root_page_role(vcpu));
4212
}
4213
EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd);
4214

4215 4216
static unsigned long get_cr3(struct kvm_vcpu *vcpu)
{
4217
	return kvm_read_cr3(vcpu);
4218 4219
}

4220
static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
4221
			   unsigned int access)
4222 4223 4224 4225 4226 4227 4228
{
	if (unlikely(is_mmio_spte(*sptep))) {
		if (gfn != get_mmio_spte_gfn(*sptep)) {
			mmu_spte_clear_no_track(sptep);
			return true;
		}

4229
		mark_mmio_spte(vcpu, sptep, gfn, access);
4230 4231 4232 4233 4234 4235
		return true;
	}

	return false;
}

4236 4237 4238 4239 4240
#define PTTYPE_EPT 18 /* arbitrary */
#define PTTYPE PTTYPE_EPT
#include "paging_tmpl.h"
#undef PTTYPE

A
Avi Kivity 已提交
4241 4242 4243 4244 4245 4246 4247 4248
#define PTTYPE 64
#include "paging_tmpl.h"
#undef PTTYPE

#define PTTYPE 32
#include "paging_tmpl.h"
#undef PTTYPE

4249
static void
4250
__reset_rsvds_bits_mask(struct rsvd_bits_validate *rsvd_check,
4251
			u64 pa_bits_rsvd, int level, bool nx, bool gbpages,
4252
			bool pse, bool amd)
4253
{
4254
	u64 gbpages_bit_rsvd = 0;
4255
	u64 nonleaf_bit8_rsvd = 0;
4256
	u64 high_bits_rsvd;
4257

4258
	rsvd_check->bad_mt_xwr = 0;
4259

4260
	if (!gbpages)
4261
		gbpages_bit_rsvd = rsvd_bits(7, 7);
4262

4263 4264 4265 4266 4267 4268 4269 4270 4271
	if (level == PT32E_ROOT_LEVEL)
		high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 62);
	else
		high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);

	/* Note, NX doesn't exist in PDPTEs, this is handled below. */
	if (!nx)
		high_bits_rsvd |= rsvd_bits(63, 63);

4272 4273 4274 4275
	/*
	 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
	 * leaf entries) on AMD CPUs only.
	 */
4276
	if (amd)
4277 4278
		nonleaf_bit8_rsvd = rsvd_bits(8, 8);

4279
	switch (level) {
4280 4281
	case PT32_ROOT_LEVEL:
		/* no rsvd bits for 2 level 4K page table entries */
4282 4283 4284 4285
		rsvd_check->rsvd_bits_mask[0][1] = 0;
		rsvd_check->rsvd_bits_mask[0][0] = 0;
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
4286

4287
		if (!pse) {
4288
			rsvd_check->rsvd_bits_mask[1][1] = 0;
4289 4290 4291
			break;
		}

4292 4293
		if (is_cpuid_PSE36())
			/* 36bits PSE 4MB page */
4294
			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4295 4296
		else
			/* 32 bits PSE 4MB page */
4297
			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4298 4299
		break;
	case PT32E_ROOT_LEVEL:
4300 4301 4302 4303 4304 4305 4306 4307
		rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) |
						   high_bits_rsvd |
						   rsvd_bits(5, 8) |
						   rsvd_bits(1, 2);	/* PDPTE */
		rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;	/* PDE */
		rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;	/* PTE */
		rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
						   rsvd_bits(13, 20);	/* large page */
4308 4309
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
4310
		break;
4311
	case PT64_ROOT_5LEVEL:
4312 4313 4314
		rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd |
						   nonleaf_bit8_rsvd |
						   rsvd_bits(7, 7);
4315 4316
		rsvd_check->rsvd_bits_mask[1][4] =
			rsvd_check->rsvd_bits_mask[0][4];
4317
		fallthrough;
4318
	case PT64_ROOT_4LEVEL:
4319 4320 4321 4322 4323 4324 4325
		rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd |
						   nonleaf_bit8_rsvd |
						   rsvd_bits(7, 7);
		rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd |
						   gbpages_bit_rsvd;
		rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;
		rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4326 4327
		rsvd_check->rsvd_bits_mask[1][3] =
			rsvd_check->rsvd_bits_mask[0][3];
4328 4329 4330 4331 4332
		rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd |
						   gbpages_bit_rsvd |
						   rsvd_bits(13, 29);
		rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
						   rsvd_bits(13, 20); /* large page */
4333 4334
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
4335 4336 4337 4338
		break;
	}
}

4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353
static bool guest_can_use_gbpages(struct kvm_vcpu *vcpu)
{
	/*
	 * If TDP is enabled, let the guest use GBPAGES if they're supported in
	 * hardware.  The hardware page walker doesn't let KVM disable GBPAGES,
	 * i.e. won't treat them as reserved, and KVM doesn't redo the GVA->GPA
	 * walk for performance and complexity reasons.  Not to mention KVM
	 * _can't_ solve the problem because GVA->GPA walks aren't visible to
	 * KVM once a TDP translation is installed.  Mimic hardware behavior so
	 * that KVM's is at least consistent, i.e. doesn't randomly inject #PF.
	 */
	return tdp_enabled ? boot_cpu_has(X86_FEATURE_GBPAGES) :
			     guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES);
}

4354 4355 4356
static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
{
4357
	__reset_rsvds_bits_mask(&context->guest_rsvd_check,
4358
				vcpu->arch.reserved_gpa_bits,
4359
				context->root_level, is_efer_nx(context),
4360
				guest_can_use_gbpages(vcpu),
4361
				is_cr4_pse(context),
4362
				guest_cpuid_is_amd_or_hygon(vcpu));
4363 4364
}

4365 4366
static void
__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4367
			    u64 pa_bits_rsvd, bool execonly)
4368
{
4369
	u64 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
4370
	u64 bad_mt_xwr;
4371

4372 4373 4374 4375 4376
	rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7);
	rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7);
	rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6);
	rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6);
	rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4377 4378

	/* large page */
4379
	rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4380
	rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4381 4382
	rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29);
	rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20);
4383
	rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4384

4385 4386 4387 4388 4389 4390 4391 4392
	bad_mt_xwr = 0xFFull << (2 * 8);	/* bits 3..5 must not be 2 */
	bad_mt_xwr |= 0xFFull << (3 * 8);	/* bits 3..5 must not be 3 */
	bad_mt_xwr |= 0xFFull << (7 * 8);	/* bits 3..5 must not be 7 */
	bad_mt_xwr |= REPEAT_BYTE(1ull << 2);	/* bits 0..2 must not be 010 */
	bad_mt_xwr |= REPEAT_BYTE(1ull << 6);	/* bits 0..2 must not be 110 */
	if (!execonly) {
		/* bits 0..2 must not be 100 unless VMX capabilities allow it */
		bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4393
	}
4394
	rsvd_check->bad_mt_xwr = bad_mt_xwr;
4395 4396
}

4397 4398 4399 4400
static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
		struct kvm_mmu *context, bool execonly)
{
	__reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4401
				    vcpu->arch.reserved_gpa_bits, execonly);
4402 4403
}

4404 4405 4406 4407 4408
static inline u64 reserved_hpa_bits(void)
{
	return rsvd_bits(shadow_phys_bits, 63);
}

4409 4410 4411 4412 4413
/*
 * the page table on host is the shadow page table for the page
 * table in guest or amd nested guest, its mmu features completely
 * follow the features in guest.
 */
4414 4415
static void reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
					struct kvm_mmu *context)
4416
{
4417 4418 4419 4420 4421 4422 4423 4424
	/*
	 * KVM uses NX when TDP is disabled to handle a variety of scenarios,
	 * notably for huge SPTEs if iTLB multi-hit mitigation is enabled and
	 * to generate correct permissions for CR0.WP=0/CR4.SMEP=1/EFER.NX=0.
	 * The iTLB multi-hit workaround can be toggled at any time, so assume
	 * NX can be used by any non-nested shadow MMU to avoid having to reset
	 * MMU contexts.  Note, KVM forces EFER.NX=1 when TDP is disabled.
	 */
4425
	bool uses_nx = is_efer_nx(context) || !tdp_enabled;
4426 4427 4428 4429 4430

	/* @amd adds a check on bit of SPTEs, which KVM shouldn't use anyways. */
	bool is_amd = true;
	/* KVM doesn't use 2-level page tables for the shadow MMU. */
	bool is_pse = false;
4431 4432
	struct rsvd_bits_validate *shadow_zero_check;
	int i;
4433

4434 4435
	WARN_ON_ONCE(context->shadow_root_level < PT32E_ROOT_LEVEL);

4436
	shadow_zero_check = &context->shadow_zero_check;
4437
	__reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(),
4438
				context->shadow_root_level, uses_nx,
4439
				guest_can_use_gbpages(vcpu), is_pse, is_amd);
4440 4441 4442 4443 4444 4445 4446 4447 4448

	if (!shadow_me_mask)
		return;

	for (i = context->shadow_root_level; --i >= 0;) {
		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
	}

4449 4450
}

4451 4452 4453 4454 4455 4456
static inline bool boot_cpu_is_amd(void)
{
	WARN_ON_ONCE(!tdp_enabled);
	return shadow_x_mask == 0;
}

4457 4458 4459 4460 4461 4462 4463 4464
/*
 * the direct page table on host, use as much mmu features as
 * possible, however, kvm currently does not do execution-protection.
 */
static void
reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
				struct kvm_mmu *context)
{
4465 4466 4467 4468 4469
	struct rsvd_bits_validate *shadow_zero_check;
	int i;

	shadow_zero_check = &context->shadow_zero_check;

4470
	if (boot_cpu_is_amd())
4471
		__reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(),
4472
					context->shadow_root_level, false,
4473
					boot_cpu_has(X86_FEATURE_GBPAGES),
4474
					false, true);
4475
	else
4476
		__reset_rsvds_bits_mask_ept(shadow_zero_check,
4477
					    reserved_hpa_bits(), false);
4478

4479 4480 4481 4482 4483 4484 4485
	if (!shadow_me_mask)
		return;

	for (i = context->shadow_root_level; --i >= 0;) {
		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
	}
4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496
}

/*
 * as the comments in reset_shadow_zero_bits_mask() except it
 * is the shadow page table for intel nested guest.
 */
static void
reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
				struct kvm_mmu *context, bool execonly)
{
	__reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4497
				    reserved_hpa_bits(), execonly);
4498 4499
}

4500 4501 4502 4503 4504 4505 4506 4507 4508 4509
#define BYTE_MASK(access) \
	((1 & (access) ? 2 : 0) | \
	 (2 & (access) ? 4 : 0) | \
	 (3 & (access) ? 8 : 0) | \
	 (4 & (access) ? 16 : 0) | \
	 (5 & (access) ? 32 : 0) | \
	 (6 & (access) ? 64 : 0) | \
	 (7 & (access) ? 128 : 0))


4510
static void update_permission_bitmask(struct kvm_mmu *mmu, bool ept)
4511
{
4512 4513 4514 4515 4516 4517
	unsigned byte;

	const u8 x = BYTE_MASK(ACC_EXEC_MASK);
	const u8 w = BYTE_MASK(ACC_WRITE_MASK);
	const u8 u = BYTE_MASK(ACC_USER_MASK);

4518 4519 4520
	bool cr4_smep = is_cr4_smep(mmu);
	bool cr4_smap = is_cr4_smap(mmu);
	bool cr0_wp = is_cr0_wp(mmu);
4521
	bool efer_nx = is_efer_nx(mmu);
4522 4523

	for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4524 4525
		unsigned pfec = byte << 1;

F
Feng Wu 已提交
4526
		/*
4527 4528
		 * Each "*f" variable has a 1 bit for each UWX value
		 * that causes a fault with the given PFEC.
F
Feng Wu 已提交
4529
		 */
4530

4531
		/* Faults from writes to non-writable pages */
4532
		u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
4533
		/* Faults from user mode accesses to supervisor pages */
4534
		u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
4535
		/* Faults from fetches of non-executable pages*/
4536
		u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
4537 4538 4539 4540 4541 4542 4543 4544 4545 4546
		/* Faults from kernel mode fetches of user pages */
		u8 smepf = 0;
		/* Faults from kernel mode accesses of user pages */
		u8 smapf = 0;

		if (!ept) {
			/* Faults from kernel mode accesses to user pages */
			u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;

			/* Not really needed: !nx will cause pte.nx to fault */
4547
			if (!efer_nx)
4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561
				ff = 0;

			/* Allow supervisor writes if !cr0.wp */
			if (!cr0_wp)
				wf = (pfec & PFERR_USER_MASK) ? wf : 0;

			/* Disallow supervisor fetches of user code if cr4.smep */
			if (cr4_smep)
				smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;

			/*
			 * SMAP:kernel-mode data accesses from user-mode
			 * mappings should fault. A fault is considered
			 * as a SMAP violation if all of the following
P
Peng Hao 已提交
4562
			 * conditions are true:
4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575
			 *   - X86_CR4_SMAP is set in CR4
			 *   - A user page is accessed
			 *   - The access is not a fetch
			 *   - Page fault in kernel mode
			 *   - if CPL = 3 or X86_EFLAGS_AC is clear
			 *
			 * Here, we cover the first three conditions.
			 * The fourth is computed dynamically in permission_fault();
			 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
			 * *not* subject to SMAP restrictions.
			 */
			if (cr4_smap)
				smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4576
		}
4577 4578

		mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4579 4580 4581
	}
}

4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605
/*
* PKU is an additional mechanism by which the paging controls access to
* user-mode addresses based on the value in the PKRU register.  Protection
* key violations are reported through a bit in the page fault error code.
* Unlike other bits of the error code, the PK bit is not known at the
* call site of e.g. gva_to_gpa; it must be computed directly in
* permission_fault based on two bits of PKRU, on some machine state (CR4,
* CR0, EFER, CPL), and on other bits of the error code and the page tables.
*
* In particular the following conditions come from the error code, the
* page tables and the machine state:
* - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
* - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
* - PK is always zero if U=0 in the page tables
* - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
*
* The PKRU bitmask caches the result of these four conditions.  The error
* code (minus the P bit) and the page table's U bit form an index into the
* PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
* with the two bits of the PKRU register corresponding to the protection key.
* For the first three conditions above the bits will be 00, thus masking
* away both AD and WD.  For all reads or if the last condition holds, WD
* only will be masked away.
*/
4606
static void update_pkru_bitmask(struct kvm_mmu *mmu)
4607 4608 4609 4610
{
	unsigned bit;
	bool wp;

4611 4612 4613
	mmu->pkru_mask = 0;

	if (!is_cr4_pke(mmu))
4614 4615
		return;

4616
	wp = is_cr0_wp(mmu);
4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649

	for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
		unsigned pfec, pkey_bits;
		bool check_pkey, check_write, ff, uf, wf, pte_user;

		pfec = bit << 1;
		ff = pfec & PFERR_FETCH_MASK;
		uf = pfec & PFERR_USER_MASK;
		wf = pfec & PFERR_WRITE_MASK;

		/* PFEC.RSVD is replaced by ACC_USER_MASK. */
		pte_user = pfec & PFERR_RSVD_MASK;

		/*
		 * Only need to check the access which is not an
		 * instruction fetch and is to a user page.
		 */
		check_pkey = (!ff && pte_user);
		/*
		 * write access is controlled by PKRU if it is a
		 * user access or CR0.WP = 1.
		 */
		check_write = check_pkey && wf && (uf || wp);

		/* PKRU.AD stops both read and write access. */
		pkey_bits = !!check_pkey;
		/* PKRU.WD stops write access. */
		pkey_bits |= (!!check_write) << 1;

		mmu->pkru_mask |= (pkey_bits & 3) << pfec;
	}
}

4650 4651
static void reset_guest_paging_metadata(struct kvm_vcpu *vcpu,
					struct kvm_mmu *mmu)
A
Avi Kivity 已提交
4652
{
4653 4654
	if (!is_cr0_pg(mmu))
		return;
4655

4656 4657 4658
	reset_rsvds_bits_mask(vcpu, mmu);
	update_permission_bitmask(mmu, false);
	update_pkru_bitmask(mmu);
A
Avi Kivity 已提交
4659 4660
}

4661
static void paging64_init_context(struct kvm_mmu *context)
A
Avi Kivity 已提交
4662 4663 4664
{
	context->page_fault = paging64_page_fault;
	context->gva_to_gpa = paging64_gva_to_gpa;
4665
	context->sync_page = paging64_sync_page;
M
Marcelo Tosatti 已提交
4666
	context->invlpg = paging64_invlpg;
4667
	context->direct_map = false;
A
Avi Kivity 已提交
4668 4669
}

4670
static void paging32_init_context(struct kvm_mmu *context)
A
Avi Kivity 已提交
4671 4672 4673
{
	context->page_fault = paging32_page_fault;
	context->gva_to_gpa = paging32_gva_to_gpa;
4674
	context->sync_page = paging32_sync_page;
M
Marcelo Tosatti 已提交
4675
	context->invlpg = paging32_invlpg;
4676
	context->direct_map = false;
A
Avi Kivity 已提交
4677 4678
}

4679 4680
static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu,
							 struct kvm_mmu_role_regs *regs)
4681 4682 4683
{
	union kvm_mmu_extended_role ext = {0};

4684 4685 4686 4687 4688 4689
	if (____is_cr0_pg(regs)) {
		ext.cr0_pg = 1;
		ext.cr4_pae = ____is_cr4_pae(regs);
		ext.cr4_smep = ____is_cr4_smep(regs);
		ext.cr4_smap = ____is_cr4_smap(regs);
		ext.cr4_pse = ____is_cr4_pse(regs);
4690 4691 4692 4693

		/* PKEY and LA57 are active iff long mode is active. */
		ext.cr4_pke = ____is_efer_lma(regs) && ____is_cr4_pke(regs);
		ext.cr4_la57 = ____is_efer_lma(regs) && ____is_cr4_la57(regs);
4694
		ext.efer_lma = ____is_efer_lma(regs);
4695
	}
4696 4697 4698 4699 4700 4701

	ext.valid = 1;

	return ext;
}

4702
static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
4703
						   struct kvm_mmu_role_regs *regs,
4704 4705 4706 4707 4708
						   bool base_only)
{
	union kvm_mmu_role role = {0};

	role.base.access = ACC_ALL;
4709 4710 4711 4712
	if (____is_cr0_pg(regs)) {
		role.base.efer_nx = ____is_efer_nx(regs);
		role.base.cr0_wp = ____is_cr0_wp(regs);
	}
4713 4714 4715 4716 4717 4718
	role.base.smm = is_smm(vcpu);
	role.base.guest_mode = is_guest_mode(vcpu);

	if (base_only)
		return role;

4719
	role.ext = kvm_calc_mmu_role_ext(vcpu, regs);
4720 4721 4722 4723

	return role;
}

4724 4725
static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu)
{
4726 4727 4728 4729
	/* tdp_root_level is architecture forced level, use it if nonzero */
	if (tdp_root_level)
		return tdp_root_level;

4730
	/* Use 5-level TDP if and only if it's useful/necessary. */
4731
	if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48)
4732 4733
		return 4;

4734
	return max_tdp_level;
4735 4736
}

4737
static union kvm_mmu_role
4738 4739
kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu,
				struct kvm_mmu_role_regs *regs, bool base_only)
4740
{
4741
	union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, regs, base_only);
4742

4743
	role.base.ad_disabled = (shadow_accessed_mask == 0);
4744
	role.base.level = kvm_mmu_get_tdp_level(vcpu);
4745
	role.base.direct = true;
4746
	role.base.gpte_is_8_bytes = true;
4747 4748 4749 4750

	return role;
}

4751
static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4752
{
4753
	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4754
	struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
4755
	union kvm_mmu_role new_role =
4756
		kvm_calc_tdp_mmu_root_page_role(vcpu, &regs, false);
4757

4758 4759 4760 4761
	if (new_role.as_u64 == context->mmu_role.as_u64)
		return;

	context->mmu_role.as_u64 = new_role.as_u64;
4762
	context->page_fault = kvm_tdp_page_fault;
4763
	context->sync_page = nonpaging_sync_page;
4764
	context->invlpg = NULL;
4765
	context->shadow_root_level = kvm_mmu_get_tdp_level(vcpu);
4766
	context->direct_map = true;
4767
	context->get_guest_pgd = get_cr3;
4768
	context->get_pdptr = kvm_pdptr_read;
4769
	context->inject_page_fault = kvm_inject_page_fault;
4770
	context->root_level = role_regs_to_root_level(&regs);
4771

4772
	if (!is_cr0_pg(context))
4773
		context->gva_to_gpa = nonpaging_gva_to_gpa;
4774
	else if (is_cr4_pae(context))
4775
		context->gva_to_gpa = paging64_gva_to_gpa;
4776
	else
4777
		context->gva_to_gpa = paging32_gva_to_gpa;
4778

4779
	reset_guest_paging_metadata(vcpu, context);
4780
	reset_tdp_shadow_zero_bits_mask(vcpu, context);
4781 4782
}

4783
static union kvm_mmu_role
4784 4785
kvm_calc_shadow_root_page_role_common(struct kvm_vcpu *vcpu,
				      struct kvm_mmu_role_regs *regs, bool base_only)
4786
{
4787
	union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, regs, base_only);
4788

4789 4790
	role.base.smep_andnot_wp = role.ext.cr4_smep && !____is_cr0_wp(regs);
	role.base.smap_andnot_wp = role.ext.cr4_smap && !____is_cr0_wp(regs);
4791
	role.base.gpte_is_8_bytes = ____is_cr0_pg(regs) && ____is_cr4_pae(regs);
4792

4793 4794 4795 4796
	return role;
}

static union kvm_mmu_role
4797 4798
kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu,
				   struct kvm_mmu_role_regs *regs, bool base_only)
4799 4800
{
	union kvm_mmu_role role =
4801
		kvm_calc_shadow_root_page_role_common(vcpu, regs, base_only);
4802

4803
	role.base.direct = !____is_cr0_pg(regs);
4804

4805
	if (!____is_efer_lma(regs))
4806
		role.base.level = PT32E_ROOT_LEVEL;
4807
	else if (____is_cr4_la57(regs))
4808
		role.base.level = PT64_ROOT_5LEVEL;
4809
	else
4810
		role.base.level = PT64_ROOT_4LEVEL;
4811 4812 4813 4814

	return role;
}

4815
static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
4816
				    struct kvm_mmu_role_regs *regs,
4817
				    union kvm_mmu_role new_role)
4818
{
4819 4820
	if (new_role.as_u64 == context->mmu_role.as_u64)
		return;
4821

4822
	context->mmu_role.as_u64 = new_role.as_u64;
4823

4824
	if (!is_cr0_pg(context))
4825
		nonpaging_init_context(context);
4826
	else if (is_cr4_pae(context))
4827
		paging64_init_context(context);
A
Avi Kivity 已提交
4828
	else
4829
		paging32_init_context(context);
4830
	context->root_level = role_regs_to_root_level(regs);
4831

4832
	reset_guest_paging_metadata(vcpu, context);
4833 4834
	context->shadow_root_level = new_role.base.level;

4835
	reset_shadow_zero_bits_mask(vcpu, context);
4836
}
4837

4838 4839
static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu,
				struct kvm_mmu_role_regs *regs)
4840
{
4841
	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4842
	union kvm_mmu_role new_role =
4843
		kvm_calc_shadow_mmu_root_page_role(vcpu, regs, false);
4844

4845
	shadow_mmu_init_context(vcpu, context, regs, new_role);
4846 4847
}

4848
static union kvm_mmu_role
4849 4850
kvm_calc_shadow_npt_root_page_role(struct kvm_vcpu *vcpu,
				   struct kvm_mmu_role_regs *regs)
4851 4852
{
	union kvm_mmu_role role =
4853
		kvm_calc_shadow_root_page_role_common(vcpu, regs, false);
4854 4855

	role.base.direct = false;
4856
	role.base.level = kvm_mmu_get_tdp_level(vcpu);
4857 4858 4859 4860

	return role;
}

4861 4862
void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0,
			     unsigned long cr4, u64 efer, gpa_t nested_cr3)
4863
{
4864
	struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4865 4866
	struct kvm_mmu_role_regs regs = {
		.cr0 = cr0,
4867
		.cr4 = cr4 & ~X86_CR4_PKE,
4868 4869
		.efer = efer,
	};
4870
	union kvm_mmu_role new_role;
4871

4872
	new_role = kvm_calc_shadow_npt_root_page_role(vcpu, &regs);
4873

4874
	__kvm_mmu_new_pgd(vcpu, nested_cr3, new_role.base);
4875

4876
	shadow_mmu_init_context(vcpu, context, &regs, new_role);
4877 4878
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu);
4879

4880 4881
static union kvm_mmu_role
kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
4882
				   bool execonly, u8 level)
4883
{
4884
	union kvm_mmu_role role = {0};
4885

4886 4887
	/* SMM flag is inherited from root_mmu */
	role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
4888

4889
	role.base.level = level;
4890
	role.base.gpte_is_8_bytes = true;
4891 4892 4893 4894
	role.base.direct = false;
	role.base.ad_disabled = !accessed_dirty;
	role.base.guest_mode = true;
	role.base.access = ACC_ALL;
4895

4896 4897
	/* EPT, and thus nested EPT, does not consume CR0, CR4, nor EFER. */
	role.ext.word = 0;
4898
	role.ext.execonly = execonly;
4899
	role.ext.valid = 1;
4900 4901 4902 4903

	return role;
}

4904
void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
4905
			     bool accessed_dirty, gpa_t new_eptp)
N
Nadav Har'El 已提交
4906
{
4907
	struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4908
	u8 level = vmx_eptp_page_walk_level(new_eptp);
4909 4910
	union kvm_mmu_role new_role =
		kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
4911
						   execonly, level);
4912

4913
	__kvm_mmu_new_pgd(vcpu, new_eptp, new_role.base);
4914 4915 4916

	if (new_role.as_u64 == context->mmu_role.as_u64)
		return;
4917

4918 4919
	context->mmu_role.as_u64 = new_role.as_u64;

4920
	context->shadow_root_level = level;
N
Nadav Har'El 已提交
4921

4922
	context->ept_ad = accessed_dirty;
N
Nadav Har'El 已提交
4923 4924 4925 4926
	context->page_fault = ept_page_fault;
	context->gva_to_gpa = ept_gva_to_gpa;
	context->sync_page = ept_sync_page;
	context->invlpg = ept_invlpg;
4927
	context->root_level = level;
N
Nadav Har'El 已提交
4928
	context->direct_map = false;
4929

4930
	update_permission_bitmask(context, true);
4931
	context->pkru_mask = 0;
N
Nadav Har'El 已提交
4932
	reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4933
	reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
N
Nadav Har'El 已提交
4934 4935 4936
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);

4937
static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4938
{
4939
	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4940
	struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
4941

4942
	kvm_init_shadow_mmu(vcpu, &regs);
4943

4944
	context->get_guest_pgd     = get_cr3;
4945 4946
	context->get_pdptr         = kvm_pdptr_read;
	context->inject_page_fault = kvm_inject_page_fault;
A
Avi Kivity 已提交
4947 4948
}

4949 4950
static union kvm_mmu_role
kvm_calc_nested_mmu_role(struct kvm_vcpu *vcpu, struct kvm_mmu_role_regs *regs)
4951
{
4952 4953 4954
	union kvm_mmu_role role;

	role = kvm_calc_shadow_root_page_role_common(vcpu, regs, false);
4955 4956 4957 4958 4959 4960 4961

	/*
	 * Nested MMUs are used only for walking L2's gva->gpa, they never have
	 * shadow pages of their own and so "direct" has no meaning.   Set it
	 * to "true" to try to detect bogus usage of the nested MMU.
	 */
	role.base.direct = true;
4962
	role.base.level = role_regs_to_root_level(regs);
4963 4964 4965
	return role;
}

4966
static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4967
{
4968 4969
	struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
	union kvm_mmu_role new_role = kvm_calc_nested_mmu_role(vcpu, &regs);
4970 4971
	struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;

4972 4973 4974 4975
	if (new_role.as_u64 == g_context->mmu_role.as_u64)
		return;

	g_context->mmu_role.as_u64 = new_role.as_u64;
4976
	g_context->get_guest_pgd     = get_cr3;
4977
	g_context->get_pdptr         = kvm_pdptr_read;
4978
	g_context->inject_page_fault = kvm_inject_page_fault;
4979
	g_context->root_level        = new_role.base.level;
4980

4981 4982 4983 4984 4985 4986
	/*
	 * L2 page tables are never shadowed, so there is no need to sync
	 * SPTEs.
	 */
	g_context->invlpg            = NULL;

4987
	/*
4988
	 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
4989 4990 4991 4992 4993
	 * L1's nested page tables (e.g. EPT12). The nested translation
	 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
	 * L2's page tables as the first level of translation and L1's
	 * nested page tables as the second level of translation. Basically
	 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
4994
	 */
4995
	if (!is_paging(vcpu))
4996
		g_context->gva_to_gpa = nonpaging_gva_to_gpa;
4997
	else if (is_long_mode(vcpu))
4998
		g_context->gva_to_gpa = paging64_gva_to_gpa;
4999
	else if (is_pae(vcpu))
5000
		g_context->gva_to_gpa = paging64_gva_to_gpa;
5001
	else
5002
		g_context->gva_to_gpa = paging32_gva_to_gpa;
5003

5004
	reset_guest_paging_metadata(vcpu, g_context);
5005 5006
}

5007
void kvm_init_mmu(struct kvm_vcpu *vcpu)
5008
{
5009
	if (mmu_is_nested(vcpu))
5010
		init_kvm_nested_mmu(vcpu);
5011
	else if (tdp_enabled)
5012
		init_kvm_tdp_mmu(vcpu);
5013
	else
5014
		init_kvm_softmmu(vcpu);
5015
}
5016
EXPORT_SYMBOL_GPL(kvm_init_mmu);
5017

5018 5019 5020
static union kvm_mmu_page_role
kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
{
5021
	struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
5022 5023
	union kvm_mmu_role role;

5024
	if (tdp_enabled)
5025
		role = kvm_calc_tdp_mmu_root_page_role(vcpu, &regs, true);
5026
	else
5027
		role = kvm_calc_shadow_mmu_root_page_role(vcpu, &regs, true);
5028 5029

	return role.base;
5030
}
5031

5032 5033 5034 5035 5036
void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu)
{
	/*
	 * Invalidate all MMU roles to force them to reinitialize as CPUID
	 * information is factored into reserved bit calculations.
5037 5038 5039 5040 5041 5042 5043 5044
	 *
	 * Correctly handling multiple vCPU models with respect to paging and
	 * physical address properties) in a single VM would require tracking
	 * all relevant CPUID information in kvm_mmu_page_role. That is very
	 * undesirable as it would increase the memory requirements for
	 * gfn_track (see struct kvm_mmu_page_role comments).  For now that
	 * problem is swept under the rug; KVM's CPUID API is horrific and
	 * it's all but impossible to solve it without introducing a new API.
5045 5046 5047 5048 5049
	 */
	vcpu->arch.root_mmu.mmu_role.ext.valid = 0;
	vcpu->arch.guest_mmu.mmu_role.ext.valid = 0;
	vcpu->arch.nested_mmu.mmu_role.ext.valid = 0;
	kvm_mmu_reset_context(vcpu);
5050 5051

	/*
5052 5053
	 * Changing guest CPUID after KVM_RUN is forbidden, see the comment in
	 * kvm_arch_vcpu_ioctl().
5054
	 */
5055
	KVM_BUG_ON(vcpu->arch.last_vmentry_cpu != -1, vcpu->kvm);
5056 5057
}

5058
void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
5059
{
5060
	kvm_mmu_unload(vcpu);
5061
	kvm_init_mmu(vcpu);
A
Avi Kivity 已提交
5062
}
5063
EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
A
Avi Kivity 已提交
5064 5065

int kvm_mmu_load(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
5066
{
5067 5068
	int r;

5069
	r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->direct_map);
A
Avi Kivity 已提交
5070 5071
	if (r)
		goto out;
5072
	r = mmu_alloc_special_roots(vcpu);
A
Avi Kivity 已提交
5073 5074
	if (r)
		goto out;
5075
	if (vcpu->arch.mmu->direct_map)
5076 5077 5078
		r = mmu_alloc_direct_roots(vcpu);
	else
		r = mmu_alloc_shadow_roots(vcpu);
5079 5080
	if (r)
		goto out;
5081 5082 5083

	kvm_mmu_sync_roots(vcpu);

5084
	kvm_mmu_load_pgd(vcpu);
5085
	static_call(kvm_x86_tlb_flush_current)(vcpu);
5086 5087
out:
	return r;
A
Avi Kivity 已提交
5088
}
A
Avi Kivity 已提交
5089 5090 5091

void kvm_mmu_unload(struct kvm_vcpu *vcpu)
{
5092 5093 5094 5095
	kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
	WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
	kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
	WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
A
Avi Kivity 已提交
5096
}
A
Avi Kivity 已提交
5097

5098 5099 5100 5101 5102 5103 5104 5105
static bool need_remote_flush(u64 old, u64 new)
{
	if (!is_shadow_present_pte(old))
		return false;
	if (!is_shadow_present_pte(new))
		return true;
	if ((old ^ new) & PT64_BASE_ADDR_MASK)
		return true;
5106 5107
	old ^= shadow_nx_mask;
	new ^= shadow_nx_mask;
5108 5109 5110
	return (old & ~new & PT64_PERM_MASK) != 0;
}

5111
static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
5112
				    int *bytes)
5113
{
5114
	u64 gentry = 0;
5115
	int r;
5116 5117 5118

	/*
	 * Assume that the pte write on a page table of the same type
5119 5120
	 * as the current vcpu paging mode since we update the sptes only
	 * when they have the same mode.
5121
	 */
5122
	if (is_pae(vcpu) && *bytes == 4) {
5123
		/* Handle a 32-bit guest writing two halves of a 64-bit gpte */
5124 5125
		*gpa &= ~(gpa_t)7;
		*bytes = 8;
5126 5127
	}

5128 5129 5130 5131
	if (*bytes == 4 || *bytes == 8) {
		r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
		if (r)
			gentry = 0;
5132 5133
	}

5134 5135 5136 5137 5138 5139 5140
	return gentry;
}

/*
 * If we're seeing too many writes to a page, it may no longer be a page table,
 * or we may be forking, in which case it is better to unmap the page.
 */
5141
static bool detect_write_flooding(struct kvm_mmu_page *sp)
5142
{
5143 5144 5145 5146
	/*
	 * Skip write-flooding detected for the sp whose level is 1, because
	 * it can become unsync, then the guest page is not write-protected.
	 */
5147
	if (sp->role.level == PG_LEVEL_4K)
5148
		return false;
5149

5150 5151
	atomic_inc(&sp->write_flooding_count);
	return atomic_read(&sp->write_flooding_count) >= 3;
5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166
}

/*
 * Misaligned accesses are too much trouble to fix up; also, they usually
 * indicate a page is not used as a page table.
 */
static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
				    int bytes)
{
	unsigned offset, pte_size, misaligned;

	pgprintk("misaligned: gpa %llx bytes %d role %x\n",
		 gpa, bytes, sp->role.word);

	offset = offset_in_page(gpa);
5167
	pte_size = sp->role.gpte_is_8_bytes ? 8 : 4;
5168 5169 5170 5171 5172 5173 5174 5175

	/*
	 * Sometimes, the OS only writes the last one bytes to update status
	 * bits, for example, in linux, andb instruction is used in clear_bit().
	 */
	if (!(offset & (pte_size - 1)) && bytes == 1)
		return false;

5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190
	misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
	misaligned |= bytes < 4;

	return misaligned;
}

static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
{
	unsigned page_offset, quadrant;
	u64 *spte;
	int level;

	page_offset = offset_in_page(gpa);
	level = sp->role.level;
	*nspte = 1;
5191
	if (!sp->role.gpte_is_8_bytes) {
5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212
		page_offset <<= 1;	/* 32->64 */
		/*
		 * A 32-bit pde maps 4MB while the shadow pdes map
		 * only 2MB.  So we need to double the offset again
		 * and zap two pdes instead of one.
		 */
		if (level == PT32_ROOT_LEVEL) {
			page_offset &= ~7; /* kill rounding error */
			page_offset <<= 1;
			*nspte = 2;
		}
		quadrant = page_offset >> PAGE_SHIFT;
		page_offset &= ~PAGE_MASK;
		if (quadrant != sp->role.quadrant)
			return NULL;
	}

	spte = &sp->spt[page_offset / sizeof(*spte)];
	return spte;
}

5213
static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
5214 5215
			      const u8 *new, int bytes,
			      struct kvm_page_track_notifier_node *node)
5216 5217 5218 5219 5220 5221
{
	gfn_t gfn = gpa >> PAGE_SHIFT;
	struct kvm_mmu_page *sp;
	LIST_HEAD(invalid_list);
	u64 entry, gentry, *spte;
	int npte;
5222
	bool flush = false;
5223 5224 5225 5226 5227

	/*
	 * If we don't have indirect shadow pages, it means no page is
	 * write-protected, so we can exit simply.
	 */
5228
	if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
5229 5230 5231 5232 5233 5234
		return;

	pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);

	/*
	 * No need to care whether allocation memory is successful
I
Ingo Molnar 已提交
5235
	 * or not since pte prefetch is skipped if it does not have
5236 5237
	 * enough objects in the cache.
	 */
5238
	mmu_topup_memory_caches(vcpu, true);
5239

5240
	write_lock(&vcpu->kvm->mmu_lock);
5241 5242 5243

	gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);

5244
	++vcpu->kvm->stat.mmu_pte_write;
5245
	kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
5246

5247
	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
5248
		if (detect_write_misaligned(sp, gpa, bytes) ||
5249
		      detect_write_flooding(sp)) {
5250
			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
A
Avi Kivity 已提交
5251
			++vcpu->kvm->stat.mmu_flooded;
5252 5253
			continue;
		}
5254 5255 5256 5257 5258

		spte = get_written_sptes(sp, gpa, &npte);
		if (!spte)
			continue;

5259
		while (npte--) {
5260
			entry = *spte;
5261
			mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL);
5262 5263
			if (gentry && sp->role.level != PG_LEVEL_4K)
				++vcpu->kvm->stat.mmu_pde_zapped;
G
Gleb Natapov 已提交
5264
			if (need_remote_flush(entry, *spte))
5265
				flush = true;
5266
			++spte;
5267 5268
		}
	}
5269
	kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush);
5270
	kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
5271
	write_unlock(&vcpu->kvm->mmu_lock);
5272 5273
}

5274
int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
5275
		       void *insn, int insn_len)
5276
{
5277
	int r, emulation_type = EMULTYPE_PF;
5278
	bool direct = vcpu->arch.mmu->direct_map;
5279

5280
	if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
5281 5282
		return RET_PF_RETRY;

5283
	r = RET_PF_INVALID;
5284
	if (unlikely(error_code & PFERR_RSVD_MASK)) {
5285
		r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
5286
		if (r == RET_PF_EMULATE)
5287 5288
			goto emulate;
	}
5289

5290
	if (r == RET_PF_INVALID) {
5291 5292
		r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
					  lower_32_bits(error_code), false);
5293
		if (KVM_BUG_ON(r == RET_PF_INVALID, vcpu->kvm))
5294
			return -EIO;
5295 5296
	}

5297
	if (r < 0)
5298
		return r;
5299 5300
	if (r != RET_PF_EMULATE)
		return 1;
5301

5302 5303 5304 5305 5306 5307 5308
	/*
	 * Before emulating the instruction, check if the error code
	 * was due to a RO violation while translating the guest page.
	 * This can occur when using nested virtualization with nested
	 * paging in both guests. If true, we simply unprotect the page
	 * and resume the guest.
	 */
5309
	if (vcpu->arch.mmu->direct_map &&
5310
	    (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5311
		kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
5312 5313 5314
		return 1;
	}

5315 5316 5317 5318 5319 5320
	/*
	 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
	 * optimistically try to just unprotect the page and let the processor
	 * re-execute the instruction that caused the page fault.  Do not allow
	 * retrying MMIO emulation, as it's not only pointless but could also
	 * cause us to enter an infinite loop because the processor will keep
5321 5322 5323 5324
	 * faulting on the non-existent MMIO address.  Retrying an instruction
	 * from a nested guest is also pointless and dangerous as we are only
	 * explicitly shadowing L1's page tables, i.e. unprotecting something
	 * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5325
	 */
5326
	if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
5327
		emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
5328
emulate:
5329
	return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
5330
				       insn_len);
5331 5332 5333
}
EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);

5334 5335
void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
			    gva_t gva, hpa_t root_hpa)
M
Marcelo Tosatti 已提交
5336
{
5337
	int i;
5338

5339 5340 5341 5342 5343 5344
	/* It's actually a GPA for vcpu->arch.guest_mmu.  */
	if (mmu != &vcpu->arch.guest_mmu) {
		/* INVLPG on a non-canonical address is a NOP according to the SDM.  */
		if (is_noncanonical_address(gva, vcpu))
			return;

5345
		static_call(kvm_x86_tlb_flush_gva)(vcpu, gva);
5346 5347 5348
	}

	if (!mmu->invlpg)
5349 5350
		return;

5351 5352
	if (root_hpa == INVALID_PAGE) {
		mmu->invlpg(vcpu, gva, mmu->root_hpa);
5353

5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371
		/*
		 * INVLPG is required to invalidate any global mappings for the VA,
		 * irrespective of PCID. Since it would take us roughly similar amount
		 * of work to determine whether any of the prev_root mappings of the VA
		 * is marked global, or to just sync it blindly, so we might as well
		 * just always sync it.
		 *
		 * Mappings not reachable via the current cr3 or the prev_roots will be
		 * synced when switching to that cr3, so nothing needs to be done here
		 * for them.
		 */
		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
			if (VALID_PAGE(mmu->prev_roots[i].hpa))
				mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
	} else {
		mmu->invlpg(vcpu, gva, root_hpa);
	}
}
5372

5373 5374
void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
{
5375
	kvm_mmu_invalidate_gva(vcpu, vcpu->arch.walk_mmu, gva, INVALID_PAGE);
M
Marcelo Tosatti 已提交
5376 5377 5378 5379
	++vcpu->stat.invlpg;
}
EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);

5380

5381 5382
void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
{
5383
	struct kvm_mmu *mmu = vcpu->arch.mmu;
5384
	bool tlb_flush = false;
5385
	uint i;
5386 5387

	if (pcid == kvm_get_active_pcid(vcpu)) {
5388
		mmu->invlpg(vcpu, gva, mmu->root_hpa);
5389
		tlb_flush = true;
5390 5391
	}

5392 5393
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
		if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5394
		    pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) {
5395 5396 5397
			mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
			tlb_flush = true;
		}
5398
	}
5399

5400
	if (tlb_flush)
5401
		static_call(kvm_x86_tlb_flush_gva)(vcpu, gva);
5402

5403 5404 5405
	++vcpu->stat.invlpg;

	/*
5406 5407 5408
	 * Mappings not reachable via the current cr3 or the prev_roots will be
	 * synced when switching to that cr3, so nothing needs to be done here
	 * for them.
5409 5410 5411
	 */
}

5412 5413
void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level,
		       int tdp_max_root_level, int tdp_huge_page_level)
5414
{
5415
	tdp_enabled = enable_tdp;
5416
	tdp_root_level = tdp_forced_root_level;
5417
	max_tdp_level = tdp_max_root_level;
5418 5419

	/*
5420
	 * max_huge_page_level reflects KVM's MMU capabilities irrespective
5421 5422 5423 5424 5425 5426
	 * of kernel support, e.g. KVM may be capable of using 1GB pages when
	 * the kernel is not.  But, KVM never creates a page size greater than
	 * what is used by the kernel for any given HVA, i.e. the kernel's
	 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
	 */
	if (tdp_enabled)
5427
		max_huge_page_level = tdp_huge_page_level;
5428
	else if (boot_cpu_has(X86_FEATURE_GBPAGES))
5429
		max_huge_page_level = PG_LEVEL_1G;
5430
	else
5431
		max_huge_page_level = PG_LEVEL_2M;
5432
}
5433
EXPORT_SYMBOL_GPL(kvm_configure_mmu);
5434 5435

/* The return value indicates if tlb flush on all vcpus is needed. */
5436 5437 5438
typedef bool (*slot_level_handler) (struct kvm *kvm,
				    struct kvm_rmap_head *rmap_head,
				    const struct kvm_memory_slot *slot);
5439 5440 5441

/* The caller should hold mmu-lock before calling this function. */
static __always_inline bool
5442
slot_handle_level_range(struct kvm *kvm, const struct kvm_memory_slot *memslot,
5443
			slot_level_handler fn, int start_level, int end_level,
5444 5445
			gfn_t start_gfn, gfn_t end_gfn, bool flush_on_yield,
			bool flush)
5446 5447 5448 5449 5450 5451
{
	struct slot_rmap_walk_iterator iterator;

	for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
			end_gfn, &iterator) {
		if (iterator.rmap)
5452
			flush |= fn(kvm, iterator.rmap, memslot);
5453

5454
		if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
5455
			if (flush && flush_on_yield) {
5456 5457 5458
				kvm_flush_remote_tlbs_with_address(kvm,
						start_gfn,
						iterator.gfn - start_gfn + 1);
5459 5460
				flush = false;
			}
5461
			cond_resched_rwlock_write(&kvm->mmu_lock);
5462 5463 5464 5465 5466 5467 5468
		}
	}

	return flush;
}

static __always_inline bool
5469
slot_handle_level(struct kvm *kvm, const struct kvm_memory_slot *memslot,
5470
		  slot_level_handler fn, int start_level, int end_level,
5471
		  bool flush_on_yield)
5472 5473 5474 5475
{
	return slot_handle_level_range(kvm, memslot, fn, start_level,
			end_level, memslot->base_gfn,
			memslot->base_gfn + memslot->npages - 1,
5476
			flush_on_yield, false);
5477 5478 5479
}

static __always_inline bool
5480 5481
slot_handle_level_4k(struct kvm *kvm, const struct kvm_memory_slot *memslot,
		     slot_level_handler fn, bool flush_on_yield)
5482
{
5483
	return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
5484
				 PG_LEVEL_4K, flush_on_yield);
5485 5486
}

5487
static void free_mmu_pages(struct kvm_mmu *mmu)
A
Avi Kivity 已提交
5488
{
5489 5490
	if (!tdp_enabled && mmu->pae_root)
		set_memory_encrypted((unsigned long)mmu->pae_root, 1);
5491
	free_page((unsigned long)mmu->pae_root);
5492
	free_page((unsigned long)mmu->pml4_root);
5493
	free_page((unsigned long)mmu->pml5_root);
A
Avi Kivity 已提交
5494 5495
}

5496
static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
A
Avi Kivity 已提交
5497
{
5498
	struct page *page;
A
Avi Kivity 已提交
5499 5500
	int i;

5501 5502 5503 5504 5505 5506
	mmu->root_hpa = INVALID_PAGE;
	mmu->root_pgd = 0;
	mmu->translate_gpa = translate_gpa;
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
		mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;

5507 5508 5509 5510
	/* vcpu->arch.guest_mmu isn't used when !tdp_enabled. */
	if (!tdp_enabled && mmu == &vcpu->arch.guest_mmu)
		return 0;

5511
	/*
5512 5513 5514 5515
	 * When using PAE paging, the four PDPTEs are treated as 'root' pages,
	 * while the PDP table is a per-vCPU construct that's allocated at MMU
	 * creation.  When emulating 32-bit mode, cr3 is only 32 bits even on
	 * x86_64.  Therefore we need to allocate the PDP table in the first
5516 5517 5518 5519
	 * 4GB of memory, which happens to fit the DMA32 zone.  TDP paging
	 * generally doesn't use PAE paging and can skip allocating the PDP
	 * table.  The main exception, handled here, is SVM's 32-bit NPT.  The
	 * other exception is for shadowing L1's 32-bit or PAE NPT on 64-bit
5520
	 * KVM; that horror is handled on-demand by mmu_alloc_special_roots().
5521
	 */
5522
	if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
5523 5524
		return 0;

5525
	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
5526
	if (!page)
5527 5528
		return -ENOMEM;

5529
	mmu->pae_root = page_address(page);
5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543

	/*
	 * CR3 is only 32 bits when PAE paging is used, thus it's impossible to
	 * get the CPU to treat the PDPTEs as encrypted.  Decrypt the page so
	 * that KVM's writes and the CPU's reads get along.  Note, this is
	 * only necessary when using shadow paging, as 64-bit NPT can get at
	 * the C-bit even when shadowing 32-bit NPT, and SME isn't supported
	 * by 32-bit kernels (when KVM itself uses 32-bit NPT).
	 */
	if (!tdp_enabled)
		set_memory_decrypted((unsigned long)mmu->pae_root, 1);
	else
		WARN_ON_ONCE(shadow_me_mask);

5544
	for (i = 0; i < 4; ++i)
5545
		mmu->pae_root[i] = INVALID_PAE_ROOT;
5546

A
Avi Kivity 已提交
5547 5548 5549
	return 0;
}

5550
int kvm_mmu_create(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
5551
{
5552
	int ret;
5553

5554
	vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache;
5555 5556
	vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO;

5557
	vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache;
5558
	vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO;
5559

5560 5561
	vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO;

5562 5563
	vcpu->arch.mmu = &vcpu->arch.root_mmu;
	vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
A
Avi Kivity 已提交
5564

5565
	vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5566

5567
	ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu);
5568 5569 5570
	if (ret)
		return ret;

5571
	ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu);
5572 5573 5574 5575 5576 5577 5578
	if (ret)
		goto fail_allocate_root;

	return ret;
 fail_allocate_root:
	free_mmu_pages(&vcpu->arch.guest_mmu);
	return ret;
A
Avi Kivity 已提交
5579 5580
}

5581
#define BATCH_ZAP_PAGES	10
5582 5583 5584
static void kvm_zap_obsolete_pages(struct kvm *kvm)
{
	struct kvm_mmu_page *sp, *node;
5585
	int nr_zapped, batch = 0;
5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597

restart:
	list_for_each_entry_safe_reverse(sp, node,
	      &kvm->arch.active_mmu_pages, link) {
		/*
		 * No obsolete valid page exists before a newly created page
		 * since active_mmu_pages is a FIFO list.
		 */
		if (!is_obsolete_sp(kvm, sp))
			break;

		/*
5598 5599 5600
		 * Invalid pages should never land back on the list of active
		 * pages.  Skip the bogus page, otherwise we'll get stuck in an
		 * infinite loop if the page gets put back on the list (again).
5601
		 */
5602
		if (WARN_ON(sp->role.invalid))
5603 5604
			continue;

5605 5606 5607 5608 5609 5610
		/*
		 * No need to flush the TLB since we're only zapping shadow
		 * pages with an obsolete generation number and all vCPUS have
		 * loaded a new root, i.e. the shadow pages being zapped cannot
		 * be in active use by the guest.
		 */
5611
		if (batch >= BATCH_ZAP_PAGES &&
5612
		    cond_resched_rwlock_write(&kvm->mmu_lock)) {
5613
			batch = 0;
5614 5615 5616
			goto restart;
		}

5617 5618
		if (__kvm_mmu_prepare_zap_page(kvm, sp,
				&kvm->arch.zapped_obsolete_pages, &nr_zapped)) {
5619
			batch += nr_zapped;
5620
			goto restart;
5621
		}
5622 5623
	}

5624 5625 5626 5627 5628
	/*
	 * Trigger a remote TLB flush before freeing the page tables to ensure
	 * KVM is not in the middle of a lockless shadow page table walk, which
	 * may reference the pages.
	 */
5629
	kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642
}

/*
 * Fast invalidate all shadow pages and use lock-break technique
 * to zap obsolete pages.
 *
 * It's required when memslot is being deleted or VM is being
 * destroyed, in these cases, we should ensure that KVM MMU does
 * not use any resource of the being-deleted slot or all slots
 * after calling the function.
 */
static void kvm_mmu_zap_all_fast(struct kvm *kvm)
{
5643 5644
	lockdep_assert_held(&kvm->slots_lock);

5645
	write_lock(&kvm->mmu_lock);
5646
	trace_kvm_mmu_zap_all_fast(kvm);
5647 5648 5649 5650 5651 5652 5653 5654 5655

	/*
	 * Toggle mmu_valid_gen between '0' and '1'.  Because slots_lock is
	 * held for the entire duration of zapping obsolete pages, it's
	 * impossible for there to be multiple invalid generations associated
	 * with *valid* shadow pages at any given time, i.e. there is exactly
	 * one valid generation and (at most) one invalid generation.
	 */
	kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
5656

5657 5658 5659 5660 5661 5662 5663 5664 5665
	/* In order to ensure all threads see this change when
	 * handling the MMU reload signal, this must happen in the
	 * same critical section as kvm_reload_remote_mmus, and
	 * before kvm_zap_obsolete_pages as kvm_zap_obsolete_pages
	 * could drop the MMU lock and yield.
	 */
	if (is_tdp_mmu_enabled(kvm))
		kvm_tdp_mmu_invalidate_all_roots(kvm);

5666 5667 5668 5669 5670 5671 5672 5673 5674 5675
	/*
	 * Notify all vcpus to reload its shadow page table and flush TLB.
	 * Then all vcpus will switch to new shadow page table with the new
	 * mmu_valid_gen.
	 *
	 * Note: we need to do this under the protection of mmu_lock,
	 * otherwise, vcpu would purge shadow page but miss tlb flush.
	 */
	kvm_reload_remote_mmus(kvm);

5676
	kvm_zap_obsolete_pages(kvm);
5677

5678
	write_unlock(&kvm->mmu_lock);
5679 5680 5681 5682 5683 5684

	if (is_tdp_mmu_enabled(kvm)) {
		read_lock(&kvm->mmu_lock);
		kvm_tdp_mmu_zap_invalidated_roots(kvm);
		read_unlock(&kvm->mmu_lock);
	}
5685 5686
}

5687 5688 5689 5690 5691
static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
{
	return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
}

5692
static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5693 5694
			struct kvm_memory_slot *slot,
			struct kvm_page_track_notifier_node *node)
5695
{
5696
	kvm_mmu_zap_all_fast(kvm);
5697 5698
}

5699
void kvm_mmu_init_vm(struct kvm *kvm)
5700
{
5701
	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5702

5703 5704
	spin_lock_init(&kvm->arch.mmu_unsync_pages_lock);

5705
	kvm_mmu_init_tdp_mmu(kvm);
5706

5707
	node->track_write = kvm_mmu_pte_write;
5708
	node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5709
	kvm_page_track_register_notifier(kvm, node);
5710 5711
}

5712
void kvm_mmu_uninit_vm(struct kvm *kvm)
5713
{
5714
	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5715

5716
	kvm_page_track_unregister_notifier(kvm, node);
5717 5718

	kvm_mmu_uninit_tdp_mmu(kvm);
5719 5720
}

5721 5722 5723 5724
static bool __kvm_zap_rmaps(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
{
	const struct kvm_memory_slot *memslot;
	struct kvm_memslots *slots;
5725
	struct kvm_memslot_iter iter;
5726 5727
	bool flush = false;
	gfn_t start, end;
5728
	int i;
5729 5730 5731 5732 5733 5734

	if (!kvm_memslots_have_rmaps(kvm))
		return flush;

	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
5735 5736 5737

		kvm_for_each_memslot_in_gfn_range(&iter, slots, gfn_start, gfn_end) {
			memslot = iter.slot;
5738 5739
			start = max(gfn_start, memslot->base_gfn);
			end = min(gfn_end, memslot->base_gfn + memslot->npages);
5740
			if (WARN_ON_ONCE(start >= end))
5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751
				continue;

			flush = slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
							PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL,
							start, end - 1, true, flush);
		}
	}

	return flush;
}

5752 5753 5754 5755
/*
 * Invalidate (zap) SPTEs that cover GFNs from gfn_start and up to gfn_end
 * (not including it)
 */
X
Xiao Guangrong 已提交
5756 5757
void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
{
5758
	bool flush;
5759
	int i;
X
Xiao Guangrong 已提交
5760

5761 5762 5763
	if (WARN_ON_ONCE(gfn_end <= gfn_start))
		return;

5764 5765
	write_lock(&kvm->mmu_lock);

5766 5767
	kvm_inc_notifier_count(kvm, gfn_start, gfn_end);

5768
	flush = __kvm_zap_rmaps(kvm, gfn_start, gfn_end);
X
Xiao Guangrong 已提交
5769

5770
	if (is_tdp_mmu_enabled(kvm)) {
5771 5772
		for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
			flush = kvm_tdp_mmu_zap_gfn_range(kvm, i, gfn_start,
5773
							  gfn_end, flush);
5774
	}
5775 5776

	if (flush)
5777 5778
		kvm_flush_remote_tlbs_with_address(kvm, gfn_start,
						   gfn_end - gfn_start);
5779

5780 5781
	kvm_dec_notifier_count(kvm, gfn_start, gfn_end);

5782
	write_unlock(&kvm->mmu_lock);
X
Xiao Guangrong 已提交
5783 5784
}

5785
static bool slot_rmap_write_protect(struct kvm *kvm,
5786
				    struct kvm_rmap_head *rmap_head,
5787
				    const struct kvm_memory_slot *slot)
5788
{
5789
	return __rmap_write_protect(kvm, rmap_head, false);
5790 5791
}

5792
void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5793
				      const struct kvm_memory_slot *memslot,
5794
				      int start_level)
A
Avi Kivity 已提交
5795
{
5796
	bool flush = false;
A
Avi Kivity 已提交
5797

5798 5799 5800 5801 5802 5803 5804
	if (kvm_memslots_have_rmaps(kvm)) {
		write_lock(&kvm->mmu_lock);
		flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect,
					  start_level, KVM_MAX_HUGEPAGE_LEVEL,
					  false);
		write_unlock(&kvm->mmu_lock);
	}
5805

5806 5807 5808 5809 5810 5811
	if (is_tdp_mmu_enabled(kvm)) {
		read_lock(&kvm->mmu_lock);
		flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, start_level);
		read_unlock(&kvm->mmu_lock);
	}

5812 5813 5814 5815 5816 5817 5818
	/*
	 * We can flush all the TLBs out of the mmu lock without TLB
	 * corruption since we just change the spte from writable to
	 * readonly so that we only need to care the case of changing
	 * spte from present to present (changing the spte from present
	 * to nonpresent will flush all the TLBs immediately), in other
	 * words, the only case we care is mmu_spte_update() where we
5819 5820 5821
	 * have checked Host-writable | MMU-writable instead of
	 * PT_WRITABLE_MASK, that means it does not depend on PT_WRITABLE_MASK
	 * anymore.
5822
	 */
5823
	if (flush)
5824
		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
A
Avi Kivity 已提交
5825
}
5826

5827
static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5828
					 struct kvm_rmap_head *rmap_head,
5829
					 const struct kvm_memory_slot *slot)
5830 5831 5832 5833
{
	u64 *sptep;
	struct rmap_iterator iter;
	int need_tlb_flush = 0;
D
Dan Williams 已提交
5834
	kvm_pfn_t pfn;
5835 5836
	struct kvm_mmu_page *sp;

5837
restart:
5838
	for_each_rmap_spte(rmap_head, &iter, sptep) {
5839
		sp = sptep_to_sp(sptep);
5840 5841 5842
		pfn = spte_to_pfn(*sptep);

		/*
5843 5844 5845 5846 5847
		 * We cannot do huge page mapping for indirect shadow pages,
		 * which are found on the last rmap (level = 1) when not using
		 * tdp; such shadow pages are synced with the page table in
		 * the guest, and the guest page table is using 4K page size
		 * mapping if the indirect sp has level = 1.
5848
		 */
5849
		if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
5850 5851
		    sp->role.level < kvm_mmu_max_mapping_level(kvm, slot, sp->gfn,
							       pfn, PG_LEVEL_NUM)) {
5852
			pte_list_remove(kvm, rmap_head, sptep);
5853 5854 5855 5856 5857 5858 5859

			if (kvm_available_flush_tlb_with_range())
				kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
					KVM_PAGES_PER_HPAGE(sp->role.level));
			else
				need_tlb_flush = 1;

5860 5861
			goto restart;
		}
5862 5863 5864 5865 5866 5867
	}

	return need_tlb_flush;
}

void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5868
				   const struct kvm_memory_slot *slot)
5869
{
5870 5871
	if (kvm_memslots_have_rmaps(kvm)) {
		write_lock(&kvm->mmu_lock);
5872 5873 5874 5875 5876
		/*
		 * Zap only 4k SPTEs since the legacy MMU only supports dirty
		 * logging at a 4k granularity and never creates collapsible
		 * 2m SPTEs during dirty logging.
		 */
5877
		if (slot_handle_level_4k(kvm, slot, kvm_mmu_zap_collapsible_spte, true))
5878 5879 5880
			kvm_arch_flush_remote_tlbs_memslot(kvm, slot);
		write_unlock(&kvm->mmu_lock);
	}
5881 5882 5883

	if (is_tdp_mmu_enabled(kvm)) {
		read_lock(&kvm->mmu_lock);
5884
		kvm_tdp_mmu_zap_collapsible_sptes(kvm, slot);
5885 5886
		read_unlock(&kvm->mmu_lock);
	}
5887 5888
}

5889
void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
5890
					const struct kvm_memory_slot *memslot)
5891 5892
{
	/*
5893
	 * All current use cases for flushing the TLBs for a specific memslot
5894
	 * related to dirty logging, and many do the TLB flush out of mmu_lock.
5895 5896 5897
	 * The interaction between the various operations on memslot must be
	 * serialized by slots_locks to ensure the TLB flush from one operation
	 * is observed by any other operation on the same memslot.
5898 5899
	 */
	lockdep_assert_held(&kvm->slots_lock);
5900 5901
	kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
					   memslot->npages);
5902 5903
}

5904
void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5905
				   const struct kvm_memory_slot *memslot)
5906
{
5907
	bool flush = false;
5908

5909 5910
	if (kvm_memslots_have_rmaps(kvm)) {
		write_lock(&kvm->mmu_lock);
5911 5912 5913 5914 5915
		/*
		 * Clear dirty bits only on 4k SPTEs since the legacy MMU only
		 * support dirty logging at a 4k granularity.
		 */
		flush = slot_handle_level_4k(kvm, memslot, __rmap_clear_dirty, false);
5916 5917
		write_unlock(&kvm->mmu_lock);
	}
5918

5919 5920 5921 5922 5923 5924
	if (is_tdp_mmu_enabled(kvm)) {
		read_lock(&kvm->mmu_lock);
		flush |= kvm_tdp_mmu_clear_dirty_slot(kvm, memslot);
		read_unlock(&kvm->mmu_lock);
	}

5925 5926 5927 5928 5929 5930 5931
	/*
	 * It's also safe to flush TLBs out of mmu lock here as currently this
	 * function is only used for dirty logging, in which case flushing TLB
	 * out of mmu lock also guarantees no dirty pages will be lost in
	 * dirty_bitmap.
	 */
	if (flush)
5932
		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5933 5934
}

5935
void kvm_mmu_zap_all(struct kvm *kvm)
5936 5937
{
	struct kvm_mmu_page *sp, *node;
5938
	LIST_HEAD(invalid_list);
5939
	int ign;
5940

5941
	write_lock(&kvm->mmu_lock);
5942
restart:
5943
	list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
5944
		if (WARN_ON(sp->role.invalid))
5945
			continue;
5946
		if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
5947
			goto restart;
5948
		if (cond_resched_rwlock_write(&kvm->mmu_lock))
5949 5950 5951
			goto restart;
	}

5952
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
5953

5954
	if (is_tdp_mmu_enabled(kvm))
5955 5956
		kvm_tdp_mmu_zap_all(kvm);

5957
	write_unlock(&kvm->mmu_lock);
5958 5959
}

5960
void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
5961
{
5962
	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
5963

5964
	gen &= MMIO_SPTE_GEN_MASK;
5965

5966
	/*
5967 5968 5969 5970 5971 5972 5973 5974
	 * Generation numbers are incremented in multiples of the number of
	 * address spaces in order to provide unique generations across all
	 * address spaces.  Strip what is effectively the address space
	 * modifier prior to checking for a wrap of the MMIO generation so
	 * that a wrap in any address space is detected.
	 */
	gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);

5975
	/*
5976
	 * The very rare case: if the MMIO generation number has wrapped,
5977 5978
	 * zap all shadow pages.
	 */
5979
	if (unlikely(gen == 0)) {
5980
		kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
5981
		kvm_mmu_zap_all_fast(kvm);
5982
	}
5983 5984
}

5985 5986
static unsigned long
mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
5987 5988
{
	struct kvm *kvm;
5989
	int nr_to_scan = sc->nr_to_scan;
5990
	unsigned long freed = 0;
5991

J
Junaid Shahid 已提交
5992
	mutex_lock(&kvm_lock);
5993 5994

	list_for_each_entry(kvm, &vm_list, vm_list) {
5995
		int idx;
5996
		LIST_HEAD(invalid_list);
5997

5998 5999 6000 6001 6002 6003 6004 6005
		/*
		 * Never scan more than sc->nr_to_scan VM instances.
		 * Will not hit this condition practically since we do not try
		 * to shrink more than one VM and it is very unlikely to see
		 * !n_used_mmu_pages so many times.
		 */
		if (!nr_to_scan--)
			break;
6006 6007 6008 6009 6010 6011
		/*
		 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
		 * here. We may skip a VM instance errorneosly, but we do not
		 * want to shrink a VM that only started to populate its MMU
		 * anyway.
		 */
6012 6013
		if (!kvm->arch.n_used_mmu_pages &&
		    !kvm_has_zapped_obsolete_pages(kvm))
6014 6015
			continue;

6016
		idx = srcu_read_lock(&kvm->srcu);
6017
		write_lock(&kvm->mmu_lock);
6018

6019 6020 6021 6022 6023 6024
		if (kvm_has_zapped_obsolete_pages(kvm)) {
			kvm_mmu_commit_zap_page(kvm,
			      &kvm->arch.zapped_obsolete_pages);
			goto unlock;
		}

6025
		freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan);
6026

6027
unlock:
6028
		write_unlock(&kvm->mmu_lock);
6029
		srcu_read_unlock(&kvm->srcu, idx);
6030

6031 6032 6033 6034 6035
		/*
		 * unfair on small ones
		 * per-vm shrinkers cry out
		 * sadness comes quickly
		 */
6036 6037
		list_move_tail(&kvm->vm_list, &vm_list);
		break;
6038 6039
	}

J
Junaid Shahid 已提交
6040
	mutex_unlock(&kvm_lock);
6041 6042 6043 6044 6045 6046
	return freed;
}

static unsigned long
mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
{
6047
	return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
6048 6049 6050
}

static struct shrinker mmu_shrinker = {
6051 6052
	.count_objects = mmu_shrink_count,
	.scan_objects = mmu_shrink_scan,
6053 6054 6055
	.seeks = DEFAULT_SEEKS * 10,
};

I
Ingo Molnar 已提交
6056
static void mmu_destroy_caches(void)
6057
{
6058 6059
	kmem_cache_destroy(pte_list_desc_cache);
	kmem_cache_destroy(mmu_page_header_cache);
6060 6061
}

P
Paolo Bonzini 已提交
6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095
static bool get_nx_auto_mode(void)
{
	/* Return true when CPU has the bug, and mitigations are ON */
	return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
}

static void __set_nx_huge_pages(bool val)
{
	nx_huge_pages = itlb_multihit_kvm_mitigation = val;
}

static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
{
	bool old_val = nx_huge_pages;
	bool new_val;

	/* In "auto" mode deploy workaround only if CPU has the bug. */
	if (sysfs_streq(val, "off"))
		new_val = 0;
	else if (sysfs_streq(val, "force"))
		new_val = 1;
	else if (sysfs_streq(val, "auto"))
		new_val = get_nx_auto_mode();
	else if (strtobool(val, &new_val) < 0)
		return -EINVAL;

	__set_nx_huge_pages(new_val);

	if (new_val != old_val) {
		struct kvm *kvm;

		mutex_lock(&kvm_lock);

		list_for_each_entry(kvm, &vm_list, vm_list) {
6096
			mutex_lock(&kvm->slots_lock);
P
Paolo Bonzini 已提交
6097
			kvm_mmu_zap_all_fast(kvm);
6098
			mutex_unlock(&kvm->slots_lock);
6099 6100

			wake_up_process(kvm->arch.nx_lpage_recovery_thread);
P
Paolo Bonzini 已提交
6101 6102 6103 6104 6105 6106 6107
		}
		mutex_unlock(&kvm_lock);
	}

	return 0;
}

6108 6109
int kvm_mmu_module_init(void)
{
6110 6111
	int ret = -ENOMEM;

P
Paolo Bonzini 已提交
6112 6113 6114
	if (nx_huge_pages == -1)
		__set_nx_huge_pages(get_nx_auto_mode());

6115 6116 6117 6118 6119 6120 6121 6122 6123 6124
	/*
	 * MMU roles use union aliasing which is, generally speaking, an
	 * undefined behavior. However, we supposedly know how compilers behave
	 * and the current status quo is unlikely to change. Guardians below are
	 * supposed to let us know if the assumption becomes false.
	 */
	BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
	BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
	BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));

6125
	kvm_mmu_reset_all_pte_masks();
6126

6127 6128
	pte_list_desc_cache = kmem_cache_create("pte_list_desc",
					    sizeof(struct pte_list_desc),
6129
					    0, SLAB_ACCOUNT, NULL);
6130
	if (!pte_list_desc_cache)
6131
		goto out;
6132

6133 6134
	mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
						  sizeof(struct kvm_mmu_page),
6135
						  0, SLAB_ACCOUNT, NULL);
6136
	if (!mmu_page_header_cache)
6137
		goto out;
6138

6139
	if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
6140
		goto out;
6141

6142 6143 6144
	ret = register_shrinker(&mmu_shrinker);
	if (ret)
		goto out;
6145

6146 6147
	return 0;

6148
out:
6149
	mmu_destroy_caches();
6150
	return ret;
6151 6152
}

6153 6154
void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
{
6155
	kvm_mmu_unload(vcpu);
6156 6157
	free_mmu_pages(&vcpu->arch.root_mmu);
	free_mmu_pages(&vcpu->arch.guest_mmu);
6158
	mmu_free_memory_caches(vcpu);
6159 6160 6161 6162 6163 6164 6165
}

void kvm_mmu_module_exit(void)
{
	mmu_destroy_caches();
	percpu_counter_destroy(&kvm_total_used_mmu_pages);
	unregister_shrinker(&mmu_shrinker);
6166 6167
	mmu_audit_disable();
}
6168

6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193
/*
 * Calculate the effective recovery period, accounting for '0' meaning "let KVM
 * select a halving time of 1 hour".  Returns true if recovery is enabled.
 */
static bool calc_nx_huge_pages_recovery_period(uint *period)
{
	/*
	 * Use READ_ONCE to get the params, this may be called outside of the
	 * param setters, e.g. by the kthread to compute its next timeout.
	 */
	bool enabled = READ_ONCE(nx_huge_pages);
	uint ratio = READ_ONCE(nx_huge_pages_recovery_ratio);

	if (!enabled || !ratio)
		return false;

	*period = READ_ONCE(nx_huge_pages_recovery_period_ms);
	if (!*period) {
		/* Make sure the period is not less than one second.  */
		ratio = min(ratio, 3600u);
		*period = 60 * 60 * 1000 / ratio;
	}
	return true;
}

6194
static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp)
6195
{
6196 6197
	bool was_recovery_enabled, is_recovery_enabled;
	uint old_period, new_period;
6198 6199
	int err;

6200
	was_recovery_enabled = calc_nx_huge_pages_recovery_period(&old_period);
6201

6202 6203 6204 6205
	err = param_set_uint(val, kp);
	if (err)
		return err;

6206
	is_recovery_enabled = calc_nx_huge_pages_recovery_period(&new_period);
6207

6208
	if (is_recovery_enabled &&
6209
	    (!was_recovery_enabled || old_period > new_period)) {
6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224
		struct kvm *kvm;

		mutex_lock(&kvm_lock);

		list_for_each_entry(kvm, &vm_list, vm_list)
			wake_up_process(kvm->arch.nx_lpage_recovery_thread);

		mutex_unlock(&kvm_lock);
	}

	return err;
}

static void kvm_recover_nx_lpages(struct kvm *kvm)
{
6225
	unsigned long nx_lpage_splits = kvm->stat.nx_lpage_splits;
6226 6227 6228 6229
	int rcu_idx;
	struct kvm_mmu_page *sp;
	unsigned int ratio;
	LIST_HEAD(invalid_list);
6230
	bool flush = false;
6231 6232 6233
	ulong to_zap;

	rcu_idx = srcu_read_lock(&kvm->srcu);
6234
	write_lock(&kvm->mmu_lock);
6235 6236

	ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
6237
	to_zap = ratio ? DIV_ROUND_UP(nx_lpage_splits, ratio) : 0;
6238 6239 6240 6241
	for ( ; to_zap; --to_zap) {
		if (list_empty(&kvm->arch.lpage_disallowed_mmu_pages))
			break;

6242 6243 6244 6245 6246 6247 6248 6249 6250
		/*
		 * We use a separate list instead of just using active_mmu_pages
		 * because the number of lpage_disallowed pages is expected to
		 * be relatively small compared to the total.
		 */
		sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
				      struct kvm_mmu_page,
				      lpage_disallowed_link);
		WARN_ON_ONCE(!sp->lpage_disallowed);
6251
		if (is_tdp_mmu_page(sp)) {
6252
			flush |= kvm_tdp_mmu_zap_sp(kvm, sp);
6253
		} else {
6254 6255 6256
			kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
			WARN_ON_ONCE(sp->lpage_disallowed);
		}
6257

6258
		if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
6259
			kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
6260
			cond_resched_rwlock_write(&kvm->mmu_lock);
6261
			flush = false;
6262 6263
		}
	}
6264
	kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
6265

6266
	write_unlock(&kvm->mmu_lock);
6267 6268 6269 6270 6271
	srcu_read_unlock(&kvm->srcu, rcu_idx);
}

static long get_nx_lpage_recovery_timeout(u64 start_time)
{
6272 6273
	bool enabled;
	uint period;
6274

6275
	enabled = calc_nx_huge_pages_recovery_period(&period);
6276

6277 6278
	return enabled ? start_time + msecs_to_jiffies(period) - get_jiffies_64()
		       : MAX_SCHEDULE_TIMEOUT;
6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323
}

static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
{
	u64 start_time;
	long remaining_time;

	while (true) {
		start_time = get_jiffies_64();
		remaining_time = get_nx_lpage_recovery_timeout(start_time);

		set_current_state(TASK_INTERRUPTIBLE);
		while (!kthread_should_stop() && remaining_time > 0) {
			schedule_timeout(remaining_time);
			remaining_time = get_nx_lpage_recovery_timeout(start_time);
			set_current_state(TASK_INTERRUPTIBLE);
		}

		set_current_state(TASK_RUNNING);

		if (kthread_should_stop())
			return 0;

		kvm_recover_nx_lpages(kvm);
	}
}

int kvm_mmu_post_init_vm(struct kvm *kvm)
{
	int err;

	err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
					  "kvm-nx-lpage-recovery",
					  &kvm->arch.nx_lpage_recovery_thread);
	if (!err)
		kthread_unpark(kvm->arch.nx_lpage_recovery_thread);

	return err;
}

void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
{
	if (kvm->arch.nx_lpage_recovery_thread)
		kthread_stop(kvm->arch.nx_lpage_recovery_thread);
}