mmu.c 177.2 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
A
Avi Kivity 已提交
2 3 4 5 6 7 8 9 10
/*
 * Kernel-based Virtual Machine driver for Linux
 *
 * This module enables machines with Intel VT-x extensions to run virtual
 * machines without emulation or binary translation.
 *
 * MMU support
 *
 * Copyright (C) 2006 Qumranet, Inc.
N
Nicolas Kaiser 已提交
11
 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
A
Avi Kivity 已提交
12 13 14 15 16
 *
 * Authors:
 *   Yaniv Kamay  <yaniv@qumranet.com>
 *   Avi Kivity   <avi@qumranet.com>
 */
A
Avi Kivity 已提交
17

18
#include "irq.h"
19
#include "ioapic.h"
20
#include "mmu.h"
21
#include "mmu_internal.h"
22
#include "tdp_mmu.h"
23
#include "x86.h"
A
Avi Kivity 已提交
24
#include "kvm_cache_regs.h"
25
#include "kvm_emulate.h"
26
#include "cpuid.h"
27
#include "spte.h"
A
Avi Kivity 已提交
28

29
#include <linux/kvm_host.h>
A
Avi Kivity 已提交
30 31 32 33
#include <linux/types.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/highmem.h>
34 35
#include <linux/moduleparam.h>
#include <linux/export.h>
36
#include <linux/swap.h>
M
Marcelo Tosatti 已提交
37
#include <linux/hugetlb.h>
38
#include <linux/compiler.h>
39
#include <linux/srcu.h>
40
#include <linux/slab.h>
41
#include <linux/sched/signal.h>
42
#include <linux/uaccess.h>
43
#include <linux/hash.h>
44
#include <linux/kern_levels.h>
45
#include <linux/kthread.h>
A
Avi Kivity 已提交
46

A
Avi Kivity 已提交
47
#include <asm/page.h>
48
#include <asm/memtype.h>
A
Avi Kivity 已提交
49
#include <asm/cmpxchg.h>
50
#include <asm/io.h>
51
#include <asm/set_memory.h>
52
#include <asm/vmx.h>
53
#include <asm/kvm_page_track.h>
54
#include "trace.h"
A
Avi Kivity 已提交
55

P
Paolo Bonzini 已提交
56 57
extern bool itlb_multihit_kvm_mitigation;

58
int __read_mostly nx_huge_pages = -1;
59
static uint __read_mostly nx_huge_pages_recovery_period_ms;
60 61 62 63
#ifdef CONFIG_PREEMPT_RT
/* Recovery can cause latency spikes, disable it for PREEMPT_RT.  */
static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
#else
64
static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
65
#endif
P
Paolo Bonzini 已提交
66 67

static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
68
static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp);
P
Paolo Bonzini 已提交
69

70
static const struct kernel_param_ops nx_huge_pages_ops = {
P
Paolo Bonzini 已提交
71 72 73 74
	.set = set_nx_huge_pages,
	.get = param_get_bool,
};

75 76
static const struct kernel_param_ops nx_huge_pages_recovery_param_ops = {
	.set = set_nx_huge_pages_recovery_param,
77 78 79
	.get = param_get_uint,
};

P
Paolo Bonzini 已提交
80 81
module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
__MODULE_PARM_TYPE(nx_huge_pages, "bool");
82
module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_param_ops,
83 84
		&nx_huge_pages_recovery_ratio, 0644);
__MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
85 86 87
module_param_cb(nx_huge_pages_recovery_period_ms, &nx_huge_pages_recovery_param_ops,
		&nx_huge_pages_recovery_period_ms, 0644);
__MODULE_PARM_TYPE(nx_huge_pages_recovery_period_ms, "uint");
P
Paolo Bonzini 已提交
88

89 90 91
static bool __read_mostly force_flush_and_sync_on_reuse;
module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644);

92 93 94 95 96 97 98
/*
 * When setting this variable to true it enables Two-Dimensional-Paging
 * where the hardware walks 2 page tables:
 * 1. the guest-virtual to guest-physical
 * 2. while doing 1. it walks guest-physical to host-physical
 * If the hardware supports that we don't need to do shadow paging.
 */
99
bool tdp_enabled = false;
100

101
static int max_huge_page_level __read_mostly;
102
static int tdp_root_level __read_mostly;
103
static int max_tdp_level __read_mostly;
104

105
#ifdef MMU_DEBUG
106
bool dbg = 0;
107
module_param(dbg, bool, 0644);
108
#endif
A
Avi Kivity 已提交
109

110 111
#define PTE_PREFETCH_NUM		8

112 113
#include <trace/events/kvm.h>

114
/* make pte_list_desc fit well in cache lines */
115
#define PTE_LIST_EXT 14
116

117 118 119 120 121
/*
 * Slight optimization of cacheline layout, by putting `more' and `spte_count'
 * at the start; then accessing it will only use one single cacheline for
 * either full (entries==PTE_LIST_EXT) case or entries<=6.
 */
122 123
struct pte_list_desc {
	struct pte_list_desc *more;
124 125 126 127 128 129
	/*
	 * Stores number of entries stored in the pte_list_desc.  No need to be
	 * u64 but just for easier alignment.  When PTE_LIST_EXT, means full.
	 */
	u64 spte_count;
	u64 *sptes[PTE_LIST_EXT];
130 131
};

132 133 134 135
struct kvm_shadow_walk_iterator {
	u64 addr;
	hpa_t shadow_addr;
	u64 *sptep;
136
	int level;
137 138 139
	unsigned index;
};

140 141 142 143 144 145 146
#define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker)     \
	for (shadow_walk_init_using_root(&(_walker), (_vcpu),              \
					 (_root), (_addr));                \
	     shadow_walk_okay(&(_walker));			           \
	     shadow_walk_next(&(_walker)))

#define for_each_shadow_entry(_vcpu, _addr, _walker)            \
147 148 149 150
	for (shadow_walk_init(&(_walker), _vcpu, _addr);	\
	     shadow_walk_okay(&(_walker));			\
	     shadow_walk_next(&(_walker)))

151 152 153 154 155 156
#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)	\
	for (shadow_walk_init(&(_walker), _vcpu, _addr);		\
	     shadow_walk_okay(&(_walker)) &&				\
		({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });	\
	     __shadow_walk_next(&(_walker), spte))

157
static struct kmem_cache *pte_list_desc_cache;
158
struct kmem_cache *mmu_page_header_cache;
159
static struct percpu_counter kvm_total_used_mmu_pages;
160

161 162
static void mmu_spte_set(u64 *sptep, u64 spte);

163 164 165 166 167 168
struct kvm_mmu_role_regs {
	const unsigned long cr0;
	const unsigned long cr4;
	const u64 efer;
};

169 170 171
#define CREATE_TRACE_POINTS
#include "mmutrace.h"

172 173
/*
 * Yes, lot's of underscores.  They're a hint that you probably shouldn't be
174
 * reading from the role_regs.  Once the root_role is constructed, it becomes
175 176 177
 * the single source of truth for the MMU's state.
 */
#define BUILD_MMU_ROLE_REGS_ACCESSOR(reg, name, flag)			\
178 179
static inline bool __maybe_unused					\
____is_##reg##_##name(const struct kvm_mmu_role_regs *regs)		\
180 181 182 183 184 185 186 187 188 189 190 191 192 193
{									\
	return !!(regs->reg & flag);					\
}
BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, pg, X86_CR0_PG);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, wp, X86_CR0_WP);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pse, X86_CR4_PSE);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pae, X86_CR4_PAE);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smep, X86_CR4_SMEP);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smap, X86_CR4_SMAP);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pke, X86_CR4_PKE);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, la57, X86_CR4_LA57);
BUILD_MMU_ROLE_REGS_ACCESSOR(efer, nx, EFER_NX);
BUILD_MMU_ROLE_REGS_ACCESSOR(efer, lma, EFER_LMA);

194 195 196 197 198 199 200
/*
 * The MMU itself (with a valid role) is the single source of truth for the
 * MMU.  Do not use the regs used to build the MMU/role, nor the vCPU.  The
 * regs don't account for dependencies, e.g. clearing CR4 bits if CR0.PG=1,
 * and the vCPU may be incorrect/irrelevant.
 */
#define BUILD_MMU_ROLE_ACCESSOR(base_or_ext, reg, name)		\
201
static inline bool __maybe_unused is_##reg##_##name(struct kvm_mmu *mmu)	\
202
{								\
203
	return !!(mmu->cpu_role. base_or_ext . reg##_##name);	\
204 205 206 207 208 209 210 211
}
BUILD_MMU_ROLE_ACCESSOR(base, cr0, wp);
BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, pse);
BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, smep);
BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, smap);
BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, pke);
BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, la57);
BUILD_MMU_ROLE_ACCESSOR(base, efer, nx);
212
BUILD_MMU_ROLE_ACCESSOR(ext,  efer, lma);
213

214 215 216 217 218 219 220 221 222 223
static inline bool is_cr0_pg(struct kvm_mmu *mmu)
{
        return mmu->cpu_role.base.level > 0;
}

static inline bool is_cr4_pae(struct kvm_mmu *mmu)
{
        return !mmu->cpu_role.base.has_4_byte_gpte;
}

224 225 226 227 228 229 230 231 232 233
static struct kvm_mmu_role_regs vcpu_to_role_regs(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu_role_regs regs = {
		.cr0 = kvm_read_cr0_bits(vcpu, KVM_MMU_CR0_ROLE_BITS),
		.cr4 = kvm_read_cr4_bits(vcpu, KVM_MMU_CR4_ROLE_BITS),
		.efer = vcpu->arch.efer,
	};

	return regs;
}
234 235 236

static inline bool kvm_available_flush_tlb_with_range(void)
{
237
	return kvm_x86_ops.tlb_remote_flush_with_range;
238 239 240 241 242 243 244
}

static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
		struct kvm_tlb_range *range)
{
	int ret = -ENOTSUPP;

245
	if (range && kvm_x86_ops.tlb_remote_flush_with_range)
246
		ret = static_call(kvm_x86_tlb_remote_flush_with_range)(kvm, range);
247 248 249 250 251

	if (ret)
		kvm_flush_remote_tlbs(kvm);
}

252
void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
253 254 255 256 257 258 259 260 261 262
		u64 start_gfn, u64 pages)
{
	struct kvm_tlb_range range;

	range.start_gfn = start_gfn;
	range.pages = pages;

	kvm_flush_remote_tlbs_with_range(kvm, &range);
}

263 264 265
static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
			   unsigned int access)
{
266
	u64 spte = make_mmio_spte(vcpu, gfn, access);
267

268 269
	trace_mark_mmio_spte(sptep, gfn, spte);
	mmu_spte_set(sptep, spte);
270 271 272 273
}

static gfn_t get_mmio_spte_gfn(u64 spte)
{
274
	u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
275

276
	gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)
277 278 279
	       & shadow_nonpresent_or_rsvd_mask;

	return gpa >> PAGE_SHIFT;
280 281 282 283
}

static unsigned get_mmio_spte_access(u64 spte)
{
284
	return spte & shadow_mmio_access_mask;
285 286
}

287
static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
288
{
289
	u64 kvm_gen, spte_gen, gen;
290

291 292 293
	gen = kvm_vcpu_memslots(vcpu)->generation;
	if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
		return false;
294

295
	kvm_gen = gen & MMIO_SPTE_GEN_MASK;
296 297 298 299
	spte_gen = get_mmio_spte_generation(spte);

	trace_check_mmio_spte(spte, kvm_gen, spte_gen);
	return likely(kvm_gen == spte_gen);
300 301
}

A
Avi Kivity 已提交
302 303 304 305 306
static int is_cpuid_PSE36(void)
{
	return 1;
}

307
#ifdef CONFIG_X86_64
A
Avi Kivity 已提交
308
static void __set_spte(u64 *sptep, u64 spte)
309
{
310
	WRITE_ONCE(*sptep, spte);
311 312
}

313
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
314
{
315
	WRITE_ONCE(*sptep, spte);
316 317 318 319 320 321
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	return xchg(sptep, spte);
}
322 323 324

static u64 __get_spte_lockless(u64 *sptep)
{
325
	return READ_ONCE(*sptep);
326
}
327
#else
328 329 330 331 332 333 334
union split_spte {
	struct {
		u32 spte_low;
		u32 spte_high;
	};
	u64 spte;
};
335

336 337
static void count_spte_clear(u64 *sptep, u64 spte)
{
338
	struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
339 340 341 342 343 344 345 346 347

	if (is_shadow_present_pte(spte))
		return;

	/* Ensure the spte is completely set before we increase the count */
	smp_wmb();
	sp->clear_spte_count++;
}

348 349 350
static void __set_spte(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;
351

352 353 354 355 356 357 358 359 360 361 362 363
	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	ssptep->spte_high = sspte.spte_high;

	/*
	 * If we map the spte from nonpresent to present, We should store
	 * the high bits firstly, then set present bit, so cpu can not
	 * fetch this spte while we are setting the spte.
	 */
	smp_wmb();

364
	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
365 366
}

367 368 369 370 371 372 373
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

374
	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
375 376 377 378 379 380 381 382

	/*
	 * If we map the spte from present to nonpresent, we should clear
	 * present bit firstly to avoid vcpu fetch the old high bits.
	 */
	smp_wmb();

	ssptep->spte_high = sspte.spte_high;
383
	count_spte_clear(sptep, spte);
384 385 386 387 388 389 390 391 392 393 394
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte, orig;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	/* xchg acts as a barrier before the setting of the high bits */
	orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
395 396
	orig.spte_high = ssptep->spte_high;
	ssptep->spte_high = sspte.spte_high;
397
	count_spte_clear(sptep, spte);
398 399 400

	return orig.spte;
}
401 402 403

/*
 * The idea using the light way get the spte on x86_32 guest is from
404
 * gup_get_pte (mm/gup.c).
405 406 407 408 409 410 411 412 413 414 415 416 417 418
 *
 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
 * coalesces them and we are running out of the MMU lock.  Therefore
 * we need to protect against in-progress updates of the spte.
 *
 * Reading the spte while an update is in progress may get the old value
 * for the high part of the spte.  The race is fine for a present->non-present
 * change (because the high part of the spte is ignored for non-present spte),
 * but for a present->present change we must reread the spte.
 *
 * All such changes are done in two steps (present->non-present and
 * non-present->present), hence it is enough to count the number of
 * present->non-present updates: if it changed while reading the spte,
 * we might have hit the race.  This is done using clear_spte_count.
419 420 421
 */
static u64 __get_spte_lockless(u64 *sptep)
{
422
	struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
	union split_spte spte, *orig = (union split_spte *)sptep;
	int count;

retry:
	count = sp->clear_spte_count;
	smp_rmb();

	spte.spte_low = orig->spte_low;
	smp_rmb();

	spte.spte_high = orig->spte_high;
	smp_rmb();

	if (unlikely(spte.spte_low != orig->spte_low ||
	      count != sp->clear_spte_count))
		goto retry;

	return spte.spte;
}
442 443
#endif

444 445 446 447 448 449 450 451 452 453 454 455
/* Rules for using mmu_spte_set:
 * Set the sptep from nonpresent to present.
 * Note: the sptep being assigned *must* be either not present
 * or in a state where the hardware will not attempt to update
 * the spte.
 */
static void mmu_spte_set(u64 *sptep, u64 new_spte)
{
	WARN_ON(is_shadow_present_pte(*sptep));
	__set_spte(sptep, new_spte);
}

456 457 458
/*
 * Update the SPTE (excluding the PFN), but do not track changes in its
 * accessed/dirty status.
459
 */
460
static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
461
{
462
	u64 old_spte = *sptep;
463

464
	WARN_ON(!is_shadow_present_pte(new_spte));
465
	check_spte_writable_invariants(new_spte);
466

467 468
	if (!is_shadow_present_pte(old_spte)) {
		mmu_spte_set(sptep, new_spte);
469
		return old_spte;
470
	}
471

472
	if (!spte_has_volatile_bits(old_spte))
473
		__update_clear_spte_fast(sptep, new_spte);
474
	else
475
		old_spte = __update_clear_spte_slow(sptep, new_spte);
476

477 478
	WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));

479 480 481 482 483 484
	return old_spte;
}

/* Rules for using mmu_spte_update:
 * Update the state bits, it means the mapped pfn is not changed.
 *
485 486 487
 * Whenever an MMU-writable SPTE is overwritten with a read-only SPTE, remote
 * TLBs must be flushed. Otherwise rmap_write_protect will find a read-only
 * spte, even though the writable spte might be cached on a CPU's TLB.
488 489 490 491 492 493 494 495 496 497 498
 *
 * Returns true if the TLB needs to be flushed
 */
static bool mmu_spte_update(u64 *sptep, u64 new_spte)
{
	bool flush = false;
	u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);

	if (!is_shadow_present_pte(old_spte))
		return false;

499 500
	/*
	 * For the spte updated out of mmu-lock is safe, since
501
	 * we always atomically update it, see the comments in
502 503
	 * spte_has_volatile_bits().
	 */
504
	if (is_mmu_writable_spte(old_spte) &&
505
	      !is_writable_pte(new_spte))
506
		flush = true;
507

508
	/*
509
	 * Flush TLB when accessed/dirty states are changed in the page tables,
510 511 512
	 * to guarantee consistency between TLB and page tables.
	 */

513 514
	if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
		flush = true;
515
		kvm_set_pfn_accessed(spte_to_pfn(old_spte));
516 517 518 519
	}

	if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
		flush = true;
520
		kvm_set_pfn_dirty(spte_to_pfn(old_spte));
521
	}
522

523
	return flush;
524 525
}

526 527 528 529
/*
 * Rules for using mmu_spte_clear_track_bits:
 * It sets the sptep from present to nonpresent, and track the
 * state bits, it is used to clear the last level sptep.
530
 * Returns the old PTE.
531
 */
532
static int mmu_spte_clear_track_bits(struct kvm *kvm, u64 *sptep)
533
{
D
Dan Williams 已提交
534
	kvm_pfn_t pfn;
535
	u64 old_spte = *sptep;
536
	int level = sptep_to_sp(sptep)->role.level;
537
	struct page *page;
538

539 540
	if (!is_shadow_present_pte(old_spte) ||
	    !spte_has_volatile_bits(old_spte))
541
		__update_clear_spte_fast(sptep, 0ull);
542
	else
543
		old_spte = __update_clear_spte_slow(sptep, 0ull);
544

545
	if (!is_shadow_present_pte(old_spte))
546
		return old_spte;
547

548 549
	kvm_update_page_stats(kvm, level, -1);

550
	pfn = spte_to_pfn(old_spte);
551 552

	/*
553 554 555 556
	 * KVM doesn't hold a reference to any pages mapped into the guest, and
	 * instead uses the mmu_notifier to ensure that KVM unmaps any pages
	 * before they are reclaimed.  Sanity check that, if the pfn is backed
	 * by a refcounted page, the refcount is elevated.
557
	 */
558 559
	page = kvm_pfn_to_refcounted_page(pfn);
	WARN_ON(page && !page_count(page));
560

561
	if (is_accessed_spte(old_spte))
562
		kvm_set_pfn_accessed(pfn);
563 564

	if (is_dirty_spte(old_spte))
565
		kvm_set_pfn_dirty(pfn);
566

567
	return old_spte;
568 569 570 571 572 573 574 575 576
}

/*
 * Rules for using mmu_spte_clear_no_track:
 * Directly clear spte without caring the state bits of sptep,
 * it is used to set the upper level spte.
 */
static void mmu_spte_clear_no_track(u64 *sptep)
{
577
	__update_clear_spte_fast(sptep, 0ull);
578 579
}

580 581 582 583 584
static u64 mmu_spte_get_lockless(u64 *sptep)
{
	return __get_spte_lockless(sptep);
}

585 586 587 588 589 590 591 592
/* Returns the Accessed status of the PTE and resets it at the same time. */
static bool mmu_spte_age(u64 *sptep)
{
	u64 spte = mmu_spte_get_lockless(sptep);

	if (!is_accessed_spte(spte))
		return false;

593
	if (spte_ad_enabled(spte)) {
594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
		clear_bit((ffs(shadow_accessed_mask) - 1),
			  (unsigned long *)sptep);
	} else {
		/*
		 * Capture the dirty status of the page, so that it doesn't get
		 * lost when the SPTE is marked for access tracking.
		 */
		if (is_writable_pte(spte))
			kvm_set_pfn_dirty(spte_to_pfn(spte));

		spte = mark_spte_for_access_track(spte);
		mmu_spte_update_no_track(sptep, spte);
	}

	return true;
}

611 612
static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
{
613 614 615 616 617 618 619 620
	if (is_tdp_mmu(vcpu->arch.mmu)) {
		kvm_tdp_mmu_walk_lockless_begin();
	} else {
		/*
		 * Prevent page table teardown by making any free-er wait during
		 * kvm_flush_remote_tlbs() IPI to all active vcpus.
		 */
		local_irq_disable();
621

622 623 624 625 626 627
		/*
		 * Make sure a following spte read is not reordered ahead of the write
		 * to vcpu->mode.
		 */
		smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
	}
628 629 630 631
}

static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
{
632 633 634 635 636 637 638 639 640 641 642
	if (is_tdp_mmu(vcpu->arch.mmu)) {
		kvm_tdp_mmu_walk_lockless_end();
	} else {
		/*
		 * Make sure the write to vcpu->mode is not reordered in front of
		 * reads to sptes.  If it does, kvm_mmu_commit_zap_page() can see us
		 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
		 */
		smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
		local_irq_enable();
	}
643 644
}

645
static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect)
646
{
647 648
	int r;

649
	/* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */
650 651
	r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
				       1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM);
652
	if (r)
653
		return r;
654 655
	r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache,
				       PT64_ROOT_MAX_LEVEL);
656
	if (r)
657
		return r;
658
	if (maybe_indirect) {
659 660
		r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_gfn_array_cache,
					       PT64_ROOT_MAX_LEVEL);
661 662 663
		if (r)
			return r;
	}
664 665
	return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
					  PT64_ROOT_MAX_LEVEL);
666 667 668 669
}

static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
{
670 671 672 673
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache);
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache);
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_gfn_array_cache);
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
674 675
}

676
static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
677
{
678
	return kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
679 680
}

681
static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
682
{
683
	kmem_cache_free(pte_list_desc_cache, pte_list_desc);
684 685
}

686 687
static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
{
688 689 690
	if (sp->role.passthrough)
		return sp->gfn;

691 692 693
	if (!sp->role.direct)
		return sp->gfns[index];

694
	return sp->gfn + (index << ((sp->role.level - 1) * SPTE_LEVEL_BITS));
695 696 697 698
}

static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
{
699 700 701 702 703
	if (sp->role.passthrough) {
		WARN_ON_ONCE(gfn != sp->gfn);
		return;
	}

704
	if (!sp->role.direct) {
705
		sp->gfns[index] = gfn;
706 707 708 709 710 711 712 713
		return;
	}

	if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
		pr_err_ratelimited("gfn mismatch under direct page %llx "
				   "(expected %llx, got %llx)\n",
				   sp->gfn,
				   kvm_mmu_page_get_gfn(sp, index), gfn);
714 715
}

M
Marcelo Tosatti 已提交
716
/*
717 718
 * Return the pointer to the large page information for a given gfn,
 * handling slots that are not large page aligned.
M
Marcelo Tosatti 已提交
719
 */
720
static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
721
		const struct kvm_memory_slot *slot, int level)
M
Marcelo Tosatti 已提交
722 723 724
{
	unsigned long idx;

725
	idx = gfn_to_index(gfn, slot->base_gfn, level);
726
	return &slot->arch.lpage_info[level - 2][idx];
M
Marcelo Tosatti 已提交
727 728
}

729
static void update_gfn_disallow_lpage_count(const struct kvm_memory_slot *slot,
730 731 732 733 734
					    gfn_t gfn, int count)
{
	struct kvm_lpage_info *linfo;
	int i;

735
	for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
736 737 738 739 740 741
		linfo = lpage_info_slot(gfn, slot, i);
		linfo->disallow_lpage += count;
		WARN_ON(linfo->disallow_lpage < 0);
	}
}

742
void kvm_mmu_gfn_disallow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn)
743 744 745 746
{
	update_gfn_disallow_lpage_count(slot, gfn, 1);
}

747
void kvm_mmu_gfn_allow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn)
748 749 750 751
{
	update_gfn_disallow_lpage_count(slot, gfn, -1);
}

752
static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
M
Marcelo Tosatti 已提交
753
{
754
	struct kvm_memslots *slots;
755
	struct kvm_memory_slot *slot;
756
	gfn_t gfn;
M
Marcelo Tosatti 已提交
757

758
	kvm->arch.indirect_shadow_pages++;
759
	gfn = sp->gfn;
760 761
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
762 763

	/* the non-leaf shadow pages are keeping readonly. */
764
	if (sp->role.level > PG_LEVEL_4K)
765 766 767
		return kvm_slot_page_track_add_page(kvm, slot, gfn,
						    KVM_PAGE_TRACK_WRITE);

768
	kvm_mmu_gfn_disallow_lpage(slot, gfn);
769 770 771

	if (kvm_mmu_slot_gfn_write_protect(kvm, slot, gfn, PG_LEVEL_4K))
		kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
M
Marcelo Tosatti 已提交
772 773
}

774
void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
P
Paolo Bonzini 已提交
775 776 777 778 779
{
	if (sp->lpage_disallowed)
		return;

	++kvm->stat.nx_lpage_splits;
780 781
	list_add_tail(&sp->lpage_disallowed_link,
		      &kvm->arch.lpage_disallowed_mmu_pages);
P
Paolo Bonzini 已提交
782 783 784
	sp->lpage_disallowed = true;
}

785
static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
M
Marcelo Tosatti 已提交
786
{
787
	struct kvm_memslots *slots;
788
	struct kvm_memory_slot *slot;
789
	gfn_t gfn;
M
Marcelo Tosatti 已提交
790

791
	kvm->arch.indirect_shadow_pages--;
792
	gfn = sp->gfn;
793 794
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
795
	if (sp->role.level > PG_LEVEL_4K)
796 797 798
		return kvm_slot_page_track_remove_page(kvm, slot, gfn,
						       KVM_PAGE_TRACK_WRITE);

799
	kvm_mmu_gfn_allow_lpage(slot, gfn);
M
Marcelo Tosatti 已提交
800 801
}

802
void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
P
Paolo Bonzini 已提交
803 804 805
{
	--kvm->stat.nx_lpage_splits;
	sp->lpage_disallowed = false;
806
	list_del(&sp->lpage_disallowed_link);
P
Paolo Bonzini 已提交
807 808
}

809 810 811
static struct kvm_memory_slot *
gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
			    bool no_dirty_log)
M
Marcelo Tosatti 已提交
812 813
{
	struct kvm_memory_slot *slot;
814

815
	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
816 817
	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
		return NULL;
818
	if (no_dirty_log && kvm_slot_dirty_track_enabled(slot))
819
		return NULL;
820 821 822 823

	return slot;
}

824
/*
825
 * About rmap_head encoding:
826
 *
827 828
 * If the bit zero of rmap_head->val is clear, then it points to the only spte
 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
829
 * pte_list_desc containing more mappings.
830 831 832 833
 */

/*
 * Returns the number of pointers in the rmap chain, not counting the new one.
834
 */
835
static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
836
			struct kvm_rmap_head *rmap_head)
837
{
838
	struct pte_list_desc *desc;
839
	int count = 0;
840

841
	if (!rmap_head->val) {
842
		rmap_printk("%p %llx 0->1\n", spte, *spte);
843 844
		rmap_head->val = (unsigned long)spte;
	} else if (!(rmap_head->val & 1)) {
845
		rmap_printk("%p %llx 1->many\n", spte, *spte);
846
		desc = mmu_alloc_pte_list_desc(vcpu);
847
		desc->sptes[0] = (u64 *)rmap_head->val;
A
Avi Kivity 已提交
848
		desc->sptes[1] = spte;
849
		desc->spte_count = 2;
850
		rmap_head->val = (unsigned long)desc | 1;
851
		++count;
852
	} else {
853
		rmap_printk("%p %llx many->many\n", spte, *spte);
854
		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
855
		while (desc->spte_count == PTE_LIST_EXT) {
856
			count += PTE_LIST_EXT;
857 858 859
			if (!desc->more) {
				desc->more = mmu_alloc_pte_list_desc(vcpu);
				desc = desc->more;
860
				desc->spte_count = 0;
861 862
				break;
			}
863 864
			desc = desc->more;
		}
865 866
		count += desc->spte_count;
		desc->sptes[desc->spte_count++] = spte;
867
	}
868
	return count;
869 870
}

871
static void
872 873 874
pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
			   struct pte_list_desc *desc, int i,
			   struct pte_list_desc *prev_desc)
875
{
876
	int j = desc->spte_count - 1;
877

A
Avi Kivity 已提交
878 879
	desc->sptes[i] = desc->sptes[j];
	desc->sptes[j] = NULL;
880 881
	desc->spte_count--;
	if (desc->spte_count)
882 883
		return;
	if (!prev_desc && !desc->more)
884
		rmap_head->val = 0;
885 886 887 888
	else
		if (prev_desc)
			prev_desc->more = desc->more;
		else
889
			rmap_head->val = (unsigned long)desc->more | 1;
890
	mmu_free_pte_list_desc(desc);
891 892
}

893
static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
894
{
895 896
	struct pte_list_desc *desc;
	struct pte_list_desc *prev_desc;
897 898
	int i;

899
	if (!rmap_head->val) {
900
		pr_err("%s: %p 0->BUG\n", __func__, spte);
901
		BUG();
902
	} else if (!(rmap_head->val & 1)) {
903
		rmap_printk("%p 1->0\n", spte);
904
		if ((u64 *)rmap_head->val != spte) {
905
			pr_err("%s:  %p 1->BUG\n", __func__, spte);
906 907
			BUG();
		}
908
		rmap_head->val = 0;
909
	} else {
910
		rmap_printk("%p many->many\n", spte);
911
		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
912 913
		prev_desc = NULL;
		while (desc) {
914
			for (i = 0; i < desc->spte_count; ++i) {
A
Avi Kivity 已提交
915
				if (desc->sptes[i] == spte) {
916 917
					pte_list_desc_remove_entry(rmap_head,
							desc, i, prev_desc);
918 919
					return;
				}
920
			}
921 922 923
			prev_desc = desc;
			desc = desc->more;
		}
924
		pr_err("%s: %p many->many\n", __func__, spte);
925 926 927 928
		BUG();
	}
}

929 930
static void pte_list_remove(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			    u64 *sptep)
931
{
932
	mmu_spte_clear_track_bits(kvm, sptep);
933 934 935
	__pte_list_remove(sptep, rmap_head);
}

P
Peter Xu 已提交
936
/* Return true if rmap existed, false otherwise */
937
static bool pte_list_destroy(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
P
Peter Xu 已提交
938 939 940 941 942 943 944 945
{
	struct pte_list_desc *desc, *next;
	int i;

	if (!rmap_head->val)
		return false;

	if (!(rmap_head->val & 1)) {
946
		mmu_spte_clear_track_bits(kvm, (u64 *)rmap_head->val);
P
Peter Xu 已提交
947 948 949 950 951 952 953
		goto out;
	}

	desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);

	for (; desc; desc = next) {
		for (i = 0; i < desc->spte_count; i++)
954
			mmu_spte_clear_track_bits(kvm, desc->sptes[i]);
P
Peter Xu 已提交
955 956 957 958 959 960 961 962 963
		next = desc->more;
		mmu_free_pte_list_desc(desc);
	}
out:
	/* rmap_head is meaningless now, remember to reset it */
	rmap_head->val = 0;
	return true;
}

964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983
unsigned int pte_list_count(struct kvm_rmap_head *rmap_head)
{
	struct pte_list_desc *desc;
	unsigned int count = 0;

	if (!rmap_head->val)
		return 0;
	else if (!(rmap_head->val & 1))
		return 1;

	desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);

	while (desc) {
		count += desc->spte_count;
		desc = desc->more;
	}

	return count;
}

984 985
static struct kvm_rmap_head *gfn_to_rmap(gfn_t gfn, int level,
					 const struct kvm_memory_slot *slot)
986
{
987
	unsigned long idx;
988

989
	idx = gfn_to_index(gfn, slot->base_gfn, level);
990
	return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
991 992
}

993 994
static bool rmap_can_add(struct kvm_vcpu *vcpu)
{
995
	struct kvm_mmu_memory_cache *mc;
996

997
	mc = &vcpu->arch.mmu_pte_list_desc_cache;
998
	return kvm_mmu_memory_cache_nr_free_objects(mc);
999 1000
}

1001 1002
static void rmap_remove(struct kvm *kvm, u64 *spte)
{
1003 1004
	struct kvm_memslots *slots;
	struct kvm_memory_slot *slot;
1005 1006
	struct kvm_mmu_page *sp;
	gfn_t gfn;
1007
	struct kvm_rmap_head *rmap_head;
1008

1009
	sp = sptep_to_sp(spte);
1010
	gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1011 1012

	/*
1013 1014 1015
	 * Unlike rmap_add, rmap_remove does not run in the context of a vCPU
	 * so we have to determine which memslots to use based on context
	 * information in sp->role.
1016 1017 1018 1019
	 */
	slots = kvm_memslots_for_spte_role(kvm, sp->role);

	slot = __gfn_to_memslot(slots, gfn);
1020
	rmap_head = gfn_to_rmap(gfn, sp->role.level, slot);
1021

1022
	__pte_list_remove(spte, rmap_head);
1023 1024
}

1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
/*
 * Used by the following functions to iterate through the sptes linked by a
 * rmap.  All fields are private and not assumed to be used outside.
 */
struct rmap_iterator {
	/* private fields */
	struct pte_list_desc *desc;	/* holds the sptep if not NULL */
	int pos;			/* index of the sptep */
};

/*
 * Iteration must be started by this function.  This should also be used after
 * removing/dropping sptes from the rmap link because in such cases the
M
Miaohe Lin 已提交
1038
 * information in the iterator may not be valid.
1039 1040 1041
 *
 * Returns sptep if found, NULL otherwise.
 */
1042 1043
static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
			   struct rmap_iterator *iter)
1044
{
1045 1046
	u64 *sptep;

1047
	if (!rmap_head->val)
1048 1049
		return NULL;

1050
	if (!(rmap_head->val & 1)) {
1051
		iter->desc = NULL;
1052 1053
		sptep = (u64 *)rmap_head->val;
		goto out;
1054 1055
	}

1056
	iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1057
	iter->pos = 0;
1058 1059 1060 1061
	sptep = iter->desc->sptes[iter->pos];
out:
	BUG_ON(!is_shadow_present_pte(*sptep));
	return sptep;
1062 1063 1064 1065 1066 1067 1068 1069 1070
}

/*
 * Must be used with a valid iterator: e.g. after rmap_get_first().
 *
 * Returns sptep if found, NULL otherwise.
 */
static u64 *rmap_get_next(struct rmap_iterator *iter)
{
1071 1072
	u64 *sptep;

1073 1074 1075 1076 1077
	if (iter->desc) {
		if (iter->pos < PTE_LIST_EXT - 1) {
			++iter->pos;
			sptep = iter->desc->sptes[iter->pos];
			if (sptep)
1078
				goto out;
1079 1080 1081 1082 1083 1084 1085
		}

		iter->desc = iter->desc->more;

		if (iter->desc) {
			iter->pos = 0;
			/* desc->sptes[0] cannot be NULL */
1086 1087
			sptep = iter->desc->sptes[iter->pos];
			goto out;
1088 1089 1090 1091
		}
	}

	return NULL;
1092 1093 1094
out:
	BUG_ON(!is_shadow_present_pte(*sptep));
	return sptep;
1095 1096
}

1097 1098
#define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)			\
	for (_spte_ = rmap_get_first(_rmap_head_, _iter_);		\
1099
	     _spte_; _spte_ = rmap_get_next(_iter_))
1100

1101
static void drop_spte(struct kvm *kvm, u64 *sptep)
1102
{
1103
	u64 old_spte = mmu_spte_clear_track_bits(kvm, sptep);
1104 1105

	if (is_shadow_present_pte(old_spte))
1106
		rmap_remove(kvm, sptep);
A
Avi Kivity 已提交
1107 1108
}

1109 1110 1111 1112

static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
{
	if (is_large_pte(*sptep)) {
1113
		WARN_ON(sptep_to_sp(sptep)->role.level == PG_LEVEL_4K);
1114 1115 1116 1117 1118 1119 1120 1121 1122
		drop_spte(kvm, sptep);
		return true;
	}

	return false;
}

static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
{
1123
	if (__drop_large_spte(vcpu->kvm, sptep)) {
1124
		struct kvm_mmu_page *sp = sptep_to_sp(sptep);
1125 1126 1127 1128

		kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
			KVM_PAGES_PER_HPAGE(sp->role.level));
	}
1129 1130 1131
}

/*
1132
 * Write-protect on the specified @sptep, @pt_protect indicates whether
1133
 * spte write-protection is caused by protecting shadow page table.
1134
 *
T
Tiejun Chen 已提交
1135
 * Note: write protection is difference between dirty logging and spte
1136 1137 1138 1139 1140
 * protection:
 * - for dirty logging, the spte can be set to writable at anytime if
 *   its dirty bitmap is properly set.
 * - for spte protection, the spte can be writable only after unsync-ing
 *   shadow page.
1141
 *
1142
 * Return true if tlb need be flushed.
1143
 */
1144
static bool spte_write_protect(u64 *sptep, bool pt_protect)
1145 1146 1147
{
	u64 spte = *sptep;

1148
	if (!is_writable_pte(spte) &&
1149
	    !(pt_protect && is_mmu_writable_spte(spte)))
1150 1151
		return false;

1152
	rmap_printk("spte %p %llx\n", sptep, *sptep);
1153

1154
	if (pt_protect)
1155
		spte &= ~shadow_mmu_writable_mask;
1156
	spte = spte & ~PT_WRITABLE_MASK;
1157

1158
	return mmu_spte_update(sptep, spte);
1159 1160
}

1161 1162
static bool rmap_write_protect(struct kvm_rmap_head *rmap_head,
			       bool pt_protect)
1163
{
1164 1165
	u64 *sptep;
	struct rmap_iterator iter;
1166
	bool flush = false;
1167

1168
	for_each_rmap_spte(rmap_head, &iter, sptep)
1169
		flush |= spte_write_protect(sptep, pt_protect);
1170

1171
	return flush;
1172 1173
}

1174
static bool spte_clear_dirty(u64 *sptep)
1175 1176 1177
{
	u64 spte = *sptep;

1178
	rmap_printk("spte %p %llx\n", sptep, *sptep);
1179

1180
	MMU_WARN_ON(!spte_ad_enabled(spte));
1181 1182 1183 1184
	spte &= ~shadow_dirty_mask;
	return mmu_spte_update(sptep, spte);
}

1185
static bool spte_wrprot_for_clear_dirty(u64 *sptep)
1186 1187 1188
{
	bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
					       (unsigned long *)sptep);
1189
	if (was_writable && !spte_ad_enabled(*sptep))
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
		kvm_set_pfn_dirty(spte_to_pfn(*sptep));

	return was_writable;
}

/*
 * Gets the GFN ready for another round of dirty logging by clearing the
 *	- D bit on ad-enabled SPTEs, and
 *	- W bit on ad-disabled SPTEs.
 * Returns true iff any D or W bits were cleared.
 */
1201
static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1202
			       const struct kvm_memory_slot *slot)
1203 1204 1205 1206 1207
{
	u64 *sptep;
	struct rmap_iterator iter;
	bool flush = false;

1208
	for_each_rmap_spte(rmap_head, &iter, sptep)
1209 1210
		if (spte_ad_need_write_protect(*sptep))
			flush |= spte_wrprot_for_clear_dirty(sptep);
1211
		else
1212
			flush |= spte_clear_dirty(sptep);
1213 1214 1215 1216

	return flush;
}

1217
/**
1218
 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1219 1220 1221 1222 1223
 * @kvm: kvm instance
 * @slot: slot to protect
 * @gfn_offset: start of the BITS_PER_LONG pages we care about
 * @mask: indicates which pages we should protect
 *
1224
 * Used when we do not need to care about huge page mappings.
1225
 */
1226
static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1227 1228
				     struct kvm_memory_slot *slot,
				     gfn_t gfn_offset, unsigned long mask)
1229
{
1230
	struct kvm_rmap_head *rmap_head;
1231

1232
	if (is_tdp_mmu_enabled(kvm))
1233 1234
		kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
				slot->base_gfn + gfn_offset, mask, true);
1235 1236 1237 1238

	if (!kvm_memslots_have_rmaps(kvm))
		return;

1239
	while (mask) {
1240 1241
		rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
					PG_LEVEL_4K, slot);
1242
		rmap_write_protect(rmap_head, false);
M
Marcelo Tosatti 已提交
1243

1244 1245 1246
		/* clear the first set bit */
		mask &= mask - 1;
	}
1247 1248
}

1249
/**
1250 1251
 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
 * protect the page if the D-bit isn't supported.
1252 1253 1254 1255 1256 1257 1258
 * @kvm: kvm instance
 * @slot: slot to clear D-bit
 * @gfn_offset: start of the BITS_PER_LONG pages we care about
 * @mask: indicates which pages we should clear D-bit
 *
 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
 */
1259 1260 1261
static void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
					 struct kvm_memory_slot *slot,
					 gfn_t gfn_offset, unsigned long mask)
1262
{
1263
	struct kvm_rmap_head *rmap_head;
1264

1265
	if (is_tdp_mmu_enabled(kvm))
1266 1267
		kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
				slot->base_gfn + gfn_offset, mask, false);
1268 1269 1270 1271

	if (!kvm_memslots_have_rmaps(kvm))
		return;

1272
	while (mask) {
1273 1274
		rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
					PG_LEVEL_4K, slot);
1275
		__rmap_clear_dirty(kvm, rmap_head, slot);
1276 1277 1278 1279 1280 1281

		/* clear the first set bit */
		mask &= mask - 1;
	}
}

1282 1283 1284 1285 1286 1287 1288
/**
 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
 * PT level pages.
 *
 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
 * enable dirty logging for them.
 *
1289 1290
 * We need to care about huge page mappings: e.g. during dirty logging we may
 * have such mappings.
1291 1292 1293 1294 1295
 */
void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
				struct kvm_memory_slot *slot,
				gfn_t gfn_offset, unsigned long mask)
{
1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
	/*
	 * Huge pages are NOT write protected when we start dirty logging in
	 * initially-all-set mode; must write protect them here so that they
	 * are split to 4K on the first write.
	 *
	 * The gfn_offset is guaranteed to be aligned to 64, but the base_gfn
	 * of memslot has no such restriction, so the range can cross two large
	 * pages.
	 */
	if (kvm_dirty_log_manual_protect_and_init_set(kvm)) {
		gfn_t start = slot->base_gfn + gfn_offset + __ffs(mask);
		gfn_t end = slot->base_gfn + gfn_offset + __fls(mask);

1309 1310 1311
		if (READ_ONCE(eager_page_split))
			kvm_mmu_try_split_huge_pages(kvm, slot, start, end, PG_LEVEL_4K);

1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
		kvm_mmu_slot_gfn_write_protect(kvm, slot, start, PG_LEVEL_2M);

		/* Cross two large pages? */
		if (ALIGN(start << PAGE_SHIFT, PMD_SIZE) !=
		    ALIGN(end << PAGE_SHIFT, PMD_SIZE))
			kvm_mmu_slot_gfn_write_protect(kvm, slot, end,
						       PG_LEVEL_2M);
	}

	/* Now handle 4K PTEs.  */
1322 1323
	if (kvm_x86_ops.cpu_dirty_log_size)
		kvm_mmu_clear_dirty_pt_masked(kvm, slot, gfn_offset, mask);
1324 1325
	else
		kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1326 1327
}

1328 1329
int kvm_cpu_dirty_log_size(void)
{
1330
	return kvm_x86_ops.cpu_dirty_log_size;
1331 1332
}

1333
bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1334 1335
				    struct kvm_memory_slot *slot, u64 gfn,
				    int min_level)
1336
{
1337
	struct kvm_rmap_head *rmap_head;
1338
	int i;
1339
	bool write_protected = false;
1340

1341 1342
	if (kvm_memslots_have_rmaps(kvm)) {
		for (i = min_level; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
1343
			rmap_head = gfn_to_rmap(gfn, i, slot);
1344
			write_protected |= rmap_write_protect(rmap_head, true);
1345
		}
1346 1347
	}

1348
	if (is_tdp_mmu_enabled(kvm))
1349
		write_protected |=
1350
			kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn, min_level);
1351

1352
	return write_protected;
1353 1354
}

1355
static bool kvm_vcpu_write_protect_gfn(struct kvm_vcpu *vcpu, u64 gfn)
1356 1357 1358 1359
{
	struct kvm_memory_slot *slot;

	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1360
	return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn, PG_LEVEL_4K);
1361 1362
}

1363
static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1364
			  const struct kvm_memory_slot *slot)
1365
{
1366
	return pte_list_destroy(kvm, rmap_head);
1367 1368
}

1369 1370 1371
static bool kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			    struct kvm_memory_slot *slot, gfn_t gfn, int level,
			    pte_t unused)
1372
{
1373
	return kvm_zap_rmapp(kvm, rmap_head, slot);
1374 1375
}

1376 1377 1378
static bool kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			      struct kvm_memory_slot *slot, gfn_t gfn, int level,
			      pte_t pte)
1379
{
1380 1381
	u64 *sptep;
	struct rmap_iterator iter;
1382
	bool need_flush = false;
1383
	u64 new_spte;
D
Dan Williams 已提交
1384
	kvm_pfn_t new_pfn;
1385

1386 1387
	WARN_ON(pte_huge(pte));
	new_pfn = pte_pfn(pte);
1388

1389
restart:
1390
	for_each_rmap_spte(rmap_head, &iter, sptep) {
1391
		rmap_printk("spte %p %llx gfn %llx (%d)\n",
1392
			    sptep, *sptep, gfn, level);
1393

1394
		need_flush = true;
1395

1396
		if (pte_write(pte)) {
1397
			pte_list_remove(kvm, rmap_head, sptep);
1398
			goto restart;
1399
		} else {
1400 1401
			new_spte = kvm_mmu_changed_pte_notifier_make_spte(
					*sptep, new_pfn);
1402

1403
			mmu_spte_clear_track_bits(kvm, sptep);
1404
			mmu_spte_set(sptep, new_spte);
1405 1406
		}
	}
1407

1408 1409
	if (need_flush && kvm_available_flush_tlb_with_range()) {
		kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
1410
		return false;
1411 1412
	}

1413
	return need_flush;
1414 1415
}

1416 1417
struct slot_rmap_walk_iterator {
	/* input fields. */
1418
	const struct kvm_memory_slot *slot;
1419 1420 1421 1422 1423 1424 1425
	gfn_t start_gfn;
	gfn_t end_gfn;
	int start_level;
	int end_level;

	/* output fields. */
	gfn_t gfn;
1426
	struct kvm_rmap_head *rmap;
1427 1428 1429
	int level;

	/* private field. */
1430
	struct kvm_rmap_head *end_rmap;
1431 1432 1433 1434 1435 1436 1437
};

static void
rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
{
	iterator->level = level;
	iterator->gfn = iterator->start_gfn;
1438 1439
	iterator->rmap = gfn_to_rmap(iterator->gfn, level, iterator->slot);
	iterator->end_rmap = gfn_to_rmap(iterator->end_gfn, level, iterator->slot);
1440 1441 1442 1443
}

static void
slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1444
		    const struct kvm_memory_slot *slot, int start_level,
1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
		    int end_level, gfn_t start_gfn, gfn_t end_gfn)
{
	iterator->slot = slot;
	iterator->start_level = start_level;
	iterator->end_level = end_level;
	iterator->start_gfn = start_gfn;
	iterator->end_gfn = end_gfn;

	rmap_walk_init_level(iterator, iterator->start_level);
}

static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
{
	return !!iterator->rmap;
}

static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
{
1463
	while (++iterator->rmap <= iterator->end_rmap) {
1464
		iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1465 1466 1467

		if (iterator->rmap->val)
			return;
1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
	}

	if (++iterator->level > iterator->end_level) {
		iterator->rmap = NULL;
		return;
	}

	rmap_walk_init_level(iterator, iterator->level);
}

#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,	\
	   _start_gfn, _end_gfn, _iter_)				\
	for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,		\
				 _end_level_, _start_gfn, _end_gfn);	\
	     slot_rmap_walk_okay(_iter_);				\
	     slot_rmap_walk_next(_iter_))

1485 1486 1487
typedef bool (*rmap_handler_t)(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			       struct kvm_memory_slot *slot, gfn_t gfn,
			       int level, pte_t pte);
1488

1489 1490 1491
static __always_inline bool kvm_handle_gfn_range(struct kvm *kvm,
						 struct kvm_gfn_range *range,
						 rmap_handler_t handler)
1492
{
1493
	struct slot_rmap_walk_iterator iterator;
1494
	bool ret = false;
1495

1496 1497 1498 1499
	for_each_slot_rmap_range(range->slot, PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL,
				 range->start, range->end - 1, &iterator)
		ret |= handler(kvm, iterator.rmap, range->slot, iterator.gfn,
			       iterator.level, range->pte);
1500

1501
	return ret;
1502 1503
}

1504
bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
1505
{
1506
	bool flush = false;
1507

1508 1509
	if (kvm_memslots_have_rmaps(kvm))
		flush = kvm_handle_gfn_range(kvm, range, kvm_unmap_rmapp);
1510

1511
	if (is_tdp_mmu_enabled(kvm))
1512
		flush = kvm_tdp_mmu_unmap_gfn_range(kvm, range, flush);
1513

1514
	return flush;
1515 1516
}

1517
bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1518
{
1519
	bool flush = false;
1520

1521 1522
	if (kvm_memslots_have_rmaps(kvm))
		flush = kvm_handle_gfn_range(kvm, range, kvm_set_pte_rmapp);
1523

1524
	if (is_tdp_mmu_enabled(kvm))
1525
		flush |= kvm_tdp_mmu_set_spte_gfn(kvm, range);
1526

1527
	return flush;
1528 1529
}

1530 1531 1532
static bool kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			  struct kvm_memory_slot *slot, gfn_t gfn, int level,
			  pte_t unused)
1533
{
1534
	u64 *sptep;
1535
	struct rmap_iterator iter;
1536 1537
	int young = 0;

1538 1539
	for_each_rmap_spte(rmap_head, &iter, sptep)
		young |= mmu_spte_age(sptep);
1540

1541 1542 1543
	return young;
}

1544 1545 1546
static bool kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			       struct kvm_memory_slot *slot, gfn_t gfn,
			       int level, pte_t unused)
A
Andrea Arcangeli 已提交
1547
{
1548 1549
	u64 *sptep;
	struct rmap_iterator iter;
A
Andrea Arcangeli 已提交
1550

1551 1552
	for_each_rmap_spte(rmap_head, &iter, sptep)
		if (is_accessed_spte(*sptep))
1553 1554
			return true;
	return false;
A
Andrea Arcangeli 已提交
1555 1556
}

1557 1558
#define RMAP_RECYCLE_THRESHOLD 1000

1559 1560
static void rmap_add(struct kvm_vcpu *vcpu, struct kvm_memory_slot *slot,
		     u64 *spte, gfn_t gfn)
1561
{
1562
	struct kvm_mmu_page *sp;
1563 1564
	struct kvm_rmap_head *rmap_head;
	int rmap_count;
1565

1566
	sp = sptep_to_sp(spte);
1567
	kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1568
	rmap_head = gfn_to_rmap(gfn, sp->role.level, slot);
1569
	rmap_count = pte_list_add(vcpu, spte, rmap_head);
1570

1571 1572 1573 1574 1575
	if (rmap_count > RMAP_RECYCLE_THRESHOLD) {
		kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, __pte(0));
		kvm_flush_remote_tlbs_with_address(
				vcpu->kvm, sp->gfn, KVM_PAGES_PER_HPAGE(sp->role.level));
	}
1576 1577
}

1578
bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1579
{
1580
	bool young = false;
1581

1582 1583
	if (kvm_memslots_have_rmaps(kvm))
		young = kvm_handle_gfn_range(kvm, range, kvm_age_rmapp);
1584

1585
	if (is_tdp_mmu_enabled(kvm))
1586
		young |= kvm_tdp_mmu_age_gfn_range(kvm, range);
1587 1588

	return young;
1589 1590
}

1591
bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
A
Andrea Arcangeli 已提交
1592
{
1593
	bool young = false;
1594

1595 1596
	if (kvm_memslots_have_rmaps(kvm))
		young = kvm_handle_gfn_range(kvm, range, kvm_test_age_rmapp);
1597

1598
	if (is_tdp_mmu_enabled(kvm))
1599
		young |= kvm_tdp_mmu_test_age_gfn(kvm, range);
1600 1601

	return young;
A
Andrea Arcangeli 已提交
1602 1603
}

1604
#ifdef MMU_DEBUG
1605
static int is_empty_shadow_page(u64 *spt)
A
Avi Kivity 已提交
1606
{
1607 1608 1609
	u64 *pos;
	u64 *end;

1610
	for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1611
		if (is_shadow_present_pte(*pos)) {
1612
			printk(KERN_ERR "%s: %p %llx\n", __func__,
1613
			       pos, *pos);
A
Avi Kivity 已提交
1614
			return 0;
1615
		}
A
Avi Kivity 已提交
1616 1617
	return 1;
}
1618
#endif
A
Avi Kivity 已提交
1619

1620 1621 1622 1623 1624 1625
/*
 * This value is the sum of all of the kvm instances's
 * kvm->arch.n_used_mmu_pages values.  We need a global,
 * aggregate version in order to make the slab shrinker
 * faster
 */
1626
static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, long nr)
1627 1628 1629 1630 1631
{
	kvm->arch.n_used_mmu_pages += nr;
	percpu_counter_add(&kvm_total_used_mmu_pages, nr);
}

1632
static void kvm_mmu_free_shadow_page(struct kvm_mmu_page *sp)
1633
{
1634
	MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1635
	hlist_del(&sp->hash_link);
1636 1637
	list_del(&sp->link);
	free_page((unsigned long)sp->spt);
1638 1639
	if (!sp->role.direct)
		free_page((unsigned long)sp->gfns);
1640
	kmem_cache_free(mmu_page_header_cache, sp);
1641 1642
}

1643 1644
static unsigned kvm_page_table_hashfn(gfn_t gfn)
{
1645
	return hash_64(gfn, KVM_MMU_HASH_SHIFT);
1646 1647
}

1648
static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1649
				    struct kvm_mmu_page *sp, u64 *parent_pte)
1650 1651 1652 1653
{
	if (!parent_pte)
		return;

1654
	pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1655 1656
}

1657
static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1658 1659
				       u64 *parent_pte)
{
1660
	__pte_list_remove(parent_pte, &sp->parent_ptes);
1661 1662
}

1663 1664 1665 1666
static void drop_parent_pte(struct kvm_mmu_page *sp,
			    u64 *parent_pte)
{
	mmu_page_remove_parent_pte(sp, parent_pte);
1667
	mmu_spte_clear_no_track(parent_pte);
1668 1669
}

1670
static void mark_unsync(u64 *spte);
1671
static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1672
{
1673 1674 1675 1676 1677 1678
	u64 *sptep;
	struct rmap_iterator iter;

	for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
		mark_unsync(sptep);
	}
1679 1680
}

1681
static void mark_unsync(u64 *spte)
1682
{
1683
	struct kvm_mmu_page *sp;
1684
	unsigned int index;
1685

1686
	sp = sptep_to_sp(spte);
1687 1688
	index = spte - sp->spt;
	if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1689
		return;
1690
	if (sp->unsync_children++)
1691
		return;
1692
	kvm_mmu_mark_parents_unsync(sp);
1693 1694
}

1695
static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1696
			       struct kvm_mmu_page *sp)
1697
{
1698
	return -1;
1699 1700
}

1701 1702 1703 1704 1705 1706 1707 1708 1709 1710
#define KVM_PAGE_ARRAY_NR 16

struct kvm_mmu_pages {
	struct mmu_page_and_offset {
		struct kvm_mmu_page *sp;
		unsigned int idx;
	} page[KVM_PAGE_ARRAY_NR];
	unsigned int nr;
};

1711 1712
static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
			 int idx)
1713
{
1714
	int i;
1715

1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726
	if (sp->unsync)
		for (i=0; i < pvec->nr; i++)
			if (pvec->page[i].sp == sp)
				return 0;

	pvec->page[pvec->nr].sp = sp;
	pvec->page[pvec->nr].idx = idx;
	pvec->nr++;
	return (pvec->nr == KVM_PAGE_ARRAY_NR);
}

1727 1728 1729 1730 1731 1732 1733
static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
{
	--sp->unsync_children;
	WARN_ON((int)sp->unsync_children < 0);
	__clear_bit(idx, sp->unsync_child_bitmap);
}

1734 1735 1736 1737
static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
	int i, ret, nr_unsync_leaf = 0;
1738

1739
	for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1740
		struct kvm_mmu_page *child;
1741 1742
		u64 ent = sp->spt[i];

1743 1744 1745 1746
		if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
			clear_unsync_child_bit(sp, i);
			continue;
		}
1747

1748
		child = to_shadow_page(ent & SPTE_BASE_ADDR_MASK);
1749 1750 1751 1752 1753 1754

		if (child->unsync_children) {
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;

			ret = __mmu_unsync_walk(child, pvec);
1755 1756 1757 1758
			if (!ret) {
				clear_unsync_child_bit(sp, i);
				continue;
			} else if (ret > 0) {
1759
				nr_unsync_leaf += ret;
1760
			} else
1761 1762 1763 1764 1765 1766
				return ret;
		} else if (child->unsync) {
			nr_unsync_leaf++;
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;
		} else
1767
			clear_unsync_child_bit(sp, i);
1768 1769
	}

1770 1771 1772
	return nr_unsync_leaf;
}

1773 1774
#define INVALID_INDEX (-1)

1775 1776 1777
static int mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
P
Paolo Bonzini 已提交
1778
	pvec->nr = 0;
1779 1780 1781
	if (!sp->unsync_children)
		return 0;

1782
	mmu_pages_add(pvec, sp, INVALID_INDEX);
1783
	return __mmu_unsync_walk(sp, pvec);
1784 1785 1786 1787 1788
}

static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
{
	WARN_ON(!sp->unsync);
1789
	trace_kvm_mmu_sync_page(sp);
1790 1791 1792 1793
	sp->unsync = 0;
	--kvm->stat.mmu_unsync;
}

1794 1795
static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				     struct list_head *invalid_list);
1796 1797
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list);
1798

L
Lai Jiangshan 已提交
1799 1800 1801 1802 1803
static bool sp_has_gptes(struct kvm_mmu_page *sp)
{
	if (sp->role.direct)
		return false;

1804 1805 1806
	if (sp->role.passthrough)
		return false;

L
Lai Jiangshan 已提交
1807 1808 1809
	return true;
}

1810 1811
#define for_each_valid_sp(_kvm, _sp, _list)				\
	hlist_for_each_entry(_sp, _list, hash_link)			\
1812
		if (is_obsolete_sp((_kvm), (_sp))) {			\
1813
		} else
1814

L
Lai Jiangshan 已提交
1815
#define for_each_gfn_valid_sp_with_gptes(_kvm, _sp, _gfn)		\
1816 1817
	for_each_valid_sp(_kvm, _sp,					\
	  &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)])	\
L
Lai Jiangshan 已提交
1818
		if ((_sp)->gfn != (_gfn) || !sp_has_gptes(_sp)) {} else
1819

1820
static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1821
			 struct list_head *invalid_list)
1822
{
1823 1824
	int ret = vcpu->arch.mmu->sync_page(vcpu, sp);

1825
	if (ret < 0)
1826
		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1827
	return ret;
1828 1829
}

1830 1831 1832 1833
static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
					struct list_head *invalid_list,
					bool remote_flush)
{
1834
	if (!remote_flush && list_empty(invalid_list))
1835 1836 1837 1838 1839 1840 1841 1842 1843
		return false;

	if (!list_empty(invalid_list))
		kvm_mmu_commit_zap_page(kvm, invalid_list);
	else
		kvm_flush_remote_tlbs(kvm);
	return true;
}

1844 1845
static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
{
1846 1847 1848 1849 1850
	if (sp->role.invalid)
		return true;

	/* TDP MMU pages due not use the MMU generation. */
	return !sp->tdp_mmu_page &&
1851
	       unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1852 1853
}

1854
struct mmu_page_path {
1855 1856
	struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
	unsigned int idx[PT64_ROOT_MAX_LEVEL];
1857 1858
};

1859
#define for_each_sp(pvec, sp, parents, i)			\
P
Paolo Bonzini 已提交
1860
		for (i = mmu_pages_first(&pvec, &parents);	\
1861 1862 1863
			i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});	\
			i = mmu_pages_next(&pvec, &parents, i))

1864 1865 1866
static int mmu_pages_next(struct kvm_mmu_pages *pvec,
			  struct mmu_page_path *parents,
			  int i)
1867 1868 1869 1870 1871
{
	int n;

	for (n = i+1; n < pvec->nr; n++) {
		struct kvm_mmu_page *sp = pvec->page[n].sp;
P
Paolo Bonzini 已提交
1872 1873
		unsigned idx = pvec->page[n].idx;
		int level = sp->role.level;
1874

P
Paolo Bonzini 已提交
1875
		parents->idx[level-1] = idx;
1876
		if (level == PG_LEVEL_4K)
P
Paolo Bonzini 已提交
1877
			break;
1878

P
Paolo Bonzini 已提交
1879
		parents->parent[level-2] = sp;
1880 1881 1882 1883 1884
	}

	return n;
}

P
Paolo Bonzini 已提交
1885 1886 1887 1888 1889 1890 1891 1892 1893
static int mmu_pages_first(struct kvm_mmu_pages *pvec,
			   struct mmu_page_path *parents)
{
	struct kvm_mmu_page *sp;
	int level;

	if (pvec->nr == 0)
		return 0;

1894 1895
	WARN_ON(pvec->page[0].idx != INVALID_INDEX);

P
Paolo Bonzini 已提交
1896 1897
	sp = pvec->page[0].sp;
	level = sp->role.level;
1898
	WARN_ON(level == PG_LEVEL_4K);
P
Paolo Bonzini 已提交
1899 1900 1901 1902 1903 1904 1905 1906 1907 1908

	parents->parent[level-2] = sp;

	/* Also set up a sentinel.  Further entries in pvec are all
	 * children of sp, so this element is never overwritten.
	 */
	parents->parent[level-1] = NULL;
	return mmu_pages_next(pvec, parents, 0);
}

1909
static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1910
{
1911 1912 1913 1914 1915 1916 1917 1918 1919
	struct kvm_mmu_page *sp;
	unsigned int level = 0;

	do {
		unsigned int idx = parents->idx[level];
		sp = parents->parent[level];
		if (!sp)
			return;

1920
		WARN_ON(idx == INVALID_INDEX);
1921
		clear_unsync_child_bit(sp, idx);
1922
		level++;
P
Paolo Bonzini 已提交
1923
	} while (!sp->unsync_children);
1924
}
1925

1926 1927
static int mmu_sync_children(struct kvm_vcpu *vcpu,
			     struct kvm_mmu_page *parent, bool can_yield)
1928 1929 1930 1931 1932
{
	int i;
	struct kvm_mmu_page *sp;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
1933
	LIST_HEAD(invalid_list);
1934
	bool flush = false;
1935 1936

	while (mmu_unsync_walk(parent, &pages)) {
1937
		bool protected = false;
1938 1939

		for_each_sp(pages, sp, parents, i)
1940
			protected |= kvm_vcpu_write_protect_gfn(vcpu, sp->gfn);
1941

1942
		if (protected) {
1943
			kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, true);
1944 1945
			flush = false;
		}
1946

1947
		for_each_sp(pages, sp, parents, i) {
1948
			kvm_unlink_unsync_page(vcpu->kvm, sp);
1949
			flush |= kvm_sync_page(vcpu, sp, &invalid_list) > 0;
1950 1951
			mmu_pages_clear_parents(&parents);
		}
1952
		if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) {
1953
			kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush);
1954 1955 1956 1957 1958
			if (!can_yield) {
				kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
				return -EINTR;
			}

1959
			cond_resched_rwlock_write(&vcpu->kvm->mmu_lock);
1960 1961
			flush = false;
		}
1962
	}
1963

1964
	kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush);
1965
	return 0;
1966 1967
}

1968 1969
static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
{
1970
	atomic_set(&sp->write_flooding_count,  0);
1971 1972 1973 1974
}

static void clear_sp_write_flooding_count(u64 *spte)
{
1975
	__clear_sp_write_flooding_count(sptep_to_sp(spte));
1976 1977
}

1978 1979 1980 1981
static struct kvm_mmu_page *kvm_mmu_find_shadow_page(struct kvm_vcpu *vcpu,
						     gfn_t gfn,
						     struct hlist_head *sp_list,
						     union kvm_mmu_page_role role)
1982
{
1983
	struct kvm_mmu_page *sp;
1984
	int ret;
1985
	int collisions = 0;
1986
	LIST_HEAD(invalid_list);
1987

1988
	for_each_valid_sp(vcpu->kvm, sp, sp_list) {
1989 1990 1991 1992 1993
		if (sp->gfn != gfn) {
			collisions++;
			continue;
		}

1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
		if (sp->role.word != role.word) {
			/*
			 * If the guest is creating an upper-level page, zap
			 * unsync pages for the same gfn.  While it's possible
			 * the guest is using recursive page tables, in all
			 * likelihood the guest has stopped using the unsync
			 * page and is installing a completely unrelated page.
			 * Unsync pages must not be left as is, because the new
			 * upper-level page will be write-protected.
			 */
2004
			if (role.level > PG_LEVEL_4K && sp->unsync)
2005 2006
				kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
							 &invalid_list);
2007
			continue;
2008
		}
2009

2010 2011
		/* unsync and write-flooding only apply to indirect SPs. */
		if (sp->role.direct)
2012
			goto out;
2013

2014
		if (sp->unsync) {
2015
			/*
2016
			 * The page is good, but is stale.  kvm_sync_page does
2017 2018 2019 2020 2021 2022 2023 2024 2025
			 * get the latest guest state, but (unlike mmu_unsync_children)
			 * it doesn't write-protect the page or mark it synchronized!
			 * This way the validity of the mapping is ensured, but the
			 * overhead of write protection is not incurred until the
			 * guest invalidates the TLB mapping.  This allows multiple
			 * SPs for a single gfn to be unsync.
			 *
			 * If the sync fails, the page is zapped.  If so, break
			 * in order to rebuild it.
2026
			 */
2027 2028
			ret = kvm_sync_page(vcpu, sp, &invalid_list);
			if (ret < 0)
2029 2030 2031
				break;

			WARN_ON(!list_empty(&invalid_list));
2032 2033
			if (ret > 0)
				kvm_flush_remote_tlbs(vcpu->kvm);
2034
		}
2035

2036
		__clear_sp_write_flooding_count(sp);
2037

2038
		goto out;
2039
	}
2040

2041
	sp = NULL;
A
Avi Kivity 已提交
2042
	++vcpu->kvm->stat.mmu_cache_miss;
2043

2044 2045 2046 2047 2048 2049 2050 2051
out:
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);

	if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
		vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
	return sp;
}

2052 2053 2054 2055 2056 2057 2058
/* Caches used when allocating a new shadow page. */
struct shadow_page_caches {
	struct kvm_mmu_memory_cache *page_header_cache;
	struct kvm_mmu_memory_cache *shadow_page_cache;
	struct kvm_mmu_memory_cache *gfn_array_cache;
};

2059
static struct kvm_mmu_page *kvm_mmu_alloc_shadow_page(struct kvm *kvm,
2060
						      struct shadow_page_caches *caches,
2061 2062 2063 2064
						      gfn_t gfn,
						      struct hlist_head *sp_list,
						      union kvm_mmu_page_role role)
{
2065 2066
	struct kvm_mmu_page *sp;

2067 2068
	sp = kvm_mmu_memory_cache_alloc(caches->page_header_cache);
	sp->spt = kvm_mmu_memory_cache_alloc(caches->shadow_page_cache);
2069
	if (!role.direct)
2070
		sp->gfns = kvm_mmu_memory_cache_alloc(caches->gfn_array_cache);
2071 2072 2073 2074 2075 2076 2077 2078

	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);

	/*
	 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
	 * depends on valid pages being added to the head of the list.  See
	 * comments in kvm_zap_obsolete_pages().
	 */
2079 2080 2081
	sp->mmu_valid_gen = kvm->arch.mmu_valid_gen;
	list_add(&sp->link, &kvm->arch.active_mmu_pages);
	kvm_mod_used_mmu_pages(kvm, +1);
2082

2083 2084
	sp->gfn = gfn;
	sp->role = role;
2085
	hlist_add_head(&sp->hash_link, sp_list);
2086
	if (sp_has_gptes(sp))
2087
		account_shadowed(kvm, sp);
2088

2089 2090 2091
	return sp;
}

2092 2093 2094 2095
static struct kvm_mmu_page *__kvm_mmu_get_shadow_page(struct kvm_vcpu *vcpu,
						      struct shadow_page_caches *caches,
						      gfn_t gfn,
						      union kvm_mmu_page_role role)
2096 2097 2098 2099 2100 2101 2102 2103 2104 2105
{
	struct hlist_head *sp_list;
	struct kvm_mmu_page *sp;
	bool created = false;

	sp_list = &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)];

	sp = kvm_mmu_find_shadow_page(vcpu, gfn, sp_list, role);
	if (!sp) {
		created = true;
2106
		sp = kvm_mmu_alloc_shadow_page(vcpu->kvm, caches, gfn, sp_list, role);
2107 2108 2109
	}

	trace_kvm_mmu_get_page(sp, created);
2110
	return sp;
2111 2112
}

2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125
static struct kvm_mmu_page *kvm_mmu_get_shadow_page(struct kvm_vcpu *vcpu,
						    gfn_t gfn,
						    union kvm_mmu_page_role role)
{
	struct shadow_page_caches caches = {
		.page_header_cache = &vcpu->arch.mmu_page_header_cache,
		.shadow_page_cache = &vcpu->arch.mmu_shadow_page_cache,
		.gfn_array_cache = &vcpu->arch.mmu_gfn_array_cache,
	};

	return __kvm_mmu_get_shadow_page(vcpu, &caches, gfn, role);
}

2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171
static union kvm_mmu_page_role kvm_mmu_child_role(u64 *sptep, bool direct, unsigned int access)
{
	struct kvm_mmu_page *parent_sp = sptep_to_sp(sptep);
	union kvm_mmu_page_role role;

	role = parent_sp->role;
	role.level--;
	role.access = access;
	role.direct = direct;
	role.passthrough = 0;

	/*
	 * If the guest has 4-byte PTEs then that means it's using 32-bit,
	 * 2-level, non-PAE paging. KVM shadows such guests with PAE paging
	 * (i.e. 8-byte PTEs). The difference in PTE size means that KVM must
	 * shadow each guest page table with multiple shadow page tables, which
	 * requires extra bookkeeping in the role.
	 *
	 * Specifically, to shadow the guest's page directory (which covers a
	 * 4GiB address space), KVM uses 4 PAE page directories, each mapping
	 * 1GiB of the address space. @role.quadrant encodes which quarter of
	 * the address space each maps.
	 *
	 * To shadow the guest's page tables (which each map a 4MiB region), KVM
	 * uses 2 PAE page tables, each mapping a 2MiB region. For these,
	 * @role.quadrant encodes which half of the region they map.
	 *
	 * Note, the 4 PAE page directories are pre-allocated and the quadrant
	 * assigned in mmu_alloc_root(). So only page tables need to be handled
	 * here.
	 */
	if (role.has_4_byte_gpte) {
		WARN_ON_ONCE(role.level != PG_LEVEL_4K);
		role.quadrant = (sptep - parent_sp->spt) % 2;
	}

	return role;
}

static struct kvm_mmu_page *kvm_mmu_get_child_sp(struct kvm_vcpu *vcpu,
						 u64 *sptep, gfn_t gfn,
						 bool direct, unsigned int access)
{
	union kvm_mmu_page_role role;

	role = kvm_mmu_child_role(sptep, direct, access);
2172
	return kvm_mmu_get_shadow_page(vcpu, gfn, role);
2173 2174
}

2175 2176 2177
static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
					struct kvm_vcpu *vcpu, hpa_t root,
					u64 addr)
2178 2179
{
	iterator->addr = addr;
2180
	iterator->shadow_addr = root;
2181
	iterator->level = vcpu->arch.mmu->root_role.level;
2182

2183
	if (iterator->level >= PT64_ROOT_4LEVEL &&
2184
	    vcpu->arch.mmu->cpu_role.base.level < PT64_ROOT_4LEVEL &&
2185
	    !vcpu->arch.mmu->root_role.direct)
2186
		iterator->level = PT32E_ROOT_LEVEL;
2187

2188
	if (iterator->level == PT32E_ROOT_LEVEL) {
2189 2190 2191 2192
		/*
		 * prev_root is currently only used for 64-bit hosts. So only
		 * the active root_hpa is valid here.
		 */
2193
		BUG_ON(root != vcpu->arch.mmu->root.hpa);
2194

2195
		iterator->shadow_addr
2196
			= vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2197
		iterator->shadow_addr &= SPTE_BASE_ADDR_MASK;
2198 2199 2200 2201 2202 2203
		--iterator->level;
		if (!iterator->shadow_addr)
			iterator->level = 0;
	}
}

2204 2205 2206
static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
			     struct kvm_vcpu *vcpu, u64 addr)
{
2207
	shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root.hpa,
2208 2209 2210
				    addr);
}

2211 2212
static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
{
2213
	if (iterator->level < PG_LEVEL_4K)
2214
		return false;
2215

2216
	iterator->index = SPTE_INDEX(iterator->addr, iterator->level);
2217 2218 2219 2220
	iterator->sptep	= ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
	return true;
}

2221 2222
static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
			       u64 spte)
2223
{
2224
	if (!is_shadow_present_pte(spte) || is_last_spte(spte, iterator->level)) {
2225 2226 2227 2228
		iterator->level = 0;
		return;
	}

2229
	iterator->shadow_addr = spte & SPTE_BASE_ADDR_MASK;
2230 2231 2232
	--iterator->level;
}

2233 2234
static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
{
2235
	__shadow_walk_next(iterator, *iterator->sptep);
2236 2237
}

2238 2239 2240 2241 2242 2243 2244 2245 2246
static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
			     struct kvm_mmu_page *sp)
{
	u64 spte;

	BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);

	spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp));

2247
	mmu_spte_set(sptep, spte);
2248 2249 2250 2251 2252

	mmu_page_add_parent_pte(vcpu, sp, sptep);

	if (sp->unsync_children || sp->unsync)
		mark_unsync(sptep);
2253 2254
}

2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267
static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
				   unsigned direct_access)
{
	if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
		struct kvm_mmu_page *child;

		/*
		 * For the direct sp, if the guest pte's dirty bit
		 * changed form clean to dirty, it will corrupt the
		 * sp's access: allow writable in the read-only sp,
		 * so we should update the spte at this point to get
		 * a new sp with the correct access.
		 */
2268
		child = to_shadow_page(*sptep & SPTE_BASE_ADDR_MASK);
2269 2270 2271
		if (child->role.access == direct_access)
			return;

2272
		drop_parent_pte(child, sptep);
2273
		kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
2274 2275 2276
	}
}

2277 2278 2279
/* Returns the number of zapped non-leaf child shadow pages. */
static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
			    u64 *spte, struct list_head *invalid_list)
2280 2281 2282 2283 2284 2285
{
	u64 pte;
	struct kvm_mmu_page *child;

	pte = *spte;
	if (is_shadow_present_pte(pte)) {
X
Xiao Guangrong 已提交
2286
		if (is_last_spte(pte, sp->role.level)) {
2287
			drop_spte(kvm, spte);
X
Xiao Guangrong 已提交
2288
		} else {
2289
			child = to_shadow_page(pte & SPTE_BASE_ADDR_MASK);
2290
			drop_parent_pte(child, spte);
2291 2292 2293 2294 2295 2296 2297 2298 2299 2300

			/*
			 * Recursively zap nested TDP SPs, parentless SPs are
			 * unlikely to be used again in the near future.  This
			 * avoids retaining a large number of stale nested SPs.
			 */
			if (tdp_enabled && invalid_list &&
			    child->role.guest_mode && !child->parent_ptes.val)
				return kvm_mmu_prepare_zap_page(kvm, child,
								invalid_list);
2301
		}
2302
	} else if (is_mmio_spte(pte)) {
2303
		mmu_spte_clear_no_track(spte);
2304
	}
2305
	return 0;
2306 2307
}

2308 2309 2310
static int kvm_mmu_page_unlink_children(struct kvm *kvm,
					struct kvm_mmu_page *sp,
					struct list_head *invalid_list)
2311
{
2312
	int zapped = 0;
2313 2314
	unsigned i;

2315
	for (i = 0; i < SPTE_ENT_PER_PAGE; ++i)
2316 2317 2318
		zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list);

	return zapped;
2319 2320
}

2321
static void kvm_mmu_unlink_parents(struct kvm_mmu_page *sp)
2322
{
2323 2324
	u64 *sptep;
	struct rmap_iterator iter;
2325

2326
	while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2327
		drop_parent_pte(sp, sptep);
2328 2329
}

2330
static int mmu_zap_unsync_children(struct kvm *kvm,
2331 2332
				   struct kvm_mmu_page *parent,
				   struct list_head *invalid_list)
2333
{
2334 2335 2336
	int i, zapped = 0;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
2337

2338
	if (parent->role.level == PG_LEVEL_4K)
2339
		return 0;
2340 2341 2342 2343 2344

	while (mmu_unsync_walk(parent, &pages)) {
		struct kvm_mmu_page *sp;

		for_each_sp(pages, sp, parents, i) {
2345
			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2346
			mmu_pages_clear_parents(&parents);
2347
			zapped++;
2348 2349 2350 2351
		}
	}

	return zapped;
2352 2353
}

2354 2355 2356 2357
static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
				       struct kvm_mmu_page *sp,
				       struct list_head *invalid_list,
				       int *nr_zapped)
2358
{
2359
	bool list_unstable, zapped_root = false;
A
Avi Kivity 已提交
2360

2361
	trace_kvm_mmu_prepare_zap_page(sp);
2362
	++kvm->stat.mmu_shadow_zapped;
2363
	*nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2364
	*nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list);
2365
	kvm_mmu_unlink_parents(sp);
2366

2367 2368 2369
	/* Zapping children means active_mmu_pages has become unstable. */
	list_unstable = *nr_zapped;

L
Lai Jiangshan 已提交
2370
	if (!sp->role.invalid && sp_has_gptes(sp))
2371
		unaccount_shadowed(kvm, sp);
2372

2373 2374
	if (sp->unsync)
		kvm_unlink_unsync_page(kvm, sp);
2375
	if (!sp->root_count) {
2376
		/* Count self */
2377
		(*nr_zapped)++;
2378 2379 2380 2381 2382 2383 2384 2385 2386 2387

		/*
		 * Already invalid pages (previously active roots) are not on
		 * the active page list.  See list_del() in the "else" case of
		 * !sp->root_count.
		 */
		if (sp->role.invalid)
			list_add(&sp->link, invalid_list);
		else
			list_move(&sp->link, invalid_list);
2388
		kvm_mod_used_mmu_pages(kvm, -1);
2389
	} else {
2390 2391 2392 2393 2394
		/*
		 * Remove the active root from the active page list, the root
		 * will be explicitly freed when the root_count hits zero.
		 */
		list_del(&sp->link);
2395

2396 2397 2398 2399 2400
		/*
		 * Obsolete pages cannot be used on any vCPUs, see the comment
		 * in kvm_mmu_zap_all_fast().  Note, is_obsolete_sp() also
		 * treats invalid shadow pages as being obsolete.
		 */
2401
		zapped_root = !is_obsolete_sp(kvm, sp);
2402
	}
2403

P
Paolo Bonzini 已提交
2404 2405 2406
	if (sp->lpage_disallowed)
		unaccount_huge_nx_page(kvm, sp);

2407
	sp->role.invalid = 1;
2408 2409 2410 2411 2412 2413 2414

	/*
	 * Make the request to free obsolete roots after marking the root
	 * invalid, otherwise other vCPUs may not see it as invalid.
	 */
	if (zapped_root)
		kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS);
2415 2416 2417 2418 2419 2420 2421 2422 2423 2424
	return list_unstable;
}

static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				     struct list_head *invalid_list)
{
	int nr_zapped;

	__kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
	return nr_zapped;
2425 2426
}

2427 2428 2429
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list)
{
2430
	struct kvm_mmu_page *sp, *nsp;
2431 2432 2433 2434

	if (list_empty(invalid_list))
		return;

2435
	/*
2436 2437 2438 2439 2440 2441 2442
	 * We need to make sure everyone sees our modifications to
	 * the page tables and see changes to vcpu->mode here. The barrier
	 * in the kvm_flush_remote_tlbs() achieves this. This pairs
	 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
	 *
	 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
	 * guest mode and/or lockless shadow page table walks.
2443 2444
	 */
	kvm_flush_remote_tlbs(kvm);
2445

2446
	list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2447
		WARN_ON(!sp->role.invalid || sp->root_count);
2448
		kvm_mmu_free_shadow_page(sp);
2449
	}
2450 2451
}

2452 2453
static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm,
						  unsigned long nr_to_zap)
2454
{
2455 2456
	unsigned long total_zapped = 0;
	struct kvm_mmu_page *sp, *tmp;
2457
	LIST_HEAD(invalid_list);
2458 2459
	bool unstable;
	int nr_zapped;
2460 2461

	if (list_empty(&kvm->arch.active_mmu_pages))
2462 2463
		return 0;

2464
restart:
2465
	list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) {
2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476
		/*
		 * Don't zap active root pages, the page itself can't be freed
		 * and zapping it will just force vCPUs to realloc and reload.
		 */
		if (sp->root_count)
			continue;

		unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list,
						      &nr_zapped);
		total_zapped += nr_zapped;
		if (total_zapped >= nr_to_zap)
2477 2478
			break;

2479 2480
		if (unstable)
			goto restart;
2481
	}
2482

2483 2484 2485 2486 2487 2488
	kvm_mmu_commit_zap_page(kvm, &invalid_list);

	kvm->stat.mmu_recycled += total_zapped;
	return total_zapped;
}

2489 2490 2491 2492 2493 2494 2495
static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm)
{
	if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
		return kvm->arch.n_max_mmu_pages -
			kvm->arch.n_used_mmu_pages;

	return 0;
2496 2497
}

2498 2499
static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
{
2500
	unsigned long avail = kvm_mmu_available_pages(vcpu->kvm);
2501

2502
	if (likely(avail >= KVM_MIN_FREE_MMU_PAGES))
2503 2504
		return 0;

2505
	kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail);
2506

2507 2508 2509 2510 2511
	/*
	 * Note, this check is intentionally soft, it only guarantees that one
	 * page is available, while the caller may end up allocating as many as
	 * four pages, e.g. for PAE roots or for 5-level paging.  Temporarily
	 * exceeding the (arbitrary by default) limit will not harm the host,
I
Ingo Molnar 已提交
2512
	 * being too aggressive may unnecessarily kill the guest, and getting an
2513 2514 2515
	 * exact count is far more trouble than it's worth, especially in the
	 * page fault paths.
	 */
2516 2517 2518 2519 2520
	if (!kvm_mmu_available_pages(vcpu->kvm))
		return -ENOSPC;
	return 0;
}

2521 2522
/*
 * Changing the number of mmu pages allocated to the vm
2523
 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2524
 */
2525
void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2526
{
2527
	write_lock(&kvm->mmu_lock);
2528

2529
	if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2530 2531
		kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages -
						  goal_nr_mmu_pages);
2532

2533
		goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2534 2535
	}

2536
	kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2537

2538
	write_unlock(&kvm->mmu_lock);
2539 2540
}

2541
int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2542
{
2543
	struct kvm_mmu_page *sp;
2544
	LIST_HEAD(invalid_list);
2545 2546
	int r;

2547
	pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2548
	r = 0;
2549
	write_lock(&kvm->mmu_lock);
L
Lai Jiangshan 已提交
2550
	for_each_gfn_valid_sp_with_gptes(kvm, sp, gfn) {
2551
		pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2552 2553
			 sp->role.word);
		r = 1;
2554
		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2555
	}
2556
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2557
	write_unlock(&kvm->mmu_lock);
2558

2559
	return r;
2560
}
2561 2562 2563 2564 2565 2566

static int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
{
	gpa_t gpa;
	int r;

2567
	if (vcpu->arch.mmu->root_role.direct)
2568 2569 2570 2571 2572 2573 2574 2575
		return 0;

	gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);

	r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);

	return r;
}
2576

2577
static void kvm_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
2578 2579
{
	trace_kvm_mmu_unsync_page(sp);
2580
	++kvm->stat.mmu_unsync;
2581 2582 2583 2584 2585
	sp->unsync = 1;

	kvm_mmu_mark_parents_unsync(sp);
}

2586 2587 2588 2589 2590 2591
/*
 * Attempt to unsync any shadow pages that can be reached by the specified gfn,
 * KVM is creating a writable mapping for said gfn.  Returns 0 if all pages
 * were marked unsync (or if there is no shadow page), -EPERM if the SPTE must
 * be write-protected.
 */
2592
int mmu_try_to_unsync_pages(struct kvm *kvm, const struct kvm_memory_slot *slot,
2593
			    gfn_t gfn, bool can_unsync, bool prefetch)
2594
{
2595
	struct kvm_mmu_page *sp;
2596
	bool locked = false;
2597

2598 2599 2600 2601 2602
	/*
	 * Force write-protection if the page is being tracked.  Note, the page
	 * track machinery is used to write-protect upper-level shadow pages,
	 * i.e. this guards the role.level == 4K assertion below!
	 */
2603
	if (kvm_slot_page_track_is_active(kvm, slot, gfn, KVM_PAGE_TRACK_WRITE))
2604
		return -EPERM;
2605

2606 2607 2608 2609 2610 2611
	/*
	 * The page is not write-tracked, mark existing shadow pages unsync
	 * unless KVM is synchronizing an unsync SP (can_unsync = false).  In
	 * that case, KVM must complete emulation of the guest TLB flush before
	 * allowing shadow pages to become unsync (writable by the guest).
	 */
L
Lai Jiangshan 已提交
2612
	for_each_gfn_valid_sp_with_gptes(kvm, sp, gfn) {
2613
		if (!can_unsync)
2614
			return -EPERM;
2615

2616 2617
		if (sp->unsync)
			continue;
2618

2619
		if (prefetch)
2620 2621
			return -EEXIST;

2622 2623 2624 2625 2626 2627 2628 2629 2630
		/*
		 * TDP MMU page faults require an additional spinlock as they
		 * run with mmu_lock held for read, not write, and the unsync
		 * logic is not thread safe.  Take the spinklock regardless of
		 * the MMU type to avoid extra conditionals/parameters, there's
		 * no meaningful penalty if mmu_lock is held for write.
		 */
		if (!locked) {
			locked = true;
2631
			spin_lock(&kvm->arch.mmu_unsync_pages_lock);
2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644

			/*
			 * Recheck after taking the spinlock, a different vCPU
			 * may have since marked the page unsync.  A false
			 * positive on the unprotected check above is not
			 * possible as clearing sp->unsync _must_ hold mmu_lock
			 * for write, i.e. unsync cannot transition from 0->1
			 * while this CPU holds mmu_lock for read (or write).
			 */
			if (READ_ONCE(sp->unsync))
				continue;
		}

2645
		WARN_ON(sp->role.level != PG_LEVEL_4K);
2646
		kvm_unsync_page(kvm, sp);
2647
	}
2648
	if (locked)
2649
		spin_unlock(&kvm->arch.mmu_unsync_pages_lock);
2650

2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672
	/*
	 * We need to ensure that the marking of unsync pages is visible
	 * before the SPTE is updated to allow writes because
	 * kvm_mmu_sync_roots() checks the unsync flags without holding
	 * the MMU lock and so can race with this. If the SPTE was updated
	 * before the page had been marked as unsync-ed, something like the
	 * following could happen:
	 *
	 * CPU 1                    CPU 2
	 * ---------------------------------------------------------------------
	 * 1.2 Host updates SPTE
	 *     to be writable
	 *                      2.1 Guest writes a GPTE for GVA X.
	 *                          (GPTE being in the guest page table shadowed
	 *                           by the SP from CPU 1.)
	 *                          This reads SPTE during the page table walk.
	 *                          Since SPTE.W is read as 1, there is no
	 *                          fault.
	 *
	 *                      2.2 Guest issues TLB flush.
	 *                          That causes a VM Exit.
	 *
2673 2674
	 *                      2.3 Walking of unsync pages sees sp->unsync is
	 *                          false and skips the page.
2675 2676 2677 2678 2679 2680 2681 2682 2683 2684
	 *
	 *                      2.4 Guest accesses GVA X.
	 *                          Since the mapping in the SP was not updated,
	 *                          so the old mapping for GVA X incorrectly
	 *                          gets used.
	 * 1.1 Host marks SP
	 *     as unsync
	 *     (sp->unsync = true)
	 *
	 * The write barrier below ensures that 1.1 happens before 1.2 and thus
2685 2686
	 * the situation in 2.4 does not arise.  It pairs with the read barrier
	 * in is_unsync_root(), placed between 2.1's load of SPTE.W and 2.3.
2687 2688 2689
	 */
	smp_wmb();

2690
	return 0;
2691 2692
}

2693 2694
static int mmu_set_spte(struct kvm_vcpu *vcpu, struct kvm_memory_slot *slot,
			u64 *sptep, unsigned int pte_access, gfn_t gfn,
2695
			kvm_pfn_t pfn, struct kvm_page_fault *fault)
M
Marcelo Tosatti 已提交
2696
{
2697
	struct kvm_mmu_page *sp = sptep_to_sp(sptep);
2698
	int level = sp->role.level;
M
Marcelo Tosatti 已提交
2699
	int was_rmapped = 0;
2700
	int ret = RET_PF_FIXED;
2701
	bool flush = false;
2702
	bool wrprot;
2703
	u64 spte;
M
Marcelo Tosatti 已提交
2704

2705 2706
	/* Prefetching always gets a writable pfn.  */
	bool host_writable = !fault || fault->map_writable;
2707
	bool prefetch = !fault || fault->prefetch;
2708
	bool write_fault = fault && fault->write;
M
Marcelo Tosatti 已提交
2709

2710 2711
	pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
		 *sptep, write_fault, gfn);
M
Marcelo Tosatti 已提交
2712

2713
	if (unlikely(is_noslot_pfn(pfn))) {
2714
		vcpu->stat.pf_mmio_spte_created++;
2715 2716 2717 2718
		mark_mmio_spte(vcpu, sptep, gfn, pte_access);
		return RET_PF_EMULATE;
	}

2719
	if (is_shadow_present_pte(*sptep)) {
M
Marcelo Tosatti 已提交
2720 2721 2722 2723
		/*
		 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
		 * the parent of the now unreachable PTE.
		 */
2724
		if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) {
M
Marcelo Tosatti 已提交
2725
			struct kvm_mmu_page *child;
A
Avi Kivity 已提交
2726
			u64 pte = *sptep;
M
Marcelo Tosatti 已提交
2727

2728
			child = to_shadow_page(pte & SPTE_BASE_ADDR_MASK);
2729
			drop_parent_pte(child, sptep);
2730
			flush = true;
A
Avi Kivity 已提交
2731
		} else if (pfn != spte_to_pfn(*sptep)) {
2732
			pgprintk("hfn old %llx new %llx\n",
A
Avi Kivity 已提交
2733
				 spte_to_pfn(*sptep), pfn);
2734
			drop_spte(vcpu->kvm, sptep);
2735
			flush = true;
2736 2737
		} else
			was_rmapped = 1;
M
Marcelo Tosatti 已提交
2738
	}
2739

2740
	wrprot = make_spte(vcpu, sp, slot, pte_access, gfn, pfn, *sptep, prefetch,
2741
			   true, host_writable, &spte);
2742 2743 2744 2745 2746

	if (*sptep == spte) {
		ret = RET_PF_SPURIOUS;
	} else {
		flush |= mmu_spte_update(sptep, spte);
2747
		trace_kvm_mmu_set_spte(level, gfn, sptep);
2748 2749
	}

2750
	if (wrprot) {
M
Marcelo Tosatti 已提交
2751
		if (write_fault)
2752
			ret = RET_PF_EMULATE;
2753
	}
2754

2755
	if (flush)
2756 2757
		kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
				KVM_PAGES_PER_HPAGE(level));
M
Marcelo Tosatti 已提交
2758

A
Avi Kivity 已提交
2759
	pgprintk("%s: setting spte %llx\n", __func__, *sptep);
M
Marcelo Tosatti 已提交
2760

2761
	if (!was_rmapped) {
2762
		WARN_ON_ONCE(ret == RET_PF_SPURIOUS);
2763
		kvm_update_page_stats(vcpu->kvm, level, 1);
2764
		rmap_add(vcpu, slot, sptep, gfn);
2765
	}
2766

2767
	return ret;
2768 2769
}

2770 2771 2772 2773 2774
static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
				    struct kvm_mmu_page *sp,
				    u64 *start, u64 *end)
{
	struct page *pages[PTE_PREFETCH_NUM];
2775
	struct kvm_memory_slot *slot;
2776
	unsigned int access = sp->role.access;
2777 2778 2779 2780
	int i, ret;
	gfn_t gfn;

	gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2781 2782
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
	if (!slot)
2783 2784
		return -1;

2785
	ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2786 2787 2788
	if (ret <= 0)
		return -1;

2789
	for (i = 0; i < ret; i++, gfn++, start++) {
2790
		mmu_set_spte(vcpu, slot, start, access, gfn,
2791
			     page_to_pfn(pages[i]), NULL);
2792 2793
		put_page(pages[i]);
	}
2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809

	return 0;
}

static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
				  struct kvm_mmu_page *sp, u64 *sptep)
{
	u64 *spte, *start = NULL;
	int i;

	WARN_ON(!sp->role.direct);

	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
	spte = sp->spt + i;

	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2810
		if (is_shadow_present_pte(*spte) || spte == sptep) {
2811 2812 2813
			if (!start)
				continue;
			if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2814
				return;
2815 2816 2817 2818
			start = NULL;
		} else if (!start)
			start = spte;
	}
2819 2820
	if (start)
		direct_pte_prefetch_many(vcpu, sp, start, spte);
2821 2822 2823 2824 2825 2826
}

static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
{
	struct kvm_mmu_page *sp;

2827
	sp = sptep_to_sp(sptep);
2828

2829
	/*
2830 2831 2832
	 * Without accessed bits, there's no way to distinguish between
	 * actually accessed translations and prefetched, so disable pte
	 * prefetch if accessed bits aren't available.
2833
	 */
2834
	if (sp_ad_disabled(sp))
2835 2836
		return;

2837
	if (sp->role.level > PG_LEVEL_4K)
2838 2839
		return;

2840 2841 2842 2843 2844 2845 2846
	/*
	 * If addresses are being invalidated, skip prefetching to avoid
	 * accidentally prefetching those addresses.
	 */
	if (unlikely(vcpu->kvm->mmu_notifier_count))
		return;

2847 2848 2849
	__direct_pte_prefetch(vcpu, sp, sptep);
}

2850
static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn,
2851
				  const struct kvm_memory_slot *slot)
2852
{
2853
	int level = PG_LEVEL_4K;
2854
	struct page *page;
2855
	unsigned long hva;
2856 2857 2858 2859 2860
	unsigned long flags;
	pgd_t pgd;
	p4d_t p4d;
	pud_t pud;
	pmd_t pmd;
2861

2862 2863 2864 2865 2866 2867 2868 2869
	/*
	 * Note, @slot must be non-NULL, i.e. the caller is responsible for
	 * ensuring @pfn isn't garbage and is backed by a memslot.
	 */
	page = kvm_pfn_to_refcounted_page(pfn);
	if (!page)
		return PG_LEVEL_4K;

2870
	if (!PageCompound(page) && !kvm_is_zone_device_page(page))
2871
		return PG_LEVEL_4K;
2872

2873 2874 2875 2876 2877 2878 2879 2880
	/*
	 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
	 * is not solely for performance, it's also necessary to avoid the
	 * "writable" check in __gfn_to_hva_many(), which will always fail on
	 * read-only memslots due to gfn_to_hva() assuming writes.  Earlier
	 * page fault steps have already verified the guest isn't writing a
	 * read-only memslot.
	 */
2881 2882
	hva = __gfn_to_hva_memslot(slot, gfn);

2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900
	/*
	 * Lookup the mapping level in the current mm.  The information
	 * may become stale soon, but it is safe to use as long as
	 * 1) mmu_notifier_retry was checked after taking mmu_lock, and
	 * 2) mmu_lock is taken now.
	 *
	 * We still need to disable IRQs to prevent concurrent tear down
	 * of page tables.
	 */
	local_irq_save(flags);

	pgd = READ_ONCE(*pgd_offset(kvm->mm, hva));
	if (pgd_none(pgd))
		goto out;

	p4d = READ_ONCE(*p4d_offset(&pgd, hva));
	if (p4d_none(p4d) || !p4d_present(p4d))
		goto out;
2901

2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919
	pud = READ_ONCE(*pud_offset(&p4d, hva));
	if (pud_none(pud) || !pud_present(pud))
		goto out;

	if (pud_large(pud)) {
		level = PG_LEVEL_1G;
		goto out;
	}

	pmd = READ_ONCE(*pmd_offset(&pud, hva));
	if (pmd_none(pmd) || !pmd_present(pmd))
		goto out;

	if (pmd_large(pmd))
		level = PG_LEVEL_2M;

out:
	local_irq_restore(flags);
2920 2921 2922
	return level;
}

2923 2924 2925
int kvm_mmu_max_mapping_level(struct kvm *kvm,
			      const struct kvm_memory_slot *slot, gfn_t gfn,
			      kvm_pfn_t pfn, int max_level)
2926 2927
{
	struct kvm_lpage_info *linfo;
2928
	int host_level;
2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939

	max_level = min(max_level, max_huge_page_level);
	for ( ; max_level > PG_LEVEL_4K; max_level--) {
		linfo = lpage_info_slot(gfn, slot, max_level);
		if (!linfo->disallow_lpage)
			break;
	}

	if (max_level == PG_LEVEL_4K)
		return PG_LEVEL_4K;

2940 2941
	host_level = host_pfn_mapping_level(kvm, gfn, pfn, slot);
	return min(host_level, max_level);
2942 2943
}

2944
void kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
2945
{
2946
	struct kvm_memory_slot *slot = fault->slot;
2947 2948
	kvm_pfn_t mask;

2949
	fault->huge_page_disallowed = fault->exec && fault->nx_huge_page_workaround_enabled;
2950

2951 2952
	if (unlikely(fault->max_level == PG_LEVEL_4K))
		return;
2953

2954
	if (is_error_noslot_pfn(fault->pfn))
2955
		return;
2956

2957
	if (kvm_slot_dirty_track_enabled(slot))
2958
		return;
2959

2960 2961 2962 2963
	/*
	 * Enforce the iTLB multihit workaround after capturing the requested
	 * level, which will be used to do precise, accurate accounting.
	 */
2964 2965 2966 2967 2968
	fault->req_level = kvm_mmu_max_mapping_level(vcpu->kvm, slot,
						     fault->gfn, fault->pfn,
						     fault->max_level);
	if (fault->req_level == PG_LEVEL_4K || fault->huge_page_disallowed)
		return;
2969 2970

	/*
2971 2972
	 * mmu_notifier_retry() was successful and mmu_lock is held, so
	 * the pmd can't be split from under us.
2973
	 */
2974 2975 2976 2977
	fault->goal_level = fault->req_level;
	mask = KVM_PAGES_PER_HPAGE(fault->goal_level) - 1;
	VM_BUG_ON((fault->gfn & mask) != (fault->pfn & mask));
	fault->pfn &= ~mask;
2978 2979
}

2980
void disallowed_hugepage_adjust(struct kvm_page_fault *fault, u64 spte, int cur_level)
P
Paolo Bonzini 已提交
2981
{
2982 2983
	if (cur_level > PG_LEVEL_4K &&
	    cur_level == fault->goal_level &&
P
Paolo Bonzini 已提交
2984 2985 2986 2987 2988 2989 2990 2991 2992
	    is_shadow_present_pte(spte) &&
	    !is_large_pte(spte)) {
		/*
		 * A small SPTE exists for this pfn, but FNAME(fetch)
		 * and __direct_map would like to create a large PTE
		 * instead: just force them to go down another level,
		 * patching back for them into pfn the next 9 bits of
		 * the address.
		 */
2993 2994 2995 2996
		u64 page_mask = KVM_PAGES_PER_HPAGE(cur_level) -
				KVM_PAGES_PER_HPAGE(cur_level - 1);
		fault->pfn |= fault->gfn & page_mask;
		fault->goal_level--;
P
Paolo Bonzini 已提交
2997 2998 2999
	}
}

3000
static int __direct_map(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
3001
{
3002
	struct kvm_shadow_walk_iterator it;
3003
	struct kvm_mmu_page *sp;
3004
	int ret;
3005
	gfn_t base_gfn = fault->gfn;
A
Avi Kivity 已提交
3006

3007
	kvm_mmu_hugepage_adjust(vcpu, fault);
3008

3009
	trace_kvm_mmu_spte_requested(fault);
3010
	for_each_shadow_entry(vcpu, fault->addr, it) {
P
Paolo Bonzini 已提交
3011 3012 3013 3014
		/*
		 * We cannot overwrite existing page tables with an NX
		 * large page, as the leaf could be executable.
		 */
3015
		if (fault->nx_huge_page_workaround_enabled)
3016
			disallowed_hugepage_adjust(fault, *it.sptep, it.level);
P
Paolo Bonzini 已提交
3017

3018
		base_gfn = fault->gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
3019
		if (it.level == fault->goal_level)
3020
			break;
A
Avi Kivity 已提交
3021

3022
		drop_large_spte(vcpu, it.sptep);
3023 3024 3025
		if (is_shadow_present_pte(*it.sptep))
			continue;

3026
		sp = kvm_mmu_get_child_sp(vcpu, it.sptep, base_gfn, true, ACC_ALL);
3027 3028

		link_shadow_page(vcpu, it.sptep, sp);
3029 3030
		if (fault->is_tdp && fault->huge_page_disallowed &&
		    fault->req_level >= it.level)
3031
			account_huge_nx_page(vcpu->kvm, sp);
3032
	}
3033

3034 3035 3036
	if (WARN_ON_ONCE(it.level != fault->goal_level))
		return -EFAULT;

3037
	ret = mmu_set_spte(vcpu, fault->slot, it.sptep, ACC_ALL,
3038
			   base_gfn, fault->pfn, fault);
3039 3040 3041
	if (ret == RET_PF_SPURIOUS)
		return ret;

3042 3043
	direct_pte_prefetch(vcpu, it.sptep);
	return ret;
A
Avi Kivity 已提交
3044 3045
}

H
Huang Ying 已提交
3046
static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
3047
{
3048
	send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
3049 3050
}

D
Dan Williams 已提交
3051
static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
3052
{
X
Xiao Guangrong 已提交
3053 3054 3055 3056 3057 3058
	/*
	 * Do not cache the mmio info caused by writing the readonly gfn
	 * into the spte otherwise read access on readonly gfn also can
	 * caused mmio page fault and treat it as mmio access.
	 */
	if (pfn == KVM_PFN_ERR_RO_FAULT)
3059
		return RET_PF_EMULATE;
X
Xiao Guangrong 已提交
3060

3061
	if (pfn == KVM_PFN_ERR_HWPOISON) {
3062
		kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
3063
		return RET_PF_RETRY;
3064
	}
3065

3066
	return -EFAULT;
3067 3068
}

3069 3070
static int handle_abnormal_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault,
			       unsigned int access)
3071 3072
{
	/* The pfn is invalid, report the error! */
3073 3074
	if (unlikely(is_error_pfn(fault->pfn)))
		return kvm_handle_bad_page(vcpu, fault->gfn, fault->pfn);
3075

3076
	if (unlikely(!fault->slot)) {
3077 3078 3079
		gva_t gva = fault->is_tdp ? 0 : fault->addr;

		vcpu_cache_mmio_info(vcpu, gva, fault->gfn,
3080
				     access & shadow_mmio_access_mask);
3081 3082 3083
		/*
		 * If MMIO caching is disabled, emulate immediately without
		 * touching the shadow page tables as attempting to install an
3084 3085 3086 3087 3088 3089
		 * MMIO SPTE will just be an expensive nop.  Do not cache MMIO
		 * whose gfn is greater than host.MAXPHYADDR, any guest that
		 * generates such gfns is running nested and is being tricked
		 * by L0 userspace (you can observe gfn > L1.MAXPHYADDR if
		 * and only if L1's MAXPHYADDR is inaccurate with respect to
		 * the hardware's).
3090
		 */
3091
		if (unlikely(!enable_mmio_caching) ||
3092 3093
		    unlikely(fault->gfn > kvm_mmu_max_gfn()))
			return RET_PF_EMULATE;
3094
	}
3095

3096
	return RET_PF_CONTINUE;
3097 3098
}

3099
static bool page_fault_can_be_fast(struct kvm_page_fault *fault)
3100
{
3101
	/*
3102 3103 3104 3105
	 * Page faults with reserved bits set, i.e. faults on MMIO SPTEs, only
	 * reach the common page fault handler if the SPTE has an invalid MMIO
	 * generation number.  Refreshing the MMIO generation needs to go down
	 * the slow path.  Note, EPT Misconfigs do NOT set the PRESENT flag!
3106
	 */
3107
	if (fault->rsvd)
3108 3109
		return false;

3110
	/*
3111 3112
	 * #PF can be fast if:
	 *
3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123
	 * 1. The shadow page table entry is not present and A/D bits are
	 *    disabled _by KVM_, which could mean that the fault is potentially
	 *    caused by access tracking (if enabled).  If A/D bits are enabled
	 *    by KVM, but disabled by L1 for L2, KVM is forced to disable A/D
	 *    bits for L2 and employ access tracking, but the fast page fault
	 *    mechanism only supports direct MMUs.
	 * 2. The shadow page table entry is present, the access is a write,
	 *    and no reserved bits are set (MMIO SPTEs cannot be "fixed"), i.e.
	 *    the fault was caused by a write-protection violation.  If the
	 *    SPTE is MMU-writable (determined later), the fault can be fixed
	 *    by setting the Writable bit, which can be done out of mmu_lock.
3124
	 */
3125 3126 3127 3128 3129 3130 3131 3132
	if (!fault->present)
		return !kvm_ad_enabled();

	/*
	 * Note, instruction fetches and writes are mutually exclusive, ignore
	 * the "exec" flag.
	 */
	return fault->write;
3133 3134
}

3135 3136 3137 3138
/*
 * Returns true if the SPTE was fixed successfully. Otherwise,
 * someone else modified the SPTE from its original value.
 */
3139
static bool
3140
fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault,
3141
			u64 *sptep, u64 old_spte, u64 new_spte)
3142
{
3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154
	/*
	 * Theoretically we could also set dirty bit (and flush TLB) here in
	 * order to eliminate unnecessary PML logging. See comments in
	 * set_spte. But fast_page_fault is very unlikely to happen with PML
	 * enabled, so we do not do this. This might result in the same GPA
	 * to be logged in PML buffer again when the write really happens, and
	 * eventually to be called by mark_page_dirty twice. But it's also no
	 * harm. This also avoids the TLB flush needed after setting dirty bit
	 * so non-PML cases won't be impacted.
	 *
	 * Compare with set_spte where instead shadow_dirty_mask is set.
	 */
3155
	if (!try_cmpxchg64(sptep, &old_spte, new_spte))
3156 3157
		return false;

3158 3159
	if (is_writable_pte(new_spte) && !is_writable_pte(old_spte))
		mark_page_dirty_in_slot(vcpu->kvm, fault->slot, fault->gfn);
3160 3161 3162 3163

	return true;
}

3164
static bool is_access_allowed(struct kvm_page_fault *fault, u64 spte)
3165
{
3166
	if (fault->exec)
3167 3168
		return is_executable_pte(spte);

3169
	if (fault->write)
3170 3171 3172 3173 3174 3175
		return is_writable_pte(spte);

	/* Fault was on Read access */
	return spte & PT_PRESENT_MASK;
}

3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198
/*
 * Returns the last level spte pointer of the shadow page walk for the given
 * gpa, and sets *spte to the spte value. This spte may be non-preset. If no
 * walk could be performed, returns NULL and *spte does not contain valid data.
 *
 * Contract:
 *  - Must be called between walk_shadow_page_lockless_{begin,end}.
 *  - The returned sptep must not be used after walk_shadow_page_lockless_end.
 */
static u64 *fast_pf_get_last_sptep(struct kvm_vcpu *vcpu, gpa_t gpa, u64 *spte)
{
	struct kvm_shadow_walk_iterator iterator;
	u64 old_spte;
	u64 *sptep = NULL;

	for_each_shadow_entry_lockless(vcpu, gpa, iterator, old_spte) {
		sptep = iterator.sptep;
		*spte = old_spte;
	}

	return sptep;
}

3199
/*
3200
 * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS.
3201
 */
3202
static int fast_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
3203
{
3204
	struct kvm_mmu_page *sp;
3205
	int ret = RET_PF_INVALID;
3206
	u64 spte = 0ull;
3207
	u64 *sptep = NULL;
3208
	uint retry_count = 0;
3209

3210
	if (!page_fault_can_be_fast(fault))
3211
		return ret;
3212 3213 3214

	walk_shadow_page_lockless_begin(vcpu);

3215
	do {
3216
		u64 new_spte;
3217

3218
		if (is_tdp_mmu(vcpu->arch.mmu))
3219
			sptep = kvm_tdp_mmu_fast_pf_get_last_sptep(vcpu, fault->addr, &spte);
3220
		else
3221
			sptep = fast_pf_get_last_sptep(vcpu, fault->addr, &spte);
3222

3223 3224 3225
		if (!is_shadow_present_pte(spte))
			break;

3226
		sp = sptep_to_sp(sptep);
3227 3228
		if (!is_last_spte(spte, sp->role.level))
			break;
3229

3230
		/*
3231 3232 3233 3234 3235
		 * Check whether the memory access that caused the fault would
		 * still cause it if it were to be performed right now. If not,
		 * then this is a spurious fault caused by TLB lazily flushed,
		 * or some other CPU has already fixed the PTE after the
		 * current CPU took the fault.
3236 3237 3238 3239
		 *
		 * Need not check the access of upper level table entries since
		 * they are always ACC_ALL.
		 */
3240
		if (is_access_allowed(fault, spte)) {
3241
			ret = RET_PF_SPURIOUS;
3242 3243
			break;
		}
3244

3245 3246
		new_spte = spte;

3247 3248 3249 3250 3251 3252 3253
		/*
		 * KVM only supports fixing page faults outside of MMU lock for
		 * direct MMUs, nested MMUs are always indirect, and KVM always
		 * uses A/D bits for non-nested MMUs.  Thus, if A/D bits are
		 * enabled, the SPTE can't be an access-tracked SPTE.
		 */
		if (unlikely(!kvm_ad_enabled()) && is_access_track_spte(spte))
3254 3255 3256
			new_spte = restore_acc_track_spte(new_spte);

		/*
3257 3258 3259 3260 3261 3262 3263 3264 3265
		 * To keep things simple, only SPTEs that are MMU-writable can
		 * be made fully writable outside of mmu_lock, e.g. only SPTEs
		 * that were write-protected for dirty-logging or access
		 * tracking are handled here.  Don't bother checking if the
		 * SPTE is writable to prioritize running with A/D bits enabled.
		 * The is_access_allowed() check above handles the common case
		 * of the fault being spurious, and the SPTE is known to be
		 * shadow-present, i.e. except for access tracking restoration
		 * making the new SPTE writable, the check is wasteful.
3266
		 */
3267
		if (fault->write && is_mmu_writable_spte(spte)) {
3268
			new_spte |= PT_WRITABLE_MASK;
3269 3270

			/*
3271 3272 3273
			 * Do not fix write-permission on the large spte when
			 * dirty logging is enabled. Since we only dirty the
			 * first page into the dirty-bitmap in
3274 3275 3276 3277 3278
			 * fast_pf_fix_direct_spte(), other pages are missed
			 * if its slot has dirty logging enabled.
			 *
			 * Instead, we let the slow page fault path create a
			 * normal spte to fix the access.
3279
			 */
3280 3281
			if (sp->role.level > PG_LEVEL_4K &&
			    kvm_slot_dirty_track_enabled(fault->slot))
3282
				break;
3283
		}
3284

3285
		/* Verify that the fault can be handled in the fast path */
3286
		if (new_spte == spte ||
3287
		    !is_access_allowed(fault, new_spte))
3288 3289 3290 3291 3292
			break;

		/*
		 * Currently, fast page fault only works for direct mapping
		 * since the gfn is not stable for indirect shadow page. See
3293
		 * Documentation/virt/kvm/locking.rst to get more detail.
3294
		 */
3295
		if (fast_pf_fix_direct_spte(vcpu, fault, sptep, spte, new_spte)) {
3296
			ret = RET_PF_FIXED;
3297
			break;
3298
		}
3299 3300 3301 3302 3303 3304 3305 3306

		if (++retry_count > 4) {
			printk_once(KERN_WARNING
				"kvm: Fast #PF retrying more than 4 times.\n");
			break;
		}

	} while (true);
3307

3308
	trace_fast_page_fault(vcpu, fault, sptep, spte, ret);
3309 3310
	walk_shadow_page_lockless_end(vcpu);

3311 3312 3313
	if (ret != RET_PF_INVALID)
		vcpu->stat.pf_fast++;

3314
	return ret;
3315 3316
}

3317 3318
static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
			       struct list_head *invalid_list)
3319
{
3320
	struct kvm_mmu_page *sp;
3321

3322
	if (!VALID_PAGE(*root_hpa))
A
Avi Kivity 已提交
3323
		return;
3324

3325
	sp = to_shadow_page(*root_hpa & SPTE_BASE_ADDR_MASK);
3326 3327
	if (WARN_ON(!sp))
		return;
3328

3329
	if (is_tdp_mmu_page(sp))
3330
		kvm_tdp_mmu_put_root(kvm, sp, false);
3331 3332
	else if (!--sp->root_count && sp->role.invalid)
		kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3333

3334 3335 3336
	*root_hpa = INVALID_PAGE;
}

3337
/* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
3338
void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu,
3339
			ulong roots_to_free)
3340 3341 3342
{
	int i;
	LIST_HEAD(invalid_list);
3343
	bool free_active_root;
3344

3345
	BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3346

3347
	/* Before acquiring the MMU lock, see if we need to do any real work. */
3348 3349 3350 3351
	free_active_root = (roots_to_free & KVM_MMU_ROOT_CURRENT)
		&& VALID_PAGE(mmu->root.hpa);

	if (!free_active_root) {
3352 3353 3354 3355 3356 3357 3358 3359
		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
			if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
			    VALID_PAGE(mmu->prev_roots[i].hpa))
				break;

		if (i == KVM_MMU_NUM_PREV_ROOTS)
			return;
	}
3360

3361
	write_lock(&kvm->mmu_lock);
3362

3363 3364
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
		if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3365
			mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa,
3366
					   &invalid_list);
3367

3368
	if (free_active_root) {
3369
		if (to_shadow_page(mmu->root.hpa)) {
3370
			mmu_free_root_page(kvm, &mmu->root.hpa, &invalid_list);
3371
		} else if (mmu->pae_root) {
3372 3373 3374 3375 3376 3377 3378 3379
			for (i = 0; i < 4; ++i) {
				if (!IS_VALID_PAE_ROOT(mmu->pae_root[i]))
					continue;

				mmu_free_root_page(kvm, &mmu->pae_root[i],
						   &invalid_list);
				mmu->pae_root[i] = INVALID_PAE_ROOT;
			}
3380
		}
3381 3382
		mmu->root.hpa = INVALID_PAGE;
		mmu->root.pgd = 0;
3383
	}
3384

3385
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
3386
	write_unlock(&kvm->mmu_lock);
3387
}
3388
EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3389

3390
void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu)
3391 3392 3393 3394 3395 3396 3397 3398 3399
{
	unsigned long roots_to_free = 0;
	hpa_t root_hpa;
	int i;

	/*
	 * This should not be called while L2 is active, L2 can't invalidate
	 * _only_ its own roots, e.g. INVVPID unconditionally exits.
	 */
3400
	WARN_ON_ONCE(mmu->root_role.guest_mode);
3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411

	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
		root_hpa = mmu->prev_roots[i].hpa;
		if (!VALID_PAGE(root_hpa))
			continue;

		if (!to_shadow_page(root_hpa) ||
			to_shadow_page(root_hpa)->role.guest_mode)
			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
	}

3412
	kvm_mmu_free_roots(kvm, mmu, roots_to_free);
3413 3414 3415 3416
}
EXPORT_SYMBOL_GPL(kvm_mmu_free_guest_mode_roots);


3417 3418 3419 3420
static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
{
	int ret = 0;

3421
	if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) {
3422
		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3423 3424 3425 3426 3427 3428
		ret = 1;
	}

	return ret;
}

3429
static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, int quadrant,
3430
			    u8 level)
3431
{
3432
	union kvm_mmu_page_role role = vcpu->arch.mmu->root_role;
3433
	struct kvm_mmu_page *sp;
3434

3435
	role.level = level;
3436
	role.quadrant = quadrant;
3437

3438 3439
	WARN_ON_ONCE(quadrant && !role.has_4_byte_gpte);
	WARN_ON_ONCE(role.direct && role.has_4_byte_gpte);
3440

3441
	sp = kvm_mmu_get_shadow_page(vcpu, gfn, role);
3442 3443 3444 3445 3446 3447 3448
	++sp->root_count;

	return __pa(sp->spt);
}

static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
{
3449
	struct kvm_mmu *mmu = vcpu->arch.mmu;
3450
	u8 shadow_root_level = mmu->root_role.level;
3451
	hpa_t root;
3452
	unsigned i;
3453 3454 3455 3456 3457 3458
	int r;

	write_lock(&vcpu->kvm->mmu_lock);
	r = make_mmu_pages_available(vcpu);
	if (r < 0)
		goto out_unlock;
3459

3460
	if (is_tdp_mmu_enabled(vcpu->kvm)) {
3461
		root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu);
3462
		mmu->root.hpa = root;
3463
	} else if (shadow_root_level >= PT64_ROOT_4LEVEL) {
3464
		root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level);
3465
		mmu->root.hpa = root;
3466
	} else if (shadow_root_level == PT32E_ROOT_LEVEL) {
3467 3468 3469 3470
		if (WARN_ON_ONCE(!mmu->pae_root)) {
			r = -EIO;
			goto out_unlock;
		}
3471

3472
		for (i = 0; i < 4; ++i) {
3473
			WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3474

3475
			root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT), 0,
3476
					      PT32_ROOT_LEVEL);
3477
			mmu->pae_root[i] = root | PT_PRESENT_MASK |
3478
					   shadow_me_value;
3479
		}
3480
		mmu->root.hpa = __pa(mmu->pae_root);
3481 3482
	} else {
		WARN_ONCE(1, "Bad TDP root level = %d\n", shadow_root_level);
3483 3484
		r = -EIO;
		goto out_unlock;
3485
	}
3486

3487 3488
	/* root.pgd is ignored for direct MMUs. */
	mmu->root.pgd = 0;
3489 3490 3491
out_unlock:
	write_unlock(&vcpu->kvm->mmu_lock);
	return r;
3492 3493
}

3494 3495 3496 3497
static int mmu_first_shadow_root_alloc(struct kvm *kvm)
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *slot;
3498
	int r = 0, i, bkt;
3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522

	/*
	 * Check if this is the first shadow root being allocated before
	 * taking the lock.
	 */
	if (kvm_shadow_root_allocated(kvm))
		return 0;

	mutex_lock(&kvm->slots_arch_lock);

	/* Recheck, under the lock, whether this is the first shadow root. */
	if (kvm_shadow_root_allocated(kvm))
		goto out_unlock;

	/*
	 * Check if anything actually needs to be allocated, e.g. all metadata
	 * will be allocated upfront if TDP is disabled.
	 */
	if (kvm_memslots_have_rmaps(kvm) &&
	    kvm_page_track_write_tracking_enabled(kvm))
		goto out_success;

	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
3523
		kvm_for_each_memslot(slot, bkt, slots) {
3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554
			/*
			 * Both of these functions are no-ops if the target is
			 * already allocated, so unconditionally calling both
			 * is safe.  Intentionally do NOT free allocations on
			 * failure to avoid having to track which allocations
			 * were made now versus when the memslot was created.
			 * The metadata is guaranteed to be freed when the slot
			 * is freed, and will be kept/used if userspace retries
			 * KVM_RUN instead of killing the VM.
			 */
			r = memslot_rmap_alloc(slot, slot->npages);
			if (r)
				goto out_unlock;
			r = kvm_page_track_write_tracking_alloc(slot);
			if (r)
				goto out_unlock;
		}
	}

	/*
	 * Ensure that shadow_root_allocated becomes true strictly after
	 * all the related pointers are set.
	 */
out_success:
	smp_store_release(&kvm->arch.shadow_root_allocated, true);

out_unlock:
	mutex_unlock(&kvm->slots_arch_lock);
	return r;
}

3555
static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3556
{
3557
	struct kvm_mmu *mmu = vcpu->arch.mmu;
3558
	u64 pdptrs[4], pm_mask;
3559
	gfn_t root_gfn, root_pgd;
3560
	int quadrant, i, r;
3561
	hpa_t root;
3562

3563
	root_pgd = mmu->get_guest_pgd(vcpu);
3564
	root_gfn = root_pgd >> PAGE_SHIFT;
3565

3566 3567 3568
	if (mmu_check_root(vcpu, root_gfn))
		return 1;

3569 3570 3571 3572
	/*
	 * On SVM, reading PDPTRs might access guest memory, which might fault
	 * and thus might sleep.  Grab the PDPTRs before acquiring mmu_lock.
	 */
3573
	if (mmu->cpu_role.base.level == PT32E_ROOT_LEVEL) {
3574 3575 3576 3577 3578 3579 3580 3581 3582 3583
		for (i = 0; i < 4; ++i) {
			pdptrs[i] = mmu->get_pdptr(vcpu, i);
			if (!(pdptrs[i] & PT_PRESENT_MASK))
				continue;

			if (mmu_check_root(vcpu, pdptrs[i] >> PAGE_SHIFT))
				return 1;
		}
	}

3584
	r = mmu_first_shadow_root_alloc(vcpu->kvm);
3585 3586 3587
	if (r)
		return r;

3588 3589 3590 3591 3592
	write_lock(&vcpu->kvm->mmu_lock);
	r = make_mmu_pages_available(vcpu);
	if (r < 0)
		goto out_unlock;

3593 3594 3595 3596
	/*
	 * Do we shadow a long mode page table? If so we need to
	 * write-protect the guests page table root.
	 */
3597
	if (mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL) {
3598
		root = mmu_alloc_root(vcpu, root_gfn, 0,
3599
				      mmu->root_role.level);
3600
		mmu->root.hpa = root;
3601
		goto set_root_pgd;
3602
	}
3603

3604 3605 3606 3607
	if (WARN_ON_ONCE(!mmu->pae_root)) {
		r = -EIO;
		goto out_unlock;
	}
3608

3609 3610
	/*
	 * We shadow a 32 bit page table. This may be a legacy 2-level
3611 3612
	 * or a PAE 3-level page table. In either case we need to be aware that
	 * the shadow page table may be a PAE or a long mode page table.
3613
	 */
3614
	pm_mask = PT_PRESENT_MASK | shadow_me_value;
3615
	if (mmu->root_role.level >= PT64_ROOT_4LEVEL) {
3616 3617
		pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;

3618
		if (WARN_ON_ONCE(!mmu->pml4_root)) {
3619 3620 3621
			r = -EIO;
			goto out_unlock;
		}
3622
		mmu->pml4_root[0] = __pa(mmu->pae_root) | pm_mask;
3623

3624
		if (mmu->root_role.level == PT64_ROOT_5LEVEL) {
3625 3626 3627 3628 3629 3630
			if (WARN_ON_ONCE(!mmu->pml5_root)) {
				r = -EIO;
				goto out_unlock;
			}
			mmu->pml5_root[0] = __pa(mmu->pml4_root) | pm_mask;
		}
3631 3632
	}

3633
	for (i = 0; i < 4; ++i) {
3634
		WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3635

3636
		if (mmu->cpu_role.base.level == PT32E_ROOT_LEVEL) {
3637
			if (!(pdptrs[i] & PT_PRESENT_MASK)) {
3638
				mmu->pae_root[i] = INVALID_PAE_ROOT;
A
Avi Kivity 已提交
3639 3640
				continue;
			}
3641
			root_gfn = pdptrs[i] >> PAGE_SHIFT;
3642
		}
3643

3644 3645 3646 3647 3648 3649 3650 3651 3652
		/*
		 * If shadowing 32-bit non-PAE page tables, each PAE page
		 * directory maps one quarter of the guest's non-PAE page
		 * directory. Othwerise each PAE page direct shadows one guest
		 * PAE page directory so that quadrant should be 0.
		 */
		quadrant = (mmu->cpu_role.base.level == PT32_ROOT_LEVEL) ? i : 0;

		root = mmu_alloc_root(vcpu, root_gfn, quadrant, PT32_ROOT_LEVEL);
3653
		mmu->pae_root[i] = root | pm_mask;
3654
	}
3655

3656
	if (mmu->root_role.level == PT64_ROOT_5LEVEL)
3657
		mmu->root.hpa = __pa(mmu->pml5_root);
3658
	else if (mmu->root_role.level == PT64_ROOT_4LEVEL)
3659
		mmu->root.hpa = __pa(mmu->pml4_root);
3660
	else
3661
		mmu->root.hpa = __pa(mmu->pae_root);
3662

3663
set_root_pgd:
3664
	mmu->root.pgd = root_pgd;
3665 3666
out_unlock:
	write_unlock(&vcpu->kvm->mmu_lock);
3667

3668
	return r;
3669 3670
}

3671 3672 3673
static int mmu_alloc_special_roots(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu *mmu = vcpu->arch.mmu;
3674
	bool need_pml5 = mmu->root_role.level > PT64_ROOT_4LEVEL;
3675 3676 3677
	u64 *pml5_root = NULL;
	u64 *pml4_root = NULL;
	u64 *pae_root;
3678 3679

	/*
3680 3681 3682 3683
	 * When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP
	 * tables are allocated and initialized at root creation as there is no
	 * equivalent level in the guest's NPT to shadow.  Allocate the tables
	 * on demand, as running a 32-bit L1 VMM on 64-bit KVM is very rare.
3684
	 */
3685 3686
	if (mmu->root_role.direct ||
	    mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL ||
3687
	    mmu->root_role.level < PT64_ROOT_4LEVEL)
3688
		return 0;
3689

3690 3691 3692 3693 3694 3695 3696 3697
	/*
	 * NPT, the only paging mode that uses this horror, uses a fixed number
	 * of levels for the shadow page tables, e.g. all MMUs are 4-level or
	 * all MMus are 5-level.  Thus, this can safely require that pml5_root
	 * is allocated if the other roots are valid and pml5 is needed, as any
	 * prior MMU would also have required pml5.
	 */
	if (mmu->pae_root && mmu->pml4_root && (!need_pml5 || mmu->pml5_root))
3698
		return 0;
3699

3700 3701 3702 3703
	/*
	 * The special roots should always be allocated in concert.  Yell and
	 * bail if KVM ends up in a state where only one of the roots is valid.
	 */
3704
	if (WARN_ON_ONCE(!tdp_enabled || mmu->pae_root || mmu->pml4_root ||
3705
			 (need_pml5 && mmu->pml5_root)))
3706
		return -EIO;
3707

3708 3709 3710 3711
	/*
	 * Unlike 32-bit NPT, the PDP table doesn't need to be in low mem, and
	 * doesn't need to be decrypted.
	 */
3712 3713 3714
	pae_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
	if (!pae_root)
		return -ENOMEM;
3715

3716
#ifdef CONFIG_X86_64
3717
	pml4_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3718 3719 3720
	if (!pml4_root)
		goto err_pml4;

3721
	if (need_pml5) {
3722 3723 3724
		pml5_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
		if (!pml5_root)
			goto err_pml5;
3725
	}
3726
#endif
3727

3728
	mmu->pae_root = pae_root;
3729
	mmu->pml4_root = pml4_root;
3730
	mmu->pml5_root = pml5_root;
3731

3732
	return 0;
3733 3734 3735 3736 3737 3738 3739 3740

#ifdef CONFIG_X86_64
err_pml5:
	free_page((unsigned long)pml4_root);
err_pml4:
	free_page((unsigned long)pae_root);
	return -ENOMEM;
#endif
3741 3742
}

3743 3744 3745 3746
static bool is_unsync_root(hpa_t root)
{
	struct kvm_mmu_page *sp;

3747 3748 3749
	if (!VALID_PAGE(root))
		return false;

3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763
	/*
	 * The read barrier orders the CPU's read of SPTE.W during the page table
	 * walk before the reads of sp->unsync/sp->unsync_children here.
	 *
	 * Even if another CPU was marking the SP as unsync-ed simultaneously,
	 * any guest page table changes are not guaranteed to be visible anyway
	 * until this VCPU issues a TLB flush strictly after those changes are
	 * made.  We only need to ensure that the other CPU sets these flags
	 * before any actual changes to the page tables are made.  The comments
	 * in mmu_try_to_unsync_pages() describe what could go wrong if this
	 * requirement isn't satisfied.
	 */
	smp_rmb();
	sp = to_shadow_page(root);
3764 3765 3766 3767 3768 3769 3770 3771

	/*
	 * PAE roots (somewhat arbitrarily) aren't backed by shadow pages, the
	 * PDPTEs for a given PAE root need to be synchronized individually.
	 */
	if (WARN_ON_ONCE(!sp))
		return false;

3772 3773 3774 3775 3776 3777
	if (sp->unsync || sp->unsync_children)
		return true;

	return false;
}

3778
void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3779 3780 3781 3782
{
	int i;
	struct kvm_mmu_page *sp;

3783
	if (vcpu->arch.mmu->root_role.direct)
3784 3785
		return;

3786
	if (!VALID_PAGE(vcpu->arch.mmu->root.hpa))
3787
		return;
3788

3789
	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3790

3791
	if (vcpu->arch.mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL) {
3792
		hpa_t root = vcpu->arch.mmu->root.hpa;
3793
		sp = to_shadow_page(root);
3794

3795
		if (!is_unsync_root(root))
3796 3797
			return;

3798
		write_lock(&vcpu->kvm->mmu_lock);
3799
		mmu_sync_children(vcpu, sp, true);
3800
		write_unlock(&vcpu->kvm->mmu_lock);
3801 3802
		return;
	}
3803

3804
	write_lock(&vcpu->kvm->mmu_lock);
3805

3806
	for (i = 0; i < 4; ++i) {
3807
		hpa_t root = vcpu->arch.mmu->pae_root[i];
3808

3809
		if (IS_VALID_PAE_ROOT(root)) {
3810
			root &= SPTE_BASE_ADDR_MASK;
3811
			sp = to_shadow_page(root);
3812
			mmu_sync_children(vcpu, sp, true);
3813 3814 3815
		}
	}

3816
	write_unlock(&vcpu->kvm->mmu_lock);
3817 3818
}

3819 3820 3821 3822 3823 3824 3825 3826 3827 3828
void kvm_mmu_sync_prev_roots(struct kvm_vcpu *vcpu)
{
	unsigned long roots_to_free = 0;
	int i;

	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
		if (is_unsync_root(vcpu->arch.mmu->prev_roots[i].hpa))
			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);

	/* sync prev_roots by simply freeing them */
3829
	kvm_mmu_free_roots(vcpu->kvm, vcpu->arch.mmu, roots_to_free);
3830 3831
}

3832
static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3833
				  gpa_t vaddr, u64 access,
3834
				  struct x86_exception *exception)
A
Avi Kivity 已提交
3835
{
3836 3837
	if (exception)
		exception->error_code = 0;
3838
	return kvm_translate_gpa(vcpu, mmu, vaddr, access, exception);
3839 3840
}

3841
static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3842
{
3843 3844 3845 3846 3847 3848 3849
	/*
	 * A nested guest cannot use the MMIO cache if it is using nested
	 * page tables, because cr2 is a nGPA while the cache stores GPAs.
	 */
	if (mmu_is_nested(vcpu))
		return false;

3850 3851 3852 3853 3854 3855
	if (direct)
		return vcpu_match_mmio_gpa(vcpu, addr);

	return vcpu_match_mmio_gva(vcpu, addr);
}

3856 3857 3858
/*
 * Return the level of the lowest level SPTE added to sptes.
 * That SPTE may be non-present.
3859 3860
 *
 * Must be called between walk_shadow_page_lockless_{begin,end}.
3861
 */
3862
static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level)
3863 3864
{
	struct kvm_shadow_walk_iterator iterator;
3865
	int leaf = -1;
3866
	u64 spte;
3867

3868 3869
	for (shadow_walk_init(&iterator, vcpu, addr),
	     *root_level = iterator.level;
3870 3871
	     shadow_walk_okay(&iterator);
	     __shadow_walk_next(&iterator, spte)) {
3872
		leaf = iterator.level;
3873 3874
		spte = mmu_spte_get_lockless(iterator.sptep);

3875
		sptes[leaf] = spte;
3876 3877 3878 3879 3880
	}

	return leaf;
}

3881
/* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */
3882 3883
static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
{
3884
	u64 sptes[PT64_ROOT_MAX_LEVEL + 1];
3885
	struct rsvd_bits_validate *rsvd_check;
3886
	int root, leaf, level;
3887 3888
	bool reserved = false;

3889 3890
	walk_shadow_page_lockless_begin(vcpu);

3891
	if (is_tdp_mmu(vcpu->arch.mmu))
3892
		leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, &root);
3893
	else
3894
		leaf = get_walk(vcpu, addr, sptes, &root);
3895

3896 3897
	walk_shadow_page_lockless_end(vcpu);

3898 3899 3900 3901 3902
	if (unlikely(leaf < 0)) {
		*sptep = 0ull;
		return reserved;
	}

3903 3904 3905 3906 3907 3908 3909 3910 3911 3912
	*sptep = sptes[leaf];

	/*
	 * Skip reserved bits checks on the terminal leaf if it's not a valid
	 * SPTE.  Note, this also (intentionally) skips MMIO SPTEs, which, by
	 * design, always have reserved bits set.  The purpose of the checks is
	 * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs.
	 */
	if (!is_shadow_present_pte(sptes[leaf]))
		leaf++;
3913 3914 3915

	rsvd_check = &vcpu->arch.mmu->shadow_zero_check;

3916
	for (level = root; level >= leaf; level--)
3917
		reserved |= is_rsvd_spte(rsvd_check, sptes[level], level);
3918 3919

	if (reserved) {
3920
		pr_err("%s: reserved bits set on MMU-present spte, addr 0x%llx, hierarchy:\n",
3921
		       __func__, addr);
3922
		for (level = root; level >= leaf; level--)
3923 3924
			pr_err("------ spte = 0x%llx level = %d, rsvd bits = 0x%llx",
			       sptes[level], level,
3925
			       get_rsvd_bits(rsvd_check, sptes[level], level));
3926
	}
3927

3928
	return reserved;
3929 3930
}

P
Paolo Bonzini 已提交
3931
static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3932 3933
{
	u64 spte;
3934
	bool reserved;
3935

3936
	if (mmio_info_in_cache(vcpu, addr, direct))
3937
		return RET_PF_EMULATE;
3938

3939
	reserved = get_mmio_spte(vcpu, addr, &spte);
3940
	if (WARN_ON(reserved))
3941
		return -EINVAL;
3942 3943 3944

	if (is_mmio_spte(spte)) {
		gfn_t gfn = get_mmio_spte_gfn(spte);
3945
		unsigned int access = get_mmio_spte_access(spte);
3946

3947
		if (!check_mmio_spte(vcpu, spte))
3948
			return RET_PF_INVALID;
3949

3950 3951
		if (direct)
			addr = 0;
X
Xiao Guangrong 已提交
3952 3953

		trace_handle_mmio_page_fault(addr, gfn, access);
3954
		vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3955
		return RET_PF_EMULATE;
3956 3957 3958 3959 3960 3961
	}

	/*
	 * If the page table is zapped by other cpus, let CPU fault again on
	 * the address.
	 */
3962
	return RET_PF_RETRY;
3963 3964
}

3965
static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3966
					 struct kvm_page_fault *fault)
3967
{
3968
	if (unlikely(fault->rsvd))
3969 3970
		return false;

3971
	if (!fault->present || !fault->write)
3972 3973 3974 3975 3976 3977
		return false;

	/*
	 * guest is writing the page which is write tracked which can
	 * not be fixed by page fault handler.
	 */
3978
	if (kvm_slot_page_track_is_active(vcpu->kvm, fault->slot, fault->gfn, KVM_PAGE_TRACK_WRITE))
3979 3980 3981 3982 3983
		return true;

	return false;
}

3984 3985 3986 3987 3988 3989
static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
{
	struct kvm_shadow_walk_iterator iterator;
	u64 spte;

	walk_shadow_page_lockless_begin(vcpu);
3990
	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
3991 3992 3993 3994
		clear_sp_write_flooding_count(iterator.sptep);
	walk_shadow_page_lockless_end(vcpu);
}

3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005
static u32 alloc_apf_token(struct kvm_vcpu *vcpu)
{
	/* make sure the token value is not 0 */
	u32 id = vcpu->arch.apf.id;

	if (id << 12 == 0)
		vcpu->arch.apf.id = 1;

	return (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
}

4006 4007
static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
				    gfn_t gfn)
4008 4009
{
	struct kvm_arch_async_pf arch;
X
Xiao Guangrong 已提交
4010

4011
	arch.token = alloc_apf_token(vcpu);
4012
	arch.gfn = gfn;
4013
	arch.direct_map = vcpu->arch.mmu->root_role.direct;
4014
	arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu);
4015

4016 4017
	return kvm_setup_async_pf(vcpu, cr2_or_gpa,
				  kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
4018 4019
}

4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038
void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
{
	int r;

	if ((vcpu->arch.mmu->root_role.direct != work->arch.direct_map) ||
	      work->wakeup_all)
		return;

	r = kvm_mmu_reload(vcpu);
	if (unlikely(r))
		return;

	if (!vcpu->arch.mmu->root_role.direct &&
	      work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu))
		return;

	kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true);
}

4039
static int kvm_faultin_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
4040
{
4041
	struct kvm_memory_slot *slot = fault->slot;
4042 4043
	bool async;

4044 4045 4046 4047 4048 4049
	/*
	 * Retry the page fault if the gfn hit a memslot that is being deleted
	 * or moved.  This ensures any existing SPTEs for the old memslot will
	 * be zapped before KVM inserts a new MMIO SPTE for the gfn.
	 */
	if (slot && (slot->flags & KVM_MEMSLOT_INVALID))
4050
		return RET_PF_RETRY;
4051

4052 4053 4054
	if (!kvm_is_visible_memslot(slot)) {
		/* Don't expose private memslots to L2. */
		if (is_guest_mode(vcpu)) {
4055
			fault->slot = NULL;
4056 4057
			fault->pfn = KVM_PFN_NOSLOT;
			fault->map_writable = false;
4058
			return RET_PF_CONTINUE;
4059 4060 4061 4062 4063 4064 4065 4066
		}
		/*
		 * If the APIC access page exists but is disabled, go directly
		 * to emulation without caching the MMIO access or creating a
		 * MMIO SPTE.  That way the cache doesn't need to be purged
		 * when the AVIC is re-enabled.
		 */
		if (slot && slot->id == APIC_ACCESS_PAGE_PRIVATE_MEMSLOT &&
4067 4068
		    !kvm_apicv_activated(vcpu->kvm))
			return RET_PF_EMULATE;
4069 4070
	}

4071
	async = false;
4072 4073 4074
	fault->pfn = __gfn_to_pfn_memslot(slot, fault->gfn, false, &async,
					  fault->write, &fault->map_writable,
					  &fault->hva);
4075
	if (!async)
4076
		return RET_PF_CONTINUE; /* *pfn has correct page already */
4077

4078
	if (!fault->prefetch && kvm_can_do_async_pf(vcpu)) {
4079 4080 4081
		trace_kvm_try_async_get_page(fault->addr, fault->gfn);
		if (kvm_find_async_pf_gfn(vcpu, fault->gfn)) {
			trace_kvm_async_pf_doublefault(fault->addr, fault->gfn);
4082
			kvm_make_request(KVM_REQ_APF_HALT, vcpu);
4083 4084 4085 4086
			return RET_PF_RETRY;
		} else if (kvm_arch_setup_async_pf(vcpu, fault->addr, fault->gfn)) {
			return RET_PF_RETRY;
		}
4087 4088
	}

4089 4090 4091
	fault->pfn = __gfn_to_pfn_memslot(slot, fault->gfn, false, NULL,
					  fault->write, &fault->map_writable,
					  &fault->hva);
4092
	return RET_PF_CONTINUE;
4093 4094
}

4095 4096 4097 4098 4099 4100 4101
/*
 * Returns true if the page fault is stale and needs to be retried, i.e. if the
 * root was invalidated by a memslot update or a relevant mmu_notifier fired.
 */
static bool is_page_fault_stale(struct kvm_vcpu *vcpu,
				struct kvm_page_fault *fault, int mmu_seq)
{
4102
	struct kvm_mmu_page *sp = to_shadow_page(vcpu->arch.mmu->root.hpa);
4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115

	/* Special roots, e.g. pae_root, are not backed by shadow pages. */
	if (sp && is_obsolete_sp(vcpu->kvm, sp))
		return true;

	/*
	 * Roots without an associated shadow page are considered invalid if
	 * there is a pending request to free obsolete roots.  The request is
	 * only a hint that the current root _may_ be obsolete and needs to be
	 * reloaded, e.g. if the guest frees a PGD that KVM is tracking as a
	 * previous root, then __kvm_mmu_prepare_zap_page() signals all vCPUs
	 * to reload even if no vCPU is actively using the root.
	 */
4116
	if (!sp && kvm_test_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
4117 4118 4119 4120 4121 4122
		return true;

	return fault->slot &&
	       mmu_notifier_retry_hva(vcpu->kvm, mmu_seq, fault->hva);
}

4123
static int direct_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
A
Avi Kivity 已提交
4124
{
4125
	bool is_tdp_mmu_fault = is_tdp_mmu(vcpu->arch.mmu);
A
Avi Kivity 已提交
4126

4127
	unsigned long mmu_seq;
4128
	int r;
4129

4130
	fault->gfn = fault->addr >> PAGE_SHIFT;
4131 4132
	fault->slot = kvm_vcpu_gfn_to_memslot(vcpu, fault->gfn);

4133
	if (page_fault_handle_page_track(vcpu, fault))
4134
		return RET_PF_EMULATE;
4135

4136
	r = fast_page_fault(vcpu, fault);
4137 4138
	if (r != RET_PF_INVALID)
		return r;
4139

4140
	r = mmu_topup_memory_caches(vcpu, false);
4141 4142
	if (r)
		return r;
4143

4144 4145 4146
	mmu_seq = vcpu->kvm->mmu_notifier_seq;
	smp_rmb();

4147 4148
	r = kvm_faultin_pfn(vcpu, fault);
	if (r != RET_PF_CONTINUE)
4149
		return r;
4150

4151 4152
	r = handle_abnormal_pfn(vcpu, fault, ACC_ALL);
	if (r != RET_PF_CONTINUE)
4153
		return r;
A
Avi Kivity 已提交
4154

4155
	r = RET_PF_RETRY;
4156

4157
	if (is_tdp_mmu_fault)
4158 4159 4160 4161
		read_lock(&vcpu->kvm->mmu_lock);
	else
		write_lock(&vcpu->kvm->mmu_lock);

4162
	if (is_page_fault_stale(vcpu, fault, mmu_seq))
4163
		goto out_unlock;
4164

4165 4166
	r = make_mmu_pages_available(vcpu);
	if (r)
4167
		goto out_unlock;
B
Ben Gardon 已提交
4168

4169
	if (is_tdp_mmu_fault)
4170
		r = kvm_tdp_mmu_map(vcpu, fault);
B
Ben Gardon 已提交
4171
	else
4172
		r = __direct_map(vcpu, fault);
4173

4174
out_unlock:
4175
	if (is_tdp_mmu_fault)
4176 4177 4178
		read_unlock(&vcpu->kvm->mmu_lock);
	else
		write_unlock(&vcpu->kvm->mmu_lock);
4179
	kvm_release_pfn_clean(fault->pfn);
4180
	return r;
A
Avi Kivity 已提交
4181 4182
}

4183 4184
static int nonpaging_page_fault(struct kvm_vcpu *vcpu,
				struct kvm_page_fault *fault)
4185
{
4186
	pgprintk("%s: gva %lx error %x\n", __func__, fault->addr, fault->error_code);
4187 4188

	/* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
4189 4190
	fault->max_level = PG_LEVEL_2M;
	return direct_page_fault(vcpu, fault);
4191 4192
}

4193
int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
4194
				u64 fault_address, char *insn, int insn_len)
4195 4196
{
	int r = 1;
4197
	u32 flags = vcpu->arch.apf.host_apf_flags;
4198

4199 4200 4201 4202 4203 4204
#ifndef CONFIG_X86_64
	/* A 64-bit CR2 should be impossible on 32-bit KVM. */
	if (WARN_ON_ONCE(fault_address >> 32))
		return -EFAULT;
#endif

P
Paolo Bonzini 已提交
4205
	vcpu->arch.l1tf_flush_l1d = true;
4206
	if (!flags) {
4207 4208
		trace_kvm_page_fault(fault_address, error_code);

4209
		if (kvm_event_needs_reinjection(vcpu))
4210 4211 4212
			kvm_mmu_unprotect_page_virt(vcpu, fault_address);
		r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
				insn_len);
4213
	} else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
4214
		vcpu->arch.apf.host_apf_flags = 0;
4215
		local_irq_disable();
4216
		kvm_async_pf_task_wait_schedule(fault_address);
4217
		local_irq_enable();
4218 4219
	} else {
		WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags);
4220
	}
4221

4222 4223 4224 4225
	return r;
}
EXPORT_SYMBOL_GPL(kvm_handle_page_fault);

4226
int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
4227
{
4228 4229 4230
	while (fault->max_level > PG_LEVEL_4K) {
		int page_num = KVM_PAGES_PER_HPAGE(fault->max_level);
		gfn_t base = (fault->addr >> PAGE_SHIFT) & ~(page_num - 1);
4231

4232 4233
		if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
			break;
4234 4235

		--fault->max_level;
4236
	}
4237

4238
	return direct_page_fault(vcpu, fault);
4239 4240
}

4241
static void nonpaging_init_context(struct kvm_mmu *context)
A
Avi Kivity 已提交
4242 4243 4244
{
	context->page_fault = nonpaging_page_fault;
	context->gva_to_gpa = nonpaging_gva_to_gpa;
4245
	context->sync_page = nonpaging_sync_page;
4246
	context->invlpg = NULL;
A
Avi Kivity 已提交
4247 4248
}

4249
static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd,
4250 4251
				  union kvm_mmu_page_role role)
{
4252
	return (role.direct || pgd == root->pgd) &&
4253
	       VALID_PAGE(root->hpa) &&
4254
	       role.word == to_shadow_page(root->hpa)->role.word;
4255 4256
}

4257
/*
4258 4259 4260 4261 4262 4263
 * Find out if a previously cached root matching the new pgd/role is available,
 * and insert the current root as the MRU in the cache.
 * If a matching root is found, it is assigned to kvm_mmu->root and
 * true is returned.
 * If no match is found, kvm_mmu->root is left invalid, the LRU root is
 * evicted to make room for the current root, and false is returned.
4264
 */
4265 4266 4267
static bool cached_root_find_and_keep_current(struct kvm *kvm, struct kvm_mmu *mmu,
					      gpa_t new_pgd,
					      union kvm_mmu_page_role new_role)
4268 4269 4270
{
	uint i;

4271
	if (is_root_usable(&mmu->root, new_pgd, new_role))
4272 4273
		return true;

4274
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
4275 4276 4277 4278 4279 4280 4281 4282
		/*
		 * The swaps end up rotating the cache like this:
		 *   C   0 1 2 3   (on entry to the function)
		 *   0   C 1 2 3
		 *   1   C 0 2 3
		 *   2   C 0 1 3
		 *   3   C 0 1 2   (on exit from the loop)
		 */
4283 4284
		swap(mmu->root, mmu->prev_roots[i]);
		if (is_root_usable(&mmu->root, new_pgd, new_role))
4285
			return true;
4286 4287
	}

4288 4289
	kvm_mmu_free_roots(kvm, mmu, KVM_MMU_ROOT_CURRENT);
	return false;
4290 4291
}

4292 4293 4294 4295 4296 4297 4298 4299 4300 4301
/*
 * Find out if a previously cached root matching the new pgd/role is available.
 * On entry, mmu->root is invalid.
 * If a matching root is found, it is assigned to kvm_mmu->root, the LRU entry
 * of the cache becomes invalid, and true is returned.
 * If no match is found, kvm_mmu->root is left invalid and false is returned.
 */
static bool cached_root_find_without_current(struct kvm *kvm, struct kvm_mmu *mmu,
					     gpa_t new_pgd,
					     union kvm_mmu_page_role new_role)
A
Avi Kivity 已提交
4302
{
4303 4304 4305 4306 4307
	uint i;

	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
		if (is_root_usable(&mmu->prev_roots[i], new_pgd, new_role))
			goto hit;
4308

4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322
	return false;

hit:
	swap(mmu->root, mmu->prev_roots[i]);
	/* Bubble up the remaining roots.  */
	for (; i < KVM_MMU_NUM_PREV_ROOTS - 1; i++)
		mmu->prev_roots[i] = mmu->prev_roots[i + 1];
	mmu->prev_roots[i].hpa = INVALID_PAGE;
	return true;
}

static bool fast_pgd_switch(struct kvm *kvm, struct kvm_mmu *mmu,
			    gpa_t new_pgd, union kvm_mmu_page_role new_role)
{
4323
	/*
4324
	 * For now, limit the caching to 64-bit hosts+VMs in order to avoid
4325 4326 4327
	 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
	 * later if necessary.
	 */
4328 4329
	if (VALID_PAGE(mmu->root.hpa) && !to_shadow_page(mmu->root.hpa))
		kvm_mmu_free_roots(kvm, mmu, KVM_MMU_ROOT_CURRENT);
4330

4331 4332 4333 4334
	if (VALID_PAGE(mmu->root.hpa))
		return cached_root_find_and_keep_current(kvm, mmu, new_pgd, new_role);
	else
		return cached_root_find_without_current(kvm, mmu, new_pgd, new_role);
A
Avi Kivity 已提交
4335 4336
}

4337
void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd)
A
Avi Kivity 已提交
4338
{
4339
	struct kvm_mmu *mmu = vcpu->arch.mmu;
4340
	union kvm_mmu_page_role new_role = mmu->root_role;
4341

4342 4343
	if (!fast_pgd_switch(vcpu->kvm, mmu, new_pgd, new_role)) {
		/* kvm_mmu_ensure_valid_pgd will set up a new root.  */
4344 4345 4346 4347 4348 4349
		return;
	}

	/*
	 * It's possible that the cached previous root page is obsolete because
	 * of a change in the MMU generation number. However, changing the
4350 4351
	 * generation number is accompanied by KVM_REQ_MMU_FREE_OBSOLETE_ROOTS,
	 * which will free the root set here and allocate a new one.
4352 4353 4354
	 */
	kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);

4355
	if (force_flush_and_sync_on_reuse) {
4356 4357
		kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
4358
	}
4359 4360 4361 4362 4363 4364 4365 4366 4367

	/*
	 * The last MMIO access's GVA and GPA are cached in the VCPU. When
	 * switching to a new CR3, that GVA->GPA mapping may no longer be
	 * valid. So clear any cached MMIO info even when we don't need to sync
	 * the shadow page tables.
	 */
	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);

4368 4369 4370 4371 4372 4373
	/*
	 * If this is a direct root page, it doesn't have a write flooding
	 * count. Otherwise, clear the write flooding count.
	 */
	if (!new_role.direct)
		__clear_sp_write_flooding_count(
4374
				to_shadow_page(vcpu->arch.mmu->root.hpa));
A
Avi Kivity 已提交
4375
}
4376
EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd);
4377

4378 4379
static unsigned long get_cr3(struct kvm_vcpu *vcpu)
{
4380
	return kvm_read_cr3(vcpu);
4381 4382
}

4383
static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
4384
			   unsigned int access)
4385 4386 4387 4388 4389 4390 4391
{
	if (unlikely(is_mmio_spte(*sptep))) {
		if (gfn != get_mmio_spte_gfn(*sptep)) {
			mmu_spte_clear_no_track(sptep);
			return true;
		}

4392
		mark_mmio_spte(vcpu, sptep, gfn, access);
4393 4394 4395 4396 4397 4398
		return true;
	}

	return false;
}

4399 4400 4401 4402 4403
#define PTTYPE_EPT 18 /* arbitrary */
#define PTTYPE PTTYPE_EPT
#include "paging_tmpl.h"
#undef PTTYPE

A
Avi Kivity 已提交
4404 4405 4406 4407 4408 4409 4410 4411
#define PTTYPE 64
#include "paging_tmpl.h"
#undef PTTYPE

#define PTTYPE 32
#include "paging_tmpl.h"
#undef PTTYPE

4412
static void
4413
__reset_rsvds_bits_mask(struct rsvd_bits_validate *rsvd_check,
4414
			u64 pa_bits_rsvd, int level, bool nx, bool gbpages,
4415
			bool pse, bool amd)
4416
{
4417
	u64 gbpages_bit_rsvd = 0;
4418
	u64 nonleaf_bit8_rsvd = 0;
4419
	u64 high_bits_rsvd;
4420

4421
	rsvd_check->bad_mt_xwr = 0;
4422

4423
	if (!gbpages)
4424
		gbpages_bit_rsvd = rsvd_bits(7, 7);
4425

4426 4427 4428 4429 4430 4431 4432 4433 4434
	if (level == PT32E_ROOT_LEVEL)
		high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 62);
	else
		high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);

	/* Note, NX doesn't exist in PDPTEs, this is handled below. */
	if (!nx)
		high_bits_rsvd |= rsvd_bits(63, 63);

4435 4436 4437 4438
	/*
	 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
	 * leaf entries) on AMD CPUs only.
	 */
4439
	if (amd)
4440 4441
		nonleaf_bit8_rsvd = rsvd_bits(8, 8);

4442
	switch (level) {
4443 4444
	case PT32_ROOT_LEVEL:
		/* no rsvd bits for 2 level 4K page table entries */
4445 4446 4447 4448
		rsvd_check->rsvd_bits_mask[0][1] = 0;
		rsvd_check->rsvd_bits_mask[0][0] = 0;
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
4449

4450
		if (!pse) {
4451
			rsvd_check->rsvd_bits_mask[1][1] = 0;
4452 4453 4454
			break;
		}

4455 4456
		if (is_cpuid_PSE36())
			/* 36bits PSE 4MB page */
4457
			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4458 4459
		else
			/* 32 bits PSE 4MB page */
4460
			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4461 4462
		break;
	case PT32E_ROOT_LEVEL:
4463 4464 4465 4466 4467 4468 4469 4470
		rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) |
						   high_bits_rsvd |
						   rsvd_bits(5, 8) |
						   rsvd_bits(1, 2);	/* PDPTE */
		rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;	/* PDE */
		rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;	/* PTE */
		rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
						   rsvd_bits(13, 20);	/* large page */
4471 4472
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
4473
		break;
4474
	case PT64_ROOT_5LEVEL:
4475 4476 4477
		rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd |
						   nonleaf_bit8_rsvd |
						   rsvd_bits(7, 7);
4478 4479
		rsvd_check->rsvd_bits_mask[1][4] =
			rsvd_check->rsvd_bits_mask[0][4];
4480
		fallthrough;
4481
	case PT64_ROOT_4LEVEL:
4482 4483 4484 4485 4486 4487 4488
		rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd |
						   nonleaf_bit8_rsvd |
						   rsvd_bits(7, 7);
		rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd |
						   gbpages_bit_rsvd;
		rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;
		rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4489 4490
		rsvd_check->rsvd_bits_mask[1][3] =
			rsvd_check->rsvd_bits_mask[0][3];
4491 4492 4493 4494 4495
		rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd |
						   gbpages_bit_rsvd |
						   rsvd_bits(13, 29);
		rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
						   rsvd_bits(13, 20); /* large page */
4496 4497
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
4498 4499 4500 4501
		break;
	}
}

4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516
static bool guest_can_use_gbpages(struct kvm_vcpu *vcpu)
{
	/*
	 * If TDP is enabled, let the guest use GBPAGES if they're supported in
	 * hardware.  The hardware page walker doesn't let KVM disable GBPAGES,
	 * i.e. won't treat them as reserved, and KVM doesn't redo the GVA->GPA
	 * walk for performance and complexity reasons.  Not to mention KVM
	 * _can't_ solve the problem because GVA->GPA walks aren't visible to
	 * KVM once a TDP translation is installed.  Mimic hardware behavior so
	 * that KVM's is at least consistent, i.e. doesn't randomly inject #PF.
	 */
	return tdp_enabled ? boot_cpu_has(X86_FEATURE_GBPAGES) :
			     guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES);
}

4517 4518
static void reset_guest_rsvds_bits_mask(struct kvm_vcpu *vcpu,
					struct kvm_mmu *context)
4519
{
4520
	__reset_rsvds_bits_mask(&context->guest_rsvd_check,
4521
				vcpu->arch.reserved_gpa_bits,
4522
				context->cpu_role.base.level, is_efer_nx(context),
4523
				guest_can_use_gbpages(vcpu),
4524
				is_cr4_pse(context),
4525
				guest_cpuid_is_amd_or_hygon(vcpu));
4526 4527
}

4528 4529
static void
__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4530
			    u64 pa_bits_rsvd, bool execonly, int huge_page_level)
4531
{
4532
	u64 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
4533
	u64 large_1g_rsvd = 0, large_2m_rsvd = 0;
4534
	u64 bad_mt_xwr;
4535

4536 4537 4538 4539 4540
	if (huge_page_level < PG_LEVEL_1G)
		large_1g_rsvd = rsvd_bits(7, 7);
	if (huge_page_level < PG_LEVEL_2M)
		large_2m_rsvd = rsvd_bits(7, 7);

4541 4542
	rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7);
	rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7);
4543 4544
	rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6) | large_1g_rsvd;
	rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6) | large_2m_rsvd;
4545
	rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4546 4547

	/* large page */
4548
	rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4549
	rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4550 4551
	rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29) | large_1g_rsvd;
	rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20) | large_2m_rsvd;
4552
	rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4553

4554 4555 4556 4557 4558 4559 4560 4561
	bad_mt_xwr = 0xFFull << (2 * 8);	/* bits 3..5 must not be 2 */
	bad_mt_xwr |= 0xFFull << (3 * 8);	/* bits 3..5 must not be 3 */
	bad_mt_xwr |= 0xFFull << (7 * 8);	/* bits 3..5 must not be 7 */
	bad_mt_xwr |= REPEAT_BYTE(1ull << 2);	/* bits 0..2 must not be 010 */
	bad_mt_xwr |= REPEAT_BYTE(1ull << 6);	/* bits 0..2 must not be 110 */
	if (!execonly) {
		/* bits 0..2 must not be 100 unless VMX capabilities allow it */
		bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4562
	}
4563
	rsvd_check->bad_mt_xwr = bad_mt_xwr;
4564 4565
}

4566
static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4567
		struct kvm_mmu *context, bool execonly, int huge_page_level)
4568 4569
{
	__reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4570 4571
				    vcpu->arch.reserved_gpa_bits, execonly,
				    huge_page_level);
4572 4573
}

4574 4575 4576 4577 4578
static inline u64 reserved_hpa_bits(void)
{
	return rsvd_bits(shadow_phys_bits, 63);
}

4579 4580 4581 4582 4583
/*
 * the page table on host is the shadow page table for the page
 * table in guest or amd nested guest, its mmu features completely
 * follow the features in guest.
 */
4584 4585
static void reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
					struct kvm_mmu *context)
4586
{
4587 4588 4589 4590
	/* @amd adds a check on bit of SPTEs, which KVM shouldn't use anyways. */
	bool is_amd = true;
	/* KVM doesn't use 2-level page tables for the shadow MMU. */
	bool is_pse = false;
4591 4592
	struct rsvd_bits_validate *shadow_zero_check;
	int i;
4593

4594
	WARN_ON_ONCE(context->root_role.level < PT32E_ROOT_LEVEL);
4595

4596
	shadow_zero_check = &context->shadow_zero_check;
4597
	__reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(),
4598
				context->root_role.level,
4599
				context->root_role.efer_nx,
4600
				guest_can_use_gbpages(vcpu), is_pse, is_amd);
4601 4602 4603 4604

	if (!shadow_me_mask)
		return;

4605
	for (i = context->root_role.level; --i >= 0;) {
4606 4607 4608 4609 4610 4611 4612 4613 4614 4615
		/*
		 * So far shadow_me_value is a constant during KVM's life
		 * time.  Bits in shadow_me_value are allowed to be set.
		 * Bits in shadow_me_mask but not in shadow_me_value are
		 * not allowed to be set.
		 */
		shadow_zero_check->rsvd_bits_mask[0][i] |= shadow_me_mask;
		shadow_zero_check->rsvd_bits_mask[1][i] |= shadow_me_mask;
		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_value;
		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_value;
4616 4617
	}

4618 4619
}

4620 4621 4622 4623 4624 4625
static inline bool boot_cpu_is_amd(void)
{
	WARN_ON_ONCE(!tdp_enabled);
	return shadow_x_mask == 0;
}

4626 4627 4628 4629 4630
/*
 * the direct page table on host, use as much mmu features as
 * possible, however, kvm currently does not do execution-protection.
 */
static void
4631
reset_tdp_shadow_zero_bits_mask(struct kvm_mmu *context)
4632
{
4633 4634 4635 4636 4637
	struct rsvd_bits_validate *shadow_zero_check;
	int i;

	shadow_zero_check = &context->shadow_zero_check;

4638
	if (boot_cpu_is_amd())
4639
		__reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(),
4640
					context->root_role.level, false,
4641
					boot_cpu_has(X86_FEATURE_GBPAGES),
4642
					false, true);
4643
	else
4644
		__reset_rsvds_bits_mask_ept(shadow_zero_check,
4645 4646
					    reserved_hpa_bits(), false,
					    max_huge_page_level);
4647

4648 4649 4650
	if (!shadow_me_mask)
		return;

4651
	for (i = context->root_role.level; --i >= 0;) {
4652 4653 4654
		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
	}
4655 4656 4657 4658 4659 4660 4661
}

/*
 * as the comments in reset_shadow_zero_bits_mask() except it
 * is the shadow page table for intel nested guest.
 */
static void
4662
reset_ept_shadow_zero_bits_mask(struct kvm_mmu *context, bool execonly)
4663 4664
{
	__reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4665 4666
				    reserved_hpa_bits(), execonly,
				    max_huge_page_level);
4667 4668
}

4669 4670 4671 4672 4673 4674 4675 4676 4677 4678
#define BYTE_MASK(access) \
	((1 & (access) ? 2 : 0) | \
	 (2 & (access) ? 4 : 0) | \
	 (3 & (access) ? 8 : 0) | \
	 (4 & (access) ? 16 : 0) | \
	 (5 & (access) ? 32 : 0) | \
	 (6 & (access) ? 64 : 0) | \
	 (7 & (access) ? 128 : 0))


4679
static void update_permission_bitmask(struct kvm_mmu *mmu, bool ept)
4680
{
4681 4682 4683 4684 4685 4686
	unsigned byte;

	const u8 x = BYTE_MASK(ACC_EXEC_MASK);
	const u8 w = BYTE_MASK(ACC_WRITE_MASK);
	const u8 u = BYTE_MASK(ACC_USER_MASK);

4687 4688 4689
	bool cr4_smep = is_cr4_smep(mmu);
	bool cr4_smap = is_cr4_smap(mmu);
	bool cr0_wp = is_cr0_wp(mmu);
4690
	bool efer_nx = is_efer_nx(mmu);
4691 4692

	for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4693 4694
		unsigned pfec = byte << 1;

F
Feng Wu 已提交
4695
		/*
4696 4697
		 * Each "*f" variable has a 1 bit for each UWX value
		 * that causes a fault with the given PFEC.
F
Feng Wu 已提交
4698
		 */
4699

4700
		/* Faults from writes to non-writable pages */
4701
		u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
4702
		/* Faults from user mode accesses to supervisor pages */
4703
		u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
4704
		/* Faults from fetches of non-executable pages*/
4705
		u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
4706 4707 4708 4709 4710 4711 4712 4713 4714 4715
		/* Faults from kernel mode fetches of user pages */
		u8 smepf = 0;
		/* Faults from kernel mode accesses of user pages */
		u8 smapf = 0;

		if (!ept) {
			/* Faults from kernel mode accesses to user pages */
			u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;

			/* Not really needed: !nx will cause pte.nx to fault */
4716
			if (!efer_nx)
4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730
				ff = 0;

			/* Allow supervisor writes if !cr0.wp */
			if (!cr0_wp)
				wf = (pfec & PFERR_USER_MASK) ? wf : 0;

			/* Disallow supervisor fetches of user code if cr4.smep */
			if (cr4_smep)
				smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;

			/*
			 * SMAP:kernel-mode data accesses from user-mode
			 * mappings should fault. A fault is considered
			 * as a SMAP violation if all of the following
P
Peng Hao 已提交
4731
			 * conditions are true:
4732 4733 4734
			 *   - X86_CR4_SMAP is set in CR4
			 *   - A user page is accessed
			 *   - The access is not a fetch
4735 4736
			 *   - The access is supervisor mode
			 *   - If implicit supervisor access or X86_EFLAGS_AC is clear
4737
			 *
4738 4739
			 * Here, we cover the first four conditions.
			 * The fifth is computed dynamically in permission_fault();
4740 4741 4742 4743 4744
			 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
			 * *not* subject to SMAP restrictions.
			 */
			if (cr4_smap)
				smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4745
		}
4746 4747

		mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4748 4749 4750
	}
}

4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774
/*
* PKU is an additional mechanism by which the paging controls access to
* user-mode addresses based on the value in the PKRU register.  Protection
* key violations are reported through a bit in the page fault error code.
* Unlike other bits of the error code, the PK bit is not known at the
* call site of e.g. gva_to_gpa; it must be computed directly in
* permission_fault based on two bits of PKRU, on some machine state (CR4,
* CR0, EFER, CPL), and on other bits of the error code and the page tables.
*
* In particular the following conditions come from the error code, the
* page tables and the machine state:
* - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
* - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
* - PK is always zero if U=0 in the page tables
* - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
*
* The PKRU bitmask caches the result of these four conditions.  The error
* code (minus the P bit) and the page table's U bit form an index into the
* PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
* with the two bits of the PKRU register corresponding to the protection key.
* For the first three conditions above the bits will be 00, thus masking
* away both AD and WD.  For all reads or if the last condition holds, WD
* only will be masked away.
*/
4775
static void update_pkru_bitmask(struct kvm_mmu *mmu)
4776 4777 4778 4779
{
	unsigned bit;
	bool wp;

4780 4781 4782
	mmu->pkru_mask = 0;

	if (!is_cr4_pke(mmu))
4783 4784
		return;

4785
	wp = is_cr0_wp(mmu);
4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818

	for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
		unsigned pfec, pkey_bits;
		bool check_pkey, check_write, ff, uf, wf, pte_user;

		pfec = bit << 1;
		ff = pfec & PFERR_FETCH_MASK;
		uf = pfec & PFERR_USER_MASK;
		wf = pfec & PFERR_WRITE_MASK;

		/* PFEC.RSVD is replaced by ACC_USER_MASK. */
		pte_user = pfec & PFERR_RSVD_MASK;

		/*
		 * Only need to check the access which is not an
		 * instruction fetch and is to a user page.
		 */
		check_pkey = (!ff && pte_user);
		/*
		 * write access is controlled by PKRU if it is a
		 * user access or CR0.WP = 1.
		 */
		check_write = check_pkey && wf && (uf || wp);

		/* PKRU.AD stops both read and write access. */
		pkey_bits = !!check_pkey;
		/* PKRU.WD stops write access. */
		pkey_bits |= (!!check_write) << 1;

		mmu->pkru_mask |= (pkey_bits & 3) << pfec;
	}
}

4819 4820
static void reset_guest_paging_metadata(struct kvm_vcpu *vcpu,
					struct kvm_mmu *mmu)
A
Avi Kivity 已提交
4821
{
4822 4823
	if (!is_cr0_pg(mmu))
		return;
4824

4825
	reset_guest_rsvds_bits_mask(vcpu, mmu);
4826 4827
	update_permission_bitmask(mmu, false);
	update_pkru_bitmask(mmu);
A
Avi Kivity 已提交
4828 4829
}

4830
static void paging64_init_context(struct kvm_mmu *context)
A
Avi Kivity 已提交
4831 4832 4833
{
	context->page_fault = paging64_page_fault;
	context->gva_to_gpa = paging64_gva_to_gpa;
4834
	context->sync_page = paging64_sync_page;
M
Marcelo Tosatti 已提交
4835
	context->invlpg = paging64_invlpg;
A
Avi Kivity 已提交
4836 4837
}

4838
static void paging32_init_context(struct kvm_mmu *context)
A
Avi Kivity 已提交
4839 4840 4841
{
	context->page_fault = paging32_page_fault;
	context->gva_to_gpa = paging32_gva_to_gpa;
4842
	context->sync_page = paging32_sync_page;
M
Marcelo Tosatti 已提交
4843
	context->invlpg = paging32_invlpg;
A
Avi Kivity 已提交
4844 4845
}

4846
static union kvm_cpu_role
4847 4848
kvm_calc_cpu_role(struct kvm_vcpu *vcpu, const struct kvm_mmu_role_regs *regs)
{
4849
	union kvm_cpu_role role = {0};
4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865

	role.base.access = ACC_ALL;
	role.base.smm = is_smm(vcpu);
	role.base.guest_mode = is_guest_mode(vcpu);
	role.ext.valid = 1;

	if (!____is_cr0_pg(regs)) {
		role.base.direct = 1;
		return role;
	}

	role.base.efer_nx = ____is_efer_nx(regs);
	role.base.cr0_wp = ____is_cr0_wp(regs);
	role.base.smep_andnot_wp = ____is_cr4_smep(regs) && !____is_cr0_wp(regs);
	role.base.smap_andnot_wp = ____is_cr4_smap(regs) && !____is_cr0_wp(regs);
	role.base.has_4_byte_gpte = !____is_cr4_pae(regs);
4866 4867 4868 4869 4870 4871 4872 4873

	if (____is_efer_lma(regs))
		role.base.level = ____is_cr4_la57(regs) ? PT64_ROOT_5LEVEL
							: PT64_ROOT_4LEVEL;
	else if (____is_cr4_pae(regs))
		role.base.level = PT32E_ROOT_LEVEL;
	else
		role.base.level = PT32_ROOT_LEVEL;
4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885

	role.ext.cr4_smep = ____is_cr4_smep(regs);
	role.ext.cr4_smap = ____is_cr4_smap(regs);
	role.ext.cr4_pse = ____is_cr4_pse(regs);

	/* PKEY and LA57 are active iff long mode is active. */
	role.ext.cr4_pke = ____is_efer_lma(regs) && ____is_cr4_pke(regs);
	role.ext.cr4_la57 = ____is_efer_lma(regs) && ____is_cr4_la57(regs);
	role.ext.efer_lma = ____is_efer_lma(regs);
	return role;
}

4886 4887
static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu)
{
4888 4889 4890 4891
	/* tdp_root_level is architecture forced level, use it if nonzero */
	if (tdp_root_level)
		return tdp_root_level;

4892
	/* Use 5-level TDP if and only if it's useful/necessary. */
4893
	if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48)
4894 4895
		return 4;

4896
	return max_tdp_level;
4897 4898
}

4899
static union kvm_mmu_page_role
4900
kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu,
4901
				union kvm_cpu_role cpu_role)
4902
{
4903
	union kvm_mmu_page_role role = {0};
4904

4905 4906 4907 4908 4909
	role.access = ACC_ALL;
	role.cr0_wp = true;
	role.efer_nx = true;
	role.smm = cpu_role.base.smm;
	role.guest_mode = cpu_role.base.guest_mode;
4910
	role.ad_disabled = !kvm_ad_enabled();
4911 4912 4913
	role.level = kvm_mmu_get_tdp_level(vcpu);
	role.direct = true;
	role.has_4_byte_gpte = false;
4914 4915 4916 4917

	return role;
}

4918
static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu,
4919
			     union kvm_cpu_role cpu_role)
4920
{
4921
	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4922
	union kvm_mmu_page_role root_role = kvm_calc_tdp_mmu_root_page_role(vcpu, cpu_role);
4923

4924
	if (cpu_role.as_u64 == context->cpu_role.as_u64 &&
4925
	    root_role.word == context->root_role.word)
4926 4927
		return;

4928
	context->cpu_role.as_u64 = cpu_role.as_u64;
4929
	context->root_role.word = root_role.word;
4930
	context->page_fault = kvm_tdp_page_fault;
4931
	context->sync_page = nonpaging_sync_page;
4932
	context->invlpg = NULL;
4933
	context->get_guest_pgd = get_cr3;
4934
	context->get_pdptr = kvm_pdptr_read;
4935
	context->inject_page_fault = kvm_inject_page_fault;
4936

4937
	if (!is_cr0_pg(context))
4938
		context->gva_to_gpa = nonpaging_gva_to_gpa;
4939
	else if (is_cr4_pae(context))
4940
		context->gva_to_gpa = paging64_gva_to_gpa;
4941
	else
4942
		context->gva_to_gpa = paging32_gva_to_gpa;
4943

4944
	reset_guest_paging_metadata(vcpu, context);
4945
	reset_tdp_shadow_zero_bits_mask(context);
4946 4947
}

4948
static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
4949
				    union kvm_cpu_role cpu_role,
4950
				    union kvm_mmu_page_role root_role)
4951
{
4952
	if (cpu_role.as_u64 == context->cpu_role.as_u64 &&
4953
	    root_role.word == context->root_role.word)
4954
		return;
4955

4956
	context->cpu_role.as_u64 = cpu_role.as_u64;
4957
	context->root_role.word = root_role.word;
4958

4959
	if (!is_cr0_pg(context))
4960
		nonpaging_init_context(context);
4961
	else if (is_cr4_pae(context))
4962
		paging64_init_context(context);
A
Avi Kivity 已提交
4963
	else
4964
		paging32_init_context(context);
4965

4966
	reset_guest_paging_metadata(vcpu, context);
4967
	reset_shadow_zero_bits_mask(vcpu, context);
4968
}
4969

4970
static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu,
4971
				union kvm_cpu_role cpu_role)
4972
{
4973
	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4974
	union kvm_mmu_page_role root_role;
4975

4976
	root_role = cpu_role.base;
4977

4978 4979
	/* KVM uses PAE paging whenever the guest isn't using 64-bit paging. */
	root_role.level = max_t(u32, root_role.level, PT32E_ROOT_LEVEL);
4980

4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992
	/*
	 * KVM forces EFER.NX=1 when TDP is disabled, reflect it in the MMU role.
	 * KVM uses NX when TDP is disabled to handle a variety of scenarios,
	 * notably for huge SPTEs if iTLB multi-hit mitigation is enabled and
	 * to generate correct permissions for CR0.WP=0/CR4.SMEP=1/EFER.NX=0.
	 * The iTLB multi-hit workaround can be toggled at any time, so assume
	 * NX can be used by any non-nested shadow MMU to avoid having to reset
	 * MMU contexts.
	 */
	root_role.efer_nx = true;

	shadow_mmu_init_context(vcpu, context, cpu_role, root_role);
4993 4994
}

4995 4996
void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0,
			     unsigned long cr4, u64 efer, gpa_t nested_cr3)
4997
{
4998
	struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4999 5000
	struct kvm_mmu_role_regs regs = {
		.cr0 = cr0,
5001
		.cr4 = cr4 & ~X86_CR4_PKE,
5002 5003
		.efer = efer,
	};
5004
	union kvm_cpu_role cpu_role = kvm_calc_cpu_role(vcpu, &regs);
5005 5006 5007 5008 5009 5010 5011
	union kvm_mmu_page_role root_role;

	/* NPT requires CR0.PG=1. */
	WARN_ON_ONCE(cpu_role.base.direct);

	root_role = cpu_role.base;
	root_role.level = kvm_mmu_get_tdp_level(vcpu);
5012 5013 5014
	if (root_role.level == PT64_ROOT_5LEVEL &&
	    cpu_role.base.level == PT64_ROOT_4LEVEL)
		root_role.passthrough = 1;
5015

5016
	shadow_mmu_init_context(vcpu, context, cpu_role, root_role);
5017
	kvm_mmu_new_pgd(vcpu, nested_cr3);
5018 5019
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu);
5020

5021
static union kvm_cpu_role
5022
kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
5023
				   bool execonly, u8 level)
5024
{
5025
	union kvm_cpu_role role = {0};
5026

5027 5028 5029 5030 5031
	/*
	 * KVM does not support SMM transfer monitors, and consequently does not
	 * support the "entry to SMM" control either.  role.base.smm is always 0.
	 */
	WARN_ON_ONCE(is_smm(vcpu));
5032
	role.base.level = level;
5033
	role.base.has_4_byte_gpte = false;
5034 5035 5036 5037
	role.base.direct = false;
	role.base.ad_disabled = !accessed_dirty;
	role.base.guest_mode = true;
	role.base.access = ACC_ALL;
5038

5039
	role.ext.word = 0;
5040
	role.ext.execonly = execonly;
5041
	role.ext.valid = 1;
5042 5043 5044 5045

	return role;
}

5046
void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
5047 5048
			     int huge_page_level, bool accessed_dirty,
			     gpa_t new_eptp)
N
Nadav Har'El 已提交
5049
{
5050
	struct kvm_mmu *context = &vcpu->arch.guest_mmu;
5051
	u8 level = vmx_eptp_page_walk_level(new_eptp);
5052
	union kvm_cpu_role new_mode =
5053
		kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
5054
						   execonly, level);
5055

5056 5057 5058
	if (new_mode.as_u64 != context->cpu_role.as_u64) {
		/* EPT, and thus nested EPT, does not consume CR0, CR4, nor EFER. */
		context->cpu_role.as_u64 = new_mode.as_u64;
5059
		context->root_role.word = new_mode.base.word;
5060 5061 5062 5063 5064

		context->page_fault = ept_page_fault;
		context->gva_to_gpa = ept_gva_to_gpa;
		context->sync_page = ept_sync_page;
		context->invlpg = ept_invlpg;
5065

5066 5067 5068 5069 5070
		update_permission_bitmask(context, true);
		context->pkru_mask = 0;
		reset_rsvds_bits_mask_ept(vcpu, context, execonly, huge_page_level);
		reset_ept_shadow_zero_bits_mask(context, execonly);
	}
5071

5072
	kvm_mmu_new_pgd(vcpu, new_eptp);
N
Nadav Har'El 已提交
5073 5074 5075
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);

5076
static void init_kvm_softmmu(struct kvm_vcpu *vcpu,
5077
			     union kvm_cpu_role cpu_role)
5078
{
5079
	struct kvm_mmu *context = &vcpu->arch.root_mmu;
5080

5081
	kvm_init_shadow_mmu(vcpu, cpu_role);
5082

5083
	context->get_guest_pgd     = get_cr3;
5084 5085
	context->get_pdptr         = kvm_pdptr_read;
	context->inject_page_fault = kvm_inject_page_fault;
A
Avi Kivity 已提交
5086 5087
}

5088
static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu,
5089
				union kvm_cpu_role new_mode)
5090 5091 5092
{
	struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;

5093
	if (new_mode.as_u64 == g_context->cpu_role.as_u64)
5094 5095
		return;

5096
	g_context->cpu_role.as_u64   = new_mode.as_u64;
5097
	g_context->get_guest_pgd     = get_cr3;
5098
	g_context->get_pdptr         = kvm_pdptr_read;
5099 5100
	g_context->inject_page_fault = kvm_inject_page_fault;

5101 5102 5103 5104 5105 5106
	/*
	 * L2 page tables are never shadowed, so there is no need to sync
	 * SPTEs.
	 */
	g_context->invlpg            = NULL;

5107
	/*
5108
	 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
5109 5110 5111 5112 5113
	 * L1's nested page tables (e.g. EPT12). The nested translation
	 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
	 * L2's page tables as the first level of translation and L1's
	 * nested page tables as the second level of translation. Basically
	 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
5114
	 */
5115
	if (!is_paging(vcpu))
5116
		g_context->gva_to_gpa = nonpaging_gva_to_gpa;
5117
	else if (is_long_mode(vcpu))
5118
		g_context->gva_to_gpa = paging64_gva_to_gpa;
5119
	else if (is_pae(vcpu))
5120
		g_context->gva_to_gpa = paging64_gva_to_gpa;
5121
	else
5122
		g_context->gva_to_gpa = paging32_gva_to_gpa;
5123

5124
	reset_guest_paging_metadata(vcpu, g_context);
5125 5126
}

5127
void kvm_init_mmu(struct kvm_vcpu *vcpu)
5128
{
5129
	struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
5130
	union kvm_cpu_role cpu_role = kvm_calc_cpu_role(vcpu, &regs);
5131

5132
	if (mmu_is_nested(vcpu))
5133
		init_kvm_nested_mmu(vcpu, cpu_role);
5134
	else if (tdp_enabled)
5135
		init_kvm_tdp_mmu(vcpu, cpu_role);
5136
	else
5137
		init_kvm_softmmu(vcpu, cpu_role);
5138
}
5139
EXPORT_SYMBOL_GPL(kvm_init_mmu);
5140

5141 5142 5143 5144 5145
void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu)
{
	/*
	 * Invalidate all MMU roles to force them to reinitialize as CPUID
	 * information is factored into reserved bit calculations.
5146 5147 5148 5149 5150 5151 5152 5153
	 *
	 * Correctly handling multiple vCPU models with respect to paging and
	 * physical address properties) in a single VM would require tracking
	 * all relevant CPUID information in kvm_mmu_page_role. That is very
	 * undesirable as it would increase the memory requirements for
	 * gfn_track (see struct kvm_mmu_page_role comments).  For now that
	 * problem is swept under the rug; KVM's CPUID API is horrific and
	 * it's all but impossible to solve it without introducing a new API.
5154
	 */
5155 5156 5157
	vcpu->arch.root_mmu.root_role.word = 0;
	vcpu->arch.guest_mmu.root_role.word = 0;
	vcpu->arch.nested_mmu.root_role.word = 0;
5158 5159 5160
	vcpu->arch.root_mmu.cpu_role.ext.valid = 0;
	vcpu->arch.guest_mmu.cpu_role.ext.valid = 0;
	vcpu->arch.nested_mmu.cpu_role.ext.valid = 0;
5161
	kvm_mmu_reset_context(vcpu);
5162 5163

	/*
5164 5165
	 * Changing guest CPUID after KVM_RUN is forbidden, see the comment in
	 * kvm_arch_vcpu_ioctl().
5166
	 */
5167
	KVM_BUG_ON(vcpu->arch.last_vmentry_cpu != -1, vcpu->kvm);
5168 5169
}

5170
void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
5171
{
5172
	kvm_mmu_unload(vcpu);
5173
	kvm_init_mmu(vcpu);
A
Avi Kivity 已提交
5174
}
5175
EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
A
Avi Kivity 已提交
5176 5177

int kvm_mmu_load(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
5178
{
5179 5180
	int r;

5181
	r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->root_role.direct);
A
Avi Kivity 已提交
5182 5183
	if (r)
		goto out;
5184
	r = mmu_alloc_special_roots(vcpu);
A
Avi Kivity 已提交
5185 5186
	if (r)
		goto out;
5187
	if (vcpu->arch.mmu->root_role.direct)
5188 5189 5190
		r = mmu_alloc_direct_roots(vcpu);
	else
		r = mmu_alloc_shadow_roots(vcpu);
5191 5192
	if (r)
		goto out;
5193 5194 5195

	kvm_mmu_sync_roots(vcpu);

5196
	kvm_mmu_load_pgd(vcpu);
5197 5198 5199 5200 5201 5202 5203 5204

	/*
	 * Flush any TLB entries for the new root, the provenance of the root
	 * is unknown.  Even if KVM ensures there are no stale TLB entries
	 * for a freed root, in theory another hypervisor could have left
	 * stale entries.  Flushing on alloc also allows KVM to skip the TLB
	 * flush when freeing a root (see kvm_tdp_mmu_put_root()).
	 */
5205
	static_call(kvm_x86_flush_tlb_current)(vcpu);
5206 5207
out:
	return r;
A
Avi Kivity 已提交
5208
}
A
Avi Kivity 已提交
5209 5210 5211

void kvm_mmu_unload(struct kvm_vcpu *vcpu)
{
5212 5213 5214
	struct kvm *kvm = vcpu->kvm;

	kvm_mmu_free_roots(kvm, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
5215
	WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root.hpa));
5216
	kvm_mmu_free_roots(kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
5217
	WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root.hpa));
5218
	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
A
Avi Kivity 已提交
5219
}
A
Avi Kivity 已提交
5220

5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251
static bool is_obsolete_root(struct kvm *kvm, hpa_t root_hpa)
{
	struct kvm_mmu_page *sp;

	if (!VALID_PAGE(root_hpa))
		return false;

	/*
	 * When freeing obsolete roots, treat roots as obsolete if they don't
	 * have an associated shadow page.  This does mean KVM will get false
	 * positives and free roots that don't strictly need to be freed, but
	 * such false positives are relatively rare:
	 *
	 *  (a) only PAE paging and nested NPT has roots without shadow pages
	 *  (b) remote reloads due to a memslot update obsoletes _all_ roots
	 *  (c) KVM doesn't track previous roots for PAE paging, and the guest
	 *      is unlikely to zap an in-use PGD.
	 */
	sp = to_shadow_page(root_hpa);
	return !sp || is_obsolete_sp(kvm, sp);
}

static void __kvm_mmu_free_obsolete_roots(struct kvm *kvm, struct kvm_mmu *mmu)
{
	unsigned long roots_to_free = 0;
	int i;

	if (is_obsolete_root(kvm, mmu->root.hpa))
		roots_to_free |= KVM_MMU_ROOT_CURRENT;

	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5252
		if (is_obsolete_root(kvm, mmu->prev_roots[i].hpa))
5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265
			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
	}

	if (roots_to_free)
		kvm_mmu_free_roots(kvm, mmu, roots_to_free);
}

void kvm_mmu_free_obsolete_roots(struct kvm_vcpu *vcpu)
{
	__kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.root_mmu);
	__kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.guest_mmu);
}

5266 5267 5268 5269 5270 5271
static bool need_remote_flush(u64 old, u64 new)
{
	if (!is_shadow_present_pte(old))
		return false;
	if (!is_shadow_present_pte(new))
		return true;
5272
	if ((old ^ new) & SPTE_BASE_ADDR_MASK)
5273
		return true;
5274 5275
	old ^= shadow_nx_mask;
	new ^= shadow_nx_mask;
5276
	return (old & ~new & SPTE_PERM_MASK) != 0;
5277 5278
}

5279
static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
5280
				    int *bytes)
5281
{
5282
	u64 gentry = 0;
5283
	int r;
5284 5285 5286

	/*
	 * Assume that the pte write on a page table of the same type
5287 5288
	 * as the current vcpu paging mode since we update the sptes only
	 * when they have the same mode.
5289
	 */
5290
	if (is_pae(vcpu) && *bytes == 4) {
5291
		/* Handle a 32-bit guest writing two halves of a 64-bit gpte */
5292 5293
		*gpa &= ~(gpa_t)7;
		*bytes = 8;
5294 5295
	}

5296 5297 5298 5299
	if (*bytes == 4 || *bytes == 8) {
		r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
		if (r)
			gentry = 0;
5300 5301
	}

5302 5303 5304 5305 5306 5307 5308
	return gentry;
}

/*
 * If we're seeing too many writes to a page, it may no longer be a page table,
 * or we may be forking, in which case it is better to unmap the page.
 */
5309
static bool detect_write_flooding(struct kvm_mmu_page *sp)
5310
{
5311 5312 5313 5314
	/*
	 * Skip write-flooding detected for the sp whose level is 1, because
	 * it can become unsync, then the guest page is not write-protected.
	 */
5315
	if (sp->role.level == PG_LEVEL_4K)
5316
		return false;
5317

5318 5319
	atomic_inc(&sp->write_flooding_count);
	return atomic_read(&sp->write_flooding_count) >= 3;
5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334
}

/*
 * Misaligned accesses are too much trouble to fix up; also, they usually
 * indicate a page is not used as a page table.
 */
static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
				    int bytes)
{
	unsigned offset, pte_size, misaligned;

	pgprintk("misaligned: gpa %llx bytes %d role %x\n",
		 gpa, bytes, sp->role.word);

	offset = offset_in_page(gpa);
5335
	pte_size = sp->role.has_4_byte_gpte ? 4 : 8;
5336 5337 5338 5339 5340 5341 5342 5343

	/*
	 * Sometimes, the OS only writes the last one bytes to update status
	 * bits, for example, in linux, andb instruction is used in clear_bit().
	 */
	if (!(offset & (pte_size - 1)) && bytes == 1)
		return false;

5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358
	misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
	misaligned |= bytes < 4;

	return misaligned;
}

static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
{
	unsigned page_offset, quadrant;
	u64 *spte;
	int level;

	page_offset = offset_in_page(gpa);
	level = sp->role.level;
	*nspte = 1;
5359
	if (sp->role.has_4_byte_gpte) {
5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380
		page_offset <<= 1;	/* 32->64 */
		/*
		 * A 32-bit pde maps 4MB while the shadow pdes map
		 * only 2MB.  So we need to double the offset again
		 * and zap two pdes instead of one.
		 */
		if (level == PT32_ROOT_LEVEL) {
			page_offset &= ~7; /* kill rounding error */
			page_offset <<= 1;
			*nspte = 2;
		}
		quadrant = page_offset >> PAGE_SHIFT;
		page_offset &= ~PAGE_MASK;
		if (quadrant != sp->role.quadrant)
			return NULL;
	}

	spte = &sp->spt[page_offset / sizeof(*spte)];
	return spte;
}

5381
static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
5382 5383
			      const u8 *new, int bytes,
			      struct kvm_page_track_notifier_node *node)
5384 5385 5386 5387 5388 5389
{
	gfn_t gfn = gpa >> PAGE_SHIFT;
	struct kvm_mmu_page *sp;
	LIST_HEAD(invalid_list);
	u64 entry, gentry, *spte;
	int npte;
5390
	bool flush = false;
5391 5392 5393 5394 5395

	/*
	 * If we don't have indirect shadow pages, it means no page is
	 * write-protected, so we can exit simply.
	 */
5396
	if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
5397 5398 5399 5400
		return;

	pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);

5401
	write_lock(&vcpu->kvm->mmu_lock);
5402 5403 5404

	gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);

5405 5406
	++vcpu->kvm->stat.mmu_pte_write;

L
Lai Jiangshan 已提交
5407
	for_each_gfn_valid_sp_with_gptes(vcpu->kvm, sp, gfn) {
5408
		if (detect_write_misaligned(sp, gpa, bytes) ||
5409
		      detect_write_flooding(sp)) {
5410
			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
A
Avi Kivity 已提交
5411
			++vcpu->kvm->stat.mmu_flooded;
5412 5413
			continue;
		}
5414 5415 5416 5417 5418

		spte = get_written_sptes(sp, gpa, &npte);
		if (!spte)
			continue;

5419
		while (npte--) {
5420
			entry = *spte;
5421
			mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL);
5422 5423
			if (gentry && sp->role.level != PG_LEVEL_4K)
				++vcpu->kvm->stat.mmu_pde_zapped;
G
Gleb Natapov 已提交
5424
			if (need_remote_flush(entry, *spte))
5425
				flush = true;
5426
			++spte;
5427 5428
		}
	}
5429
	kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush);
5430
	write_unlock(&vcpu->kvm->mmu_lock);
5431 5432
}

5433
int noinline kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
5434
		       void *insn, int insn_len)
5435
{
5436
	int r, emulation_type = EMULTYPE_PF;
5437
	bool direct = vcpu->arch.mmu->root_role.direct;
5438

5439
	if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root.hpa)))
5440 5441
		return RET_PF_RETRY;

5442
	r = RET_PF_INVALID;
5443
	if (unlikely(error_code & PFERR_RSVD_MASK)) {
5444
		r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
5445
		if (r == RET_PF_EMULATE)
5446 5447
			goto emulate;
	}
5448

5449
	if (r == RET_PF_INVALID) {
5450 5451
		r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
					  lower_32_bits(error_code), false);
5452
		if (KVM_BUG_ON(r == RET_PF_INVALID, vcpu->kvm))
5453
			return -EIO;
5454 5455
	}

5456
	if (r < 0)
5457
		return r;
5458 5459
	if (r != RET_PF_EMULATE)
		return 1;
5460

5461 5462 5463 5464 5465 5466 5467
	/*
	 * Before emulating the instruction, check if the error code
	 * was due to a RO violation while translating the guest page.
	 * This can occur when using nested virtualization with nested
	 * paging in both guests. If true, we simply unprotect the page
	 * and resume the guest.
	 */
5468
	if (vcpu->arch.mmu->root_role.direct &&
5469
	    (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5470
		kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
5471 5472 5473
		return 1;
	}

5474 5475 5476 5477 5478 5479
	/*
	 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
	 * optimistically try to just unprotect the page and let the processor
	 * re-execute the instruction that caused the page fault.  Do not allow
	 * retrying MMIO emulation, as it's not only pointless but could also
	 * cause us to enter an infinite loop because the processor will keep
5480 5481 5482 5483
	 * faulting on the non-existent MMIO address.  Retrying an instruction
	 * from a nested guest is also pointless and dangerous as we are only
	 * explicitly shadowing L1's page tables, i.e. unprotecting something
	 * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5484
	 */
5485
	if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
5486
		emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
5487
emulate:
5488
	return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
5489
				       insn_len);
5490 5491 5492
}
EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);

5493 5494
void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
			    gva_t gva, hpa_t root_hpa)
M
Marcelo Tosatti 已提交
5495
{
5496
	int i;
5497

5498 5499 5500 5501 5502 5503
	/* It's actually a GPA for vcpu->arch.guest_mmu.  */
	if (mmu != &vcpu->arch.guest_mmu) {
		/* INVLPG on a non-canonical address is a NOP according to the SDM.  */
		if (is_noncanonical_address(gva, vcpu))
			return;

5504
		static_call(kvm_x86_flush_tlb_gva)(vcpu, gva);
5505 5506 5507
	}

	if (!mmu->invlpg)
5508 5509
		return;

5510
	if (root_hpa == INVALID_PAGE) {
5511
		mmu->invlpg(vcpu, gva, mmu->root.hpa);
5512

5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530
		/*
		 * INVLPG is required to invalidate any global mappings for the VA,
		 * irrespective of PCID. Since it would take us roughly similar amount
		 * of work to determine whether any of the prev_root mappings of the VA
		 * is marked global, or to just sync it blindly, so we might as well
		 * just always sync it.
		 *
		 * Mappings not reachable via the current cr3 or the prev_roots will be
		 * synced when switching to that cr3, so nothing needs to be done here
		 * for them.
		 */
		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
			if (VALID_PAGE(mmu->prev_roots[i].hpa))
				mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
	} else {
		mmu->invlpg(vcpu, gva, root_hpa);
	}
}
5531

5532 5533
void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
{
5534
	kvm_mmu_invalidate_gva(vcpu, vcpu->arch.walk_mmu, gva, INVALID_PAGE);
M
Marcelo Tosatti 已提交
5535 5536 5537 5538
	++vcpu->stat.invlpg;
}
EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);

5539

5540 5541
void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
{
5542
	struct kvm_mmu *mmu = vcpu->arch.mmu;
5543
	bool tlb_flush = false;
5544
	uint i;
5545 5546

	if (pcid == kvm_get_active_pcid(vcpu)) {
5547 5548
		if (mmu->invlpg)
			mmu->invlpg(vcpu, gva, mmu->root.hpa);
5549
		tlb_flush = true;
5550 5551
	}

5552 5553
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
		if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5554
		    pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) {
5555 5556
			if (mmu->invlpg)
				mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5557 5558
			tlb_flush = true;
		}
5559
	}
5560

5561
	if (tlb_flush)
5562
		static_call(kvm_x86_flush_tlb_gva)(vcpu, gva);
5563

5564 5565 5566
	++vcpu->stat.invlpg;

	/*
5567 5568 5569
	 * Mappings not reachable via the current cr3 or the prev_roots will be
	 * synced when switching to that cr3, so nothing needs to be done here
	 * for them.
5570 5571 5572
	 */
}

5573 5574
void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level,
		       int tdp_max_root_level, int tdp_huge_page_level)
5575
{
5576
	tdp_enabled = enable_tdp;
5577
	tdp_root_level = tdp_forced_root_level;
5578
	max_tdp_level = tdp_max_root_level;
5579 5580

	/*
5581
	 * max_huge_page_level reflects KVM's MMU capabilities irrespective
5582 5583 5584 5585 5586 5587
	 * of kernel support, e.g. KVM may be capable of using 1GB pages when
	 * the kernel is not.  But, KVM never creates a page size greater than
	 * what is used by the kernel for any given HVA, i.e. the kernel's
	 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
	 */
	if (tdp_enabled)
5588
		max_huge_page_level = tdp_huge_page_level;
5589
	else if (boot_cpu_has(X86_FEATURE_GBPAGES))
5590
		max_huge_page_level = PG_LEVEL_1G;
5591
	else
5592
		max_huge_page_level = PG_LEVEL_2M;
5593
}
5594
EXPORT_SYMBOL_GPL(kvm_configure_mmu);
5595 5596

/* The return value indicates if tlb flush on all vcpus is needed. */
5597 5598 5599
typedef bool (*slot_level_handler) (struct kvm *kvm,
				    struct kvm_rmap_head *rmap_head,
				    const struct kvm_memory_slot *slot);
5600 5601 5602

/* The caller should hold mmu-lock before calling this function. */
static __always_inline bool
5603
slot_handle_level_range(struct kvm *kvm, const struct kvm_memory_slot *memslot,
5604
			slot_level_handler fn, int start_level, int end_level,
5605 5606
			gfn_t start_gfn, gfn_t end_gfn, bool flush_on_yield,
			bool flush)
5607 5608 5609 5610 5611 5612
{
	struct slot_rmap_walk_iterator iterator;

	for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
			end_gfn, &iterator) {
		if (iterator.rmap)
5613
			flush |= fn(kvm, iterator.rmap, memslot);
5614

5615
		if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
5616
			if (flush && flush_on_yield) {
5617 5618 5619
				kvm_flush_remote_tlbs_with_address(kvm,
						start_gfn,
						iterator.gfn - start_gfn + 1);
5620 5621
				flush = false;
			}
5622
			cond_resched_rwlock_write(&kvm->mmu_lock);
5623 5624 5625 5626 5627 5628 5629
		}
	}

	return flush;
}

static __always_inline bool
5630
slot_handle_level(struct kvm *kvm, const struct kvm_memory_slot *memslot,
5631
		  slot_level_handler fn, int start_level, int end_level,
5632
		  bool flush_on_yield)
5633 5634 5635 5636
{
	return slot_handle_level_range(kvm, memslot, fn, start_level,
			end_level, memslot->base_gfn,
			memslot->base_gfn + memslot->npages - 1,
5637
			flush_on_yield, false);
5638 5639 5640
}

static __always_inline bool
5641 5642
slot_handle_level_4k(struct kvm *kvm, const struct kvm_memory_slot *memslot,
		     slot_level_handler fn, bool flush_on_yield)
5643
{
5644
	return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
5645
				 PG_LEVEL_4K, flush_on_yield);
5646 5647
}

5648
static void free_mmu_pages(struct kvm_mmu *mmu)
A
Avi Kivity 已提交
5649
{
5650 5651
	if (!tdp_enabled && mmu->pae_root)
		set_memory_encrypted((unsigned long)mmu->pae_root, 1);
5652
	free_page((unsigned long)mmu->pae_root);
5653
	free_page((unsigned long)mmu->pml4_root);
5654
	free_page((unsigned long)mmu->pml5_root);
A
Avi Kivity 已提交
5655 5656
}

5657
static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
A
Avi Kivity 已提交
5658
{
5659
	struct page *page;
A
Avi Kivity 已提交
5660 5661
	int i;

5662 5663
	mmu->root.hpa = INVALID_PAGE;
	mmu->root.pgd = 0;
5664 5665 5666
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
		mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;

5667 5668 5669 5670
	/* vcpu->arch.guest_mmu isn't used when !tdp_enabled. */
	if (!tdp_enabled && mmu == &vcpu->arch.guest_mmu)
		return 0;

5671
	/*
5672 5673 5674 5675
	 * When using PAE paging, the four PDPTEs are treated as 'root' pages,
	 * while the PDP table is a per-vCPU construct that's allocated at MMU
	 * creation.  When emulating 32-bit mode, cr3 is only 32 bits even on
	 * x86_64.  Therefore we need to allocate the PDP table in the first
5676 5677 5678 5679
	 * 4GB of memory, which happens to fit the DMA32 zone.  TDP paging
	 * generally doesn't use PAE paging and can skip allocating the PDP
	 * table.  The main exception, handled here, is SVM's 32-bit NPT.  The
	 * other exception is for shadowing L1's 32-bit or PAE NPT on 64-bit
5680
	 * KVM; that horror is handled on-demand by mmu_alloc_special_roots().
5681
	 */
5682
	if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
5683 5684
		return 0;

5685
	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
5686
	if (!page)
5687 5688
		return -ENOMEM;

5689
	mmu->pae_root = page_address(page);
5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701

	/*
	 * CR3 is only 32 bits when PAE paging is used, thus it's impossible to
	 * get the CPU to treat the PDPTEs as encrypted.  Decrypt the page so
	 * that KVM's writes and the CPU's reads get along.  Note, this is
	 * only necessary when using shadow paging, as 64-bit NPT can get at
	 * the C-bit even when shadowing 32-bit NPT, and SME isn't supported
	 * by 32-bit kernels (when KVM itself uses 32-bit NPT).
	 */
	if (!tdp_enabled)
		set_memory_decrypted((unsigned long)mmu->pae_root, 1);
	else
5702
		WARN_ON_ONCE(shadow_me_value);
5703

5704
	for (i = 0; i < 4; ++i)
5705
		mmu->pae_root[i] = INVALID_PAE_ROOT;
5706

A
Avi Kivity 已提交
5707 5708 5709
	return 0;
}

5710
int kvm_mmu_create(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
5711
{
5712
	int ret;
5713

5714
	vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache;
5715 5716
	vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO;

5717
	vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache;
5718
	vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO;
5719

5720 5721
	vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO;

5722 5723
	vcpu->arch.mmu = &vcpu->arch.root_mmu;
	vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
A
Avi Kivity 已提交
5724

5725
	ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu);
5726 5727 5728
	if (ret)
		return ret;

5729
	ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu);
5730 5731 5732 5733 5734 5735 5736
	if (ret)
		goto fail_allocate_root;

	return ret;
 fail_allocate_root:
	free_mmu_pages(&vcpu->arch.guest_mmu);
	return ret;
A
Avi Kivity 已提交
5737 5738
}

5739
#define BATCH_ZAP_PAGES	10
5740 5741 5742
static void kvm_zap_obsolete_pages(struct kvm *kvm)
{
	struct kvm_mmu_page *sp, *node;
5743
	int nr_zapped, batch = 0;
5744
	bool unstable;
5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756

restart:
	list_for_each_entry_safe_reverse(sp, node,
	      &kvm->arch.active_mmu_pages, link) {
		/*
		 * No obsolete valid page exists before a newly created page
		 * since active_mmu_pages is a FIFO list.
		 */
		if (!is_obsolete_sp(kvm, sp))
			break;

		/*
5757 5758 5759
		 * Invalid pages should never land back on the list of active
		 * pages.  Skip the bogus page, otherwise we'll get stuck in an
		 * infinite loop if the page gets put back on the list (again).
5760
		 */
5761
		if (WARN_ON(sp->role.invalid))
5762 5763
			continue;

5764 5765 5766 5767 5768 5769
		/*
		 * No need to flush the TLB since we're only zapping shadow
		 * pages with an obsolete generation number and all vCPUS have
		 * loaded a new root, i.e. the shadow pages being zapped cannot
		 * be in active use by the guest.
		 */
5770
		if (batch >= BATCH_ZAP_PAGES &&
5771
		    cond_resched_rwlock_write(&kvm->mmu_lock)) {
5772
			batch = 0;
5773 5774 5775
			goto restart;
		}

5776 5777 5778 5779 5780
		unstable = __kvm_mmu_prepare_zap_page(kvm, sp,
				&kvm->arch.zapped_obsolete_pages, &nr_zapped);
		batch += nr_zapped;

		if (unstable)
5781 5782 5783
			goto restart;
	}

5784
	/*
5785 5786 5787 5788 5789 5790 5791
	 * Kick all vCPUs (via remote TLB flush) before freeing the page tables
	 * to ensure KVM is not in the middle of a lockless shadow page table
	 * walk, which may reference the pages.  The remote TLB flush itself is
	 * not required and is simply a convenient way to kick vCPUs as needed.
	 * KVM performs a local TLB flush when allocating a new root (see
	 * kvm_mmu_load()), and the reload in the caller ensure no vCPUs are
	 * running with an obsolete MMU.
5792
	 */
5793
	kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806
}

/*
 * Fast invalidate all shadow pages and use lock-break technique
 * to zap obsolete pages.
 *
 * It's required when memslot is being deleted or VM is being
 * destroyed, in these cases, we should ensure that KVM MMU does
 * not use any resource of the being-deleted slot or all slots
 * after calling the function.
 */
static void kvm_mmu_zap_all_fast(struct kvm *kvm)
{
5807 5808
	lockdep_assert_held(&kvm->slots_lock);

5809
	write_lock(&kvm->mmu_lock);
5810
	trace_kvm_mmu_zap_all_fast(kvm);
5811 5812 5813 5814 5815 5816 5817 5818 5819

	/*
	 * Toggle mmu_valid_gen between '0' and '1'.  Because slots_lock is
	 * held for the entire duration of zapping obsolete pages, it's
	 * impossible for there to be multiple invalid generations associated
	 * with *valid* shadow pages at any given time, i.e. there is exactly
	 * one valid generation and (at most) one invalid generation.
	 */
	kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
5820

5821 5822 5823 5824 5825
	/*
	 * In order to ensure all vCPUs drop their soon-to-be invalid roots,
	 * invalidating TDP MMU roots must be done while holding mmu_lock for
	 * write and in the same critical section as making the reload request,
	 * e.g. before kvm_zap_obsolete_pages() could drop mmu_lock and yield.
5826 5827 5828 5829
	 */
	if (is_tdp_mmu_enabled(kvm))
		kvm_tdp_mmu_invalidate_all_roots(kvm);

5830 5831 5832 5833 5834 5835 5836 5837
	/*
	 * Notify all vcpus to reload its shadow page table and flush TLB.
	 * Then all vcpus will switch to new shadow page table with the new
	 * mmu_valid_gen.
	 *
	 * Note: we need to do this under the protection of mmu_lock,
	 * otherwise, vcpu would purge shadow page but miss tlb flush.
	 */
5838
	kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS);
5839

5840
	kvm_zap_obsolete_pages(kvm);
5841

5842
	write_unlock(&kvm->mmu_lock);
5843

5844 5845 5846 5847 5848 5849 5850 5851
	/*
	 * Zap the invalidated TDP MMU roots, all SPTEs must be dropped before
	 * returning to the caller, e.g. if the zap is in response to a memslot
	 * deletion, mmu_notifier callbacks will be unable to reach the SPTEs
	 * associated with the deleted memslot once the update completes, and
	 * Deferring the zap until the final reference to the root is put would
	 * lead to use-after-free.
	 */
5852
	if (is_tdp_mmu_enabled(kvm))
5853
		kvm_tdp_mmu_zap_invalidated_roots(kvm);
5854 5855
}

5856 5857 5858 5859 5860
static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
{
	return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
}

5861
static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5862 5863
			struct kvm_memory_slot *slot,
			struct kvm_page_track_notifier_node *node)
5864
{
5865
	kvm_mmu_zap_all_fast(kvm);
5866 5867
}

5868
int kvm_mmu_init_vm(struct kvm *kvm)
5869
{
5870
	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5871
	int r;
5872

5873 5874 5875
	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
	INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
	INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages);
5876 5877
	spin_lock_init(&kvm->arch.mmu_unsync_pages_lock);

5878 5879 5880
	r = kvm_mmu_init_tdp_mmu(kvm);
	if (r < 0)
		return r;
5881

5882
	node->track_write = kvm_mmu_pte_write;
5883
	node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5884
	kvm_page_track_register_notifier(kvm, node);
5885
	return 0;
5886 5887
}

5888
void kvm_mmu_uninit_vm(struct kvm *kvm)
5889
{
5890
	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5891

5892
	kvm_page_track_unregister_notifier(kvm, node);
5893 5894

	kvm_mmu_uninit_tdp_mmu(kvm);
5895 5896
}

5897 5898 5899 5900
static bool __kvm_zap_rmaps(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
{
	const struct kvm_memory_slot *memslot;
	struct kvm_memslots *slots;
5901
	struct kvm_memslot_iter iter;
5902 5903
	bool flush = false;
	gfn_t start, end;
5904
	int i;
5905 5906 5907 5908 5909 5910

	if (!kvm_memslots_have_rmaps(kvm))
		return flush;

	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
5911 5912 5913

		kvm_for_each_memslot_in_gfn_range(&iter, slots, gfn_start, gfn_end) {
			memslot = iter.slot;
5914 5915
			start = max(gfn_start, memslot->base_gfn);
			end = min(gfn_end, memslot->base_gfn + memslot->npages);
5916
			if (WARN_ON_ONCE(start >= end))
5917 5918 5919
				continue;

			flush = slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
5920

5921 5922 5923 5924 5925 5926 5927 5928
							PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL,
							start, end - 1, true, flush);
		}
	}

	return flush;
}

5929 5930 5931 5932
/*
 * Invalidate (zap) SPTEs that cover GFNs from gfn_start and up to gfn_end
 * (not including it)
 */
X
Xiao Guangrong 已提交
5933 5934
void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
{
5935
	bool flush;
5936
	int i;
X
Xiao Guangrong 已提交
5937

5938 5939 5940
	if (WARN_ON_ONCE(gfn_end <= gfn_start))
		return;

5941 5942
	write_lock(&kvm->mmu_lock);

5943 5944
	kvm_inc_notifier_count(kvm, gfn_start, gfn_end);

5945
	flush = __kvm_zap_rmaps(kvm, gfn_start, gfn_end);
X
Xiao Guangrong 已提交
5946

5947
	if (is_tdp_mmu_enabled(kvm)) {
5948
		for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
5949 5950
			flush = kvm_tdp_mmu_zap_leafs(kvm, i, gfn_start,
						      gfn_end, true, flush);
5951
	}
5952 5953

	if (flush)
5954 5955
		kvm_flush_remote_tlbs_with_address(kvm, gfn_start,
						   gfn_end - gfn_start);
5956

5957 5958
	kvm_dec_notifier_count(kvm, gfn_start, gfn_end);

5959
	write_unlock(&kvm->mmu_lock);
X
Xiao Guangrong 已提交
5960 5961
}

5962
static bool slot_rmap_write_protect(struct kvm *kvm,
5963
				    struct kvm_rmap_head *rmap_head,
5964
				    const struct kvm_memory_slot *slot)
5965
{
5966
	return rmap_write_protect(rmap_head, false);
5967 5968
}

5969
void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5970
				      const struct kvm_memory_slot *memslot,
5971
				      int start_level)
A
Avi Kivity 已提交
5972
{
5973
	bool flush = false;
A
Avi Kivity 已提交
5974

5975 5976 5977 5978 5979 5980 5981
	if (kvm_memslots_have_rmaps(kvm)) {
		write_lock(&kvm->mmu_lock);
		flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect,
					  start_level, KVM_MAX_HUGEPAGE_LEVEL,
					  false);
		write_unlock(&kvm->mmu_lock);
	}
5982

5983 5984 5985 5986 5987 5988
	if (is_tdp_mmu_enabled(kvm)) {
		read_lock(&kvm->mmu_lock);
		flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, start_level);
		read_unlock(&kvm->mmu_lock);
	}

5989
	/*
5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009
	 * Flush TLBs if any SPTEs had to be write-protected to ensure that
	 * guest writes are reflected in the dirty bitmap before the memslot
	 * update completes, i.e. before enabling dirty logging is visible to
	 * userspace.
	 *
	 * Perform the TLB flush outside the mmu_lock to reduce the amount of
	 * time the lock is held. However, this does mean that another CPU can
	 * now grab mmu_lock and encounter a write-protected SPTE while CPUs
	 * still have a writable mapping for the associated GFN in their TLB.
	 *
	 * This is safe but requires KVM to be careful when making decisions
	 * based on the write-protection status of an SPTE. Specifically, KVM
	 * also write-protects SPTEs to monitor changes to guest page tables
	 * during shadow paging, and must guarantee no CPUs can write to those
	 * page before the lock is dropped. As mentioned in the previous
	 * paragraph, a write-protected SPTE is no guarantee that CPU cannot
	 * perform writes. So to determine if a TLB flush is truly required, KVM
	 * will clear a separate software-only bit (MMU-writable) and skip the
	 * flush if-and-only-if this bit was already clear.
	 *
6010
	 * See is_writable_pte() for more details.
6011
	 */
6012
	if (flush)
6013
		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
A
Avi Kivity 已提交
6014
}
6015

6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031
/* Must be called with the mmu_lock held in write-mode. */
void kvm_mmu_try_split_huge_pages(struct kvm *kvm,
				   const struct kvm_memory_slot *memslot,
				   u64 start, u64 end,
				   int target_level)
{
	if (is_tdp_mmu_enabled(kvm))
		kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end,
						 target_level, false);

	/*
	 * A TLB flush is unnecessary at this point for the same resons as in
	 * kvm_mmu_slot_try_split_huge_pages().
	 */
}

6032
void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm,
6033 6034
					const struct kvm_memory_slot *memslot,
					int target_level)
6035 6036 6037 6038 6039 6040
{
	u64 start = memslot->base_gfn;
	u64 end = start + memslot->npages;

	if (is_tdp_mmu_enabled(kvm)) {
		read_lock(&kvm->mmu_lock);
6041
		kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level, true);
6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055
		read_unlock(&kvm->mmu_lock);
	}

	/*
	 * No TLB flush is necessary here. KVM will flush TLBs after
	 * write-protecting and/or clearing dirty on the newly split SPTEs to
	 * ensure that guest writes are reflected in the dirty log before the
	 * ioctl to enable dirty logging on this memslot completes. Since the
	 * split SPTEs retain the write and dirty bits of the huge SPTE, it is
	 * safe for KVM to decide if a TLB flush is necessary based on the split
	 * SPTEs.
	 */
}

6056
static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
6057
					 struct kvm_rmap_head *rmap_head,
6058
					 const struct kvm_memory_slot *slot)
6059 6060 6061 6062
{
	u64 *sptep;
	struct rmap_iterator iter;
	int need_tlb_flush = 0;
D
Dan Williams 已提交
6063
	kvm_pfn_t pfn;
6064 6065
	struct kvm_mmu_page *sp;

6066
restart:
6067
	for_each_rmap_spte(rmap_head, &iter, sptep) {
6068
		sp = sptep_to_sp(sptep);
6069 6070 6071
		pfn = spte_to_pfn(*sptep);

		/*
6072 6073 6074 6075 6076
		 * We cannot do huge page mapping for indirect shadow pages,
		 * which are found on the last rmap (level = 1) when not using
		 * tdp; such shadow pages are synced with the page table in
		 * the guest, and the guest page table is using 4K page size
		 * mapping if the indirect sp has level = 1.
6077
		 */
6078
		if (sp->role.direct &&
6079 6080
		    sp->role.level < kvm_mmu_max_mapping_level(kvm, slot, sp->gfn,
							       pfn, PG_LEVEL_NUM)) {
6081
			pte_list_remove(kvm, rmap_head, sptep);
6082 6083 6084 6085 6086 6087 6088

			if (kvm_available_flush_tlb_with_range())
				kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
					KVM_PAGES_PER_HPAGE(sp->role.level));
			else
				need_tlb_flush = 1;

6089 6090
			goto restart;
		}
6091 6092 6093 6094 6095 6096
	}

	return need_tlb_flush;
}

void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
6097
				   const struct kvm_memory_slot *slot)
6098
{
6099 6100
	if (kvm_memslots_have_rmaps(kvm)) {
		write_lock(&kvm->mmu_lock);
6101 6102 6103 6104 6105
		/*
		 * Zap only 4k SPTEs since the legacy MMU only supports dirty
		 * logging at a 4k granularity and never creates collapsible
		 * 2m SPTEs during dirty logging.
		 */
6106
		if (slot_handle_level_4k(kvm, slot, kvm_mmu_zap_collapsible_spte, true))
6107 6108 6109
			kvm_arch_flush_remote_tlbs_memslot(kvm, slot);
		write_unlock(&kvm->mmu_lock);
	}
6110 6111 6112

	if (is_tdp_mmu_enabled(kvm)) {
		read_lock(&kvm->mmu_lock);
6113
		kvm_tdp_mmu_zap_collapsible_sptes(kvm, slot);
6114 6115
		read_unlock(&kvm->mmu_lock);
	}
6116 6117
}

6118
void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
6119
					const struct kvm_memory_slot *memslot)
6120 6121
{
	/*
6122
	 * All current use cases for flushing the TLBs for a specific memslot
6123
	 * related to dirty logging, and many do the TLB flush out of mmu_lock.
6124 6125 6126
	 * The interaction between the various operations on memslot must be
	 * serialized by slots_locks to ensure the TLB flush from one operation
	 * is observed by any other operation on the same memslot.
6127 6128
	 */
	lockdep_assert_held(&kvm->slots_lock);
6129 6130
	kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
					   memslot->npages);
6131 6132
}

6133
void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
6134
				   const struct kvm_memory_slot *memslot)
6135
{
6136
	bool flush = false;
6137

6138 6139
	if (kvm_memslots_have_rmaps(kvm)) {
		write_lock(&kvm->mmu_lock);
6140 6141 6142 6143 6144
		/*
		 * Clear dirty bits only on 4k SPTEs since the legacy MMU only
		 * support dirty logging at a 4k granularity.
		 */
		flush = slot_handle_level_4k(kvm, memslot, __rmap_clear_dirty, false);
6145 6146
		write_unlock(&kvm->mmu_lock);
	}
6147

6148 6149 6150 6151 6152 6153
	if (is_tdp_mmu_enabled(kvm)) {
		read_lock(&kvm->mmu_lock);
		flush |= kvm_tdp_mmu_clear_dirty_slot(kvm, memslot);
		read_unlock(&kvm->mmu_lock);
	}

6154 6155 6156 6157 6158 6159 6160
	/*
	 * It's also safe to flush TLBs out of mmu lock here as currently this
	 * function is only used for dirty logging, in which case flushing TLB
	 * out of mmu lock also guarantees no dirty pages will be lost in
	 * dirty_bitmap.
	 */
	if (flush)
6161
		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
6162 6163
}

6164
void kvm_mmu_zap_all(struct kvm *kvm)
6165 6166
{
	struct kvm_mmu_page *sp, *node;
6167
	LIST_HEAD(invalid_list);
6168
	int ign;
6169

6170
	write_lock(&kvm->mmu_lock);
6171
restart:
6172
	list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
6173
		if (WARN_ON(sp->role.invalid))
6174
			continue;
6175
		if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
6176
			goto restart;
6177
		if (cond_resched_rwlock_write(&kvm->mmu_lock))
6178 6179 6180
			goto restart;
	}

6181
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
6182

6183
	if (is_tdp_mmu_enabled(kvm))
6184 6185
		kvm_tdp_mmu_zap_all(kvm);

6186
	write_unlock(&kvm->mmu_lock);
6187 6188
}

6189
void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
6190
{
6191
	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
6192

6193
	gen &= MMIO_SPTE_GEN_MASK;
6194

6195
	/*
6196 6197 6198 6199 6200 6201 6202 6203
	 * Generation numbers are incremented in multiples of the number of
	 * address spaces in order to provide unique generations across all
	 * address spaces.  Strip what is effectively the address space
	 * modifier prior to checking for a wrap of the MMIO generation so
	 * that a wrap in any address space is detected.
	 */
	gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);

6204
	/*
6205
	 * The very rare case: if the MMIO generation number has wrapped,
6206 6207
	 * zap all shadow pages.
	 */
6208
	if (unlikely(gen == 0)) {
6209
		kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
6210
		kvm_mmu_zap_all_fast(kvm);
6211
	}
6212 6213
}

6214 6215
static unsigned long
mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
6216 6217
{
	struct kvm *kvm;
6218
	int nr_to_scan = sc->nr_to_scan;
6219
	unsigned long freed = 0;
6220

J
Junaid Shahid 已提交
6221
	mutex_lock(&kvm_lock);
6222 6223

	list_for_each_entry(kvm, &vm_list, vm_list) {
6224
		int idx;
6225
		LIST_HEAD(invalid_list);
6226

6227 6228 6229 6230 6231 6232 6233 6234
		/*
		 * Never scan more than sc->nr_to_scan VM instances.
		 * Will not hit this condition practically since we do not try
		 * to shrink more than one VM and it is very unlikely to see
		 * !n_used_mmu_pages so many times.
		 */
		if (!nr_to_scan--)
			break;
6235 6236 6237 6238 6239 6240
		/*
		 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
		 * here. We may skip a VM instance errorneosly, but we do not
		 * want to shrink a VM that only started to populate its MMU
		 * anyway.
		 */
6241 6242
		if (!kvm->arch.n_used_mmu_pages &&
		    !kvm_has_zapped_obsolete_pages(kvm))
6243 6244
			continue;

6245
		idx = srcu_read_lock(&kvm->srcu);
6246
		write_lock(&kvm->mmu_lock);
6247

6248 6249 6250 6251 6252 6253
		if (kvm_has_zapped_obsolete_pages(kvm)) {
			kvm_mmu_commit_zap_page(kvm,
			      &kvm->arch.zapped_obsolete_pages);
			goto unlock;
		}

6254
		freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan);
6255

6256
unlock:
6257
		write_unlock(&kvm->mmu_lock);
6258
		srcu_read_unlock(&kvm->srcu, idx);
6259

6260 6261 6262 6263 6264
		/*
		 * unfair on small ones
		 * per-vm shrinkers cry out
		 * sadness comes quickly
		 */
6265 6266
		list_move_tail(&kvm->vm_list, &vm_list);
		break;
6267 6268
	}

J
Junaid Shahid 已提交
6269
	mutex_unlock(&kvm_lock);
6270 6271 6272 6273 6274 6275
	return freed;
}

static unsigned long
mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
{
6276
	return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
6277 6278 6279
}

static struct shrinker mmu_shrinker = {
6280 6281
	.count_objects = mmu_shrink_count,
	.scan_objects = mmu_shrink_scan,
6282 6283 6284
	.seeks = DEFAULT_SEEKS * 10,
};

I
Ingo Molnar 已提交
6285
static void mmu_destroy_caches(void)
6286
{
6287 6288
	kmem_cache_destroy(pte_list_desc_cache);
	kmem_cache_destroy(mmu_page_header_cache);
6289 6290
}

P
Paolo Bonzini 已提交
6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324
static bool get_nx_auto_mode(void)
{
	/* Return true when CPU has the bug, and mitigations are ON */
	return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
}

static void __set_nx_huge_pages(bool val)
{
	nx_huge_pages = itlb_multihit_kvm_mitigation = val;
}

static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
{
	bool old_val = nx_huge_pages;
	bool new_val;

	/* In "auto" mode deploy workaround only if CPU has the bug. */
	if (sysfs_streq(val, "off"))
		new_val = 0;
	else if (sysfs_streq(val, "force"))
		new_val = 1;
	else if (sysfs_streq(val, "auto"))
		new_val = get_nx_auto_mode();
	else if (strtobool(val, &new_val) < 0)
		return -EINVAL;

	__set_nx_huge_pages(new_val);

	if (new_val != old_val) {
		struct kvm *kvm;

		mutex_lock(&kvm_lock);

		list_for_each_entry(kvm, &vm_list, vm_list) {
6325
			mutex_lock(&kvm->slots_lock);
P
Paolo Bonzini 已提交
6326
			kvm_mmu_zap_all_fast(kvm);
6327
			mutex_unlock(&kvm->slots_lock);
6328 6329

			wake_up_process(kvm->arch.nx_lpage_recovery_thread);
P
Paolo Bonzini 已提交
6330 6331 6332 6333 6334 6335 6336
		}
		mutex_unlock(&kvm_lock);
	}

	return 0;
}

6337 6338 6339 6340 6341
/*
 * nx_huge_pages needs to be resolved to true/false when kvm.ko is loaded, as
 * its default value of -1 is technically undefined behavior for a boolean.
 */
void kvm_mmu_x86_module_init(void)
6342
{
P
Paolo Bonzini 已提交
6343 6344
	if (nx_huge_pages == -1)
		__set_nx_huge_pages(get_nx_auto_mode());
6345 6346 6347 6348 6349 6350 6351 6352 6353 6354
}

/*
 * The bulk of the MMU initialization is deferred until the vendor module is
 * loaded as many of the masks/values may be modified by VMX or SVM, i.e. need
 * to be reset when a potentially different vendor module is loaded.
 */
int kvm_mmu_vendor_module_init(void)
{
	int ret = -ENOMEM;
P
Paolo Bonzini 已提交
6355

6356 6357 6358 6359 6360 6361 6362 6363
	/*
	 * MMU roles use union aliasing which is, generally speaking, an
	 * undefined behavior. However, we supposedly know how compilers behave
	 * and the current status quo is unlikely to change. Guardians below are
	 * supposed to let us know if the assumption becomes false.
	 */
	BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
	BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
6364
	BUILD_BUG_ON(sizeof(union kvm_cpu_role) != sizeof(u64));
6365

6366
	kvm_mmu_reset_all_pte_masks();
6367

6368 6369
	pte_list_desc_cache = kmem_cache_create("pte_list_desc",
					    sizeof(struct pte_list_desc),
6370
					    0, SLAB_ACCOUNT, NULL);
6371
	if (!pte_list_desc_cache)
6372
		goto out;
6373

6374 6375
	mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
						  sizeof(struct kvm_mmu_page),
6376
						  0, SLAB_ACCOUNT, NULL);
6377
	if (!mmu_page_header_cache)
6378
		goto out;
6379

6380
	if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
6381
		goto out;
6382

6383 6384 6385
	ret = register_shrinker(&mmu_shrinker);
	if (ret)
		goto out;
6386

6387 6388
	return 0;

6389
out:
6390
	mmu_destroy_caches();
6391
	return ret;
6392 6393
}

6394 6395
void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
{
6396
	kvm_mmu_unload(vcpu);
6397 6398
	free_mmu_pages(&vcpu->arch.root_mmu);
	free_mmu_pages(&vcpu->arch.guest_mmu);
6399
	mmu_free_memory_caches(vcpu);
6400 6401
}

6402
void kvm_mmu_vendor_module_exit(void)
6403 6404 6405 6406
{
	mmu_destroy_caches();
	percpu_counter_destroy(&kvm_total_used_mmu_pages);
	unregister_shrinker(&mmu_shrinker);
6407
}
6408

6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433
/*
 * Calculate the effective recovery period, accounting for '0' meaning "let KVM
 * select a halving time of 1 hour".  Returns true if recovery is enabled.
 */
static bool calc_nx_huge_pages_recovery_period(uint *period)
{
	/*
	 * Use READ_ONCE to get the params, this may be called outside of the
	 * param setters, e.g. by the kthread to compute its next timeout.
	 */
	bool enabled = READ_ONCE(nx_huge_pages);
	uint ratio = READ_ONCE(nx_huge_pages_recovery_ratio);

	if (!enabled || !ratio)
		return false;

	*period = READ_ONCE(nx_huge_pages_recovery_period_ms);
	if (!*period) {
		/* Make sure the period is not less than one second.  */
		ratio = min(ratio, 3600u);
		*period = 60 * 60 * 1000 / ratio;
	}
	return true;
}

6434
static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp)
6435
{
6436 6437
	bool was_recovery_enabled, is_recovery_enabled;
	uint old_period, new_period;
6438 6439
	int err;

6440
	was_recovery_enabled = calc_nx_huge_pages_recovery_period(&old_period);
6441

6442 6443 6444 6445
	err = param_set_uint(val, kp);
	if (err)
		return err;

6446
	is_recovery_enabled = calc_nx_huge_pages_recovery_period(&new_period);
6447

6448
	if (is_recovery_enabled &&
6449
	    (!was_recovery_enabled || old_period > new_period)) {
6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464
		struct kvm *kvm;

		mutex_lock(&kvm_lock);

		list_for_each_entry(kvm, &vm_list, vm_list)
			wake_up_process(kvm->arch.nx_lpage_recovery_thread);

		mutex_unlock(&kvm_lock);
	}

	return err;
}

static void kvm_recover_nx_lpages(struct kvm *kvm)
{
6465
	unsigned long nx_lpage_splits = kvm->stat.nx_lpage_splits;
6466 6467 6468 6469
	int rcu_idx;
	struct kvm_mmu_page *sp;
	unsigned int ratio;
	LIST_HEAD(invalid_list);
6470
	bool flush = false;
6471 6472 6473
	ulong to_zap;

	rcu_idx = srcu_read_lock(&kvm->srcu);
6474
	write_lock(&kvm->mmu_lock);
6475

6476 6477 6478 6479 6480 6481 6482
	/*
	 * Zapping TDP MMU shadow pages, including the remote TLB flush, must
	 * be done under RCU protection, because the pages are freed via RCU
	 * callback.
	 */
	rcu_read_lock();

6483
	ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
6484
	to_zap = ratio ? DIV_ROUND_UP(nx_lpage_splits, ratio) : 0;
6485 6486 6487 6488
	for ( ; to_zap; --to_zap) {
		if (list_empty(&kvm->arch.lpage_disallowed_mmu_pages))
			break;

6489 6490 6491 6492 6493 6494 6495 6496 6497
		/*
		 * We use a separate list instead of just using active_mmu_pages
		 * because the number of lpage_disallowed pages is expected to
		 * be relatively small compared to the total.
		 */
		sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
				      struct kvm_mmu_page,
				      lpage_disallowed_link);
		WARN_ON_ONCE(!sp->lpage_disallowed);
6498
		if (is_tdp_mmu_page(sp)) {
6499
			flush |= kvm_tdp_mmu_zap_sp(kvm, sp);
6500
		} else {
6501 6502 6503
			kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
			WARN_ON_ONCE(sp->lpage_disallowed);
		}
6504

6505
		if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
6506
			kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
6507 6508
			rcu_read_unlock();

6509
			cond_resched_rwlock_write(&kvm->mmu_lock);
6510
			flush = false;
6511 6512

			rcu_read_lock();
6513 6514
		}
	}
6515
	kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
6516

6517 6518
	rcu_read_unlock();

6519
	write_unlock(&kvm->mmu_lock);
6520 6521 6522 6523 6524
	srcu_read_unlock(&kvm->srcu, rcu_idx);
}

static long get_nx_lpage_recovery_timeout(u64 start_time)
{
6525 6526
	bool enabled;
	uint period;
6527

6528
	enabled = calc_nx_huge_pages_recovery_period(&period);
6529

6530 6531
	return enabled ? start_time + msecs_to_jiffies(period) - get_jiffies_64()
		       : MAX_SCHEDULE_TIMEOUT;
6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576
}

static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
{
	u64 start_time;
	long remaining_time;

	while (true) {
		start_time = get_jiffies_64();
		remaining_time = get_nx_lpage_recovery_timeout(start_time);

		set_current_state(TASK_INTERRUPTIBLE);
		while (!kthread_should_stop() && remaining_time > 0) {
			schedule_timeout(remaining_time);
			remaining_time = get_nx_lpage_recovery_timeout(start_time);
			set_current_state(TASK_INTERRUPTIBLE);
		}

		set_current_state(TASK_RUNNING);

		if (kthread_should_stop())
			return 0;

		kvm_recover_nx_lpages(kvm);
	}
}

int kvm_mmu_post_init_vm(struct kvm *kvm)
{
	int err;

	err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
					  "kvm-nx-lpage-recovery",
					  &kvm->arch.nx_lpage_recovery_thread);
	if (!err)
		kthread_unpark(kvm->arch.nx_lpage_recovery_thread);

	return err;
}

void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
{
	if (kvm->arch.nx_lpage_recovery_thread)
		kthread_stop(kvm->arch.nx_lpage_recovery_thread);
}